

 Algebraic Models for
 Accounting Systems

This page intentionally left blankThis page intentionally left blank

N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I

World Scientific

 Algebraic Models for
 Accounting Systems

Salvador Cruz Rambaud

José García Pérez
University of Almeria, Spain

Robert A Nehmer
Oakland University, USA

Derek J S Robinson
University of Illinois at Urbana-Champaign, USA

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4287-11-1
ISBN-10 981-4287-11-3

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

ALGEBRAIC MODELS FOR ACCOUNTING SYSTEMS

http://www.a-pdf.com

“The imagination . . . gives birth to a system of symbols, har-
monious in themselves, and consubstantial with the truths of which
they are the conductors.”

Samuel Taylor Coleridge, “The Statesman’s Manual”, 1816.

This page intentionally left blankThis page intentionally left blank

Preface

In recent years there has been no shortage of applications of
mathematics to economics, mainly through the use of methods from
statistics, probability and risk analysis. It is much harder to find
significant applications of abstract algebra to the area. However,
the rise of the information sciences has clearly displayed the oppor-
tunities for applying what used to be considered the purest of pure
mathematics. It is now commonplace for students of computer sci-
ence to take the time to acquire a basic knowledge of algebra. It is
not hard to see why algebra should be enjoying popularity: in the
analysis of complex systems of all kinds the power and precision of
algebraic concepts, and sometimes just algebraic notation, can be
an enormous aid. On the other hand, one can search the literature
in accounting theory and find few attempts to make use of algebra,
and what there is tends to be at quite a modest level.

The object of the present work is to make the case for applying
algebra to the study of accounting systems by finding algebraic con-
cepts which are able to reflect accurately the workings of real life
systems. The benefits of such a study are diverse: the demand of
algebra for precision compels us to question and make exact every-
day ideas and processes in order to express them in abstract form.
It also serves to provide tools to analyze accounting systems.

The concepts which appear most frequently in the present study
are: column vectors with zero sum, the so called balance vectors,
which reflect the perfect balance of an accounting system; directed

graphs to show the flow of value through the system; automata to
model the computational aspects of accounting. These in turn lead
to further algebraic concepts such as monoids, subaccounting sys-
tems and quotient systems. All of these notions provide valuable
ways of looking at and understanding the operation of accounting
systems.

In a further departure from previous attempts to inject algebraic
ideas into accounting, we emphasize the role of rigorous proofs –
this is, after all, the only way to achieve any kind of certainty. In
addition, where it seems of mathematical interest, we have not hesi-
tated to follow up on mathematical questions that are suggested by
accounting concepts, sometimes in the form of combinatorial prob-
lems.

viii Preface

The current work had its origin in the Ph.D. dissertation of the
third author at the University of Illinois at Urbana-Champaign in
1988 and in a subsequent article in collaboration with the fourth
author. In addition, the introduction of automata into the study of
accounting owes much to an article by the first two authors. This
book is a greatly expanded version of these works. The first chapter
contains an extended account of previous approaches to accounting
theory by diverse authors, the object being to provide a setting and
historical background for the current enterprise.

While every effort has been made to keep the book self contained,
inevitably it is necessary to assume that the reader has a certain level
of mathematical sophistication, roughly what one would expect of a
student who has taken at least a first course on discrete mathemat-
ics. However, abstract structures such as monoid and automaton are
fully explained: a reader who would like to have more background
in abstract algebra should consult one of the innumerable texts on
the subject, for example [7] or [8].

The authors are grateful to the Department of Mathematics at
the University of Illinois, and Ms. Sara Nelson in particular, for as-
sistance with the technical typing. The last author thanks the Uni-
versity of Almeŕia, Spain for exceptionally warm hospitality during
a visit there in June 2009. Finally, the authors thank Ms. Tan Rok
Ting of World Scientific for her able assistance at all stages of this
project.

Contents

Preface vii

Chapter One Approaches to Accounting Theory 1

1.1. Historical perspectives 1

1.2. Algebraic and proof-based approaches 4

1.3. Natural language approaches 8

1.4. A formal grammar approach 10

1.5. Information systems in information economics 13

1.6. Location of the research justified 17

1.7. Accounting and formal languages 18

1.8. Proof-based systems 23

1.9. The scope of the present work 25

Chapter Two Balance Vectors 30

2.1. The values of an account 30

2.2. The state of an accounting system 33

2.3. Properties of the balance module 38

Chapter Three Transactions 50

3.1. Transaction vectors 51

3.2. Transaction types 57

3.3. Transactions, matrices and digraphs 63

Chapter Four Abstract Accounting Systems 73

4.1. Allowable transactions and balances 73

4.2. Defining an accounting system 74

4.3. Subaccounting systems 82

Chapter Five Quotient Systems and Homomorphisms 97

5.1. Introduction to the quotient concept 97

5.2. Quotients of accounting systems 98

5.3. Homomorphisms of accounting systems 104
5.4. Isomorphism theorems 111

x Contents

Chapter Six Accounting Systems and Automata 120

6.1. Introduction to semiautomata and automata 120

6.2. Accounting systems as automata I 126

6.3. Accounting systems as automata II 133

Chapter Seven Accounting Systems with Restricted

Transactions 141

7.1. An overview of special systems 141

7.2. Finitely specifiable accounting systems 142

7.3. The digraph of a simple system 154

Chapter Eight Algorithms 170

8.1. Decision problems for accounting systems 170

8.2. Recursive accounting systems 172

8.3. The balance verification problem 176

8.4. More algorithms 183

Chapter Nine The Extended Model 190

9.1. Introduction to the 10-tuple model 190

9.2. Authorization and control matrices 191

9.3. Frequency control 197

9.4. The 10-tuple model and automata 198

9.5. The audit as an automaton 205

Chapter Ten The Model Illustrated 210

10.1. A real life example 210

10.2. The operation of the model 219

10.3. Concluding remarks 230

List of Mathematical Symbols 232

Bibliography 234

Index 241

Chapter One

Approaches to Accounting

Theory

“Perhaps I am busied with pure numbers and the laws they sym-
bolize: nothing of this sort is present in the world about me, this
world of ‘real fact.’ And yet the world of numbers is also there for
me, as the field of objects with which I am arithmetically busied;
while I am thus occupied some numbers or constructions of a nu-
merical kind will be at the focus of vision, girt by an arithmetical
horizon partly defined, partly not; but obviously this being-there-
for-me, like the being there at all, is something very different from
this. The arithmetical world is there for me only when and for so

long as I occupy the arithmetical standpoint.”

Edmund Husserl, Ideas p. 94 (italics original)

1.1. Historical Perspectives

Accounting is an ancient human activity. From the time when
men and women first engaged in trade, whether for barter or money,
it must have been necessary to keep some kind of record of in-
comings and out-goings, to which the origins of the double entry
bookkeeping system can be traced. Already in the twelfth century
of the Christian Era the Arabic writer Ibn Taymiyyah mentioned in
his book Hisba (literally, “verification” or “calculation”) accounting
systems used by Muslims as early as the seventh century. A crit-
ical development in the history of accounting was the publication
in Venice in 1494 of the book “Summa de Arithmetica, Geometria,

2 Chapter 1. Approaches to Accounting Theory

Proportioni et Proportionalita” by the Franciscan monk and math-
ematician Luca Pacioli (1445-1517) – see Pacioli [1963]. This is the
first known work to contain a detailed description of the practice
of bookkeeping and the double entry system, “Particularis de Com-
putis et Scripturis”. Today it is widely regarded as the forerunner
of modern bookkeeping practice. It was also Pacioli who introduced
the symbols for plus and minus, which became standard notation in
mathematics during the Renaissance. The first book on accounting
in the English language appeared in London in 1543, authored by
John Gouge. An important source for the early history of accounting
is the writings of R. Mattessich ([1998], [2000], [2003], [2005b]).

While it seems clear that accounting was considered by Pacioli
and his contemporaries to be part of arithmetic, its relationship with
other parts of mathematics has had to wait much longer for recogni-
tion. The methods of statistics have long been used, almost since the
importance of that branch of applied mathematics was first recog-
nized in the seventeenth century. More recently probability theory
and risk analysis have featured in economics. However, algebra has
played little or no role, despite the precision of its language and its
ability to describe complex situations concisely. The purpose of this
monograph is to draw attention to the contribution that abstract
algebra can make to accounting theory. Indeed it is the authors’
contention that, at least in its deterministic form, accounting the-
ory should be considered as a branch of applied algebra.

The book presents and develops a proof-based, algebraic ap-
proach to the study of accounting systems. The analysis provides
a description of single firms in terms of abstract algebraic objects
such as automata. It concentrates on the process of producing infor-
mation from data provided by the environment through the double-
entry system. This process, although considered by many to be
the core of accounting, has often been ignored in accounting re-
search. In attempting to address this issue, the book adds a level
to the analysis of the information economists through the very act
of exploring the production aspect of accounting information sys-
tems. The motivation is to expose the complexities and subtleties
of information production in this field of research. The literature
review which follows reflects the rather fragmented nature of the
work which has been done up to this time in axiomatics, natural
languages, formal grammars and information economics. The book

1.1. Historical Perspectives 3

shows how a basic accounting system can be represented as a formal
algebraic language. The reduction of accounting systems to these
types of languages will lead to a much stronger method of modeling
information systems.

Although much discussion has occurred in the last fifty years
concerning the treatment of accounting as a language and its jus-
tification as the language of business, surprisingly little progress
has been made. This is perhaps due to the remarkable diversity
of methods in linguistic research. In pure linguistic research, the
various methods are divided into the natural language and formal
language schools. The natural language schools study naturally oc-
curring human languages as they have arisen from the historic acts of
increasingly complex human communication. The formal language
school arose from this tradition as methodologies were devised to
study natural languages. These methodologies generally tried to re-
duce the complexity of natural language constructs to a finite system
of grammatical rules. The formal language school became distinct
from the natural language school when it was determined that cer-
tain domains of language, such as parts of mathematics and later
computer science, could be completely specified by these finite sys-
tems.

Outside the area of pure linguistics, some applied fields such as
speech communication and organizational behavior have adopted
certain linguistic approaches and have developed other approaches
independently. Semiotics has been used to determine what signs
employees attend to in their everyday work relationships (Barley
[1983]). Semiotics studies the meanings that people assign to lan-
guage constructs in their search for understanding in their worlds.
Recently, hermeneutics has been used to develop a criticism of the
economics literature (McCloskey [1983]). This method employs the
analysis of texts to identify repetition of linguistic constructs or
changes in constructs over time and to study how the authors of the
texts view their social realities.

With such a diversity of methods available, it is hardly surprising
that the accounting profession has found little success in its search
for a formalization behind the intrinsic meaning of the metaphor
“accounting as the language of business”. It is the contention of
the present writers that the best way to proceed in the issue is to
choose a potential methodological candidate, develop it and make

4 Chapter 1. Approaches to Accounting Theory

a judgement based on its contribution to accounting research. The
method chosen here is a formal, algebraic approach. In order to
present this new approach to accounting in its contemporary setting,
a detailed review of the language studies, both formal and natural,
which have appeared in the accounting literature up to this point,
is given in the sections which follow.

1.2. Algebraic and Proof-Based Approaches

As has been pointed out, the application of abstract algebra to
accounting is something of a novelty. However, it would be wrong to
suggest that nothing has been attempted in this direction. Already
in 1894 the English algebraist Arthur Cayley wrote that “The prin-
ciples of book-keeping by double entry constitute a theory which is
mathematically by no means uninteresting; it is in fact, like Euclid’s
theory of ratios, an absolutely perfect one, and it is only its extreme
simplicity which prevents it from being as interesting as it would
otherwise be” (Cayley [1894]). Even before this time matrices had
been introduced in the framework of accounting theory by Augustus
De Morgan [1846], a route that was not followed by other writers un-
til 100 years later. Indeed matrices reappeared as a topic of research
interest in accounting only in the 1960s and 1970s, when a number of
classic works in accounting theory were published, such as Edwards
and Bell [1961], Chambers [1966], Ijiri [1967] and Mattessich [1964].
Here it should be understood that matrices were considered only as
a tool to describe in a mathematical way the activity of accounting,
and not as an attempt to formalize the concept of an accounting
system. Paton [1922], one of the major personalities in accounting
research in the United States in the 1920’s, seems to have been the
first author in formulate some accounting postulates. Nevertheless
at that time fundamental research was not common in this area and
the postulates never became part of a formal system.

Perhaps the most famous axiomatization of accounting was given
by Mattesich [1957, 1964]. The first of these publications relies on
a matrix formulation of accounting to provide structure to the ax-
iomatic system. Three axioms are included in this schema: a plu-
rality axiom, a double effect axiom and a period axiom. The first
asserts that there exist at least two objects with a common measur-
able property. This provides a basis for the recording of transactions.
The second axiom states the existence of an event which causes an

1.2. Algebraic and Proof-Based Approaches 5

increase of a property of one object and the corresponding decrease
of the property of another. In effect this is an axiom of double en-
try. The last axiom requires that accounting systems are capable of
being divided into time periods, thus providing a basis for the con-
struction of financial statements. In addition to these axioms, the
paper provides numerous definitions and “requirements”, as well as
several theorems.

The proofs of the theorems in Mattessich’s first paper give insight
into the formal relationship between the axioms and the theorems.
The proofs consist of algebraic manipulations of matrices using the
sigma, i.e., summation, notation. While in a sense this does serve
to “demonstrate” the theorems from the definitions, the proofs do
not consist of formal deductions from the axioms, as would be the
case in a strict deductive system. Thus the axioms do not serve
as a complete basis for the proofs of the theorems. In his second
publication Mattessich shifts from a matrix to a set theoretical ap-
proach. In this work he relies on primitive terms, definitions stated
using the set notation, and propositions. The theorems which are
proved appeal to the definitions and propositions and are basically
algebraic in nature. Perhaps the absence of axioms in this second
work was due in part to the difficulty noted above, i.e., axioms which
are not used in the proofs of the theorems. Some might argue that
the propositions substitute for axioms in this formulation, but the
propositions here are generally set theoretic definitions of such con-
cepts as an accounting period or the chart of accounts. Although
they may be invoked as a proof proceeds, the proofs do not begin
with the propositions, nor are the theorems deduced from them.
Again the beginnings of a formal proof-based system can be dis-
cerned here, but it is not coupled with a formal deductive scheme.
This type of scheme may be provided by including the axioms of
the mathematical system – in Mattessich’s case an algebra – as part
of the axiom scheme, thereby specifically allowing for mathematical
inference within the axiomatized system, as will be seen below.

Ijiri’s [1975] book on accounting measurement also includes three
axioms, but again it lacks any derivation of theorems from the frame-
work of these axioms. He does, however, derive his axioms from the
theoretical structure of the accounting system which he provides
in the book. Therefore it is likely that he sees these axioms more
as general statements about accounting, rather than as a basis for

6 Chapter 1. Approaches to Accounting Theory

any formal deductive system. Indeed he makes no attempt at all
at proving the theorems. One of the contributions of the current
book is that it provides not only an axiomatization of accounting
systems, but also a deductive inference scheme which can operate on
the axioms in a formal way to derive the theorems as consequences.

Tippett [1978] derived axioms of accounting measurement, and
more recently Cooke and Tippett [2000] used a structural matrix
to represent the restrictions imposed in a double-entry bookkeep-
ing system, employing the information in the matrix to predict fi-
nancial ratios. Willett [1987, 1988] demonstrated in two papers the
derivation of axioms of accounting measurement, following Tippett’s
methods. His analysis extended to the stochastic space of account-
ing variables. Gibbons and Willett [1997], building on Willett’s
earlier work, demonstrated that accounting data produced from im-
plemented information systems have a statistical nature due to the
error generated by processing: that statistical nature is shown to
be of value to decision makers under certain conditions. Nehmer
and Robinson [1997] provided an initial description of the algebraic
structure of accounting which is greatly expanded upon in this book.
Nehmer [2010] encodes the algebraic structure in first order logic and
derives consequences for the resulting structures.

Aukrust [1955, 1966] made an important contribution to the stan-
dard methodology for national and international accounts, complet-
ing a theoretical discussion of the underlying principles in account-
ing at the national level. He presented some problems of definition,
classification and measurement of national accounts in an axiomatic
way. After stating a set of twenty postulates, he showed that the
structure of a simple system of national accounting can be derived
from them. In this way it is possible to establish algebraic relations
among national accounting concepts. Aukrust concludes: “The set
of twenty postulates used above to derive a national accounting sys-
tem is, of course, not the only one which could be conceived of.
Others are equally feasible. Some would lead to national accounting
systems different from the one described here, in much the same
sense as non-Euclidean geometries are different from Euclidean ge-
ometry”.

The problem of financial statements was dealt with by Arya et
al. [2000], emphasizing the power of the double entry system to
determine all consistent transaction vectors. They showed how a

1.2. Algebraic and Proof-Based Approaches 7

graphical representation of the accounting system can be used to
obtain the characteristics of the vectors, solving in a simple way
the problems of inverting and selecting the most likely transaction
vector from the set of consistent transaction vectors. Arya et al.
[2004] provided a systematic approach to reconciling diverse finan-
cial data. Again the key is the ability to represent the double entry
system by a network of flows. Two specific uses are investigated:
the reconciliation of audit evidence with management by means of
prepared financial statements and the creation of transaction level
financial ratios.

The first collaboration in the area between a philosopher of sci-
ence and a theoretical accountant materialized in Balzer and Mat-
tessich [1991, 2000]. They considered the reconstruction of yield
to be a viable way of capturing the essence and basic structure of
accounting as rigorously as possible. The proposed reconstruction
showed that accounting has the same overall structure as other em-
pirical theories by presenting nine axiomatic principles to establish
the following concepts: economic objects, economic transactions,
state-space for accounting, accounting data systems, accounts, dou-
ble entry accounting systems, accounting morphisms and accounting
systems (in general). By combining these definitions, they obtain
the kernel of a model for accounting and they claim that all spe-
cial methods and procedures used by accountants can be obtained
from this core model with some appropriate specifications. All the-
orems are proved, but the authors indicate the need for further de-
velopment of the axiomatic system presented in the paper and they
present details of certain specifications to appear in future work.

According to Ellerman [1982, 1985, 1986], “Double-entry book-
keeping illustrates one of the most astonishing examples of intellec-
tual insulation between disciplines, in this case, between accounting
and mathematics”. He described a mathematical basis for a treat-
ment of double-entry bookkeeping in terms of the so-called “group
of differences”, sometimes called the Pacioli group: for details of this
connection see 3.1 below. The possible use of the algebraic concept
of a group in accounting theory is also considered in Brewer [1987]
and Botafogo [2009], but with little progress beyond the formulation
of some definitions.

There have been many other attempts to formalize accounting
in a scientific way. Since the present work does not pretend to give

8 Chapter 1. Approaches to Accounting Theory

an exhaustive history of accounting, only some of them have been
mentioned. Details of other attempts can be found in Mattessich
[1995, 1998, 2000, 2003, 2005a, 2005b].

On a final note, recently Demski [2007] has tried to answer to the
question “Is accounting an academic discipline?” After analyzing the
meaning of “discipline” and “academic”, his immediate conclusion
was negative. However, Demski was not pleased with this answer
and therefore he preferred to analyze the ten indicators of the ac-
counting as an academic discipline, ending with “... accounting is
not today an academic discipline; it is an ever-narrowing insular
vocational enterprise. But it could and should, in my opinion, be
an academic discipline. Even if you disagree with my assessment,
you should consider whether the state of academic accounting is, in
your view, what it could and should be. The stakes in this game are
enormous and serious”.

1.3. Natural Language Approaches

Research in accounting as a natural language, as opposed to an
proof-based system, has fallen into three broad categories: connota-
tive and denotative meanings, readability of reports and linguis-
tic relativity (McClure [1983]). The connotative and denotative
meanings of language refer to its subjective and objective mean-
ings respectively. The research in this category has emphasized the
interpretation of accounting concepts by different groups including
certified public accountants (CPA’s), users, students and academics.
The results have generally indicated agreement on the connotative
meaning between groups, but there is some evidence of disagree-
ment over denotative meanings (Belkaoui [1980b]). Research into
the readability of financial reports has stressed the ability of the re-
ports to communicate information on several levels. Levels of read-
ing ability needed to comprehend the reports have been tested, but
the tests were found to be inappropriate for the analysis of materi-
als in a report format. Lebar [1982] tested several different types of
financial report along an extentional - intentional axis. Extentional
language is more descriptive and objective, whereas intentional lan-
guage is more general and unqualified. She found that 10-K reports
(a specific type of filing that a company makes to the Security and
Exchange Commission) scored well on the extentional components
as compared to the annual reports.

1.3. Natural Language Approaches 9

The third category of linguistic research in accounting is based
on linguistic relativity (the Sapir-Whorf hypothesis). The two basic
concepts of the hypothesis are that language determines thought and
that consequently individuals with different linguistic backgrounds
have different world views. Belkaoui [1978, 1980a] used this hy-
pothesis to study disclosure issues in the area of pollution control
costs, with results generally supporting the hypothesis. All three
categories of research in accounting as a language have viewed it as
a natural language and applied natural language techniques to its
study.

Some more recent studies of business communication include Tyr-
vainen et al. [2005], who examine the internal and external commu-
nication of three business units, looking at digital, paper-based and
oral communication. In a series of articles in the accounting area,
Fisher [2004], Fisher and Garnsey [2006] and Garnsey and Fisher
[2008] codify the professional accounting literature. This codifica-
tion is then used to critique the adequacy of the literature (Fisher
[2004]) and to examine amendments to the literature (Fisher and
Garnsey [2006]). Garnsey and Fisher [2008] implement a software
retrieval solution to the professional accounting literature.

An alternative approach is to view accounting as a formal lan-
guage built up from a detailed specification of its grammar by ex-
act rules of composition known as production rules. Formal gram-
mars and languages were originally developed for natural language
research and are still used there, especially in computational lin-
guistics research. They have been largely absorbed into computer
science because they are an alternative representation of finite state
automata. Such automata are used in computer science for the gen-
eral representation of computer languages. The concept is easy to
relate to for anyone who have ever tried to learn a computer language
with its peculiar sentence structure and rules. A good example of
research using the automata approach is Cruz Rambaud and Garćia
Pérez [2005].

Demski et al. [2006], looking for a new language for the treat-
ment of accounting information, examined the nature of quantum
information in order to search for promising conceptual applications
to accounting. They present some important features of quantum
information such as quantum superposition, randomness, entangle-
ment and unbreakable cryptography, and they begin to explore the

10 Chapter 1. Approaches to Accounting Theory

possible link between quantum information and double-entry infor-
mation which lies in the core of accounting information. The start-
ing point is the work of Cayley [1894] on the parallel between the
Euclid’s theory of ratio and the double entry theory. As a con-
sequence, it is intended to explore the possibility of a hybrid be-
tween accounting information and quantum information, “quantum
double-entry information”. In a second article, Demski et al. [2009]
studied the applications of conceptual topology to quantum informa-
tion and accounting information. The use of topology allows one to
emphasize the qualitative characteristics of accounting information
and to maintain the quantitative ones.

A reasonable and effective mathematization and axiomatization
of the economy, and in particular of accounting, necessarily implies
Diophantine formalisms (Velupillai [2005]), which raises issues of
undecidability and non-computability. In the future there should be
greater freedom for experimental research supported by alternative
mathematical structures. In conclusion Velupillai speaks of “the
notion of a Universal Accounting System, implied by and implying
Universal Turing Machines and universality in cellular automata”.

1.4. A Formal Grammar Approach

One exception to the exclusive use of natural language research
methods in accounting is Stephens, Dillard, and Dennis [1985], here-
after Stephens et al. The article is entitled “Implications of Formal
Grammars for Accounting Policy Development” and it presents a
classification scheme for proposed and existing Financial Account-
ing Standards Board (FASB) statements. The examples provided
in the article are partial formal grammars, reflecting the accounting
rules promulgated by a specific standard. The level of analysis is
macro in the sense that it considers the standard for all firms to
which they apply. As such the analysis focuses on establishing cri-
teria with which to evaluate standards through formal grammars.
The three criteria used are possibility, consistency and resolution.

Possibility refers to the ability to reduce the statement to a formal
grammar. One potential problem here, albeit one which is discussed
in a different section of the article, is the difficulty in determining
the primitives of the grammar. In the article the example of leases is
cited. The determination of whether a certain economic event should

1.4. A Formal Grammar Approach 11

be classified as a rental arrangement or a purchase has become in-
creasingly problematic in accounting. Unless a clear demarcation is
allowed or imposed on the “correct” interpretation of such an event
under every circumstance, the formal grammar will not be capable
of operating in these types of situation.

The second criterion, consistency, refers to the cross-statement
compatibility of the grammars. This compatibility can perhaps
best be addressed in terms of first order logic, rather than the for-
mal grammar approach used in the article. The two systems are
equivalent, so the change in approach is warranted. In first order
logic consistency is defined in terms of the sentences which can be
proved from the axioms. If both a sentence and its negation are
provable from the axioms, then the system is inconsistent and in
fact any sentence is then provable from the axiom system. In terms
of the article, in order for a formal grammatical analysis to suc-
ceed, a single formal grammar containing all accounting standards
must be demonstrated. Then any proposed new standards could
be appraised in terms of their consistency with the current formal
grammar.

The third criterion, resolution, is an attempt to deal with prob-
lems of inconsistency arising from the different rules specified in the
single formal grammar mentioned above. The article proposes that
uniform ranking rules be included in the grammar in order to re-
move such inconsistencies. It points out that the FASB does provide
such rules in certain situations, but that the rankings so provided
have not been uniform in the past. Stephens et al. classified the
resulting inconsistencies as being due to one of three situations: ar-
bitrary selection among possible standards, stipulation of standards
without theory and the inability to write a definitive grammar.

In the first situation a choice is made and a particular standard
must be selected, when alternative standards have possible correct
economic interpretations and their own supporters. Stephens et al.
contend that this and the next situation result primarily from lob-
bying by factions of the accounting community. The next situation
occurs when a standard is stipulated which is lacking in theoretical
support; this seems to mean lacking in terms of a justifiable eco-
nomic interpretation. The interpretation is usually only provided
a posteriori and may be thought of as imposing a new economic
reality based on the standard. The last situation is the problem of

12 Chapter 1. Approaches to Accounting Theory

specifying the primitives of the grammar, which was discussed under
“possibility” above.

Stephens et al. divide the economic realm into three parts, the en-
vironment, accounting and decision. The effects of economic events
in the environment are actions which play the role of primitives
subject to the grammatical rules of accounting. The rules produce
accounting results which are used by decision makers to produce
decisions. Stephens et al. restrict their analysis to the accounting
component only, so that the evidence of a transaction occurring is
taken as a given and the use of the output is not analyzed. The
same position is adopted throughout this book.

However, there are several differences between the article by
Stephens et al. and this book, perhaps the most important be-
ing the level of analysis. The analysis presented here is at a micro
level, as opposed to the macro level of the article. Specifically the
analysis here pertains to the accounting system of a single firm.
Secondly, a complete axiom system is developed for the firm, based
on the double-entry components of the system only. The necessity
of developing such a restricted system is based on the requirement
of demonstrating the existence of such representations of accounting
systems before proceeding with higher level analysis, as is recognized
by the authors of the article.

A contribution of this research is to provide a basic method for
constructing formal proofs in accounting. It interfaces with the ax-
iomatization and formal inference scheme to yield a formal abstract
specification; this leads directly to axioms for an accounting system,
as well as to a system of inference which can be used to derive conse-
quences of those axioms. In fact, the analysis of the paper includes
the consideration of information systems as finite state grammars
(FSG’s) and automata. This representation is the basis of the com-
puter languages which form the structure of any computerized sys-
tem. Therefore finite state grammars can be used as a general rep-
resentation of the process involved in converting states into signals.
Such FSG’s include relation as well as function operators, thereby
providing a more powerful means of analysis in exploring the pos-
sibilities and limitations of the signal/output generation process of
information systems.

The representation of information systems as FSG’s serves two
purposes in this analysis. First it addresses some problems noted

1.5. Information Systems 13

below with information economics methodology, i.e., it provides a
specific formulation of the internal production of information and as-
signs a specific interpretation to the states recognized by the system
as well as its outputs. Furthermore, it allows for the production of
multiple derivations from the capture of an additional piece of data.
The second use of FSG’s is to provide a convenient bridge between
the representation of accounting systems as FSG’s and their repre-
sentation as proof-based systems. This is accomplished through the
conversion of the production rules of the FSG into axioms of a first
order logical system.

1.5. Information Systems in Information
Economics

This book addresses some of the issues in the comparison of infor-
mation systems which occur in the information economics literature,
this being the current standard of comparison of systems in accoun-
tancy. A large body of work has been done in the area using utility
analysis and relying on the results of Blackwell’s “Comparison of
Experiments” (Blackwell [1951]). As the title indicates, Blackwell’s
procedure shows that if an experiment A is a sufficient procedure
for a different experiment B, then A is more informative than B,
i.e., it provides at least as many statistical measures. Authors such
as Gjesdal [1981] have used the matrix form of Blackwell’s results to
analyze different information systems. Demski [1980] and Demski,
Patell and Wolfson [1984] have used the basic matrix framework of
states crossed with signals and in the latter paper relied on Gjesdal’s
information systems comparison result. All of these comparisons of
information systems are founded on the partitioning of the states
of nature, the idea being that different information systems will be
able to “recognize” different states at various levels of fineness. That
is, a certain information system may produce signal Y1 when it rec-
ognizes S1 and signal Y2 when it recognizes S2, whereas another
information system may not be able to distinguish S1 from S2, and
produce the same signal for either realization.

The implication of the states to signals model of information sys-
tems is that there is a set of functions corresponding to the set of
information systems under comparison. Mathematically the conver-
sion of the states to signals is a mapping from the set of possible
states to the set of possible signals. Over the entire state and signal

14 Chapter 1. Approaches to Accounting Theory

spaces the function family is neither injective nor surjective. In the
first place a particular information system function may map two or
more states to the same signal, so the function is not injective. Sec-
ondly, an information system function may not be able to generate
certain signals in the codomain at all, so it is not surjective. Indeed
in Demski’s 1980 examples, it is only in the perfect information case
that the mapping can be bijective, i.e., both injective and surjective.
It is this lack of uniformity in the construction of the state to signal
functions (or information systems) regarding their relevant domains
and codomains which partially explains the failure of Blackwell’s
comparison technique in proof-based systems.

Several topics are important to the present analysis. Firstly,
Blackwell’s result lies in the domain of experimental procedures,
whereas an information system is, in a practical sense, an extant
structure generating outputs from inputs by a formalized system of
rules. As such there are several differences in the level of analysis
which are apparent. Most importantly the information economics
analysis considers the external or environmental states of nature
only, without considering the internal states of the information sys-
tem itself. It therefore ignores the interaction of the internal com-
ponents of the system in the production of its outputs.

The unspecified nature of the internal components prevents the
methodology from addressing questions relating to how changes in
the configuration of the system will alter the signal set generated. Of
course, information economists use the term “information system”
in a different sense than is used here. But it is the difference in
representation of the system which allows this additional analysis to
occur. These are important questions for the accounting profession
since they involve the production of information for decision makers
in an organization from the design of the accounting system.

This lack of concern for the internal state of the system also
forces the information economics methodology to ignore explicitly
the problem of data capture versus information production. That
is, a state may occur in the external environment which is captured
or recognized by the system but is not processed in a timely man-
ner. While the techniques of information economics do implicitly
take this into consideration by collecting states into sets based on
the concept of fineness, this does not help in determining why a
particular output is not being generated, i.e., whether the data are

1.5. Information Systems 15

being processed too slowly or are not available at all.

A second deficiency in the statistical analysis of information sys-
tems is its inability to recognize that a particular state may generate
more than one signal. The information economics approach pro-
vides, at best under perfect information, a single state or a single
signal mapping for output production from information systems.
Under imperfect information several different states may produce
the same signal, but the reverse situation, of a single state being
mapped onto multiple signals, is not considered. For instance, a
decline in interest rates may cause changes in pension funding re-
quirements, a decline in the mortgage interest rates being paid by
an organization and declines in the dividend rate expected from an
investment in mutual funds. Further, it is possible within an in-
formation systems methodology to develop single states to multiple
signals if a recognition of the interrelationships between states and
signals is provided.

A final problem with the current method of analysis is that it does
not provide a convenient way to interpret the states and signals. As
an example consider Gjesdal’s [1981] description of an information
system. Here he reduces the system to merely the specification of
the signal’s functional form and proceeds to assert that “the nature
of the signals is of no concern” (p. 212). One can only assume that
the nature of the information system is of no concern as well, yet it
is difficult to comprehend the purpose of comparing objects whose
nature is not the object of comparison.

Generally the matrix representation of information systems and
especially the concept of state (and hence signal) partitioning does
not address the problem of how the signals are generated. This
leaves open the question as to whether and to what extent in the
context of axiomatic information systems, such a partitioning is pos-
sible. This problem is addressed in Chapters 2 and 3 where the
algebraic core of the model is constructed.

Demski’s ([1980]) analysis of information systems differs from an
axiomatic approach in that his complete model consists of a set of
acts, states, state probability functions and utility functions, with
states and acts as parameters. This model is conditioned on the
decision makers’ experience and assumes that the four factors men-
tioned above are correctly specified. He presents two cases, the
perfect and the imperfect information situations. Under perfect in-

16 Chapter 1. Approaches to Accounting Theory

formation, the decision maker can directly observe the realization
of the states of nature. Therefore there is no need for the infor-
mation system to produce signals relating to the acts of an agent.
Since the state is known with certainty before an act is chosen, this
situation will match well the derivations of an axiomatized informa-
tion system. If the state is known for certain prior to the act, there
must be some decision procedure which would indicate which state
will occur and such a procedure is axiomatizable. This is the case
because under state certainty the state must already be a fact, in
which case its truth value is known or must be determinable un-
der some formulation which perfectly correlates its own predictions
with the actualization of those predictions. In the latter case, the
decision procedure will be reducible to a first order formula, barring
the serious consideration of some form of crystal gazing as providing
perfect information. Of course Demski would agree that this is an
unlikely situation in any complex decision making problem. In fact,
testing which state will occur is likely to involve a great deal of com-
putational complexity in a complex, decision making environment:
the results, if they can be determined with certainty, may not be
produced in a timely manner.

In the imperfect information situation the information system
cannot necessarily distinguish each state uniquely, so the same signal
or output from the system may occur after the realization of different
states of nature. When the state is not known with certainty prior
to the act, Demski posits the information system as producing a set
of signals which may, but usually do not, indicate the state which
was achieved or which has transpired. The signal is a function of
the information system with the states as the input and the signals
as the output.

One and only one signal is associated with each state occurrence,
although the same signal may be produced by different states. The
state space is partitioned into different subsets of the power set of the
set of states, with the information system as the partitioning agent,
i.e., different information systems produce different partitions. Of
course Demski’s book has a wealth of ideas and constructs which
cannot be explored here, but with this basic framework in mind, we
note that results for algebraic systems are obtainable which differ
from Demski’s conclusions.

In effect the analysis presented here adds a level to the work of

1.6. Location of the Research 17

the information economists, exploring the possible derivations of,
and treating the information systems used in, their formulations
as information systems: these are representable as systems of first
order formulas and consequently are amenable to analysis as struc-
tures in model theory. Whereas the information economics approach
formalizes information systems as collections of functions from the
states to the signals, our approach imposes additional constraints
on the production of the signals themselves by explicitly consider-
ing the language used to express the functional formulation of the
information systems. These additional constraints will be of conse-
quence when the information system is represented as a proof-based
system.

1.6. Location of the Research Justified

Returning to the article of Stephens et al. [1985] which was dis-
cussed in 1.4, we note their description of accounting interfaces. If
this description is reduced to an individual firm, then the account-
ing system of the firm can be seen as a filter which captures certain
data from the environment, to be processed and presented to de-
cision makers. It is this filter, the specification of which data are
captured, how they are processed and in what general form they are
presented, which locate this book within the accounting process.
In this location an accounting system is constructed as a machine
which follows strict rules, namely the axioms, in converting inputs
to outputs. This procedure is also strictly defined as an inference
scheme, determining how occurrences of inputs combine within the
rules to produce outputs and other secondary rules. These outputs
are the derivates of the accounting system and may also arise from
combining rules only from within the inference scheme. Thus we are
dealing with the construction of a deterministic system.

In addition the book considers how to control accounting sys-
tems which operate under different rules. This requires building
on the derivations of rule-based accounting systems. The control
is achieved as follows. The derivations of an axiom system can
be thought of as formal deductions from given premises. In this
case, the formal deductions arise from the inference scheme and the
premises are the axioms and derivations already deduced. The con-
trol of accounting systems under this methodology would then look

18 Chapter 1. Approaches to Accounting Theory

at the differences in the sets of consequence of the separate proof-
based accounting systems.

As mentioned previously, the Stephens et al. article describes
accounting as an environment to accommodate accounting informa-
tion systems (AIS) and decision maker flow. The link between the
environment and the AIS and between the AIS and the decision
maker are both areas of considerable research in accounting. The
first link contains problem areas involving the recognition of eco-
nomic events as transactions. Research has been concerned with
when and whether an economic event such as a contingency should
be captured by the system and thereafter reported to the decision
maker. The crux of this problem is when an economic event should
be interpreted as being probable. On the other hand, the link be-
tween the AIS and the decision maker involves the interpretation of
whether and under what circumstances data presented by the AIS
change decisions and thereby become information of some value to
decision makers. Thus there are two general types of interpretation
which occur between the AIS and its environment and the AIS and
the decision makers. However, in the context developed in this book
a third and more formal approach to interpretation is employed.
This third type occurs entirely within the AIS and is specifically
related to the axiomatization of the system. Within axiomatized
systems there is a formal logical interpretation, indeed an interpre-
tation function, between the syntactic components of the system
and their semantic interpretations.

1.7. Accounting and Formal Languages

The axioms and derivations of a formal system are strings of
symbols called sentences or formulas. At the syntactic level these
strings are manipulated by the inference scheme in a purely formal
way, without regard to the meanings which may be attached to
the original or deduced sentences. The syntactic level therefore is
merely concerned with which sentences can be produced by following
the inference scheme. So the only way that a sentence is in essence
“meaningless” in syntax is if it is not derivable from the axioms via a
sequence of inferences. A logical interpretation is a formal map from
the syntactic level to the semantic level which provides meaning or
a translation of the combination of symbols in the sentences.

1.7. Accounting and Formal Languages 19

As an example, consider the standard rule of inference modus

ponens. According to this rule, if there are two sentences x→ P (x)
and x, then P (x) is derivable. Notice that no meaning is attached
to the symbols x, → or P (x), so that modus ponens is a strictly
syntactic construction. Now suppose the interpretation function
maps x to “cash”, → to “implies” and P (x) to “x is a current
asset”. Then at the semantic level the interpretation of this instance
of modus ponens is that “cash implies cash is a current asset”, so
that “cash is a current asset” is derivable.

The syntactic rules are akin to the grammatical rules of a natural
language. In natural languages the meaning of a sentence is based
on an interpretation of its form. This form is regulated by distin-
guishing which sentences are grammatical. However, the distinction
between syntax and semantics in natural language is often a hazy
one because the grammatical rules are not specified in advance, but
have been deduced from the structure of the language by linguists.
Therefore it may be impossible to describe accurately the syntax of
a language by a finite number of rules. For example, a basic sen-
tence form in English is subject-verb-object. This rule works well
for “sensible” sentences such as “The computer ran the program.”
Unfortunately, without further rules of grammatical construction,
a naive foreign speaker might deduce the following sentence from
the rule: “The computer walked the program.” The purpose of in-
dicating this type of problem in a natural language is to point out
the close relationship of both syntax and semantics to the interpre-
tation of meaning in these languages. It appears as if the human
mind attends to both syntax and semantics simultaneously through
learned patterns when constructing the meaning of natural language
sentences.

Another type of interpretation known as hermeneutics has been
developed in the naturalistic research methodology. By using this
methodology the researcher attempts to interpret the world as a
text in order to understand the meanings which the actors in the
study attach to objects, to themselves and others, and to actions.
Here the objective is similar to reducing the semantic context of
the world to a somewhat less complex and perhaps hidden syntactic
component. The syntactic component in hermeneutics is seen to be
dynamic, with the actors and their environment constantly interact-
ing to reconstitute meaning and form. This technique is essentially

20 Chapter 1. Approaches to Accounting Theory

a meta-analysis of sentences which not only looks at sentences in
their own contexts, but also across the contexts of different actors
and environments.

In order to relate accounting to the concepts of syntax and se-
mantics, it should be remembered that these concepts are used in
different ways in various types of analysis. In the case of natural lan-
guage, the syntactic component of accounting is the systems of rules,
such as the mechanics of double entry bookkeeping, statements of
auditing standards, Financial Accounting Standards Board (FASB)
and International Accounting Standards Board publications, and
Security and Exchange Commission rulings which affect transac-
tions and manipulations of transactions, including disclosure. As
with all natural languages, the syntactic and semantic components
lie very close to one another when accounting is viewed as a natural
language. For example, take a common occurrence when beginning
students are introduced to accounting for merchandizing firms. A
typical error is for the student to debit inventory and credit accounts
payable when merchandize is purchased on account, instead of deb-
iting purchases. This may happen because the student is confused
about the semantic meaning of the problem of costs of goods sold,
as against the meaning of accounting for inventories.

A further phenomenon which occurs when accounting is viewed as
a natural language is that the interpretational component becomes
closely intertwined with both the syntactic and the semantic compo-
nents. The conceptual framework and the FASB statements which
refine previous interpretations in order to standardize interpretation
of economic events indicate the closeness of this relationship. For
example, FASB statement number 1 is an attempt to standardize
the interpretation of what constitutes an operating lease, as op-
posed to a capital lease for both the lessee and the lessor. This is
similar in form to the hermeneutic concept of interpretation acting
as the meta-rule intermediating between the actors and their envi-
ronment, in this case certified public accountants, their clients, the
FASB members and the accounting environment.

The explanation of the interrelationships between form, meaning
and interpretation was the original inspiration to the formulation
of formal logics and proof-based systems. The ancient Greeks were
concerned with problems of valid arguments, proceeding from the
development of schools of rhetoric. At the time work was concen-

1.7. Accounting and Formal Languages 21

trated on developing techniques for identifying correct inferences
and exposing fallacious ones. One of the arguments which arose
was between Diodorus Cronus and his pupil Philo of Megara. The
argument revolved around the correct interpretation of the rule of
inference modus ponens, which is also known as a conditional state-
ment. If the conditional statement is formulated as “a→ b”, then a

is termed the antecedent and b the consequent. Diodorus and Philo
differed as to what would be the conclusion if the antecedent were
false. Diodorus took the position that a false antecedent negated
the conditional, so that the statement is false. Thus the statement
“If the FASB is a governmental agency, then this book is deposited”
is false in Diodorus’ system, since the FASB is not a governmental
agency. Philo took the opposite view, arguing that the only case
where the conditional is false is when the antecedent is true and the
consequent is false.

Philo’s reasoning is important because his position became the
standard one in formal logic. Under his interpretation, a→ b, which
semantically might be read as “a implies b” or “if a, then b”, is
logically equivalent to “not a or b”. In this case, the “or” is in-
terpreted as inclusive, meaning that “not a is true” or “b is true”
or “both are true”. (In the case of an exclusive or, the last case
is disallowed.) Under this interpretation, treating the sentence “If
the FASB is a governmental agency, then this book is deposited” is
equivalent to “either the FASB is not a governmental agency or this
book is deposited”, which is true since the FASB is not currently
a governmental agency. Notice that the second clause “this book
is deposited” can be either true or false and the entire statement
remains true as long as the FASB remains independent. As such,
the Philonian interpretation of false antecedents is often referred to
as the case of trivial truth of the conditional.

Whatever justification there may be for the specific interpreta-
tions that have been given to inference schemes, and there are many
equivalences between rules of inference schemes as well, the point is
that the construction of formal systems requires the specification of
exact syntactic rules and specific interpretive mappings to semantic
meaning. In addition, even after the specification of the formal in-
ference scheme, it may be possible to reduce the number of allowed
inferences by eliminating inferences which are logically equivalent
to one another. For example, many of the inferences allowed in

22 Chapter 1. Approaches to Accounting Theory

formal logics currently used in philosophical and linguistic texts on
the subject were developed in the Middle Ages by the scholastics
in order to match natural language inferences used in disputation
and rhetoric. One such rule of inference is modus tollens, a type of
negated modus ponens. With modus tollens the conclusion “not a”
is deduced from “a→ b” and “not b”.

This rule is equivalent to modus ponens, as can be seen when
the conditional is translated into the form “not a” or “b”’. In the
case of modus ponens, given “not b” along with the translated con-
ditional, the only case where “not a or b” is true is when a is false,
since then “not a” is true. This characterizes an important fact
about formal inferences, they preserve truth. This means that if
the premises of the inference, here “a → b” and “not b”, are true,
then the conclusion must be true as well for the inference to be
valid. The disadvantage of eliminating equivalent inferences is that
it moves the logical system, as represented by the sentences, fur-
ther away from natural language. This is true because the natural
language inferences are translated into a reduced set of inferences,
which removes some of the variety from the corresponding formal
language. The variety lost does not entail a loss of content how-
ever, since the reduced system is logically equivalent to the system
with the larger set of inferences. The reduced system does possess
syntactic advantages however, since the number of rules has been
reduced. This allows for simpler analysis at the syntactic level. In
fact, many mathematical logic systems only include modus ponens
in their inference schemes and these are almost always equivalent to
systems which allow a greater number of inference types.

In this work we follow the formal systems of the mathematicians,
rather than the philosophers and linguists, because the reduction in
the number of inference rules reduces the complexity of specifying
the consequences for computation. In order to prepare for the formal
analysis which follows, some of the major concepts of the syntax and
semantics of formal proof-based systems will now be introduced.

1.8. Proof-Based Systems 23

1.8. Proof-Based Systems

In order to formalize a language, there must be a specification
of the signs and symbols of the formal language, as well as a spec-
ification of the permissible manipulations of the symbols. First an
alphabet for the formal language is needed. The alphabet is divided
into six disjoint subsets, the first of which are constants. Constants
are symbols which have a single value such as 0 or 1. The second
subset of the alphabet consists of variables, which can take on a
range of values. Constants and variables are called atomic terms.
The third subset consists of operations or functions. Each func-
tion has a specified degree 1, 2, 3, . . . ; their values are called terms.
Multiplication is an example of a function of degree 2 since it has
two arguments. Functions map elements in their domains to ele-
ments in their codomains. They must be well-defined, meaning that
each element in their domain is mapped to a unique element in the
codomain. If f is a function of degree i and t1, t2, ..., ti are terms,
then f(t1, t2, . . . , ti) is also a term, although not an atomic term.

The next subset of the alphabet consists of predicates, which
also have a specified degree. In effect a predicate makes a statement
about its arguments. It does this because it is a defined subset of
the domain of discourse or universe of the formal language. The
universe contains all of the object-meanings which are allowed in
the language. For example, if the universe consists of all of the
accounts in an accounting system and a predicate P (a) of degree
1 is defined to be “a is an asset”, then P (a) will be true only if a

represents an asset account. This defines a mapping in which P (a)
is sent to “true” (or 1) in only those cases where a is in the subset P ;
otherwise P (a) is mapped to “false” (or 0). This mapping is called
the characteristic function of the predicate. If P is a predicate of
degree i and t1, t2, . . . , ti are terms, then P (t1, t2, . . . , ti) is an atomic
formula. Notice that it is possible to represent functions of degree i

by predicates of degree i + 1 by merely adding the codomain of the
function as the (i+1)th object of the subset defined by the predicate.
For example, the binary degree function of addition translates into a
tertiary predicate in which 〈2, 5, 7〉 and 〈3, 8, 11〉 would be included
in the subset defined by the addition predicate. In general this
predicate would consist of the ordered triplets 〈x, y, z〉 such that
x + y = z.

