
CHAPTER1

1. (a) Payo� diagram at expiration:
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FIGURE 0.1 Payo� diagram for both a short sale of stock and an at-the-money call.
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Payo� diagram at expiration:
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FIGURE 0.2 Payo� diagram for a long put with strike K1 and a long call with strike K2, K1 < K2.
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FIGURE 0.3 Payo� diagram for a (long put/short call) combination at K1 plus a (long call/short put) combination at K2 > K1.
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(b) Payo� diagram before expiration:
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FIGURE 0.4 Pre-maturity payo� diagram for both a short sale of stock and an at-the-money call.
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FIGURE 0.5 Pre-maturity payo� diagram for a long put with strike K1 and a long call with strike K2, K1 < K2.
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Payo� diagram before expiration:
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FIGURE 0.6 Pre-maturity payo� diagram for a (long put/short call) combination at K1 plus a (long call/short put) combination
at K2 > K1.

2. (a) Let N denote the notional amount of the swap and L12 and L18 the USD Libor rate at 12 months
and 18 months respectively. The cash ows are given by

12 months 18 months 24 months

Floating leg +N +N � L12
2 +N � �1 + L18

2

�
Fixed leg �N �N � :05

2 �N � �1 + :05
2

�
where the 1 in the 24 months column represents the notional amount.

(b) If one had a oating rate obligation and wished to pay a �xed rate, �, then enter into two FRA
contracts at rate � with maturity 18 and 24 months. For example, at 18 months, if the oating rate
were above �, then the FRA would be in-the-money by precisely the amount required to o�set the
higher oating rate payment. Therefore, the total payment is at the rate �.

(c) If one had a oating rate obligation and wished to pay a �xed rate, a swap is not necessary as long
as the appropriate interest rate options are available. A long position in an interest rate cap at
rate � and a short position in an interest rate oor at rate �, both maturing on the oating rate
payment date, ensure that a �xed rate of � is paid. If the oating rate, say rT , is above � at expiry,
a net payment at rate � is required after taking into account the value of the cap, N � (rT � �).
If the oating rate is below � at expiry, say rT , then a payment at rate rT must be made on the
oating rate obligation. However, the short position in the oor requires an additional payment of
N � (�� rT ). The result is a total payment at precisely rate �.

3. (a) St(1 + r) � Ft � (St + c+ s)(1 + r) where c is the annual storage cost for 1 ton of wheat, s is the
annual insurance cost for 1 ton of wheat, and r is the simple interest rate. If Ft > (St+ c+s)(1+r),
then construct the following arbitrage portfolio
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Position Payo� at t Payo� at T

Short futures 0 Ft � ST

Borrow St + c+ s +(St + c+ s) �(St + c+ s)(1 + r)

Buy wheat and pay storage, insurance costs �(St + c+ s) ST

Total 0 Ft � (St + c+ s)(1 + r) > 0

Thus, Ft � (St + c + s)(1 + r). If Ft < (St + c + s)(1 + r), one cannot immediately reverse the
holdings in the above portfolio to create another arbitrage portfolio. A problem arises since wheat
is not typically held as an investment asset. If one sells wheat, it is not reasonable to assume that
one is entitled to receive the storage and insurance. Therefore, a weaker condition ensues with
Ft � St(1+r) but not Ft � (St+c+s)(1+r). If the asset were of a �nancial nature or a commodity
held for investment such as gold, one could sell the asset and save on the storage and insurance costs.
These assets produce an exact relationship, Ft = (St+ c+ s)(1+ r). Holding an asset such as wheat
has value since it may be consumed. For instance, a large bakery requires wheat for production and
maintains an inventory. These companies would be reluctant to substitute a futures contract for
the actual underlying. Hence, the price of a futures is allowed to be less than (St + c + s)(1 + r).
However, if Ft < St(1 + r), then construct the following arbitrage portfolio

Position Payo� at t Payo� at T

Buy futures 0 ST � Ft

Invest St �St +St(1 + r)

Sell wheat +St �ST
Total 0 St(1 + r)� Ft > 0

Thus, Ft � St(1 + r) and combining the two inequalities implies

St(1 + r) � Ft � (St + c+ s)(1 + r)

(b) Ft = $1; 500 < $1; 543:50 = (1; 470)(1+ :05) = St(1+ r). This violates the above inequality. To take
advantage of this arbitrage opportunity, follow the second arbitrage strategy outlined above.

(c) Pro�t / Loss = 1,543.50 - 1,500 = $43.50.

4. (a) Ft = St(1 + r)(T�t) = $105 where T � t = 1 year.

(b) Ft = 101. Consider the following arbitrage portfolio

Position Payo� at t Payo� at T

Long forward $0 ST � $101

Short stock +$100 �ST
Invest at risk - free rate �$100 +$105

Total $0 $4

or the following arbitrage portfolio
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Position Payo� at t Payo� at T

Short stock +$100 �ST
Long Call �$3:0 max(ST � $100; 0)

Short Put +$3:5 min(ST � $100; 0)

Invest PV (100) at risk - free rate �$ 100
1:05 $100

Total $5:26 $0
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CHAPTER2

1. (a) p� = r�d
u�d =

1+:05�� 260
280

320
280� 260

280

= :3917

(b) Value of the call option.

Ct =
1

(1 + :05�)
E~p(Ct+�)

=
1

(1 + :05�)
(320� 280)� p�

= $15:47

(c) Normalize by St. The elements of the state price vector must be solved. Consider the following two
equations

1 = (1 + r�) u + (1 + r�) d

St = Sut+1 u + Sdt+1 d

and after dividing the second equation by St

1 = (1 + r�) u + (1 + r�) d

1 =
Sut+1
St

 u +
Sdt+1
St

 d

Substitute in the values for r, Sut+1, S
d
t+1 and express these equations as�

1:0125 1:0125
320
280

260
280

��
 u
 d

�
=

�
1
1

�

Solving this system gives  u = :3868 and  d = :6008. The �rst equation

1 = (1 + r�) u + (1 + r�) d
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demonstrates that up and down probabilities are calculated as ~pu = (1 + r�) u = :3917 and
~pd = 1� ~pu = (1 + r�) d = :6083. Observe that the quantity ~pu is the same as p� in part (a).

(d) Observe that the discounted stock price is a martingale under the risk - neutral measure calculated
by the St normalization.

E

�
St+1

(1 + r�)

����It
�

=
1

(1 + r�)

�
~pu � Sut+1 + ~pd � Sdt+1

�
=

1

1:0125
(:3917� 320 + :6083� 260)

= 280

= St

(e) Only the up state is relevant for pricing the call option as the call expires worthless if the stock
decreases to $260 next period. The call price equals

Ct = 40 u = $15:47

The same price calculated in part (b).

(f) No, di�erent martingale measures (i.e. di�erent risk neutral probabilities ~pu and ~pd) produce di�erent
call values. However, an option's fair market value is independent of the procedure used to obtain
~p (or p�).

(g) A di�erent normalization (numeraire asset) is used. An analogue to part (f) would be a statement
asserting that the arbitrage - free option price is independent of the numeraire asset.

(h) The risk premium incorporated in the option's price satis�es: (1 + r + risk premium for Ct) =

Eempirical
h
Ct+1
Ct

i
. This risk premium is usually not calculated in the real world. One uses risk -

neutral probabilities for call pricing, Erisk neutral
h
Ct+1
Ct

i
= 1 + r and not Eempirical

h
Ct+1
Ct

i
. In an

incomplete market, there may exist risk premiums which require explicit calculation.

2. (a) Assume the risk - free interest rate r is zero and consider the system of equations given by

2
4 124 71

83 61
92 160

3
5 �  1

 2

�
=

2
4 A0

B0

C0

3
5

If there exists  1 and  2 with the properties

1:  1 +  2 =
1

(1 + r)
= 1 assumed r = 0

2:  1 ,  2 > 0

such that the right hand side of this system of equations is positive, then the \current prices" are
arbitrage - free. In this particular case, since no current prices are speci�ed, there are an in�nite
number of possible  1 and  2 solutions in which both state prices are positive, sum to the discount
factor, and generate positive values for A0, B0, and C0.

(b) If no such solution exists, then at least one of the current prices (A0, B0, or C0) is non - positive. In
this case, one would \buy" the asset for the non - positive price and be assured of positive payo�s
in all future states of the world. Hence, an arbitrage pro�t exists.
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(c) Let  1 =  2 =
1
2 . Then, 2

4 A0

B0

C0

3
5 =

2
4 97:5

72:0
126:0

3
5

(d) The futures' strike price for asset B is chosen such that the current value of the contract is worth
zero. Thus, F0 = 0. In this case, given  1, the strike price K satis�es, K = 22 1 + 61. This value
of K was generated by the equation

0 =  1(83�K) + (1�  1)(61�K)

where  1 = ~p1 since r = 0. In general, risk - neutral probabilities and not state prices are used.
Alternatively, if the contract was struck on a previous date with a previously speci�ed strike price
K, it's current value is given by the expected payo� under the risk - neutral measure.

F0 = ~p(83�K) + (1� ~p)(61�K)

Note that in general one does not discount the payo� when pricing a futures' contract.

(e) The put option on asset C only depends on the �rst state as the $92 payo� is less than the strike
price. Its price is therefore the discounted payo� in the �rst state, P0 = (125� 92) 1 = 33 1. For
the put option, the state price is used as discounting must be taken into account.

3. (a) The three equations are captured in the following linear system.

0
@ Sut+� Sdt+�

Cu
t+� Cd

t+�

1 1

1
A�  1

 2

�
=

0
@ St

Ct
1

1+r

1
A

(b) The two step binomial tree is

S
t
 

S
t+∆
d  

S
t+∆
u  

S
t+2∆
uu  

S
t+2∆
ud  

S
t+2∆
du  

S
t+2∆
dd  

FIGURE 0.7 Two step binomial tree for problem 3, part (b)

If the tree were arbitrage - free, one could write three 3 - equation systems for the entire tree, one
corresponding to each of the three nodes; St, S

u
t+�, and S

d
t+�.
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(c) The three 3 - equation systems are0
@ Suut+2� Sudt+2�

Cuu
t+2� Cud

t+2�

1 1

1
A�  u1

 u2

�
=

0
@ Sut+�

Cu
t+�
1

1+r

1
A

0
@ Sdut+2� Sddt+2�

Cdu
t+2� Cdd

t+2�

1 1

1
A�  d1

 d2

�
=

0
@ Sdt+�

Cd
t+�
1

1+r

1
A

0
@ Sut+� Sdt+�

Cu
t+� Cd

t+�

1 1

1
A�  1

 2

�
=

0
@ St

Ct
1

1+r

1
A

(d) Let � be the terminal time. Consistency is the notion that at time zero, all intermediate nodes on
the tree are arbitrage - free if the terminal nodes are arbitrage - free. A state price,  i(t), is the

discounted risk - neutral probability of that state occurring,  i(t) =
pi(0;t)
B(t) . Let pi(0; t) denote the

risk - neutral probability that state i occurs at time t given the initial node as the current position.
The term B(t) represents the discount factor from 0 to time t, B(t) = 1

(1+r)t > 0. Since the terminal

nodes are arbitrage - free, the values of  i(�) satisfy two properties

(1)  i(�) > 0) pi(0; �) > 0 8i
(2)

X
i

 i(�) =
1

B(�)

It remains to show that  i(t) also satisfy the same two properties for 0 � t � � and all states i
which can occur at time t. Note that the number of states depends on t. At time t, the sum extends
from i = 1 to i = 2t (non recombining tree).

Since pi(0; �) > 0 for all i, all intermediate nodes are accessible from the initial node. If an interme-
diate node was not accessible, pi(0; t) = 0, then there would exist a terminal node with pi(0; �) = 0.
This would contradict property (1) above. Therefore,  i(t) > 0 for all i and for all t.

The second property requires the sum of the state prices across the number of states to equal the
discount factor for a �xed t. This assertion follows from

X
i

pi(0; t) = 1 8t

) B(t)
X
i

 i(t) = 1 8t

)
X
i

 i(t) =
1

B(t)
8t

Thus, the sum of the state prices across all the states at time t equals the discount factor. Therefore,
all intermediate nodes are free of arbitrage.

4. (a) u = e�
p
� ) � = log(u)p

�
= :48 (where � = 1

12 when annualized).

(b) Assume that S0 = 50 and K = 50. The 4 - step binomial tree for the stock:
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t = 0 t = 1 t = 2 t = 3 t = 4

87:45
76:04

66:13 66:13
57:50 57:50

50 50 50
43:48 43:48

37:80 37:80
32:88

28:59

The risk - neutral up probability, p = (1+r��d)
(u�d) =

1+ :05
12 �:87

1:15�:87 = :48, is used to �nd the call pre-

mium tree. Work backwards from the terminal node at t = 4 where the call premium is simply

max (S4 � 100; 0). For example, at t = 3, the top node is priced as p�37:45+(1�p)�16:13
1+r� = $26:25.

t = 0 t = 1 t = 2 t = 3 t = 4

37:45
26:25

16:54 16:13
9:82 7:71

5:60 3:69 0
1:76 0

0 0
0

0

(c) C0 = $5:60, the initial node on the call premium tree.

5. (a) u = e(:30)
p

1
12 = 1:09. The binomial tree for the stock is

t = 0 t = 1 t = 2 t = 3

132:26
121:30

111:23 111:23
102 102

93:54 93:54
85:78

78:66

while the terminal values for the call option are

12:26
0
0
0

The hedging portfolio one should use to replicate the option payo�s is as follows:

Time 0
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Position Value of Portfolio

Borrow at the risk - free rate �$16:113
Long 0.173 shares +$17:646

Total Value = $1:53

Time 1

If tick was down, the portfolio is now worth $0, do nothing the rest of the option's life and the
portfolio matches the option payo�s since it expires worthless.

If the tick was up, the portfolio is now worth $3.06. Adjust the portfolio in the following way:

Position Value of Portfolio

Borrow at the risk - free rate �$32:279
Buy 0.3178 Shares +$35:348

Total Value = $3:06

Time 2

Again, if tick was down, the portfolio is now worth $0, do nothing the rest of the option's life
and the portfolio matches the option payo�s since it expires worthless.

If the tick was up, the portfolio is now worth $6.135. Adjust the portfolio in the following way:

Position Value of Portfolio

Borrow at the risk - free rate �$64:5754
Buy 0.583 Shares +$70:7116

Total Value = $6:135

Time 3

Again, if tick was down, the portfolio is now worthless, matching the option's payo�s.

If the tick was up, the portfolio is now worth $12.26 and the option's payo�s are replicated by
this portfolio.

(b) Since the self - �nancing portfolio in part (a) matches the options payo�s, the option's value at time
0 must equal the time 0 value of the portfolio. Speci�cally, Ct = 102� 0:173� 16:1133 = $1:53:

(c) To hedge the position, simply follow the dynamic hedging portfolio outlined in part (a) with ev-
erything multiplied by 100. For example, at time 0, borrow 100 � 16:1133 = $1; 611:33 and buy
100� :173 = 17:3 shares of the stock. Continue this scaling along the remainder of the tree.

(d) If the market price of this call were $5, sell the call and use $1.53 of the proceeds to form the
replicating portfolio. The remaining $3.47 is risk - free pro�t.

6. (a) If � = r, the expected value of St+� conditional on St is

Ep[St+�jSt] = St(1 + r)

for the appropriate p. With the process

St+� = St + rSt + �St�t

p must satisfy
St(1 + r + �)p+ St(1 + r � �)(1� p) = (1 + r)St
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which is true for p = 1
2 . This is the only choice for p which makes the discounted stock a martingale.

(b) No, p = 1
3 is not consistent since this measure does not make the discounted stock a martingale.

(c) With risk premiums in the economy, the stock price process is not under the risk - neutral measure.
Hence p represents the empirical, statistical, or true measure for the stock.

(d) It is only possible to determine the value of p statistically. This would involve calibrating a particular
SDE to observed stock prices. A probability could then be inferred using a procedure similar to
chapter 17, problem 1, part (d).

7. (a) We want to choose � such that 5� = 200
365 . Thus, � = 40

365 or 40 days.

