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PREFACE 

The age of modem control theory was ushered in at the launching of the first 
sputnik in 1957. This achievement of Soviet technology focused attention of 
scientists and engineers in general, and the automatic-control community in 
particular, eastward toward the USSR. By worldwide consensus, Moscow was 
the appropriate location for the First Congress of the International Federation 
of Automatic Control in 1960. 

In turning their attention to the Soviet Union, control system scientists and 
engineers discovered a dilierent approach to control theory than the approach 
with which they were familiar. Differential equations replaced transfer functions 
for describing the dynamics of processes; stability was approached via the 
theory of Liapunov instead of the frequency-domain methods of Bode and 
Nyquist: optimization of system performance was studied by the special form of 
the calculus of variations developed by Pontryagin instead of by the Wiener- 
Hopf methods of an earlier era. 

In a few years of frenzied effort, Western control theory had absorbed and 
mastered this new " state-space'' approach to control system analysis and 
design, which has now become the basis of much of modern control theory. 

State-space concepts have made an enormous impact on the thinking of 
those control scientists and engineers who work at the frontiers of technology. 
These concepts have also been used with notable success in a number of 
important high-technology projects-the U.S. Apollo project was a highly 
visible example. Nevertheless, the majority of control systems implemented at 
the present time are designed by methods of an earlier era. 

Many control engineers schooled in the earlier methods have felt that the 
modern state-space approach is mathematically esoteric and more suited to 
advanced graduate research than to the design of practical control systems. I 
can sympathize with the plight of the engineer who has waded through a morass 
of mathematics with the hope of learning how to solve his practical problem 
only to return empty-handed; I have been there too. One thesis of this book is 

xi 
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that state-space methods can be presented in a style that can be grasped by the 
engineer who is more interested in using the results than in proving them. 
Another thesis is that the results are usefur I would even go so far as to say that 
if one had to choose between the frequency-domain methods of the past and the 
state-space methods of the present, then the latter are the better choice. 
Fortunately, one does not need to make the choice: both methods are useful 
and complement each other. Testimony to my continued faith in frequency- 
domain analysis is a long chapter, Chap. 4, which presents some of the basic 
methods of that approach, as a review and for those readers who may not be 
knowledgeable in these methods. 

This book is addressed not only to students but also to a general audience 
of engineers and scientists (e.g., physicists, applied mathematicians) who are 
interested in becoming familiar with state-space methods either for direct 
application to control system design or as a background for reading the 
periodical literature. Since parts of the book may already be familiar to some of 
these readers, I have tried, at the expense of redundancy, to keep the chapters 
reasonably independent and to use customary symbols wherever practical. It 
was impossible, of course, to eliminate all backward references, but I hope the 
reader will find them tolerable. 

Vectors and matrices are the very language of state-space methods ; there is 
no way they can be avoided. Since they are also important in many other 
branches of technology, most contemporary engineering curricula include them. 
For the reader's convenience, however, a summary of those facts about vectors 
and matrices that are used in the book is presented in the Appendix. 

Design is an interplay of science and art-the instinct of using exactly the 
right methods and resources that the application requires. It would be pre- 
sumptuous to claim that one could learn control system design by reading this 
book. The most one could claim is to have presented examples of how 
state-space methods could be used to advantage in several representative 
applications. I have attempted to do this by selecting fifteen or so examples and 
weaving them into the fabric of the text and the homework problems. Several of 
the examples are started in Chap. 2 or 3 and taken up again and again later in 
the book. (This is one area where backward references are used extensively.) To 
help the reader follow each example on its course through the book, an 
applications index is furnished (pages 503 to 505). Many of the examples are 
drawn from fields I am best acquainted with: aerospace and inertial instrumenta- 
tion. Many other applications of state-space methods have been studied and 
implemented: chemical process control, maritime operations, robotics, energy 
systems, etc. To demonstrate the wide applicability of state-space methods, I 
have included examples from some of these fields, using dynamic models and 
data selected from the periodical literature. While not personally familiar with 
these applications, I have endeavored to emphasize some of their realistic 
aspects. 

The emphasis on application has also motivated the selection of topics. 
Most of the attention is given to those topics that I believe have the most 
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practical utility. A number of topics of great intrinsic interest do not, in my 
judgment, have the practical payoff commensurate with the effort needed to 
learn them. Such topics have received minimal attention. Some important 
concepts are really quite simple and do not need much explaining. Other 
concepts, although of lesser importance, require more elaborate exposition. It is 
easy to fall into the trap of dwelling on subjects in inverse proportion to their 
significance. I have tried to avoid this by confining the discussion of secondary 
topics to notes at the end of each chapter, with references to the original 
sources, or to the homework problems. 

Much of practical engineering design is accomplished with the aid of 
computers. Control systems are no exception. Not only are computers used for 
on-line, real-time implementation of feedback control laws-in applications as 
diverse as aircraft autopilots and chemical process controls-but they are also 
used extensively to perform the design calculations. Indeed, one of the major 
advantages of state-space design methods over frequency-domain methods is 
that the former are better suited to implementation by digital computers. 
Computer-aided design, however, creates a dilemma for the author. On the one 
hand, he wants to make the concepts understandable to a reader who doesn’t 
have a computer. On the other hand the full power of the method is revealed 
only through applications that require the use of a computer. My decision has 
been a compromise. I have tried to keep the examples in the text simple enough 
to be followed by the reader, at least part of the way, without recourse to a 
computer for numerical calculation. There are a number of homework prob- 
lems, however, some of which continue examples from the text, for which a 
computer is all but essential. 

The reader is certainly not expected to write the software needed to perform 
the numerical calculations. During the past several years a number of organi- 
zations have developed software packages for computer-aided control system 
design (CACSD). Such software is available for mainframes and personal 
computers at prices to suit almost any budget and with capabilities to match. 
Several of these packages would be adequate for working the homework 
problems that require a computer and for other applications. Anyone with more 
than a casual interest in state-space methods would be well advised to consider 
acquiring and maintaining such software. 

The education of most engineers ends with the bachelor’s or master’s degree. 
Hence, if state-space methods are to be widely used by practicing engineers, they 
must be included in the undergraduate or first-year graduate curriculum-they 
must not be relegated to advanced graduate courses. In support of my commit- 
ment to state-space methods as a useful tool for practicing engineers, I have 
endeavored to teach them as such. A number of years ago I presented some 
introductory after-hours lectures on this subject to fellow employees at the 
Kearfott Division of The Singer Company. These lectures served as the basis of 
an undergraduate elective I have been teaching at the Polytechnic Institute of 
New York. For want of a more suitable textbook, I have been distributing hard 
copies of the overhead transparencies used in the lectures. It occurred to me that 
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the material I had assembled in these overhead transparencies was the nucleus 
of the book I had needed but had been unable to locate. And so I embarked 
upon this project. 

It is a pleasure to acknowledge the contributions made by a number of 
individuals to this project. Most of the manuscript was patiently and expertly 
typed by Win Griessemer. Additional typing and editorial assistance, not to 
mention moral support, was provided when needed most by my wife and daugh- 
ters, to whom this book is dedicated. My associates at The Singer Company, 
Dave Haessig, Appa Madiwale, Jack Richman, and Doug Williams between them 
read most of the manuscript, found many errors large and small, and offered a 
number of helpful suggestions. A preliminary version of this book was used as 
a text for my undergraduate course at the Polytechnic Institute of New York and 
for a similar course, taught by Professor Nan K. Loh, at Oakland University 
(Michigan). The students in these courses provided additional feedback used in 
the preparation of the final manuscript. 

The vision of this book has long been in my mind’s eye. To all those named 
above, and others not named but not forgotten, who have helped me realize this 
vision, my gratitude is boundless. 

Bernard Friedland 
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CHAPTER 

ONE 
FEEDBACK CONTROL 

1.1 THE MECHANISM OF FEEDBACK 

No mechanism in nature or technology is more pervasive than the mechanism 
of feedback. 

By the mechanism of feedback a mammal maintains its body temperature 
constant to within a fraction of a degree even when the ambient temperature 
fluctuates by a hundred degrees or more. 

Through feedback the temperature in an oven or in a building is kept to 
within a fraction of a degree of a desired setting even though the outside 
temperature fluctuates by 20 or 30 degrees in one day. 

An aircraft can maintain its heading and altitude and can even land, all 
without human intervention, through feedback. 

Feedback is the mechanism that makes it possible for a biped to stand erect 
on two legs and to walk without falling. 

When the Federal Reserve Bank exercises its controls in the interest of 
stabilizing the national economy, it is attempting to use feedback. 

When the Mayor of New York City asks, “How’m I doing?” he is invoking 
the mechanism of feedback. 

Hardly a process occurring in nature or designed by man does not, in one 
way or another, entail feedback. 

Because feedback is ubiquitous, it is taken for granted except when it is not 
working properly: when the volume control of a public address system in an 
auditorium is turned up too high and the system whistles; then everyone 
becomes aware of “feedback.” Or when the thermostat in a building is not 
working properly and all the occupants are freezing, or roasting. 

1 



2 CONTROL SYSTEM DESIGN 

Process 

Input Figure 1.1 Open-loop control. Input U is selected to pro- 
duce desired output j .  

To get an appreciation of the mechanism of feedback, suppose that there is 
a process H that we wish to control. Call the input to the process u and the 
output from the process y. Suppose that we have a complete description of the 
process: we know what the output y will be for any input. Suppose that there is 
one particular input, say ii, which corresponds to a specified, desired output, 
say j .  One way of controlling the process so that it produces the desired output 
7 is to supply it with the input ii. This is “open-loop control.” (Fig. 1.1.) A 
billiard player uses this kind of control. With an instinctive or theoretical 
knowledge of the physics of rolling balls that bounce off resilient cushions, an 
expert player knows exactly how to hit the cue ball to make it follow the 
planned trajectory. The blow delivered by the cue stick is an open-loop control. 
In order for the ball to follow the desired trajectory, the player must not only 
calculate exactly how to impart that blow, but also to execute it faultlessly. Is it 
any wonder that not everyone is an expert? On the other hand, suppose one 
wants to cheat at billiards by putting some kind of sensor on the cue ball so that 
it can always “see” the target-a point on another ball or a cushion-and by 
some means can control its motion-“steer”-to the target. Finally, put a tiny 
radio in the ball so that the cheater can communicate the desired target to the 
cue ball. With such a magic cue ball the cheater cannot but win every game. He 
has a cue ball that uses the mechanism of feedback. 

The magic cue ball has two of the characteristics common to every feedback 
system: a means of monitoring its own behavior (“How’m 1 doing”) and a 
means of correcting any sensed deviation therefrom. These elements of a 
feedback control system are shown in Fig. 1.2. Instead of controlling the output 
of the process by picking the control signal U which produces the desired j ,  the 
control signal u is generated as a function of the “system error,” defined as the 
difference between the desired output j and the actual output y 

Process 
Amplifier 

output - ;f 

Figure 1.2 Feedback control system. Input u is proportional to difference between desired and 
actual output. 
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This error, suitably amplified, as shown by the output of the box labeled 

Suppose that the operation of the process under control can be represented 
“amplifier,” is the input to the process. 

by a simple algebraic relation 

y = Hu (1.2) 

and that the amplifier can similarly be described 

u = K e  (1.3) 

Combine ( l . l ) ,  (1.2), and (1.3) into the single relation 

y = HKe = H K ( j  - y )  

Solve for y and obtain 

Although the output y is not exactly equal to the desired output J ,  if the 
amplifier “gain” K is large enough (i-e., H K  >> I )  then 

Y’Y (1.5) 

We can make the actual output y approach the desired output as closely as 
we wish simply by making the gain K large enough. Moreover, this result holds, 
for any desired output! We don’t have to know 7 in advance as we did in 
determining the open-loop control U. And, even more remarkably, this result 
holds independent of the process-it doesn’t matter what H is. In fact H can 
even change over the course of time without affecting the basic result. These are 
among the wonders of feedback and help to explain why it is so useful. 

Unfortunately, nature is not as simple as the above analysis would suggest; 
if it were, there would be no need for this book. The problem is that the process 
whose input is u and whose output is y cannot be represented by an algebraic 
equation as simple as (1.2). Because of the process dynamics, the relationship 
between the output and the input is much more complex than (1.2). 

The effect of dynamics on the behavior of a feedback system is easily 
illustrated by a simple example. Suppose that the output of system H is an 
exact replica of the input, except delayed by a small amount of time, say T: 

y ( t )  = U ( t  - T) ( 1.6) 

for any input u ( t ) .  (See Fig. 1.3.) We assume that (1.1) and (1.2) continue to 
hold for every time t .  Then 

u ( t  - T) = K e ( t  - T) = K [ J ( t  - T) - y ( t  - T)] 

Y ( t )  = K [ J ( t  - 7) - Y ( t  - 711 

( 1.7) 

( 1.8) 

Substitute (1.7) into (1.6) to obtain 
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Figure 1.3 Example of input and output of a process in which the output is an exact but delayed 
replica of the input. 

This is an example of a "difference equation" and describes how y ( t )  
evolves as time t increases. Difference equations are a common way of describ- 
ing the dynamic behavior of discrete-time (sampled-data) systems but they are 
not studied extensively in this book. This equation, however, is so simple that it 
can be solved without any theory. 

Suppose the desired output is a "unit step" as shown in Fig. 1.4(a): 

0 fo r t  < O  
1 fo r t  > 0 

J ( t )  = ( 1.9) 

and also suppose that y (  t )  = 0 for t < 0. Then, by (1.8) and also by looking at 
Fig. 1.3, we can see that there is no output for the first T units of time. But the 
input to the process 

u ( t ) =  K ( l - 0 ) =  K f o r O < r < T  

After an interval of T units of time the output starts to appear as shown in 
Fig. 1.4(b) 

y ( t )  = K for r < t < 2 T  

For the next r units of time the input to the process is 

u ( t ) = K ( l - K ) = K - K 2  f o r 7 < ? < 2 7  

This is the value of y ( t )  for the next 7 units of time, i.e., for 27 < / < 37. Pro- 
ceeding in this fashion we see that 

y ( t )  = K - K'+ K 3  + . . . + (-1)"-IK"-I for n~ < t < ( n  + 1)i-  (1.10) 



Desired 
output 
Y(0 

Input 
to process 
w 

output 

Y ( 4  
from process 

FEEDBACK 

1 

- 
0 7 27 37 47 57 

Time 

(a  

0.5 

0.3'5 0,3125 0.34375 
0.25 

0 7 27 37 47 57 
Time 

( b )  

0.5 

0'375 1 0.3125 
0.25 

CONTROL 5 

I 1 
0 7 27 37 47 57 

Time 

(c 

Figure 1.4 Response of feedback control system to 1 = 1 when output is a replica of input delayed 
by 7 with gain K = f. ( a )  Desired output j ( t ) :  ( b )  Input to process u ( t ) :  ( c )  Output from process 
Y ( 1 ) .  

If K is less than i ,  then (1.10) implies that y (  1 )  will eventually converge to 
a limit: 

(1.11) 

If K is exactly equal to 1, the output v(f) will flip between 0 and 1 
indefinitely. And if K > 1, the output will flip between positive and negative 
values, ever increasing in amplitude, and ultimately become infinite. 

Thus we see that the amplification factor (or gain)  K of the amplifier 
cannot be made as large as 1 if we want the output to stabilize. (Also, as K 
approaches 1, the output is only half the value of the input. This can be 
corrected, however, by multiplying the desired output by ( 1  + K )  before com- 
paring it with the actual output.) 
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Our earlier discussion suggests that we would like an amplifier gain 
approaching infinity, but here we see that we cannot even make the gain as 
large as unity without causing the system to break into unstable oscillation. All 
because the output of the process is delayed by a small amount of time-an 
arbitrarily small amount of time. In every real process there is always some 
delay. Does this mean that feedback control cannot be used in any real process? 
The answer of course is no. And the reason is twofold. First, while it is true that 
there is some amount of delay in any physical process, the output is rarely 
simply a delayed replica of the input. The output will also not look exactly like 
the input. The time-distortion of the output is a .benefit for control system 
design. Second, the black box which we called an amplifier, with gain K ,  is 
usually more than just an amplifier. It also changes the shape of the signal that 
passes through it. The amplifier is a “compensator,” which the control system 
engineer, knowing the dynamic characteristics of the process H ,  designs to 
achieve favorable operation. 

By proper design of the compensator it is generally possible to achieve 
satisfactory closed-loop performance for complex, even nasty processes. For 
example, it is possible to “close the loop” around a process H, which is itself 
unstable, in such a way that the closed-loop system not only is stable, but that 
the output y faithfully tracks the desired output j .  

1.2 FEEDBACK CONTROL ENGINEERING 

Feedback control engineering may be regarded as the conscious, intentional use 
of the mechanism of feedback to control the behavior of a dynamic process. 

The course that a typical feedback system design follows is exemplified by 
the hypothetical magic cue ball of the previous section. Suppose one has a 
client who comes prepared to pay the expense of the design and construction of 
such a technical marvel. How would one proceed? 

The performance requirements are easy to imagine. To escape detection, the 
entire system must fit inside a hollowed-out ball and its weight and inertia must 
exactly equal those of the material removed. If the cue ball is to be able to 
home-in on its target, it should be able to sense its position relative to the target. 
How can this be accomplished? Perhaps a miniature infrared sensor? Will the 
sensor be able to discriminate between the actual target and another cue ball 
that resembles the target? Perhaps the billiard table can have a hidden means of 
generating an electric or magnetic field that is altered by the presence of the 
balls and this information can be transmitted to the cue ball. 

Suppose we have tentatively solved the problem of sensing the motion of 
the cue ball. Next we need some means to alter its trajectory. Can we use tiny, 
barely visible gas jets? Perhaps we can use a movable weight inside the cue ball 
which will displace the center of mass from the geometric center and hence, with 
the aid of gravity, create moments which, when combined with friction, can 
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change the trajectory. Maybe we can use tiny, almost imperceptible bumps on 
the surface that can be moved to change the course of the ball. 

Conception of the means of measuring the behavior of the process-the cue 
ball-and affecting or altering its behavior is the first stage of control system 
design. Without a doubt, this is the stage that requires the greatest degree of 
inventiveness and understanding of what can be achieved at the current level of 
technology and at what price. 

If the project has not been abandoned at  the first stage for want of suitable 
technological means, the next step is to acquire or design the sensors that have 
been chosen to measure the motion of the vehicle relative to the target and the 
actuation means that have been selected to alter the motion of the cue ball. 

After the hardware is all selected, the final stage of the design is begun. This 
is the stage in which it is decided how the feedback loop or loops are to be 
closed: how the data from the sensor or sensors are to be processed before 
being sent to the actuator. It is at this stage that the designer decides what the 
block box labeled “amplifier” must really do in order for the closed loop 
system to operate properly. This step is the design of the “control law” or 
“control algorithm.” 

This last stage of control system design is the entire content of control 
theory. By the time control theory enters the picture, the system concept has 
already been established and the control hardware has already been selected. 
The whole apparatus of control theory, it would appear, deals with only a small, 
insignificant fraction of the overall problem. In this light, the effort devoted to 
the development of control theory-the subject matter of this book-hardly 
seems worth the effort. 

The magic cue ball design problem, however, does not represent the typical 
design problem. Although it is true enough that the control concept must be 
defined and the hardware must be selected for every control system design, not 
every design requires such inventiveness. In most cases, the process to be 
controlled is only slightly different from yesterday’s. Today’s control hardware 
is only slightly different from yesterday’s, probably better (more accurate, 
cheaper, and more reliable). Hence the first design steps are taken almost 
unconsciously. The engineer, not without justification, forgets about the first 
two steps and believes that the control system design begins at the point that it 
is almost over. 

I f  today’s process and control hardware are not changed much from 
yesterday’s, why can’t one simply use yesterday’s control law? Oftentimes, one 
can. Most control laws are probably designed by this very method: Take 
yesterday’s control law and modify its parameters to account for the difference 
between yesterday’s hardware and today’s. 

But the procedure is not always satisfactory. The new process may not be 
sufficiently similar to the old one. The new control hardware, although 
improved (say digital instead of analog) may have different characteristics that 
cannot be overlooked. And finally, the customer may demand a higher level of 
performance than yesterday’s system was able to deliver. 
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1.3 CONTROL THEORY BACKGROUND 

This book is concerned with the third and final stage of control system 
engineering-the stage in which the dynamic characteristics of the compensator 
are designed, after the control concept has been established, after the hardware 
(sensors and actuators) have been selected, after the performance requirements 
have been determined. 

This aspect of control system engineering is generally called control 
“theory.” The term “theory” is appropriate for several reasons. First, it is 
essentially mathematical in content, and mathematics is often equated to theory. 
Second, it deals not with the actual devices but with their idealized (theoretical, 
i.e., mathematical) models. Third, it constitutes a systematic body of knowl- 
edge: theorems, design algorithms, graphical methods, and the like which can 
be applied to control systems independent of the specific technology used in the 
practical implementation. 

The history of control theory can be conveniently divided into three 
periods. The first, starting in prehistory and ending in the early 1940s, may be 
termed the primitiue period. This was followed by a classical period, lasting 
scarcely 20 years, and finally came the modem period which includes the 
content of this book. 

The term primitiue is used here not in a pejorative sense, but rather in the 
sense that the theory consisted of a collection of analyses of specific processes 
by mathematical methods appropriate to, and often invented to deal with, the 
specific processes, rather than an organized body of knowledge that characterizes 
the classical and the modern period. 

Although feedback principles can be recognized in the technology of the 
Middle Ages and earlier, the intentional use of feedback to improve the per- 
formance of dynamic systems was started at around the beginning of the 
industrial revolution in the late 18th and early 19th centuries. The benchmark 
development was the ball-governor invented by James Watt to control the speed 
of his steam engine. Throughout the first half of the 19th century, engineers and 
“ mechanics ” were inventing improved governors. The theoretical principles 
that describe their operation were studied by such luminaries of 18th and 19th 
century mathematical physics as Huygens,[ I ]  Hooke,[2] Airy,[3] and Max- 
we11.[4] By the mid 19th century it was understood that the stability of a dynamic 
system was determined by the location of the roots of the algebraic characteristic 
equation. Routh[5] in his Adams Prize Essay of 1877 invented the stability 
algorithm that bears his name. 

Mathematical problems that had arisen in the stability of feedback control 
systems (as well as in other dynamic systems including celestial mechanics) 
occupied the attention of early 20th century mathematicians Poincark and 
Liapunov, both of whom made important contributions that have yet to be 
superseded. 

Development of the gyroscope as a practical navigation instrument during 
the first quarter of the 20th century led to the development of a variety of 
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autopilots for aircraft (and also for ships). Theoretical problems of stabilizing 
these systems and improving their performance engaged various mathematicians 
of the period. Notable among them was N. Minorsky[6] whose mimeographed 
notes on nonlinear systems was virtually the only text on the subject before 
1950. 

The classical period of control theory begins during World War I1 in the 
Radiation Laboratory of the Massachusetts Institute of Technology. (See Note 
1.1.) The personnel of the Radiation Laboratory included a number of 
engineers, physicists, and mathematicians concerned with solving engineering 
problems that arose in the war effort, including radar and advanced fire control 
systems. The laboratory that was assigned problems in control systems included 
individuals knowledgeable in the frequency response methods, developed by 
people such as Nyquist and Bode for communication systems, as well as by 
engineers familiar with other techniques. Working together, they evolved a 
systematic control theory which is not tied to any particular application. Use of 
frequency-domain (Laplace transform) methods made possible the representa- 
tion of a process by its transfer function and thus permitted a visualization of 
the interaction of the various subsystems in a complex system by the intercon- 
nection of the transfer functions in the block diagram. The block diagram 
contributed perhaps as much as any other factor to the development of control 
theory as a distinct discipline. Now it was possible to study the dynamic behavior 
of a hypothetical system by manipulating and combining the black boxes in the 
block diagram without having to know what goes on inside the boxes. 

The classical period of control theory, characterized by frequency-domain 
analysis, is still going strong, and is now in a “neoclassical” phase-with the 
development of various sophisticated techniques for multivariable systems. But 
concurrent with it is the modern period, which began in the late 1950s and early 
1960s. 

State-space methods are the cornerstone of modern control theory. The 
essential feature of state-space methods is the characterization of the processes 
of interest by differential equations instead of transfer functions. This may seem 
like a throwback to the earlier, primitive, period where differential equations 
also constituted the means of representing the behavior of dynamic processes. 
But in the earlier period the processes were simple enough to be characterized 
by a single differential equation of fairly low order. In the modern approach the 
processes are characterized by systems of coupled, first-order differential 
equations. In principle there is no limit to the order (i.e., the number of 
independent first-order differential equations) and in practice the only limit to 
the order is the availability of computer software capable of performing the 
required calculations reliably. 

Although the roots of modern control theory have their origins in the early 
20th century, in actuality they are intertwined with the concurrent development 
of computers. A digital computer is all but essential for performing the 
calculations that must be done in a typical application. Only in the simplest 
examples can the calculations be performed without a digital computer. The 
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fact that calculations for simple applications can be done manually can some- 
times be misleading, because the design for such simple applications can 
usually be achieved more efficiently by classical frequency-domain methods. 
State-space methods prove their mettle in applications which are intractable by 
classical methods. 

Digital computers of even modest capability can crunch out the numerical 
calculations of the design for a complicated system in a few seconds or minutes. 
It is thus very easy to arrive at a design which is correct numerically but not 
practical. (There is no inherent reason why this can’t also happen with a design 
based on classical methods. But because of the labor entailed in achieving the 
design, the engineer is more likely to check intermediate results for reasonabil- 
ity rather than to wait for the final design to emerge as a unit.) The realization 
that there may be practical problems with a computer-aided design ought to 
make the designer especially cautious: both in making certain that the computer 
has good data to begin with, i.e., a proper model of the process to be controlled, 
and in testing the proposed design by all appropriate means including simu- 
lation. 

1.4 SCOPE AND ORGANIZATION OF THIS BOOK 

The vision of the early pioneers of modern control theory was that it would 
provide a single, unified framework for all feedback control systems: linear and 
nonlinear, continuous-time, and discrete-time, fixed and time-varying. That 
vision is a chimera. A few results of broad generality have been achieved, but 
for the most part the vaunted general theory has been achieved only for linear 
systems, and furthermore, the required calculations can be performed only for 
time-invariant, linear systems. This is nevertheless no mean accomplishment, 
because the theory that does exist is still able to cope with any design problem 
that the classical theory can cope with, because the frequency-domain approach 
is entirely predicated on linear, time-invariant models. 

Being an introduction to state-space methods, this book does not go beyond 
systems that can be characterized by linear, time-invariant models. (The sole 
exception is a missile guidance system which has time-varying dynamics that 
are so simple that they can easily be handled without the need for any special 
theory.) 

The first few chapters are intended as an introduction to the use of 
state-space methods for characterizing the behavior of dynamic systems. In 
particular, in Chap. 2, we learn how linear state-space models can be set up for 
various kinds of physical processes, and in Chap. 3 we study the basic 
properties of such models: such things as the state-transition matrix, the 
resolvent, the characteristic equation. Although the properties of linear, time- 
invariant systems can be gleaned without use of the Laplace transform, they are 
more readily obtained through its use. Since most readers of this book are 
familiar with the basic theory of Laplace transforms, we see no reason for not 
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making use of them. We also see no reason for abandoning classical, frequency- 
domain methods and the insights they provide. Hence, in Chap. 4, we provide 
a review of frequency-domain analysis, emphasizing where possible the connec- 
tion with state-space methods. Notwithstanding the length of Chap. 4, it is still 
only an overview; the reader is assumed to be already somewhat familiar with 
the material or prepared to consult one of the standard textbooks in the field to 
gain a more comprehensive understanding. 

Controllability and observability theory, one of the earliest unique achieve- 
ments of modern control theory, is the subject of Chap. 5 .  

The first five chapters set the stage for the use of state-space methods for 
control system design. These are followed by three which show how state-space 
methods can be used in design. Chapter 6 is concerned with design of 
controllers that use “full-state” feedback, i.e., design under the assumption that 
all of the state variables are accessible to measurement, if needed for the control 
law. This is an unrealistic assumption, and Chap. 7 shows how to design 
observers which are dynamic systems, the inputs to which are the measured 
inputs and outputs of the process under control. The state of the observer is an 
estimate of the state of the process under control. Chapter 8, which concludes 
the three introductory chapters on design, shows how the full-state feedback 
control of Chap. 6 can be combined with the observer of Chap. 7, to finally 
provide the design of a compensator which is typically the goal of the control 
system designer. Chapter 8 is also concerned with the robustness of com- 
pensators designed by the methods of these three chapters: it addresses the 
question of how well the compensator will work if the mathematical model used 
in the design is not exactly matched to the actual physical process. 

Although the methods of Chaps. 6 through 8 constitute a set of procedures 
for designing compensators for controllable and observable processes, they do 
not of themselves arrive at optimum designs. Optimization of these designs is 
the subject of Chaps. 9 through 11. 

In Chap. 9, we learn how to optimize the gain matrix of the full-state 
control law by choosing it to minimize a quadratic integral performance criterion. 
The weighting matrices in the integral are putatively chosen to correspond, at 
least approximately, to physical performance requirements. Computing the 
gain matrix is shown to entail solving for the appropriate (matrix) root of a 
matrix quadratic equation which has come to be known as the algebraic 
Riccati equation. Numerical solution of this equation is a job for the digital 
computer. 

The selection of the optimum gain for the observer is formulated as a 
statistical problem: to find the observer gain matrix that minimizes the estima- 
tion error variance under the hypothesis that the process is excited by white 
noise with a known spectral density matrix and that the observations are 
corrupted with white noise also with known spectral density. The resulting 
observer gain matrix is also the solution to an algebraic Riccati equation which 
has a structure quite similar to that of the algebraic Riccati equation for the 
optimum controller. The theory for the optimum observer, also known as a 
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Kalman filter, is developed in Chap. 11. A minimal ove.rview of the statistical 
prerequisites to Chap. 1 I is presented in Chap. 10. 

Matrices and vectors are the very language of state-space methods. By now 
they are so commonplace in every branch of technology, that we can hardly 
imagine a reader unfamiliar with them. Nevertheless we have included an 
appendix in which the basic facts about matrices are summarized, without an 
attempt at proofs. If the reader wants proofs, there are innumerable texts 
available for that purpose. 

One of the objectives of this book has been to illustrate the use of 
state-space methods in various aspects of system analysis and design by means 
of examples that have some relationship to real-world applications. In line with 
that objective a number of ‘‘running examples” are provided. Each example 
occurs in several places in the text: to exemplify development of the model of a 
system an example may appear in Chap. 2. The same example may appear 
again to illustrate the calculation of open-loop response, and in various aspects 
of control system design. References to earlier and later appearances of the 
same example are given each time an example reappears. In addition, an index 
of the examples is given at the end of the book. By use of this index, the reader 
should be able to locate all references to an example and thereby trace the 
course of its development through the book. Thus each example constitutes 
something of a “case study.” Some of the examples are the subject of home- 
work problems: the reader thereby actively participates in the development of 
the case study. 

NOTES 

Note 1.1 Historical antecedents 

Before World War 11, feedback control systems were largely mechanical. The feedback paths, 
not generally identified as such, were implemented by means of ingenious combinations of springs, 
dashpots, pneumatic devices, and similar gadgets. The electrical components that were used were 
magnets and perhaps resistors. Almost every new control system represented a genuine invention 
and many were in fact patented. Nothwithstanding the ingenuity that these inventions required[7,8] 
the variety of functions that could be achieved with these devices was (and still is) extremely 
limited. Thus a mathematical theory of the function that a feedback compensator must perform 
would have been of little practical value, since no means of implementing the function was 
available. Electronic technology of the era was represented by large vacuum tubes enclosed in 
fragile glass envelopes, massive inductors and capacitors, and similar bulky and unreliable hard- 
ware. A few electrical components were used in the 1920s and 193Os,[9] but a control system 
designer proposing to use “electronics” to implement the feedback loops of a control system would 
very likely have been the object of ridicule. Before World War 11, the only industry with any serious 
interest in electronics was the communications industry-radio and telephony. 

Electronic technology underwent a major transformation during the war. Electronic com- 
ponents (i.e., tubes) became smaller and more reliable, and the functions that electronic systems 
were able to perform became more sophisticated as  a result of concerted efforts by scientists and 
engineers and mathematicians working together in the war effort. A notable wartime development, 
among others, was radar. 
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At the Radiation Laboratory, established at the Massachusetts Institute of Technology in 1940 
to aid in the war effort, one of the technical groups was concerned with control- 
“servomechanism”-problems. Members of the group included physicists, communication 
engineers, mechanical engineers, mathematicians, and technicians. Each member brought different 
insights to  the problems assigned to the group. The resulting collaboration laid the groundwork for 
the second, classical phase of control technology, in which the frequency-domain methods of 
communication engineering (transfer function analysis, Bode and Nyquist diagrams, and the like) 
were applied to the analysis and design of control systems. 

After the war, the results of the work at  the Radiation Laboratory were published in a 
multivolume series. The volume by James, Nichols, and Phillips[ 101 constituted the exposition of 
the classical frequency-domain methodology developed at that laboratory. 

With the war concluded, research in control theory was continued along these lines at a 
number of universities. One of the centers of research in control theory was at Columbia University. 
Under the leadership of John R. Ragazzini, much of the classical (ix., Z transform) theory for 
sampled-data systems was developed there during the decade of the 1950s. Into the hospitable 
environment that Ragazzini fostered at Columbia was welcomed an iconoclastic young graduate 
student who preached against the frequency-domain methods and taught a new doctrine: state-space. 
That student was Rudolf E. Kalman. 

Kalman argued with increasing success that the frequency-domain methods developed for 
communication systems were not the most appropriate for control systems: the methods were not 
readily adaptable to time-varying and nonlinear systems and even for linear, time-invariant systems 
they dealt with the wrong problems. Moreover, Kalman taught, the classical methods of analysis 
and design obscured the physical nature of the dynamic variables which the state-space methods 
preserved. 

The ranks of adherents to Kalman’s state-space approach swelled during the decade of the 
1960s and the modem era of control theory thus became firmly established. But not everyone was 
persuaded that frequency-domain methods had been superseded. Debates, sometimes acrimonious, 
over the merits of the two approaches, which started then, continue unto the present time. 

REFERENCES 

1. Huygens, G., Horologium Oscillatoriurn (1673) in Oeuures, complktes, Nijhoff, Amsterdam, vol. 
17-18, 1932. 

2. Hooke, R., “Lampas, or Description of Some Mechanical Improvements of Lamps and 
Waterpones Together with Some Other Physical and Mechanical Discoveries,’’ Roc.  Royal 
Society (London), vol. 8, 183 1. 

3. Airy, G. B., “ O n  the Regulator of the Clockwork for Effecting Uniform Movement of the 
Equatoreals,” Memoirs, Royal Asfronornical Society, vol. 11,  1840, pp. 249-267. 

4. Maxwell, J .  C., “On Governors,’’ Philosophical Magazine, vol. 35, 1868, pp. 385-398. 
5 .  Routh, E. J. ,  A Treatise on the Stability o f a  Given State of Motion, Macmillan & Co., London, 

6. Minorsky, N., Nonlinear Oscillations, D. Van Nostrand, New York, 1962. 
7. Fuller, A. T., “The Early Development of Control Theory,” Trans. ASME (J. Dynamic Systems, 

Measurement L Control), vol. 98G, no. 2, June 1976, pp. 109-1 18. 
8. Fuller, A. T., “The Early Development of Control Theory, 11,” Trans. ASME (J .  Dynamic 

Svstems, Measurement & Control), vol. 98G, no. 3, September 1976, pp. 224-235. 
9. Oppelt, W., “ A  Historical Review of Autopilot Development, Research, and Theory in 

Germany,” Trans. ASME (J. Dynamic Systems, Measurement & Confrol), vol. 98G, no. 3, 
September 1976, pp. 215-223. 

10. James, H. M., Nichols, N. B., and Phillips, R. S . ,  Theory ofSeruomechanisms (MIT Radiation 
Laboratory Series, vol. 25). McGraw-Hill Book Co., New York, 1947. 

1877. 

\ 



CHAPTER 

TWO 
STATE-SPACE REPRESENTATION 

OF DYNAMIC SYSTEMS 

2.1 MATHEMATICAL MODELS 

The most important task confronting the control system analyst is developing a 
mathematical model of the process of interest. In many situations the essence of 
the analytical design problem is in the modeling: once that is done the rest of 
the analysis falls quickly into place. 

The control system engineer is often required to deal with a system having 
a number of subsystems the physical principles of which depend on entirely 
different types of physical laws. A chemical process, for example, may comprise 
a chemical reactor, the dynamics of which are the subject of chemical kinetic 
theory, a heat exchanger which is governed by thermodynamic principles, and 
various valves and motors the dynamics of which depend on the physics of 
mechanical and electrical systems. The control of a typical aircraft entails an 
understanding of the interaction between the airframe governed by principles of 
aerodynamics and structural dynamics, the actuators which are frequently 
hydraulic or electrical, and the sensors (gyroscopes and accelerometers) which 
operate under laws of rigid body dynamics. And, if the human pilot of the 
aircraft is to be considered, aspects of physiology and psychology enter into the 
analysis. 

One of the attractions of control system engineering is its interdisciplinary 
content. The control system engineer sees the “big picture” in the challenge to 
harmonize the operation of a number of interconnected subsystems, each of 
which operates under a different set of laws. But at the same time the control 
system engineer is almost totally dependent on the other disciplines. It is simply 
impossible to gain a sufficient understanding of the details of each of the 
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subsystems in a typical control process without the assistance of individuals 
having an intimate understanding of these subsystems. These individuals often 
have the knowledge that the control system analyst requires, but are not 
accustomed to expressing it in the form that the analyst would like to have it. 
The analyst must be able to translate the information he receives from others 
into the form he needs for his work. 

The analyst needs mathematical models of the processes in the system under 
study: equations and formulas that predict how the various devices will behave 
in response to the inputs to these devices. From the viewpoint of the systems 
analyst each device is the proverbial “black box,” whose operation is governed 
by appropriate mathematical models. The behavior of the overall process is 
studied and controlled by studying the interaction of these black boxes. 

There are two modeling and analysis approaches in customary use for 
linear systems: the transfer-function or frequency-domain approach, to be 
discussed in Chap. 4, and the state-space approach which is the subject of the 
present chapter. 

The feature of the state-space approach that sets it apart from the 
frequency-domain approach is the representation of the processes under 
examination by systems of first-order differential equations. This method of 
representation may appear novel to the engineer who has become accustomed 
to thinking in terms of transfer functions, but it is not at all a new way of 
looking at dynamic systems. The state-space is the mode of representation of a 
dynamic system that would be most natural to the mathematician or the 
physicist. Were it not that much of classical control theory was developed by 
electrical engineers, it is arguable that the state-space approach would have 
been in use much sooner. 

State-space methods were introduced to the United States engineering 
community through the efforts of a small number of mathematically oriented 
engineers and applied mathematicians during the late 1950s and early 1960s. 
The spiritual father of much of this activity was Professor Solomon Lefschetz 
who organized a mathematical systems research group at the Research Institute 
of Advanced Studies (RIAS) in Baltimore, Md. Lefschetz, already a world- 
famous mathematician, brought together a number of exceptionally talented 
engineers and mathematicians committed to the development of mathematical 
control theory. At Columbia University another group, under the aegis of 
Professor J. R. Ragazzini, and including R. E. Kalman and J. E. Bertram among 
others, was also at work developing the foundations of modem control theory. 

In the Soviet Union there was less of an emphasis on transfer functions 
than on differential equations. Accordingly, many of the earliest uses of 
state-space methods were made by investigators in the Soviet Union. Much of 
the activity in the United States during the late 1950s entailed translation of the 
latest Russian papers into English. The Moscow location of the First Congress 
of the International Federation of Automatic Control (IFAC) in 1960 was 
entirely appropriate, and provided the first major opportunity for investigators 
from all over the world to meet and exchange ideas. Although the IFAC 
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congress was concerned with components and applications as well as with 
control theory, much of the interest of the meeting was on the newest theoretical 
developments. 

2.2 PHYSICAL NOTION OF SYSTEM STATE 

The notion of the state of a dynamic system is a fundamental notion in physics. 
The basic premise of newtonian dynamics is that the future evolution of a 
dynamic process is entirely determined by its present state. Indeed we might 
consider this premise as the basis of an abstract definition of the state of a 
dynamic system: 

The state of a dynamic system is a set of physical quantities, the specifica- 
tion of which (in the absence of external excitation) completely determines 
the evolution of the system. 

The difficulty with this definition, as well as its major advantage, is that the 
specific physical quantities that define the system state are not unique, although 
their number (called the system order) is unique. In many situations there is an 
obvious choice of the variables (state variables) to define the system state, but 
there are also many cases in which the choice of state variables is by no means 
obvious. 

Newton invented calculus as a means of characterizing the behavior of 
dynamic systems, and his method continues in use to this very day. In 
particular, behavior of dynamic systems is represented by systems of ordinary 
differential equations. The differential equations are said to constitute a mathe- 
matical model of the physical process. We can predict how the physical process 
will behave by solving the differential equations that are used to model the 
process. 

In order to obtain a solution to a system of ordinary differential equations, 
it is necessary to specify a set of initial conditions. The number of initial 
conditions that must be specified defines the order of the system. When the 
differential equations constitute the mathematical model of a physical system, 
the initial conditions needed to solve the differential equations correspond to 
physical quantities needed to predict the future behavior of the system. It thus 
follows that the initial conditions and physical state variables are equal in 
number. 

In analysis of dynamic systems such as mechanical systems, electric 
networks, etc. the differential equations typically relate the dynamic variables 
and their time derivatives of various orders. In the state-space approach, all the 
differential equations in the mathematical model o'f a system are first-order 
equations: only the dynamic variables and their first derivatives (with respect to 
time) appear in the differential equations. Since only one initial condition is 
needed to specify the solution of a first-order equation, it follows that the 
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number of first-order differential equations in the m.athematica1 model is equal 
to the order of the corresponding system. 

The dynamic variables that appear in the system of first-order equations are 
called the state variables. From the foregoing discussion, it should be clear that 
the number of state variables in the model of a physical process is unique, 
although the identity of these variables may not be unique. A few familiar 
examples serve to illustrate these points. 

Example 2A Mass acted upon by friction and spring forces The mechanical system consisting of 
a mass which is acted upon by the forces of friction and a spring is a paradigm of a 
second-order dynamic process which one encounters time and again in control processes. 

Consider an object of mass M moving in a line. In accordance with Newton's law of 
motion, the acceleration of the object is the total force f acting on the object divided by the 
mass. 

d'x f 
dt2 M 

- (2A.I)  

where the direction o f f  is in the direction of x. We assume that the force f is the sum of two 
forces, namely a friction force f, and a spring force f2. Both of these forces physically tend to 
resist the motion of the object. The friction force tends to resist the velocity: there is no friction 
force unless the velocity is nonzero. The spring force, on the other hand, is proportional to the 
amount that the spring has been compressed, which is equal to the amount that the object has 
been displaced. Thus 

f = fl + f i  

where fi = -8($) 

A more familiar form of (2A.2) is the second-order differential equation 

(2A.2) 

(2A.3) 

But (2A.2) is a form more appropriate for the state-space representation. Differential equation 
(2A.2) or its equivalent (2A.3) is a second-order differential equation and its solution requires 
two initial conditions: xo, the initial position, and Xo. the initial velocity. 

To obtain a state-space representation, we need two state variables in terms of which the 
dynamics of (2A.2) can be expressed as two first-order differential equations. The obvious 
choice of variables in this case are the displacement x and the velocity u = dx /d t .  The two 
first-order equations for the process in this case are the equation by which velocity is defined 

dx 

dr 
- -  - v  

and (2A.2) expressed in terms of I and u. Since d2x /d t '  = du/dt ,  (2A.2) becomes 

(2A.4) 

(2A.5) 
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Velocity 

Thus (2A.4) and (2A.5) constitute a system of two first-order differential equations in 

If we wish to control the motion of the object we would include an additional force fo 
terms of the state variables x and u. 

external to the system which would be added to the right-hand side of (2A.5) 

du 
-~ - - [ p ( u )  + K ( X ) I / M  + f o / M  dt 

(2A.6) 

How such a control force would be produced is a matter of concern to the control system 
designer. But it is not considered in the present example. 

In a practical system both the friction force and the spring force are nonlinear functions 
of their respective variables and a realistic prediction of the system behavior would entail 
solution of (2A.4) and (2A.5) in which p ( u )  and K ( X )  are nonlinear functions of their 
arguments. As an approximation, however, it may be permissible to treat these functions as 
being linear 

Displacement 

dx (2) dt 
p - = B -  

K ( X )  =- K X  

where B and K are constants. Often p(  ) and K (  ) are treated as linear functions for purposes 
of control system design, but the accurate nonlinear functions are used in evaluating how the 
design performs. 

A block diagram representation of the differential equations (2A.4) and (2A.6), in 
accordance with the discussion of Sec. 2.3, is shown in Fig. 2.1. 

Example 2B Electric motor with inertia load One of the most common uses of feedback control 
is to position an inertia load using an electric motor. (See Fig. 2.2.) The inertia load may 
consist of a very large, massive object such as a radar antenna or a small object such as a 
precision instrument. An important aspect of the control system design is the selection of a 
suitable motor, capable of achieving the desired dynamic response and suited to the objective 
in cost, size, weight, etc. An electric motor is a device that converts electrical energy (input) to 
mechanical energy (output). The electro-mechanical energy transducer relations are idealiz- 
ations of Faraday’s law of induction and Ampere’s law for the force produced on a conductor 
moving in a magnetic field. In particular. under ideal circumstances the torque developed at 
the shaft of a motor is proportional to the input current to the motor: the induced emf u 
(“back emf”) is proportional to the speed w of rotation 

r = K , i  (2B.l) 

u = K,w (2B.2) 

I n I 
I I 

Spring 
force 

Figure 2.1 Block diagram representing motion of mass with friction and spring reaction forces 
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Figure 2.2 DC motor driving 
inertia load. 

The electrical power p .  input to the motor is the product of the current and the induced 
emf 

pe  = ui = K ? w T / K ,  (28 .3 )  

The mechanical output power is the product of the torque and the angular velocity 

Pnr = 0J.T 

Thus, from ( 2 8 . 3 )  

If the energy conversion is 100 percent efficient, then 

K ,  = K ,  = K 

If the energy-conversion efficiency is less than 100 percent then K , / K ,  > I .  
To completely specify the behavior of the system we need the relationships between the 

input voltage e and the induced emf, and between the torque and the angular velocity of the 
motor. These are given by 

e ~ u = Ri (Ohm's law) (2B.4) 

where R is the electrical resistance of the motor armature, and 

dw 
T = J -  

dr 

where J is the inertia of the load. From (28.11, (28 .5 ) ,  and (28.4)  

J -  dw = K , i  = - K ,  ( e  - u )  
dt R 

On using (28.2)  this becomes 

dw K K , K ,  
dt R R 

J - = L e - -  w 

or 
dw K , K ,  K 
dt JR J R  

o + l e  ~~ -~ - 

(28 .5 )  

(28.6)  

(28.7)  

which is a first-order equation with the angular velocity w as the state variable and with e 
serving as  the external control input. 

The first-order model of (28 .7 )  is suitable for control of the speed of the shaft rotation. 
When the position tl of the shaft carrying the inertia J is also of concern, we must add the 
differential equation 

dtl 
dr 
_ -  - w  (28.8)  

This and (2B.7) together constitute a second-order system. 
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e 7 Angular Sha: 
1 velocity angle 

Figure 2.3 Block diagram representing dynamics of d c  motor driving inertia load. 

Equations (2B.7) and (2B.8) can be arranged in the vector-matrix form 

A block-diagram representation of the differential equations that represent this system is 
given in Fig. 2.3. 

Example 2C Electrical network and its thermal analog It is not generally required to design 
feedback control systems for electrical networks comprising resistors, capacitors, and inductors. 
But such networks often are mathematically analogous to mechanical systems which one does 
desire to control, and an engineer experienced in the analysis of electrical networks might be 
more comfortable with the latter than with the mechanical systems they represent. 

One class of mechanical system which is analogous to an electrical network is a thermal 
conduction system. Electrical voltages are analogous to temperatures and currents are 
analogous to heat flow rates. The paths of conduction of heat between various points in  the 
system are represented by resistors; the mass storage of heat in various bodies is represented 
by capacitances; the input of heat by current sources; and fixed temperatures at the boundaries 
of the system by voltage sources. 

Table 2C. I summarizes the thermal quantities and their electrical analogs. 
As an illustration of the use of electrical analogs of thermal systems, consider the system 

shown in Fig. 2.4 consisting of two masses of temperatures TI and T, embedded in a thermally 

Table 2C.1 Electrical analogs of thermal systems 

Thermal system Electrical system 

Quantity Symbol Unit Quantity Symbol Unit 

Temperature T deg Voltage 0 volt 
Heat flux 9 calls Current I ampere 
Thermal resistivity R deg . s/cal Resistance R ohm 
Thermal capacity C cal/deg Capacitance C farad 

Conduction equation 
1 I 
R R 9 = - ( Tz - T , )  i = ~ (uZ ~ u , )  

dv I , ~ - _  - dT 9 Storage equation - - - - 
dr C dr C 
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TO 

Figure 2.4 
capacitances. 

Thermal system with two 

insulating medium contained in a metal container which, because of its high thermal 
conductivity, may be assumed to have a constant temperature To. The temperatures TI and T2 
of the masses are to be controlled by controlling the temperature T,, of the container. 

An electrical analog of the system is shown in Fig. 2.5. The capacitors C, and Cz 
represent the heat capacities of the masses; the resistor R, represents the path of heat flow 
from mass 1 to mass 2; R ,  and R ,  represent the heat flow path from these masses to the metal 
container. 

The differential equations governing the thermal dynamics of the mechanical system are 
the same as the differential equations of the electrical system, which can be obtained by 
various standard methods. By use of nodal analysis, for example, it is determined that 

(2C.1) 

The appropriate state variables for the process are the capacitor voltages v ,  and u2. The 
temperature of the case is represented by a voltage source e,, which is the input variable to the 
process. Thus the differential equations of the process are 

dv ,  I I I 
vz + ~ 

C , R ,  R , C ,  '' 
(2C.2) 

Figure 2.5 Electrical analog of thermal system of Fig. 2.4. 



22 CONTROL SYSTEM DESIGN 

The foregoing examples are typical of the general form of the dynamic 
equations of a dynamic process. The state variables of a process of order k are 
designated by x , ,  x 2 , .  . . , xk and the external inputs by ulr u 2 , .  . . , uI 

. .  . . . . . . . . . . . . . . . . . . . . . . . . . .  

These equations express the time-derivatives of each of the state variables as 
general functions of all the state variables, inputs, and (possibly) time. The dot 
over a variable is Newton’s notation for the derivative with respect to time. 

To simplify the notation the state variables x , , x 2 , .  . . , x k  and control 
variables u , ,  u2 , .  . . , u] are collected in vectors 

(2.2) 

called the state vector and the input vector, respectively. These are vectors in the 
mathematical sense and not necessarily in the physical sense. The components 
of a physical vector are usually projections of a physical quantity (e.g., force, 
velocity) along a set of reference axes. But the components of the state vector of 
a dynamic system generally do not have this interpretation and need not even 
represent the same kind of physical quantities: As our examples show, position 
and velocity are typical components of a mathematical state vector. 

In some books the state vector is printed in a special typeface such as 
boldface x, to distinguish it from a scalar variable x. We have chosen not to use 
any special typeface for the state vector since there is rarely any possibility of 
confusing the entire state vector x with one of its components xi (always written 
with a subscript). In subsequent chapters we will make use of a boldface symbol 
x to denote the metasfare of a system, which is the vector comprising the state 
(or error) vector, concatenated with the exogenous state vector xu as explained 
in Chap. 5 and later. 

Using vector notation, the set of differential equations (2.1) that defines a 
general process can be written compactly as the single vector differential 
equation 

dx 
dt 

x = - = f ( x ,  u, 1 )  
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where f ( x ,  u, t )  is understood to be a k-dimensional vector-valued function of 
k + 1 + 1 arguments. When time t does not appear explicitly in any of the 
functions fi: in (2.1), i.e., in the vector f of (2.3), the system is. said to be 
time-invariant. If (2.3) is an accurate model of a physical process, we would 
expect it to be time-invariant, since we do not have physical laws that change 
with time. In many situations, however, the differential equations represented 
by (2.3) are only an approximate model of the physical world, either because a 
more accurate model is not known, or because it is too complicated to be useful 
in the intended application. Very often such approximate models are time- 
varying. 

An exact model of a physical process is usually nonlinear. But fortunately 
many processes can be adequately approximated by linear models over a 
significant range of operation. In the state-space model of a linear process, the 
general differential equations of (2.1) take the special form: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

In vector notation, using the definitions of the state and control vectors as 
defined in (2.2), the linear dynamic model of (2.4) is written 

dx 
dt 

x = - = A ( r ) x  + B ( t ) u  (2.5) 

where A ( t )  and B ( t )  are matrices given by 

It is noted that the matrix A(r)  is always a square (k by k )  matrix, but that 
the matrix B ( t )  need not be square. In most processes of interest the number 1 
of inputs is smaller than the number of state variables: B ( t )  is a tall, thin 
matrix. Often there is only one input and the matrix B ( t )  is only one column 
wide. 

When the system is time-invariant, none of the elements in the matrices A 
and B depend upon time. Most of this book is concerned with linear, time- 
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invariant processes, having the dynamic equations 

X = A x + B u  (2.7) 

where A and B are constant matrices. 
Although the concept of the state of a system is fundamental, there are 

many situations in which one is not interested in the state directly, but only in 
its effect on the system output vector y ( t )  

for a system having rn outputs. In a linear system the output vector is assumed 
to be a linear combination of the state and the input 

A t )  = C(t )x( t )  + D ( t ) u ( t )  (2.9) 

where C ( t )  is an rn x k matrix and D ( f )  is an m X I matrix. If the system is 
time-invariant, C (  t )  and D( t )  are constant matrices. 

The outputs of a system are generally those quantities which can be 
observed, i.e., measured by means of suitable sensors. Accordingly, the output 
vector is called the observation vector and (2.9) is called the observation 
equation. 

The presence of the matrix D in (2.9) means that there is a direct 
connection between the input u (  t )  and the output y (  t ) ,  without the intervention 
of the state x( t ) .  Although there is no general reason for the matrix D to be 
absent in a practical application, it turns out that it is absent in the overwhelm- 
ing majority of applications. This is fortunate, because the presence of D 
increases the complexity of much of the theory. Thus most of our development 
will rest on the assumption that D = 0. 

The input vector u in (2.7) represents the assemblage of all physical 
quantities that affect the behavior of the state. From the control system design 
standpoint, however, the inputs are of two types: 

Control inputs, produced intentionally by the operation of the control system, 

“Exogenous ” inputs, present in the environment and not subject to control 
and 

within the system. 

It is customary to reserve the symbol u for the control inputs and to use another 
symbol for the exogenous inputs. (The word “exogenous,” widely used in the 
field of economics and other social sciences, is gaining currency in the field of 
control theory.) In this book we shall find it convenient to represent the 
exogenous inputs by the vector xo. The use of the letter “ x ”  suggests that the 
exogenous inputs are state variables and so they may be regarded: xo may be 
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regarded as the state of the environment. (Later in the book we shall concatenate 
the state x of the system to be controlled with the state x,, of the environment 
into a metastate of the overall process.) 

Thus, separating the input u of (2.7) into a control input and an exogenous 
input, (2.7) becomes 

1 = AX + Bu + Exo (2.10) 

which, together with (2.9) will serve as the general representation of a linear 
system. 

2.3 BLOCK-DIAGRAM REPRESENTATIONS 

System engineers often find it helpful to visualize the relationships between 
dynamic variables and subsystems of a system by means of block diagrams. 
Each subsystem is represented by a geometric figure (such as a rectangle, a 
circle, a triangle, etc.) and lines with arrows on them show the inputs and the 
outputs. For many systems, these block diagrams are more expressive than the 
mathematical equations to which they correspond. 

The relationships between the variables in a linear system (2.4) can be 
expressed using only three kinds of elementary subsystems: 

Integrators, represented by triangles 
Summers, represented by circles, and 
Gain elements, represented by rectangular or square boxes as shown in Fig. 2.6. 

An integrator is a block-diagram element whose output is the integral of the 
input; put in other words, it is the element whose input is the derivative of the 
output. 

s, + * 7  + x 3  

.y 3 

( b  1 

Figure 2.6 Elements used in block-diagram representation of 
linear systems. ( a )  Integrator; ( b )  Summer: (c) Gain element. 

3- 
q-. 

(c 1 
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A summer is a block-diagram element whose output is the sum of all its 
inputs. 

A gain element is a block-diagram element whose output is proportional to 
its input. The constant of proportionality, which may be time-varying, is placed 
inside the box (when space permits) or adjacent to it. 

Note that the integrator and the gain element are single-input elements; the 
summer, on the other hand, always has at least two inputs. 

A general block diagram for a second-order system ( k  = 2) with two 
external inputs ul and u2 is shown in Fig. 2.7. Two integrators are needed, the 
outputs of which are x, and x2, and the inputs to which are XI and x2, 
respectively. From the general form of the differential equations (2.4) these are 
given by 

which are the relationships expressed by the outputs of the two summers shown 
in Fig. 2.7. 

The same technique applies in higher-order systems. If  the A matrix has 
many nonzero terms, the diagram can look like a plate of spaghetti and 
meatballs. In most practical cases, however, the A matrix is fairly sparse, and 

Figure 2.7 Block diagram of general second-order linear system. 
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U i 

with some attention to layout it is possible to draw a block diagram with a 
minimum of crossed lines. 

To simplify the appearance of the block-diagram it is sometimes convenient 
to use redundant summers. This is shown in Fig. 2.7. Instead of using two 
summers, one feeding another, in front of each integrator we could have drawn 
the diagram with only one summer with four inputs in front of each integrator. 
But the diagram as shown has a neater appearance. Another technique to 
simplify the appearance of a block diagram is to show a sign reversal by means 
of a minus sign adjacent to the arrow leading into a summer instead of a gain 
element with a gain of - 1 .  This usage is illustrated in Figs. 2.1 and 2.3 of the 
foregoing examples. 

Although there are several international standards for block-diagram sym- 
bols, these standards are rarely adhered to in technical papers and books. The 
differences between the symbols used by various authors, however, are not large 
and are not likely to cause the reader any confusion. 

The following examples illustrate the use of matrices and block diagrams to 
represent the dynamics of various processes. 

Often it is convenient to express relationships between vector quantities by 
means of block diagrams. The block-diagram symbols of Fig. 2.6 can also serve 
to designate operations on vectors. In particular, when the input to an integrator 
of Fig. 2.6(a) is a vector quantity, the output is a vector each component of 
which is the integral of the corresponding input. The summer of Fig. 2.6(b) 
represents a vector summer, and the gain element box of Fig. 2.6(c) represents 
a matrix. In the last case, the matrix need not be square and the dimension of 
the vector of outputs from the box need not equal the dimension of the vector 

Exogenous 
input vector 
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of inputs. Using this mode of representation, the block diagram of Fig. 2.8 
represents the general system given by (2.9) and (2.10). 

Example 2D Hydraulically actuated tank gun turret The control of a hydraulically actuated 
gun turret in an experimental tank has been studied by Loh, Cheok, and Beck.[l] The 
linearized dynamic model they used for each axis (elevation, azimuth) is given by 

e = w  

i = p + d ,  
(2D.1) 

4 = -K,L,q - K,K,,Jp + K,u + d,  

where x1 = 0 = turret angle 
x2 = w = turret angular rate 
x3 = p = angular acceleration produced by hydraulic drive 
x4 = q = hydraulic servo valve displacement 

u = control input to servo valve 

J = turret inertia 
K,,, = servo motor gain 

a,,, = motor natural frequency 
K ,  = servo valve gain 

K, ,  = differential pressure feedback coefficient 

The quantities d,. d,, and d ,  represent disturbances, including effects of nonlinearities not 

With the state variable definitions given above, the matrices of this process are 
accounted for by the linearized model (2D.l). 

1 0 O 1  

Lo  0 -K,K,,J - K , L , ]  

d,JlK, 

0 B=k! 

.. 

Figure 2.9 Dynamic model of hydraulically actuated tank gun turret. 
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Table 2D.1 Numerical values of parameters 
in tank turret control 

Numerical value 

Parameter Azimuth Elevation 

K" 94.3 94.3 
L" 1 .oo 1.07 
J (ft-lb . s2) 7900. 2070. 
K, 8.46 x lo6 1.96 x lo6 
w, (rad/s) 45.9 17.3 

6.33 X 3.86 x 1 0 ~  K A P  

Numerical data for a specific tank were found by Loh, Cheok, and Beck to be as given in 

A block-diagram representation of the dynamics represented by (2D.I) is shown in Fig. 2.9. 
Table 2D.1 

2.4 LAGRANGE'S EQUATIONS 

The equations governing the motion of a complicated mechanical system, such 
as a robot manipulator, can be expressed very efficiently through the use of a 
method developed by the eighteenth-century French mathematician Lagrange. 
The differential equation-, that result from use of this method are known as 
Lagrange's equations and are derived from Newton's laws of motion in most 
textbooks on advanced dynamics.[2,3] 

Lagrange's equations are particularly advantageous in that they automati- 
cally incorporate the constraints that exist by virtue of the different parts of a 
system being connected to each other, and thereby eliminate the need for 
substituting one set of equations into another to eliminate forces and torques of 
constraint. Since they deal with scalar quantities (potential and kinetic energy) 
rather than with vectors (forces and torques) they also minimize the need for 
complicated vector diagrams that are usually required to define and resolve the 
vector quantities in the proper coordinate system. The advantages of Lagrange's 
equations may also turn out to be disadvantages, because it is necessary to 
identify the generalized coordinates correctly at the very beginning of the 
analysis of a specific system. An error made at this point may result in a set of 
differential equations that look correct but d o  not constitute the correct model 
of the physical system under investigation. 

The fundamental principle of Lagrange's equations is the representation of 
the system by a set of generalized coordinates qi ( i  = 1, 2, . . . , r ) ,  one for each 
independent degree of freedom of the system, which completely incorporate the 
constraints unique to that system, i.e., the interconnections between the parts of 
the system. After having defined the generalized coordinates, the kinetic energy 
T is expressed in terms of these coordinates and their derivatives, and the 
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potential energy V is expressed in terms of the generalized coordinates. (The 
potential energy is a function of only the generalized coordinates and not their 
derivatives.) Next, the lagranginn function 

L = U q , ,  . . . , qr, 41,. . ., 4)  - Wq,, . . 

is formed. And finally the desired equations of motion are derived using 
Lagrange’s equations 

- Qi i =  1,2, ..., r (2.1 1 )  

where Qi denotes generalized forces (i.e., forces and torques) that are external 
to the system or not derivable from a scalar potential function. 

Each of the differential equations in the set (2.11) will be a second-order 
differential equation, so a dynamic system with r degrees of freedom will be 
represented by r second-order differential equations. If one state variable is 
assigned to each generalized coordinate and another to the corresponding 
derivative, we end up with 2r equations. Thus a system with r degrees of 
freedom is of order 2r. 

Example 2E Inverted pendulum on moving cart A typical application of Lagrange’s equations is 
to define the motion of a collection of bodies that are connected together in some manner such 
as the inverted pendulum on a cart illustrated in Fig. 2.10. 

It is observed that the motion of the system is uniquely defined by the displacement of the 
cart from some reference point, and the angle that the pendulum rod makes with respect to the 
vertical. Instead of using 0, we could use the horizontal oisplacement, say y,.  of the bob 
relative to the pivot point, or the vertical height z2 of the bob. But, whatever variables are used, 
it is essential to know that the system has only two degrees of freedom, and that the dynamics 
must be expressed in terms of the corresponding generalized coordinates. 

The kinetic energy of the system is the sum of the kinetic energy of each mass. The cart 
is confined to move in the horizontal direction so its kinetic energy is 

T, = $ M y 2  

Figure 2.10 Inverted pendulum on moving cart. 
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The bob can move in the horizontal and in the vertical direction so its kinetic energy is 

T? = f m ( j :  + i:) 
But the rigid rod constrains z, and y, 

y, = y + I sin e 
z2 = I cos e 

j 2  = y + r e  cos e 
i, = -18 sin 0 

Thus 

T = r, + T? = f ~ j ~  + fm[ ( j  + ri cos el2 + 1202 sin2 el 
= f ~ j ~  + fm[j' + 2jer cos e + r2i2] 

The only potential energy is stored in the bob 

V = mgz, = mgl cos 0 

Thus the lagrangian is 

L = T - V = f (  M + m)j '  + ml cos eye + $m12e2 - mgl cos 0 (2E.1) 

The generalized coordinates having been selected as (y ,  O), Lagrange's equations for this 
system are 

A(!&) _!&= f 
di Jy Jy 

Now 

aL 
7 = ( M  + m ) j  + mi cos ee 
JY 

J L  

JY 
_ -  -0 

JL 

J e  
_ -  - mgl sin e - mi sin eye 

Thus (2E.2) become 

( M  + m ) j  + micos ee - mle'sin e =f 
m /  cos e j  + ml'e - mgl sin e = o 

(2E.2) 

(2E.3) 

These are the exact equations of motion of the inverted pendulum on a cart shown in Fig. 2.10. 
They are nonlinear owing to the presence of the trigonometric terms sin 0 and cos 0 and the 
quadratic terms i' and ji. If the pendulum is stabilized, however, then 0 will be kept small. 
This justifies the approximations 

cos 0 = I sin 0 = 0 

We may also assume that i and j l  will be kept small, so the quadratic terms are negligible. 
Using these approximations we obtain the linearized dynamic model 

(M + m ) y +  m l i =  f 

m j  + m / e  - mge = o 
(2E.4) 
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A state-variable representation corresponding to (2E.4) is obtained, by defining the state vector 

x = [ y ,  8, i ,  81' 
Then 

(2E.5) 

constitute the first two dynamic equations and on solving (2E.4) for j and e, we obtain two 
more equations 

with 

and 

d f mg - ( j l )  = j = -- -8 
dt  M M  

d . .. f M t m  -(@)=e=--+ _______ 

dr MI ( MI )" 
The four equations can be put into the standard matrix form 

x = A x +  Bu 

A =  

-0 0 ' 0 1  r o i  
0 0 0 1  

0 - m g / M  0 0 I I;M I 
.O ( M + ~ ) ~ / M I  o 0-l L - I I M I ~  

(2E.6) 

u = f = external force 

A block-diagram representation of the dynamics (2E.5) and (2E.6) is shown in Fig. 2.1 1.  

I L n 

MI 

Figure 2.1 1 Block diagram of dynamics of inverted pendulum on moving cart. 
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2.5 RIGID BODY DYNAMICS 

The motion of a single rigid body has six dynamic degrees of freedom: three of 
these define the location of a reference point (usually the center of mass) in the 
body, and three define the orientation (attitude) of the body. Since each of the 
six degrees of freedom takes two state variables (one position and one velocity) 
a total of 12 first-order differential equations are required to completely describe 
the motion of the body. In  most applications, however, not all of these 12 state 
variables are of interest and not all the differential equations are needed. In a 
gyroscope, for example, only the orientation is of interest. 

The motion of a rigid 
newtonian laws of motion 

body is, of cou.rse, governed by the familiar 

(2.12) 

(2.13) 

where p’ = [pT, pr, pz ] ’  is the linear momentum of the body 
h‘ = [A,, h,,, h,]’ is the angular momentum of the body 
1 = [f,,f,,L]’ is force acting on the body 
i = [T , ,  T , ~  T,]‘ is torque acting on the body 

It is important to understand that (2.12) and (3.13) are valid only when the 
axes along which the motion is resolved are an inertial frame of reference, i.e., 
they are neither accelerating nor rotating. If the axes are accelerating linearly or 
rotating, then (2.12) and (2.13) must be modified to account for the motion of 
the reference axes. 

The rotational dynamics of a rigid body are more complicated than the 
translational dynamics for several reasons: the mass M of a rigid body is a 
scalar, but the moment of inertia J is a 3 x 3 matrix. If the body axes are chosen 
to coincide with the “principal axes,” the moment of inertia matrix is diagonal; 
otherwise the matrix J has off-diagonal terms. This is not the only complication, 
however, or even the main one. The main complication is in the description of 
the attitude or orientation of the body in space. To define the orientation of the 
body in space, we can define three axes ( x B ,  y,, zB) fixed in the body, as shown 
in Fig. 2.12. One way of defining the attitude of the body is to define the angles 
between the body axes and the inertial reference axes ( x I ,  y,, zy). These angles 
are not shown in the diagram. Not only are they difficult to depict in a 
two-dimensional picture, but they are not always defined the same way. In texts 
on classical mechanics, the orientation of the body is defined by a set of three 
angles, called Eufer angles, which describe the orientation of a set of non- 
orthogonal axes fixed in the body with respect to the inertial reference axes. In 
aircraft and space mechanics it is now customary to define the orientation of a 
set of orthogonal axes in the body (body axes) with respect to the inertial 
reference. 
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1'' 7'" 

Figure 2.12 Inertial and body-fixed axes. 

Suppose the body axes are initially aligned with the inertial reference axes. 
Then, the following sequence of rotations are made to bring the body axes into 
general position: 

First, a rotation 4 (yaw) about the z axis 
Second, a rotation 0 (pitch) about the resulting y axis 
Third, a rotation 4 (roll) about the resulting x axis 

By inspection of the diagrams of Fig. 2.13 we see that 

cos 0 0 -sin 0 

0 

Thus we see that 

(2.14) 

(2.15) 

(2.16) 
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xB3 = xB2 

Figure 2.13 Sequence of rotations of 
body axes from reference to “gen- 
eral” orientation ( z  axis down in air- 
craft convention). (a) Axes in refer- 
ence position; ( b )  First rotation- 
about z axis-yaw ($): (c )  Second 
rotation-about .v axis-pitch ( 0 ) ;  
(d )  Third and final rotation-about 

4 6 x axis-roll ( 4 ) .  

8 3  

(4 

where T,, is the matrix that rotates the body axes from reference position, and 
is the product of the three matrices in (2.14)-(2.16). 

0 cos 0 0 -sin 0 cos 1c, s in$  0 
TBl = [A cos 4 si!d] [ 0 1 0 1 [-sF 1c, co; 1c, :] (2.17) 

0 -sin 4 cos 4 sin f3 0 cos f3 

Each factor of TB1 is an orthogonal matrix and hence TBl is orthogonal, i.e., 

(2.18) 

Note that Ti: = TI,  is the matrix that returns the body axes from the general 
position to the reference position. 

Note that the order ofrotations implicit in TBl is important: the three matrices 
in (2.17) do not commute. 

Since any vector in space can be resolved into its components in body axes 
or in inertial axes, we can use the transformation (2.17) to obtain the com- 
ponents of a vector in one set of axes, given its components in the other. In 
particular suppose a’ is any vector in space. When it is resolved into components 
along an inertial reference we attach the subscript I ;  when it is resolved in body 
axes, we attach the subscript B 

T - T-1 - T !  
IB - BI - BI 
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Using (2.17) we obtain 

d B  = T B I a ' I  (2.19) 

This relationship can be applied to (2.13) for the angular motion of a rigid body 
and, as we shall see later, for describing the motion of an aircraft along rotating 
body axes. 

In the case of a rigid body, the angular momentum vector is 

h'= J; (2.20) 

where J is the moment of inertia matrix and 6 is the angular velocity vector. If  
the axes along which h' is resolved are defined to be coincident with the physical 
principal axes of the body, then J is a diagonal matrix. Thus when h' is resolved 
along principal body axes, we get from (2.17) 

(2.21) 

But (2.13) holds only when the vector h' is measured with respect to an inertial 
reference: In the notation established above 

(2.22) 

The transformation TIB, however, is not constant. Hence (2.22) must be written 

T J ~  + T I B i B  = +, 
or, multiplying both sides by TBr = T;;: 

I;Ts + T ~ ~ T I B G B  = T ~ ~ G ~  = f B  

which, in component form can be written 

(2.23) 

(2.24) 

These differential equations relate the components of the angular velocity 
vector, & projected onto rotating body axes 

&B = ["XB, w y B ~  wzB1' 

to the torque vector also projected along body axes. To complete (2.24) we need 
the matrix TBITIB. It can be shown that 

0 -"zB 

T I B  = "zB 0 'iIB] 

-"yB "xB 

(2.25) 
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So that 

(2.26) 

(2.27) 

These are the famous Euler equations that describe how the body-axis com- 
ponents of the angular velocity vector evolve in time, in response to torque 
components in body axes. 

In order to completely define the attitude (orientation), we need to relate 
the rotation angles 4, 0, and $ to the angular velocity components. One 
way-not the easiest, however-of obtaining the required relations is via (2.17) 
and (2.25). It can be shown that 

d = w, + (0, sin 4 + w, cos 4 )  tan e 
8 = w,, cos 4 - 0, sin 4 

t j  = (w,  sin 4 + wy cos ~ ) / C O S  e 
(2.28) 

These relations, also nonlinear, complete the description of the rigid body 
dynamics. 

Example 2F The gyroscope One of the most interesting applications of Euler’s equations is to 
the study of the gyroscope. This device (also the spinning top) has fascinated mathematicians 
and physicists for over a century. (See Note 2.2.) And the gyroscope is an extremely useful 
sensor of aircraft and spacecraft motion. Its design and control has been an important 
technological problem for half a century. 

In an ideal gyroscope the rotor, or “wheel,” is kept spinning at a constant angular 
velocity. (A motor is provided to overcome the inevitable friction torques present even in the 
best of instruments. The precise control of wheel speed is another important control problem.) 
Suppose that the axis through the wheel is the body z axis. We assume that T~~ is such that 
ir,, = 0, i.e., that 

H,  = JLwL = const (2F.1) 

( I ,  is called the “polar” moment of inertia in gyro parlance.) We can also assume that the 
gyroscope wheel is a “true” wheel: that the z axis is an axis of symmetry, and hence that 

J, = J,. = Jd (the ”diametrical” moment of inertia) 

The first two equations of (2.27) then become 

H 7.x wxs + - oys = - 
Jd Jd 

(2F.2) 
H wy, - - WXB = 3 
J d  J d  
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where 

Figure 2.14 Two-degrees-of-freedom 
gyro wheel. 

To use a gyro as a sensor, the wheel is mounted in an appropriate system of gimbals which 
permit it to move with respect to the outer case of the gyro. In a two-axis gyro, the wheel is 
permitted two degrees of freedom with respect to the case, as depicted in Fig. 2.14. The case 
of the gyro is rigidly attached to the body whose motion is to be measured. 

The range of motion of the wheel about its x and y body axes relative to the gyro case is 
very small (usually a fraction of a degree). Hence the gyro must be “torqued” about the axes 
in the plane normal to the spin axis to make the wheel keep up with its case, and as we shall 
see shortly, the torque required to do this is a measure of the angular velocity of the case. 

Since the motion of the wheel relative to the case is very small, we do not need equations 
like (2.27) to relate the angular displacements of the gyro wheel from its null positions in the 
case. We can write 

(2F.3) 

where wXE and wyE are the external angular velocities that the gyro is to measure. 
These equations, together with (2F.2), constitute the basic equations of an ideal gyro. A 

block-diagram representation of (2F.2) and (2F.3), and a closed-loop feedback system for 
controlling the gyro is shown in Fig. 2.15. The feedback system shows the control torques 
generated as functions of the displacements 6, and 6,. These displacements can be measured 
by means of “pick-offs”-small magnetic sensors located on the case and capable of 
measuring small tilts of the wheel. The control torque needed to drive the “pick-off angles” 6, 
and 6,. to zero can also be generated magnetically. In some designs the pick-off and torquer 
functions can be combined in a single device. The control system is designed to drive the 
angular displacements 6, and 6,. to zero. If this is accomplished 
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I ” I E  

P 
Figure 2.15 Block diagram of two-axis gyro dynamics showing “capture” control system. 

If the angular velocity components w V B  and w , ~  are constant 

7, = H W , ~  = Hw, ,  

7, - H w , ,  = -Hw, ,  
(2F.5) 

where H is a constant of the gyro. If this constant is accurately calibrated, and if the input 
torque to the gyro is accurately metered, then the steady state torques about the respective axes 
that keep the wheel from tilting relative to its case (i.e., “capture” the wheel) are proportional 
to the measured external angular velocity components. 

The control system that keeps the wheel captured is an important part of every practical 
gyro. Some of the issues in the design of such a control system will be the subject of problems 
in later chapters. 

The differential equations of (2F.2) are idealized to the point of being all but unrealistic. 
In addition to the control torques acting on the gyro, other torques, generated internal to the 
gyro, are also inevitably present. These include damping torques (possibly aerodynamic). And 
in a so-called tuned-rotor gyro, the gimbals are implemented by a special flexure hinge which 
produces small but not insignificant spring torques. When these torques are included, (2F.2) 
becomes 
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Note that the damping coefficients D in both axes are assumed equal and that the 
“spring” matrix 

has a special kind of symmetry. This form of the matrix is justified by the physical 
characteristics of typical tuned-rotor gyros. 

2.6 AERODYNAMICS 

One of the most important applications of state-space methods is in the design 
of control systems for aircraft and missiles. 

The forces (except for gravitation) and moments on such vehicles are 
produced by the motion of the vehicle through the air and are obtained, in 
principle, by integrating the aerodynamic pressure over the entire surface of the 
aircraft. Computer programs for actually performing this integration numeri- 
cally are currently available. In an earlier era this was accomplished by 
approximate analysis done by skillful aerodynamicists, and verified by extensive 
wind-tunnel testing. (Wind-tunnel tests are performed to this day, notwithstand- 
ing the computer codes.) 

Several textbooks, e.g., [4, 51, are available which give an exposition of the 
relevant aerodynamic facts of interest to the control system designer. The 
aerodynamic forces and moments are complicated, nonlinear functions of many 
variables and it is barely possible to scratch the surface of this subject here. The 
pbrpose of this section is to provide only enough of the principles as are needed 
to motivate the design examples to be found later on in the book. 

The aerodynamic forces and moments depend on the velocity of the aircraft 
relative to the air mass. In still air (no winds) they depend on the velocity of the 
aircraft along its own body axes: the orientation of the aircraft is not relevant in 
determining the aerodynamic forces and moments. But, since the natural axes 
for resolving the aerodynamic forces and moments are moving (rotating and 
accelerating), it is necessary to formulate the equations of motion in the moving 
coordinate system. 

The rotation motion of a general rigid body has been given in (2.24). In  
aircraft terminology the projections of the angular velocity vector on the body 
x, y, and z axes have standard symbols: 

ox = p (roll rate) 

o, = q (pitch rate) (2.29) 

wz = r (yaw rate) 

(The logic of using three consecutive letters of the alphabet ( p ,  q, r )  to 
denote the projections of the angular velocity vector on the three consecutive 
body axes is unassailable. But the result is “arnnemonic” (hard to remember): 
p does not represent pitch rate and r does not represent roll rate.) 
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Thus, assuming that the body axes are the principal axes of the aircraft, the 
rotational dynamics are expressed as 

L J, - Jy 
P = - - -  qr 

Jx  J x  

M J, ~ J ,  
4=--- P' 

Jy Jy 

. N J, - J, 
r = - - - - -  P4 Jz J,  

(2.30) 

where L, M ,  and N are the aerodynamic moments about the body x, y, and z 
axes respectively. Thus L is the rolling moment, M is the pitching moment, and 
N is the yawing moment. These are functions of various dynamic variables, as 
explained later. 

To define the translational motion of an aircraft it is customary to project 
the velocity vector onto body fixed axes 

(2.3 1) 

where u, u, and w are the projections of the vehicle velocity vector onto the 
body x, y, and z axes. The linear momentum of the body, in an inertial frame, is 

p' = mv', = mTIUGB 

'Hence, the dynamic equations for translation are 

(2.32) 

where fI are the external forces acting on the aircraft referred to an inertial 
frame. Proceeding as we did in developing (2.24) we find that 

(2.33) 

where f B  = TBlfl is the force acting on the aircraft resolved along the body- 
fixed axes and 

(2.34) 

as given by (2.26) but using the p ,  q, r notation defined in (2.29). 
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In component form (2.33) becomes 

u = r v -  

(2.35) 

where JxB, f Y B ,  and f i B  are the total forces (engine, aerodynamic, and gravita- 
tional) acting on the body. Since the aircraft axes are not in general in the 
direction of the gravity vector, each component f X w  As, and LB will have a term 
due to gravity. In addition to the force of gravity, there is the thrust force 
produced by the aircraft engine-generally assumed to act along the vehicle x 
axis-and the aerodynamic forces-the lift and drag forces. The acceleration 
terms ru, qw, etc., are Coriolis accelerations due to the rotation of the body axes. 

Complete dynamic equations of the vehicle consist of (2.30) which give the 
angular accelerations, (2.35) which give the linear accelerations, (2.28) which 
give the angular orientation, and finally the equations for the vehicle position: 

(2.36) 

This system of 12 first-order differential equations, with the moments and 
forces evaluated as functions of whatever they depend upon constitute the 
complete six-degrees-of-freedom description of the aircraft behavior. 