The fifth subset of the alphabet consists of logical symbols, which

24 Chapter 1. Approaches to Accounting Theory

are divided into connectives and quantifiers. The connectives are→
(implication), ∨ (“or” = disjunction), ∧ (“and” = conjunction), ¬
(“not” = negation) and ↔ (if and only if or logical equivalence).
The quantifiers are ∃ (there exists) and ∀ (for all). The two quan-
tifiers are also called the existential and the universal quantifiers
respectively. If F and G are formulas, then the following are also
formulas:

(F)→ (G), (F) ∨ (G), (F) ∧ (G), ¬(F), (F)↔ (G)

and
∃(x)(F), ∀(x)(F),

where in the last two formulas x is a variable. The final subset
contains punctuation marks, of which only left and right parentheses
and occasional commas are used here.

The rules for forming terms and formulas provide the ability to
recognize well-formed formulas in the language. A formula is well-
formed if and only if it is built up from constants and variables
by repeated application of the rules for forming terms and atomic
formulas. In addition a formula in which all the variables are bound
to quantifiers is called a sentence. A variable is bound if it occurs
in a formula F and in the quantification of that formula, i.e., x is
bound in F by the quantifications ∃(x)(F) or ∀(x)(F). A variable
which is not bound is considered free.

Next the syntax and semantics of a formal language are con-
structed as follows. Both concepts are founded on the idea of the
truth of formulas, sentences and inferences. Each logical symbol in
the alphabet has a corresponding truth table associated with it. In
the case of implication, the formula is false only when its antecedent
is true and its consequent is false. Likewise, in the case of the inclu-
sive or, the formula is false only when both arguments are false. For
a conjunction, its truth value is true only when both arguments are
true; in all other cases it is false. Negation takes only one argument
and is true if its argument is false and false if its argument is true.
Logical equivalence is true if and only if either both arguments are
true or both are false.

The quantifiers “for all” and “there exists” are true in the fol-
lowing cases. “For all x, F (x)” is true only when every symbol of
the alphabet which can be substituted for x in the formula leads to
the formula being true. For “there exists x, F (x)”, the formula is

1.9. The Scope of the Present Work 25

true if at least one symbol can be substituted for x leading to a true
formula. The assignment of truth values for a complicated formula
begins at the lowest level of atomic terms and atomic formulas and
proceeds to higher levels, in the same manner as the term or formula
was created in its definition.

It was mentioned earlier that in order for an inference to be valid,
it must preserve truth. This means that it is not valid to deduce a
false conclusion from true premises. The notion of validity is a syn-
tactic one because it involves the construction of formulas through
the application of the rules of inference. Given a set of axiom formu-
las, the formulas which can be validly constructed from the axioms
by repeated inferences are called the consequences of the formulas
and these are said to be deducible or derivable from the axiom for-
mulas.

In terms of the semantic component of a formal language, all
formulas that are true in the language are said to be provable in
the language if the language is complete. Completeness is a seman-
tic concept because it requires that if the meaning of some formula
is true in the sense of the universe of the language, then that for-
mula must be provable. The specific derivation of the formula does
not have to be given however. Another general concept of formal
languages is consistency. Consistency means that if a formula is
derivable in the language, then its negation is not derivable. This is
an important technical detail since, if both a formula and its nega-
tion can be proved in the language, then any formula in the language
can be proved as well, a situation which certainly adds nothing to
the sum of human knowledge.

1.9. The Scope of the Present Work

After this extended discussion of methodologies in accounting,
the final section describes the scope of this book and what the au-
thors believe is accomplished therein. The purpose of the book is
to demonstrate how and under what conditions a basic accounting
system can be reduced to a formal proof-based language. When
this is accomplished, a method for controlling such systems through
their derivations is established which is significantly stronger than
methodologies used currently in accounting. The exposition in Chap-
ters 2 through 9 employs definitions, propositions and proofs to for-
malize the system. The definitions are intended to represent terms,

26 Chapter 1. Approaches to Accounting Theory

concepts or constructions currently in use and are carefully stated
in order to avoid confusion as to the precise meaning assigned to
them in the book. Propositions are used to state results which fol-
low logically from the definitions and are in all cases accompanied
by complete proofs. These proofs are meant to demonstrate the
correctness of the propositions and to illustrate the techniques used
in the algebraic and logical analyses.

Since the location of the research is the accounting system after
an economic event has occurred and been quantified, but before
the output of the system has been used by decision makers, the
method concentrates on the manipulation and processing of inputs
to outputs. These procedures are reduced to a purely algebraic
system which is capable of receiving transaction data, processing
the data and generating information in the form of summaries of
various types.

What happens when the accounting system is reduced to an alge-
braic system is that the entire range of speech is circumscribed. This
means that all sentences or ideas are known to be true, false or out-
side the particular system. Accounting systems can be thought of as
possessing different dialects, some quite similar, others nearly dis-
tinct. The control of accounting systems then takes on the quality of
distinguishing very precisely how the systems differ, i.e., which have
larger vocabularies and which are richer in expressiveness. From a
practical viewpoint this allows accountants as designers to match
the expressive power of particular systems to user needs for more
or less expressive languages. In addition the methodology can pro-
vide a means by which to identify situations of data or information
asymmetry and can therefore act as an indirect guide to action.

It cannot be claimed that this reduction is unique, for there are
many different opinions about what constitutes an accounting sys-
tem and consequently many ways to construct a formal system. The
intention here is to provide a method which mirrors a specified basic
accounting system and which is reasonably comprehensible. It is not
the intention of the book to provide a blueprint for an accounting
system which could be programmed and used in practice. Rather
the concern is to allow the system to recognize and act on the trans-
action data itself. The base level justification is to develop a full
formal language for a particular aspect of accounting instead of as-
suming that such a grammar could exist and proceeding with partial

1.9. The Scope of the Present Work 27

constructions or a higher level analysis. The success of this basic
stage of proof-based research in accounting will furnish researchers
with a secure, well established base for future investigations.

Algebraic concepts employed

It is time to be specific about the algebraic concepts that have
proved useful in the analysis. There are four principal structures
which are used repeatedly and which appear well suited to applica-
tion in accounting, namely:

• balance vector;

• directed graph (or digraph);

• automaton;

• monoid.

These structures will be familiar to most algebraists. A few words
will be given to elucidate their meaning and to justify the claim of
utility in accounting theory.

A balance vector is a column vector or column matrix the sum of
whose entries equals zero. In this case the relevance to accounting
will be obvious: the zero sum reflects the fundamental property of
any accounting system that it must always be in balance. Math-
ematicians will immediately recognize that balance vectors form a
structure with known algebraic properties; they form a submodule
or hyperplane. Balance vectors are able to represent the state of
an accounting system at any instant. They are also capable of en-
coding the transactions that are applied to the system. There is an
important comment to be made regarding signs: for the entries of
a balance vector can be positive or negative. The great advantage
of using positive and negative signs is that the signs take care of
questions of credit or debit automatically; for example, a credit bal-
ance has a positive sign and a debit balance a negative one. The
theory of balance vectors is developed in Chapters 2 and 3, where
their application to accounting is clearly laid out.

The second useful algebraic notion is that of a directed graph.
This is best thought of geometrically, although its definition is en-
tirely algebraic. The digraph consists of vertices. i.e., points in the
plane, and edges, or lines with a direction, joining certain vertices.

28 Chapter 1. Approaches to Accounting Theory

The vertices represent accounts and the edges indicate where there
are flows of value within the system. Thus a digraph gives a pic-
ture of how value can flow around an accounting system. While in
general different accounting systems might have the same digraph,
for certain special types the digraph determines the system up to
equivalence.

The third concept, that of an automaton, is frequently used in
information science as a theoretical model of a computer. The au-
tomaton is at any instant in a certain state; it reads a symbol on
an input tape, goes to a another state and then writes a symbol
on an output tape. The applicability to accounting is clear: the
states of the accounting system are the balance vectors, the inputs
are the transactions and the outputs are the new balance vectors.
This simple picture can be made more complex in order to represent
further actions of an accounting system, as is expounded in detail
in Chapters 6 and 9.

The final concept of a monoid is the most abstract. Every au-
tomaton has an associated monoid, which is an algebraic structure
with a means of combining its elements subject to suitable rules. An
input to the automaton produces a change in the state of the au-
tomaton and thus determines a function from states to states. The
functions on the set of states form a monoid for which the opera-
tion is functional composition; the associated functions generate a
submonoid of this monoid. Despite their abstraction, monoids pro-
vide useful ways of characterizing accounting systems with special
properties, as is shown in Chapter 7.

With the aid of the concept of a balance vector, the definition
of an abstract accounting system is laid out in Chapter 4 and its
properties are expounded, with numerous accompanying examples.
Relations between different accounting systems are considered in
Chapter 5 by using standard constructions from algebra, namely
quotient systems and homomorphisms. The latter are functions
between different accounting systems that relate their structures.

An important topic in algebra is the possible existence of algo-
rithms to perform certain computations or to make decisions: what
is at stake here is the question of what can and cannot be computed,
in principle at least. For example, is it possible to write a program
which is able to test the final balance vector of an accounting system

1.9. The Scope of the Present Work 29

and decide if there have been any irregularities during the account-
ing period? The importance of the question is evident. Chapter 8
contains a full discussion of what one can expect to be able to decide
or compute in an accounting system.

In Chapter 9 all the strands come together to form our final
model of an accounting system. In this there are ten parameters, so
the model is referred to as the 10-tuple model. It has the capability
to scan and process incoming transactions, keep track of balances,
generate reports on the system, control access by individuals to the
system, and keep track of frequency of application of transactions. It
is also able to test final balances. Our main conclusion in this book is
that the 10-tuple model goes a long way towards representing what
is actually going on during the operation of an accounting system.

The final Chapter 10 is intended as a corrective after the many
mathematical considerations of this work. It presents a detailed
example of a small company engaged in trade and it exhibits the
accounting system in the form of a 10-tuple model. The aim of
the example is, of course, to help make the case for the relevance
of the model to accounting practice and to justify the claim that
all connection with reality has not been been eroded through the
process of abstraction.

Chapter Two

Balance Vectors

In this chapter we begin the task of assembling the various com-
ponents of our basic algebraic model of an accounting system. The
first concern is to provide a means of describing the state of an
accounting system at any instant. Now this is most naturally ac-
complished by listing the “values” of the various accounts in the
system. So the first step must be to identify an algebraic struc-
ture to which the account values will belong. The structure chosen
must be sufficiently rich to accommodate the operations that one
would expect to apply to the accounting system. It emerges from
the discussion below that ordered integral domains are the natural
candidates.

Once the domain of account values has been settled, the list of
account values can be conveniently displayed as a column vector.
Such column vectors will have the special property that the sum
of all their entries is zero, which reflects the requirement that the
accounting system should always be in balance. Column vectors
with entry sum equal to zero are called balance vectors and they form
the foundation of our theory. For this reason the chapter focuses on
balance vectors over ordered domains and associated mathematical
structures.

2.1. The Values of an Account

Our first task is to analyze the precise requirements demanded
of the values of an account. Of course in practice such values would
likely be in a currency such as dollars or euros, although numbers of
any items of value would also be a possibility; thus integers or real
numbers would be appropriate for account values. But the question
to be addressed is: what formal properties should account values
actually have?

2.1. The Values of an Account 31

One obvious requirement is the ability to add and subtract val-
ues. This is clearly essential in any accounting system. From the
purely accounting point of view there is no reason to be able to mul-
tiply account values. On the other hand, it turns out that there are
good mathematical reasons for the introduction of a multiplication
operation: for it leads to increased richness of mathematical struc-
ture by allowing the use of modules and hence the methods of linear
algebra. However, it should be stressed that multiplication is intro-
duced as a mathematical device and it does not carry significance
for accounting.

Naturally the addition, subtraction and multiplication should
satisfy reasonable rules, by which we will mean the standard rules
of arithmetic. Now it is time to make all of this precise.

Let there be given a set R together with two binary operations
on R called addition and multiplication, denoted in the usual way,
such that the following rules hold for all elements a, b, c of R:

1. (a + b) + c = a + (b + c) (associative law);

2. a + b = b + a (commutative law);

3. R contains a zero element , written 0R or 0, such that a+0 = a

for all a in R;

4. each element a of R has a negative −a of R, with the property
that a + (−a) = 0;

5. (ab)c = a(bc) (associative law);

6. ab = ba (commutative law);

7. a(b + c) = ab + ac (distributive law);

8. R contains an identity element , written 1R or 1, such that a1 =
a for all a in A.

The first four of these requirements assert that R is an algebraic
structure called an abelian group (after N. Abel). With the addi-
tional properties (5) through (8) R becomes a commutative ring

with identity. Note that subtraction in R can be defined by the rule
a− b = a+(−b). Thus a commutative ring with identity is an alge-
braic structure in which one can add, subtract and multiply subject
to the usual rules of arithmetic. Notice however that division is not
permitted.

32 Chapter 2. Balance Vectors

The values of the accounts in an accounting system will be ele-
ments of a commutative ring with identity R. However the structure
of R is still not rich enough. For it is an essential feature of an ac-
counting system that the value of an account can be regarded as
positive or negative (or zero, of course): here the standard conven-
tion is that the value of an account representing an asset should
normally be positive, while the value of a liability account should
be negative: other accounts such as profit or loss could have positive
or negative values. In any event we recognize that the ring R must
admit the concept of “positive” and “negative” elements. This calls
for the introduction of an order relation on the domain R.

A commutative ring with identity R is said to be linearly ordered

if there is a non-empty subset P of R not containing 0, called the set
of positive elements, such that the following conditions are satisfied:

9. if a, b ∈ P , then a + b ∈ P and ab ∈ P ;

10. for each a ∈ R, one of the following holds: a ∈ P , a = 0,
−a ∈ P .

The actual concept of a linear order arises when one defines

a < b

to mean that b−a ∈ P . The negative elements of R are the elements
of the set R\(P ∪{0}). On the basis of (9) and (10) it can be shown
that the following holds:

11. for any a, b ∈ R, exactly one of the statements a < b, a =
b, b < a holds.

There is another important and easily deduced consequence of (9)
and (10):

12. if ab = 0 with a, b ∈ R, then a = 0 or b = 0.

A commutative ring with identity which satisfies (11) is called an
integral domain, or simply a domain. Thus the ordered commuta-
tive rings with identity are exactly the ordered domains. The most
obvious examples of ordered domains are

Z, Q, R,

2.2. The State of an Accounting System 33

the sets of integers, rational numbers, real numbers respectively,
where the standard arithmetic operations of addition and multipli-
cation, and the usual meaning of “positive”, are used. It is known
that any ordered domain R has characteristic zero; this means that
the equation na = 0, where n ∈ Z, a ∈ R, implies that n = 0 or
a = 0R. This in turn shows that Z is always contained inside an
ordered domain, so that it is the smallest possible candidate for R.

On the basis of the foregoing analysis, for accounting and mathe-
matical reasons, we choose to make the values of accounts belong to
an ordered domain. While more general algebraic structures might
be envisaged, there is a convincing case that ordered domains pro-
vide the most natural realm for the values of the accounts in an
accounting system.

2.2. The State of an Accounting System

Let R be an ordered domain, which will be the universal set for
all account values, and let n be a positive integer, which will be
the number of accounts in the accounting system. The state of the
system at any instant can be described by listing the values of the
accounts, which are assumed to be in some agreed order, in the form
of an n-column vector over R,

v =









v1

v2

...
vn









.

Thus vi ∈ R is the value of the ith account. The set of all n-column
vectors over R is denoted by

Rn.

Notice that R1 and R are essentially identical. Of particular impor-
tance is the zero vector

0 =









0
0
...
0









.

There are two natural operations which may be applied to Rn

and which are inherited from the ring R itself, namely addition and

34 Chapter 2. Balance Vectors

multiplication by elements of R. To specify these operations, let u

and v belong to Rn and let r ∈ R. The sum u + v is defined as in
matrix algebra by adding corresponding entries,

u + v =









u1 + v1

u2 + v2

...
un + vn









,

while the scalar multiple rv is formed by multiplying each entry of
v by r, again just as in matrix algebra,

rv =









rv1

rv2

...
rvn









.

On the basis of these familiar definitions, one can quickly verify
that the operations of addition and scalar multiplication in Rn enjoy
the following properties. Let u, v, w ∈ Rn and r, s ∈ R:

1. (u + v) + w = u + (v + w);

2. u + v = v + u;

3. v + 0 = v;

4. v + (−v) = 0;

5. r(u + v) = ru + rv;

6. (r + s)u = ru + su;

7. (rs)v = r(sv);

8. 1Rv = v.

Here −v, the negative of v, arises on changing the sign of each entry
of v; clearly −v = (−1R)v.

These properties demonstrate that the set Rn has a recognizable
algebraic structure. Indeed properties (1) – (4) assert that Rn is an
abelian group, while the additional properties (5) through (8) make
Rn into a (left) R-module. Thus in an R-module one can add and

2.2. The State of an Accounting System 35

subtract, and also multiply by elements of the ordered domain R,
all subject to the rules above.

The free R-module Rn

It turns out that Rn is a particular type of R-module called a
free R-module. To see what is special about it, consider the so-
called elementary column vectors e(1), e(2), . . . , e(n) where the ith
entry of e(i) is 1 = 1R and all other entries are 0. Thus

e(1) =









1
0
...
0









, e(2) =













0
1
0
...
0













, . . . , e(n) =













0
0
...
0
1













.

Now an arbitrary vector v in Rn is expressible in terms of these
elementary vectors since

v = v1 e(1) + v2 e(2) + · · ·+ vn e(n),

i.e., v is an R-linear combination of e(1), e(2), . . . , e(n). If this
linear combination equals 0, then the equation shows that v = 0

and so v1 = · · · = vn = 0. Thus the only linear combination of
e(1), . . . , e(n) that equals 0 is the one with all coefficients equal to
0. This means that e(1), . . . , e(n) are linearly independent vectors.

As in linear algebra, a subset S of Rn is called an R-basis of Rn if
the elements of S are linearly independent and if each vector of Rn

can be written as a linear combination of vectors in S. Moreover,
this expression as a linear combination will be unique because of
linear independence. Thus {e(1), . . . , e(n)} is an R-basis of Rn. An
R-module which has an R-basis consisting of n elements is called a
free R-module of rank n. (It is a known result from commutative
ring theory that all bases of a free module have the same number of
elements). Thus the previous discussion leads to:

(2.2.1). The set of elementary vectors {e(1), . . . , e(n)} is an R-

basis of Rn, so that Rn is a free R-module of rank n.

Balance vectors in Rn

So far arbitrary column vectors over an ordered domain R have
been considered. Now our aim is to use such vectors to express the

36 Chapter 2. Balance Vectors

state of an accounting system by listing the balances of the various
accounts as the entries of the vector. However, the vectors to be
used must have the property that the sum of their entries is zero.
For it is an essential feature of the double entry accounting system
that it must always be in balance. To see what this entails, recall
that the accounts of a company generally fall into three categories:

1. Asset accounts, which represent anything owned by the com-
pany;

2. Liability accounts, which record what is owed by the company
to external entities;

3. Equity accounts or a profit and loss account; these show what
is owed by the company to the owners and also show the net
assets of the company.

(There may also be temporary revenue and expense accounts). This
scheme is generally referred to as the chart of accounts.

It is a fundamental fact that a double entry accounting system
must always be in balance, a fact which is implied by the accounting

equation

A − L = E

where A, L and E are respectively the totals of all amounts in asset
accounts, liability accounts and equity or profit and loss accounts.
In general the asset accounts will have positive balances and liability
accounts negative balances. The accounting equation may also be
written in the form

A − L − E = 0,

an equation which shows that the total equity, or net assets, of the
company should have a negative sign, at least if the company is
making a profit. Indeed the negative sign is to be expected since
the amount E is owed by the company to the owners.

The second equation causes us to focus on column vectors in Rn

whose entry sum is 0, the so-called balance vectors over R. For
at any point in time the state of the company’s accounting system
is described by the column vector whose entries are the account
balances with the appropriate signs, in short by a balance vector.

2.2. The State of an Accounting System 37

We proceed now to study the properties of the subset of balance
vectors in Rn, where R is an ordered domain. Keep in mind that
R and R1 are considered to be identical. First let us consider the
function

σ : Rn → R

which sums the entries of a column vector v in Rn, i.e.

σ(v) =
n

∑

i=1

vi.

It is simple to check that σ has the following properties:

σ(v + w) = σ(v) + σ(w), σ(rv) = rσ(v)

for all v, w ∈ Rn and r ∈ R. A function between two R-modules
with these properties is called an R-module homomorphism.

The reason for introducing the function σ is that the vectors v

which satisfy σ(v) = 0 are exactly the balance vectors in Rn. Now
module elements which are sent to zero by a module homomorphism
σ form a subset called the kernel , written

Ker(σ).

It is easily checked that the kernel is itself a module, which is of
course contained in the domain of the homomorphism. Thus the
kernel of a module homomorphism is a submodule of the domain.

Returning to the particular homomorphism σ, we conclude that
its kernel, i.e. the set of balance vectors, is a submodule of Rn. We
shall write

Baln(R)

for the set of all balance vectors in Rn, so that Ker(σ) = Baln(R)
is a submodule of Rn, which will be called the balance module of
degree n over R.

Examples of balance vectors

(i) There is just one balance vector in R1 = R, namely the zero
vector 0. A typical balance vector in R2 has the form

[

a

−a

]

, (a ∈ R),

38 Chapter 2. Balance Vectors

while a general balance vector in Rn can be written as













a1

a2

...
an−1

−a1 − a2 − · · · − an−1













where ai ∈ R.

(ii) An especially important type of balance vector occurs when
there are just two non-zero entries, one of which will of course have to
be the negative of the other. Such vectors are called simple balance

vectors. As an example of a simple balance vector, consider

e(i, j), i 6= j,

which is the vector in Rn, (n ≥ 2), whose ith entry is 1 and jth
entry is −1, with all other entries 0. Then e(i, j) is a simple balance
vector in Rn. For example, when n = 4,

e(2, 3) =









0
1
−1

0









and e(3, 1) =









−1
0
1
0









.

The e(i, j) are called elementary balance vectors: evidently every
simple balance vector is a scalar multiple of an elementary balance
vector. The number of elementary balance vectors in Rn is equal to

n(n− 1),

for this is the number of ways of choosing two objects from a set of
n in a definite order. In the following section it will be seen that
the elementary balance vectors play a special role in the module
Baln(R).

2.3. Properties of the Balance Module

Now that the balance vectors over an ordered domain R have
been identified as the medium for expressing the state of an ac-
counting system, we will take the opportunity to develop some of

2.3. Properties of the Balance Module 39

the mathematical properties of the module Baln(R) of all balance
vectors in Rn.

Our first observation is that Baln(R), like Rn, is a free R-module,
although it is of rank one less. Note that Bal1(R) = 0, which is free
of rank 0, so we can assume that n > 1. To prove the assertion it is
necessary to produce an R-basis consisting of n− 1 vectors. This is
done in the next result.

(2.3.1). Let R be an ordered domain and let n > 1 be an integer.

Then the elementary balance vectors e(1, 2), e(2, 3), . . . , e(n − 1, n)
constitute an R-basis of Baln(R). Thus Baln(R) is a free R-module

of rank n− 1.

Proof

In the first place e(1, 2), . . . , e(n − 1, n) are linearly independent.
For if r1, . . . , rn−1 ∈ R, then

r1 e(1, 2) + r2 e(2, 3) + · · ·+ rn−1 e(n− 1, n) =

















r1

r2 − r1

r3 − r2

...
rn−1 − rn−2

−rn−1

















,

and the only way this can equal 0 is if r1 = r2 = · · · = rn−1 = 0.

It remains to prove that an arbitrary balance vector b is express-
ible as a linear combination of e(1, 2), . . . , e(n− 1, n). Write

b =













b1

b2

...
bn−1

−b1−b2 − · · ·−bn−1













and define vi to be b1 + b2 + · · · + bi, where 1 ≤ i ≤ n− 1. Then

40 Chapter 2. Balance Vectors

v1 e(1, 2) + v2 e(2, 3) + · · ·+ vn−1 e(n− 1, n) equals













b1

−b1

0
...
0













+

















0
b1 + b2

−b1 − b2

0
...
0

















+ · · ·+





















0
0
0
...
0

b1 + b2 + · · ·+ bn−1

−b1 − b2 − · · · − bn−1





















,

which, by a simple computation with column vectors, reduces to
















b1

b2

b3

...
bn−1

−b1 − · · · − bn−1

















.

Hence b = v1 e(1, 2) + v2 e(2, 3) + · · ·+ vn−1 e(n− 1, n). 2

One can think of 2.3.1 as saying that Baln(R) is rather similar
to the module Rn−1. The next result shows how Baln(R) is situated
within Rn.

Let u be a vector in Rn whose entry sum equals 1, i.e.

n
∑

i=1

ui = 1.

There are, of course, many such vectors in Rn: for example, one
could take one entry of u to be 1 and all the others to be 0. Denote by

Ru

the set of all multiples of u by elements of R. Then Ru is a sub-
module of Rn and in fact it is a free R-module of rank 1 since {u}
constitutes an R-basis for it.

Now choose any v from Rn and put r =
∑

n

i=1
vi. Then the vector

v − ru has entry sum

n
∑

i=1

(vi − rui) =
n

∑

i=1

vi − r

n
∑

i=1

ui = r − r1 = 0

2.3. Properties of the Balance Module 41

since
n

∑

i=1

vi = r and
n

∑

i=1

ui = 1.

Thus v− ru is a balance vector. Since v = (v− ru)+ ru, it follows
that every vector in Rn is the sum of a vector in Baln(R) and a
vector in Ru; this is expressed by the equation

Rn = Baln(R) + Ru.

Next, if v ∈ Baln(R) ∩Ru, then v = ru for some r ∈ R. Also

0 =

n
∑

i=1

vi =

n
∑

i=1

rui = r

n
∑

i=1

ui = r.

Thus v = 0 and therefore

Baln(R) ∩Ru = 0,

the zero submodule.
The two statements combine to say that Rn is the direct sum of

the submodules Baln(R) and Ru, in symbols

Rn = Baln(R) ⊕ Ru.

This conclusion is stated formally in the next result.

(2.3.2). The R-module Rn is the direct sum of the submodules

Baln(R) and Ru, i.e., Rn = Baln(R) ⊕ Ru, where u is any vec-

tor such that
∑

n

i=1
ui = 1.

Direct sums of more than two submodules can be defined by itera-
tion and will occasionally be used in the sequel.

Balance vectors and permutations

From the algebraic point of view a natural way to generate bal-
ance vectors is to take an arbitrary vector in Rn and subtract from
it a vector obtained by permuting its entries. The resulting vector
will always be a balance vector. For example, when n = 4, one
might form









v1

v2

v3

v4









−









v1

v4

v3

v2









=









0
v2 − v4

0
v4 − v2









,

42 Chapter 2. Balance Vectors

which is a simple balance vector.
In general let π be a permutation of the integers 1, 2, . . . , n, i.e.,

π is a bijection from the set {1, 2, . . . , n} to itself. For each v in Rn

form a new vector by using π to permute the entries of v; this is the
vector

π(v)

whose ith entry is vπ−1(i). Then v − π(v) is a balance vector since
its has entry sum

n
∑

i=1

(vi − vπ−1(i)) =

n
∑

i=1

vi −

n
∑

i=1

vπ−1(i) = 0.

Hence v − π(v) belongs to Baln(R) and we have a function

θπ : Rn → Baln(R)

defined by the rule θπ(v) = v − π(v).
There are some natural questions one can ask about the function

θπ. Is it a module homomorphism? If so, what are the kernel Ker(θπ)
and the image Im(θπ)? In particular, when is it surjective, i.e., when
does every balance vector arise by applying the function θπ to a
suitable vector in Rn?

The next theorem answers these questions. First it is necessary
to recall some basic facts about permutations. Any permutation π

of {1, 2, . . . , n} is uniquely expressible up to order as a product, i.e.,
composite, of disjoint cycles, or cyclic permutations

π = σ1 ◦ σ2 ◦ · · · ◦ σk,

where each σi is a cycle of the form (`i1`i2 . . . `iji
) and the subsets

{`i1, `i2, . . . , `iji
} of the set {1, 2, . . . , n} are disjoint. Recall that a

cycle (m1, m2, . . . , mr) sends m1 to m2, m2 to m3, . . . , mk−1 to mk

and finally mk to m1, while other integers are fixed.

(2.3.3). Let R be an ordered domain, n a positive integer and π a

permutation of 1, 2, . . . , n. Assume that π = σ1 ◦ σ2 ◦ · · · ◦ σk is the

disjoint cycle decomposition of π. Then:

1. the function θπ : Rn → Baln(R) is a homomorphism of R-

modules;

2.3. Properties of the Balance Module 43

2. the kernel of θπ consists of those vectors v in Rn such that all

entries coming from the same cycle σi are equal;

3. let σi = (`i1`i2 . . . `iji
) for i = 1, 2, . . . , k. Then the image

of θπ has an R-basis consisting of all e(`it, `it+1), where t =
1, 2, . . . , ji − 1, i = 1, 2, . . . , k.

Proof

1. To prove this one simply has to verify that the requirements for
a module homomorphism are satisfied. Notice first that π(v+w) =
π(v) + π(w) and π(rv) = rπ(v). Then

θπ(v + w) = (v + w)− π(v + w)
= (v − π(v)) + (w − π(w))
= θπ(v) + θπ(w)

,

and similarly

θπ(rv) = rv − π(rv) = r(v− π(v))
= rθπ(v).

2. Let v ∈ Rn. Then v ∈ Ker(θπ) if and only if θπ(v) = 0, i.e. v =
π(v). This says that vi = vπ(i) for all i, from which the statement
follows at once.

3. This is harder to see. The crucial point to keep in mind is that
π permutes the entries in each cycle (`i1`i2 . . . `iji

) according to the
cyclic permutation σi. For any v in Rn we can write

v = v′

1
+ v′

2
+ · · ·+ v′

k

where v′

i
is the vector whose non-zero entries are the entries of v

which correspond to components of the cycle σi. Then π(v
′

i
) =

σi(v
′

i
) and thus

θπ(v) = v−π(v) =
k

∑

i=1

(v′

i
−π(v′

i
)) =

k
∑

i=1

(v′

i
−σi(v

′

i
)) =

k
∑

i=1

θσi
(v′

i
).

Therefore it is enough to prove the statement for the cycle σi, i.e.,
we can assume that π is an n-cycle.

We may suppose without loss of generality that π = (1 2 . . . n):
then by 2.3.1 we need to show that Im(θπ) = Baln(R). Choose any
u in Baln(R) and let its entries be

u1, u2, . . . , un−1,−u1 − u2 − · · · − un−1.

44 Chapter 2. Balance Vectors

Define v ∈ Rn to be the vector with entries

u1, u1 + u2, . . . , u1 + u2 + · · ·+ un−1, 0.

Then we have

θπ(v) =



















u1

u1 + u2

u1 + u2 + u3

.

.

u1 + u2 + · · ·+ un−1

0



















−



















0
u1

u1 + u2

.

.

u1 + u2 + · · ·+ un−2

u1 + u2 + · · ·+ un−1



















,

which equals


















u1

u2

u3

.

.

un−1

−u1 − u2 − · · · − un−1



















= u.

Our conclusion is that when π is an n-cycle, Im(θπ) equals Baln(R).
The statement in (3) now follows on applying this result to each of
the cyclic permutations σi. 2

(2.3.4). The module Im(θπ) is a free R-module of rank n−k, where

k is the number of disjoint cycles in π.

Proof

Let j1, j2, . . . , jk be the lengths of the disjoint cycles of π. Then by
2.3.3 there is an isomorphism, i.e., a bijective homomorphism, from
Baln(R) to

Balj1(R) ⊕ · · · ⊕ Baljk
(R),

which by 2.3.1 is a free R-module with rank

k
∑

i=1

(ji − 1) = (
k

∑

i=1

ji) − k = n− k.

2

2.3. Properties of the Balance Module 45

From this it follows that Im(θπ) = Baln(R) if and only if n−k =
n− 1, i.e., k = 1; this is because Baln(R) has rank n− 1. Thus we
have:

(2.3.5). The homomorphism θπ is surjective if and only if π is an

n-cycle.

To illustrate the proof of 2.3.3 we present an example.

Example (2.3.1).

Let n = 5 and choose π to be the permutation (1 2 3)(4 5). By 2.3.3
a general element of Im(θπ) should have the form

u =













u1

u2

−u1 − u2

u3

−u3













.

Following the method of the proof of 2.3.3, we form the vector

v =













u1

u1 + u2

0
u3

0













.

Then

θπ(v) = v − π(v) =













u1

u1 + u2

0
u3

0













−













0
u1

u1 + u2

0
u3













=













u1

u2

−u1 − u2

u3

−u3













= u,

as predicted.

The level of a balance vector

A natural measure of the complexity of a balance vector is the
number of its non-zero entries. For any v in Baln(R) define the level

of v to be the number of non-zero entries of v, with the convention
that the zero vector has level 1. Thus the level of a balance vector is

46 Chapter 2. Balance Vectors

a positive integer and the zero vector is the only balance vector with
level 1. Clearly, if k is any integer satisfying 1 ≤ k ≤ n, then Baln(R)
has vectors of level k. One can think of the balance vectors as being
classified in a hierarchy of levels. At level 1 is the zero vector, at
level 2 the non-zero simple balance vectors, and thereafter balance
vectors of increasing complexity.

It was shown in 2.3.1 that, provided n > 1, there is an R-basis of
Baln(R) consisting of non-zero simple balance vectors, i.e., balance
vectors of level 2. One can ask whether it is possible to find an R-
basis of balance vectors of level k where k is any integer satisfying
1 < k ≤ n. The answer turns out to be affirmative.

(2.3.6). Let R be an ordered domain and let k, n be integers satis-

fying 1 < k ≤ n. Then there is an R-basis of Baln(R) consisting of

vectors of level k.

Proof

Suppose that A is an (n − 1) × (n − 1) matrix with non-negative
entries in R which has the following properties:

(a) det(A) = ±1, where “det” denotes the determinant;

(b) each column of A has exactly k − 1 positive entries and the
remaining n− k entries are all 0.

The problem of finding such a matrix is postponed until later in the
proof.

The next move is to adjoin an additional row to A, thereby cre-
ating an n × (n − 1) matrix A∗. Here the jth element of the nth
row of A∗ is defined to be the negative of the sum of the entries
in column j of A. This implies that the sum of the entries in any
column of A∗ is 0, i.e., the columns of A∗ are vectors in Baln(R).
Notice also that each column of A∗ has exactly k non-zero entries
and hence has level k. We will show that the columns of A∗ form
an R-basis for Baln(R).

In order to establish this we let y be an arbitrary vector in Rn−1.
Since det(A) 6= 0, there is a unique vector x in Rn−1 such that

Ax = y.

2.3. Properties of the Balance Module 47

Indeed x = A−1y = (det(A))−1adj(A)y where adj(A) is the adjoint
of A, i.e. the transposed matrix of cofactors of A. Since entries of A

belong to R and det(A) = ±1, the vector x has all its entries in R.
Next form y∗ from y in the same manner as A∗was formed from

A; thus y∗ is the n-column vector with entries y1, y2, . . . , yn−1,−y1−
· · · − yn−1. We now claim that

A∗x = y∗.

To see this recall that Ax = y and note that the nth entry of A∗x

equals

n−1
∑

j=1

(

n−1
∑

i=1

−aij

)

xj = −

n−1
∑

i=1

(

n−1
∑

j=1

aijxj

)

= −

n−1
∑

i=1

yi,

which is the nth entry of y∗. Now observe that y∗ is actually a
typical vector in Baln(R) since y1, . . . , yn−1 are arbitrary. Also the
equation A∗x∗ = y∗ implies that y∗ is a linear combination of the
n− 1 columns of A∗.

Finally, the columns of A∗ are linearly independent because those
of A are linearly independent — recall that det(A) 6= 0. It follows
that the n − 1 columns of A∗ constitute an R-basis of Baln(R); of
course each column of A∗ has level k.

There remains the problem of exhibiting an (n−1)×(n−1) matrix
A satisfying (a) and (b): in fact there are many such matrices. One
can start off with the (k − 1)× (k − 1) matrix

U =













1 2 1 · · · 1 1
1 1 2 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 1 2
1 1 1 · · · 1 1













.

It is easy to compute its determinant by using row operations; in
fact

det(U) = (−1)k.

The matrix U is used to construct a matrix A with the required
properties by the following procedure.

First divide n − 1 by k − 1 to get a quotient q and a remainder
r, both of which are integers; thus

n− 1 = (k − 1)q + r

48 Chapter 2. Balance Vectors

and 0 ≤ r < k−1. The (n−1)×(n−1) matrix A is to have q blocks
U down the main diagonal, with other entries 0 or 1 according to
the following scheme:

A =



























U

∣

∣

∣
1 · · · 1

U 0
∣

∣

∣

...
...

0
. . .

∣

∣ 1 · · · 1
∣

∣ —————
∣

∣ 0 · · · 0
U

∣

∣ · · · · ·
∣

∣ 0 · · · 0
—————————————

0
∣

∣ 1r



























Here the upper right hand block of 1’s has size (k − 2) × r, while
1r is the r × r identity matrix. Thus each column of A has exactly
k − 1 positive entries, with other entries being 0. Also det(A) =
(det(U))q = (−1)kq. Thus A has all the required properties. 2

Example (2.3.2).

The previous result will now be illustrated by explicitly constructing
a Z-basis of Bal6(Z) consisting of balance vectors of level 3. Thus
n = 6 and k = 3 here. The matrix U is

[

1 2
1 1

]

.

Now 5 = 2× 2 + 1, so q = 2 and r = 1. Assemble the matrix A as
indicated above, to get

A =













1 2 0 0
∣

∣ 1
1 1 0 0

∣

∣ 0
0 0 1 2

∣

∣ 0
0 0 1 1

∣

∣ 0
————————
0 0 0 0

∣

∣ 1













.

Notice that A has 2 positive entries in each column with other entries
0 and that det(A) = 1, so (a) and (b) hold.

The final step is to add to A a sixth row whose entries are the

2.3. Properties of the Balance Module 49

negative column sums of A, which yields

A∗ =















1 2 0 0 1
1 1 0 0 0
0 0 1 2 0
0 0 1 1 0
0 0 0 0 1
−2 −3 −2 −3 −2















.

The columns of A∗ form a Z-basis of Bal6(Z) consisting of vectors
of level 3.

Chapter Three

Transactions

Up to this point we have been concerned with developing the
mathematical structures appropriate for describing the state of an
accounting system at any instant, namely by balance vectors with
entries belonging to an ordered domain. The next question to con-
sider is how one can represent changes in the state of an accounting
system which result from economic events. Such changes occur when
a transaction is applied to the system, which means that there is
a flow of value between accounts of the system. Some account bal-
ances will increase and others decrease. Of course, there may be
some accounts which are unaffected by the transaction.

After a transaction has been applied to an accounting system,
the system must still be in balance, i.e., the sum of all the account
balances is zero. This implies that the sum of all the changes in
account balances due to the transaction must equal zero. So the
conclusion is that the effect of a transaction on an accounting system
can be represented adding a fixed balance vector to the balance
vector that describes the original state. Then the sum of these
vectors is the balance vector representing the state of the system
after the transaction has been applied.

This informal discussion indicates that balance vectors are also
the key to understanding changes in the state of an accounting sys-
tem, as well as the actual states of the system. The object of the
present chapter is to give a formal treatment of transactions and
their relation to balance vectors. Once established, this relationship
permits the transfer of concepts and results for balance vectors to
transactions.

3.1. Transaction Vectors 51

3.1. Transaction Vectors

The formal definition of a transaction will now be given. Let n be
a positive integer, which will correspond to the number of accounts
in an accounting system, and let R be an ordered domain, which
will be the realm of account values. Choose and fix a balance vector
v ∈ Baln(R). Then a function

τv : Baln(R)→ Baln(R)

is defined by the rule

τv(x) = x + v, (x ∈ Baln(R)).

Thus the function τv simply adds the fixed balance vector v to each
balance vector x; of course x + v is also a balance vector. The
function τv is called the transaction corresponding to the balance
vector v. The set of all such transactions will be denoted by

Transn(R) = {τv | v ∈ Baln(R)} .

Notice that the zero vector 0 corresponds to the identity function
since τ0(x) = x + 0 = x. Thus τ0 is the identity transaction, which
causes no change in the system.

Recall that two functions α, β from a set to itself can be com-
bined by using functional composition to yield a new function, the
composite

α ◦ β,

defined by α◦β(x) = α(β(x)). In the case of transactions τv and τw,
observe that τv ◦τw sends x ∈ Baln(R) to (x+w)+v = x+(v+w),
as does τw ◦ τv. Therefore

τv ◦ τw = τv+w = τw ◦ τv.

Hence τv ◦ τ−v = τ0 and τ−v is the inverse of the transaction τv.
The above equations, together with the associative law of func-

tional composition, show that Transn(R) is an abelian group. There
is also an R-module structure on Transn(R): for one can define rτv,
where r ∈ R and v ∈ Baln(R), by the rule

rτv = τrv.

Thus (rτv)(x) = x+ rv. It is very easy to check the module axioms
in 2.2, so that Transn(R) is an R-module.

52 Chapter 3. Transactions

By this point it should be apparent that the modules Transn(R)
and Baln(R) are very similar. This may be formalized by saying
that these R-modules are isomorphic, meaning that there is an iso-

morphism, or bijective homomorphism, between them.

(3.1.1). The assignment v 7→ τv determines a function

τ : Baln(R)→ Transn(R)

which is an isomorphism of R-modules.

Proof

It is perfectly clear that τ is a bijection. Equations τv+w = τv ◦ τw
and rτv = τrv show that τ(v+w) = τ(v)◦τ(w) and τ(rv) = rτ(v),
so that τ is a homomorphism of R-modules. 2

In the interests of brevity we will often not distinguish between
the transaction τv and the corresponding balance vector v, refer-
ring to either as a transaction vector. Thus we can speak of simple

transactions and elementary transactions, corresponding to simple
balance vectors and elementary balance vectors. Note that a sim-
ple transaction is one with level 2 and is just an exchange of value
between two accounts, all other accounts being unaffected.

The essential feature of an isomorphism between two modules is
that it preserves all structural properties of the modules. Thus all
the properties of Baln(R) which were established in Chapter 2 may
be transferred to Transn(R). For example, one can conclude on the
basis of 2.3.1 that Transn(R) is a free R-module of rank n− 1. One
can also speak of the level of a transaction τv, meaning thereby the
number of non-zero entries in the balance vector v.

It is worthwhile stating explicitly the analog of 2.3.6 for Transn(R)
since it furnishes information about transactions.

(3.1.2). Let n, k be integers satisfying 1 < k ≤ n. Then Transn(R)
has an R-basis consisting of transactions of level k.

Applying 3.1.2 and the equation rτv = τrv, we deduce:

(3.1.3). Every transaction on a set of n accounts is the composite

of a sequence of transactions of level k where k is any integer such

that 1 < k ≤ n.

Specializing 3.1.3 to the case k = 2, we obtain:

3.1. Transaction Vectors 53

(3.1.4). Every transaction is a composite of simple transactions.

This means that any transaction, however complex, can be ef-
fected by a suitable sequence of exchanges between pairs of accounts.

Transactions and T-diagrams

In accounting a common way of representing the transactions
that have been applied to an accounting system is by means of
what are called T-diagrams. Each account has a T-diagram which
lists the debits and credits that have been applied to the account in
two columns, the column on the left giving the debits and the one
on the right the credits. The T-diagram for account ai over some
accounting period has the general form

xi1

xi2

...
xiki

yi1

yi2

...
yimi

Account ai

where all xij, yij are positive.

By convention in accounting a transaction which increases the
value of an asset account such as a bank account is said to debit

the account; if it decreases the value of such an account, then it
credits the account. Similarly, if a transaction increases the balance
of a liability account, then it credits the account and if it decreases
the balance of such an account, it debits the account. This reversal
of the common usage of the terms “debit” and “credit” reflects the
fact that amounts in an asset account such as cash are owed by the
company to the owners, whereas an amount in a liability account
such as a mortgage is owed to the company by the owners. For
example, a transaction that is a sale might debit the bank account
and credit inventory. Repayment of a loan will credit the bank
account and debit bank loan.

At this point the advantage of the balance vector representation
of transactions and balances becomes apparent since the signs of
the entries in the balance vector take care of both asset and liability
accounts. A transaction debits an account if, allowing for the signs

54 Chapter 3. Transactions

of the vector entries, it increases the corresponding entry in the
balance vector, and it credits the account if it decreases the entry
in the balance vector.

Remembering that the left hand column of a T-diagram repre-
sents debits and the right hand one credits, we conclude from the
T-diagram above that the balance of the the ith account will in-
crease over the period by an amount

xi1 + xi2 + · · ·+ xiki
− yi1 − yi2 − · · · − yimi

.

(Of course, if this amount is negative, it represents a decrease in the
account balance).

It is possible to enrich the T-diagrams by adding a time com-
ponent. Then xij is replaced by a pair (tij, xij) where tij is the
expiration time for the jth transaction to be applied to the ith ac-
count. This procedure will be elaborated on in the discussion of
automata in Chapter 6.

T-diagrams and the Pacioli group

Consider once again the T-diagram of the ith account of an ac-
counting system. Let d and c denote the respective sums of the
debit and credit columns in the diagram. Notice that d − c, the
increase in value of the ith account over the period, is not affected if
we replace d by d+x and c by c+x: it is only the difference between
d and c that matters. Motivated by this simple observation, let us
consider a relation E on the set product Z × Z of all ordered pairs
(a, b), (a, b ∈ Z), defined by

(a, b) E (a′, b′) if and only if a− b = a′ − b′;

it is easy to check that E is an equivalence relation on Z×Z. Write

[a, b]

for the E-equivalence class containing (a, b) and let P be the set
of all such equivalence classes. The next step is to define a binary
operation on P :

[a, b] + [a′, b′] = [a + a′, b + b′].

Again it is a simple matter to see that this operation is well-defined,
i.e., it depends on the classes [a, b], [a′, b′], not on the representing

3.1. Transaction Vectors 55

ordered pairs. Next we quickly verify that Properties 1-4 in 2.1
hold, which means that P is an abelian group with respect to the
operation just defined; note that the identity element is [0, 0], which
is the same as [a, a] for any a ∈ Z. Following Ellerman [1985], we
shall call P the Pacioli group because of its connection with the
double entry accounting system pioneered by Pacioli. The identity
of this group is not a mystery: for the assignment

[a, b] 7→ a− b, (a, b ∈ Z),

from P to the additive group of integers Z is quickly seen to yield
an isomorphism α : P → Z: for it is clearly a bijection and

α([a, b] + [a′, b′]) = α([a, b]) + α([a′, b′]).

Thus in effect the groups P and Z have identical properties.
Returning to the T-diagram of the ith account, we note that

it determines the element [d, c] of the Pacioli group. Thus at any
instant each account, through its T-diagram, determines an element
of this group. However, in passing from T-diagrams to the elements
of the Pacioli group it is apparent that much information about the
transactions has been lost, a fact that obviously limits the usefulness
of the construction.