(b) u = exp
n
(0:12)

q
40
365

o
= 1:0405. Thus, d = 1

u
= 0:9611

(c) The implied up probability is p = (1+r��d)
(u�d) = 0:5727. This is a risk neutral probability.

(d) Stock price tree with S0 = 100.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

121:9725
117:2221

112:6567 112:6567
108:2692 108:2692

104:0525 104:0525 104:0525
100 100 100

96:1054 96:1054 96:1054
92:3624 92:3624

88:7652 88:7652
85:3081

81:9857

(e) The call premium tree is below. Work backwards from the terminal node at t = 5 where the
call premium is simply; max (S5 � 100; 0). For example, at t = 4, the top node is priced as
p�21:9725+(1�p)�12:6567

1+r� = $17:8743.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

21:9725
17:8743

13:9570 12:6567
10:5113 8:9215

7:6793 6:0548 4:0525
5:4703 4:0018 2:3057

2:5937 1:3118 0
0:7464 0

0 0
0

0

Hence, the value of the call option at the present time, t = 0, is $5.47.
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CHAPTER3

1. Are the following sequences convergent ?

(a) fXng1n=1 =
�
a; a2; a3; : : :

	

Xn

8<
:

converges to 0 if jaj < 1
converges to 1 if a = 1
diverges if jaj > 1

(b) fXng1n=1 =
�
2; 94 ;

64
27 ; : : :

	
Xn =

�
1 + 1

n

�n ! e � 2:71828 Convergent since

ln(Xn) = n ln

�
n+ 1

n

�

=
ln
�
n+1
n

�
1
n

use L'hopital's rule, numerator and denominator both approach zero as n!1
=

1
n+1
n

�
1

n
� n+ 1

n2

�
(�n2)

=
n

n+ 1
[�n+ n+ 1]

=
n

n+ 1
! 1

) Xn ! e1

because ln is a continuous function which allows the interchange of the limit.

(c) fXng1n=1 =
�
0;� 1

2 ;
1
6 ;� 1

24 ; : : :
	
Xn = (�1)n�1

n! ! 0 Convergent since

jXnj = 1

n!
! 0
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The yearly interest rate is 5% and the intervals, �, are chosen such that n� = 1.

i. What is the gross return on $1 invested during � ?

1:05 =
�
1 +

x

n

�n
) 1 +

x

n
= (1:05)

1
n

) x = n
h
1:05

1
n � 1

i
and with n =

1

�

=
1:05� � 1

�

ii. What is the compound return during one year ? Use results from problem 1, part (b).

1:05 =
�
1 +

x

n

�n
! ex

In the limit, ex = 1.05 which implies that x = ln(1:05) � :04879.

2. If it exists, �nd the limit of the following sequences for n=1,2,3, . . .

(a) No limit

Xn =

�
1 even natural numbers
-1 odd natural numbers

(b) No limit, function is periodic

Xn =

8><
>:

0 n = 3; 6; 9; : : :

�
p
3
2 n = 4; 5; 10; 11; : : :p
3
2 n = 1; 2; 7; 8; : : :

(c) No limit, sequence oscillates worse than part (a)

(d) No limit, the second term, (�1)n
n

converges to 0 but the �rst term is part (b) which does not converge.

Is Xn = sin
�
n�
3

�
+ (�1)n

n
bounded ? Yes, both components are bounded in absolute value by 1.

3. Determine the following limits.

(a) limn!1
(3+

p
n)p

n
= limn!1 3p

n
+ 1 = 1

(b) limn!1 n
1
n = 1

lim
n!1 ln

�
n

1
n

�
= lim

n!1
ln(n)

n

= lim
n!1

1

n
by L'hopital's rule

! 0

) n
1
n ! e0 = 1
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4. The sum
Pn

k=1
1
k! equals

Pn
k=0

1
k! � 1 since 1

0! = 1. By de�nition,
P1

k=0
xk

k! = ex. The sum,
Pn

k=0
1
k! ,

starting at k = 0 is the partial sum of e1. In the limit,
Pn

k=1
1
k! ! e1 � 1. Hence,

Pn
k=1

1
k! converges to

e1 � 1 � 1:718282.

5. Show the partial sum Sn+1 =
p
3Sn with S1 = 1 converges to 3. Claim: Sn = 3

2n�1�1

2n�1 .

(a) Base Case, n = 2 S2 =
p
3 � 1 = 3

1
2 = 3

21�1

21

(b) Assumption Assume formula true for n = k

Sk = 3
2k�1�1

2k�1

(c) Induction Then, for k + 1, want Sk+1 = 3
2k�1

2k as the result.

Sk+1 =
p
3 � Sk

=

q
3 � 3 sk�1�1

sk�1

=

q
3
2k�1+2k�1�1

2k�1

= 3
2k�1

2k

Thus, limn!1 Sn = 3limn!1
2n�1
2n = 3.

6. The series
PN

n=1
1
n
is a harmonic series and does not converge. Despite the fact that 1

n
decreases to zero,

the decrease is not rapid enough to ensure the in�nite sum converges.

NX
n=1

1

n
= 1 +

�
1

2

�
+

�
3

4
+

1

4

�
+

�
1

5
+

1

6
+

1

7
+

1

8

�
+

�
1

9
+ : : :+

1

16

�
+ : : :

The terms in brackets, ( ), all add up to greater than or equal to 1
2 with 2k elements in each bracket (i.e.

1, 2, 4, 8, ... terms). Therefore,
PN

n=1
1
n
> 1 + 1

2 +
1
2 +

1
2 + : : : and the series diverges.

7. The series, Xn = aXn�1+1, will converge provided that jaj < 1. This is an autoregressive AR(1) process.
It can be written as a partial sum through successive backward substitution.

Xn = aXn�1 + 1 substituting in the previous value Xn�1 = aXn�2 + 1

= a2Xn�2 + a+ 1 after further substitution

= a3Xn�3 + a2 + a+ 1

...

= anX0 +

n�1X
k=0

ak

8. The function f(x) = x3 is a monotonically increasing function for x 2 [0; 1]. Therefore, the left \endpoint"
underestimates the value of the integral while the right \endpoint" overestimates the integral.

(a)
R 1
0
x3dx = 1

4x
4
��1
0
= 1

4
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(b) Choose an evenly spaced partition for simplicity such as x0 = 0, x1 = 1
4 , x2 = 1

2 , x3 = 3
4 , and

x4 = 1. The terms xi � xi�1 8i = 1; : : : ; 4 always evaluate to 1
4 . Therefore, with f(xi) = x3i , the

sum becomes

4X
i=1

f(xi)(xi � xi�1) =
1

4

�
1 + 8 + 27 + 64

64

�

=
3

8

�
=

24

64

�

4X
i=1

f(xi�1)(xi � xi�1) =
1

4

�
0 + 1 + 8 + 27

64

�

=
9

64

(c) As expected, the true value 1
4 = 16

64 lies between the two \endpoints", 9
64 <

16
64 <

24
64 .

9. (a) The integral has no closed form solution. It can be simpli�ed using successive applications of
integration by parts. As this is tedious, computer software such as MATLAB can be utilized with
the following commands.

x=sym('x')

int(x*sin(pi/x),0,1)

The result generated by MATLAB is

Z 1

0

f(x)dx =
�2

2

Z �

0

sin(t)

t
dt� �

2
� �3

4

The integral
R �
0

sin(t)
t

dt can be evaluated numerically with the following MATLAB command.

quad8('integral',0,pi)

where the argument integral is a separate m - �le program

function y=integral(x)

y = (sin(x))/x;

MATLAB generated 1:8511091 as the approximation to
R �
0

sin(t)
t

dt. Thus, the entire expression is

approximately �2

2 (1:8511091)� �
2 � �3

4 � �0:187508.

(b) Approximation of
R 1
0
f(x)dx. Choose the same evenly spaced partition of with 1

4 for the mesh
size. Since the intensity of the uctuations increases as x approaches zero, placing a �ner grid
near zero could improve performance. Usually, for a given number of nodes, placing more nodes in
regions where the function uctuates more intensely increases the accuracy of the approximation.
Let x0 = 0, x1 =

1
4 , x2 =

1
2 , x3 =

3
4 , and x4 = 1. The terms xi � xi�1 8i = 1; : : : ; 4 evaluate to 1

4 .

Therefore, with f(xi) = xi

�
sin
�
�
xi

��
, the sum becomes

4X
i=1

f(xi)(xi � xi�1) =
1

4

"
0 + 0� 3

p
3

8
+ 0

#

= �3
p
3

48
� �:10825
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4X
i=1

f(xi�1)(xi � xi�1) =
1

4

"
0 + 0 + 0� 3

p
3

8

#

= �3
p
3

48
� �:10825

(c) The sums are not accurate.

(d) The sums do not approximate the integral very well since the function oscillates rapidly.

10. Calculate the partial derivatives with respect to x, y, and z of the function f(x; z; y) = x+y+z
(1+x)(1+y)(1+z) .

@
�
(x+y+z)(1+x)�1

(1+y)(1+z)

�
@x

=
1

(1 + x)(1 + y)(1 + z)
� (x + y + z)

(1 + x)2(1 + y)(1 + z)

=
1

(1 + x)(1 + y)(1 + z)

�
1� x+ y + z

1 + x

�

=
1

(1 + x)(1 + y)(1 + z)

�
1 + x� x� y � z

1 + x

�

=
1� y � z

(1 + x)2(1 + y)(1 + z)

The partial derivatives for y and z follow immediately from the above calculations.

fy =
1� x� z

(1 + x)(1 + y)2(1 + z)

fz =
1� x� y

(1 + x)(1 + y)(1 + z)2
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CHAPTER4

1. (a) The expected gain for a bet on the incumbent winning is 0:6� $1; 000� 0:4� $1; 500 = $0.

(b) Yes, the value of p is important as it determines the expected gain.

(c) Two people taking this bet would not necessarily agree on p. Neither person would necessarily be
correct since p is not observed. The assessment of p is subjective.

(d) Yes, statistics can be employed to determine p. One could use survey sampling as in political polls
to determine the true p or one could look at past data and try to estimate p historically.

(e) The statistician's assessment of p is crucial. The assessment provides an objective, although not
perfectly accurate, assessment of p.

(f) How much one is willing to pay for this bet depends on an individual's level of risk aversion since p
is not the risk - neutral probability.

2. (a) One could go long R� and short R. The risk - free payo� is $500 regardless of the election's outcome.

(b) No, the value of p is not important in selecting this portfolio. The payo� of the portfolio is indepen-
dent of the election outcome. Not unless one knows the portfolio and it's payo�s can the portfolio
help determine the unknown p.

(c) A statistician or econometrician would play no role in making these decisions since the outcome of
the election does not e�ect the portfolio payo�s. The payo�s are independent of p.
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CHAPTER5

1. Two discrete random variables X , Y that assume either the value 0 or 1.

(a) Marginal Distributions.

P (X = 1) = P (X = 1jY = 1)P (Y = 1) + P (X = 1jY = 0)P (Y = 0) = :60

P (X = 0) = P (X = 0jY = 1)P (Y = 1) + P (X = 0jY = 0)P (Y = 0) = :40

P (Y = 1) = P (Y = 1jX = 1)P (X = 1) + P (Y = 1jX = 0)P (X = 0) = :35

P (Y = 0) = P (Y = 0jX = 1)P (X = 1) + P (Y = 0jX = 0)P (X = 0) = :65

(b) Independence. X ? Y ) E[XY ] = E[X ]E[Y ].

The expectation of XY , E[XY ], is :20 since X and Y must both be nonzero for the expectation to
be nonzero. Therefore, the only element in the matrix of concern is the entry where X = Y = 1.
The expectation of X is simply the probability that X is 1 and similarly for Y .

E[X ]E[Y ] = [(1)P (X = 1) + (0)P (X = 0)] [(1)P (Y = 1) + (0)P (Y = 0)]

= P (X = 1)P (Y = 1)

= (:60)(:35)

= :21

6= :20 Not Independent

(c) from above, E[X ] = :60 and E[Y ] = :35

(d) Conditional Distribution.

P (X = 1jY = 1) =
P (X = 1; Y = 1)

P (Y = 1)
=

:2

:35

P (X = 0jY = 1) =
P (X = 0; Y = 1)

P (Y = 0)
=
:15

:35
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(e) Conditional Expectation E[X jY = 1] and Conditional Variance V ar[X jY = 1].

E[X jY = 1] = (1)P (X = 1jY = 1) + (0)P (X = 0jY = 1)

= P (X = 1jY = 1)

=
P (X = 1; Y = 1)

P (Y = 1)

=
:2

:35

V ar[X jY = 1] = E [X �E[X ]jY = 1]
2

=

�
1� :2

:35

�2

P (X = 1jY = 1) +

��:2
:35

�2

P (X = 0jY = 1)

=

�
1� :2

:35

�2
:2

:35
+

�
:2

:35

�2
:15

:35

= :24489

2. (a) The random variable is binomial, Xn =
Pn

i=1 Bi, where Bi are independent Bernoulli random
variables with distribution

Bi =

�
1 with probability p
0 with probability 1� p

Calculate P (X4 > K) for k = 0; 1; 2; 3; 4 with

�
n

m

�
= n!

m!(n�m)! .

P (X4 > 0) = 1� P (X4 = 0) = 1�
�

4
0

�
p0(1� p)4 = 1� (1� p)4

P (X4 > 1) = 1� P (X4 = 0)� P (X4 = 1)

= 1� (1� p)4 �
�

4
1

�
p1(1� p)3

= 1� (1� p)4 � 4p1(1� p)3

...

P (X4 > 4) = 0

The general formula for 0 � k � 4 is

P (X4 > k) = 1�
kX
i=0

�
4
i

�
pi(1� p)k�i

Plot the distribution function. Assume p = 1
2 .

%Calculate Binomial Density and Cumulative Density

%Method 1

pr=.5;

n=4;

for i=1:5

p(i)=(factorial(n)/(factorial(i-1)*factorial(n-i+1)))*pr^(i-1)*(1- pr)^(n-i+1);

end

%Method 2 (built in MATLAB function)
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for i=1:5

MATLABp(i) = binopdf(i-1,n,pr);

end

%Binomial Cumulative Density Function - Two Methods

%Method 1

cump(1) = p(1);

for i=2:5

cump(i) = p(i) + cump(i-1);

end

%Method 2 (built in MATLAB function)

for i=1:5

cumMATLABp(i) = binocdf(i-1,n,pr);

end

Binomial Density, n=4

0.0625

0.25

0.375

0.25

0.0625

0
0.05

0.1
0.15

0.2
0.25

0.3
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0.4
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Number of Successes

P
ro

b
ab

ili
ty

FIGURE 0.8 Binomial Density with p = :5 and n = 4

(b) E[X3] = 3p. The expectation of a binomial with probability p is np.

3. Exponential distribution with parameter � has cumulative distribution function P (Z < z) = 1� e��z.

(a) Density function f(z) = @P (Z<z)
@z

= �e��z

(b) E[Z] =
R1
0
zf(z)dz

E[Z] = �

Z 1

0

ze��zdz use Integration by parts

= �ze��z��1
0
+

Z 1

0

e��zdz

=
1

�

(c) V ar[Z] = E[Z2]�E[Z]2
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E[Z2] = �

Z 1

0

z2e��zdz use Integration by parts twice

=
2

�2

) V ar[Z] =
2

�2
� 1

�2

=
1

�2

(d) Z1 and Z2 are independent and distributed Z1 � exp(�), Z2 � exp(�). Their sum is distributed
according to the two parameter gamma density. In general, for n independent random variables, their
sum has a moment generating function equal to the product of the individual moment generating
functions. A convolution could also be employed. The product of exponential moment generating
functions, I(t) = �

��t , is

I2(t) =

�
�

�� t

��
�

�� t

�

=

�
�

�� t

�2

This is the unique moment generating function for a �(2; �) density. The convolution approach
yields

fS(s) =

Z s

0

�e��x�e��(s�x)dx

= �2e��s
Z s

0

dx

= �2se��s

which is a �(2; �) density.