The aerodynamic forces and moments all depend on the dynamic pressure 

Q = ’  2P Vz 
where p is the air density and 

v = (u’ + u’ + w y  

(2.37) 

is the speed of the aircraft. (Dynamic pressure has the dimension of force per 
unit area.) Thus the aerodynamic forces and moments can be expressed in the form 

~ X A  = QACX 

f y ~  = QACY 

(2.38) 

where C,, C, C,, CL, CM, CN, are dimensionless aerodynamic “coefficients,” A 
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is a reference area (usually the frontal area of the .vehicle), and 1 is a reference 
length. (In some treatments different reference lengths are used for roll, pitch, 
and yaw.) 

The aerodynamic coefficients in turn are functions of the vehicle velocity 
(linear and angular) components, and, for movable control surfaces, also 
functions of the deflections of the surfaces from their positions of reference. The 
variables of greatest influence on the coefficients are the vehicle speed (or, more 
precisely, the Mach number), the angle-of-attack LY and the side-slip angle p. 
These, respectively, define the direction of the velocity vector relative to the 
vehicle body axes; a is the angle that the velocity vector makes with respect to 
the longitudinal axis in the pitch direction and p is the angle it makes with 
respect to the longitudinal axis in the yaw direction. (See Fig. 2.16.) From the 
figure 

a =tan-’(( W ) =-  W 

u 2 +  u y 2  u 
(2.39) 

with the approximate expressions being valid for small angles. 
For purposes of control system design, the aircraft dynamics are frequently 

linearized about some operating condition or “flight regime,” in which it is 
assumed that the aircraft velocity and attitude are constant. The control surfaces 
and engine thrust are set, or “trimmed,” to these conditions and the control 
system is designed to maintain them, i.e., to force any perturbations from these 
conditions to zero. 

If the forward speed is approximately constant, then the angle of attack and 
angle of side slip can be used as state variables instead of w and u, respectively. 

W 

Figure 2.16 Definitions of angle-of-attack a and 
side-slip angle p. 
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a: angle of attack 
q :  pitchrate 
Au: change in speed 

Table 2.1 Aerodynamic variables 

p :  side slip angle 
p :  roll rate 
r :  yaw rate 

I Longitudinal 1 Lateral 

8,: elevator deflection Controls 

Rates 

8,: aileron deflection 
15, : rudder deflection 

0: pitch 
z :  altitude Positions 

6: roll angle 
$: yawangle 
x: forward displacement 
y :  cross-track displacement 

Also in studying small perturbations from trim conditions it is customary to 
separate the longitudinal motion from the lateral motion. In many cases the 
lateral and longitudinal dynamics are only lightly coupled, and the control 
system can be designed for each channel without regard to the other. The 
variables are grouped as shown in Table 2.1. 

n I 
Angle of attack 

Figure 2.17 Aircraft longitudinal dynamics. 
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The aircraft pitch motion is typically controlled by a control surface called 
the eleuator (or by canards in the front of the vehicle). The roll is controlled by 
a pair of ailerons, and the yaw is controlled by a rudder. These are also shown 
in Table 2.1. 

The function of most control system designs is to regulate small motions 
rather than to control absolute position (x, y, and z ) .  Thus the inertial position 
is frequently not included in the state equations. This leaves nine equations, 
four in the longitudinal channel and five in the lateral channel. These can be 
written in the following form: 

Longitudinal dynamics (See Fig. 2.17) 

A U  = X,,AU + xUa - ge + X ~ B ~  

Lateral dynamics (See Fig. 2.18) 

. YLl yp (; I ) r + l m + % 3 , + - 6 R  Y R  

V V V V V 
p = - p + - p +  -- 

p = LPp + L,p + L,r + LA6A + LR6R 

i = N p p  + N,p + N,r + NA6A + NRSK 

d = P  

(2.40) 

(2.41) 

The symbols X ,  Y, Z, L, M, and N, with subscripts have become fairly 
standardized in the field of aircraft and missile control, although the sign 
conventions often differ from one user to another, which can often cause con- 
sternation. The symbols with the capital-letter subscripts, E, A, and R (for 
elevator, ailerons, and rudder), however, are not standard. It is customary to use 
cumbersome double subscript notation for these quantities. 

2.7 CHEMICAL AND ENERGY PROCESSES 

It is often necessary to control large industrial processes which involve heat 
exchangers, chemical reactors, evaporators, furnaces, boilers, driers, and the 
like. 

Because of their large physical size, such processes have very slow dynamic 
behavior-measured on a scale of minutes or hours rather than seconds as in 
the case for aircraft and instrument controls. Such processes are often slow 
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deflection 

N ,  * 6 R  
Rudder - 
deflection 

Figure 2.18 Aircraft lateral dynamics. 

; P  
Sides I i p 

enough to be controlled manually: an experienced plant operator can monitor 
the instruments in the control room and (remotely) open and close the valves to 
maintain a satisfactory equilibrium condition. But slow as such processes are, 
they are not necessarily stable. If the operator is not constantly monitoring and 
actively intervening in its operation the process may run away with itself. The 
“Three-Mile Island” nuclear plant accident (See Note 2.3), is perhaps the most 
dramatic episode of this kind in recent years, but other episodes, less dramatic 
than Three-Mile Island, occur with regrettable frequency. 

Gross failures of the type of Three-Mile Island are probably not traceable 
to inadequate dynamic performance of the control system, but rather to 
failures in hardware that inadequate procedures and training permit to go 
without prompt repair. The considerations that apply to design of proper 
procedures and personnel practices are outside the scope of this book. Here we 
are concerned with the design of systems for normal, closed-loop operation, i.e., 
under the assumption that the sensors and actuators are maintained in good 
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working order. Often so much of the engineering effort is spent in selecting 
suitable hardware-and this effort is totally justified-that little time is left to 
consider efficient operation under normal conditions. Large industrial processes 
are costly to operate, however, and even small percentage improvements (such 
as in reduced energy consumption) can be worth a considerable sum. There is a 
celebrated design (See Note 2.4) in the paper industry in which a small 
improvement in the product quality (“base weight” of the paper) returned 
many times the cost of installing a computer control system. 

One of the difficulties in working with large industrial processes is that they 
involve subsystems the behavior of which are not readily characterized by 
simple mathematical models. The physics and chemistry of devices like 
evaporators, heat exchangers, driers, and the like, are not as amenable to 
mathematical representation as are the physics of simple electromechanical 
systems, or even of aircraft. It is often necessary to work with empirical models 
obtained by fitting curves to test data. And test data is often hard to come by 
because the processes are slow and there is considerable reluctance to shut them 
down long enough to amass a sufficient quantity of data with which to construct 
an empirical model. 

Still another difficulty in dealing with industrial processes is the large 
number of dynamic variables that must be considered. Unless suitable simplifi- 
cations are made, the number of variables can run intothe hundreds. Although 
the methods described in this book can be used for designing control systems 
for very high order processes, the insights that the engineer often can develop 
using low-order models will be lacking. 

To show how state-space methods can be applied to industrial processes we 
have selected several examples that have been described in the literature and 
are actually in operation. These examples show that it is possible to deal 
effectively with processes of considerable complexity using models of reason- 
ably low order. 

Example ZG Distillation column A distillation column is a complex process. A large number 
of variables (upward of 100) are needed to accurately model its dynamic behavior. 

In the interest of applying modem control techniques to the design of a control system 
for a distillation column, Gilles and Retzbach[6,7,8] manage ingeniously to reduce the 
number of state variables to only 4. Their study deals with an extractive column intended for 
separating isopropanol from a mixture with water, using glycol as an extractant. A schematic 
diagram of the column is shown in Fig. 2.19. The mixture of water and isopropanol is 
introduced at the feed stage FA and the glycol extractant is introduced near the top of the 
column. A controlled amount of heating steam is introduced near the bottom of the column 
where the bottom product-the extractant, glycol, is drawn off. In addition, the vapor side 
sirearn flow rate can be controlled by another valve. The objective of the process is to produce 
nearly pure isopropanol at the top of the column. 

The key to the simplified model of the distillation column developed by Gilles and 
Retzbach are the profiles of concentration and temperature in the column, sketched in Fig. 
2.19. There are two vertical locations in the tower at which the principal physical changes 
occur: z ,  at which there is an interphase change between water and isopropanol, and a second 
location z2 where there is an interphase change between the water and the glycol extractant. At 
each of these locations there is a sharp temperature gradient. 
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Extractant 
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( g l Y c 4  

FA 
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(Water  and 
isopro- 
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mixture) 
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I s t e a m  
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product 
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1 i Water 

Glycol 4, 
Temperature  

Figure 2.19 Distillation column with profiles of concentration and temperature. (After Gilles and 
Retzhach.) 

By varying the flow rates of the water-isopropanol mixture, the heating steam, and the 
vapor side stream, the positions of these loci or “fronts” can be moved up and down, but the 
shapes of the distributions are otherwise hardly changed. Thus by controlling the positions of 
these fronts, the distribution of temperature and concentration can be controlled throughour 
the column. This property of the distributions motivated Gilles and Retzbach to use the 
positions zl and z2 as  state variables that can adequately represent the behavior of this 
complex process. 

In addition to these state variables, other state variables needed to represent the steam 
boiler are included in the overall model. 

The boiler dynamics are represented by 

where AQ, = heat flow to reboiler ”holdup” ‘, changes from equilibrium J AV, = vapor flow rate 
Aid, = steam flow rate 

Gilles and Retzbach in [6] show that rates of change A i l  and A i z  in the position of the 
interphase loci (fronts) are linearly related to the various flow rates: 

A i l  = b,,AS + f3,AxF,,, + f32AFA 

A i 2  = h,ZAS + faZAF,, 

changes from equilibrium 
where A S  = flow rate of vapor side stream 

AxFal  = feed composition 
AF,, = feed flow rate 

(2G.2) 
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As noted, the steam flow rate and the flow rate of the vapor side-stream are control 
variables. Changes in the feed composition and flow rate are disturbances that the control 
system is to be designed to counteract. 

The positions of the fronts are determined in this process by measuring the temperatures 
with thermomocouples located near the desired positions of the fronts. It has been found that 
the temperature changes are approximately proportional to the front position changes: 

AT, = c,,Az, 

AT, = cz4Az2 

The state, input, disturbance, and observation vectors are defined respectively by 

= I::] ,1 = [ ;;] xo = [ Ax~,41] A FA = A T, 

A z2 

In terms of these variables, the process has the standard state-space representation 

X = Ax f Bu + Ex, 

y = cx 
with 

(2G.3) 

(2G.4) 

(2G.5) 

Numerical data  for a specific process considered by Gilles and Retzbach are as  follows: 

a i l  = -30.3 h , ,  = 6.15 X 10' f I l  62.2 

a?, = 0.120 x lo-' b,, = 3.04 f,? = 5.76 

a-.? = -6.02 b,, = 0.052 f42 = 5.12 

a,, = -3.11 

= -2.80 c,3 = -7.3 

cZ4 = -25.0 

Time is measured in hours, and temperature in degrees Celsius. 

Example 2H Double effect evaporator Over a period of several years in the mid 1970s a group 
of chemical engineering faculty members and students at the University of Alberta developed 
a laboratory pilot plant which could be used to test various concepts and control system design 
techniques. The results of some of these studies have been published in a number of technical 
journals and reprinted as  a case study [9]. 

The pilot plant is a double-effect evaporator shown schematically in Fig. 2.20. According 
to Professors D. G. Fisher and D. E. Seborg, leaders of the project and authors of the case 
study: "The first effect is a short-tube vertical calandria-type unit with natural circulation. The 
9-in diameter unit has an operating holdup of 2 to 4 gallons, and its 32 stainless steel tubes, 
z-in 0.d. by 18 in. long, provide approximately 10 square feet of heat transfer surface 
altogether. 

3 '  
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First effect Second effect 
Figure 2.20 Schematic diagram of pilot-scale evaporator and a conventional multiloop control system. 
(Reproduced wiih permission of “fndusirial Engineering Chemistv ,  Process Design and Developmen!” 
Copyright 1972, American Chemical Society.) 

“The second stage is a long-tube vertical effect setup for either natural or forced 
circulation. It has a heat transfer area of 5 square feet and is made up of three 6-ft long I-in 
0.d. tubes. Capacity of the circulating system is about 3 gallons.”[lO] 

The inputs to the plant are steam and a concentrated solution of triethylene glycol. The 
outputs are glycol, the concentration and flow rate of which is to be controlled, and the 
condensate. 

The system is a relatively complicated dynamic process requiring many state variables 
for its &curate description. A number of studies, reported in [ I  I ] ,  were undertaken aimed at 
developing a model that represents a reasonable compromise between fidelity to the real 
process and amenability to control system designs. On the basis of such considerations the 
investigators found that a fifth-order model is in close agreement with a tenth-order model, the 
latter fitting the pilot plant test data very well. 

The fifth-order model uses the state variables 

x, = W ,  = first-effect “holdup” 
x? = C ,  = first-effect concentration 
x3 = H ,  = first-effect enthalpy 
x4 = Wz = second-effect”ho1dup” 
xs = C2 = second-effect concentration 

and control variables 

u ,  = S ,  = first-effect steam flow rate 
u, = B, = first-effect “bottoms” flow rate 
u3 = B? = second-effect “bottoms” flow rate 

(2H.1)  

(2H.Z) 

In addition to the state and control variables there are also disturbance inputs to the process 

d ,  = F,  = variations in feed flow rate 
d ,  = C,, = variations in feed concentration 
d,  = H F ,  = variations in feed enthalpy 

(2H.3)  
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Figure 2.21 Fifth-order evaporator dynamic model. 
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The linearized differential equations for this process have been developed by Newel1 and 
Fishexf91 and are in the standard state space form 

X = Ax + Bu + Ex, (2H.4) 

For one particular configuration of the system, the numerical values of the matrices were 
found to be [ 1 I ]  

0 -.00156 -.0711 0 0 
0 -.1419 ,0711 0 0 
0 -.00875 -1.102 0 0 
0 -.00128 -.1489 0 -.0013 
0 .0605 ,1489 0 -.0591 

0 -.I43 0 
B = [ . j 2  .:8 0 -.;59] 

-.0486 

,2174 0 0 
-.074 ,1434 0 

0 ,1814 
0 0 0 

0 0 0 

(2H.5) 

(2H.6) 

(2H.7) 

A block-diagram representation of the system, using the structure implied by (2H.5)- 
(2H.7) is shown in Fig. 2.21. Over the period that the process was in operation various changes 
were made that result in changes in numerical values in the matrices,[9] but the structure of 
Fig. 2.21 did not change. 

PROBLEMS 

Problem 2.1 Motor-driven cart with inverted pendulum 

The cart carrying the inverted pendulum of Example 2E is driven by an electric motor having 
the characteristics described in Example 2B. Assume that the motor drives one pair of wheels of the 
cart, so that the whole cart, pendulum and all, becomes the "load" on the motor. Show that the 
differential equations that describe the entire system can be written 

mg k X + - O = - e  x+- 
k2 

Mr2R M MRr  

where k is the motor torque constant, R is the motor resistance (both as described in Example 2B), 
r is the ratio of motor torque to linear force applied to the cart (T = r f ) ,  and e is the voltage applied 
to the motor. 

Problem 2.2 Motor-driven inverted pendulum 

Derive the dynamic model for an inverted pendulum pivoted at its lower end and driven by an 
electric motor, as shown in Fig. 6.3. 
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z 

Figure P2.1 Inverted pendulum on cart. 

Show that the dynamic equations of the inverted pendulum on a cart of Prob. 2.1 reduce to that 
of a pendulum fixed at its lower end as the mass of the cart becomes infinite. 

Problem 2.3 Threecapacitance thermal system 

A conducting bar (Fig. P2.3(a)) is insulated along its length but exposed to the ambient 
temperature at one end, and heated at the other end. An approximate electrical equivalent, based 
on "lumping" the bar into three finite lengths, is shown in Fig. P2.3(b). 

Write the differential equations for the system using as state variables uI, v?,  and u3 ,  the 
capacitor voltages. The input u is the temperature e, at the heated end, and the output y is the 
temperature u, at point 3 on the rod, as would be determined by a thermocouple, for example. 

Heater f l y  bar 

Thermometer 

(0 1 

u = eo vo = eR 

(b 1 

Figure P2.3 Three-capacitance thermal system. (a) Cross-sectional view; ( b )  Electrical analog. 

Problem 2.4 Spring-coupled masses 

Use Lagrange's equations (Sec. 2.4) to derive the dynamic equations of a pair of masses 

As the state variables use 
connected by a spring as shown in Fig. P2.4. 

XI = Z ]  x* = z2 x, = i, x4 = 2, 
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Figure P2.4 Spring-coupled masses (two-car train). 

Problem 2.5 Two-car train 

An idealized two-car train consists of a pair of masses coupled by a spring, as shown in Fig. 
P2.4. The wheels of each car are independently driven by an electric motor such as described in 
Example 2B. (Also see Prob 2.1.) 

( a )  Express the differential equations of the system in state-space form. (Find the A and B 
matrices.) Assume R is the motor resistance, K is the spring constant, k is the motor torque 
constant, and r = r/ f is the ratio of the motor torque to the linear force applied to the car. Use the 
following state and control variables 

xI = z, x2 = z2 x3 = i, x, = i, u ,  = el u2 = e2 

where el and e2 are the voltages on the drive motors. 
( b )  Draw the block diagram of the system. 

Problem 2.6 Missile guidance dynamics 

The geometry of a missile and target, both confined to move in a plane, is depicted in Fig. 
P2.6. The target moves in a straight line at constant velocity V, and the missile moves at constant 
speed V, but the direction of the velocity vector can be controlled by the use of an acceleration a 
which is assumed perpendicular to the relative velocity vector 3 = v,,, - vF 

( a )  Using a coordinate system that is "attached to the target" show that the dynamics of 
relative motion are 

r = -Vcos u 

A = V s i n u l r  

u =  V s i n u / r + a / V  

Target 

Figure P2.6 Missile dynamics. 
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where r is the range to the target, A is the inertial line-of-sight angle, (r is the angle subtended at 
the missile by the velocity vector and the line of sight, and a is the applied acceleration. 

(b)  Let z be the “distance of closest approach” of the missile to the target, under the 
assumption that the missile continues in a straight line without any further acceleration. (Sometimes 
L is called the projected miss distance.) Show that 

z = r sin (r 

and, using P2.6(a) 

i = ( r  cos (r/ V)a 

( c )  Assume that (r is a small angle. Then i = -V. Thus r ( t )  = ro - Vt, then r /  V = To - t = 7 
where To = ro/ V: T is often called “time-to-go.” Show that the following equations represent the 
approximate dynamics 

. 1  
A = - z  w2 
i = Ta 

These equations are studied further in Chap. 3, Example 3B. 

NOTES 

Note 2.1 Rigid body dynamics 

The representation of the motion of a rigid body in a noninertial coordinate system ( i t . ,  a 
coordinate system in which the reference axes rotate and accelerate linearly) is treated in most 
standard textbooks in classical dynamics, such as Goldstein.[Z] The basic relationship with regard 
to axes fixed in a rotating body are expressed by 

where is any (three-component) vector. The symbol X denotes the uector cross product and 
“body” means that the derivatives are taken as if the body axes were inertially fixed; 6 is the 
angular velocity of the body axes. Thus (2.27) can be expressed as 

Since h’ = JG, this becomes 

d& 
dt 

i = J -  + G X JG 

which is the form in which the “Euler equation” appears in many books. 

Note 2.2 The gyroscope 

The gyroscope is one of the two basic components of all inertial navigation systems. (The other 
is an accelerometer.) Since the 1920s, gyroscopes (or “gyros” as they are now known) have been 
used in navigation systems, first in gyro compasses and more recently (ix., since about 1950) in 
complete inertial navigation systems. In addition to being used in navigation systems, gyros are also 
used as motion sensors for stabilizing the motion of ships, aircraft, and other mechanical systems. 
The inner ear of a human has a vestibular system that includes three gyroscopic sensors known as 
“semicircular canals” which are important in the biological feedback system that maintains the 
human body upright. 
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The remarkable properties of spinning bodies have always been a source of fascination, not 
only to children, but also to mathematicians and physicists. The renowned mathematician Felix 
Klein, one of the founders of the field of topology, also wrote a famous treatise on the theory of 
tops. [ 121 

Note 2.3 Three-Mile Island 

The near disaster caused by the sequence of failures at the Three-Mile Island (Pennsylvania) 
nuclear plant in 1979, has a number of valuable, if costly, lessons. The failure was not due to use of 
novel, untested design concepts nor to new state-of-the-art hardware having been insufficiently tested. 
Neither the design nor the hardware were flawed in principle. The combination of misfortune, lack 
of training, and deficient critical judgment were in part responsible for the accident that may well 
have spelled doom for the nuclear industry in the United States. An outstanding account of the 
Three-Mile Island incident and its implications were presented in the November 1979 issue of the 
IEEE Spectrum.[ 131 

Note 2.4 Swedish papermaking industry 

The benefits of using modern control concepts in the field of process control were vividly 
demonstrated by Karl J. Astrom, now a professor at the Lund Institute of Technology in Sweden. 
During the late 1950s and early 1960s, Astrom, under sponsorship of IBM, in association with a 
group of investigators (including R. E. Kalman, J. E. Bertram) at Columbia University, initiated the 
investigation of the use of state-space methods for improved process control design, particularly in 
papermaking. After his return to Sweden he succeeded in persuading the management of a paper 
company that the improved performance using modern methods, and implemented by means of a 
digital computer, would more than justify the cost of the new installation. With the cooperation of 
the plant management, he performed the tests needed to get the required dynamic characteristics of 
the plant and then installed the new computer control. The results were outstandingly successful: 
within a few years much of the Swedish paper industry adopted the new control system design 
approach. A technical account of Astrom’s work is found in Chap. 6 of [ 141. 
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CHAPTER 

THREE 
DYNAMICS OF LINEAR SYSTEMS 

3.1 DIFFERENTIAL EQUATIONS REVISITED 

In the last chapter we saw that the dynamic behavior of many dynamic systems 
is quite naturally characterized by systems of first-order differential equations. 
For a general system these equations in state space notation take the form 

1 = f ( x ,  u, t )  

1 = A(t )x  + B ( t ) u  

and in a linear system they take the special form 

(3.1) 

where x = [x,, x?, . . . , x k ] '  is the system state vector and u = [ u , ,  u 2 , .  . . , u,]' is 
the input vector. 

If the matrices A and B in (3.1) are constant matrices, i.e., not functions of 
time, the system is said to be " time-invariant." Time-varying systems are 
conceptually and computationally more difficult to handle than time-invariant 
systems. For this reason our attention will be devoted primarily to time- 
invariant systems. Fortunately many processes of interest can be approximated 
by linear, time-invariant models. 

In using the conventional, frequency-domain approach the differential 
equations are converted to transfer functions as soon as possible, and the 
dynamics of a system comprising several subsystems is obtained by combining 
the transfer functions of the subsystems using well-known techniques (reviewed 
in Chap. 4). With the state-space methods, on the other hand, the description of 
the system dynamics in the form of differential equations is retained throughout 
the analysis and design. In fact, if a subsystem is characterized by a transfer 

58 
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function it is often necessary to convert the transfer function to differential 
equations in order to proceed by state-space methods. 

In this chapter we shall develop the general formula for the solution of a 
vector-matrix differential equation in the form of (3.1) in terms of a very 
important matrix known as the state-transition matrix which describes how the 
state x ( t )  of the system at some time t evolves into (or from) the state X ( T )  at 
some other time T. For time-invariant systems, the state-transition matrix is the 
matrix exponential function, which is easily calculated. For most time-varying 
systems, however, the state-transition matrix, although known to exist, cannot 
be expressed in terms of simple functions (such as real or complex exponen- 
tials) or even not-so-simple functions (such as Bessel functions, hypergeometric 
functions). Thus, while many of the results developed for time-invariant systems 
apply to time-varying systems, it is very difficult as a practical matter to carry 
out the required calculations. This is one reason why our attention is confined 
mainly (but not exclusively) to time-invariant systems. The world of real 
applications contains enough of the latter to keep a design engineer occupied. 

3.2 SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS 
IN STATE-SPACE FORM 

Time-invariant dynamics The simplest form of the general differential equation 
of the form (3.1) is the “homogeneous,” i.e., unforced equation 

x = A x  (3.2) 

x ( t )  = eArc (3.3) 

where A is a constant k by k matrix. The solution to (3.2) can be expressed as 

where eA’ is the matrix exponential function 

t’ t 3  
2 3 !  

e A‘ = I + At + A’- + A3 - + . . . (3.4) 

and c is a suitably chosen constant vector. To verify (3.3) calculate the 
derivative of x ( t )  

and, from the defining series (3.4), 

Thus (3.5) becomes 
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which was to be shown. To evaluate the constant c suppose that at some time T 

the state X ( T )  is given. Then, from (3.3), 

X ( T )  = eATc (3.6) 

Multiplying both sides of (3.6) by the inverse of eAT we find that 

c = ( e A T ) - ’ x ( . )  

Thus the general solution to (3.2) for the state x (  1 )  at time t ,  given the state X ( T )  

at time T, is 

x ( t )  = eA‘ (eAT) - ’x (T)  (3.7.) 

The following property of the matrix exponential can readily be established by 
a variety of methods-the easiest perhaps being the use of the series definition 

eA(r,+t,) = eAf,eA1, 

(3.4)- 

(3.8) 

(3.9) 

for any t ,  and t,. From this property it follows that 
( e A ~ ) - l  = ,.-A7 

and hence that (3.7) can be written 

x ( t )  = e A ( f - T ) X ( T )  (3.10) 

The matrix e A ( ‘ - r )  is a special form of the state-transition matrix to be discussed 
subsequently. 

We now turn to the problem of finding a “particular” solution to the 
nonhomogeneous, or “forced,” differential equation (3.1) with A and B being 
constant matrices. Using the “method of the variation of the constant,”[ 11 we 
seek a solution to (3.1) of the form 

x ( t )  = eArc(  t )  (3.1 1) 

where c ( t )  is a function of time to be determined. Take the time derivative of 
x ( t )  given by (3.11) and substitute it into (3.1) to obtain: 

AeA‘c( t )  + eA‘i.( t )  = AeA‘c( t )  + B u ( t )  

or, upon cancelling the terms A e A ‘ c ( t )  and premultiplying the remainder by 

c ( t )  = e-A’Bu(t)  (3.12) 

Thus the desired function c ( t )  can be obtained by simple integration (the 
mathematician would say “by a quadrature ”) 

e-Ar 
3 

c ( t )  = C A ” B u ( A )  dh 

The lower limit T on this integral cannot as yet be specified, because we will 
need to put the particular solution together with the solution to the 

I: 
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homogeneous equation to obtain the complete (general) solution. For the 
present, let T be undefined. Then the particular solution, by (3.1 l ) ,  is 

CAABu(A) dA = eA(‘-”)Bu(A) dA (3.13) I: 
In obtaining the second integral in (3.13), the exponential ear, which does not 
depend on the variable of integration A, was moved under the integral, and 
property (3.8) was invoked to write eAte-A* = e A ( r - A ) .  

The complete solution to (3.1) is obtained by adding the “complementary 
solution” (3.10) to the particular solution (3.13). The result is 

(3.14) 

We can now determine the proper value for lower limit T on the integral. At 
t = T (3.14) becomes 

X(T) = X ( T )  + eA(‘-*)Bu(A) dA I: (3.15) 

Thus, the integral in (3.15) must be zero for any u ( t ) ,  and this is possible only 
if T = T. Thus, finally we have the complete solution to (3.1) when A and B are 
constant matrices 

x ( t )  F. e A ( t - T ) X ( T )  + 1: eA( ‘ - * )  Bu(A)dA (3.16) 

This important relation will be used many times in the remainder of the book. 
It is worthwhile dwelling upon it. We note, first of all, that the solution is the 
sum of two terms: the first is due to the “initial” state X(T) and the second- 
the integral-is due to the input U ( T )  in the time interval T 5 A 5 t between the 
“initial” time T and the “present” time t .  The terms initial and present are 
enclosed in quotes to denote the fact that these are simply convenient defini- 
tions. There is no requirement that f L T. The relationship is perfectly valid even 
when t 5 7. 

Another fact worth noting is that the integral term, due to the input, is a 
“convolution integral”: the contribution to the state x ( t )  due to the input u is 
the convolution of u with eArB. Thus the function eArB has the role of the 
impulse response[ 11 of the system whose output is x( t )  and whose input is u (  t ) .  

If the output y of the system is not the state x itself but is defined by the 
observation equation 

y = cx 

then this output is expressed by 

y ( t )  = C e A ( ‘ - 7 ) x ( f )  + CeA“-”’Bu(A)  dA (3.17) 
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and the impulse response of the system with y regarded as the output is 

The development leading to (3.16) and (3.17) did not really require that B 
and C be constant matrices. By retracing the steps in the development it is 
readily seen that when B and C are time-varying, (3.16) and (3.17) generalize to 

x ( t )  = e A ( ' + T ) x ( T )  + ( A ) u ( A )  dh (3.18) 

c e A ( I - A )  B. 

and 

Time-varying dynamics Unfortunately, however, the results expressed by (3.18) 
and (3.19) do not hold when A is time-varying. 

In any unforced (homogeneous) system the state at time t depends only on 
the state at time 7. In a linear system, this dependence is linear; thus we can 
always write the solution to 1 = A ( r ) x  as 

x( r )  = @( r, T ) X (  T )  (3.20) 

The matrix @ ( t ,  T )  that relates the state at time t to the state at time T is 
generally known as the state-transition matrix because it defines how the state 
X ( T )  evolves (or "transitions") into (or from) the state x ( t ) .  In a time-invariant 
system @ ( t ,  T )  = eA'r-T', but there is no simple exprsssion for the state-transi- 
tion matrix in a time-varying system. The absence of such an expression is 
rarely a serious problem, however. It is usually possible to obtain a control 
system design from only a knowledge of the dynamics matrix A ( t ) ,  without 
having an expression for the transition matrix. 

The complete solution to (3.1) can be expressed in the form of (3.18), with 
the general transition matrix @ ( t ,  T )  replacing the matrix exponential of a 
time-invariant system. The general solution is thus given by 

x ( t )  = @ ( t ,  T ) X ( T )  + I' @ ( t ,  A ) B ( A ) u ( h )  dA (3.21) 
I 

y ( t )  = C(t )@(t ,  T ) X ( T )  + J '  C ( t ) @ ( t ,  A)E(A)u(A) dA (3.22) 

The derivation of (3.21) follows the same pattern as was used to obtain (3.18). 
The reader might wish to check his comprehension of the development by 
deriving (3.21). The development can also be found in a number of textbooks 
on linear systems, [ I ]  for example. 

The state-transition matrix The state-transition matrix for a time-invariant sys- 
tem can be calculated by various methods. One of these is to use the series 
definition (3.4) as will be illustrated in Example 3A. This is generally not a 
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convenient method for pencil-and-paper calculations. It sometimes may be 
appropriate for numerical calculations, although there are better methods. (See 
Note 3.1 .) For pencil-and-paper calculations, the Laplace transform method, to 
be developed in Sec. 3.4, is about as good a method as any. 

It should be noted that the state-transition matrix for a time-invariant 
system is a function only of the difference t - T between the initial time 7 and 
the present time t as would be expected for a time-invariant system. (See Note 
3.2.) Thus, in a time-invariant system, there is no loss in generality in taking the 
initial time T to be zero and in computing @ ( t )  = eA'. If, for a subsequent 
calculation the initial time is not zero, and a( t, T) is needed, it is obtained from 
@ ( t )  by replacing t by t - T. 

In a time-varying system this procedure is of course not valid; both the 
initial time and the present time must be treated as general variables. A 
knowledge of @ ( t ,  0) is not adequate information for the determination of 

Although the state transition matrix cannot be calculated analytically in 
general, it is sometimes possible to do so because of the very simple structure of 
the dynamics matrix A( t ) ,  as will be illustrated in the missile-guidance example 
below. Thus, if an application arises in which an expression is necessary for the 
transition matrix of a time-varying system, the engineer should consider " hav- 
ing a go at it," using whatever ad hoc measures appear appropriate. 

@ ( t ,  7). 

Example 3A Motion of mass without friction The differential equation for the position of a 
mass to which an external force f is applied is 

i = f / r n = u  

(The control variable u = f / m  in this case is the total acceleration.) 
Defining the state variables by 

x l = x  x 2 = x  

XI = x2. 

results in the state-space form 

X2 = IA 

(3A.1) 

(3A.2) 

Thus, for this example, 

Using the series definition (3.4) we obtain the state transition matrix 

The series terminates after only two terms. 
The integral in (3.18) with T = 0 is given by 
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Thus, the solution to (3A.2),  using the general formula (3.18) is given by 

x , ( f )  = x,(O) + tx,(O) + 

x , ( f )  = x2(0) + u ( A )  dA ld 
Obviously these answers could have been obtained directly from (3A. 1) without using all the 
state-space apparatus being developed. This apparatus has its greatest utility when simple 
methods fail. 

Example 3B Missile guidance The equations of motion (assumed to be confined to a plane) of 
a missile moving at constant speed, relative to a target also moving at constant speed, can be 
approximated by 

. I  
V - p  - 
- 

Z = Tu 
(38.1) 

where A is the line-of-sight angle to the target 
z is the projected miss distance 
V is the velocity of the missile relative to  the target 
7 = T - f is the “time-to-go” 
u is the acceleration normal to the missile relative velocity vector 

I t  is assumed that the terminal time T is a known quantity. (The reader should review the 
discussion in Prob. 2.6 for the significance of these variables and the derivation of (3B.11.) 

Using the state-variable definitions 

x , = A  x , = z  

results in the matrices 

r 

(3B.2) 

L 

Since A(r )  is time-varying (through 7). the transition matrix is not the matrix exponential 
and cannot be found using the series (3.4).  In this case, however, we can find the transition 
matrix by an ad hoc method. First we note that the transition matrix @(t ,  T )  expresses the 
solution to the unforced system 

(38.3)  

The general form of this solution is 

(38 .5 )  

The terms bXj(f, 7) ( i , j )  = I ,  2, which we will now calculate, are the elements of the required 
transition matrix. 

From (38 .4 )  we have immediately 

z(rj = Z ( T )  = const (38.6)  
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Hence 

&,(I, 7) 0 d d t ,  7) 1 (38.7)  

The easiest way to get the first row (c$II and 412) of the transition matrix is to use (38 .3 )  
which can be written 

V(T - c ) ~ A ( ~ )  = ~ ( 5 )  for a\t 6 

Thus 
v( T - T ) 2 ; \ ( 7 )  = Z ( 7 )  

But, from ( 3 8 . 6 ) ,  z ( [ )  = ~ ( 7 ) .  Hence 

Integrate both sides of (3B.8) from 7 to I 

or 

Thus, from (38.9). we obtain 

Combining (38.10) with (38.7) gives the state transition matrix 

(38.8) 

(3B.9) 

(3B.10) 

(38.1 I )  

3.3 INTERPRETATION AND PROPERTIES OF 
THE STATE-TRANSITION MATRIX 

The state-transition matrix, which is fundamental to the theory of linear 
dynamic systems, has a number of important properties which are the subject of 
this section. 

We note, first of all, that the state-transition matrix is an expression of the 
solution to the homogeneous equation 

__- d x ( t )  - A( t )x ( r )  
dt 

(3.23) 

where x ( t )  is given by (3.20). The time derivative of x ( t )  in (3.20) must of 
course satisfy (3.23) for any t and x( r). In (3.20) x( 7) represents initial data and 
is not a time function. Thus 

(3.24) 
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(Since the transition matrix is a function of two arguments t and T, it is 
necessary to write its time derivative as a partial derivative. The transition 
matrix also has a derivative with respect to the “initial” time T which is investi- 
gated in Prob. 3.4.) Substitution of (3.24) and (3.20) into (3.23) gives 

a@(t’ “ ~ ( 7 )  = A(t)@(t ,  T ) X ( T )  
J t  

Since this must hold for any x(T), we may cancel X(T) on both sides to finally 
obtain 

~- T I  - A(t )@(t ,  
a t  

In other words, the transition matrix Q, 
equation as the state x. This can be emphasized 

& , = A @  

7) (3.25) 

satisfies the same differential 
by writing (3.25) simply as 

(3.26) 

which does not explicitly exhibit the time dependence of A and 0. The dot on 
top of @ must be interpreted to designate differentiation with respect to the first 
argument. (Because of the possibility of confusion of arguments use of the full 
expression (3.25) is recommended in analytical studies.) 

We note that (3.20) holds for any t and T, including t = T. Thus 

X( r )  = @( I, r)x( t )  

for any x ( t ) .  Thus we conclude that 

@( t ,  t )  = I for any t (3.27) 

This becomes the initial condition for (3.25) or (3.26). 
Other properties of the transition matrix follow from the fact that the 

differential equation (3.23) not only possesses a solution for any initial state 
X(T) and any time interval [T, t ]  but that this solution is unique. This is a basic 
theorem in the theory of ordinary differential equations and is proved in 
standard textbooks on the subject, e.g., [2,3]. There are certain restrictions on 
the nature of permissible time variations of A ( t )  but these are always satisfied 
in real-world systems. When A is a constant matrix, of course, not only do we 
know that @ exists but we have an expression for it, namely @ ( r )  = eA‘. 

Assuming the existence and uniqueness of solutions, we can write 

4 1 3 )  = @ ( t 3 ,  t l ) X ( t l )  for any t3 ,  tl (3.28) 

and also 

X( r 3 )  = @( r 3 ,  t 2 )x(  t.) (3.29) 

x ( t 2 )  = @(r- , ,  t , ) x ( t , )  for any r 2 ,  r 1  (3.30) 

for any t3 ,  t2 

Thus, substituting (3.30) into (3.29) 

x( t3 )  = W t 3 ,  b ) @ ( L  t , ) . u ( t , )  (3.31) 



DYNAMICS OF LINEAR SYSTEMS 67 

Comparing (3.31) with (3.28) we see that 

W t 3 ,  11) = @ ( t , ,  t z )@( t2r  t l )  for any t , ,  tZ, tl (3.32) 

This very important property-known as the semigroup property-of the state- 
transition matrix is a direct consequence of the fact that whether we go from 
state x ( t l )  to ~ ( t , )  directly or via an “intermediate” state x ( t 2 ) ,  we must end at 
the same point. Note, however, that the time t2 of the intermediate state need 
not be between t l  and t , .  

The semigroup properties (3.32) and (3.27) gives 

I = @( t ,  T)@( T, t )  

or 

@( T, t )  = [@( t, 7)l-I for any t, T (3.33) 

This of course means that the state-transition matrix is never singular even 

In a time-invariant system, the transition matrix is characterized by a single 
if the dynamics matrix A is singular, as it often is. 

argument, as already discussed: 

Thus, for time-invariant systems, the properties (3.27), (3.32), and (3.33) 
become 

@(O) = I 

@( t ) @ (  7) = @( r + T) 
W ’ ( t )  = @ ( - t )  

It is readily verified that @ ( t )  = eAr  possesses these properties: 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.39) 

(3.38) 

The first relation (3.37) is apparent from the series definition (3.4) and the second 
relation (3.38) can be verified by multiplying the series for e.41 by the series for 
eAT. (The calculations are a bit tedious, but the skeptical reader is invited to 
perform them.) The third relation (3.39) follows from the first two. 

By analogy with (3.38) the reader might be tempted to conclude that 
. This is generally not true, however. In order for it to be true A 

and B must commute (i.e., AB = BA) and this condition is rarely met in 
practice. 

eAreBr - - e ( A + B ) r  
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3.4 SOLUTION BY THE LAPLACE TRANSFORM: 
THE RESOLVENT 

As the reader is no doubt aware, Laplace transforms are very useful for solving 
time-invariant differential equations. Indeed Laplace transforms are the basis of 
the entire frequency-domain methodology, to which the next chapter is devoted. 

The Laplace transform of a signal .f( t )  which may be an input variable or a 
state variable is defined by 

q f ( t ) ]  = f (s) = /omf(t)e? dt (3.40) 

where s is a complex variable generally called complex frequency. A discussion 
of the region of convergence of f (s )  in the complex s plane, and many other 
details about the Laplace transform are to be found in many standard textbooks 
such as [ l ]  and [4]. 

The sans-serif letter f used to designate the Laplace transform of f ( t )  was 
chosen advisedly. In texts in which the signals are all scalars, capital letters are 
used to denote Laplace transforms (viz., X ( s )  = z [ x ( t ) ] ,  Y ( s )  = q v ( t ) ] ,  etc.). 
But in this book capital letters have been preempted for designating matrices. 
The use of sans-serif letters for Laplace transforms avoids the risk of confusion. 

The lower limit on the integral has been written as 0. In accordance with 
engineering usage, this is understood to be 0-, that is, the instant just prior to 
the occurrence of discontinuities, impulses, etc., in the signals under 
examination. The reader who is unfamiliar with this usage should consult a 
standard text such as [ 11 or [4]. 

The Laplace transform is useful for solving (3.1) only when A and B are 
constant matrices, which we will henceforth assume. In order to use the Laplace 
transform, we need an expression for the Laplace transform of the time 
derivative o f f (  t )  

upon integration by parts. Assuming 

(3.4 1 ) becomes 

T [ j ' ( t ) ]  = s Jom e -" ' f ( t )  dt - f (0)  = s f ( s )  -f(0) 

We also note that (3.42) applies when f( 1 )  is a vector: 

(3.42) 
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and also that 

T [ A x ( t ) ]  = Ax(s) (3.44) 

Applying all of these to (3.1) with A and B constant gives 

SX(S) - ~ ( 0 )  = A x ( s )  + Bu(s)  

or 

(sZ - A ) x ( s )  = ~ ( 0 )  + Bu(s) 

Solve for x(s) to obtain 

X(S) = ( s l  - A)-'x(O) + (sZ - A)-'Bu(s) (3.45) 

On taking the inverse Laplace transform of x(s) as given by (3.45) we 
obtain the desired solution for x( 1 ) .  We note that x( s) is the sum of two terms, 
the first due to the initial condition x(0) multiplied by the matrix (sZ - A)-'  and 
the second being the product of this matrix and the term due to the input Bu(s). 
Knowing the inverse Laplace transform of ( s l  - A) - '  would permit us to find 
the inverse Laplace transform of (3.45) and hence obtain x( t ) .  In the scalar case 
we recall that 

(3.46) 

We have not yet discussed calculating the Laplace transform of a matrix 
function of time. But we should not be very much surprised to learn that 

T [ e A ' ]  = (sl - A) - '  (3.47) 

which is simply the matrix version of (3.46). It can be shown by direct 
calculation (see Note 3.3) that (3.47) is in fact true. And if this be the case then 
the inverse Laplace transform of (3.45) is 

x ( t )  = eA'x(0)  + e A ( r - A )  Bu(A) dA (3.48) 

which is the desired solution. The integral term in (3.48) is given by the 
well-known conuolution theorem for the Laplace transform [ 11 

I,: 

which is readily extended from scalar functions to matrices. 
The solution for x ( t )  given by (3.48) is a special case (namely 7 = 0) of the 

general solution (3.16) obtained by another method of analysis. This confirms, 
if confirmation is necessary, the validity of (3.47). 

The exponential matrix eAr is known as the state transition matrix (for a 
time invariant system) and its Laplace transform 

O ( S )  = ( s l  - A)-'  (3.49) 
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is known in mathematical literature as the resoluenr of A. In engineering 
literature this matrix has been called the characteristic frequency matrix[ 11 or 
simply the characteristic matrix.[4] Regrettably there doesn't appear to be a 
standard symbol for the resolvent, which we have designated as @(s) in this 
book. 

The fact that the state transition matrix is the inverse Laplace transform of 
the resolvent matrix facilitates the calculation of the former. It also character- 
izes the dynamic behavior of the system, the subject of the next chapter. The 
steps one takes in calculating the state-transition matrix using the resolvent are: 

( a )  Calculate sl - A. 
( b )  Obtain the resolvent by invertihg ( s l  - A).  
( c )  Obtain the state-transition matrix by taking the inverse Laplace transform 

of the resolvent, element by element. 

The following examples illustrate the process. 

Example 3C DC motor with inertial load In Chap. 2 (Example 2B) we found that the dynamics 
of a d c  motor driving an inertial load are ' 

e = w  
fi = --aw + p u  

The matrices of the state-space characterization are 

A = [ '  0 --a ' 1  .=[;I 
Thus the resolvent is 

1 1  

@(s) = ( s l  - A)- '  = 

0 -  
s + a  

Finally, taking the inverse Laplace transforms of each term in @(s) we obtain 

Example 3D Inverted pendulum The equations of motion of an inverted pendulum were 
determined to be (approximately) 

e = w  

fi = n2e+ u 

Hence the matrices of the state-space characterization are 

The resolvent is 
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and the state-transition matrix is 

1 cosh nr sinh nt/n 
R sinh nr cosh nt @( C) = eA' = 

For a general kth-order system the matrix sl - A  has the following 
appearance 

r s - a l l  - a 1 ,  - . -  - a l k  1 
-a21  s - a,, . . . -a2k s l - A =  . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3.50) 

L -akl -ak, . . . s - akk] 

We recall (see Appendix) that the inverse of any matrix M can be written 
as the adjoint matrix, adj M, divided by  the determinant \MI.  Thus 

adj ( s l  - A) 
(sZ - A1 

( s l  - A)-' = 

If we imagine calculating the determinant Is1 - A1 we see that one of the terms 
will be the product of the diagonal elements of s l  - A: 

k ( s  - a l l ) ( s  - a Z 2 ) .  . . (s - akk) = s + c lsk- l  + .  . . + ck 

a polynomial of degree k with the leading coefficient of unity. There will also be 
other terms coming from the off-diagonal elements of s l  - A but none will have 
a degree as high as k Thus we conclude that 

Isl - A1 = sk + a l sk - l  + . . . + ak (3.51) 

This is known as the characteristic polynomial of the matrix A. It plays a 
vital role in the dynamic behavior of the system. The roots of this polynomial 
are called the characteristic roots, or the eigenvalues, or the poles, of the system 
and determine the essential features of the unforced dynamic behavior of the 
system, since they determine the inverse Laplace transform of the resolvent, which 
is the transition matrix. See Chap. 4. 

The adjoint of a k by k matrix is itself a k by k matrix whose elements are 
the cofactors of the original matrix. Each cofactor is obtained by computing the 
determinant of the matrix that remains when a row and a column of the original 
matrix are deleted. It thus follows that each element in adj ( s l  - A )  is a 
polynomial in s of maximum degree k - 1. (The polynomial cannot have degree 
k when any row and column of sl  - A  is deleted.) Thus it is seen that the 
adjoint of s l  - A can be written 

adj (sZ - A )  = Elsk-I + E,sk-* + . . . + 
Thus we can express the resolvent in the following form 

Ek 

(3.52) 
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An interesting and useful relationship for the coefficient matrices Ei of 
the adjoint matrix can be obtained by multiplying both sides of (3.52) by 
IsI - A ( ( s I  - A ) .  The result is 

Is1 - All  = ( s I  - A)(Elsk- '  + Ezsk-' + . . . + E k )  (3.53) 

or 

s k I  + u , s ~ - ' I  + .  - . + a k l  = s k E ,  + sk - ' (E2  - A E , )  

+ . . . + S( Ek - AEk-1) - AEk 

Equating the coefficients of s' on both sides of (3.53) gives 

(3.54) 

We have thus determined that the leading coefficient matrix of adj ( s l  - A )  
is the identity matrix, and that the subsequent coefficients can be obtained 
recursively: 

E2 = A E ,  + a,  I 

E, = A E ,  + a,I 
. . . . . . . . . . . . . . . .  
Ek = AEk-1 + ak-11 

(3.55) 

The last equation in (3.54) is redundant, but can be used as a check, when 
the recursion equations (3.55) are used as the basis of a numerical algorithm. In 
this case the "check equation" can be written 

Ek+l = AEk + akl 0 (3.56) 

An algorithm based on (3.55) requires the coefficients ai ( i  = 1, .  . . , k) of 
the characteristic polynomial. Fortunately, the determination of these 
coefficients can be included in the algorithm, for it can be shown that 

a, = -tr ( A E , )  

u2 = --; tr ( A E , )  

More generally 

1 
ai = -7 t r  ( A E , )  i = 1,2, .  . . , k 

1 
(3.57) 
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C, = A E ,  I 
E i + , = C ,  + a i  I Q 

i = k  

Figure 3.1 Algorithm for computing 

(*) 
An algorithm for computing the numerator matrices Ei and the coefficients 

a ,  starting with E ,  = I ,  is illustrated in the form of a flow chart in Fig. 3.1. 
A proof of (3.57) is found in many textbooks such as [ 5 , 6 ] .  The algorithm 

based on (3.56) and (3.57) appears to have been discovered several times in 
various parts of the world. The names of Leverrier, Souriau, Faddeeva, and 
Frame are often associated with it. 

This algorithm is convenient for hand calculation and easy to implement on 
a digital computer. Unfortunately, however, it is not a very good algorithm 
when the order k of the system is large (higher than about 10). The check 
matrix Ek+,, which is supposed to be zero, usually turns out to be embarrass- 
ingly large, and hence the resulting coefficients ai and Ei are often suspect. 

Example 3E Inertial navigation The equations for errors in an inertial navigation system are 
approximated by 

AX = A u  

A I ~  = -gA$ + E, (3E.1) 

1 

R 
A& = - A ~  + E,  
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where Ax is the position error, Av is the velocity error, A$ is the tilt of the platform, g is the 
acceleration of gravity, and R is the radius of the earth. (The driving terms are the 
accelerometer error E, and the gyro error Ee) 

For the state variables defined by 

x ,  = A x  x , = A v  x , = A $  

the A matrix is given by 

1 

A =  [: 
0 :g] 0 1/R 

and, regarding E,, and Ec as inputs, the B matrix is 

The matrices appearing in the recursive algorithm are 

1 0 1  

C ,  = A E ,  = [: 0 :g] 
0 I I R  0 1/R 

a3 = 0 

n u s  

-9 

1: 7 1 

= o  ___ 
s 2 + g l R  s 2 + g f R  

(3E.2) 

s 2 + g f R  s 2 + g f R  

The state transition matrix corresponding to the resolvent (3E.2) is obtained by taking its 
inverse Laplace transform. 

n = J Z  (3E.3) 

s i n n f  g 
n n2 1 ~ --cosnr - 1) 

o c o s n t  - 4 s i n n t  n 
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The elements of the state transition matrix, with the exception of d l l  are all oscillatory 
with a frequency n = Jg/R which is the natural frequency of a pendulum of length equal to 
the earth’s radius; n = 0.001 235 rad/s corresponding to a period T = 2 w / n  = 84.4 min., which 
is known as the “Schuler period.” (See Note 3.4.) 

Because the error equations are undamped, the effects of even small instrument biases can 
result in substantial navigation errors. Consider, for example, a constant gyro bias 

The Laplace transform of the position error is given by 

(3E.4) 

and the corresponding position error, as a function of time, is the inverse Laplace transform of 
(3E.4) 

(3E.5) 

The position error consists of two terms: a periodic term at the Schuler period and a term which 
grows with time (also called a seculnr term at a rate of -(g/n’)c = -Rc.  The position error 
thus grows at a rate proportional to the earth’s radius. The position error will grow at a rate of 
about 70m/h for each degree-per-hour “drift” ( E ,  = c) of the gyro. 

3.5 INPUT-OUTPUT RELATIONS: 
TRANSFER FUNCTIONS 

In conventional (frequency-domain) analysis of system dynamics attention is 
focused on the relationship between the output y and the input u. The focus 
shifts to the state vector when state space analysis is used, but there is still an 
interest in the input-output relation. Usually when an input-output analysis is 
made, the initial state x(0) is assumed to be zero. In  this case the Laplace 
transform of the state is given by 

X(S) = ( s l  - A)- ’Bu(s)  (3.58) 

If the output is defined by 

y ( r )  = C x ( t )  (3.59) 

Then its Laplace transform is 

Y(S) = Cx(s) 

and, by (3.58) 

Y(S)  = C ( S Z  - A)- ’Bu(s)  

The matrix 
H ( s )  = C ( s l  - A ) - ’ B  

(3.60) 

(3.61) 

(3.62) 

that relates the Laplace transform of the output to the Laplace transform of the 
input is known as the frunsfer-function matrix. 
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The inverse Laplace transform of the transfer-function matrix 

H ( t )  = ~ ? ' [ H ( s ) ]  = CeA'B (3.63) 

is known as the impulse-response matrix. In the time domain y ( t )  can be 
expressed by the convolution of the impulse-response matrix with the input 

y ( t )  = [I H ( t  - A)u(A) dA = CeA"-"Bu(A) dA (3.64) 

This relationship is equivalent to (3.48) in which the initial state x(0) is 
assumed to be zero, with (3.59) relating v(t) to x ( t ) .  

If there is a direct path from the input to the output owing to the presence 
of a matrix D 

ld 

-v( t )  = Cx( t )  + Du( t )  

y(s) = C x ( s )  + Du(s) 

Then 

and the transfer-function matrix 

H(s) = C(sZ - A ) - ' B  + D (3.65) 

with the corresponding impulse-response matrix 

H ( t )  = CeA'B + D s ( t )  (3.66) 

The delta function (unit impulse) appears in (3.66) because of the direct 
connection, through D, from the input to the output. Since the impulse response 
of a system is defined as the output y ( t )  when the input u ( t )  = S ( t ) ,  it is clear 
that the output must contain Ds( t ) .  If the direct connection from the input to 
the output is absent, the impulse response does not contain an impulse term. 
This implies that the degree of the numerator in H(s) must be lower than the 
degree of the denominator. Since the adjoint matrix of SZ - A is of the degree 
k - 1 (see (3.52)) then the degree of H(s) is no higher than k - 1 .  Specifically, 
with W = 0 

CIElsk - '  + E 2 ~ k - 2  + . . . + E J B  
IsZ - A\ 

H(s) = 

CBsk-' + CE,BS'-~ + . . . + CEkB 
(3.67) 

Thus the transfer-function matrix is a rational function of s with the numerator 
of degree k - 1 (or less) and the denominator of degree k. 

- - 
S l i  + a'sk- '  + . . + ak 

Example 3F Missile dynamics Except for difference in size, weight, and speed a missile is 
simply a pilotless aircraft. Hence the aerodynamic equations of a missile are the same as those 
of an aircraft, namely (2.40) and (2.41). 

In many cases the coupling of the change of velocity A u  normal to the longitudinal axis 
into the equations for angle of attack a and pitch rate q is negligible: Z,,, M,, X,, are 
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V = missile velocity 
a N  = normal acceleration 

‘N (I = angle of attack 
y = flight path angle 
e = pitch angle 

Figure 3.2 Missile dynamic variables. 

insignificant. In this case (2.40) gives the following pitch dynamics: 

(3F.1) 
q = M,a + Mqq + M,S, 

where S is the control surface deflection. (The control surface may be located in front of the 
missile-in which case it is called a canard-or in the more familiar aft position. Its location 
with respect to the center of mass of the missile will determine the signs of the Z, and M,, 
used here instead of Z,  and M E  which were introduced in Chap. 2.) 

The pitch angle 0 is usually not of interest, hence the differential equation 6 = q can be 
omitted. 

Missile guidance laws are generally expressed in terms of the component of acceleration 
normal to the velocity vector of the missile; in proportional navigation, for example, it is 
desired that this acceleration be proportional to the inertial line-of-sight rate. (See Example 
9G.) Thus the output of interest in a typical missile is the “normal” component of 
acceleration aw In the planar case (see Fig. 3.2) 

aN -- - V y  (3F.2) 

where y is the flight path angle. But 

y = e - a  

or 
y = q - &  

Thus, using (3F.2) and (3F.1), 

aN = Z,rr + Z,S 

With the state, input, and output of the missile defined respectively by 

u = S  y = a ,  
= [;I 

the matrices of the standard representation i = Ax + Bu, y = Cx + Du are 

( 3  F.3) 

(3F.4) 

c = [ Z ,  01 D = [Z,l 
A block-diagram representation of the system is shown in Fig. 3.3 
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+- 
Figure 3.3 Block-diagram of missile dynamics showing normal acceleration as output. 

The transfer function from the input u = S to the output y = a N  is given by 

H(s) = C(s1 - A) - ’E  + D 

(3F.S) 

In a typical missile Z,, M,, Z,, and M, are all negative. Thus the coefficient of s2 in the 
numerator of H(s) in (3F.5) is negative. The constant term Z,M, - M,Z,, on the other hand, 
is typically positive. This implies that the numerator of H(s) has a zero in the right half of the 
s plane. A transfer function having a right-half plane zero is said to be “nonminimum-phase” 
and can be the source of considerable difficulty in design of a well-behaved closed-loop 
control system. One can imagine the problem that might arise by observing that the dc gain 
- (Z,M, - M , Z , ) / M ,  is (typically) positive but the high-frequency gain - Z , / M ,  is (typi- 
cally) negative. So if a control law is designed to provide negative feedback at dc, unless great 
care is exercised in the design, it is liable to produce positive feedback at high frequencies. 
Another peculiarity of the transfer function of (3F.S) is that its step response starts out 

QN 

Normal 
acceleration 

Figure 3.4 Normal acceleration step response (open-loop) of tactical missile showing reversal 
in sign. 
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negative and then turns positive, as shown in Fig. 3.4. The initial value of the step response is 

lim s - H(s) = Z, < 0 (typically) 
5-m [ t  1 

but the final value of the step response is 

Example 3G Dynamics of two-axis gyroscope In Example 2F we used the general theory of 
rigid-body dynamics, and made small angle approximations to develop the equations of 
motion for a two-axis gyroscope (“gyro”): 

8x = w x E  - %E 

8, = wyE - WgE 

H B K D  K, 7x 
W A E  = - - U S E  - - (wxB - W X E )  - -8, - -8, + ~ 

Jd . I d  Jd l d  Jd 

(3G.1) 

H B K Q  K D  
GVE = -wxE - - (wyB - W y E )  + -8, - - 8  + 

. l d  Jd Jd l d  l d  

where 8, and 8, are the angular displacements of the gyro rotor about x and y axes with 
respect to the case; oxB and opE are the components of the inertial velocity of the rotor projected 
onto the x and y axes of the gyro; wxE, wyE are the angular velocity components of the gyro 
case projected onto the same axes; T~ and 7,. are the externally supplied control torques. The 
parameters H, J, K ,  K Q  are physical parameters of the gyro, as explained in Example 2F. 

With respect to the dynamic model of (3G.1), there are two kinds of inputs: control 
inputs, represented by the control torques 7, and ry’ and exogenous inputs, represented by the 
case angular-velocity components w, and wy These exogenous inputs are not “disturbances” 
in the sense of being unwanted; their presence is the raison d’ttre for the gyro. 

The standard vector matrix form of (3G.1) is thus 

x = Ax + Bu + Ex, 
where 

(3G.2) 

(3G.3) 

The special structure of the lower half of the A matrix is noteworthy: The 2 x 2 submatrix 
in the lower right-hand comer is 



80 CONTROL SYSTEM DESIGN 

s 0 1  -1 0 
I 

0 S I  0 - 1  

c I  c2 I s t b ,  b ,  
Is] - A /  = - ~ ~ - -  + _ - - - _ - - - -  

I 
C ,  el I -bZ s + b ,  - 

The B / J d  terms are conventional damping terms (torque proportional to angular velocity) 
which tend to dissipate the initial energy of the gyro. The H / J d  terms (which appear in a skew 
symmetric matrix) have an entirely different effect: They d o  not cause the energy of the gyro 
to dissipate but rather produce a high-frequency oscillation called ‘‘ nutation,” a phenomenon 
present in all gyros, to be discussed at greater length later. 

The 2 x 2 submatrix in the lower left-hand corner of the A matrix is also of interest. This 
matrix is 

(3G.6) = o  

(3G.5) 

( s 2  + b , s  + c,)’ = - (b , s  + czj’ 

Thus the eigenvalues are the roots of 

s 2  t h,.r + c ,  = + j (  b,s + c 2 )  

or 

The eigenvalues of the system are thus the four roots of (3G.8) 

-( b ,  f j b , )  * J( h, 7 jb?)’ - 4( c ,  jc , )  
.F = 

2 
(3G.9) 

In an ideal gyro the “spring” coefficients c ,  and c2 are zero; they are not zero in some 
types of real gyros, but in any case they are very small; i.e., 

Ic, + jc,l Q Ib, + j b $  (3G. 10) 

Taking note of this, we write the radical in (3G.9) as 

Using the approximation: 

we obtain for (3G.11) 

2 ( c ,  T jc,J 
j c 2 )  = b ,  T j b ,  - ~ 

b ,  T jh, 
J ( b ,  f j b , ) 2  - 4 ( c ,  
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Now 

Hence, by (3G.9), the approximate poles are given by 

b,c ,  + b2c2 b2c1 - bIC2 * j  b 2 +  ( b : +  b: 
s = - b l  + 

b: + b: 

and 

(3G. 12) 

(3G.13) 

On the complex plane, the four eigenvalues are positioned as shown in Fig. 3.5. Two 
eigenvalues are located relatively close to the origin at a natural frequency 

(3G. 14) 

which is known as the precession frequency. The pole is stable with a (negative) real part 

(3G.15) 

Nutation 

1 
Precession 

x i  
- a P  - a n  

X 

X Figure 3.5 Poles of two-axis gyroscope. 
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The other two poles are located much farther from the origin, at a natural frequency 

w,  = b, + up 

which is known as the “nutation” frequency. This pole is also stable with a (negative) real 
part of 

(I, = -bl  + aP (3G.16) 

The precession poles are due to the presence of the spring terms cI  and c,. In an ideal 
gyro in which these terms are absent, the precession poles move to the origin and the nutation 
terms become 

o, = b, = H / J d  

an = -bl = B / J d  
(3G. 17) 

With the precession terms present, the nutation frequency changes from H / J d  by the 

The outputs of the gyro are the signal measured at the pick-off angles. Thus the output 
amount of the precession freqiiency, and the damping is decreased. 

equations are 

Y l  = 8, 

Y ,  = 6, 

y cx 

or, in vector-matrix notation 

with 
1 0 0 0  

c=[o 1 0 0 1  

The transfer-function matrix from the external inputs w ,  and oy to the observed outputs 
8, and 6, is 

H,(s) = C(s1 - A)- lE (3‘3.18) 

and the transfer-function matrix from the control inputs T, and T, to the output is 

H , , ( s )  = C(s1 - A ) - ’ B  (3G. 19) 

On evaluating (3G.18) we find the matrix of transfer functions for the free (uncontrolled) 
gyro 

[s’+ b,s  + c1 -b,s - c, 1 
1 b,s+  c, s2+ b , s +  c , ]  

= (s2 + b , s  + cl)’ + (b ,s  + c,)’ 

For inertial navigation purposes, an ideal gyro is one in which all the parameters are zero 
with the exception of b, = H / J .  In this ideal case 

For a step input of angular velocity, say 

fl,(s) = l / s  fl,(s) = 0 

the Laplace transforms of the outputs are 
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I 
A,.(.T) = - 

and the corresponding time functions are 

as  shown in Fig. 3.6. The output angle 6, for an angular velocity input about the x axis is a 
sinusoid of amplitude I / b :  with a d c  value of l / h f .  The cross-axis output, however, oscillates 
about a line having a slope of l /b2.  Thus, a constant angular velocity input produces a n  output 
in the cross axis with a constantly increasing mean value. Because of this output, an ideal gyro 
is also called a rate-integrating gyro, since its long-term outputs (the pick-off angles S,, Sy) are 
proportional to the integrals of the angular velocity components about the corresponding cross 
axes. (Note that the constant of proportionality for one input-output pair has the same numerical 
magnitude as that of the other input-output pair, but is of opposite sign.) 

Since the pick-off angles (i.e., the angular displacements of the wheel plane) cannot be 
large in a typical gyro, a rate-integrating gyro is not suitable for applications in which the 
integrals of the body rates (i.e., the displacement of the gyro case relative to the rotor, whose 
axis tends to remain stationary in space) are appreciable. Since the motion of the craft (air, 
sea, o r  space) which carries the gyro cannot be confined to such small angles, the gyros are 

Figure 3.6 Outputs on two axes of gyro for constant angular velocity on  x-axis. 
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typically mounted on a stable plotform which is connected to the carrying craft by means of a 
set of gimbals that permit the stable platform to maintain a fixed orientation in space while the 
carrying craft undergoes arbitrary motion. Any tendency of the stable platform to rotate in 
space is immediately sensed by the gyro pick-offs and the output signals are used to generate 
feedback signals that drive gimbal torquers which move the gimbals to maintain the pick-off 
angles very close to null. 

3.6 TRANSFORMATION OF STATE VARIABLES 

It frequently happens that the state variables used in the original formulation of 
the dynamics of a system are not as convenient as another set of state variables. 
Instead of having to reformulate the system dynamics, it is possible to transform 
the matrices A, B, C, and D of the original formulation to a new set of matrices 
A, B, C, and D. The change of variables is represented by a linear transfor- 
mation 

z = Tx (3.68) 

where z is the state vector in the new formulation and x is the state vector in the 
original formulation. It is assumed that the transformation matrix T is a 
nonsingular k by k matrix, so that we can always write 

x = T- l z  (3.69) 

We assume, moreover, that T is a constant matrix. (This assumption is not 
necessary, however, but the formulas to be derived below will require modifica- 
tion to include if T is not constant.) 

The original dynamics are expressed by 

X = A x + B u  

and the output by 

y = C x + D u  

Substitution of x as given by (3.69) into these equations gives 

T - I ~  = A T - I  z +  Bu 

or 

i = TAT-Iz + TBu 

y = CT-'Z + DU 

z = Az + Bu 

y = C z + D u  

These are in the normal form 

with 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 
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In the language of matrix algebra, the dynamics matrix of the transformed 
system A = TAT-' is said to be similar to the dynamics matrix A of the original 
system. A well-known fact of matrix algebra is that similar matrices have the 
same characteristic polynomial. If we didn't aiready know this we could show 
it using the argument that the input-output relations for the system, i.e., 
the transfer function from the input to the output, should not depend on 
how the state variables are defined. Using the original state variables, we found 
in the previous section that the transfer function is given by 

CBsk-' + C E , B S ~ - ~  + . . . + CEkB 
H(s) = + D  (3.75) 

S k  + alSk- '  + . * + a k  

Using the new state variables, the transfer function is given by 

CBsk-' + C E 2 B s k - 2  + . . - + CE,B 
S k  + a , s k - '  + ' * . + ak H(s)  = + D  (3.76) 

where 

S k  + filsk-' + ' . ' + dk = I s1  - 

and 
adj(sZ - A )  = Isk- '  + E,sk-' + . . + Ek 

In order for the two transfer functions given by (3.75) and (3.76) to be equal, 
we need D = 0, which we have already determined, and we also must have 

CB = CB (3.77) 

a , = &  i = l , 2  ,..., k (3.79) 

- -  - 
CE,B = CE,B i = 1,2, .  . . , k (3.78) 

Using (3.74) C B  = CT-ITB = CB, so (3.77) is satisfied. The condition that 
a, = 6, is a verification of the condition that the characteristic polynomials of 
similar matrices are equal. Finally, we must verify that (3.78) is satisfied. This is 
done with the aid of (3.56). For the original system, (3.56) gives 

(3.80) CE,, I B = CAE,B + a,CB 

and, from (3.74) C = CT and B = T-'B. Thus (3.80) becomes 

CTE,,, T - IB  = CTA( T - ' T ) E , T - ' B  + a,CB (3.81) 

Note that T- 'T  = Z has been inserted and that (3.79) and (3.77) have been 
used. It is thus seen that (3.81) reduces to 

CE,+,B = CAE,B + G,CB 

El = TE,T-' 

which will satisfy (3.78) provided that 

which means that each coefficient matrix E, of the adjoint matrix of A 
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transforms from the corresponding coefficient matrix Ei of the original matrix 
A, in the same way as A transforms from A, i.e., 

A =  TAT-' 

as given by (3.74). This is another fact of matrix algebra, which has been 
verified by the requirement that transfer functions between the input and the 
output must not depend on the definition of the state vector. 

Example 3H Spring-coupled masses The equations of motion of a pair of masses M, and M ,  
coupled by a spring, and sliding in one dimension in the absence of friction (see Fig. 3.7(0)) are 

K UI x, + - (x, ~ x2) = - 
MI M ,  

(3H.1) 
K U, 

x,+-(x,-x,) =-  
M2 M ,  

where u, and u2 are the externally applied forces and K is the spring constant. Defining the 
state 

x = [ X I  x* x, %I' 

0 

T 

Figure 3.7 Dynamics of spring-coupled masses. ( n )  System configuration; ( b )  Block diagram. 
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results in the following matrices 

(3H.2) 

It might be more convenient, however, to define the motion of the system by the motion 
of the center-of-mass 

MI M2 X = - x I  + - x2 ( M  = M I  + M z )  M M  
(3H.3) 

and the difference 

8 = x, - x2 (3H.4) 

between the positions of the two masses. We let 

2 = [X, 8, 2, 81 

From (3H.3) and (3H.4) 

MI . M 2 .  x = - XI + - x2 
M M  

Thus we have 

(3H.5) 

The 4 by 4 matrix in (3H.5) is the transformation matrix T, the inverse of which is easily found 
to be 

(3H.6) 

Thus we find 

0 1 0  0 

A =  T A T - ' = [ !  0 0  I ]  B =  T B =  [ (3H.7) 

0 - K M / M l M z  0 0 1IMi -1IM2 

The differential equations corresponding to A and B are 

(3H.8) 

In this case, these equations could readily have been obtained directly from the original equations 
(3H.1). 
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3.7 STATE-SPACE REPRESENTATION OF 
TRANSFER FUNCTIONS: CANONICAL FORMS 

In Sec. 3.5 we learned how to determine the transfer function of a linear, 
time-invariant system, given the state-space representation. Sometimes it is 
necessary to go in the other direction: from the transfer-function to the 
state-space representation. This need may arise because the only available 
description of a subsystem within a larger system is the transfer function of that 
subsystem. In order to use state-space methods, the transfer function must be 
turned into a set of first-order differential equations. Another reason for 
converting a transfer-function representation into a state-space representation is 
for the purpose of transient response simulation. Many algorithms and numeri- 
cal integration computer programs designed for solution of systems of first- 
order equations are available, but there is not much software for numerical 
inversion of Laplace transforms. Thus, if a reliable method is needed for 
calculating the transient response of a system, one may be better off converting 
the transfer function of the system to state-space form and numerically inte- 
grating the resulting differential equations rather than attempting to compute the 
inverse Laplace transform by numerical methods. 

In  the last section we saw that there are innumerable systems that have the 
same transfer function. Hence the representation of a transfer function in 
state-space form is obviously not unique. In  this section we shall develop 
several standard, or “canonical ” representations of transfer functions that can 
always be used for single-input, multiple-output or multiple-input, single-output 
systems. One canonical representation has no general advantage over any other, 
and, moreover, there is no reason why a canonical representation is to be 
preferred over a noncanonical representation. 

First companion form The development starts with a transfer function of a 
single-input, single-output system of the form 

(3.82) 
Y ( S )  1 
u(s) 

H(s) = ~ = 
sk + a l s k - l  + . . . + ak 

which can be written 

(sk + a , sk - ’  + . . . + a k ) y ( s )  = u(s) (3.83) 

The differential equation corresponding to (3.83) is 

D k y  + a l D k - l y  + .  . . + a G  = u (3.84) 

where D k y  stands for d k y / d t k .  Solve for the highest derivative in (3.84) 

D k y  = -a ,  Dk- ‘y  - a,Dk-’y - . . . - a,y + u (3.85) 

Now consider a chain of k integrators as shown in Fig. 3 .8 (a ) ,  and suppose that 
the output of the last integrator is y. Then the output of the next-to-last 
integrator is Dy = d y / d t ,  and so forth. The output from the first integrator is 
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T 
I 

L 
( b )  

Figure 3.8 State-space realization of transfer functions in first companion form 

1 bosh + b,s"' + .  . . + b, 
( a )  H(s) = s k  + aIvh- '  + .  . . + a ,  H(s) = sI.  + a , s A - l  + . . . + ah 

Dk- 'y  and the input to this integrator is thus Dky. From (3.85) it follows that 
Fig. 3 .8 (u)  represents the given transfer function (3.82) provided that the 
feedback gains are chosen as shown in the figure. To get one state-space 
representation of the system, we identify the output of each integrator with a 
state variable, starting at the right and proceeding to the left. The corresponding 
differential equations using this identification of state variables are 

I, = X I  

x2 = xj 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Xk-1 = Xk 

X k  = - a k X I  - Ul;-l?c2 - . * - U l X k  + u 

(3.86) 
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The output equation is simply 

y = XI 

The matrices corresponding to (3.86) and (3.87) are 

A =  

. . .  0 1 0 0 
0 0 1 0 . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . .  0 0 0 1 

-ak -ak-l -ak-2 * .  . - a ,  

B =  

(3.87) 

(3.88) 

C = [ l  0 0 . * *  01 

The matrix A has a very special structure: the coefficients of the 
denominator of the transfer function, preceded by minus signs, are strung out 
along the bottom row of the matrix. The rest of the matrix is zero except for the 
“superdiagonal” terms which are all unity. In matrix theory, a matrix with this 
structure is said to be in companion form. For this reason we identify this 
state-space realization of the transfer function as a companion-form realization. 
We call this the jirst companion form ; another companion form will be discussed 
later on. 

If the state variables were numbered from left to right we would have 

X I  = - a , x ,  . a2x2 - .... akxk + u 

x2 = XI  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3.89) 

A =  

- a ,  -a2 . . .  -ak-l -ak 
1 0 . . .  0 0 
0 1 . * .  0 0 

0 0 . . *  1 0 

. . . . . . . . . . . . . . . . . . . . . . . . . .  (3.90) 

C=[O 0 - . .  0 11 
This representation is also called a companion form, but is less frequently 

used than the form (3.88). There is nothing sacred about numbering the 
integrators systematically from right to left or from left to right. A perfectly 
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valid, if perverse, representation would result if the integrators were numbered 
at random. 

Having developed a state-space representation of the simple transfer func- 
tion (3.82), we are now in a position to consider the more general transfer 
function 

y(s) bosk +bIsk-l + .  . . + bk 
H ( s ) = - =  

u(s) S k  + a,sk- '  + . . . + a k  
(3.91) 

The development is aided by the introduction of an intermediate variable z(s) 

We identify the first factor with the numerator and the second factor with the 
denominator: 

and 

(3.92) 

(3.93) 

The realization of the transfer function from u to z has already been 
developed. And, from (3.92) 

y(s) = (bask + blsk-'  -k . . . b k ) Z ( S )  

i.e., 

y = boDkz + bl D k - ' z  + . . . + bkZ 

The inputs to the integrators in the chain are the k successive derivatives of z as 
shown in Fig. 3.8(b) ,  hence we have the required state-space representation. All 
that remains to be done is to write the corresponding differential equations. The 
state equations are the same as (3.86) or (3.89) and hence the A and B matrices 
are the same. The output equation is found by careful examination of the 
block diagram of Fig. 3.8(b) .  Note that there are two paths from the output of 
each integrator to the system output: one path upward through the box labeled 
bi and a second path down through the box labeled ai and thence through the 
box labeled bo. As a consequence, when the right-to-left state variable numbering 
is used 

y = (bk - Ukb0)XI ( b k - 1  - ak-lbo)XI+. . . + (bl - U,b")Xk + bou 

Hence 

c = [bk - Ukbo, bk-1 - Uk-lbo,. . . , bl - albo], D = [bo] (3.94) 

If the direct path through bo is absent, then the D matrix is zero and the C 
matrix contains only the bi coefficients. 
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If left-to-right numbering is used, then 

C = [bl - albo, b, - a,bo,. ... bk - Qkbo], D = [bo] (3.95) 

The structure of the first canonical form is very easy to remember (“auto- 
mnemonic”). The string of integrators can be visualized as the fraction bar of the 
transfer function (3.9 1 ) that is realized. The numerator coefficients appear above 
the chain of integrators in the same order as they appear above the fraction bar 
in (3.91) and the denominator coefficients appear below the chain of integrators 
in the same order as they appear below the fraction bar in (3.91). Not too much 
imagination is needed to “see” the transfer function (3.91) in Fig. 3.8. 

A generalized version of the first companion form can be used to realize a 
single input, multiple output system represented by 1 transfer functions, one 
from the single input to each of the 1 different outputs 

yl(s)  bolsk  + bllsk’ l  + .  . .  + bkl 
- 

u(s) s k  + alsk- l  + . ’ - + ak 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

yl(s) bopk + b I p k - ‘  + . . .  + bkl 
- 

u(s) sk  + a,sk--l + * . . + ak 

The same set of state variables serves for each transfer function. Each 
numerator, however, is realized by a different set of gains, as shown in Fig. 3.9. 
Thus the A and B matrices are exactly as given earlier. From Fig. 3.9 it is also 
seen that the C and D matrices are 

bkl - akbOl b k - , . l  - . . .  b l l  - a l b O l ]  [ b ; l ]  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c =  D =  

bkl - akhl bk-1.l - ak-lbOl ’ ’ ’ bl/  - albOl bO/ 

(3.96) 

[ 
c = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] D = [I:] (3.97) 

for the right-to-left numbering, or 

bii - aiboi b21 - a2boi . . .  bkl - akbOl 

[ ~ I I  - aibol - a,bol . ’ . bkl - akbor 

for the left-to-right numbering. 
In the first canonical form realizations of Figs. 3.1 through 3.9 the input is 

connected directly to the first integrator in the chain and the output is a linear 
combination of the outputs of the integrators (and the input, when the D matrix 
is nonzero). This form is useful not only for single-input, single-output systems, 
but also, as we have seen, for single-input, multiple-output systems. A variant of 
the structure of Fig. 3.8, in which the output is taken directly from the last 
integrator but the input is connected to all the integrators, is shown in Fig. 3.10. 
A realization of a multiple-input, single-output system based on the structure of 
Fig. 3.10 is shown in Fig. 3.1 1. 
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I 

Figure 3.9 Realization of single-input, multiple-output system in first companion form. 

The “feedforward” gains p,, pz, . . . , Pk in Fig. 3.10 are in general not equal 
to the coefficients b l ,  b,, . . . , bk of the transfer function but must be obtained by 
solution of a set of linear algebraic equations which may be derived as follows. 
From Fig. 3.10 it is easy to see that 

XI = x, + p , u  

1, = x3 + p,u 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  
Xk-1 = xk + Pk-lU 

akXl + Pku xk = -aIxk - . . . - 

(3.98) 
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Figure 3.10 Alternative first companion form of realization of transfer function 

bask + b I s k - l  + .  . . + bk 
H(s) = 

s k  + a,sk- '  + .  . . + ak 

and 

y = XI + p,u (3.99) 

Differentiate (3.99) k times and use (3.98) to obtain 

From (3.100) and (3.99) we thus get 

In order for (3.101) to represent the differential equation corresponding to the 
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Figure 3.11 Use of alternative first companion form for realizing multiple-input single-output 
transfer function. 

transfer function (3.91) it is necessary that 

Po = bo 

PI + alp0 = bl 
(3.102) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P k - 1  f ' ' ' + U k - , p ,  + Ok-lPo = bk-1  

pk + .  . . + a,- ,pl  + a,p0 = b, 

which constitute a set of k + 1 simultaneous equations for po,  pI ,  . . . , P k .  These 
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may be arranged in vector-matrix form 

. . .  
a k - l  ak-2 

ak ak-1 . . .  

(3.103) 

The triangular matrix that appears in (3.103), the first column of which is 
formed from the coefficients of the characteristic polynomial, and whose 
subsequent columns are obtained by pushing down the previous column one 
position, is a special form of a Toeplitz matrix, and occurs elsewhere in linear 
system theory. We shall encounter it again in Chap. 6 in connection with control 
system design by pole placement. The determinant of this matrix is 1, so it is 
nonsingular. Hence it is always possible to solve for the p z  given the numerator 
coefficients b, ( i  = 1,2 , .  . . , k). 

It is worth noting that although the state variables in the original first 
canonical form and in the alternate canonical form are identified with the 
outputs of the integrators, they are not the same variables: (3.86) and (3.87) are 
not the same as (3.98) and (3.99). Although the A matrix of both systems are the 
same, the B and C matrices are not. The reader might wish to test the 
comprehension of state-variable transformations, as discussed in the previous 
section, by finding the transformation matrix T that transforms (3.86) and 
(3.87) into (3.98) and (3.99). Note that this matrix must satisfy 

T A T - ' = A  or T A = A T  

Thus T commutes with A. 
The generalization of Fig. 3.10 for multiple-input, single-output systems is 

shown in Fig. 3.1 1. The set of coefficients poi, p I I ,  . . . , P k #  for the ith input is 
found from the corresponding coefficients boi, bl, ,  . . . , bki by use of (3.103). 