The balance matrix

The history of an accounting system over some period of time
can be described by listing the T-diagrams for the accounts. An
alternative way to describe this history is by listing in order the
successive balance vectors of the system after each transaction has
been applied. These balance vectors can be used as the columns of
a matrix M . Since the matrix M determines the balance sheet of
the company, we call it the balance matrix of the accounting system.

Notice that we can recover the transactions which have been ap-
plied to the system from the balance matrix M by subtracting suc-
cessive columns. In more detail, let b(0) be the initial balance vector
of the system and let the successive balance vectors after application
of k transactions v(1),v(2), . . . ,v(k) be b(1),b(2), . . . ,b(k); thus

b(i) = b(i− 1) + v(i)

and the balance matrix over the period is

M = [b(0),b(1), . . . ,b(k)].

56 Chapter 3. Transactions

Then we recover the transactions from the matrix M from the equa-
tions

v(i) = b(i)− b(i− 1).

Finally, given the balance matrix M we can also reconstruct all
the T-diagrams. The procedure is first to find the successive trans-
actions that have been applied, as already explained. To obtain the
T-diagram of the ith account, identify the positive i-entries in the
transaction vectors and record them in the debit column of the T-
diagram; then put the negative i-entries in the credit column. Thus
the balance matrix determines the set of T-diagrams uniquely. We
illustrate the procedure with an example.

Example (3.1.1).

Suppose that an accounting system with four accounts has bal-
ance matrix over some period









500 400 300 700
100 100 −50 50
−350 −300 −100 −400
−250 −200 −150 −350









.

To construct the four T-diagrams first find the three transactions

that have been applied:








−100
0

50
50









,









−100
−150

200
50









,









400
100
−300
−200









.

Now read off the T-diagram of accounts a1 and a2 as

400 100
100

Account a1

and

100 150

Account a2

3.2. Transaction Types 57

Similarly for the other accounts.

3.2. Transaction Types

A problem which will be discussed in subsequent chapters is to
determine the appropriateness of applying a given transaction to an
accounting system. In deciding this question it is sometimes the
arrangement of credits and debits, i.e., the signs of the entries in
the transaction vector, that are important. The actual entries may
be of lesser significance. This is the background to the definition of
type.

Let n be a positive integer and R an ordered domain. The type

of a balance vector v ∈ Baln(R),

type(v),

is the n-column vector whose ith entry is 0, + or − according as
vi = 0, vi > 0 or vi < 0 respectively. For example, if n = 4 and

v =









−300
400
−100

0









∈ Bal4(Z),

the type of v is

type(v) =









−
+
−
0









.

The type of a transaction τv is then defined to be the type of v.
The identity transaction has type 0, while the type of a simple

transaction contains a single + and −, with other entries 0. Notice
that any non-zero transaction type must have at least one + and at
least one −.

A partial order on transaction types

Let s and t be types of balance vectors in Baln(R): thus the
entries of the vectors s, t are 0, + or −. A binary relation ≤ on the
set of types of vectors in Baln(R) is defined as follows:

s ≤ t

58 Chapter 3. Transactions

is to mean that si = ti or si = 0 for i = 1, 2, . . . , n. Thus s and
t have the same configuration of + and − signs except that s may
have more zeros. It is a simple matter to verify that this relation
is reflexive, transitive and antisymmetric, so it is a partial order on
the set of types. But this is not a linear order since not every pair
of types is comparable: for example, the types









−
+
−
0









and









−
−
+
0









are incomparable.

As is usually done with a partial order, one can visualize the
partially ordered set of types by means of its Hasse diagram, in
which the least complex types occur lower down in the diagram. At
the lowest point will be the type of the zero vector 0, which consists
entirely of zeros, while type(v) sits directly below type(w) if the
entries of type(v) and type(w) are the same except that type(v)
has one more zero entry.

A related concept is that of level. The level of a transaction is
defined to be the level of its associated balance vector as defined in
2.3, i.e., it is the number of + and − signs in the type. The concept
of level permits a linear ordering of transaction types in which types
of small level occur further down in the partial ordering of types.
Clearly the highest possible level is n and the lowest level is 1, the
type of the identity transaction. Thus the level is to be regarded as
a measure of the complexity of a transaction type.

Example (3.2.1).

There are 13 transaction types in Trans3(R). These are listed below
in descending order of levels:

level 3 :





+
+
−



 ,





−
+
+



 ,





+
−
+



 ,





−
−
+



 ,





+
−
−



 ,





−
+
−





level 2 :





+
−
0



 ,





0
+
−



 ,





−
0
+



 ,





−
+
0



 ,





0
−
+



 ,





+
0
−





3.2. Transaction Types 59

level 1 :





0
0
0





As an illustration of the partial ordering of types, observe that




+
0
−



 ≤





+
+
−



 .

In the daily operation of a real-life accounting system many of
the transactions applied will likely be at a low level. For example,
funds might be moved between two accounts, which is a transaction
of level 2. In the case of a retail firm, a sale might involve debiting
cash, crediting inventory and crediting profit and loss, a transaction
of level 3. Nevertheless one can envisage transactions which occur at
a high level and so are of complex type. For example, funds might be
disbursed from cash to several employee payroll or pension accounts.
Thus transaction types of high level are a distinct possibility.

Combinatorial properties of transaction types

An examination of the transaction types in Trans3(R) in Example
3.1.2 above raises some combinatorial questions about types. For
example, it is natural to ask how many transaction types there are
in Baln(R), and one might also enquire about the number of types
of given level. Finally, there is the more ambitious question: which
level contains the largest number of transaction types? We shall
derive some simple formulas which answer these questions. Aside
from their intrinsic interest, these combinatorial questions provide
insight into the relative complexity of transaction types at different
levels. In this result

(

n

r

)

denotes the binomial coefficient

n(n− 1) · · · (n− r + 1)

r!
.

(3.2.1). Let n be an integer greater than 1.

1. The number of n-transaction types of level r is
(

n

r

)

(2r − 2),
where 1 < r ≤ n.

2. The total number of n-transaction types is 3n − 2n+1 + 2.

60 Chapter 3. Transactions

Proof

1. In order to construct an n-transaction type of level r one must
first pick the r “slots” in which a + or − is to be placed; this may
be done in

(

n

r

)

ways. Then one has to count the number of ways
of placing a + or − in each of the r chosen slots, taking care not
to have a + in every slot or a − in every slot. This can be done in
2r− 2 ways. The remaining n− r slots get 0’s, so the type has been
determined. Hence the number of types at level r is

(

n

r

)

(2r − 2).

2. The total number of n-transaction types is the sum of the num-
bers of types at levels 1 through n. Since there is just one type of
level 1, this is

1 +

n
∑

r=2

(

n

r

)

(2r − 2) = 1 +

n
∑

r=2

(

n

r

)

2r − 2

n
∑

r=2

(

n

r

)

.

Now by the Binomial Theorem

n
∑

r=0

(

n

r

)

2r = (1 + 2)n = 3n

and
n

∑

r=0

(

n

r

)

= (1 + 1)n = 2n.

Hence the total number of types is

1 + (3n − 1− 2n)− 2(2n − 1− n) = 3n − 2n+1 + 2. 2

A similar combinatorial problem arises when one asks for the
number of transaction types with a specified number of debits or
credits.

(3.2.2). Let n and r be integers such that 1 ≤ r ≤ n. Then

1. the number of n-transaction types with exactly r entries +, i.e.,

debits, is
(

n

r

)

(2n−r−1), and this is also the number of types with

exactly r entries −, i.e., credits;

2. the number of n-transaction types with exactly r zeros (i.e., r

unaffected accounts) is
(

n

r

)

(2n−r − 2) if r < n and 1 if r = n.

3.2. Transaction Types 61

Proof

1. Choose the r slots which are to receive a + sign in
(

n

r

)

ways.
Then place a 0 or a − in the remaining n− r slots, but do not put
a 0 in every slot: for there must be at least one − in the type. This
can be done in 2n−r − 1 ways. So the number of types with exactly
r + signs is

(

n

r

)

(2n−r − 1). The same argument handles the case of
r minus signs.

2. Let r < n and choose the r slots to receive 0’s in
(

n

r

)

ways. Then
place a + or − in each of the remaining n − r slots, with at least
one + sign and one − sign. This can be done in 2n−r − 2 ways, so
the answer is

(

n

r

)

(2n−r − 2). If r = n, the answer is clearly 1. 2

The level with the largest number of types

Let n be a fixed positive integer. Another natural question is:
which level has the largest number of n-transaction types? Clearly
one can assume that n > 1 here. Then by 3.2.1 the problem is
to find the integer r satisfying 1 ≤ r ≤ n for which the integer
(

n

r

)

(2r − 2) achieves its maximum value. Now it is well-known that

the maximum value of
(

n

r

)

occurs at r =
[

n

2

]

(the largest integer

≤ n

2
). However, one would expect the maximum value of

(

n

r

)

(2r−2)
to occur for a larger value of r because of the presence of the factor
2r−2. In fact the answer is roughly 2

3
n, as the next result indicates:

(3.2.3). Let n be a positive integer. Then the largest number of

n-transaction types occurs at level

[

2n + 2

3

]

.

For example, when n = 100, the largest number of types occurs
at level 67, and the number of types at that level is

(

100

67

)

(267 − 2).

Proof

It may be assumed that n > 1. By 3.2.1 we need to determine the
value of r which makes the integer ar =

(

n

r

)

(2r − 2) largest; here n

is fixed and 1 < r < n. Now

ar+1 − ar =
n!

(r + 1)! (n− r)!

(

n(2r+1 − 2)− (3r + 1)2r + 4r + 2
)

.

62 Chapter 3. Transactions

Therefore ar < ar+1 if and only if n exceeds the number

br =
(3r + 1)2r − 4r − 2

2r+1 − 2
.

It is easy to see that {br} is a strictly increasing sequence of
positive numbers. Also, limr→∞br = +∞, so there is a least r such
that n ≤ br and this r will be a level with the largest number of
transaction types. Thus we have to find an integer r such that

br−1 < n ≤ br.

Put

εi =
3i + 1

2
− bi;

then a short calculation shows that

εi =
i + 1

2i+1 − 2

for i ≥ 1. Of course lim
i→∞

εi = 0 and in fact 0 < εi ≤
1

2
if i ≥ 2. On

writing bi = 3i+1

2
− εi, the inequality br−1 < n ≤ br becomes

3r − 2

2
− εr−1 < n ≤

3r + 1

2
− εr.

Solving for r, one finds that

2n− 1

3
+

2

3
εr ≤ r <

2n + 2

3
+

2

3
εr−1. (∗)

There are now three cases to consider. Suppose first that n ≡ 0
(mod 3) and n = 3k. Then (∗) yields

2k −
1

3
+

2

3
εr ≤ r < 2k +

2

3
+

2

3
εr−1.

If r = 2, then n = 3 and the result is true by Example 3.2.1, while
r = 1 is impossible; thus we may assume that r ≥ 3. Since εr−1 ≤

1

2
,

the
last inequality becomes 2k ≤ r < 2k + 1, so that r = 2k = [2n+2

3
].

Next suppose that n ≡ 1 (mod 3) and write n = 1 + 3k. Then
(∗) yields

2k +
1

3
+

2

3
εr ≤ r < 2k +

4

3
+

2

3
εr−1.

3.3. Transactions, Matrices and Digraphs 63

Since εr−1 ≤
1

2
, this gives r = 2k + 1 = [2n+2

3
].

Finally, if n ≡ 2 (mod 3) and n = 2 + 3k, then we have by (∗)

2k + 1 +
2

3
εr ≤ r < (2k + 2) +

2

3
εr−1,

which yields r = 2k + 2 = [2n+2

3
] since one can assume n > 2. 2

Observe that 3.2.3 leaves open the possibility that the maximum
number of types occurs at two successive levels, and indeed this
happens when n = 3, as Example 3.2.1 above shows. However this
is the only time it happens. The reason is that ar = ar+1 holds only
if n = br and it is easy to see that br is an integer only when r = 1
or 2, which is consistent only with n = 3.

3.3. Transactions, Matrices and Digraphs

Up to this point our favored method of representing transactions
has been by balance vectors over an ordered domain. However some
years ago Mattessich, in a well-known paper [Mattesich 1957], gave
an ingenious method of representing transactions on an accounting
system by square matrices with non-negative integral entries. It is
instructive to compare Mattessich’s matrix method with the current
approach. A comparison of the two methods will highlight some of
the main features of the balance vector technique and its advantages.
A detailed analysis of the relation between the methods is presented
in this section.

From matrices to transactions

Let n be a positive integer and R an ordered domain, and let
M = [mij] be an n × n matrix over R, so that the entries of M

lie in R. An n-column vector v is formed from M by the following
procedure: the ith entry of the vector v is given by

vi =
n

∑

j=1

(mij −mji).

Thus the value of the ith account ai is debited, i.e., increased by
amount mij and credited, i.e., decreased by mji. Otherwise stated,
the ith entry of v is obtained from M by forming the sum of the
entries in row i and subtracting from it the sum of the entries in

64 Chapter 3. Transactions

column i. The formula is valid even if some of the matrix entries
are negative.

The critical observation is that v is a balance vector, the reason

being that in the sum
n
∑

i=1

vi each mij occurs twice, once with a

positive sign and once with a negative sign. Thus the matrix M

determines a transaction τv. Finally, notice that diagonal entries
mii have no effect on the vector v since they cancel in the sum
expressing vi.

Example (3.3.1).

Consider the 4× 4 matrix over Z

M =









0 100 −200 750
400 −50 100 0
100 0 50 100
−400 −100 100 0









.

Following the row-sum minus column-sum rule, we find that the
corresponding transaction is represented by the vector

v =









550
500
200

−1250









.

Example (3.3.2).

Let
E(i, j)

denote the n×n elementary matrix whose (i, j) entry is 1 and whose
other entries are all 0; here i 6= j. It is an important observation that
the elementary matrix E(i, j) determines the elementary transaction

vector e(i, j), which has ith entry +1, jth entry −1 and other entries
zero: in particular this is a simple transaction.

The Mattessich function

The procedure just described for associating a balance vector
with a matrix can be formalized by means of a function µ. Let

Mn(R)

3.3. Transactions, Matrices and Digraphs 65

be the set of all n × n matrices over an ordered domain R. Matrix
algebra provides natural operations of addition and scalar multipli-
cation by elements of R for the set Mn(R). Furthermore the laws of
matrix algebra guarantee that Mn(R), like Baln(R), is an R-module.

Mattessich’s procedure yields a function

µ : Mn(R)→ Baln(R)

which is given by the rule that follows: if M = [mij] ∈Mn(R), then
µ(M) is the n-column vector whose ith entry is

n
∑

j=1

(mij −mji).

The function µ will be called the Mattessich function.1 Keep in mind
that there is a module isomorphism from Baln(R) to Transn(R), so
that, on composing µ with this, we obtain another module isomor-
phism

µ′ : Mn(R)→ Transn(R).

There is a simple description of the function µ in terms of matrix
products. Denote by I the n-column vector with all its entries equal
to 1,

I =









1
1
...
1









.

Then by direct matrix multiplication we see that the ith-entry of

the column vector MI −MT I is exactly
n
∑

j=1

(mij −mji), where MT

is the transpose of the matrix M . The point to note here is that
right multiplication of a matrix by I sums the elements in each row
of the matrix.

The result of this observation is a simple formula for the Mattes-
sich function:

µ(M) = (M −MT)I.

Use of this formula and elementary matrix algebra show that

µ(M + N) = µ(M) + µ(N) and µ(rM) = rµ(M),
1
Actually Mattessich used a slightly different procedure, with the roles of mij and mji

reversed in the definition of µ.

66 Chapter 3. Transactions

where M, N ∈ Mn(R) and r ∈ R. Thus µ is a homomorphism of
R-modules.

The basic properties of the Mattessich function µ, and by impli-
cation of the function µ′, are summarized in the following result:

(3.3.1). Let n be a positive integer and R an ordered domain. Then

1. µ(M) = (M −MT)I where I is the n-column vector with all

entries equal to 1.

2. µ : Mn(R) → Baln(R) is a surjective homomorphism of R-

modules.

Proof

Only the surjectivity of µ requires a comment: clearly we can assume
that n > 1. Recall that every balance vector v can be written in
the form v = r1e(1, 2) + · · · + rn−1e(n − 1, n) where ri ∈ R. Also
e(i, i + 1) = µ(E(i, i + 1)), as was pointed out in Example 3.3.2
above. Therefore

µ(r1E(1, 2) + · · ·+ rn−1E(n− 1, n)) = v

and µ is surjective. 2

Of course this result shows that every balance vector arises from
some matrix, so Mattessich’s representation of transactions is effec-
tive every transaction.

While the matrix representation of transactions is very elegant, it
does have some disadvantages. Firstly, it is somewhat unwieldy: an
n× n matrix has n2 entries whereas a balance vector is determined
by only n−1 parameters. Then, because of this built-in redundancy,
different matrices can determine the same balance vector, and hence
the same transaction.

These defects can be remedied by restricting attention to matrices
all of whose non-zero entries lie on the superdiagonal, (where n > 1),

M =

















0 m1 0 · · · 0 0
0 0 m2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 mn−1

0 0 0 · · · 0 0

















3.3. Transactions, Matrices and Digraphs 67

Notice that for this superdiagonal matrix

µ(M) =













m1

m2 −m1

...
mn−1 −mn−2

−mn−1













,

which equals m1e(1, 2) + m2e(2, 3) + · · · + mn−1e(n − 1, n). Since
this is a general vector of Baln(R), every balance vector, and hence
every transaction, actually arises from a superdiagonal matrix.

This observation provides the motivation for introducing a func-
tion

λ : Baln(R)→Mn(R),

which is defined by the rule that

λ(m1e(1, 2) + m2e(2, 3) + · · ·+ mn−1e(n− 1, n))

is to equal

M =

















0 m1 0 · · · 0 0
0 0 m2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 mn−1

0 0 0 · · · 0 0

















In particular notice that λ(e(i, i + 1)) = E(i, i + 1).
It follows at once from the definition that λ is a homomorphism

of R-modules. Also µ ◦ λ is the identity function on Baln(R), so
that λ is a right inverse of µ and λ is therefore injective. Thus
for any v in Baln(R), we have v = µ ◦ λ(v) = µ(A) where A =
λ(v). Consequently every transaction τv arises from a superdiagonal
matrix obtained by applying the function µ′ to λ(v).

In fact each transaction arises from a unique superdiagonal ma-
trix. For if v = µ(M1) = µ(M2), where M1 and M2 are superdiago-
nal, then µ(M1 −M2) = 0. Since M1 −M2 is also superdiagonal, it
follows from the equation for µ(M) that M1 = M2. This is stated
formally as:

(3.3.2). Every balance vector v in Baln(R) is uniquely expressible in

the form µ(M) where M is a superdiagonal n× n matrix; moreover

M = λ(v).

68 Chapter 3. Transactions

Example (3.3.3).

Consider the balance vector

v =









100
−300
−300

500









.

First we express v in terms of elementary balance vectors as in 2.3.1:

v = 100e(1, 2)− 200e(2, 3)− 500e(3, 4).

The superdiagonal matrix corresponding to v is therefore

λ(v) =









0 100 0 0
0 0 −200 0
0 0 0 −500
0 0 0 0









.

Matrices with non-negative entries

In his original article Mattessich dealt only with matrices having
non-negative entries. As Example 3.3.3 shows, the superdiagonal
matrix of a transaction can have negative entries. This is easily cor-
rected by switching negative entries to the subdiagonal and changing
the signs of such entries.

Let v ∈ Baln(R); if the (i, i+1) entry of the superdiagonal matrix
λ(v) is negative, say −d with d > 0, replace it by 0 and put a +d

in the (i + 1, i) position. This procedure does not change difference
between the row-sum and the column-sum, so that the resulting
matrix, say

λ∗(v),

is still mapped to v by µ; also it has all its non-zero entries positive
and they lie on the superdiagonal or subdiagonal.

Thus in the previous example

λ∗(v) =









0 100 0 0
0 0 0 0
0 200 0 0
0 0 500 0









.

However the function λ∗, unlike λ and µ, is not a homomorphism.

3.3. Transactions, Matrices and Digraphs 69

The relationship between the functions λ and µ is clarified in the
next result.

(3.3.3). The functions λ and µ have the following properties.

1. Baln(R) = Im(λ)⊕Ker(µ);

2. Im(λ) consists of all n× n superdiagonal matrices over R;

3. A matrix M belongs to Ker(µ) if and only if 2M = S1 + S2

where S1 is symmetric and S2 is skew symmetric with all its

row sums equal to 0.

Proof

1. Recall that µ ◦ λ is the identity function on Baln(R). If M ∈
Im(λ) ∩ Ker(µ), then M = λ(v) for some v ∈ Baln(R). Then
0 = µ(M) = µ(λ(v)) = v, so that M = 0 and Im(λ) ∩ Ker(µ) = 0.
Next for any M ∈ Baln(R), we have

µ(M − (λ ◦ µ)(M)) = µ(M)− µ(M) = 0,

since µ ◦ λ is the identity. Therefore M − (λ ◦ µ)(M) ∈ Ker(µ) and
M ∈ Im(λ) + Ker(µ); the result follows by definition of the direct
sum.

2. This is a consequence of the definition of λ.

3. Let M ∈ Mn(R) and define S1 = M + MT and S2 = M −MT ;
then 2M = S1 + S2. Notice that S1 is symmetric and S2 is skew
symmetric. Hence µ(S1) = 0 and µ(S2) = 2S2I, from which it
follows that 2µ(M) = µ(S1) + µ(S2) = 2S2I. Recall that R, being
an ordered domain, has characteristic zero (see 2.1), and thus an
equation 2A = 2B in Baln(R) implies that A = B. Therefore we
may conclude that µ(M) = S2I and as a consequence that µ(M) = 0
if and only if S2I = 0, i.e., S2 is a skew-symmetric matrix with row
sums equal to 0. 2

Transactions and digraphs

We end the chapter by describing yet another way of visualizing
a transaction, this time geometrically by means of digraphs. First of
all recall that a directed graph, or digraph, D consists of a non-empty
set V and a binary relation E on V : thus

E ⊆ V × V

70 Chapter 3. Transactions

and u E v if and only if (u, v) ∈ E. The elements of V are called the
vertices of D and the elements (u, v) of E, written

〈u, v〉,

are the edges of D. A geometric picture of the digraph is obtained
when the vertices are represented by points in the plane and an edge
〈u, v〉 is represented by a directed line segment from u to v,

•u

•v==
{

{
{

{
{

{
{

{
{

{
{

{

A loop in a digraph is an edge from a vertex to itself. Clearly a
digraph has no loops precisely when the corresponding relation E is
irreflexive, i.e., u E u never holds. If there are edges 〈u, v〉 and 〈v, u〉,
these are called parallel edges. A digraph has no parallel edges if and
only if the corresponding relation E is antisymmetric, i.e., u E v and
v E u cannot both hold. The number of edges beginning at a vertex
v is called the out-degree of v and the number of edges ending in v is
the in-degree. We shall be especially interested in digraphs in which
no vertex has positive in-degree and positive out-degree; notice that
a digraph with this property cannot have loops or parallel edges.

Now let us return to transactions. Suppose that v ∈ Baln(R)
where R is an ordered domain, and regard v as a transaction vec-
tor. We define a corresponding digraph D with vertex set the set
of accounts {a1, a2, . . . , an}. An edge 〈ai, aj〉 is to be drawn from
account ai to account aj if vi < 0 and vj > 0, i.e., the transaction
debits aj and credits ai, while it may also affect other accounts.

It follows at once from the definition that the digraph of a trans-
action has the special property that no vertex can have positive in-
degree and positive out-degree. In fact a rather stronger property
holds.

(3.3.4). If D is the digraph of a transaction vector, then the vertex

set of D is the union of three disjoint subsets V0, V1, V2 such that

there is an edge from each vertex of V1 to each vertex of V2 and no

other edges are present in D.

3.3. Transactions, Matrices and Digraphs 71

Proof

If D is the digraph of a transaction v, define V0, V1, V2 to be respec-
tively the sets of accounts ai for which vi = 0, vi < 0, vi > 0. These
sets have the property stated. 2

Example (3.3.4).

Consider the transaction vector












−550
−500

200
0

850













The digraph of this balance vector is shown below, where for sim-
plicity of notation the vertices have been labeled 1, . . . , 5:

•3 •2

•5•1

•4

oo

OO
//

��

Here, for example, there is an edge from 1 to 5 since v1 < 0 and v5 >

0, and the vertex 4 is isolated in the digraph since the transaction
does not affect account a4. The three subsets of 3.3.5 are V0 =
{4}, V1 = {1, 2}, V2 = {3, 5}.

It is evident that the digraph of a balance vector depends only
on the type of the balance vector, not on its actual entries. Indeed
there is a bijective correspondence between types of balance vectors
and digraphs with the property enunciated in 3.3.4.

(3.3.5). There is a bijective function from the set of all types of

balance vectors with n entries and the set of all digraphs D on a

given n-element vertex set with the property that the vertex set of D

is the union of three disjoint subsets V0, V1, V2 such that there is an

edge from each vertex of V1 to each vertex of V2 and no other edges

are present in D.

72 Chapter 3. Transactions

Proof

We have seen that every n-balance vector type determines a unique
digraph which has the stated property. To get a map in the other
direction we assume that D is a digraph with the property. The
balance vector type t corresponding to D is defined as follows. To
determine the i-component of t look at D; if the ith vertex vi is
in V1, so there is an edge from vertex i to some other vertex, then
ti = −; if vi ∈ V2, there is an edge from some vertex to the ith
vertex and ti = +; if vi ∈ V0, so that vi is isolated, then ti = 0. This
process defines a unique type vector since V0, V1, V2 are disjoint sets.
Clearly these two maps are mutually inverse, so we have a bijection.

2

For example, consider Example 3.3.4 once again. We see directly
from the digraph that the corresponding type vector is













−
−
+
0
+













.

As an immediate application of 3.3.5 and the count of transaction
types in 3.2.1, we obtain combinatorial information about digraphs
with the property described in 3.3.5.

(3.3.6). The number of digraphs D with a fixed set of n vertices such

that the vertex set is the union of three disjoint subsets V0, V1, V2 and

there is an edge from each vertex of V1 to each vertex of V2 while no

other edges are present in D is equal to 3n − 2n+1 + 2.

Chapter Four

Abstract Accounting

Systems

4.1. Allowable Transactions and Balances

In the last two chapters it has been shown how one can repre-
sent the state of an accounting system by a balance vector and a
change in the state of the system by a transaction vector, which is
itself a balance vector. Now an essential component of any account-
ing system is the set of rules by which the system operates. The
next objective is to complete the definition of our basic model of
an accounting system by specifying in algebraic form the rules that
govern the operation of the system.

In any real life accounting system there will be certain transac-
tions that would be regarded as improper. A transaction might be
contrary to sound business practice or it might violate government
regulations. For example, a transaction that leads to a transfer of
funds from an employee’s pension account to cash would not be
permitted under normal circumstances. To exclude such undesir-
able operations, an accounting system should come equipped with
a list of transactions that are regarded as valid operations for the
system. These will be called allowable transactions.

Another feature of an accounting system is that, even if a trans-
action is allowable, its application might still be rejected if it caused
an unacceptable balance to appear in some account. For example,
in the case of a retail firm customer credit accounts are likely to have
limits. A purchase on credit by a customer would not be permitted if
it led to a balance that exceeded the customer’s credit limit. There
may also be minimum balances for certain reserve accounts in an

74 Chapter 4. Abstract Accounting Systems

accounting system. Thus one recognizes the existence of allowable

balances, as well as allowable transactions.
Before a transaction is accepted by an accounting system, it must

first be screened for allowability. Should it pass this test, the bal-
ance vector which results when the transaction is applied must be
computed. If the new balance vector is allowable, the transaction is
approved and applied to the system.

The discussion so far suggests that the basic model of an account-
ing system should include the following:

1. a set of accounts in a specified order;

2. a set of allowable transactions;

3. a set of allowable balance vectors.

Once an accounting system has been defined in this way, it is natural
to regard it as an automaton, and this point of view will be explored
in detail in Chapter 6. This in turn leads by well known procedures
to such algebraic structures as monoids and groups. Equally im-
portant are algebraic concepts such as substructures and quotient
structures of a specific structure, which can be applied to accounting
systems to provide algebraic representations of standard accounting
procedures. In this and subsequent chapters the pay-off for introduc-
ing abstract algebra into accounting theory will become apparent.

4.2. Defining an Accounting System

Our objective in this section is to formulate precisely the defini-
tion of an accounting system on n accounts over an ordered domain
R. The first component of the definition is an n-element set A called
the set of accounts. Next we introduce the notion of a balance func-

tion from A to R: this is a function

α : A→ R

such that
∑

a∈A

α(a) = 0R.

There is a connection with balance vectors here, which will be ex-
plained shortly. To complete the specification of the model, we
choose two sets of balance functions from A to R, say

T and B,

4.2. Defining an Accounting System 75

where B must not be empty. Then the triple

A = (A| T | B)

is called an abstract accounting system on A over R, with the sets
T and B determining respectively the transactions which may be
applied and the account balances which may arise, in a manner
which will be described.

In order to introduce balance vectors we first linearly order the
account set A in some fixed way: let this be

{a1, a2, . . . , an}.

If α : A→ R is a balance function, then α is completely determined
by the balance vector









α(a1)
α(a2)

...
α(an)









.

Thus we can replace each balance function by its associated balance
vector, so that T and B may be regarded as sets of n-balance vectors
over R, i.e., as subsets of Baln(R). We call T and B the sets of
allowable transactions and allowable balances of A. But note that
strictly speaking T consists of balance vectors v rather than the
associated transactions τv.

The mode of operation of the accounting system will now be de-
scribed. The system has an initial balance vector b(0) ∈ B. A
sequence of allowable transactions v(1),v(2), . . . ,v(m) is applied to
the system, producing successive allowable balance vectors b(1),b(2),
. . . ,b(m) where

b(i + 1) = b(i) + v(i),

provided that b(i + 1) is allowable, i.e., it belongs to B: if this is
not the case, then b(i + 1) = b(i).

In practice the allowable transactions will be of two sorts. There
may be specific allowable transactions with fixed entries, for exam-
ple, fixed rent or mortgage payments. Then there may be entire
types of transactions that are allowable: a transaction in a retail
firm which debits cash and credits inventory and profit/loss would
be of this type. It is therefore reasonable to replace the set T by
two sets

T0 and T1

76 Chapter 4. Abstract Accounting Systems

and write
A = (A| T0, T1| B)

where T0 is the list of allowable transaction types and T1 is the list
of specific allowable transactions. The understanding here is that
every transaction of a given allowable type is allowable.

It is reasonable to regard the identity transaction, i.e., the zero
transaction vector, as allowable since it has no effect on balances of
the accounting system; we will assume henceforth without further
comment that this transaction is allowable in all accounting systems.

Accounting systems with one account are uninteresting: the bal-
ance is always zero. Systems with two accounts are scarcely more
interesting: the two accounts have balances that are negatives of
each other. The simplest interesting accounting system has three ac-
counts. Such a system could represent the uncomplicated financial
position of a company or an individual with few assets or liabilities,
with one account representing total assets, one total liabilities and
an account giving the net worth. This simple system also represents
the most primitive type of financial report, wherein total balances
are given for all the asset, liability and equity accounts.

The digraph of an accounting system

A useful way of visualizing the operation of an accounting system
is by means of a digraph (or directed graph). Consider an accounting
system

A = (A| T | B)

on n accounts a1, a2, . . . , an. The digraph of A has vertex set

A = {a1, a2, . . . , an},

and an edge
〈aj, ai〉

is drawn from aj to ai if some allowable transaction has its ith entry
positive and its jth entry negative. Notice that the direction of the
edge is from negative to positive: thus an edge 〈aj, ai〉 indicates
a potential flow of value from account aj to account ai. It is often
convenient to label the vertex set by the integers {1, 2, . . . , n} rather
than the accounts. Note also the connection with the digraph of a
transaction defined in Chapter 3: the digraph of the system is just
the union of the digraphs of all the allowable transactions.

4.2. Defining an Accounting System 77

Example (4.2.1).

Consider a system over Z with five accounts, one specific allowable
transaction and three allowable transaction types,













−
0
0
0
+













,













0
0
0
−
+













,













0
+
+
−
0













,













0
200
100

0
−300













.

The digraph of this accounting system is:

•4 •3

•5•2

•1

??
�

�
�

�
�

�
�

�
�

�
�

�
�

//

��

��

OO
oo

Sometimes one is only interested in the undirected graph of an
accounting system A, which arises when all the arrows in the di-
graph are omitted. If the graph of A is connected, i.e., there is a
path between any two vertices, then A is termed a connected ac-

counting system. Otherwise A is disconnected , in which case the
graph decomposes into disjoint connected components. Clearly the
system in Example 1 is connected. The undirected graph of an ac-
counting system will be important when we consider the question
of decomposability of accounting systems in 4.3.

78 Chapter 4. Abstract Accounting Systems

Example (4.2.2).

Consider a 6-account system with allowable transactions and types















−
+
0
0
0
0















,















+
0
+
−
0
0















,















0
0
0
0
+
−















,















−100
200
−100

0
0
0















,















0
−100

50
50
0
0















.

Here the graph is disconnected, with two connected components:

•4•1

•5

•2 •3

•6

�
�

�
�

�
�

�
�

�
�

�
�

�

Thus the accounting system is disconnected.

It is clear from the definition that the digraph of an accounting
system cannot contain loops. In fact this is the only restriction on
the digraph.

(4.2.1). Let D be a digraph with n vertices which has no loops.

Then there is an accounting system on n accounts over any ordered

domain R with digraph D.

Proof

Let 1, 2, . . . , n denote the vertices of D. The accounting system to be
constructed has account set A = {a1, a2, . . . , an}. If there is an edge
from vertex i to vertex j in D, put the elementary transaction e(j, i)
in the set of allowable transactions T . Then A = (A| T | Baln(R))
is an accounting system whose digraph is D. 2

4.2. Defining an Accounting System 79

This result should be compared with the much stronger condition
for a digraph to be the digraph of a transaction, which is given in
3.3.4.

Feasible transactions and the feasible digraph

In an accounting system there are likely to be transactions that
can be executed by means of a sequence of allowable transactions,
but which are not themselves allowable. Such transactions do not
contribute edges to the digraph of the system, but they can be used
to augment it to form a larger digraph.

Consider an accounting system

A = (A| T | B)

and let D be its digraph. A transaction which is the composite of
a finite sequence of allowable transactions is called a feasible trans-

action for A. Allowable transactions are feasible, but the converse
need not be true. Since τv ◦τw = τv+w, a typical feasible transaction
vector has the form

a1v(1) + a2v(2) + · · ·+ akv(k)

where v(1),v(2), . . . ,v(k) are allowable transaction vectors and the
ai are non-negative integers. Let us write

T

for the set of all feasible transactions for A. Of course T ⊆ T . Then
we can form a new accounting system

A = (A| T | B)

in which the set of allowable transactions is T . The feasible digraph

D of A is defined to be the digraph of A. It is evident that D is
a subdigraph of the digraph D. Notice that D represents flows of
value in the system due to the action of feasible transactions, i.e.,
of sequences of allowable transactions.

Example (4.2.3).

Consider the accounting system with three accounts and two specific
allowable transactions:

u =





−1
5
−4



 and v =





1
−2

1



 .

80 Chapter 4. Abstract Accounting Systems

The digraph of this system is

•1

•2 •3
��

??
�

�
�

�
�

�
�

�
�

�
�

�
�

22oo

To find the feasible digraph we must identify the feasible trans-
actions: these are all of the form

au + bv =





−a + b

5a− 2b
−4a + b



 ,

where a, b are non-negative integers. Now the inequalities −a+b < 0
and −4a + b > 0 are clearly contradictory. Therefore there cannot
be an edge 〈1, 3〉 in the feasible digraph. On the other hand, setting
a = 1, b = 2 yields the feasible transaction vector





1
1
−2



 ,

which demonstrates that there is an edge 〈3, 1〉. It follows that the
feasible digraph of the system is:

•1

•2 •3
��

??
�

�
�

�
�

�
�

�
�

�
�

�
�

22oo

__?
?
?
?
?
?
?
?
?
?
?
?
?

There are clearly limits to the amount of information about an
accounting system that can be gleaned from its digraphs. For ex-
ample, the digraphs do not enable us to tell what the allowable
transactions are, but only the flows which they produce. Nor do
they give information about the allowable balances. Nevertheless

4.2. Defining an Accounting System 81

digraphs are a useful way of visualizing the effect of an allowable
transaction or feasible transaction on an accounting system.

Equivalent accounting systems

Consider two accounting systems with the same set of accounts
and over the same ordered domain,

A = (A| T | B) and A′ = (A| T ′| B′).

Then A and A′ are said to be equivalent if they have the same sets of
feasible transactions: plainly this amounts to saying that an allow-
able transaction of one system is feasible in the other. Thus equiv-
alent systems have the same feasible digraphs. What this means in
practice is that, provided that balance restrictions are ignored, the
two systems will arrive at the same final balance vector if they start
from a common initial vector, albeit by means of different sequences
of transactions. On the other hand, equivalent systems may have
quite different sets of allowable transactions. Thus we should think
of equivalent systems as possibly different systems having the same
capacity to compute account balances.

Bounded accounting systems

A natural way to restrict the account balances in an accounting
system is to place upper or lower limits on them. For example, a
customer’s account with a retail firm is likely to have a credit limit,
which will appear as an upper bound after allowing for the positive
sign of the account entry. A cash account might have a minimum
balance, which would mean that there is an lower bound for the
account balance. There might also be accounts without balance
restrictions.

We proceed now to formalize these ideas for an accounting system
A = (A| T | B) with n accounts over an ordered domain R. To allow
unbounded values for some accounts, it is convenient to introduce
the symbols +∞ and −∞ with their usual meanings. Thus the
inequalities −∞ < r < +∞ are valid for all r ∈ R.

A pair of functions

λ : A→ R ∪ {−∞,∞} and Λ : A→ R ∪ {−∞,∞}

is called a bounding pair provided that

λ(ai) ≤ Λ(ai)

82 Chapter 4. Abstract Accounting Systems

for i = 1, 2, . . . , n. Next define

B(λ, Λ) = {v ∈ Baln(R) | λ(ai) ≤ vi ≤ Λ(ai), i = 1, 2, . . . , n},

where an inequality says nothing and is to be ignored if λ(ai) = −∞
or Λ(ai) = +∞. Now form the accounting system

A = (A| T | B| λ, Λ)

where B ⊆ B(λ, Λ). For a balance vector to be allowable, it must fall
in the set B(λ, Λ), i.e., have its balances restricted by the functions
λ, Λ; of course there might be further restrictions, so B could be a
proper subset of B(λ, Λ).

An accounting system which comes equipped with a bounding
pair of functions (λ, Λ) will be called a bounded accounting system.
If λ, Λ have all their values finite, i.e., not ±∞, then the system is
termed absolutely bounded .

On the other hand, if all balance vectors are allowable, so that

A = (A| T | Baln(R)),

we call the system unbounded. Finally, if all balance vectors and all
transaction vectors are allowable, so that

A = (A| Baln(R)| Baln(R)),

then A is called a free accounting system.

4.3. Subaccounting Systems

In the study of many algebraic structures there are common con-
cepts that appear at an early stage in the development of the theory.
One such concept is the notion of a sub-structure, which means,
roughly speaking, a structure that is contained inside a larger struc-
ture of the same type. Examples which come to mind include sub-
space and submodule. In view of this phenomenon it is reasonable
to introduce the concept of a subaccounting system in accounting
theory.

In order to come up with the “right” definition, we need to look
at a real life system. In the case of a large firm there are likely
to be subdivisions or units with a considerable degree of autonomy.
Such a unit might have a set of accounts under its control and be

4.3. Subaccounting Systems 83

able to execute transactions on these accounts, although such trans-
actions would still need approval at senior management level. The
unit’s allowable transactions would likely not affect accounts which
are outside its control. In addition, allowable balances for the unit
would always have to be compatible with those for the entire system.
These observations suggests how a subaccounting system should be
defined.

Definition

Consider an accounting system with n accounts over an ordered
domain R

A = (A| T | B),

with the usual notation and conventions. An accounting system
A′ = (A′| T ′| B′) over R is said to be a subaccounting system of A
if the following conditions are satisfied:

1. A′ ⊆ A;

2. if v ∈ T ∪ B, then the restriction v|A′ of v to A′ is a balance
vector;

3. T ′ = {v|A′ | v ∈ T, sppt(v) ⊆ A′};

4. B′ = {b|A′ | b ∈ B}.

Some explanation of these conditions is called for at this point, but
first recall that the support of v is the set of accounts for which v

has a non-zero entry,

sppt(v) = {ai | vi 6= 0}.

Of course (1) asserts that each account of A′ is an account of A.
According to (2) the restriction of an allowable vector of A to A′

must be a balance vector; this ensures that the system A′ is always
in balance when transactions are applied to A. The effect of (3)
is that the allowable transactions of A′ are the restrictions to A′

of allowable transactions of A which do not affect accounts outside
A′. Finally, (4) asserts that the allowable balance vectors of A′ are
precisely the restrictions to A′ of allowable balance vectors of A.

It is obvious that every accounting system is a subsystem of itself.
A subsystem of a system A with fewer accounts than A is called a
proper subsystem of A. In general an accounting system might have

84 Chapter 4. Abstract Accounting Systems

no proper subsystems; in fact it possible to give a criterion for the
existence of proper subsystems.

(4.3.1). An accounting system A = (A| T | B) has a proper subsys-

tem if and only if there is a proper non-empty subset A′ of A such

that v|A′ is a balance vector whenever v ∈ T ∪ B.

Proof

If A′ = (A′| T ′| B′) is a proper subsystem of A, then A′ 6= A and
A′ has the property stated by part (2) of the definition. Conversely,
let A′ be a subset of A satisfying the condition and define

T ′ = {v|A′ | v ∈ T, sppt(v) ⊆ A′}

and
B′ = {b|A′ | b ∈ B}.

Let A′ be the accounting system (A′| T ′| B′). Then A′ is a proper
subsystem of A since properties (1)–(4) of the definition are valid.

2

The concept of a subsystem is illustrated by some examples.

Example (4.3.1).

Consider the accounting system A over Z on accounts a1, a2, a3, a4

with allowable transactions








50
0

−50
0









,









0
−50

0
50









,

whose the allowable balance vectors are all vectors of the form








x

y

−x

−y









, 0 ≤ x, y ≤ 200.

This has a proper subsystem on accounts a1, a3 with one allowable

transaction vector

[

50
−50

]

and allowable balance vectors

[

x

−x

]

,

where 0 ≤ x ≤ 200.

4.3. Subaccounting Systems 85

Example (4.3.2).

Let A be the accounting system over Z on accounts a1, a2, a3, a4

with allowable transactions








50
0

−50
0









,









0
−50

0
50









,









−50
50
50
−50









,

and allowable balance vectors








x

−x

y

−y









, 0 ≤ x ≤ 200.

This accounting system has no proper subsystems. For if A′ were
the account set of a proper subsystem, we see from the allowable
transactions that the only possibilities for A′ would be {a1, a3} and
{a2, a4}. However, in each case the restriction to A′ of an allowable
balance vector need not be a balance vector, so neither is possible.

Joins of accounting systems

Our next object is to describe a method for splicing together a
number of different accounting systems to produce a larger system,
called the join, which contains the original systems as subsystems.
In algebra this is a familiar procedure, a typical example being the
direct sum of vector spaces. In fact this could occur in real life
accounting situations, for example, when two or more previously
independent divisions of a company are consolidated into a single
entity. Of course in such a case this might result in duplicate ac-
counts, for example if each division had an account with the same
third party. Thus the join operation would have to be followed by an
amalgamation of accounts, a procedure that will be made precise in
Chapter 5 by introducing quotient systems. Thus the consolidation
process can be visualized as a join followed by passage to a quo-
tient system. Taking the opposite point of view one might seek to
break up an accounting system by expressing it as a join of smaller
subsystems.

86 Chapter 4. Abstract Accounting Systems

Definition of the join

We begin with a set of k accounting systems over an ordered
domain R,

A(i) = (A(i)|T (i)|B(i)), i = 1, 2, . . . , k,

where the account sets A(1), A(2), . . . , A(k) are assumed to be mutu-
ally disjoint. Our object is to construct a new accounting system

A = A(1) ∨ A(2) ∨ · · · ∨ A(k),

called the join of the A(i), which has each A(i) as a subsystem. Our
first move is to specify the account set for A: this will be the union

A =
k

⋃

i=1

A(i).

Let the accounts in A be linearly ordered first by the order of sets

A(1), A(2), . . . , A(k),

and then by using the order of elements within each set A(i).
Writing ni for |A(i)|, the number of accounts in A(i), we see that

the number of accounts in A is

n =
k

∑

i=1

ni.

If v ∈ Balni
(R), define a vector

v∗ ∈ Baln(R)

by the following rule:

v∗

j
=

{

vj if
∑

i−1

r=1
nr < j ≤

∑

i

r=1
nr

0 otherwise

Thus, in passing from v to v∗, we insert zeros in v for all accounts
in A(j) where j 6= i, noting that v∗ is also a balance vector. (The
same rule may be applied with a type in place of v).

The set of allowable transactions and transaction types for A is
defined to be

T =
{

v∗|v ∈ T (i), i = 1, 2, . . . , k
}

.

4.3. Subaccounting Systems 87

Thus the allowable transactions forA arise from those of the original
systems A(i) by inserting zeros at appropriate points in the column
vectors.

The procedure for defining the set of allowable balances is a little
different since it is natural to impose the balances restrictions of
A(i) only on the accounts in A(i). Therefore we define the set of
allowable balance vectors for A to be

B = {b(1)∗ + b(2)∗ + · · ·+ b(k)∗ | b(i) ∈ B(i), i = 1, 2, . . . , k}.

The point to observe here is that b(1)∗ + b(2)∗ + · · ·+ b(k)∗ affects
balances of accounts in A(i) only through its A(i)-component b(i).
Finally, the join A = A(1) ∨ A(2) ∨ · · · ∨ A(k) of the systems A(i) is
defined to be

A = (A| T | B).

A basic property of join is stated next.

(4.3.2). In a join of accounting systems A = A(1) ∨ A(2) ∨· · ·∨ A(k)

each A(i) is a subaccounting system.

Proof

Let A(i) = (A(i)| T (i)| B(i)). A typical allowable transaction vector
of A has the form v∗ where v ∈ T (i) for some i, and v∗|

A(i) = v;
also sppt(v∗) ⊆ A(i) since v∗ has zero entries for accounts not in
A(i). A typical allowable balance vector for A has the form b =
b(1)∗ + · · · + b(k)∗ where b(i) ∈ B(i), and clearly b|A(i) = b(i).
Hence A(i) is a subsystem of A 2

Example (4.3.3). To illustrate the join procedure consider the join

of two accounting systems A and A′ defined as follows.

A =



{a1, a2, a3}

∣

∣

∣

∣

∣

∣





−
+
+



 ,





0
50
−50



 ,





200
−150
−50





∣

∣

∣

∣

∣

∣

B





and

A′ =









{a′

1
, a′

2
, a′

3
, a′

4
}

∣

∣

∣

∣

∣

∣

∣

∣









−
+
−
−









,









0
100

0
−100









∣

∣

∣

∣

∣

∣

∣

∣

B′









88 Chapter 4. Abstract Accounting Systems

where B and B′ are subsets of Bal3(Z) and Bal4(Z) consisting of
vectors all of whose entries lie in the respective finite intervals [m, M]
and [m′, M ′]. Thus A and A′ are absolutely bounded systems.