(e) The mean and variance of a �(2; �) are 2
�
and 2

�2
respectively. These can be obtained from the

moment generating function or through direct integration. For example, the mean is

Z 1

0

sfS(s)ds = �2
Z 1

0

s2e��sds use Integration by parts

= 2�

Z 1

0

se��sds another Integration by parts

=
2

�

The computation of the second moment proceeds in a similar fashion and equalsZ 1

0

s2fS(s)ds = �2
Z 1

0

s3e��sds =
6

�2

Therefore, the variance equals 6
�2
� 4

�2
= 2

�2
.
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4. Z � Poisson(�) if Prob(Z = k) = �ke��

k! where k is a nonnegative integer.

(a) Show
P1

k=0 Prob(Z = k) = 1.

1X
k=0

Prob(Z = k) =

1X
k=0

�ke��

k!

= e��
1X
k=0

�k

k!

= e��e�

= 1

(b) Calculate the mean and variance of Z. Moment generating function produce the required solutions
directly.

E[Z] =

1X
k=0

k
�ke��

k!

=

1X
k=1

k
�ke��

k!

=

1X
k=1

�ke��

(k � 1)!
change of variables, m = k � 1

= e��
1X
m=0

�m+1

m!

= �e��
1X

m=0

�m

m!

= �

E[Z2] = e��
1X
k=0

k2
�k

k!

=

1X
k=1

k2
�ke��

k!

=

1X
k=1

k
�ke��

(k � 1)!
change of variables, m = k � 1

= e��
1X
m=0

(m+ 1)
�m+1

m!

= e��
1X
m=0

m
�m+1

m!
+ e��

1X
m=0

�m+1

m!

= �e��
1X
m=0

m
�m

m!
+ e��

1X
m=0

�m+1

m!

= (�+ 1)e��
1X
m=0

�m+1

m!

= (�+ 1)�
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This implies that the variance equals �.

V ar[Z] = E[Z2]�E[Z]2

= �2 + �� �2

= �
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CHAPTER6

1. (a) If Mt = E(Y jIt) then by the law of iterated expectations

E(Mt+sjIt) = E [E (Y j It+s)j It]
= E(Y jIt)
= Mt;

and Mt is a martingale.

(b) Yes, every conditional expectation is a martingale provided the conditioning is with respect to the
same �ltration.

2. (a) E(X4jI1) = X1, E(X4jI2) = X2, and E(X4jI4) = X4.

(b) If Zi = E(X4jIi), then Zi is a martingale by problem 1 above.

(c) De�ne Vi = Bi +
p
i. For k > 0 consider

E (Vi+k jVi) = E
�
Bi+k +

p
i+ k

���Bi +
p
i
�

= E
�
Bi+kjBi +

p
i
�
+
p
i+ k

= Bi +
p
i+ k

which is not equal to Bi +
p
i.

The random process Vi is a submartingale since
p
i > 0 and Bi is iid with E(Bi) = 0. Therefore,

with i � j, E [Vij Ij ] � Vj .

(d) Yes, transform Vi by subtracting the deterministic component
p
i. Then, Vi = Bi and Vi is now a

martingale.
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(e) No, Bi are iid random variables. For Vi to be a martingale, it must be the case that E(Bi) = �pi
for all i. This is not possible.

3. (a) If Xt = 2Wt + t then

E(Xt+sjIt) = E(2Wt+s + (t+ s)jIt)
= 2Wt + (t+ s)

6= 2Wt + t:

Xt is not a martingale.

(b) If Xt =W 2
t then

E [Xt+sj It] = E
�
W 2

t+s

�� It�
= W 2

t + s

6= W 2
t ;

Xt is not a martingale. However, W 2
t � t is a martingale. The second equality follows from

W 2
t+s = (Wt+s �Wt)

2
+ 2Wt+sWt �W 2

t

Et
�
W 2

t+s

�
= Et

h
(Wt+s �Wt)

2
+ 2Wt+sWt �W 2

t

i
= V ar (Wt+s �Wt) + 2WtEt[Wt+s]�W 2

t

= s+ 2W 2
t �W 2

t

= s+W 2
t

(c) If Xt =Wtt
2 � 2

R t
0 sWsds then

E[Xt+sjIt] = E

�
Wt+s(t+ s)2 � 2

Z t+s

0

uWudu

����It
�

= Wt(t+ s)2 � 2

Z t

0

sWsds� 2Et

�Z t+s

t

uWudu

�

= Wtt
2 � 2

Z t

0

sWsds+ s(2t+ s)Wt � 2Et

�Z t+s

t

uWudu

�

Xt is a martingale as the last two terms cancel. The integral
R t+s
0

uWudu equals

Z t+s

0

uWudu =

Z t

0

sWsds+

Z t+s

t

uWudu

and the result is a consequence of

2Et

�Z t+s

t

uWudu

�
= 2

Z t+s

t

uEt [Wu] du

= 2Wt

Z t+s

t

udu

= Wt

�
(t+ s)2 � t2

�
= s(2t+ s)Wt
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which implies that E[Xt+sjIt] =Wtt
2 � 2

R t
0 sWsds = Xt.

4. Given the representation

MT (Xt) =M0(X0) +

Z t

0

g(t;Xt)dWt

with dXt = �dt + �dWt. The right hand side is always a martingale as g(t;Xt) is adapted to the
�ltration generated by Wt. The Ito integral is a martingale and the initial term is constant and therefore
a martingale. In all cases, the left hand side is also a martingale. Determine g(�; �) for the following

(a) MT (XT ) =WT . Let g(t;Xt) = 1. Since W0 = 0

WT =

Z T

0

dWt

= W0 +

Z T

0

g(t;Wt)dWt

= M0(W0) +

Z T

0

g(t;Xt)dWt

(b) MT (XT ) = W 2
T � T . Employ the relationship W 2

T � T = 2
R T
0
WtdWt (verify using Ito's lemma).

Let g(t;Xt) = 2Wt and the result follows.

(c) MT (XT ) = eWT� 1
2T . The function g(t;Xt) is solved by using a trivial special case of Ito's integration

by parts formula.

XTYT = X0Y0 +

Z T

0

XtdYt +

Z T

0

YtdXt + hXt; YtiT
De�ne

Xt = eWt� 1
2 t X0 = 1 dXt = XtdWt

and
Yt = 1 Y0 = 1 dYt = 0

The Ito integration by part formula reduces to

eWT� 1
2T = 1 +

Z T

0

eWt� 1
2 tdWt

Therefore, the function g(t;Xt) equals e
Wt� 1

2 t.

These three exercises are applications of the martingale representation theorem. In �nancial theory,
the function g(t;Xt) operates as a \hedge" parameter against the Brownian motion. It represents
the sensitivity of the functionMt(Xt) to a movement in the Brownian motion. The functionMt(Xt)
could generate a call option as the next example illustrates.

5. In theory, the representation is possible. The diÆculty is that Xt = St may not be a martingale under
the empirical measure involving Wt. In general the call option has the form

MT (ST ) =M0(S0) +

Z T

0

�(t)dSt

where St is under the risk - neutral measure. For example, dS(t) = �Std ~Wt in the Black Scholes model
but the stock price process is now under the risk - neutral measure, not the empirical measure. The term
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�(t) is the hedge parameter which equals @CK(t;St)
@St

for the Black Scholes model; the partial derivative of
the call with respect to the underlying stock. Continuing with the Black Scholes model to illustrate the
diÆculty, the call option can be expressed as

MT (ST ) =M0(S0) +

Z T

0

�(t)�Std ~Wt

However, the representation does not occur under the empirical measure involving Wt but with a trans-
formed Brownian motion ~Wt under the risk - neutral measure. A representation usingWt would introduce
a risk premium and a corresponding non constant additional term. This additional term would make the
representation impossible.
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CHAPTER7

1. Consider the geometric Brownian motion model, St = S0e
�t+�Wt , used in Black Scholes. Here, the term

� 1
2�

2t has been omitted from the exponent which di�ers from chapter 11. Under the risk - neutral
measure, the drift is set equal to r in either case. Only the risk premium di�ers between the two models
but call values remain unchanged as the stock price process equals

dSt

St
= rdt+ �dWt

under the risk - neutral measure.

(a) Use the MATLAB command

x=normrnd(0,sqrt(.25),4,1)

to generate four normal random numbers with mean 0 and variance :25. Assume that S0 = 1
for simplicity. One particular set of 4 draws (a MATLAB program is provided below for repeated
drawings) produced the values :0873, �:0934, :3629, and �:2942. The path of the Brownian motion
involves adding these values together over time

W0 = 0, W 1
4
= :0873, W 1

2
= �:0061, W 3

4
= :3568, and W1 = :0626

One possible stock price path is

S0 = 1

S 1
4

= exp

�
(:01)

1

4
+ (:15)W 1

4

�

= exp

�
(:01)

1

4
+ (:15)(:0873)

�
� 1:0157

S 1
2

= exp

�
(:01)

1

2
+ (:15)W 1

2

�

= exp

�
(:01)

1

2
+ (:15)(�:0061)

�
� 1:0041
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S 3
4

= exp

�
(:01)

3

4
+ (:15)W 3

4

�

= exp

�
(:01)

3

4
+ (:15)(:3568)

�
� 1:0629

S1 = exp

�
(:01)

1

1
+ (:15)W1

�

= exp

�
(:01)

1

1
+ (:15)(:0626)

�
� 1:0196

Program and accompanying graphs (di�erent draws than presented above)

mu = .01;

sigma = .15;

T = 1;

K = 1.5;

S0 = 1;

%n is the number of discretizations for T

%part (a), n=4

%part (b), n=8

n = 4;

delta = T/n;

%generate Brownian motions

bm=zeros(n,1);

%cbm is the cumulative Brownian motion

cbm=zeros(n,1);

cbm(1) = bm(1);

for j=2:n

bm(j) = normrnd(0,sqrt(delta));

cbm(j) =cbm(j-1) + bm(j);

end

axis=(0:delta:T);

newcbm=[0;cbm]';

%generate stock prices

stock = zeros(n,1);

for j=1:n

stock(j) = S0 * exp( (mu*j*delta) + sigma*cbm(j) );

end

newstock=[S0;stock]';

%graph Brownian motion and stock

subplot(2,1,1), plot(axis,newcbm)

hold on

plot(axis,newcbm,'*')

xlabel('Time')

title('Brownian Motion Path')

hold off

subplot(2,1,2), plot(axis,newstock)
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hold on

plot(axis,newstock,'*')

xlabel('Time')

title('Stock Price Path')

hold off
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Time

Brownian Motion Path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85
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0.95

1

1.05

1.1

Time

Stock Price Path

FIGURE 0.9 Brownian Motion and Stock Price Paths

(b) Repeat exercise for 8 subdivisions of interval with random variables approximating the Brownian
motion having variance equal to 1

8 = :125.

x=normrnd(0,sqrt(.125),8,1)

Using the above command generates eight random numbers :0841, �:3563, �:2624, :3826, �:0465,
:1378, :0311, and �:2247. Use the same MATLAB program as above with n=8 instead of n=4 for
repeated simulations. The path of the Brownian motion is

W0 = 0, W 1
8
= :0841, W 2

8
= �:2722, W 3

8
= �:5345, W 4

8
= �:1519, W 5

8
= �:1984, W 6

8
= �:0605,

W 7
8
= �:0294, and W1 = �:2541

One possible stock price path is

S0 = 1

S 1
8

= exp

�
(:01)

1

8
+ (:15)W 1

8

�

= exp

�
(:01)

1

8
+ (:15)(:0841)

�
� 1:0125
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S 2
8

= exp

�
(:01)

2

8
+ (:15)W 2

8

�

= exp

�
(:01)

2

8
+ (:15)(�:2722)

�
� :9597

S 3
8

= exp

�
(:01)

3

8
+ (:15)W 3

8

�

= exp

�
(:01)

3

8
+ (:15)(�:5345)

�
� :9225

S 4
8

= exp
n
(:01) + (:15)W 4

8

o
= exp

�
(:01)

4

8
+ (:15)(�:1519)

�
� :9769

S 5
8

= exp

�
(:01)

5

8
+ (:15)W 5

8

�

= exp

�
(:01)

5

8
+ (:15)(�:1984)

�
� :9699

S 6
8

= exp

�
(:01)

6

8
+ (:15)W 6

8

�

= exp

�
(:01)

6

8
+ (:15)(�:0605)

�
� :9900

S 7
8

= exp

�
(:01)

7

8
+ (:15)W 7

8

�

= exp

�
(:01)

7

8
+ (:15)(�:0294)

�
� :9945

S1 = exp

�
(:01)

1

1
+ (:15)W1

�

= exp

�
(:01)

1

1
+ (:15)(�:2541)

�
� :9614
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FIGURE 0.10 Brownian Motion and Stock Price Paths

(c) What is the distribution of log
�

St
St��

�
? With S0 = 1, log(St) = �t+ �Wt.

log

�
St

St��

�
= log(St)� log(St��)

= �t+ �Wt � �(t��)� �Wt��
= ��+ � (Wt �Wt��)
= ��+ �W�

d� N (��; �2�)

where N (��; �2�) represents the normal distribution with mean �� and variance �2�. Therefore,
log changes in the stock price over an increment of time � are normally distributed with mean ��
and variance �2�. Note that the mean and variance are linear in time �.

(d) The unit of measurement represents the log stock return. This random variable is distributed
N (:25�; :25�2).

(e) The random variable becomes distributed as a N (:000001�; :000001�2).

(f) Since N (��; �2�) is equivalent to �N (�; �
2

� ), a problem arises since the variance explodes as
� ! 0. The mean and variance are not \balanced" as would be the case if the distribution were
N (��; �2�2) instead.

(g) Brownian motion is not di�erentiable as dWt is a formalism. Therefore, the random variable is not
well de�ned.
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CHAPTER8

1. (a) Recall the property, lim(anbn) = lim(an) lim(bn) and limn!1
�
1� k

n

�
= 1. For any �xed k

lim
n!1 1

�
1� 1

n

�
� � �
�
1� (k � 1)

n

�
= 1

(b) Chapter 3, problem 1, part (b) proved that limn!1
�
1 + 1

n

�n
= e. Using the additional property

that lim
�

1
an

�
= 1

liman
, it follows that (1� 1

n
)n ! e�1. Now, let n0 = n

�
.

lim
n!1

�
1� �

n

�n
= lim

n0!1

�
1� 1

n0

�n0�
= e��

(c) This follows immediately from the fact that lim(anbn) = lim(an) lim(bn).

2. (a)

Pr(Xn = k) =
�n
k

�
pk(1� p)n�k

(b)

Pr(Xn = k) =
�n
k

���
n

�k �
1� �

n

�n�k
(c)

�n
k

���
n

�k �
1� �

n

�n�k
=

�k

k!

n!

(n� k)!nk

�
1� �

n

�n�k

=
�k

k!

�
1� �

n

�n
n(n� 1) � � � (n� k + 1)

nk
1�

1� �
n

�k
Consider the ratio

n(n� 1) � � � (n� k + 1)

nk
= 1

�
1� 1

n

��
1� 2

n

�
� � �
�
1� (k � 1)

n

�

! 1 by part (a) of problem 1
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Since
�
1� �

n

�k ! 1 and
�
1� �

n

�n ! e��, it follows that

Pr(Xn = k) =
�n
k

���
n

�k �
1� �

n

�n�k

=
�k

k!

�
1� �

n

�n "
n(n� 1) � � � (n� k + 1)

nk
1�

1� �
n

�k
#

! �k

k!
e��

as the contents of [ ] converges to 1. Therefore

Pr(Xn = k)! �ke��

k!

which is the density function for the Poisson distribution.

(d) The probability of an event occurring decreases but the number of trials from which an event can
occur increases. This is the central idea of insurance. Many people are insured with any individual
having a small probability of an accident.
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CHAPTER9

1. Calculate the stochastic integral
R t
0
W 2

s dWs using Riemann and Ito integrals.

(a) Three Riemann sums will di�er according to the time-point at which the integrand is evaluated.
Three possible choices are left, right, and middle of the partition as follows

(1)

nX
i=1

W 2
i (Wi �Wi�1)

(2)

nX
i=1

W 2
i�1 (Wi �Wi�1)

(3)

nX
i=1

�
Wi +Wi�1

2

�2

(Wi �Wi�1)

(b) The Ito sum is represented by integral (2),
Pn

i=1W
2
i�1 (Wi �Wi�1). Integral (3) is known as a

Stratonovich integral.