By use of the structure shown in Fig. 3.9 we can realize a single-input, 
multiple-output system in state-variable form. Similarly, a single-output, 
multiple-input system can be realized with the structure of Fig. 3.1 1. One might 
think that a multiple-input, multiple-output system can be realized with only k 
integrators using a combination of Figs. 3.9 and 3.1 1. A bit of reflection, 
however, will soon convince one that in general this is not possible. It is 
obvious, however, that one way of realizing a multiple-input, multiple-output 
system is by using a number of structures of the form of Fig. 3.9 or Fig. 3.1 1 in 
parallel. If the number I of outputs is smaller than the number m of inputs, then 
I structures of Fig. 3.1 1 are used in parallel; if the number of outputs is greater 
than the number of inputs then m structures of the form of Fig. 3.9 are used. 
Hence it is always possible to realize an m-input, I-output system with no more 
than k .  min(l, m) integrators. But there is no assurance that there is not a 
realization that requires still fewer integrators. The determination of a 
" minimum " realization was the subject of considerable research during the 
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1970s. There are now several algorithms for finding a minimum realization and 
the matrices A, B, C, and D that result. (See Note 3.5 for a more complete 
discussion of this subject.) 

Second companion form In the first companion form, the coefficients of the 
denominator of the transfer function appear in one of the rows of the A matrix. 
There is another set of companion forms in which the coefficients appear in a 
column of the A matrix. For a single-input, single-output system, this form can 
be obtained by writing (3.91) as 

(sk + alSk-' + . . . + a k ) y ( s )  = (bask f blsk- '  + . . . + bk)U(s) 

or 

s k [ y ( s )  - ~ O U ( S ) ]  + s"'[aly(s> - bIu(s)] + . . . + [ u ~ Y ( s )  - b k ~ ( ~ ) ]  = 0 

On dividing by sk and solving for y(s), we obtain 

1 1 
Y(S) = bou(s) + ;[biui(s) - a ~ ~ ( s ) l  + . . . + ~ [ b k u ( s )  - aky(s)l (3.104) 

Noting that the multiplier I/s' is the transfer function of a chain of j 
integrators, immediately leads to the structure shown in Fig. 3.12. The signal y 
is fed back to each of the integrators in the chain and the signal u is fed 
forward. Thus the signal bku - a g  passes through k integrators, as required by 
(3.104), the signal b k - l u  - a k - , y  passes through k - 1 integrators, and so forth 
to complete the realization of (3.104). The structure retains the ladder-like 
shape of the first companion form, but the feedback paths are in different 
directions. 

LL----. 
Figure 3.12 State-space realization of transfer function 

b,sk + b,s'-' + .  . . + b, 
H(s) = 

s h  + a'sk- '  + .  . . + a, 

in second companion form. 
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Using the right-to-left numbering of state variables, the differential 
equations corresponding to Fig. 3.12 are 

XI = x2 - a l ( x l  + b,u) + b , u  

X 2  = ~3 - Q ( X I  + b o u )  + b 2 ~  
(3.105) 

X k - 1  = X k  - U k - l ( X l  + b,u) + bk-124 

i k  = - & ( X I  + b o u )  f b k U  

and the output equation is 

y = xI + bou 

Thus the matrices that describe the state-space realization are given by 

1 0 . . .  bl - albo 

. . .  
(3.106) 

. . .  
- a k  0 0 " *  

C = [ l  0 0 . . .  01 D = [b"l 

If  the left-to-right numbering convention is employed, then instead of 
(3.106) we obtain 

(3.107) 

C=[O 0 . . .  11 D = [bol 

Compare the matrices A, B, C, and D with the matrices of the first 
companion form and observe that the A matrix of one companion form 
corresponds to the transpose of an A matrix of the other, and that the B and C 
matrices of one correspond to the transposes of the C and B matrices, 
respectively of the other. 

The state space realization of Fig. 3.12 for a single-input, single-output 
system can readily be generalized to a multiple-input, single-output system; 
the upper part of the block diagram representing the realization would have the 
same general form as the upper part of Fig. 3.1 1, with one path from every input 
to the summer in front of each integrator. The gains are obtained from the 
elements of the B matrix. 
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Figure 3.13 Alternate second companion form realization of transfer function. 

Just as there are two versions of the first companion form, there are two 
versions of the second companion form. The second version has the structure 
shown in Fig. 3.13. The reader by now can probably guess the relationships 
between the gains y, , .  . . , q k  and the coefficients of the numerator of the 
transfer function. (See Problem 3.5.) It is also noted that the structure of Fig. 
3.13 can be generalized to the realization of a single-input, multiple-output 
system. 

Jordan Form: Partial Fraction Expansion 

Another of the canonical forms of the realization of a transfer function is the 
Jordan form, so named because of the nature of the A matrix that results. This 
canonical form follows directly from the partial fraction expansion of the 
transfer functions. 

The results are simplest when the poles of the transfer function are all 
diff erent-no repeated poles. The partial fraction expansion of the transfer 
function then has the form 

(3.108) rl r2 + . . . + -  rk H(s) 6 0 + ~ + ~  
s - s ,  s - s *  s - sk 

The coefficients ri ( i  = 1,2, .  . . , k) are the residues of the reduced transfer 
function H(s)  - bo at the corresponding poles. In the form of (3.108) the 
transfer function consists of a direct path with gain bo, and k first-order transfer 
functions in parallel. A block diagram representation of (3.108) is shown in Fig. 
3.14. The gains corresponding to the residues have been placed at the outputs of 
the integrators. This is quite arbitrary. They could have been located on the 
input sides, or indeed split between the ipput and the output. 
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Figure 3.14 Complex Jordan form of transfer function with distinct roots. 

Identifying the outputs of the integrators with the state variables results in  
ihe following differential equations: 

and an observation equation 

y = r , x l  + r,x, + . . . + rkxk + bou 

(3.109) 

(3.1 10) 
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Hence the matrices corresponding to this realization are 

SI 0 . . .  

A = [ :  . . . . . . . . . . . . . . .  1 
Note that A is a diagonal matrix, which in matrix theory is the Jordan form of 
a matrix having nonrepeated eigenvalues. 

The block-diagram representation of Fig. 3.14 can be turned into hardware 
only if all the poles sI, s2,. . . , sk are real. If they are complex, the feedback 
gains and the gains corresponding to the residues are complex. In this case 
the representation must be considered as being purely conceptual: valid for 
theoretical studies, but not physically realizable. If a physically realizable 
representation is desired, it is possible to combine a pair of complex poles and 
residues into a single second-order transfer function with real coefficients. The 
resulting second-order transfer function of the subsystem is then realized in one 
of the companion forms. Suppose, for example, that s1 and s2 are a complex 
conjugate pair. For a transfer function having real coefficients (as it must in a 
real system), the residues at a pair of complex conjugate poles must be 
themselves complex conjugates. Thus a pair of complex conjugate poles, say 
s, = -u + j w  and s2 = -u - j o  with corresponding residues r = A + j y  and 
r2 = A - J y  give rise to the sum 

A - j y  
s + u + j o  

- 2[As + ( A u  - or)] 
s2 + 2us + u2 + o2 A + j y  + - 

s + u - jo H l . 2  = 

This is a second-order transfer function having the companion-form realization 
shown in Fig. 3.15. This will give rise to a second-order system in state-space 
form 

- 1  
(3.1 1 1 )  

A second-order subsystem such as (3.111) can be used to represent every 
complex conjugate pair of terms in the partial fraction expansion. 

When the system has repeated roots, the partial fraction expansion of the 
transfer function H(s) will not be as simple as (3.108). Instead it will be of the 
form 

H(s) = bo + H ~ ( s )  + . . . + HI;(s) (3.1 12) 
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A 
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Figure 3.15 Companion-form realization of pair of complex conjugate terms as a real second-order 
subsystem. 

where k < k is the number of distinct poles of H ( s )  and where 

rl i r2 i ‘u,i H , ( s )  =-+-+**-+ 
s - si (s  - S i )  ( s  - S i ) ” ,  

where vi is the multiplicity of the ith pole ( i  = 1,2,. . . , k). The last term in 
H i ( s )  can be synthesized as a chain of vi identical, first-order systems, each 
having transfer function l/(s - s,). The preceding terms in the chain of fewer 
than vi of such transfer functions. Thus the entire transfer function H i ( s )  can be 
synthesized by the system having the block diagram in Fig. 3.16. 

Using the left-to-right numbering convention gives the differential equations 

X l i  = SiXli + u 

XZi = Xli + six2, 

X V i ,  = x(,,,-I j i  + sixyi; 
. . . . . . . . . . . . . . . .  

and the output is given by 

yi = rlixli + rZixzi + . . . + rViixu,, 

If the state vector for the subsystem is defined by 

(3.1 13) 

(3.1 14) 
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rI, T”,, 

then (3.1 13) and (3.1 14) can be written in the standard form 

1’ = Aix’ + biu 
yj = CiX‘ 

I y)+ :: x I ,  * 

where 

-_ QfPBX,!,, 
x 3  
:: 

Si 

1 
Ai = 0 

. .  I 0 

Cj = [ r l i  

0 0 . . .  0 

si 0 . . .  0 

1 SI * . *  0 
. . . . . . . . . . . . . . . .  

0 0 . . .  Si 

rzi . . ru,,l 

(3.1 15) 

(3.1 16) 

Note that the A matrix of the subsystem consists of two diagonals: the 
principal diagonal has the corresponding characteristic root (pole) and the 
subdiagonal has all 1’s. In matrix theory a matrix having this structure is said to 
be in Jordan form, which is the name used for this realization of the transfer 
function. 

If  the right-to-left numbering convention were employed it is easy to see 
that the A matrix would have 1’s on the superdiagonal instead of on the 
subdiagonal. This is an alternate Jordan form. 

According to (3.1 12) the overall transfer function consists of a direct path 
with gain b, and 6 subsystems, each of which is in the Jordan canonical form, 
as shown in Fig. 3.17. The state vector of the overall system consists of the 
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J Figure 3.17 Subsystems 
canonical form combined 
system. 

concatenation of the state vectors of each of the Jordan blocks 

X =  [j 
X k  

in Jordan 
into overall 

(3.1 17) 

Since there is no feedback from any of the subsystems to the others, the A 
matrix of the overall system is “block diagonal”: 

[ A ,  0 . . .  0 1  

. . . . . . . . . . . . . . . . .  A = l  O . . .  O I (3.118) 

1 0  0 . . .  A i l  

where each of the submatrices is in the Jordan canonical form shown in (3.1 16). 
The B and C matrices of the overall system are the concatenations of the Bi 
and C, matrices of each of the subsystems: 

B =  [ “1 c = [ C , ,  . . . , Ck] (3.1 19) 

Bk 
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It is noted that the Jordan blocks are only conceptual if the poles are 
complex. Pairs of Jordan blocks can be combined to give a real Jordan block of 
order 2v,. The details are easy to work out, but the general notation and 
calculations are quite messy. If the need ever arises (which is highly unlikely) 
for such a real Jordan block, the procedures used in this section can be followed 
to  obtain the required result. 

To conclude this discussion it is noted that the Jordan normal form can be 
extended directly to either a multiple-input, single-output system, or a multiple- 
output, single-input system. In the former case, each input has a path to each of 
the integrators; in the latter, each integrator has a path to each of the outputs. 

Example 31. Spring-coupled masses (continued) It is readily established, either by use of the 
general relationship (3.65) applied to (3H.2), or by simpler means, that the input-output 
relationship for the spring-coupled mass system is given by 

(31.1) 

Ls2(s2 + K / M )  s’(s2 + K / M ) A  
where 

I 1 1  
~ +- 

M M I  M ,  

The block diagram of Fig. 3.7 already gives a state-variable realization of the system. For 
illustrative purposes, however, we assume that u2 = 0, and hence we have a single-input, 
two-output system. The transfer functions of interest are 

(31.2) 

The first companion form, using the structure of Fig. 3.9 for a single-input, multiple- 
output, system is obtained directly from (31.2) and is shown in Fig. 3.18(a). The corresponding 
matrices are  

A =  [’ 0 0  a !] B =  [i] 
0 0 - K I M  0 

Although the structure and gains for the single-input, multiple-output 
second companion form were not given explicitly, it is readily established 
diagram of Fig. 3.18(b)  correctly represents the transfer functions from u I  to 
relevant matrices are 

0 1 0 0  

A =  [-KiM : A p] 
B =  [] 0 0 0  

(31.3) 

version of the 
that the block 
v l  and y , .  The 

(31.4) 
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Figure 3.18 Canonical realizations of transfer functions of spring-coupled mass system. ( a )  First 
companion form, ( b )  second companion form, ( c )  Jordan canonical form. 
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To obtain the Jordan canonical form we expand the transfer functions in partial fractions 

I M,M u [.-I=-&- , , I , O ,  - , 
s2 s2+ K I M  

( M  = M I  + M 2 )  (31.5) 
M / M +  M I I M  H2(s) = 

s2 s’+ K I M  

The system has a double pole at the origin and a pair of imaginary poles at s = 

;tiJK/n;i. To the real form, the two terms with the imaginary poles are already combined in 
(31.5). The block diagram representation of (31.5) in the form appropriate for a single-input, 
two-output system is shown in Fig. 3.18(c). The system matrices corresponding to this 

The A matiix has been partitioned to show the block-diagonal form. The upper left-hand 
matrix is in the (superdiagonal) Jordan form for a repeated pole at the origin; the lower 
right-hand matrix is in the companion form for a second-order system. 

PROBLEMS 

Problem 3.1 Exercises in resolvents and transition matrices 

Find the resolvents and transition matrices for each of the following: 

(a) A1 = [i -: :] 
2 -3 

( b )  A , =  [i -: -!] 
(c )  A , =  [ -: -I] -2 1 

Problem 3.2 Exercises on canonical forms 

Determine the canonical forms (companion and Jordan) for each of the following transfer 
functions: 

(s + 2 ) ( s  + 4) 

( s  + I)(s + 3) (s  + 5)  
(a) H(S)  = 
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Figure P33 Tandem canonical form. 

Problem 3.3 Another canonical form 

An alternative to the Jordan canonical form for single-input, single-output systems is the 

(a) Write the A, B, and C matrices for this form. 
( b )  Given the system in Jordan form x = Ax + Bu where A = diag[-s,,  -sz , .  . . , -s,,], find the 

"tandem form" shown in Fig. P3.3. 

transformation matrix T that transforms it to the tandem form. 

Problem 3.4 Adjoint equation 

Show that the state transition matrix satisfies the following difierential equation 

(P3.4) 

Hint: Use dX-'(r)/dt = -X-'(r)(dX(t)/dr)X-'(r). 
Equation (P3.4) is sometimes called the "adjoint" equation, or the "backward-evolution" 

equation. 

Problem 3.5 Coefficients in second companion form 

Find the relationship between the coefficients q, ,  . . . , ql. of the second companion form, Fig. 
3.13, to the coefficients of the numerator and denominator of the transfer function H(s). 

Problem 3.6 Motor-driven cart with pendulum 

Consider the inverted pendulum on a cart driven by an electric motor that was studied in Prob. 
2.1. Let the state vector, control, and outputs be defined by 

x = [x, X, 0, el' u = e y : [x, 01' 

(a) Find the matrices A, B, C, and D of the state-space characterization of the system. 
( b )  Draw the block-diagram representation of the system. 
( c )  Find the resolvent and the state-transition matrix. 
(d) Find the transfer functions from the input u to the two outputs. 
The following numerical data  may be used if you would rather use numbers than letters: 

m = 0.1 kg M = 1.0 kg I = I.Om g = 9.8 m .  s -2  

l i = l V . s  R = l O O f l  r = 0 . 0 2 m  
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Problem 3.7 Threecapacitance thermal system 

For the insulated conducting bar of Rob. 2.3, using as the state, vector, control, and 
exogenous variables 

x = [ U I .  u2, 4' 
u = e, 

x, = u, 

( a )  Find the matrices A, B, and E of the state-space characterization of the system. 
(b)  Find the resolvent and the state-transition matrix. 
(c) Find the transfer function from the input u = e, to the output y = ug. 
Use R = I ,  C = 2. 

Problem 3.8. Eigenvalues of R - C network 

Consider a passive electrical network (consisting of only capacitors, resistors, plus voltage, and 
current sources). Show that all the eigenvalues lie on the negative real axis. 

Problem 3.9 Two-car train 

Consider the two-car train of h o b .  2.5 with the following numerical data: 

Trains: M ,  = M ,  = 1.0 kg, K = 40 N/m. 
Motors: k = 2 V . s, R = 100 R, r = 2 cm. 

( a )  Find the transfer functions from the input voltages to the motor positions. 
(b)  Find the open-loop poles of the system. 

NOTES 

Note 3.1 Numerical calculatjon of the transition matrix 

It might seem that the numerical determination of the state-transition matrix 

O( T )  = eAT 

with T fixed is a fairly routine numerical task. Algorithms can be based on the series definition 

O ( T )  = eAT = I + AT + A2T2/2!  + .  . . 
or on the basic definition of an exponential 

eAT = l i m ( I +  A T / n ) "  
, I - -  

The transition matrix can also be computed by numerical integration of the matrix differential 
equation 6 = A@ with the initial condition O(0) = I. A variety of numerical integration algorithms 
(e.g., Runge-Kutta, predictor-corrector, implicit) and implemented computer codes are available. 

It is also possible to transform A to Jordan canonical form (diagonal form for nonrepeated 
eigenvalues) 

A = VAV-'  

where A is in the Jordan form as given by (3.1 18). Then 
eAT = ~ ~ " T v - 1  

and eAT has a particularly simple form. (When A = A = diag [s,, s 2 , .  . . , s k ]  then eAT = 
diag[e'lT, e.'zT,. . . , elkT].) A number of algorithms are available for finding the eigenvalues of A 
(ie., sir.. . , s k )  and the corresponding transformation matrix V. 
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Notwithstanding the abundance of potentially suitable algorithms, when the dimension of A is 
large and when the eigenvalues have a range of several orders of magnitude, an accurate efficient 
algorithm for computing eAT is not trivial. 

Note 3.2 Time-varying systems 

If we assume that the laws of nature do not change with time, we should not expect to 
encounter time-varying differential equations in the description of physical processes. Nonlinear, 
yes; but time-varying, no. Even if we accept this hypothesis, however, it is often necessary to deal 
with time-varying systems as an approximate representation of the physical world. Consider, for 
example, the motion of an aircraft, for which a set of time-invariant, but highly nonlinear equations 
can be written using established methods. These differential equations would be appropriate for use 
in an accurate simulation of the aircraft behavior. But for purposes of design it may be necessary to 
use a simplified, linear model. When the dynamics are linearized, the resulting differential equations 
( i t . ,  the A and B matrices) will have coefficients that depend on such variables as dynamic pressure 
Q = p v 2 / 2  which depend on time. 

Example 3B is another example of how a nonlinear time-invariant system is approximated by 
a linear, time-varying system. 

Note 3.3 Laplace transform of exponential 

To show that the Laplace transform of eA'  is ( s l  ~ A) - '  consider the special case in which A 
is similar to a diagonal matrix A = V A V - '  where A = diag[s,, s2,. . . , sk]. Then en' = 

V[e'l', . . . , e'*']V-'. Then the Laplace transform of eA' is V[(s - sl)-', . . . , ( S  - S,)-']V-' = 

V(s1 - A)-'V-'  = ( s l  - A ) - ' .  There are many other ways of showing this. 

Note 3.4 Schuler period; inertial navigation 

The period of a pendulum is T = 277Jl/g (independent of the mass of the bob, which is why 
a pendulum clock can be extremely accurate). A pendulum having a length 1 equal to the earth's 
radius has a period of 84.4 minutes which is commonly called the Schuler period in honor of the 
German applied physicist Max Schuler,[7] who showed in 1923 that any pendulum having this 
length would remain vertical even if the pivot moves. This principle is the basis of inertial 
navigation systems. The orientation of the accelerometers in the system is kept constant by locating 
them on a "synthetic Schuler pendulum" in which the effect of the long pendulum arm is achieved 
by use of precise gyros. 

Having become extremely sophisticated after World War 11, inertial navigation technology is 
critical in strategic missiles and most military aircraft. I t  is also used extensively for navigation of 
modern transoceanic aircraft. Some of the analytical methods of inertial navigation may be found 
in [E l .  

Note 3.5 Minimal realizations 

Several methods are displayed in Sec. 3.7 for realizing the transfer functions of a system with 
one input and 1 outputs, or with m inputs and one output, by a system of order k, where k is the 
degree of the characteristic polynomial of the system, i.e.;the lowest common denominator of all 
the scalar transfer functions. By using several realizations in parallel it is possible to realize a system 
with m inputs and 1 outputs by a system of order r = k .  min (1, m ) .  But it may be possible to realize 
the matrix of transfer functions by a system of order lower than r. For example, the system of 
transfer functions may have been obtained from a known system of differential equations of kth 
order as in Examples 2G or 2H. No matter how many inputs or outputs such a system may have, 
we know how to realize the transfer functions from all the inputs to all the outputs with a system of 
kth order. 

If the transfer functions alone from the inputs to the outputs are given, however, the minimum 
number of differential equations (or integrators, in the block diagram representation) is not obvious, 
and the determination of this "minimum realization" is a significant and nontrivial problem. The 
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problem is important not out of a desire to economize on hardware-a few integrators more or less 
is hardly of consequence-but because a nonminimum realization is either uncontrollable or 
unobservable (or both) in the sense defined and explained in Chap. 5, and may cause theoretical or 
computational difficulties. 

The theory of minimum realizations is fundamental to the algebraic treatment of linear 
systems, as presented by Kailath,[4] for example. Unfortunately, this theory falls far outside the 
scope of the present text. 
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CHAPTER 

FOUR 
FREQUENCY-DOMAIN ANALYSIS 

4.1 STATUS OF FREQUENCY-DOMAIN METHODS 

For a period of about twenty years-from the early 1940s through the early 
1960s-frequency-domain methods were the only systematic tools for the analy- 
sis and design of control systems. These methods were developed by physicists 
and electrical engineers in response to the World War I1 need for improved 
servomechanisms to be used in various weapons systems, and were based upon 
the frequency response/operational calculus methods then in use for designing 
electrical networks for communication systems. It is no coincidence that the 
pioneering work of Nyquist[l] and Bode[2] in the early part of the century, and 
even the very invention of the feedback amplifier by Black,[3] all products of 
the Bell Telephone Laboratories, were done in the interest of improved com- 
munication systems. 

(The connection between frequency-domain methods and communication 
systems is a possible explanation of why the development of control theory 
took place and still continues mostly in academic departments of electrical 
engineering, even though the electrical hardware in many control systems is all 
but negligible.) 

Through the interdisciplinary activities of individuals such as the late Rufus 
Oldenburger, a mechanical engineer who understood and appreciated the 
significance of frequency-domain methods, these techniques were introduced to 
other branches of engineering and became widely used throughout the entire 
field of automatic control. 

Just at the time that frequency-domain methods had reached their peak of 
development, in the late 1950s and early 1960s, the alternative state-space 

112 
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methods began to make their appearance. But while the new state-space 
methods developed rapidly in the decades following and found new adherents 
and apostles, the vigor of frequency-domain methods hardly diminished. Not- 
withstanding the level to which state-space methods have been developed, most 
control systems continue to be analyzed and designed by frequency-domain 
methods. Concepts such as “bandwidth,” “phase and gain margins,” and 
“corner frequencies” are entrenched in control system technology and are not 
likely to be displaced. They continue to be useful. 

Starting in the mid 1970s, new impetus was imparted to frequency-domain 
methods for multivariable systems through the efforts of a number of inves- 
tigators centered in Great Britain around Rosenbrock and MacFarlane. (See 
Note 4.1.) Among the fruits of this effort was a growing recognition that 
frequency-domain methods and state-space methods enhance and complement 
each other. The burgeoning theory of robust control systems, which was started 
only in the past few years, is further evidence of the symbiosis of frequency- 
domain and state-space methods. 

4.2 FREQUENCY-DOMAIN CHARACTERIZATION 
OF DYNAMIC BEHAVIOR 

The fundamental concept of frequency-domain analysis is the “transfer func- 
tion’’ which expresses the relationship between the Laplace transform y( s) of 
the system output y ( t )  and the Laplace transform u(s) of the input u ( t )  

where H(s) is the transfer function of the system. This relationship is valid for 
any time-invariant linear system, even when the system cannot be represented 
by sets of ordinary differential equations of finite order. The representation (4.1) 
is valid, for example, for systems whose physical properties are described by 
partial differential equations, or by pure “transport” delays. 

The validity of (4.1) is a consequence of the linearity and time invariance of 
the system under examination. In the time domain such a system can be 
represented by the convolution integral 

where H (  t )  is the “impulse-response’’ (matrix) of the system. 
The basic frequency-domain relation (4.1) follows from (4.2) as a result of 

the well-known “convolution theorem” proved in many texts (see [4], for 
example) which asserts that the Laplace transform of a convolution of two 
functions is the product of the respective Laplace transforms of these functions. 
Thus, the transfer function H(s) is the Laplace transform of the impulse 



114 CONTROL SYSTEM DESIGN 

response: 

H(s) = 2 [ H ( t ) ]  = e-"'H(t) dt IOR (4.3) 

When the number of inputs and/or outputs is greater than 1 ,  then H(s) is a 
matrix of appropriate dimension: if there are m inputs and 1 outputs, then H(s) 
is an I-by-rn matrix, the elements of which are the transfer functions from the 
individual components of the input vector to the individual components of the 
output vector. 

When the system of interest has the standard state-space representation 

1 = AX + Bu 

y = C x + D u  

then, as shown in Chap. 3, the transfer function (matrix) is given explicitly by 

H(s) = C(sZ  - A)- 'B + D 

+ D  - - C ( E I s k - '  + E 2 ~ k - 2  + . . . + E k ) B  

s k  + a ' sk - '  + - * + a ,  
(4.4) 

where the denominator of H (s) is the characteristic polynomial 

D(s) = Is1 - A1 = . ~ k  + a , s k - '  + . . . + ak (4.5) 

and El = 1, E 2 , .  . . , Ek are the coefficient matrices of the adjoint matrix for the 
resolvent (sl - A ) - ' ,  as discussed in Chap. 3. The roots of the characteristic 
equation 1.1 - A1 = 0 are called the characteristic roots or eigenualues of the 
system. 

If the D matrix is nonzero, there is a direct path from some input to some 
output. The transfer functions from those inputs that are directly connected to 
the output will be polynomials of degree k in s. All the other transfer functions 
are proper rational functions, that is, ratios of polynomials in s in which the 
degree of the numerator is strictly less than the degree of the denominator. 

The variable s of the Laplace transform is a complex variable 
__ 

s = u + j w  j=J -1  

called complex frequency. Frequency-domain analysis owes its name to this 
identification of s with complex frequency. 

A transfer function H ( s )  which is a proper rational function of s can be 
expanded in partial fractions 

N l s k - '  + . . . + Nk H(s) = 
s k  + disk-' + - . . + dk 

= H , ( s )  + H2(s) + .  . + HE(s) 
where 

RI i Rli R v ; i  

s - si (s - s,) (s - Si)"i 
H i (  s) = - + -7 + . . . + 
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The complex frequencies si( i = 1,2, . . ., k < k) are the distinct roots of the 
denominator of (4.6) and the vi are corresponding multiplicities of these roots. 
These roots of the denominator are called the poles of the transfer function 
because H ( s )  becomes infinite at these complex frequencies and a contour map 
of the complex plane appears as if it has poles sticking up from these points. 

I f  H(s) is a matrix, then the coefficients N j  of the numerator polynomial of 
(4.6) are matrices and so are the coefficient matrices of the partial fraction 
expansion. 

The impulse response H ( t )  of the system is given by the inverse Laplace 
transform of (4.6): 

H ( t )  = H , ( t )  + H , ( t )  + . . . + Hk(f) (4.8) 

where 

H j ( t )  = (R l i  + R2it + . . + R,,,t”z-l/(vi - l ) ! )  e.’’Z‘ (4.9) 

Thus the impulse response of a time-invariant linear system having a proper 
rational function of s as its transfer function is a sum of time-weighted 
exponentials of the form of (4.9). The exponents of the exponentials are the 
poles of the transfer function, and the time-weighting functions are polynomials 
in t of one degree less than the multiplicity of the corresponding poles. 

If the numerator of the transfer function (4.6) is the same degree as the 
denominator, the constant term can be removed and the remainder written as a 
proper rational function, i.e., 

N, = N i  - Nodj  ( i  = 1,2,. .., k) (4.1 1 )  

The corresponding impulse response has the form 

E 
H ( t )  = No6( t )  + C ( R l z  + .  . . + R, , t ’ ’ - ’ / (v ,  - I ) ! )  e”‘ (4.12) 

, = I  

where 6 ( t )  is the unit impulse function (Dirac delta function). 
It is certainly possible to conceive of systems having transfer functions in 

which the degree of the numerator is higher than the denominator. For 
example, an electrical inductor has the transfer function (complex impedance) 

when the voltage v ( t )  is regarded as the output and the current is regarded as 
the input. The impulse response of such systems, in general, contains not only 
impulses, but various derivatives (doublets, etc.) of impulses. These are bother- 
some and can generally be avoided by suitable reformulation of the problem. If 
the voltage, in the case of the inductor, is regarded as the input and the current 
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is regarded as the output, then the transfer function is the admittance 

which is a perfectly acceptable, proper rational function. 

transfer function of the state-space representation given by (4.4). In particular 
The general form of the transfer function (4.10) is consistent with the 

No = D 

and 

N, = CE,B 

d, = a, 
i =  1,2, ..., k 

Thus the impulse response of a system in the standard state-space rep- 
resentation is a sum of time-weighted exponentials est‘ with the exponents s, 
being the roots of the characteristic polynomial, i.e., 

IsZ - A1 = s k  + ulsk-I + .  . . + u k -  - (S  - S ~ ) ” I *  * * ( S  - ~ i ) ” c  (4.13) 

Multiple poles (i.e., repeated characteristic roots) occur quite frequently at 
the origin (s = 0). For example a pure mass with the transfer function H(s) = 

l/rns’ has a double pole at s = 0. But multiple poles at other complex 
frequencies rarely occur in practical problems. To simplify a derivation it is 
often convenient to assume that multiple poles of a system occur only at the 
origin. 

4.3 BLOCK-DIAGRAM ALGEBRA 

One reason for the popularity of frequency-domain analysis is that the dynamic 
behavior of a system can be studied using only algebraic operations. The 
transfer functions of subsystems can be combined algebraically to yield the 
transfer function of the overall system, and its response to various inputs can be 
obtained by multiplying the Laplace transform of the input by the transfer 
function, as prescribed by (4.1), to obtain the Laplace transform of the output. 
The actual output time function, if needed, is calculated by finding the inverse 
Laplace transform of y( s), using algebraic techniques (partial fractions) in 
conjunction with a table of Laplace transforms. Nowhere in this analysis, 
except possibly in deriving the transfer functions of the subsystems, is i t  
necessary to have any dealings with differential equations. 

The basic techniques of manipulating block diagrams consist of combining 
transfer functions in parallel and in tandem and eliminating feedback loops. 
The three operations are illustrated in Fig 4.1. 

Figure 4.l(u) shows a system comprising two subsystems with transfer 
functions (matrices) HI (s) and H2( s). The summing junction, represented by the 
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Figure 4.1 Subsystems in combination. (a) Subsystems in parallel: ( b )  Subsystems in tandem; 
(c )  Single-loop feedback system. 

circle, makes sense only when each subsystem has the same number of outputs, 
i.e., dimensions of y1 and yz are equal. Then 

Y(3) = y,(s) + Y,(S) = H,(s)u(s) + H,(s)u(s) 

= [Hi(s) + H,(s)lu(s) (4.14) 

Thus the transfer function of a parallel combination of subsystems is the sum of 
the transfer functions. 

The tandem (or series) combination of two subsystems is shown in Fig. 
4.1 ( b ) .  For this combination 

Y l ( S )  = H,(s)u(s) 

and 

Thus 

and the transfer function of the tandem combination is the product of the 
transfer functions: 

H(s) HZ(s)HI(s) (4.15) 
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Note that the order in which the factors of H(s) are placed depends on the 
order in which the subsystems are connected. In general H,(s)H,(s) # 
HI(s)H2(s), except when HI and H2 are 1-by-1 matrices. 

A system containing a feedback loop is shown in Fig. 4.1 ( c ) .  The transfer 
function H,(s) is called the forward transmission and the transfer function H2(s) 
is called the feedback transmission. The minus sign at the summing junction 
indicates that the signal e is the difference between the system input u and the 
feedback signal z. This corresponds to negative feedback. The transfer function 
for Fig. 4.1 (c )  is obtained by tracing the signal flow through the system: 

Y(S> = H,(s)e(s) = H,(s)[u(s) - 4s)l  

4 x 1  = H,(s)y(s) 

Y(S> = H,(s)[u(s) - Hz(s)y(s)l 

But 

Thus 

or 

[ I  + H,(s)H,(s)ly(s) = H,(s)u(s) 

and, finally, 

y(s) = [ I  + Hl(s)H2(s)l-’H,(s)u(s) 

Thus, the transfer function (matrix) of the system containing a feedback loop is 

H(s) = [ I  + HI (S)H~(S) I - IH I (S)  (4.16) 

The matrix 

F(s) = I + H,(s)H,(s) 

which may be called the return-difference (matrix)-a generalization of the 
terminology introduced by Bode[2]-has an inverse except at isolated values of 
s at which the transfer matrix becomes infinite. These values of s are the poles 
of the system. Since 

it follows that the characteristic equation of a single-loop feedback system is 

In words: the zeros of the determinant of the return difference are the poles of 
the system. 

Alternative expressions for the transfer function are obtained by following 
different sequences of steps. In particular, 
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and 

e(s) = u(s) - z(s) = u(s) - H2(s)H,(s)e(s) 

Thus 

[ I  + Hz(s)H,(s)le(s) = 4 s )  

or 

e(s) = [ I  + H,(s)H,(s)]-'u(s) 

Finally 

(4.18) 

Thus 

H ( s )  = H , ( s ) [ Z  + H~(s)HI(s)]-I (4.1 9) 

From (4.19) it is seen that another form of the characteristic equation of the 
system is 

I1 + H*(s)H,(s)l = 0 (4.20) 

One should not make the mistake of assuming that H,(s) and H,(s) 
commute just because the order in which they are multiplied does not matter in 
setting up the characteristic equation. It does follow, however, that H,(s) and 
H 2 ( s )  are conformable, in whatever order they are multiplied. Since HI(s)H2(s) 
may be a higher-dimension (or lower-dimension) matrix than H,(s)H ,(s), 
calculations can be simplified by working with the product having the smaller 
dimension. 

When H ,(s) and H,(s) are transfer functions of single-input, single-output 
systems, then both (4.16) and (4.19) reduce to the well-known formula 

(4.21) 

and the return difference is 

F(s) = 1 + HI(s)H2(s) 

By repeated combination of subsystems in parallel, in tandem, and with 
feedback loops it is often possible to obtain the transfer function of a fairly 
complex system without performing a great deal of matrix algebra. Instead of 
by the repeated combination of elements, the block diagram of a single-input, 
single-output system can be reduced in a single operation by the use of the 
general-gain formula developed by S. J. Mason.[S] Mason's rule is fraught with 
possibility of error, however, unless the user is very careful with bookkeeping. 

Example 4A Distillation column The fourth-order dynamic model of a distillation column, as 
developed by Gilles and Retzbach, was given in Chap. 2 (Example 2G on p. 47). The transfer 
functions from the inputs to the state variables and outputs can be obtained using the matrix 
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calculations described in Chap. 3. But in this example the transfer functions are more readily 
calculated by block-diagram manipulations. 

The block diagram corresponding to the differential equations is shown in Fig. 4.2. The 
overall system has been subdivided into two subsystems as shown in Fig. 4.3, each corresponding 
to a different physical aspect of the process. The first subsystem, having a single input A u l  and 
a single output xz, represents the boiler. The second subsystem then represents the inner operation 
of the distillation column. The integrators have been represented by their transfer functions, 
I/s. Subsystem I itself comprises two single-loop feedback systems, separated by a gain element. 
Thus, by (4.15) and (4.21) 

The second subsystem has two inputs, x2 and Au2, and two outputs, Az, and Az,. The 
input-output relation can be expressed as 

(4A.2) 

Au2 = As 

I I second locus 

rate 

flow to flow 
boiler 
holdup 

Figure 4.2 Dynamic model of distillation column. 

rate 
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Subsystem 2 

1 --_-- - ------__ r---- 
I 

As 

X7_ 

Subsystem 1 

1 - _ _ _ _ _ -  ~ 

I 
AlA I 

L _--_--------_- _J 

Figure 4.3 Representation of distillation column as two subsystems. 

where 

Substituting x2(s)  = H , ( s ) A u , ( s ) ,  as given by (4A.1) into (4A.2) gives 

Note that 

There are only 

the poles of the system are located at 

s = o  s = a l l  s =  UZZ 

three different poles, although the system is fourth -order . The reason for this is 
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I 

P jk 

Figure 4.4 Dynamic model of hydraulically actuated tank gun turret. 

that subsystem 2 contains two identical dynamic subsystems, namely integrators, in parallel. 
This has important implications with regard to controllability, as  will be discussed in Chap. 5 .  

Example 4 8  Hydraulically actuated gun turret A block diagram corresponding to the dynamic 
model of the hydraulically actuated tank gun turret of Example 2D is shown in Fig 4.4. After 
simplification by combining the feedback loops around the integrators, the equivalent block 
diagram, with the disturbances omitted, has the appearance of Fig. 4.5(a). The picture is a bit 
complicated because of the two crossed feedback paths, ( 1 )  from w to the summer after q, and 
(2)  from p to the summer following u. 

A trick often used in block-diagram simplification, however, reduces the block diagram of 
4.5(0) to 4.5(h). The trick is to move the starting point for feedback path ( I )  from w to p ,  
compensating for the transfer function of I / . $  from p to w by placing that transfer function 
in the moved path ( I )  as shown in Fig. 4.5(b). The transfer function from 9 to p is given by 

(48.1) 

The block-diagram resulting in this simplification is shown in Fig. 4.5(c).  From this figure it is 
seen that the transfer function from u to p is 

(4B.2) 
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K" KnJJ 
s +  K , L ,  5 + R, 

Figure 4.5 Block-diagram simplification of model of hydraulically actuated tank gun turret. 
( a )  Figure 4.4 after reduction of loops around integrators; ( b )  Path from o to q moved to p 
and integrator added; (c) Final simplification. 

And the transfer function from the system input u to the angle 0 is l/s2 times p(s)/u(s). Thus 

K,K, /J  
S{(S + K A ) [ s ( s  + a,) + L l J I  + K,i,K,K,s} 

H(s) = ~ = 
4 s )  

The denominator of H(s) is the characteristic polynomial D(s) of the open-loop system. 
On expansion it is found that 
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4.4 STABILITY 

The quintessential requirement of a closed-loop dynamic system is stability: the 
ability of the system to operate under a variety of conditions without "self- 
destructing. " 

Two categories of stability are of interest. The first category relates to the 
ability of the system to return to equilibrium after an arbitrary displacement 
away from equilibrium, and the second relates to the ability of the system to 
produce a bounded output for any bounded input. For nonlinear or time- 
varying systems these categories are distinct: a system may possess one kind of 
stability without possessing the other. Detailed discussions of these categories 
and theorems giving conditions for stability can be found in various textbooks 
on system theory, such as [4]. 

If we confine our attention to linear, time-invariant systems, however, the 
situation regarding stability is much simpler. Both categories of stability are all 
but equivalent. Moreover, the basic stability criterion is directly determined by 
the locations of the system poles, i.e., the roots of the characteristic equation of 
the system. 

Ability of a system to return to equilibrium relates to the unforced system 

1 = Ax (4.22) 

For the initial state x(0) = xo, the unforced differential equation (4.22) has the 
solution 

x ( t )  = eA'xo (4.23) 

where eAr is the state-transition matrix, given by 

k 
eAr = CJe-'[(sr - A)-'] = 1 1 Rj'-' j - 1! e"z' (4.24) 

in accordance with the discussion of Sec. 4.2. The following properties can be 
directly inferred from the form of the state transition matrix as given by (4.24): 

, = I  (,I' 1 ) 

1. If the real parts of all the characteristic roots are stricfly negative (i-e., not 
zero or positive), then eAr tends asymptotically to zero. Hence, no matter 
how large the initial state xo is, x ( t )  + 0 as t + m. The system is said to be 
asymptotically stable. 

2. If  any characteristic root has a strictly positive real part, the state-transition 
matrix given by (4.24) will have at least one term which will tend to infinity 
as t + m. In this case it is always possible to find some initial state which will 
cause x ( t )  to become infinite. The system is said to be unstable. 

3 .  I f  all the characteristic roots have nonpositive real parts, but one or more of 
the characteristic roots has a zero real part, the situation is somewhat more 
complicated: if all the characteristic roots having zero real parts are simple 
roots, then the corresponding terms in the state-transition matrix are of the 
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form 
- 

Ri &"z' j = 4-1 

Since l e ' " t ' l  = 1, it is clear that these terms in the state transition matrix are 
bounded. Hence the state x ( t )  that evolves from any initial state xo will also 
remain bounded. But there will be some initial states from which the 
subsequent solution will not approach zero asymptotically. Systems of this 
type are said to be stable, but not asymptotically stable. If, on the other hand, 
any of the characteristic roots that has a zero real part is a repeated root, 
then, owing to the polynomial in t that multiplies e""~', there will be at least 
one term in eAr  which will tend to infinity as .t + 00. Hence there will be some 
initial state for which x( t )  + m, and the system is unstable. (In the strict sense, 
the multiplicity of the roots of the minimum equation, i.e., the equation of 
lowest degree satisfied by the matrix A, as discussed in the Appendix, rather 
than the multiplicity of the roots of the characteristic equation, must be 
examined to test for the stability of systems with such roots on the imaginary 
axis.) 

The above conclusions are summarized in Table 4.1. 
Stability of the second category: bounded-input bounded-output (BIBO) 

stability is determined using the convolution integral (4.2). Consider only a 
single-input, single-output system, having a scalar impulse response h ( I ) .  For 
this system 

y ( t )  = lo' h ( t  - T ) U ( T )  dT (4.25) 

It is easy to show that 

(4.26) 

The meaning of the input u ( t )  being bounded is that there is a constant c such 
that 

lu(t)l  5 c for all t (4.27) 

Table 4.1 Stability conditions for linear systems 

Condition Implication 

I .  Re(s,) < 0 

2. Re(s,) > 0 for some i System is unstable 

3. Re(.q,) = 0 

for all i System is asymptotically stable 

for some i = j ,  and 
( a )  si is simple root for all such j 
( b )  s, is multiple root for some such j 

System is stable, but not asymptotically stable 
System is unstable 
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In this case, by (4.26), 

(4.28) 

In accordance with (4.8) and (4.9), the impulse response of a time-invariant 
system is a sum of time-weighted exponentials. If the system is asymptotically 
stable, then the exponentials all tend asymptotically to zero; no matter how 
large the time-weighting on the exponentials, the integral in (4.28) will be finite 
for all t (including t + a), and hence ly(t)l  will be finite. Thus we see that an 
asymptotically stable time-invariant system produces a bounded output for 
every bounded input. On the other hand, suppose the system produces an 
unbounded output for some bounded inputs. This output must result from some 
term in the impulse response that does not tend asymptotically to zero, which 
implies that the system is not asymptotically stable. Thus a linear time-invariant 
system in which a bounded input produces an unbounded output cannot be 
asymptotically stable. (Although the system is not asymptotically stable, it may 
still be stable. The simplest example is an integrator for which h ( t )  = 1. For a 
bounded input, say u ( t )  = 1, y ( t )  = t which tends to infinity with t, so for this 
example a bounded input does not produce a bounded output. There are many 
similar examples.) 

The foregoing discussion may be summarized as follows: 

Asymptotically stable system 3 every bounded input produces 

Unstable system 3 some bounded input produces 

a bounded output 

an unbounded output 

Note that the implications go only in one direction. We may not conclude 
that a system for which every bounded input produces a bounded output is 
asymptotically stable. As we shall see in the next chapter, it is possible that 
some unstable state variables are not excited by the input. It is also not 
permissible to conclude that if some bounded input produces an unbounded 
output, the system is unstable. An ideal integrator, already cited, is an example 
of a stable system for which a bounded input (say a step function) produces an 
unbounded output (a  ramp). 

Example 4C Aircraft longitudinal motion The linear dynamic equations for the longitudinal 
motion of an aircraft were given in (2.40). Using the state and control definitions 

we obtain the dynamics and control matrices 

(4C. I )  
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The resolvent for this system is 

-Ma S - M ,  0 

s - X "  -xu 
- Z J V  s - Z J V  -1 

O ( S )  = ( s l  - A)-' = 

L o  0 - 1  s J 
From the resolvent we obtain the characteristic polynomial 

Is1 ~ A1 = s4 + a,$' + a2s2 + ags + a4 

Z" where a, = - - - M, - Xu 
V 

za 
V 

a2 = - M,, - M, + X,, 

(4C.2) 

(4C.3) 

(4C.4) 

ZuMm - ZaMu 
V a4 = 9 

Contribution to the characteristic equation of the terms _ J e  to the change in speed (those 
with the subscript u )  are usually quite small relative to the other terms. Thus, as an 
approximation, the characteristic polynomial is 

Is1 - A[ = s2( sz - ($ + M,) s + z- M,, - Ma 
V 

= s?[s2 + 2c.,n,s + n3  (4C.5) 

The double pole at the origin is due to the translation of the aircraft as an ideal mass, and the 
quadratic factor is due to the rotation of the aircraft about the center of mass. This motion is 
seen to  be that of a mass-spring-damper system with a damping factor 5, and a natural 
frequency 

and 5, are both positive, the poles of the short-period motion lie in the left 
half-plane and the short-period motion is stable. The aircraft in this case is said to be 
aerodynamically stable. Until very recently, it was the responsibility of the aerodynamicist to 
design the aircraft to ensure aerodynamic stability for all operating regimes of the aircraft. It 
is of course possible to stabilize an unstable aircraft by means of a properly designed control 
system, but the hardware (ix., sensors and actuators) used to implement the control system 
must be extremely reliable-as reliable as the airframe itself. With the advent of multiply- 
redundant hardware, it is possible to achieve a very high degree of reliability, and it is now 
considered safe to operate aerodynamically unstable aircraft having suitable multiply redun- 
dant stability augmentation systems. 

As an example we consider the numerical data for an actual aircraft, the AFTI-I6 (a 
modified version of the F-16 fighter) in the landing approach configuration, as given in Table 
4C.I [6]. 

and is called the short-period motion of the aircraft. 
If 

Using the data in Table 4C.1 we find that 

za -+ M, = 2c,n, = 1.01 
V 

(4C.6) za - M, - M, = 
V 

= -1.1621 

Since < 0, the aircraft is aerodynamically unstable in this regime, having poles at 

s, = -1.695 and s2 = 0.685 (4C.7) 
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Table 4C.1 Aerodynamic parameters for AFTI-16 on landing approach 

V = 139 Kt 
X,, = -0.0507 X, = -3.861 x, = 0 

Zz,/  V = -0.001 17 Z,/ V = -0.5164 Z,/ V -0.0717 
M ,  = -0.000129 M ,  = 1.4168 M ,  = -0.4932 M E  = - 1.645 

The short-period poles as given by (4C.7) are only approximate, since the effects of the 
speed changes have not been accounted for. To take these effects into account we must 
calculate the coefficients of the characteristic polynomial using (4C.4). For the data of Table 
4C.1 the coefficients are found to be 

a, = 1.0603 

a2 = -1.1154 

a3 = -0.0565 

a,, = -0.0512 

Numerical solution of the characteristic equation yields the pole locations 

s3,4 = -0.0394 f j0.200 sI = -1.705 s2 = 0.724 

We observe that the short-period poles sl and s2, when speed changes are accounted for, 
are located very close to the approximate locations given in (4C.7). Another pair of poles 
(which are at the origin in the approximate analysis), with a natural frequency of [(0.200)2 + 
(0.0394)’]’” = 0.204 and a damping factor of 0.19, also appears due to speed changes. The 
motion due to these poles is known as phugoid motion and is manifest as a slight oscillation 
in altitude. (See Note 4.2.) 

4.5 ROUTH-HURWITZ STABILITY ALGORITHMS 

In the previous section we saw that the imaginary axes of the complex 
frequency plane ( t h e  s plane)  separates the region of stability from the region of 
instability. If all poles lie in the left half-plane the system is asymptotically 
stable; otherwise the system is not asymptotically stable. 

I t  is now a routine exercise for a digital computer to find the roots of a 
polynomial of very high degree. Before the advent of digital computers, 
however, testing the stability of a system by calculating the zeros of the 
characteristic equation was not practical. Methods were needed that did not 
require actual calculation of these roots. The earliest contribution to this 
problem was the Adams Prize Essay (1874-1877) of E. J. Routh[7] who 
developed a simple tabular algorithm by which it is possible to determine 
whether a given polynomial has all its roots in the left half-plane without 
finding the roots. A different algorithm was developed by A. Hurwitz[8] in 1895. 
And in 1962, P. C. Parks[9] showed that these algorithms could be derived by 
use of a stability theorem that M. A. Liapunov developed[lO] in 1892-1907. 

The algebraic criteria are derived in textbooks such as Schwarz and 
Friedland[4] on linear systems, and will not be repeated here. For convenience 
of the reader, the resulting algorithms are presented here without proof. 
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Table 4.2 Routh table 

1 I a6 . . 
a, . . 

b,  = a2 - a,a, b? = a., ~ a l a s  b, = a6 - a,a, . . . . .  

. . . . . . . . . . . .  a4 = - 
d ,  

The characteristic polynomial of the system to be tested for stability is 
assumed to be of the form 

D(S) = S k  + QISk-l + ’ ’ ’ + U k - , S  + ak 
The Routh table corresponding to D(s) is constructed as shown in Table 

4.2. The first two rows are obtained by transcribing the coefficients of D(s) in 
alternate rows as shown. Each succeeding row of the table is completed using 
entries in the two preceding rows, until there are no more terms to be computed. 
In the left margin are found a column of exactly k numbers a l ,  az, . . . .  ak for a 
kth-order system. The theorem of the Routh algorithm is that the roots of 
D(s) = 0 lie in the left half-plane, excluding the imaginary axis, if and only if all 
the a’s are strictly positive. 

The Hurwitz criterion, which is equivalent to the Routh algorithm, is based 
on the construction of a k x k Hurwitz matrix 

H =  

a,  a1 . . . . . .  
1 a, . . . . . .  
0 a,  a3 . . .  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -  

k rows 

w 

The first two rows of H are formed from the coefficients of D(s), with zeros 
used for ak+l through Each row following is obtained by shifting one step 
to the right the entries of the row two positions above, and padding the empty 
positions with zeros. This process is continued until the k x k matrix is completed. 
The stability theory based on the Hurwitz matrix is that the zeros of D(s)  are in  
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D, = 

the left half-plane, excluding the imaginary axis, if and only if the determinants 

D,  = a, 

a ,  113 a5 

1 a, a4 
0 a,  a3 

(4D.2) 

The closed-loop transfer function H,.(s) is obtained by substituting (4D.2) into (4D.1) and 
finding the ratio of Az, to z 

- 
K 

s(s  - a , , ) ( s  - a??) + K U s )  = 

where = b , ,a , , a z ,K .  

The characteristic polynomial of the closed-loop system is 

s 3 - ( a , , + a z , ) s 2 + a , , a , , s + K  

4 t 

(4D.3) 

(4D.4) 

I I 

Figure 4.6 Single-loop control of distillation column. 
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Thus, 

a ,  = - a , ,  - a22 

a,  = a ,  , a?? 

a ? =  K 

The Routh table for this example is 

1 
a, = -  

a ,  

a ,  n ,  = - 
K 

Thus, for stability of the closed-loop system we must have 

a ,  > 0 (4D.5) 
_ 
K 

a ,  
a2 - - > o or K < a , a ,  (4D.6) 

K > O  (4D.7) 

The first condition is a requirement on the open-loop dynamics. From the data given 
are both negative, so (4D.5) is automatically satisfied. The about the process a l l  and 

second and third conditions are combined to give 

o < K < a laz  (4D.8) 

which means that the gain K (which is a negative feedback gain) must be positive-i.e., 
only negative feedback is permissible, and that K must be smaller than a fixed positive 
number. 

The Hurwitz matrix for this example is 

and the stability requirements are 

D , = a , > O  

D2 = a , u z  - K > 0 

D, = KD, > 0 

which are the same conditions as obtained using the Routh algorithm. 
In the root-locus method to be studied in the next section we will be concerned with the 

variation of the closed-loop poles with the loop gain K. By the methods to  be explained more 
fully in that section, we find that the roots move from the open-loop poles to infinity. The 
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open-loop poles occur at 

s = o  

s = a l l  (4D.9) 

s = azz 

and the loci of the closed-loop poles have the appearance shown in Fig 4.7. One locus moves 
along the negative real axis, and the other two, after moving together, separate from the real 
axis and move to asymptotes at angles of *60 degrees from the positive real axis. The gain 
at which the loci cross the imaginary axis is the gain at which (4D.6) is an equality: 

K = a l a 2  (4D.10) 

The frequency w at which the crossing occurs is obtained by substituting s = j w  into (4D.4) 

-jw’ - w Z a l  + jwaz  + K = o (4D.11) 

The real and the imaginary parts of (4D. 1 1 ) must simultaneously be zero: 

w 3  - waz = o (4D.12) 

w Z a l  + K = o (4D. 13) 

From (4D.12) we obtain w = 0 (corresponding to  the open loop pole at the origin) and w z  = a2. 
From (4D.13) we obtain w z  = K / a , .  Since by (4D.10) the critical gain K = ala2, the second 
expression for w z  is consistent with the first. 

To obtain the “breakaway frequency” s = -c, at which the root loci join before leaving 
the real axis, we note that at that point, there is a double pole, so the characteristic equation 
must be 

(s + CI)(S + C 2 ) 2  = s3 + ( C ]  + 2 C z ) S 1  + c 2 ( 2 c 1  + cz)s + c,.: 

w = 13.5- 

Figure 4.7 Root-locus for feedback of steam flow rate. 
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Thus we must have 

a ,  = c, + 2c2 

a, = c2(2c, + c2) 

K = c,c: 

which can be solved simultaneously to give c,, c2, and K. Another method of finding the 
breakaway frequency is given in discussion of the root locus method of the next section. Using 
the numerical data for the parameters of this process as given in Example 2G, namely 

a , ,  = -30.3 aZ2 = -6.02 

gives a ,  = 36.32 a2 = 182.4 

Thus the gain at which the roots cross into the right half-plane is 

K = 6625 

and the frequency at the crossing of the axis is 

w = 13.5 

The root loci separate from the real axis at 

s = -cZ -2.84 

and this occurs for a gain K = 247. 

4.6 GRAPHICAL METHODS 

The algebraic tests of Routh and Hurwitz give the precise range(s) of param- 
eter(s) for which a system is stable, and do  not require the calculation of the 
closed-loop poles. They are most useful for testing whether a design is satisfac- 
tory but are not as convenient as some of the graphical methods (root-loci, 
Bode and Nyquist plots) for design purposes. Since frequency-domain design 
methods are not considered in this book, we will not dwell at length on these 
graphical methods, but refer the reader instead to one of the standard textbooks 
on the subject.[4, 1 1, 121 On the other hand, graphical representations can often 
serve as an aid to interpreting the design results that are obtained by state-space 
methods. For this reason, it is worth considering them at least briefly. 

Except for the recent extensions to multivariable systems (as typified by the 
work of Rosenbrock and MacFarlane) the graphical methods are addressed to 
a single-loop system having a return-diff erence function 

T(s) = 1 + K G ( s )  (4.29) 

where K is a scalar gain (the “loop gain”) and G(s) is a rational function 
known as the “open-loop” transfer function. A return difference of the form of 
(4.29) arises directly in the systems shown in Fig. 4.8, but it is always possible 
to manipulate the block diagram of a system so that the characteristic equation 
of the system appears in this form for any system parameter represented by K. 
The graphical methods are devices for elucidating the dynamic characteristics of 
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Figure 4.8 Single-loop feedback system 
return difference T(s) = 1 + K G ( s ) .  

a system having an open-loop transfer function G(s) as the loop gain K is 
varied. 

Root-locus method The root-locus method, developed by Evans[ 131 in 1948 is 
simply a plot of the locations in the complex plane of the roots of T(s) = 0, (i.e., 
the poles of the closed-loop system) as the loop gain is varied. The open-loop 
transfer function is assumed to be a rational function of s, i.e., 

(4.30) 

where C is a real constant, zi ( i  = I , .  . . , n,) are the open-loop zeros and pi 
( i  = 1 , .  . . , n p )  are open-loop poles. If  desired the constant C can be absorbed 
in the loop gain, by defining K = KC. It is seen that as K + 0, the closed-loop 
poles, which are the roots of (4.29), tend to the open-loop poles pi. On the other 
hand, as the gain K tends to infinity, the closed-loop poles tend to the 
open-loop zeros. If  G(s) is a proper rational function, however, there are fewer 
open-loop zeros than open-loop poles. Since the number of closed-loop poles 
does not change as K is varied, where do the closed-loop poles go that do not 
go to the open-loop zeros? They go to infinity. The manner in which they go to 
infinity depends on the excess of poles over zeros. Imagine viewing the complex 
plane from a great distance. From this vantage point all the poles and zeros 
appear to be at the origin and G(s) looks like l / s ( " p - " : ) .  Thus, from this vantage 
point the root-locus equation looks like 

or 

s ' + K = O  (4.3 1) 

where e is the excess of poles over zeros in the open-loop transfer function. 
Thus, as K becomes very large, the root loci that do not terminate at the 
open-loop zeros tend to infinity in the same way as the solutions of (4.31) tend 
to infinity, namely as the eth roots of -K.  Since there are exactly e such,roots 
at equal angles around a circle, these lines are the asymptotes of the root loci 
that tend to infinity. Figure 4.9 illustrates the asymptotic behavior for large 
values of loop gain K of those branches of the root loci that tend to infinity. 

The asymptotic behavior of the root loci can be rationalized another way: 
we can say that the number of poles and zeros are always equal and that the 
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Figure 4.9 Asymptotes of root loci for several 
values of excess poles. 

root loci always go from the poles to the zeros, but that those zeros ( e  in 
number) which are not in the finite part of the s plane lie at infinity. 

Figure 4.9 shows that whenever the excess of poles over zeros is greater 
than 2, the root loci must eventually cross the imaginary axis into the right half 
of the s plane. Consequently, no system having an excess of two or more can be 
stable for all values of gain. Since the excess is two or more in most practical 
systems, the implication is that in practice there is a finite upper limit to the loop 
gain. The ratio of the loop gain at which a system is designed to operate to the 
gain at which it becomes unstable (expressed logarithmically), is known as the 
gain margin of the system. Gain margin is an important consideration in systems 
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in which the loop gain may change during the operating lifetime of the process 
(due possibly to aging of components). 

It must not be inferred that an excess of poles over zeros of 2 or less guarantees 
stability, since the root loci may cross into the right half-plane for finite values 
of gain, and remain there (when e = 2) or cross back into the left half-plane 
when K becomes large enough. 

The root loci cross into the right half-plane through the imaginary axis. 
Except in the trivial case when the crossing of the imaginary axis is through the 
origin ( s  = 0), the loci cross the imaginary axis at points s = *ju. This means 
that the nature of the unforced dynamic response changes from being sinusoidal 
with slight positive damping to sinusoidal with slight negative damping. At the 
dividing line, the response becomes purely sinusoidal: that of a harmonic 
oscillator. The gains that cause the root loci to cross the imaginary axis and the 
frequencies at  which they occur are significant parameters in the root-locus 
method. These frequencies and the gains at which they occur can be obtained 
by setting s = j w  into the characteristic equation and equating the real parts and 
the imaginary parts to zero. The calculation is facilitated by the fact that the 
gains at which the crossings occur also make exact equalities out of the 
inequalities that result from the Routh (or Hurwitz) algorithm. This was already 
illustrated in Example 4C. 

The basic rules for drawing the root loci, as already illustrated are 

The loci move continuously from the open-loop poles to the open-loop zeros or 

The loci approach infinity at lines which are in the direction of the eth roots of 
to infinity. 

-1 = e-’“ from the origin. 

Many other rules for constructing root-locus plots are obtained from the 
basic root locus equation 

(4.32) 

Each factor s - zi or s - p i  is represented in the complex plane by a vector (a  
“phasor” in electrical engineering parlance) from the zero zi or pole pi to the 
point x. If s is a point on the root locus, then (4.32) must hold, i.e., 

(4.33) 

which means that the product of the lengths of all the vectors from the zeros to 
the point s divided by the product of the lengths of all the vectors from the 
poles must come out to be 1/ K and that the sum of all the angles of the vectors 
from the zeros to the point s minus the angles of the vectors from the poles 
must add to -180“. Rules obtained from this general principle, such as the 
directions of departure of the loci from the open-loop poles or of arrival at the 
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open-loop zeros, can be found in various textbooks [ l l ,  121 that concentrate on 
frequency-domain analysis. 

The points at which the loci leave the real axis are known as breakaway 
points. To find these points consider the root-locus equation 

Multiply by the open-loop denominator to obtain the characteristic equation 

P(s) = D ( s )  + K N ( s )  = 0 

The breakaway points are those at which P(s) has a multiple root. Thus if s = a 
is a breakaway point we can write 

P(s) = (s - a)’P1(s) 

where Pl(s) is a polynomial of degree k - 2 obtained by multiplying all the 
factors except the factor (s - a)’ arising because of the multiple root. (P, (s)  
could conceivably have more than a double root at s = a, in which case Pl(s) 
could contain other (s - a )  factors. This is of no concern.) 

The derivative of P(s) with respect to s is 

P’(s) = 2(s - a)P1(s)  + (s - a ) ’ P { ( s )  

P‘(a) = 2(a - a)P(a)  + ( a  - a ) ’ P ’ ( s )  = 0 

Thus, at s = a 

In other words at a breakaway point s = a the derivative of P(s) is zero. If s = a 
is any other point on the root locus, we can write 

P(s) = (s - a)P1(s) 

P’(s) = P1(s) + (s - a ) P ; ( s )  

P’(a) = P*(a)  # 0 

where Pl(a) # 0. It thus follows that 

and hence 

Thus the breakaway points on the real axis are distinguished from all other 
points on the real axis by the property that the derivative of P(s) goes to zero at 
the breakaway points. Note that P‘(s) is a polynomial of degree k - 1 in s, and 
hence finding its roots poses a numerical problem only slightly less complicated 
than finding the roots of P(s)  themselves. If  the latter are to be found with the 
aid of a computer, it is hardly worth the trouble of finding the breakaway points 
by solving for the roots of 

P’(s) = 0 (4.34) 

The reader may wish to verify that P’(a) = 0 at the breakaway points in the 
previous examples. 
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Nyquist diagram The earliest graphical method investigating the stability of 
linear systems was developed by H. Nyquist in 1932[1] and is based on the 
polar plot of the loop transmission transfer function. To understand Nyquist’s 
method, recall that the condition for instability is that 

1 
K 

1 + K G ( s )  = O  or G ( s ) =  -- (4.35) 

for some value of s in the right half of s plane. Conversely, if there does not 
exist a value s in the right half-plane for which G ( s )  = 1/K, then we are 
assured that the system is stable. 

For every point s in the right half-plane, there is a point z = G ( s )  in the z 
plane. (If G ( s )  is a rational function, then for each value of s there is only one 
value of z = G ( s ) . )  Thus the function G ( s )  “maps” the right half of the s plane 
into some region of the z plane. (Since G ( s )  is a continuous function and the 
right half-plane is a contiguous region, the map of the right half-plane by the 
function G ( s )  is also contiguous.) If the region of the z plane that is the map of 
the right half of the s plane under the function G(s) covers the point - l /K the 
system is unstable; if the map does not cover the point -l/K, the system is 
stable. The two cases are depicted in Fig. 4.10. 

The basic principle of the method of Nyquist is thus to determine whether 
or not the map of the right half of the s plane created by the function G ( s )  
covers the point -1/K. Is it necessary to find G ( s )  for every s in the right 
half-plane? The answer, fortunately, is no. There is a theorem in complex 
variables which asserts that the map of the boundary of a region in the s plane 
is the boundary of the map of that region in the z plane. Thus, to find the map 
of the right half of the s plane under G ( s )  we need only find the map of the 

z = G(s)  planc 

Map of  
right half of 
s planc 

3 
z = G ( s )  plane 

Map of 
right half of 
s plane 

Figure 4.10 System with return difference F(s) = I + K G ( s )  is unstable if map of right half of s 
plane covers the point - 1 / K .  ( a )  Stable system; ( b )  Unstable system. 
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boundary of the right half of the s plane. The entire.right half of the s plane is 
unbounded, of course. We get around that difficulty by finding the map of the 
large semicircular region bounded by the imaginary axis between -j0 and j0 
in the semicircle of radius 0 in the right half-plane. Then we pass to the limit 
as s1+ 00. If we are dealing with a proper rational function (i.e., the numerator 
degree is lower than the denominator degree) then as R + 00, G(s) + 0, so the 
whole semicircle maps into just one point: G(s) = 0. 

To construct the map we start an excursion at the origin 0 and “walk” up 
the imaginary axis to the point A as shown in Fig. 4.1 1 ( a )  at which s = j0. The 
map of this portion of the imaginary axis may have the appearance of the 
curve 0‘ - A’ in the G(s) plane as shown in Fig. 4.1 1(b). Then we walk around 
the semicircle to the point B. The map of the semicircle A - B is the arc 
A ‘ -  B’. Finally we return to the origin 0 upward along the imaginary axis 
along the path B - 0 and obtain the corresponding arc B‘ - 0’ in the G ( s )  
plane. The map of the entire right half-plane is obtained by letting 0 +  which 
has the effect of shrinking the arc A’ - B’ to a single point. Since we know that 
the semicircular arc maps into just one point, there is no need to bother with 
that arc. It is enough just to walk up the imaginary axis. 

The map of the imaginary axis separates the map of the right half of the s 
plane from the map of the left half of the s plane. It is necessary of course to 
know which points on the G(s) plane correspond to the points on the right half 
of the s plane, and which correspond to points on the left half of the s plane. 
We are aided in this process by the fact that the transformation z = G ( s )  is 
“conformal”: angles are locally preserved.[ 141 Thus if we take our excursion 

z = G ( s )  plane 

Figure 4.11 How to map right half of s plane into z = G(s) plane. ( a )  Semicircle approximates all 
of right half-plane; ( b )  Map of semicircle. 
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along the imaginary axis with our right hand extended so that it lies over the 
right half-plane, the corresponding excursion over the map of the imaginary 
axis with the right hand outstretched is over the map of the right half-plane. 
This principle is sufficient to identify the map of the right half-plane in all cases, 
and is equivalent to Nyquist’s “encirclement rule” which we shall give later on. 

In Figs. 4.10 and 4.1 1 we drew the maps of the right half-plane (an infinite 
region) as a finite region, because the entire right half-plane outside a semicir- 
cular arc shrinks down to a single point. But what happens if G ( s )  has poles on 
the imaginary axis? In that case, of course, the map of the region near a pole 
will result in very large values of z. Since our excursion along the imaginary 
axis is not permitted, we might consider an excursion along a line in the left 
half-plane parallel to and slightly left of the imaginary axis. This places the 
imaginary axis itself into the right half-plane-the region of instability which is 
where our previous classification of the region of instability would rightfully 
place it. On the other hand one might, with some justification, argue that a 
physical open-loop system is bound to have some damping present and hence 
that the open-loop poles are near but not exactly upon the imaginary axis. This 
means that an excursion up  the imaginary axis is permitted, and that the poles 
encountered on the excursion are to our left. Each approach will result in a 
different Nyquist diagram. But there is no practical difference, because only the 
part of the Nyquist diagram that is remote from the open-loop poles is needed 
to assess the stability of a system. We adopt the approach of keeping the 
imaginary axis poles to our right. Thus, suppose for example, the loop trans- 
mission G(s) has a pole at the origin and a pair of complex poles on the 
imaginary axis at w = w, (as well as poles and zeros elsewhere in the s plane). 
As we proceed along a path parallel to and near the imaginary axis, starting on 
the real axis and going upward, we find that the map starts with a large real 
number and then rapidly becomes a large complex number with phase angle of 
nearly 90”. As the excursion continues upward the map of the line continues to 
evolve in accordance with the total constellation of poles and zeros until the 
line brings us near the pole and jwc. In  the vicinity of this pole the phase angle 
goes from a large number B at a phase angle of +90° to a large number C at a 
phase angle of zero to a large number D at a phase angle of -90” and then to 
zero as w + cx). The mirror image of the contour shown in Fig. 4.12 is the map 
of the lower half of the line parallel to the imaginary axis. As the line in the s 
plane approaches the imaginary axis the points A’, B’, and D’ move toward +tm 
as indicated. 

Although we have been concerned with the map of the entire right half of 
the s plane, it is apparent that the boundary of the map produced by the 
imaginary axis is usually the one feature of the map that is needed to determine 
whether or not a system is stable. I f  the point -1/K is covered by the map of 
the right half of the s plane, the map of the imaginary axis “encircles” the point 
- 1 /  K in a clockwise direction as w increases from 0 to a. But if the map does 
not cover the point - l /K,  the map of the imaginary axis does not encircle the 
point -1/  K in a clockwise direction. Thus, in most cases, only the map of the 
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I L = G(s)  plane 

Figure 4.12 Nyquist diagram for transmission with poles on imaginary axis. 

imaginary axis is drawn and this curve is called the Nyquist diagram. The 
customary stability criterion is thus familiarly stated as follows: 

Nyquist stability criterion A system having a return difference 1 + K G(s) is 
stable if and only if the Nyquist diagram, i.e., the map of the imaginary axis, 
does not encircle the point -1/K in the clockwise direction. 

I t  must be noted that the encirclement test must be performed very carefully 
when the loop transmission G ( s )  itself has poles or zeros in the right half-plane, 
as discussed in various texts on complex variables and systems.[l4] If G ( s )  has 
poles and/or zeros in the right half-plane it is safer to map the entire right 
half-plane by G ( s )  and check whether or not it covers the point -1/K. 

The behavior of the Nyquist plot as w + 0 depends on the order of the pole 
at the origin. If there is no pole at the origin G ( 0 )  is finite and is a real number. 
It is positive unless, for some perverse reason, the dc gain G(0) is defined to be 
negative. If there is a simple pole at the origin then as w + 0, G ( j w )  + C / j w  
which tends to infinity in magnitude and -90" in phase. Similarly if there is a 
double pole at the origin then, as w + 0, G ( j w )  + C / ( ~ W ) ~  = - C / w 2  which 
tends to infinity in magnitude and -180" in phase. And so forth. The order of 
the pole at  the origin is known as the system "type" and, as will be discussed 
in Sec. 4.7, governs the ability of the system to track an input in the form of a 
polynomial time function without steady state error. 

As w + a, the behavior of the Nyquist plot depends on the excess of poles 
over zeros. If the excess is one, the plot approaches the origin along the negative 
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imaginary axis because the G(s) behaves as C / j w  + 0 L-90". If the excess is 
two, the Nyquist plot approaches zero along the negative real axis because G(s) 
behaves as C / ( j w ) '  + 0 L-180". And so forth. 

For a system of high order it is possible for the Nyquist diagram to have the 
appearance shown in Fig. 4.13 in which the map of the imaginary axis of the s 
plane crosses the real axis of the G(s) plane several times. It is not immediately 
obvious which of the enclosed regions are maps of portions of the right half of 
the s plane and which are maps of the left half. The rule about walking up the 
map of the imaginary axis with the right hand outstretched is helpful in this 
case. Following that rule we see that regions 0, 0, and 0 belong to the right 
half-plane but regions 0 and @ belong to the left half-plane. This means that 
as K is increased ( - l /K  + 0 along the negative real axis) the system is stable 
until -1/K crosses into region 0 when the system becomes unstable. It 
remains unstable until K is raised sufficiently to make - 1 / K fall into region @, 
which is a region in which the system is stable. It remains stable until K is 
further increased to bring - I /  K into region 0, when the system again becomes 
unstable and remains so as K + 00. I f  the gain K is chosen to put -1 /K in 

io 

__* 
U 

Figure 4.13 Nyquist diagram of a condi- 
tionally stable system. (System is stable if 
- I / K  is in regions 1 or 4.) 
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region @ the system is said to be conditionally stable. A conditionally stable 
system is generally undesirable because of the danger that a reduction of gain 
as well as an increase can make the system unstable. Sometimes there is no way 
to avoid conditionally stable systems, but it is often possible to design a 
compensator to shape the Nyquist diagram to avoid having conditional stabil- 
ity. Methods that can be used to accomplish the required shaping are discussed 
in textbooks on frequency-domain methods of control system design.[ 1 1, 121 

The Nyquist diagram is used not only to assess the stability of a system (by 
determining whether the map of G ( s )  covers the point - l /K,  but also to 
investigate system “robustness” which is a measure of how much the system 
can change without becoming unstable. The further away the point -1/K is 
from the map of the right half-plane, the more the system transmission (i-e., the 
map of the right half-plane under G(s)) can change without endangering 
stability. Hence it is desirable that this distance be substantial. A quantitative 
measure of this distance is the gain margin as discussed in Sec. 4.9 which deals 
with robustness in general. 

Bode plots The Nyquist diagram can be regarded as a polar plot of the 
magnitude and phase of G(s) when s = j w ,  that is, a polar plot of the magnitude 
and phase of G ( j w )  with the frequency w serving as a parameter. The same 
information can be presented in a pair of plots: one of the magnitude and the 
other of the phase of G ( j w ) ,  each as a function of frequency w. These are 
known as the Bode plots of G ( s ) .  In particular let 

G ( j w )  = IG( jw) I  eieGcu) 

where I G ( j w ) l  and e G ( w )  are known as the magnitude and phase functions of 
the loop transmission G ( s ) .  Instead of plotting IG( jw) l  it is customary to plot 

D ( w )  = 20 log,, IG( jw) l  

Regardless of the units of G(s), the units of D ( w )  are invariably decibels 
(abbreviated dB). Since there is no physical significance to the logarithm of a 
quantity that is not dimensionless, i.e., the ratio of two physical variables of the 
same type (e.g., voltage out/voltage in, etc.) it is not strictly proper to use the 
decibel notation unless G(s) is a dimensionless ratio, i.e., unless the input and 
the output are the same physical type. But this improper usage is universally 
condoned and accepted. 

The plot of D ( w )  vs. w is known as the Bode amplitude plot and the plot 
of OG(w)  vs. w is known as the Bode phase plot. 

The Bode plot for a transfer function that has only real poles and zeros is 
particularly easy to construct graphically. In particular, consider a system 
having a loop transfer function 

(4.36) 
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This form of G(s) is especially convenient for Bode plots because each factor in 
the numerator and the denominator is unity at s = 0 and hence the dc gain, 
G ( 0 )  = Go is explicitly exhibited. When s = j w  

(1  +f) . * . (1 +$) 
( 1  +;) . . . (1 +;) 

G ( j w )  = Go 

and hence 

[ 1 + (32]1/2.. . [ 1 + (92]'/2 
[ 1 + (;)2]1/2.. . [ 1 + 

I G ( b ) l  = 1Gol (4.37) 

Thus 

D ( w ) = 2 0 1 0 g ~ G o ~ + 1 0 1 0 g [ l + ( ~ ) z ]  + - - - + 1 0 1 0 g [ l + ( z ) 2 ]  

- lolog[  1 + (31 - .  . . - lolog[  1 + (32] (4.38) 

and (for Go > 0 )  

(If  the dc gain Go is negative, a 180" phase shift must be added to (4.39).) These 
results may be interpreted as follows: (Fig. 4.14.) 

The log-magnitude plot D ( w )  is the sum of the log-magnitude plot of each 
contributing factor and the phase plot is the sum of the phase plots of each 
contributing factor. 

With increasing frequency, the contribution of a zero is an increase in both the 
log-magnitude and the phase; the contribution of a pole is a decrease? in 
both log-magnitude and phase. 

The contribution of a typical zero or pole is shown in Fig. 4.14. It is seen 
that at the frequency w = zi or o = pi the magnitude is exactly twice its value at 
dc ( w  = 0) and the phase shift is exactly 45". As the frequency is further increased 

'r The phase relation is valid only when the contributing pole or zero is in the left half plane, that 
is, p ,  or zi is positive. If the zero or pole is in the right half plane, then zi or p ,  is negative, and the 
phase contribution is opposite. Bode[2] has called such poles or zeros nonminimum phase. 
Nonminimum phase poles are indicative of an unstable open loop system, of course. The effect of 
open loop zeros is more subtle, however, and is discussed in greater detail in Note 4.7. ' 
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Frequency 

Figure 4.14 Bode plots for a zero and for a pole. 

S 
I + -  

-, 

the contributions to log-magnitude plots are 

D i ( w ) +  l o l o g ( E ) 2 -  2010g($) forazero 

Q ( W )  + -10 log ($’ = -20 log (i) for a pole 

Thus, if  a logarithmic frequency scale is used Di is asymptotic to a line having 
a slope of 20 (dB) for each tenfold increase in frequency, that is, “20dB per 
decade.” The slope is positive for a zero, and negative for a pole. The asymptote 
intersects the logarithmic frequency axis at o = zi or o = pi. At these frequen- 
cies, known as the “corner” frequencies, the exact gain is +10 log 2 = 3.010 dB, 
so these are also known as the “ 3  dB” frequencies. 

The phase contribution from each factor tends to +90”. (Positive for a zero; 
negative for a pole.) 

The log-magnitude and phase curves for the overall system are obtained by 
simply adding the curves of each contributing factor. Thus, for example, the 
log-magnitude and phase curve for 

has the appearance shown in Fig. 4.15. The maximum deviation from the 
straight line approximation is 3 dB. 
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.- C 

d 

Frequency, radls 4sr 

- 90L 

Figure 4.15 Bode plot for 

(s + l ) ( s / S  + 1) 

( s / 2 +  l)(s/ lO+ l)(s/20+ 1 )  
G(s) = 

A pole or a zero at the origin is treated slightly differently, because the log 
magnitude is not finite as w + 0. A zero at the origin means that D ( w )  + -a; a 
pole at the origin means that D ( w )  + +a. These are the plots for a corner 
frequency of 0;  in other words a zero at the origin contributes an increasing 
log-magnitude line with a constant slope of +20 dB/decade; a pole at the origin 
contributes a decreasing log-magnitude line with a slope of -20 dR/decade. 
Each passes through 0 dB at w = 1.  The phase angle due to a pole is a constant 
of -90 degrees and the phase angle contribution of a zero is a constant +90 
degrees. 

The Bode plots for a transfer function G ( s )  that has complex poles or zeros 
is more complicated, because the straight-line approximation as illustrated in 
Fig. 4.13 is not applicable since a transfer function with a complex-conjugate 
pair of poles will include a factor of the form 

1 
G i ( s )  = 

1 + 2 5 ( S / W " )  + (s/wrJ2 

The log-magnitude and phase functions corresponding to (4.40) are 

(4.40) 
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M 111 
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Figure 4.16 Bode plots for second-order system 

0: 

s2 + 250,s + 0; 
G(s) = 

The log-magnitude and phase curves vs. normalized frequency w/wo are 
shown in Fig. 4.16 for various damping factors ranging from f = 0.1 (lightly 
damped) to f = 1.0. It is seen that as the damping becomes very small, the 
log-magnitude becomes very large in the vicinity of the natural frequency w = wo, 
and the phase shift rapidly changes from angles close to zero to angles close to 
180", crossing through exactly 90" at w / o o  = 1. 

The frequency w, at which the peak (often called a resonance peak)  in the 
log-magnitude plot occurs can be found by taking the derivative of (4.41) with 
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Figure 4.17 Gain at resonance of 

0; 

s2 + 250,s + 0;  
G ( s )  = (0, = fi",) 

respect to x = (o/o0)' and setting it to zero. It is found that this frequency is 
given 

w, = J1- 2c2wO 

which means that there is no resonance peak for 5 > 1/45. For 5 < I/&, the 
gain at resonance is given by 

a graph of which is shown in Fig. 4.17. 

Example 4E Hydraulically actuated gun turret (continued) In Example 4B we found the 
transfer function between the input u and the output angle 0 of the hydraulically actuated gun 
turret. Using the numerical data given in Example 2D for azimuth control: 

K ,  = 94.3 L, = 1.0 J = 7900 K ,  = 8.46 X lo6 

o,, = 45.9 and K,, = 6.33 X 

we find numerically that 

100 980 
s(s3+ 140.2s2+ lO449s+ 100980) 

H ( s )  = (4E.I) 
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. .  
e 105 

s(s3 + 140s' + 10439s + lo5) 

Figure 4.18 Closed-loop control of gun turret. 

The root-locus equation for the closed-loop process (see Fig. 4.18) is 

I00 980K 
s(s3 + 140.2~~ + 10449s + 100980) 1 +  (4E.2) 

The open-loop poles of the process are at s = 0 and at the roots of the cubic factor 
s3 + 1 4 0 . 2 ~ ~  + 10 449s + 100 980. The latter are found numerically to be located at 

s = -11.2 

s -64.5 * j69.6 
Since there are four poles and no (finite) zeros of the transfer function, the root loci all 

go to a parallel to lines at 145" and *135" angles from the real axis. 

-80 
1 
4 0  
I 
-20 

Figure 4.19 Root-locus plot for feedback control of hydraulically actuated gun turret. 