The join Ā = A ∨ A′ has seven accounts a1, a2, a3, a
′

1
, a′

2
, a′

3
, a′

4
.

The allowable transactions and types for A arising from A are:





0
50
−50





∗

=



















0
50
−50

0
0
0
0



















,





200
−150

50





∗

=



















200
−150
−50

0
0
0
0



















,

and





−
+
+





∗

=



















−
+
+
0
0
0
0



















.

Also the allowable transactions coming from A′ are









0
100

0
−100









∗

=



















0
0
0
0

100
0

−100



















,









−
+
−
−









∗

=



















0
0
0
−
+
−
−



















.

The allowable balance vectors for A are of the form




x

y

−x− y





where x, y, −x−y lie in [m, M], while those for A′ are of the form








x′

y′

z′

−x′ − y′ − z′









4.3. Subaccounting Systems 89

with x′, y′, z′,−x′−y′−z′ in [m′, M ′]. Thus a typical allowable bal-
ance vector for the join A∗ is





x

y

−x− y





∗

+









x′

y′

z′

−x′ − y′ − z′









∗

=



















x

y

−x− y

0
0
0
0



















+



















0
0
0
x′

y′

z′

−x′−y′−z′



















,

which equals


















x

y

−x− y

x′

y′

z′

−x′−y′−z′



















,

where x, y,−x−y and x′, y′, z′,−x′−y′−z′ are in [m, M] and [m′, M ′]
respectively.

A notable property of the join of accounting systems is that a
transaction that can be executed by one of the factors of the join
can also be executed by the system as a whole. More precisely the
following is true.

(4.3.3). Let A = A(1) ∨ A(2) ∨ · · · ∨ A(k) be a join of accounting

systems, where A(i) = (A(i)|T (i)|B(i)). Suppose that v(i) ∈ T (i) and

b(i), b(i)+v(i) ∈ B(i) for a fixed i. Then there exist v ∈ T and b ∈
B such that b + v ∈ B, b|

A(i) = b(i) and (b + v)|
A(i) = b(i) + v(i).

Proof

Choose any b(j) ∈ B(j) for j 6= i. Define b =
∑

k

j=1
b(j)∗ and put

v = v(i)∗; thus b ∈ B and v ∈ T . Also (b + v)|A(j) = b(j) + v|A(j) .
Since v|

A(j) equals v(i) if j = i and 0 if j 6= i, we have b + v ∈ B.
Hence b and v have the required properties. 2

However, the property of 4.3.3 does not hold for arbitrary sub-
systems: there can be transactions executable in a subsystem which
are not executable in the whole accounting system.

90 Chapter 4. Abstract Accounting Systems

Example (4.3.4).

Let A be the accounting system with accounts a1, a2, a3, a4, allow-
able transactions









50
−50

0
0









,









0
0

50
−50









and allowable balances








100
−100

200
−200









,









100
−100

250
−250









,









150
−150

350
−350









.

The system A has a subsystem A′ on accounts a1, a2 with allowable

transaction

[

50
−50

]

and allowable balances

[

100
−100

]

and

[

150
−150

]

.

Suppose that A′ has initial balance

[

100
−100

]

and the allowable

transaction is applied; then this results in the allowable balance
[

150
−150

]

. However, this transaction cannot be executed in A. For

if it could, the initial balance vector would have to be one of the
vectors









100
−100

200
−200









,









100
−100

250
−250









;

on the other hand, the final balance vector after applying an allow-
able transaction must be









150
−150

350
−350









.

However, neither transaction gives the correct answer.

4.3. Subaccounting Systems 91

Decomposable accounting systems

For the remainder of the chapter we shall study the question of
when an accounting system can be expressed as a join of proper
subsystems. First some terminology. If an accounting system A
can be written as the join of two or more subsystems, then it will
be called decomposable: note that the subsystems in question will
necessarily be proper. If this is not possible, then A is said to be in-

decomposable. It is natural to ask how one can tell if a given system
is decomposable. The first result provides a necessary condition for
decomposability.

(4.3.4). Let A be a decomposable accounting system with A =
A(1) ∨ A(2) ∨ · · · ∨ A(k), k ≥ 2. Then A is disconnected and

each connected component is contained in some A(i) where A(i) =
(A(i)|T (i)|B(i)).

Proof

Let G and G(i) be the respective graphs of A and A(i). By definition
of the join, the vertex set of G is the union of the (disjoint) vertex
sets of the G(i), and also the edges of G are the edges of all the
G(i). Thus G is the union of the disjoint subgraphs G(i), so G is a
disconnected graph, and hence the system A is disconnected. Also
each connected component of A, i.e., of G, is contained in one of
the subsets A(i). 2

One might hope that the converse of 4.3.4 would be true, but
this is not the case, the reason being that disconnectedness does not
place restrictions on the allowable balance vectors.

Example (4.3.5).

LetA be an accounting system with accounts a1, a2, a3, a4, allowable
transactions









50
−50

0
0









and









0
0

100
−100









,

and allowable balance vectors








x

y

z

t









92 Chapter 4. Abstract Accounting Systems

where −100 ≤ x, y, z, t ≤ 200 and x + y + z + t = 0. Clearly A is
disconnected and its graph is:

•a1
•a2

•a3
•a4

However, A is indecomposable. Indeed, assume that A = A(1)∨A(2)

with A(i) = (A(i)| T (i)| B(i)), i = 1, 2, and A(i) 6= A. Then a1 and
a2 belong to A(1), say, since a1 and a2 are affected by an allowable
transaction of A and hence of A(1) or A(2). Clearly neither a3 nor
a4 can be in A(1), otherwise A(1) = A. Therefore A(1) = {a1, a2}
and A(2) = {a3, a4}. But if b is the allowable balance vector with
components 50, 100,−100,−50, then b|

A(1) is not a balance vector.
Therefore A cannot be decomposable.

A key tool in studying the decomposability of accounting systems
is the support of a balance vector. Using this concept we can state
a necessary and sufficient condition for an accounting system to be
decomposable.

(4.3.5). Let A = (A| T | B) be an accounting system over an ordered

domain R. Then A is decomposable if and only if there is a partition

A = A(1) ∪A(2) ∪ · · · ∪A(k) of A with k > 1 which has the following

properties:

(a) if v ∈ T , then the support of v is a subset of some A(i);

(b) if b ∈ B, then b|A(i) is a balance vector for i = 1, 2, . . . , k;

(c) if b(1),b(2), . . . ,b(k) ∈ B, then

(b(1)|
A(1))∗ + (b(2)|

A(2))∗ + · · ·+ (b(k)|
A(k))∗ ∈ B.

Proof

Assume that A is decomposable and A = A(1) ∨ A(2) ∨ · · · ∨ A(k)

where k > 1: write A(i) = (A(i)| T (i)| B(i)). Then A(1) ∪ A(2) ∪
· · ·∪A(k) is a proper partition of A. If v ∈ T , then by definition the
transaction τv affects only accounts in some A(i) and thus sppt(v) ⊆
A(i). If b ∈ B, then by definition b|A(i) ∈ B(i), so that b|A(i) is a
balance vector for each i. Finally (c) is valid by definition of the
allowable balances in a join.

4.3. Subaccounting Systems 93

Conversely, assume that there is a partition A = A(1)∪A(2)∪· · ·∪
A(k) satisfying conditions (a), (b), (c). We show that A is decom-
posable. The idea is to define a subsystem A(i) for i = 1, 2, . . . , k,
with account set A(i). If v ∈ Baln(R), write v(i) = v|A(i) . If v ∈ T ,
then sppt(v) ⊆ Ai for some i by (a) and hence v(i) is a balance
vector. Define

T (i) = {v(i) | v ∈ T, sppt(v) ⊆ Ai}.

If b ∈ B, then b(i) is a balance vector by (b); now define

B(i) = {b(i) | b ∈ B}.

Then A(i) = (A(i)| T (i)| B(i)) is an accounting system. We will show
that A = A(1) ∨ A(2) ∨ · · · ∨ A(k).

Firstly A is the union of the disjoint sets A(i). If v ∈ T , then
sppt(v) ⊆ A(i) for some i and (v(i))∗ = v; moreover v(i) is a typical
element of T (i). Also τv affects only accounts in A(i). If b ∈ B,
then b(i) ∈ B(i) and b =

∑

k

i=1
(b(i))∗. Finally, if b(i) ∈ B(i), then

b(i) = b(i)∗|
A(i) and so we have

k
∑

i=1

b(i)∗ =

k
∑

i=1

(b(i)∗|
A(i))∗ ∈ B

by (c). This completes the proof that A = A(1) ∨ A(2) ∨ · · · ∨ A(k),
and hence A is decomposable.

2

Example (4.3.6).

Consider the 5-account system A which has allowable transactions












−
0
0
+
0













,













−
0
0
+
−













,













0
50
−50

0
0













,

and allowable balance vectors












x

y

−y

z

−x− z













,

94 Chapter 4. Abstract Accounting Systems

where 0 ≤ x, y, z ≤ 200.
The supports of the allowable transactions are {a1, a4}, {a2, a3},

{a1, a4, a5} respectively. Each of these subsets lies inside a mem-
ber of the partition {a2, a3} ∪ {a1, a4, a5}. The restrictions of an
allowable balance vector to the subsets of this partition are bal-
ance vectors, and also condition (c) in 4.3.5 holds. Therefore A is
decomposable.

In fact A = A(1) ∨ A(2) where A(1),A(2) are defined as follows.

First of all A(1) has account set {a
(1)

1
, a

(1)

2
}, with a

(1)

1
= a2, a

(1)

2
= a3,

and allowable transaction

[

50
−50

]

, and allowable balance vectors
[

y

−y

]

, 0 ≤ y ≤ 200. Then A(2) has account set {a
(2)

1
, a

(2)

2
, a

(2)

3
}

with a
(2)

1
= a1, a

(2)

2
= a4, a

(2)

3
= a5 and allowable transactions





−
+
0



 and





−
+
−



 ,

and allowable balances




x

z

−x− z



 , 0 ≤ x, z ≤ 200.

Of course, the system A is disconnected, its graph being

•a2
•a3

•a1
•a4

•a5

Notice that in the last example the two subsystems A(1) and
A(2) are indecomposable since their graphs are connected. It is
an interesting fact that every accounting system can be expressed
as the join of a set of indecomposable subsystems, a result which
underscores the significance of indecomposable systems.

(4.3.6). Let A be an arbitrary accounting system. Then A can be

expressed in the form

A = A(1) ∨ A(2) ∨ · · · ∨ A(k),

4.3. Subaccounting Systems 95

where the A(i) are indecomposable subsystems.

Proof

We establish the existence of the decomposition by induction on the
number of accounts. If A is indecomposable, there is nothing to
prove, so we assume it is decomposable. Thus A = B ∨ C where
B, C are subsystems. Since B and C have fewer accounts than A,
each of them is a join of indecomposable subsystems. Therefore the
same is true of A and the result is proved. 2

We conclude with an example where a given accounting system
is expressed as a join of indecomposable subsystems.

Example (4.3.7).

Let A be the accounting system with accounts ai, i = 1, 2, . . . , 8,
where the allowable transaction vectors are:






















0
−50

50
0
0
0
0
0























,























0
0
0

−50
50
0
0
0























,























−100
50
50
0
0
0
0
0























,























0
0
0
0
0

100
−100

0























,























0
0
0
0
0
0

−100
100























,























0
0
0
0
0

100
0

−100























The allowable balance vectors for A are the vectors of the form

b =























x

y

−x− y

z

−z

s

t

−s− t























,

where 0 ≤ x, y, z, s, t ≤ 500, The graph of the system has three
connected components {a1, a2, a3}, {a4, a5}, {a6, a7, a8}.

•a1
•a2

•a3
•a4

•a5
•a6

•a7
•a8

96 Chapter 4. Abstract Accounting Systems

We look for indecomposable subsystems by examining the sup-
ports of the allowable transactions. In fact there are three obvious
candidates. The first is A(1) with accounts a1, a2, a3 and allowable
transaction vectors





0
−50

50



 ,





−100
50
50



 .

The second subsystem A(2) has accounts a4, a5 and allowable trans-
action vector

[

−50
50

]

.

The last subsystem A(3) has accounts {a6, a7, a8} and allowable
transactions





100
−100

0



 ,





0
−100

100









100
0

−100



 .

The subsystems A(1),A(2),A(3) are all indecomposable since their
graphs are connected.

The respective allowable balance vectors for A(1),A(2),A(3) are
all the vectors of the forms

b(1) =





x

y

−x− y



 , b(2) =

[

z

−z

]

and b(3) =





s

t

−s− t





where 0 ≤ x, y, z, s, t ≤ 500. Notice that

b(1)∗ =























x

y

−x− y

0
0
0
0
0























, b(2)∗ =























0
0
0
z

−z

0
0
0























, b(3)∗ =























0
0
0
0
0
s

t

−s− t























,

and also that b(1)∗+b(2)∗+b(3)∗ = b. Hence A = A(1)∨A(2)∨A(3).

Chapter Five

Quotient Systems and

Homomorphisms

5.1. Introduction to the Quotient Concept

In our efforts to provide realistic models of accountancy systems
it has been an on-going concern to show how standard operations in
accounting can be represented by algebraic concepts. Thus balances,
transactions and the rules of operation of an accounting system were
seen to be representable within the framework of abstract accounting
systems, as defined in Chapter 4. This program is continued in
the present chapter by showing that the key algebraic concept of
a quotient structure is able to model the procedure for generating
reports on an accounting system.

A report on the financial condition of an organization consists
of data obtained from the balance sheet by combining balances in
groups of accounts which are subject to a common control mecha-
nism. At the simplest level one could combine all the asset accounts,
liability accounts and equity accounts in three new accounts. These
combined accounts furnish limited but essential information about
the state of the system. This is the most basic form of report.

More generally the accounts of an accounting system fall into
a number of control groups, for example, accounts receivable, ac-
counts payable. When the balances of all the accounts within the
same group are combined, a report on the system is generated which
provides information about the states of the various groups.

This procedure for generating a report is mirrored precisely by
the algebraic notion of a quotient structure. By a process of com-
bining accounts one arrives at a smaller accounting system called a

98 Chapter 5. Quotient Systems and Homomorphisms

quotient system. Thus we are motivated to introduce and analyze
these systems.

An accounting system and its various quotient systems are linked
by the procedure of forming reports. A more general question arises
when one asks how two arbitrary accounting systems are related.
Once again we can turn to abstract algebra for guidance. It is a
very common question to ask what the relationship between two
algebraic structures of the same type might be and how they can be
compared. The usual approach is to look for functions between the
structures which connect their internal operations: such functions
are called homomorphisms.

It is our purpose here to introduce the concept of a homomor-
phism between the accounting systems and use this as a means to
compare accounting systems. Homomorphisms are intimately re-
lated to quotient systems since the procedure for forming a report
is an example of a homomorphism. Several other examples of ho-
momorphisms that occur in practice are described below.

In the final section the theory of homomorphisms of accountancy
systems is developed further, culminating in a series of “isomor-
phism theorems.” These provide detailed information about ho-
momorphisms and their relation to quotient systems; they also have
applications to accounting systems. The appearance of such isomor-
phism theorems is a phenomenon which occurs throughout algebra.

5.2. Quotients of Accounting Systems

Consider an accounting system A = (A| T | B) over an ordered
domain R. We will explain how to form new accounting systems
from A called quotient systems. To form a quotient system of A we
need to have an equivalence relation on the set of accounts A. First
recall that an equivalence relation E on a set S is a binary relation
for which the following properties are valid for all a, b, c ∈ S :

1. reflexivity , a E a is always true;

2. symmetry , a E b implies b E a;

3. transitivity , a E b and b E c imply that a E c.

The equivalence class containing a is the subset of S

[a] = [a]E = {b | a E b}.

5.2. Quotients of Accounting Systems 99

We recall the fundamental fact that distinct equivalence classes are

disjoint. Thus the set A is the union of disjoint equivalence classes,
i.e. the equivalence classes form a partition of A. Conversely, given
a partition of a set A, an equivalence relation E on A is defined by
declaring that two elements of A are E-equivalent if they belong to
the same subset in the partition.

Returning to the accounting system A = (A| T | B), we choose
an equivalence relation E on A and define

A = AE = {[a]E | a ∈ A},

i.e., A is the set of all distinct E-equivalence classes. Let A have
n ≤ n elements, say. The set A can be ordered by the smallest
subscript appearing in each equivalence class.

Example (5.2.1).

Let A = {a1, a2, a3, a4, a5} and let E be the equivalence relation on
A with associated partition

A = {a1} ∪ {a2, a4, a5} ∪ {a3}.

The elements of AE in order are

[a1] = {a1}, [a2] = {a2, a4, a5}, [a3] = {a3}.

In the general case we seek to define an accounting system on A
called the quotient system of A by E. The next step is to specify the
allowable transactions and balance vectors for the quotient system.
Let v ∈ Baln(R) and define a vector v = vE in Baln(R) by the rule

vi =
∑

ajEai

vj;

here the summation is over all j for which aj E ai. What this means
is that the entries of v are totaled for accounts belonging to the same
E-equivalence class. Observe that

n
∑

i=1

vi =
n

∑

i=1

vi = 0,

so that v ∈ Baln(R).

100 Chapter 5. Quotient Systems and Homomorphisms

From this definition we quickly derive the rules

u + v = u + v and rv = rv,

where u,v ∈ Baln(R) and r ∈ R. Hence the assignment v 7→ v de-
termines a homomorphism of R-modules from Baln(R) to Baln(R).

Example (5.2.2).

Let E be the equivalence relation in Example 5.2.1, where there are
five accounts and three subsets in the partition of accounts. Let

v =













v1

v2

v3

v4

−v1 − v2 − v3 − v4













∈ Bal5(R).

Then, according to the definition,

v =





v1

−v1 − v3

v3



 ∈ Bal3(R).

After these preliminaries we are ready to formulate the definition
of the quotient of the accounting system A = (A| T | B) determined
by an equivalence relation E on A. Let

A = {[aij]E | j = 1, 2, . . . , n}

be the set of distinct E-equivalence classes and define

T = {v | v ∈ T} and B = {v | v ∈ B}.

Then the quotient system of A by E is defined to be

A/E = (A| T | B).

Thus the accounts of A/E are the E-equivalence classes of accounts
of A, while the allowable transactions and balances of A/E arise
from the corresponding entities of A by application of the function
v 7→ v, i.e., by summing vector entries over each equivalence class.

5.2. Quotients of Accounting Systems 101

Examples of quotient systems in accounting

(I) Reports

A quotient system of any accounting system A = (A| T | B)
arises whenever one has an equivalence relation E, i.e. a partition
of A. From the point of view of accounting, this happens when the
account set is split up into various control groups and the quotient
system represents a report on the groups.

The simplest case arises from the partition

A = Ae ∪ Aa ∪ Al

where Ae, Aa, Al are the respective sets of equity accounts, asset
accounts, liability accounts. The resulting quotient system A/E
has three accounts, namely total equity, total assets, total liabilities.
This quotient provides the most basic type of report.

Another quotient system that might occur in practice arises from
the partition

A = Ae ∪ Aca ∪ Apa ∪ Al,

where the four subsets of accounts represent equity accounts, cur-
rent assets, plant assets, liabilities respectively: the quotient system
provides a report on these control groups.

Even within asset accounts we can consider other control groups,
such as fixed assets, inventories, debtors, financial accounts and
items pending. Inside liabilities, on the other hand, we can consider
capital and reserves, provisions, medium and long term debt, and
current liabilities. At a second level we could consider within fixed
assets, tangibles, intangibles, investments and deferred expenses.
The list could be multiplied. These control groups are useful for
generating reports of various types.

(II) Closing accounts

Another instance of a quotient system is when temporary ac-
counts in an accounting system are closed. Consider a system A =
(A| T | B) where the account set A is partitioned into equity ac-
counts, permanent accounts and temporary accounts

A = Ae ∪ Ap ∪ At;

then the temporary accounts are divided into revenue and expense
accounts, say At = Atr ∪ Ate. Thus there is a partition

A = Ae ∪ Ap ∪ Atr ∪ Ate.

102 Chapter 5. Quotient Systems and Homomorphisms

Suppose that the temporary accounts are to be closed and their
balances combined and added to the retained earnings account.
There are two steps in the procedure to model this operation by
quotient systems. Let E1 be the equivalence relation on A corre-
sponding to the partition above. In the quotient system A/E1 the
temporary revenue and temporary expense accounts have now been
combined into two accounts, while other accounts are unaffected.

The second step in the modeling process involves an equivalence
relation E2 on AE1

, with a corresponding partition of the accounts of
A/E1 in which the two combined temporary accounts and retained
earnings form one subset and thus are merged in the new system
(A/E1)/E2. The modeling procedure is summarized by the sequence

A → A/E1 → (A/E1)/E2 :

it is shown in 5.4 below that “doubledecker” quotient systems of
this type may be identified with a single quotient system of A.

It should be pointed out that the normal procedure of closing
temporary accounts at the end of an accounting period is more
complex than that just described since it may involve additional
adjustments to account entries.

The hierarchy of quotient systems

The quotient systems of a given accounting system A = (A| T |B)
correspond to equivalence relations on A, and so to unordered par-
titions of A. There is a well-established combinatorial theory of
partitions of a set of distinct objects and this can be applied to the
study of quotient systems of A.

By use of the Inclusion-Exclusion Principle, it can be shown that
the number of unordered partitions of a set with m distinct objects
into k non-empty subsets is given by the formula

S(m, k) =
1

k!

k
∑

i=0

(−1)i
(

k

i

)

(k − i)m.

The number S(m, k) is called a Stirling number of the second kind .
It follows that the total number of partitions of a set of m distinct
objects equals

Bm =
m

∑

k=1

S(m, k),

5.2. Quotients of Accounting Systems 103

which is known as the mth Bell number . (For an account of these
results from combinatorics see [2]).

On applying the above facts to accounting systems, we conclude
that the following holds.

(5.2.1). The number of quotient systems of an accounting system

with n accounts equals Bn. The number of such quotient systems

with exactly k accounts is S(n, k).

As n increases, the total number of quotient systems increases
rapidly. For example, when n = 7, the number of quotient systems
is B7 = 877. Of course, relatively few of these quotient systems will
correspond to practical accounting procedures.

The partial ordering of quotient systems

There is a natural partial order on the set of equivalence rela-
tions on a given set, and hence on the set of quotient systems of an
accounting system. Let E1 and E2 be equivalence relations on the
account set A of an accounting system A. This, of course, means
that E1 and E2 are subsets of A× A. We define an order ≤ on the
set of equivalence relations by reverse set inclusion: thus

E1 ≤ E2 ⇐⇒ E2 ⊆ E1,

i.e., E2-equivalence implies E1-equivalence. Clearly ≤ is a partial
order on the set of equivalence relations.

Now use this partial order to define an order on the set of quo-
tients of A, also written ≤,

A/E2 ≤ A/E1 ⇔ E1 ≤ E2 ⇔ E2 ⊆ E1.

Again this is a partial order, so that the quotient systems of A
form a partially ordered set. Notice that the smaller the subset E
of A × A, the more accounts there are in the quotient A/E. The
largest possibility for the quotient A/E occurs when E is the set
{(a, a) | a ∈ A}, i.e., E is equality. In this case A/E is essentially
the same system as A. The smallest possibility for A/E is when
E = A × A, i.e., all accounts are equivalent, and A/E has a single
account.

There are two natural binary operations called meet and the join

which can be applied to equivalence relations on A. If E1 and E2

104 Chapter 5. Quotient Systems and Homomorphisms

are equivalence relations on A, their meet is just the intersection

E1 ∧ E2 = E1 ∩ E2,

which is also an equivalence relation on A. However, the union
E1 ∪E2 is not in general an equivalence relation since the transitive
law may fail to hold. To obtain an equivalence relation we must pass
to the transitive closure of the relation E1 ∪E2. Thus we define the
join of E1 and E2 to be

E1 ∨ E2 = the transitive closure of E1 ∪ E2.

Recall here that the transitive closure of a relation R is the smallest
transitive relation containing R, which is just

R ∪ R2 ∪ R3 ∪ · · · .

Here Rk is defined recursively by the rule: a Rk b if and only if
there exists a c such that a Rk−1c and c R b. It can be verified
that meet and join play the roles of greatest lower bound and least
upper bound in the partially ordering of equivalence relations on
A. Consequently we have a lattice. The conclusion for accounting
systems is:

(5.2.2). The set of quotient systems of an accounting system A is

a lattice with respect to the partial order ≤ where A/E2 ≤ A/E1 if

and only if E2 ⊆ E1.

Example (5.2.3).

Let A = (A| T | B) be a system with four accounts a1, a2, a3, a4.
Since B4 = 15, there are exactly 15 quotient systems of A, corre-
sponding to the partitions of the account set A. For example, the
partition

A = {a1, a3} ∪ {a2} ∪ {a4}

leads to a quotient system with three accounts.

5.3. Homomorphisms of Accounting Systems

It is a basic method in algebra to examine functions between
two algebraic structures of the same type which relate the internal
algebraic properties of the structures. Such functions are known

5.3. Homomorphisms of Accounting Systems 105

as homomorphisms. As examples we mention homomorphisms of
groups and modules, structures which have arisen in earlier chapters.

The importance of homomorphisms stems from the fact that they
provide a means of comparing algebraic structures. Because of the
widespread applicability of homomorphisms in abstract algebra, it
is natural to attempt to construct a theory of homomorphisms be-
tween accounting systems. Such homomorphisms provide ways of
comparing the accounting systems of different organizations, and
can also represent certain commonly used operations on accounting
systems.

The definition of a homomorphism

Consider two accounting systems

A = (A| T | B) and A′ = (A′| T ′| B′)

over the same ordered domain R, with account sets A = {a1, a2, . . . ,

an} and A′ = {a′
1
, a′

2
, . . . , a′

n′}. To define a homomorphism from A
to A′ we start with a function between the account sets

θ : A→ A′.

This is used to generate a function between balance modules

θ∗ : Baln(R)→ Baln′(R)

where θ∗(v) is defined by the rule

(θ∗(v))i =







∑

θ(aj)=a
′

i

vj

0 if a′
i
6∈ Im(θ)

for i = 1, 2, . . . , n′. Recall here that the image of the function θ,
Im(θ), is the set {θ(ai)| i = 1, 2, . . . , n}. In the definition the sum
is to be formed over all j for which θ(aj) = a′

i
. Thus the function

θ∗ sums all entries of v that correspond to accounts mapped by θ

to the same account in A′ and it assigns an entry of zero to any
account of A′ which is not in Im(θ). Notice that θ∗(v) is a balance
vector.

It is a simple matter to deduce from the definition that

θ∗(u + v) = θ∗(u) + θ∗(v) and θ∗(rv) = rθ∗(v)

106 Chapter 5. Quotient Systems and Homomorphisms

for all u,v ∈ Baln(R) and r ∈ R, equations which show that the
function θ∗ : Baln(R)→ Baln′(R) is a homomorphism of R-modules.

Before giving the formal definition of a homomorphism from A to
A′, we present an example illustrating the formation of the function
θ∗.

Example (5.3.1).

Let A = {a1, a2, a3, a4, a5} and A′ = {a′
1
, a′

2
, a′

3
, a′

4
}. A function

θ : A→ A′ is defined by the rules

θ(a1) = a′
1
, θ(a2) = a′

3
, θ(a3) = a′

2
, θ(a4) = a′

2
, θ(a5) = a′

2
.

Then θ∗ : Bal5(R)→ Bal4(R) sends












v1

v2

v3

v4

−v1 − v2 − v3 − v4













to









v1

−v1 − v2

v2

0









.

Here account a′
4

gets the value 0 since a′
4
6∈ Im(θ) = {a′

1
, a′

2
, a′

3
}.

After this example we are ready to define a homomorphism from
system A = (A| T | B) to system A′ = (A′| T ′| B′). As before we
start with a function θ : A → A′. Then θ is said to determine a
homomorphism of accounting systems, written

θ : A → A′,

provided that:

1. if v ∈ T , then θ∗(v) ∈ T ′, i.e., θ∗(T) ⊆ T ′;

2. if b ∈ B, then θ∗(b)|Im(θ) = b′|Im(θ) for some b′ ∈ B′.

What this means is that θ∗ sends allowable transactions of A to
allowable transactions of A′ which affect only accounts in Im(θ);
on the other hand, θ∗ sends an allowable balance vector of A to a
balance vector that agrees in its Im(θ)-entries with some allowable
balance vector ofA′. Notice that in condition (2) the vector b′ might
have non-zero entries for accounts in A′\Im(θ) and θ∗(b) might not
belong to B′.

5.3. Homomorphisms of Accounting Systems 107

Monomorphisms, epimorphisms, isomorphisms

There are three special types of homomorphisms which are of
importance. Suppose that θ : A → A′ is a homomorphism of ac-
counting systems. If the function θ : A → A′ is injective, i.e.,
distinct accounts in A are sent to distinct accounts in A′, then θ

is called a monomorphism. This means that |A| ≤ |A′|, so A′ has
at least as many accounts as A. Another point to notice is that
(θ∗(v))i = vj if θ(aj) = a′

i
and this is zero if a′

i
6∈ Im(θ). It follows

that θ∗ is injective and hence is a monomorphism of R-modules.
Also an allowable transaction of A with zeros inserted for accounts
in A′\Im(θ) becomes an allowable transaction of A′. In addition
each allowable balance vector of A is the restriction to Im(θ) of
some allowable balance vector of A′. This type of homomorphism
arises when new accounts are added to an accounting system – see
Example 5.3.2 below.

The next special type of homomorphism θ : A → A′ is one for
which the function θ : A → A′ is surjective. Under these circum-
stances each account in A′ is the image under θ of an account in A

and |A| ≥ |A′|. It is easy to see that θ∗ is surjective and hence it is
an epimorphism of R-modules. If in addition

θ∗(T) = T ′ and θ∗(B) = B′,

then θ : A → A′ is called an epimorphism of accounting systems.
An important example of an epimorphism arises when a quotient of
an accounting system is formed — see Example 5.3.3 below.

Finally, a homomorphism θ : A → A′ is called an isomorphism

if it is both a monomorphism and an epimorphism. Under these
circumstances θ : A → A′ is a bijection and it sets up a one-one
correspondence between the accounts, allowable transactions and
allowable balances of A and the corresponding entities of A′. If
there is at least one isomorphism from A to A′, then A and A′ is
called isomorphic systems and the notation

A ' A′

is used. The essential observation is that isomorphic accounting
systems are subject to the same rules of operation, although their
account sets may be different. If θ : A → A′ is an isomorphism of
accounting systems, it has an inverse, namely the homomorphism

108 Chapter 5. Quotient Systems and Homomorphisms

θ−1 : A′ → A which arises from the set function θ−1 : A′ → A, the
inverse of the bijection θ.

Automorphisms

Following a widely used terminology in algebra, we call an iso-
morphism from an accounting system A to itself an automorphism

of A. The set of all automorphisms of A is denoted by

Aut(A).

Observe that an automorphism is a permutation of the account set
A and thus Aut(A) is a subset of the symmetric group Sym(A),
which consists of all permutations of A and whose group operation is
functional composition. Now if α is an automorphism of A, then by
definition α ∈ Sym(A) has the properties α∗(T) = T and α∗(B) =
B, so that the sets of allowable vectors of A are permuted by means
of the action of the permutation α on vector entries. Conversely,
any permutation α of A such that α∗(T) = T and α∗(B) = B gives
rise to an automorphism of A.

It is convenient to think of the automorphism α as permuting
the integers 1, 2, . . . , n in the same way as it permutes the accounts
a1, a2, . . . , an. With this convention the definition of α∗ shows that
(α∗(v))i = vα−1(i) since α−1(ai) is the unique account sent by α to
ai. If α, β are automorphisms, then

(α ◦ β)∗ = α∗ ◦ β∗.

For, if v ∈ Baln(R), then

((α ◦ β)∗(v))i = v(α◦β)−1(i) = vβ−1
◦α−1(i) = vβ−1(α−1(i)),

while
(α∗ ◦ β∗(v))i = (β∗(v))α−1(i) = vβ−1(α−1(i)),

which establishes the claim.
From the equation just established it follows that the composite

of two automorphisms is an automorphism. Now obviously the iden-
tity permutation on A is an automorphism, and the inverse of an
automorphism is an automorphism since α∗ ◦ (α−1)∗ and (α−1)∗ ◦ α
equal the identity. Therefore we can assert that Aut(A) is a sub-
group of the symmetric group Sym(A). The next result summarizes
this discussion.

5.3. Homomorphisms of Accounting Systems 109

(5.3.1). Let A = (A| T | B) be an accounting system. Then

Aut(A) = {α ∈ Sym(A) | α∗(T) = T, α∗(B) = B}

and Aut(A) is a subgroup of the symmetric group Sym(A).

An automorphism group can be assigned to many algebraic struc-
tures, for example, groups, rings and modules. The importance
of automorphism groups is that they tend to measure the amount
of symmetry present in the structure. This is also the case with
accounting systems. The more “symmetric” the sets of allowable
vectors T and B, the larger will be the group Aut(A) where A =
(A| T | B). For an extreme example suppose that A is the free ac-
counting system, where T = Baln(R) = B; then Aut(A) coincides
with the whole symmetric group Sym(A).

One can envisage real-life situations where an accounting sys-
tem has non-trivial automorphisms. For example, there might be
two accounts that are subject to identical transaction and balance
restrictions. Then interchanging the two accounts and fixing all
others would lead to an automorphism of the accounting system.
An example would be when two pieces of equipment are purchased
at the same time for the same price and are subject to the same
depreciation rules.

Examples of homomorphisms

We shall discuss in detail two sources of homomorphisms that
will be present in most accounting systems.

Example (5.3.2). (Monomorphisms and adjunction of accounts)

A procedure that is standard for many accounting systems is the
creation of new accounts. This gives rise to a monomorphism.

Let A = (A| T | B) be an accounting system with n accounts
a1, a2, . . . , an and suppose that it is desired to create a number of
new accounts a∗

1
, a∗

2
, . . . , a∗

m
. Then the new account set is

A′ = {a1, a2, . . . , an, a
∗

1
, a∗

2
, . . . , a∗

m
},

with accounts in the order shown. Let

θ : A→ A′

be the inclusion map, i.e. θ(ai) = ai, for i = 1, 2, . . . , n.

110 Chapter 5. Quotient Systems and Homomorphisms

A new accounting system is to be created with account set A′; its
allowable vectors should include θ∗(T) and θ∗(B). In practice one
would expect there to be additional allowable transaction vectors
that apply to the new accounts a∗

1
, a∗

2
, . . . , a∗

m
. Also it will be nec-

essary to add further allowable balance vectors since those in θ∗(B)
have zero entries corresponding to new accounts.

With these remarks in mind, we choose subsets T1 and B1 of
Baln+m(R) which have zero entries for accounts a1, . . . , an and put

T ′ = θ∗(T) ∪ T1 and B′ = θ∗(B) ∪ B1.

Then the new accounting system is to be A′ = (A′| T ′| B′). Thus A′

has m additional accounts and it has additional allowable vectors, as
well as those inherited fromA. Finally, the inclusion map θ : A→ A′

gives rise to a homomorphism

θ : A → A′

since θ∗(T) ⊆ T ′ and θ∗(B) ⊆ B′: clearly this is a monomorphism.
Thus adjunction of the new accounts and allowable vectors to the
existing accounting system sets up a monomorphism from the orig-
inal system to the new system.

Example (5.3.3). (Epimorphisms and combinations of accounts)

An important way in which epimorphisms arise is when certain ac-
counts in an accounting system are combined, i.e. a quotient system
is formed. This is a situation familiar to every algebraist. From
the accounting perspective it means that epimorphisms are capable
of representing the procedures for generating reports on accounting
systems.

Suppose that A = (A| T | B) is an accounting system and E is an
equivalence relation on the account set A. Then, as was explained
in 5.2, there is a corresponding quotient system

A/E = (A| T | B)

where A is the set of E-equivalence classes and

T = {vE | v ∈ T}, B = {bE | b ∈ B},

with v = vE being determined by the rule (v)i = vi =
∑

ajEai

vj.

5.4. Isomorphism Theorems 111

There is a natural surjective function

σE : A→ A

defined by σE(ai) = [ai]E, i.e., σE assigns to each account in A its
E-equivalence class. Then, as was obsrved at the beginning on this
section, σE induces a surjective R-module homomorphism

σ∗

E
: Baln(R)→ Baln(R)

where n = |A|= the number ofE-equivalence classes. The definition
of σ∗

E
shows that

(σ∗

E
(v))i =

∑

σE(aj) = σE(ai)

vj =
∑

ajEai

vj = vi,

and therefore σ∗

E
(v) = vE. Consequently, σ∗

E
(T) = T and σ∗

E
(B) =

B, equations which show that

σE : A → A/E

is an epimorphism of accounting systems. This is called the canon-

ical epimorphism from A to A/E: it is easy to remember its effect
since this is to identify all accounts in the same E-equivalence class.

Take the simplest example, where E partitions the set A into
asset, liability and equity accounts. The quotient system A/E has
three accounts, total assets, total liabilities and total equity, and it
represents the simplest type of report. It follows that there is an
epimorphism from any accounting system with asset, liability and
equity accounts to a 3-account system of this simple type.

The conclusions of the foregoing discussion are summarized in
the following result.

(5.3.2). Let A = (A| T | B) be an accounting system and let E be

an equivalence relation on the account set A. Then the assignment

a 7→ [a]E determines an epimorphism σE : A → A/E.

5.4. Isomorphism Theorems

In a theory of homomorphisms between algebraic structures an
algebraist would expect to find certain theorems called isomorphism

theorems which relate homomorphisms with quotient structures. Such

112 Chapter 5. Quotient Systems and Homomorphisms

results are basic tools in many branches of algebra. Our purpose here
is to formulate isomorphism theorems for accounting systems and
to interpret these results from the point of view of accounting. The
effect is to place the theory in a general algebraic setting.

The principal isomorphism theorem applies to a homomorphism
of accounting systems θ : A → A′ and establishes an isomorphism
between a certain quotient system of A and a subsystem of A′ called
the image of θ. In a sense this asserts that the essential information
about any homomorphism from A is to be found within the quotient
structures of A.

Before proceeding to the statements of the theorems, it is neces-
sary to examine two critical facets of a homomorphism, the associ-
ated equivalence relation and the image.

The equivalence relation associated with a homomorphism

Consider a homomorphism θ : A → A′ between accounting sys-
tems A = (A| T | B) and A′ = (A′| T ′| B′) over an ordered domain
R. This arises from a function between account sets θ : A → A′.
An equivalence relation

Eθ

on A is defined by the rule

aiEθ aj ⇐⇒ θ(ai) = θ(aj).

Thus Eθ is associated with a partition of A in which accounts belong-
ing to the same subset have the same image under θ. The equiva-
lence relation Eθ can be used to construct the quotient systemA/Eθ,
which already suggests a close relationship between homomorphisms
from A and quotients of A.

The image of a homomorphism

Another important feature of a homomorphism of accounting sys-
tems θ : A → A′ is its image

Im(θ),

which is contained in A′, although not necessarily as a subsystem.
The account set of Im(θ) is the image of A under the set function
θ, also written Im(θ) or θ(A) = {θ(ai) | i = 1, 2, . . . , n}. Let

θ0 : A→ θ(A)

5.4. Isomorphism Theorems 113

be the surjective function sending ai to θ(ai); thus θ0 acts like θ, but
it has smaller codomain. Then θ0 induces a module homomorphism

θ∗
0

: Baln(R)→ Baln(R)

where n = |A|, n = |θ(A)| and θ∗
0

is defined by the usual rule

(θ∗
0
(v))i =

∑

θ(aj)=θ(ai)

vj.

Here the sum is formed over all accounts with the same θ-value as
ai. Thus θ∗

0
(T) and θ∗

0
(B) are subsets of Baln(R). The image of θ

is defined to be the accounting system

Im(θ) = (θ(A) | θ∗
0
(T) | θ∗

0
(B)).

Suppose that v ∈ T ∪B; then θ∗
0
(v) is a typical allowable vector

for the accounting system Im(θ). If v ∈ T , then θ∗(v) ∈ T ′ differs
from θ∗

0
(v) only through its A′\θ(A)-entries, all of which are zero. If

b ∈ B, then by definition of a homomorphism θ∗(b)|Im(θ) = b′|Im(θ)

where b′ ∈ B′. Again θ∗(b) ∈ B′ differs from θ∗
0
(b) only in its

A′\θ(A)-entries, but these need not be zero in this case.

From such considerations one might suspect that the Im(θ) would
be a subaccounting system of A′: however, this is only true with
additional conditions, reflecting the full force of the requirements
for a subsystem given in 4.3.

(5.4.1). Let θ : A → A′ be a homomorphism of accounting systems.

Then Im(θ), the image of θ, is a subsystem of A′ if and only if the

following conditions are satisfied:

1. If v′ ∈ T ′ ∪ B′, then v′|Im(θ) is a balance vector.

2. If v′ ∈ T ′ and sppt(v′) ⊆ Im(θ), then v′|Im(θ) ∈ θ0
∗(T).

3. If b′ ∈ B′, then b′|Im(θ) ∈ θ0
∗(B).

This is true because the conditions (1), (2), (3) are exactly what is
needed to ensure that the image is a subsystem.

We are now ready to state the first of the isomorphism theorems.

114 Chapter 5. Quotient Systems and Homomorphisms

(5.4.2). Let θ : A → A′ be a homomorphism of accounting systems

and let Eθ be the associated equivalence relation on the account set

of A. Then the assignment [a]Eθ
7→ θ(a) induces an isomorphism

ψ : A/Eθ → Im(θ).

Proof

Write A = (A| T | B); then Im(θ) = (θ(A)| θ∗
0
(T)| θ∗

0
(B)) where θ0 :

A→ θ(A) is defined by θ0(ai) = θ(ai). Let A/Eθ = (A| T | B) where
A is the set of Eθ-equivalence classes [ai]Eθ

. A function between
account sets

ψ : A→ θ(A)

is defined by ψ([ai]Eθ
) = θ(ai). The first thing to observe is that

θ(ai) depends only on the equivalence class [ai]Eθ
, not on ai, so

ψ is a well-defined function. Next if ψ([ai]Eθ
) = ψ([aj]Eθ

), then
θ(ai) = θ(aj) and hence [ai]Eθ

= [aj]Eθ
. Therefore ψ is injective:

since it is obviously surjective, ψ is a bijection.
It remains to show that ψ induces an homomorphism ψ : A/Eθ →

Im(θ), for which purpose it suffices to prove that ψ∗(T) = θ∗
0
(T) and

ψ∗(B) = θ∗
0
(B). Let v ∈ T ∪ B; then by definition of the quotient

system A/Eθ, there exists v ∈ T ∪ B such that v = σ∗

Eθ
(v), where

σEθ
: A → A is the canonical epimorphism defined in 5.3. Thus

vi = (σ∗

Eθ
(v))i =

∑

σEθ
(aj)=σEθ

(ai)

vj =
∑

θ0(aj)=θ0(ai)

vj = (θ∗
0
(v))i.

But
(ψ∗(v))i =

∑

ψ([aj])=ψ([ai])

vj = vi

since ψ is injective. Therefore (ψ∗(v))i = (θ∗
0
(v))i for all i and thus

ψ∗(v) = θ∗
0
(v).

Hence ψ∗(T) ⊆ θ∗
0
(T) and ψ∗(B) ⊆ θ∗

0
(B). Since the equation

ψ∗(v) = θ∗
0
(v) holds for any v ∈ T ∪ B with v = σ∗

Eθ
(v), we

conclude that ψ∗(T) = θ∗
0
(T) and ψ∗(B) = θ∗

0
(B), which completes

the proof. 2

There are two special cases of 5.4.2 which merit attention.

5.4. Isomorphism Theorems 115

Example (5.4.1).

Suppose that θ : A → A′ is a monomorphism of accounting sys-
tems. Then A = A/Eθ has account set [ai]Eθ

, i = 1, 2, . . . , n, and
[ai]Eθ

= {ai} since θ : A → A′ is injective. Thus the accounts of
A are the singleton sets {ai}, i = 1, 2, . . . , n. This means that A
and A are essentially the same system or, more precisely, they are
isomorphic systems. According to 5.4.2, the accounting system A
is isomorphic with the image system Im(θ). Therefore A too is iso-
morphic with Im(θ) and so one can think of the monomorphism θ as
“embedding” A in the larger system A′. The procedure for adding
accounts described in 5.3 is an instructive example of a monomor-
phism.

Example (5.4.2).

Let θ : A → A′ be an epimorphism of accounting system. By
definition θ(A) = A′, θ∗(T) = T ′ and θ∗(B) = B′, so that Im(θ) =
A′. Then 5.4.2 shows thatA′ is isomorphic with the quotient system
A/Eθ.

Another indication of the importance of monomorphisms and epi-
morphisms is provided by the next result.

(5.4.3). Every homomorphism between accounting systems may be

expressed as the composite of an epimorphism followed by a mono-

morphism.

Proof

Let θ : A → A′ be a homomorphism between accounting systems.
Following the previous convention, we write Eθ for the equivalence
relation on A determined by θ : A → A′ and σEθ

for the canonical
homomorphism fromA toA/Eθ defined by the rule σEθ

(ai) = [ai]Eθ
:

furthermore ψ : A/Eθ → Im(θ) is the isomorphism in 5.4.2, so that
ψ([ai]Eθ

) = θ(ai). Let ι : θ(A) → A′ denote the inclusion map; this
induces a monomorphism of accounting systems ι : Im(θ)→ A′ and
it is clear that the composite

ι ◦ ψ : A/Eθ → A
′

is a also monomorphism.
Next for any account aj we have

(ι ◦ ψ) ◦ σEθ
(aj) = ι(ψ(σEθ

(aj))) = ι(ψ([aj]Eθ
)) = ι(θ(aj)) = θ(aj).

116 Chapter 5. Quotient Systems and Homomorphisms

Hence θ = (ι ◦ ψ) ◦ σEθ
and, since σEθ

is an epimorphism, the result
is proved. 2

We remark that care must be exercised in forming composites
of homomorphisms of accounting systems. Examples show that the
composite of a monomorphism followed by an epimorphism need
not be a homomorphism, which is in contrast to the statement of
5.4.3: the reason for this is that an allowable balance vector need
not be mapped to the restriction of an allowable balance vector by
the composite, as is required by the definition.

Quotients of quotient systems

The final isomorphism theorem gives information about quotient
systems of quotient systems. It reveals that these potentially com-
plex objects are in fact no worse than quotients of the original sys-
tem. The accounting interpretation here is about reports on reports.
In the accounting system of a large organization accounts may be
grouped into control groups, and the control groups may themselves
be grouped into control groups. The process of forming reports on
the groups and on the subsidiary groups gives rise to the quotient
of a quotient situation.

Let A = (A| T | B) be an accounting system and let E be an
equivalence relation on the account set A. Then A/E = (A| T | B)
has as its account set A, the set of all E-equivalence classes [ai]E.
Now suppose that F is an equivalence relation on A, so that it is
possible to form the quotient of the quotient system A/E by F , i.e.,

(A/E)/F.

The key to understanding this complex object is the observation
that E and F determine a new equivalence relation on A denoted
by

E#F,

where by definition

ai (E#F) aj ⇐⇒ [ai]E F [aj]E.

In terms of partitions, E#F arises by taking the partition of A
determined by E and forming the union of all subsets in this par-
tition that belong to same subset in the partition corresponding to
F . This procedure leads to a partition with larger subsets than E

5.4. Isomorphism Theorems 117

which determines the equivalence relation E#F . We can therefore
form the quotient system

A/(E#F).