(c) Expectations of the three integrals. The Ito integral, number (2), is zero since W 2
i�1 ? Wi �Wi�1

by the property of independent increments for Brownian motion.

E

"
nX
i=1

W 2
i�1 (Wi �Wi�1)

#
=

nX
i=1

E
�
W 2

i�1
�
E [(Wi �Wi�1)]

=
nX
i=1

ti�10

= 0

Integral (1) is also zero.

E

"
nX
i=1

W 2
i (Wi �Wi�1)

#
=

nX
i=1

�
E
�
W 3

i

��E
�
W 2

i Wi�1
��
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= �
nX
i=1

E
�
W 2

i Wi�1
�

= �
nX
i=1

E
�
E
�
W 2

i Wi�1
��Ii�1��

= �
nX
i=1

E
�
Wi�1E

�
W 2

i

��Ii�1��

= �
nX
i=1

E
�
Wi�1

�
W 2

i�1 + (ti � ti�1)
��

= �
nX
i=1

E
�
W 3

i�1
�� nX

i=1

(ti � ti�1)E [Wi�1]

= 0

The term E
�
W 3

i

�
= 0 since Wt has a normal distribution which is symmetric. Therefore, all odd

moments are zero. The value of the integral is calculated in closed form using results from chapter
11, problem 1.

Z t

0

W 2
2 dWs =

W 3
t

3
� tWt +

Z t

0

sdWs

E

�Z t

0

W 2
2 dWs

�
= E

�
W 3

t

3
� tWt +

Z t

0

sdWs

�

= E

�
W 3

t

3

�
= 0

The integral
R t
0
sdWs has zero expectation as it is a well de�ned Ito integral. Integral (3) is an

\average" of the previous two integrals and therefore has an expected value equal to zero. Overall,
this example should not form the impression that the choice of integrand is irrelevant. For instance,
consider the integral

R t
0 WsdWs and two seemingly similar integrands, one of which uses Wi�1 and

the other Wi as the integrand in the approximation. A major di�erence reveals itself.

Ito Representation
nX
i=1

Wi�1 (Wi �Wi�1)

E

"
nX
i=1

Wi�1 (Wi �Wi�1)

#
=

nX
i=1

E [Wi�1]E [(Wi �Wi�1)]

= 0

Non Ito Representation
nX
i=1

Wi (Wi �Wi�1) =

nX
i=1

(Wi �Wi�1) (Wi �Wi�1) +
nX
i=1

Wi�1 (Wi �Wi�1)

E

"
nX
i=1

Wi (Wi �Wi�1)

#
=

nX
i=1

E
h
(Wi �Wi�1)

2
i
+ 0

= t

Where the last result follows from the de�nition of quadratic variation and the previous result for
the Ito integral.
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(d) The Ito integral has zero expectation as was noted above.

2. Integration by Parts

Show that
Pn

j=1

�
tjWtj � tj�1Wtj�1

�
=
Pn

j=1

�
tj
�
Wtj �Wtj�1

��
+
Pn

j=1

�
(tj � tj�1)Wtj�1

�
.

The sum on the left hand side is a telescoping sum which reduces to

nX
j=1

�
tjWtj � tj�1Wtj�1

�
= t1Wt1 � t0Wt0 + t2Wt2 � t1Wt1 + : : :+ tnWtn � tn�1Wtn�1

= tnWtn � t0Wt0

= tWt

as tn = t and Wt0 =W0 = 0. The right hand side is also a telescoping sum.

nX
j=1

�
tj
�
Wtj �Wtj�1

��
+

nX
j=1

�
(tj � tj�1)Wtj�1

�
= t1Wt1 � t1Wt0 + t1Wt0 � t0Wt0 + t2Wt2 � t2Wt1 + t2Wt1 � t1Wt1 + : : :

+tnWtn � tnWtn�1 + tnWtn�1 � tn�1Wtn�1

= tnWtn � t0Wt0

= tWt

In this example, with only one process being stochastic, the above does represent the standard product
rule. Let u(t) = t and v(t) =Wt. An extra term would account for the quadratic variation if the integrand
and integrator were both semimartingales (see below).

3. In the limit, as the partition width goes to zero

tWt =

Z t

0

sdWs +

Z t

0

Wsds

)
Z t

0

sdWs = tWt �
Z t

0

Wsds

4. The integral
R t
0 sdWs is de�ned in the sense of the Ito integral.

5. This is not a change of variable formula.

6. Problem 3 is an example of integration by parts. In general, when u(t) and v(t) are both stochastic
semimartingales

u(t)v(t) = u(0)v(0) +

Z t

0

u(s)dv(s) +

Z t

0

v(s)du(s) + hu(s); v(s)it
where h�; �it represents the quadratic variation of the two processes. When at least one of the two processes
is of bounded variation, the quadratic variation is zero. In this case, the formula reduces to

u(t)v(t) = u(0)v(0) +

Z t

0

u(s)dv(s) +

Z t

0

v(s)du(s)

) d (u(t)v(t)) = u(t)dv(t) + v(t)du(t)
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CHAPTER10

1. Di�erentiate the following functions using Ito's lemma.

df(Wt) = f 0(Wt)dWt +
1

2
f 00(Wt)dt

df(Wt; t) = ft(Wt; t)dt+ f 0(Wt; t)dWt +
1

2
f 00(Wt; t)dt

(a) f(Wt) =W 2
t

df(Wt) = 2WtdWt + dt

f(Wt) =W
1
2
t

df(Wt) =
1

2
W

� 1
2

t dWt � 1

8
W

� 3
2

t dt

(b) f(Wt) = eW
2
t

f 0(Wt) = 2Wte
W 2
t

f 00(Wt) = 2eW
2
t + 4W 2

t e
W 2
t

) df(Wt) = 2Wte
W 2
t dWt +

h
eW

2
t + 2W 2

t e
W 2
t

i
dt

(c) f(Wt; t) = e(�Wt� 1
2�

2t)

@f(Wt; t)

@t
= �1

2
�2f(Wt; t)

xl



@f(Wt; t)

@Wt

= �f(Wt; t)

@2f(Wt; t)

@2Wt

= �2f(Wt; t)

) df(Wt; t) = f(Wt; t)

��
�1

2
�2 +

1

2
�2
�
dt+ �dWt

�
= �f(Wt; t)dWt

f(Wt; t) = e�Wt

Similar to above except that @f(Wt;t)
@t

= 0. This implies that a drift term is introduced and the
process is no longer a martingale as in the previous case.

df(Wt) =
1

2
�2f(Wt)dt+ �f(Wt)dWt

(d) g(t) =
R t
0
Wsds

@g(t)

@t
=Wtdt

2. Obtain SDE's for processes below involving W 1
t and W 2

t . The 1 and 2 are superscripts, not exponents
which are denoted with brackets.

(a) dXt = 4
�
W 1

t

�3
dW 1

t + 6
�
W 1

t

�2
dt

(b) Xt =
�
W 1

t +W 2
t

�2
The term



W 1

s ;W
2
s

�
t
=


W 2

s ;W
1
s

�
t
is the \covariance" between the two Brownian

motions which equals zero if the two Brownian motions are independent.

@Xt

@W 1
t

=
@Xt

@W 2
t

= 2
�
W 1

t +W 2
t

�
@2Xt

@2W 1
t

=
@2Xt

@2W 2
t

=
@2Xt

@W 1
t @W

2
t

= 2

) dXt =
1

2

�
(2 + 2) dt+ (2 + 2)



W 1

s ;W
2
s

�
t

�
dt+ 2

�
W 1

t +W 2
t

� �
dW 1

t + dW 2
t

�
= 2

�
1 +



W 1

s ;W
2
s

�
t

�
dt+ 2

�
W 1

t +W 2
t

� �
dW 1

t + dW 2
t

�
(c) Xt = t2 + eW

2
t

@Xt

@t
= 2t

@Xt

@W 2
t

=
@2Xt

@2W 2
t

= eW
2
t

) dXt =

�
2t+

1

2
eW

2
t

�
dt+ eW

2
t dW 2

t

(d) Xt = et
2+W 2

t
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@Xt

@t
= 2tXt

@Xt

@W 2
t

=
@2Xt

@2W 2
t

= Xt

) dXt =

�
2t+

1

2

�
Xtdt+XtdW

2
t

3. Geometric Brownian motion, St = S0e
(�� 1

2�
2)t+�Wt

(a) dSt = �Stdt+ �StdWt which follows from Ito's lemma (see problem 1, part (c) above)

S(Wt; t) = S(W0; 0)e
�t+�Wt� 1

2�
2t

@S(Wt; t)

@t
= �S(Wt; t)� 1

2
�2S(Wt; t)

@S(Wt; t)

@Wt

= �S(Wt; t)

@2S(Wt; t)

@2Wt

= �2S(Wt; t)

) dS(Wt; t) = S(Wt; t)

��
�� 1

2
�2 +

1

2
�2
�
dt+ �dWt

�
= �S(Wt; t)dt+ �S(Wt; t)dWt

dSt

St
= �dt+ �dWt

(b) The expected instantaneous rate of change is the drift rate, �.

(c) Without the term � 1
2�

2t in the exponent, the dynamics of St would be

dSt

St
=

�
�+

1

2
�2
�
dt+ �dWt

There is no cancellation of the 1
2�

2 term by the partial derivative with respect to time. Now, the
expected rate of change is �+ 1

2�
2 under the empirical measure.
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CHAPTER11

1. Consider the SDE d(W 3
t ) = 3

�
Wtdt+W 2

t dWt

�
(a) Write the SDE in integral format.

W 3
t = W 3

0 + 3

Z t

0

Wsds+ 3

Z t

0

W 2
s dWs

= 3

Z t

0

Wsds+ 3

Z t

0

W 2
s dWs

(b) Evaluate
R t
0 W

2
s dWs. Certain results follow from chapter 9, problem 1. From the above equation

Z t

0

W 2
s dWs =

W 3
t

3
�
Z t

0

Wsds

=
W 3

t

3
�
�
tWt �

Z t

0

sdWs

�
from chapter 9

=
W 3

t

3
� tWt +

Z t

0

sdWs

The integral
R t
0
sdWs is normally distributed with mean zero and variance

R t
0
s2ds = t3

3 . The random

variable N
�
0; t

3

3

�
could be represented as a time changed Brownian motion, W t3

3

.

Z t

0

W 2
2 dWs =

W 3
t

3
� tWt +W t3

3

2. dSt = �Stdt+ �StdWt ) S(t) = S(0)exp
�
�t+ �Wt � 1

2�
2t
	

(a) Coin tossing to approximate dWt � �Wt
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�Wt =

�
+
p
� if coin toss is heads .5 probability

�p� if coin toss is tails .5 probability

(b) �W is distributed with zero mean and variance �. The above in part (a) is a binomial distribution
with probability 1

2 which has the same mean and variance as �Wt.

mean
1

2
(
p
�) +

1

2
(�
p
�) = 0

variance
1

2
(
p
�)2 +

1

2
(�
p
�)2 = �

(c) Generate three random paths over the 8 day period in 2 day increments (� = 2). Must ip 4 coins
to determine a path.

S(t+ 2) = S(t)e:0775+(:15)�W

The amount :0775 follows from the drift (where the drift is equal to the risk - free interest rate),
(2)(:05)� 1

2 (2)(:15)
2. These simulations are under the equivalent risk - neutral martingale measure

as stock's drift rate is the risk - free interest rate. A MATLAB program below replaces the act of
tossing a coin with a draw from the binomial distribution.

%number of simulations

m=3;

%number of draws (nodes) per simulation

n=4;

stock=zeros(m,n+1);

stock(:,1)=940;

for j=1:m

for i=2:n+1

x=binornd(1,.5); %x is either 1 (heads) or 0 (tails)

if x==1

delW = sqrt(2);

else

delW = -sqrt(2);

end

stock(j,i)=stock(j,i-1)*exp(.0775 + .15 * delW);

end

end

%path 1

stock(1,:)

940 821.60 1097.60 959.34 1281.62

%path 2

stock(2,:)

940 821.60 718.12 959.34 1281.62

%path 3

stock(3,:)
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940 821.60 1097.60 959.34 838.50

3. dSt = :01Stdt+ :05StdWt

(a) see MATLAB program below

(b) see MATLAB program below

(c) A MATLAB program below generates 5 normally distributed random variables with mean 0 and
variance :20, then computes the stock price and call value.

sigma = .05;

T = 1;

K = 1;

r = .03;

S0 = 1;

%n is the number of discretizations for T

n = 5;

delta = T/n;

bm(1)=normrnd(0,sqrt(delta));

cbm(1) = bm(1);

for j=2:n

bm(j) = normrnd(0,sqrt(delta));

cbm(j) = cbm(j-1) + bm(j);

end

for j=1:n

stock(j) = S0*exp((r*j*delta)+sigma*cbm(j)-(1/2)*(sigma^2)*j*delta);

end

%generate European call price

%stock(n) is final stock price, stock(T)

call = exp(-r*T) * max(0, stock(n) - K)

0.0312 <- call value (one simulation)

stock

0.9980 1.0162 1.0447 1.0510 1.0321 <- one possible stock price path

(d) Need parameters for a uniform distribution with mean 0 and variance 1
5 . Since the parameters must

generate a symmetric distribution with mean zero, a = �b. To ensure that the variance equals 1
5 ,

choose b such that

1

5
=

(b� a)2

12

=
(2b)2

12

=
b2

3
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) 3

5
= b2

) b =
p
:6

Therefore, draw the random variables from a uniform distribution, U(�p:6;p:6). A MATLAB
program which performs these calculations is given below.

sigma = .05;

T = 1;

K = 1;

r = .03;

S0 = 1;

%n is the number of discretizations for T

n = 5;

delta = T/n;

bm(1)=unifrnd(-sqrt(.6),sqrt(.6));

cbm(1) = bm(1);

for j=2:n

bm(j) = unifrnd(-sqrt(.6),sqrt(.6));

cbm(j) = cbm(j-1) + bm(j);

end

for j=1:n

stock(j) = S0*exp((r*j*delta)+sigma*cbm(j)-(1/2)*(sigma^2)*j*delta);

end

%generate European call price

%stock(n) is final stock price, stock(T)

call = exp(-r*T) * max(0, stock(n) - K)

0.0353 <- call value (one simulation)

stock

1.0193 1.0523 1.0198 1.0401 1.0364 <- one possible stock price path

(e) Repeat the experiment 1,000 times and compare the two approximation methods.

%generates Brownian motion using Normal and Uniform approximations, then

generates

%stock prices and European call values (1000 times)

for k=1:1000

sigma = .05;

T = 1;

K = 1;

r = .03;

S0 = 1;

%n is the number of discretizations for T

n = 5;
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delta = T/n;

bm_normal(1)=normrnd(0,sqrt(delta));

cbm_normal(1) = bm_normal(1);

bm_uniform(1)=unifrnd(-sqrt(.6),sqrt(.6));

cbm_uniform(1) = bm_uniform(1);

for j=2:n

bm_normal(j) = normrnd(0,sqrt(delta));

cbm_normal(j) = cbm_normal(j-1) + bm_normal(j);

bm_uniform(j) = unifrnd(-sqrt(.6),sqrt(.6));

cbm_uniform(j) = cbm_uniform(j-1) + bm_uniform(j);

end

for j=1:n

stock_normal(j) = S0*exp((r*j*delta)+sigma*cbm_normal(j)-(1/2)*(sigma^2)*j*delta);

stock_uniform(j) = S0*exp((r*j*delta)+sigma*cbm_uniform(j)-(1/2)*(sigma^2)*j*delta);

end

%generate European call price

%stock(n) is final stock price, stock(T)

call_normal(k) = exp(-r*T) * max(0, stock_normal(n) - K);

call_uniform(k) = exp(-r*T) * max(0, stock_uniform(n) - K);

end

avgnormal=mean(call_normal)

0.0381 <- call value using Normal approximation

avguniform=mean(call_uniform)

0.0388 <- call value using Binomial approximation

The two prices are similar. In general, the central limit theorem could be invoked if n were increased.
The sum of independent uniform random variables with a common mean converges to a normal
distribution.