1- CONTROL SYSTEM DESIGN 

-45 

M 

a 

m r a 

i -90 

To find the frequency and gain for crossings of the imaginary axis we set s = jw in the 
characteristic equation 

s4 + 140.2s’ + 10449s’ + 100 980s + 100 980K = 0 (4E.3) 

with s = jw this becomes 

w4 - j140 .20~ - 10 4490~ + jl00 980w + 100 980K = 0 

~ 

or, on equating the real and the imaginary parts to zero, 

w4 - 10 449~’ + 100 980K = 0 

- 140.20’ + 100 9800 = 0 

-45 

M 

a 

m r a 

i -90 

(4E.4) 

(4E.5) 

~ 

I 
100.0 

-60 I I I I 
0.1 1 .o 10.0 100.0 

Frequency, Hz 

-135 

-180- 

- 

-1 -l3! 80 

Figure 4.20(n) Bode plots for factors of G(s). 

1 

s( 1 +’)[ 11.2 1 +2(0.68)& t (&)’I G ( s )  = 
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The second equation gives o = 0, the starting point of,the locus, and 

o = 4100 980/ 140.2 = 26.8 

and this value of o when substituted into (4E.5) gives K = 69.4. The same value of K could 
have been obtained by use of the Routh or the Hurwitz algorithm. (See Prob. 4.9.) 

The root locus plot for this system is shown in Fig. 4.19. 
The transfer function, in factored form, is 

G ( s )  = 
100 980 

s(s  + 1 1  .2)(s2 t 129s + 9016) 

I 
s(1 + s/11.2)[1 + 2(0.68)(~/95) + (s/95)'] 

- - 

The Bode plots for each factor in G(s) are shown in Fig. 4.'20(a); the composite is shown in 
Fig. 4.20(b). 

The Nyquist plot corresponding to G ( s )  is shown in Fig. 4.21. 

fTz 
+ 10.0 

-20.01 

-1 10.0 

- I W . O L  
0.1 0.3 

L -258 

- 3M 
0.1 0.3 

I l l  

3ldecade 

I 
0 3.2  1 

Frequcncy 

lecade 

-80 dBldecade 

Y 
A 
0 31.6 11 0 

1.0 
Frcquency 

Figure 4.20( b )  Bode plots for gun turret. 
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\ d  

-0.3 -0.2 -0. I 
2.0 7 I I b 

0 .  1 0.2 cr 

41.  I 

Figure 4.21 Nyquist diagram for hydraulically actuated gun turret. 

Example 4F Missile dynamics The motion of a missile about its pitch axis was shown in 
Example 3F to be given by 

(4F. 1 ) 
q = M,CY + M,S (assuming M ,  = 0) 

where n is the angle of attack 
q is the pitch rate 
S is the control surface deflection 

The control surface is rotated by means of an actuator, the dynamics of which is typical of a 
first-order lag: (Fig. 4.22) 

I 
d = - ( u - S )  (4F.2) 

7 

where I I  is the input to the actuator. 
A missile guidance system typically issues a guidance command in the form of the desired 

acceleration uNc normal to the missile velocity vector. The function of the autopilot, the design 
of which shall be considered in several examples later in the book, is to make the achieved 
normal acceleration aN “track” the commanded acceleration with good fidelity. I t  is thus 
appropriate to deal with the error e between the commanded and the achieved normal 



F
R

E
Q

U
E

N
C

Y
-D

O
M

A
IN

 
A

N
A

L
Y

S
IS

 153 

r
 

-9 



154 CONTROL SYSTEM DESIGN 

1 - 2 0  

acceleration. The latter is given by 

aN = Z,u + Z,S 

The transfer function from u to aN is determined to be: 

1 Z,s2 + Z,M, - Z,M, 
H(s) = ~ 

7s + 1 2, 
V 

s 2 + - s -  Ma 

(4F.3) 

(4F.4) 

A representative set of numerical values for a hypothetical highly-maneuverable missile are: 

V = 1253 ft/s 

Z, -4170 ft/s' 

Z,=-I115ft/s' 

M ,  = -248 rad/s' 

M ,  = -662 rad/s 

7 = .01 S 

For these values we obtain 

- l l l 5 ( ~ ~ - 2 2 2 8 )  
H(s) = 

(0.01s + l)(s2 + 3.33s + 248) 
(4F.5) 

The zeros of the denominator are at 

s = -100 

and at 

s = -1.67*j15.65 

and the zeros of the numerator are at 

s = *47.2 

Note that the dc gain of H(s) is positive: A positive input produces a positive response. 
But for high frequencies H(s) + -1115/(0.01s + 1) which produces a negative response for a 
positive input. The change of sign in the transfer function as the frequency is increased is 
another consequence of the right half-plane zero of H(s) and is the source of apparent 
paradoxical behavior of the system. One paradox is in the root locus, shown in Fig. 4.23. I t  is 
observed that as the gain is increased from zero in the positive direction the one branch of the 

Figure 4.23 Root loci for missile dynamics. K increasing. 
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root locus crosses the imaginary axis at s = 0 and then continues to the real root as s = 47.1. 
This behavior is clear from the characteristic equation: 

s3 + (100.33 + K ) s z +  581s + 24800 ~ 2228k = 0 

where 

k = 1 1  1 500K 
The coefficient of so vanishes at 

- 24800 K =-=11.13 
2228 

and hence there is a pole at the origin for this value of K. 

The graphical methods of Nyquist and Bode have an advantage over the 
algebraic Routh-Hurwitz methods: They are not restricted to rational transfer 
functions and thus not limited to systems characterized by ordinary differential 
equations. Thus they are applicable to systems characterized by partial-diff eren- 
tial equations and pure delays. The following example provides a frequency- 
domain explanation for the instability exhibited (as found in Chap. 1) by a 
system with a delayed output. 

Example 4G Pure delay In Chap. 1 we considered a system whose output y( t )  is a faithful, but 
delayed, version of the input u ( t )  

y ( t )  = u ( t  - T )  (4G.1) 

The Laplace transform of the delayed input is 

y(s) = e-"u( t  - T )  dt = e - r ( r + T )  U(T) dr  (4G.2) 1: I: 
On the assumption that u ( t )  is zero for t < 0, (4G.2) becomes 

y(s) = , - S T  I: e - s r u ( r )  dr = e- 'Tu(s)  

Thus, the transfer function of a pure delay is 

G ( s )  = Fs7 

with s = j w  

Thus 

and 
O,(w) = -wT 

The Nyquist diagram is thus a circle centered at the origin as shown in Fig. 4.24(a), and 
the closed-loop system, having the return difference 

T(s) = 1 + KG(s) = 1 + K e-IT (4G.3) 

is unstable for K > 1, as was found in Chap. 1. The Bode diagram has a constant amplitude 
of 1 (OdB) and a linearly decreasing phase (which does not look linear on a logarithmic 
frequency axis as shown in Fig. 4.24 for T = 0.01 s ) .  

Next Page 



CHAPTER 

FIVE 
CO NTROLLABI LITY AND 0 B S ERVABILITY 

5.1 INTRODUCTION 

Some state-space concepts can be regarded as reinterpretations of older, 
frequency-domain concepts ; others are distinctive to state-space methods. Con- 
trollability and observability are in this latter category. 

The ideas of controllability and observability were introduced by R. E. 
Kalman in the mid 1950s as a way of explaining why a method of designing 
compensators for unstable systems by cancelling unstable poles (i.e., poles in 
the right half-plane) by zeros in the right half-plane is doomed to fail even if the 
cancellation is perfect. (It was already known that this method of compensation 
was not feasible because perfect cancellation is not possible in practice. See 
Note 5.1.) Kalman showed that a perfect pole-zero cancellation would result in 
an unstable system with a stable transfer function. The transfer function, 
however, is of lower order than the system, and the unstable modes are either 
not capable of being affected by the input (uncontrollable) or not visible in the 
output (unobservable). 

In frequency-domain analysis it is tacitly assumed that the dynamic proper- 
ties of a system are completely determined by the transfer function of the 
system. That this is not always the case is illustrated by the following example. 

Example 5A Hypothetical system Figure 5.1 shows the block-diagram of a hypothetical system 
contrived specifically to illustrate the concepts of controllability and observability. There is no 
reason, however, why it would not represent some physical process. 

190 ' 
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Figure 5.1 Hypothetical fourth-order system to illustrate controllability and observability. 

The differential equations of the system, obtained by inspection of the block-diagram are 

x, = 2x, + 3X’ + 2x3 + x, + u 

x, = -2x, - 3x, - 2 u  

x3 = -2x, - 21’ - 4x, + 2u 

x, = -2x, - 2x, - 2x3 - 51, - u 

and the observation equation is 

y = 7x, + 6x, + 4x3 + 2x, 

(5A.1) 

(5A.2) 

Thus, the matrices of the state-space representation are: 

3 2  

A =  B =  C = [ 7  6 4 21 
-2  -2 -4 

-2 -2 -2 - 5  

The resolvent corresponding to A is given by 

(sZ - A) - ’  = 

1 s3 + 12s’ + 47s + 6 3s2 + 21s + 36 2s2 + 14s i 24 s? + 7s + 12 

- 23’- 18s-40 s 3 + 7 s ’ +  8s - 16 - 4.y 16 - 2 s -  8 

- 2s’- 12s - 10 -2s ‘ -  12s - 10 .y3 + 6s2+  7 s +  2 - 2 s -  2 

- 2s’- 6 s -  4 - 2 ~ ~ -  6 s -  4 -2s ’ -  6 s -  4 s 3 + 5 s 2 + 8 s +  4 
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where 
A ( s )  = Is1 - A1 = s 4 +  21s3 + 35s2+ 50s + 24 

Thus the transfer function from the input u to the output y is given by 

s' + 9s' + 26s + 24 

s4 + 21s3 + 35s' + 50s + 24 
H ( s )  = C(s1 - A) - IB  = (5A.3) 

which is the ratio of a third-degree polynomial to a fourth-degree polynomial-quite as 
expected. On factoring the numerator and denominator, however, we discover that 

1 

s + 1 
-__ - 

(s  + 2)(s + 3)(s + 4) 
H(s )  = 

(s + I)(s + 2)(s + 3)(s + 4) 
(5A.4) 

Thus, three of the poles (at s = -2, -3, and -4) are cancelled by zeros at exactly the same 
locations, and what seems to be a fourth-order transfer function is actually only first-order. 

To help explain this rather remarkable behavior, the following change of state variables 
is performed: 

where 
c = 7% 

4 3 2 1  -1 0 

Tz[. 2 2 2 1  I] and T-1 =[-i 0 -1 - I  2 - I  

I l l 1  0 -1 
The matrix T happens to be a diagonalizing transformation 

and the corresponding control and observation matrices are 

Hence the corresponding state equations are 
i ,  = -XI + u 

i2 = -2X, 

x, = -32, + u 

i4 = -4f4 

and the observation equation is 
y = XI + X2 

(5A.5) 

(5A.6) 

A block-diagram representation of (5A.5) and (5A.6) is shown in Fig. 5.2. Clearly, the input u 
affects only the state variables f, and 2,; f2 and f4 are unaffected by the input. The output y 
depends only on 2,  and X,; f ,  and f, do not contribute to the output. Thus, in the transformed 
coordinates, the system has four different subsystems. (In this case each subsystem is only 
first-order.) 

XI: affected by the input; visible in the output 
X,: unaffected by the input; visible in the output 
f,: affected by the input; invisible in the output 
X4: unaffected by the input; invisible in the output 

Only the first subsystem X I  contributes to the transfer function H(s), which clearly is 
l / ( s  + I) .  
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Figure 5.2 
subsystems. 

System equivalent of Fig. 5.1 showing separation into controllable and observable 

Example 5A is a microcosm of the general case. As Kalman has shown,[l] 
every system of the generic form 

X = Ax+ Bu 
y = cx 

can be transformed into the four subsystems of Fig. 5.2. The first subsystem is 
both controllable and observable: the second is uncontrollable but observable; 
the third is controllable but unobservable; and the fourth is neither observable 
nor controllable. The transfer function of the system is determined only by the 
controllable and observable subsystem. It thus follows that if the transfer function 
of a single-input, single-output system is of lower degree than the dimension of 
the state-space, then the system must contain an uncontrollable subsystem, or an 
unobservable subsystem, or possibly both. By convention, if a system contains 
an uncontrollable subsystem it is said to be uncontrollable; likewise, if it contains 
an unobservable subsystem it is said to be unobservable. (See Note 5.2 . )  

The system in the foregoing example is asymptotically stable: all its poles 
are in the left half-plane, so the consequences of the system being unobservable 
and uncontrollable are innocuous. Any initial conditions on the uncontrollable 
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and unobservable states decay harmlessly to zero. But suppose that one of the 
uncontrollable or unobservable subsystems were unstable. The resulting behavior 
could well be disastrous: a random disturbance, no matter how small, which 
establishes a nonzero initial state will send the subsystem off to infinity. Murphy’s 
law par excellence! 

There is a distinction between an uncontrollable system in which the uncon- 
trollable part is stable and one in which the uncontrollable part is unstable. A 
system of the former type is said to be stabilizable, and the uncontrollable part 
often can be safely ignored by the control engineer. 

Similarly, there is a distinction between an unobservable system in which the 
unobservable subsystem is stable and one in which it is unstable. The former 
type is said to be detectable, and the unobservable part usually can be safely 
ignored in the control system design. 

5.2 WHERE DO UNCONTROLLABLE OR 
UNOBSERVABLE SYSTEMS ARISE? 

The example of an uncontrollable and unobservable system that was given in 
the previous section is highly contrived. One might suspect that such systems 
are academic curiosities and do not arise in the real world. But in fact 
uncontrollable and unobservable systems are not at all uncommon, as the 
illustrations of the present section will reveal. 

Redundant state variables One common source of uncontrollable systems arises 
when redundant state variables are defined. Consider, for example, the dynamic 
system 

X = A x + B u  

and suppose, for some reason, more state variables, proportional to those 
already present in the state vector x are defined: 

z = FX (5.1) 

where F is an n x k matrix. Then 

i = FX = F(Ax + B u )  

is a true differential equation, so we can define a “metastate” vector 

which satisfies the differential equation 

X = A x + B u  
where 
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The system characterized by (5.2) has the block diagram shown in Fig. 
5.3(a) .  There is a path from the input u to the state x and to the (redundant) 
state z; superficially the system seems to be controllable. But consider the 
change of variable 

where 
f i  = Tx (5.3) 

where I, ( I  = k, n) is an 1-by-1 identity matrix. (Multiply T by T-'  to verify 
(5.41.) 

The dynamics matrix of the transformed system is given by 

A 0  

and the control matrix is given by 

1 

Figure 5.3 Redundant state produces an uncontrollable system. ( a )  System with redundant state 
z = Fx; ( b )  System of ( a )  after being transformed by X = Tx 
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Thus, in the transformed system, 

k = A%+ Bu 

i = Q  (5 .5 )  

Differential equation (5.5) represents k integrators with no inputs connected to 
them (Fig. 5 . 3 ( b ) )  and hence the substate z is uncontrollable. 

All the algebra used above is really quite superfluous. The transformation T 
of (5.3) merely asserts that 

Z = Z - F X  

and, by virtue of (5.1), Z = 0, so surely ( 5 . 5 )  must hold. 
Now of course no one would intentionally use more state variables than the 

minimum number needed to characterize the behavior of the dynamic process. 
In a complicated process with unfamiliar physics, however, the control system 
engineer may be tempted to write down differential equations for everything in 
sight and in so doing, may write down more equations than are necessary. This 
will invariably result in the model for an uncontrollable system. 

Physically uncontrollable system Another instance of an uncontrollable system 
is one in which the only forces and torques are internal to the system. For 
example, as a consequence of Newton’s law of action and reaction, the location 
of the center of mass of a closed system cannot be changed by use of forces 
within the system. This is illustrated by the following example. 

Example 5B Motion of coupled masses with internal force Consider the system comprising two 
carts coupled by a (passive) spring, as shown in Fig. 5.4. In addition to the spring force, an 

H c i- 

I I 

Figure 5.4 Center of mass of system cannot be moved by internal force. 
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active control force f is to be provided by some means within the system, so that whatever the 
force on cart 1, an equal and opposite reaction force from that source must push on cart 2. 
Thus the differential equations of the pair of carts are 

(5B.1) dx 1 

dx2 . 

_ -  dr - %  

(5B.2) _ -  
dr - x2 

(5B.3) _ -  dxl k f 
- -- ( x ,  - x,) - - 

dr m ,  ml 

~- dx2 k f 
- -- ( x 2  - X I )  + - 

dr rn2 m2 
(58.4) 

From (58.3) and (5B.4) 

dx dx, d 

I dt dr dr 
rn -+ rn - = - ( m , x ,  + rn,x,) = o 

Thus 

m l x l  + m2x2 = rnx, = const 

where 

m l x l  + mzx2 

m1+ m2 
rn = m , + r n ,  x,= = center of mass 

Thus the center of mass of the system cannot be moved by the internal force 1: 

(5B.I)-(5B.4) the state vector is 
This physical fact is formally illustrated by matrix analysis. For the original system 

x = [ X I .  x,, x,, XJ’ 
and the corresponding matrices are 

A =  

r o  0 

0 

We make the change of state variables 

m1 m2 

rn m 
x, = - XI + - x2 

6 = X I  - x, 

i, = - X I  +-x2 

6 = x  - i  

m ,  . m2 . 
rn rn 

1 2  

Then 

(5B.5) 
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Thus 

L o  0 I - 1  J 

Thus we find that 

A =  TAT-’ = 

0 0 0 1  

1 1 m 2 / m  0 0 
1 - m , / m  0 0 

0 0 1 m Z / m  

0 0 1 - m l / m  

0 1  
0 

0 

- ( l / m l  + I / m Z )  

Hence, as  expected, the differential equations of the transformed system are 

dS 

dt 
-- - 8  

The internal force f can change the distance S between xI and x2 but not the coordinates xI 
and x2 independently. To  d o  that, an external force is needed. 

This example illustrates that the mathematical model must be consistent with the physics 
of the system. The A and B matrices must be exactly as given by ( 5 8 . 5 ) .  If an error in 
calculation were made, for example, such that the fourth element in the B matrix were not 
l / m 2  but some other number, the system would seem to be controllable and one might try to 
move the center of mass by using the force 1: But of course no  matter how large we make 1; the 
center of mass won’t move. 

Too much symmetry Another situation that results in an uncontrollable system 
arises when the system in question has too much symmetry. This typically arises 
in electrical networks that contain balanced bridges, and in mechanical systems 
which have similar symmetry. This is illustrated by the following example. 

Example 5C Balanced bridges are uncontrollable The differential equations of the electrical 
network, or its thermal analog, shown in Fig. 5 .5 ,  were found in Chap. 2 to be 

(5C.I) 

(5C.2) 

Consider the difference voltage 
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e'li' 
Figure 5.5 Electrical bridge network. 

The time-derivative of i, using (5C.1) and (5C.2) is 

!3= dr -[&+;) +&J1 + [&+&(d,+d,)lU2 
e0 

R2C2 - R ,  c, + 
C ,  C z R l  R ,  

I f  the bridge is balanced, i.e., 

RIG, = R2C2 

(5C.3j 

(5C.4) 

then the coefficient of the input voltage eo vanishes. And moreover, the bracketed coefficients 
of uI and u, become equal. Thus (5C.3) reduces to 

di7, R ,  + Rz + R ,  
U I  

-~ - - 

dt C , R , R ,  

This means that the voltage U, = u, - uz between the terminals of R,  cannot be influenced by 
the input eo; the voltage i& decays from whatever initial voltage it starts with to zero with the 
time constant 7 = C,  R ,  R 3 / (  R ,  + R2 + R, )  irrespective of the input. 

If the only observation is the voltage U1 = u1 - u2, then the system is also unobseruable. To 
see this we define the transformed state 

v, = u ,  - U? 

U? = u2 

To this definition of transformed voltages there corresponds the transformation matrix 

The transformed differential equations are 

and the observation is given by 

y = v, 
When the bridge is balanced there is no path from U2 to the output, hence V 2  cannot be 
observed. (See Fig. 5.6.) 
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1 _  
CZR; 

Figure 5.6 Block diagram showing that balanced bridge is neither controllable nor observable. 
(Elements with * open when bridge is balanced.) 

When numerical values are inserted for the physical parameters in the systems 
of Examples 5B and 5C there is no way of distinguishing between the qualitative 
nature of the uncontrollability of the two systems: they are both simply uncontrol- 
lable. But physically there is a very important distinction between the two systems. 
The two-mass mechanical system is uncontrollable for euery value of the param- 
eters (masses, spring rates); the only way to control the position of the center 
of mass is to add an external force. This necessitates a structural change to the 
system. The balanced bridge, however, is uncontrollable only for one specific 
relationship between the parameters, namely the balance condition (5C.4). In 
other words, the system is almost always controllable. (As a practical matter, it 
will be difficult to control IJ, and u2 independently when (5C.4) is nearly true. 
This raises the issue of degree of controllability, a topic discussed in Note 5.3.) 

It is important for the control system engineer to recognize this distinction, 
particularly when dealing with an unfamiliar process for which the state-space 
representation is given only by numerical data. A numerical error in calculating 
the elements of the A and B matrices, or an experimental error in measuring 
them, may make an uncontrollable system seem controllable. A control system 
designed with this data may seem to behave satisfactorily in simulation studies 
based on the erroneous design data, but will fail in practice. On the other hand, 
a process that appears to be uncontrollable (or nearly uncontrollable), but which 
is not structurally uncontrollable, may be rendered more tractable by changing 
some parameter of the process-by “unbalancing the bridge.” 

Example 5D How not to control an unstable system (inverted pendulum) There are many ways 
of designing perfectly fine control systems for unstable processes such as the inverted 
pendulum of Examples 2E and 3D. These will be discussed at various places later on in this 
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C O M P E N S A T O R  I N V E R T E D  P E N D U L U M  

Figure 5.7 Unstabilizable compensation of inverted pendulum. 

book. But one way guaranteed to be disastrous is to try to cancel the unstable pole with a zero 
in the compensator. The reason for the disaster is the subject of this example. 

Consider the inverted pendulum of Example 3D with the output being the measured 
position. The transfer function from the input (force) to the output (position) is 

This is obviously unstable. A much better transfer function would be 

1 
H(s) = ___ 

s(s + n) 

(5D.1) 

(5D.2) 

which is stable and, because of the pole at the origin, would be a “type-one” system, with zero 
steady state error. Thus, one might be tempted to “compensate ” the unstable transfer function 
by means of a compensator having the transfer function (Fig. 5.7) 

(5D.3) 

with 
fi=n 

Of course it will not be possible to make fi precisely equal to n so the compensation will not 
be perfect. But that is not the trouble, as we shall see. 

The compensator transfer function (5D.3) represents “proportional plus integral ” com- 
pensation which is quite customary in practical process control systems. The transfer function 
of the compensated system is now 

(5D.4) 

A block diagram representation of this system is shown in Fig. 5.7, and the state-space 
equations corresponding to this representation are 

x, = x2 

x, = n2x, - x3 + u (5D.5) 

x, = b u  
where x3 is the state of the integrator in the compensator. The matrices of the process (5D.5) 
are 
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i 
L 

Figure 5.8 Partial fraction representation of Fig. 5.7. 

The A matrix can be transformed to diagonal form by the transformation matrix 

n -1 

We find that 

n - 6  
1 B =  T B = -  - (n+n)  

m Z [  2n - 1 
The state-space representation of the transformed system is as shown in Fig. 5.8.  This 

block-diagram corresponds directly to the partial-fraction expansion of (5D.4): 

6/n? (n - d)/2nz -(a + d2)/2n2 
H,(s) = __ + + (5D.6) 

S s-n s + n  
Note carefully what happens when d + n. In the block-diagram the connection between 

the control input u .and the unstable state x, is broken, rendering the system uncontrollable 
and unstabilizable. In (5D.6) the residue at the unstable pole vanishes. But now we understand 
that the vanishing of a residue at a pole of a transfer function does not imply that the subsystem 
giving rise to the pole disappears, but rather that it becomes “invisible.” 

If the original inverted pendulum could have arbitrary initial conditions, the transformed 
system (5D.5) could also have arbitrary initial conditions and hence the inverted pendulum 
would most assuredly not remain upright, regardless of how the loop were closed between the 
measurement y and the control input u. 

More reasons for unobservability The foregoing examples were instances of 
uncontrollable systems. Instances of unobservable systems are even more abun- 
dant. An unobservable system results any time a state variable is not measured 
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Figure 5.9 Systems in tandem that are unobservable 

directly and is not fed back to those state variables that are measured. Thus, any 
system comprising two subsystems in tandem (as shown in Fig. 5.9, in which 
none of the states of the right-hand subsystem can be measured) is unobservable. 
The transfer function from the inputs to the outputs obviously depends only on 
the left-hand subsystem. 

Physical processes which have the structure shown in Fig. 5.9 are not 
uncommon. A mass rn acted upon by a control force f is unobservable if only 
its velocity, and not its position, can be measured. This means that no method 
of velocity feedback can serve as a means of controlling position. In this regard 
it is noted that the integral of the measured velocity is not the same as the actual 
position. A control system shown in Fig. 5.10 will not be effective in controlling 
the position x of the mass, no matter how well it controls the velocity 1; any 
initial position error will remain in the system indefinitely. 

In addition to the obvious reasons for unobservability there are also some 
of the more subtle reasons such as symmetry, as was illustrated by Example 5C. 

5.3 DEFINITIONS AND CONDITIONS FOR 
CONTROLLABILITY AND OBSERVABILITY 

In Secs. 5.1 and 5.2 we found that uncontrollable and/or unobservable systems 
were characterized by the property that the transfer function from the input to 

Figure 5.10 Position of mass cannot be observed and cannot be controlled using only velocity 
feedback. 
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the output is of lower degree than the order of the dynamic system. We were 
able to trace this to the fact that some combinations of state variables are not 
capable of being affected by the input or not being visible in the output. 

It is useful to give these concepts more precision with the aid of more 
precise definitions. 

We start with the following basic: 

Definition of controllability A system is said to be controllable if and only 
if it is ,possible, by means of the input, to transfer the system from any 
initial state x( t )  = x, to any other state xT = x( T )  in a j n i t e  time T - t 2 0. 

The emphasized words “any” and “finite” are essential to the definition. If 
it is only possible to make the system go from some states to some other states, 
then the system is not controllable. Moreover, if it takes an infinite amount of 
time to go from the arbitrary initial state to the arbitrary final state the system is 
likewise not controllable. 

( In  some texts, a system is called completelv controllable when it is possible 
to transfer it from any state to any other state in finite time.[2] A system is not 
completely controllable when it is possible only to transfer it from some states.) 

In the definition of controllability the initial time t is not specified and the 
final time is not fixed. This is done to accommodate time-varying systems, in 
which it may happen that the possibility of reaching xT from x, depends on the 
initial time t .  (See Note 5.2.) In  a time-invariant system, however, no generality 
is lost in taking the initial time t to be zero. 

The terminal time T must be finite in order for the system to be control- 
lable. In time-varying systems it may be necessary to restrict T to be greater 
than some fixed time, say But in time-invariant systems, as we shall see, the 
only restriction on T is that it be greater than zero. (In fact, if the use of 
impulsive inputs is permitted, it is possible in a controllable system to go from 
any state to any other state in zero time, i.e., instantaneously. (See Note 5.2.) As 
a practical matter, it is possible in a controllable system to go from any state to 
any other state in an arbitrarily short time if we are willing to use a sufficiently 
large input.) 

Controllability theorem A system is controllable if and only if the matrix 

P (  T, t )  = @( T, h ) B ( h ) B ‘ ( h ) @ ‘ (  T, A )  dA (5.6) J r 
is nonsingular for some T > t, where @( T, f )  is the state-transition matrix of 
the system. 

It is not at all obvious what this strange matrix integral, often called the 
controllability grammian, has to do with controllability. The integral appears to 
have been fetched from out of the sky. Later in the book, we will encounter 
integrals of this type quite often. 



CONTROLLABILITY A N D  OBSERVABILITY 205 

Since there is no obvious connection between ,the controllability grammian 
and getting from the state x ,  to the state xT,  we should not be surprised that 
the proof of the controllability theorem is not entirely obvious. And it isn’t. The 
nonobvious part of the theorem is the necessary condition, namely that if the 
integral P ( T ,  t )  is singular for all finite T > f, then there are some states that 
can’t be reached by any input. 

To prove that the existence of an inverse of the controllability grammian 
guarantees the ability of going from any state x, to any other state xT, we recall 
from Chap. 3 (Eq. (3.21)) that 

T 

xT = @( T, t ) x ,  + [ @( T, h ) B ( A ) u ( h )  dh (5.7) 
I 

Now suppose that P(T ,  t )  is nonsingular (i.e., has an inverse) on the interval 
[ t ,  TI for some finite T. Then an input that forces the process from x, to xT is 
given by 

(5 .8 )  u ( A )  = B’(A)@’( T, A ) P - ’ (  T, t ) [ x T  - @( T, t ) x , ]  for t 5 A 5 T 

To verify this just substitute (5 .8 )  into (5.7): 
T 

Xr = O( T, t ) x ,  + I @( T, A)B(A)B’ (h)@’(  T, A )  dh P- ‘ (  T, t ) { x ,  - @( T, t ) x , }  
r 

(5.9) 

By (5.6) the integral in (5.9) is P ( T ,  t ) ,  so (5.9) becomes 

X T  = O( T, t ) x ,  + X T  - @( T, t ) x ,  

which is an identity. This verifies that the input (5 .8 )  does indeed transfer the 
system from x ,  at time t to xT at time T. 

Note that the input given by ( 5 . 8 )  requires the inverse P - ’ (  T, t )  which exists 
only if P (  T, t )  is nonsingular for some t and T > t. If P (  T, t )  is singular for all 
T > f, then the input ( 5 . 8 )  cannot be used to transfer x,  to xT.  But perhaps we 
can use some other input. The answer is no, and demonstrating this constitutes 
the second part of the proof. We want to show that there are some states that 
can’t be reached if P (  T, t )  is singular for all finite T > f. Consider some time T 
for which P(T ,  t) is singular. Then there must be some nonzero vector u such 
that 

u‘P( T, t ) u  = 0 

Thus, by the definition (5.6) 

IrT u’@( T, h ) B ( h ) B ’ ( A ) @ ’ (  T, h ) u  dh = 0 (5.10) 

The integrand can be written 

lrT z ‘ ( A ) z ( A )  dh = 0 (5.1 1) 
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where 
z ( A )  = B'(A)O'(T,  A)u (5.12) 

Since the integrand is a sum of squares: z : ( A ) + .  . .  + z ' , ( A )  it must be 
nonnegative. The only way that an integral, over a positive interval T > t, of a 
nonnegative quantity can be zero, is when the integrand itself is identically zero 
over the entire interval. Thus, for a singular grammian we have found a vector 
u for which 

z ( A )  = B ' ( A ) W ( T ,  A ) u  = 0 for all A in the interval [r, TI (5.13) 

Then, as we shall see, it is impossible in the time interval [ t ,  TI to get from the 
origin to any state in the direction of u. Suppose the contrary: that it is possible 
to go to a state cu (where c is a scalar) in the direction of u. Then, with x, = 0, 
by (5.7) we must have 

cu = [ O(T, A ) B ( A ) u ( A )  dA 
T 

(5.14) 
r 

On premultiplying both sides of (5.14) by u' we find 

cu'u = u'@( T, A ) B ( A ) u ( A )  dh (5.15) 

The left-hand side of (5.15) is clearly nonzero. But the integrand of the 
right-hand side is z ' (A)u(A) and in (5.13) we have found that z ( A )  = 0 in the 
entire interval [ t ,  TI. Thus, the right-hand side of (5.15) is zero, independent of 
the input. This is a contradiction. We are forced to conclude that no input can 
transfer the system from the origin to a state cu in the interval [r, TI. If the 
controllability grammian is singular for all t and T there will always be some 
states that we will not be able to reach in any finite time. Hence the controllabil- 
ity grammian must be nonsingular for some r and T >  t, in order that the 
system be controllable. This completes the proof. 

I: 

The controllability theorem and its proof are the contributions of R. E. 
Kalman. See Note 5.1. 

For a time-invariant system, the controllability grammian is given by 

dt P (  T - t )  = eACT-') BB,  e A ' ( T - - h )  dA = loT-' e A f ~ ~ ~  e A ' f  I: 
or simply 

P(  T )  = eA'BB' eA" dt I: 
The matrix used for the controllability test is sometimes written 

e-A'BB' e -A ' f  dt 

(5.16) 

(5.17) 
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which is not the same matrix as P( T )  but which can easily be shown to have the 
same rank as P ( T ) .  

Matrices having the form of the controllability grammian (5.6) in the 
general case, or in the form of (5.16) in the time-invariant case, sometimes need 
to be evaluated for optimum control and estimation problems, as will be 
discussed from Chap. 9 onward. But to evaluate the integrals merely for the 
purpose of testing controllability of a system seems a great deal of effort to 
achieve a simple objective. A simpler test would be most welcome. For 
time-varying systems there does not seem to be a simpler alternative. But for 
time-invariant systems, several simpler alternatives are available. We have 
already used one of the alternatives in the examples: transform the matrix to 
diagonal form (or block-diagonal form) and find whether or not any subsystem 
cannot be reached by the input. It may not always be easy to do this, however. 
A still simpler criterion, based on the rank of the matrix [ B ,  AB, . . . , Ak- 'B] ,  
will be given in the next section. We postpone a discussion of this condition, 
however, until addressing the topic of observability. We shall see that a close 
similarity exists between the concept of controllability and the concept of 
observability, which make it desirable to treat the two concepts together. 

Just as the output y is not considered in the definition of controllability, the 
input u is generally not considered in defining observability. Thus, we deal with 
the unforced system 

x = A(t)x 

with the observation given by 

Y ( t )  = C( t )x ( t )  

We use the following: 

Definition of observability An unforced system is said to be observable if  
and only if it is possible to determine any (arbitrary initial) state x(f)  = X, 

by using only a finite record, Y(T) for t 5 T 5 T, of the output. 

This definition seems to square with our intuitive concept of what ought to 
constitute an observable system. Note that the definition requires ability to 
determine the initial state no matter where that state might be in the state-space. 
If only some, but not all, initial states can be determined, then the system is not 
observable. 

The general condition for observability is given by the following: 

Observability theorem A system is observable if and only if the matrix 

M ( T ,  t )  = @'(A, t)C'(A)C(A)@(A, t )  dA (5.18) 

is nonsingular for some T > t ,  where @( T, t )  is the state-transition matrix of 
the system. 

I: 
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The matrix M( T, t )  for testing observability is often called the observability 
grammian, and bears a strong resemblance to the controllability grammian 
(5.6): in place of the transition matrix @( T, A )  in (5.6),  its transpose appears in 
(5.18); in place of the control matrix B in (5.6), the transpose of the observation 
matrix C appears in (5.18). Because of the close resemblance between con- 
trollability and observability, these are frequently referred to as dual concepts. 

To prove the observability theorem we use the fact that the output y is 
given by 

y(A) = C(A)@(A,  t ) x ,  ( A  2 t )  (5.19) 

when the system starts in the state x,. Multiply both sides of (5.19) by 
@'(A, t )C' (A)  and integrate over the interval [ t ,  TI to obtain 

t )C ' (A)y (A)  dA = @'(A, t )C' (A)C(A)@(A,  t )  dA 

The integral on the right-hand side of (5.20) is recognized as the observability 
grammian M (  T, t )  of (5.18). Thus, if the observability grammian is nonsingular, 
we can solve (5.20) for x,: 

x, = M- ' (  T, t )  @'(A, t )C ' (A)y (A)  dA (5.21) 

This formula furnishes an actual procedure for finding the initial state x,, given 
y ( t )  over the interval of the integral. Of course, it may not be the only way to 
determine x,. Perhaps another way can be found to determine x, that does not 
entail the inverse of the observability grammian. The answer, as we already 
suspect, is no. The reason why the answer is no is a consequence of an 
argument like that used for establishing the dual result for controllability: if the 
observability grammian M ( T ,  t )  is singular then there exists a vector w for 
which the function 

I, 

q ( A )  = C(A)@(A,  t ) w  = 0 forallA intheinterval[t, TI 

This function q ( A ) ,  which is identically zero over the interval [ t ,  TI is precisely 
the output of the system when the initial state is w. It thus follows that if the 
initial state is w or anywhere on the line cw it will yield an output of zero and 
there will be no way of determining that initial state. If the observability 
grammian is singular for every t and T, there will always be some initial state 
which will produce zero outputs for intervals of any length, and hence the 
system is not observable. 

For time-invariant systems the observability grammian of (5.18) may be 
written 
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or simply 

M (  T )  = eA"C'C eAr  d7 I: (5.22) 

Other forms of the observability grammian are also used, such as 

n ; i ( ~ )  = e - A ' r C ' C e - A r d t  

Again, as with controllability, these matrices are not equal to M ( t )  but have the 
same rank. 

Also, as is the case with controllability, it is not necessary to evaluate the 
observability grammian to test for observability. There is a simpler algebraic test 
which is the subject of the next section. 

I: 

5.4 ALGEBRAIC CONDITIONS FOR 
CONTROLLABILITY AND OBSERVABILITY 

In the previous section we have seen that the necessary and sufficient condition 
for controllability of a time-invariant system is that the controllability grammian 
P( T ) ,  given by (5.16), be nonsingular for some finite time T. 

The algebraic criterion equivalent to this is expressed by the following: 

Algebraic controllability theorem The time-invariant system X = Ax + Bu is 
controllable if and only if the rank r ( Q )  of the controllability test matrix 

Q = [ B  A B  . . -  A k - ' B ]  (5.23) 

is equal to k, the order of the system. 

Note that Q is a matrix having k rows and kl columns, where 1 is the 
number of inputs. The rank of Q thus cannot be greater than k But the rank of 
Q can be smaller than k. If so, the system is not controllable. 

To prove the algebraic controllability theorem we note that if P( T )  is singular, 
then, by (5.13), there is a nonzero vector u such that the function 

z ( t ) = B ' e A ' ' u = O  for O S f S T  (5.24) 

Since the function z ( t )  is identically zero (flat), all its derivatives must also be 
identically zero. Thus we must have 

i ( r )  = B'A' eA'ru = 0 

z ( t )  = B ' ( A ' ) ~  eA"U = 0 
. . . . . . . . . . . . . . . . . . . . . . .  
Z ( k - l ) (  t )  = B'(Al)k-l  eA'fU 0 

We can keep going with this process but there is no need to do  so. 

(5 .25)  
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We can arrange (5.24) and (5.25) in the following form: 

k columns 
P 

(5.26) 

The long matrix in (5.26), is Q'. Let its columns be denoted by g l ,  g2,. . . , q k :  

Q ' =  [91 92 . . . S k l  
Also let 

At e v =  

Thus (5.26) becomes 

a k-dimensional vector 

In other words, the columns of Q' are linearly dependent, which implies that the 
rank of the matrix Q' must be less than the order k of the system. We have thus 
established that if the controllability grammian is singular the rank of the matrix 
Q' is less than k. Since the rank of any matrix is equal to the rank of its 
transpose, we also can say that the singularity of the controllability grammian 
implies that the rank of Q is less than k 

To prove the converse, we expand eA' in a power series in t :  

eAr = I + At + A2t2/2! + .  . . + Ak-'tk-l/(k - I ) !  + Aktk/k!  + .  . - (5.28) 

By the Cayley-Hamilton theorem, however, 

A k  = -a,Ak-'  - a2Ak-* - . . . - a, I (5.29) 

where a1, a,, . . . , a k  are the coefficients of the characteristic polynomial of A. 
Thus, by repeated use of (5.29), any power of A greater than k - 1 can be 
expressed as a polynomial of degree k - 1 in A. Thus (5.28) can be written as 

eAr = Ifl( t )  + Af2( t )  + . . . + Ak-lfk( t )  

where f l (  t ) ,  f2( t ) ,  . . . , f k (  f )  are the time functions obtained by substituting the 
expressions for powers of A higher than k - 1 into (5.28) and collecting terms. 
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(The proof doesn't depend on what these functions are.) Thus 

Thus the controllability grammian can be expressed as 

f 3 t )  . . . fl(tlfk(t> 
p (  T )  = Q I,' [ . . . . . . . . . . . . . . . . . . . . . . . 

(5.30) ] dt Q' 
f l ( r ) f k ( r )  * '  . f2k(f) 

= QGQ' 

If we knew the functions Jl , .  . . , f k  we would have an expression for P( T )  in 
terms of the grammian matrix G appearing in (5.30) between Q and Q'. But no 
matter what this matrix is, the rank of P ( T )  cannot be greater than the rank of 
Q, since the rank of the product of matrices cannot exceed the rank of any of 
its factors. Thus, if the rank of Q is less than k, then the rank of P ( T )  must 
surely be less than k, which means, of course, that P (  T )  must be singular. 

This completes the proof of the algebraic controllability theorem. 

Since Q is a constant matrix it has constant rank. Thus, if Q is singular, 
then P ( T )  is singular for every T Similarly, if P ( T )  is nonsingular for any 
T > 0, it must be nonsingular for every T > 0. This means that if a system is 
controllable, there is an input that will transfer the system from any starting 
state to any other state in an arbitrarily short time. The shorter the time, the 
larger the needed input, of course. 

From the manner in which the algebraic controllability theorem was estab- 
lished using the controllability grammian, we can immediately assert the dual: 

Algebraic observability theorem The (unforced) time invariant system 

x = Ax 

with the observation vector 
y = c x  

is observable if and only if the rank r ( N )  of the observabiliry test matrix 

N = [ C '  A'C' . . . [ A t ) k - l C t ]  (5.31) 

is equal to  k, the order of the system. 

Intuitively, one might conjecture that the ranks of the controllability gram- 
mian P and the corresponding matrix Q are related to each other and to the 
dimension of the subspace of states that can be reached. It turns out that this 
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conjecture is quite correct. In fact, the ranks of P (  T ) ,  and Q, and the dimension 
of the “controllable subspace” are all equal. Likewise, the ranks of the 
observability grammian M ( T )  and N and the dimension of the “observable 
subspace” are all equal. Complete proofs of all these facts is beyond the scope 
of this book. (See Note 5.2.) But we can gain insight into why this happens by 
considering transformations of state variables. In particular, suppose 

X = Tx 

so that the matrices for the transformed system are 

A= TAT-’ B =  TB c = CT-1 (5.32) 

Then the controllability test matrix for the transformed system is 

( p [ B  Ajj . .  . p ’ B ]  

But from (5.32) 
A’B = TA’T-ITB = TA’B 

Thus 
O = [ T B  TAB * . .  T A k - ’ B ] =  TQ 

Since the rank of a product cannot exceed the rank of either factor 

r ( Q )  5 r ( Q )  

Q = T-10 

r ( Q >  5 r < O )  

r ( Q )  = r ( 0 )  

But 

so  

Thus we conclude that 

In other words, the rank of the controllability matrix is invariant to a change of 
state variable. Suppose that the transformed system is block-diagonal, i.e., 

and, moreover, that the subsystem (of order k , )  corresponding to A, is 
controllable, but that no input at all goes to the subsystem (of order k 2 )  
corresponding to A2. Thus, we have 

The controllability test matrix is 
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A k , - - l  - The upper left submatrix [BI AIBI - - , B , ]  is the controllability test 
matrix of the controllable subsystem, so it is of rank‘ k,. Thus the matrix 0 is at 
least of rank k , .  But it cannot be of rank greater than k, because it contains k, 
rows of zero elements. Thus the rank dejciency k, = k - k, of 0 is precisely 
equal to the dimension of the subspace which receives no input. Because the 
controllability matrix of the original system has the same rank as 0, the 
dimension of the subspace that is uncontrollable remains equal to k,. 

The very same transformation concept applies to the relationship between 
the dimension of the “unobservable” subspace and the rank of the observabil- 
ity test matrix. 

The block-diagonal matrix A can be the matrix of the Jordan canonical 
form. In that case, as discussed in Chap. 4, the state variables are the “normal 
modes” of the system. All the normal modes which can be controlled can be 
identified with subsystem 1 and all those normal modes which cannot be 
controlled can be identified with subsystem 2. It thus follows immediately that 
the rank of the controllability test matrix Q is equal to the number of 
controllable normal modes. Similarly, the number of observable normal modes 
is equal to the rank of the observability test matrix N. 

These concepts are illustrated by the following examples. 

Example 5E Hypothetical system (continued from Example 5A) The test matrix Q for controlla- 
bility of the hypothetical system of Example 5A is 

L-1 3 -9 27J 

The sum of the elements in each column of Q is zero so Q is clearly singular. Moreover, 
the sum of the elements of the first two rows minus the fourth row are also zero. Thus, only 
two rows of Q are linearly independent and the rank of Q is thus 2. 

The test matrix N for observability of the system is 

r 7  -10 16 2 8 1  

6 -9 15 -27 

4 -6 10 -18 
N = [C’ A’C’ (A’)2C‘ (A’)’C’] = 

L 2  -3 5 -9J 

It is similarly verified that the rank of N is 2. 
Thus, there are two observable modes and two controllable modes. This is clear from Fig. 

5.2. But since one of the controllable modes is also an observable mode, one mode remains 
that is neither observable nor controllable. 

Example 5F Coupled masses with an internal force The controllability test matrix for the 
system of Example 5B is 

r 0 - v m 1  0 k m l  m h 2 1  

0 - k m / m ,  m: 
( m  = rn, + m2) I/m2 

- l / m l  0 km/m:m2 0 
Q = [ B  AB A2B A3B]= 
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The third and fourth columns of Q are proportional to the first and second, respectively, so the 
rank of Q is only 2, as expected from Example 5B. The two uncontrollable state variables are 
the position of the center of mass x, and its derivative f .  

Example 5G Distillation column A schematic diagram corresponding to the simplified model 
of the distillation column as developed by Gilles and Retzbach[3] (Example 2G) is shown in 
Fig. 4.2 on page 120. It is observed that there is a path from the input Au, (steam flow rate) to 
each of the state variables. Nevertheless, the process cannot be controlled by uI alone, because 
x2 and xg are both integrators and thus give the appearance of redundant state variables. It is 
also evident that the process is not controllable from the input Au, (vapor side stream flow 
rate): there is not even a path from u2 to x, and to x,. But, by using both inputs, the process 
is controllable. 

These facts can be veriEed by use of the algebraic controllability criterion. First, consider 
the single input u I .  The corresponding control matrix is 

Hence, the controllability matrix Q ,  corresponding to u, is given by 

Ql =[El  AB, A2Bl A3BJ 

0 , 1 4 2  

The upper left-hand 3-by-3 submatrix is triangular and thus has a nonzero determinant (unless 
a,] = 0). Thus the rank of Q,  is at least 3. But 

Thus, the rank of Q, < 4. Thus, we conclude that the rank of Ql = 3, which means that the 
process is not controllable using only Au,. The control matrix for the input Au2 is 

and the corresponding controllability matrix is 

r o  o o 01 

which has a rank of 1. 
The controllability matrix using both inputs is a 4 x 8 matrix whose columns are the 

columns of Q ,  and Q2, interlaced. If the system is controllable, the resulting matrix must have 
four linearly independent columns, for example, the first three columns of QI and the first 
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column of Qz. The determinant of the matrix formed from these columns is 

Except for specific values of a,2. a4?, b,,, and b,, the determinant A # 0 and hence, the 
controllability matrix has a full rank of 4 and the process is, in general, controllable using both 
inputs. From the numerical data given with Example ZG, it is seen that a3* and a4, are of the 
same magnitude, while b,, and b42 are very much different in magnitude. Thus, A is not even 
approximately zero and the process is easily controllable using both inputs. 

It is very important to recognize that the algebraic controllability and 
observability tests are only valid for time-invariant systems. That they are not 
generally valid for time-varying systems is vividly illustrated by a simple, but 
practical example, in which the state vector x is a constant: 

X = O  (5.33) 

hence the dynamics matrix A is zero. If the observation matrix C is constant 
then the observability test matrix 

N = [ C ’  0 0 - . .  01 (5.34) 

N has rank k if and only if C has rank k, i.e., that there are as many 
independent components of the observation vector as there are components in 
x.  If C is time-varying, the observability test matrix is still given by (5.34) which 
would imply that x is unobservable, unless C is of rank k. But in fact x may be 
observable even if the observation vector y is a scalar, if C is time varying. 
Consider the scalar observation 

At k different time instants t , ,  t 2 , .  . . , tk we have 

Y ( G )  = C ’ ( ~ 1 ) X  

Y ( f 2 )  = c’( t2)x 

or 

If the time instants ti  are chosen such that the matrix multiplying x is 
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nonsingular, then 

X =  [ “(q --I [ y(q 
C ’ ( l k )  Y ( t k )  

Determination of an unknown constant vector by looking at it at different times, 
or “from different angles” is a standard procedure in the calibration of 
instruments, and the selection of suitable time instants, depending on the nature 
of c ( t ) ,  or the design of a suitable c ( t ) ,  is an important issue in practical 
calibration procedures. See Note 5.4. 

5.5 DISTURBANCES AND TRACKING SYSTEMS: 
EXOGENOUS VARIABLES 

In order to use state-space methods on design problems in which there are 
reference inputs and/or disturbances, it is frequently desirable to represent 
these inputs and disturbances by additional state variables. 

The particular dynamic process we might wish to control would be of the 
form 

X = AX + BU + F X d  (5.36) 

where xd is a disturbance vector (which may or may not be subject to direct 
measurement). 

In addition, we might wish to require that the state x track a reference 
state x,. 

To formulate the problem purely in terms of state variables, it is often 
expedient to assume that xd and x, satisfy known differential equations: 

(5.37) 

(5.38) 

These supplementary states are surely not subject to control by the designer, 
so that these are unforced differential equations. The system comprising x, xd, 
and x, is necessarily uncontrollable. (Fig. 5.1 1 .) 

In general, we are concerned with the error defined by 

e = x - x ,  (5.39) 

The differential equation for the error using (5.36) and (5.38) becomes 

6 = X - X ,  = A ( e  + X , )  F X d  + BU - A,& 

= A e  + ( A  - A,)x ,  + Fxd + Bu = A e  + Exo + Bu (5.40) 

where 

E = [ A  - A, 1 F ]  (5.41) 
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L -, Disturhances 

. 

Rcfcrence modcl 

Figure 5.11 State-space representation of system wif 
disturbances and reference state are uncontrollable.) 

disturbances and reference inpu 

and 

xo = [-;;-I 

(Models for 

(5.42) 

The vector xo represents the “exogenous” inputs to the system. To the 
differential equation of the error is adjoined the equations for the reference and 
disturbance states to produce a system of order 2 k  + 1 having the “metastate” 
vector 

and satisfying the ‘‘ metastate equation” 

x = A x + B u  

(5.43) 

(5.44) 
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where 

(5.45) 

where 

is the dynamics matrix for the exogenous inputs, now a substate of the 
metastate vector x. 

In some cases, only the error can be measured. In that case, the observation 
equation is 

y = Ce = Cx 

where 

C = [ C  I 0  01 

More generally, however, it might be possible to measure the error, the 
reference state, and the disturbance state. Hence the general form of the 
observation equation is 

y Get? + C,x, + c d x d  

and hence, the general observation matrix is given by 

c = [ c e  I cr cdl 
A schematic representation of the metasystem is shown in Fig. 5.1 1. The 

subsystems for the disturbance x d  and the reference x, are clearly not control- 
lable. With c d  and C, present, the system is likely to be observable. But even if 
only Ce is present, the system may be observable because there is a path from 
x, to the output through the subsystem that generates the error. 

The very natural way in which an uncontrollable system arises when 
exogenous disturbances and reference inputs are modeled does not alter the fact 
that such systems are uncontrollable and hence that design techniques based on 
the premise of a controllable system cannot be applied willy-nilly to the 
metasystem. This doesn't imply that these methods are useless for this type of 
metasystem (or other types of uncontrollable systems) but rather that it is 
necessary to be cautious in their use. 

PROBLEMS 

Problem 5.1 Exogenous variables: controllability and observability 

Consider the metasystem (5.44) with A and B as given by (5.45) 
( Q )  Using the algebraic controllability test (5.23), show that the metasystem is not control- 

lable. (This result is intuitively obvious.) 
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( b )  Assume that only the state x (and not xo) is measured, i.e., y = Cx, and that the original 
system x = Ax + Bu is observable (i.e., [C', A'C', . . . , (A' ) ' - 'C' ]  is of rank k). Discuss the 
conditions under which the metasystem is observable. 

Problem 5.2 Two-car train 

Consider the two-car train of Probs. 2.5 and 3.9. 
(a) Is it controllable using only one motor? 
( b )  Is it controllable using both motors? 
(c) Is it observable if only the position z ,  of the first car is measurable? 
(d) Is it observable if the velocity u ,  of the first car is measurable? 
(e) Is it observable if the velocities of both cars are measurable? 

Problem 5.3 Aircraft lateral dynamics: controllability 

Consider the lateral aircraft dynamics of Prob. 4.4. 
(a)  Is the dynamic process controllable using only the ailerons? 
( b )  Is the dynamic process controllable using only the rudder? 

Problem 5.4 Inverted pendulum on cart: observnbility 

Consider the inverted pendulum on a motor-driven cart described in Probs. 2.1 and 3.6. 

(a) Cart displacement: y = x, ; 
( b )  Pendulum angle: y = x,; 
(c) Cart velocity: y = x,; 
( d )  Cart velocity and pendulum angle: y ,  = x2, y, = x3. 

Determine whether or not it is observable with the following sets of observations: 

Problem 5.5 Double-effect evaporator: controllability 

Determine whether or not the evaporator of Example 2H is controllable from each of the 
following combinations of inputs: 

( a )  u ,  only; 
( b )  u ,  and uz;  
(c) u ,  and us;  
( d )  u2 and u3. 
If the system is not controllable for any of the above cases, explain why not and, if possible, 

identify the states that are not controllable. Hinf: Refer to Fig. 2.21. 

Problem 5.6 Double-effect evaporator: observability 

Determine whether or not the evaporator of Example 2H is observable from each of the 

(a) x, and x,; 
( 6 )  x, and x,; 
(c) x3, x4, and x5. 
If, in any case, the system is not observable, explain why not and, if possible, identify the 

following combinations of outputs: 

unobservable states. 

NOTES 

Note 5.1 Background of controllability and observability 

In 1954 Bergen and Ragazzini[4] presented a method of compensating a sampled-data system 
by solving for the transfer function of the compensator given the desired closed-loop transfer 
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function. They recognized that this method of compensation entailed cancellation of undesirable 
poles and zeros of the plant and substitution of more desirable ones. A mathematically exact 
cancellation would not be possible with real hardware. Thus they developed rules governing the 
incorporation of “nonminimum phase” (Note 4.7) poles and zeros into the specification of the 
desired closed-loop transfer function. 

Kalman observed that the problem of nonminimum phase pole-zero cancellation would be 
present even if the cancellation were mathematically perfect, because the resulting system would 
turn out to  be uncontrollable. With J .  E. Bertram he presented a state-space design procedure[5] 
making use of state variable feedback in which the concept of controllability is hinted at. By 1960, 
Kalman had fully elucidated the concept of controllability and the dual concept of observability.[6] 

Note 5.2 Varieties of controllability and observability 

In  this book we say a system is controllable if it is possible to find an input which brings it to 
the origin (or any other state) from any state in a finite time. (Kalman called such a system 
completely controllable.[l]) If a system is not controllable, it can be divided into two subsystems, 
one of which (if it exists) is controllable and the other is uncontrollable. If the uncontrollable 
subsystem is stable, the entire system is said to be stabilizable. The set of stabilizable systems thus 
includes the controllable systems as a subset: every controllable system is stabilizable, but not every 
stabilizable system is controllable. Similar distinctions apply with regard to observability. A system 
that is not observable (completely observable, in Kalman’s terminology) can be divided into two 
subsystems, one of which (if it exists) is observable and the other is not. If the unobservable 
subsystem is stable, the entire system is said to be detectable. Thus the observable systems are a 
subset of the detectable systems. 

These definitions and concepts are adequate for time-invariant systems, a category that 
includes most systems considered in this book. When time-varying systems are considered, however, 
the situation becomes more complicated. In a time-invariant system controllability is independent 
of the initial time. If this is true in a time-varying system, the system is said to be uniformly 
controllable. The dual of uniform controllability is uniform observability. With regard to the latter, 
it is noted that our  definition of observability requires the ability to determine the present state 
based on future outputs. In a time-invariant system this is equivalent to the ability to determine the 
present state on  the basis of past outputs. These are not necessarily equivalent, however, in 
time-varying systems. Thus we have another concept, namely reconstructahility, which is the ability 
to determine the present state from past inputs. 

A reasonably comprehensive treatment of observability, controllability, and various derivative 
concepts can be found in [2]. 

Note 5.3 Degree of controllability 

By the definition of this chapter, a system is either controllable or it is not. In the real world, 
however, it may not be possible to make such sharp distinctions. An electrical bridge network, for 
example, is uncontrollable (or unobservable) for one discrete combination of its parameters. Since 
exact mathematical balancing is not possible, every practical bridge network is controllable and 
observable. If the balance condition is close to being satisfied, however, it will be  very difficult to 
control or to observe all the state variables of the bridge. The problem with the standard definitions 
of controllability and observability is that they can lead to discontinuous functions of the system 
parameters: a n  arbitrarily small change in a system parameter can cause an abrupt change in the 
rank of the matrix by which controllability or observability is determined. It would be desirable to 
have definitions which can vary continuously with the parameters of the system and thus can reflect 
the degree of controllability of the system. Kalman et a1.[6] recognized the need and suggested using 
the determinant of the corresponding test matrix or grammian as  a measure of the degree of 
controllability or observability. Friedland,[7] noting that basing the degree of controllability or 
observability on  the determinant of the test matrix suffers from sensitivity to the scaling of the state 
variables, suggested using the ratio of the smallest of the singular values to the largest as a 
preferable measure. Moore[B] subsequently elaborated upon this suggestion. 
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Note 5.4 Application to calibration 

T h e  development of an analytical technique for the determination of a constant vector b based 
on time-varying measurement signal y ( t )  = C ( t ) b  and generalizations of this technique is con- 
sidered by Friedland.[9] 
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CHAPTER 

SIX 
SHAPING THE DYNAMIC RESPONSE 

6.1 INTRODUCTION 

At last we have arrived at the point of using state-space methods for control 
system design. In this chapter we will develop a simple method of designing a 
control system for a process in which all the state variables are accessible for 
measurement-the method known as pole-placement. We will find that in a 
controllable system, with all the state variables accessible for measurement, it is 
possible to place the closed-loop poles anywhere we wish in the complex s 
plane. This means that we can, in principle, completely specify the closed-loop 
dynamic performance of the system. In principle, we can start with a sluggish 
open-loop system and force it to behave with alacrity; in principle, we can start 
with a system that has very little open-loop damping and provide any amount 
of damping desired. Unfortunately, however, what can be attained in principle 
may not be attainable in practice. Speeding the response of a sluggish system 
requires the use of large control signals which the actuator (or power supply) 
may not be capable of delivering. The consequence is generally that the actuator 
saturates at the largest signal that it can supply. In some instances the system 
behavior may be acceptable in spite of the saturation. But in other cases the 
effect of saturation is to make the closed-loop system unstable. It is usually not 
possible to alter open-loop dynamic behavior very drastically without creating 
practical difficulties. 

Adding a great deal of damping to a system having poles near the imaginary 
axis is also problematic, not only because of the magnitude of the control 
signals needed, but also because the control system gains are very sensitive to 
the location of the open-loop poles. Slight changes in the open-loop pole 

222 
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location may cause the closed-loop system behavior to be very different from 
that for which it is designed. 

We will first address the design of a regulator. Here the problem is to 
determine the gain matrix G in a linear feedback law 

u = -Gx (6.1) 

which shapes the dynamic response of the process in the absence of distur- 
bances and reference inputs. Afterward we shall consider the more general 
problem of determining the matrices G and Go in the linear control law 

u = -Gx - Cox0 

where xo is the vector of exogenous variables. The reason it is necessary to 
separate the exogenous variables from the process state x, rather than deal 
directly with the metastate 

(6.2) 

x =  [-;I (6.3) 

introduced in Chap. 5, is that in developing the theory for the design of the gain 
matrix, we must assume that the underlying process is controllable. Since the 
exogenous variables are not true state variables, but additional inputs that 
cannot be affected by the control action, they cannot be included in the state 
vector when using a design method that requires controllability. 

The assumption that all the state variables are accessible to measurement in 
the regulator means that the gain matrix G in (6.1) is permitted to be any 
function of the state x that the design method requires. In most practical 
instances, however, the state variables are not all accessible for measurement. 
The feedback control system design for such a process must be designed to use 
only the measurable output of the process 

y = cx 

where y is a vector of lower dimension than x. In some cases it may be possible 
to determine the gain matrix G, for a control law of the form 

u = -G,y (6.4) 

which produces acceptable performance. But more often it is not possible to do 
so. It is then necessary to use a more general feedback law, of the form 

u = -G2 

where 2 is the state of an appropriate dynamic system known as an “observer.” 
The design of observers is the subject of Chap. 7. And in Chap. 8, we shall show 
that when a feedback law of the form of (6.5) is used with a properly designed 
observer, the dynamic properties of the overall system can be specified at will, 
subject to practical limitations on control magnitude and accuracy of 
implementation. 



224 CONTROL SYSTEM DESIGN 

6.2 DESIGN OF REGULATORS FOR 
SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS 

The present section is concerned with the design of a gain matrix 

for the single-input, single-output system 

X = AX + Bu (6.7) 
where 

With the control law u = - G x  = -g’x (6.7) becomes 

X = ( A  - bg’)x  

Our objective is to find the matrix G = g’ which places the poles of the 
closed-loop dynamics matrix 

A, = A - bg’ (6.9) 

at the locations desired. We note that there are k gains g l ,  gz ,  . . . , gk and k 
poles for a kth order system, so there are precisely as many gains as needed to 
specify each of the closed-loop poles. 

One way of determining the gains would be to set up the characteristic 
polynomial for A,: 

ISI - A,/ = ISI - A + bg’l = S k  + f i lsk-’  + * . . dk (6.10) 

The coefficients dl,  &,.. . , cik of the powers of s in the characteristic poly- 
nomial will be functions of the k unknown gains. Equating these functions to 
the numerical values desired for a l , .  . . , dk will result in k simultaneous 
equations the solution of which will yield the desired gains g , ,  . . . , gk. 

This is a perfectly valid method of determining the gain matrix g’ ,  but it 
entails a substantial amount of calculation when the order k of the system is 
higher than 3 or 4. For this reason, we would like to develop a direct formula 
for g in terms of the coefficients of the open-loop and closed-loop characteristic 
equations. 

If the original system is in the companion form given in (3.90), the task is 
particularly easy, because 

- a k - l  -ak 
0 0 
0 0 

. . . . . . . . . .  
1 0 

(6.1 1) 
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Hence 
-ak  - gk -aI  - g1 - a 2 -  g2 . . . 

0 
0 

0 .  

. . .  1 0 
0 1 . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . .  0 0 

A, = A - bg' = 

The gains gl ,  . . . , g& are simply added to the coefficients of the open-loop A 
matrix to give the closed-loop matrix A,. This is also evident from the 
block-diagram representation of the closed-loop system as shown in Fig. 6.1. 
Thus for a system in the companion form of Fig. 6.1, the gain matrix elements 
are given by 

a , + g , = a ^ ,  i =  1,2, ..., k 
or 

where 

g = & a  (6.12) 

(6.13) 

Figure 6.1 State variable feedback for system in first companion form. 
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are vectors formed from the coefficients of the open-loop and closed-loop 
characteristic equations, respectively. 

The dynamics of a typical system are usually not in companion form. It is 
necessary to transform such a system into companion form before (6.12) can be 
used. Suppose that the state of the transformed system is 2, achieved through 
the transformation 

X = Tx (6.14) 

Then, as shown in Chap. 3, 

x = A2 + b; (6.15) 
where 

A =  TAT-’ and b =  Tb 

For the transformed system the gain matrix is 

g = i - a = i - a  (6.16) 

since u = a (the characteristic equation being invariant under a change of state 
variables). The desired control law in the original system is 

= - g ‘ ~  = -g’T-IX = -g’x (6.17) 

From (6.17) we see that 

8’ = g’T-l 

Thus the gain in the original system is 

g = T’g = T ’ ( i  - U )  (6.18) 

In word‘s, .the desired gain matrix for a general system is the difference 
between the coefficient vectors of the desired and actual characteristic equation, 
p1emultiplied by the inverse of the transpose of the matrix T that transforms the 
general system into the companion form of (3.90), the A matrix of which has 
the form (6.1 I ) .  

The desired matrix T is obtained as the product of two matrices U and V: 

T =  VU (6.19) 

The first of these matrices transforms the original system into an intermediate 
system 

2 = A x ’  (6.20) 

in the second companion form (3.107) and the second transformation U 
transforms the intermediate system into the first companion form. 

. I  

Consider the intermediate system 

x” = 22 + &4 (6.21) 

with 2 and 6 in the form of (3.107). Then we must have 

i= UAU-’ and b’= Uh (6.22) 
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The desired matrix U is precisely the inverse of the controllability test 

j'-'i = AU-'  (6.23) 

QA = AQ (6.24) 

matrix Q of Sec. 5.4. To prove this fact, we must show that 

or 

Now, for a single-input system 

Q = [b,  Ab, .  . . , Ak-'b]  

Thus, with i given by (3.107), the left-hand side of (6.23) is 

0 0 . . .  - a k  

1 0 - . .  -ak - l  

Q A = [ b , A b ,  . . . ,  Ak-lb]  0 1 . . .  - ak-2  

. . . . . . . . . . . . . . .  I 0 0 . . .  -a1 . 

= [Ab, A2b , .  . . , Ak-'b, -akb - a,-IAb - . * - - akAk-'b] (6.25) 

The last term in (6.25) is 
( -&I  - ak-lA - .  * . - akAk-')b (6.26) 

Now, by the Cayley-Hamilton theorem, (see Appendix): 

akl Ak = -a lAk- l  - a,Ak-2 - . . . - 

so (6.26) is Akb. Thus the left-hand side of (6.24) as given by (6.25) is 

Qi = [Ab, A2b , .  . . , Akb] = A[b, Ab, .  . . , Ak-'b]  = AQ 
which is the desired result. 

If the system is not controllable, then Q-' does not exist and there is no 
general method of transforming the original system into the intermediate system 
(6.21); in fact it is not possible to place the closed-loop poles anywhere one 
desires. Thus, controllability is an essential requirement of system design by 
pole placement. If the system is stabilizable (i.e., the uncontrollable part is 
asymptotically stable, as discussed in Chap. 5) a stable closed-loop system can 
be achieved by placing the poles of the controllable subsystem where one 
wishes and accepting the pole locations of the uncontrollable subsystem. In 
order to apply the formula of this section, it is necessary to first separate the 
uncontrollable subsystem from the controllable subsystem. 

The control matrix 6 of the intermediate system is given by - 
b =  

We now show that 
Ub (6.27) 

(6.28) 
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Multiply (6.28) by Q to obtain 

Q6 = [b ,  Ab, .... Ak- 'b ]  b] = b 

which is the same as (6.27), since Q-' = U. 

system (6.21) into the final system (6.15). We must have 
The final step is to find the matrix V that transforms the intermediate 

x = v2 (6.29) 

For the transformation (6.28) to hold, we must have 

A =  viv-1 

(6.30) 

The matrix V-' that satisfies (6.30) is the transpose of the upper left-hand 
k-by-k submatrix of the (triangular Toeplitz) matrix appearing in (3.103) 

1 a, 

(6.31) 

To prove this, we note that the left-hand side of (6.30) is 

1 a, * . .  . . .  -ak 

. . . .  ........... 
. . .  

0 0 * . -  0 -ak 

- - 

0 0 * . .  

(6.32) 

(Note that the zeros in the first row of V-'A are the result of the difference of 
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two terms a ,  - a , ,  a,  - a2, etc.) and the right-hand side of (6.30) is 

0 0 . . .  - a k  

1 0 . . .  - a k - l  

. . .  i v - ' =  0 1 - a k - 2  

. . . . . . . . . . . . . . .  
0 0 - . .  - a k .  

0 0 . - -  0 
1 a ,  . . .  a k - 2  

ILk -3  

I 
. . .  

1 a ,  - - .  a k - l  

0 1 . . .  ak - 2  

0 0 . . .  a k - 3  

0 0 . . .  1 
. . . . . . . . . . . . . . .  

-ak  

0 
0 

. . . . . . . . . . . . . . . . . . . .  
l o  0 . . .  1 0 .  

which is the same as (6.32). Thus (6.30) is proved. 
We also need 

b =  m- 

b =  b' 

g =  v-'b 

We will show that 

Consider 

with 

Thus b' and 6 are the same. 
The result of this calculation is that the transformation matrix T whose 

transpose is needed in (6.18) is the inverse of the product of the controllability 
test matrix and the triangular matrix (6.31). 

The above results may be summarized as follows. The desired gain matrix 
g, by (6.18) and (6.19), is given by 

g = (VU)'(n^ - a )  (6.33) 

where 

V =  W-' and U = Q-' 

Thus 
vu = W-IQ-1 = (Qw)-' 
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Hence (6.33) becomes 

g = [(Qw)']-'(a^ - a )  (6.34) 

where Q is the controllability test matrix, W is the triangular matrix defined by 
(6.31), a  ̂ is the vector of coefficients for the desired (closed-loop) characteristic 
polynomial, and a is the vector of coefficients of the open-loop system. 

The basic pole-placement formula (6.34) was first stated by Bass and 
Gura.[ I]  It can be derived by other methods as discussed in Note 6.1. 

Now that we have a specific formula for the gains of a controllable, 
single-input system that will place the poles at any desired location, several 
questions arise: If the closed-loop poles can be placed anywhere, where should 
they be placed? How can the technique be extended to multiple input systems? 
We shall address these questions and others after considering several examples. 

Example 6A Instrument servo A dc motor driving an inertial load constitutes a simple 
instrument servo for keeping the load at a fixed position. 

As shown in Chap. 2 (Example 2B), the state-space equations for the motor-driven inertia 
are 

8 = w  (6A.1) 

w = - a o + p u  (6A.2) 

where 0 is the angular position of the load, w is the angular velocity, u is the applied voltage, 
and a and j3 are constants that depend on the physical parameters of the motor and load: 

n = - K ' / J R  p = K / J R  

If the desired position is a constant then we can define the servo error 

e = 8 - 8 ,  
. .  

Then P = 0 - 8, = w ( 0 ,  = const) (6A.3) 

and (6A.3) replaces (6A.1) to give 

(6A.4) 

The angular position measurement can be instrumented by a potentiometer on the motor 
shaft and the angular velocity by a tachometer. Thus, the closed-loop system would have the 
configuration illustrated in Fig. 6.2. Note that the position gain is shown multiplying the 
negative of the system error which in turn is added to the control signal. This is consistent with 
the convention normally used for servos, wherein the position gain multiplies the difference 
8, - B between the reference and the actual positions. The quantity e defined above (6A.3) is 
the negative of the system error as normally defined in elementary texts. 

The characteristic polynomial of the system is 

Thus 

The controllability test matrix Q and the matrix W are given respectively by 

Q = [ b , A b ] = [ '  P - f fP  ] W = [ :  ;] 
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Tachometer Potentiometer 

U DC motor 

w 

Figure 6.2 Implementation of an instrument servo. 

Thus 

and 

Thus the desired gain matrix, by the Bass-Gura formula (6.34), is 

(6A.5) 

where 6, and a, are the coefficients of the desired characteristic polynomial. 

more easily computed directly. For a control law of the form 
While the above calculation illustrates the general procedure, the gains could have been 

u = - g l e  - g z o  

(6A.4) becomes P = w  

cj  = - g l P e  - ( a  + Pgz)w 

which has the closed-loop matrix 

with the characteristic equation 

Is1 ~ A,.I = s2 + ( 0  + g2P)s  + S I P  

Thus 

n, = a + gzp n, = g , P  
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or 
91 = 4 / P  s2 = (i, - a ) / P  

which is the same as (6A.5). 
Note that the position and velocity gains gl and g2, respectively, are proportional to the 

amounts we wish to move the coefficients from their open-loop positions. The position gain g,  
is necessary to produce a stable system: ii2 > 0. But if the designer is willing to settle for 
a ,  = a, i.e., to accept the open-loop damping, then the gain g2 can be zero. This of course 
eliminates the need for a tachometer and reduces the hardware cost of the system. It is also 
possible to alter the system damping without the use of a tachometer, by using an estimate 6 
of the angular velocity w. This estimate is obtained by means of an observer as discussed in 
Chap. I. 

Example 6B Stabilization of an inverted pendulum An inverted pendulum can readily be 
stabilized by a closed-loop feedback system, just as a person of moderate dexterity can do it. 

A possible control system implementation is shown in Fig. 6.3, for a pendulum con- 
strained to rotate about a shaft at its bottom point. The actuator is a dc motor. The angular 
position of the pendulum, being equal to the position of the shaft to which it is attached, is 
measured by means of a potentiometer. The angular velocity in this case can be measured by 
a “velocity pick-off *’ at the top of the pendulum. Such a device could consist of a coil of wire 

Velocity pick-off 

I 

Figure 6.3 Implementation of system to stabilize inverted pendulum. 
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in a magnetic field created by a small permanent magnet in the pendulum bob. The induced 
voltage in the coil is proportional to the linear velocity of the bob as it passes the coil. And 
since the bob is at a fixed distance from the pivot point the linear velocity is proportional to 
the angular velocity. The angular velocity could of course also be measured by means of a 
tachometer on the dc motor shaft. 

As determined in Prob. 2.2, the dynamic equations governing the inverted pendulum in 
which the point of attachment does not translate is given by 

e = w  

i = a% - aw + p~ 
(6B.1) 

where a and p are given in Example 6A, with the inertia J being the total reflected inertia: 

J = J,,, + m12 

where rn is the pendulum bob mass and 1 is the distance of the bob from the pivot. The natural 
frequency n is given by 

9 - f p - -  m d  
J + r n 1 2  I +  J / m l  

Since the linearization is valid only when the pendulum is nearly vertical, we shall assume 

The matrices A and b for this problem are 

(Note that the motor inertia J,,, affects the natural frequency.) 

that the control objective is to maintain 0 = 0. Thus we have a simple regulator problem. 

A = [ '  a2 -a ' 1  b=[-] 
The open-loop characteristic polynomial is 

a, = a 

a2 = -a2 
The open-loop system is unstable, of course. 

The controllability test matrix and the W matrix are given respectively by 

(which are the same as they were for the instrument servo). And 

Thus the gain matrix required for pole placement using (6.34), is 

Example 6C Control of spring-coupled masses The dynamics of a pair of spring-coupled 
masses, shown in Fig. 3.7(a), were shown in Example 31 to have the matrices 

0 1  0 

A=[ '  0 0  A !] B = k ]  

0 0 - K / M  0 
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The system has the characteristic polynomial 

D ( s ) = s 4 + ( K l M ) s 2  

Hence a, = a3 = a4 = 0, a? = K I M .  

The controllability test and W matrices are given, respectively, by 

yo o o ‘ 1  ri o K I M  o 1 
0 0  1 

I 0 - K I M  0 0 0  

Multiplying we find that 
ro o o 11 

QW = (OW)‘ = (OW)-’ = 

(6C.l) 

(6C.2) 

L1 0 0 0 1  

(This rather simple result is not really as surprising as it may at first seem. Note that A is 
in the first companion form but using the right-to-left numbering convention. If the left-to-right 
numbering convention were used the A matrix would already be in the companion form of 
(6.1 1) and would not require transformation. The transformation matrix T given by (6C.2) has 
the effect of changing the state variable numbering order from left-to-right to right-to-left, and 
vice versa.) 

The gain matrix g is thus given by 

0 0 0 1  a1 a4 

g=[: 1 0 0 0  : :]“=[a2;i,M] 

A suitable pole “constellation” for the closed-loop process might be a Butterworth pattern 
as discussed in Sec. 6.5. To achieve this pattern the characteristic polynomial should be of the 
form 

D(s)  = s4+(1  + J ? ) n s 3 + ( 2 + J 3 ) R 2 s 2 + ( 1  + h m 3 s + n d  

a , = ( l + h ) n  

a, = (2 + J5)n’ 
a, = ( I + J3)n’ 
a, = a4 

Thus 

Thus the gain matrix g is given by 

9 =  I n4 
( 1  + J5)n’ 

(2 + J3)n’ - K I M  

( 1  + J3)n 

6.3 MULTIPLE-INPUT SYSTEMS 

If the dynamic system under consideration 

1 = AX + Bu 



SHAPING THE DYNAMIC RESPONSE 235 

has more than one input, that is, B has more than one column, then the gain 
matrix G in the control law 

u = -Gx 

has more than one row. Since each row of G furnishes k gains that can be 
adjusted, it is clear that in a controllable system there will be more gains 
available than are needed to place all of the closed-loop poles. This is a benefit: 
the designer has more flexibility in the design than in the case of a single-input 
system; it is possible to specify all the closed-loop poles and still be able to 
satisfy other requirements. How should these other requirements be specified? 
The answer to this question may well depend on the circumstances of the 
particular application. One possibility might be to set some of the gains to zero. 
For example, it is sometimes possible to place the closed-loop poles at locations 
desired with a gain matrix which has a column of zeros. This means that the 
state variable corresponding to that column is riot needed in the generation of 
any of the control signals in the vector u, and hence there is no need to measure 
(or estimate) that state variable. This simplifies the resulting control system 
structure. If all the state variables, except those corresponding to columns of 
zeros in the gain matrix, are accessible for measurement then there is no need 
for an observer to estimate the state variables that cannot be measured. A very 
simple and robust control system is the result. 

Another possible method of selecting a particular structure for the gain 
matrix is to make each control variable depend on a different group of state 
variables which are physically more closely related to that control variable than 
to the other control variables. 

Still another possibility arises in systems which have a certain degree of 
structural symmetry and in which it is desired to retain the symmetry in the 
closed-loop system by an appropriate feedback structure. 

The following example illustrates one method of selecting the gain matrix. 

Example 6D Distillation column For the distillation column of Example 4A, having the 
block-diagram of Fig. 4.2, we saw in Example 5G that both inputs are needed in order for 
the system to be controllable, because there are redundant poles at the origin (due to the 
integrators) from either Au, or Au,. If there were only one integrator present, it is easy to see 
that the system would be controllable from Au,  alone. This suggests a gain structure in which 
Au,  depends on x i ,  x2, and x3, and Au2 depends on x,. This gives four adjustable gains for the 
closed-loop fourth-order system and we would expect to be able to locate the closed-loop 
poles at whatever locations are desired. 

Thus we use a gain matrix of the form 

(6D. l )  

With the A and B matrices as given by (2G.5) it is found that the closed-loop dynamics 
matrix is 
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Thus the closed-loop characteristic equation is 

I 0 0 

-ail + biigi b11g2 b11g3 
== (s + b42g4) -'21 s - u*2 0 

--32 

(6D.2) 

Note that Is1 - A,I factors into two terms, a first-order term giving a pole at s = -b4,g4 and a 
third-order term. The third-order term is the same as would result for a third-order system 
having dynamics and control matrices given respectively by 

l o  

A3= [ $' %; 0 1  B3 = [ 0 1  
= (s + b,,g4)(s3 + als2 + 5,s + 6,) 

0 1 1  0 0 bl I 

with a state variable feedback of the form 

G3 = [s,, g2, s3l 
Thus we can adjust gl ,  gz, and g3 to achieve any desired location of the roots of the third-order 
factor in (6D.2) and use g4 to adjust the location of the pole at s = -b4,g4. 

Note that if the gains are real numbers, as they must be in a physical system, then one 
pole must be the real pole at s = -b42g4, and hence one of the poles arising from the cubic 
factor in (6D.2) must also be real when the gains g l ,  g2, and g3 are real. Thus, by using a gain 
matrix having the structure of (6D.I), we do not have freedom to place the closed-loop poles 
anywhere in the complex plane. This is not a contradiction of controllability, because (6D.1) 
is not the most general form that the gain matrix G can take: four of the possible gains have 
been set to zero. Since a very satisfactory transient response can be achieved, however, with 
two real poles, the gain matrix structure of (6D.l) is, in the practical sense, perfectly acceptable. 

6.4 DISTURBANCES AND TRACKING SYSTEMS: 
EXOGENOUS VARIABLES 

In the previous section we considered the design of regulators in which the 
performance objective is to achieve a specified closed-loop dynamic behavior 
(pole locations) of the system in response to arbitrary initial disturbances. A 
more general design objective is to control the system error not only for initial 
disturbances, but also for persistent disturbances, and also to track reference 
inputs. 

In Chap. 5 the general problem was set up by defining the system error 

e = x - x ,  (6.35) 

where x, is assumed to satisfy a differential equation 

1, = A,x, (6.36) 

In addition to the reference input we also have a disturbance xd,  so that the 
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error is given by 

e = Ae + ( A  - A , ) x ,  + Fxd + Bu = A e  + Bu + Exo (6.37) 

In Chap. 5 we defined the metastate 

x = [-;j 
which makes it possible to regard the design problem, including reference and 
disturbance inputs, as a regulator problem. As was shown in Chap. 5 ,  however, 
the metasystem is not controllable, so it is not possible to apply the pole- 
placement design technique to the metasystem. (Since controllability is not a 
requirement for formulating the optimum control problem, as discussed in 
Chap. 9, we will be able to use the metasystem formulation in connection with 
optimum control system design.) 