The connection with quotients of quotients is shown by:

(5.4.4). Let A = (A| T | B) be an accounting system. Suppose that

A/E is a quotient of A and (A/E)/F a quotient of A/E. Then

(A/E)/F ' A/(E#F).

Proof

Write A/E = (A| T | B) and A/(E#F) = (A, T , B). We begin the

proof by introducing a function θ : A → A, which is defined by the
rule

θ([ai]E) = [ai]E#F .

This is in fact a well-defined function since aj E ai implies that
[ai]E F [aj]E, i.e., [ai]E#F = [aj]E#F . It is clear that θ is surjec-
tive; we will show that θ induces an epimorphism from A/E to
A/(E#F). Let v ∈ Baln(R) where n = |A| and write v = σ∗

E
(v),

so that vj =
∑

akEaj

vk. Since θ([ai]E) = [ai]E#F , we have

(θ∗(v))i =
∑

aj(E#F)ai

vj =
∑

[aj]E F [ai]E

(
∑

akEaj

vk).

In the right hand sum the entries vk are first summed over the E-
equivalence class of aj, and then these sums are added up over the
F -equivalence class of [ai]E. Therefore, by definition of E#F ,

∑

[aj]E F [ai]E

(
∑

akEaj

vk) =
∑

ak(E#F)ai

vk = (σ∗

E#F
(v))i

for all i. It follows that θ∗(v) = σ∗

E#F
(v) and hence that

θ∗ ◦ σ∗

E
= σ∗

E#F
because v = σ∗

E
(v). Next we have σ∗

E
(T) = T and

σ∗

E
(B) = B. In addition σ∗

E#F
(T) = T and σ∗

E#F
(B) = B, so we

can deduce that

θ∗(T) = (θ∗ ◦ σ∗

E
)(T) = σ∗

E#F
(T) = T ,

118 Chapter 5. Quotient Systems and Homomorphisms

and in a similar way θ∗(B) = B. Hence θ induces an epimorphism
of accounting systems θ : A/E → A/(E#F). By 5.4.2 we obtain
(A/E)/Eθ ' A/(E#F).

In order to complete the proof we need only show that Eθ =
F . Now [ai]E Eθ [aj]E holds precisely when θ([ai]E) = θ([aj]E),
i.e., [ai]E#F = [aj]E#F by definition of θ; this is equivalent to
[ai]E F [aj]E, from which we deduce that Eθ = F . 2

Since the last proof is rather complicated, we will illustrate it
with an example.

Example (5.4.3).

Consider an accounting system A = (A| T | B) over Z with six
accounts ai, i = 1, 2, . . . , 6. Let E be the equivalence relation on A
with partition

{a1, a2, a3}, {a4, a5}, {a6}.

The quotient system A/E has three accounts

a1 = {a1, a2, a3}, a2 = {a4, a5}, a3 = {a6}.

Let F be the equivalence relation on the account set of A/E with
partition

{ā1, ā3}, {ā2}.

Then (A/E)/F has two accounts

a′
1

= {ā1, ā3}, a′
4

= {ā2}.

Notice that the accounts of (A/E)/F are sets of sets of accounts
of A, so this system is a complex object. However, (A/E)/F is iso-
morphic with the system A/(E # F) by 5.4.4. Now the equivalence
relation E # F on A has partition

{a1, a2, a3, a6}, {a4, a5}

so, as expected, A/(E # F) also has two accounts

a1 = {a1, a2, a3, a6}, a4 = {a4, a5}.

Next let v ∈ Bal6(Z) have entries

v1, v2, v3, v4, v5, v6 = −
5

∑

i=1

vi.

5.4. Isomorphism Theorems 119

Now we pass to successive quotients A/E and (A/E)/F , computing
the images of v. Thus σ∗

E
(v) has entries v1 + v2 + v3, v4 + v5, v6,

and σ∗

F
(σ∗

E
(v)) has entries −v4 − v5, v4 + v5. Finally, observe that

σ∗

E#F
(v) has the same entries as σ∗

F
(σ∗

E
(v)), as we expect from 5.4.4.

In conclusion we remark that this chapter is more abstract than
most others in the book. However, it should be stressed that the
isomorphism theorems which have been established have interpre-
tations that give insight into the operation of accounting systems.
They lend credence to the role of algebra in accounting theory and
serve to affirm the position of the algebraic theory of accounting
within the general area of applied algebra. A final note: algebraists
may have noticed the absence of one type of isomorphism theorem
that is found in many parts of algebra. This is a result asserting
that the image of a subsystem is isomorphic with a subsystem of
the image. In general there is no such result in accounting theory
since the image of a homomorphism need not be a subsystem.

Chapter Six

Accounting Systems

and Automata

An automaton is a theoretical device which can simulate the op-
eration of a digital computer. The algebraic theory of automata
had its origins in the researches of A.M. Turing and C. Shannon.
Recently automata theory has been applied in such diverse fields as
biology, psychology, biochemistry and sociology. It has also been
applied to economics through systems theory (Ames [1983]) and,
more recently, to finance (Cruz Rambaud and Garćıa Pérez [2001]).
It turns out that the accounting process can be described in terms
of certain automata in which the state of an accounting system is
transformed through the action of inputs, i.e., transactions, giving
rise to specific outputs providing information about the system. The
aim of this chapter is to lay out an approach to accounting using
the concept of an automaton and to show how the operation of
the double-entry bookkeeping system can be modeled by using this
mathematical concept. The chapter begins with a brief introduction
to automata theory.

6.1. Introduction to Semiautomata and Automata

A semiautomaton is a triple

S = (Z, X, δ),

consisting of two non-empty sets Z and X and a function

δ : Z ×X −→ Z.

6.1. Introduction to Automata 121

Here the set Z is called the set of states, X the input alphabet and
δ the next state function of S. The semiautomaton functions in
the following manner: if the semiautomaton is in a state z ∈ Z

and it reads an input symbol x ∈ X, then it moves to a new state
δ(z, x) ∈ Z.

A more complex concept is that of an automaton, by which is
meant a quintuple

M = (Z, X, Y, δ, λ)

where (Z, X, δ) is a semiautomaton, Y is a non-empty set called the
output alphabet and

λ : Z ×X −→ Y

is a function called the output function. The automaton operates as
follows. If the automaton is in state z ∈ Z and it reads an input
symbol x ∈ X, then moves to the new state δ(z, x) and it prints
the output symbol λ(z, x). Observe that a semiautomaton can be
regarded as an automaton in which the states serve as the output
symbols.

It is helpful to think of the automaton as a box with a head which
can read symbols on an input tape and print symbols on an output
tape. At any instant the automaton is in some state; after reading
an input symbol, it prints a symbol on the output tape and moves
to another state.

←− output

←− input

∧
x

λ(z, x)

The digraph of an automaton

Automata and semiautomata can be represented by labeled di-
graphs. Take the case of a semiautomaton with state set Z, input
alphabet X and next state function δ: the states are represented by
vertices of the digraph and there is a directed edge from z to z ′ with

122 Chapter 6. Accounting Systems and Automata

a label x if z′ = δ(z, x). If the semiautomaton is an automaton,
the output λ(z, x) can be represented by an additional arrow drawn
from the initial state.

• The case of a semiautomaton:

-z z′
xm m

• The case of an automaton:

-

@
@

@R

z z′
xm

λ(z, x)

m

The monoid of a semiautomaton

A monoid is an algebraic structure consisting of a set equipped
with an associative binary operation and an identity element. A
standard example of a monoid is the set of all functions σ : S −→
S on a non-empty set S where the binary operation is functional
composition

σ1 ◦ σ2(s) = σ1(σ2(s)) , s ∈ S,

which is well-known to be an associative operation. The identity
element is, of course, the identity function on S. The monoid of all
functions on a set S will be written

Fun(S).

There is a well established procedure for associating a monoid
with a semiautomaton. The monoid of the semiautomaton S =
(Z, X, δ), which is denoted by

Mon(S),

is defined as follows. If x ∈ X, there is a function fx : Z → Z which
is defined by using the next state function of S,

fx(z) = δ(z, x), z ∈ Z.

6.1. Introduction to Automata 123

Thus fx(z) is the next state of the semiautomaton if it is initially
in state z and it reads the input symbol x. Of course fx ∈ Fun(Z).
Now define the monoid of the semiautomaton S to be the submonoid

of Fun(Z) generated by all the functions fx where x ∈ X:

Mon(S) = Mon〈fx| x ∈ X〉.

This means that each element of Mon(S) is the composite of a finite
sequence of functions,

fx1
◦ fx2

◦ · · · ◦ fxk
, xi ∈ X.

Then Mon(S) ⊆ Fun(Z) and Mon(S) is a submonoid of the monoid
Fun(Z).

Extension to a free monoid

It is common practice to regard a sequence of inputs x1, x2, . . . , xr

as acting on the states of a semiautomaton or automaton. A con-
crete example is an elevator: here the floors of a building are the
states and the elevator can receive and act on a sequence of mes-
sages, not just a single one. This concentrates our attention on the
set of sequences of elements from the input alphabet X. In algebra
there is a tool which allows us to describe this type of object, namely
the free monoid on X.

Define
X

to be the set of all words, i.e., finite sequences of elements in X,
written in the form

x1x2 . . . xr :

the empty word Λ is the case r = 0. A binary operation ∗ on X is
defined by concatenation. This means that if x = x1x2 . . . xp and
x′ = x′

1
x′

2
. . . x′

q
are two elements of X of lengths p and q respectively:

then
x ∗ x′ = x1x2 . . . xpx

′

1
x′

2
. . . x′

q
.

Thus the operation ∗ adjoins x′ to x on the right, producing a se-
quence of length p + q. Obviously ∗ is an associative operation on
X and by convention the empty word Λ is the identity element, i.e.,

x ∗ Λ = x = Λ ∗ x

124 Chapter 6. Accounting Systems and Automata

for all x ∈ X. Then X is a monoid called the free monoid on X.

Returning to our study of the semiautomaton S = (Z, X, δ), we
extend the input set X to the free monoid X on it, with Λ as the
identity element. We can also extend the next state function δ to a
function δ : Z×X → Z by the following recursive definition. Given
z ∈ Z and x1, x2, . . . , xr ∈ X, the state δ(z, x1x2 . . . xr) is computed
by the rules

δ(z, Λ) = z,

δ(z, x1) = δ(z, x1),

δ(z, x1x2 . . . xr) = δ̄(δ(z, x1), x2 . . . xr),

where r > 1. Thus once the action of the sequence of length r − 1
on the states has been defined, the action of a sequence of length r

is determined by the preceding equations. In this way the semiau-
tomaton S = (Z, X, δ) has been extended to a semiautomaton

S = (Z, X, δ).

In the case of an automaton M = (Z, X, Y, δ, λ), the action of
an input sequence x1x2 . . . xr on an initial state z produces as an
output a sequence y1y2 . . . yr of elements of the output alphabet Y

which is determined by a new output function λ : Z ×X → Y in a
similar fashion:

λ(z, Λ) = Λ,

λ(z, x1) = λ(z, x1),

λ(z, x1x2 . . . xr) = λ(z, x1)λ̄(δ(z, x1), x2 . . . xr),

where r > 1. Notice that in all these definitions the automaton reads
the input symbols in the order x1, x2, . . . , xr. The automatonM =
(Z, X, Y, δ, λ) has therefore been extended to the new automaton

M = (Z, X, Y , δ, λ).

The operation of the semiautomaton S = (Z, X, δ) can be visu-
alised in the following way. Let z0 ∈ Z be the initial state and let
x1x2 . . . xr ∈ X be the input sequence. The semiautomaton passes
to successive states z1, z2, . . . , zr where zi = δ(zi−1, xi), i ≥ 1, the
final state being zr.

6.1. Introduction to Automata 125

In the case of the automatonM = (Z, X, Y , δ, λ) initially in state
z0, when the input sequence x1x2 . . . xr is read, the output sequence
is y1y2 . . . yr where yi = λ(zi−1, xi), i ≥ 1. Thus the automaton can
be represented by the diagram below.

- - -z0 z1 z2
. . .

x1 x2 x3m m m

y1 = λ(z0, x1) y2 = λ(z1, x2) y3 = λ(z2, x3) . . .

@
@

@R

@
@

@R

@
@

@R

Next we consider the connection between the monoid of a semi-
automaton S = (Z, X, δ) and that of its extension S = (Z, X, δ).

(6.1.1). The monoids of a semiautomaton S and its extension S
are identical.

Proof

Recall that Mon(S) is generated by all functions fx : Z → Z where
x ∈ X and fx(z) = δ(z, x). Similarly Mon(S) is generated by all
functions f

x
: Z → Z where f

x
(z) = δ(z, x). From this one can

prove that the following rule holds:

f
x1...xr−1xr

= fxr
◦ fxr−1

◦ · · · ◦ fx1
,

where xi ∈ X. Indeed by definition of the function f , we have for
any z ∈ Z and r ≥ 2

f
x1x2...xr

(z) = δ(z, x1x2 . . . xr) = δ(δ(z, x1), x2 . . . xr),

which equals

f
x2...xr

(δ(z, x1)) = f
x2...xr

(fx1
(z)).

Therefore f
x1x2...xr

= f
x2...xr

◦fx1
and the claim follows by induction

on r. The result is now evident. �

Equivalence relations associated with an automaton

There are two notable equivalence relations on the input set and
the state set that can be applied to an automaton.

126 Chapter 6. Accounting Systems and Automata

1. An equivalence relation on inputs

Consider an extended semiautomaton S = (Z, X, δ), where the
bar has the usual interpretation. We define a binary relation on X

by saying that x and x′ ∈ X are equivalent if

f
x

= f
x
′ ,

which is amounts to saying that

δ(z, x) = δ(z, x′)

for every z ∈ Z. Obviously this relation is an equivalence relation
on X. In words two sequences of inputs are equivalent if, starting
from the same state, they always produce the same new state.

2. An equivalence relation on states

Let M = (Z, X, Y , δ, λ) be an extended automaton. Two states
z, z′ will be called equivalent if for every x ∈ X

λ(z, x) = λ(z′, x).

Again it is clear that this an equivalence relation on Z. Thus two
states are equivalent if they lead to the same output when the same
input is read.

This concludes our introduction to automata theory: for a de-
tailed account see [5]. In the following sections we will describe
two ways in which the operation of an accounting system can be
represented by an automaton. Both automata keep track of the
transactions applied and the evolving balance sheet of the account-
ing system, while the second more complex automaton also controls
the times at which a transaction can be performed.

6.2. Accounting Systems as Automata I

Recall from Chapter 4 that an accounting system over an ordered
domain R is a triple

A = (A | T | B)

where A is the set of accounts, T is the set of allowable transactions
and B is a set of allowable balance vectors for the system. There

6.2. Accounting Systems as Automata I 127

is a straightforward way to represent the mode of operation of the
accounting system by an automaton

MA

defined in the following way.

• The state set is B.

• The input set is Baln(R) where n is the number of accounts.

• The output set is B ∪ {eT , eB} where the symbols eT and eB

stands for error messages, specifically

– eT : “the transaction is not allowable”;

– eB: “the balance vector is not allowable”.

• The next state function δ : B × Baln(R) −→ B is given by the
rule:

δ(b,v) =

{

b + v if v ∈ T and b + v ∈ B

b otherwise

• The output function λ : B×Baln(R) −→ B ∪{eT , eB} is given
by the rule:

λ(b,v) =







b + v if v ∈ T and b + v ∈ B

eT if v /∈ T

eB if v ∈ T and b + v /∈ B

The automatonMA functions in the following manner. Assume
that the accounting system has balance vector b at some instant, so
b ∈ B. A transaction τv is applied to the system where v ∈ Baln(R).
Suppose that v ∈ T , i.e., the transaction is allowable; then the
balance vector τv(b) = b + v is computed. If b + v is in B, the
new balance b + v is allowable and it becomes the next state. The
new balance is then printed on the output tape. If v /∈ T , the
transaction is not allowable and is rejected: the state remains b and
the error message eT is printed on the output tape. Finally, if v ∈ T

and b + v /∈ B, the transaction is rejected since it would lead to a
non-allowable balance. The automaton remains in state b and the
error message eB is printed on the output tape.

128 Chapter 6. Accounting Systems and Automata

Remark.

As was observed in 4.2, it is reasonable to require that the set of
allowable transactions contain the zero transaction: otherwise, when
the zero vector is read by the automaton, an error message will
be generated, even although the transaction does not change the
system.

What the automatonMA achieves is the generation of a matrix
which displays the financial history of the accounting system A, the
rows of the matrix corresponding to the accounts and the columns to
the transactions: this is the balance matrix, which was introduced in
3.1. The first column of the matrix is the balance vector whose en-
tries are the initial account balances. As each transaction is applied,
a new column is generated, which is the current balance vector. The
last column of the matrix gives the final account balances. As was
mentioned in 3.1, the applied transactions can be recovered from
the balance matrix sine the ith transaction applied to the system
is obtained by subtracting the ith column from the (i + 1)th; if the
resulting difference is zero, then either a non-allowable transaction
was applied or else a non-allowable balance vector was produced.

The automatonMA has the advantage of being quite simple and
of displaying most of the data that one would normally require.
In 6.3 we will introduce a second automaton associated with an
accounting system which introduces the element of time, the so-
called time enhanced automaton of the system.

The monoid of an accounting system

Let A = (A| T | B) be an accounting system; then the associated
automaton MA has a monoid Mon(MA), which will be called the
monoid of the accounting system A and denoted by

Mon(A).

By definition Mon(A) is generated by all functions of the form
fv : B → B, where v ∈ Baln(R): recall that

fv(b) = δ(b,v), (b ∈ B).

Thus fv(b) = b + v provided that v ∈ T and b + v ∈ B, and
otherwise fv(b) = b. Of course, fv ∈ Fun(B) and Mon(A) is a
submonoid of the monoid Fun(B).

6.2. Accounting Systems as Automata I 129

Each element of Mon(A) is the composite of a finite sequence
of functions and has the form fv1

◦ fv2
◦ · · · ◦ fvk

. Note that if vi

is not allowable, then fvi
is the identity function and thus can be

deleted from the composite: consequently we can assume that each
vi in the composite belongs to T . In addition, vi must yield an
allowable balance vector, otherwise it will produce no effect on the
balance vector. This discussion shows that in selecting generators
for Mon(A) we can restrict ourselves to vectors v in T such that
b + v belongs to the set B for some b ∈ B. Hence we can assume
that v has the form v = c − b where b and c belong to B. This
conclusion may be stated in the following form.

(6.2.1). Let A = (A | T | B) be an accounting system. Then

Mon(A) = Mon〈fv | v ∈ (B − B) ∩ T 〉,

where B − B denotes the set of all differences c− b with c,b ∈ B.

Hence every element of Mon(A) has the form fv1
◦ fv2

◦ · · · ◦ fvk

where vi ∈ (B − B) ∩ T .

Monoids of unbounded systems

With a general accounting system it can be difficult to understand
the structure of its monoid, particularly when complex balance re-
strictions are present. It is worthwhile looking at the monoids of
accounting systems in which the sets of allowable transactions and
balances are large. While it might be objected that such systems
are unrealistic, they do provide insight into the algebraic structure
of the monoid and how its properties are related to those of the
accounting system.

Example (6.2.1).

Consider an accounting system with no balance restrictions

A = (A |T | Baln(R)).

In this system all balance vectors are allowable: recall that such a
system is called unbounded. If A is unbounded, then every transac-
tion τv with v ∈ T is accepted by the automaton SA. It is convenient
to write

v′

for the function τv : Baln(R)→ Baln(R); thus

v′(b) = b + v

130 Chapter 6. Accounting Systems and Automata

for all v, b ∈ Baln(R). Notice that v′ = fv if and only if v ∈ T :
however, these functions have different values at v if v /∈ T since
then fv is the identity function.

If v, w ∈ Baln(R), then v′ ◦ w′ and w′ ◦ v′ both send b to
b + v + w. Since also (v + w)′(b) = b + v + w, we have

v′ ◦w′ = (v + w)′ = w′ ◦ v′.

Thus the commutative law holds in Mon〈v′| v ∈ Baln(R)〉, i.e., it is
a commutative monoid. Since

Mon(A) = Mon〈fv| v ∈ T 〉 ⊆ Mon〈v′| v ∈ Baln(R)〉,

we conclude that Mon(A) is also a commutative monoid.
A further conclusion that may be drawn from the above equa-

tion is that the function determined by the assignment v 7→ v′ is
a monoid homomorphism from Mon〈v|v ∈ T 〉 to Mon(A). Here
Mon〈v|v ∈ T 〉 denotes the submonoid of Baln(R) generated by all
v in T . The term “homomorphism” in this context refers to the law
(v + w)′ = v′ ◦ w′. Since v′ = fv for v ∈ T and such functions
fv generate Mon(A), the function v 7→ v′ is surjective. It is clearly
injective, so it is bijective and hence is a monoid isomorphism. Sum-
ming up, we have a result which gives a simpler description of the
monoid of an unbounded accounting system.

(6.2.2). Let A = (A| T | Baln(R)) be an unbounded accounting

system on n accounts over an ordered domain R. Then

1. Mon(A) is a commutative monoid;

2. Mon(A) ' Mon〈v|v ∈ T 〉 and hence Mon(A) is isomorphic

with a submonoid of Baln(R).

Example (6.2.2).

A still less realistic type of accounting system is where there are re-
strictions on neither transactions nor balances, as in the accounting
system

A = (A| Baln(R)| Baln(R)).

In 4.2 this was called a free accounting system since it is devoid of
restrictions, all transaction and balance vectors being allowable. In
this case T = Baln(R) and 6.2.2 takes the following form.

6.2. Accounting Systems as Automata I 131

Corollary. If A = (A| Baln(R)| Baln(R)) is a free accounting

system, then Mon(A) ' Baln(R).

Despite its impracticality, the free system on account set A has
theoretical significance since it is the “largest” possible accounting
system on A. It is clear from these examples that the presence
of non-allowable balances complicates the structure of the monoid
of an accounting system; for example, the monoid may be non-
commutative.

Recall from 4.2 that a feasible transaction for an accounting sys-
tem A = (A | T | B) is a transaction that is a composite of allowable
transactions, i.e., a composite of transactions arising from the set
T . In the case where B = Baln(R), i.e., the system is unbounded,
the feasible transactions correspond exactly to the elements of the
monoid Mon(A) by 6.2.1. This underlines the importance of the
monoid of the system. We state this result next.

(6.2.3). The monoid of an unbounded accounting system is the set

of all feasible transactions for the system.

Monoids provide a way of comparing different accounting systems
on the same set of accounts. Intuitively one would want to compare
two such systems by looking at the transactions that can be exe-
cuted by each system. In 4.2 we defined two accounting systems
with the same account set to be equivalent if every allowable trans-
action of one system is a feasible transaction of the other. Thus, if
we disregard the possible occurrence of non-allowable balances, the
effect of a sequence of allowable transactions in one system will be
identical with that obtained from a similar sequence in the other
system. On the basis of these remarks and 6.2.3, we can state:

(6.2.4). Two unbounded accounting systems with the same account

set are equivalent if and only if they have the same monoid.

Groups and accounting systems

Consider an unbounded accounting system A = (A| T | Baln(R)).
We have seen in 6.2.2 that Mon(A) is isomorphic with Mon〈v|v ∈ T 〉
and that Mon(A) is a commutative monoid. Now suppose that
the set of allowable transactions T has the property that −v ∈ T

whenever v ∈ T , i.e., T is closed with respect to forming negatives
of its elements. Since v′ ◦ (−v′) and (−v′) ◦v′ are both equal to the

132 Chapter 6. Accounting Systems and Automata

identity function,
(−v)′ = (v′)−1,

which is equivalent to saying that the inverse of an allowable trans-

action is allowable.
What this means for the accounting system is that it is possible to

reverse an allowable transaction, i.e., to correct a previously applied
transaction. Thus the system has the capacity to correct errors. For
this reason an accounting system A = (A| T | Baln(R)) is called error

correcting if T is closed under forming negatives. We will discuss
error correcting systems and related types of accounting systems
in Chapter 7. The algebraic consequence of the error correcting
property is that every element of Mon(A) has an inverse given by
the formula

(v′

1 ◦ v′

2 ◦ · · · ◦ v′

r)
−1 = (−v1 − v2 − · · · − vr)

′,

where vi ∈ T and hence −vi ∈ T .
Thus we have a commutative monoid in which every element has

an inverse, i.e., we have an abelian group. Hence we have:

(6.2.5). If A is an unbounded, error correcting system, then Mon(A)
is an abelian group.

From the point of view of the algebraist, groups are preferable
objects to work with since their structure is much better understood.
It may be objected that in practice the inverse of an allowable trans-
action might not be allowable. For example, a transfer of funds from
cash to an employee pension account would be routine, but a trans-
fer in the other direction could be questionable. On the other hand,
it is reasonable to suppose that an accounting system should have
the ability to correct erroneous entries. Such errors could then be
corrected by applying the inverse of an allowable transaction, which
should therefore be allowable. Of course, a system with a built-
in error correcting capability would need to be secure and come
equipped with appropriate control mechanisms, features that will
be considered in Chapter 9.

6.3. Accounting Systems as Automata II 133

6.3. Accounting Systems as Automata II

In this section we introduce a second, more complex automaton to
represent the operation of an accounting system. Like the previous
automaton, this one keeps track of the transactions and balances of
the system, but it does so in a different way, displaying the history of
each account as part of a state of the system: in addition the output
function is used to compute current balances and record the profit
or loss of the system. In addition this automaton incorporates the
expiration times, the earliest times that a transaction can be applied,
and for this reason it will be called the time enhanced automaton of
the system.

To help motivate the definition, let us consider the general situa-
tion of a company when an economic event affecting it occurs. This
is illustrated in the schematic diagram below:

Economic
event

Company message- -
Encoding

The economic event is assumed to affect the company through a
message, which takes the form of a pair (t,x) where t is the time
of application of the transaction given by the balance vector x with
entries x1, x2, . . . , xn and n is the number of accounts.

Definition of the time enhanced automaton

To start things off, suppose that A is a free accounting system
with n accounts

A = (A | Baln(R) | Baln(R)),

where, as usual, R is an ordered domain. We will indicate later how
freeness can be relaxed, but for the present we prefer to keep it as
a simplifying assumption.

A message of dimension n is defined to be an ordered pair

(t,x) ∈ Z× Baln(R);

thus t ∈ Z, xi ∈ R and of course x1 + x2 + · · · + xn = 0. The xi

are the entries of the balance vector which represents a transaction,

134 Chapter 6. Accounting Systems and Automata

while t is an integer specifying the earliest time of application of the
transaction, which is called the expiration of the message.

Accounts and states of the automaton

The accounting system is assumed to have n accounts a1, a2, . . . ,

an, which are ordered in such a way that

ar+1, ar+2, . . . , an

are the accounts that represent revenues and expenses.

A state of the ith account is defined to be an element of the set
Z× R, that is, a sequence of elements of Z×R

zi = zi1zi2 . . . zim(i),

where

zij = (tij, xij), j = 1, 2, . . . , m(i),

and tij ∈ Z, xij ∈ R. In addition these entities are subject to the
conditions

ti1 ≤ ti2 ≤ · · · ≤ tim(i),

and

xij 6= 0 and
n

∑

i=1

m(i)
∑

j=1

xij = 0.

The significance of tij is that it is the expiration time for the jth
transaction to affect the ith account. Notice that m(i), the number
of transactions affecting the ith account, depends on i. Intuitively
we can think of zi as recording the “history” of the ith account up
to time tim(i).

The state of an account can be represented by an enhanced T-

diagram, as illustrated in the figure below. The left hand column
records the debits and the right column the credits; the difference
from the T-diagrams defined in 3.1 is that in each case the expiration
time is appended to the transaction amount.

6.3. Accounting Systems as Automata II 135

(tij1, xij1
)

(tij2, xij2
)

...
(tijk(i)

, xijk(i)
)

(tijk(i)+1
, xijk(i)+1

)
(tijk(i)+2

, xijk(i)+2
)

...
(tijm(i)

, xijm(i)
)

Account ai

In the diagram it is assumed that xij > 0 and j1, j2, . . . , jm(i) is a
permutation of the integers 1, 2, . . . , m(i) such that

j1 < j2 < · · · < jk(i) and jk(i)+1 < jk(i)+2 < · · · < jm(i).

Since the left hand column records the debits on the account and
the right hand column the credits, the value of the ith account at
the latest time tim(i) will be increased by

xij1
+ xij2

+ · · ·+ xijk(i)
− xijk(i)+1

− xijk(i)+2
− · · · − xijm(i)

if this is positive; should it be negative, there a corresponding de-
crease.

The operation of the time enhanced accounting system

We will now define the time enhanced automaton

TA

of the free accounting system A and explain how it functions. In the
first place we have already defined a state of the ith account as an
element of the set Z× R satisfying certain conditions. This allows
us to define a state of the automaton TA as a sequence of states of
the n accounts, so that a typical state has the form

z1z2 . . . zn,

where

zi = zi1zi2 . . . zim(i) and zij = (tij, xij), tij ∈ Z, xij ∈ R.

Here it is understood that the previously stated conditions must be
satisfied, i.e.,

ti1 ≤ ti2 ≤ · · · ≤ tim(i),

136 Chapter 6. Accounting Systems and Automata

and

xij 6= 0 and

n
∑

i=1

m(i)
∑

j=1

xij = 0.

The set of states of the automaton TA is to be a set Z where

Z ⊆ (Z× R)n.

Next the inputs are messages, i.e., elements of the set Z×Baln(R),
a typical one being of the form (t,x). Thus the input set for TA is

X = Z× Baln(R).

The next state function

δ : Z ×X −→ Z,

is defined by the rules that follow:

δ(z1z2 . . . zn, (t,x)) = z1z2 . . . zn

if t < tij for some j = 1, 2, . . . , m(i), i = 1, 2, . . . , n; on the other
hand,

δ(z1z2 . . . zn, (t,x)) = z1(t, x1)z2(t, x2) . . . zn(t, xn),

if t ≥ tij for all j = 1, 2, . . . , m(i), i = 1, 2, . . . , n: observe here that
zi(t, xi) is the concatenation of zi and (t, xi), except that if xi = 0,
the pair (t, xi) is to be omitted from the sequence.

What is happening here is that the state of the automaton will
not change unless t ≥ tim(i) for i = 1, 2, . . . , n, i.e., t does not precede
any expiration time, in which event the new state is obtained by
adjoining the pair (t, xi) to zi unless xi = 0.

Example (6.3.1).

Let us see how the function δ acts in a particular case. Suppose

that an accounting system has three accounts a1, a2, a3, the third
account being an income or expense account. Assume that at some
instant the states, i.e., histories, z1, z2, z3 of the three accounts are
given by the T-diagrams below.

6.3. Accounting Systems as Automata II 137

(t1, 400)
(t2, 600)
(t4, 900)

(t3, 100)

Account a1

(t1, 100)
(t2, 600)
(t4, 700)

Account a2

(t3, 100) (t1, 300)
(t4, 200)

Account a3

The understanding here is that t1 < t2 < t3 < t4. These diagrams
describe the state of the automaton at time t4 as z1z2z3 where, for
example, z1 = (t1, 400)(t2, 600)(t3,−100)(t4, 900).

Now suppose that the input (t5, (0,−500, 500)) is read by the
automaton where t5 ≥ t4. Then it follows from the definition of
the function δ that the next state of the automaton is given by the
T-diagrams

(t1, 400)
(t2, 600)
(t4, 900)

(t3, 100)

Account a1

(t1, 100)
(t2, 600)
(t4, 700)
(t5, 500)

Account a2

(t3, 100)
(t5, 500)

(t1, 300)
(t4, 200)

Account a3

Keep in mind that the left hand column is for debits and the right
hand column for credits. Thus (t5, 500) has been adjoined to the
credit column of the second account and to the debit column of the
third account. On the other hand, since the input has a 0 entry for
the first account, no pairs are added to its T-diagram.

To complete the description of the automaton TA, the output set
and output function must be assigned. We take as the output set

Y = (Z× Balr+1(R)) ∪ {e}

where e is an error message: recall that r is the number of accounts
which are not revenue or expense accounts. Then the output func-
tion λ : Z × X −→ Y is defined by the following rule: λ sends
(z1z2 . . . zn, (t,x)) to (t,x) where x has components

x1 +

m(1)
∑

j=1

x1j , x2 +

m(2)
∑

j=1

x2j , . . . , xr +

m(r)
∑

j=1

xrj,

n
∑

i=r+1

(xi +

m(i)
∑

j=1

xij),

138 Chapter 6. Accounting Systems and Automata

except that if t < tij for some i, j, then the value of the output
function is the error message e.

What the output function does here, assuming that no error mes-
sage is generated, is first to record the time of application of the
transaction; then for each of the accounts a1, a2, . . . , ar it sums the
values of all the transactions, thereby giving the net change in value
of these accounts. It also totals the transaction values for all the
revenue and expense accounts ar+1, . . . , an and places this sum as
the (r + 1)th entry of the output; clearly this represents the net
income of the system after the transaction has been processed.

Notice that the partition

A = {a1} ∪ {a2} ∪ · · · ∪ {ar} ∪ {ar+1, . . . , an}

determines an equivalence relation E on A, and hence the quotient
system A = A/E. There is a natural epimorphism from A to A
which was described in 5.2. The (r + 1)th entry of

λ
(

(z1z2 . . . zn, (t,x))
)

represents the value of the (r + 1)th account of the quotient system
A, an account that could be called the profit or loss account for A:
however, strictly speaking it is an account of A, not A.

The automaton just constructed,

TA = (Z, X, Y, δ, λ),

is the time enhanced automaton of the accounting system A. Next
we give an example to illustrate the computation of the output func-
tion of the automaton TA.

Example (6.3.2).

Consider again the accounting system in Example 6.3.1 as specified
by the T-diagrams

(t1, 400)
(t2, 600)
(t4, 900)

(t3, 100)

Account 1

(t1, 100)
(t2, 600)
(t4, 700)

Account 2

(t3, 100) (t1, 300)
(t4, 200)

Account 3

6.3. Accounting Systems as Automata II 139

As before assume that the message (t5, (0,−500, 500)) is received,
where t4 < t5. Now we compute the output as specified in the defi-
nition of the output function, keeping in mind that a3 is a revenue
or expense account. The output is (t5, (1800,−1900, 100)). Thus
over the entire history of the system account a1 has final value 1800
and account a2 has value −1900, while the third entry tells us there
has been a net loss to the system of 100.

Additional remarks on the time enhanced automaton

We maintain the notation already established for the time en-
hanced automaton TA of an unbounded accounting system A.

1. The output λ(z1z2 . . . zn, (t,x)) is the balance sheet at time t. Its
components give the balances of non-revenue or expense accounts,
and the net profit or loss of the system. Specifically, the ith non-time
component of λ(z1z2 . . . zn, (t, (x)), i = 1, 2, . . . , r, is the balance of
the ith account at time t, while the (r + 1)th component is the net
profit or loss of the system.

2. If a name is assigned to each component of the set of states
Z, the set of all these denominations is called an account plan: its
components represent the history of each account.

3. The automaton TA can also compute the final values of the
accounts. The input set X = Z × Baln(R) can be extended to the
free monoid X on X, as described in 6.1. Thus the input is a finite
sequence of messages applied in succession. Suppose that the initial
state of TA was

z0

1
z0

2
. . . z0

n
,

where

z0

i
= (t0, x

0

i
), i = 1, 2, . . . , r

and

z0

i
= (t0, 0), i = r + 1, r + 2, . . . , n.

Thus it is assumed that the revenue and expense accounts had zero
balances initially, as would normally be the case. Suppose that a
sequence of m inputs, i.e., messages, is applied,

(ti,xi), i = 1, 2, . . . , m,

140 Chapter 6. Accounting Systems and Automata

where t0 < t1 < t2 < · · · < tm. Then the value of the output
function after the sequence of inputs has been processed, i.e.,

λ(z0

1
z0

2
. . . z0

n
, (t1,x1) . . . (tm,xm))

is the final balance sheet of the accounting system; of course the value
of the output function is computed recursively.

4. Usually the output function λ is not applied each time a message
is received, but only at certain moments in the life of the company,
for example, at the end of the year or the quarter. The process of
calculating the value of λ is called the regularization.

5. The definition of the time enhanced automaton has been formu-
lated for free accounting systems. However, it is not difficult to see
how to modify the definition for a general accounting system. It is
necessary to screen out non-allowable transactions or balances by
adjusting appropriately the definitions of the next state and output
functions, as was done for the automaton of 6.2. This will require
that additional error messages be adjoined to the output set Y .

6. Just as for any automaton, we can define various equivalence
relations for the time enhanced automaton. A relation is introduced
on the set of states by defining two states to be equivalent if, on
receiving the same input, they produce the same output. Thus two
states are equivalent in this sense if they always lead to the same
balance sheet. Dually we can define equivalence of two messages,
i.e., inputs, if, starting from the same state, they always lead to the
same output, i.e., the same balance sheet.

Chapter Seven

Accounting Systems with

Restricted Transactions

7.1. An Overview of Special Systems

The previous chapters have seen the construction of our basic
algebraic model, which is able to simulate many of the operations of
the double-entry accounting system. However, it is clear that this
model is far from being a realistic system. In the first place there
are still facets of accounting not represented in the model, control of
transactions being a prominent example. But it is also evident that
the model is too general and includes systems that could never be
implemented by any computer system. With this in mind, we shall
consider in this chapter what restrictions can reasonably be imposed
on the allowable transactions of an accounting system. The object
is, of course, to arrive at a system which is closer to reality and
stands a chance of machine implementation.

One natural restriction is to require that there be only finitely
many specific allowable transactions. In practice these might repre-
sent fixed regular payments or receipts and so they would be finite
in number. Thus we are led to a class of accounting systems called
finitely specified systems, in which an allowable transaction is either
one of an approved type or else one of a finite number of specific
transactions. More generally, we might accept accounting systems
that are equivalent to finitely specified systems, meaning that they
have the same sets of feasible transactions. Such systems will be
called finitely specifiable. These may be thought of as the widest
class of unbounded systems that could conceivably be machine im-
plemented. Incidentally the algorithms described in Chapter 8 make

142 Chapter 7. Systems with Restricted Transactions

a convincing case for this statement.
From the algebraic point of view there are several subclasses of

finitely specifiable systems that stand out. A full discussion of these
types follows in 7.2, together with an assessment of their interrela-
tionships and their significance for accounting. Prominent among
the finitely specifiable systems are systems that are equivalent to sys-
tems specified by simple transactions only; these are termed simple
systems and they are much easier to analyze. They are treated in
some detail in 7.3. It seems a reasonable assessment that many real
life systems will be simple or at least nearly so.

Another significant class of finitely specifiable systems is the class
of systems in which the inverse of every feasible transaction is feasi-
ble. These are called inverse systems and they are distinguished by
the property that their monoids are groups. A closely related class
of systems of particular significance for accounting consists of sys-
tems which are error correcting. In these the inverse of an allowable
transaction is allowable, which makes it possible to correct erro-
neously entered transactions. This is a feature one would expect to
find in any practical system, subject of course to appropriate control
mechanisms.

Throughout this chapter we assume that all accounting systems
are over the ring of integers Z (although one could work to some
extent with systems over finitely generated ordered domains). In
addition we will generally assume that all accounting systems are
unbounded, i.e., every balance vector is allowable in the system.
The main reason for this is that the monoid of such a system is
much easier to understand, being isomorphic with a submonoid of
the monoid Baln(Z) where n is the number of accounts – see 6.2.2.
Also the relation between a system and its feasible digraph is much
closer for unbounded systems. Having said this, we acknowledge
that many of the concepts introduced still make sense for general
accounting systems.

7.2. Finitely Specifiable Accounting Systems

Consider an unbounded accounting system on n accounts

A = (A | T0, T1| Baln(Z)),

so that all balance vectors are allowable: for brevity we will write

A = (A | T0, T1).

7.2. Finitely Specifiable Systems 143

Here T0 is the set of transaction types that are allowable and T1 is
the set of specific allowable transactions. Now T0 is certainly finite:
indeed |T0| ≤ 3n − 2n+1 + 2 by 3.2.1. On the other hand, the set
T1 could be infinite: at least the definition in Chapter 4 leaves this
possibility open. In practice, T1 is likely to be a fairly small set,
consisting of regular operations such as repayments on a mortgage,
interest on a bank loan or insurance premiums. It therefore seems
a reasonable assumption that T1 is finite.

With these remarks in mind, we define an unbounded accounting
system A to be finitely specified if A = (A | T0, T1) where the set
T1 is finite. For example, we could form a finitely specified system
by taking as allowable transaction vectors all the elementary vectors
e(i, j). A useful feature of a finitely specified accounting system is
that it can be completely described by a partitioned matrix. In this
matrix the first set of columns are the allowable types of transac-
tion vector in T0, which therefore have entries 0, + or −, while the
remaining columns list the specific allowable transaction vectors in
T1. Thus the matrix has size n× (|T0|+ |T1|). The representation of
a finitely specified accounting system is therefore accomplished by
a single matrix.

More generally, an accounting system A = (A | T0, T1) is said to
be finitely specifiable if it is equivalent to a finitely specified system
A = (A | T 0, T 1): here of course T 1 is finite, but T1 might be infinite.
Finitely specifiable systems can be characterized in terms of their
monoids.

(7.2.1). An unbounded accounting system A is finitely specifiable if
and only if Mon(A) is generated by finitely many elements together
with all elements of certain types.

Proof
Suppose first that A is finitely specifiable. Then it is equivalent to
a finitely specified system A = (A| T 0, T 1) and Mon(A) = Mon(A);
thus Mon(A) is generated by the finite set T 1, together with all
vectors of types in T 0.

Conversely, assume that Mon(A) is generated by a finite set T1

and all vectors of some set of types T0. Define A = (A | T0, T1),
which is a finitely specified system. Since Mon(A) = Mon(A), we
see that A is equivalent to A, so that A is finitely specifiable. 2

While it is obvious that every finitely specified system is finitely

144 Chapter 7. Systems with Restricted Transactions

specifiable, the converse is false: for example, the free system A =
(A| Baln(Z)) is finitely specifiable since Mon(A) = Baln(Z) is gener-
ated by the n(n− 1) elementary vectors e(i, j), but it is not finitely
specified.

Example (7.2.1).
There are accounting systems that are not finitely specifiable.

Consider the unbounded system A with three accounts and al-
lowable transactions  1

1 + a
−2− a

 , a > 0.

Each non-zero feasible transaction, i.e., element of Mon(A), must
clearly be of type +

+
−

 ,

yet not every vector of this type is in Mon(A). Indeed, if

 1
1
−2


were feasible, there would be an expression 1

1
−2

 = `1

 1
1 + a1
−2− a1

+ · · ·+ `k

 1
1 + ak
−2− ak


with `i, ai > 0. On inspecting the top rows of the column vectors,
we see that 1 = `1+ · · ·+`k, which implies that k = 1 = `1; but then
a glance at the second rows reveals the contradiction 1 = 1 + a1.

Now suppose that A is finitely specifiable. Then, since in A
not all vectors of any one type are feasible, Mon(A) must be gen-

erated by finitely many allowable vectors, say by

 1
1 + ai
−2− ai

, i =

1, 2, . . . ,m. However, if we choose a to be larger than all of a1, . . . , am,

it is easy to see that

 1
1 + a
−2− a

 cannot be written in the form

7.2. Finitely Specifiable Systems 145

m∑
i=1

`i

 1
1 + ai
−2− ai


where `i ≥ 0. Consequently the system A cannot be finitely speci-
fiable.

Next we introduce some special types of finitely specifiable ac-
counting systems by further restricting their monoids.

Finitely generated accounting systems

Following a well-known algebraic path, let us call an (unbounded)
accounting system

A = (A | T)

finitely generated if M = Mon(A) can be generated as a monoid by
some finite subset {v(1), . . . ,v(m)}. This means that every element
of M , i.e., every feasible transaction vector, is expressible in the form

`1v(1) + · · ·+ `mv(m)

with `i a non-negative integer. Clearly A is finitely specifiable
since it is equivalent to the system whose allowable transactions
are v(1), . . . ,v(m). Notice that v(1), . . . ,v(m) are feasible in A,
but are not necessarily allowable. However, each v(i) is expressible
in terms of finitely many elements of T . Thus, while T itself might
be infinite, it has a finite subset Tf such that each v(i) is a linear
combination of vectors in Tf with non-negative integral coefficients.
Thus M = Mon(A) = Mon〈Tf〉. Now let Af be the finitely gener-
ated system (A | Tf); then A and Af have the same monoid M , so
they are equivalent. This conclusion is stated as:

(7.2.2). Let A = (A | T) be a finitely generated unbounded ac-
counting system. Then there is a finite subset Tf of T such that A
is equivalent to the finitely specified system Af = (A | Tf). Thus
every finitely generated system is finitely specifiable.

146 Chapter 7. Systems with Restricted Transactions

Simple accounting systems

We recall from Chapter 2 that a balance vector of the form
ae(i, j), (a > 0), is said to be simple. Here e(i, j) is the elementary
transaction vector with ith entry +1 and jth entry −1. An account-
ing system A will be called simple if its monoid can be generated by
simple transaction vectors. Thus each allowable transaction can be
expressed as a sum of feasible simple transactions. In practice many
allowable transactions in an accounting system will be simple, which
suggests that real-life systems may often be simple. However, the
definition of a simple system requires only that the monoid be gen-
erated by simple transaction vectors; these need not be allowable,
although they must of course be feasible.

A special type of simple system occurs when the feasible monoid
is generated by elementary transaction vectors: such a system is
called elementary . For an accounting system with n accounts, the
total number of elementary transactions is n(n−1); thus the monoid
can be generated by n(n − 1) or fewer elements. Hence every ele-
mentary system is finitely generated . In fact this conclusion can be
strengthened.

(7.2.3). Every simple unbounded accounting system is finitely gen-
erated.

The proof of this result rests on a property of the submonoids
of the monoid N of natural numbers, namely every submonoid is
finitely generated. We will give a proof of this result, but first an
auxiliary lemma is necessary.

(7.2.4). Let a1, a2, . . . , ak be positive integers which are relatively
prime. Then there exists x0 ∈ N such that every integer x ≥ x0

belongs to Mon〈a1, a2, . . . , ak〉: furthermore x0 can be computed from
the ai.

Proof
Write S = Mon〈a1, . . . , ak〉. Since a1, . . . , ak are relatively prime,
there are integers r1, . . . , rk such that

1 = r1a1 + · · ·+ rkak,

where we can suppose that ri < 0 for i = 1, 2, . . . , ` < k and ri ≥ 0
for i = `+1, `+2, . . . , k. Put si = −(ak−1)ri for i = 1, . . . , `, noting

7.2. Finitely Specifiable Systems 147

that si ≥ 0. Hence x0 = s1a1 + · · · + s`a` ∈ S. For 0 ≤ j ≤ ak − 1
we have

x0 + j = s1a1 + · · ·+ s`a` + jr1a1 + · · ·+ jrkak,

which equals

(s1 + jr1)a1 + · · ·+ (s` + jr`)a` + jr`+1a`+1 + · · ·+ jrkak.