Note: MATLAB has a built in Black Scholes option pricing formula (among many other �nance
related features).

(f) Yes, the paths may be combined. However, the accuracy of the expectation also depends on the
number of nodes in the sample path and not just the number of sample paths. Rather than combine
simulations (increase k), decreasing the partition width (increase n) would be more suitable. There
are two sources of error, one arises from the discretization and the other from the Monte Carlo
simulation for a given discretization. With only �ve nodes in the discretization, the central limit
theorem cannot be invoked. Increasing the number k of simulated paths simply makes the sample
average approach the expected call value calculated with only �ve nodes, this is not the true call
value.

4. Consider the process dSt = :05dt+ :1dWt. This is arithmetic and not geometric Brownian motion. The
terms dWt are approximated by
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�Wt =

�
+
p
� with probability .5

�p� with probability .5

(a) see MATLAB program below

(b) see MATLAB program below

(c) Stock price path plots with � = 1 and � = :5.
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FIGURE 0.11 Stock Price Paths

(d) A MATLAB program is presented below with draws from a binomial distribution to simulate coin
tossing. For � = 1, choose n to be 3, for � = :5, choose n to be 6, and for � = :01, choose n to be
3
:01 = 300.

n=[3,6,300];

stock(1)=1;

sig=.1;

for j=1:3

delta=3/n(j);

for i=2:n(j)+1

%x is either 1 (heads) or 0 (tails)

x=binornd(1,.5);

if x==1

delW = sqrt(delta);

else

delW = -sqrt(delta);

end

stock(i)=stock(i-1) + .05 * delta + sig * delW;

end

x=[0:delta:3];

plot(x,stock)

title('Path of Stock Price')

xlabel('Time')
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%pause command will generate plot and wait for return key to proceed

pause

end

As the plots indicate, when � = :01, the stock price process looks as if it is being driven by a
Brownian motion.
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FIGURE 0.12 Stock Price Paths

(e) To increase the variance by a factor of 3, change � from :10 to
p
3(:10). After this value is adjusted

in the above MATLAB program, new plots are generated. One possible path is

1.0000 1.2232 1.4464 1.3232 <- one possible stock price path
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CHAPTER12

1. Laplace's equation: fxx + fyy + fzz = 0. Is Laplace's equation satis�ed by the following equations ?

(a) f(x; z; y) = 4z2y � x2y � y3 YES

fxx = �2y fyy = �6y fzz = 8y

) fxx + fyy + fzz = 0

(b) f(x; y) = x2 � y2 YES

fxx = 2 fyy = �2
) fxx + fyy = 0

(c) f(x; y) = x3 � 3xy NO

fxx = 6x fyy = 0

) fxx + fyy = 6x 6= 0 8x
(d) f(x; z; y) = x

y+z NO

fx =
1

y + z
) fxx = 0

fy =
�x

(y + z)2
) fyy =

2x

(y + z)3

fz =
�x

(y + z)
2 ) fzz =

2x

(y + z)
3

) fxx + fyy + fzz =
4x

(y + z)
3 6= 0 8x

More than one function will satisfy Laplace's equation unless boundary conditions are speci�ed. The
number of boundary conditions depends on the domain. Boundary conditions are needed as one can
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always add constants and terms of the form x, y;, and xy without changing the second derivative.
Boundary conditions serve a purpose similar to initial conditions in ordinary di�erential equations.
A unique solution is desirable when all necessary boundary conditions have been speci�ed.

2. Do the following functions satisfy the heat equation ?

(a) f(x; z; y) = e[29a
2�2t+�(3x+2y+4z)] YES

@f(x; z; y)

@t
= 29a2�2f(x; z; y)

@2f(x; z; y)

@2x
= 9�2f(x; z; y)

@2f(x; z; y)

@2y
= 4�2f(x; z; y)

@2f(x; z; y)

@2z
= 16�2f(x; z; y)

Therefore, a2 times the sum of the second derivatives, a2 (fxx + fyy + fzz) equals ft and the heat
equation is satis�ed.

a2 (fxx + fyy + fzz) = a2(9 + 4 + 16)�2f(x; z; y)

= 29a2�2f(x; z; y)

= ft

(b) f(x; z; y) = 3x2 + 3y2 � 6z2 + x+ y � 9z � 3 YES

Since there is no dependence on t, this equation satis�es the heat equation if and only if it satis�es
Laplace's equation as ft = 0. Only terms of quadratic order or higher need to be considered,
3x2 + 3y2 � 6z2, as lower order terms vanish when the Laplacian is applied.

fxx = 6 fyy = 6 fzz = �12
) fxx + fyy + fzz = 0

The heat equation is satis�ed.

3. PDE: fx + :2fy = 0 with x 2 [0; 1] and y 2 [0; 1].

(a) The function f(x; y) is the unknown in the above equation.

(b) fy = �5fx. In English, a function such that the change in y is minus 5 times the change in x is
required.

(c) There will be in�nitely many solutions to the equation without a boundary condition. For instance,
consider the class of constant solutions, f(x; y) = k where k 2 R (any real number). In this instance,
fx = fy = 0 and fx + :2fy = 0 as desired. In addition, f(x; y) = �:2�x+ �y and f(x; y) = e�(:2x�y)

can also be shown to satisfy the equation for any constant � 2 R. The PDE is the linear homogeneous
transport equation and in general
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fx(x; y) + :2fy(x; y) = 0

f(x; y) jx=0 = g(0; y)

has a solution f(x; y) = g(y � :2x).

(d) Impose the boundary condition f(0; y) = 1. The unique solution is f(x; y) = 1 since the function g
is identically 1. This corresponds the �rst class of solutions in part (c) when k = 1.

4. The PDE is the heat equation, fxx + :2ft = 0, with boundary condition f(x; 1) = max[x � 6; 0] for
0 � x � 12 and 0 � t � 1. The boundary condition is for a European call option.

(a) A single boundary condition is not suÆcient, the rectangle (time by space) has four sides. Three
boundary conditions must be speci�ed. The fourth side, f(x; 0), is then solved as the value of the
option at the current date, t = 0, for various initial stock prices.

(b) Two reasonable assumptions for boundary conditions would be that f(0; t) = 0 and f(12; t) = 6.
The �rst boundary condition speci�es that if the stock price becomes zero it stays zero. The second
boundary condition states that when the option becomes very deep in-the-money, $6, it remains at
that level.

(c) Implement a numerical approximation using grid sizes of �x = 3 and �t = :24. The simplest
technique is an explicit scheme with a backward time derivative (more elaborate procedures would
involve an implicit Crank - Nicholson scheme). Let k be the time horizon (0, .25, .50, .75, 1.0) and
j be the state space (0, 3, 6, 9, 12). The numerical routine operates backward in time starting from
k = 1 and proceed to k = 0, when the values of the function (call values) are known for a given
initial stock price. At each step, the program will solve for uk�1j as the k terms are known.

ukj � uk�1j

�t
= �5

 
ukj+1 � 2ukj + ukj�1

(�x)2

!

ukj � uk�1j = �5 �t

(�x)
2

�
ukj+1 � 2ukj + ukj�1

�
uk�1j = ukj +

5

36

�
ukj+1 � 2ukj + ukj�1

�
The MATLAB program below performs the calculations.

Matrix=zeros(5,5);

Matrix(:,5)=[6,6,6,6,6]';

Matrix(1,:)=[0,0,0,3,6];

for k=1:4

for j=4:-1:2

Matrix(k+1,j)=Matrix(k,j)+(5/36)*(Matrix(k,j+1)-2*Matrix(k,j)+Matrix(k,j-1));

end

end

For instance, to calculate the (2; 4) entry of $3, the following was done

x = 3 +
5

36
(6� 2(3) + 0) = 3
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The values at the various nodes can be seen from the �nal values of Matrix.

Matrix =

0 0 0 3.0000 6.0000

0 0 0.4167 3.0000 6.0000

0 0.0579 0.7176 3.0579 6.0000

0 0.1415 0.9510 3.1415 6.0000

0 0.2342 1.1428 3.2342 6.0000

To interpret the results, time to maturity is increasing down the rows and the value of x (initial stock
price) is increasing from column to column (going right). Therefore the results are consistent with
�nancial intuition. Prices increase along each column from left to right as the current stock price
increases. Prices converge to their intrinsic value from the bottom to the top row as the \option"
approaches maturity. Overall, the bottom row

S(0) $0 $3 $6 $9 $12

t=0 0 0.2342 1.1428 3.2342 6.0000

represents the current value of the \option" at various initial stock prices.

Time

x variable

0

.25

.50

.75

1.0

$0 $3 $6 $9 $12

0 0 0 3 6
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6

6

6

6

0 .4167 3

.0579 .7176 3.0579

.1415 .9510 3.1415

.2342 1.1428 3.2342

FIGURE 0.13 Numerical PDE Solution
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CHAPTER13

1. Xt = eYt where Yt � N (�t; �2t)

(a) Calculate E [XtjXs; s < t]

E [XtjXs; s < t] = E
�
eYt
��Ys; s < t

�
= E

�
eYt�Ys+Ys

��Ys; s < t
�

= eYsE
�
eYt�Ys

��Ys; s < t
�

Since Ys is not random, the term eYs can be removed from under the expectation. The remainder
in the exponent has a normal distribution, Yt � Ys � N (�(t � s); �2(t� s)).

E [XtjXs; s < t] = eYsE
h
eN (�(t�s);�2(t�s))

���Ys; s < t
i

Using the moment generating function for a normal distribution produces the result.

E [XtjXs; s < t] = eYse(�+
1
2�

2)(t�s)

= Xse
(�+ 1

2�
2)(t�s)

2. When would e�rtXt be a martingale ?

(a) Relate the variables r, �, and � such that e(�r+�+
1
2�

2)(t�s) = 1 (see below).

(b) From part (a), e�rt is not random and can be removed from the expectation

E
�
e�rtXt

��Xs; s < t
�

= e�rtXse
(�+ 1

2�
2)(t�s)

= e�rse�r(t�s)Xse
(�+ 1

2�
2)(t�s)

For e�rtXt to be a martingale, the right hand side must equal e�rsXs.
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E
�
e�rtXt

��Xs; s < t
�

= e�rsXs

, e�rsXse
�r(t�s)e(�+

1
2�

2)(t�s) = e�rsXs

, e�r(t�s)e(�+
1
2�

2)(t�s) = 1

, e(�r+�+
1
2�

2)(t�s) = 1

, �r + �+
1

2
�2 = 0

The above condition is satis�ed when � = r � 1
2�

2. Therefore, only choice (d) is suitable.

3. Zt = e�rtXt where Xt = eWt . This implies that Zt = e�rt+Wt .

(a) Expected value of increment dZt is calculated using Ito's lemma.

@Zt

@t
= �rZt

@Zt

@Wt

=
@2Zt

@2Wt

= Zt

) dZt =

�
1

2
� r

�
Ztdt+ ZtdWt

The expected value of the increment dZt is
�
1
2 � r

�
Ztdt.

(b) Since the expected value of the increment is not zero, Zt cannot be a martingale (assuming r 6= 1
2 ).

(c) Calculate E[Zt] using Wt � N (0; t)) E
�
eWt
�
= e

t
2 .

E[Zt] = e�rtE[eWt ]

= e(�r+
1
2 )t

If the value r is set to equal 1
2 , then Zt is a martingale. From part (a), if r = 1

2 , then dZt = ZtdWt.
This implies that Zt is a martingale.

The exponential, eXt� 1
2 hXit , is a martingales if Xt is a continuous martingale (with X0 = 0 and

for bounded hXit). Therefore, inserting
p
2r in front of the Wt implies that Xt = e

p
2rWt . Thus,

Zt = e�rt+
p
2rWt is a martingale as


p
2rWs

�
t
= 2rt.

(d) Zt is a mean one martingale, E[Ztj I0] = Z0 = 1.
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CHAPTER14

1. (a) mean and variance of �X

E(�X) = 0:3

V ar(�X) = 0:19

(b) If �Y = �X � 0:25, then
E(�Y ) = 0:05

(c) No, the variance has not changed.

(d) Choose

p =

0
@ 0:0917

0:3190
0:5893

1
A

This results in

Ep(�X) = 0:05

V arp(�X) = 0:19

The values for p are chosen such that the elements of p sum to 1 and �X maintains the same mean
and variance. The following system of equations must be solved.

0
@ 1 �:5 :2

(1� :05)2 (�:5� :05)2 (:2� :05)2

1 1 1

1
A
0
@ p1

p2
p3

1
A =

0
@ :05

:19 + (:05)2

1

1
A

(e) The values of �X have not changed. Only the probabilities associated with the three values that
�X can assume have changed. Thus, the distribution of �X has changed but not the state space
of the random variable; �X remains an element of f1;�:5; :2g.
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2. The density function f(x) for log(Rt) is normal with mean � and variance �2.

f(x) =
1p
2��2

exp

��(x� �)2

2�2

�

(a) Choose

�(x) = exp

�
1

2�2
��(x� r)2 + (x� �)2

��
;

The density �(x)f(x) is a normal density with mean r and variance �2.

(b) Choose

�(x) = exp

�
1

2�2
��x2 + (x� �)2

��
;

and the density �(x)f(x) is a normal density with mean 0 and variance �2:

(c) It is easier to calculate E(R2
t ) under the distribution in (b) since E(R2

t ) = V ar(Rt) = �2 because
the distribution in part (b) has mean zero.

(d) No, the variance has not changed. Both transformations adjusted the mean but not the variance.

3. (a) Plot of the joint density:
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FIGURE 0.14 Plot of bivariate normal density function with mean � and var-cov �.

(b) Choose

�(x) = exp

�
�1

2

�
x0��1x� (x� �)0��1(x� �)

��
;

where x is a 2 - vector. The density �([R; r])f(R; r) is multivariate normal with mean 0 and variance-
covariance matrix �.
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(c) Plot of the new joint density:
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FIGURE 0.15 Plot of bivariate normal density function with 0 mean and var-cov � .

(d) No, the variance - covariance matrix has not changed.
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CHAPTER15

1. (a)

C(t; St)� P (t; St) = e�r(T�t)E(max(ST �K; 0)jIt)� e�r(T�t)E(max(K � ST ; 0)jIt)
= e�r(T�t)E(max(ST �K; 0)�max(K � ST ; 0)jIt)
= e�r(T�t)E(max(ST �K; 0) + min(ST �K; 0)jIt)
= e�r(T�t)E(ST �KjIt)
= St � e�r(T�t)K

since under the risk - neutral measure, the discounted stock is a martingale. This relationship is put
- call parity.

(b) This follows trivially by part (a) and the de�nition of H(t; St).

(c) By part (b)

H(t; St) = max
h
C(t; St); C(t; St) + e�r(T�t)K � St

i
= C(t; St) + max

h
e�r(T�t)K � St; 0

i
Therefore

H(0; S0) = e�rtE
�
C(t; St) + max

h
e�r(T�t)K � St; 0

i�
= e�rtC(0; S)ert + e�rtE

�
max

h
e�r(T�t)K � St; 0

i�
= C(0; S0) + e�rte�r(T�t)E

�
max

h
K � er(T�t)St; 0

i�
= C(0; S0) + e�rTE

�
max

h
K � er(T�t)St; 0

i�
With St = S0e

(r� 1
2�

2)t+�Wt under the risk - neutral measure, the result follows.