Instead of working with the metasystem, we work directly with the error 
differential equation (6.37). The exogenous vector x, is treated as an input just 
like u. The design problem is really to arrange matters so that the control input 
u counteracts the effects of the exogenous variables. The control that we seek 
should be effective not only for a specific exogenous input, but rather for an 
entire class of inputs. Only the characteristics of the class are known to the 
designer; the specific member of the class is determined by measurements on x, 
while the process is in operation. 

Since we are limiting our attention to linear systems, we consider only a 
linear control law, which now takes the general form 

u = - G e  - C o x o  = - Ge - G,x,  - Gdxd (6.38) 

The closed-loop system using a control of the form (6.38) has the appearance 
shown in Fig. 6.4. Note the presence of two paths in addition to the feedback 

1 xd (Disturbances) 

Feed forward I 

Process 
X 
1 - - x r  

Figure 6.4 Schematic of feedback system for process with reference state and disturbance input 
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loop in which the system error appears. There is a “feedforward” path with a 
gain G, and a path through the gain Gd, the purpose of which is to counteract 
the effect of these disturbances. 

The design is based, as already mentioned, on the assumption that the 
exogenous input vector xo = [ x : ,  xl]’ as well as the system error e are accessible 
for measurement during the operation of the control system (i.e., in “real 
time”). Since x,  is a reference input, one might think that it is always accessible. 
The instrumentation, however, might be such that only the system error can be 
measured; it may be difficult (hence costly in terms of hardware) to measure xd 
independent of the system error. It is noted that reference input x, appears in 
(6.37) through the difference A - A, between the dynamics matrix A and the 
matrix A, used to model the reference input. If A, = A, that is, if the reference 
input can be generated as the solution of the unforced differential equation of 
the open-loop process, then no feedforward path is needed. If the open-loop 
process is stable, then the only reference inputs that can be generated are 
decaying exponentials which go to zero in the steady state. Thus if we need to 
track steps, ramps, etc., in the steady state, we cannot have A,  = A for an 
asymptotically stable open-loop system. On the other hand if A has a pole at 
the origin of order u, then by proper choice of initial conditions x,  can include 
a polynomial in time of order Y - 1 ; we can still have A, = A and hence not 
require feedforward. (Recall from Chap. 5 that the presence of a pole of order 
u in the open-loop system makes it a “type u” system. We thus see again that 
a type Y system can follow reference inputs containing polynomials of degree 
up to and including u - I without use of feedforward.) 

Sometimes the disturbance xd can be measured easily, sometimes not. In a 
temperature control system, for example, in which x d  is the ambient tem- 
perature of the environment of the process, it is not too difficult to accomplish 
this measurement with an extra thermometer. In an aircraft autopilot design, on 
the other hand, in which the disturbances may consist of wind-induced forces, 
it may be all but impossible to instrument the required measurements. In cases 
where the required quantities, or some of them, are not accessible for measure- 
ment, an observer, as discussed in Chap. 7, is used to infer estimates of these 
quantities, based on the assumed dynamic model, using the quantities that are 
accessible for measurement. 

For the present, our objective is to design the gain matrices G and Go in 
(6.38). When the control given by (6.38) is used in the general process (6.37) the 
closed-loop dynamics are 

e = Ae + Exo - B( G e  + Coxo) (6.39) 

which is the differential equation of a linear system excited by xo. 
If it were possible, it would be desirable to choose the gains G and Go to 

keep the system error zero. But this is not possible: system errors may be 
present initially that cannot instantly be reduced to zero. And even when initial 
errors are zero, there are usually not enough control variables (i.e., columns in 
the B matrix) to make the coefficients of xo vanish, as they must in order that 
the error be zero for any xo and e. 
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More reasonable performance objectives are the ,following: 

( a )  The closed-loop system should be asymptotically stable. 
(b)  A linear combination of the error state variables (rather than the entire 

state vector) is to be zero in the steady state. 

In order for the closed-loop system to be asymptotically stable the closed- 
loop dynamics matrix A, = A - BG must have its characteristic roots in the left 
half-plane. If the system is controllable, this can be accomplished by a suitable 
choice of the gain matrix. 

The steady-state condition is characterized by a constant error state vector, 
i.e., in the steady state 

k G 0  

which, from (6.39), means that 

( A  - BG)e = (BGo - E ) x o  

If the closed-loop system is asymptotically stable, A - BG = A, has no charac- 
teristic roots at the origin, and hence its inverse exists. Thus the steady state 
error is given by 

e = ( A  - BG)p'(BGo - E ) x o  (6.40) 

As noted before it is not reasonable to expect that e be zero. Instead we require 
that 

y = C e = O  (6.41) 

where C is a singular matrix of suitable dimension. We'll see shortly what a 
"suitable" dimension is. If (6.41) holds, then from (6.40) 

C ( A  - BG)-'(BG0 - E ) x o  = 0 (6.42) 

Remember that we want (6.42) to hold for any xo. This can be achieved if and 
only if the coefficient matrix multiplying xo vanishes: 

C ( A  - BG)-'(BGo - E )  = 0 (6.43) 

The matrix Go which satisfies (6.43) will meet the requirement of (6.41). We 

C ( A  - BG)-'BGo = C ( A  - BG)-'E (6.44) 

We examine the possibility of solving (6.44) for the required gain matrix Go. 
Here is where the dimension of C becomes significant. Suppose that the 
dimension of y is j .  Then C is a j x k matrix, ( A  - BG)-' is a k x k matrix, and 
B is a k x rn matrix, where rn is the number of control variables. The product 
of the three matrices multiplying Go is thus a j  x rn matrix. If j > rn, then (6.44) 
is "overdetermined": there are too many conditions to be satisfied by Go and, 
except for special values of E, no solution to (6.44) for Go exists. If j < rn, then 
(6.44) is "underdetermined": Go is not uniquely specified by (6.44). This poses 

note that (6.43) can be written 
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no problem; it only means that Go can be chosen to satisfy not only (6.41), but 
also to satisfy other conditions. 

Analytically the “cleanest” case is when the number of inputs rn is equal to 
the dimension of y. (If y is regarded as the system output, then we can say that 
the process is “square,” having the same number of inputs as outputs.) In this 
case, when the matrix multiplying Go is nonsingular, the desired gain matrix is 
given by 

Go = [ C ( A  - B G ) - ’ B ] - ’ C ( A  - B G ) - ’ E  (6.45) 

The big, messy matrix 

B# = [ C ( A  - B G ) - ’ B ] - ’ C ( A  - BG)-’ (6.46) 

that multiplies E in (6.45) has the property that 

B # B  = I (6.47) 

A matrix having this property is called a left inverse (or left “pseudoinverse”) 
of B. Matrices of this type are encountered frequently in linear systems analysis. 
In terms of B#, (6.45) can be written 

G o =  B ” E  (6.48) 

Under what circumstances does the matrix C ( A  - BG)-’B possess an 
inverse? One might think that the existence of an inverse depends on the 
stabilizing gain matrix G. In fact, this is not the case. The existence of an 
inverse depends only on the open-loop dynamics: it can be shown that 
C ( A  - BG)-’B possesses an inverse if and only if 

lim Ho(s) = IC(sZ - A)-’BI Z 0 (6.49) 

If A is nonsingular (6.49) reduces to the requirement that ICA-’BI # 0. The 
reason that invertability of C ( A  - BG)-’B is independent of G is related to the 
fact that state-variable feedback does not alter the transmission zeros of a 
process, as discussed in Prob. 4.1. (See also Note 6.2.) 

The specific value of the inverse, however, does in general depend on G. 
Nevertheless, one can safely choose any feedback gain matrix G without being 
concerned about the possibility that this choice of gain will compromise the 
invertability of C ( A  - BG)-’B.  

In most cases, the reference state x, does not need to have all of its 
components specified. In other words, the error that the control system must be 
designed to reduce to zero may be of lower dimension that the state vector. The 
other components of the state vector may be unspecified. In these cases, the 
component of the exogenous vector corresponding to the reference state may be 
of lower dimension that the state x and the corresponding submatrix of E will 
not be A - Ad but a different matrix with fewer than k columns. Rather than try 
to express this in general terms, we illustrate it by the example that follows. 

7 - 0  
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R ,  R? 
+ 

Example 6E Temperature control Consider the temperature control problem having the elec- 
trical network analog shown in Fig. 6.5. The voltage u may be regarded as the analog of the 
temperature of a heater and x, as the ambient temperature. Since there is only one heater (i.e., 
one input) then we can in general control only a single quantity, perhaps ul  or u,. or a linear 
combination of the two, such as their average y = ( v ,  + u, ) /2 .  

The dynamic equations, in state-space form, are (see Example 2C) 

+ 

(6E.1) 

U X ]  = u ,  

Control c ,  
input 

with 

a , ,  = - - [ R ; l + D , ( R , ' + R " ' + R - ' ) ]  a I 2 = - [ R ; ' +  R,'D1]  
I I 

C,  Cl 

b, = R ; ' D ,  e l =  R - I D ,  

b 4 uz = x z  Xn 

Disturbance 
input 

11 cz 1: 

1 

1 1 

c2 c 2  
a,, = - [ R ; '  + R ; ' D , ] ,  n2, = - - [ R , '  + D,(R;l  + R,' + R - ' ) ]  

b, = R;' D,, e2 = R-'D2 

where 
D ,  = [l + R , ( R i l  + R;' + R-' ) ] - '  D, = [ I  + R 2 ( R i l  + R;' + R - ' ) ] - '  

We assume that the desired state is 

x l d  = U1 = const 

xzd = ij2 = const 

A, = 0 
Thus 

We take as the output matrix 

c = [ C I ,  c2l 

G = [Sl, S21 

Assume the feedback gain matrix is 

Then 

I-' -all - blS, a12 - bIS2 
% I  - b2SI -a22 - b2g1 

A,' = ( A  - BG)-' = 
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and 

Note that the numerator of (6E.5) is independent of the feedback gains, irrespective of c I  

In this example C ( A  - B G ) - ' B  is a scalar ( i c ,  a I-by-1 matrix) given by 
and c2. 

and 

Go = B # E  = [e lq l  + e , q 2 ] / p  (a scalar) 

The implementation of the control law is illustrated in Fig. 6.6. It is noted that even 
though the performance criterion y = Ce = c , (u ,  - V l )  + c2(u2 - u,) is a scalar combination of 
the two errors el and e2, the feedforward signal grlVl + gr2U2 is not expressible as a function 
of the difference between U I  and u,: both 0 ,  and U2 are required in the control law 
implementation. 

. Y ,  = u ,  

Figure 6.6 Control law implementation. 
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6.5 WHERE SHOULD THE 
CLOSED-LOOP POLES BE PLACED? 

Having determined that the closed-loop poles of a controllable system can be 
placed anywhere, it is natural to ask where the poles should be placed. To assert 
that they should be placed to meet the performance requirements is begging the 
question, which is how to relate the performance requirements to the gain 
matrix G that is used in the implementation of the feedback law. A systematic 
method of selecting the gains by minimizing a quadratic performance integral is 
given in Chap. 9. That method has many advantages but it is by no means the 
only method available. Among the concerns that the designer might wish to 
address are those to be discussed in this section. 

The control law for a regulator u = -Gx implies that for a given state x the 
larger the gain, the larger the control input. There are limits on the control input 
in practical systems: The actuator which supplies the control u cannot be 
arbitrarily large without incurring penalties of cost and weight. Other reasons for 
limiting the control may be to avoid the potential damaging effects of stresses 
on the process that large inputs might cause. If the control signal generated by 
the linear feedback law u = -Gx is larger than possible or permissible for 
reasons of safety, the actuator will “saturate” at a lower input level. The effect 
of occasional control saturation is usually not serious: in fact a system which 
never saturates is very likely overdesigned, having a larger and less efficient 
actuator than is needed to accomplish even the most demanding tasks. On the 
other hand, if the control signals produced by the linear control law are so large 
that the actuator is almost always saturated, it is not likely that the system 
behavior will be satisfactory, unless the actuator saturation is explicitly 
accounted for in an intentionally nonlinear (e.g., “ bang-bang ”) control law 
design. If  such a design is not intended, the gain matrix should be selected to 
avoid excessively large control signals for the range of states that the control 
system can encounter during operation. 

The effect of control system gain on pole locations can be appreciated by 
considering the Bass-Gura formula (6.34) for a single-input system. (Qualita- 
tively, similar considerations apply to multiple-input systems.) Note first that 
the gains are proportional to the amounts that the poles are to be moved, i.e., to 
the distance that the coefficients of the characteristic polynomial must move 
between the open-loop and the closed-loop system. The less the poles are 
moved, the smaller the gain matrix. Thus, large system gains are avoided by 
limiting the changes in the coefficients of the characteristic equation. It is also 
noted that the control system gains are inversely proportional to the controlla- 
bility test matrix. The less controllable the system, the larger the gains that are 
needed to effect a change in the system poles. There is nothing surprising about 
this. 

The inference that may be reasonably drawn from this is that the designer 
should not attempt to alter the dynamic behavior of the open-loop process more 
than is required. One reason for trying to alter the behavior of a process is to 
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stabilize it, if it is unstable, or to increase its stability by moving its poles into 
the interior of the left half of the s plane. Although stability is the most 
important consideration it is not the only consideration. Speed of response (i.e., 
bandwidth) is also important. Fast response-high bandwidth-of the closed- 
loop system is often sought after, since the errors in following rapidly changing 
inputs will be smaller. There may be instances, however, in which the band- 
width of the closed-loop system is intentionally not made as high as it can be. 
If the reference input contains a good deal of noise, it might be desirable to 
reduce the bandwidth to prevent the system from becoming excessively agitated 
by following the noise. 

Another reason for limiting the bandwidth of the closed-loop system is the 
uncertainty of the high-frequency dynamics of the process. A mechanical system, 
for example, has resonance effects (modes) due to the elasticity of the structural 
members. The dynamic model used for design ignores many if not all of these 
effects: their magnitudes are small; the exact frequencies are not easy to determine: 
the effort required to include them in the model is not justified. Other types of 
processes (thermal, chemical, etc.) also have uncertain behavior at high frequen- 
cies. If the uncertain high-frequency poles are included within the bandwidth of 
the closed-loop process, these resonances may be excited and result in unexpected 
high-frequency oscillation, or even instability. A prudent design requires that the 
loop transmission be well below unity at the frequencies where these resonances 
may occur. 

The bandwidth of a system is governed primarily by its dominant poles, i.e., 
the poles with real parts closest to the origin. To see this, visualize the 
partial-fraction expansion of the transfer function of the system. Terms corre- 
sponding to poles whose (negative) real parts are farthest from the origin have 
relatively high decay rates (damping) and hence, after an initial transient 
period, they will contribute less to the total response than terms corresponding 
to poles with real parts close to the origin. (While this behavior is typical of 
physical processes, there is no theoretical reason why the residues at poles with 
high damping cannot be much greater than the residues at the poles with less 
damping. If the highly damped poles have large residues, their effects may 
persist simply because they start out much larger.) 

In order for the transient to decay as rapidly as is required by the poles that 
are far from the origin, it is necessary to change the energy in the system 
rapidly; this would require the use of large control inputs. If there are some 
poles that are far from the origin and others that are close to the origin, the 
maximum control amplitudes will be governed by the former, but the system 
speed of response is slowed by the latter. This behavior suggests that the 
feedback gains are such that the available control is not efficiently used. 
Efficient use of the control signal would require that all the closed-loop poles be 
about the same distance from the origin. 

Having reasoned that it is imprudent to try to move the open-loop poles 
farther than is necessary (obviously it is necessary to move them to the left 
half-plane if the open-loop process is unstable) and inefficient to make some 
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poles much more highly damped (farther from the origin) than the other poles, 
one might seek to optimize the closed-loop pole locations. How to accomplish 
this in general is the subject of Chap. 9. One result of optimization theory that 
can be used here concerns “asymptotic pole location”: As control effort 
becomes increasingly less “expensive,” the closed-loop poles tend to radiate out 
from the origin along the spokes of a wheel in the left half-plane as given by the 
roots of 

(6.50) 

where k is the number of poles in the left half-plane. (Fig. 6.7.) Poles located in 

----*[I 

Figure 6.7 Butterworth pole configurations. 
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accordance with (6.50) are said to have a “Butterworth configuration,” a term 
that originated in communication networks. 

The polynomial having as its factors the zeros of (6.50) in the left half-plane 
only are known as Butterworth polynomials B k ( z ) ,  z = s / w o ,  the first few of 
which are: 

B , ( z )  = z + 1 

~ , ( z )  = z2  + J2z + I 
B , ( z )  = z3 + 2z2 + 2z  + 1 

B 4 ( z )  = z4 + 2 . 6 1 3 ~ ~  + ( 2  + JZ)z2 + 2.6132 + I 
Some of the properties of transfer functions having Butterworth polynomials for 
their denominators are given in Note 6.3 and Prob. 6.10. 

In the absence of any other consideration, a Butterworth configuration is 
often suitable. Note, however that as the order k becomes high, one pair of 
poles come precariously close to the imaginary axis. It might be desirable to 
move these poles farther into the left half-plane. 

The considerations that govern the choice of closed-loop poles that were 
discussed above may be summarized as follows: 

Select a bandwidth high enough to achieve the desired speed of response. 
Keep the bandwidth low enough to avoid exciting unmodeled high-frequency 

Place the poles at approximately uniform distances from the origin for efficient 

effects and undesired response to noise. 

use of the control effort. 

These broad guidelines allow plenty of latitude for special needs of 
individual applications. 

Example 6F Missile autopilot As noted in Example 4F, the usual function of a n  autopilot in a 
missile is to make the normal component of acceleration aN track a commanded acceleration 
signal aNC which is produced by the missile guidance system. This example illustrates the 
design of such an autopilot. 

Open-loop dynamics A high-performance missile, when provided with a suitable 
autopilot, is capable of achieving a relatively high bandwidth. This bandwidth may be 
comparable to that of the actuator which drives the control surface. Thus it may be necessary 
to include the dynamics of the actuator in order to have an adequate model of the process. We 
assume this to be the case in the present example, and use the first-order dynamic model for 
the actuator that was used in Example 4F, namely 

1 
d : = - ( u - S )  ( 6 ~ .  1 j 

7 

where u is the input to the actuator and T is its time constant. 
The complete dynamic model of the missile (airframe and actuator) is thus given by (4F.l)  

and (4F.2) in Example 4F. In this application, however, we are interested in tracking an 
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acceleration command and hence prefer to use the acceleration error 

e = aNc - aN (6F.2) 

as a state variable instead of the angle of attack. The derivative of the acceleration error is 
. .  

e = aNC - aN 

Now, although the commanded acceleration is not constant, we can approach the design 
problem on the assumption that it is: a,, = 0. (A better design might be achieved by making 
use of the actual rate of change of normal acceleration command, a signal that might be 
available from the missile guidance system.) 

In addition to approximating the commanded acceleration by a constant, we also assume 
that the aerodynamic coefficients Z, and Z, and the missile speed V are approximately 
constant. Using all these approximations 

e = -aN = -Z,& - Z6S 

But, from (3F.1) and (3F.4), 

Thus, by (6F.2) and (6F.1), we obtain from (6F.3) 

The angle of attack a, by (4F.3), is 

(6F.3) 

(6F.4) 

(6F.5) 

Thus the differential equation for the pitch rate, using (4F.I), is 

(6F.6) q = - (aNC - e - Z,S) + M,q + M,S 

A single third-order vector-matrix equation defining the system is obtained from (6F.11, (6F.4), 
and (6F.6). Defining the state vector by 

M, 
za 

x = [e ,  4. 61' (6F.7) 

we obtain the state-space equations 

i = Ax+ Bu + E a ,  (6F.8) 

where 1 B =  [-::I E = [ MF] (6F.9) 
0 -117 

- 
(6F. 10) 

The following numerical data were obtained for a representative highly maneuverable 

Mo 
Zo 

where 

M s = M s - - Z ,  

tactical missile: 

V = 1253 ft/s (Mach 1.1) 

2, = -4170ft/s2 (per radian of angle of attack) 
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Z,  = - 11  15 ft/s‘ (per radian of surface deflection) 

Mu = -248 rad/s2 (per radian of angle of attack) 

M ,  = 0 

Ms = -662 rad/s2 (per radian of surface deflection) 

7 = . 0 1 s  

The characteristic equation of this system (with M ,  = 0) is 

( s + : ) ( s 2 + $ s - M u )  = O  (6F.l I )  

and, using the numerical data given above, (6F.11) becomes 

( s  + 100)(sz + 3.33s + 248) = 0 

with roots at 

s = -100 (due to actuator) 

and at 

s = -1.67 *j15.65 (due to airframe) 

as shown in Fig 6.8. The open loop thus has very little damping and a natural frequency w of 
approximately 15.65 rad/s = 2.49 Hz. 

Design considerations If the damping factor were raised to a more suitable value (say 
5 == 0.707) the natural frequency of 2.49 Hz would result in a time constant of about 0.4 s. A 
shorter closed-loop time constant would be desirable for a high-performance missile: about 0.2 s 
would be more appropriate. Thus we should seek a natural frequency of w = 30 and 5 = 0.707. 
This suggests a quadratic factor in the closed-loop characteristic polynomial of 

s2 + 3 d ? s  + (30)2 (6F.12) 

(Closed loop) 
-71 .? + j21.2 

(Open loop) (Closed loop) 
\I/ I \, I 1 

-100 -80 4) -53.8 -40 -70 
A - 

70 
[Open loop) 
-1.67 + 115.67 

+ U  
0 

-20 

Figure 6.8 Open- and closed-loop poles for missile autopilot. 
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The location of the real pole at s = -100 due to the actuator is satisfactory: it is far enough 
away from the origin so as not to add substantially to the autopilot lag. We shall shortly 
discover, however, that to keep a closed-loop pole at s = -100 entails measuring (or estimat- 
ing) and feeding back the actuator output 6. To simplify the implementation of the autopilot 
it might be desirable to permit the open-loop actuator pole to move to a different location 
provided that the overall system performance is not degraded. This is a design option we wish 
to explore. 

The autopilot design will be done in two steps, as described earlier in the text. First we 
will design a regulator for a commanded normal acceleration of zero, then we will compute the 
feedforward gain to eliminate the steady state error for a nonzero commanded acceleration. 

Regulator design To apply the Bass-Gura formula we need the open-loop characteristic 
equation: From (6F.11) this is 

s3 + 103.33s2+ 581,s + 24 800. = 0 

Thus the open-loop coefficient vector is 

103.33 
a = [ 581. 1 

24 800. 

thus 

1 103.33 581. 
W =  [ 0 I 103.33 

0 0  I 

We also find 

I 111 500. -11.5 X lo6 8.77 X loR 

Q = [  0. -66.2 X lo3 6.64 X 10‘ 

100. -lo4 1 o6 

and 

1 1 I 500. 0. -0.248 X lop 
Q W = [  0. -66204. 0.198 X lo6 

100. 333.0 24 800. 

from which: 

1 0.8657 X 0.4544 X 0.9035 X 

0.1090 X lo-’ -0.1517 X -0.1215 X 

-0.3637 X lo-’ 0.2040 X lo-.’ 0.4055 X w5 

For any choice of closed-loop poles, the feedback gain matrix is given by: 

As discussed earlier, practical implementation is simplified by omitting the feedback from 
the control surface deflection. This is achieved by having g3 = 0. From (6F.13), this require- 
ment is satisfied by making 

0.9035 x - a , )  - 0.1215 X - a?) + 0.4055 X lO-’(a ,̂ - a,) = 0 (6F.14) 

We already decided that one factor of the characteristic polynomial be given by (6F.12). Thus 
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the complete characteristic polynomial is chosen to be 

(s  + o , ) ( s 2  + 3 O ~ h  + 900) = s3 + h , s 2  + h2s + 6, 
where 

h, = W< + 3oJ2 
h, = 30J20, + 900 
b, = 9000, 

(6F.15) 

with w, as yet undetermined. Equations (6F.14) and (6F.15) constitute four linear equations in 
the four unknowns G I ,  h2, h,, and w y  These are solved to yield 

a I  = 96.24 

h2 = 3 182. 

hs = 48 419. 

O, = 53.8 

The location of the real pole at s = -o, = -53.8 is satisfactory, so no feedback gain from 
the surface deflection is necessary. Thus the gain matrix contains only two nonzero elements: 

G = [ -0.6366 X I 0-4, -0.3929 X 1 OK,, 01 (6F.16) 

Feedfomard gain Having decided that no feedback of the control surface deflection is 
necessary, and having adjusted the gains from the acceleration error uNc. - uN and the pitch 
rate 9 to provide the desired closed-loop poles, it now remains to set the feedforward gain Go 
to eliminate the steady-state error for a step input of acceleration. 

The C matrix for the scalar error is 

C = [ l  0 01 

and the closed-loop A matrix is 

I 3.767 -8550.3 - I 1  1 500. 
0. -595.7 

0.006 366 3.929 -100. 

and 

I 0.04833 8.613 -105.20 
-0.000 201 0.006 88 0.1834 
-0.000005 0.000 82 0.0105 

A,'= - 

Thus 

and 

CAY' = [-0.048 33 -8.613 105.201 

CAF1B = 5130. 

Hence 

B# = (CA;'B)-'CA;' = [-9.42 x -1.68 X 2.05 x 

and, finally, 

G o =  B n E  = -1.313 X (6F.17) 

The autopilot can be implemented as shown in Fig. 6.9. A body-mounted accelerometer 
measures the actual normal acceleration and a rate gyro measures the actual body pitch rate. 
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Robustness of design The “robustness” of the design, i t . ,  its ability to withstand 
parameter variations, is of interest. It is not likely that the gain of’the accelerometer or the gyro 
will vary by more than a fraction of a percent. The actuator and airframe dynamics are much 
more liable to change. In a careful performance evaluation, one would study the effect of 
parameter variations one at a time and in combination. Possibly the most likely change would 
be the dc transmission through the actuator to the output acceleration. This could be the result 
of an actuator gain change or the result of variations of airframe parameters from the values 
used in the design. Regardless of the true cause of the change, it can be represented by a gain 
K (with a nominal value of unity) multiplying the control signal u as shown in Fig. 6.9. 

The return difference for the loop containing the gain K is 

1 + K G ( s l  - A ) - ’ B  

The forward loop transmission 

G(s31 + E , s 2  + E,s + E , ) B  -- N(s) 
G , ( s )  = G ( s l  - A ) - ’ B  = - 

( s l  - A1 D(.Y) 

Using the above numerical data we find that 

N ( s )  = - 7 . 0 9 ~ ~  + 2 6 0 1 . ~  + 23 608 

7 . 0 9 ( - ~  + 3 7 6 . ) ( ~  + 8.86) 

-1on -53.8 -H.8 *-A? -50 

-100 

-150 

K =  I 

( f l )  

100 

K =  1 37b 
I I I ,.A 1 I 1 I I  

1 100 200 300 500 hl10 700 X(K1 : 

Figure 6.10 Root-locus plot for missile autopilot 

7 . 0 9 ( - ~  + 3 7 6 ) ( ~  + 8.86) 
G(s) = 

(s + 53.8)(s2 + 3O-h + 900) 
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which results in apparent zeros at s = 376. and s = -8.86. (These are not zeros of the 
open-loop process, but are created by the use of the sensors of acceleration and pitch rate.) 

The root locus has the appearance shown in Fig. 6.10. The root locus starts at the 
open-loop poles at s = -100 and s = -1.67 f j15.65 and goes to the apparent zeros. At a 
nominal gain of K =  1, the loci pass through the poles for which the operation was designed 
(s = -1542 * j1542, and s = -53.8) and then continue toward the imaginary axis and 
ultimately into the right half-plane. Because of the nonminimum phase zero at s = 376, the 
locus has a branch that goes out along the positiue real axis as K + m, as was discussed in 
Chap. 5 .  

The range of gain K for which the system is stable can be found using the Routh or 
Hunvitz algorithm of Chap. 5 and is 

-1.14 < K < 12.21 

The gain margin is thus 12.2 (or 22 dB) which is more than ample. The frequency at which the 
root locus crosses the imaginary axis is found to be o = 187. The right half-plane root-locus 
plot is shown in Fig. 6.10(b). It should be noted that the loci, after crossing the imaginary axis, 

\ (3 + 100) (s2 + 3.33s + 248) I - - t ' ' ' '  ' 
-3o.oI ' ' I I I I I 

0.1 0.3 1.0 3.7 10.0 31.6 100.0 

40 

-16 

2 -72 

% 
2 -128 

U 

-184 

-240 
( 

Frequency 

I I I I I I I I I I ,  

Frequency 
1 0.3 1.0 3.2 10.0 31.6 100.0 

Figure 6.11 Bode plot for open-loop transmission for missile autopilot. 
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bend over toward the positive real axis and reach it at some positive real value of s > 376, the 
positive zero of N(s). Then one branch goes to the zero and the other goes to +a. 

The Bode plot for the open-loop transmission G,(s) is shown in Fig. 6.11. 

PROBLEMS 

Problem 6.1 Inverted pendulum on cart: state variable feedback 

Consider the inverted pendulum on the motor-driven cart of Prob. 2.1 with numerical data as 
given in Prob. 3.6. It is desired to place the dominant poles (in a Butterworth configuration) at 

s =  -4 and s =  -2*j2& 

and to leave the pole at s = -25 unchanged. 
(a) Find the gain matrix that produces this set of closed-loop poles. 
( b )  It is desired to move the cart from one position to another without causing the pendulum 

to fall. How must the control law of part a be modified to account for a reference input x, ? 

Problem 6.2 Hydraulically actuated gun turret 

It is desired to increase the bandwidth of the hydraulically actuated gun turret of Example 4E 
by use of state-variable feedback. 

The dominant poles, i.e., those closest to the origin, are to be moved to s = - 1 d ? ( 1  f j l ) .  The 
other poles (at s = -64.5 f j69.6) are already in suitable locations, but they can be moved in the 
interest of simplifying the feedback law by eliminating feedback paths. 

(a)  Determine the regulator gains for which the closed-loop poles are at s = -1d2(1  * j l )  
and at s = -64.5 * j69.6. 

( b )  For simplicity, only two nonzero regulator gains are permitted: the gain from x, = 0 and 
one other gain, either from xz = o or from x3 = p. Is it possible with a gain matrix of the form 

- 

or 

to place the dominant poles at s = - l d ? ( I  i j l )  and still keep the “fast” poles at their 
approximate locations? I f  both gA and gfl can achieve this requirement, which is the better choice? 
Explain. 

( c )  Let the tracking error e be defined by 

e = e ~ 8, = X, - e, 

where 0, is a constant reference angle. Show that a feedforward gain is not needed to achieve zero 
steady state error in tracking a constant reference. (Note that the open-loop system is “type I.”)  

( d )  There are three possible disturbances dq, d,,, and d, as shown in Fig. 4.4. Since, by part a, 
it is unnecessary to estimate the reference input 0,. we can define the exogenous vector as 

and the distribution matrix as 

For each of the sets of gains in parts a and b, find the feedforward gains for the exogenous variables 
which will ensure zero steady state error. 
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Problem 6.3 Two-car train 

It is desired to bring the two-car train of Robs. 2.5 and 3.9 to rest at the origin using only the 
motor on car I .  Find the gain matrix G = g‘ in the control law u = -g‘x which places the poles at 
s = -1 * j l  and at s = -100 * j l00.  

Problem 6.4 Two-car train (continued) 

Modify or redesign the control law obtained in Prob. 6.3, so that the train maintains a constant 
velocity V = const. 

Problem 6.5 Aircraft longitudinal motion witb simplified dynamics 

The speed variations in aircraft longitudinal motion are often “trimmed” by a separate throttle 
control so that A u  can be assumed negligible. Thus we can use a simplified dynamic model in which 
the state variables are 

x , = a  x 2 = q  x 3 = 0  

Using these state variables and the aerodynamic coefficients of Prob. 4.5, find the gains that place 
the closed-loop poles in the Butterworth pattern: s = -2, s = -1 i j&. 

Problem 6.6 Constant-altitude autopilot 

The altitude h of an aircraft is given by 

h = V y :  V(O -a) 

where y is the flight-path angle. (See Fig. P6.6.) Hence the aircraft altitude can be maintained 
constant by keeping the flight-path angle y = B - a zero. Add a state variable 

X, = ( h  - ho)/  V 

where h, is a reference altitude, to the state variables used in Prob. 6.5. 
( a )  Draw the block diagram of the closed-loop system. 
( b )  Find the gains for which the closed-loop poles lie in  the Butterworth pattern: 

s = 2.5(-1/2 * j J i / 2 )  s = 2 3  - h / 2  -i- j 1 / 2 )  

Problem 6.7 Aircraft lateral dynamics: turn coordination 

When an aircraft executes a perfectly coordinated turn the sideslip angle is zero. (When this 
occurs, the net force vector acting on the aircraft lies in the vertical plane of the aircraft so the 
occupant has the same kinesthetic sensation as when the aircraft is flying without banking.) 

Figure P6.6 Aircraft longitudinal dynamics. 
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( a )  The rudder is often used for turn coordination. We may thus assume a control law for the 
rudder, using (2.41) 

when ( P 6 . 7 ~ )  is substituted into the first equation of (2.41) we obtain 

I 
T 

p =  - - p  

( P 6 . 7 ~ )  

(P6.76) 

Hence any sideslip that may be initially present will be reduced to zero with a time constant of T. 
When (P6.7a) is substituted into the next three equations of (2.41) a third-order system with a single 
control 6, and a disturbance p is obtained. The poles of that system may be placed by use of the 
Bass-Gura formula. Using the data of Prob. 4.4, find the control law for the ailerons that makes the 
sideslip decay time constant T = 0.2 s and places the remaining poles at s = -1 and s = -1 * j 3 .  
Combine the result with ( P 6 . 7 ~ )  to obtain the entire control law. 

(6) As the aircraft makes a constant-radius turn the bank angle 4 becomes constant. Thus if a 
constant radius turn is desired, a constant bank angle 4, is commanded. Modify the control law of 
part a so that the aircraft error e = & - 4, is reduced to zero in the steady state. (Let e be a state 
variable in place of 9.) 

Problem 6.8 Three-capacitance thermal system 

A state-variable feedback control law is to be designed for the thermal control system 

( a )  Find the control gains that place the regulator poles in a third-order Butterworth 
considered in Prob. 3.7, et seq. 

configuration of radius 2 ,  i t . ,  the characteristic equation of the closed-loop system is to be 

D ( s )  = (I)’ + 2($ + 2 ( ; )  + 1 0 

( b )  It is desired to keep point 3 (i.e., u 3 )  at a constant temperature V in the presence of an 
external temperature u,. Let the state be defined as x = [u,, u2, el’ where e = u3 ~ fi, and the 
exogenous vector as x, = [V, uo]’. Find the matrix E for the system, and, using the gain matrix from 
part a, find the feedfonvard gain matrix G,  = B # E .  

( c )  Draw a block diagram of the control law showing the feedback and feedfonvard paths. 
Does anything seem unusual about this structure? 

Problem 6.9 Two-axis gyro: gains by pole placement 

A control law such as shown in Fig. 2.15 is to be designed for a two-axis gyro described in 
Example 2F (et seq.). The design will be accomplished in a number of steps which will encompass 
several problems. 

The present problem is to design a deterministic control law under the assumption that all the 
state variables are measurable. The dynamic model to be used for the design is summarized in 
Example 3. The following data, typical of a small gyro, may be used for numerical calculations: 

H 
-- - 3000 sec-l 
/ d  Jd 

K, = 60 sec-’ 

B 
0 -= 

Jd 

For this stage of the design it is assumed that the state variables S,, S , ,  wAE, wyE, and the 
external angular velocity components oAE, wyG are all measurable. (The external angular velocity 
components are not measurable, of course. I f  they were, there would Lie no need for the gyro!) In 
subsequent problems we shall consider the design of observers to measure those state variables, 
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namely wYB,  w , ~ ,  wYF,  w I E  that cannot be measured, using only observations given the measure- 
ments of 8,  and 6,. 

A linear control law of the form 

The matrices G, and G, are the “regulator” gains, to keep the gyro wheel stable in the absence of 
external angular velocity components, and Go is the gain matrix for the exogenous inputs, in this 
case the external angular velocity components w , ~  and w V E  

( a )  Considerations of symmetry suggest that the regulator gain matrices should be of the form 

G . = [  91 QL ] G u = [  9 3  Sa ] 
-Sz 91 -s4 93 

This means that there are four parameters for a fourth-order system, and a unique design can be 
achieved by pole placement. Determine the regulator closed-loop characteristic equation in terms of 
gl, g2. g3, g4. Does this place any restriction on the closed-loop pole locations? 

( b )  Using the theory developed in Sec. 6.4, find the matrix Go that maintains S,, 6, at zero in 
the steady state, given that the exogenous input angular velocity components wXk and w , ~  are 
constants. 

(c )  In the steady state with wYE # 0 and w , ~  # 0 the control vector u = [7r/5d, 7 , / J d ] ‘  is not 
zero. How does it depend on the input angular velocity components? Does this suggest a method 
for determining the input angular velocity? 

Problem 6.10 

Let 

Properties of Buttemorth filters 

where B k ( z )  is a Butterworth polynomial of order k 
( a )  Show that 

( h )  Sketch the amplitude plot corresponding to H (  j w  ). 
(c )  Explain why the Butterworth polynomial is said to have a “maximally flat” amplitude 

response as compared with other systems of the same order. 

NOTES 

Note 6.1 Bass-Gura formula 

The Bass-Gura formula[l] was originally derived by a method that closely resembles that used 
in this book. A simpler but less intuitive derivation may be found in Chap. 3 of Kailath’s book[2] 
which contains several other formulas for the feedback gains. 

Note 6.2 Zeros of closed-loop system 

is 

The matrix of transfer functions for the m-input, m-output system 

x = A x + B u  y =  Cx ( l = m )  

H(s) = C(s1 - A ) - I B  
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In accordance with the definition of transmission zeros given in Sec. 4.10, the transmission 
zeros of H(s) are the zeros of IC(s1 - A)-’BI .  

As revealed in the analysis of Prob 4.1, the transmission zeros of a system in which 
state-variable feedback is used are not altered by the use of such feedback, i.e., the transmission 
zeros of H,(s) = C(s1 - A + B G ) - ’ B  are the zeros of H(s). 

For B” as  given by (6.46) to  exist, it is necessary that IC(A ~ BG)BI # 0, which is the same as 
requiring that H,(s) have no  transmission zeros at the origin (s = 0). Since the transmission zeros of 
H,(s) coincide with those of H(s), however, we conclude that the necessary and sufficient condition 
for B” to exist is that H(s) have no transmission zeros at the origin. 

Note 6.3 Butterworth polynomials 

Butterworth polynomials have found extensive application in communication networks for 
their “maximally flat” frequency response characteristics. (See Problem 6.10.) They have also 
occurred in control system design by classical methods. (See [3], for example.) That the optimum 
closed-loop pole locations tend to a Butterworth configuration as the control cost decreases was first 
pointed out  by Kalman[4] and subsequently studied in considerable detail by Kwakernaak.[S] ( S e e  
Note 9.4 for further discussion of asymptotic behavior.) 
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CHAPTER 

SEVEN 
LINEAR OBSERVERS 

7.1 THE NEED FOR OBSERVERS 

In Chap. 6 we studied methods for shaping the dynamic response of a 
closed-loop system by selecting the feedback gains to “place” the resulting 
poles at desired locations. In order to place the poles at arbitrary locations, it is 
generally necessary to have all the state variables available for feedback. There 
are many systems, of course, such as those illustrated in Examples 4D and 4E, 
in which acceptable performance can be achieved by feeding back only those 
state variables that are accessible to measurement. But often it is not possible to 
achieve acceptable performance using only those state variables that can be 
measured. Must we abandon the hope of controlling such systems? Fortunately 
not. I f  the system is observable, it is possible to estimate those state variables 
that are not directly accessible to measurement using the measurement data 
from those state variables that are accessible. And by use of these state-variable 
estimates rather than their measured values one can usually achieve acceptable 
performance. State-variable estimates may in some circumstances be even prefer- 
able to direct measurements, because the errors introduced by the instruments 
that provide these measurements may be larger than the errors in estimating these 
variables. 

A dynamic system whose state variables are the estimates of the state 
variables of another system is called an obseruer of the latter system. This term 
was introduced into linear system theory by D. Luenberger in 1963[ 1,2,3] (see 
Note 7.1). Luenberger showed that, for any observable linear system, an 
observer can be designed having the property that the estimation error (i.e., the 
difference between the state of the actual system and the state of the observer) 
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can be made to go to zero as fast as one may desire. The design technique is 
equivalent to pole placement in feedback system design. 

Several years before Luenberger’s introduction of observers, R. E. Kalman, 
with the collaboration of R. Bucy, published two famous papers[4,5] on linear 
filtering and prediction. These papers defined a state estimator that is optimum 
with respect to the process noise and observation noise. This state estimator 
(now called a Kalmanjl ter)  has the structure of a linear observer, so in a sense 
a linear observer may be regarded as a suboptimum Kalman filter. Alternatively, 
a Kalman filter may be regarded as an optimum observer. The latter viewpoint 
is adopted in Chap. 1 1 ,  which deals with Kalman filters. 

Although observers are useful for estimating the state of a linear system 
having a known external input, their main use is in estimating the state variables 
that cannot be measured but are needed for implementation of feedback 
control. In this chapter, however, we focus on the observer, treating the input u 
as a known quantity. In the next chapter we show how the linear observer can 
be combined with a linear control law to produce a complete compensator, the 
goal of the linear system designer. 

7.2. STRUCTURE AND PROPERTIES OF OBSERVERS 

Suppose we have a dynamic system in our usual state-space representation 

X = A x  + Bu (7.1) 

for which we have already designed a control law u = - G x  under the assump- 
tion that x is accessible for measurement. But instead of being able to measure 
the state x we can only measure 

y = c x  (7.2) 

where the dimension m of the observation vector y is less than the dimension of 
x. (We really ought to say that the rank of C is less than the dimension of the 
state vector. This will cover the possibility that there are as many sensors as 
state variables, or even more, but that not all of them are independent.) 

If we could invert the matrix C we would be able to solve for x ( t )  directly, 
given y ( t ) .  But we are assuming that C is a singular matrix, so we can’t 
determine x (  1) using only y (  t ) ;  we must use not only present observation data 
but also past observation data: y ( ~ )  for T < t .  One procedure for finding x ( t )  
given V(T) for T < t is to find the state X ( T )  at some earlier time T < t ,  using the 
integral formula (5.21), and then extrapolate to the present time using (7.1). If  
it were practical to implement this procedure, and if there were no errors in the 
measurement y (  t )  = C x (  t ) ,  it would be possible to determine x( r )  exactly using 
only a finite amount of past data. But it is not practical to use this procedure 
because of the complexity entailed in the numerical evaluation of the integral. 
And it wouldn’t be worthwhile, because of the errors inevitably present in the 
measurement of y. The presence of these errors means that we can only obtain 
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an estimate P(t )  of x ( t )  and never x ( t )  itself. (This is true even when all the 
state variables can be measured.) 

A better procedure for obtaining an estimate P ( t )  of x ( t )  is to make the 
estimate be the output of a dynamic system 

f = A P + i u + K y  (7.3) 

excited by the measurement y and the input u, selecting the matrices A, i, and 
K to make the error 

e = x - P  (7.4) 

acceptably small. This is Luenberger’s method. 

Specifically 
A differential equation can be obtained for the error e by using (7.1)-(7.4). 

A A 

e = x - 2  = A x +  Bu - A ( x  - e )  - Bu - K C x  

= A e  + ( A  - KC - A)x + (B - 6 ) u  (7.5) 

If we demand that the error go to zero asymptotically, independent of x and u, 
then the coefficients of x and u in (7.5) must be zero and A must be the 
dynamics matrix of a stable system. This means that 

A = = - K C  (7.6) 
A 

and B = B  (7.7) 

Thus we cannot pick A, 6, and K arbitrarily. In fact there is no choice at 
all in the selection of i: it must be the control matrix B. And once the matrix 
K is selected, the matrix A is determined. The only matrix we are free to select 
is the matrix K .  These restrictions are incorporated into the observer by writing 
the defining equation (7.3) as 

P = ( A  - K C ) ?  + BU + K y  

= AP + BU + K ( y  - G) 
(7-8) 

This expression for the observer shows that it has the same form as the 
original process (7.1), except that it has an additional input K ( y  - C;) .  The 
quantity 

r = y - CP = C ( x  - 2) = C e  

is the difference between the actual measurement y and the estimated measure- 
ment. It is often called the residual. If the error e = x - P is forced to zero then 
the residual will likewise tend to zero. 

A block-diagram representation of the observer, as given by (7.8), is shown 
in Fig. 7.1. 

The observer is in the form of a feedback system in which the residual r has 
the role of the “error” typical of a feedback system. The closed-loop dynamics 
matrix is seen to be A = A - KC which is the same matrix that appears in the 
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I 

f 
State estimate 
- 

Figure 7.1 Block diagram of linear observer. 

differential equation (7.5) for the propagation of the system error. When (7.6) 
and (7.7) are satisfied, (7.5) reduces to the homogeneous equation 

A 

e = Ae (7.9) 

In order for the error to approach zero asymptotically it is necessary that AAbe 
a stability matrix, i.e., that the eigenvalues of the closed-loop matrix A = 
A - KC all be in the left half-plane. Determination of the feedback matrix K 
that accomplishes this is a pole-placement task similar to the task that the 
designer is faced with in shaping the response of a system with full-state 
variable feedback. 

Just as the eigenvalues of the full-state feedback control system can be 
placed at arbitrary locations if the controllability test matrix Q is of rank k, so 
also the eigenvalues of = A - K C  can be placed at arbitrary locations if the 
observability test matrix 

N = [ C ’  A’C’ . . . (Af)k-’C’] (7.10) 

is of rank k If there is only a single output, then, as shown in the next section, 
the observer gain matrix K becomesAa column vector and is uniquely deter- 
mined by the desired eigenvalues of A. 

The presence of more than one output provides more flexibility: it is 
possible to place all the eigenvalues and do  other things. Or, alternatively, some 
of the observer gains can be set to zero to simplify the resulting observer 
structure. 
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The transfer function from the observation vector y and control u to the 
state estimate x^ is found by calculating the Laplace' transform of (7.8): 

(sZ - A ) ? ( s )  = B u ( s )  + K y ( s )  

or 

where = A - KC. 

2(s) = (SZ - A)-'Bu(s) + (sl - A i ) - ' K y ( s )  (7.1 1 )  

7.3 POLE-PLACEMENT FOR 
SINGLE-OUTPUT SYSTEMS 

When there is only one output variable the output equation is 

y = clxl f ' * ' + CkXk = [c,, . . . , c k ]  

Thus C is a row vector 

c = c' = [cl, C2, .  . . , c k ]  

and the gain matrix K is a column vector: 

In this case 

(7.12) 

(7.13) 

and the objective is to find the gain matrix K such that the eigenvalues of 
have the desired locations. To obtain a formula for the gain matrix k we note 
that any matrix and its transpose, in particular, and Af, have the same 
eigenvalues. Thus, assigning the eigenvalues of ir is equivalent to assigning the 
eigenvalues of A. But 

A' = A' - &' (7.14) 
A 

Compare (7.14) to the closed-loop control matrix 

A, = A - bg' 

of (6.9) for the single-input full-state feedback problem. It is seen that they are 
of the same form: In particular, we have the following counterparts: 

Full-state 
feedback Observer 

A A' 
b C 

9 k 
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We thus conclude that determination of the gain matrix k for the observer, 
with A' and c given, is the same problem as the determination of the gain 
matrix g with A and b given. We can thus translate the Bass-Gura formula (6.34) 
for the feedback gain g into the formula for the observer gain matrix: 

k = [(NW)']-l(a^ - a )  

N = [C', A'C', . . . , (A' )k- lC' ]  

(7.15) 
where 

(7.16) 

is the observability test matrix, and 

a =  A I"] . a =  [a,] (7.17) 

;k a k  

where i,, . . . , 6 k  are the coefficients of the desired characteristic equation: 

I S 1  - S k  + a^lsk-' + . ' f a^k = 0 (7.18) 

and a,, . . . , a k  are the coefficients of the original characteristic equation: 

and 
ISI - A1 = S k  + C l , S k - '  f . . . a k  = O 

(7.19) 

Example 7A Instrument servo In Example 6A we considered the design of a n  instrument 
servo: a control system for an electric motor driving an inertial load. A control law was 
obtained for the voltage input to  the motor as a function of the error e = 0 ~ 0, (where 0 is 
the measured angular position and 0, is the desired reference position) and the angular 
velocity w of the motor. There is no way of implementing the servo without measuring the 
error, but is it necessary to measure the angular velocity? One way of avoiding the measure- 
ment of angular velocity would be to make the feedback gain from the angular velocity zero 
and accept the transient response that can be achieved. If that solution is not acceptable, however, 
the alternative is to use a linear observer as described in this chapter. 

The structure of the observer is defined by (7.8): 

= A< + Bu + K ( y  - C;) (7A.1) 

with the state vector given by 

f = [t?, 4' 
with 

A = [ '  0 -a ' 1  B = [ O ]  

The quantity that can be measured is the system error e. Thus 
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Thus the observation matrix is 

In detail the differential equations corresponding to  (7A.I) are 

i? = 4 + k , ( e  - e^) 

6 = -a4 + pu + k , ( e  - i?) 
(7A.2) 

and have the structure shown in Fig. 7.2. Note that the input u must not be omitted. 
Having determined the observer structure, it only remains to determine the gain matrix 

By (7.14) this gain matrix is 

k = [ (NW)' ] - ' (a^ - a )  (7A.3) 

where N is the observability test matrix, and W is the triangular Toeplitz matrix defined by 
(7.19). In this example 

[A ;I N = [C' A'C'] = 

and, from Example 6A 

Thus 

The vector formed from the open-loop characteristic polynomial 

D ( s )  = S' + (IS 

is 

e 
1 

Figure 7.2 Observer for instrument servo. 
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Suppose that the observer characteristic polynomial is 

6 ( s )  = s2 + h , s  + h, 

Then 

a  ̂ = [ 3 
Thus, finally, the observer gain matrix is 

k - [ : l ]  =[-la = [ a*, - ‘ I p a  .(a^, - a) ] (7A.4) 

Using (7.1 1 )  we find the transfer functions from the observation y and control u to the 
state estimates 

A - A - K C = [ O  0 -a ]-[:I][, 01 

Thus 

1 - 1  

[ 12k’ s :a] = (s  + k , ) ( s  + a) + ki[ - k 2  s + k ,  
( s l  - A)-, = 

Note that the denominator of ($1 - A)-’ is 

s2 + ( k ,  + a)$ + a k ,  + k, = s2 + 6,s + 8, 

using k ,  and k, given by (7A.4). This should come as  no  surprise. Thus 

( s l  - A ) - ’ B  = 

and 

Thus 

(7A.5) 

It is instructive to examine the behavior of the observer, using the frequency-domain 
characterization (7A.5). as the bandwidth becomes very high. A high bandwidth is achieved by 
making 6, and h2 large. When h2 >> 6, >> a then, from (7A.4), 

k ,  = a ^ ,  and k2 = h, 

It is seen that the transfer functions from e(s) to &(s)  and to &(s) (with u(s) = 0) become 

In words, the transfer function from the measured error e to the estimated error i 
approaches unity and the transfer function from e to G approaches that of a differentiator. 
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e 

Q 0 

Figure 73 Compensator synthesized using observer. 

When the bandwidth of the observer is not infinite, the estimate e^ is a filtered version of the 
measured e and the estimate 4 is a smoothed derivative of o. The filtering/smoothing action 
of the observer may be desirable if the measured error is noisy. 

Where does the input u that is needed in the synthesis of the observer come from? In the 
control problem u is a function of the state x. Since only one component e of the state x can 
be measured, does this mean that we can’t determine u ?  The answer is that the control u that 
is used in the observer, as well as the input to the plant, is computed using the estimated stare 

g,e  ̂- g2; = -G; = - 

The justification for this is given in the next chapter. But, to anticipate those results, we show 
the total structure of the compensator in Fig. 7.3. The control gains 8,  and g2 that multiply the 
estimated states ê  and 6 are obtained as discussed in Example 6A. 

7.4 DISTURBANCES AND TRACKING SYSTEMS: 
EXOGENOUS VARIABLES 

In the previous two chapters we have considered systems in which the open- 
loop process, using the error as the state vector, has other inputs in addition to 
the control input u. These are the disturbance input x d  and the reference input 
xr .  The dynamics of the error are 

(7.20) P = Ae + Bu + Ex, 

where 

designates the complete set of exogenous inputs, whether due to the reference 
state or the disturbance state. As earlier, we assume that x, satisfies a known 
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differential equation 

Xo = Aoxo 

Combining (7.20) with (7.21) yields the metasystem 

X = A x + B u  

with 

(7.21) 

(7.22) 

In Chap. 6 we saw that it is often possible to design a control law that 
forces the output error 

y = Ce 

to zero in the steady state, even when the total exogenous vector xo does not go 
to zero. The control law 

(7.23) u = -Ge  - Gox, 
where 

Go = [Gd, Gr1 

requires knowledge of the exogenous vector xo. This knowledge can be acquired 
by direct measurement of xo, which sometimes may be feasible, or estimation of 
xo. This section is concerned with the latter, and the approach is to design an 
observer for the metastate x which includes the error e and the exogenous vector 
xo. In the event that all the components of the error vector e can be measured, 
and only x,, needs to be estimated, then a reduced-order observer as discussed 
in Sec. 7.5 may be used. 

We assume that the observation vector y may depend on both the error e 
and the exogenous vector xo: 

y =  C e + D x o = C x  (7.24) 

where 

C = [ C  D] 

The general observer equation (7.8) as applied to the metasystem (7.22) and 

(7.25) 

Separating (7.25) into equations for the system error estimate e  ̂ and the 

(7.24) gives 

i = A X +  BU + K(Y - cl;) 

error in estimating the exogenous state xo: 

d = A;+ BU + E;,+ ~ , ( y  - c;- D X ~ )  
(7.26) 

20 = A& + &(-v - Cê  - D20) 

A block-diagram representation of (7.26) is shown in Fig. 7.4. 
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1 

Figure 7.4 Block diagram of observer including estimation of exogenous vector. 

A notable feature of the observer of Fig. 7.4 is that there is no feedback 
from the estimate of the system error ê  to the estimate of the exogenous state 2,. 
The entire structure of the portion of the observer that estimates 2, is in parallel 
with the gain K ,  We shall see in the next chapter that when x, is not directly 
measurable, the estimate 2, is used in place of x,. This means only that the 
input to ê  contains another term GoPo in addition to the term E;, already 
shown in Fig. 7.4, but there is still no feedback from ê  to 20. Thus, if xu is a 
constant (i.e., A, = 0) and it does not appear in the measurement, then all that 
is left in the observer of xO is the path through KO, as shown in Fig. 7.4, which 
is a bank of integrators, one for each component of go, in parallel with the path 
through K,. This means that in the determination of the error ê  there is a 
path proportional to the integral of the residual r = y - Cê  in addition to the path 
through K ,  which is proportional to the residual itself. Because of the integral 
path, it is possible for the residual r to become zero without 2, going to zero, 
and a control signal based on 2, (instead of x,, which we are assuming is not 
measurable) will also not go to zero. Thus it is possible to produce a constant 
control signal even when the system error can be driven to zero. The presence 
of a constant control signal in the absence of system error is a characteristic of 
a type 1 (or higher type) system which, in classical control system design is 
achieved by means of integral control, and is achieved automatically by the use 
of an observer to estimate the unmeasurable exogenous state vector x,. 
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The closed-loop matrix for the 

A 

A = A - K C =  

metasystem is 

(7.27) 1 A -  K,C E - K , D  
-K,C A , -  K o D  

The closed-loop poles of the observer can be placed at arbitrary locations if the 
metasystem is observable, i.e., if 

N = [C', A'C', . . . , (A' )k+u- lC' ]  

has rank k + v, where Y is the number of components in the exogenous ve:tor. 
It should be noted that even if D and A ,  are zero,, the presence of E in, A, as 
given by (7.27), leaves open the possibility of placing all eigenvalues of A. 

It may happen that the observer for the system error has already been 
designed and it might be desirable to amend the existing observer design rather 
than to start all over again. To this end, we attempt to express the state estimate 
2, given by (7.26) in the form 

2 = e " +  v?, (7.28) 

where e' is the observer for the process with xo = 0, that is, 

i = A;+ Bu + B ( y  - CC) (7.29) 

where k is the gain matrix for the observer in the absence of x,. We assume 
that (7.26) and (7.29) hold and endeavor to find the matrix V which makes 
(7.28) hold as well. 

If (7.28) holds then 

f = i + V i ,  

= Ae'+ BU + B ( y  - Ce') + V(AO?o+ K d y  - C(e'+ Vgo) - DZO]) 

6 At? + BU + ( B  + VKO)(y - CC) + [ VA, - VKo( CV + D)]?o (7.30) 

But, from (7.26) and (7.28) 

ê  = A( e" - VZ,) + BU + E20 + K , [ y  - Ct? - ( C V  + D)?,] 

= Ae" + BU + K , ( y  - C t )  + [ A V  + E - K,(CV + D ) ] &  (7.31) 

We thus have two expressions for 2. In order for them both to hold for all 
residuals y - Ce" and all disturbance estimates, we must have 

2 + VKo = K ,  (7.32) 
and 

VA, - VK,(CV + D )  = A V +  E - K , ( C V +  D )  

or, upon use of VKo = K, - k from (7.32), 

VA,- ( A  - K C ) V  = E - K D  (7.33) 

This is a linear matrix equation of the form VA + BV = C. The existence of 
a solution to (7.33) depends on the eigenvalues of A ,  and A - BC. (See Note 
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TO = A, - KO (CV + D) rL 

r 

(,Disturbance- 
free 
residual) 

L J 

Figure 7.5 Alternate form of observer in which estimate of exogenous input is obtained using 
“disturbance-free” residual. 

7.2.) In the special case in which xo is a constant, however, (that is, A. = 0), a 
solution to (7.33) exists if A - k C  is nonsingular. If the undisturbed process is 
observable,? then k can be chosen to place the eigenvalues of A - k C  in the 
left half-plane, thereby guaranteeing that the inverse of A - k C  exists. In this 
special, but very important, case 

V = - ( A  - k C ) - ’ ( E  - E D )  (7.34) 

Finally, consider the equation of (7.26) for estimating the disturbance: 

io = A&, + Ko[y - C( i? + VZO) - D&] 

= [A0 - KO( CV + D)]5& + Ko(y - Ci?) (7.35) 

The observer structure implicit in (7.28), (7.29), and (7.35) is illustrated in 

Note that the input to the estimate of the exogenous vector is the residual 
the block diagram of Fig. 7.5. 

r = y - C e “  

t It is only necessary for the undisturbed process to be “detectable”; see Chap. 5 .  
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of the observer for the process without exogenous inputs. It is thus possible to 
design that observer first, and then to use its residual to drive the estimator of 
the exogenous inputs. 

In summary, the design of an observer in the structure of Fig. 7.5, the following 
procedure is used: 

Step 1. Design an observer (i.e., find the gain matrix k)  for the process without 

Srep2. Using the gain k found in step 1 ,  find the matrix V using (7.33), or 

Step 3. Find KO so that dynamics matrix of the estimator of the exogenous vector, 

exogenous inputs. 

(7.34) when A, = 0. 

as given by (7.35), has the desired pole locations. 

It is noted that there is no need to find K,, since it is already defined by 

It is readily established, by using the transformation matrix 
(7.32). 

I V  I -v 
T = [ o  11 T - ' = [ o  11 

that the eigenvalues of A are as defined by (7.27) and are located at the 
eigenvalues of 

and the eigenvalues of 
A = A - K C  

A, = A, - KO( CV + 0)  

Example 7B Inverted pendulum with disturbance In Example 69 we considered the design of a 
control system for a motor-driven inverted pendulum. If the damping provided by the motor is 
inadequate, feedback of both position and velocity is needed. Position feedback is required in 
any case, because the open-loop process is unstable. 

We assume that in addition to the control input u a constant disturbance (perhaps due to 
the wind) is also present. Thus the complete dynamic model, accounting for the disturbance, is 

e = w  

& = n28 - mw + u + d 

d = O  
Thus, 

Thus, for this example .=[:I D = O  

:q 0 

Observers for this process will be designed in two ways: First, an observer will be 
designed directly for the metasystem, and then an observer in the form of Fig. 7.5 will be 
designed. 
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Thus 

It is assumed that only the angular position 0 is observed thus 

y = [ l  o:o,[;] _-- 

C = [ l  01 C=[C,Ol  

The observability test matrix for the metasystem is 
1 0 n' 

N = [C', A'C', A"C'] = [ 8 
;a] 

The open-loop characteristic equation is 

s - 1  

Therefore 

n ,  = a a 2 =  -a' a3 = 0 

and hence 

W = [ k  a A -a2 ;] N W = [ :  l a 0  A p] i N W ) - ' = [ i  a H] 
Thus the gain matrix is 

K = [ - a  1 0 1 0 ;,-a O ] [ t 2 ~ ~ ~ ] = [ ~ 2 + " ' ^ - a r . , - a ) ] = [ ~ ~ ]  a l  - a 

0 0 1  4 
The observer dynamics are given by 

e* = & + k ,  ( y  - t?) 

c =a's^- a& + pu + a +  k 2 ( y  - 6) 
2 = k , ( v  - e^) 

(78.1) 

and has the block-diagram representation of Fig. 7.6. 

disturbance-free observer. For this calculation we need 
To apply the alternate method of design, we first determine the gain matrix for the 

N = [ C',  A'C'] = [A p] and 
W = [ A  y ]  

Thus 

Hence 
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- 
Figure 7.6 Observer for inverted pendulum with unknown disturbance. 

Note that i, = k ,  and i2 = k, in this case. The closed-loop matrix of the disturbance-free 
observer is 

Thus 

Hence the "correction matrix" is 

and 

Thus equation (7.35) for the disturbance estimator is 

d  ̂ = - ( k d / 6 , ) a  + k d ( y  - 6 )  (78.2) 

The disturbance-estimation gain k, can be selected to be any positive number. The 
equation for the disturbance-free observer is 

8 = ii + i , ( y  - 8) 
h = a';- ai + k , ( y  - 8) 

(78.3) 

and (7.28) becomes 

(78.4) 
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Figure 7.7 Alternate form of observer for inverted pendulum with unknown disturbance. 

A block diagram showing the implementation of (7B.2) through (7B.4) is given in Fig. 
7.7. In this case the alternate form of the observer is no simpler than the direct form of (7B.1) 
and calculation of the gains of (7B.l) is no more complicated than calculation of the gains for 
the alternate form. But this is not always the case, as the following example will show. 

Example 7C Distillation column The distillation column considered earlier in Examples 2G, 
4A, and 6D has two disturbances represented by the vector 

Appending these two disturbances to the fourth-order dynamic model would result in a 
sixth-order metasystem. Determination of the observer gain would be a formidable problem. 
Using the alternate form of the observer, however, reduces the sixth-order design to a 
fourth-order design for the disturbance-free observer, and a supplementary second-order 
design. 

First, we consider the observer design for the disturbance-free process. Following Gilles 
and Retzbach[6] we choose an observer gain matrix of the form 

(7C.1) 

Using the dynamic model of Chap. 2, Example 2G, the disturbance-free observer is given by 

iI = a , , x ,  + l l z (y2  ~ cq2i4)  + b , , u ,  

ir = a2,& + a,,:, + kZz(y2 - c 4 , t )  

i3 = a,,?, + k,,(.y, - c31x3) + b3,uz 

i4 = a4,i, + i4,(.y2 - c4,i4) + h4,uz 
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The observer dynamics matrix is 

(7C.2) 

-azl s - aZ2 0 

0 -a3? s +  k,  0 
1 0  -ad2 0 s + k , I  

After some calculation, we find that 

IsZ - 21 = - (s + k 3 ) ( s 3  + 6,s2 + g2s + i3) 
where 

63 = a11a22k4t a l l a 4 2 k 2 -  a21a42kl 

One of the desired- observer poles is determined at s = -k3 .  The three other observer 
poles determine 6,,  &, b,. Given these values we can solve for k , ,  k2,  and k4: 

k4 = b ,  + a l l  + a I 2  

1 

0 2 1 0 4 2  
[$ alla22k4- alla42k21 k ,  = -__ 

Having determined the gains for the disturbance-free observer, we now turn to the 
calculation of the observer for the disturbances. In this example 

Ao=O and D = O  

Hence (7.35) becomes 

fo = -KoCV> + K , ( y  - CP) 

There are two observations and two disturbances, so KO is a 2 X 2 matrix; C is a 2 X 4 matrix; 
and V is a 4 x 2 matrix given by 

V = - ( A  - k C ) - l E  

where, as  given in Chap. 2, E is a 4 x 2 matrix. 
The completion of the observer design is the subject of Prob. 7.7. 

7.5 REDUCED-ORDER OBSERVERS 

The observer defined by (7.8) in Sec. 7.2 is the same order as the system that 
produces the observed output. It does not depend on the number of outputs. 
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But suppose that there is one output for every state variable: 

y = cx 
where C is a nonsingular matrix. In this case there is no need for a dynamic 
observer; we can get x directly from y :  

x = p = c-ly (7.36) 

Is it reasonable that if all the state variables can be measured, then a dynamic 
observer is not needed, but if even one state variable cannot be measured, then 
we should need an observer of the same order as the state of the system? On 
intuition one might suspect that it should be possible to get by using an observer 
of order k - I ,  where k is the order of the system and 1 is the number of 
independent outputs. This intuition is quite correct, as we shall see in this 
section. 

In many applications it is possible to group the state variables into two sets: 
those that can be measured directly and those that depend indirectly on the 
former. The state vector is partitioned accordingly: 

with 

The observation is given by 

Y = CIXI 

The standard observer (7.8) for (7.37) and (7.38) is 

(7.37) 

(7.38) 

i, = Alli?l + Al1i?2+ B,u + K l ( y  - Cli?,) (7.39) 

i2 = A,,zZ, + A,,& + B,u + K , ( y  - C l i l )  

But why take the trouble to implement the observer equation (7.39) for 

(7.40) 

when we can solve for x I  directly from (7.38)? 

X I  = = c ; l y  (7.41) 

In this case the observer (7.40) for those states that cannot be measured directly 
becomes 

4, = A21Clly + A2,g2 + B,u (7.42) 

which is a dynamic system of the same order as the number of state variables 
that cannot be measured directly. 

The dynamic behavior of the reduced-order observer is governed by the 
eigenvalues of A,, which is a submatrix of the open-loop dynamics matrix A, a 
matrix over which the designer has no control. If the eigenvalues of A,, are 
suitable, then (7.42) could be a satisfactory observer. Since there is no assurance 
that the eigenvalues of A,, are suitable, however, we need a more general 
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system for the reconstruction of g2. (For the time being f, is still obtained using 
(7.41); later we will generalize the estimation of x 1  also.) 

A suitably general structure for the estimation of x2 is given by 

= Ly + z (7.43) 

where z is the state of a ( k  - I)th-order system? 

z = F ~ +  Gy + H~ 

As we did for the full-order observer, we define the estimation error 

By (7.41) 

e l  = x I  - f l  = O 

(7.44) 

(7.45) 

(7.46) 

so we are concerned only with e2, the differential equation for which is 

62 = X2 - f2 = AZ1xI  + A2,x2 + B'u - Lj  - Z 

= A~IxI + A,,x~ + B ~ u  - L[CI(AI,xl + A12~2 + B , u ) ]  - FZ - G y  - HU 
(7.47) 

But, from (7.43) 

z = 2, - Ly = x2 - e2 - Ly = x2 - e2 - LC,x, (7.48) 

So (7.47) becomes 

e2 = Fe,+ ( A 2 ,  - LCIAl l  - GC,  + FLC,)x, 

+ (A22 - LCIAI2 - F)x ,  + (B2 - LC, BI - H ) u  (7.49) 

In order for the error to be independent of x I ,  x2 ,  and u, the matrices 
multiplying x,, x2, and u must vanish: 

F = A22 - LCIA,, 

H = Bz - LClBl 

(7.50) 

(7.51) 

(7.52) GCI = A,, - LClAl1+ FLCI 

Then (7.49) becomes 

e2 = Fez 

and hence, for asymptotic stability, the eigenvalues of F must lie in the left half 
of the s plane. 

Comparing (7.50) with (7.6) we see that selecting the matrix L in (7.50) to 
place the eigenvalues of F is the same type of problem as selecting the gain 

t The overbar on the matrix G is used here to distinguish this matrix from the control gain 
matrix G. 
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i 
Figure 7.8 Reduced-order observer for observation y = C,x, with C, nonsingular. 

matrix K to place the eigenvalues of A. The submatrix has the role of A in 
(7.6) and the product C,Alz has the role of C in (7.6). In order to place the 
poles of F, it is necessary that the rank of the corresponding observability test 
matrix 

N ,  = [AlzC{, A:2A{2CI, .  . . , (A;2)k- ' - 'A{2Ci]  

be of rank k - 1. Luenberger has shown [2] that this requirement is satisfied, if 
the full-state observability test matrix (7.10) is of rank k. 

Having selected the matrix L to place the reduced-order observer poles, the 
matrix H is determined from (7.5 1 )  and the matrix G is determined from (7.52): 

G = (A21 - LClAl1)C;I + FL (7.53) 

z = + (AI1 - LCIAI1)C;Iy + Hu (7.54) 

Using (7.53) in (7.44) gives 

This equation, together with (7.41) and (7.43) define the reduced-order 
observer. A block-diagram representation of these equations is given in Fig. 7.8. 

It should be noted that when L = 0, the reduced-order observer reduces to 
(7.42). Thus the reduced-order observer of Fig. 7.8 can be regarded as a 
generalization of (7.42) to be used in the event that the dynamics matrix A12 
does not have suitable eigenvalues. 

Example 7D Temperature control In Example 6E we considered the design of a temperature 
control system. In metastate form the equations are 

(7D.1) 
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In this example we determine the structure and gains for each of the following cases: 

A. Full-order observer assuming only x, is measured; 

y = u ,  C = [ l O 0 ]  

B. Full-order observer assuming both u ,  and u2 are measured; 

Y2 y = v l  = 02 .=[' 0 1 0  O O 1  

C. Reduced-(second-)order observer, assuming only u I  is measured; 
D. Reduced-(first-)order observer, assuming both u ,  and u2 are measured. 

Case A Full-order observer with one measured variable The equations for the observer in 
this case are 

C, = -a,,v^, + a I 2 &  + el& + b , u  + k , ( y  - 2 , )  

C2 = a,,v^, - aZ2C2 + e2& + b,u + k2(.v - 2 , )  

20 = k,(.v - 2 , )  

(7D.2) 

The gain matrix 

is chosen such that the eigenvalues of A - KC are in suitable locations. The open-loop 
characteristic polynomial is 

s t a , ,  -a2, -el 

= s[s2 + (a , , .+  a2& + al la12 - a12a211 

Thus the vector of coefficients is 

and 

The observability test matrix is 

Then 
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U 

Figure 7.9 Full-order observer for temperature control with one measurement. 

Hence 

(7D.3) 

The block-diagram representation of the observer in this case is given in Fig. 7.9. 

Case B Full-order observer with two measured variables 
this case are 

The equations for the observer in 

Cl = -a , ,C ,  + alrC2 + e l f d  + b,u + k l l ( y l  - 2 , )  + klz(y2 - f2) 

CZ = aZl 6, - a2,C, + ezfd  + b,u + k , , ( y ,  - f,) + k2-,(y2 - f2) (7D.4) 

& = k3,(yl - + k 3 2 ( Y 2  - 

The observer gain matrix in this case is 

K = E;; 21 
There are  six gains to be selected: twice as  many as are needed to place all the 

closed-loop poles. From the structure (see Fig. 6.5)  it would seem reasonable to use y1  for 
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Figure 7.10 Full-order observer for temperature control with two measurements. 

estimating xI and y, for estimating x2. For estimating x,, we might consider using the sum of 
y l  ~ f, and y2 - f2, which would happen when k, ,  = k , ,  = k,.  Thus 

K =  r1 0 k ,  "1 (7D.5) 

The observer has the block-diagram representation shown in Fig. 7.10. Determination of the 
three gains k , ,  k,, and k ,  needed to place the eigenvalues of a = A - KC is a straightforward 
problem in algebra. 

Case C Reduced-order observer with one measurement This case fits the theory developed 
in (7.43) through (7.52). Since y ,  = u ,  is directly measured we have 

v^, = y  

c2 = 1,y + z ,  

f d  = 1,y -+ z, 

and 

with 2, f l , v ^ 2  + f , Z &  + g l y  + hIu 

22 = f 2 1 & + f 2 2 f d  f g 2 . V  + h,u 

These relations lead to the block-diagram of Fig. 7.1 I .  The matricest F, G, and H are given by 

t Don't confuse the forcing terms f, and fi, with the f;,'s of the F matrix. 
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U 
w v 

G2 

- 

T h e  characteristic equation for F is 

s 2 - ~ f l l - f 2 , ) s + f l , f i , - f l ~ . f , ,  = s 2 + h , s + i , = O  

where 

Thus 

I ,  = - i, + a2, - 
a,, " 

Case D Reduced-order observer with two measurements This case also fits the theory 
developed in (7.43)-(7.52). In this case the observer is particularly simple: 

61 = YI 

I 2  = Y ,  

i, = r I y ,  + /,yZ + 
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-fo A h  v b  

Q2 12 Figure 7.12 Reduced-order observer 
for temperature control with two b2 
measurements. 

Y2 

with 

i = f2“ + glyl + g2y2 + hu 
as shown in Fig. 7.12. The matrices are given by 

G = A,, - LA, ,  = [0 01 - [ I ,  I,][-‘” :Iz 1 
0 2 ,  ‘22 

Since f, and f i  are positive (see Example 6E) any positive pair of gains I ,  and I ,  will 
stabilize the first-order observer. 

The case in which the state variables can be grouped in a manner that 
permits solving for a subvector x, as in (7.41) occurs quite frequently in 
practice. But there are situations in which this is not possible, and a more general 
reduced-order observer is needed. We assume that the matrix C is of “full-rank’’ 
1, in other words that the 1 rows of C are linearly independent. Then we can 
define a nonsingular transformation matrix 

k columns - 
(7.55) 

where M is a (k - I )  x k matrix having rows which are linearly independent of 
each other and of the rows of C. The matrix M is of rank ( k  - I )  and the 
transformation matrix T is a k x k matrix of rank k and is thus nonsingular. We 
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denote its inverse by 

T - I  = [ P j Q 1 k r o w s  - -  
I ( t  - I )  

columns columns 

We define the vector w by 

w = [r:] = Tx 

which by (7.55) becomes 

WI = c x  

w 2 =  Mx 

and 

x = T-Iw = [ P  i Q ]  - - - ~  = Pw, + Qw2 13 

(7.56) 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

The reason behind the choice of the transformation (7.57) is that the 
observation y is a direct measurement of w,, which will permit us to make use 
of the results derived earlier in this section. First we will obtain estimates GI 
and G2, and then obtain x̂  using (7.60), i.e., 

2 = fil + QG2 (7.61) 

To obtain the observer for GI and G2, we note that 

WI = Y 

using (7.58) thus 

3 , = y  (7.62) 

and using the results of the previous analysis (7.43) and (7.54), we obtain the 
estimate 

3, = L y  + z (7.63) 

where 

z = F3,  + ( A 2 ,  - L A , , ) y  + Hu 

F = A22 - LAl2 

H = 8 2  - LBI 

(7.64) 

The overbars on Aii and Bi denote that these matrices come from the trans- 
formed system 

w = A w + B u  
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J 
Figure 7.13 Reduced-order observer for y Cx. 

where 

Thus 

F = MAQ - LCAQ = ( M  - L C ) A Q  

ii = M B -  LCB = ( M  - L C ) B  

- L A I I  = MAP - LCAP = ( M  - L C ) A P  

(7.65) 

(7.66) 

(7.67) 

The general form of the reduced-order observer, as given by (7.61)-(7.64) 

Since 7 7 - I  = T-I T = I, the following relations must hold between C, M, P, 
with the matrices satisfying (7.65), has the structure shown in Fig. 7.13. 

and Q 

and 

[ P  Q ] [  z] = PC + Q M  = Ik 

where I ,  is a v X v identity matrix. 
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PROBLEMS 

Problem 7.1 Two-car train 

Consider the two-car train of Prob. 3.9 et seq. Design a reduced-order observer for each of the 

( a )  Position of car 1 measurable; 
( b )  Positions of cars I and 2 measurable; 
(c) Position and velocity of car 1 measurable; 
( d )  Position of car 1 and velocity of both cars measurable. 
In each case draw the block diagram of the observer and discuss criteria that might be used to 

following conditions of measurement: 

establish the gains. 

Problem 7.2 Inverted pendulum on cart: full-order observer 

An observer for the inverted pendulum on a motor-driven cart is to be designed using the 
measurement of the displacement of the cart ( y  = x,). Determine the observer gain matrix for which 
the observer poles lie in a fourth-order Butterworth pattern of radius 5 ,  i.e., the characteristic 
eauation is to be 

(:)4 + ~ 6 l 3 ( : ) ~  + (2 +h)(:)2 + 2.613(:) + 1 = 0 

Problem 7.3 Inverted pendulum on cart: reduced-order observer 

A reduced-order observer is to be designed for the inverted pendulum on a motor-driven cart 
of Prob. 7.2. Given the observation of the cart displacement y = x,, design a third-order observer 
with poles in a third-order Butterworth configuration of radius 5 ,  ix., the characteristic equation is 
to be 

(;)3+2($*+2(:) + 1  = o  

Problem 7.4 Hydraulically actuated gun turret: full-order observer 

Only the tracking error e = 0 - 0, can be measured in the gun-turret control of Prob. 6.2. A 
full-order observer is to be designed to estimate all the state and exogenous variables. 

( a )  Assume that the reference angle Oo and the disturbances are all zero. Determine the gains 
of the observer such that the observer poles lie in a fourth-order Butterworth configuration with 
radius w = 20. 

( b )  Supplement the observer design of part a to estimate the exogenous variables of the system. 
Draw the block diagram for the system and select the supplementary gain matrix KO to place the 
remaining poles in a third-order Butterworth configuration with radius o = 30. 

Problem 7.5 Two-axis gyro: observer design 

In the two-axis gyro control problem considered in Prob. 6.9 it was assumed that all the state 
and exogenous variables are measurable. But in reality only the angular displacements 6, and 6," arc 
measurable by means of pick-offs. Thus we need an observer to estimate the unmeasurable variables 
from the outputs of the pick-offs. A reduced-order observer, of the form 

s ^ =  [k] = [;;I (measured quantities) 
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where L is a 4 x 2 matrix and z is a four-component vector given by 

i = Fz + G.v + HU 
where the relations between F, G, H, and L are given by (7.50)-(7.52) with C ,  = I.  For reasons of 
symmetry (as already seen in Prob. 6.9) we would require L to  be of the form 

(P7.5) 

Hence there are only four different elements f,, f', f,, f, in the observer dynamics matrix 
F = A,, - LClAI2. (What are A,,, A,,, and C ,  in this case?) 

( a )  Express the matrices F, G, and H in terms of the elements of L as  given by (P7.5) and the 
elements of A, B, and E as  defined by (3.9b) and ( 3 . 9 ~ ) .  

( b )  Find the characteristic equation for the observer, that is, IsI - Fi where F = Azz - LC,Al ,  
with L given by (W.5). 

(c) For the numerical values given in Prob. 6.9, find the observer gains I , ,  . . . , I ,  which place 
the real parts of the closed-loop poles at m = -1000. 

Problem 7.6 Three-capacitance thermal system: full-state observer 

Only the temperature u3 is measurable in the three-capacitance temperature control system of 
Prob. 6.8. 

( a )  Design an observer to estimate x,, x?, e = u, - U from the measurement y = x3, assuming 
the external temperature ug and the reference temperature U are known quantities. The observer 
poles are to be located in a third-order Butterworth configuration on a circle of radius on = 3. 

( b )  Modify the observer design to estimate not only x,,  xz, and e, but also uo and ij (assuming 
them to be constant) using the three steps outlined in Sec. 7.4. Draw the block diagram of the 
observer and locate the poles of the observer for the exogenous state at s = - 5  i j5 .  

( c )  Combine the states of parts a and b into a metastate x = [x,, x2, e, uo, V] and design an 
observer for the metastate having its poles in the same locations as the system of part b. (See Prob. 
7.1.) 