If 1 ≤ i ≤ ` and 0 ≤ j ≤ ak − 1, then

si + jri = −(ak − 1)ri + jri = −ri(ak − 1− j) ≥ 0

since ri < 0. Hence x0 + j ∈ S for j = 0, 1, . . . , ak − 1.
Now suppose that there exists an x > x0 in N\S; then we can

assume that x has been chosen minimal with these properties. If
x − ak ≥ x0, then x − ak ∈ S by minimality of x, so that x =
(x − ak) + ak ∈ S. By this contradiction x − ak < x0 and thus
x0 < x ≤ x0 + (ak− 1). But then x ∈ S since x is of the form x0 + j
for some j satisfying 0 < j ≤ ak − 1, a contradiction which shows
that all integers x ≥ x0 belong to S. 2

The crucial result needed to establish 7.2.3 can now be proved.

(7.2.5). If S is a submonoid of N, then it can be finitely generated
as a monoid.

Proof
Assume that S is not finitely generated, which implies that S 6= 0.
Let a1 be any non-zero element of S. We show how to construct a
sequence of elements a1, a2 . . . of S such that, if di is the greatest
common divisor of a1, a2 . . . , ai, then di > di+1. Assume that the
sequence has been constructed as far as ak. Since a1

dk
, a2
dk
, . . . , ak

dk
are

relatively prime, 7.2.4 shows that

Mon〈dk〉\ Mon〈a1, a2, . . . , ak〉

is finite. Suppose that S ⊆ Mon〈dk〉; then S \Mon〈a1, a2, . . . , ak〉 is
finite, which leads to the contradiction that S is finitely generated.
Hence there exists an ak+1 ∈ S which is not divisible by dk. Then,
writing dk+1 for the greatest common divisor of a1, a2, . . . , ak+1, we
have dk > dk+1, so the construction has been effected. Since the di
are positive integers, there must exist a k for which dk = 1. Then

148 Chapter 7. Systems with Restricted Transactions

S \Mon〈a1, a2, . . . , ak〉 is finite by 7.2.4. However, this implies that
S is finitely generated, which is a contradiction. 2

Proof of 7.2.3

Assume thatA is a simple unbounded system with monoid M . Thus
M is generated by certain simple transactions. For each i 6= j let
Mij be the set of integers a ≥ 0 such that ae(i, j) ∈M . If a, b ∈Mij,
then a+b ∈Mij, which shows that Mij is a submonoid of N (possibly
zero). We now apply 7.2.5 to show that Mij can be generated by

finitely many of its elements, say a
(k)
ij , k = 1, 2, . . . , `(i, j). Then

the elements a
(k)
ij e(i, j), k = 1, 2, . . . , `(i, j), 1 ≤ i, j ≤ n, generate

the monoid M and the number of these elements is finite, so M is
finitely generated. 2

Corollary. Every unbounded accounting system with two accounts
is finitely generated.

Proof
An accounting system with two accounts is simple, so the result
follows at once from 7.2.3. 2

On the other hand, there are accounting systems with three accounts
which are not finitely generated – see Example 7.2.3(ii) below.

Hereditary accounting systems

In Chapter 3 a partial ordering of n-transaction types was intro-
duced which classifies transactions according to their complexity. In
this ordering, if t and s are two type vectors of equal size, so that
each of their entries is 0, + or − , then t ≤ s means that for each i
either ti = 0 or ti = si. It seems a priori to be a plausible hypothesis
that if a transaction vector v is feasible and u is a transaction of
the same or an earlier type in the ordering, i.e., type(u) ≤ type(v),
then u should also be feasible.

With this in mind, let us call an unbounded system A hereditary
if, whenever v is feasible in A and type(u) ≤ type(v), then u is also
feasible in A. It will emerge from the analysis in 7.3 that hereditary
systems are very special and are in fact completely determined by
their feasible digraphs.

7.2. Finitely Specifiable Systems 149

Example (7.2.2).

Suppose that the vector

v =


400
−100
−200
−100


is feasible in a hereditary system A with four accounts. Then all
vectors with type preceding

type(v) =


+
−
−
−


are feasible. In particular e(1, 2), e(1, 3) and e(1, 4) are feasible.
Now observe that v can be expressed in terms of these elementary
feasible vectors, indeed

v = 100e(1, 2) + 200e(1, 3) + 100e(1, 4).

Hence e(1, 2), e(1, 3), e(1, 4) generate the monoid of A, which is
therefore an elementary system. In fact this statement is true in
any hereditary system.

(7.2.6). Every hereditary, unbounded accounting system A is ele-
mentary.

Proof
Let v be a non-zero feasible transaction vector for A. It is necessary
to show that v is a sum of elementary feasible vectors of A. The
proof is by induction on the number m ≥ 2 of non-zero entries of v.

Since v 6= 0, it must have a positive entry vr and a negative entry
vs. A new transaction vector u is defined by the rule

u =

{
v + vs e(r, s) if vr + vs > 0,

v − vr e(r, s) if vr + vs ≤ 0.

Now observe that type(u) ≤ type(v), so that u is feasible by the
hereditary property, and also that the number of non-zero entries
of u is at most m − 1. Therefore u is a sum of elementary feasible

150 Chapter 7. Systems with Restricted Transactions

vectors by the induction hypothesis. Next type(e(r, s)) ≤ type(v),
so that e(r, s) is feasible in A. Finally v = u + (−vs)e(r, s) or
u + vr e(r, s) and vr > 0, −vs > 0; hence v is a sum of elementary
feasible vectors, as claimed. 2

Type-complete accounting systems

Another special type of unbounded system occurs when, given
that a transaction vector is feasible, it follows that all vectors of the
same type are feasible. Such a system will be called type-complete.
Notice that hereditary systems are type-complete, but the latter is
evidently a weaker property.

A still weaker property than type-completeness is purity. Here an
unbounded system is said to be pure if its monoid is generated by all
the transaction vectors of certain given types. Thus a pure system is
equivalent to a finitely specified system in which there are no specific
allowable transactions, only allowable types: therefore a pure system
is finitely specifiable. Notice that elementary accounting systems are
pure since their monoids are generated by certain elementary vectors
e(i, j) and hence contain all simple vectors of the same type.

It is difficult to assess how often a practical accounting system
would be pure or type-complete. These properties are mentioned
here primarily because they appear natural from the algebraic stand-
point.

Inverse accounting systems
An accounting system A is called an inverse system if the inverse

of a feasible transaction, or equivalently the negative of the corre-
sponding transaction vector, is always feasible. This is equivalent
to saying that Mon(A) is a subgroup of the abelian group Baln(Z).
In an inverse system the negative of an allowable transaction might
not be allowable, but it is certainly feasible. Recall from 6.2 that
an (unbounded) accounting system is called error correcting if the
negative of every allowable transaction vector is allowable. Every
error correcting system A is an inverse system. To see this, let v be
a feasible transaction vector of A, so that there is an expression v
= v1 + · · ·+ vk, where the vi are allowable. Then −vi is allowable
since A is error correcting. Hence −v = (−v1) + · · · + (−vk) is
feasible and thus A is an inverse system.

Conversely, ifA = (A | T) is an inverse system, we can modify the
system by adjoining the negatives of all the allowable transactions of

7.2. Finitely Specifiable Systems 151

A, thereby obtaining an error correcting system A = (A | T ∪(−T))
where −T denotes the set {−v| v ∈ T}. Clearly A is equivalent to
A.

Summing up the discussion, we have:

(7.2.7). Let A be an unbounded accounting system. Then the fol-
lowing hold.

1. If A is error correcting, then it is an inverse system.

2. If A is an inverse system, then it is equivalent to an error
correcting system.

The question arises as to how inverse systems are related to the
other types of system described in this section.

(7.2.8). If A is an inverse, unbounded accounting system on n
accounts, then the feasible monoid of A can be generated by at most
2(n− 1) elements. Thus A is a finitely generated system.

Proof
Let M denote the monoid of A, so that M is a subgroup of Baln(Z).
Now Baln(Z) is a free abelian group of rank n − 1 by 2.3.1. It is a
well-known fact about free abelian groups that M can be generated
as a group by at most n − 1 elements – see [7] or [8]. The group
generators and their negatives will then generate M as a monoid.
Therefore M can be generated as a monoid by at most 2(n − 1) of
its elements. 2

There is good reason to believe that a real life accounting sys-
tem will have the ability to correct errors. Inevitably in day-to-day
operations errors will arise through the entering of erroneous data
or system malfunctions. If an erroneous transaction has been ap-
plied to the accounting system, it can be corrected by applying
the inverse transaction, i.e., the negative of the transaction vector.
(Notice that even if balance restrictions are present, the correcting
transactions will restore the original balance vector). Of course in
an error-correcting system there is increased risk of misuse, but this
can be reduced by introducing a control mechanism, as described in
Chapter 9.

152 Chapter 7. Systems with Restricted Transactions

Diagram of classes of accounting systems

type− complete

pure

finitely specifiable

hereditary

elementary

finitely generated

free

error − correcting

inverse

simple

������������

������������

??
??

??
??

??
??

??
??

??
??

??
??

������������

����

����

??
??

??
??

??
??

������������

������������

??
??

??
??

??
??

??
??

??
??

??
??

Since many classes of unbounded accounting systems have been
introduced in this section, it is useful to display these classes by
means of an inclusion diagram as above. Here the larger classes of
systems appear higher up in the diagram, while inclusions between
classes are indicated by sequences of upward directed lines.

Next we will show that there are no inclusions between the ten
classes of accounting systems discussed above other than those dis-
played in the diagram. This is demonstrated by a series of simple
examples.

Example (7.2.3).

(i) Error-correcting does not imply either pure or simple.

This is shown by the 3-account system with allowable transaction
vectors  1

−2
1

 and

−1
2
−1

 .

7.2. Finitely Specifiable Systems 153

Here transaction vectors of only two types are feasible, but not
all vectors of these types are feasible, so the system is not pure. Also
it is not simple since no simple transactions are feasible.

(ii) Type-complete does not imply finitely generated .

Consider the 3-account system A whose allowable transaction

vectors are all those of type

+
+
−

. Then Mon(A) is not finitely

generated. Indeed, suppose it is generated by ai
bi

−ai − bi

 , i = 1, . . . , k,

where ai, bi > 0. Let x, y > 0; then the vector which has entries x, y,
−x− y belongs to Mon(A), so there exist `i ≥ 0 such that{

x = `1a1 + · · ·+ `kak
y = `1b1 + · · ·+ `kbk

.

Choose x to be the smallest of a1, . . . , ak, say a1, and y = 1 + b1;
then k = 1 and `1 = 1. But then a contradiction ensues since y 6= b1.

(iii) Hereditary does not imply inverse.

This is shown by the 2-account system with the single allowable

transaction vector

[
1
−1

]
.

(iv) Simple does not imply pure.

To see this just look at the 2-account system with the single

allowable transaction vector

[
−2

2

]
.

(v) Inverse does not imply error-correcting .
Consider the 3-account system with allowable transaction vectors

e(1, 2), e(2, 3), e(3, 1). This is plainly not error-correcting. But the
feasible monoid is Bal3(Z), so the system is an inverse system.

(vi) Elementary does not imply type-complete.

To see this consider the 4-account system with allowable trans-
action vectors e(1, 2) and e(3, 4). In this system e(1, 2) + e(3, 4)

154 Chapter 7. Systems with Restricted Transactions

is feasible, but the vector with entries 1,−2, 2,−1, which is of the
same type, is not feasible.

In conclusion we note that a variety of special classes of un-
bounded accounting systems have been introduced by placing re-
strictions on their allowable transactions. Some of the classes dis-
play features that one would expect to find in real life accounting
systems. Here we mention particularly finitely specified systems,
elementary systems and error-correcting systems. All the classes of
systems considered are natural from an algebraic standpoint and it
is at least a useful exercise to consider how far these subclasses can
be translated into practical systems, since it forces us to analyze
more precisely the true nature of such systems.

7.3. The Digraph of a Simple System

Our aim in this section is to show that the feasible digraph of
a simple unbounded accounting system has a very special form; it
consists of isolated vertices, source vertices, sink vertices and a com-
plete digraph. Then it will be shown that a hereditary system is
determined up to equivalence by its feasible digraph and that such
systems can be completely classified.

To start things off, recall that if A is an unbounded accounting
system, the feasible digraph of A has as its vertex set the set of
accounts and there is an edge 〈aj, ai〉 if and only if there is a feasible
transaction vector v of A such that vj < 0 and vi > 0. In general
the connection between a system and its feasible digraph is quite
weak and inequivalent systems can easily have the same digraph.

The crucial property possessed by the feasible digraph of a simple
system will now be described. A digraph D is called strongly tran-
sitive if, whenever it contains edges 〈di, dj〉 and 〈dk, d`〉 with i 6= `,
there is an edge 〈di, d`〉 of D:

•di

•dj

•dk

•d`
�� ��''OOOOOOOOOOOOOOOOOOOOO

In particular this means that if D has edges 〈di, dj〉 and 〈dj, d`〉
where i 6= `, then there is an edge 〈di, d`〉.

7.3. The Digraph of a Simple System 155

•di

•dj •d`
�� ''OOOOOOOOOOOOOOOOOOOOO

//

The latter property is called transitivity since it implies that the
corresponding relation is transitive (but keep in mind that the di-
graph of an accounting system has no loops). These concepts are
illustrated by some simple examples.

Example (7.3.1).

•

•

•

•

D1

�� ��''OOOOOOOOOOOOOOOOOOOOOOO

wwooooooooooooooooooooooo

•

•

•

•

D2

�� ��''OOOOOOOOOOOOOOOOOOOOOOO

//

Of the digraphs above D1 is strongly transitive, while D2 is only
transitive.

Now we come to the connection with simple systems.

(7.3.1). Let A be a simple unbounded accounting system. Then the
feasible digraph of A is strongly transitive.

Proof
Let D be the feasible digraph of A. To prove strong transitivity,
let 〈ai, aj〉 and 〈ak, a`〉 be edges of D with i 6= `; it must be shown
that 〈ai, a`〉 is an edge of D, and here we can assume that i 6= k.
Now there are feasible transaction vectors u and v of A such that
ui < 0, uj > 0 and vk < 0, v` > 0. Since A is simple, u is a
sum of simple feasible transactions at least one of which must be

156 Chapter 7. Systems with Restricted Transactions

of the form ae(i, i′) where a < 0; also v is a sum of simple feasible
transactions with at least one of the form be(`′, `) where b < 0. Then
ae(i, i′) + be(`′, `) is certainly feasible; also its i-component is a or
a+ b, according as i 6= `′ or i = `′, and thus it is negative. Similarly
its `-component is −b or −a− b, i.e., positive. Consequently D has
an edge 〈ai, a`〉 and it follows that D is strongly transitive. 2

Notice that the converse of 7.3.1 is false. If A is the system with
the single allowable transaction

−1
1
−1

1

 ,

then the feasible digraph of A is – with the appropriate order of
accounts – the first digraph displayed in Example 7.3.1, which is
strongly transitive. But A has no simple feasible transactions, so it
is not a simple system.

The next example shows that the feasible digraph of a finitely
generated system need not even be transitive.

Example (7.3.2).

Let A be the unbounded system with account set {a1, a2, a3, a4} and
two allowable transaction vectors

u =


100
−1

1
−100

 and v =


−100

100
−1

1

 .

Then A is a finitely generated system, but in fact it is not simple.
In order to see this, we first identify the feasible digraph D of A.
Now every feasible transaction is of the form

au + bv =


100a− 100b
−a + 100b

a− b
−100a + b

 , a, b ≥ 0.

Next D has edges 〈a1, a2〉, 〈a3, a2〉, 〈a1, a4〉, 〈a3, a4〉, 〈a2, a1〉, 〈a4, a1〉,
〈a2, a3〉 and 〈a4, a3〉, as one sees by inspecting the allowable transac-
tions. Also 〈a4, a2〉 is an edge, as can be seen by setting a = 1 = b.

7.3. The Digraph of a Simple System 157

On the other hand, there are no edges 〈a1, a3〉 or 〈a3, a1〉 since the
1- and 3-entries of au+ bv have the same sign. Nor is there an edge
〈a2, a4〉 since the inequalities −a + 100b < 0 and −100a + b > 0 are
incompatible. Therefore D is the digraph below.

•a1 •a2

•a3 •a4

22rr
cc

#
22rr

D

��

OO

Notice that D is not even transitive since there are edges 〈a2, a1〉
and 〈a1, a4〉, but no edge 〈a2, a4〉.

The structure of strongly transitive digraphs

Strong transitivity is such a restrictive property that it is possible
to describe precisely the digraphs which have it. For this purpose
some notation will be developed for an arbitrary digraph D. The
vertex set V (D) of D may be partitioned into four subsets,

V (D) = Vis(D) ∪ Vso(D) ∪ Vc(D) ∪ Vsi(D),

which are defined in the following way.

1. Vis(D) is the set of isolated vertices , i.e., with in- and out-degree
0;

2. Vso(D) is the set of sources , i.e., vertices with positive out-
degree and zero in-degree;

3. Vc(D) is the set of vertices with positive in- and out-degree;

4. Vsi(D) is the set of sinks , i.e., vertices with positive in-degree
and zero out-degree.

Recall here that the out-degree and in-degree of a vertex v of a
digraph are the respective numbers of edges with initial vertex v and
final vertex v. Strongly transitive digraphs may be characterized in
terms of these four sets of vertices.

158 Chapter 7. Systems with Restricted Transactions

(7.3.2). A digraph D is strongly transitive if and only if there is an
edge from each vertex in Vso(D) ∪ Vc(D) to each different vertex in
Vc(D) ∪ Vsi(D) and there are no other edges in the digraph.

Proof
Assume first that D is strongly transitive. Let d ∈ Vso(D) ∪ Vc(D)
and d′ ∈ Vc(D)∪Vsi(D), with d 6= d′. Then d has positive out-degree
and d′ positive in-degree. Hence there are edges 〈d, d1〉, 〈d′1, d′〉. By
strong transitivity there is an edge 〈d, d′〉 in D. Evidently all edges
in D must arise in this way.

Conversely, assume that D has the property of the statement.
Let 〈d1, d2〉 and 〈d3, d4〉 be edges of D with d1 6= d4. Then d1 ∈
Vso(D) ∪ Vc(D) and d4 ∈ Vc(D) ∪ Vsi(D) since d1 has positive out-
degree and d4 has positive in-degree. Therefore there is an edge
〈d1, d4〉 and thus D is strongly transitive. 2

Notice that the condition of 7.3.2 implies that if D is a strongly
transitive digraph, then Vc(D) is a complete digraph, i.e., there is an
edge from any vertex to any other vertex in that digraph.

Example (7.3.3).

A strongly transitive digraph D with six vertices in which Vis(D) =
{v6}, Vso(D) = {v1}, Vc(D) = {v2, v3, v4} and Vsi(D) = {v5} is
exhibited below:

•v1

•v2

•v3 •v4

•v5 •v6

::tttttttttttttttt

��?
??

??
??

??
??

??

** ��

$$JJJJJJJJJJJJJJJJ

??�������������

�

LL

VV

4433oo

NN

��

Despite the restrictive nature of the feasible digraph of a simple
accounting system, it is still possible for inequivalent systems to
have the same digraph.

7.3. The Digraph of a Simple System 159

Example (7.3.4).

Consider the elementary system A with account set {a1, a2, a3, a4}
which has two allowable transaction vectors e(3, 1) and e(4, 2). Here
one easily sees that the feasible digraph is

•a1

•a2

•a3

•a4

//

��?
??

??
??

??
??

?? ??�������������
//

which is, of course, strongly transitive.
However, this is also the feasible digraph of the accounting system

A′ on {a1, a2, a3, a4} whose allowable transaction vectors are e(3, 1),
e(4, 2), e(4, 1). Now e(4, 1) is not feasible in A since it cannot be
expressed in the form ae(3, 1) + be(4, 2) with a, b ≥ 0. Thus A and
A′ have different monoids, so that they are not equivalent, yet they
have the same digraph.

Suppose now thatA is an arbitrary simple unbounded accounting
system. Then by 7.3.1 the feasible digraph D of A has the struc-
ture indicated in 7.3.2. Let us consider what this implies about the
system A. The accounts in Vis(D) are inactive accounts. It might
be supposed that the such accounts are rare, but any account plan
is likely to involve a large number of accounts since it must accom-
modate transactions between the firm and many outside companies.
During a particular accounting period it might be the case that cer-
tain accounts are not used and these inactive accounts would show
up as isolated vertices of the digraph. An account in Vso(D) is a
source of funds for the system, while an account in Vsi(D) can only
receive funds; for example a bank loan that is gradually being paid
off would fall into this category. All other accounts belong to the
complete digraph Vc(D). If ai and aj are distinct accounts in Vc(D),
then completeness implies that there is a feasible transaction of A
that causes an outflow of value from ai and an inflow to aj; of course
other accounts could be affected by the transaction too. So the con-
clusion is that in a simple unbounded system in at least part of the
system arbitrary flows of value are possible between accounts.

160 Chapter 7. Systems with Restricted Transactions

Digraphs and hereditary accounting systems

In the final part of the chapter we turn to a particular type
of simple system, namely the hereditary systems. Recall that an
unbounded accounting system A is hereditary if, whenever v is a
feasible transaction vector of A, every transaction vector with type
equal to or preceding type(v) is also feasible.

There is a close relationship between hereditary systems and their
feasible digraphs, as is already indicated by the following result.

(7.3.3). Let A be a hereditary unbounded accounting system with
accounts a1, . . . , an. Then e(i, j) is a feasible transaction vector for
A if and only if 〈aj, ai〉 is an edge of the feasible digraph of A.

Proof
If e(i, j) is feasible, then by definition of the feasible digraph there
is an edge 〈aj, ai〉. Conversely, assume that 〈aj, ai〉 is an edge. Then
there is a feasible transaction vector v of A with vi > 0 and vj < 0.
Now type(e(i, j)) ≤ type(v), so by the hereditary property e(i, j) is
feasible in A. 2

On the basis of this observation it is straightforward to show that
a hereditary system is characterized up to equivalence by its feasible
digraph.

(7.3.4). Let A and A′ be two hereditary unbounded accounting sys-
tems with account set {a1, . . . , an}. Then A and A′ are equivalent
if and only if they have the same feasible digraph.

Proof
Let D and D′ be the respective feasible digraphs of A and A′. If
A and A′ are equivalent, then by 6.2.4 they have the same monoid
and hence the same feasible transactions; therefore D = D′.

Conversely, assume that D = D′; thus 〈aj, ai〉 is an edge of D
if and only if it is an edge of D′. Applying 7.3.3, we conclude that
e(i, j) is feasible inA if and only if it is feasible inA′. SinceA andA′
are hereditary, they are elementary, so their monoids are generated
by feasible elementary vectors. It follows that Mon(A) = Mon(A′),
so A and A′ are equivalent. 2

This result illustrates the close relationship between a hereditary
system and its feasible digraph. The next result illustrates the con-
nection between hereditary systems and strongly transitive digraphs

7.3. The Digraph of a Simple System 161

and, in particular, shows how to construct hereditary systems from
strongly transitive graphs.

(7.3.5). The following statements are valid:

1. Let A be a hereditary unbounded accounting system with feasible
digraph D. Then D is strongly transitive and 〈aj, ai〉 is an edge
of D if and only if e(i, j) is feasible in A.

2. Let D be a strongly transitive digraph with finite vertex set
V (D) = {a1, . . . , an}. Let A be the unbounded accounting sys-
tem with account set V (D) whose allowable transactions are the
e(i, j) for which 〈aj, ai〉 is an edge of D. Then A is a hereditary
system with feasible digraph D.

Proof

1. This follows from 7.3.1 and 7.3.3.

2. The first step in the proof is to show that D is the feasible digraph
of A: of course the feasible digraph D of A contains all the edges in
D. Suppose that 〈ai, aj〉 is an edge of D. Then there exists a feasible
transaction vector v with vi < 0 and vj > 0. Now v is a sum of
allowable vectors e(r, s) where 〈as, ar〉 is an edge in D. Hence at least
one of these summands must have negative i-component. Therefore
ai 6∈ Vis(D) ∪ Vsi(D), which, because of the structure of D, means
that ai ∈ Vso(D)∪Vc(D). By a similar argument aj ∈ Vc(D)∪Vsi(D).
Since D is strongly transitive, 7.3.2 implies that there is an edge in
D from ai to aj. It follows that D and D are the same digraph. It
remains to prove that A is hereditary.

Let v be a feasible transaction of A. Let U denote the set of
all non-feasible transaction vectors u such that type(u) ≤ type(v).
Assuming that U is not empty, we can choose an element u of U
which is minimal in the ordering of types; this is because the set of
types is finite. Since u 6= 0, we have ui > 0 and uj < 0 for some i, j.
Then vi > 0 and vj < 0 since type(u) ≤ type(v). Next v is a sum of
allowable elementary vectors. This sum must involve vectors e(i, r)
and e(s, j) for some r, s. Hence there are edges 〈ar, ai〉 and 〈aj, as〉
in D. Because D is strongly transitive, 〈aj, ai〉 is an edge of D and,
by definition of A, it follows that e(i, j) is allowable and hence is
feasible.

162 Chapter 7. Systems with Restricted Transactions

Now define

u′ =

{
u + uj e(i, j) if ui + uj > 0

u− ui e(i, j) if ui + uj ≤ 0
.

Then u′k = uk for k 6= i, j; also u′i = ui+uj and u′j = 0 if ui+uj > 0.
In addition u′i = 0 and u′j = ui+uj if ui+uj ≤ 0. Clearly type(u′) <
type(u), so u′ is feasible by minimality of type(u). Finally u =
u′+ (−uj) e(i, j) if ui + uj > 0 and u = u′+ ui e(i, j) if ui + uj ≤ 0.
But u′ and e(i, j) are feasible, from which it follows that u is feasible
since ui > 0, uj < 0. By this contradiction the set U is empty and
A is hereditary. 2

One consequence of 7.3.5 is a method for distinguishing the hered-
itary systems among the elementary ones.

(7.3.6). Let A be an elementary unbounded accounting system with
accounts a1, . . . , an and feasible digraph D. Then A is hereditary if
and only if e(i, j) is feasible in A whenever 〈aj, ai〉 is an edge of D.

Proof
The necessity of the condition being a consequence of 7.3.3, we as-
sume it is satisfied inA. By 7.3.1 the digraph D is strongly transitive
and therefore by 7.3.5 there is a hereditary system A on the same
account set as A whose feasible digraph is D. By 7.3.3 the systems
A and A have the same feasible elementary transactions and hence
the same monoid. Thus A and A are equivalent and, since A is
hereditary, it follows that A is hereditary. 2

Remark
It is not true that an elementary unbounded system whose feasible
digraph is strongly transitive is hereditary. Indeed, in Example 7.3.4
the feasible digraph is strongly transitive, but the accounting system
is not hereditary: for e(4, 1) is not feasible, despite the existence of
an edge 〈a1, a4〉 in the digraph.

Counting hereditary systems

One consequence of 7.3.4 is that a hereditary system A is de-
termined up to equivalence by its feasible digraph. The problem of
counting non-equivalent hereditary systems is therefore reduced to
that of counting the strongly transitive digraphs D with a fixed set
of n vertices. Note that D is determined by the four subsets Vis(D),

7.3. The Digraph of a Simple System 163

Vso(D), Vc(D), Vsi(D) of the vertex set V (D). As a first step we
show how to count the isomorphism types of strongly transitive di-
graphs. The terminology here is that two digraphs are isomorphic
if there is a bijection between their vertex sets which preserves edge
connectedness. To count the isomorphism classes we have to solve a
distribution problem about placing n identical objects in four boxes
subject to suitable conditions.

(7.3.7). The number of non-isomorphic strongly transitive digraphs
with n vertices is equal to

1 +
1

6
(n− 1)(n2 + 7n− 6).

The number of connected digraphs among these is

1

2
(n2 + 3n− 6)

provided n ≥ 2, and it is 1 if n = 1.

Proof
Let V = {v1, v2, . . . , vn} be the set of vertices to be used. The
strongly transitive digraphs on V correspond up to isomorphism to
ordered partitions of V

V = Vis ∪ Vso ∪ Vc ∪ Vsi

where Vis, Vso, Vc, Vsi are to be the subsets Vis(D), Vso(D), Vc(D),
Vsi(D) for the digraph D. The isomorphism type of the digraph
is determined once the partition is specified. The corresponding
combinatorial problem is that of placing n identical objects in four
distinct boxes; in fact we have to count the solutions (`is, `so, `c, `si)
in non-negative integers of the equation

`is + `so + `c + `si = n,

subject to two obvious restrictions:

1. `is 6= n− 1;

2. if `is 6= n and `c ≤ 1, then `so, `si > 0.

If `is is chosen to be n, then of course `so = `c = `si = 0, and there
is just one possible solution. Assume therefore that `is ≤ n− 2 and

164 Chapter 7. Systems with Restricted Transactions

suppose `is has been chosen to be j where 0 ≤ j ≤ n− 2. Then we
have to solve

`so + `c + `si = n− j.

If `c = 0, there are n − j − 1 choices for `so and `si since by the
second condition neither can be zero. If `c = 1, there are n− j − 2
choices for the same reason.

Next assume that `c ≥ 2. The problem is now that of placing
n−j identical objects in three boxes with at least two objects in the
box corresponding to `c. By a well-known combinatorial formula –
see [2] – the number of ways to do this is(

(n− j − 2) + 3− 1
n− j − 2

)
=

(
n− j

n− j − 2

)
=

(
n− j

2

)
.

Adding up the numbers of distributions for j = 0, 1, . . . , n − 2 and
remembering the single distribution for j = `is = n, we obtain as
the number of distributions

1 +
n−2∑
j=0

(
(n− j − 1) + (n− j − 2) +

(
n− j

2

))
,

which equals

1 +
1

2
n(n− 1) +

1

2
(n− 1)(n− 2) +

(
n + 1

3

)
,

since
(
2
2

)
+
(
3
2

)
+ · · ·+

(
n
2

)
=
(
n+1
3

)
. After simplification, the number

of distributions is found to be 1 + 1
6
(n− 1)(n2 + 7n− 6).

Next we count the connected digraphs: for these Vis is empty,
i.e., `is = 0. If n = 1, the number of these is obviously 1, so let
n ≥ 2. Now `is = 0, so we have to solve `so + `c + `si = n. If `c = 0,
these are n − 1 solutions and if `c = 1, there are n − 2. If `c ≥ 2,
then the number of solutions is(

(n− 2) + 3− 1
n− 2

)
=

(
n
2

)
by the distribution argument above. Hence the number of indecom-
posable digraphs is

(n− 1) + (n− 2) +

(
n

2

)
=

1

2
(n2 + 3n− 6). 2

7.3. The Digraph of a Simple System 165

Example (7.3.5).
By 7.3.7 there are nine isomorphism types of strongly transitive

digraphs with three vertices and six of these are connected. These
digraphs are displayed in the following list.

(i)

|Vis(D)| = 0 |Vso(D)| = 0 |Vc(D)| = 3 |Vsi(D)| = 0.

•

• •ww ++

WW77

kk
�

(ii)

|Vis(D)| = 0 |Vso(D)| = 0 |Vc(D)| = 2 |Vsi(D)| = 1.

•

•

•

''OOOOOOOOOO

77oooooooooo

JJ

(iii)

|Vis(D)| = 0 |Vso(D)| = 1 |Vc(D)| = 2 |Vsi(D)| = 0.

•

•

•

''OOOOOOOOOO

77oooooooooo

J

(iv)

|Vis(D)| = 0 |Vso(D)| = 1 |Vc(D)| = 1 |Vsi(D)| = 1.

• • •// //&

166 Chapter 7. Systems with Restricted Transactions

(v)

|Vis(D)| = 0 |Vso(D)| = 1 |Vc(D)| = 0 |Vsi(D)| = 2.

•

•

•

77oooooooooo

''OOOOOOOOOO

(vi)

|Vis(D)| = 0 |Vso(D)| = 2 |Vc(D)| = 0 |Vsi(D)| = 1.

•

•

•''OOOOOOOOOO

77oooooooooo

The remaining digraphs are disconnected.

(vii)

|Vis(D)| = 1 |Vso(D)| = 0 |Vc(D)| = 2 |Vsi(D)| = 0.

•

•

•

J

(viii)

|Vis(D)| = 1 |Vso(D)| = 1 |Vc(D)| = 0 |Vsi(D)| = 1.

• • •//

7.3. The Digraph of a Simple System 167

(ix)

|Vis(D)| = 3 |Vso(D)| = 0 |Vc(D)| = 0 |Vsi(D)| = 0.

• • •

Of course these digraphs are not yet labeled, which means that
the accounting systems are not fully specified. For each type of di-
graph we have to label the vertices by the accounts a1, a2, a3 in all
possible ways. This is easy to do in this instance since the pos-
sibilities are very limited. A quick check of the digraphs reveals
that the numbers of labeled digraphs of each respective type are
1, 3, 3, 6, 3, 3, 3, 6, 1, giving a total of 29 labeled digraphs. Hence, up
to equivalence there are 29 hereditary accounting systems with three
accounts. The count of labeled connected digraphs is 1, 3, 3, 6, 3, 3,
giving 19 in all. Thus there are 19 indecomposable hereditary ac-
counting systems with three accounts.

It is natural to enquire if an explicit formula for the number of
equivalence classes of hereditary accounting systems can be found.
The answer is affirmative, but it involves a more complex distribu-
tion problem in which the distributed objects, the accounts, are all
different. There is standard procedure in combinatorics for solv-
ing such problems which calls for the use of exponential generating
functions. These are formal power series of the form

1 +
c1x

1!
+

c2x
2

2!
+ · · ·+ cnx

n

n!
+ · · ·

in which the coefficient cn of xn

n!
is the number of distributions sought

in the problem: here the n! is inserted to allow for permutations of
the n objects being distributed. For a detailed account of exponen-
tial generating functions see [2].

The definitive result is:

(7.3.8). The number of equivalence classes of unbounded hereditary
accounting systems with a fixed set of n accounts is

4n − (n + 2)2n + n + 2.

The number of indecomposable systems among these is

3n − 2n− 2,

168 Chapter 7. Systems with Restricted Transactions

provided that n ≥ 2. When n = 1, the number is 1.

Proof
We use the notation of the proof of 7.3.7: here too it is necessary to
treat separately the cases `c = 0, 1 and `c ≥ 2.

Suppose first that `c = 0. The problem is to place n different
objects in three boxes with two of the boxes non-empty. The gen-
erating function for this is

ex(ex − 1)2 = e3x − 2e2x + ex,

where, of course, ex is the exponential function

1 +
x

1!
+

x2

2!
+ · · ·+ xn

n!
+ · · · .

The coefficient of xn

n!
in the generating function is clearly 3n−2n+1+1.

Next suppose that `c = 1. Now only n−1 objects are to be placed in
the boxes, so the number is 3n−1−2n+1, but this must be multiplied
by n since there are n choices for the single object to go in box Vc.

Now suppose that `c ≥ 2. In this case there is no restriction on
`is, `si, `so, so that the generating function is

(ex − 1− x)(ex)3 = e4x − e3x − xe3x

and the coefficient of xn

n!
is 4n−3n−n3n−1. If these numbers are added

up and the single case `is = n counted, we obtain after cancelation
4n − (n + 2)2n + n + 2, as claimed.

Turning to the connected case, we have `is = 0. Again it is
necessary to distinguish the values of `c. When `c equals 0 or 1, the
generating function is (ex − 1)2 and the respective coefficients of xn

n!

and xn−1

(n−1)! are 2n − 2 and 2n−1 − 2, but the second of these must be

multiplied by n. Let `c ≥ 2; then the generating function is

(ex − 1− x)(ex)2 = e3x − e2x − xe2x,

so the coefficient of xn

n!
is 3n−n2n−1−2n. Addition of these numbers

yields 3n − 2n − 2, provided n ≥ 2: when n = 1, the answer is
obviously 1. 2

For example, if we set n = 3 in 7.3.8, we obtain 29 and 19 as
the numbers of systems and indecomposable systems respectively,
confirming what was found in Example 7.3.5.

7.3. The Digraph of a Simple System 169

Having seen that hereditary accounting systems have a nice de-
scription in terms of their feasible digraphs, one may wonder whether
a real life system could be of this type. Hereditary systems have the
property that, given active accounts ai and aj which are neither
sources or sinks, there is a feasible transaction vector e(i, j); thus
one can by a suitable sequence of allowable transactions arrange for
a transfer of value from aj to ai, without in the end changing the
balances of other accounts. Thus a hereditary system has a high
degree of fluidity built into its structure, a feature which could be
useful in real life systems, but which might require strong controls
to reduce the risk of inappropriate operations being applied to the
system.

Chapter Eight

Algorithms

8.1. Decision Problems for Accounting Systems

In the previous chapter a large number of special types of ac-
counting system were introduced by restricting the allowable trans-
actions in various ways. The motivation behind this study was to
discover which types of system are closest to reality. Continuing this
line of enquiry, we observe that one natural test of the practicality
of a proposed model is whether it is possible, in principle at least,
to perform routine operations on the system, including checks and
security procedures, by machine implementation. As a first step let
us identify some of the procedures one would expect to be able to
implement for an accounting system.

1. Decide whether a given transaction is allowable.

2. Decide whether a given balance vector is allowable.

3. Decide whether a given transaction is feasible.

4. Decide whether a final balance vector could actually have oc-
curred by correctly applying a sequence of allowable transac-
tions to a given initial balance vector.

5. Decide whether two accounting systems on the same account
set are equivalent, i.e., if they have the same feasible transac-
tions and hence the same monoid.

6. Decide whether a given accounting system is of a specific type
such as those described in Chapter 7.

8.1. Decision Problems 171

First of all, some explanation is called for regarding what is meant
by a “decision problem” like those listed here. In general it is pos-
sible to decide whether a statement is true or false if there is an
algorithm which will give a definite “yes” or “no” to the question.
Here the term “algorithm” is used in the classical sense: there is an
algorithm to produce a set of data if the data can be obtained from
the outputs of a finite number of Turing machines. Here a Turing

machine can be thought of as an abstract model of a computer,
related to, but more powerful than, a finite state automaton.

←→

∧

Specifically, a Turing machine consists of a “head” and a “tape”
divided into squares each of which has a symbol written on it. The
head is able to read symbols on the squares. At any instant the
machine is in one of a finite number of states and the set of symbols
is finite. It scans a square on the tape and reads the symbol on
it; as a result it goes to new state and writes another symbol on
the square. The head then moves either left or right by one square
and repeats the procedure. Turing machines are fundamental in the
modern theory of computability: see [3], [4] or [5] for details.

Notice that there is no requirement restricting the number of
steps involved in an algorithm; it is sufficient to know that it will
halt after finitely many steps. Such algorithms might therefore re-
quire large amounts of computing power – and indeed some of those
described below surely do. However, with the enormous increase
in computing power in recent years this is not necessarily a serious
objection.

Several of the decision problems listed above lead directly to
questions about finite systems of linear equations over the integers.
The problem is usually to determine if the system has a solution
in non-negative integers. Fortunately this is an area of applied al-
gebra which has been extensively developed. Such problems are

172 Chapter 8. Algorithms

special types of linear programming problems called integer pro-

grams. Some highly effective algorithms for solving such problems
are available and may be applied in our situation.

In Section 8.2 we consider some wide classes of accounting sys-
tems for which it is possible to decide if a given transaction vector
or balance vector is allowable. At the same time examples are given
which show that there are limits to what is computable in general
accounting systems.

Section 8.3 is concerned with accounting systems which are finitely
specifiable, i.e., equivalent to finitely specified systems (in which
there are finitely many allowable particular transactions, in addition
to all transactions of certain allowable types). A number of algo-
rithms for finitely specifiable systems are described, most of them
being based on integer programming. The existence of these prac-
tical algorithms lends support to the viewpoint that finitely specifi-
able systems should be our premier model for accounting systems.
Finally, Section 8.4 describes algorithms which can, in favorable cir-
cumstances, decide if an accounting system is inverse, elementary,
or hereditary.

8.2. Recursive Accounting Systems

We begin with a review of some basic terminology from recursion
theory: as references for this we cite [3] and [4]. Let

P

denote the set of positive integers. A subset S of P is called re-

cursively enumerable if its elements are the output of some Turing
machine. Equivalently, one could say that S is the set of values
of a partial recursive function. In practice it is usually convenient
to think of the elements of S as being “enumerated” by a Turing
machine in the form of a sequence s1, s2,

Next a subset S of P is said to be recursive if both S and its
complement P\S are recursively enumerable. Thus there are Turing
machines that can enumerate the elements of S and also the elements
of its complement. Another way to express this is to say that S is
recursive if and only if there is an algorithm which, when a positive
integer n is given, decides whether or not n belongs to S. The
last statement is often referred to as asserting that the membership

problem for the subset S is solvable.

8.2. Recursive Accounting Systems 173

It is easy to see that there are subsets of P which are not re-
cursively enumerable. For the number of Turing machines (or algo-
rithms) is surely countable since each one is determined by a finite
list of rules. On the other hand, there are uncountably many sub-
sets of P, so some of them – in fact uncountably many – must fail
be recursively enumerable. It is much harder to show that there
exist recursively enumerable subsets of P which are not recursive:
for such a subset S it is possible to enumerate the elements of S (as
the output of Turing machines), but not those of its complement
P\S. Thus there is no algorithm which can decide if an integer is
not in S. For this fundamental result see [3] or [4].

So far the terms recursively enumerable and recursive have been
applied to subsets of P, but they can equally well be applied to
the subsets of any countably infinite set U since the elements of
U may be labeled by positive integers {ui | i ∈ P}. This usage is
important since it will permit us to speak of recursive and recursively
enumerable subsets of Baln(Z).

These concepts will be used to introduce two wide classes of ac-
counting systems that may be thought of as the most general sys-
tems to which algorithms can be applied in any useful way.

Definitions

Let A = (A| T | B) be an accounting system over Z with n ac-
counts. If T and B are recursively enumerable subsets of Baln(Z),
then A is called a recursively enumerable accounting system. If T

and B are recursive subsets of Baln(Z), then A is said to be a re-

cursive accounting system. Clearly a recursive system is recursively
enumerable, but the converse is false.

Note on the domain of account values

The preceding definitions have been formulated for accounts over
Z, but they can be stated so as to apply to an accounting system
over an ordered domain R which is computable. Roughly speaking,
this means that R is countable, the ring operations of addition,
multiplication and the formation of negatives in R are computable
by Turing machines, and the identity problem for R is solvable: the
last statement means that given elements r1, r2 of R, it is possible
to decide if r1 6= r2. It is evident that Z is a computable ring in this
sense. It is known that every finitely generated commutative ring
is computable, so there are many possibilities for R which might

174 Chapter 8. Algorithms

serve as an appropriate domain for account values. However, in the
interest of simplicity we will assume throughout this chapter that
all accounting systems are over Z.

Algorithms for recursive systems

The most basic algorithmic properties that one would require an
accounting system to have are the ability to list allowable trans-
actions and balance vectors, to decide if a given transaction and
the resulting balance vector are allowable, and, if so, to apply the
transaction and compute the new balance vector. Recursively enu-
merable systems and recursive systems are characterized by these
properties.

(8.2.1). Let A be an accounting system.

1. There are algorithms which can enumerate the allowable trans-

actions and the allowable balances of A if and only if A is a

recursively enumerable system.

2. There are algorithms which can decide if a given transaction is

allowable and if a given balance vector is allowable if and only

if A is a recursive system.

This result is an immediate consequence of the definitions given
above. Recursive systems have the crucial ability to accept or reject
a transaction, and in case of acceptance to compute the new balance.

(8.2.2). Let A be a recursive accounting system with n accounts.

Then there is an algorithm which, when given vectors b(0) and v

in Baln(Z), with b(0) the current balance of A, either rejects the

transaction v or else accepts it and records b(0) + v as the new

balance vector.

Proof

Let A = (A| T | B); thus T and B are recursive subsets of Baln(Z).
The algorithm decides whether v belongs to T and, if this is true,
it then decides if b(0) + v belongs to B; there are algorithms to
perform these actions since T and B are recursive sets. If the answer
is positive in both cases, then b(1) = b(0) + v is the new balance
vector. Otherwise the balance vector remains b(0). 2

Notice that 8.2.2 mirrors the operation of the automaton of 6.2:
the additional information provided here is that the system can be

8.2. Recursive Accounting Systems 175

operated by using Turing machines. It is important to realize that
there are accounting systems which are not recursively enumerable,
and also recursively enumerable systems which are not recursive.

Example (8.2.1).

Let S1 be a non-recursively enumerable subset of P – recall that
there are uncountably many of these. Let A1 = (A| T1| B1) be the
2-account system for which

T1 = B1 =

{

[

a

−a

]

∣

∣

∣

∣

∣

a ∈ S1

}

.

The system A1 is not recursively enumerable: for if it were possible
to enumerate the elements of T1 by means of a Turing machine, the
same would be true of the elements of S1.

Example (8.2.2).

Let S2 be a recursively enumerable, but non-recursive subset of P.
Define an accounting system A2 = (A| T2| B2) on two accounts by

T2 = B2 =

{

[

a

−a

]

∣

∣

∣

∣

∣

a ∈ S2

}

.

Then A2 is recursively enumerable since T2 is, but it is not recursive
since T2 is not be recursive.

Of course the accounting systems appearing in these examples
are of purely theoretical interest, but their inclusion here serves to
demarcate the limits of computability in accounting systems.

We move on to consider which types of system introduced in
Chapter 7 have good algorithmic properties. It is reassuring that
many types of finitely specifiable system are recursive.

(8.2.3). A finitely specified system is recursive if and only if it has

a recursive set of allowable balance vectors.

Proof

Let A = (A| T0, T1| B) where T0 is the set of allowable transaction
types, T1 is a finite set of allowable vectors and B is the set of all
allowable balance vectors. Suppose that B is recursive. Assume that
A has n accounts and that v ∈ Baln(Z) is given. The algorithm to
decide if v is allowable in A proceeds as follows: first it determines if
type(v) belongs to T0 and if not, whether v belongs to T1. Note that

176 Chapter 8. Algorithms

T0 and T1 are finite sets, so this is certainly possible. This means
that we can decide whether v is an allowable transaction vector.
Next let b ∈ Baln(Z) be given; since B is recursive, there is an
algorithm to decide if b ∈ B, i.e., whether b is an allowable balance
vector for A. Therefore A is a recursive system. The converse is
clearly true. 2

For example, a finitely specified system is recursive if either (i)
it is unbounded, i.e., all balance vectors are allowable, or (ii) it is
absolutely bounded, so there are just finitely many allowable balance
vectors.

A natural extension of these problems is to decide whether a given
balance vector is feasible for a system, i.e., whether it is obtainable
by a sequence of allowable transactions. This will be considered in
the following section.

8.3. The Balance Verification Problem

An important problem for accounting systems is the construction
of an algorithm which can verify balances. More precisely, suppose
that an accounting system A had an initial balance vector b(i) and
that the final balance vector at the end of some period of time is
b(f). The critical question is whether b(f) could really have been
obtained from b(i) by applying a finite sequence of allowable trans-
actions of A, while satisfying the balance restrictions of A. This
will be called the balance verification problem for A. If the balance
verification problem can be solved for the system A, then the asso-
ciated algorithm will provide a useful safeguard against misuse or
malfunction of the system.

In the interest of simplicity we assume that A is an unbounded
accounting system with n accounts: we will have something to say
about bounded systems later. Suppose that b(i) and b(f) are the
respective initial and final balance vectors of A over some period.
For b(f) to be a legitimate final balance vector, there must exist a
sequence of allowable transaction vectors v(1),v(2), . . . ,v(m) such
that, when the corresponding transactions are applied in sequence
to b(i), the final balance vector b(f) is obtained. Thus

fv(m) ◦ fv(m−1) ◦ · · · ◦ fv(1)(b
(i)) = b(f),

where the function fv is given by the equation fv(b) = b + v since

8.3. The Balance Verification Problem 177

there are no balance restrictions for A. This is equivalent to requir-
ing that b(f) = b(i) + v(1) + · · ·+ v(m), that is

b(f) − b(i) = v(1) + · · ·+ v(m),

which simply states that b(f) − b(i) must belong to Mon(A). Con-
versely, if this conclusion is true, then b(f)−b(i) is a sum of allowable
vectors and we see by reversing the argument above that b(f) is a
legitimate final balance vector.