(d) Since e�rTE
�
max

�
K � er(T�t)St; 0

��
= e�r(T�t)E

�
max

�
e�r(T�t)K � St; 0

��
, the chooser option

is equivalent to a portfolio consisting of a long call expiring at T with strike K plus a long put with
strike Ke�r(T�t) expiring at t. Therefore

H(0; S0) = C(0; S0;K; T ) + P (0; S0;Ke
�r(T�t); t)
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(e) Using the Black-Scholes formula

H(0; S0) = S0(N(d1)�N(�d1)) +Ke�r(t�T )(N(�d2)�N(d2))

where

d1 =
ln
�
S0
K

�
+
�
r + 1

2�
2
�
T

�
p
T

d2 = d1 � �
p
T

and

d1 =
ln
�
S0
K

�
+ rT + 1

2�
2t

�
p
t

d2 = d1 � �
p
t

2. (a) Use Ito's lemma to show that

St = S0e
(r�f� 1

2�
2)t+�Wt

is the solution to the SDE

dSt = (r � f)Stdt+ �StdWt

Taking St = f(t;Wt) = S0e
(r�f� 1

2�
2)t+�Wt and applying Ito's lemma

dSt =
@f

@t
dt+

@f

@Wt

dWt +
1

2

@2f

@2Wt

dt

=

�
r � f � 1

2
�2
�
Stdt+ �StdWt +

1

2
�2Stdt

=

�
r � f � 1

2
�2 +

1

2
�2
�
Stdt+ �StdWt

= (r � f)Stdt+ �StdWt

(b) For s > 0 consider the conditional expectation

E
h
e�Wt+s� 1

2�
2(t+s)

��� Iti = e�
1
2�

2(t+s)+�WtE
�
e��Wt

�
= e�

1
2�

2(t+s)+�Wt+
1
2�

2s

= e�
1
2�

2t+�Wt

Thus, the process is a martingale. The second equality follows from �Wt = Wt+s �Wt � N (0; s).

Therefore, E
�
e�(Wt+s�Wt)

�
= e

1
2�

2s by the moment generating function for the normal distribution.

(c) If Xu = �, then by Girsanov's theorem

~Wt = Wt �
Z t

0

Xudu

= Wt � �t
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is a martingale under the measure ~P where

~P (A) =

Z
A

�(WT )dP

and

�(WT ) = e

R
T

0
XudWu� 1

2

R
T

0
X2
udu

= e�WT� 1
2�

2T

(d) Let Zt = f(St) =
1
St

= 1
S0
e�(r�f�

1
2�

2)t��Wt . By Ito's lemma

dZt =
@f

@t
dt+

@f

@Wt

dWt +
1

2

@2f

@2Wt

dt

=
� �r � f � 1

2�
2
�

St
dt� �

St
dWt +

1

2

�2

St
dt

=
1

St

�
f � r +

1

2
�2 +

1

2
�2
�
dt� 1

St
�dWt

= Zt[f � r + �2]dt� Zt�dWt

(e) For s > 0, consider the conditional expectation under measure P and de�ne �Wt =Wt+s �Wt.

E [Zt+sjIt] =
1

S0
e�(r�f�

1
2�

2)(t+s)��WtE
�
e���Wt

�
=

1

S0
e�(r�f�

1
2�

2)(t+s)��Wte
1
2�

2s

Therefore

E

�
Zt+se

r(t+s)

ef(t+s)

���� It
�

=
1

S0
e�(r�f�

1
2�

2)(t+s)��Wt+
1
2�

2s+(r�f)(t+s)

=
1

S0
e
1
2�

2(t+s)��Wt+
1
2�

2s

6= 1

S0
e
1
2�

2t��Wt

= Zte
(r�f)t

and the process is not a martingale under measure P . However, under measure ~P , the situation
changes. The term �Wt under measure P is N (0; s) while under measure ~P , the variance remains
the same but the mean changes according to part (c). Under measure ~P , use the property that
Wt = ~Wt + �t to conclude that

�Wt = Wt+s �Wt

= ~Wt+s + �(t+ s)�
�
~Wt + �t

�
= ~Wt+s � ~Wt + �s

= � ~Wt + �s
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Since � ~Wt
d� N (0; s) under measure ~P

E
~P
�
e���Wt

�
= E

~P
h
e��(�s+�

~Wt)
i

= E
~P
h
e��

2s��� ~Wt

i
= E

~P
h
e��

2s+N (0;�2s)
i

= e��
2sE

~P
h
eN (0;�2s)

i
= e��

2s+ 1
2�

2s

This result is used below.

E
~P [Zt+sjIt] =

1

S0
e�(r�f�

1
2�

2)(t+s)��WtE
~P
�
e���Wt

�
=

1

S0
e�(r�f�

1
2�

2)(t+s)��Wt��2s+ 1
2�

2s

=
1

S0
e�(r�f)(t+s)+

1
2�

2t��Wt

Therefore

E
~P

�
Zt+se

r(t+s)

ef(t+s)

���� It
�

=
1

S0
e
1
2�

2t��Wt

= Zt
ert

eft

and the process is a martingale under ~P .

(f) Yes, Zt is the price of 1 unit of domestic currency in terms of foreign currency. In order to discount

this quantity, multiply by ert

eft
= e(r�f)t. Thus, ~P is the arbitrage - free measure of the foreign

economy.
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CHAPTER16

1. Payo� Diagrams

(a) A caplet with rate Rcap = 6:75% written on 3 - month Libor.
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(b) A forward contract maturing in 3 months on a default - free discount bond whose maturity is 18
months. The contracted price is 89:5.
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(c) A 3 by 6 FRA that pays a 3 - month �xed rate, F = 7:5%, against Libor.
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(d) A �xed payer interest rate swap with swap rate � = 7:5% which receives 6 - month Libor. The swap
began 6 months ago and matures in 2 years.
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(e) A swaption maturing in 6 months on a 2 year �xed paper swap with swap rate � = 6%.
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2. The assets which trade are (b), (c), (d), and (g). Returns and volatilities do not trade and must be
inferred from assets such as bonds or options.
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CHAPTER17

1. Construct an implied tree for the spot rate process drt = :01rtdt+ :12rtdWt.

(a) Choose � to have 5 time steps in a 12 month period; � = 12
5 months or 1

5 years.

(b) Since � and � are �xed constants, u = e�
p
� = e(:12)

p
1
5 = 1:0551 and d = 1

u
= :9477 are also

constant throughout the tree.

(c) The tree is recombining with t+ 1 nodes at time t.

t=0 t=1 t=2 t=3 t=4 t=5

0.0785
0.0744

0.0705 0.0705
0.0668 0.0668

0.0633 0.0633 0.0633
0.0600 0.0600 0.0600

0.0569 0.0569 0.0569
0.0539 0.0539

0.0511 0.0511
0.0484

0.0459

(d) As no traded bonds have been introduced into the economy, it is not possible to �nd the term
structure market price of risk. Nor can risk - neutral probabilities be ascertained. However, empirical
probabilities can be obtained using the original SDE. Consider the discretized SDE with partition
size � under the empirical measure

rt+1 = rt + ��rt + �rt�W

Given this process, the following reasoning extracts probabilities from the spot rate tree.

E [rt+1] = rt + ��rt
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) pu(t)rut+1 + (1� pu(t))rdt+1 = rt + ��rt

) pu(t)
�
rut+1 � rdt+1

�
= rt + ��rt � rdt+1

Therefore, pu(t) =
rt+��rt�rdt+1
ru
t+1

�rd
t+1

The \up" probabilities:

t=0 t=1 t=2 t=3 t=4

0.5061
0.5318

0.5047 0.5047
0.5039 0.5039

0.5031 0.5031 0.5031
0.5105 0.5105

0.5013 0.5013
0.5095

0.4994

The \down" probabilities:

t=0 t=1 t=2 t=3 t=4

0.4939
0.4682

0.4953 0.4953
0.4961 0.4961

0.4969 0.4969 0.4969
0.4895 0.4895

0.4987 0.4987
0.4905

0.5006

2. Given 4 zero coupon bonds of di�erent maturities, construct a \tree" for the spot rate which is consistent
with the observed bond prices.

(a) There are at least two methods to generate a \tree". The second generates a spot rate tree for a
speci�ed volatility term structure given by the Black, Derman, and Toy model. The �rst method
simply �nds the implied forward curve from market observed bond prices. These implied forward
rates are not necessarily expected future spot rates. However, they are very useful objects in the
study of �xed income securities.

(b) Method 1 - Forward Rate Curve

Implied forward rates can be ascertained from default - free zero coupon bonds recursively. This
procedure starts with the shortest maturity bond and �nds an implied spot rate assumed to be
constant from period 0 until 1. Then, the procedure uses the two year bond to �nd an implied
rate between 1 and 2. Repeating the procedure with consecutively longer maturities extrapolates a
piecewise constant approximation to the forward rate curve.

Want to �nd forward rates between time ti�1 and ti.

1

1 + f0;1
= :94 ) f0;1 =

1

:94
� 1 = :06383
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�
1

1 + f0;1

��
1

1 + f1;2

�
= :92 ) f1;2 =

1

:92(1 + f0;1)
� 1 = :02174

The other two rates are obtained in a similar fashion.

f2;3 =
1

:87(1 + f0;1)(1 + f1;2)
� 1 = :05748

f3;4 =
1

:80(1 + f0;1)(1 + f1;2)(1 + f2;3)
� 1 = :08749

Method 2 - Assume a Volatility Term Structure and Implement Black Derman and Toy (BDT) Model

The (BDT) model requires a term structure of yields and volatilities. Here, the volatility term
structure is a at :12 from the above equation. In addition, the yield at maturity N , yN , is implied
from bond prices by the formula P (0; N) = 1

(1+yN )N .

Maturity Yield Volatility

1 .06383 .12
2 .04257 .12
3 .04751 .12
4 .05737 .12

The �rst node of the tree is implied directly from P (0; 1) and is equal to :06383 while ru and rd
require two equations to match yields and volatilities. The volatilities must satisfy � = :12 =
ln
�
ru
rd

�
2 ) ru = rde

:24. Therefore, there are two equations and two unknowns (ru and rd).

(1)

1
2

h
1

1+ru
+ 1

1+rd

i
1:06383

= P (0; 2) = :92

(2) ru = rde
:24

) 1

1 + rde:24
+

1

1 + rd
= 2(1:06383)(:92)

The values ru = :024342 and rd = :019148 are the solutions. As the forward rates indicate, there is
a drop in interest rates between period 1 and 2. Next, solve for ruu, rdd, and rud = rdu. These are
related by ruu = e:24rud = e:48rdd and satisfy the equation

1
1+rdde:48

+ 1
1+rude:24

1:024342
+

1
1+rude:24

+ 1
1+rdd

1:019148
= 4(1:06383)(:87)

The values ruu = :072153, rud = :056758, and rdd = :072153 are the solutions. Thus far, the tree
has become

t=0 t=1 t=2
0.072153

0.024342
0.06383 0.056758

0.019148
0.044647
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The solutions for ruuu, rddd, etc proceeds in a similar manner.

(c) The di�erence between the methods in problem 1 and 2 involves the information contained in market
observed bond prices. The two approaches taken in problem 2 are consistent with the market prices
of bonds used for calibrating the term structure. However, errors between observed bond prices and
bond prices implied by the term structure could occur in other additional bonds not used to infer
the term structure. Problem 1 assumed a process for the spot rate but bond prices derived from
the spot rate process need not match any observed bond prices. Thus, without placing additional
restrictions on the parameters of the spot rate process in problem 1, the model may not be consistent
with observed bond prices which could generate arbitrage opportunities.

3. Process for the spot rate is drt = :02rtdt+ :06rtdWt with r0 = :06.

(a) Discretize the SDE at nodes t0 = 0 < t1 < t2 < : : : < tn = t and de�ne � = ti � ti�1.

rti = rti�1 + :02rti�1�+ :06rti�1�W

(b) see MATLAB program below

(c) A MATLAB program to calculate the integral is below.

delta=.04

t=1;

%number of nodes (not including the first)

n=t/delta;

r=zeros(n,1);

%starting value is .06

r(1)=.06;

for k=1:1000

for i=2:n

%generate random increment

deltaW=normrnd(0,sqrt(delta));

r(i) = r(i-1) + .02*r(i-1)*delta + .06*r(i-1)*deltaW;

end

%approximate integral with sum

%the partition width is fixed at .04 making the approximation .04 times the

%sum of all the entries

%calculate the first expectation in part (c)

expect1(k)=exp(-.04*sum(r));

%calculate the second expectation in part (c)

expect2(k)=max(r(n)-.06,0);

%calculate the expectation in part (b) (combined expectations)

expect3(k)=exp(-.04*sum(r)) * max(r(n)-.06,0) ;

end

%calculate final values for comparison

E1=mean(expect1);

E2=mean(expect2);
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E3=mean(expect3);

difference = E3-E1*E2

-2.2972e-06

(d) In general, unless the random variables X and Y are uncorrelated, one cannot separate E[XY ] into
E[X ]E[Y ]. For instance, if max(r1 � :06; 0) is large, then the value of r1 must have been large.

However, this would imply a smaller value for e
�
R 1

0
rsds.

E

�
e
�
R
1

0
rsdsmax(r1 � :06; 0)

�
6= E

�
e
�
R
1

0
rsds

�
E [max(r1 � :06; 0)]

The quantity di�erence in the output of the above program, although small in this example, provides
empirical justi�cation for not separating the expectations.

(e) Bond prices are calculated under the equivalent risk - neutral martingale measure when using spot
rate data, not the empirical measure.

P (t; T ) = E
~P
t

�
e
�
R
T

t
r(s)ds

�

The market price of risk is required to calculate the expectation under the correct measure.

(f) The interest rate dynamics would be arbitrage - free if, using the formula above, they generated
bond prices which matched those observed in the market. One requires a traded asset such as a
bond in order to make any conclusions regarding arbitrage opportunities.

(g) If the spot rate process is changed to a equivalent risk - neutral martingale measure, a market
price of risk, �t, would be introduced into the drift of the process. This market price of risk is the
compensation investors require when faced with uncertainty in the spot rate caused by the Brownian
motion. The spot rate process under the risk - neutral measure would be

drt = (:02 + :06�t) rtdt+ :06rtd ~Wt

where ~Wt is a Brownian motion under the equivalent risk - neutral martingale measure, ~P .

(h) A set of arbitrage - free bonds could determine the unknown market price of risk as in the Heath,
Jarrow, and Morton term structure model.
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CHAPTER18

1. Consider the Vasicek spot rate model, drt = �(�� rt)dt+�dWt, which incorporates mean reversion into
the spot rate. The term � represents the long term average spot rate while � represents the \speed" of
reversion from rt to �. Both quantities � and � are positive.

(a) Solve for E [rsj rt] and V ar [rsj rt] for t < s.

drt = �(�� rt)dt+ �dWt

drt + �rtdt = ��dt+ �dWt multiply both sides by e�t

e�t [drt + �rtdt] = e�t [��dt+ �dWt]

@

@t

�
e�trt

�
= e�t [��dt+ �dWt] integrate from t to sZ s

t

@

@x
[e�xrx] dx = ��

Z s

t

e�xdx+ �

Z s

t

e�xdWx

e�xrxjx=sx=t = �e�xjx=sx=t + �

Z s

t

e�xdWx

e�srs � e�trt = �e�s � �e�t + �

Z s

t

e�xdWx multiply by e��s

rs = e��(s�t)rt + �� �e��(s�t) + �e��s
Z s

t

e�xdWx

rs = �+ (rt � �)e��(s�t) + �e��s
Z s

t

e�xdWx

From the above equation, the conditional mean and variance are obtained.

E [rsj rt] = �+ (rt � �)e��(s�t) since E

�
�e��s

Z s

t

e�xdWx

�
= 0

V ar [rsj rt] = V ar

�
�e��s

Z s

t

e�xdWx

�

= �2e�2�s
�Z �

t

e�xdWx

�
s
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= �2e�2�s
Z s

t

e2�xdx

=
�2

2�

h
1� e�2�(s�t)

i
The second equality in the variance calculation is the Ito isometry

V ar

�Z t

0

f(u)dWu

�
=

�Z �

0

f(u)dWu

�
t

=

Z t

0

f2(u)du

provided that the integrand f(�) is predictable.

(b) As s " 1 for a �xed t, the terms e��s and e��(s�t) converge to zero since � is a positive constant.

Therefore, the conditional mean approaches � and the conditional variance approaches �2

2� .

(c) Calculate the coeÆcients for the bond dynamics. This requires Br(t; s), the partial derivative of
the bond maturing at time s with respect to spot interest rate at time t, r(t). Using the formula
found in the text, �BB = rtB+�Br�, results in the drift coeÆcient �B being isolated. To calculate
Br, substitute r(s) above into the bond price with v replacing s and adjust spot rate dynamics to
account for the market price of risk.