Problem 7.7 Distillation column 

The gains for the observer having the configuration described in Example 7C are to be 

( a )  Find the observer gains which place its poles a t  s = -36, s = -18, and s = -9(1 * j J3 /2) .  
(b)  Calculate the matrix V. 
(c) Draw a block diagram of the observer. 

determined, using the numerical data given in Example 2G. 
~ 

NOTES 

Note 7.1 Background of Luenberger observers 

The use of a dynamic system to  provide estimates of the unmeasurable states goes back to the 
earliest work with state-space methods. By the early 1960s[7,8] this notion was well established 
although not expressed in its most general form. The basic idea of the separation principle, as 
discussed in Chap. 8, was also known by 1961. The fundamental papers on optimal filtering by 
Kalman and Bucy[4,5] also appeared in the early 1960s. Luenberger's work of the mid-I960s[ I ,  2,3] 
systematized and generalized much of the earlier results. It was Luenberger who first used the term 
obseruer, and who introduced the idea of a reduced-order observer to estimate only those states of 
a system that are not accessible to direct measurement. Since the optimum filter of Kalman is the 
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same order as the process under observation, it is a “full-order” observer. The reduced-order 
observer of Luenberger was originally regarded as being distinct from a Kalman filter and hence 
could not be an “optimum” observer. In 1971, however, Friedland[8] considered the behavior of 
the Kalman filter used as an observer when the observation noise vanishes, and showed that the 
Kalman filter portion of the compensator is in fact a reduced-order Luenberger observer. (A 
discussion of reduced-order Kalman filters, following a somewhat different approach than was used 
in [8], is given in Sec. 11.6 of this book.) 

Note 7.2 Linear matrix equations 

Linear matrix equations of the form VA + BV = C are treated in many books on matrix 
theory. (See Chap. VIII of Gantmache1f91 for example.) Although the equation is linear in the 
unknown matrix V, the solution cannot generally be expressed in terms of the known matrices A, B, 
and C. But the elements of V can be determined by solving a system of linear equations the 
unknowns of which are the elements of the matrix V (Exhibiting these equations is rather messy, 
but it is easy to write these equations in any specific instance.) I t  should be noted that none of the 
matrices in the linear equation is required to be square, as long as the sums and products are all of 
proper dimension. 
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CHAPTER 

EIGHT 
COMPENSATOR DESIGN BY 

THE SEPARATION PRINCIPLE 

8.1 THE SEPARATION PRINCIPLE 

In  Chap. 6 we studied the design of control algorithms for processes in which 
the state variables are all accessible for measurement. We promised to overcome 
the difficulty of not being able to measure all the state variables by the use of an 
observer to estimate those state variables that cannot be measured. Then in 
Chap. 7 we studied the design of observers for processes with known inputs, but 
not when the state estimate is used for the purpose of control. We are now 
ready to redeem the promise of Chap. 6, namely to combine the control law for 
full-state feedback, the subject of Chap. 6 ,  with the observer of Chap. 7 to 
obtain a general control law for linear processes in which not all the state 
variables can be measured. 

The separation principle is so disarmingly simple that it almost comes as a 
surprise: it is hard to imagine that the observer designed for a known input can 
serve to estimate the state of the process for the purpose of generating the 
control input. But, as we shall see in this chapter, it does work. 

The separation principle was first stated for discrete-time systems by Joseph 
and Tou[l] and later was generalized for continuous-time systems. (See Note 
8.1.) In the present chapter we shall show only one property of systems 
designed by the separation principle, namely that the closed-loop system 
comprising the process under control and the compensator combines the 
dynamics of the closed-loop process designed for full-state feedback and the 
observer. In  particular, the poles of the overall system occur at the locations 
selected for the process with full-state feedback and at the locations selected for 
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the observer. Hence, in concept, each may be designed without regard to the 
other. 

The separation principle goes beyond this result, however. When we con- 
sider optimum control in the presence of noisy observations, in Chaps. 9- 1 1, we 
shall see that the separation principle leads to a statistically optimum design: if 
the process is excited by white, gaussian noise and if the noise on the 
observations is also white and gaussian, then the separation principle becomes 
the ‘L separation theorem” of optimum stochastic control, and asserts that 
the optimum control law in the presence of such noise is obtained by 
combining the optimum deterministic control with the optimum observer (also 
called the Kalman filter). 

Underlying the separation principle is a critical assumption, namely that the 
observer includes an exact dynamic model of the “plant”: the process under 
control. This assumption is almost never valid in reality. In practical systems, 
the precise dynamic model is rarely known. Even that which is known about the 
real process dynamics is often too complicated to include in the observer. Thus 
the observer must in practice be configured to use only an approximate model 
of the plant. This encounter with the real world does not vitiate the separation 
principle, but it means that the effect of an inaccurate plant model must be 
considered. If the design achieved through use of the separation principle is 
robust, it will be able to tolerate uncertainty of the plant dynamics. The 
robustness tests discussed in Chap. 4 (gain and phase margins, singular value 
analysis, etc.) can be used to assess robustness of control laws designed by use 
of the separation principle. These are issues to be addressed in the present 
chapter. 

8.2 COMPENSATORS DESIGNED USING 
FULLORDER OBSERVERS 

Consider the “standard” dynamic process 

x = Ax + Bu (8.1 ) 
with observations given by 

y = ex  (8.2) 

Suppose we have designed a “full-state feedback” control law 

using the methods of Chap. 6. And also suppose we have designed an observer 

2 = A2 + BU + K ( y  - C2) (8.4) 

using the methods of Chap. 7. On the basis of the separation principle, the 
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l l  

control law we should use, if the full state cannot be measured, is 

u = -cx̂  ( 8 . 5 )  

where x^ is the state estimate given by (8.4). 
The control system based on combining (8.4) and (8.5) has the configura- 

tion shown in Fig. 8.1. On the right-hand side is the “p lan t” -o r  process under 
control-with the control input u and observed output y. At the left is the 
“compensator,” the input to which is the observed output y of the plant, and 
the output from which is the control input u. Since the observer (8.4) contains 
a model of the plant, that model is part of the compensator. Note also that the 
number of state variables in the compensator is equal to the order of the embedded 
observer and hence is equal to the order of the plant. Thus the overall closed-loop 
system, when a full-order observer is used in the compensator, is 2k for a plant 
of order k 

We are interested in the dynamic behavior of the 2krh-order system 
comprising the plant and the compensator. With the control law (8.5) used, the 
plant dynamics become 

X = h - B G x ^  (8.6) 

and the observer (8.4) becomes 

x^ = Ax̂  - BCx  ̂+ K(CX - ex̂ ) (8.7) 

Observer Control 
gain 

3 

1 

Figure 8.1 Control system using observer in compensator. 
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upon use of (8.2). As was done in Chap. 7, we define the observer error 
1 e = x - x  

Then, (8.6) becomes 

1 = Ax - BG(x - e )  = ( A  - B G ) x +  B G e  (8.8) 

and, after subtracting (8.7) from (8.6), 

6 = ( A  - K C ) e  

The dynamics of the closed-loop system are thus given by (8.8) and (8.9), a 
block diagram representation of which is shown in Fig. 8.2. It is seen that when 
the state x and the error e are used For the state of the 2kth-order system, the 
block diagram consists of two subsystems in tandem, the system on the left 
generates the estimation error and the estimation error, in turn, forces the 
evolution of the state. It thus follows that the dynamics of the overall system is 
that of two systems in tandem and hence that the closed-loop eigenvalues of the 
o_verall system comprise the eigenvalues of A, = A - BG and the eigenvalues of 
A = A - KC. But A, is the closed-loop A matrix of the system using full-state 
feedback, and A is the closed-loop matrix of the observer. We thus conclude 
that when an observer-based compensator is used to generate the control, the 
eigenvalues (poles) of the closed-loop system are simply the eigenvalues of the 
observer and the eigenvalues of the full-state feedback system. I f  the observer 
and the full-state feedback system are designed to have “favorable” dynamics, 
and the observer contains an accurate model of the plant, then the closed-loop 
dynamics of the overall system will also be “favorable.” 

We can study the system behavior in greater detail by taking the Laplace 
transform of (8.8) and (8.9): 

(8.10) 

(8.1 1) 

where x ( s )  and e(s) are the Laplace transforms of x ( t )  and e ( t ) ,  respectively; 
and x, and e, are the initial state and observation error, respectively. From 

e(s) = (SZ - i i - ’ e o  

(sl - A,)x(s) = BGe(s) + xo 

(sl - A)e(s) = e, 
A 

(8.1 1 )  

Figure 8.2 Block-diagram representation of state and error in system with compensator designed by 
separation principle. 
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and, from (8.10) 

x(s) = (sl - A,) - 'BGe(s)  + (sl - Ac)-'xO 

= (sl - A,)-'BG(sZ - i ) - ' e o  + (sl - A,)-'x, (8.12) 

From (8.12) it is seen that the transient response of the state x ( t ) ,  which 
would be obtained by taking the inverse Laplace transform of (8.12) consists of 
two terms: The first term 

( s ~  - A , ) - ' B G ( ~ I  - A)- 'eo  (8.13) 

depends on the initial estimation error e, = x, - z,, and is the result of not 
being able to measure all the state variables and having to use an observer. The 
second term is due to the initial state xo and is present whether or not an 
observer is present. 

The matrix that multiplies the initial estimation error can be written as 
follows: 

adj ( s l  - A,) BG adj (sl - A) 
(sz - A ~ ) - ~  B G ( ~ I  - A)-' = (8.14) 

Is1 - A,\ (sl - 

The matrix in the numerator of (8.14) contains polynomials of degree at most 
2(k - 2); and the denominator of (8.141, which are the poles of the system with 
respect to the initial estimation error, are the zeros of ( s l  - A,( and the zeros of 
1.71 - A(. Since the poles with respect to the initial state are the zeros of Isl - A,I 
it is aeain seen that the only poles of the closed-loop system are the zeros of 
(sl - A1 and the zeros of Isl - ACI. 

The transfer function of the compensator is obtained by the use of (8.4) and 
( 8 . 5 ) .  The former can be written 

x^ = ( A  - BG - K C ) ;  + KV 

or 

;(s) = ( s l  - A + BG + K C ) - ' K y ( s )  

Thus, from (8.5) 

U(S) = - G ? ( s )  = -G(sZ - A + BG + K C ) - ' K y ( s )  (8.15) 

The transfer function D(s) of the compensator, defined by 

u(s) = -D(s)y(s) (.8.16) 

(i.e., the transfer function between the plant output and the plant input) is 
given by 

D(s) = G(sZ - A + BG + K C ) - ' K  

= G(sl - A,) - 'K  (8.17) 

where 

A, = A -  BG - KC = A- BG = A, - KC 
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It should be quite apparent that the poles of the compensator, in general, 
do not occur at the poles of the open-loop plant (i.e., the zeros of IsZ - Al) 
nor at poles of the closed-loop full-state feedback system (i-e., the zeros of 
IsZ - A,/),  nor at the poles of the observer [i-e., the zeros of Is1 - 21). If a and 
A, are chosen independently, it may even happen that has one or more 
eigenvalues in the right half-plane! The compensator, in other words, could turn 
out to be unstable! But yet the closed-loop system, if so designed, would be 
stable. Since no requirement has been imposed on the stability of the compensator, 
one should not be too surprised to learn that the compensator might turn out 
unstable. After all, the loop transmission is the product of the compensator 
transfer function and the plant transfer function. If it is possible for a compensator 
to stabilize an unstable plant, it ought to be possible for the plant to stabilize an 
unstable compensator. 

The two situations, however, are not the same. The instability of the plant 
is the problem that the control system is supposed to cure, and the compensator 
is the remedy. A remedy that is worse than the problem it cures may justifiably 
be frowned upon by the patient-the ultimate user of the control system. One of 
the consequences of an unstable compensator is that the closed-loop system is 
only conditionally stable. The open-loop poles of the system are the poles of the 
plant and the poles of the compensator. If the latter are in the right half-plane, 
then the closed-loop poles will also be in the right half when the loop gain 
becomes too small. These considerations are addressed in Sec. 8.4 that deals 
with robustness. 

Postponing the question of robustness for the present, we summarize the 
steps of the compensator design using observers. 

Step 1. Design the control law under the assumption that all state variables in 

Step2. Design an observer to estimate the state of the process for which the 

Step 3. Combine the full-state control law design of step 1 with the observer 

the process can be measured. 

control law of step I was designed. 

design of step 2 to obtain the compensator design. 

Example 8A Compensator for stabilizing inverted pendulum In Example 6B we considered the 
design of a control law for an inverted pendulum, and in Example 7 9  we considered 
the design of an observer under the assumption that a constant disturbance x, is present. Since 
the design of Example 6B did not account for the presence of the constant disturbance, 
however, we should amend that design accordingly. Thus this example will provide another 
illustration of the design of control systems for processes with constant disturbances as well as 
an illustration of the use of observers in the realization of the dynamic compensator. 

Step 1 .  Full-state feedback design 

The dynamics, including the disturbance x, are given by 

(8A.I) 
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The control law for this process is 

u -CX - G o ~ o  

The gain matrix G was obtained in Example 6B using the Bass-Gura formula: 

In addition we need the disturbance gain go which we compute using (6.49) 

go = B'E 

where E is the matrix that multiplies the disturbance, in this case 

and, from (6.47) 

where 

= [:I 

(8A.2) 

(8A.3) 

(8A.4) 

The observation matrix C is needed for the computation of B'. The reason for the need 
of C is that we cannot expect to force both components of the state x to zero in the presence 
of a constant disturbance, if only one can be measured. Thus, for this example we assume that 
our  sole measurement is of the pendulum angular position 6, that is, 

y = cx 
with 

c = [ I  01 

Thus 

Hence, by (8A.4) with 

and, by (8A.3) 

1 
go = - 

0 

(8A.5) 

(8A.6) 

(This result does not come as a surprise, does it?) Thus the full-state feedback control law by 
(8A.2) is 

(8A.7) 
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$ = t j  

Srep 2. Obseruer design with known control 

Example 7B to be given by 
The observer, designed under the assumption that the control is known, was found in 

e^ = G + k , ( y  - i) 
k = n'ê  - aG + pu + go + k,(y ~ i )  
i" = k 3 ( y  - i) 

(8A.8) 

with the observer gain matrix given by 

where 6,, &, Bs are the coefficients of the observer characteristic polynomial. 

Step 3. Compensator design 

f = [O, &,;,J' in (8A.7), ix., 
P e  compensator dynamic equations are obtained by using the estimated state 

(8A.9) 

and also using this control in (8A.8). 
A block-diagram representation of (8A.8) and (8A.9) is shown in Fig. 8.3, which is the 

same as  the block diagram (Fig. 7.6) for the observer with known input, but with the input u 
given by (8A.9). 

Although the structure of Fig. 8.3 explicitly exhibits the estimates of the state variables, it 
is not necessary that the compensator be implemented by that structure. As long as the transfer 
function between the measured state y = 0 and the control output u is the same as the transfer 
function between y and u in Fig. 8.3, the closed-loop system will have the same behavior. 
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Using (8.17), or working directly with (8A.8) and (8A.9),,we find that the compensator 
transfer function is 

D(s) = G(sI  - A , ) - ’ K  

where 

-k, 1 
A, 1 . .  = A - BG = [ -k:;,n2 -; E] - [ 

go] 

0 0  

-I, + a 

T h e  resolvent for a, is given by 

( s l  - A,,-1 

s(s - a,)  s 0 

1 - s [ d ,  + I, + n2a(I, - a)] s(s + I, - a )  0 

A - I , ( s  + I ,)  
- 

- 0 3  sZ + (I, + a ,  - a ) s  + (Il - a )  

( a ,  - a) + 6, + d,  + n2 --I 
where 

A = s[s2 + (I, + a, - a ) s  + (I, - u ) ( d l  - a) + 6, + 6, +a’] (8A.10) 

After some calculation the transfer function of the compensator is determined to be 

d , s 2 +  d,s + d,  
D(s) = (8A.11) 

ps[s ’  + (I, + a, - 0 ) s  + (t l  - a ) ( a  - a) + nz + n^? + n21 

where 

d ,  = d , ( I ,  - a )  + t 2 ( d l  - a) - a ( d I  - a)( ; ,  - a )  + f12(a*, + a, - 2 a )  + 6, 

d , =  az12+n’[(al - a ) ( I , -a )+ I , ]+nJ+ I , I ,  

d,  = t3[ii2 + (I l - a)(ril  - I,)] 

The transfer function of (8A.11) can be realized in one of the companion forms discussed 
in Chap. 3. 

Note that the transfer function of the compensator as given by D(s) has a pole at the 
origin which resulted in this case from the unknown disturbance which is estimated by the 
observer. As a result of the pole at the origin, the cascade of the compensator and the original 
plant also has a pole at the origin, resulting in a “type 1 ” closed-loop transfer function which 
will ensure that the steady-state error for a constant disturbance is zero. 

8.3 REDUCED-ORDER OBSERVERS 

The separation principle applies not only to the case in which a full-order 
observer is used for state estimation, but also when the compensator is based on 
a reduced-order observer. In  particular, for the special case in which the 
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observation can be used to solve for a substate: 

Y = ClXI 

21 = XI = c ; ' y  

?z = Ly + z 

~ = F z + G ~ + H u  

with C, being a nonsingular matrix 

Then in accordance with the theory developed in Chap. 7 ,  we take 

where 

where 
F = A22 - LClAl2 

G = A,, - LCIAll 

H = B2 - LCIBI 

To implement the compensator we use the control law 

Hence the compensator has the configuration shown in Fig. 8.4. 

Figure 8.4 Block diagram of compensator using reduced-order observer. 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 
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X 

As in the case of a full-order observer the closed-loop dynamics are 
expressed in terms of the state x of the plant and the estimation error 

The dynamics of the plant, using the control law (8.22) are described by 

x = Ax - BG(x - e )  = ( A  - BG)x + B ( G l e l  + G,e,) (8.23) 

By(8.18) = x I  

so  e l  = 0 (8.24) 

and, as shown in Chap. 7, 

e2 = Fe, (8.25) 

for any u when F, G, and H are chosen to satisfy (8.21). Thus the closed-loop 
dynamics are given by (8.23) with el = 0 and (8.25) as shown in Fig. 8.5. The 
structure is the same as shown in Fig. 8.1 for the full-order observer except that 
only the error e2, in estimating the unmeasured substate x2,  produces a driving 
term to the state dynamics. 

Following the development of Sec. 8.2 we can obtain the Laplace transform 
of the response due to nonzero initial conditions: 

x(s) = ( s l  - A,)-lBG,e,(s) + ( s l  - A,)-'x(O) 

e2(s) = (sZ - F)- 'e , (O)  

x(s) = (sl - A,)-'BG,(sl - F)-le,(O) + ( s l  - A,)-'x(O) 

with 

Thus 

The matrix that multiplies the initial estimation error is 

adj (sZ - A,)BG2 adj ( s l  - F )  
( s l  - A,)-IBG,(sZ - F)-I = (8.26) 

IsZ - A,I IsZ - F (  

Thus it is seen that the characteristic equation of the overall system is 

IsZ - A,I Is1 - FI = 0 (8.27) 
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Hence the poles of the closed-loop system, when a reduced-order observer is 
used in the compensator, are the zeros of Is1 - A,\ and the zeros of Is1 - F ( .  The 
number of zeros in (sl - A,I is exactly equal to the order of the plant and the 
number of zeros of Is1 - FI is equal to the order of the compensator. Thus 
(8.27) accounts for all the eigenvalues of the closed-loop system. 

The same method of analysis that was used in the above development for 
the special case in which a substate x, can be determined from the output by 
(8.18) can also be used to obtain an equation for the closed-loop dynamics in 
the more general case represented by (7.55)-(7.67). See Prob. 8.2. 

8.4 ROBUSTNESS: EFFECTS OF MODELING ERRORS 

In the foregoing analysis we learned that the closed-loop poles of a system 
using a compensator designed by the separation principle has its poles at the 
poles of the observer and at the poles of the full-state feedback control system. 
Since both sets of poles have putatively been selected by the designer, we can 
assume that their location is favorable to overall system operation. In demon- 
strating that the pole locations are exactly as specified, however, we made use 
of the fact that the observer design includes an exact dynamic model of the 
plant. There are several reasons why it is impractical to assume that the 
dynamic model of the plant is exact: 

The physics of the plant may be understood only approximately, or 
The exact dynamics may be known but too complicated to include in the 

The plant may change slowly with time owing to aging of components. 
control system design, or 

The reader no doubt can supply additional reasons. 
The best that the designer can do is to design a compensator on the basis of 

a nominal plant model, i.e., a plant model defined for purpose of design. Since 
the true plant will (almost) never be the same as the nominal plant, the 
closed-loop poles will (almost) never be located in the exact locations intended. 
If their actual locations are not far from their intended locations when the 
actual plant does not differ greatly from the nominal plant, the nominal design 
will probably be satisfactory. If, on the other hand, a small change in the plant 
causes a large change in the closed-loop pole locations-perhaps going so far as 
to move them into the right half-plane-then the nominal design will surely be 
unsatisfactory. 

To analyze the effect of “mismatches” between the nominal plant and the 
actual plant, suppose that the observer is designed on the basis of a nominal 
plant 

x  ̂ = Ax̂  + BU + K ( y  - &) (8.28) 
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where 

(8.29) 

C = C + 6 C  

with 6A, SB, and 6C representing changes in the plant dynamics, control, and 
observation matrices from their respective nominal values A, B, and C. 

a. Variations in Plant and Observation Matrices 

Consider the effect of a variation in the plant matrix A and in the observation 
matrix C. The plant dynamics are then given by 

i = ( A + S A ) x + B u  (8.30) 

Subtract (8.28) from (8.30) to obtain 

e = x - 2 = A(x - 2) + 6Ax - K [ ( C  + SC)X - c2] 

= ( A  - KC)e  + (6A - K6C)x (8.31) 

Now 

u = -G2 = -G(x - e) 

Then (8.30) becomes 

x = (A - BG)x + BGe 

We can rewrite (8.32) and (8.31) as 

x = A,x + BGe 

e = Ae i- AACX 
A 

(8.32) 

(8.33) 

where 

= A - K C  = nominal observer dynamics matrix (8.34) 

A A C  = 6A-  KSC (8.35) 

The characteristic equation of (8.33) is 

(8.36) 

Because of the presence of A,, in the determinant of (8.36), the clo_sed-loop 
poles are no longer at the zeros of Is1 - A,I and at the zeros of 1x1 - A(, but at 
other locations that depend on A A p  In a practical application, we can usually 
estimate the size of PAC in the worst circumstances. If we can assure that the 
closed-loop poles do not move too far from their nominal locations for the 
largest possible values of AAC, then we have verified that the nominal design is 
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sufficiently robust for the intended application. Otherwise it may be necessary to 
reconsider the nominal design. 

One can readily appreciate that direct evaluation of (8.36) for all possible 
values of AAc, although feasible, is a formidable task, and we seek a more 
palatable alternative. To accomplish this objective we take the Laplace trans- 
form of (8.33) and obtain 

( s l  - A,)x(s) = BGe(s) + x(0) 

and 
A 

(sl - A)e(s) = AACX(S) + e(0) 

or 

x(s) = (sl - A,)- ' (BGe(s) + x(0)) 

e(s) = (SI - A ) - ' ( A ~ ~ x ( s )  + e(0)) 

A block-diagram representation of (8.37), in terms of transfer functions, is 
shown in Fig. 8.6. The block diagram is in the form of a closed-loop system, the 
loop being closed through AAc If AAC is a scalar, it would be appropriate to 
study its effect by a root-locus-, Nyquist-, or Bode-diagram analysis. But AAC is 
a k x k matrix, not a scalar, and the effect of AAC on the closed-loop system 
must be studied by more general means, such as the singular-value analysis 
methods described in Chap. 4. 

One special case is particularly easy to analyze, namely the case in which 
there is only a single output 

A (8.37) 

y = cx = c'x c' = [cl, c?, . . . , ck]  

I en 

Figure 8.6 Block diagram to represent closed-loop dynamics due to change in plant and observation 
matrices. 
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(31-  A,)-  I 

b 

Figure 8.7 Special case of Fig. 8.6 when Aac = vc'. 

and where the only mismatch is due to a scale factor error, i.e., 

y = (1 + u ) c ' x  

where (T is the scale factor error. In this case 

S A = O  and SC = uc' 

(8.38) 

The block diagram of Fig. 8.6 reduces to that shown in Fig. 8.7. (Since there is 
only a single output in this case, the observer gain matrix K becomes the 
column vector k.) If (T is regarded as a scalar gain, it is seen that the 1 x 1 
transfer function from the output of u (point a in the diagram) back to its input 
(point b )  is 

F(s) = ~ ' ( s l  - A,)-'BG(sZ - A ) - l k  (8.39) 

Hence the effect of a scale factor error in the output can be studied by a 
root-locus or Nyquist diagram analysis of the equivalent loop transmission 
F(s)  given by (8.39). In particular, we can investigate how much (T can vary 
without degrading stability; we can calculate phase and gain margins, etc. 

Example 8B Instrument servo In Example 6A, we considered a control system for an instru- 
ment servo governed by 

(8B.l) 

and designed the gain matrix for full-state feedback. For a closed-loop characteristic poly- 
nomial 

D,(s) = s2 + r?,s + i2 

(88.2) 

The observer design for the same example was found in Example 7A. For an observer 
characteristic polynomial 

D,(s) = sz + GIs + i2 
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we found the observer gain matrix 

a'? - - a) 
k = [ill = [ (8B.3) 

This gain matrix was for an observation matrix 

c ' =  [ l  01 (88.4) 

We now have all the matrices to evaluate the equivalent loop transmission F(s) given by 
(8.39) and are ready to assess the effect of an erroneous scale factor in the measurement of the 
system error e. 

Note that F( s) conveniently factors into two scalar transfer functions: 

where 

where 

Thus 

F,(s) = ~ ' ( 2 1  - A , ) - ' b ,  ( B  = b )  

F,( s )  = g'(s1 - R ) - ' k  

az[(i, - a ) s  + a',] + (0, - a", - a ( ; ,  - .)Is 
P ( s Z  + a ' , s  + a'?) 

- - 

Thus we find that 

(88.6) 
S[Ci'(Gl - a) + ;,(a, - a) ~ .(a', ~ a ) ( i ,  ~ a)] + a,;, 

( s ' + a , s + n , ) ( s ' + G , s + a ' , )  
F(s) = 

We also compute the transfer function D(s) of the compensator using (8.17): 

D(s) = G(s1 - A , ) - ' K  = g'(s1 - A + kc'+ bg')-'k 

Now, using (88.2), (88.4), and (88.31, we find 

Thus 

After a bit of messy algebra we find that 

s[a, (a ' ,  - a) + ;,(a, - a) - a ( 6 ,  - a)(ril - all  + 02a'Z 

P [ s ' +  (al + a', ~ a ) s  + 6, + a2 + (a ' ]  - a) (a l  - .)I D(s) = (8B.7) 



306 CONTROL SYSTEM DESIGN 

compensator  Plant 

Figure 8.8 Block diagram for root- 
locus plot. 

Note that the numerator of D(s) is exactly the same as the loop transmission F(s) at the 
nominal operating point. This is no accident. In  this case the plant is a single-input, 
single-output system having the transfer function 

And the transmission of the open-loop is the product of D(s) and G(s ) .  Thus the open-loop 
transmission zeros are the zeros of the compensator and the zeros of the plant. In this case the 
compensator has one zero and the plant has none. The open-loop poles of the system comprise 
the poles of the plant and the poles of the compensator. The former are at s = 0 and at s = -a, 
and the latter are at the zeros of the denominator. When the loop is closed through a variable 
gain, as  shown in Fig. 8.8, the poles of course will move, but rhe zeros remainfired. As the gain 
is raised to  unity the poles will move to the values for which the system was designed, namely 
the poles of the observer (at the zeros of s' t a^,s + a^2) and at the poles of the full-state 
feedback system ( i t . ,  at the zeros of s 2  t ci,s + a?). Further increase of the gain, beyond unity, 
will drive the poles away from these values and toward the open-loop zeros or to minus infinity 
in accordance with the excess of poles over zeros. In this example the excess is 3 and thus three 
branches of the root locus will tend to minus infinity, as  discussed in Chap. 4. We shall consider 
a root-locus plot later in this example. 

Although the calculations were somewhat tedious, we left the parameters a, a,, and a^, as 
variables rather than substituting numerical values. Now we can reap the reward. 

First we note that the compensator transfer function is symmetric in the parameters of the 
observer and the full-state feedback controller: if the overbars and carets were interchanged in 
(XB.7) the compensator would have the same transfer function. (This may not be the case in 
other systems.) 

Next we note that the compensator may turn out unstable. In particular we must have 

a,  t a^, > (I (8B.8) 

Since a^, and 6, are proportional to the damping factors ( a ,  = 2 5 w )  selected for the observer 
and the full-state feedback control, (8B.X) implies that the damping factors cannot be made 
too small without creating an unstable compensator. This is a fairly easy requirement to 
achieve. To avoid a compensator zero in the right half-plane, there is a requirement on the 
coefficient of s in the numerator of D(s). This requirement is also easy to achieve. 

To proceed farther with the example without getting mired in the algebra, we finally must 
use some numbers. In particular, suppose 

a = l  

which means that an open-loop pole occurs at s = -1. Using only a gain and no compensator, 
we can see that the closed-loop root locus has the appearance shown in Fig. 8.9. Since the root 
locus lies in the left half-plane for all positive values of gain the uncompensated system has an 
infinite gain margin. But the system bandwidth cannot be much greater than 1 rad/s without 
having a very oscillatory response. For a damping factor of 5 = J 2 / 2 ,  in fact, the natural 
frequency is only 0.5 rad/s as  seen from Fig. 8.9. 

The compensator (88.7) is obviously more complex than a simple gain. What does the 
complexity of the compensator achieve? At least it should provide a larger bandwidth. SO 
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Figure 8.9 Root locus for uncompensated plant (D( s) = I ) .  

suppose we select the closed-loop poles of the full-state feedback controller and of the 
observer such that the natural frequency is 2 rad/s with a damping factor of J ~ / z .  This means 
that 

sz + 6,s + 6, = s2 + 8,s + l!i2 = ( s  + 2 ) 2  + 2, = sz + 4 s  + 8 

a,  = 6 ,  = 4 

d, = 8, = 8 

i t . ,  

Substituting these into (8B.7)  gives a compensator transfer function 

The zero of D(s)  occurs at 

s = -E - 3') - - 1.64 

and the poles occur at 
- 

s = $(-7 * j J 5 l )  = -3.50 * j3.57 

The root-locus plot is shown in Fig. 8.10. It is seen that the two branches of the root locus 
intersect at the complex frequencies s = -2 i- j 2  which are the frequencies selected for the 
normal operation of the compensator. The root loci cross the imaginary axis at o = 5.80 and 
this occurs for a gain K of 3.63, which is the gain margin of the system. Thus, the price we pay 
to raise bandwidth by a factor of 4 (and still maintain a damping factor of J 2 / 2 )  is a fairly 
complicated compensator and a reduced gain margin. Whether this is an acceptable price 
depends of course upon the application. 

We note that the finite gain margin is the result of the fact that the compensator has two 
poles and one zero, ix . ,  that the excess of poles over zeros in the loop transmission has been 
increased by one. A reduced-order observer would introduce only one pole and hence not 
increase the excess in the loop transmission. Hence a reduced-order observer (see Prob. 8.3) 
might be preferable to the full-order observer considered here. 
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K = 3.63 
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Figure 8.10 Root locus of compensated instrument servo. (C)  denotes pole or zero due to 
compensator; (P) denotes plant pole. 

It is hardly worth the effort of using the apparatus of the separation principle for a plant 
as simple as  this. The advantage of the separation principle is in applications such as systems 
of high order, o r  with multiple inputs and outputs. 

b. Variations in Control Matrix 

A slightly different analysis is appropriate for the case in which the control 
matrix B differs from its nominal value. In this case the closed loop is analyzed 
using 2 and e = x - i as the state variables. We use 

A = A  and C = C  

but B = E + 6 B  
(8.40) 
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The plant dynamics can be written 

2 + e = A(2 + e )  + ( E  + SB)G2 = ( A  - EG)? + Ae - SBG2 (8.41) 

and the observer is given by 

x^=(A-BG)x^+KCe (8.42) 

Subtract (8.42) from (8.41) to obtain the differential equations for the error: 

e = ( A  - KC)e - SBG2 (8.43) 

The characteristic equation of the 2kth-order system comprising (8.42) and 
(8.43) is 

s z -Ac  -SBG s l - a  K C  I = O  
(8.44) 

where 
A , = A - B G  A = A - K C  

Note that the determinant of (8.44) is triangular for SB = 0 and hence that 

A Laplace transform analysis of (8.42) and (8.43) is still more revealing: 
the closed-loop poles are the zeros of ( s l  - A,( and (sl - 

Proceeding as in the development of (8.37) we find that 

(8.45) 

which has the block-diagram representation shown in Fig. 8.1 1. Note that the 
loop is closed through the perturbation SB in the control matrix. 

The case in which there is only a single input, that is u is a scalar, and the 
perturbation in the control matrix is only a scale factor change, is also particularly 
easy to analyze. In this case 

and 
B = b  G = g '  

6 B  = ub 

I I 

(8.46) 

Figure 8.1 1 Block diagram to rep- 
resent closed-loop dynamics due to 
change in control matrix. 
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I 

Figure 8.12 Special case of Fig. 
8.11 when SB = ub. 

In this special case Fig. 8.1 1 reduces to Fig. 8.12, and it is seen that the loop 
transmission is given by the scalar transfer function 

F(s) = g'(s1 - A,)- 'KC(sZ - A)- 'b  (8.47) 

Note the similarity (actually duality) of (8.47) and (8.39). 
When the plant has both a single input and a single output both (8.39) and 

(8.47) factor into two-scalar transfer functions: 

where 
F, = F,Fo 

F, = g'(sZ - A,)- 'k  

and 
F, = c'(sZ - A)- 'b  

(8.48) 

(8.49) 

(8.50) 

8.5 DISTURBANCES AND TRACKING SYSTEMS: 
EXOGENOUS VARIABLES 

In Sec. 7.4 we discussed the situation in which disturbance and reference inputs 
may be present. For such cases the dynamics can be written 

X = AX + Bu + EX, (8.51) 

where xo is a constant vector containing the disturbance and reference inputs. 
An observer designed as discussed in Sec. 7.4 is capable of estimating not only 
x but also x,. Since x, is putatively a nonzero constant, its estimate 23, will tend 
to the same constant. Thus the observer output, which includes go, will not tend 
to zero. The input to the observer, however, is y = Cx, and the control law may 
have been designed to force the observed output to zero. In that case the 
compensator, comprising the observer with the feedback control u = 
-Gg - Gogo implemented, will have a nonzero output for a zero input. A system 
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can have a constant nonzero output for an input of zero only if it has a pole at 
the origin, i.e., if it contains a pure integrator. Thus the compensator affords the 
possibility of providing “integral control.” 

In our discussion in Sec. 6.4 of systems designed for tracking and with 
disturbances, we noted that it is not possible, in general, to achieve a zero error 
unless the number of components in the control vector u is at least equal to the 
number of components in the vector y = Cx that we want to reduce to zero (in 
the steady state). In many applications, however, it may be possible to measure 
a larger number of variables than the number that can be reduced to zero. In 
that case, the observation vector y may not go to zero in the steady state and the 
estimate go of the constant vector xo may not require pure integral control, since 
a nonzero steady state signal will be present in the observation y. 

Since the observer provides an estimate of xo in all cases, we can justify the 
claim that it provides “ quasi-integral ” control. It provides true integral control, 
however, only when the observed output y = Cx is designed to go to zero in the 
steady state. 

The quasi-integral control provided by the compensator can be present 
when either a full-order observer or a reduced-order observer is used. In 
particular, suppose that the observation vector consists of the state x itself 

y = x = [ Z  Ol[X]=Cx 
XO 

(8.52) 

Then, in the metastate representation, 

C ‘ = [ I  O]=[C,  C,] 

and 

The reduced-order observer, defined in Sec. 7.5, for the components of the 
metastate x, namely 

x, = x 

is 
A A  

x , = x = y  

2 2  = 2” = Ly + z 

(8.53) 

(8.54) 

with 
Z = FZ + Gy + HU ( 8 . 5 5 )  
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where F is chosen as desired, and, in accordance with .(7.50)-(7.52) 

L E = - F  L B = - H  G = - L A + F L  (8.56) 

Using (8.56) we obtain for (8.55) 

i = -LEz - ( L A  + LEL)y - LBu 

= - L ( E $ o + A y + B u )  (8.57) 

(The last line of (8.57) is obtained using (8.54).) 
In accordance with the separation principle, we are to generate the control 

u in (8.57) using the control law of Chap. 6 (Sec. 6.4) with the estimated states. 
Thus 

u = - G y  - GO& (8 .58 )  

A block-diagram representation of the compensator using the observer of (8.57) 
and (8.58) is shown in Fig. 8.13(a). An alternate form of the compensator is 
obtained by substituting (8.58) into (8.57) to yield 

Z = - Y ( E  - BGo);O + A,y]  (8.59) 

where 

A , = A - B G  

The block-diagram representation of (8.54), (8 .58 ) ,  and (8.59) is shown in 
Fig. 8.13(b). The block diagram shows a direct path from the measured state 
y = x through the gain matrix G to the control, and a parallel path, through the 
dynamic system, whose state is z, which contributes to generating the exogenous 
estimate go which is multiplied by Go to produce the component of control due 

In what circumstances will the compensator defined by (8.54), (8 .58 ) ,  and 
(8 .59) ,  i.e., Fig. 8.13(b), provide integral control? The transfer function of the 
compensator, i.e., from y to the control u, can be obtained by taking the 
Laplace transform of (8.59) 

to 20. 

sz = - L[ ( E  - BGo)i& + A,y] 

where, by (8.54), 

s ~ ? O  = LSY + sz = G(sZ - A,)y - ( E  - BGo)$o] 

Thus 

[sI - L ( E  - BGo)]io = L(sI - A , ) y  

and 

20 = [ SZ - L( E - BGo)]-' L( SI - A,)y 

The characteristic equation of the compensator is 

I S Z  - L ( E  - B G ~ ) ~  = o 

(8.60) 

(8.61) 
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Figure 8.13 Compensators using reduced-order observers for systems in which state but not 
exogenous variables can be measured. ( a )  Control signal is fed back; ( b )  Matrices are changed, 
control signal not fed back. 

Note that the characteristic equation of the observer, without the implementa- 
tion of the feedback, is 

I S I  - L E I  = o (8.62) 

The poles of the latter are closed-loop poles of the overall system consisting of 
the compensator and the plant. By design, we select the L matrix so that the 
observer dynamics matrix LE is a stability matrix, which implies that LE is not 
singular. In order for the compensator to provide true (and not quasi) integral 
control, however, the characteristic equation (8.6 1 )  of the compensator must 
have at least one zero at the origin. This means that L ( E  - BGo) must be 
singular. Is it possible for L ( E  - BGo) to be singular when LE is not? To learn 
the answer to this question, recall from Sec. 6.4 that 

Go = B # E  
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where 

B# = ( c A ; ~ B ) - ~ c A ; '  (8.63) 

with A, = A - BG. Thus 

E - BGo (I - BB")E (8.64) 

Now the matrix I - BB# is singular (because B#( I - BB#) = B# - B# = 0). 
Thus the matrix 

L( E - BG,) = L( I - BE#) E (8.65) 

may be singular, even when LE is not singular, since the rank of a product of 
matrices is less than, or equal to, the rank of any of its factors. In the special 
case in which there are enough independent control variables to force x to zero 
in the steady state, B-I must exist, and (8.63) would give B# = B-I.  For this 
case I - BB# = 0 and the compensator dynamics matrix would be zero, guaran- 
teeing true integral control. Similarly, if the observation vector y is the same 
vector that is forced to zero in the control design, i.e., 

C = [ C  01 

the compensator will produce true integral control. The equations for the 
compensator in this case would be developed using the more general observer 
structure defined by (7.62)-(7.66) and illustrated in Fig. 7.13. (See Prob. 8.2.) 

In practice, of course, there is no special reason for requiring that the 
number of outputs that are to be reduced to zero in the steady state be equal to 
the number of quantities that are accessible for observation. 

8.6 SELECTING OBSERVER DYNAMICS: 
ROBUST OBSERVERS 

If the process for which an observer is to be designed is observable, the gains of 
the observer can be selected so that its poles lie anywhere in the complex plane. 
Moreover, if the rank of the observation matrix C is greater than 1, it is possible 
to accomplish more than simply placing the poles. Thus the question arises, as 
it did in the case of the design of the feedback control law u = -Gx, of the 
choice of an appropriate dynamics matrix for the observer. 

One of the considerations in the design of a gain matrix G in the full-state 
feedback control law is that the resulting control signal u not be too large to be 
realized by the existing actuator (power source). Since the function of the 
observer is only to process data, however, there is no practical limitation on the 
size of the observer gain matrix K :  The observer can be made to respond as 
rapidly as one might desire without concern that the signals will be larger than 
physically realizable. (Nowadays, it is all but certain that the entire com- 
pensator would be realized by a digital computer. With floating-point numerics, 
a digital computer would be capable of handling variables of any reasonable 
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dynamic range.) Though the hardware may impose no limitation on the 
observer dynamics, it may nevertheless be desirable to limit the observer 
speed-of-response (bandwidth). Remember that real sensors are noisy. And 
much of the noise occurs at relatively high frequencies. By limiting the band- 
width of the observer, we can thus attenuate and smooth the noise contribution 
to the compensator output-which is the control input. This is a method for 
reducing the undesired response of the dynamic process to the sensor noise. But 
reducing the bandwidth of the closed-loop process in response to sensor noise 
also reduces the speed of response to reference inputs. The benefits of one cannot 
be achieved without some sacrifice of the benefits of the other. It is possible, at 
least in principle, to trade off the noise attenuation for dynamic response 
“optimally” using the methods of Chaps. 10 and 11. There we learn how to 
formulate the optimum observer design problem in terms of the intensity (i-e., 
spectral density) of the noise at the sensors. The word “optimally” is enclosed 
in quotes to emphasize that the optimum trade-off requires a precise knowledge 
of the sensor noise characteristics. In practice, these characteristics are rarely 
known with sufficient accuracy to justify the claim of true optimality. The methods 
of Chaps. 10 and 11 are readily amenable to machine calculation, however, and 
can be used as effective design tools, even when only rough estimates of the 
sensor noise characteristics are available, and hence when the appelation of 
optimal is scarcely justified. 

One of the problems that has been found to arise when observers are 
designed strictly on the basis of the sensor noise parameters, is a possible lack 
of robustness, i.e., stability margins, when parameters of the process are 
different from those used in the design. We already discussed this problem in 
Sec. 8.4 and studied how the effect of parameter changes might be studied by 
analyzing the return difference for variations in the plant parameters. 

One of the considerations that should be addressed in the design of an 
observer is the robustness of the closed-loop dynamic process. When the 
observer dynamics are perfectly matched to the process, then the error e = x - x^ 
between the estimated state x^ and the true state x goes to zero in the steady 
state. This should mean that the transfer function from the control input u to 
the error e is zero, or that the transfer functions from the control input u to x 
and to x^ are both the same. Does it? To determine the answer to this question 
consider the two block-diagrams of the closed-loop process as drawn in Fig. 
8.14. The first block diagram shows the full-state feedback control system and 
an extraneous input uo. Also 

ii ug- GX 

The transfer function from the extraneous input uo to the state x is calculated 
as follows 

X(S)  = 0 B i j ( s )  (8.66) 

where 0 is the “resolvent” of the plant, i.e., 

0 = (sZ - A)- ’  (8.67) 
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Figure 8.14 Development of robust observers. ( a )  Full-state feedback; ( b )  Observer used to 
estimate state. 

and 

O(S) = UO - Gx(s) (8.68) 

Thus, by (8.68) and (8.66), 

x(s) = ( I  + @ B G ) - ' O B U ~  (8.69) 

Thus, the transfer function from uo to the state x, using full-state feedback, is 

Ho(s) = ( I  + @ B G ) - ' @ B  

= [ I  + (sI - A)- 'BG]- ' ( s l  - A)- 'B (8.70) 

The form of the transfer function given by (8.70) is more complicated than 

Ho(s) = (sZ - A  + B G ) - ' B  = ( @ - I  + B G ) - ' B  (8.71) 

but is particularly suited to our present development. (See Note 8.2 and Prob. 

the more usual form 

8.1.) 
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Now suppose that we realize the control law by the separation principle, 
using an observer as shown in Fig. 8.14(b). Again we seek the transfer function 
from the extraneous input uo to the state x. It is crucial to recognize that the 
extraneous input uo is presumed unknown and hence not available for feeding 
into the observer. 

The transfer function from the extraneous input uo to the state x is still 
determined from (8.66); but now 

U(S) = UO - GG(s) (8.72) 

For an arbitrary control gain matrix G the transfer function from uo to x in 
Fig. 8.14(b) will not be the same as that of Fig. 8.14(a) unless the transfer 
function from U to 2 in Fig. 8.14(b) is the same as that from ii to x in Fig. 
8.14(a). The transfer function from U to x in Fig. 8.14(a) is given by (8.66). In 
Fig. 8.14(b) 

G(s) = @[Bu - K C ( G ( s )  - x(s))] 

or 

or G(s) = ( @ - I  + K C ) - ' [ B u ( s )  + KC@BU(s)]  (8.73) 

The transfer function from U(s) to G(s) given by (8.73) is generally not the 
same as that given by (8.66). As first shown by Doyle and Stein,[2] however, 
they are equal when 

K ( Z  + C @ K ) - '  = B(C@B)- '  (8.74) 

This is shown with the aid of the Schur matrix identity (see Appendix (A.47) 
and Note 8.3) 

( @ - I  + K C ) - '  = 0, - @K(Z + C @ K ) - ' C @  

( @ - I  + KC)G(s)  = Bu(s) + KCOBU(s)  

(8.75) 

By (8.75) we find that (8.73) becomes 

G ( s )  = [@ - @K(Z + C @ K ) - ' C @ ] B U ( S )  

+ [a) - @K(Z + C @ K ) - ' C a ) ] K C O B U ( s )  (8.76) 

On use of the Doyle-Stein condition (8.74), the matrix multiplying u(s) 
becomes zero and the matrix multiplying U(s) becomes B. Thus when (8.74) 
holds 

G(s) = @BU(s )  

which is the same form as (8.66). 
It is noted that the Doyle-Stein condition depends only on the open-loop 

characteristics of the observer: it is independent of the control gain. When the 
Doyle-Stein condition holds, the transfer function from an extraneous input uo 
to the state x is given by (8.69), independent of the observer: The dynamics of 
the observer do not influence this transfer function. 

Another property of a " Doyle-Stein observer," i.e., an observer satisfying 
the Doyle-Stein condition, is obtained by computing the transfer function from 
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the observable output y to the state estimate 2. With reference to Fig. 8.14( b )  we 
see that 

(I-'? = z = K ( y  - C?) - BGG 

or ((I-' + K C ) ;  = Ky - BG? 

or 

But, by the Doyle-Stein condition, 

G = ((I-' + K C ) - ' K y  - ((I-' + KC)-'BGG (8.77) 

((I-' + K C ) - ' B  = 0 (8.78) 

This means that the transfer function from y to the estimated state 2 does not 
entail the feedback of the control signal u. The path from u to z may be omitted. 
Thus, if K can be selected to satisfy the Doyle-Stein condition (8.74), the 

Q 
U 

( h )  H o  = a)s[c.a)sj-' 

Figure 8.15 Representations of control systems with Doyle-Stein observers. ( a )  Feedback path from 
u to z may be omitted in Doyle-Stein observer; ( b )  Alternate representation of closed-loop system 
with Doyle-Stein observer. 
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closed-loop system of Fig. 8.14( b )  can be represented by Fig. 8.15( a ) .  Since there 
is no feedback from the control u to the observer through the control distribution 
matrix B, the observer transfer function 

H,(s) = (0-I + K C ) - ' K  = (SZ - A + K C ) - ' K  (8.79) 

is the same as it would be for the unforced system X = Ax with observation 
y = Cx. When a general observer is used and the control matrix B changes by 
an amount 6B, it would be necessary to change the control distribution matrix 
B in the observer in order to preserve the separation property. Otherwise the 
closed-loop poles would change in the manner discussed in Sec. 8.4. When a 
Doyle-Stein observer is used, however, the observer poles remain unchanged, 
and only the poles due to the change of B in the full-state feedback control law 
change. The invariance of those closed-loop poles of the overall system that are 
attributed to the observer imparts a considerable measure of robustness to the 
closed-loop system. This has motivated Rynaski[3] to call observers that satisfy 
the Doyle-Stein condition "robust observers." 

The Doyle-Stein condition (8.74) has another interesting interpretation. 
Note that the left-hand side of (8.74) can be written 

K(Z + C O K ) - '  = K I I  + C(SZ - A ) - ' K ] - '  = (sI - A ) ( s I  - A +  K C ) - ' K  

(8.80) 

The first expression in (8.80) is obtained by finding the transfer function from y 
to z = K r  (with r = y - Cx) in Fig. 8.15(a). The right-hand side of (8.80) is 
obtained by noting that 

= 0-12 ( s I -  A)HO(S)Y (8.81) 

with Ho(s) given by (8.79). Thus, by (8.80), the Doyle-Stein condition (8.74) can 
be written 

(sI - A)HO(s) = B [ C ( s I  - A)- 'B] - '  

Thus the transfer function of a Doyle-Stein observer is 

Ho(s) = (sI - A)-'B[C(sZ - A ) - ' B ] - '  (8.82) 

and the closed-loop system can be depicted as shown in Fig. 8.15(b). It is 
readily established, using Fig. 8.15(b), that the transfer function from uo to x is 

H,(s) = OB(Z  + GOB)- '  (8.83) 

which is the transfer function of the closed-loop system when full-state feed- 
back is used. From Fig. 8.14(n) 

x = OBii 

U = UO - GOBU and 

or ii = ( I  + GUIB)-'U, 

Thus 

which implies that the transfer function from uo to x is given by (8.83). 

x = O B ( I  + GOB)-'U, 
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The foregoing analysis shows that, with regard to the transfer function from 
uo to x, the Doyle-Stein observer acts as if it were the inverse of the observation 
matrix C. (If C is a nonsingular matrix, then there is of course no need for an 
observer in the first place.) 

The transfer function in the presence of the closed-loop process, with a 
Doyle-Stein observer in place, is the same as it would be for full-state feedback. 
This means that the transfer function has the same order as the open-loop 
system. But the true order of the closed-loop system is equal to the order k of 
the open-loop plant plus the order of the observer (k, for a full-order observer). 
Whenever a transfer function between some input and some output of a system 
is of lower order than the true dynamic order of the system, either the condition 
of unobservability or of uncontrollability obtains. In  this case it is unobservabil- 
ity: The observer states are not observable in the plant output. 

From (8.82) it is seen that 

CHo(s) = I (8.84) 

Thus a Doyle-Stein observer is a “right inverse” of C. There are many matrices 
that satisfy (8.84), but the transfer function from uo to x does not entail CHo but 
rather HoC and, unless Ho satisfies other requirements, e.g., the Doyle-Stein 
conditions, the transfer function from uo to x will not be given by (8.83). 

In order for a Doyle-Stein observer (8.81) to exist it is necessary that the 
open-loop system be “square,” i.e., that there are exactly as many outputs as 
inputs. Otherwise the open-loop matrix C O B  = C ( s l  - A ) - ’ B  would not be a 
square matrix and its inverse, needed in (8.82), would not be defined. While 
many systems are square, many more are not. For the latter, the 
Doyle-Stein conditions cannot be satisfied. (But see Note 8.4.) 

Even for square systems, it may not be possible to achieve a stable Doyle-Stein 
observer. Note that the resolvent O(s) can be written 

adj (sl - A )  
O ( S )  = ( ~ l  - A)-’ = 

IsZ - A( 

where adj ( s l  - A )  is the adjoint matrix of s l  - A. (Recall Chap. 4.) Thus 

[ C ( s l  - A ) - ’ B ] - ’  = [ C  adj ( s l  - A)B] - ’ l s l  - A /  

and, by (8.82) the transfer function of the Doyle-Stein observer is 

adj [ C adj ( s l  - A) B ]  
IC adj (sl - A)BI 

Ho(s) = adj ( s l  - A ) B  (8.85) 

The denominator of Ho(s) is thus the determinant of the numerator of the transfer 
matrix of the open-loop plant. As we noted in our  discussion of multivariable 
systems in Chap. 4, the zeros of the determinant are the so-called “transmission 
zeros” of the plant. This means that the poles of the Doyle-Stein observer are 
transmission zeros of the plant. Consequently, if the open-loop plant has one 
or more transmission zeros in the right half of the s plane (i-e., nonminimum 
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phase zeros) then a stable Doyle-Stein observer does not exist. An unstable 
Doyle-Stein observer can (perhaps) be realized, but its use in a closed-loop 
control system would be disastrous, because the unstable poles are unobservable, 
being cancelled by the transmission zeros of the open-loop plant. Any noise in 
the observer, or parameter mismatch, would initiate an unstable oscillation that 
could destroy the system. 

Although it may not be possible to realize an observer having all the 
properties of a Doyle-Stein observer, it may be possible to design an observer 
that has some of its properties: 

Makes the closed-loop transfer function from uo to x the same as it is for 

Has its poles at the transmission zeros of the open-loop plant. 
Does not require feedback of the control signal and thus has a constant transfer 

full-state feedback. 

function independent of the control gain. 

An observer having some, if not all, of these properties might be called a 
robust observer, in a more restricted sense than a Doyle-Stein observer. 
Rynaski[3] considered not only full-order observers which we have been 
addressing up to now, but also reduced-order observers. In the latter it may be 
possible to select the observer “gain matrix” L to eliminate feedback of the 
control signal even when the open-loop system is not “square.” There still may 
be enough freedom left with the L matrix to place the observer poles at 
locations desired, including at some of the transmission zeros of the open-loop 
transfer functions. In particular, if the state x can be partitioned into two 
substates, one of which can be observed directly in the output and the other 
cannot, i.e., 

with C, being a nonsingular matrix, the reduced-order observer is given by 
(8.18)-(8.21). To eliminate feedback of the control matrix, H in (8.20) must be 
zero. By (8.21) this requires that L be selected in order to satisfy 

B, - L C , B ,  = 0 (8.86) 

The number of free parameters in the gain matrix L and the dimensions of B ,  
and B, determine whether (8.86) can be satisfied. 

Example 8C Aircraft stability augmentation In Example 4C we considered the open-loop 
dynamics of a typical aerodynamically unstable aircraft. In particular, using data for the AFTI-16 
aircraft, we found that the open-loop poles are located at 

s = 0.724 

s = -1.705 (8C.I) 

s = -0.039 *j0.200 

Because of the pole at s = 0.724 in the right half-plane, it is mandatory for the aircraft to 
have a stability augmentation system (SAS): it cannot safely be flown without one. (And since 
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safety is a prime consideration, the control system hardware would most likely be designed to 
use redundant sensors and feedback loops.) 

The objective of this example is to design a suitable stability augmentation compensator 
and to assess its performance. 

Based on the data given in Example 4C, the matrices of the standard dynamic description 
are 

-0.0507 -3.861 0 -32.17 

A = [  -0.001 -0.000 17 129 -0.5164 1.4168 -0.4932 1 0 1 B = [ ~ ~ : ~ ~ ~ ~  (8C.2) 
0 0 1 0 

The sensor that we will consider for use in the stability augmentation system is a rate gyro 
which measures the pitch rate q = x3. Thus 

Y = x3 

and the observation matrix is 

C = c ‘ = [ O  0 1 01 (8C.3) 

A. Full state feedback control law According to Rynaski, who has studied the dynamics 
of this aircraft in considerable detail,[3] suitable pole locations for the closed-loop system are 
as given in Table 8C.1. 

This results in a closed loop characteristic equation 

[s2 + 2(0.5)(2.5)~ + (2.5)’][s2 + 2(0.1)(0.1) + (0.1)2] 

= s4 + 2 . 5 2 ~ ~  + 6.31 sZ + 0.1 50s + 0.0625 = 0 

The open-loop characteristic equation, as found in Example 4C is 

s4 + 1 . 0 6 0 3 ~ ~  - 1.115s’ - 0.0565s - 0.0512 0 

(8C.4) 

(8C.5) 

Thus the vectors of coefficients needed for the control system design are: 

[6.31 2.52 - 1 a = [ - l . l 1 5 ]  1.0603 
0.150 -0.0565 
0.0625 -0.05 I2 

a =  

Numerical solution for the gain matrix, using the Bass-Gura formula (6.35), yields 

G = g’ = [-0.00429, -3.872, -0.7186, -0.098751 (8C.6) 

Note that all the terms in the gain matrix G are negative. This happens in the present 
application because the elements of the control matrix B are negative. (See Example 4C.) 

Table 8C.1 Desirable closed-loop poles 

Mode Frequency Damping 

Short period wW = 2.5 rad/s 5 = 0.5 
Phugoid wph = 0.1 rad/s 5 = 0.1 
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B. Robust observer design It is readily established that the system is observable using the 
rate gyro, i.e., with the observation matrix given by (8C.3), so the observer poles can be placed 
wherever desired. Following Rynaski’s robust observer approach, the observer poles are to 
coincide with the plant zeros that are in the left half-plane. The plant transfer function from 
the input (control surface deflection) to the rate-gyro output is 

H(s) = C(s1 - A ) - ’ B  (8C.7) 

Since C is a row vector and B is a column vector the plant transfer function is a 1 x 1 matrix, 
the numerator of which is found to be 

N(s) = - 1 . 6 4 5 ~ ~  - 1.0345~’-0.04075~ 

= -1.645s(s2 + 0.6289s +0.02477) 

= - 1 . 6 4 5 ~ ( ~  + 0.0421)(~ +0.587) 

Thus the open-loop plant, with the pitch rate defined as the output, has its zeros at s = 0, 
s = -0.0421, and s = -0.587. Since none of the open-loop zeros are in the right half-plane, we 
can use these as poles of the observer; the zero at the origin will result in the observer having 
a pole at the origin. Since the full-order observer is 4th-order, one more pole remains to be 
placed. An appropriate location of this pole would be at s = -1. Thus the observer characteris- 
tic polynomial is 

s(s2 + 0.6289s + 0.024 77)(s + 1 )  = sJ + 1 . 6 2 8 9 ~ ~  + 0.6534s’ + 0.024 77s 

The corresponding coefficient vector for the observer design is thus 

The Bass-Gura formula (7.15) for the observer yields the observer gain matrix: 

-0.1728 

G = g = [  0.5686 ::: 1 
(8C.8) 

(8C.9) 

C. Compensator and closed loop The transfer function of the compensator is found to be 

D ( ~ )  = ~ ( ~ 1  - A + BG + K C ) - ’ K  = G ( S I  - A,)-’K 
4.46s’ + 5.63s’ + 0.245s + 0.115 
s(s3 + 3 . 0 9 ~ ~  + 1.572s + 0.0609) 

~ 
~ - 

4.46(s + 1.234)[(s + 0.0138)’+ (0.1436)’l 
s(s + 0.0421)(s + 0.587)(s + 2.459) 

- - - (8C. 10) 

Note that two of the compensator poles (those at s = -0.0421 and at s = -0.587) are 
precisely at the same locations as selected for the observer, as is to be expected in view of our 
discussion in Sec. 8.5. 

The compensator is seen to have three zeros on the negative real axis and a pair of zeros 
rather close to the imaginary axis. The presence of these zeros produces an antiresonance 
(notch) in the compensator frequency response characteristic, which is shown in Fig. 8.16. 



324 CONTROL SYSTEM DESIGN 

+180.0 1 I ’ I I 1 I I 1 

+ 140.0 - - 

2 + 1 “.O - 
2 

+ 

U 

- 

+30.0- 

0 -  

- 

- 2 0 . 0 . 1  I I I I I I 1  1 1  1 

t -20.0 \ 
Frequency 

Figure 8.16 Bode plot of compensator based on robust observer for aerodynamically unstable 
aircraft. 

To assess the performance of the closed-loop system as the gain is varied, we note that 
the return difference is 

1 + K D ( s ) G ( s )  

-4 .46 (~  + 1.234)[(~ + 0.0138)2] - 1 . 6 4 5 ~ ( ~  + 0.0421)(~  + 0.587) 
= I + K  

S ( S  + 0.0421)(~  + 0.587)(~  + 2.459) (.v - 0 .724) (~  + 1.705)[(~ + 0.138)* + (0.151)’] 

(s + 1.234)[(s + 0.0138)’+ (0.1436)’] = 1 + K  
(.v + 2.459)(~  + 1 .705) (~  - 0.724)[(~ + 0.0138)2 + (0.151)’] 

where 

K = (4.46)( 1.645) K = 7.34 K 

The short-period dynamics are determined by the locations of the poles and zeros on the 
real axis; the long-period dynamics of the pair by poles and the pair of zeros near the 
imaginary axis. The latter set of poles and zeros are  relatively close and will result in root locus 
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I 
-3 -1 

K = 0.44 

0.2 4 0.1 

See detail ( b )  I 

-0.1 i -0.2 

( a  1 ( h )  

Figure 8.17 Root-locus plots for stability-augmented aerodynamically unstable aircraft. ( a )  
Short-period poles; ( b )  Phugoid poles. 

branches which pass through the desired phugoid-mode pole defined in Table 8C.1 when the 
gain loop K is unity. (See Fig. 8.17.) The root-locus plot has two more branches corresponding 
to the short-period dynamics. One branch goes from the right half-plane pole at s = 0.724 to 
the zero at s = -1.234, crossing the imaginary axis for a loop-gain K = 0.335. The other 
branch moves along the real axis from the poles at s = -2.459 and s = -1.705 to the 
breakaway point at .F = -1.92 (at a gain K = 0.44) and thence upward, through the desired 
short-period pole at s = -1.25(1 * j J 3 )  and then asymptotic to  the imaginary axis. The 
phugoid mode variation with gain is shown in the detail of Fig. 8.17. 

From this root locus we see that the gain margin is infinite: the gain can be raised 
arbitrarily high without compromising stability. Since the aircraft is aerodynamically unstable, 
the gain cannot of course be reduced to zero. In fact, it cannot be reduced below 0.335. Thus 
a nominal gain of unity gives a gain reduction margin of 2.98. One of the possible physical 
causes for a reduction in loop gain would be a decrease in the gyro scale factor. Thus the gyro 
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scale factor cannot be allowed to fall below 0.335. In any realistic system it is all hut 
impossible for the scale factor of a rate gyro to fall this low without triggering some 
failure-detection mechanism. Thus it is reasonable to conclude that the gain-reduction margin 
of this design is adequate for practical purposes. 

8.7 SUMMARY OF DESIGN PROCESS 

At this point it is appropriate to review the system design procedure that was 
developed in the last three chapters and consists of designing a full-state 
feedback control gain matrix, an observer, and finally evaluating whether the 
compensator that combines the control gain and the observer can tolerate the 
anticipated variations in the plant parameters. 

The design process actually begins much earlier. In order to determine the 
control and observer gains a mathematical model of the plant must be 

Control concept fy- 
eI Math model -+ Control gains 

Check robustness e . Simulate 

Figure 8.18 Sequence of steps in control system design. 



COMPENSATOR DESIGN BY THE SEPARATION PRINCIPLE 327 

developed. And even before that is done, an overall system concept must be 
developed in which it is decided by what means the control is to be accom- 
plished and what variables are to be measured. About this time it is also 
necessary to determine performance specifications: characteristics of the desired 
system behavior and the quality of components available that might be able to 
achieve the desired performance. 

The design steps, moreover, do not end with the specification of the 
compensator. In almost every case the process is nonlinear; there are usually 
limits on the control signals; the process may be of higher order than that used 
in the model; if the control system is implemented by a digital computer there 
are effects of sampling and amplitude quantization to be studied. And so forth. 
The only way that these issues can be resolved is by a very thorough simulation 
of all the effects that the system designer thinks might conceivably influence 
system behavior. If the results of a comprehensive simulation are favorable, the 
system would finally be fabricated and tested. If the steps leading to this last 
step were done skillfully, and if fortune smiles, the 
expected. 

The design process described above is illustrated by 
8.18. The emphasis of the last three chapters has been 
These are the easy steps. The hard steps-the tedious 
come before and after. 

system will work as 

the flow chart of Fig. 
on steps 4, 5, and 6 .  
steps-are those that 

Example 8D Compensator for missile autopilot The missile autopilot design given in Example 
6F assumes measurement of the pitch rate 9, the acceleration error e = aNc - aN,  and 
the commanded acceleration aNC. Since these quantities can all be measured, the autopilot 
can be implemented directly as shown in Fig. 6.9. But the feedforward gain G ,  to eliminate 
the steady state error must be determined accurately. Any difference between the true 
aerodynamic parameters and those used in the computation of G ,  will result in the presence 
of a steady state error. Since the missile and its autopilot are only the inner loop of an overall 
guidance system, a small steady state error may well be acceptable in practice. Nevertheless, 
the “performance spec” for the autopilot may require negligible steady state errors. A possible 
way of achieving this is by using an observer to estimate the commanded acceleration and thus 
to eliminate the feedforward signal. I t  is noted that one of the measured quantities, pitch rate, 
does not go to zero when the steady state error in acceleration goes to zero. Thus we should 
not expect the compensator to necessarily produce pure integral control. We would certainly 
not want a control signal proportional to  the integral of pitch rate to be present in the output 
of the compensator. Although sensors to measure the control surface deflection are readily 
available, tht  deployment of such a sensor adds an additional item of cost which the designer 
may desire to avoid. In Example 6F, we went to great lengths to design a full-state feedback 
control law that avoids feeding back the control surface deflection. We would not want to 
reintroduce this measurement in the design of the observer. Hence the observer, and ultimately 
the compensator, should be designed to use at most two measurable variables, namely, the 
acceleration error e = aNc - aN and the pitch rate 9. 

Thus we consider the design of a reduced-order observer using the measurement vector 
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where 

x = [e, 9, 6, aN1’ 
is the metastate of the process. The matrices that define the (metastate) dynamics are: 

0 

0 

(8D. 1 ) 

The matrices in (8D. l )  are shown partitioned into submatrices corresponding to the two 
measured states e and 9 and the two states that need to be estimated S and aNc. (Although the 
control law has been designed not to require knowledge of 6, its estimate is needed to provide 
the proper observer for estimating aNC If we had initially decided upon use of an observer, 
there would have been no benefit in choosing a control law in which S is not used.) 

In accordance with the theory developed in Sec. 7.5, the reduced-order observer for this 
application is given by 

and 

f, = [f =[;I = y  (8D.2) 

(8D.3) 

where i = F ~ z + ( A 2 1 - L A , , ) ~ ~ + ( B , - L B l ) ~  (8D.4) 

with F = A,, - LA,,  (8D.5) 

The matrix C ,  used in Sec. 7.5 is the identity matrix here, and the submatrices A,  ,, . . . , A,,, 
B , ,  and Bz are the matrices defined by (8D.I). 

Selecting the observer gain matrix The only matrix that is not specified is the observer 
“gain” matrix L which in this case is a 2 x 2 matrix. The four elements in L are the parameters 
in the observer that are available for adjustment. Since the observer dynamics matrix is also 
2 X 2, only two parameters are needed to adjust the observer poles. Two other things can be 
accomplished by proper adjustment of the remaining parameters. We might also wish to adjust 
the poles of the compensator. the dynamics of which are obtained by using the control law 

u = -GI). - Gzfz 

where 

into (8D.4). The result is 

2 = [ ( A x -  B2G2) L(A12 B,GZ)]?-+[(Az, - BZG,)  - L(A1, - B , C , ) ] y  (8D.7) 

Using the numerical data from Example 6 F  we find: 

-3.328 4170.1 A , ,  = [ - 1  1 1  500. 3’328 ] A,, = [-I0:: 
-0.05947 0. -595.68 0.05947 

A11 = 
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and 

1 -1 I 1  500. 17.97 
-595.68 0.05947 

A,,  - BIG, = 1 3.770 8551. 
-0.05947 0. 

A , ,  - BIG,  = 

1 -100. 0.001313 1 [ 0. 0. 

0.006366 3.929 
A,, - B,G, 

A diagonal matrix 

is one possible choice for the observer gain matrix. In this case the observer dynamics matrix is 

1 - 100 + I I 1  5001, -3.3281, 
595.681, -0.0594712 

F = A?, - LA,,  = (8D.8) 

and the compensator dynamics matrix is 

True integral control would be desirable if it could be achieved using the structure 
selected. We check to see whether this is possible. To achieve integral control, the compensator 
must have a pole at the origin. This means that IF,( must be zero. By (8D.9) 

IF,I = 1,[-0.05947(-100+ 1 I I  5001,) - 595.68(0.001313 - 17.971,)] 

= r,(-1.874 +4073.~1,)  

In order to have IFcl = 0 either I, or the other factor must be zero. 
If we set 1, = 0 this would also make the observer determinant (FI = 0. But this is 

undesirable because the observer (and hence the closed-loop system) would then have a pole 
at the origin and not be asymptotically stable. Thus our  only feasible choice is 

- 1.874 + 4073.51, 

or 

1 ,  = 4.600 X 

With this choice of 1, we obtain 

-48.70 -1.531 X 

I F '  = I 595.681, 4.059471, 1 = 3.8081, 

Thus, by setting I 2  to a positive number we can achieve a stable observer and a compensator 
having a pole at the origin. The characteristic equation of the observer is 

IS! - F /  = s2 + (48.7 + 0.059471~)~ + 3.8081~ = o (8D.10) 

The compensator transfer function can be obtained with the aid of (8D.7) and (8D.3): 

S ( X ~  - Qj = F,.x,+[(A,l - BIG,) - L ( A , ,  - B l G i ) l ~  

or 

and 
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where 

D(s) = [ D E ( s ) ,  Do(s)] = GI + G,(sl  - F, ) - ' [ sL  + (A21 ~ BIG,) - L(All - BIG,) ]  (8D.11) 

is the compensator transfer function. From (8D.9) 

1 -48.70 -4.864 X 

-595.681, -o.o~947r2 

Thus 

1 I + 0.059471, 4.864 x lo-' 
( SI - FC)-' = 

s2 + (48.7 + 0.059471,)s 595.681, s + 48.70 

Also 

Thus, using (8D.I I ) ,  the transfer functions of the compensator are 

0.3334s + 5.654 
s(s + 48.7 + 0.059471,) 

DE(s) = -0.6366 X 1.313 X 10-'1, 

(8D.12) 

D a ( s )  = -0.3929 X lo-' - 1.313 X 
I 

s t 48.7 + 0.059471, 

The transfer function DE(s) is the transfer function between the measured error e = 
aNC - aN and the control input to the actuator. Note that the denominator contains the factor 
s and hence true integral control is provided, as we intended. Note, however, that the transfer 
function Dp(s) from the pitch rate 9 to the control surface deflection does nor have a pole at 
the origin. This is as expected, since the steady state pitch rate does not go to zero. 

The compensator parameter r, may be selected in any manner desired, provided it is 
positive. One possible method of choosing 1, would be to enhance the closed-loop stability 
margins. For this purpose, the closed-loop block diagram of the system is drawn as  shown in 
Fig. 8.19. The output 6 of the actuator is shown driving two outputs: the normal acceleration 
a,  and the pitch rate q. The transfer functions G A ( s )  and Go(s)  can readily be calculated (see 

c 
I Pitch rate c 

Normal acceleration 

Figure 8.19 Transfer function representation of missile and autopilot (compensator). 
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Example 3F): 

Z,S’ + ZaMs ~ MaZ, - I  115s’ + 2.485 X lo6 - - 
s2 + 3.328s + 248 GA(s) 

Za 

ZmM.5 - MaZ, 

za 

s = + - s -  Ma 
V 

M ~ s  ~ 

-662s - 1983 
- - 

V 
s’ + 3.328s + 248 Go(s) = 

s 2 + - s  - Ma 
V 

(8D.13) 

By examining Fig. 8.19 we see that the return difference of the system is 

The loop transmission is [G,(s)D,(s) + Go(s)Do(s)] / (~s + I ) .  The closed-loop poles are 
located at the zeros of (s2 + 3.328s + 248), at s = -100, and at s = -(48.7 + 0.0594712). The 
loop zeros are located at the zeros of GA(s)DE(s) + Go(s)D,(s) which are functions of I, that 
can be obtained from (8D.12) and (8D.13). It would be appropriate to select I? so that these 
zeros give a favorable root locus. 

Robust observer Another way of selecting the observer gain matrix L is to satisfy some of 
the requirements of a robust observer. Since there are two observables ( e  and q )  and only one 
control input u, the system is not “square” so the Doyle-Stein condition (8.73) cannot be met. 
But in this case it is possible, with the reduced-order observer, to eliminate feedback of the 
control u to the compensator dynamics, since (8.86) can be satisfied. In particular, since C ,  is 
the 2 X 2 identity matrix, (8.86) becomes, in this application, 

which is satisfied when 

1 zs 
~ ~ I , ,  - = 0 
7 7 

which requires that 

whence 

1 
I , ,  = ~ 

Z8 

I,, = 0 

(8D. 15) 

The second column of the observer gain matrix L can be chosen to satisfy any other 
requirements. 

Since B, - L B ,  has been made zero by this choice of gain matrix L the dynamics matrix 
of the observer F and of the compensator F, are identical. Thus we cannot place a pole of the 
compensator at the origin without also having an observer pole at the origin. Since the 
observer poles are among the closed-loop poles, it would not do to have an observer pole at 
the origin. Thus, in the interest of asymptotic stability, we must give up the desire that the 
observer provide true integral control. 
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The observer dynamics matrix (which in this case is also the compensator dynamics 
matrix) is 

- I f 7  0 1/Z6 1,- zg/7 
F = A 2 2 -  L A l 2 = [  0] -[ Ma ;;;I 

The characteristic equation corresponding to F is 

= s2 + ( ~ 5 9 5 . 6 8 1 ~ ~  + 0.05947122)s - 1.778L2 (8D. 16) 

In keeping with the spirit of the robust observer concept of Rynaski, we can select the 
poles of the observer to occur at the zeros of the plant. Since the plant is not square, the zeros 
of IC(s1 -A)BI  are not defined. But G,(s) and G,(s) each have one zero in the left 
half-plane and these can be chosen as the poles of the compensator. The zeros of G A ( s )  occur 
at 

2.485 x lo6 
1 1 1 5  

s2 - = o  

i.e., at 

s = 147.21 

and the zero of G , ( s )  occurs at 

662s + 1983 = 0 

i.e., at 

s = -2.995 

Thus, as the observer characteristic equation we use 

( s  + 47.21)(s + 2.995) = s2 + 50.21s + 141.39 = 0 

Equating the corresponding coefficients of s in (SD.16) and (8D.17) gives 

I , ,  = -0.09229 

I,? = -19.52 

The dynamics of the observer are given by 

i = F& - LAlly 

%2 = Ly + z 

PROBLEMS 

Problem 8.1 Closed-loop system 

Show that the resolvent of the closed-loop system can be expressed by 

*, ( s )  = ( s l  - A +  BG)-'  = [O-'(s)+ BG1-l = * - * B ( I +  G + B ) - ' G 9  

(8D.17) 

(8D. 18) 
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where 

@ ( s )  = (sI - A)-' 

is the resolvent of the open-loop system. 
Hint: Use block-diagram manipulations. 

Problem 8.2 Characteristic equation of system with general reduced-order observer 

Consider the general reduced-order observer where the observation is given by 

y = ex  

and, as explained in Chap. 7, (7.61)-(7.64) 

2 = Py+ Q ( L y +  2) 

with 

f = F ( L y  + z) + (Az,  ~ LA,, )y  + Hu 

Derive the characteristic equation of the closed-loop system following the steps used to derive 
(8.27). 

Problem 8.3 Instrument *NO: reduced-order observer 

A compensator based on a reduced-order observer is to be designed for the instrument servo 

(a) Under the assumption that the output position is measured, design the reduced-order 

( b )  Find the transfer function of the compensator using the regulator gains used in 

( c )  For the numerical data used in Example 8B (ix., a = 1 )  find the range of variation of the 

of Example 8B. 

observer to estimate the angular velocity. 

Example 8B. 

loop gain. Draw the root locus and the Nyquist plot. 

Problem 8.4 Inverted pendulum on cart: compensator design 

A compensator based on a full-order observer is to be designed for the inverted pendulum on 

( a )  Using the regulator gains of Prob. 6.1 and the observer gains of Prob. 7.2, determine the 

( b )  Assume a gain variation at the control input so that the return difference is 

the motor-driven cart of Prob. 3.6 et seq. 

transfer function D(s )  of the compensator. 

T(s) = 1 + K D ( s ) H ( r )  

where H(s)  is the transfer function of the plant (i.e., the cart and pendulum). Find the range of K 
for which the closed-loop system is stable. 

( c )  In view of these results, discuss the circumstances under which the compensator design is 
satisfactory. 

Problem 8.5 Inverted pendulum on cart: reduced-order compensator 

Repeat Prob. 8.4 except in this case, use the reduced-order observer design of Prob. 7.3 

Problem 8.6 Three-capacitance thermal system 

A compensator for the three-capacitance thermal system of Prob. 3.7 et seq. is to be designed 
by combining the full-state control law of Prob. 6.8 with the observer designs of Prob. 7.6. 

(a) Draw the block diagram of the compensator using the observer structure of Prob. 7.6 part 
a. Find the transfer function of the compensator. Does the compensator provide true integral 
control? 
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( h )  Repeat part a, except use the observer structure of part b of Prob. 7.6. 
( c )  For the compensator design of part a draw the root locus with the loop gain as a 

parameter. Find the gain and phase margins. 

Problem 8.7 Two-car train-onedrive motor 

Consider the compensator obtained by combining the full-state feedback control law of Prob. 

( a )  Design a robust observer in the sense defined by Rynaski (Sec. 8.6). Choose a Butterworth 

( b )  Draw the root locus. 
(c )  Determine the gain and phase margins. 

6.3 with the observer of Prob. 7.1 part a. 

pattern for adjustable observer poles. 

Problem 8.8 Two-car train-separated sensor and driver 

Again consider the two-car train of Prob. 6.3 except in this case the position of car 2 is 
measured, but the motor drives car 1. (This is an example of a system in which the sensor and 
actuator are said to be “noncolocated.” When might such a condition arise in a realistic 
application?) 

( a )  Design a robust observer as in Prob. 8.7. 
( b )  Draw the root locus. 
(c )  Determine the gain and phase margins. 
Discuss the similarities and differences between this control system and that of Prob. 8.7. 

Problem 8.9 Compensator for aircraft lateral dynamics 

A compensator for the lateral dynamics of the aircraft of Prob. 4.4 is to be designed. The 
compensator is to use a reduced-order (two-state) to estimate p, e from measurements of p, r, 
and &. 

( a )  Arrange the dynamic equations to display the submatrices A , , ,  A,,, A?,, Azz, B,, and B2 
(with C ,  = I )  that are needed to design the reduced-order observer. 

( b )  Draw the block diagram of the observer. 
(c )  Is it possible to design an observer to satisfy (8.86)? If so is the resulting observer 

( d )  Since there are four observer gains, is it possible to design a robust observer having its 
asymptotically stable? Are the poles in a suitable Location? 

zeros at the transmission zeros of the process? 

Problem 8.10 Two-axis gyro 

We continue the design of the control law for the two-axis gyro. The state-variable feedback 
gains have been determined in Prob. 6.9 and the reduced-order observer structure has been 
established in Prob. 7.5. Now we put these together to obtain the compensator. 

Because of symmetry there are only two different compensator transfer functions 

and 

[ a )  Find the transfer functions H,(s) and Hl(s) in terms of the control gains g,, . . . , g4 and the 

( h )  Draw the block diagram of the compensator. 
observer parameters I , ,  . . . , 14. 

Problem 8.1 1 Hydraulically actuated gun turret 

A compensator for the gun turret of Probs. 6.2 and 7.4 is to be designed by combining the 
full-state feedback design and the observer design of these problems, respectively. 
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( a )  Find the transfer function of the compensator using the gains of part a of Prob. 6.2 and 

( b )  Draw the root locus of the closed-loop system. 
( c )  Find the gain and phase margin. 

the observer design of h o b .  7.4. 

Problem 8.12 Full-order compensator for constant-altitude autopilot 

The only instrument available for implementation of the constant-altitude autopilot of Prob. 

( a )  Assuming that a full-order (i.e., fourth-order) observer is to be used, find the gains that 
6.6 is an altimeter. Hence a n  observer is needed to estimate the other state variables. 

place the observer poles at 

s = 4 ( - $ i j J 3 / 2 )  s = 4(-J?/2 * j $ )  

( h )  Determine the transfer function of the compensator. 
( c )  Plot the closed-loop root locus and find the range of gain variation for which the 

closed-loop system is stable. 

Problem 8.13 Reduced-order compensator for constant altitude autopilot 

( a )  Repeat Prob. 8.12 except use a reduced-order (i.e., third-order) compensator with observer 

( b )  Compare the advantages and disadvantages of the reduced-order compensator over the 
poles at s = -4, s = -2Jz * J 2 ~ ' 7 .  

full-order compensator. 

NOTES 

Note 8.1 Separation principle and separation theorem 

In  this book we make a distinction between the general separation principle and the more 
specialized separation theorem. The former is a statement of the fact that the regulator gains can be 
calculated a s  if all the states were accessible to measurement, and the observer gains can be 
designed without regard to the process input, and then the two can be combined to obtain a 
compensator that guarantees stability of the closed-loop system. The separation principle, as we use 
it here, thus makes no assertion about the optimalily of the resulting system. That assertion is made 
by the separation theorem, as we use the term in this book. The latter, considered in Sec. 11.7, 
asserts that when the gains of the regulator are designed to optimize a deterministic quadratic 
performance criterion, and the observer is optimized for the noise present in the system, then the 
resulting compensator is the optimum stochastic controller. 