What the preceding discussion shows is that the balance veri-
fication problem for an unbounded system A is equivalent to the
problem of deciding whether a given element of Baln(Z) belongs
to the submonoid Mon(A). This is the membership problem for
Mon(A). Another formulation of the problem is as the feasibility

problem for A, which is to decide if a given transaction is feasible
for A. Therefore we have the following result.

(8.3.1). For an unbounded accounting system A the following state-

ments are equivalent:

1. the balance verification problem is solvable for A;

2. the membership problem for Mon(A) is solvable;

3. the feasibility problem for A is solvable.

A noteworthy consequence of this result is:

(8.3.2). Let A and A′ be two equivalent unbounded accounting sys-

tems. If the balance verification problem is solvable for A, then it is

solvable for A′.

The reason for this is that by definition Mon(A) = Mon(A′) and the
second version of the balance verification problem yields the result.

Verifying balances in finitely specifiable systems

It is an important property of finitely specifiable accounting sys-
tems that the balance verification problem is always solvable. What
is more, the solution involves an efficient algorithm.

(8.3.3). Let A be a finitely specifiable, unbounded accounting sys-

tem. Then the balance verification problem is solvable for A.

178 Chapter 8. Algorithms

Proof

In the first place we observe thatA is equivalent to a finitely specified

system A′. Then, on the basis of 8.3.2, we see that it suffices to
prove the result for A′, so there is no loss in assuming that A is a
finitely specified system, say A = (A| T0, T1), where as usual T0 is a
set of allowable transaction types and T1 is a finite set of allowable
transaction vectors. It is assumed that we have explicit knowledge
of the sets T0 and T1, which of course constitutes a finite amount of
data.

According to 8.3.1 the balance verification problem forA is equiv-
alent to the membership problem for the submonoid Mon(A). There-
fore the problem is to find an algorithm which, when a vector
v ∈ Baln(Z) is given, decides if v ∈ M = Mon(A): here n is
the number of accounts in A. Let

T0 = {t(1), . . . , t(r)} and T1 = {v(1), . . . ,v(s)}

where t(i) is a transaction type, (i.e., a column vector with entries 0,
+ or −), and v(1), . . . ,v(s) are given vectors in Baln(Z). Of course
these vectors are assumed to be known. Then v ∈M if and only if
there is an expression

v = w(1) + · · ·+ w(r) + `1v1(1) + · · ·+ `sv(s),

where w(i) ∈ Baln(Z) is of type t(i) and the `j are non-negative
integers. Thus the problem is to decide whether or not such an
expression exists.

The sign of an entry of w(i) is determined by the corresponding
entry of its type t(i). Let the positive entries of w(i) be 1 + xij,
j = 1, 2, . . . , pi, and the negative entries −1 − yij, j = 1, 2, . . . , qi,
where xij, yij ≥ 0, all other entries of w(i) being 0. Equating
corresponding entries on each side of the equation for v, we obtain
a system of n linear equations over Z for the s +

∑

r

i=1
(pi + qi)

unknowns xij, yij, `k. Also, it is necessary to adjoin the equations

pi
∑

j=1

(1 + xij)−

qi
∑

j=1

(1 + yij) = 0, i = 1, . . . , r,

these being the conditions for the w(i) to be balance vectors. For
there to be an expression for v of the type just considered, it must

8.3. The Balance Verification Problem 179

be possible to find a solution of the linear system of n+ r equations
in non-negative integers xij, yij, `k.

The foregoing argument shows that in order to solve our problem
we need a way of determining whether a linear system of equations
over Z has a non-negative integer solution. This is an integer pro-

gramming problem. There are several efficient algorithms available
for solving integer programs, of which the best known is Gomery’s

fractional algorithm. It is essentially a refinement of the well known
simplex algorithm designed to eliminate fractional solutions. The
proof of the theorem can therefore be completed by invoking the
existence of such an algorithm. 2

The method of proof of 8.3.3 will now be illustrated with a nu-
merical example: to follow all the details a knowledge of integer
programming is necessary – see for example [6].

Example (8.3.1).

An unbounded accounting system A with three accounts has one
allowable transaction type and one explicit allowable transaction,





−
+
+



 and





−100
−100

200



 .

The balance vectors of A at the beginning and end of an accounting
period are recorded as





100
−100

0



 and





−300
−200

500



 ,

respectively. The question is whether the latter is in fact a possible
final balance vector for A.

The problem here is to decide if the vector

v =





−300
−200

500



−





100
−100

0



 =





−400
−100

500





is feasible in A: for then there will be a sequence of allowable trans-
actions which transform the initial balance vector into the final one.

180 Chapter 8. Algorithms

Now v is feasible if and only if there is an expression

v = `1





−100
−100

200



 +





−1− y11

1 + x11

1 + x12





where `1, x11, x12, y11 are non-negative integers. The conditions for
this to hold are that











−100 `1 − 1− y11 = −400

−100 `1 + 1 + x11 = −100

200 `1 + 1 + x12 = 500

.

Notice that addition of these equations yields

(−1− y11) + (1 + x11) + (1 + x12) = 0,

which is the condition for the second vector in the expression for v

to be a balance vector. Therefore all we need to do in this case is
determine if the linear system











100 `1 + y11 = 399

100 `1 − x11 = 101

200 `1 + x12 = 499

.

has a solution for `1, y11, x11, x12 in non-zero integers. One of the
integer programming algorithms can be applied to show that there
are non-negative integral solutions of this linear system: in fact

`1 = 2, x11 = 99, x12 = 99, y11 = 199

is a solution. Thus

v = 2





−100
−100

200



 +





−200
100
100



 ,

so that v ∈ Mon(A) and v is feasible. The conclusion is therefore

that





−300
−200

500



 is indeed a possible final balance vector for the system:

transactions which produce this balance are (in any order)




−200
−200

400



 and





−200
100
100



 .

8.3. The Balance Verification Problem 181

There is a significant application of 8.3.3 to the equivalence prob-
lem for finitely generated systems.

(8.3.4). There is an algorithm which, when two finitely generated,

unbounded accounting systems A and A′ with the same account set

are given, decides if they are equivalent.

Proof

By hypothesis both Mon(A) and Mon(A′) can be generated by
finitely many allowable balance vectors, say by v(1), . . . ,v(m) and
v(1)′, . . . ,v(m′)′ respectively. It is assumed that these vectors are
known explicitly. NowA andA′ are equivalent if and only if Mon(A)
and Mon(A′) are equal, i.e., Mon(A) ⊆ Mon(A′) and Mon(A′) ⊆
Mon(A). Hence A and A′ are equivalent precisely when each v(i)
belongs to Mon(A′) and each v(j)′ belongs to Mon(A). This is
decidable by 8.3.3. 2

Verifying balances with balance restrictions

It is a more difficult problem to construct an algorithm which
can check the validity of a final balance vector when the accounting
system has balance restrictions. The reason is that, in addition to
finding a sequence of allowable transactions leading from the initial
balance vector to the final one, it is necessary to verify that all the
intermediate balances that appear are allowable. As a consequence
the order in which the transactions are applied is significant.

In order to solve the balance verification problem it may be nec-
essary to examine all sequences of allowable transactions that lead
from the initial to the final balance vector. In the case of a finitely
specified system such an examination may be impossible if there are
infinitely many allowable balance vectors. On the other hand, if
the system has only finitely many allowable balance vectors, then it
is impossible to apply to the system all transaction vectors of any
one type, since these are infinite in number. Thus we might as well
exclude allowable types from the system, in which case there are
only finitely many allowable transactions and the system is finitely
generated. For this reason attention is directed at finitely generated
systems.

(8.3.5). Let A = (A| T | B) be an accounting system with T and B

both finite. Then the balance verification problem is solvable for A.

182 Chapter 8. Algorithms

Proof

Let n be the number of accounts in A. Suppose we are given vectors
b(i), b(f), representing the initial and final balance vectors over some
period; these of course should belong to B. To decide if b(f) is a
legitimate balance vector for A, we have to consider all sequences
of allowable transactions v(1),v(2), . . . ,v(k) such that

fv(k) ◦ fv(k−1) ◦ · · · ◦ fv(1)(b
(i)) = b(f),

where fv(b) = b + v if v ∈ T and b + v ∈ B. The sequence
produces intermediate balance vectors b(0) = b(i), b(1), . . . ,b(k) =
b(f) where

b(j) = fv(j) (b(j − 1)), j = 1, 2, . . . , k.

For b(f) to be an acceptable final balance there must be a sequence
{v(j)} such that all the b(j) belong to B.

Now if such a sequence of allowable transactions exists, there is
one of shortest length, say v(1), . . . ,v(k), with an associated se-
quence of balance vectors b(1), . . . ,b(k): we can assume that k > 0
here. Suppose that b(j) = b(j ′) where j < j ′. Then the transac-
tions v(j + 1), . . . ,v(j ′) can be deleted from the sequence, leaving
a sequence of shorter length which still leads from b(i) to b(f). By
this contradiction the balance vectors b(0),b(1), . . . ,b(k) are all
different and as a result we can derive the inequality k + 1 ≤ |B|.
Therefore the number ` of sequences that need to be examined sat-
isfies

` ≤ |T |k ≤ |T ||B|−1.

Next let v(1), . . . ,v(k) be one of the shortest sequences of al-
lowable transactions to be screened and let b(j), j = 0, 1, . . . , k, be
the associated intermediate balance vectors. Each of the balance
vectors b(j) can be tested for allowability. If all pass the test, then

b(j) = fv(j) (b(j − 1)) = b(j − 1) + v(j),

since b(j) ∈ B and v(j) ∈ T , and the conclusion is that the sequence
of v(j)’s produces the final balance vector b(f), which is therefore
an acceptable final balance.

The preceding algorithm is to be applied to each of the at most
` sequences v(1), . . . ,v(k). If a sequence appears for which all the

8.4. More Algorithms 183

intermediate balances are allowable, then b(f) is an acceptable fi-
nal balance vector and the algorithm terminates: if none of the
sequences meets this condition, then b(f) is not a possible final bal-
ance. 2

The limitations of the algorithm of 8.3.5 will be apparent. It may
require enumeration of as many as |T ||B|−1 sequences of allowable
transaction vectors, a number that is exponential in |B|. Of course
we could ignore the intermediate balance vectors and just verify that
the final balance vector is allowable. In that case the efficient inte-
ger programming algorithm employed in 8.3.3 can be applied. One
might argue that this weaker verification procedure is sufficient since
the intermediate balances are, after all, transient. However, what
could not be detected in this way is a transaction which is illegal
because of some violation of the intermediate balance restrictions,
but which leads to an acceptable final balance.

8.4. More Algorithms

The final section of the chapter is concerned with the construction
of algorithms which can decide if a given finitely generated account-
ing system is one of certain special types discussed in Chapter 7.

(8.4.1). There are algorithms which, when a finitely generated un-

bounded accounting system is given, can decide if the system is:

1. an inverse system;

2. elementary.

Proof

LetA be the given system, which is assumed to have the form (A| T)
with T = {v(1), . . . ,v(m)}, a finite set of allowable vectors; thus
Mon(A) = Mon〈T 〉 = M , say.

1. By definition A is an inverse system if and only if −v ∈ M

whenever v ∈M . Suppose that v ∈M and write v = `1v(1)+ · · ·+
`mv(m) where the `i are non-negative integers. Then

−v = `1(−v(1)) + · · ·+ `m(−v(m)),

from which it follows that A is inverse if and only if −v(i) ∈M for
i = 1, 2, . . . , m. By the membership problem for M – see 8.3.1 and

184 Chapter 8. Algorithms

8.3.3 – we can decide whether −v(1), . . . ,−v(m) all belong to M .
Therefore we can decide if A is inverse.

2. In deciding whether A is elementary, the first step is to identify
the set T0 of all elementary vectors in M . This can be done by testing
each of the n(n − 1) elementary vectors e(i, j) for membership in
M , where n is the number of accounts. Certainly Mon〈T0〉 ⊆ M

and M will be elementary if and only if M ⊆ Mon〈T0〉. We can test
each v(i) for membership in Mon〈T0〉 by 8.3.3. Thus we can decide
if M = Mon〈T0〉. 2

It is also possible to design an algorithm to test an accounting
system for the property of being hereditary. However, since this
property is best recognized from the feasible digraph, we first need
a way to get hold of the digraph. This is accomplished in the next
two results.

(8.4.2). Let A be a finitely generated, unbounded accounting sys-

tem. Then there is an algorithm which, when given distinct accounts

ai, aj, can decide whether 〈ai, aj〉 is an edge of the feasible digraph

of A.

Proof

Let v(1), . . . ,v(k) generate M = Mon(A). Recall that 〈ai, aj〉 is an
edge of the feasible digraph if and only there exists a v ∈ M such
that vi < 0 and vj > 0. Write v = `1v(1) + · · ·+ `kv(k) where the
`r are non-negative integers. Then 〈ai, aj〉 is an edge of the digraph
if and only if it is possible to solve the two inequalities

`1(v(1))i + · · ·+ `k(v(k))i < 0 and `1(v(1))j + · · ·+ `k(v(k))j > 0

for non-negative integers `r. This an integer program containing in-
equalities; the standard integer programming algorithms still apply,
so it can be determined if there is a non-negative integral solution
for the `r. 2

Corollary. There is an algorithm which, when a finitely generated,

unbounded accounting system is given, is able to construct the fea-

sible digraph of the system.

Proof

Suppose that the system has n accounts. To construct the feasible
digraph, test each of the n(n − 1) potential edges between vertices
for membership in the digraph, using 8.4.2. 2

8.4. More Algorithms 185

We remark that 8.4.2 and its corollary remain true for finitely speci-
fiable systems, as can be seen by treating allowable transaction types
in the same way as in the proof of 8.3.3.

(8.4.3). There is an algorithm which can decide whether a given

finitely generated, unbounded accounting system is hereditary.

Proof

The first step is to decide if A is elementary, using 8.4.1. Since
hereditary systems are elementary, we may suppose that this is the
case. Next apply the corollary to 8.4.2 to construct the feasible
digraph D of A. For each edge 〈aj, ai〉 of D, we can check to see
if e(i, j) is feasible, using 8.3.1 and 8.3.3. According to 7.3.6, the
system A is hereditary if and only if this is true for every edge of
D. It follows that the algorithm can tell if A is hereditary. 2

Example (8.4.1).

Let A be the unbounded system with accounts a1, a2, a3 and allow-
able transactions

e(2, 1), e(1, 3), e(3, 1), e(3, 4).

Let us test this system to see if it is hereditary. It is obviously an
elementary system. Now construct the feasible digraph D of A,

•a1

•a2

•a3

•a4

��

KK

{{ww
w
w
w
w
w
w
w
w

ccG
G
G
G
G
G
G
G
G
G

ccG
G
G
G
G
G
G
G
G
G

{{ww
w
w
w
w
w
w
w
w

��

For each edge 〈aj, ai〉 in D, we must verify that e(i, j) is feasible inA.
This is obviously true except for the edges 〈a4, a1〉, 〈a4, a2〉, 〈a3, a2〉;
the equations e(1, 3) + e(3, 4) = e(1, 4), e(2, 1) + e(1, 3) + e(3, 4) =
e(2, 4) and e(2, 1)+ e(1, 3) = e(2, 3) tell us that the condition holds
for these edges. Therefore A is hereditary.

186 Chapter 8. Algorithms

Example (8.4.2).

Let A be the unbounded system with three accounts and three al-
lowable transactions





100
−200

100



 ,





−300
−100

400



 ,





−30
−30

60



 .

For this system one can see directly that there are no feasible ele-
mentary transactions. The reason is that all entries of the allowable
vectors are divisible by 10 and hence 10 divides each entry of a
feasible transaction, which excludes all the elementary transactions.
Consequently A is not elementary and so it is not hereditary.

It is more of a challenge to construct an algorithm to decide if
a finitely generated, unbounded accounting system is simple, i.e.,
if its monoid can be generated by transaction vectors of the form
me(i, j) where m ∈ Z. The final result in the chapter confirms the
existence of such an algorithm.

(8.4.4). There is an algorithm which, when a finitely generated

unbounded accounting system A is given, decides if the system is

simple and, if this is the case, finds a finite set of simple transactions

that generate the monoid of A.

Proof

Let A = (A| T) where |A| = n and T = {v1, . . . ,vk} is the finite set
of allowable transaction vectors; thus the vi generate M = Mon(A).
What must be decided is whether the monoid M can be generated
by finitely many simple transactions, i.e., transactions of the form
aije(i, j) where i 6= j, 1 ≤ i, j ≤ n and the aij are natural numbers;
furthermore, if this is true, it must also be shown how to construct
such simple transactions.

Fix i 6= j and define S to be the set of all natural numbers a such
that ae(i, j) ∈M ; then

M ∩ Mon〈e(i, j)〉 = {ae(i, j)| a ∈ S},

since Mon〈e(i, j)〉 consists of all vectors of the form ae(i, j). It is
obvious that S is a submonoid of the monoid of natural numbers N,
so by 7.2.5 it is finitely generated. Observe that membership in M

is decidable by 8.3.1 and 8.3.3. The main step in the proof consists

8.4. More Algorithms 187

in showing how to construct a finite set of monoid generators for S;
this is accomplished in three stages.

(i) There is an algorithm which, when a positive integer d is given,

decides whether S ⊆ Mon〈d〉, and if this is not true, produces an

element in S\ Mon〈d〉.
We can assume that d > 1. Suppose that S 6⊆ Mon〈d〉; then

there exists an a ∈ S which is not divisible by d and therefore has
the form a = dq+r+1 where d, r are natural numbers and r < d−1.
Hence there is an expression

(dq + r + 1)e(i, j) = `1v1 + · · ·+ `kvk

where the `i are natural numbers. For each r, this vector equation
is equivalent to a linear system over Z in the unknowns q, `i. Con-
versely, if there is a solution in non-negative integers q, `i to the
above system for some r where 0 ≤ r < d − 1, then the integer
a = dq + r + 1 belongs to S, but not to Mon〈d〉 since d does not
divide a. It follows that S 6⊆ Mon〈d〉 if and only if there is a non-
negative integer solution of one of the above linear systems for some
r where 0 ≤ r < d − 1. By the integer programming algorithm we
can decide if such a solution exists and if so, find one.

(ii) There is an algorithm which finds a finite set of generators for

the submonoid S.
The first step is to decide if S = {0}. Now S 6= {0} if and only

if there is an integer p ≥ 0 such that (p + 1)e(i, j) ∈M , i.e.,

(p + 1)e(i, j) = m1v1 + · · ·+ mkvk

where the mi are natural numbers. This is equivalent to a linear sys-
tem over Z to be solved for the non-negative integers p, m1, . . . , mk.
Now we can decide if a solution exists and if so, find one. Thus
we can decide whether S = {0}: of course, should this be the case,
nothing more need be done. Therefore we may suppose that S 6= {0}
and that an element a1 6= 0 in S has been found; thus Mon〈a1〉 ⊆ S.

Next we decide whether S ⊆ Mon〈a1〉, using (i). If this is true,
then S = Mon〈a1〉 and we are done. Thus it can be assumed that
this containment does not hold and that we have found an element
a2 ∈ S \ Mon〈a1〉; then Mon〈a1, a2〉 ⊆ S. Denote by d2 the greatest
common divisor of a1, a2. Since a1 does not divide a2, we have
d2 < d1 = a1. Next decide if S ⊆ Mon〈d2〉. Suppose this is true;

188 Chapter 8. Algorithms

since a1/d2 and a2/d2 are relatively prime, 7.2.4 may be applied to
show that Mon〈d2〉\ Mon〈a1, a2〉 is a finite set and to find an upper
bound for its elements. Each non-negative integer not exceeding
this bound can be tested for membership in S and any elements of
S found in this way may be adjoined to a1 and a2 to produce a finite
set of generators for S.

Suppose, on the other hand, that S 6⊆ Mon〈d2〉; then we can find
an element a3 in S which is not divisible by d2. Writing d3 for the
greatest common divisor of a1, a2, a3, we have d3 < d2 < d1 = a1

and also Mon〈a1, a2, a3〉 ⊆ S. The next step is to decide whether
S ⊆ Mon〈d3〉, and so on.

Since this procedure cannot continue for more than a1 steps, we
will eventually find an integer r for which dr = 1, i.e., the integers
a1, a2, . . . , ar are relatively prime, and of course Mon〈a1, a2, . . . , ar〉 ⊆
S. Therefore, by 7.2.4 again, the set N\Mon〈a1, a2, . . . , ar〉 is finite.
By testing each of its finitely many elements for membership in S

and adjoining any that are found to {a1, a2, . . . , ar}, we obtain a
finite set of generators for S.

(iii) Conclusion.
For each pair of distinct integers i, j in the range 1, 2, . . . , n, put

Sij = {a ∈ N| ae(i, j) ∈ M}, so that

M ∩ Mon〈e(i, j)〉 = {ae(i, j)| a ∈ Sij}.

(Note that Sij might be zero). By (ii) we can find a finite set of

generators for each submonoid Sij, say a
(ij)

p , p = 1, . . . , `ij. Define
M0 to be

Mon〈a(ij)

p
e(i, j) | i, j = 1, 2, . . . , n, i 6= j, p = 1, 2, . . . , `ij〉,

the submonoid generated by all the simple transaction vectors in
M ; thus M0 ⊆ M . Then A is simple if and only if M ⊆ M0, i.e.,
if vi ∈ M0 for i = 1, 2, . . . , k. By 8.3.3 this is decidable, so the
algorithm succeeds, i.e., it is able to decide if A is simple, and in the
event that this is true, it constructs a finite set of simple transactions
that generate Mon(A). 2

It is worthwhile restating what has just been established. It
is possible to determine if a given finitely generated, unbounded
accounting system A is simple and thus if there is a finite set of
simple transactions which generate its monoid. Should A be simple,

8.4. More Algorithms 189

the algorithm allows us to construct an accounting system equivalent
to A whose allowable transactions are simple. This means that it is
possible in principle to “redesign” the accounting system A in such
a way that all the allowable transaction vectors are simple.

Chapter Nine

The Extended Model

9.1. Introduction to the 10-Tuple Model

In any practical accounting system one would expect to find
built-in procedures designed to preserve the integrity of the sys-
tem. The algebraic model described in previous chapters is already
equipped with some such procedures: for example, transactions can
be screened for allowability before being applied and the resulting
balances can be scrutinized. An additional feature of finitely specifi-
able systems is the capacity to verify final balance vectors and detect
improper usage of the system, as was described in Chapter 8.

In this chapter it is shown how to attach two further security
mechanisms to the basic model. The first of these is designed to
block unauthorized use of the system by verifying that all necessary
authorizations have been obtained before a transaction is applied.
Typically such authorizations must be obtained from several units
of the company, possibly in a specified order. It turns out that such
an authorization scheme can be conveniently encoded in two integer
matrices called control matrices. These matrices are to be attached
to the basic model.

Another security mechanism that may be desirable is one that
monitors the frequency of application of a particular allowable trans-
action during an accounting period. The object is to ensure that
regular transactions, such as payments on a mortgage, interest on a
debt, payment of taxes, etc., are not applied more frequently than is
called for. This can be accomplished by specifying a frequency func-

tion which encodes the number of times that each specific allowable
transaction can be applied to the system during an accounting pe-
riod.

9.2. Authorization and Control Matrices 191

When these mechanisms are adjoined to the basic model, we ob-
tain an extended model of an accounting system which is encoded as
a 10-tuple, consisting of sets, functions, vectors and matrices. This
10-tuple model has many of the capabilities of a real life account-
ing system. Moreover its operations can be performed by automata
which are enhanced versions of the devices introduced in Chapter
6. In addition the model has the advantage that the procedures
embedded in the system are, in principle at least, implementable
in a standard programming language. Chapter 10 contains a de-
tailed example of the accounting system of a small company, with
its 10-tuple extended model.

9.2. Authorization and Control Matrices

Consider the problem of restricting use of an accounting system
to authorized units or individuals by requiring that a transaction be
authorized according to some prescribed protocol. Suppose that we
are dealing with the accounting system of an organization which has
a number of divisions, each of which may have subdivisions, depart-
ments and so on. The organization can be pictured as a hierarchy
in which the smallest independent subdivisions, or units, appear at
the lowest level. Let the set of units of the firm be ordered in some
manner, say as

U = {u1, u2, . . . , um}.

Each account in the system will likely be under the control of
one or more units, and before a transaction affecting an account
can be executed, authorizations must be obtained from the relevant
controlling units. In addition, such authorizations may need to be
obtained in a particular order. As a further complication, we allow
the possibility that different sequences of authorizations for an indi-
vidual account may be needed according to whether the transaction
credits or debits the account. It is this set of protocols governing
use of the system that we seek to encode as part of the specification
of the system. This can be done conveniently by two integer valued
matrices.

Suppose that the accounting system has n accounts {a1, . . . , an}.
The control mechanism is described by two n × m matrices with
non-negative integer entries

C+ and C−.

192 Chapter 9. The Extended Model

Here the rows of the matrices are labeled by the accounts and the
columns by the units of the firm. These matrices are required to
have the following property.

C: if a row of C+ or C− contains an entry k > 1, then it also

has k − 1 as an entry .

A matrix with this property will be called a control matrix . Notice
that, as a consequence of the definition, either the ith row of a
control matrix consists entirely of zeros or else it contains positive
integers 1, 2, . . . , ki, each of which may occur more than once, and
possibly some zeros. A little experimentation will show that there
are many matrices of this type: an exact count of them will be given
later.

The mode of operation of the control matrices

It is now time to explain how the control matrices prevent unau-
thorized transactions from being applied to the accounting system.
Let these matrices be

C+ = [c+

ij
]n,m and C− = [c−

ij
]n,m ,

which are assumed to have the property C stated above. Suppose
that a transaction v is to be applied to the system. If vi > 0, i.e., the
transaction debits the ith account, then the ith row of matrix C+

specifies which units must provide authorization for the transaction.
Let the non-zero entries in row i of C+ be

1 = c+

ij1
≤ c+

ij2
≤ · · · ≤ c+

ijr(i)
,

where the integers j` are distinct; then the units which must provide
authorizations for the transaction are

uj1
, uj2

, . . . , ujr(i)

in that order . What this means is that the numerical order of the
non-zero entries of row i determines the sequence of unit authoriza-
tions required for the ith account. Notice that, as a consequence
of the property C, the sequence c+

ij1
, c+

ij2
, . . . , c+

ijr(i)
consists of the

integers 1, 2, . . . , c+

ijr(i)
in order with repetitions allowed .

What the control matrix C+ requires is that, if c+

ij`
< c+

ij`+1
, then

authorization must be obtained from unit uj`
before unit uj`+1

. If,

9.2. Authorization and Control Matrices 193

however, c+

ij`
= c+

ij`+1
, then both uj`

and uj`+1
must provide autho-

rization, but the order in which this is done is immaterial.
The control matrix C− operates in a similar fashion. If vi < 0, so

that the transaction v credits the ith account, and if the non-zero
entries in row i of C− are

1 = c−
ik1
≤ c−

ik2
≤ · · · ≤ c−

iks(i)
,

with distinct integers k`, then the sequence of units that are required
to authorize the transaction is

uk1
, uk2

, . . . , uks(i)

in that order.
Finally, if vi = 0, so that the transaction v does not affect the

ith account, then no authorization is needed and reference to C+ or
C− is unnecessary. The procedure just described must be applied
to all accounts affected by the transaction in question.

In some cases no authorization may be necessary for a transaction
to be applied to a particular account, in which event the correspond-
ing rows of C+ and C− have zero entries. If some authorizations for
an account are required, but in no particular order, then all entries
of the corresponding row are 0 or 1. From these examples it is seen
that control matrices are a flexible tool for representing complex
authorization schemes.

Example (9.2.1).

Consider an organization with three divisions α, β, γ, with γ the
accounts department. Suppose α has two subdivisions α1, α2 and
β has three subdivisions β1, β2, β3. Thus in all there are six units,
which will be ordered as

α1, α2, β1, β2, β3, γ.

For simplicity assume that the organization has just four accounts

a1, a2, a3, a4.

The authorizations needed for a transaction to be applied to the
system are encoded in the 4× 6 control matrices

C+ =









1 1 0 0 0 0
0 0 0 0 0 0
1 2 0 3 0 0
0 0 0 1 0 1









and C− =









1 0 0 2 0 3
0 0 0 0 0 1
0 0 0 0 2 1
2 0 0 0 0 1









.

194 Chapter 9. The Extended Model

For example, a transaction that debits account a2 requires no au-
thorization since row 2 of C+ consists entirely of zeros, while one
that credits a2 must be approved only by the accounts department
γ. A transaction that debits a1 must be authorized by α1 and α2,
in any order. A transaction that credits a1 has to be approved by
α1, β2 and the accounts department γ, in that precise order.

The authorization process

Let us now examine in detail how the authorization process func-
tions for an accounting system A = (A| T0, T1| B) with n accounts,
allowable transaction types T0, specific allowable transaction vectors
T1 and allowable balance set B. Suppose that a transaction v is to
be applied. The first step would be to determine if v is allowable,
i.e., if v ∈ T1 or type(v) ∈ T0, and then if v produces an allowable
balance, i.e., one in B. Let us assume that v has already passed
these tests.

The next step is to verify that the transaction has received all the
necessary authorizations. Let C+ and C− be the control matrices
which govern authorization of transactions in A. The transaction
vector v will have been approved by certain units of the organization,
in a sequence which can be encoded in two further control matrices;
thus we can think of v as being “tagged” by two n × m control
matrices M+ and M−, where n and m are the respective numbers
of accounts and units in the organization. These matrices record the
authorizations which have already been received for the transaction.
The system therefore receives an input

(v, M+, M−).

The role of the matrices M+ and M− must now be explained.
Suppose first that vi > 0 and that

1 = m+

ij1
≤ m+

ij2
≤ · · · ≤ m+

ijt(i)

are the non-zero entries in row i of M+. This means that authoriza-
tions to debit the balance of account ai have already been provided
by units uj1

, uj2
, . . . , ujt(i)

, in that order. In addition it is understood

that if vi ≤ 0, then row i of M+ consists of zeros: this is because
the matrix M+ is only relevant to checking authorizations of debits.
Next suppose that vi < 0; then there is a similar interpretation of

9.2. Authorization and Control Matrices 195

the role of the entries in row i of M− regarding authorizations ob-
tained for crediting accounts. Again rows of M− for which vi ≥ 0
are all zero.

Before the transaction v can be approved, the matrices M+ , M−

must be compared with C+, C−. If vi > 0, then m+

ij
must equal

c+

ij
, provided that c+

ij
6= 0. If vi < 0, the condition is that m−

ij
= c−

ij
,

provided that c−
ij
6= 0. If vi = 0, there is no condition since the

transaction does not affect account ai.
There is a convenient symbolic way of expressing the relationship

that must hold between the matrices M+, C+ and M−, C−. For
a given n-column vector v, we define a relation >v between non-
negative, integer valued n×m matrices X, Y as follows:

X >v Y

is to mean that if vi > 0, then xij = yij whenever yij 6= 0. The
verification that the transaction v has received all the necessary
approvals can then be written in the matrix form

M+ >v C+ and M− >−v C−.

We note that the ith row of M+ or M− will be zero if vi ≤ 0
or vi ≥ 0 respectively, because no authorizations are required in
these cases. Since in practice most transactions affect few accounts,
the matrices M+ and M− will consist largely of zeros. Thus for
economy of display and storage it is desirable not to list these zero
rows; therefore in specific examples we will delete any row of M+ or
M− for which v has an entry which is not positive or not negative
respectively, and work with the resulting reduced matrices

M+∗ and M−∗.

Notice that the matrices M+ and M− can be reconstructed from
knowledge of M+∗, M−∗ and the vector v: for example, if vi ≤ 0,
we insert a row of zeros as the ith row of M+∗, with a similar pro-
cedure for the matrix M−∗ if vi ≥ 0. The condition on matrices can
therefore be stated unambiguously, if with some abuse of notation,
in the form

M+∗ >v C+ and M−∗ >−v C−.

Described in words, the verification process to authorize a trans-
action v is as follows. For i = 1, 2, . . . , n, if vi > 0, row i of M+

196 Chapter 9. The Extended Model

is compared with row i of C+; for each positive entry in C+ there
should be the same entry in M+, but M+ might have further non-
zero entries in the row if additional authorizations beyond those that
are strictly necessary have been obtained. If vi < 0, the positive en-
tries of row i of C− are compared with those of M− in the same
manner. If vi = 0, no authorizations for account i are necessary and
no comparisons need be made.

These matrix comparisons are to be performed for each row. If
they are all performed satisfactorily, the approval process for v is
complete and the transaction is fully authorized. If, on the other
hand, the comparison fails for any account, the transaction will be
rejected as not being properly authorized.

The number of control matrices

As one would expect, there are many control matrices of given
size, although probably only a few of them would be used in practice.
We pause to show that an exact count of control matrices is possible.

(9.2.1). The number of n×m control matrices is

(

1 +
m
∑

k=1

k
∑

p=1

p! S(k, p)

(

m

k

)

)n

where the S(k, p) = 1

p!

∑

p−1

i=0
(−1)i

(

p

i

)

(p−i)k are the Stirling numbers

of the second kind.

Proof

It is enough to establish the formula in the case when n = 1, i.e.,
there is a single row, since the general result will then follow by
raising the result to the nth power.

One possible row is the row of m zeros. We need to count the
non-zero rows. Consider a row with exactly k non-zero entries where
1 ≤ k ≤ m. First choose the positions in the row which are to
receive non-zero entries in

(

m

k

)

ways. Then count the number of
ways to fill the k chosen positions with positive integers, subject to
the condition C on the rows of a control matrix. Suppose that p is
the largest positive integer which actually appears in the row; then
1 ≤ p ≤ k since each positive integer less than p must also occur
in the row. The number of ways to fill the k positions is equal to
the number of ways to place k distinct objects in p distinct boxes

9.3. Frequency Control 197

in order with at least one element in each box: the last requirement
is needed to ensure that each of the integers 1, 2, . . . , p appears at
least once in the row. This is yet another distribution problem. It
is well known from combinatorics this number is equal to p!S(k, p)
– see [2]. Therefore the number of possible rows is

1 +

m
∑

k=1

k
∑

p=1

p!S(k, p)

(

m

k

)

.

2

For example, if the organization has just three units, the above
formula gives the number of possible rows as 26, so that, if there are
n accounts, the number of control matrices is (26)n.

9.3. Frequency Control

Another security device which can be incorporated in the ba-
sic model of an accounting system is a mechanism to control the
frequency with which a particular allowable transaction is applied
during an accounting period. Without such a device there might
be nothing to prevent an allowable transaction which has been fully
authorized from being applied with greater frequency than permit-
ted by company rules: for example, this would apply to regularly
scheduled transactions. We aim to show that the frequency of ap-
plication of a transaction can be monitored by means of a so-called
frequency function.

Consider an accounting system

A = (A| T0, T1),

where T0 and T1 are the sets of allowable transaction types and al-
lowable specific transactions respectively. The objective is to mon-
itor the number of applications of a specific transaction in T1 over
an accounting period. For this purpose a function

ϕ : T1 → N ∪ {∞}

is introduced, the idea being that a given transaction v ∈ T1 may
not be applied more than ϕ(v) times. If ϕ(v) =∞, then it is to be
understood that there is no limitation on the number of times that
v can be applied during the period. If ϕ(v) = 0, then v cannot be

198 Chapter 9. The Extended Model

applied during this time: it is useful to allow this possibility since, for
example, it might be necessary to suspend a regular payment during
a certain time period, which might be preferable to eliminating it
altogether from the system as allowable transaction. We refer to
such a function ϕ as a frequency function. If the set T1 is ordered
in some fixed manner, then ϕ can be conveniently identified with
column vector over N ∪ {∞} with |T1| rows, namely the values of
the function ϕ.

Let us see how the frequency function operates. Let v ∈ T1 be an
allowable transaction vector and assume it has been fully authorized
and that it leads to an acceptable balance vector. At any instant
there is a frequency counter , by which we mean a function

κ : T1 → N

such that κ(v) is the number of times the transaction v has already
been applied during the accounting period. If κ(v) < ϕ(v), then
the transaction may be applied and the value of the counter κ at
v is reset to κ(v) + 1. However, if κ(v) = ϕ(v), the transaction is
rejected, since it has already been applied the maximum permitted
number of times. Notice that with these rules it is impossible to
have κ(v) > ϕ(v). Thus the frequency counter is adjusted by one
each time that a transaction is successfully applied; when the system
is regarded as an automaton, the function κ is part of the state of
the machine. As in the case of the function ϕ, we think of κ as a
|T1|-column vector, but over N.

9.4. The 10-Tuple Model and Automata

In this section our aim is to adjoin formally the security mecha-
nisms described in 9.2 and 9.3 to the basic model of an accounting
system. The resulting extended model has the ability to simulate
many features of a realistic accounting system and it can be repre-
sented by enhanced versions of the automata described in Chapter
6.

We begin with the basic model of a bounded accounting system
over an arbitrary ordered domain R

A = (A | T0, T1| λ, Λ),

where A = {a1, . . . , an} is the set of accounts, T0 and T1 are the
respective sets of allowable transaction types and specific allowable

9.4. The 10-Tuple Model and Automata 199

transactions, and

λ, Λ : A→ R ∪ {−∞,∞}

are bounding functions for account values: thus λ(ai) ≤ Λ(ai) for
i = 1, 2, . . . , n, and the set of allowable balance vectors is

B = {v ∈ Baln(R)| λ(ai) ≤ vi ≤ Λ(ai), i = 1, 2, . . . , n}.

Note that λ and Λ may be regarded as n-column vectors with entries
in R ∪ {−∞,∞}.

In addition the extended model is to have a built-in capacity to
generate reports. Recall from Chapter 5 that a report corresponds
to an equivalence relation E on the account set A. The balance
vector of the quotient system A/E gives basic information about the
report, namely the list of balances of accounts in each equivalence
class. Thus the accounting system A should be equipped with a set

E

of equivalence relations on A which generate all the necessary re-
ports. Now an equivalence relation E on A is specified by an n× n

matrix which decomposes into blocks of 0’s and 1’s: for the (i, j)th
matrix entry equals 1 precisely when ai E aj and is otherwise 0, so
that each E-equivalence class corresponds to a square submatrix of
1’s. Thus we can regard E as a set of matrices of this type.

Next assume that the organization to which the accounting sys-
tem A belongs consists of m autonomous units, written in the fixed
order u1, u2, . . . , um, and write

U = {u1, u2, . . . , um}.

Each account in A is governed by certain units which must authorize
transactions affecting the account. The sequences of authorizations
required are encoded in two n×m control matrices

C+ and C−,

as described in 9.2: recall that these are n×m matrices with non-
negative entries which have the property C: if an integer ` > 1
appears in a row, then so does `− 1.

Finally, a frequency function

ϕ : T1 → N ∪ {∞}

200 Chapter 9. The Extended Model

is introduced to control the frequency of application of each specific
allowable transaction: ϕ is identified with a |T1|-column with entries
in N ∪ {∞}.

The result of these additions to the basic model is a 10-tuple
which will be called the extended model of an accounting system,

A = (A | T0, T1| λ, Λ | E | U, C+, C−| ϕ).

Features of the extended model

We summarize the capabilities of the 10-tuple model displayed
above, where now it is assumed that the ordered domain is Z.

1. The system is able to generate reports corresponding to equiva-
lence relations E in the set E by passing to the quotient system
A/E. It may be convenient to include in E the trivial equiva-
lence of equality E0.

2. The current value of the frequency counter κ at v ∈ T1 is the
number of times that the transaction v has been successfully
applied during the current period.

3. If T1 is finite, so that A is finitely specified, it is possible to
verify that a final balance could really have been obtained by
legitimate actions, when intermediate balance restrictions are
not considered. For this purpose the algorithm in 8.3 must be
attached to the model; recall that it is based on the integer
programming algorithm.

4. If λ and Λ are finite valued, it is possible to verify a final balance
vector while taking into account restrictions on intermediate
account balances, albeit by a less efficient algorithm.

5. If the set T0 is finite and the system is unbounded, i.e., λ(ai) =
−∞ and Λ(ai) = +∞ for i = 1, 2, . . . , n, then it is possible to
determine whether the accounting system is simple or elemen-
tary. Moreover, if this is the case, it is possible to find sets of
simple or elementary transactions which generate the monoid
of A: for these results see 8.4.

9.4. The 10-Tuple Model and Automata 201

The extended automata

The extended model of an accounting system, like the basic
model, lends itself to interpretation as an automaton. Recall that
there are two automata associated with the basic model: we begin
with the one which does not involve time. Let A be the 10-tuple
extended accounting system over an ordered domain R,

A = (A| T0, T1| λ, Λ| E| U, C+, C−| ϕ)

with the notation described above. Next we will define the extended
automaton of A

MA = (Z, X, Y, δ, λ).

This is to have input set

X = Baln(R)× CMn,m × CMn,m

where CMn,m is the set of all n×m control matrices, while the state
set is

Z = Baln(R)× Fun(T1, N).

The output of the original automaton is modified so as to incorpo-
rate the capability of generating the reports corresponding to the
equivalence relations in E . The output set is taken to be the carte-
sian product

Y = CrE∈ E Baln(E)(R),

possibly augmented by error messages: here n(E) is the number of
E-equivalence classes.

The change of state function δ is given by the rule

δ((b, κ), (v, M+, M−)) = (b + v, κ′)

where κ′ is defined by

κ′(v) = κ(v) + 1 and κ′(w) = κ(w), if w 6= v.

This is provided that the following are true: type(v) ∈ T0 or v ∈ T1,
λ(ai) ≤ bi +vi ≤ Λ(ai) for i = 1, 2, . . . , n, M+ >v C+ and M− >−v

C−, and κ(v) < ϕ(v). However, δ((b, κ), (v, M+, M−)) = (b, κ) if
any one of these conditions fails to hold.

The output function λ is computed from the equation

λ((b, κ), (v, M+, M−)) = ((b + v)E)E∈E ,

202 Chapter 9. The Extended Model

provided that type(v) ∈ T0 or v ∈ T1, λ(ai) ≤ bi + vi ≤ Λ(ai),
M+ >v C+ and M− >−v C−, and κ(v) < φ(v): otherwise an error
message is printed as the output. Recall the notation from Chap-
ter 5 which is used here: bE ∈ Baln(E)(R) has as its i-component
∑

ajEai
bj. Thus the output function produces all the relevant re-

ports after each transaction has been applied. Notice that if E0 ∈ E ,
then the E0-component of the output is just the final balance vector
of the system after the transaction has been applied.

To summarize in words the operation of the automaton MA,
suppose that the input (v, M+, M−) is applied. This means that
v ∈ Baln(R) and that the authorization sequences already received
for the transaction v are displayed in the control matrices M+, M−.
Assume that the current state of the system is (b, κ); here b is
the current balance vector and the value of the frequency counter
κ : T1 → N at v records the number of times that this transaction
has been applied up to this time.

The automaton first determines if type(v) ∈ T0 or if v ∈ T1:
it then determines if the new balance vector b + v satisfies λi ≤
bi + vi ≤ Λi for i = 1, 2, . . . , n. If this test is passed, the next step is
to verify that M+ >v C+ and M− >−v C−. This is to check that
the transaction v has received all the required authorizations. The
final test is whether κ(v) < ϕ(v) in the case where v ∈ T1, i.e., the
transaction has not already been applied the maximum permitted
number of times.

Should all these verifications be performed satisfactorily, the state
of the automaton changes to (b+v, κ′) where κ′(v) = κ(v)+1 and
κ′(w) = κ(w) if w 6= v: the output is ((b + v)E)E∈ E . However, if
any of the tests fail, the state of the system does not change and an
appropriate error message is generated as the output.

It might be objected that the output of the automaton is more
complex than would normally be required since it includes all the
reports after each transaction. This can be avoided by projecting
the output onto its E0-component, thereby giving just the final bal-
ance vector of the whole system: however, the facility of producing
multiple reports might be useful enough to justify the present form.

The extended time enhanced accounting system

Next we describe the time enhanced automaton of an extended
accounting system with n accounts over an ordered domain R in the

9.4. The 10-Tuple Model and Automata 203

standard 10-tuple form

A = (A | T0, T1 | λ, Λ | E| U, C+, C−| ϕ),

where for simplicity we have assumed that E contains a single equiv-
alence relation E. Let A = {a1, a2, . . . , , an} be the account set, with
Are = {ar+1, . . . , an} the set of revenue and expense accounts.

The corresponding extended time enhanced automaton is

TA = (Z, X, Y, δ, λ),

where the parameters are defined as follows.

• The set of states Z is a subset of

(Z× R)n × Fun(T1, N),

where T1 is the set of specific allowable transactions. Thus a
state of TA has the form

(z1z2 . . . zn, κ),

where

zi = zi1zi2 . . . zim(i), zij = (tij, xij), (tij ∈ Z, xij ∈ R),

and κ is a function from T1 to N which counts the number of
times that each allowable transaction has been applied success-
fully. Here it is understood that

ti1 ≤ ti2 ≤ · · · ≤ tim(i)

and

xij 6= 0 and
n
∑

i=1

m(i)
∑

j=1

xij = 0.

• The set of inputs is

X = Z× Baln(R)× CMn,m × CMn,m,

where CMn,m is the set of all n × m control matrices: thus a
typical input has the form

(t,x, M+, M−) :

here x ∈ Baln(R) has components x1, x2, . . . , xn,, t ∈ Z and M+

and M− are control matrices encoding the sequences of autho-
rizations obtained for the transaction from the m autonomous
units, which are written in a fixed order u1, u2, . . . , um.

204 Chapter 9. The Extended Model

• The next state function

δ : Z ×X −→ Z

is defined by the rules that follow.

1. δ maps ((z1z2 . . . zn, κ), (t,x, M+, M−)) to

(z1(t, x1)z2(t, x2) . . . zn(t, xn), κ′),

where κ′ : T1 → N is such that

κ′(v) =

{

κ(x) + 1, if v = x,

κ(v), otherwise

provided that

(a) t ≥ tij for i = 1, 2, . . . , n, j = 1, 2, . . . , m(i);

(b) (z1(t, x1)z2(t, x2) . . . zn(t, xn), κ′) ∈ Z;

(c) M+ >x C+ and M− >−x C−.

2. δ maps ((z1z2 . . . zn, κ), (t,x, M+, M−)) to (z1z2 . . . zn, κ),
if any of the conditions (a),(b),(c) above fails.

(Recall that zi(t, xi) is the concatenation of zi and (t, xi),
except that if xi = 0, the pair (t, xi) is to be omitted from
the sequence).

• The output set is
Y = Z× Baln(R),

where n is the number of accounts in the quotient system A/E.
The output function

λ : Z ×X −→ Y

is defined by having it send ((z1z2 . . . zn, κ), (t,x, M+, M−)) to
the ordered pair (t, σ∗

E
(x)) where σE : A → A/E is the canon-

ical epimorphism and x is the balance vector with entries

x1 +

m(1)
∑

j=1

x1j , x2 +

m(2)
∑

j=1

x2j , . . . , xn +

m(n)
∑

j=1

xnj.