B(t; s) = E
~P
t

�
e
�
R
s

t
rvdv

�

= Et

�
e
�
R
s

t

�
�+(rt��)e��(v�t)+�e��v

R
v

t
e�x(d ~Wx+�dx)

�
dv

�

= Et

�
e
�rt
R
s

t
e��(v�t)dv

e
�
R
s

t

�
���e��(v�t)+�e��v

R
v

t
e�x(d ~Wx+�dx)

�
dv

�

) Br =
@B(t; s)

@r(t)
= �

�Z s

t

e��(v�t)dv
�
B(t; s)

=

�
e��(s�t) � 1

�
�

B(t; s)

Therefore

Br = �B
�
1� e��(s�t)

�
�

< 0

With � > 0 and s� t > 0, Br is negative since e
��(s�t) � 1 < 0. The sign of this partial derivative

is intuitive as an increase in the spot interest rate lowers bond prices. The drift of the bond equals

�BB = rtB + �Br�

�B = rt +
��

�

�
1� e��(s�t)

�
> rt

Here, a slight adjustment was made to ensure that �B is greater than rt. To solve for �B , the
relationship �BB = b(rt; t)Br is used where in this instance b(rt; t) = �. The negative sign is
removed as the standard deviation must be positive.

�BB = b(rt; t)Br

�B =
�

�

�
1� e��(s�t)

�
> 0
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The values of �B and �B imply that

�B � rt

�B
=

��
�

�
1� e��(s�t)

�
�
�

�
1� e��(s�t)

�
= �

as expected. Justi�cation for the alterations which make �B > rt and �
B > 0 is provided in Vasicek

(Journal of Financial Economics, 1977). Computations which parallel those in the text with

dB = �BBdt� �BBdWt

�BB = �b(rt; t)Br > 0

�B = rt + ��B > rt

lead to the intuitive results presented above. These de�nitions realize apriori that Br is a negative
quantity. Overall, with the increment �W approximating dWt, both ��BB�W and �BB�W are

distributed N
�
0;
�
�B
�2
B2�t

�
. Therefore, placing a negative sign in front of �B does not change

the distribution of the bond price but results in parameters with greater economic meaning.

For parts (d) and (e), use the relationship e��(s�t) ! 1 as t " s.

(d) Bond price volatility goes to zero as t " s which is expected since the bond matures at $1 for certain
(no default risk is assumed).

(e) Bond price drift goes to rs which is also expected. As the bond converges to $1, its return becomes
the return of holding $1 over an instant, this is exactly the short term rate.

(f) s " 1 ) e��(s�t) # 0 Therefore, the drift on a consul or perpetual bond becomes rt+
��
�

and the
di�usion parameter becomes �

�
.

2. Two period world with two assets, a savings account (money market) and a bond which pays $1 at
maturity (t = 2). There are four possible states at t = 2 which correspond to the bond price path. For
simplicity, denote these four states as  1 =  u;u,  2 =  u;d,  3 =  d;u, and  4 =  d;d.

(a) Form matrix with state prices.

�
1
B0

�
=

�
(1 + r0)(1 + r1) (1 + r0)(1 + r1) (1 + r0)(1 + r1) (1 + r0)(1 + r1)

1 1 1 1

� 2
664
 1
 2
 3
 4

3
775

This implies two equations

(1) 1 = (1 + r0)(1 + r1) 1 + (1 + r0)(1 + r1) 2 + (1 + r0)(1 + r1) 3 + (1 + r0)(1 + r1) 4

(2) B0 = 1 1 + 1 2 + 1 3 + 1 4

(b) Risk - neutral probabilities can be obtained by setting ~pi = (1 + r0)(1 + r1) i 8i = 1; 2; 3; 4. From

the �rst equation,
P4

i=1 ~pi = 1, which ensures that a probability measure has been obtained.
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(c) From the second equation and  i =
~pi

(1+r0)(1+r1)

B0 =  1 +  2 +  3 +  4

=

�
1

(1 + r0)(1 + r1)

�
~p1 +

�
1

(1 + r0)(1 + r1)

�
~p2 +

�
1

(1 + r0)(1 + r1)

�
~p3 +

�
1

(1 + r0)(1 + r1)

�
~p4

= E
~P
0

�
1

(1 + r0)(1 + r1)

�

Where the last equality follows from the fact that each state has the same payo�,X(!i) =
h

1
(1+r0)(1+r1)

i
.

Thus, X(!i) has no dependence on !i. The expectation
P4

i=1 ~piX(!i) reduces to X
P4

i=1 ~pi = X

as the risk - neutral probabilities sum to one according to the �rst equation.

lxxiv



CHAPTER19

1. Consider the two processes

rt+� = rt(1 + �) + �1 (Wt+� �Wt) + �2 (Wt �Wt��)

Rt+� = Rt(1 + �) + �1

�
~Wt+� � ~Wt

�
+ �2

�
~Wt � ~Wt��

�

with correlation E
h
(� ~W )(�W )

i
= ��

(a) This error structure is known as a moving average model of order 1 in the time series literature.
Both a current \shock" and a previous \shock" enter into the present value of rt.

Yes, it's plausible that �Wt�� =Wt �Wt�� may enter into the dynamics of rt+�. For example, if
interest rates move up (down) sharply due to some random phenomena, one might expect a possible
reversion in the next period. This tendency to mean revert is modeled through two restrictions;
�1 > 0 and �2 < 0. Alternatively, it may be reasonable to assume that interest rates are path
dependent. Simply knowing the current value of rt may not be suÆcient for modeling next period's
value. In short, interest rates might not necessarily be Markov.

(b) The closest SDE analogous to this discrete process would be

drt = �rtdt+ �1dWt

which is Markov. This SDE fails to account for the second error term. The diÆculty is that rt is
not Markov, it depends on previous values of the Brownian motion, not just the current movement
captured by dWt.

(c) No, one cannot write a representation for Xt such that Xt is �rst order Markov. Even if � = 1, Xt

is still not �rst order Markov. For Xt to be Markov, there must exist some function f such that

Xt+� =

�
rt+�
Rt+�

�
= f(rt; Rt) + Zt

where Zt is the current random variable. In this case, Zt is a function of �Wt = Wt+� �Wt and
� ~Wt = ~Wt+� � ~Wt, not the previous random disturbances �Wt�� = Wt �Wt�� and � ~Wt�� =
~Wt � ~Wt��. But
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�
rt+�
Rt+�

�
=

�
rt(1 + �)
Rt(1 + �)

�
+

�
�1 �2
0 0

��
�Wt

�Wt��

�
+

�
0 0
�1 �2

��
� ~Wt

� ~Wt��

�

To be �rst order Markov, the values of �Wt�� and � ~Wt�� must be expressed in terms of Rt and
rt and not involve Rt�� and rt�� or Rt+� and rt+�. However, the matrices�

�1 �2
0 0

�

and �
0 0
�1 �2

�

are not of full rank. Thus, the matrices are not invertible and the values of �Wt�� and � ~Wt��
cannot be solved. If � = 1, then

�
rt+�
Rt+�

�
=

�
rt(1 + �)
Rt(1 + �)

�
+

�
�1 �2
�1 �2

��
�Wt

�Wt��

�

However, (assume that �1�2��2�1 6= 0), the value for Wt�� cannot be expressed in terms of rt and
Rt as the following system of equations demonstrates

�
�Wt

�Wt��

�
=

�
�1 �2
�1 �2

��1�
rt+� � rt(1 + �)
Rt+� �Rt(1 + �)

�

Inverting the matrix �
�1 �2
�1 �2

�
leaves a dense 2� 2 matrix which implies that any solution for Wt�� involves the future short and
long term interest rate, not just their present values at time t. Thus, Xt is not �rst order Markov.

(d) No, the same diÆculty in part (b) arises. The past randomness cannot be accounted for in the term
dWt.

(e) Yes, this is possible. Adding another process allows one to condition on more information. In
general, the additional information could make the joint process Markov.

2. (a) A univariate representation for the short rate is

rt+� = �11rt + �12

" 1X
i=1

�
�21�

i�1
22 rt�i� + �i22�W

2
t�i�

�
+�W 2

t

#
+�W 1

t+�

provided that j�22j < 1 so that the in�nite series converge. This equation is the result of a recursion.
Expand the matrix into two equations as follows

rt+� = �11rt + �12Rt +�W 1
t+�

Rt+� = �21rt + �22Rt +�W 2
t+�

Rt = �21rt�� + �22Rt�� +�W 2
t

Rt�� = �21rt�2� + �22Rt�2� +�W 2
t��

...
...
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Successive substitution of the past values of Rt�i� for i = 0; 1; 2; : : : into rt+� yields the solution.

(b) According to this representation, rt is not a Markov process. In�nitely many past values of the
random \shocks" and the spot rate process are required to represent rt.

(c) The univariate process for rt would be Markov if �12 = 0. In this case, rt+� = �11rt +�W 1
t+�.

3. (a) There are 23 = 8 possible states of the world at time t = 3.

(b) Portfolio 1:

Position Cash ows at 0 Cash ows at 1

Long the forward, f0 +$1:0000 �$1:0800
Long 1.08 units of the B1 bond �$0:9720 +$1:0800

Net cash ows +$0:0280 $0:0000

Portfolio 2:

Position Cash ows at 0 Cash ows at 1 Cash ows at 2

Short 1.09 units of B2 bond +$0:9483 $0:0000 �$1:0900
Long the B1 bond �$0:9000 +$1:0000 $0:0000

Short the forward, f1 $0:0000 �$1:0000 +$1:0900

Net cash ows +$0:4830 $0:0000 $0:0000

Portfolio 3:

Position Cash ows at 0 Cash ows at 2 Cash ows at 3

Short 1.1 units of B3 bond +$0:9020 $0:0000 �$1:1000
Long the B2 bond �$0:8700 +$1:0000 $0:0000

Short the forward, f2 $0:0000 �$1:0000 +$1:1000

Net cash ows +$0:0320 $0:0000 $0:0000

(c)

Bn =
1

1 + f0

1

1 + f1

1

1 + f2
� � � 1

1 + fn�1
:

This follows from the fact that to avoid arbitrage opportunities, the forward rates must satisfy
fi =

Bi

Bi+1
� 1. This relationship implies that Bn = Bn�1

1+fn�1
but Bn�1 =

Bn�2

1+fn�2
which implies that

Bn = Bn�2

1+fn�2
1

1+fn�1
and so forth until the right hand side only involves B0 = 1.

(d) Combinations of the above portfolios can generate an in�nite number of possible returns.

(e) No, the Bi's cannot be determined independently. All bond prices are derived from the same
underlying term structure.

(f) No, the fi's cannot be determined independently either. The forward rates are implied from bond
prices and are found recursively. The forward rate fi depends on previous forward rates, for instance,
fi�1.
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(g) Presently, only asymptotically are the fi's normally distributed. The fi's are a discrete process
taking, at most, 8 possible values. Theoretically, modeling bonds and the forward rates as a normal
process allows for negative values. This consequence has no economic rationale and implies the
existence of arbitrage opportunities.

4. (a) Find the measure under which the discounted bond process is a martingale. Then, take the expec-
tation of the payo� under this measure.

(b) See part (c) for an assessment of the assumptions.

(c) The �rst assumption is not appropriate under the risk - neutral measure since the expectation of Li
under this measure is not equal to fi. The second assumption is not reasonable as the fi's cannot
have mean 0 since they do not take on non - positive values.

(d) As for the �rst assumption, this becomes reasonable under the forward measure since fi = Ef (Li),
the expectation of Li under the forward measure. However, using the forward measure does not
make the 2nd assumption any more reasonable.

(e) As mentioned above, since fi = Ef (Li) the forward measure p1 satis�es

f1 = Ef (Li) = p1L
u
1 + (1� p1)L

d
1

) p1 =
f1 � Ld1
Lu1 � Ld1

For the forward measure at t = 2, pu2 and pd2 satisfy

f2 = p1p
u
2L

uu
2 + p1(1� pu2 )L

ud
2 + (1� p1)p

d
2L

du
2 + (1� p1)(1� pd2)L

dd
2

1 = p1p
u
2 + p1(1� pu2 ) + (1� p1)p

d
2 + (1� p1)(1� pd2)

where pd2 is the probability of the spot rate process moving from Ld1 to Ldu2 . Thus, given the
dynamics of the spot process, the forward measure is recoverable with two unknowns, pu2 and pd2,
and two equations. The �rst equation states that the forward rate is the expected future spot rate
while the second equation merely assets that the sum of the probabilities at t = 2 equals one.

(f) The price of the option is then given by

C0 = B(0; 2)
�
p1p

u
2C(2; uu) + p1(1� pu2 )C(2; ud) + (1� p1)p

d
2C(2; du) + (1� p1)(1� pd2)C(2; dd)

�
Note that the forward measure employs B(0; 2) and not the money market account. The forward
measures uses a di�erent numeraire, a bond instead of the money market, for normalizing assets in
the economy.
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CHAPTER20

1. Consider the process drt = �rtdWt with r0 = :05.

(a) The spot rate dynamics are a martingale under the empirical measure as there is no drift term in
the SDE.

(b) With a(rt; t) = 0 and b(rt; t) = �rt, the PDE for the bond price B(t; T ) becomes

rtB = Bt �Br�(rt; t)�rt +
1

2
Brr�

2r2t

where �(rt; t) represents the market price of risk.

(c) A solution to this PDE is B(t; T ) = EP
t

�
e
�
R
T

t
rsds+

R
t

0
�(rs;s)dWs� 1

2

R
t

0
�2(rs;s)ds

�
. Use the SDE given

in the problem to conclude that

rs = rte
�(Ws�Wt)��2

2 (s�t)

for veri�cation.

(d) The market price of risk equals �i�r
�i

where �i and �i are the drift and volatility of the bond. This
market price of risk is the compensation investors require to hold bonds since they are exposed to
term structure risk in the form of Wt. This premium is positive. The denominator, �i, is always
positive. The numerator is also positive since �i > r. This inequality is intuitive. Imagine if it did
not hold, �i < r. Then the expected return on a particular bond would be less than the risk - free
rate. No one would be interested in holding such a bond.

2. Consider the mean reverting spot rate model drt = �(�� rt)dt+ bdWt introduced by Vasicek.

(a) Let B(t; T ) be represented as B with Bx denoting the partial derivative of the bond price with
respect to the variable x. An SDE for the bond price dynamics follows from Ito's lemma.

lxxix



dB =

�
Bt +Bra(rt; t) +

1

2
Brrb

2(t; rt)

�
dt+Brb(rt; t)dWt

=

�
Bt +Br [a(rt; t)� b(rt; t)�t] +

1

2
Brrb

2(t; rt)

�
dt+Brb(rt; t)d ~Wt

=

�
Bt +Br [�(�� rt)� b�t] +

1

2
Brrb

�
dt+Brbd ~Wt

(b) For the drift and di�usion parameters, see the calculations in chapter 18, problem 1, part (c). Simply
replace � with b.

(c) Yes, this is expected. Girsanov's theorem changes the mean but not the di�usion component of an
SDE. Under the risk - neutral measure, the drift on the SDE has been altered but not the di�usion
component.

(d) As maturity approaches, t " T , the di�usion of the bond approaches zero. This is intuitive since the
bond matures at face value. The �nal value of the bond is known.

(e) The risk premium � � r does not depend on the volatility of the bond. However, the market price
of risk is proportional to the risk premium. The market price of risk is simply the risk premium
standardized by the volatility of the bond. These relationships are important as they allow Girsanov's
theorem to alter the drift (through the risk premium) but not the volatility of the bond price SDE
under a change of measure.

(f) As in chapter 18, the drift of the bond approaches rt+
b�
�
while the volatility of the bond approaches

b
�
.