Additional background of the separation theorem is given in Note 11.5. 

Note 8.2 Block diagrams for transfer-function calculations 

In deriving the relationships needed for the study of robustness, a number of identities 
between transfer functions are developed. Although these identities may seem surprising from the 
algebraic viewpoint, most are derived with the aid of a block diagram of the system and represent 
transfer functions from one variable to another obtained by "going around the loops" by a different 
sequence of steps. Many identities can be obtained by this process. 

Note 8.3 The Schur identity 

The Schur identity, equation (A.47). has found many applications in system and control 
theory. One application, totally unrelated to anything in this book, deals with the propagation of the 
covariance matrix in discrete-time Kalman filtering. 
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Because of the utility of this formula, it is sometimes referred to as “the matrix inversion 
lemma.” 

Note 8.4 Nonsquare systems 

If the open-loop system for which a compensator is being designed is not square, having fewer 
inputs than outputs, then Doyle and Stein[2] suggest “squaring it up” by adding one or more 
fictitious inputs with corresponding columns of the B matrix. Since these inputs are fictitious the 
full-state feedback control law is then designed so that the gains from the state variables to these 
inputs are all zero. Alternatively, the Doyle-Stein condition can be generalized to nonsquare 
systems. This has been done recently.[4] 
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CHAPTER 

NINE 

LINEAR, QUADRATIC OPTIMUM CONTROL 

9.1 WHY OPTIMUM CONTROL? 

In the previous chapters we learned how to design a compensator for a 
single-input, single-output process which places the closed-loop poles wherever 
we want them to be (assuming the process is controllable and observable). Since 
the closed-loop poles determine the speed (bandwidth) and damping of the 
response, isn’t this enough? Why should we want to go any farther? There are 
several good reasons. 

The first reason for seeking an optimum controller is that in a multiple- 
input or multiple-output system, the pole-placement technique described in the 
earlier chapters does not completely specify the controller or compensator 
parameters (gains). Consider, for example, a kth-order plant with m inputs and 
the entire state vector accessible for feedback. A nondynamic controller has 
km parameters to be determined, but only k possible closed-loop pole locations. 
Thus we have to set m times as many parameters as there are poles; there are 
infinitely many ways by which the same closed-loop poles can be attained. 
Which way is best? What algorithm can be used to determine the feedback 
gains? From a practical standpoint, of course, the availability of more adjust- 
able parameters than the minimum number needed to achieve the desired 
closed-loop pole location is a great benefit because other things can be 
accomplished besides placing the closed-loop poles. But the absence of a 
definitive algorithm for determining a unique control law is a detriment to the 
system designer who does not know how to handle this “embarrassment of 
riches.” By choosing a control law to optimize performance (in the precise 
sense to be defined shortly) this embarrassment is avoided. 

331 
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A more cogent reason for seeking an optimum controller is that the designer 
may not really know the desirable closed-loop pole locations. Choosing pole 
locations far from the origin may give very fast dynamic response but require 
control signals that are too large to be produced with the available power 
source. Use of gains that would be able to produce these signals, in the absence 
of power limitations, could cause the control signals to exceed physical limits 
(i.e., to “saturate”). In such cases the closed-loop dynamic behavior will not be 
as predicted by the linear analysis, and may even be unstable. To avoid these 
problems it often is necessary to limit the speed of response to that which can 
be achieved without saturation. Another reason for limiting speed of response is 
a desire to avoid problems of noise that typically accompany high-gain systems. 
The engineer who has acquired extensive experience with a particular type of 
process generally has an intuitive “feel” about the proper closed-loop pole 
locations. But, faced with an unfamiliar process to control and a lack of time to 
acquire the necessary insight, the engineer will appreciate a design method that 
can provide an initial design while insight is developed. The optimization theory, 
to be developed in this chapter, can serve this purpose. 

Still another reason for using optimum control theory for design is that the 
process to be controlled may not be controllable, in the sense defined in Chap. 
5. There may be some subspace of the process state-space in which the state 
vector cannot be moved around by application of suitable control signals. The 
dynamic behavior in that subspace is not subject to control and hence not all 
the poles of the closed-loop system can be placed at will. Hence design by pole 
placement will not work. But, by use of optimum control theory, and not 
demanding impossible behavior, it is possible to design a control system to 
control as much as can be controlled. If the behavior of the uncontrollable part 
is stable, the overall system will behave in an acceptable manner. 

9.2 FORMULATION OF THE 
OPTIMUM CONTROL PROBLEM 

The dynamic process considered here as elsewhere in this text is, as usual, 
characterized by the vector-matrix differential equation 

1 = AX + Bu (9.1 ) 

where x is the process state, u is the control input, and A and B are known 
matrices. Again, as before, we seek a linear control law 

~ ( t )  = - G x ( t )  (9.2) 

where G is a suitable gain matrix. Here, however, instead of seeking a gain 
matrix to achieve specified closed-loop pole locations, we now seek a gain to 
minimize a specified performance criterion V (or “cost function”) expressed as 
the integral of a quadratic form in the state x plus a second quadratic form in 
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the control u ;  i.e., 

V = I , T [ x ’ ( r ) Q ( r ) x ( r )  + u’ ( r )Ru( r ) ]  dr (9.3) 

where Q and R are symmetric matrices. 
Some explanatory remarks about this performance criterion are in order 

before we attempt to find the optimum gain matrix G. 
First, we note that minimization of V also minimizes pV where p is any 

positive constant. So the problem is not altered by multiplying V by any positive 
constant. Often the constant 1/2 is used in front of V to simplify expressions 
resulting in other developments. (See Note 9.1.) 

Second, regarding the limits on the integral, the lower limit r is identified as 
the present time, and the upper limit T is the terminal time, or final time. 
The time difference T - t is the control interval, or “time-to-go.” If the terminal 
time T is finite and fixed, the time-to-go keeps decreasing to zero, at which time 
the control process ends. This situation is characteristic of missile guidance 
problems, as will be discussed in an example below. The more customary case, 
however, is that in which the terminal time is infinite. In this case we are 
interested in the behavior of the process “from now on,” including the steady 
state. This is precisely the case addressed by pole placement, and is the case 
that will receive the major portion of our attention subsequently. 

Finally, consider the weighting matrices Q and R. These are often called the 
state weighting matrix and control weighring matrix, respectively. We are about 
to derive a “recipe” for finding the control gain matrix G in terms of these 
weighting matrices. In other words, we can plug the matrices Q and R-along 
with the matrices A and B that define the dynamic process-into a computer 
program and direct it to find G. If the process is controllable and Q and R are 
suitable, the computer will not fail to find G. (This is not to say that the 
calculation is a numerically trivial problem-far from it-but only that the 
problem of determining G once A, B, Q, and R are given, is not a control 
system design problem but a problem in numerical analysis.) 

The question of concern to the control system designer is the selection of 
the weighting matrices Q and R. In candor one must admit that minimization of 
a quadratic integral of the form of (9.3) is rarely the true design objective. The 
problem, however, is that the true design objective often cannot be expressed in 
mathematical terms. And even in those instances when the design objective is 
amenable to mathematical expression, it is usually all but impossible to solve 
for the optimum control law. Expression of the design objective in the form of 
a quadratic integral is a practical compromise between formulating the real 
problem that cannot be solved, and formulating a somewhat artificial problem 
that can be solved easily. The need for such compromises arises in many con- 
texts, and the control system designer should not feel guilty about being acquies- 
cent to the need. 

In the performance or cost function defined by (9.3) two terms contribute to 
the integrated cost of control: the quadratic form x’Qx which represents a 
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penalty on the deviation of the state x from the origin and the term u‘Ru which 
represents the “cost of control.” This means, of course, that the desired state is 
the origin, not some other state. (In Chap. 5 we studied how it is possible to 
formulate a problem with a nonzero desired state in the form of a regulator 
problem. This discussion will be resumed in Sec. 9.6.) The weighting matrix Q 
specifies the importance of the various components of the state vector relative 
to each other. For example, suppose that x, represents the system error, and 
that x2,. . . .  x k  represent successive derivatives, i.e., 

1, = x 

x3 = x 
. . . . . . . . .  
xk = x ( k - l )  

If  only the error and none of its derivatives are of concern, then we might 
select a state weighting matrix 

Q =  

1 0 . . .  0 
0 0 - . -  0 
. . . . . . . . . . . . . . .  
0 0 . . .  0 

(9.4) 

which will yield the quadratic form 

x’Qx = x: 

But the choice of (9.4) as a state weighting matrix may lead to a control system 
in which the velocity x2 = x is larger than desired. To limit the velocity, the 
performance integral might include a velocity penalty, i.e., 

X’QX = X: + C’X; 

which would result from a state weighting matrix 

r l  o . . .  0 
. . .  0 c2 0 

Q = /  . . . . . . . . . . . . . .  

Another possible situation is one in which we are interested in the state only 
through its influence on the system output 

y = c x  

y = c’x 

y2 = x’cc’x 

For example, for a system with a single output 

a suitable performance criterion might well be 
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So in this case 

Q = cc’ 

It should by now be obvious that the choice of the state weighting matrix Q 
depends on what the system designer is trying to achieve. 

The considerations alluded to above with regard to Q apply as well to the 
control weighting matrix R. The term u‘Ru in the performance index (9.3) is 
included in an attempt to limit the magnitude of the control signal u. Unless a 
“cost” is imposed for use of control, the design that emerges is liable to 
generate control signals that cannot be achieved by the actuator-the physical 
device that produces the control signal-and the result will be that the control 
signal will saturate at the maximum signal that can be produced. This is often 
exactly what the designer desires. In most cases, saturation of the control will 
produce the fastest possible response. But when saturation occurs, the closed- 
loop system behavior that was predicted on the basis that saturation will not 
occur, may be very different from the actual system behavior. A system that a 
linear design predicts to be stable may even be unstable when the control signal 
is saturated. Thus in a desire to avoid saturation and its consequences, the 
control signal weighting matrix is selected large enough to avoid saturation of 
the control signal under normal conditions of operation. 

The relationship between the weighting matrices Q and R and the dynamic 
behavior of the closed-loop system depend of course on the matrices A and B 
and are quite complex. It is impractical to predict the effect on closed-loop 
behavior of a given pair of weighting matrices. A suitable approach for the 
designer would be to solve for the gain matrices G that result from a range of 
weighting matrices Q and R, and calculate (or simulate) the corresponding 
closed-loop response. The gain matrix G that produces the response closest to 
meeting the design objectives is the ultimate selection. With the software that is 
now widely available, it is a simple matter to solve for G given A, B, Q, and R. 
In a few hours time, the gain matrices and transient response that result for a 
dozen or more combinations of Q and R can be determined, and a suitable 
selection of G can be made. 

Further comments relating to the selection of the weighting matrices will be 
given after the general theory is developed and illustrated by a few examples. 

9.3 QUADRATIC INTEGRALS AND 
MATRIX DIFFERENTIAL EQUATIONS 

When the control law (9.2) is used to control the dynamic process (9.1), the 
closed-loop dynamic behavior is given by 

where 
X = AX - BGx = A,x 

A , = A -  BG 
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is the “closed-loop” dynamics matrix. In most cases considered in this text, we 
are interested in the case in which A, B, and G are constant matrices, but there 
is really no need to restrict them to be constant; in fact, the theoretical 
development is much easier if we do not assume that they are constant. Thus, 
we permit the closed-loop matrix A, to vary with time. Since A, may be 
time-varying we cannot write the solution to (9.5) as a matrix exponential. But 
the solution to (9.5) can be written in terms of the general state transition matrix 
introduced in Chap. 3: 

4.1 = @ A T ,  t ) x ( t )  (9.7) 

where aC is the state-transition matrix corresponding to A,. Equation (9.7) 
merely states that the state at any time T depends linearly on the state at any 
other time t. In what follows there will be no need to have an expression for @,; 
this is fortunate, because in general no simple expression is available. 

Using (9.7), the performance index (9.3) can be expressed as a quadratic 
form in the initial state x ( t ) .  In particular 

T 

V = I [ x ’ ( T ) Q x ( T )  + x‘(T)G‘RGx(T)]  d T  
1 

= IIT x r ( t ) a k ( T ,  t ) { Q  f G’RG}@=(T, t ) x ( t )  dT (9.8) 

The initial state x ( t )  can be moved outside the integral to yield 

v = x ’ ( t ) M ( t ,  T ) x ( t )  (9.9) 
where 

@ L ( T ,  t ) { Q  + G’RG)@.,(T, t )  dT (9.10) 

(Note that M is a symmetric matrix.) 
For purposes of determining the optimum gain, i.e., the matrix G which 

results in the closed-loop dynamics matrix A, = A - BG which minimizes the 
resulting integral (9.10), it is convenient to find a differential equation satisfied 
by (9.10). For this purpose, we note that V in (9.8) and (9.9) is a function of the 
initial time t .  Thus we can write (9.8) as 

V ( t )  = x ‘ ( T ) L ( T ) x ( T )  dT I,’ (9.1 1) 

where 

L = Q + G’RG (9.12) 

(Note that L is not restricted to be constant.) Thus, by the definition of an 
integral 

dV 
dt 

(9.13) 
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But, from (9.9) 

dv= X’(t)M(t,  T ) x ( t )  + x ’ ( t > M ( t ,  T ) x ( t )  + x ‘ ( t ) M ( f ,  T)x(t) (9.14) dt 

(The dot over M in (9.14) denotes differentiation with respect to t, that is, 

n;l(t ,  T )  = a ~ ( t ,  T)/at) 

On using the closed-loop differential equation (9.5) we obtain from (9.14) 

(9.15) 
dV 
- = x’( t)[A:( t ) M (  t, T )  + M( t, T )  + M (  t ,  T)A,(  t ) ] x (  1 )  
dt 

We thus have two expressions for d V / d t :  one given by (9.13) and one given 
by (9.15). Both are quadratic forms in the initial state x ( t ) ,  which is arbitrary. 
The only way two quadratic forms in x can be equal for any (arbitrary) x is if 
the matrices underlying the forms are equal. Thus we have found that the matrix 
M satisfies the differential equation 

-L  = A:M + M + MA, 

or, in the more customary form 

-M = MA, + ALM + L (9.16) 

This is an important differential equation. It appears in many forms in control 
theory and estimation. To make it look neater, the arguments have been omitted 
in (9.16). But one should not forget that 

M = M ( t ,  T )  A, = A,(t)  L = L( t )  

We have already determined the solution to (9.16) which, using (9.10), is 

M ( t ,  T )  = @L(r, t ) L ( t ) Q C ( T ,  t )  d r  (9.17) 

Equation (9.16) is a first-order matrix differential equation and thus 
requires a single “initial condition” to pin it down completely. This condition 
is obtained from the integral (9.17). Clearly 

I*= 
M (  T, T )  = 0 

is the required condition. 
(9.18) 

9.4 THE OPTIMUM GAIN MATRIX 

When any gain matrix G is chosen to close the loop, the corresponding 
closed-loop performance has been shown to be given by 

V ( t )  = x ’ ( t ) M ( t ,  T ) x ( t )  

where M (  t ,  T )  is the solution to (9.16), which, in terms of the matrices A, B, G, 
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Q, and R becomes 

-M = M ( A  - BG) + (A‘  - G’B’)M + Q + G‘RG (9.19) 

Our task now is to find the matrix G which makes the solution to (9.19) as 
small as possible. What does it mean for one matrix to be smaller than another? 
We are really interested in the quadratic forms resulting from these matrices, 
and thus we are seeking the matrix 4 for which the quadratic form 

= X ’ ~ X  < X’MX 

for any arbitrary initial state x ( t )  and any matrix M # 2. 
The problem of finding an optimum gain matrix can be approached by a 

number of avenues. (See Note 9.1.) The approach we adopt here is to assume 
that a minimizing gain G = G exists and results in an optimum Q.e., minimum 
M = 2). We will then find a matrix differential equation that M must satisfy 
in order for it to result in a smaller value of V than results from any other 
matrix. 

Now the minimizing matrix 2 that results from the minimizing gain 6 
must of course satisfy (9.19), i.e., 

-6 = A?(A - B&) + (A‘  - & f B p ) f i  + Q + & ‘ R e  (9.20) 

Any nonoptimum gain matrix G and the corresponding matrix M can be 
expressed in terms of these matrices: 

1 

M = ~ + N  

G = 6 + Z  
Thus (9.19) becomes 

- ($f + fi) = (fi + N ) [ A  - B ( &  + Z ) ]  + [A’  - (&+  Z ’ ) B ’ ] ( h  + N )  

+ Q + (ef + Z ’ ) R ( e  + Z )  (9.21) 

On subtracting (9.20) from (9.21) we obtain the following differential equation 
for N 

-fi = NA, + ALN + ( 6 ‘ R  - 2 B ) Z  + Z ‘ ( R 6  - El$)  + Z‘RZ (9.22) 

where A,  = A - BG = A - B ( 6  + Z ) .  

latter being given by 
The differential equation (9.22) is exactly in the form of (9.16) with L in the 

(9.23) L = ( 6 ’ R  - 2 B ) Z  + Z’( 6 ’ R  - $fB)‘ + Z’RZ 

Using (9.17) we see that the solution to (9.22) is of the form 

N ( t ,  T )  = @:(T, t )L@,(7 ,  t )  d7 (9.24) LT 
Now if 0 is minimum, then we must have 

x‘$x 5 x f (  2 + N ) x  = x’A?x + x‘ Nx 
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which implies that the quadratic form x 'Nx  must be positive-definite, or at least 
positive semidefinite. Now look at L as given by (9.23). If Z is sufficiently small 
the linear terms dominate the quadratic term Z'RZ. Thus, one can readily find 
values of Z which make L negative-definite, unless the linear term in (9.23) is 
absent altogether! Thus we conclude that for the control law 6 to be optimum, 
we must have 

R ~ - B ~ G = o  (9.25) 

or, on the assumption that the control weighting matrix R is nonsingular 

6 = ~ - 1 g n ; l  (9.26) 

This gives the optimum gain matrix in terms of the solution to the differential 
equation (9.20) that determines fi. When (9.26) is substituted into (9.20) the 
following differential equation results for fi: 

-fi = n ; i ~  + ~ ! n ; l  - A ? B R - ' B ~ ~ ~  + Q (9.27) 

This matrix differential equation, one of the most famous in the literature of 
modern control theory, gives the matrix fi which, using (9.26), gives the 
optimum gain matrix 6. (A historical discussion of the background of this 
equation is given in Note 9.2.) 

It is noted that in addition to the linear terms i6A and A f f i  in (9.27) there 
is also present the quadratic term - G B R - ' B ' $ .  A scalar first-order differential 
equation with a linear term and a quadratic term (as well as a constant term) is 
known as a Riccati equation in the mathematical literature and the terminology 
was extended by Kalman[l] to the matrix case. Nowadays (9.27) is identified in 
the literature of optimum control as the Riccati equation. 

Because of the presence of the quadratic term, no general formula for the 
solution to (9.27), analogous to the integral (9.17) for the linear equation (9.16), 
can be given. There are, of course, special cases-one of which is contained in 
Example 9E below-in which f i ( t ,  T )  can be determined analytically. But in 
most practical cases of interest, it is necessary to solve for M ( t ,  T )  by some 
appropriate numerical method. 

One obvious method of solving is the numerical integration of (9.27). Since 
fi is symmetric, there are k(k + 1)/2 coupled, scalar equations to be integrated. 
It should be noted that these equations are integrated backward in time, 
because the condition that must be satisfied is 

A2( T, T )  = 0 

and we are interested in k(t, T )  for t < T. 

9.5 THE STEADY STATE SOLUTION 

In an application in which the control interval is finite, the gain matrix G will 
generally be time-varying even when the matrices A, B, Q, and R are all 
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constant, because the solution matrix f i ( t ,  T )  of the matrix Riccati equation 
will not be constant. But suppose the control interval is infinite. We want a 
control gain G which minimizes the performance integral 

V, = I (x ’Qx  + u’Ru) d7 
m 

(9.28) 
I 

In this case the terminal time T is infinite, so the integration (backward in time) 
of (9.28) will either converge to a constant matrix M or grow without limit. If it 
converges to a limit, the derivative 2 tends to zero. Hence for an infinite 
terminal time 

v, = X’MX 

where A? satisfies the algebraic quadratic equation (sometimes called the 
algebraic Riccati equation or ARE) 

0 = M A  + A’M - MBR-IB’M + Q (9.29) 

and the optimum gain in the steady state is given by 

G = R-IB’M (9.30) 

The single matrix equation of (9.29) represents a set of k(k + 1)/2 coupled 
scalar quadratic equations. Each quadratic equation in the set in general has 
two solutions, so we may reasonably expect that there are 2[k(k + 1)/2] = 

k ( k  + 1) different (symmetric) solutions to (9.29). Are all the solutions correct? 
Is only one solution correct? Are there perhaps no correct solutions? 

The answers to these questions are, as one might imagine, connected with 
the issues of stability and controllability, although from a strictly mathematical 
standpoint they depend on the three matrices A, BR- ’B ,  and Q and their 
relationships with each other. Kalman[ 1, 21 and others after him have addressed 
the issues. A complete discussion of this subject entails not only controllability, 
but also observability, and the more subtle concepts of stabilizability, recon- 
structability, and detectability, and is well beyond the scope of this book. (See 
Note 5.2.) 

For most design applications the following facts about the solution of (9.29) 
will suffice: 

( a )  If the system is asymptotically stable, or 
( b )  If the system defined by the matrices (A ,  B )  is controllable, and the system 

defined by ( A ,  C )  where C’C = Q, is observable, 

Then the algebraic Riccati equation (ARE) has a unique, positive definite 
solution M which minimizes V,  when the control law u = - R - ’ B ’ M x  is 
used. 

It should be understood that the total number of symmetric solutions (count- 
ing those with complex elements) is still k(k + 1). The assertion of the last 
paragraph is that one of these solutions (and not more than one) is positive- 
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definite. Since the integral (9.28) is clearly positive-definite, that solution is the 
correct one. Let us examine the other possibilities. 

It may happen that (9.29) may have no positive definite solutions. In this 
case, there is no control law which minimizes V,. This must mean that V, 
becomes infinite for any possible control law, and helps to explain why 
asymptotic stability guarantees that the ARE has a unique positive-definite 
solution: the control law u = 0 will result in a finite value of V ,  and we would 
suppose that other control laws exist which can reduce V, still further. If the 
system X = A x  + Bu is not asymptotically stable, however, the control law 
u = 0 does not yield a finite value of V,  for any initial condition x = x ( t ) ,  and 
it will be necessary to actively intervene with a nonzero control. This is how the 
idea of controllability arises, since if the system is controllable, a control law 
can be found which produces a closed-loop dynamics matrix A, = A - BG with 
eigenvalues at arbitrary locations. Even if the system is not controllable, but 
merely “stabilizable,” i.e., a control law can be found which can move the 
unstable eigenvalues to the left half-plane, a finite value of V, can be achieved. 

How does observability enter the picture? The system defined by A and B 
may be uncontrollable and even unstabilizable, but the matrix Q may be chosen 
so that those state variables corresponding to the unstabilizable portion of 
X = A x  + Bu are not weighted in x’Qx. In this case, there is reason to expect 
that V ,  can be made finite. It might at first seem strange and impractical to 
consider a control law which does not stabilize a system, but there are many 
situations in which this is entirely reasonable. The most common instance is 
when the state is really a “metastate” comprising both the dynamic state x and 
the exogenous state x,,. By hypothesis the latter cannot be controlled by the 
input, and it may not be asymptotically stable. 

In addition to the possibility that the ARE does not have even one 
positive-definite solution, it is also conceivable that the ARE has more than one. 
Since the total number of possible solutions is finite, obviously the one we are 
looking for to minimize V, is the one that yields the smallest value of x‘Mx. If 
we could find all the positive-definite solutions we should surely find the proper 
one. 

If we could only find all the solutions to (9.29) there would be no difficulty 
in establishing which, if any, of the solutions is the correct one. The great 
difficulty arises because in most practical cases, the ARE (9.29) must be solved 
numerically and the numerical problem is far from being easy. (See Note 9.3.) 
If a computer program that embodies the algorithm for solving the ARE is set 
to work crunching out a solution that does not exist, we should not be surprised 
to find it grinding away forever. So it is important to be able to find out whether 
the sought-after solution exists before the crunching starts. 

Example 9A Inverted pendulum It is recalled from Example 3D that the state variables are 
x, = 0 (angular position) and x2 = 6 (angular velocity). The matrices defining the dynamics, 
as determined earlier are 

(9A.1) 
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A control law is sought to minimize the performance index 

(9A.2) 

where u is the angular acceleration. For this performance criterion, the weighting matrices are 
seen to be 

Let the performance matrix be given by 

The gain matrix, in terms of the elements of A? is 

The terms needed for the matrix quadratic (9.29) are 

Thus, the individual terms of (9.29) are 

(9A.3) 

(9A.4) 

In this instance (9A.4) are simple enough to solve algebraically. In particular, the first 
equation of (9A.4) has the solution 

n2 i Jn" + c2 

C' 

We do not yet know which sign on the radical in m, is correct, but we will find out 

mZ = 

shortly. From the third equation in (9A.4) 

1 -  
m3 = - J2m, 

We note that if the lower (-) sign is used then mZ would be yegative and this would make m ,  
imaginary. Since the matrix A? of the quadratic form x ' ( f ) M x ( f )  must be real, an imaginary 
number for one of its elements is unacceptable. Thus we conclude that the upper (+) sign must 
be used. This gives 

C 
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And hence the gain matrix (9A.3) has elements 

g1 = n2 + Jn4 + c2 g2 = J2 [a2 + Jn" + c 2 y  

The remaining term m, in is obtained from the second equation in (9A.4), but it  is not 

The closed-loop behavior of the system is of interest. The matrix of the closed-loop 
needed in the control law. 

system is 

1 = [ -Jsl"+cz - h ( n ' + J n " ) l ' 2  

0 I 

And the characteristic equation is 

s2 + J:(n' + Jn4 t c2)1/2s + Jn4 + c2 = 0 

-4 -3 -2 - 1  

I 

- 4  

- 3  

b 
I7 

- -3 

- -4 
Figure 9.1 Locus of closed-loop poles of controlled inverted pendulum as weighting factor is 
varied. 
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the roots of which are 

(9A.5) 

where 

li2 = Jn" + c2 

The locus of closed-loop poles as the weighting factor c is varied from m to 0 as shown 
in Fig. 9.1. The following characteristics of the locus are noteworthy: 

( a )  As c increases, the closed-loop roots tend to asymptotes at 45" to the real axis, and 
move out to m along these asymptotes. This implies that the response time tends to zero and 
the damping factor tends to 5 = J 2 / 2  = 0.707. That the response time tends to zero is not 
surprising, since increasing c decreases the cost of control and hence makes it desirable to 
have a rapid response time. The asymptotic damping factor of 0.707 is entirely reasonable, 
since this entails good response without overshoot. But why 5 + J2/2 exactly and not some 
other value may seem astonishing. It turns out that the root lociof second-order systems under 
very general conditions tend to have a damping factor of 5 = J 2 / 2 .  A discussion of this feature 
is given below. 

( b )  As c tends to zero, the cost of control tends to a nonzero value. If the open-loop 
system were stable, and it would turn out that the gains g, and g. would tend to zero and the 
open-loop system would "coast" to rest, without incurring any control cost. Since control cost 
is paramount, this solution would be reasonable. In the present case, however, the open-loop 
system is unstable, and cannot coast to rest without control. A certain amount of control is 
necessary to stabilize the system. But why do both closed-loop system poles tend to s = -R? 
One might have thought that only one closed-loop pole would tend to the stable open-loop 
pole at s = -n and that the other would tend to the origin. The fact that the second 
closed-loop pole also tends to s = -0 is a consequence of a general result that as the control 
weighting becomes very large, the closed loop poles corresponding to unstable open loop poles 
tend to their mirror images with respect to the imaginary axis. In other words, if s, = +a + jj3 
(a 2 0) in the open-loop system, then the corresponding pole in the closed-loop system tends 
to S, = -a + jj3. This is a general property of optimum control laws, as discussed in Note 9.4. 

9.6 DISTURBANCES AND REFERENCE INPUTS: 
EXOGENOUS VARIABLES 

In Chap. 7 we considered a more general model for the control process of the 
form 

1 = Ax+ Bu + Ex, (9.31) 

where x, is the exogenous vector. As in Chap. 7, we assume that x, satisfies a 
known differential equation 

Xo = A,x, (9.32) 

Hence the entire (meta)state satisfies the differential equation 

X = A x + B u  
where 
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(9.33) 

k 

Obviously, the exogenous state xo is not controllable; hence an appropriate 
performance integral would be 

T 

V = I (x’Qx + u‘Ru)  dr 
r 

Thus, the weighting matrix for the metastate is of the form 

(9.34) 

The upper limit on the integral in (9.34) is intentionally not made infinite as 
one might at  first be tempted to do. Why? Suppose that the exogenous state 
does not tend to zero. It may not be possible to achieve a steady state error of 
zero with a control u that also goes to zero; it usually isn’t possible to do so. In 
that case, either X’QX doesn’t go to zero, or u’Ru doesn’t go to zero. In either 
case, the integral in (9.34) will become infinite as T + co. One way of approach- 
ing this problem is to find a control U which satisfies the requirements of zero 
steady state error. For x = 1 = 0, the required steady state control U must satisfy 

Bii + Exo = 0 

and then express the total control u as the sum of the steady state control and 
a “corrective” control u:  

u = U + u  

(9.35) 

In this case (9.31) becomes 

X = Ax + Bu 

Now the corrective control u does tend to zero and it is proper to minimize 
m 

v = 1 (x’Qx + u’Ru) dr 
t 

(9.36) 

There are several problems with this approach. First, there may not be a control 
U which satisfies (9.35); in other words, it may not be possible to achieve zero 
steady state error, but it would still be possible to minimize (9.34) for any finite 
time. The control law that is approached by the solution to (9.34) as T + a, 
even if the limiting integral does not exist, may be just fine. Second, the control 
which achieves (9.35) may not be unique, hence determination of a unique u by 
minimizing (9.36) does not pin down u = U + u. And finally, minimizing the 
quadratic form 

V = I (x‘Qx + u’Ru) d7 

T 

t 
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is not the same as minimizing 

1 I,' T 

V = I (X'QX + U ' R U )  d7 = [X'QX + ( U  + IJ)'R(U + U)] dT 

for a fixed U, because of the presence of the cross terms u 'RU'+  ii'Ru. If we 
really want to minimize V we don't want to minimize 

The finite time duration problem (9.3) can be solved without theoretical 
difficulty. Partition the performance matrix M for the metasystem correspond- 
ingly 

(9.37) 

The gain matrix 6 for the metasystem is given by 

Note that the submatrix f i 3  is not needed. This is a welcome fact, as we shall 
soon see. 

Performing the matrix multiplications required by (9.27) we obtain the 
differential equations for the submatrices in (9.37): 

-k, = A,A + A'A, - A ; j l ~ ~ - l ~ ~ f i l  + Q (9.39) 

-fi2 = &,E + f i 2 ~ 0  + (A' - A~,BR-IB~)A~ 
-M3 = M 3 ~ 0  + A ~ A ~  + A;E + E J ~ ,  - A ~ B R - I B ' A ~  

(9.40) 

(9.41) 

Owing to the special structure of A, B, and Q, the following facts about the 
submatrices of M emerge: 

( a )  The solution for A,, and hence the corresponding gain R - ' B f f i I ,  is the 
same as it would have been with xo absent from the problem, i.e., if  we were 
designing the control law for the simple regulator problem. A steady state 
solution for GI can be obtained if the pair (A,  B )  is controllable, as explained 
above. 

( b )  The differential equation for G2, from which the gain R-1B'$2 is 
determined, does not depend on i3, and in fact is a linear equation, which can 
also be written 

-&, = f i , E  + k 2 A 0  + A : i ,  (9.42) 

where 

A, = A - B R - ~ B ~ I G ,  
is the closed-loop dynamics matrix of the regulator subsystem. A steady state 
solution to (9.42) generally also can be found. It must satisfy 

0 = M , E  + M2Ao + A:M, (9.43) 
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We thus have the necessary gains to realize the control law 

u = - R - ' B ' M , x  - R-'B'M,x,  (9.44) 

(c) The differential equation (9.41) for h3 is also linear. Whether it has a 
steady state solution depends on A,. If A, = 0, then (9.41) does not have a 
steady state solution. But this doesn't matter because h3 is not used in the 
determination of the gain matrix. 

The case of greatest interest is that in which the matrix A, is zero. In this 
case the exogenous subsystem produces signals that are constant. These :re the 
most frequently used reference signals. For this case the equations for M2 and 
f i 3 ,  as given by (9.40) and (9.41), become 

-fi, = h , E  + A:.h2 (9.45) 

and 

-h3 = n ; i ; ~  + ~ l n ; i ,  - A;BR-'B~& 
Note that the right-hand side of (9.46) does not contain G3 and hence 

(9.46) 

~ ~ ( t )  = M ~ ( T )  + ( n ; i : ~  + ~~2~ - G ; B R - ' B ~ ~ , )  d7 (9.47) 

In general the integral in (9.47) goes to  infinity as T -+ a; in other words a 
steady state solution to (9.46) does not exist, and any attempt to obtain such a 
solution, by setting A, to zero, will generally be erroneous. The correct relation- 
ship for A?, is given by the solution to (9.45) with ~, = 0 

M, = - ( A : . ) - ' M , E  (9.48) 

where M, is the steady state solution to (9.39), i.e., the control matrix for the 
regulator design. Thus the gain for the exogenous variables 

G, = - R - ' B ' ( A : ) - ' M , E  = B * E  = G,* 

1,' 

where (9.49) 

B* = - R - ' B ' ( A : . ) - ' M ,  

In Chap. 6 we considered the problem of reducing the steady state error to 
zero in the presence of exogenous variables. We found there that 

G, = B'E 
where 

B# = (cA; 'B) -~cA; '  (9.50) 

By use of the optimization technique of this chapter we have also found 
gains for the exogenous variables. Since the matrix B" is unique for a given 
regulator gain matrix G, it follows that the gains given by (9.48) will reduce the 
steady state error to zero (for arbitrary E )  only when B* given by (9.49) and B' 
given by (9.50) are the same. 
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Example 9B Accelerometer proof mass “capture” We previously determined that the differen- 
tial equations governing the displacement z of the proof mass in an accelerometer, shown in 
Fig. 9.2, is given by 

XI = x, 

x 7 -  ~ -- x, ~ = x2 + a 
K B  

- M M  

(9B.1) 

where K I M  is the acceleration due to the spring, B / M  is the acceleration due to friction, and 
a is the specific force (nongravitational acceleration) acting on the body. Suppose that the 
spring and damping forces are both absent. Then of course the proof mass would strike the 
end wall of the instrument after a short time. To “capture” the proof mass, i.e., to keep it from 
striking the end walls, a control force is generated in the typical instrument. (This can be 
accomplished magnetically, for example. The means of generating the force is not germane.) 
So instead of (9B.1). the differential equations for the proof mass, with the acceleration due to 
the capture force denoted by u, are 

x, = x2 

x 2 = u + a  
(9B.Z) 

These are  just the equations of a double-integrator with a n  external disturbance u and a 
control u. For a constant acceleration a, the control acceleration must tend to -a: otherwise 
the proof mass will surely hit the wall. Thus, by measuring the control acceleration u that is 
needed to keep the proof mass from moving toward the walls, we can determine the external 
acceleration a. In Example 1 1  F, using the separation principle, we will develop the design 
for a complete control system to capture the proof mass and provide an estimate n  ̂ of the input 
acceleration a. But for now, let us consider only the control problem when all the state variables, 
including the input acceleration a, treated as a state variable, are assumed to be measurable. 
(If the acceleration a could be measured, there would of course be no need for this accelerometer.) 

First, consider the control problem of returning the proof mass to the origin (x ,  = x2 = 0) 
in the absence of an input acceleration ( a  = 0). The matrices for the dynamics are 

We use a performance criterion of the form 

The gain matrix for this control design is 

“Proof‘  mass 
Case of 
accclerometer 

A.1 FIG 
Figure 9.2 Force-rebalanced (“captured”) accelerometer. 

(98.3) 

(9B.4) 

(98.51 
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and the components of M are given by 

O =  -c2m:+ I 

o = m, - c2m,m, 

o = 2m, - c2m: 

(9B.6) 

the solutions to which are 

(98.7) mz = c - I  - 71/2 -3/? 3 - -  c - *1/2 -1/2 
1 -  c 

(For details, see Example 9A for the inverted pendulum. The present example is a special case 
of Example 9A with a’ = 0.) 

Using (9B.5) the gain matrix is obtained: 

G = [c2m2 c’m,] = [c  J2Cl 
The dynamics matrix of the closed-loop system is given by 

A ~ = A - B G = [ O  0 0  ‘1 -[:]Ic J % i = [ o C  - J 2 c  ‘-1 
(9B.8) 

(9B.9) 

Hence the closed-loop poles are the roots of 

or 

The locus of the closed-loop poles are thus straight lines at 45 degrees to the coordinate axes 
and moving away from the origin as  c + m. 

The case we really want to consider, of course, is a nonzero external acceleration. Any 
model for u can be used (e.g., a step, a ramp, etc.). Suppose that it is modeled as  a step 

L i = O  (9B.10) 

Adjoining this to (9B.2) gives 

The matrices are in the form of (9.33) with .=[:I A , = O  

Thus the theory developed below (9.33) applies. In particular, let 

r m ,  m2 1 m41 

Then, as already found, 

(9B.1 I )  
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The submatrix A?, is found using (9.47). In this application (9.47) is 

c- l  I[;] +A:[::] o = [  C - I  21/2c-3/2 

21 /2c -1 /2  

or, upon use of A, given by (9B.9), 

(9B. 12) 

Thus the gain matrix is given by 

G = [ G  j R-IB'M,]  

The part of the gain matrix G due to the state [xl, x2]'  was already found in (98.8). The 
additional gain due to the forcing acceleration a = x3 is 

It is not in the least bit surprising that the gain for the external acceleration should turn out to 
be 1 exactly. In fact any other gain would be surprising: Obviously, when xI and xz are zero, 
the control acceleration I( should be exactly equal in magnitude and opposite in sign to the 
external acceleration. Thus the control law 

u = -sixl  - grxr - 1 . a (9B. 13) 

is exactly what one would have expected to obtain. 

equation for m6 is a special case of (9.45). In particular, 
Note that we never needed to determine the remaining term m6 of M. The differential 

- m  - zm5 - p m ;  = 2 c - 2  - c2(c-z)2 ~ c - z  
6 -  

Thus 

m,(t )  = m6( T )  + CC'(T - 1 )  

which implies that a steady state solution for m6 does not exist. This is not surprising, in view 
of the fact that a constant value of external acceleration demands a constant, nonzero control, 
and this cannot result in a finite value of the performance integral V over an infinite time 
interval. Nevertheless, the control law (98.13) is eminently reasonable, provided an observer is 
used to estimate the unmeasured state variables x3 = a and possibly also x2 = XI. (An optimum 
observer design is the subject of Examples 11A and ! IF.) 

Example 9C Temperature control The temperature control considered in Example 6E and 7 D  
can also be designed by the method of this section. Suppose we have a set of capacitances and 
resistances for which the dynamic model of (6E.1) becomes 

XI = -X I  + xz + u 

xz = XI - 3xz + 2x, 
(9C. I ) 

where xI and x2 are internal temperatures, and where xo is the outside (ambient) temperature 
which may be assumed constant, i.e., 

X" = 0 (9C.2) 

From (9C.I) and (9C.2) we obtain the metasystem 
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Thus the submatrices of A and B are 

A = [ - : - : ]  E = [ 3  A,=O .=[A] (9C.3) 

Before starting the calculations, take note of some features of the problem due to the 
physics of the process. First, it is recalled that the temperatures x, and x2 are measured with 
respect to  any arbitrary reference temperature. If the ambient temperature is also at the 
reference, i.e., x, = 0, then the steady state condition is that all temperatures are equal with no 
heat input ( u  = 0). The control problem in this case is to add heat ( u  > 0) or remove heat 
( u  < 0) to  bring the temperature to the ambient in an optimum manner. To visualize the 
control problem, one might imagine that I, and x2 are temperatures in a building which has 
cooled down overnight. In  the morning, the indoor temperatures, having reached the nighttime 
ambient temperature, are  lower than the daytime ambient, which just happens to be the 
desired temperature. Thus our  problem is to heat the building to raise its temperature to that 
of the ambient. A similar problem might be to cool a building that has reached a high daytime 
temperature to the ambient temperature of a pleasant summer evening. 

In most climates, of course, the ambient temperature is either too hot or too cold, so that 
x, # 0. In the winter, heat must be added continuously ( u  > 0) to keep the temperature above 
the ambient; in the summer, heat must be removed continuously ( u  < 0) to  keep the 
temperature below the ambient. Since our model of (9C.I) includes only one control variable 
(one heater or air conditioner) it is clear that it is not possible to keep both x, and x2 at the 
reference temperature. We can control x, or x2 or a weighted average of the two, but not both 
independently. The thermal model (9C.2) suggests that x1 is thr  temperature of the area 
nearest the source of heat (in a residence, perhaps downstairs) and x2 is the temperature of the 
area farthest from the heat (perhaps upstairs) and most prone to heat loss to the ambient 
environment. In the daytime we might wish to give more weight to the temperature x,, and in 
the nighttime we might wish to give more weight to x2. Thus a performance criterion of the 
form 

V = [7[(clxl  + + k2u2]  d7 (9c.4) 
I 

might be  used, with c1 >> c2 in the daytime and c2 >> c, in the nighttime. The state and control 
weighting matrices would thus be 

(9C.5) 

We are now prepared to perform the required calculations. First we find the gain matrix 
for the case in which x, = 0 using 

with 
(9C.6) 

(9C.7) 

satisfying (9.39). Using the data matrices of (9C.3) and (9C.5), we find that the steady state 
values of m , ,  m,, and m, satisfy 

-2m, + 2m, - k- 'mf + c: = 0 (9C.8) 

rn,  ~ 4m, + rn3 - k- 'm,m,  + clcz = 0 (9c.9) 

2m, - 6m, - k - * m ;  + cz = 0 (9C. 10) 

These equations are too complicated to solve other than numerically. But the numerical 
values are easily obtained, and from these, using (9C.6), the gains are obtained: 

g, = K 2 m ,  g2 = k-*m, (9C.I I )  

Numerical values for g ,  and gz for several values of c, and c2 are given in Table 9C.I. 
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k 

Table 9C.1 Temperature control gains 

c, = 1, cz = 0 CI = I ,  cz = 1 C ]  = 0, c2 = I 

91 92 91 s 2  91 gr 

I 
10-1 
10-2 
lo-' 

0.4957 0.1185 
9.120 0.7067 

99.02 0.9628 
999.0 0.996 15 

9999.0 0.9993 1 

0.2178 0.5873 0.685 1.133 0.3283 2.1 172 
0.151 1 0.1960 1.645 1.695 4.991 5.924 
0.02036 0.0250 1.954 I .96 23.084 23.124 
0.0021 6 0.00253 1.995 2.0 83.65 83.71 

-0 -0 1.9995 2.0 277.0 276.9 

0.685 0.4 19 
9.860 8.470 

99.981 98.06 
1000. 998.0 

10000. 9998.0 

0.0586 0.0603 
1.692 3.122 

10.562 66.338 
40.855 875.44 

137.46 9585.6 

The variation of gains shown in Table 9C.I seems reasonable: as the control weighting is 
decreased ( k  + 0) the gains get higher-as the cost of energy decreases the temperature can be 
brought to  the ambient more rapidly. Also note that the higher gain is associated with the state 
variable that is weighted more heavily in the performance index-also as expected. But the 
gains are unequal when the states are equally weighted because the heat (or cooling) input is 
not distributed to xI and x2 in the same way. 

Having found g1 and g2 we can now determine the gain for the ambient temperature: 

go = B'E (9C.12) 

Where B* is given by (9.49). Performing the required calculations we obtain the results shown 
in Table 9C.2. 

It is of interest to compare the gain go given by (9C.12) with the gain go given by (6.48). 
needed for zero steady state error. For the weighting matrix 

c = [ C l ,  c2l (9C.13) 

we find from (6.48) that 

(9C.14) 

( 2 ( 1 +  g , )  for c, = o 
The results, using (9C.14) with g1 and gz as  given in Table 9C.1, are also shown in Table 

9C.2 for purpose of comparison. It is evident that except for the largest values ( k  > 0.1) of 

Table 9C.2 Ambient temperature gains 

I C ]  = 1, cz = 0 1 c , = c , = I  1 C I  = 0, cz = I 
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Closed-loop poles 

control weighting, the gains for the ambient temperature as given by B * E  are very close to the 
gains given by B” E required to reduce the steady state error precisely to zero. The differences 
are largely academic, because the error due to measuring temperature with any sensor of 
realistic quality would be greater than the errors caused by the differences between B * E  and 
B” E. 

E * E  

Example 9D Missile autopilot In Chap. 6 (Example 6F) we obtained the design of a missile 
autopilot using a pole-placement technique. In this example we will obtain the design using 
the optimization methods of this chapter. 

The state of the system is the difference e between the commanded and the achieved 
angular acceleration, the pitch rate q, and the control surface deflection S 

x = [e, q, 81‘ 

The dynamics are given by 

x = Ax + Bu + EX, 

where x, is the commanded normal acceleration aNc. The matrices A, B, and E are given in 
Example 6F. 

To use the methods of this chapter it is appropriate to use a performance criterion which 
weights the error e and the control surface deflection S 

m 

V = I (e’+ RS’) d7 
I 

For this performance criterion 

-46.0 i j6.5 
-42.6 f j13.4 
-38.0 * j16.9 
-25.3 * j20.4 
-20.0 * j19.9 
-10.8 f j17.5 

-8.2 * j16.8 
-3.18 * j l 5 . 8  

and R is a scalar. 
The matrix quadratic equation is much too complicated to solve analytically, but it can 

readily be solved by a suitable numerical method. The numerical values of the elements of the 
gain matrix C = R - ’ B ’ M  are tabulated for a range of control weightings in Table 9D.1. Table 
9D.I also shows the closed-loop poles and the matrices B*E and B # E  which constitute the 
feedfonvard gain G,, for the reference input. 

A graphical representation of the closed-loop poles, as the control weighting R is varied, 
is shown in Fig. 9.3. I t  is seen that as R becomes very large, ix . ,  the control surface deflection 
is very heavily weighted, the closed-loop poles approach the open-loop poles, as one would 
expect. But as the weighting on the control surface is reduced ( R  is decreased), the complex 

1.0755E-3 
0.53638-3 
0.4070E-3 
0.2250E-3 
0.17468-3 
0.08816-3 
0.0602E-3 
0.0112E-3 

Table 9D.1 Missile autopilot design 
~ 

R 

E5 
5E5 

E6 
5 E6 

E7 
5 E7 

E8 
E9 

2.086E-3 
.873E-3 
3 8 8 - 3  
.2 1 1 E-3 
.127E-3 
.274E-4 
.105E-4 

-.174E-5 

- .492 
-.235 
-.I73 
-.085 
-.063 
- ,029 6 
p.0205 
-.004618 

5.818 
2.551 
1.795 
0.784 
0.545 
0.222 
0.146 
0.02883 

-360.0, 
176.4, 
139.7, 

-107.5, 
- 103.7, 
- 100.7, 
-100.3, 
-100.03, 

I .0786E-3 
0.54338-3 
0.41698-3 
0.24608-3 
0.2047E-3 
0.14578-3 
0.1308E-3 
0.1064E-3 
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1 30 

R = lo7 

I-” 
Figure 93 Locus of complex poles in missile autopilot design as weighting factor is vaned. 

G ,  x lo3 
Gain for error 

Figure 9.4 Variation of control gains for rnissile/autopilot design. 
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I I I I I 
0 0.2 0.4 0.6 0.8 1 .o 

B * E  x lo3 
Feedfonvard (reference input) gain using I.Q calculation 

Figure 9.5 Comparison of feedforward gains. 

poles move to the negative open-loop zero on the real axis, which is where we would expect it to 
go in view of our discussion in Note 9.4. The gain variations are illustrated graphically in Fig. 
9.4. 

Note that the gains B*E and B"E are not equal, although they converge as the control 
weighting tends to zero. (Fig. 9.5.) This again is as expected in view of our earlier discussion: 
If the control weighting is not zero, the cost of using control requires that its steady state value 
be reduced from that required to maintain a steady state error of zero. The discrepancy 
between the feedforward gains is largest when the control weighting is largest, as expected. 
Since the missile is stable, the feedback gains can be reduced to zero, which is what happens 
when the control weighting becomes infinite. But this also reduces the feedforward gain to zero 
and there is no connection between the reference input (the commanded acceleration) and 
missile: The achieved acceleration tends to zero leaving a steady state error equal to the 
commanded acceleration. But it is possible to track the input acceleration perfectly, even without 
feedback, by use of a feedforward gain given by Go = (CA-'B)-'CA-'E where A is the 
open-loop dynamics matrix. The numerical value of Go = 0.1064 X is the feedforward gain 
that achieves this condition. 

If zero steady state tracking error is a rigid requirement, then there is no reason for not 
using the gain B # E  as given in the last column of Table 9D.1 instead of the gain given by 
R * E .  Since these are feedforward gains, they have no effect on the stability of the system. 
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-92.7 -15.4 
1 I . . -  A 1 4 . ."  w - 

100 -80 -60 -40 -20 

The robustness of the design is of interest. As was the case with the design based on pole 
placement, as considered in Example 6F, we study the locus of roots of the return difference 

1 + K G ( s l  - A ) - ' B  

on the assumption that the effect of a gain variation is in the overall loop gain rather than in 
the individual sensors. 

For comparison with the pole-placement design we select the gain matrix G correspond- 
ing to a control weighting of R = lo7 which places the closed-loop poles at s = -20 * j19 .9  
which is very close to the values chosen in the pole-placement design. For this value of gain 
we find that 

U 
b 

0 

N (s) 
D(s) 

40.35s' + 4363s + 57 628 
(s  + IOO)(s'+ 3.33s + 248.) 

G,(s)  = C(s l  - A) - 'B  = ~ = 

~ 

40.35(s + 15.4)(s + 92.7) 

(s + 100)(s2 + 3.33s + 248.) 
- 

Note that the apparent zeros of the loop transmission are both in the ref half of the s 
plane whereas the pole-placement design had one zero in the right half of the s plane. This 
means that the root-locus does not cross into the right half-plane for any value of K. Thus this 
design has an infinite gain margin. The actual root locus has the appearance shown in Fig. 9.6. 
The root locus has the same general shape as the locus of roots of the closed-loop system 
shown in Fig. 9.3 for various control weighting factors. (Note that Fig. 9.3 is not a standard 
root locus, which is defined as the locus of roots of 1 + K G ( s )  as K is vaned.) This might 
seem surprising at first, but it really is quite reasonable in view of the way the gains G, G, 
and G, vary, as shown in Fig. 9.4. It is observed that they are nearly proportional to each 
other, so that varying K in the root-locus equation has nearly the same effect as varying the 
control weighting matrix R. 

I t  is worth dwelling further upon the difference between the design of this section and the 
design obtained by pole-placement in Example 6F. The dominant poles in both cases are very 
nearly in the same location (s = -20 f j 2 0 )  so the transient responses of both systems would 
be just about the same. Yet the pole-placement design has a finite gain margin while the 

J -40 

Figure 9.6 Root locus of return difference of autopilot design with R = 10'. 
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linear-quadratic design of this example has an infinite gain margin. A gain margin of 14 is not 
at all bad, but a gain margin of infinity is better! On the other hand, the present design requires 
feedback of the actuator state S. The pole-placement design intentionally eliminated this 
feedback path. Is it worth using an extra sensor (to measure 6 )  for the sake of raising the gain 
margin? In this case probably not, but in other cases it might be. The alternative to adding a 
sensor to measure S is to use an observer to estimate S using the measured pitch rate and 
normal acceleration. Use of an observer, however, also has the effect of reducing the stability 
margins as we shall see when our discussion of this example resumes. 

The Bode plots for G,(s)  = G(s1 - A ) - ' B  and G , ( s )  = G(s1 - A,)B are given in Fig. 
9.7. Note that the maximum phase shift of the open-loop transmission is -107", which 
provides a phase margin of 73". 

9.7 GENERAL PERFORMANCE INTEGRAL 

Most problems can be formulated with a performance integral of the form (9.3) 
with the integrand being the sum of a quadratic form in x and a second 
quadratic form in u. There are cases, however, in which a cross term 2x'S'u = 
x'S'U + U'SX is also present in the integral. The optimum gain for this problem 
can be found using the same method as was used in Sec. 9.4. Following exactly 
the same steps as in that section, one obtains the following relation for the 
optimum gain 

6 = R - ' ( B J A ~  + s)  (9.51) 

where the matrix satisfies a matrix Riccati equation 

(9.52) 

where A = A - B R - ' S  

Q = Q - S'R-IS  

(9.53) 

(9.54) 

The benefit of hindsight-i.e., knowing the result-makes it possible to 
verify it by another method. Let 

u = u - R - ' S x  (9.55) 

Substitute this control into the general dynamic process, as given by (9.1) to 
obtain 

x = Ax + Bu = ( A  - B R - ' S ) x  + Bu = AX + BU (9.56) 

The performance integral to be minimized is 
T 

V = I (x'Qx + x'S'U + U'SX + u'Ru)  d r  
I 

(9.57) 

Using (9.55) the integrand becomes 

X'QX + x'S'(U - R - ' S x )  + (u' - x 'S 'R- ' )SX  + (u' - x ' S ' R - ' ) R ( v  - R - l S x )  

= x'( Q - S ' R - ' S ) x  + U'RU (9.58) 
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Thus minimization of (9.57) for the original process is equivalent to minimi- 
zation of 

m 

V = I ( x ’ o x  + u ’ R u )  d7 
I 

(9.59) 

for the process 

X = Ax + Bv (9.60) 

Using the result of Sec. 9.4 the minimum value of V is obtained for 

u = - G x  

where the gain for u is given by 

G = ~ - 1 ~ r f i  
and where fi satisfies (9.52). Thus, finally, from (9.55) 

= - ( R - ’ B ‘ A ~  + R - ~ s ) ~  = -& 
where 6 is given by (9.51). 

9.8 WEIGHTING OF PERFORMANCE 
AT TERMINAL TIME 

In control processes of finite time duration, the terminal state x ( T )  is often as 
important as, or more important than, the manner in which the state is reached. 
Thus a more general performance criterion is 

T 

v = I [ x ’ ( T ) Q x ( T )  + U ’ ( T ) R U ( T ) ]  d ~ f  X ’ ( T ) Z x ( T )  (9.61) 

The additional quadratic form x‘(  T ) Z x (  T )  may be called a terminal pendry-  
the cost of not getting to the origin at the terminal time. 

The results of Secs. 9.3 and 9.4 are applicable to this problem except that 
the terminal condition to be used is 

I 

fi(T, T) = z (9.62) 

instead of fi( T, T )  = 0. 
This is seen as follows. Since 

x ( T )  = Oc(T ,  t ) x ( t )  

the quadratic form x’(  T ) Z x (  T )  is also a quadratic form in the initial state: 

x’ (  T ) Z X (  T )  = x’( t)O:.( T, t ) Z @ , (  T, t ) x (  r) (9.63) 

Thus 

v = v(t, T )  = x ‘ ( r ) M ( r ,  T ) x ( r )  (9.64) 
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where 

[ x ’ ( ~ ) Q x ( r )  + u ’ ( T ) R u ( ~ ) ]  d 7 +  @ i ( K  t)ZQC(T, t )  (9.65) 

and clearly 
M (  T, T )  = 2 (9.66) 

since OC(T,  T )  = Z for any transition matrix. From (9.64) 

av 
- = i ’ ( t ) ~ ( t ,  T ) x ( t )  + x ’ ( t ) U ( t ,  ~ ) x ( t )  + x‘(t)M(t, ~ ) x ( t )  
a t  

whereas from (9.61), with x’( T)Zx( T )  given by (9.63) and with u = -Gx ,  

av a 
a t  a t  

where L = Q + G‘RG as in (9.12). 
The vector x (  T ) ,  when written 

- = x’( t ) L x (  t )  + - [x’( t ) @ : (  T, r)Z@,( T, t ) x (  t ) ]  (9.67) 

x ( T )  = @AT, t ) x ( t >  

seems to be a function of the initial time 1, which appears in @,( T, 1 )  and x( t ) .  
However 

Recall from Chap. 2, however, that for any transition matrix 

(9.68) 

(9.69) 

But 

= A,( t ) Q C (  t, T )  (9.70) a@c(t, 7-1 
a t  

for any transition matrix. Thus (9.69) becomes 

or 

= -QC( T, t)A,( t )  
a t  

(9.71) 

Thus, finally, using (9.71) and the basic relation 

X( t )  = A,( t ) x (  t )  
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it is found that (9.68) becomes 

Hence the second term 
differential equation as it 

~- - 0  ax( 7-1 
a t  

in (9.67) vanishes and M ( t ,  T )  satisfies the same 
did in Sec. 9.3, namely 

-M = MA, + ALM + L 

but subject to the condition (9.66). It follows that the optimum control law 
satisfies the usual matrix Riccati equation (9.27) with the terminal condition 
(9.61). 

I f  the closed-loop system is asymptotically stable then x( T )  + 0 and the 
terminal penalty is zero. Thus a stabilizing steady state control designed by 
solving (9.28) is also the optimum control for the limit of V given by (9.61) with 
T + m .  

Example 9E Missile guidance In Example 3B we considered the approximate dynamic model 
of a missile which is controlled by the use of a control acceleration normal to the velocity 
vector: 

z = Tu (9E.1) 

where z is the projected miss distance if the relative velocity V between the missile and the 
target were unchanged (that is, u = 0), u is the normal acceleration, and 7 = T - f is the 
time-to-go, assumed to be a known quantity. 

If z is brought to zero at any time, the missile will, in the absence of any further normal 
acceleration ( u  = 0 ) ,  continue on a straight-line trajectory to intercept the target. Thus the 
control objective is to reduce z to zero. There are of course countlessly many ways that this can 
be accomplished. The only requirement is that 

z ( T )  = z( l )  + IT(=- T)U(T) d7 = 0 (9E.2) 

Any control law satisfying (9E.2) will serve, provided the normal acceleration u is sufficiently 
large. And if u is not sufficiently large (ix., the missile is not sufficiently maneuverable) no 
control law will do. 

In order to formulate a suitable optimization problem we suppose that the control 
objective is to minimize 

I 

V = IT u’(T)  d7 + k 2 z 2 ( T )  (9E.3) 

The integral term in (9E.3) is a quadratic form in the normal acceleration; it penalizes large 
accelerations and hence is a way of limiting the acceleration requirement. The second term 
k2z2( T )  penalizes the terminal miss distance. The larger the value of k, the greater the cost 
attached to missing the target; as k + (L, the target must be hit at all costs. 

In reality there is no reason to care about the integral of the square of the acceleration 
provided the missile hits the target, so we are not really interested in solving the optimization 
problem. But, as we shall see, the solution of the optimization problem provides a very 
reasonable guidance law and hence, even though the optimization problem is fishy, the result 
is good: the end justifies the means. 

I 

The matrices that define the problem are all scalars 

A = O  B ( f ) = T - f  Q = O  R = I  Z = k 2  (9E.4) 
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Thus the “opt imum” guidance law is 

u(1 )  = - R - ’ B ( t ) M ( r ,  T ) z ( t )  = - ( T -  t ) M ( t ,  T)z(r) 

where M ( t ,  T )  is a scalar satisfying the Riccati equation 

-ni = -( T - 1)2M* 

subject to the terminal condition 

M ( T ,  T )  = k2 

by (9E.4). To solve (9E.6) let 

W(1)  = I/M(t, T )  

Then = M 2  W and (9E.6) becomes 

W = ( T  - t)’ 

which is integrated directly to give 

( T -  1)’ 
( T - . r ) ’ d T =  W(I)+- 3 

But, by (9E.7) and (9E.8), W ( T )  = l /k2 .  Thus 

I ( ~ - 1 ) ~  
W(1) = - + ~ 

k’ 3 

and hence, by (9E.8), we have the desired solution to the Riccati equation: 

3 
( T  - t ) ’  + 3/k’ 

M(1,  T )  = 

(9E.5) 

(9E.6) 

(9E.7) 

(9E.8) 

(9E.9) 

(9E. 10) 

which, when substituted into (9E.5), gives the optimum guidance law. If we truly want the 
terminal miss to be zero, we must let k’ be infinite. In this limiting case (9E.10) becomes 

3 
( T  - I)’ 

M ( r ,  T )  = ~ (9E.11) 

Note that M (  T, T )  becomes infinite. This is a typical characteristic in control problems in 
which the state is to be brought to zero in a finite time. Using (9E.11) in (9E.5) gives the 
guidance law 

3 
( T  - I)’ 

u ( 1 )  = -_______ z ( t )  (9E. 12) 

Note that the gain G(t ,  T )  = 3 / ( T  - I ) *  also becomes infinite as the time-to-go T - f 
approaches zero. This is surely reasonable. As the time-to-go gets smaller, a larger acceleration 
is needed to reduce the projected miss distance to zero. 

A form of (9E.12) more familiar in missile guidance is obtained by observing that 

Z(I)  = V ( T -  r)‘A(r) 

where h is the inertial line-of-sight rate. (See Example 38.) As a result (9E.12) becomes 

~ ( 1 )  = -3Vh(l) (9E.13) 

This is a special case of the well-known “proportional navigation” law[3] 

~ ( r )  = -kvh(t j  (9E.14) 

Proportional navigation has long been a popular guidance law, primarily for ease of 
implementation. In a typical missile, the seeker i s  gimbaled to keep it pointing to the target 
independent of the attitude of the missile. The output of a rate gyro mounted on the gimbal, 
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in the absence of instrument errors, is precisely the inertial line-of-sight rate A. Thus (9E.14) is 
implemented by multiplying the measured line-of-sight rate by a constant ( k V )  and using that 
quantity as  the reference acceleration to the autopilot which is designed to track this 
acceleration. (See Examples 8D, 9D.) 

In this example we appear to have proved that proportional navigation, with a navigation 
constant of k = 3 ,  precisely, is the optimum guidance law. What we have really done is to find 
a performance criterion which rationalizes proportional navigation (with k = 3). In fact, any 
value of k > 2 will guarantee interception; k may even be time-varying, so that there is no 
need to know the relative velocity V with great precision, since a change in V from the design 
value will have the same effect as a variation in the navigation constant. By including z ( t )  

under the integral sign in (9E.31, and giving it and u ( t )  time-varying weighting, it is possible 
to rationalize almost any guidance law as being optimum. This should not be interpreted as 
diminishing the value of optimization theory but rather as evidence that optimization theory 
does not answer every goal of control system design. 

PROBLEMS 

Problem 9.1 Hamiltonian system equivalent to Riccati equation 

If the optimum control law is derived using variational principles, the following “hamil- 
tonian” 2k x 2k system results 

i = Ax - BR-IB‘p 

P 0 = -Qx - A’ 

( a )  By the substitution 

p ( r )  = .$?(I, T ) x ( t )  

show that (P9.1) is equivalent to the matrix Riccati equation (9.27). 
(b)  Let the transition matrix corresponding to the “hamiltonian matrix” 

be 

Using (P9.2) show that the solution to the matrix Riccati equation (9.27) can be written as 

M ( t ,  T )  = [Y21(f - T )  +Y2Z(t  - T ) M ( T ,  T)l[Y,,(I - T )  + Y , z ( t  - T ) M ( T ,  7-11-1 (P9.5) 

or as  

M(1,  7‘) = [YIz (T  - 1 )  - M(T 0 * 2 2 ( T  [)]-‘[Yll(T - 1 )  - M ( T ,  T)Yzl(T - t ) ]  (P9.6) 

Problem 9.2 Transition matrix for hamiltonian system is symplectic 

Using the two expressions (P9.5) and (P9.6) for M (  f ,  T) and the fact that 

I =  [: :I [ Y Z I ( T  - 1)  V Z 2 ( T  - 1 )  I[ Yuz1( t  - T )  Y22(I - T )  
Y l l ( T -  1 )  W d T -  1 )  Yl l ( l  - 7-1 q l 2 ( t  - T )  

deduce that the transition matrix of a hamiltonian system is “symplectic,” i t . ,  

Y’JY = J  = [ ’1 
- I  0 
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Problem 9.3 Eigenvalues of hamiltonian system and steady state solution to Riccati equation 

( a )  Show that the 2k eigenvalues of the hamiltonian matrix occur in pairs that are the 
negatives of each other; ix., if A i  ( i  = I , .  . . , k )  is an eigenvalue of H then -hi is a n  eigenvalue of 
H .  Thus the eigenvalues in complex plane have the appearance shown in Fig. p9.3. 

( b )  Assume that the eigenvalues are distinct. Then H is similar to a diagonal matrix 

where 

and where A ,  is the diagonal matrix corresponding to the left half-plane eigenvalues of H,  and Az 
is the diagonal matrix corresponding to  the right half-plane eigenvalues of H. Note that the columns 
of 

TI = and Tr = 

are eigenvectors corresponding to the left half-plane and right half-plane eigenvalues, respectively. 
Show that 

Thus the solution to (W.1) can be written 

with T = T- r. 

Figure P9.3 Eigenvalues of hamiltonian system are negatives of each other. 
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In order for x( T) to go to zero in the steady state it is necessary for those terms containing 
increasing exponentials to vanish. This means that 

or 

It thus follows that the steady state solution M to the matrix Riccati equation is 

M = u;; u,, 
where U,, and U,, are submatrices formed from the eigenvectors of the hamiltonian system. Some 
numerical algorithms for determining are based on this result. 

Problem 9.4 Closed loop poles 

Show that the closed-loop poles, i.e., the eigenvalues of A ,  = A - B K ' B ' M ,  of the optimum 
system are the eigenvalues of the hamiltonian system (P9.3) that lie in the left half-plane. 

Problem 9.5 Closed loop return difference 

( a )  By block-diagram algebra show that the return-difference for the closed-loop system with 
full state feedback (that is, u = -Gx) is given by 

T,(s) = I + C @ ( s ) B  (P9.7) 

( b )  Let the control weighting matrix be of the form R = rZI  where r2 is a scalar. Show that the 

(P9.8) 

where @(s) = ( s l  - A)-' is the resolvent of the open-loop system. 

closed-loop return difference T,(s) satisfies 

T:(-s)T,(s) = I + B ' @ ' ( - s ) Q @ ( s ) B / r 2  

- M A  - A'M + M B B ' M / r 2  = Q 

Hint: The matrix Riccati equation from which G is determined can be written 

(P9.9) 

Add and subtract sM to the left-hand side of (P9.9); then multiply the result by B' on the left and 
B on the right. Note that M E  = r'G to obtain (P9.8). This result and method of derivation was used 
by Kalman.[9] 

(c )  Use (P9.8) to show that the singular values of the closed-loop return differences are greater 
than unity for all s = j w .  

Problem 9.6 Instrument servo 

The gains for the instrument servo for which the gains were determined by pole placement in 
Example 6A are to be determined by minimization of a quadratic performance criterion. For 
numerical calculations use 

a = l  p = 3  

( a )  For the performance criterion 

v = Srn (q:e2 + u')  d7 
1 

find and tabulate the control gains and corresponding closed-loop poles. 

values of q:. 

a performance criterion 

(b)  Plot the transient response ( e  as a function of r )  for an initial error of unity for several 

(c )  In addition to weighting the position error it is also desired to limit the velocity by using 

m 

v = (q:e2 + q:e2 + u 2 )  dT 



372 CONTROL SYSTEM DESIGN 

For several of the values of q: used in part a and for qf = O.lq:, q:, and 109: find the control gains 
and corresponding closed-loop poles. 

( d )  Plot the transient response as in part b for a range of q: and 4:. Compare the results with 
those of part b. Are the results as expected? 

Problem 9.7 Two-car train-ne-drive motor 

It is desired to rapidly bring to the origin the train of Prob. 3.9 et seq. driven by one motor, but 
without excessively stretching the spring. Explain why a suitable performance criterion is 

m 

V = I [(x, + x2)' + q 2 ( x 1  - x2)'+ r'u'] dr (P9.10) 
I 

( a )  What is the role of the weighting factor q2? 
( b )  Specify the weighting matrices Q and R for the performance criterion (P9.10). 
( c )  Using the numerical data of Prob. 3.9 and for ranges of q2 and r2 chosen to cover the 

gamut of possible control laws, compute the gain matrix and the corresponding closed-loop poles. 
( d )  Discuss the choice of q2 and r2  in a realistic application. How does the strength of the 

spring enter into this selection? What other factors should be considered? 

Problem 9.8 Two-car train-two-drive motors 

Consider the two-car train of Prob. 9.7, except that both cars are motor-driven, so a suitable 
performance criterion in this case is 

m 

V = [(x, + x2)' + q 2 ( x I  - x ~ ) ~  + ?(u: + ui)] d7 
I 

(P9.11) 

( a )  Repeat the calculations of Prob. 9.7 to obtain the gain matrix and closed-loop poles. 
( b )  Is there any obvious advantage to using the two drive motors over using only one? It may 

be necessary to calculate transient responses to answer this question. 

Problem 9.9 Two-axis gyro: optimum regulator gains 

It is desired to choose the regulator gains for the two-axis gyro (Prob. 6.9 et seq.) control system 
to minimize a performance criterion of the form 

UD 

V = I [ q 2 ( S :  + 8s) + ( u :  + u;,)] dr 
f 

( a )  Show that the symmetry (and antisymmetry) properties of the dynamics matrix make the 
regulator gain matrix be of the form 

Also the gain matrix for the exogenous variables is of the form 

G o =  ["' '1 
0 Sa 

( b )  Using the numerical data of Prob. 6.9 find and plot the control gains gl, gz, g,, and the 
closed-loop poles of the regulator. Vary q 2  from 0 to the value for which the real parts of the poles 
lie at r 7  = -5000 rad/s. 

( c )  Find the matrices 

G g = B * E  and G Z = B # E  
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Problem 9.10 Inverted pendulum on caTt: optimum gains 

The gains for stabilizing the inverted pendulum on a motor-driven cart of Probs. 2.1, 3.6 et seq. 
are to be optimized using a performance criterion of the form 

V = Iy (q:xf + q:xf + r'u') dr 

A pendulum angle much greater than 1 degree = 0.017 rad would be precarious. Thus, a heavy 
weighting on 0 = x3 is indicated: q: = 1/(0.017)2 = 3000. For the physical dimensions of the system, 
a position error of the order of 10 cm = 0.1 m is not unreasonable. Hence q: = l/(O.l)' = 100. 

( a )  Using these values of q: and q:, determine and plot the gain matrices and corresponding 
closed-loop poles as a function of the control weighting parameter r 2  for 0.001 < r2 < 50. 

( b )  Repeat part a for a heavier weighting: q: = lo4 on the cart displacement. 

I 

Problem 9.1 1 Hydraulically actuated gun turret: azimuth channel 

The gains for the gun-turret considered in Example 2D et seq. are to be designed to minimize 
a quadratic performance criterion. According to Loh, Cheok, and Beck,[4] a suitable criterion 
would be 

m 

V = I (q'xf + u 2 )  dr 
I 

where 10 I q2 5 10 000. 

the gain matrix and corresponding closed-loop poles for q2 in the range given above. 

state I, be 0 - 0,, and the exogenous vector be 

( a )  For the azimuth channel (see Table 2D.I for numerical data) compute and tabulate or plot 

( b )  It is desired to slew the gun to a constant angle O0 in the presence of disturbances. Let the 

be assumed constant. (See Prob. 6.2.) Find the feedforward gain matrices G,* = B * E  and G: = 

B # E  for the range of q2  studied in part a. 

Problem 9.12 Hydraulically actuated gun turret: elevation channel 

Repeat Prob. 9.1 1 but using the numerical data for the elevation channel as given in Table 
2D.I.  

Problem 9.13 Constant-altitude autopilot 

The gains for the autopilot considered in Prob. 6.6 are to be determined by minimizing the 
performance criterion 

m 

J = I [ c : ( h  - h0)'/ V 2  + c i a 2 +  r2S:] d7 

( J  is used to avoid confusion with the aircraft velocity V.) The weighting coefficient c: penalizes 
deviations from the desired altitude: c t  penalizes excessive angle-of-attack which is desirable to 
avoid stalling. 

( a )  For c: = c: = I ,  and lo-' 5 r2 5 100, tabulate or plot the control gains and corresponding 
closed-loop poles. 

( b )  Repeat part a for c: = 0.01 c:. 

( c )  Repeat part a for c: = 100~:. 

I 
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Problem 9.14 Aircraft stability augmentation: optimum gains 

The gains for the aircraft stability augmentation system of Example 8C are to be designed to 
minimize a quadratic performance criterion 

m 

V = I (&x: + q:x: + u’) d7 
I 

( a )  With q: = 0, find the value of q: which comes closest to achieving the desired pole 

(b)  Determine how much closer the closed-loop poles can be made to the desired locations of 
locations as given in Example 8C. 

part a by varying both q: and q:. 

Problem 9.15 Aircraft lateral dynamics: optimum control gains 

For the aircraft lateral dynamics considered in Prob. 4.4 et seq. it is desired to achieve 
well-coordinated turns and reduce the roll angle error to zero rapidly. This suggests a performance 
criterion 

v = 1- [q:p2 + q;(qj - qjo)2 + (6; + p 2 6 i ) l  dr  

where q: is the weighting on sideslip, q: is the weighting on the roll angle, p z  is the weighting on 
the rudder deflection. (The weighting on the aileron deflection is normalized to unity. There are thus 
three parameters that can be used to design the control gains.) 

( a )  Find the feedback control (“regulator”) gains for the case q ,  = q2 = p = 1 and determine 
the corresponding pole locations. 

(b) It is desired that approximate closed-loop pole locations be at s = - I ,  s = -5, s = 
- I  * j3.  If the poles of part a are not located in the approximate vicinity of those specified, modify 
the weighting matrices to obtain more favorable locations. 

( c )  Determine the feedforward gains B*E and B ” E  for the control gains obtained in part b. 

I 

Problem 9.16 Three-capacitance thermal system 

The gains for the three capacitance thermal system are to be optimized for the performance 
criterion 

m 

V = I (x: + r z u z )  d7 
I 

( a )  Find and tabulate (or plot) the regulator gains and pole locations as a function of the 

(b)  For each of the gains in part a, find the gain matrices G,* = B * E  and G t  = B*E and 
control weighting parameter r 2 .  Let r2 range from 

compare the results. 

to 1.0. 

Problem 9.17 Distillation column 

The control gains from the distillation column considered in Example 6D et seq. are to be 
determined by minimization of a quadratic performance criterion. A suitable performance criterion 
would be 

V = I“ [ lOOxf + 100~:  + 100~: + 1500~: + r , u :  + r2uf] dr 
I 

( u )  For this performance criterion, determine and tabulate or plot the gains and closed-loop 
poles as rl varies from lo4 to lo8 and rz varies from 

(b)  The steady state control objective is to maintain x, = Azl and x, = Az, at zero in the 
presence of constant disturbances represented by the exogenous vector xo = [AxFA,, AFA]‘ as 
described in Example 2G. Find the feedforward gain matrices G,* = B*E and GZ = B # E  for the 
regulator gain matrices found in part a. 

to 1. 
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Problem 9.18 Doubleeffect evaporator 

The control gains for the double-effect evaporator considered in Example 2E et seq. are to be 
designed by minimization of a quadratic performance criterion 

V = Im[x :  + 1.5~: + r2(u: + u:)] d r  
I 

without using uj (i.e., u3 = 0). 

for 0.001 5 r2 5 I .  
Find and tabulate the gain matrix and the corresponding closed-loop poles as a function of rz 

Note 9.1 Optimization by calculus of variations 

In this chapter we start with the assumption t e t  the control law is linear: u = -Gx and 
proceed to determine the optimum gain matrix G = G. But how do we know that a linear control 
law is optimum in the first place? To show that a linear control law is optimum we must consider 
nonlinear control laws as well as linear ones and prove that better performance cannot be achieved 
by a nonlinear control law than by the optimum linear control law. This is a true statement, but only 
for a quadratic performance criterion. If we were to optimize a different performance criterion, e.g., 

then in general a nonlinear control law would be optimal. Determination of the optimum control 
law for nonquadratic performance criteria, and possibly for nonlinear processes, must be 
approached by the methods of the calculus of variations or perhaps dynamic programming and is 
beyond the scope of this book. Readers interested in pursuing the variational approach should 
consult a standard textbook on optimum control theory, such as [ 5 ]  or [6] .  

Note 9.2 The matrix Riccati equation 

The matrix Riccati equation (9.27) may well be the most famous in all the literature of modern 
control theory. It arises not only in determining the optimum control gains but also, as we shall see 
in Chap. 11 ,  in the determination of the gain matrix k of the optimum stochastic observer (i.e., 
Kalman filter). 

Note 9.3 Numerical methods for the algebraic Riccati equation (ARE) 

The importance of the ARE has spawned extensive research on numerical methods for its 
solution. There seem to be two basic types of algorithms: those that go after the solution directly by 
iteration and those that proceed indirectly, through eigenvalue and eigenvector expansions. 

The iterative techniques are related to successive approximations and Newton-Raphson 
methods. The ARE is nothing more than a system of k ( k  + 1)/2 coupled quadratic equations. Thus 
any method capable of solving systems of nonlinear equations should work for the ARE. The 
problem, however, is that even for a moderate value of k (say lo), such as may easily arise in 
practice, the number of equations in the system may be too high to assure reliable solutions. It was 
found early on that numerical methods that exploit the structure of the ARE are likely to be more 
efficient and better conditioned numerically. One method, due to Kleinman[7], is based on writing 
the ARE as 

o = GA, + A:ii = -(Q + G B R - ~ B ' G )  

where A, = A - B R - ' B ' G  = the closed-loop dynamics matrix. Start with an approximate solution 
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Mo for 6 such that A, = A - BR-IE‘M,  has its eigenvalues in the left,half-plane. Then, by a stability 
theorem due to Liapunov[8], the solution M I  to 

0 = M I A ,  + AhM, = -(Q + M,BR-’B’M,)  

is positive-definite, because the right-hand side is positive semidefinite. Using MI in place of M ,  we 
can solve for a second approximation M 2  and continue the process until there is no further change. 
At each step we must solve a linear matrix equation of the form 

M A  + A’M = -Q 

which is known as the matrix Liapunov equation. Various standard algorithms are available for 
solving the Liapunov equation. 

One problem with the iterative algorithms is that the numerical error due to solving the 
Liapunov equation with a finite precision computer may result in a matrix M ,  which is not positive- 
definite. Once this happens, the subsequent iterations are  likely to diverge very rapidly. Another 
problem with the iterative approach is finding a starting matrix M,. (If the open-loop system is 
asymptotically stable, the starting value M ,  = 0 is satisfactory, but a starting value of zero cannot 
be used when the open-loop system is not asymptotically stable.) 

A second class of numerical algorithms is based on the connection between the Riccati 
equation for a kth order system and a 2k x 2k hamiltonian system as discussed in Prob. 9.1. 
Numerical algorithms are based on the eigenvector expansion described in Prob. 9.3. Reliable and 
efficient numerical methods for determining eigenvalues and eigenvectors, or equivalent quantities, 
are currently available even for very high order systems. Thus, this class of numerical algorithms is 
currently preferred over the iterative algorithms by most investigators. 

Note 9.4 Asymptotic properties of optimum control law 

The qualitative dependence of the closed-loop system upon the weighting matrices in the 
performance integral is frequently of interest. Consider the first-order system 

x = a x + b u  

with 
m 

V = I (x2 + p2u2)  dr  
I 

The gain (now a scalar) is given by 

g = brn /p2  

where rn is the positive root of 2am - b’m2/p2 + 1 = 0. The two roots of the quadratic are 

m = p 2 ( a  * Ja’ + b 2 / p ’ ) / b 2  

Since the radical is always greater than 101, it is clear that the top sign is the only possible choice for 
m > 0. Thus 

g = ( a  + J a 2  + b ’ / p 2 ) /  h 

and a, = a - bg = -./a2 + b 2 / p 2  

As the control weighting p2 tends to zero, ( i t . ,  the control becomes increasingly “cheap”) it 
is seen that the closed-loop pole moves out to infinity along the negative real axis as b l p .  The 
feedback gain becomes infinite as does the bandwidth of the system. This is entirely reasonable. 

As the control weighting p 2  tends to co (ix., the control becomes increasingly “expensive”) we 
see that the closed-loop pole tends to -1aI. If a < 0 (ix., the open-loop system is asymptotically 
stable) then a, + a as the control gain g + 0. This again is reasonable. If control costs a great deal, 
don’t use any of it and simply let the process coast to the origin. This strategy is obviously 
unsatisfactory when a > 0 (i.e., the open-loop system is unstable). In this case a, + - a  and the gain 
g + 2a. This result is somewhat surprising. One might have thought that a gain g + a + E ,  (with E 

arbitrarily small) might result in a lower cost of control. But, this is not the case, evidently because 



LINE<AR, QUADRATIC OPTIMUM CONTROL 377 

although the control signal in this case starts out only slightly more than half as large as the control 
with a gain of ZQ, it goes to  zero much less rapidly than it does with a gain of 2a. 