Here m(i) is the number of entries in the T-diagram of the ith
account. On the other hand, if t < tij for some i, j, then the
value of the output function is a suitable error message.

9.5. The Audit as an Automaton 205

Recall that in the definition of the time enhanced automaton in
6.3 the output function combined the balances of the revenue and
expense accounts to produce the net income. Thus an equivalence
relation of particular interest is one for which all these accounts are
combined. Assume therefore that the set of revenue and expense
accounts Are constitutes one equivalence class of the equivalence
relation E; then the entry of σ∗

E
(x) corresponding to the equivalence

class Are is
n
∑

i=r+1

(

xi +

m(i)
∑

j=1

xij

)

,

which is the net income of the system.

9.5. The Audit as an Automaton

In sections 9.2 and 9.3 control mechanisms were introduced which
guarantee that all transactions applied to an accounting system have
the required authorizations and that transactions are not applied
more than the permitted number of times. However, apart from
these a priori procedures, a company will be subject to a posteriori

control mechanisms, depending on its legal status. Thus it is usual
that after a certain period of time, generally a year, the balance
vector of account balances and the financial activities that have oc-
curred in the system during the period must be checked in order to
determine if any procedural errors have occurred during the account-
ing process. This verification process is carried out by an auditor
using the so-called balance-check tests. In this section it is shown
how to design an automaton which performs the mechanical aspects
of the auditor’s task.

Typically there are six types of error that occur during the oper-
ation of an accounting system.

1. The accounts affected by a transaction resulting from some
economic activity are not the appropriate ones.

2. The accounts affected by the economic event are appropriate,
but they do not coincide with the accounts approved by the
auditors.

3. The economic event has not been registered.

206 Chapter 9. The Extended Model

4. The transaction resulting from the economic event does not
correspond to a balance vector.

5. The balance vector obtained after application of the transaction
is not allowable.

6. A report generated by the transaction is not permissible.

For certain types of error it is the duty of the firm of auditors to
communicate to the company the flaws detected in the accounting
process. Then the relevant accounts, allowable transactions, allow-
able balance vectors or set of reports may have to be modified to
meet the objections of the auditor.

Assume that over a certain period of time a company operates
the accounting system over an ordered domain

A = (A| T | B),

where A is the set of n accounts, T the set of allowable transactions
and B the set of allowable balance vectors. Recall that T consists of
all vectors of certain allowable types T0, as well as a set of specific
allowable vectors T1.

At the end of the accounting period it is the task of the auditor to
perform certain tests in order to verify that all the economic events
affecting the company have been accounted for, that all generally
accepted accounting principles and criteria have been applied, and
that the accounting system is functioning correctly. In order to
accomplish this, the auditor selects a certain equivalence relation
Ec on the account set A and chooses a sample set of Ec-equivalence
classes of accounts, say

aj1
, aj2

, . . . , ajm
,

where 1 ≤ j1 < j2 < · · · < jm ≤ n. Usually this sample of accounts
includes “bank account”, “trade debtors”, “inventories” and “trade
creditors”, where these accounts may be aggregates of individual
accounts, as explained below.

• “Bank account” may consist of several accounts held at differ-
ent institutions.

• “Trade debtors” and “trade creditors” appear separately, but
are actually lists of specific debtors and creditors.

9.5. The Audit as an Automaton 207

• “Inventories” are broken down according to the different cate-
gories, typically:

– Goods for resale.

– Finished goods.

– Semi-finished goods.

– Byproducts and waste.

– Work in process.

– Raw materials and supplies.

– Parts and subassemblies.

– Consumables and spares.

– Packing materials and containers.

Thus the aj`
are actually accounts in the quotient system A/Ec,

which is the system that the auditor deals with. If the sequence of
balance vector entries for account ak, k ∈ {j1, j2, . . . , jm}, is

zk = zk1zk2 . . . zkm(k) where zk` = (tk`, xk`), (t ∈ Z, xk` ∈ R),

then in the expression for zk the auditor will have combined in each
xk` the amounts for all the accounts in the Ec-equivalence class āk:
for example, the cash balances of the various bank accounts are
totalled. (Notice that we are not dealing a true report here since
not all accounts in A/Ec have been selected).

Next the auditor makes a selection from the Ec-equivalence classes
aj1

, aj2
, . . . , ajm

. This sample is to be chosen by the statistical tech-
nique of stratified sampling. Having selected the equivalence classes,
the auditor must verify the final balance of each one by obtaining
the balances of all the accounts in the selected equivalence class and
combining them. Of course, in order to guarantee the independence
of the auditing process, these final balances must be requested not
from within the company, but from the external sources, for exam-
ple, from the banks, debtors, creditors and warehouse.

In case a final balance provided to the auditor by an external unit
does not coincide with the final balance generated by the company’s
accounting process, the auditor must request all the documentation
related to the corresponding account. Naturally, this documentation
must again be supplied by the external sources. Finally, the auditor
revises the documents supplied and decides if the error is due to

208 Chapter 9. The Extended Model

the company or to the provider (in the case of inventories, it is
necessary to use the appropriate inventory count sheets). In the
first case, the auditor must propose a correction to the final balance
of the company.

In practice, the company is obliged to correct a detected error in
the final balance only if the mistake is materially significant. On the
other hand, if the errors detected exceed a certain number, which is
predicted by statistical methods, namely quality control techniques,
the auditor may have insufficient confidence in the company’s ac-
counts and might require that further tests be applied.

After completion of this procedure, the auditor will propose a
new set of specific allowable transactions, denoted by T c

1
, which will

be called the control set of allowable transactions,

{vc

1
,vc

2
, . . . ,vc

r
}.

Observe that the balance vectors in T c

1
are specific balance vectors

and that the number of elements in T c

1
depends on the method of

choosing a representative sample of the suspicious transactions, say

v1,v2, . . . ,vr.

Note that some vectors vi will be 0 if the corresponding transactions
proposed by the auditor are new.

We now define an audit of the accounting system A = (A| T | B)
to be an automaton

Mc

whose parameters are as follows.

• The state set is B.

• The input set is T c

1
= {vc

1
− v1,v

c

2
− v2, . . . ,v

c

r
− vr}.

• The output set is B where B is the quotient set B/Ec obtained
from the equivalence relation Ec.

• Changes of state are determined by the next state function
δc : B × T c

1
→ B given by the rule

δc(b,vc

i
− vi) = b + vc

i
− vi.

9.5. The Audit as an Automaton 209

• The output is computed from the output function
λc : B × T c

1
→ B, which is defined by

λc([b]Ec,vc

i
− vi) = [b + vc

i
− vi]Ec.

In essence what the auditing automatonMc achieves is replace-
ment of suspect specific allowable transactions vi by corrected trans-
actions vc

i
. Thus the audit of the accounting system can be thought

of as an associated automaton devised by the auditor with the aim
of verifying the operation of the original system. It is not a part of
the accounting system like the control mechanisms described in 9.2
and 9.3, but is an a posteriori device imposed by an external source.

Chapter Ten

The Model Illustrated

The purpose of this final chapter is to illustrate the applicability
of the extended model by presenting a detailed account of the ac-
counting system of a small company in terms of the 10-tuple model
developed in Chapter 9.

10.1. A Real Life Example

Let us consider the case of a company which is engaged in the
business of trading finished products. We aim to show in detail
how the operation of the company’s accounting system can be rep-
resented by the extended model in the form of a standard 10-tuple

A = (A | T0, T1 | λ, Λ | E | U, C+, C− | ϕ).

It is assumed that the company has four departments:

α : Cash.

β : Customer order department.

γ : Warehouse.

δ : Accounts department

The customer order department has two subdivisions, namely

β1 : Purchasing.

β2 : Sales.

Thus in all there are five units in the company and the set of units
is

U = {α, β1, β2, γ, δ}.

10.1. A Real Life Example 211

Next we assume that the accounting system of the company has
just 12 accounts and the account set is

A = {a1, a2, . . . , a12},

where the accounts are given by the following key:

a1 : Cash on hand.

a2 : Bank account.

a3 : Trade debtors.

a4 : Machinery, plant and tools.

a5 : Buildings and other structures.

a6 : Inventories.

a7 : Share capital.

a8 : Trade creditors.

a9 : Loans received.

a10 : Accumulated depreciation of fixed assets.

a11 : Retained earnings.

a12 : Profit and loss.

According to the rules and practices of the company, there are six
allowable transaction types and three specific allowable transactions.
In interpreting the balance vectors that follow the reader is reminded
of the convention that debits increase account balances while credits
decrease them, after allowing for the signs of the account balances.

The set T0 of allowable transaction types consists of the following:

• Purchase of inventories, to be paid in part through cash or bank

212 Chapter 10. The Model Illustrated

account and in part through trade creditors,







































−
0
0
0
0
+
0
−
0
0
0
0







































,







































0
−
0
0
0
+
0
−
0
0
0
0







































.

• Sale of inventories, to be paid in part through cash or bank
account and in part through trade debtors,







































+
0
+
0
0
−
0
0
0
0
0
0







































,







































0
+
+
0
0
−
0
0
0
0
0
0







































.

10.1. A Real Life Example 213

• Receipt of a bank loan to purchase machinery or inventories,







































0
0
0
+
0
0
0
0
−
0
0
0







































,







































0
0
0
0
0
+
0
0
−
0
0
0







































.

Next the set T1 of specific allowable transactions consists of the
following:

• w1: depreciation of the machinery, plant and tools at 5% per
year. Assume that the initial balance of account a4 is $100,000,
so the depreciation is $5,000 per year:







































0
0
0
0
0
0
0
0
0

−5, 000
0

5, 000







































.

• w2: quarterly loan amortization paid through bank account;
the loan amount is assumed to be $6,000 and rate of interest
1% per trimester; the amount of principal repaid is $150, so

214 Chapter 10. The Model Illustrated

the quarterly payment is $210:







































0
−210

0
0
0
0
0
0

150
0
0

60







































.

• w3: the company has two employees. The remuneration of
each one is $1,500 a month payable through bank account and
is counted against profit/loss. Moreover, they earn two extra
month’s salaries paid twice a year:







































0
−3, 000

0
0
0
0
0
0
0
0
0

3, 000







































.

Next the allowable account balances for the company are spec-
ified by bounding functions λ, Λ. It is convenient to identify these
functions with two 12-column vectors with entries in Z∪{−∞,∞},
where the ith component of the vectors are λ(ai) and Λ(ai) respec-

10.1. A Real Life Example 215

tively. With this identification the vectors are

λ =







































0
0
0

3, 000
100, 000

5, 000
−600, 000
−8, 000
−10, 000
−600, 000

−∞
−50, 000







































and Λ =







































8, 000
∞

6, 000
600, 000
600, 000
10, 000

−300, 000
0
0

60, 000
0
0







































.

Recall here that balances of asset accounts are normally positive and
those of liability and equity accounts are negative. Here are some
comments on the restrictions implied by these vectors.

1. The a1-balance is bounded by $0 and $8,000 because it is not
possible to have a negative cash balance for account a1, and,
according to the company policy, cash balances over $8,000 are
not permitted.

2. Bank account a2 is bounded by 0 and ∞ because the company
policy does not permit the bank account to be overdrawn and
there is no upper limit for the balance of funds in the account.

3. According to the company’s security policy, the trade debtors
account is restricted and cannot exceed $6,000.

4. The assets represented by accounts a4 and a5 require a mini-
mum investment to keep the equipment in working order, na-
mely $3,000 and $100,000, respectively. In practice one would
expect that the investment in these assets could be greater than
the minimum, thereby improving the production process, but
there is an upper limit imposed by company policy of $600,000
for both assets.

5. The balance of the inventory a6 is bounded by a minimum
amount $5,000, which is necessary to satisfy the orders from
clients, and a maximum amount $10,000 imposed by the phys-
ical restrictions of the warehouse.

216 Chapter 10. The Model Illustrated

6. As regards share capital a7, according to the legal status of
the company (public corporation, limited corporation, limited
partnership, etc.), there is a minimum share capital, in this
case, $300,000. Moreover, the company can allow increases in
capital up to $600,000. (Allow for signs in comments 6 – 10).

7. Taking into account the fact that the trade creditors represent
a credit when purchasing inventories, the company’s image re-
quires that the balance of account a8 be bounded, say by $8,000.

8. Just like the trade creditors account, it is inappropriate for the
company to exceed a limit in the loans received account a9,
say the limit is $10,000. There could be various reasons for
this restriction: lack of confidence at the bank, deterioration of
certain ratios, etc.

9. As in the case of a4, there is an upper bound of $600,000 for the
balance of the depreciation account a10. In addition it is usual
for the company to depreciate a percentage of the a4-balance
per year, say 10%, so there is a lower limit of $60,000.

10. Finally, it is possible that, depending on the profit or loss sit-
uation, the company might wish to increase retained earnings,
which explains the bound of $50,000 in a12 and unlimited bal-
ance in a11.

The set B of allowable balance vectors for the system as defined in
terms of the functions λ and Λ is therefore

B = {b ∈ Bal12(Z) | λ(ai) ≤ bi ≤ Λ(ai), i = 1, 2, . . . , 12}.

The extended model also has the capacity to generate reports. In
this case, because of the small size of the company, it is assumed that
there is a single report which corresponds to the equivalence relation
E on the account set A with the following equivalence classes:

• {a1, a2, a3, a6}, which will be called “current assets”.

• {a4, a5, a10}, which will be called “non-current (tangible) as-
sets”.

• {a7, a11, a12}, which will be labeled “capital and reserves”.

• {a8}: “current liabilities”.

10.1. A Real Life Example 217

• {a9}: “non-current liabilities”.

Thus the set of reports is simply

E = {E}.

According to the rules and policies of the company the autho-
rizations needed for transactions affecting the various accounts are
encoded in the following 12 × 5 control matrices – recall that C+

displays authorizations needed for debits and C− those for credits:

C+ =







































0 0 0 0 0
0 0 0 0 0
0 0 1 0 2
2 0 0 0 1
2 0 0 0 1
3 2 0 1 0
2 0 0 0 1
2 2 0 0 1
2 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0







































, C− =







































1 0 0 0 2
1 0 0 0 2
0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
3 0 2 1 0
0 0 0 0 1
0 2 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0







































.

In order to understand the role played by the matrices C+ and
C−, we recall the significance of their entries. The columns of the
matrices represent the units of the company α, β1, β2, γ and δ, while
the rows represent the accounts a1, a2, . . . , a12.

• A debit in accounts a1 (cash) or a2 (bank) represents an in-
jection of cash into the company and requires no authorization
and so rows 1 and 2 of matrix C+ consists of zeros. However, a
transaction that credits a1 or a2 has to be approved by α and
δ in that precise order.

• A debit in account a3 (trade debtors), as indicated by C+,
requires two authorizations: first from department β2 and then
from department δ (in this order). A credit to this account
requires no authorizations.

• A debit to accounts a4 (machinery, plant and tools), a5 (build-
ings and other structures), a7 (share capital) or a9 (loans re-
ceived) requires that departments δ (accounts) and α (cash)

218 Chapter 10. The Model Illustrated

agree in that order. On the other hand, a debit to account
a8 requires authorization first by δ (accounts department), α

(cash) and β1 (purchasing department), because some of the
purchased inventories might be defective: however, the autho-
rizations from α and β1 can be given in any order. On the
other hand, a credit to any of these accounts only requires the
agreement of δ, except for a8, which must also be approved by
β1.

• Account a6 needs three authorizations for debits, in order from
γ (warehouse), β1 (purchasing department) and α (cash): the
case of a credit is analogous, but β1 must be changed to β2

(sales department).

• Accounts a10 and a11 need only authorizations from δ (accounts
department) for both debits and credits.

• Finally, account a12 requires no authorizations because its bal-
ance is the consequence of those of other accounts.

Next the frequency function, ϕ : T1 → N∪{∞}must be specified;
it is identified with a 3-column vector with entries in N∪{∞}, where
the components of the vector are the values of ϕ. We have seen that
for the company the set T1 has just three elements, namely

• w1 = depreciation over one year;

• w2 = quarterly payments on a loan;

• w3 = monthly payments of salaries and wages.

Thus the values of ϕ written in column form are

ϕ =





1
4

14



 ,

where ϕ(w1) = 1 since w1 is the depreciation over one whole year,
and ϕ(w2) = 4 because the loan amortization is assumed to be
quarterly; finally, ϕ(w3) = 14 because each worker has to receive
his/her salary monthly with two extra payments at the middle and
end of the year.

10.2. The Operation of the Model 219

10.2. The Operation of the Model

We will now show how the 10-tuple model records some typi-
cal accounting activities of the company. Suppose that the initial
(allowable) balance vector b0 and frequency counter κ0 are given by

b0 =







































7, 000
14, 000
3, 000

100, 000
200, 000

7, 000
−300, 000
−2, 000
−5, 000
−5, 000
−10, 000
−9, 000







































, κ0 =





0
2
7



 .

The components of b0 are the initial balances of the various accounts
of the company, while κ0 shows the frequencies with which the spe-
cific allowable transactions w1,w2,w3 have already been applied.
Thus the initial state of the automatonMA is (b0, κ0).

The transactions

Let us examine the effect of applying a chain of six allowable
transactions v1,v2, . . . ,v6. The first three are of allowable types
in T0 and the remaining three are specific transactions from T1.
Keep in mind that only transactions in T1 change the frequency
counter. Each transaction is accompanied by two control matrices
detailing the authorizations received from the various units. Thus
a typical input is (vi, M

+

i
, M−

i
). Recall that we prefer to work with

the reduced forms of these matrices M+∗

i
, M−∗

i
, in which zero rows

corresponding to entries of vi which are non-positive or non-negative
respectively are omitted.

1. Transaction v1: purchase of $1,000 inventories, $150 to be paid

220 Chapter 10. The Model Illustrated

through bank and $850 through trade creditors, is given by

v1 =







































0
−150

0
0
0

1, 000
0

−850
0
0
0
0







































.

In addition the transaction comes tagged by two control ma-
trices which record the authorizations already obtained: in re-
duced form these are

M+∗

1
=

[

3 2 0 1 0
]

, M−∗

1
=

[

1 0 0 0 2
0 2 0 0 1

]

.

Thus the row in M+∗

1
is row 6 of M+

1
and the rows of M−∗

1

are rows 2 and 8 of M−

1
. Notice that M+∗

1
>v1

C+ and
M−∗

1
>v1

C−, which shows that M+

1
and M−

1
incorporate all

the authorizations needed for the transaction v1. In this case
v1 6∈ T1, so the frequency function does not change. Thus the
new state of the system effected by the input (v1, M

+

1
, M−

1
) is

(b1, κ1) where b1 = b0 + v1 and κ1 = κ. Hence

b1 =







































7, 000
13, 850
3, 000

100, 000
200, 000

8, 000
−300, 000
−2, 850
−5, 000
−5, 000
−10, 000
−9, 000







































and κ1 =





0
2
7



 .

10.2. The Operation of the Model 221

The corresponding output is the report

[b1]E =













31, 850
295, 000
−319, 000
−2, 850
−5, 000













.

2. Transaction v2: sale of $3,000 of inventories, with $1,000 of the
proceeds to be paid into cash and $2,000 to trade debtors.

v2 =







































1, 000
0

2, 000
0
0

−3, 000
0
0
0
0
0
0







































.

The transaction is tagged by control matrices

M+∗

2
=

[

0 0 0 0 0
0 0 1 0 2

]

, M−∗

2
=

[

3 0 2 1 0
]

.

Since M+∗

2
>v2

C+ and M+∗

2
>v2

C+, the authorization process
is complete. Also v2 6∈ T1, so the frequency function does not

222 Chapter 10. The Model Illustrated

change. The new state is (b2, κ2) where

b2 =







































8, 000
13, 850
5, 000

100, 000
200, 000

5, 000
−300, 000
−2, 850
−5, 000
−5, 000
−10, 000
−9, 000







































and κ2 = κ1 =





0
2
7



 .

The output is the report

[b2]E =













31, 850
295, 000
−319, 000
−2, 850
−5, 000













:

note that the output report has not changed, i.e., [b1]E = [b2]E,
because transaction v2 has moved funds among accounts be-
longing to the same equivalence class, viz “current assets”.

3. Transaction v3: a bank gives a loan of $1,000 to purchase ma-
chinery.

v3 =







































0
0
0

1, 000
0
0
0
0

−1, 000
0
0
0







































.

10.2. The Operation of the Model 223

In this case the transaction is tagged by the control matrices

M+∗

3
=

[

2 0 0 1 0
]

, M−∗

3
=

[

0 0 0 0 1
]

,

which list the authorizations received. However, in this case
M+∗

3
does not contain all the authorizations needed to approve

the transaction v3, because the accounts department has not
authorized the purchase of machinery, despite the fact that it
has authorized receipt of the bank loan. Therefore the transac-
tion is rejected and the state remains (b3, κ3) = (b2, κ2). Thus

b3 =







































8, 000
13, 850
5, 000

100, 000
200, 000

5, 000
−300, 000
−2, 850
−5, 000
−5, 000
−10, 000
−9, 000







































,

and the output will be an error message.

4. Transaction v4: depreciation of machinery, plant and tools by
$5,000.

v4 =







































0
0
0
0
0
0
0
0
0

−5, 000
0

+5, 000







































.

The authorization matrices are

M+∗

4
=

[

0 0 0 0 0
]

, M−∗

4
=

[

0 0 0 0 1
]

,

224 Chapter 10. The Model Illustrated

which are satisfactory. In this case v4 = w1 ∈ T1, so the
frequency counter changes. The new state of the system is
(b4, κ4), where

b4 =







































8, 000
13, 850
5, 000

100, 000
200, 000

5, 000
−300, 000
−2, 850
−5, 000
−10, 000
−10, 000
−4, 000







































and κ4 =





1
2
7



 .

The output is the report

[b4]E =













31, 850
290, 000
−314, 000
−2, 850
−5, 000













.

5. Transaction v5: quarterly loan amortization, with interest of
$60 paid and $150 of principal repaid.

v5 =







































0
−210

0
0
0
0
0
0

150
0
0

60







































.

10.2. The Operation of the Model 225

The authorizations obtained are:

M+∗

5
=

[

2 0 0 0 1
0 0 0 0 0

]

, M−∗

5
=

[

1 0 0 0 2
]

,

which are in order. Here v5 = w2 ∈ T1, so once again the
frequency counter changes. The new state of the system is
(b5, κ5) where

b5 =







































8, 000
13, 640
5, 000

100, 000
200, 000

5, 000
−300, 000
−2, 850
−4, 850
−10, 000
−10, 000
−3, 940







































and κ5 =





1
3
7



 .

The output is the report

[b5]E =













31, 640
290, 000
−313, 940
−2, 850
−4, 850













.

6. Transaction v6: the company pays the monthly salaries of its

226 Chapter 10. The Model Illustrated

two employees through the bank account.

v6 =







































0
−3, 000

0
0
0
0
0
0
0
0
0

3, 000







































.

The authorizations are

M+∗

6
=

[

0 0 0 0 0
]

, M−∗

6
=

[

1 0 0 0 2
]

;

these are in order. Here v6 = w3 ∈ T1, so once again the
frequency counter will change. The new state of the system is
(b6, κ6) where

b6 =







































8, 000
10, 640
5, 000

100, 000
200, 000

5, 000
−300, 000
−2, 850
−4, 850
−10, 000
−10, 000
−940







































and κ6 =





1
3
8



 .

The output is the report

[b6]E =













28, 640
290, 000
−310, 940
−2, 850
−4, 850













.

10.2. The Operation of the Model 227

Thus the balances of the company’s accounts after the six transac-
tions have been applied are recorded in the vector b6.

Application of an audit

To conclude the example, let us consider what happens when the
audit facility described in Chapter 9 is applied. Assume the com-
pany has a legal status which requires a yearly audit of its accounts.
The auditor decides to ask for the balances of the following company
accounts:

• inventories a6;

• bank account a2;

• trade debtors a3;

• trade creditors a8.

After stratified sampling, the auditor chooses to investigate the fol-
lowing items:

• finished products A and B;

• accounts in banks X, Y and Z;

• trade debtors M and N;

• trade creditor Q.

First of all, according to the accounting information, the final bal-
ance for inventories of $5,000 includes $1,200 for finished product A
and $900 for finished product B. The auditor requires a count and
proceeds to examine the documentation for both products in the
warehouse. As a result of the investigation, the values of the prod-
ucts in the warehouse are found to be $1,500 for A and $850 for B.
The difference of $50 in the value of product B is not considered to
be significant, but the auditor decides to order an adjustment for
product A. This records a debit to inventory in respect of product
A amounting to $300, which implies a profit increase of the same
amount. The corrected transaction vector is

228 Chapter 10. The Model Illustrated

vc

1
=







































0
0
0
0
0

300
0
0
0
0
0

−300







































.

Observe that in this case the original transaction v1 equals 0 since
there was no previous transaction involving the surplus of $300 cor-
responding to the finished good A. Thus the automaton simply ap-
plies the transaction vector vc

1
− v1 = vc

1
to the system in order to

correct the error.

Secondly, assume that banks X, Y and Z supply lists of all activi-
ties in their accounts for the company through December 31. When
these activities are checked for X and Y, the auditor observes that all
of them correspond to approved transactions involving other asset
or liability accounts. However, the case of bank Z is different; the
auditor finds a debit of $800 corresponding to the sale of inventories
which has been wrongly applied to the account of trade debtor N,
instead of being paid into the bank account. In this case it is nec-
essary to cancel the original transaction, which was represented by
the balance vector

v2 =







































0
0

800
0
0

−800
0
0
0
0
0
0







































,

10.2. The Operation of the Model 229

and replace it by the correct transaction

vc

2
=







































0
800

0
0
0

−800
0
0
0
0
0
0







































.

Observe that this pair of transactions can be replaced by the single
transaction

vc

2
− v2 =







































0
800
−800

0
0
0
0
0
0
0
0
0







































,

which represents the error. The effect of the auditing automaton is
to apply the vector vc

2
− v2 to the system to correct the error, as

described in Chapter 9.
Finally, all debits and credits in which the trade creditor Q is

involved are found to correspond to amounts in bank account and
inventories, so from this information the auditor concludes that no
adjustments are required involving the trade creditor account. The
audit is now concluded.

230 Chapter 10. The Model Illustrated

10.3. Concluding Remarks

Throughout this work our aim has been to show how the opera-
tion of the double entry accounting system can be elucidated by the
introduction of concepts and methods from abstract algebra. The
remarkably simple key idea is that of a balance vector, which is used
to display the account balances of a company at any instant, and
also to represent the transactions which modify balances when an
economic event affects the company. Balance vectors have the ad-
vantage that the signs of the entries show whether the transaction
in question debits or a credits an account. They also have natural
mathematical interpretations, which open up the use of a range of
standard techniques and constructions from algebra.

The principal achievement of the investigation has been the con-
struction of an algebraic model which closely represents the work-
ings of a real life accounting system. The result is the so-called 10-
tuple model, which is capable of screening balances and incoming
transactions for appropriateness, verifying authorizations for such
transactions, scrutinizing frequency of application of transactions,
generating reports and detecting errors.

The algebraic model is most convincing when it is viewed as an
automaton in which the balances form part of the state. The inputs
contain transactions that change the state, including the frequency
counts, while outputs include reports that are generated for the
benefit of shareholders, creditors, clients and the public.

In addition to balance vectors and automata, other algebraic ob-
jects that have played a useful role in describing the operations of
accounting systems include graphs, digraphs and monoids: further-
more, integer programming algorithms are important in the detec-
tion and correction of errors. The standard algebraic notion of a
quotient structure is exactly what is called for in the formulation of
a report.

It should be emphasized that, despite these successes, our ap-
proach is necessarily limited in its scope. Inevitably the application
of algebraic methods to accounting theory cannot extend beyond de-
piction of the purely mechanical aspects of the subject. Throughout
this work accounting systems are regarded as deterministic systems
whose actions are always predictable consequences of the rules gov-
erning the system.

On the other hand, economics, like most social sciences, deals

10.3. Concluding Remarks 231

with the behavior of vast numbers of individual members of com-
plex populations, for whose study statistical methods may be more
appropriate. For algebraic methods to be successful there must be
clear rules and well defined objects of study. In addition, we do not
attempt to address the philosophical aspects of accounting theory.
Nevertheless, despite these disclaimers, it is the authors’ belief that
a convincing case has been made for the claim that abstract alge-
bra has much to contribute to an understanding of the accounting
process.

List of Mathematical Symbols

X, Y, Z : sets.

X : set of words in an alphabet X.

|X| : number of elements in a finite set X.

Fun(X) : set of all functions on a set X.

X\Y : a difference set.

Crλ∈Λ Aλ : a cartesian product.

P, N, Z, Q, R : respective sets of positive integers, natural numbers,
integers, rational numbers, real numbers.

b,u,v : column vectors.

sppt(v) : support of a vector.

Rn : set of all n-column vectors over an ordered domain R.

Baln(R) : set of n-balance vectors over R.

Transn(R) : set of n-transaction vectors over R.

e(i, j) : balance vector with ith entry 1, jth entry −1 and other
entries 0.

type(v) : type of a balance vector v.

τv = v′ : transaction which adds v.

fv : function which adds v subject to allowability.

A : an accounting system.

A1 ∨ A2 ∨ · · · ∨ Ak : a join of accounting systems.

v∗ : an allowable vector in a join of accounting systems.

A/E : a quotient accounting system.

[x]E : E-equivalence class of x.

vE : a vector in the quotient system A/E.

σE : canonical epimorphism associated with equivalence relation E.

θ∗ : homomorphism induced by the function θ.

Mathematical Symbols 233

Mon〈X〉 : submonoid generated by X.

Mon(A) : monoid of an accounting system A.

S = (Z, X, δ) : a semiautomaton.

M = (Z, X, Y, δ, λ) : an automaton.

MA, TA : automaton and time enhanced automaton of an account-
ing system A.

Im(θ) : image of a function/homomorphism.

Ker(θ) : kernel of a homomorphism.

M ⊕N : a direct sum of modules.

AT : transpose of a matrix.

C+, C− : control matrices.

M+∗, M−∗ : reduced control matrices.

E(i, j) : matrix with 1 as the (i, j) entry and other entries 0.

Mn(R) : set of n× n matrices over R.

Vis(D), Vso(D), Vsi(D), Vc(D) : sets of vertices of a digraph D.
(

n

r

)

: a binomial coefficient.

[`] : greatest integer less than or equal to `.

S(k, m) : a Stirling number of the second kind.

Bibliography

Mathematics References

[1] Biggs, N.L. Discrete Mathematics, 2nd ed. Oxford. 2002.

[2] Brualdi, R.A. Introductory Combinatorics, 5th ed. Prentice-
Hall, Upper Saddle River, NJ. 2010.

[3] Cooper, S.B. Computability Theory. Chapman Hall, Boca Ra-
ton, FL. 2004.

[4] Hennie, F.C. Introduction to Computability. Addison-Wesley,
Reading, MA. 1977.

[5] Hopcroft, J. and Ullman, J. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA. 1979.

[6] Kolman, B. and Beck, R.E. Elementary Linear Programming
with Applications, 2nd ed. Academic Press, San Diego, CA. 1995.

[7] Lidl, R. and Pilz, G. Applied Abstract Algebra. Springer, New
York. 1998.

[8] Robinson, D.J.S. An Introduction to Abstract Algebra. W. de
Gruyter, Berlin. 2003.

[9] Robinson, D.J.S. A Course in Linear Algebra with Applications,
2nd ed. World Scientific, Singapore. 2006.

[10] Rosen, K.H. Discrete Mathematics and its Applications, 6th
ed. McGraw-Hill, Boston, MA. 2007.

[11] Strang, G. Linear Algebra and its Applications, 3rd ed. Har-
court Brace Jovanovich, San Diego, CA. 1988.

[12] West, D.B. Introduction to Graph Theory, 2nd ed. Prentice-
Hall, Upper Saddle River, NJ. 2001.

Bibliography 235

Accounting References

Ames, E. (1983). Automaton and group structures in certain eco-
nomic adjustment mechanisms. Mathematical Social Sciences 6(2),
247-260.

Arya, A., Fellingham, J.C., Mittendorf, B. and Schroeder, D.A.
(2004). Reconciling Financial Information at Varied Levels of Ag-
gregation. Contemporary Accounting Research, 21(2), 303.

Arya, A., Fellingham, J.C. and Schroeder, D.A. (2000a). Account-
ing information, aggregation, and discriminant analysis. Manage-
ment Science, 46(6), 790.

Arya, A., Fellingham, J.C. and Schroeder, D.A. (2000b). Estimating
transactions given balance sheets and an income statement. Issues
in Accounting Education, 15(3), 393.

Aukrust, O. (1955). Nationalregnskap-Teoretske Prinsipper (Na-
tional Income Accounting Theoretical Principles), Oslo, Statistik
Centralbur̊a.

Aukrust, O. (1966). An Axiomatic Approach to National Account-
ing: An Outline. Review of Income and Wealth, 12(3), 179-190.

Balzer, W. and Mattessich, R. (1991). An axiomatic basis of ac-
counting: a structuralist approach. Theory and Decision, 30, 213-
243.

Balzer, W. and Mattessich, R. (2000). Formalizing the basis of ac-
counting, in Balzer,W., Sneed, J.D. and Moulines, C.U. eds. Struc-
turalist Knowledge Representation-Paradigmatic Examples, Ams-
terdam, Rodopi, Atlanta GA (Vol. 75 of the Poznan Studies in the
Philosophy of the Sciences and Humanities), 99-126.

Barley, S.R. (1983). Semiotics and the Study of Occupational and
Organizational Cultures. Administrative Science Quarterly, 28(3),
393-413.

Belkaoui, A. (1978). Linguistic Relativity in Accounting. Account-
ing Organizations and Society, 3(2), 97-104.

Belkaoui, A. (1980a). The Impact of Socio-Economic Accounting
Statements on the Investment Decision: An Empirical Study. Ac-
counting, Organizations and Society, 5(3), 263-283.

236 Bibliography

Belkaoui, A. (1980b). The Interprofessional Linguistic Communi-
cation of Accounting Concepts: An Experiment in Sociolinguistics.
Journal of Accounting Research, 18(2), 362-374.

Blackwell, D. (1951). Comparison of Experiments. In Proceedings
of the Second Berkeley Symposium in Mathematical Statistics and
Probability, edited by J. Neyman. Berkeley: University of California
Press, 93-102.

Blackwell, D. (1953). Equivalent Comparison of Experiments. An-
nals of Mathematical Statistics, 24(2), 267-272.

Botafogo, F. (2009). Algebraic accounting: an introduction to ac-
countancy’s axiomatics. Working paper, São Paolo, Brazil.

Brewer, C. (1987). On the nature of accounting information sets.
Typescript.

Butterworth, J.E. (1967). Accounting Systems and Management
Decision: an Analysis of the Role of Information in the Managerial
Decision Process. Unpublished Ph.D. Dissertation, University of
California-Berkeley.

Cayley, A. (1894). The Principle of Bookkeeping by Double Entry.
Cambridge University Press.

Chambers, R.J. (1966). Accounting, Evaluation and Economic Be-
haviour. Prentice-Hall. Englewood Cliffs, NJ. (Reprinted in Ac-
counting Classics Series. Scholars Books Co., Houston, TX. 1975).

Cooke, T. and Tippett, M. (2000). Double entry bookkeeping, struc-
tural dynamics and the value of the firm. British Accounting Re-
view, 32(3), 261-288.

Cruz Rambaud, S. and Garćia Peréz, J. (2005). The accounting sys-
tem as an algebraic automaton. International Journal of Intelligent
Systems, 20, 827-842.

De Morgan, A. (1846). Elements of Arithmetic, 5th ed. Appendix,
On the Main Principle of Book-Keeping. Taylor and Walton, Lon-
don.

Demski, J.S. (1980). Information Analysis, 2nd ed. Addison-Wesley,
Reading, MA.

Demski, J.S. (2007). Is accounting an academia discipline? Ac-
counting Horizons, 21(2), 153-157.

Bibliography 237

Demski, J.S., Fitzgerald, S.A., Ijiri, Y. and Lin, H. (2006) Quantum
information and accounting information: their salient features and
conceptual applications. Journal of Accounting and Public Policy,
25, 435-464.

Demski, J.S., Fitzgerald, S.A., Ijiri, Y. and Lin, H. (2009). Quan-
tum information and accounting information: exploring conceptual
applications of topology. Journal of Accounting and Public Policy,
28, 133-147.

Demski, J.S., Patell, J.M. and Wolfson, M.A. (1984). Decentralized
choice of monitoring systems, The Accounting Review, 59(1), 16-34.

Edwards, E.O. and Philip W.B. (1961). The Theory and Measure-
ment of Business Income. University of California Press Berkeley,
CA.

Ellerman, D. (1982). Economics, Accounting, and Property Theory.
D.C. Heath, Lexington, MA.

Ellerman, D. (1985). The mathematics of double entry bookkeeping.
Mathematics Magazine, 58, 226-233.

Ellerman, D. (1986). Double entry multidimensional accounting.
Omega, International Journal of Management Science, 14(1), 13-22.

Fisher, I.E. (2004). On the structure of financial accounting stan-
dards to support digital representation, storage, and retrieval. Jour-
nal of Emerging Technologies in Accounting, 1(1), 23-40.

Fisher, I.E. and Garnsey, M.R. (2006). The semantics of change
as revealed through an examination of financial accounting stan-
dards amendments. Journal of Emerging Technologies in Account-
ing, 3(1), 41-60.

Garnsey, M.R. and Fisher, I.E. (2008). Appearance of new terms in
accounting language: a preliminary examination of accounting pro-
nouncements and financial statements. Journal of Emerging Tech-
nologies in Accounting, 5(1), 17-36.

Gibbons, M. and Willett, R.J. (1997). A new light on accrual, ag-
gregation and allocation, using an axiomatic analysis of accounting.
Abacus, 33(2), 137-168.

Gjesdal, F. (1981). Accounting for stewardship. Journal of Ac-
counting Research, 19(1), 208-231.

238 Bibliography

Hamilton, W.R. (1837). Theory of conjugate functions, or algebraic
couples: with a preliminary and elementary essay on algebra as the
science of pure time. Transactions of the Royal Irish Academy 17,
293-422.

Husserl, E. (1931). Ideas. Allen and Unwin, London.

Ijiri, Y. (1967). The Foundations of Accounting Measurement: a
Mathematical, Economic and Behavioral Inquiry. Prentice-Hall, En-
glewood Cliffs, NJ.

Ijiri, Y. (1975). Theory of Accounting Measurement. American
Accounting Association, Sarasota, FL.

Lebar, M.A. (1982) A general semantics analysis of selected sections
of the 10-K, the annual report to shareholders, and the financial
press release. The Accounting Review, 57(1), 176-189.

Mattessich, R. (1957). Towards a general and axiomatic foundation
of accountancy. Accounting Research, 8, 328-355.

Mattessich, R. (1964). Accounting and Analytical Methods. Irwin,
Homewood.

Mattessich, R. (1995). Critique of Accounting–Examination of the
Foundations and Normative Structure of Accounting. Quorum-
Books, Greenwood Publishing Group, Westport, CT.

Mattessich, R. (1998). From accounting to negative numbers: A
signal contribution of Medieval India to mathematics. Accounting
Historians Journal, 25(2), 129-145.

Mattessich, R. (2000). The Beginnings of Accounting and Account-
ing Thought–Accounting Practice in the Middle East (8000 B.C.
to 2000 B.C.) and accounting thought in India (300 B.C. and the
Middle Ages). Garland Publishing, New York, NY.

Mattessich, R. (2003). Accounting research and researchers of the
nineteenth century and the beginning of the twentieth century: an
international survey of authors, ideas and publications. Accounting,
Business and Financial History, 13(2), 171-205.

Mattessich, R. (2005a). The information economic perspective of
accounting – its coming of age. Accounting Working Paper, Sauder
School of Business, University of British Columbia.

Bibliography 239

Mattessich, R. (2005b). A Concise History of Analytical Account-
ing: Examining the use of Mathematical Notions in our Discipline.
Spanish Journal of Accounting History, 2, 123-153.

Mattessich, R. and Galassi, G. (2000). History of the spreadsheet:
from matrix accounting to budget simulation and computerization,
in AECA ed., Accounting and History. Selected Papers from the 8th
Congress of Accounting Historians, Madrid. Asociación Española de
Contabilidad y Administración, 203-232.

McCloskey, D. (1983). The rhetoric of economics. Journal of Eco-
nomic Literature, 21, 481-517.

McClure, M. (1983). Accounting as Language: a Linguistic Ap-
proach to Accounting. Unpublished Ph.D. Dissertation, University
of Illinois.

Nehmer, R.A. (1988). Accounting Information Systems as Algebras
and First Order Axiomatic Models. Unpublished Ph.D. Disserta-
tion, University of Illinois.

Nehmer, R.A. (2010). Accounting systems as first order axiomatic
models: consequences for information theory. International Journal
of Mathematics in Operational Research, 2(1), 99-112.

Nehmer, R.A. and Robinson, D.J.S. (1997). An algebraic model
for the representation of accounting systems. Annals of Operations
Research, 71(1), 179-198.

Pacioli, L. (1963). Summa de Arithmetica, Geometria, Proportioni
et Proportionalita: Distintio Nona, Tractus XI, Particularis de Com-
putis et Scripturis. (1494). Translated by Brown, R.G., Johnston,
K.S., as “Pacioli on Accounting”, McGraw-Hill, New York, NY.

Paton, W.A. (1922). Accounting Theory. Ronald Press, New York,
NY. (Reprinted by Accounting Studies Press, Chicago, IL. 1962).

Stephens, R.G., Dillard, J.F. and Dennis, D.K. (1985). Implications
of formal grammars for accounting policy development. Journal of
Accounting and Public Policy, 4, 123-148.

Tippett, M. (1978). Axioms of accounting measurement. Account-
ing and Business Research, Autumn, 266-278.

Tyrvainen, P., Kipelainen, T. and Jarvenpaa, M. (2005). Patterns
and measures of digitalisation in business unit communication. In-
ternational Journal of Business Information Systems, 1, 199-219.

240 Bibliography

Velupillai, K.V. (2005). The unreasonable ineffectiveness of mathe-
matics in economics. Cambridge Journal of Economics, 29, 489-872.

Willett, R.J. (1987). An axiomatic theory of accounting measure-
ment. Accounting and Business Research, 17, 155-171.

Willett, R.J. (1988). An axiomatic theory of accounting measure-
ment - Part II. Accounting and Business Research, 19, 79-91.

Willett, R.J. (1991). Theory of accounting measurement structures.
IMA Journal of Management Mathematics, 3(1), 45-59.

Index

abelian group 31, 132
account set 74
accounting

equation 36
origin of 1, 2

accounting system
absolutely bounded 82
abstract 75
bounded 82
equivalent 81
free 82
unbounded 82

algebraic
approaches to accounting 4
concepts 27

algorithm 171, 183
allowable

balance vector 75
transaction 75

asset account 36
associative law 31
audit 208, 227

as an automaton 205
authorization process 194
automaton 121

extended 124
of accounting system 127
time enhanced 128, 133

automorphism 108
group 109

balance
function 74
matrix 55
module 37
sheet 139
vector 36

elementary 38
simple 38

verification 176, 177, 181
balance-check test 205
basis of free module 35
Bell number 103
binomial coefficient 59
bounded accounting system 82

absolutely 82
bounding pair 81

characteristic zero 33
chart of accounts 36
closing 101
commutative

law 31
monoid 130
ring 31

complete digraph 158
composite of functions 51
connected

accounting system 77
components 77

control matrix 192, 196
reduced 195

credit 53
cycle 42
cyclic permutation 42

debit 53
decision problem 170, 171
decomposable system 91
diagram of classes of systems

152
digraph 69

feasible 79, 184
of a transaction 70
of an accounting system 76

242 Index

of an automaton 121
strongly transitive 154, 157
transitive 155

direct sum of modules 41
directed graph - see digraph
disconnected accounting system

77
disjoint cycles 42
distributive law 31
domain

integral 32
ordered 32

double entry book-keeping 1

edge in a (di)graph 70
elementary

accounting system 146
balance vector 38
matrix 64
transaction 52

epimorphism 107
canonical 111

equity account 36
equivalence

class 98
relation 98

equivalent systems 81
error correcting system 132, 150
example, real life 210
expiration time 134
extended

accounting system 200
automaton 124, 201
model 200, 211
semiautomaton 124

feasibility problem 177
feasible

digraph 79
transaction 79

finitely

specifiable system 143
specified system 143

finitely generated
accounting system 145
monoid 145

formal language 18
free

accounting system 82
module 35
monoid 124

frequency
control 197
counter 198
function 198

graph of accounting system 77
group

abelian 31
and accounting systems 131
automorphism 109
Pacioli 55
symmetric 108

Hasse diagram 58
hereditary system 148, 160, 162
homomorphism

of accounting systems 106
of modules 37
of monoids 130

identity
element 31
transaction 51, 76

image
of a function 105
of a homomorphism 42, 113

indecomposable system 91
in-degree in a digraph 70
input alphabet 121
integer program 179
integral domain 32
inverse system 150

Index 243

isolated vertex 157
isomorphism

of accounting systems 107
of digraphs 163
of modules 52
of monoids 130
theorems 111

join
of accounting systems 86
of relations 104

kernel of a homomorphism 37

lattice 104
level

of a balance vector 45
of a transaction 58

liability account 36
linear

combination 35
independence 35
order 32

loop in a (di)graph 70

matrix
balance 55
control 192, 196
and transactions 63

Mattessich function 65
meet of relations 104
membership problem 172
message 133
model

extended 200, 211
10-tuple 200

module 34
balance 37
free 35

monoid
free 124
of accounting system 128

of semiautomaton 122
monomorphism 107

negative element 31, 32
next state function 121

ordered (integral) domain 32
out-degree in a digraph 70
output

alphabet 121
function 121

Pacioli, L. 2
group 55

partial order 58
of transaction types 57

partition 99
permutation 42

and balance vectors 41
cyclic 42

positive element 32
profit and loss account 36
pure accounting system 150

quotient systems 100
hierarchy of 102
quotients of 116

rank of a free module 35
recursion theory 172
recursive

set 172
system 173

recursively enumerable
set 172
system 173

relation
antisymmetric 58
equivalence 98
irreflexive 70
reflexive 58, 98
symmetric 98
transitive 58, 98

244 Index

report 101
ring, commutative 31

semiautomaton 120
simple

accounting system 146, 186
balance vector 38
transaction 52

sink 157
source 157
state of an automaton 121
Stirling number 102, 196
subaccounting system 83

proper 83
submodule 37
submonoid 123
support of a vector 83
symmetric group 108

T-diagram 53
time enhanced 134

transaction 51
allowable 75
elementary 52
feasible 79
simple 52
vector 52

transitive
closure 104
relation 98

Turing, A.M. 120
Turing machine 171
type

of a balance vector 57
of a transaction 57

type-complete system 150

unbounded accounting system
82

vector
balance 36

elementary 38
column 33

elementary 35
transaction 52

vertex of a (di)graph 70
isolated 157

word 123
empty 123

zero
element 31
vector 33

	Cover Page

	Title Page

	Copyright

	Preface
	Contents
	Chapter One Approaches to AccountingTheory
	Chapter Two Balance Vectors
	Chapter Three Transactions
	Chapter Four Abstract Accounting Systems
	Chapter Five Quotient Systems and
Homomorphisms
	Chapter Six Accounting Systems and Automata
	Chapter Seven Accounting Systems with Restricted Transactions
	Chapter Eight Algorithms
	Chapter Nine The Extended Model
	Chapter Ten The Model Illustrated
	List of Mathematical Symbols
	Bibliography
	Index