(g) The yield of a bond, R(t; T ), equals

R(t; T ) = � 1

T
lnB(t; t+ T )

With the bond price given in the problem

R = lim
T!1

R(t; T ) = �+
b�

�
� b2

2�2

Therefore, R represents the yield on a consul bond with in�nite maturity.
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CHAPTER21

1. De�ne the Radon Nikodym as V (t; T ) = e

R
T

t
�(rs;s)dWs� 1

2

R
T

t
�2(rs;s)ds (a martingale provided that �(rs; s)

is square integrable by Novikov's criterion). This quantity is responsible for changing the bond process
to the equivalent martingale measure.

(a) Let B(t; T ) = E
~P
t

�
e
�
R
T

t
rsds

�
. The Ito product rule implies

B(t; T )V (t; T ) = B(0; T )V (0; T ) +

Z t

0

B(s; T )dV (s; T ) +

Z t

0

V (s; T )dB(s; T ) + hB(s; T ); V (s; T )it

Since B(t; T ) is of bounded variation, the quadratic variation between the two processes is zero and
the last term may be omitted.

B(t; T )V (t; T ) = B(0; T )V (0; T ) +

Z t

0

B(s; T )dV (s; T ) +

Z t

0

V (s; T )dB(s; T )

Therefore, the standard product rule may be applied

d(B(t; T )V (t; T )) = dB(t; T )V (t; T ) +B(t; T )dV (t; T )

= r(t)B(t; T )V (t; T )dt� �(rt; t)B(t; T )V (t; T )dWt

= B(t; T )V (t; T ) [r(t)dt � �(rt; t)dWt]

(b) Obtaining an expression for dB(t; T ) is accomplished by observing that b(rt; t) = � and a(rt; t) = �.
From the previous section

dB =

�
Bt + (�� ��)Br +

1

2
Brr�

2

�
dt+ �Brd ~Wt

(c) This result is intuitive. De�ne B(t) as the money market account used for discounting, B(t) =

e

R
t

0
rsds. Under the risk - neutral measure, ~P , the discounted bond, B(t;T )

B(t) , is a martingale.
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B(t; T )

B(t)
= E

~P
t

�
B(T; T )

B(T )

�
martingale property

= E
~P
t

�
1

B(T )

�
since B(T; T ) = 1 (zero coupon bond maturing at $1)

) B(t; T ) = E
~P
t

�
B(t)

B(T )

�
since B(t) is adapted to Ft

= E
~P
t

�
e
�
R
T

t
rsds

�

= EP
t

�
e
�
R
T

t
rsdsV (t; T )

�

More justi�cation is possible using the result of part (a). Manipulate the SDE to form

d(B(t; T )V (t; T ))

B(t; T )V (t; T )
= � [�r(t)dt+ �(rt; t)dWt]

The solution to this SDE parallels earlier results for the stock price.

dS(t)

S(t)
= r(t)dt + �(t)dW (t)

) S(t) = e

R
t

0
rsds+

R
t

0
�(s)dWs� 1

2

R
t

0
�2(s)ds

In the context of this question, the solution to the SDE is

B(T; T )V (T; T ) = B(t; T )V (t; T )e
�
�
�
R
T

t
rsds+

R
T

t
�(rs;s)dWs� 1

2

R
T

t
�2(rs;s)ds

�

The left hand side terms V (T; T ) and B(T; T ) both equal one by de�nition. Taking the exponential
terms on the right hand side over to the left hand side results in

e
�
R
T

t
rsds+

R
T

t
�(rs;s)dWs� 1

2

R
T

t
�2(rs;s)ds = B(t; T )V (t; T )

After taking expectations under measure P at time t, the right hand side becomesEP
t [B(t; T )V (t; T )] =

B(t; T )E
~P
t [1] = B(t; T ). The �nal result is

B(t; T ) = EP
t

�
e
�
R
T

t
rsds+

R
T

t
�(rs;s)dWs� 1

2

R
T

t
�2(rs;s)ds

�
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CHAPTER22

1. (a) For independent random variables, E (
Qn

i=1Xi) =
Qn

i=1E(Xi). Therefore

E

 
TY
t=1

(zt + 1)

!
=

TY
t=1

E(zt + 1)

=
TY
t=1

1

= 1:

This is independent of T .

(b) It is not clear when it is best to stop the game. If one uses expected reward as the criterion for
optimal stopping, then it does not matter what the stopping rule is. All stopping rules yield the same
expected reward. However, using the expected reward as the optimal stopping criterion implicitly
assumes that one can play this many times over the long run. If one has only a single chance to play
the game, another criterion may be in order.

(c)

E

 
2Tk
Tk+1

TkY
t=1

(zt + 1)

!
=

2k

k + 1
E

 
kY
t=1

(zt + 1)

!

=
2k

k + 1
:

This follows since Tk is deterministic.

(d) The expected reward is increasing in Tk. Thus, the expected reward is maximized as k !1.

(e) Again, if one chooses the optimal stopping rule to maximize the expected reward, then the optimal
rule would be to never stop. However, this by de�nition is not a stopping rule, meaning an optimal
stopping rule does not exist.
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2. (a) At time T + 1, assuming the reward is not already 0, one of 2 things can happen; either the reward

goes to 0, or the reward becomes (T+1)2T+2

(T+2) . Thus, conditional on WT = w�T

E(WT+1jWT = w�t ) = 0� 1

2
+

(T + 1)2T+2

(T + 2)
� 1

2

=
(T + 1)2T+1

(T + 2)
:

(b) This expected value is larger than WT . Thus, the player should never stop when only considering
expected value.

(c) For any given game, the game will end with probability one, P (zt = �1; t < 1) = 1. If a player
decides to never stop, then the game will eventually end after a \tails". This leaves the player with
no winnings.

(d) As alluded to above, for any given game, the game will end with probability one. Thus, a paradox
appears. If a player wants to maximize expected winnings, then the player should never stop.
However, with certainty, this strategy leaves the player with nothing.

(e) The criterion one uses to determine the stopping time is expected winnings. This criterion is suitable
if one can play the game in�nitely often. However, when one has a limited number of trials, a di�erent
stopping criterion may be desirable.

The expected reward for stopping at time T is increasing in T because the reward grows larger and
larger. However, the probability of such a reward is also being reduced. Thus, although the expected
reward becomes larger as the stopping time increases, the probability of actually getting that reward
diminishes.

3. Pricing an American call option requires checking each node of the tree to determine if the intrinsic value
(immediate value if exercised) is greater than the value computed by waiting an additional time period.

(a) Let � = 200
4 = 50 days or 50

365 . Therefore, u equals e�
p
� = e:12

p
50
365 = 1:0454 and d equals

1
u
= :9566.

(b) The risk - neutral implied up probability is
1+(:06)( 50

365 )�:9566
1:0454�:9566 = :5814.

(c) stock price tree:

t = 0 t = 1 t = 2 t = 3 t = 4

119:44
114:25

109:29 109:29
104:54 104:54

100 100 100
95:66 95:66

91:50 91:50
87:53

83:72

(d) call price tree:

Intrinsic value (immediate exercise) simply subtracts the strike price of 100 from each node of the
stock price tree if the stock price is above 100 at that node. Otherwise, the value at that node is set
to zero.
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t = 0 t = 1 t = 2 t = 3 t = 4

19:44
14:25

9:29 9:29
4:54 4:54

0 0 0
0 0

0 0
0

0

Compare the intrinsic value with the usual procedure of discounting the call values starting from
t = 4.

t = 0 t = 1 t = 2 t = 3 t = 4

19:44
15:07

10:92 9:29
7:58 5:36

5:15 3:09 0
1:78 0

0 0
0

0

The nodes of the second tree have call values which are always higher than those produced by
exercising the option before maturity. Therefore, one would never exercise the option before maturity
and $5.15 is the price of the option. Since one does not exercise the option early, one can invoke the
Black Scholes formula which generated a call price of $5.34. The binomial approximation with just
4 steps performed reasonably well.

(e) One would never exercise the option early as the value of waiting and discounting next period's
expected value is higher at every possible node.

4. Early exercise with dividends. After a dividend, the stock value decreases. This may result in early
exercise of an American option prior to a dividend payout. It is assumed that if an option were to be
exercised at an intermediate node, the option would be exercised prior to any dividend being paid.

(a) A 4% continuous dividend does not e�ect the values of u and d but it does alter the implied

probability. In this case, p equals
1+(r�Æ)( 50

365 )�d
u�d = :5197 which is lower than in problem 3 as the

dividend decreases the probability that the stock increases next period. The stock price tree is
identical but the expected value of the call option on the intermediate nodes changes as follows
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t = 0 t = 1 t = 2 t = 3 t = 4

19:44
14:45

9:73 9:29
6:19 4:79

3:80 2:47 0
1:27 0

0 0
0

0

The intrinsic value from the previous question has not changed since the stock price tree has not
changed. By inspection, each node on the above tree is higher than the value of immediately
exercising the option. Therefore, with this continuous dividend, one would still never exercise early.
However, the dividend does reduce the value of the call option to $3.80. This value is close to the
Black Scholes value (European option calculation valid as one exercises only at maturity) of $4.01.

(b) The stock pays 5% of its value at the third node. Here, the stock price tree at t = 3 and t = 4 does
change to account for the dividend. Despite the dividend at the third node, the tree still recombines.
For a given S, the up node next period has a value of Su

1:05 while the value at the bottom node next

period is Sd
1:05 . Therefore, after an up and down movement or a down and then up movement, the

stock price recombines, Su
1:05d =

Sd
1:05u = S

1:05 . The values of u and d have not changed which allows
new terminal values to be computed.

stock price tree (after dividend at t = 3):

t = 0 t = 1 t = 2 t = 3 t = 4

113:75
108:81

109:29 104:08
104:54 99:56

100 100 100
95:66 91:10

91:50 87:15
83:36

79:74

The intrinsic value of the option is almost identical to the option in problem 3 except at the terminal
nodes. The values at t = 3 are identical since one would exercise just prior to the dividend being
paid to avoid a decrease in the stock price. Therefore, the dividend would only reduce the intrinsic
value of the option at t = 4.

t = 0 t = 1 t = 2 t = 3 t = 4

13:75
14:25

9:29 4:08
4:54 4:54

0 0 0
0 0

0 0
0

0
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When one works backward at t = 3 to compute the value of waiting to exercise the option at t = 4,
the values of

9:62 =
13:75p+ 4:08(1� p)

1 + (:06)
�
50
365

� < 14:25

and

2:35 =
4:08p+ 0(1� p)

1 + (:06)
�
50
365

� < 4:54

are computed. The value of p is from problem 3 since continuous dividends are no longer being paid
in this example. Both these values are less than their counterparts on the intrinsic value tree (14:25
and 4:54). Thus, one would exercise early at t = 3 and not allow the dividend to reduce the stock
price before exercising the option.

call price tree (exercise at t = 3):

t = 0 t = 1 t = 2 t = 3

14:25
10:10

6:91 4:54
4:61 2:62

1:51 0
0

0

Before t = 3, it is best not to exercise the option. The discounted expected value of the option is
greater than the intrinsic value at each node prior to t = 3.

(c) Dividend of $5 paid at time t = 3. Now the tree no longer recombines. The value of a stock after an
up and down movement no longer equals the value of the stock after a down and then up movement.
There is path dependence since (Su� 5)d 6= (Sd� 5)u. In fact, since 5d < 5u, the down and then
up movement is always less then an up and then down movement.

stock price tree (dividend at t = 3):

t = 0 t = 1 t = 2 t = 3 t = 4

114:21
109:25

104:50
109:29 104:06

104:54 99:54
95:22

100 100 94:78
95:66 90:66

86:72
91:50 86:28

82:53
78:94

Only at t = 4 does the intrinsic value change when compared to part (b) since one could exercise
the option at t = 3 prior to any dividend being paid.
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t = 0 t = 1 t = 2 t = 3 t = 4

14:21
14:25

4:50
109:29 4:06

4:54 4:54
0

0 0 0
0 0

0
0 0

0
0

As in part (b), the discounted expected value of the option at t = 3, assuming the option is exercised
at t = 4, is less than the intrinsic value at both relevant nodes.

10:06 =
14:21p+ 4:50(1� p)

1 + (:06)
�
50
365

� < 14:25

2:34 =
4:06p

1 + (:06)
�
50
365

� < 4:54

Therefore, exercise the option at t = 3 and then proceed to discount the expected call option values
backwards in time. These values are greater than the intrinsic values presented above from t = 0 to
t = 2 inclusive.

call price tree (exercise at t = 3):

t = 0 t = 1 t = 2 t = 3

14:25
10:10

6:91 4:54
4:61 2:62

1:51 0
0

0

Therefore, despite di�erent dividend policies, the options in parts (b) and (c) have the same value.
This is explained by the fact that one would exercise prior to either dividend being paid at t = 3.
The call values of $4.61 are less than $5.15 calculated in problem 3 since it was not optimal to
exercise early in problem 3. The dividends forced the option holder to exercise one period earlier.
In the absence of dividends, the option holder would have exercised only at maturity if the option
was in-the-money.

5. This problem is solved using dynamic programming. Some modi�cations are made to the original question.
The process begins at t = 4 and �nds the optimal instrument k4. Then, it proceeds backwards in time to
�nd the optimal instruments k3, k2, and k1. These values and the initial condition Y0 = 0 generate the
values of Y1; : : : ; Y4 and the corresponding values of the objective function through time.

At t = 4:
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maximize 2(k4 � k3)
2 + 100(Y4)

2 with respect to k4

subject to: Y4 = :2k4 + :6Y3

is equivalent to maximizing
2(k4 � k3)

2 + 100(:2k4 + :6Y3)
2

or
�2(k4 � k3)

2 + (2k4 + 6Y3)
2

with respect to k4 after substituting the Y4 constraint into the �rst expression. However, this function,
for �xed k3 and Y3, is monotonically increasing in k4. Therefore, the solution would be to choose k4 =1.
Therefore, change the sign of the �rst term to �2(k4 � k3)

2. This functional form penalizes the policy
maker for choosing an instrument path with a high degree of variability. In a �nancial context, a form of
\transaction costs" are imposed as a smooth instrument path is desired. However, even this modi�cation
is not suÆcient since

�2(k4 � k3)
2 + (2k4 + 6Y3)

2

has 2k24 as a leading term. Therefore, the function is still monotonically increasing in k4. Alter the
objective function once more to

maximize
4X
t=1

�2(kt � kt�1)2 + 10(Yt)
2

subject to: Yt = :2kt + :6Yt�1

In this formulation, less weight is given to the target variable Yt which contains k4. Investing an in�nite
amount in the instrument is no longer optimal.

(a) At t = 4:

maximize �2(k4 � k3)
2 + 10(Y4)

2 with respect to k4

subject to: Y4 = :2k4 + :6Y3

or

At t = 4:

maximize �2(k4 � k3)
2 + 10(:2k4 + :6Y3)

2 with respect to k4

Taking the partial derivative with respect to k4 and setting the result to zero yields

�4(k4 � k3) + 4(:2k4 + :6Y3) = 0

Therefore

k4 =
k3 + :6Y3

:8

Taking the second derivative ensures that a maximum has been found

@2
��2(k4 � k3)

2 + 10(:2k4 + :6Y3)
2
�

(@k4)
2 = �32

10
< 0

(b) see \Instrument" entry in table below

lxxxix



(c) see \Instrument" entry in table below

(d) see \Value" entry in table below

Continuing this procedure from t = 3 to t = 1 reveals that kt =
kt�1+:6Yt�1

:8 . Therefore, in addition
to Y0 = 0, the initial value k0 is needed. Let k0 = 1. These values imply that k1 and hence Y1 can
be solved as k1 = 1:25 and Y1 = :2(1:25) + :6(0) = :25. Thus, the value function at t = 1 equals
�2(:25)2 + 10(:25)2 = :5. Moving forward in time, the following table summarizes the results

Time Instrument Target Value

0 1.00 0 not de�ned
1 1.25 .25 .50
2 1.75 .50 2.00
3 2.56 .81 5.28
4 3.81 1.25 12.50

(e) Plot of the value function.
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FIGURE 0.16 Value Function over Time with Optimal Instruments

Both the instrument and the target variable increase in a steady manner over time. The instrument
does not increase rapidly as a penalty is imposed on the value function to prevent a trivial solution.
Overall, the value function increases along with the instrument and target variable.
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