To what extent d o  the results for a first-order system carry over to a general kth-order system? 
This question was first studied by Kalman[9] and subsequently by Kwakernaak[lO] and others. The 
result may be summarized as  follows: 

( a )  As the control weighting tends to a, the gains are such that the closed-loop poles tend to 
the open-loop poles when the latter are stable, or to their “mirror images” (with respect to the 
imaginary axis) when they are unstable. 

( h )  In a single-input system x = Ax + bu with a performance integral 

V = la, ( X ‘ C ’ C X  + p 2 u 2 )  dr  
I 

the zeros of the “system” are defined by c‘(sI  ~ A ) - ’ b  = 0. If  there are r such zeros, then as pz + m, 
r of the closed-loop poles approach these zeros and the remaining k - r closed-loop poles radiate 
out toward infinity in configuration of a Butterworth polynomial of order k ~ r. In  a multiple-input, 
multiple-output system the asymptotic behavior as p2 + is more luxuriant: The closed-loop poles 
form groups of Butterworth polynomials with the radius of each group tending to co at  a rate which 
may differ from the rates of the other groups. 

Asymptotic properties of the optimum regulator can often be obtained by use of the 
return-difference equation (P9.8) which is a generalization of an equation first obtained by 
Kalman.[9] 
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CHAPTER 

TEN 
RANDOM PROCESSES 

10.1 INTRODUCTION 

One of the purposes of using feedback is to increase the immunity of the system 
to disturbance inputs. Up to this point we have been regarding disturbances as 
the responses of known dynamic systems with unspecified initial conditions. 
This is a convenient artifice, but an artifice nonetheless. The disturbances to a 
real system in almost every case are more complicated: they are random 
processes. Moreover, the sensors used in the measurement of the system output 
y are not perfect, but are also subject to errors, and these errors are also random 
processes. If a control system design is claimed to be optimum, it ought to 
account for the statistical nature of the random processes that act upon the 
system in the form of disturbances and that corrupt the sensor outputs. 

Random processes are present everywhere in nature and technology. Here 
are some random processes with which everyone is familiar: 

The environmental temperature at a given geographical location is a random 
process. The mean temperature and variance (both of which vary with 
season and geographic location) are known statistics, but knowledge of the 
temperature at any given time is not sufficient to predict the precise 
temperature in the future. Other environmental characteristics such as 
rainfall, wind velocity, etc., are other familiar random processes. 

The output of a photodiode exposed to a source of light is a random process. 
The mean output is of course a function of the (mean) light intensity, but 
since each photon that impacts upon the photodiode contributes an elec- 
trical pulse to the output, the instantaneous output fluctuates about the 

378 
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mean value. The presence of these fluctuations makes the photodiode 
output a random process. 

If one were to measure the voltage across an ordinary resistor not connected to 
anything at all with a very sensitive voltmeter one would find that the 
output is not always zero but actually a rapidly fluctuating signal of zero 
mean. This output is “thermal noise” and its statistical properties can be 
predicted using considerations of statistical mechanics. 

The acceleration imparted to a vehicle when it travels over a road is a random 
process the statistical nature of which depends on the quality of the road. 

The force acting upon a ship in rough seas is a random process, which may, 
however, have a strong periodic component. 

The reader can no doubt supply many additional examples. 
Our ultimate aim in these chapters is to design control systems when 

random processes such as these are disturbance inputs or noise on the sensors. 
Mathematically we wish to consider designing a control law for a system 

X = A x  + Bu + Fv 

y = c x + w  

where u and w are random processes. Since the disturbances and sensor errors 
are random processes, the response of the system, either open-loop, or with the 
feedback control present, is also a random process. Hence we seek to optimize 
the behavior of the system not for a single disturbance, but for a suitably defined 
average behavior. 

To accomplish this necessitates a study of some of the theory of random 
processes. A rigorous development of the theory of random processes is far 
beyond the scope of the present text. Other books, at every level of mathemati- 
cal rigor, are available for this purpose (see Note 10.1). Our objective here is to 
represent known results in a manner that permits the reader to gain sufficient 
insight to be able to use them. 

The reader with an elementary knowledge of the theory of probability 
should be able to follow the next two sections with little difficulty. 

10.2 CONCEPTUAL MODELS FOR RANDOM PROCESSES 

The essential feature of a random process, as distinguished from a deterministic 
process, which has occupied us until now, is that knowledge of the state of the 
process at any instant is not sufficient to predict the future evolution of 
the process in time. Conceptually, we can imagine a very large number of 
physical processes (“black boxes”) each of which is indistinguishable from the 
others under reasonable conditions of measurement-like mass-produced radio 
receivers. Each black box has an output (“static,” in the case of radio receivers 
tuned to no station) which is statistically similar to the outputs of the others, but 
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because of very slight variations the outputs are all different. This “ensemble” 
of outputs can be regarded as a random process. 

If we had access to the outputs of all the black boxes, we could determine 
empirical statistics of the ensemble. In particular let x , ( t )  denote the ith 
member (also called “sample function”) of an ensemble of N members. Then 
we can define the following empirical statistics. 

Mean: X ( t )  = 1 Xi(? )  (10.1) 
N i = l  

Mean square: 

~ 

Variance: u(  t )  = XZ( t )  - [X( t ) ] ’  

l N  
r ( r ,  7) = - 1 x i ( t ) x i ( 7 )  N , = I  

Correlation function: 

0.2) 

0.3) 

0.4) 

and so forth. 
Two issues are raised by this conceptual model: one philosophical and one 

practical. The philosophical issue is this: If we design a control system on the 
basis of the statistics of the random process, what assurance do we have that 
our  statistics gathered over the past will continue to be valid? What about 
catastrophic storms, earthquakes, new phenomena? It takes a leap of faith to 
accept the hypothesis that what happened on the average in the past will 
continue into the future. Only if we are willing to take this leap of faith can we 
use statistical methods for system design. But what other choice is there? 

The practical issue is simply the requirement to obtain the statistical 
parameters that are needed in order to use the methods. Gathering sufficient 
data to have confidence in the statistical parameters is often a time-consuming 
and costly operation. If we want to take statistical road characteristics into 
account in designing an active control system Tor an automotive suspension, for 
example, it is necessary to provide a test vehicle with an appropriate instrument 
(possibly an accelerometer) and go out and drive on roads having the physical 
characteristics for which our design is to be based. If we are designing an 
inertial guidance system for an aircraft, we need to test the instruments to be 
used in the system for extensive periods. We can test a hundred roads, a 
hundred gyros: perhaps a thousand. Is this enough testing? Who knows? The 
problem of performing enough tests, and the right tests, to get the required data 
is often overlooked. Moreover, it is often necessary to design a control system 
before any significant statistical data about the underlying random processes 
can be gathered. In such cases, the system designer has little alternative but to 
make an educated (or uneducated) guess about the required statistical param- 
eters. 

Because our knowledge of the required statistical parameters is often 
imperfect, with guesses substituted for real data, a claim that a given statistical 
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design is optimum can be justified only on the basis that the calculations are 
sound. Thus the reservation that we made about the optimality of linear 
quadratic designs for deterministic systems holds even more forcefully in 
statistical designs. We often pick statistical parameters not because we are 
confident of their accuracy but because we need some numbers to put into the 
equations ! 

10.3 STATISTICAL CHARACTERISTICS 
OF RANDOM PROCESSES 

First- and second-order statistics In theory, a random process is characterized by 
an infinite series of joint probability density functions 

pdf[x;  tl 

Pdf[XI, x2; t l ,  f21 ( 10.5) 

Pdfrxl, xz, x3; tl, t2r  hl 

where each density function describes the probability of finding x somewhere at 
some time. For example, 

Pdf [XI ,  X2, X3 ; 1 1 ,  f2, r3I 6x1  AX2 AX3 

= Prob [x, < x( t l )  < x, + Ax,, x2 < x(  t2 )  < x2 + Ax2, x3 < X( f3 )  < x3 + Ax3] 

Since there is no practical way of obtaining these probability density 
functions for a physical process, their main use is for mathematical develop- 
ment. In most cases we must be content with first- and second-order statistics: 

Mean 
m 

p ( t )  = E{x(t)} = I x pdf[x, t ]  dx ( 1  0.6) 
-W 

Mean square 
m 

E{x2(t)} = I-, x2 pdf [x, t ]  dx ( 10.7) 

Variance 
W 

u2(t)  = E{[x(t) - ~ ( t ) ] ’ }  = I [X - p(f)l2pdf[x,  t] dt (10.8) 
-a 

Correlation function 



382 CONTROL SYSTEM DESIGN 

The first three of these statistical parameters are ‘‘ first-order” statistics, 
since they entail only the first-order probability density function. The correla- 
tion function is a “second-order” statistic. The symbol E {  } denotes mathe- 
matical expectation, in other words the average computed in the probabilistic 
sense. The requisite probability functions are almost never known in practice. If 
we have gathered enough empirical data we may know the empirical averages 
(10.1)-(10.3) and, by our leap of faith, assume the requisite mathematical 
expectations (10.6)-( 10.9) are the same as the former. 

Note that when T = t the correlation function (10.8) becomes 
m 

p ( 4  1) = I_. 5 XIX2 Pdf[Xl, x2; 4 t l  dx, dx, (10.10) 
-m 

But 

pdf [xI ,x2 ; t , t ]dx ,  dx,=Prob[x,  < x ( t ) < x , + d x I , x 2 < x ( t ) < x 2 + d x 2 1  

Now at the same instant of time x( t )  cannot simultaneously be between x1 and 
xI + dx,  and between x2 and x2 + dx, unless xI  = x2. Thus 

pdf [xi, ~ 2 ;  t, t] dxl dx2 = pdf [XI ,  t ] 6 ( ~ ,  - x,) dxl dx2 (10.11) 

where S(x,  - xl) is a unit impulse at x,  - x2 = 0. Substitute (10.1 1 )  into (10.10) 
and integrate over the impulse to get 

m 

p ( t ,  t )  = l - m x ? p d f [ x , ;  t ]  dx, = E{x2(f)} (10.12) 

which is not at all surprising, since E{x(t)x(7)} = E{x2(t)} as T +  t. 

well as scalar processes. If 
The first-order statistics (10.6)-( 10.9) can be defined for vector processes as 

then, for example, 

(10.13) 

where E{xi(?)} is defined by an integral like (10.5). 
A generalization of the correlation function is the correlation matrix 

E { x ~ ( ~ ) x , ( T ) )  . . . E{Xl(t)Xn(7)} 

[ E{Xn(t)Xl(T)) . . . E{xn(t)xn(~)} I R (  t, .) = E{x( t)x’( T ) }  = . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 10.14) 

The diagonal entries in the correlation matrix are the autocorrelation functions 
of the xi(?)  with x ~ ( T )  as defined by (10.9). The off-diagonal terms are cross- 
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correlations and are defined with the aid of suitable joint probability density 
functions. 

It is obvious from ( 10.14) that 

R ( t ,  T) = R’(T, t )  (10.15) 

and, as a special case 

R(t ,  t )  = E{x(t)x’(t)} = R’(r, t )  

The matrix R ( t ,  t )  is often called the covariance matrix for the vector process 
x( t ) -  

If the covariance matrix R ( t ,  t )  is diagonal,.i.e., 

L o  0 0 . - . r,,,(t, T )  

this means 
E { x ~ ( ~ ) x ~ ( T ) }  = 0 for i # j 

The components of the vector x are said to be uncorrelated. (This does not 
imply, however, that they are statistically independent.) 

Stationary and ergodic processes The set of probability density functions in 
(10.5) are general functions of the time variables t , ,  t,, t , ,  . . . for a general 
random process. If the functions are invariant to a translation of time, i.e., 

pdf [x;  t + T] = pdf [x ;  t] 

pdf[x, ,  x,; t ,  + T, t ,  + 71 = pdf [ x , ,  x,; t , ,  t,] for all T 

the process is called stationary (in the strict sense). If the process is stationary 
in the strict sense, all statistical parameters are invariant to a translation in time. 

Since the statistics of the process of order higher than second are almost 
never known it is useful to deal with processes in which only the first two 
probability density functions are invariant to translation in time. These are 
called stationary “in the wide sense.” 

In all of the foregoing analysis, statistics were defined by averaging over the 
ensemble of members (sample functions) of the random process. Often it is not 
possible to get such statistics. If we wanted meteorological statistics for, say, 
New York we would have to conceive of an ensemble of infinitely many New 
Yorks and accumulate averages over this ensemble. But there is only one New 
York, so this experiment is inconceivable. Averages over time, however, can 
be obtained. We can get the average temperature of New York on January first 
at, say, 2p.m. by measuring the temperature each January first at 2p.m. for 
many years and calculating the average. How does an average of this type relate 
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to an ensemble average? In general, there is no relationship. But, in a special 
subset of stationary processes, these time averages are the same as the ensemble 
averages. Such processes are called “ ergodic.” As with many other statistical 
properties, there is no practical way of verifying that a stationary process is 
ergodic. So, by another leap of faith, when it suits our needs, we assume that a 
process is ergodic. If a process is ergodic, a single sample function is rep- 
resentative of the ensemble. To get the ensemble statistics for the outputs for lo6 
radios tuned to no station, we can take time averages of the output of one radio! 

For ergodic processes we can thus determine the ensemble statistics using 
any sample function in the ensemble: 

p ( t )  = lim - j T ’ 2  x(t) dt 
~ + m  T - T / 2  

2 u ( t )  = lim - 

p ( 7 )  = lim - x( t)x( t + 7) dt 

(10.16) 

(10.17) 

(10.18) 

Note that the correlation function in (10.1 8)  is written as a function of a single 
argument r, the time shift between x(t) and x(t  + r) .  Since we assume the 
process is ergodic it must surely be stationary, and hence p is a function only of 
this time shift. 

10.4 POWER SPECTRAL DENSITY FUNCTION 

One of the most useful descriptions of a random process is its “power 
spectral density function” S ( o ) ,  also called the “power spectrum,” which is 
defined as the Fourier transform of the correlation function, i.e., 

(10.19) 

Given the correlation functions p ( ~ ) ,  which can be computed from 
empirical data using a numerical approximation to (10.18), it is an easy task to 
compute the power spectral density function. Before the days of digital com- 
puters, however, computing a correlation function by multiplying x( t )  by 
x(t + r )  and integrating was not a simple task. Hence a different approach had 
to be used. This approach led to the name “spectral density.” The idea was to 
connect the output of the process to a device known as a “spectrum analyzer” 
and measure the power contained in the random signal in different frequency 
bands. A spectrum analyzer is actually a sharply tuned (narrowband) filter with 
an adjustable center frequency. The signal is connected to the spectrum 
analyzer and the latter is tuned to a given frequency. The indicator is allowed to 
reach the steady state and the reading is recorded. The analyzer is then tuned to 
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an adjacent frequency and the process is again repeated. This operation is 
continued until the entire range of frequencies of interest is scanned. By this 
means we have obtained a function of frequency approximated by: 

T I 2  

IxT(jwj12 = i I - T i 2 x ( t )  e - jwfdt l?  (10.20) 

where T is the large but finite interval of operation at each frequency setting of 
the analyzer. We are assuming that the spectrum analyzer produces an approxi- 
mation to the Fourier transform of the signal. Now 

x( t )  e-’”’ dt - X(T) e‘,,‘ dT I IXT(jw)12 = X T ( j w ) X T ( - j w )  = 
- T / ?  

(10.21) 

In this integral we make the change of variable A = t - T to obtain 

X ( T  + A ) x ( T )  dT e-JUA dT (10.22) I T / ?  A C T / ?  1 

- T IXT(jw) /?  = I- , /?  {+ IA-T/2 

If the process is ergodic 

A + 7/2 

p T ( A )  = 7 X ( T  + A ) x ( T )  dr + p ( A )  as T + m (10.23) 

(Actually a bit more care is needed in passing to the limit because h will also 
go to m in the second integral. See Papoulis.[l]) 

‘ I  A - T / 2  

Thus 

p 7 ( A )  e-jUA dA = S ( w )  (10.24) 

This relationship asserts that the power spectral density function is the limit 
of the magnitude square of the ordinary Fourier transform of the signal. The 
Fourier transform of a signal describes how its energy is distributed in 
frequency; division by T converts energy to power; hence we can properly call 
the result of the limiting operation the power spectral density of the signal or 
random process. The result expressed by ( 10.24) is sometimes called “Wiener- 
Khintchine” relation. 

Returning to (10.19) we see that the correlation function is the inverse 
Fourier transform of the power spectral density 

T-CC I -T/2 Iim IxT( jw) l2  = Iim 
T+.X 

for all values of T including T = 0. For T = 0 

( 10.25) 

(10.26) 
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But 

x’((t) dt = mean square value of the signal x I p ( 0 )  = lim 
T+m -7-12 

We thus conclude that the area under the spectral density function is 27r 
times the mean square value of the random process. 

The unit of measurement of spectral density is related to the unit of 
measurement of the process x ( t ) .  Suppose, for example, that the units of x ( t )  
are force: the units of x’( t )  are (force)’. Since S ( w )  is integrated over frequency 
to give (force)’, we infer that the units of S(o) are (force)’/(rad/s) or (force)’ s. 
Remembering the units in which spectral density is measured often helps one to 
avoid reasoning errors in system design using statistical methods. 

The spectral density is often expressed as a function of frequency f = w/27r. 
In that case the factor of 27r in (10.26) is absorbed into the integrand which can 
thus be written 

m 

P ( 0 )  = I, S(f) df = 2 lorn S(f 1 df 

where S(f) is the spectral density in (units)’/Hz. The factor of 2 in the last 
integral is sometimes also absorbed into the definition of S(f). 

10.5 WHITE NOISE AND LINEAR SYSTEM RESPONSE 

White noise is one of those theoretical abstractions which simplifies calcula- 
tions, but grieves mathematicians. It is analogous to the Dirac 6 function, used 
successfully by physicists for a number of years before being reduced to 
mathematical rigor in the 1930s. But while mathematicians now accept 6 
functions, they eschew white noise, preferring rather to deal with its (non- 
stationary) integral-the Wiener process, which we will encounter in Sec. 10.8. 

White noise is simply a random process with an expected value (mean) of 
zero and with an absolutely flat power spectrum 

S ( w )  = W = constant for all w ( 10.27) 

Since the inverse Fourier transform of a constant is a unit impulse, the 
correlation function of white noise is 

p ( . ) =  W6(7) ( 10.28) 

where 8(7) is a unit impulse at the origin. 
Because the mean square value of any random process is the integral of the 

spectral density over all frequencies-see (10.26)-and since white noise has a 
constant spectral density for all frequencies, white noise has a theoretically 
infinite mean square value. This is also seen from the correlation function as 
given by (10.28) 

p ( 0 )  = l imp(7)  = co 
7-0 
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A physical process that has an infinite mean square value is inconceivable 
and we must conclude that white noise is a mathematical abstraction. 

The bothersome feature of white noise is that its power spectral density 
does not decrease with frequency. The spectral density of known physical 
processes, on the other hand, always decreases and tends to zero as the 
frequency tends to infinity. When mystifying results are obtained for a calcula- 
tion made under the assumption that some random process is white noise, the 
problem might be due to the theoretically infinite “bandwidth” of the white 
noise. If this should prove to be the case, it can usually be resolved by replacing 
the white noise by a random process which has a very large, but finite, 
bandwidth. 

A vector random process is white noise if its correlation matrix is of the 
form 

( 10.29) R ( T )  = W ~ ( T )  = E { x ( t ) x ‘ ( t  + T ) }  

where W is a square matrix. 
We can imagine white noise being the input to an amplifier having a 

time-varying gain. This will result in a random process with a time-varying 
spectral density, and so our white noise would have a correlation function 
which would be 

A t ,  7 )  = W(t)P(.)  

Since this expression is not a function of only t - 7, this white noise is 
nonstationary and the very meaning of the spectral density is problematical. 

White noise is a convenient abstraction because it leads to relatively simple. 
expressions for the correlation function and the power spectrum of the output 
of a linear system into which it is the input. To see this, consider a linear 
system, the input to which is the signal u ( t )  and the output from which is y ( t ) .  
Whether or not the system is represented in state-space, its output can always be 
expressed as a superposition integral 

(10.30) 

where H ( t ,  A )  is the “impulse response” matrix of the system (see [2]). It is 
assumed for (10.30) that the input starts at t = 0 which is the lower limit of the 
integral and that the system is causal, i.e., that H(r ,  A )  = 0 for f < A. This 
explains why the upper limit on the integral is t ,  and not 00. The correlation 
matrix for the output y ( t )  is 

(Writing the product of integrals as a double integral is a standard tech- 
nique used often in analyses of this sort.) 
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Assume that the conditions hold that are required to permit interchanging 
expectation operator with the double integral and that the input u ( t )  is white 
noise: 

E { u ( A ) u ’ ( S ) }  = QS(A - 5) Q = const 

then ( 10.3 1 ) becomes 

( 10.32) 

Using the fact that 

(if a 5 A 5 b )  we obtain from (10.32) 

( 1  0.33) 

which is a single integral instead of a double integral. 
If the system having the impulse response matrix H ( t ,  T) is time-varying, 

the output process is not stationary, in general. If the process is time-invariant, 
then 

H ( t ,  T) = H ( t  - 7) for all t ,  T 

and (10.33) becomes 

R,,(t, 7) = [; H ( t  - T ) Q H ’ ( T  - A )  dA 

or, replacing T by t + T, 

R,(t ,  t + 7) = H ( t  - A ) Q H ’ ( t  - A + T) dA ld 
( 10.34) 

upon making the change of variable 5 = f - A. Because t is the upper limit of 
the integral, the correlation matrix (10.34) is not that of a stationary process. 
But, as t + a, that is, as the process reaches a steady state 

Iim R,(t ,  t + T) = R ” ( T )  = H ( [ ) Q H ’ ( ~  + T) d5 (10.35) 

Of course (10.35) is valid only if the dynamic system has a steady state 
response. If the system is not asymptotically stable the integral (10.35) is not 
meaningful. If the integral is valid, however, the output has the correlation 
function of a stationary process. 

r-m lorn 
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We have not yet considered the expected value (mean) of the output. From 
( 10.20) 

If u ( t )  is white noise or indeed any process with zero mean 

E { u ( t ) )  = 0 

and hence 

E { Y ( t ) )  = 0 (10.36) 

Thus, we have found that the response of a linear system to white noise in 
the steady state (if the system reaches a steady state) has a zero mean and has 
a correlation function (matrix) given by (10.35). 

The power spectrum of the output y is obtained from (10.35) using the 
definition (10.19). (Note that if y ( t )  is a vector, implying that R,,(T) is a matrix, 
then the power spectrum is also a matrix.) Using ( 1  0.19) 

S ( w )  = lw [ lom H ( t ) Q H ' ( t  + 7 )  d t ]  e-jwr dT (10.37) 
-W 

Invert the order of integration in (10.37) to obtain 

S , ( w )  = 1: H ( ( ) Q [  iw H'(6  + T) e-JmTdr] d( ( 10.38) 
-W 

The bracketed integral in (10.38) is 

J -m J -w 

where 
m 

H ( j w )  = H ( t )  e-J"'dt i-, ( 10.39) 

is the transfer function of the linear system. Note that the transfer function is 
usually defined in terms of the Laplace transform 

H(s) = \: H ( r )  e-s 'dt  ( 1  0.40) 

Thus, in addition to the usual transfer function having complex frequency s 
instead of j w  as the frequency variable, the lower limit on the defining integral 
(10.40) is 0 instead of -m. But, in a causal system 

for t < 0 H ( t )  = 0 

so that there is no conflict between the two definitions. In other words 

H ( j w )  = H(s)l.s=ju 
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Domain 

Linear system 

Deterministic inputs White noise inputs 

L{ Input H llb o u t p u t  

H ( f )  = impulse response 
H(.r) = transfer function = Y ( H ( f ) ]  

S , ( w )  = H ( - j w ) Q H ' ( j w )  

Figure 10.1 Input-output relation for linear system with deterministic input and excited by white 
noise. 

Return now to (10.38). From (10.39) 

S ( W )  = 1; H ( 5 )  e'"'d5. QH'(;w) (10.41) 

By the causality argument just given above, the lower limit on the integral in 
(1 0.41) can be replaced by -a so that 

S, ( w ) = H ( -;w ) Q H '( j~ ) (10.42) 

Tn words, the spectrum of the output y of a linear system excited by white 
noise is the product of the transfer function matrix at negative frequency with 
the spectral density matrix of the white noise, with the transfer function matrix, 
transposed. 

The relationships in this section are summarized in Fig. 10.1. 

Example 10A First-order Markov process The most common random process after white noise 
is the output of a first-order low pass filter having the transfer function 

( 10A. 1) 

The impulse response corresponding to H (s) is 

The correlation function of this process, often known as a first-order Markov process, is given 
by (10.35) which, in this case, is 

e - ~ o ~ e - ~ o ( ~ + ~ ~  d t  = Q ~ - " < ~ '  J: e - 2 ~ " ~  d t  
= Q 

( 1 OA.2) 
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density 
- 

Q 

Since h ( 7 )  is zero for 7 < 0, this expression is not valid for.7 < 0. To obtain r ( 7 )  for negative 
7 we use the general relation R ( t ,  7 )  = R'(7, t ) ,  which in this case is 

r ( 7 )  = r ( - 7 )  

by which (lOA.2) becomes 

(lOA.3) 

as shown in Fig. 10.2. 

(10.42). The latter is easier. 
The power spectrum is obtained either as the Fourier transform of (10A.3) or using 

( 1 OA.4) 

In  the physics literature a spectral density function of the form of (IOA.4) is c d k d  

The mean square value of the output is given by 
lorentzian. 

0 r (0)  = - 
2WO 

which can also be obtained by evaluating the integral 

by any well known method. 

( h  1 

Figure 10.2 First-order Markov process. ( a )  Realization; (b)  Correlation function. 



392 
C

O
N

T
R

O
L

 S
Y

S
T

E
M

 D
E

S
IG

N
 

t 

v: - 
E

E
 

F 



R A N D O M  PROCESSES 393 

Note that r ( O ) ,  the mean square value of the signal, is Q/2w0.  Thus the spectral density 
of the white noise is 

Q = 2 w ,  x (mean square value of signal) 

The units of the white noise spectral density Q are thus 

(units of the signal)2 x sec 

which is in accordance with the discussion at the end of Sec. 10.4. 
Examples of computer-generated first-order Markov processes for different comer 

frequencies wo are shown in Fig. 10.3. It is noted that the output gets rougher as  w g  tends to 
zero. In  the limit ( w  + 0) the result would be computer generated white noise. If the empirical 
correlation function were computed for this data  it would resemble that shown in Fig. 10.2, but 
would not be nearly as smooth. 

10.6 SPECTRAL FACTORIZATION 

If statistical data needed for control system design is available at all, it is often 
in the form of empirical power spectral density curves, obtained either by 
means of a spectrum analyzer described earlier, or by a more modern instru- 
ment. (Some instruments sample the signal, compute its correlation function 
by numerical integration, and then determine the power spectral density by 
evaluating the Fourier transform using a fast-Fourier-transform (FFT) 
algorithm.) 

The only systems that can be handled effectively by the linear quadratic 
design methods discussed in this book, or anywhere else for that matter, are 
those having a linear state-space representation and excited by white noise. The 
practical consequence of this is that the only random processes that can be 
accommodated within the framework of linear quadratic control theory are 
processes which can be represented as the response of linear systems to white 
noise. 

If  we know or have good reason to believe that a random disturbance is not 
the response of a linear system to white noise then two options are open to us: 
(1 )  we can approximate the actual process by one which has the required 
property or (3) we can develop the theory to deal with the actual process. The 
latter alternative is a fruitful source of research problems but it is not a practical 
course for the novice whose only real choice is thus the first. 

If  the only available data is based on a curve fit to empirical records it may 
be possible to change the form of the curve to meet the requirement that the 
random process be representable by a linear system excited by white noise. 
What is this requirement? The answer is given by (10.42). 

First consider the case in which the output y is a scalar. In this case the 
transfer function of the system in response to white noise input is 

( 10.43) 
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(The process is assumed to be of order k and low pass, so that no Posk term is 
present in ( 10.43).) 

In factored form we can write 

(s - z1) ’ ‘ . (s - Z k - 1 )  
H(s) = c ( 10.44) 

where zi and pi are the zeros and poles, respectively, of the transfer function. 
Remember that the poles must lie in the left half-plane; otherwise the system 
will be unstable and will not have a stationary output. With H(s) given by (10.44) 
the spectral density of y, using (10.42), is 

(s - PI) ’ ’ ’ (s - P k )  

( 10.45) 

In words, the spectrum of a (time-invariant) linear system is a rational function 
(i.e., a ratio of polynomials) in w 2 .  The first-order Markov process considered in 
Example 10A has this property. 

If a spectrum has the property of being a rational function of w 2  as in 
(10.25) the process by which (10.45) was obtained from (10.43) can be reversed 
to obtain the rational transfer function H(s). Then, one of the canonical 
realizations of the transfer function discussed in Chap. 3 can be used to obtain 
a state-space representation of the process. 

The procedure of factoring an assumed rational function of w 2  to obtain 
H( s) is known as “spectral factorization.” The calculations may be summarized 
as follows 

Step 1 .  Write S, as a rational function of A = w 2  

Step 2. Find the roots of N ( A )  and D(A)  

N ( h )  = ( A  - CY1) ‘ . ’ ( A  - ( Y k - 1 )  

D (A)  = ( A  - P I >  ’ ’ ‘ ( A  - P k )  

Step 3. The poles and zeros of H(s) are given by 

z i = a  i =  1,2, . . . ,  k - 1  

p i = a  i =  1,2, . . . ,  k 

(10.46) 
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It is noted that there are two square roots of each p i ;  unless pi is negative 
real, one square root will have a positive real part and the other will have a 
negative real part. To have a stable transfer function the square root with 
positive real part is assigned to H ( j w ) .  The same can be done for the numerator 
roots and this will make H(s) have neither poles nor zeros in the right 
half-plane. It is not necessary to do so for purposes of stability, but zeros in the 
right half-plane are liable to cause other problems. Hence the spectral factori- 
zation that has neither poles nor zeros in the right half-plane (which is called 
minimum phase) is the factorization of choice. 

Step 4. The spectral density Q of the white noise and the filter gain c are chosen 

y = c’Q (1 0.47) 

to satisfy 

The choice of c and Q are not unique. 

Example 10B Dryden spectrum for air turbulence Based on experimental data (see Note 10.2) 
it has been found that the spectrum of the vertical component of random wind velocity in 
turbulent air has a ‘‘ Dryden” spectrum 

I + 3(wT)’ 
S ( w )  = crfT 

[ I  + (wT)”2 
(1OB.l) 

This spectral density has the appearance shown in Fig. 10.4. It has a maximum value of 

To obtain a linear system which, when excited by white noise, has an output with a 
1 . 1 2 5 ~ 1 T  at o T  = 1/J3.  

Dryden spectrum, write 

(1  OB.2) 

The factor of S ( w )  that corresponds to a stable, minimum phase transfer function is identified 
with H(s). Thus 

I -b \/ITS 
( 1  $. Ts)’ 

H(s) = C -  (108.3) 

where c is any constant chosen such that 

c’Q = crtT 

In particular, we can set c = 1 and Q = m:T 

realization is not unique, of course. 

(10.35) is 

A companion form realization of the transfer function (108.3) is shown in Fig. 10.5. This 

Using (10.35) we can find the steady state correlation function. In the scalar case 

(10B.4) 

where h( r )  is the (scalar) impulse response corresponding to the transfer function given 
by (IOB.3) with c = 1. This impulse response is the inverse Laplace transform of H(s) and is 
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1 L 

t 
.01 L .02 .05 

.2 0.5 1.0 7.0 s 
Normalizcd frequcncy. wT 

Figure 10.4 Dryden spectrum of air turbulence. 

given by 

I 1 - 4 0  20 50 100 

1 1 0  

Substitute into (lOB.4) and integrate (carefully) to obtain 

(lOB.5) 

(IOB.6) 

which has the shape illustrated in Fig. 10.6. 

10.7 SYSTEMS WITH STATE-SPACE REPRESENTATION 

We return now to the general linear system having the state-space representa- 
tion with which this chapter started: 

x = A x +  Bu + FU 
y = c x + w  
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turbulence 
velocity 

I 

White 
noise 

Spectral 
density 
05 T 

Figure 10.5 Realization of signal having Dryden spectrum. 

where ZI and w are white-noise processes. For the present we ignore the 
“observation noise” w and focus on the effect on the output caused by the 
process excitation noise v. Also for the present we ignore the control u. This 
gives us 

X = A x + F v  (10.48) 

y = cx ( 10.49) 

In terms of the transition matrix, the solution to (10.48) is 

~ ( t )  = ~ ( t ,  ro)x(to) + Q(C, A ) F ( A ) Z I ( A )  d~ (10.50) 

4 -3 -2 -1 0 1 2 
Normalized time, d T  

Figure 10.6 Correlation function for Dryden-spectrum wind turbulence. 
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where to is some fixed starting time. Then 

x(~ )x ‘ (T )  = @ ( r ,  to)x(tO)x’(~0)@’(7, t o )  

+ @ ( t ,  f 0 ) X ( t O ) [  i’ 10 @(t ,  A ) F ( A ) u ( A )  I’ 
+ [ , ; @ ( f ,  A ) F ( A ) u ( A )  dA . x’( t0)@(7,  t o )  

+ Ill 1.1 @ ( t ,  h)F(A)u(A)~’ (S )F’ (~ )@’(T ,  6) d t d A  (10.51) 

Take the expected value on both sides of ( lOSl) ,  keeping in mind that u is 
white noise. The fact that white noise is assumed to have zero mean makes 

E{  Ill@(, A ) F ( A ) u ( A )  dA = 4(t, A ) F ( A ) E { u ( A ) }  dA = 0 I I, 
Thus (10.51) reduces to the correlation matrix for the state x :  

Rx(t, 7 )  = @ ( t ,  t o ) E { X ( t , ) x ‘ ( t o ) } ~ ‘ ( t ,  t o )  

+ JIl 1; A ) F ( A > E ( u ( A > u ’ ( 5 ) } F ’ ( 5 ) ~ ‘ ( T ,  5) dedA (10.521 

The starting state may be a random variable-not known precisely. Suppose 

E{x( to)x’ ( to) l  = P(to) (10.53) 

that 

The matrix P(to)  is known as the covariance matrix of x ( t o ) .  
Recall also that u is white noise 

E { v ( A ) u ’ ( S ) }  = Q ” ( A ) m  - 5) (10.54) 

Thus the double integral in (10.52) becomes 

But 

where t = min ( t ,  T )  
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Recall that the state transition matrix @( t, 7) has, the property that 

Thus 

@‘(7, t o )  = [@(T, f ) @ ( f ,  to)] ’  = @ ‘ ( f ,  f o ) @ ’ ( 7 ,  f )  

W(T,  A )  = [a(., t ) (a ( t ,  A)]‘ = W(t ,  A)@’(T,  t )  

Substitute these into (10.55) to obtain 

R,( f, T )  = P (  t ) @ ‘ ( T ,  t )  for 7 2 t (10.56) 

where 

The matrix P ( t )  is the covariance matrix of the state x ( t )  at time t .  Thus 
(10.57) describes how the covariance matrix of the state x( t o )  at time lo evolves 
as time increases. Equation (10.56) describes how the correlation matrix 
Rx(r, T ) ,  for T not necessarily equal to f, is related to P ( t )  = Rx(t ,  r).  It is simply 
the product of P ( t )  with the transpose of the transition matrix from T to t.  

It is important to note that (10.56) holds only for T 2 t.  The symmetry 
property (10.15) can be used to find R( t ,  7) for t L T using R (  t, T )  with T 2 t. 

An integral having the form of the integral in (10.57) already has been 
encountered in Chap. 9 in conjunction with deterministic control, namely the 
integral M ( t ,  T )  defined by (9.17). Differences between (9.17) and the integral 
in (10.57) are that: 

( a )  @L(t ,  T )  appears in (9.17) in place of @ ( t ,  7 ) ;  

( b )  L ( T )  appears in (9.17) in place of F(T)Q,F’ (T ) ;  
( c )  The limits of integration in (9.17) are [ f ,  TI instead of [ to,  t ] .  

If the limits of integration were the same we could express the integral (10.55) 
as the solution to a differential equation of the form (9.16), but with the matrix 
A corresponding to @ replacing A: which corresponds to @: and with FQ,F’ 
replacing L. This is almost correct. An additional change is needed also: in the 
sign of the derivative of P. In (9.16), the dot denoting the time derivative 
corresponds to the lower limit on the integral. In other words we are integrating 
backward from a known terminal state. The derivative on the differential 
equation for P (  t ) ,  however, implies time progressing in the forward direction, 
and hence the correct differential equation for P is 

P = A P  + PA’ + FQ,Fr ( 10.58) 
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The term @ ( f ,  to)P(to)@'( to)  outside the integral in (10.57) is accounted for 
by the initial condition 

P(t)l,=, = P(t0) ( 10.59) 

which is the covariance matrix defined by (10.53). 
Equation (10.58), which is known as the variance equation, is very useful in 

the analysis of random processes excited by white noise, since it permits one to 
determine how the covariance propagates with the elapse of time, without the 
necessity of having to find the state-transition matrix. This is especially impor- 
tant in time-varying systems, in which state-transition matrices are all but im- 
possible to determine, but it is also useful even in time-invariant systems, 
especially to evaluate steady state covariance matrices. In particular, if A is a 
constant matrix corresponding to a stable dynamic system, and F and Qv are 
constant 

P ( t )  + F = const 

where P is the steady state covariance matrix which is obtained as the steady 
state solution to (10.56), namely 

0 = AP + FA' + FQ,F' ( 10.60) 

It might at first seem that the solution P to (10.60) would be negative. But 
recall that if A is stable it has eigenvalues with negative real parts. By a famous 
stability theorem of Liapunov (see Note 10.3), the location of the eigenvalues of 
A in (10.60) guarantee that (10.60) has a unique, positive-definite solution for F. 

The differential-equation form (10.60) of the integral (10.57) was justified 
by using the known results from Chap. 9. But it can be obtained directly by 
differentiating both sides of (10.57) with respect to t. In particular 

The differential equation (10.58) results upon use of Leibnitz's rule for differenti- 
ating an integral 

and also that 

~- a@(ty T I  - A( t ) @ (  t,  T) for all t ,  T 
a t  

The calculation is quite straightforward. 
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The correlation matrix of the output y, as given by.( 10.39), is readily obtained 
from the correlation matrix for x: 

Y ( t )  = C(t>x(t) 

Y (t)y'(.) = C(f)X(t)XYT) C Y T )  

Then 

Thus, on taking expectations on both sides, 

R,(t, T )  = E { y ( f ) y ' ( T ) }  = C(t)E{X(f)X'(T)}C'(T) = C(f)R,(f, T ) c ' ( T )  (10.61) 

In particular, the covariance matrix of the output 

P J t )  = RJt ,  t )  = C(t)P(t)Cyt) (10.62) 

(The covariance matrix P (  t ) ,  corresponding to the state x is written without 
a subscript x for orthographic convenience. The state covariance matrix occurs 
so often that use of the subscript would make many equations unnecessarily 
messy.) 

Example 1OC First-order Markov process (continued) We previously found (Example IOA) that 
the correlation function of the stationary process obtained by passing white noise through a 
low-pass filter with the transfer function H(s) = I/(s + oo) is r ( 7 )  = Qe-Wn1r' /2wo. We now 
obtain this result by the methods of Sec. 10.7. 

First we note that the process having this transfer function I/(s + w g )  has the state-space 
representation 

x = -0"x + 0 (10C.1) 

Hence, for (10.60), 

A = - w ,  F = l  Q, = Q 
Thus (10.60) becomes 

-2w"P + Q 

or 

steady state covariance 

The state transition matrix ( 1  x 1 in this case) is 

@( 1, + 7) = eAr  = e-"riT 

Thus, in accordance with (10.56), in the steady state 

r ( 7 )  = Pe-"o' = - e - w u r  for 7 2 0 
2% 

and, hence, by symmetry 

r ( 7 )  = Q e-"ol'I for all 7 
2 w ,  

Note, however, that we can also find the covariance and correlation function for the 
nonstationary process, obtained by applying white noise u to the process defined by (1OC.l) 
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but not waiting until the steady state is reached. From (10.58) 

P = - 2 0 , P  + Q 

which has the solution 

Example 10D Air turbulence (continued) Using the state-variable representation illustrated in 
Fig. 10.5, the differential equations for the wind-turbulence process having a Dryden spectrum 
are 

x, = x, 

1 2  
x, = - - X I  - -x,  + u 

T 2  T 

and the output is given by 

I J3 
y = - XI + - x, 

T' T 

The matrices representing (10D.1) and ( 1 0 D . 2 )  are 

Let the steady state covariance matrix be 

p ~ [PI P 2 ]  

P 2  P 3  

Then, by (10.60), the elements of P are given by the solutions of 

0 = 2p2 

o =  ---l+p P1 2P 
T' T ' 

0=2( -$-$)  +aST 

which yield 

(IOD.l) 

(10D.2) 

( I  OD.3) 

Thus 

4 
(IOD.4) 
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The steady state covariance p ,  of the output is obtained using ( 10.62): 

as was obtained in Example 1OB. 

for A given by (IOD.4). By one of the methods discussed in Chap. 3 we obtain 
To obtain the correlation function of the output we need the state-transition matrix eAr 

(IOD.5) 

Thus, by the steady state form of (10.56), namely 

R , ( T )  = pe^’- T > O  

we obtain, using (10D.4) and (10D.5) 

I + -  -- 
R r ( 7 ) = - [  u?T2 T 2  0 1][ T‘ ‘i] e-”r77>0 

4 
1 -- 

(IOD.6) 

Note 

[ R , ( ~ ) I , ~  = [R,(-~)I , ,  

as is required by the steady state form of (10. I5), which is 

R,(T) = lim R,(?, r + T) = Rk(-T) 
I-m 

Finally, the output correlation function is obtained by use of (10.61): 

R , ( 7 )  = CR,(T)C’  

And, by symmetry 

(10D.7) 

(10D.8) 

as obtained in Example IOB. 
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10.8 THE WIENER PI?OCESS AND 
OTHER INTEGRALS OF STATIONARY PROCESSES 

If white noise is the input to an asymptotically stable time-invariant system, the 
state of the system evolves ultimately into a stationary process with a covariance 
matrix p which is the solution to (10.60). There are many important situations, 
however, in which the system is not asymptotically stable. In such situations the 
covariance matrix tends to grow without bounds, and, of course, the state of 
such a system is not a stationary process. 

The simplest of these nonstationary processes is a Wiener process w, the 
integral of white noise: 

dw 
dt 
_ -  - u = white noise 

Note that w can be a scalar, or more generally, a vector. From (10.58) the 
covariance matrix of a Wiener process is 

PJt) = P”(0) + Of ( 10.63) 

Thus, a Wiener process has a covariance matrix which grows linearly with time, 
and ultimately becomes infinite. A computer-generated sample function of a 
Wiener process is shown in Fig. 10.7. I t  is observed that the signal itself appears 
to be trending downward, as one might expect from the growing variance. Yet, 
since white noise has zero mean, and an integrator is linear, the output Wiener 
process also has zero mean. The signal in Fig. 10.7 certainly doesn’t look like it 

0.250 

0.125 

0.m 

4). 125 

4 . 2 5 a  
0 0.20 0.40 0.60 0.80 1 .oo 

Time. s 

Figure 10.7 Computer-generated Wiener process. 
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4 

4- 

7 

- 

has zero mean. But looks can be deceiving! Since the process is not stationary, 
it is not meaningful to consider time averages as equivalent to ensemble 
averages. The zero mean of the Wiener process refers to the ensemble average, 
and there is no reason to doubt that the ensemble has zero mean. Just imagine 
that for every signal w( t )  in the ensemble, its negative - w (  t )  also is present and 
it is clear that the ensemble average is zero. 

It is also of interest to determine the correlation matrix R,(r, T) for a 
Wiener process. This is accomplished through the use of (10.56). The state- 
transition matrix for a bank of integrators is 

@(T, t )  = Pi (7  - t ) !  

where P , ( T  - t )  is a unit step starting at T = t. 
Thus, assuming that Pu(0) = 0 in (10.61) we find from (10.56) that 

R , ( t , ~ ) = Q t p , ( ~ - t ) = Q t  f o r T 2 t  ( 10.64) 

Replacing T by t in (10.64) gives 

R,(t ,  T) = Q ~ p , ( t  - T )  = QT 

Thus, combining ( 10.64) and (10.65) we obtain 

for t 2 T ( 10.65) 

R x ( f ,  7) = Q min (t ,  T) ( 10.66) 

A plot of constant values of R x ( t ,  T) is shown in Fig. 10.8. 

3 -  

7 -  

1 -  

2Q 
I 

3 

1 I I I I 
0 1 2 3 4 

I 

Figure 10.8 Contours of constant covariance of a Wiener process. 
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U + 
White 

The Wiener process rather than white noise is the starting point for most 
rigorous treatments of random processes. In fact, the basic equation for a 
process excited by white noise is written 

dx  = A x d t  + dw ( 10.67) 

where w is a Wiener process; white noise u = d w / d t  is not used, because one of 
the theoretical properties of a Wiener process is that it is (almost) nowhere 
differentiable. 

The Wiener process is frequently given other names, including: 

~ 

Y 
Stable 
system 

H(.y 1 Stationary + 

Random walk (in continuous-time) 
Brownian motion 

and its properties are of considerable theoretical importance. See Note 10.1. 
A more general class of nonstationary processes are the integrals of station- 

ary processes. In particular, let w be the integral (Fig. 10.9) of the output 
y = C x  of a stationary process having the usual state-space representation 

X = A x  + Fu 

w = c x  

Then we have the metastate equation 

and (10.58) applies with the metastate matrices 

A 0  
A = [ c  01 F = [ f l  

Thus, if  the metastate covariance matrix is 

Then, by (10.58), its components satisfy 

Px = A P ,  + PxA' + FQ,F' 

Pxw = AP,, + P,C' 

P, = CP,, + P:,C' 

( 10.68) 

( 10.69) 

( 1  0.70) 

(10.71) 

( 10.72) 

(1 0.73) 

Figure 10.9 Integral of stationary process is nonstationary. 
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If A is the dynamics matrix of a stable system, P, has a steady state solution 
p given by (10.60), as anticipated. Likewise the cross-covariance matrix P,, has 
a steady state solution 

pxw = -A-’FC’ ( 10.74) 

But P, does not have a steady state solution. Its “asymptotic growth rate” is 
obtained by substituting Fxw from (10.74) into (10.73) 

Fw = -C[A-’P + F(A’)-’]C’ (10.75) 

Thus, if time is long enough for y to become stationary, then its integral 
behaves like a Wiener process having a white noise “driver” with a spectral 
density 

Q = -C[A-’I‘+ p(A‘)-’]C’ (10.76) 

Premultiply (10.60) by A-’ and postmultiply by (A’) - ’  to obtain 

-P(A’)- ’  - (A- ’ )P  = A-’FQ,F’(A’)-’ 

Thus, the equivalent white-noise driver is 

Q = CA-~FQ,F’(A‘)-~C’ ( 10.77) 

This formula has a frequency domain interpretation. The spectral density matrix 
of y, the input to the (bank of) integrators is given by (10.42) with 

H(s) = C(SZ - A ) - ’ F  
Thus 

S y ( o )  = C ( - j w I  - A)-’FQ,F‘(joZ - A)’C’ 
and hence 

sY(o) = CA-’FQ~F’(A‘)-’C’ (10.78) 

Compare (10.78) with (10.77) to find that 

Q = SJO) ( 10.79) 

This means that the white-noise equivalent of the stationary random process y 
that is integrated, is exactly the value of the spectral density of y at w = 0. 
Neither the mean square value, nor the spectral shape of the random process y,  
directly influence the asymptotic growth rate, as one might perhaps have 
believed. 

PROBLEMS 

Problem 10.1 Calculation of mean square value and spectral density 

The input to the systems having the following transfer functions is white noise with a spectral 
density of unity 
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1 

(s  + e ) ( s  + P ) ( s  + Y) 
( b )  H(s) = 

For the output of each system: 

(i) Find the spectral density S ( w ) ;  
(ii) Find the mean square value by evaluating the integral (10.26); 
(iii) Find the mean-square value by representing H(s) in some suitable canonical form, and then 
evaluating the steady state covariance matrix. 

Problem 10.2 Realization of empirically measured power spectrum 

The power spectral density of a random process was measured empirically and the data is 
approximated by the curve shown in Fig. P10.2. For purposes of control system design it is desired 
to approximate this process as the output of a linear system excited by white noise. The transfer 
function of the linear system is of the form 

sZ(s2 + 25,w3s + w f )  

(s  + a)(? + 25,w,s + oJ:)(s2 + 25,w,s + w:, 
H(s) = K 

Find the values of K ,  a, ci, wi such that the spectrum of the output of H(s) is a good approximation 
to the spectrum shown in Fig. P10.2. 

Problem 10.3 lnertial navigation errors 

In Example 3E the navigation errors due to constant (bias) errors on the gyro and the 
accelerometer of a single-axis inertial navigation system were computed. In addition to the constant 
errors, random instrument errors may also be present. Calculation of the covariance matrix of. the 
navigation errors due to these instrument errors is the purpose of this problem. The dynamic model 
of Example 3E is used, except E ,  and E ,  are to be represented by independent white-noise sources 
of spectral densities W, and W, respectively. 

( a )  Write the variance equation for the propagation covariance matrix of the navigation error, 
using 

( b )  Solve these equations for the initial condition P(0)  = 0 and plot p , ( t ) ,  p 4 ( t ) ,  and p 6 ( r ) .  

NOTES 

Note 10.1 Mathematical theory of stochastic processes 

The level of mathematical rigor with which stochastic processes can be treated ranges over an 
extremely wide spectrum. At one extreme is the treatment given in this and similar books such as 
Papoulis[l] and Schwarz and Friedland.[2] At the opposite extreme are the very rigorous treatments 
such as those of Doob[3] and Dynkin.[4] Between these extremes are a number of engineering and 
applied mathematics texts which emphasize different aspects of stochastic processes. From the 
standpoint of control engineering, the books by Wstrom[S] and Jazwinski[6] present very readable 
accounts of stochastic differential equations including the Ito and the Stratonovitch calculi and the 
differences between them. At a higher level of mathematical rigor is the book by Kushner.[7] A 
treatment of stochastic processes from the standpoint of communication theory is the encyclopedic 
text of Middleton.[8] And the viewpoint of the physicist and astronomer i s  represented by the 
compendium edited by Wax.[9] 



RANDOM PROCESSES 409 
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Note 10.2 Dryden spectrum 

K1 Figure P10.2 Approximate power 
spectrum of measured data. 

The “Dryden”  spectrum is named in honor of the aerodynamicist Hugh Dryden who spent 
most of his professional career with the National Advisory Committee for Aeronautics (NACA), the 
precursor of the National Aeronautics and Space Administration (NASA). 

Note 10.3 Liapunov equation 

The equation 

A P +  P A ’ =  -Q 

is often called the Liapunov equation, because it arises in the study of stability of linear systems by 
” Liapunov’s Second Method”. The theorem asserts that if A has its eigenvalues in the negative plane 
then, for any positive semidefinite matrix Q, the solution matrix P is positive-definite. 
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CHAPTER 

ELEVEN 

KALMAN FILTERS: OPTIMUM OBSERVERS 

11.1 BACKGROUND 

The historic papers of Kalman and Bucy[ 1,2] of the early 1960s are among the 
most important contributions to control and system science of the twentieth 
century. The impact of this work ranks it with the work of Nyquist and Bode of 
the 1920s and 1930s, and with the work of Wiener of the 1940s. 

The contribution of Kalman and Bucy could not have come at a more 
auspicious time. The United States Apollo program was started only a year or 
two earlier. It was widely recognized that data processing algorithms based on 
the results of Kalman and Bucy would be of enormous benefit to this program 
and to other space projects. 

State-space methods had only recently begun to receive a great deal of 
attention and the results of Kalman and Bucy were perfectly suited to these 
methods. A rather modest digital computer-the only kind available in the 
sixties-was appropriate for calculating the gains of the Kalman filter. The 
calculations required to implement other filtering algorithms, on the other hand, 
would have overwhelmed the digital computers of that period and were not even 
given serious consideration after the Kalman filter came upon the scene. 

The Wiener filter, moreover, and its various extensions, which the Kalman 
filter supplanted, was limited inherently to linear systems because the results 
were expressed in terms of transfer functions or impulse responses, concepts 
that are meaningful only in the context of linear systems. There is no reasonable 
method for extending these results to nonlinear systems. The Kalman filter, 
however, is expressed in the form of differential equations (or difference 
equations), and methods of extending the original results to nonlinear systems, 

411 
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at least approximately, occurred to many investigators within a few years. (Most 
practical applications of Kalman filtering today are, in fact, applications to 
nonlinear systems.) 

As often happens with results of fundamental importance, many potential 
users of the method were uncomfortable with their own understanding of the 
original presentation and they developed alternative derivations with which 
they felt more at ease. It is not a great exaggeration to say that in the mid-1960s 
every user had his own favorite derivation. Many of these were published and 
helped to illuminate the original results and make them accessible to a wider 
audience. (See Note 11.1 for additional historical background.) 

11.2 THE KALMAN FILTER IS AN OBSERVER 

The problem addressed by Kalman and Bucy is the following. Given a dynamic 
processt 

X = Ax+ Bu + Fv (1 1.1) 

y = c x + w  (11.2) 

where u is a known input and having observations given by 

where v and w are white noise processes, having known spectral density matrices. 
Find an optimum observer (or “state estimator”) for the state x. 

The solution of the problem, as given by Kalman and Bucy, is that the 
optimum state estimator is an observer, as shown in Fig. 11.1.  In other words, it 
can be expressed by the differential equation 

(11.3) 

which defines an observer as given in Chap. 10, provided that the gain matrix l? 
is optimally chosen. This might appear to be a routine and obvious result. It 
should be noted, however, that the very notion of an observer came only several 
years after the original work of Kalman and Bucy; the optimum observer came 
before the nonoptimum observer. 

But what is meant by an optimum observer? How is optimum defined? A 
remarkable property of the Kalman filter ( 1  1.3) is that it is optimum under any 
reasonable performance criterion, provided the random processes are white and 
gaussian. 

The gaussian requirement is a condition on the first-order probability 
density functions of w and v, e.g., 

= A2 + Bu + I z ( y  - G) 

pdf ( w )  = 1 exp { - i w ’ w - l w }  
(27r)”7 w1’/2 

t In the original papers of Kalman and Bucy the control input u-which we assume here to be 
known-was not considered. But including u causes no problem, since we are assuming that the 
Kalman filter has the form of an observer. 
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Figure 11.1 Kalman filter is an optimum observer. 

Optimum 
state 
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1 

which is a multidimensional gaussian probability density function. If u and w 
have such first-order density functions, then (as proved by Kalman and Bucy), 
(1 1.3) is the best of all possible filters: there is no other filter, linear or 
nonlinear, better than the linear Kalman filter of (11.3) when the dynamic 
process and observations are linear, and random processes IJ and w are 
gaussian white noise. (If the random processes are not gaussian, however, a 
nonlinear filter could be better.) 

Kalman defined the state estimate 2( t )  as the conditional mean of x ( t ) ,  
given the observation data y ( 7 )  for 7 5 t. This is written as 

f ( t )  = E { x ( t ) l y ( 7 ) ,  7 5 t }  (11.4) 

Let X ( t )  be any estimate of x ( t ) ,  and let the error be given by 

e (  t )  = x( t )  - X( t )  

Then 

e(  t )e ’ (  t )  = [x( t )  - %( t ) ]  [x’( t )  - f f (  t ) ]  

= x(t)x’(r) - % ( t ) x ’ ( t )  - x ( t ) X ’ ( t )  +x(t)x‘(,r) 

Now compute the conditional mean of e ( t ) e ’ ( t ) ,  that is, the conditional 
covariance matrix of e given the observation data y ( ~ )  for T 5 t .  We have 

E { e ( t ) e ’ ( t ) ( y ( . r ) ,  .r 5 1 )  = E { x ( t ) x ’ ( t ) }  - %(t )2 ‘ ( t )  

- x’( t ) f (  t )  + X( t)x’( t )  (11.5) 

The middle terms in (1 1.5) are obtained by using the definition (1 1.4). 
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Write the estimate x(t) as 

x( r) = 2( t )  + l( 1 )  

E { e ( t ) e ‘ ( t ) I y ( ~ ) ,  T 5 t }  = E { x ( t ) x ’ ( t ) }  - ? ( t ) Z ’ ( t )  + ( ( t ) l ’ ( t )  

and substitute into ( 1  1.5). The result, after simplification, is 

(11.6) 

Since l ( t ) l ‘ ( t )  is a nonnegative quantity, it is obvious that the conditional 
covariance matrix is minimized by setting l ( t )  = 0, that is, by making 

x(t) = 2( r )  (11.7) 

We have thus determined that the conditional mean 2( t )  also is the estimate 
that minimizes the covariance matrix of the error. Thus 2( t )  may also be called 
the “minimum variance” estimate. 

Kalman and Bucy set out to find the conditional mean (or minimum 
variance estimate) without any prior restrictions on 2( t ) ,  and proved that the 
estimate can be expressed in the form of an observer, i.e., by (1 1.3). 

The derivation of the Kalman filter without making any assumptions about 
the form of the solution is beyond the scope of this text. But if it is accepted 
that the Kalman filter has the structure of an observer the problem is easier. All 
that is necessary is to find the optimum gain matrix k( t ) .  As we shall see 
shortly, this problem is dual to the problem of finding the optimum gain for the 
linear quadratic control problem. 

11.3 KALMAN FILTER GAIN 
AND VARIANCE EQUATIONS 

Accepting that the Kalman filter has the structure of an observer, we now seek 
to find the gain matrix K ( t )  which makes the covariance matrix of the error 
least. The optimum value of K(f)  will be designated by z(t). 

The error now is defined by 
A e = x - x  

and, using (1 l . l ) ,  (11.2), and (11.3), the differential equation for the error is 
obtained: 

P = i - 2  = A X +  F~ - A $  - K ( C ~  + - c;) 
= ( A  - K C ) e  + Fv - K w  ( 1  1.8) 

Since v and w are white noise processes, their weighted sum 

( = F v - K w  ( 

is also white noise, with a covariance matrix (Ic. To find (I), observe that 

E { ( ( t ) ( ’ ( T ) }  = F( t )E{v ( f )V’ (T) }F’ ( . )  - K ( r ) E { w ( t ) v ‘ ( T > } F ‘ ( T )  

- F(  l ) E { v (  t )  w’( T)}K’(  T )  -k K (  ? ) E {  w( t )  w’( T ) } K ’ ( T )  ( 1 

1.9) 

.lo) 
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Assume that the expected values on the right-hand side of ( 1 1.10) are all those 
of white noise: 

E { V ( f ) V ’ ( T ) }  = v(t)s(f - T )  

E { V ( t ) W ‘ ( T ) )  = x(t)s(t - T )  ( 1 1.1 OA) 

E { W ( t ) W ’ ( T ) }  W ( f ) a ( f  - 7 )  

Then 

where 
QE( t )  = F( r) V (  t)F’( r )  - K( r)x‘( t)F’(  t )  

- F ( t ) X ( t ) K ’ ( t ) +  K ( t ) W ( t ) K ’ ( t )  (11.11) 

(11.12) 

So ( 1 1.8) is the differential equation of a linear system excited by white noise 8 
e = ( A  - KC)e + 5 

where 8 has the spectral density matrix given by (1 1.11). 
Let P be the covariance matrix of the error. (The subscript e is omitted 

from P to keep the notation simpler.) Then, using the variance equation (10.58), 

P = ( A  - K C ) P  + P(A’  - C’K’)  + Qc 
= ( A  - K C ) P  + P(A’  - C’K’)  + FVF’ - KX’F‘ - FXK’ + KWK’ (1 1.13) 

If the cross-covariance X between the excitation noise u and the observation 
noise w were absent, ( 1 1.13) would have the same form as the optimum control 
equation (9.20) and we would be able to write the solution for the optimum 
gain matrix by use of the analysis of Chap. 9. This would give 

= FC’W-‘ (1 1.14) 

where the optimizing covariance matrix is given by the matrix Riccati equation 

F = A 6  + FA‘ - k ‘ W - ’ C P  + FVF’ (1 1.15) 

These are the most familiar forms of the gain and optimum variance equations, 
respectively, and apply when u and w are uncorrelated ( X  = 0). More general 
relations hold when the cross-correlation matrix X is not zero, and these are 
derived by the same general method that was used in Chap. 9. In particular, we 
assume that 

P = P + U  (11.16) 

K = k + T  (11.17) 

where fi  and Z? are the optimum covariance matrix and observer gain matrix, 
respectively. Substitute these into (1 1.13) to obtain 

B + ri = (A - Izc - rc)(P + u)  + ( P  + u)(A’ - CY? - err') + FVF’ 

- (i + r)xpF’ - ~x(Iz1 + ri) + ( R  + r) w ( i f  + r’) ( I  1.18) 
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But of course P also satisfies ( 1 1.13) 

P =  ( A -  k C ) P +  P ( A f -  C ‘ k ‘ ) + F V F ’ -  k X ’ F ’ -  F X k ’ +  R W k f  (11.19) 

Subtract (1 1.19) from ( 1  1.18). After combining terms, the result is 

u = ( A  - Rc - rc)  u + U ( A ‘  - ciRi - cfrf) + r wr’ 
+ r( wk’ - cP - x ’ F ‘ )  + (Rw - Pct - Fx)r‘ ( 1 1.20) 

From this point onward, we reason as we did in Chap. 9: If P is the 
minimum covariance matrix P must be greater than 6 for any choice of r. This 
means U must be positive semidefinite. But the solution to ( 1  1.20) for U can be 
made negative definite by suitable choice of I‘ unless the coefficient of r 
vanishes entirely, in which case U will be positive semidefinite. Thus, if P is 
optimum we must have 

k W = F C ‘ + F X  

Assuming the observation noise spectral density matrix W to be nonsingular 

i = (PC! + F X )  w-1 (11.21) 

which is a generalization of ( 1  1.14). 

result, after simplification, is the matrix Riccati equation 
To find the differential equation for 6, substitute ( 1  1.21) into (11.19). The 

F = A? + PAf - Pct w - 1 ~ 6  + FGF‘ ( 1 1.22) 
where 

,i = A FXW-’C ( 1 1.23) 

j7 = v - xw-lx’ ( 1  1.24) 

when the cross spectral density matrix X is zero then 2 = A and ? = V; then 
( 1  1.22) reduces to the more familiar equation ( 1  1.15). 

The effect of the cross spectral density is to modify the Kalman filter gain 
matrix by the addition of FX to FC’ in (11.21) and to change the dynamics 
from A to 2 and the process noise spectral density from V to ? in ( 1  1.22). It is 
of interest to compare (1 1.21) through (1 1.24) to the analogous equations of 
optimum control in which a cross term 2x’S’u is present in the performance 
integral. The latter are given by (9.51) through (9.54), and are in the same form 
as (1 1.21) through ( 1  1.24). The similarity of the Kalman filter equations derived 
in this chapter and the optimum control equations derived in Chap. 9 are 
emphasized by calling the filter problem and the control problem duals of each 
other. 

is the 
difference of two positive semidefinite matrices, and we might think that if W is 
small enough X W - ’ X ’  would be larger than V and then would be negative. 
But this is not possible. Consider the joint process 

Note that the “equivalent” excitation noise spectral density matrix 
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Then if u and w are white noise, z is white noise. Its spectral density is 
calculated as follows 

= [ X' X]s(l-'T) w 

Thus the spectral density Z of the joint process z is given by 

v x  
.=[XI w l  ( 1  1.25) 

I n  order for Z to be a spectral density matrix Z must be positive semi- 
= V - XW-IX' is also positive definite. It can be shown that this implies that 

semidefinite. (See Note 1 1.2.) 

11.4 STEADY-STATE KALMAN FILTER 

The matrix Riccati equation (1 1.22)-0r the special case ( 1  l.I5)-are valid for 
any finite time interval. If time is allowed to become infinite, the solutions may 
tend to infinity or they may remain finite. If all the matrices on the right-hand 
side of ( 1  1.22) are constant, then a constant, steady state solution may exist, 
given by the solution of the matrix quadratic equation, also called the algebraic 
Riccati equation 

o = i F  t Fi t  - I;ci w-'cF t FQF' ( 1  1.26) 

The algebraic Riccati equation (ARE) ( 1  1.26) for the steady state covari- 
ance matrix I; is the same form as the ARE (9.29) for optimum deterministic 
control and hence the conditions under which ( 1  1.26) has a unique, positive 
definite solution are similar to those given in Chap. 9. In particular, the ARE 
( 1 1.26) has a unique positive definite solution if either 

( a )  The system is asymptotically stable, or 
( b )  The system defined by the pair [A ,  C ]  is observable and the system defined 

by the pair [A,  FV1/* ] ,  (i.e., the system x = Ax + FV'/'u) is controllable. 

The reason for observability is understandable. In line with the discussion 
of Sec. 9.5, the requirement of observability can be relaxed to detectability. (See 
Note 5.2.) The reason for what amounts to controllability by the noise (should 
we say "excitability"?) is similar to the reason for observability in the optimum 
control problem: in this instance we may have certain states (or "modes") 
which are not asymptotically stable but which cannot be excited by the noise. 
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The variance of these states would be zero and would cause the covariance 
matrix to be singular. 

Example 11A Inverted pendulum If it were possible to balance an inverted pendulum, it would 
not remain balanced without control owing to the inevitable presence of various types of 
disturbances, such as random air currents. Thus, if the accelerations due to the disturbances 
are represented by u, the differential equations for the pendulum are 

9 = 0  

i =n29 + u + u 
(IIA.1) 

where u is the control acceleration and u is the disturbance acceleration. The matrices 
corresponding to ( 1  1A.1) are 

If the quantity observed is the position xI = 0 

y = [ l  01[̂'] + w  
x2 

Hence 

c = [ I  01 

Let the optimum covariance matrix be 

p = [PI P 2 ]  
P? P3 

Then, by ( I 1.26) the elements of P satisfy 

P:  0 = 2 p 2  - - 
W 

PIP2 
W 

0 = p 3  + n z p ,  - ~ ( 1  IA.2) 

P:  0 = 2 f P p 2 - - +  v 
W 

where V and W are the spectral density ( I  x 1) matrices of the excitation noise and observation 
noise, respectively. 

From the first equation in ( 1  IA.2) we have 
~ 

p I  = * J 2 p 2  w ( l l A . 3 )  

Since p I  must be nonnegative, the top sign must be used and, moreover, p r  must be positive. 
From the third equation in ( I  1A.2) 

p 2  = qn2 * Jn" + v/ wl (11A.4) 

Clearly, to make p z  > 0 the top sign must be chosen. 
Thus we have from ( I  1A.3) and ( I  I A.4) 

pI = n wJ-/ 
p 2  = n2 wy 

where 

( l lA.5) 
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Also, from the second equation in (1 1 A.3) 

But p 3  is not needed to determine the Kalrnan filter gain matrix which is given by 

The closed-loop filter poles and transfer functions from the measured angle y to the estimated 
state f, = e  ̂ and x12 = 6 are of interest. Assuming that the input u is zero we have 

s i ( ( s )  = Al(s)  + k[y(s)  - Ci((s)] = ( A  - kC)l (s )  + Ky(s)  

or 

where A, = A - RC is the closed-loop observer dynamics matrix, in 

i ( ( s )  = ( s l  - A, ) - ' ky (s )  ( 1  1A,6) 

this example given by 

0 ' I  
Thus 

where A(s)  is the closed-loop characteristic polynomial, given by 

A ( s )  = sz + nJGs + n 2 ( y  - I )  

From (1 1 A.5) and ( 1  1 A.6) 

In particular 

( I  IA.8) 

The closed-loop poles of the filter are given by 

The zeros of the filters H,(s) and H,(s), respectively, lie at 

s = -n Y for angular position J, 
(llA.9) 

s = - n  - for angular velocity J:. 
As the excitation noise covariance matrix V tends to zero, 7, as given by (llA.5). 

approaches 2 and 

n ( 2 s f 2 0 )  2 n  -~ - 
H 1 ( s ) + s 2 + 2 n s + n z  s+n 
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In other words the zero of the numerator tends to one pole of the denominator, and both filters 
become first-order. Note also that the optimum estimate of the angular velocity is simply the 
natural frequency 

As the excitation noise covariance matrix tends to infinity (or as the observation noise 
covariance matrix tends to zero) y tends to infinity and the closed-loop poles of the observer 
tend to 

s = -0&(1 j )  

which are lines a t  45” angles from the real axis. The zero of the transfer function H,(s)  = 

C(s)/y(s) for angular position moves out to infinity along the negative real axis; but  the zero 
of the transfer function H,(s) = h ( s ) / y ( s )  for angular velocity tends to the origin. [See 
( 1  1A.9).] This means that a t  low frequencies the transfer function for angular velocity behaves 
like a high-pass system, i.e., a “lead” network, whereas the transfer function for angular 
position behaves as low-pass (“lag”) system. Loci of the poles of the filters, as y varies from 
7 to infinity, are shown in Fig. 11.2. 

times the angular position. 

-1 

-3 

-4  

Figure 11.2 Poles of Kalman filter for inverted pendulum. 
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Example 11B Accelerometer pick-off The accelerometer considered in prior examples has the 
differential equations 

XI = x2 
(1 1 U . l )  

x , = u + a  

The position of the proof mass is determined by some sort of “pick-off”-perhaps magnetic 
or optical. The output of the pick-off is 

y = x , + w  

where w is the pick-off noise which we assume to be white. 
We want to design a Kalman filter to estimate the acceleration a. (For the present, control 

of the proof mass position is not considered.) For this purpose it is necessary to model the 
unknown acceleration as a random process. I f  the spectral density of a were known, it would 
be appropriate to represent a as the response of the linear system which, when excited by white 
noise, produces an output with this known spectral density. 

For the purpose of this illustration, however, we assume that the acceleration a is a Wiener 
process 

i = U  ( I  1 B.2) 

where u is white noise with spectral density matrix V. If V were zero then (1 18.2)  would 
become a = 0, that is, a would be an unknown constant. But as we will soon see, it is necessary 
to assume V # 0 in order to get a meaningful filter design. 

Represent a by another state variable xs and adjoin ( 1  18.2)  to ( I  1 B.1): 

1, = x ,  

x, = u + x j  

x, = u 

For this system the defining matrices are 

0 1 0  
0 ‘1 F + ]  

0 0 0  

c = [ 1  0 01 

Let the optimum covariance matrix be 

Then the components of P satisfy: 

PIP2 
p 3  + p 3  - - W p2 = 0 

P:  p4 = 0 = 2p,  - - 
W 
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These can be solved readily. The resulting solutions are 

- 2 vl/6 w5/6 ~ 2 vl/3 wl/3 p s  vl/2 wl/Z 

- 3 vl/Z w1/2 
1 -  2 -  

p s  ~ 2 v2/3 wl/3 

p6 = 2 vSl6 uN6 

4 -  

Note that if the spectral density V of the no$e u exciting the acceleration were allowed to go 
to zero, the steady state covariance matrix P would also tend to zero. From this one would 
infer that the acceleration (and other state variables x, and x2) could be estimated without 
error, even with a noisy pick-off. This is correct, and the Kalman filter would have time- 
varying gains that would all tend to zero. To get a Kalman filter whose gains d o  not all tend 
to zero in the steady state, it is necessary to assume that V is not zero, which implies that the 
acceleration is not known, a priori, to be constant. 

We can now compute the Kalman filter gain matrix 

Since V is a n  indicator of the randomness of the acceleration that the instrument is trying 
to measure and W is an indicator of the random noise in making the measurement, the ratio 
V/ W can be regarded as  a “signal-to-noise ratio” and it is seen that the filter gains all 
increase with increasing signal-to-noise ratio, which seems reasonable. 

The filter has the dynamics matrix 

where 

Thus the filter characteristic equation is 

s + 2 n  - 1  

Is1 ~ A,I = I ii3 o” -!I = s 3 + 2 f i s 2 + 2 a 2 . q + n 3 = o  

The characteristic roots are 

sI = -ii s2, s3 = -n(; * j $ )  

Thus the roots lie upon a circle of radius fi = (V/  W)’16 on the negative real axis and at 
60 degree angles, as shown in Fig. 6.7. This is a characteristic “Butterworth pattern” as 
discussed in more detail in Chap. 6. 

Example 11C Velocity-aided inertial navigation The dynamics of the error propagation in an 
inertial navigation system (Example 3E) are not asymptotically stable, hence the effects of 
initial errors d o  not decay to zero, and the errors due to noisy instruments tend to grow with 
time (Example 3E and Prob. 10.3). To improve the performance of the system, external 
navigation aids, when available, may be used. TACAN, LORAN, Omega and navigation 
satellites (GPS) may provide position data; velocity data may be provided by a Doppler radar. 
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A number 0 1  studies have been made of the use of Kalman filtering to mix data from inertial 
and noninertial sources to optimize overall system accuracy. (See [3] for a detailed example.) 

The purpose of this example, however, is not to explore the realm of aided-inertial 
navigation but rather to show an instance of the design of a Kalman filter for a system that is 
not observable. For this purpose, we assume that the only errors present in the inertial 
instruments are white noise in the gyro and in the accelerometer outputs. The dynamic model 
for this situation is 

AX = A v  

AV = -gAJ, + V, (IlC.1) 

1 

R 
A& = - A U  + uG 

where g is the acceleration of gravity, R is the earth's radius, and where uA and vG are the 
accelerometer and gyro noise processes, respectively, which are assumed to be independent, 
with spectral densities V, and VG. The relevant matrices are 

Suppose that the velocity aid provides a (noisy) measurement of velocity v,,, independent 
of the velocity V indicated by the pure-inertial navigation system as shown in Fig. 11.3. The 
difference y = u - u,,, is thus a (noisy) measurement of the velocity error, ix. ,  

y = A u + w  ( 1  1C.3) 

where w i s  the white noise on the velocity measurement, with spectral density matrix W. 
The Kalman filter will provide optimum estimates of the state: 

A i  = A; + k , ( y  - A;) 

A; = - g A $  + k , ( y  - A;) ( 1  1C.4) 

Inertial 
navigation 
system 

Velocity 
aid 

i i 

Inertial system 
estimates 

Kalman 
filter 

' Corrected 
estimates 

ir 

Corrections 
from 
Kalman 
filter 

Figure 11.3 Use of Kalman filter for mixing inertial and noninertial navigation data. 
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These error estimates are then added to the outputs of the pure-inertial navigation system to 
produce (optimum) estimates f and v^ of the total position and velocity, respectively, as shown 
in Fig. 11.3. 

It now remains to determine the Kalman filter gains k , ,  k,, and k,. The observation 
matrix for corresponding to (1 1C.3) is 

c = [ O  1 01 

It is readily established that the pair [A,  C ]  in this instance is nof observable. This is also 
obvious if a block-diagram for ( l l C . l )  and ( I  IC.3) is drawn; there is no path from Ax to y. 
Since the system is not observable and not asymptotically stable, we should expect problems 
with the variance equation. In  fact, as we shall see, the steady state covariance matrix has one 
term, namely the variance of the position error, that grows without bound as f + 0. Hence 
the steady state solution to the variance equation does not exist. Nevertheless, the Kalman 
filter gains approach steady state values, thus permitting the use of a constant gain filter. 

Let the desired covariance matrix be denoted by 

The equations for the elements of i, in accordance with ( I  1.15). are 

pl = ?pz  - p : /  w 

( l lC.5)  

( 1  IC.6) 

(11C.7) 

Note that the differential equations [ I  1C.7) for p4 ,  p s ,  p6  d o  not depend on pI ,  p 2 ,  p 3 ,  and 
correspond to the subsystem consisting of Atl and A$ with the dynamics and observation 
matrices 

This is an observable pair and hence a steady state solution (p4 = ps = p6 = 0 )  can be found. 
(See Prob. 11.19.) In terms of these solutions, we can also find steady-state solutions for p ,  and 
p 3 .  In particular, after setting p 2  and p ,  to zero in ( I  1C.7) we find that 

p 2 =  w 
P 3  = 0 

Since the Kalman filter gain matrix is 

( l lC .8)  

we see that a steady state gain matrix can be found. Nevertheless, the variance of the position 
error, as  given by p, in ( 1  1 C.6) grows without bound even as  the Kalman filter gains tend to 
their steady state values. In fact, from (1  1C.6) and [ 11C.8) 

p 1 = 2 w -  w' /w= w ( I  IC.10) 

Thus the steady state growth rate of p I ,  which is the variance of the position error, is exactly 
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the same as  i f  the velocity aid alone were present. This means that (in the steady state) the 
position error of the aided-inertial navigation system is not less than if the inertial system were 
absent. In  the transient case the inertial system, when optimally used, cannot but help the 
velocity-measuring system. Hence the solution for p4 in (llC.6), as a function of time, should 
always be expected to be below p ( 0 )  + Wt, the solution to ( 1  1C.10). (See Prob. 11.19.) 

Because k, = p 2 /  W = I ,  the equation for the optimum velocity estimate (the first 
equation in ( 1  1C.4)) becomes 

A i = y  ( I  1C.I I )  

i t . ,  the estimated velocity error A 6  is not used in correcting the position estimate. This is the 
same estimation law that would be used if the inertial system were absent and the acceleration 
acting on the vehicle being navigated were purely random. (See Prob. 11.19.) 

I t  is emphasized in concluding this example that a numerical algorithm fo,r solving the 
algebraic Riccati equation will not work in this problem, since one element of P (namely p , ,  
upon which the gain matrix does not depend) does not have a steady state solution. In  this 
example we found a way around this difficulty. In other situations, however, the detour might 
not be so obvious. 

There is one device which often works when a numerical solution is sought for a system 
having poles only on the imaginary axis: Artificially stabilize the system by adding small 
negative numbers to some or all the diagonal elements of the A matrix. This brings the poles 
into the left half-plane making the resulting system asymptotically stable and thereby guaran- 
teeing a unique positive definite solution to the ARE. The covariance matrix for the artificially 
stabilized system is of course not correct-it has all finite elements whereas the correct matrix 
will have at least one infinite element. Nevertheless, those elements of the covariance matrix 
that are needed in calculating the gains may differ only negligibly from their correct values, 
and hence may be good enough for all practical purposes. To minimize the possibility of errors 
in the filter gains, the artificial stabilization should be as small as can be coped with by the 
numerical algorithm for solving the ARE. This method cannot be expected to work if the 
system has poles to the right of the imaginary axis. 

11.5 THE “INNOVATIONS” PROCESS 

The difference between the actual observation y and the expected observation 

r = y - y  ( I 1.27) 

= C2, that is, 
A 

is a random process of considerable interest. This process is usually known as 
the “innovations process.” (See Note 11.3.) The “residual process” or simply 
the “residuals” are other appellations for this process. 

A remarkable property of the innovations process is that it is white noise. 
To see this we compute the correlation function of the innovations process, 
using the defining relation ( 1  1.27). Recall that the actual observation is given by 

y = C x + w  

and the estimated observation is given by 
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Thus the residual is given by 

r = y - j  = C ( x  -;)+ w = C e +  w 

where e is the estimation error e = x - 2. 
The correlation matrix for the residual process is thus given by 

RAt, 7 )  = E { 4 t ) r ’ ( 7 ) }  

= CE { e(  t )  el( 7 ) )  C’ + C E {  e( t )  w’( T ) }  

( 1 1.28) 

+ E {  w ( t ) e ‘ ( T ) } C ‘  + E{ w( t )w’ (T) }  (11.29) 

To compute the various terms in (1 1.29) we use the fact that the error e, as 
shown in ( 1  1.28), satisfies the differential equation 

e = Ace+ F ( t ) u  - K ( t ) w  (1  1.30) 

where 

A , = A - K C  

is the closed-loop matrix of the observer. 
In the first term on the right-hand side of ( 1  1.29) we have 

E ( 4 t ) e Y . r ) )  = W t ,  7 )  (11.31) 

which is the correlation matrix for the estimation error e. In accordance with the 
theory of Sec. 10.7 of the previous chapter 

R,(t ,  T )  = P ( t ) @ : ( T ,  t )  for T 2 t (1 1.32) 

where P ( t )  is the covariance matrix for e, given by (11.13), and Q C  is the state 
transition matrix corresponding to the closed loop dynamics matrix A, in 
( 1 1.30). Thus the first term in ( 1 1.29) is 

C E { e ( t ) e ’ ( . r ) } C ‘  = C P ( t ) @ : ( T ,  t )C’  for T 2 t. (11.33) 

In order to evaluate the second and third terms in ( 1  1.29) we recall that the 
solution to (1 1.30) is 

e ( t >  = @Jt ,  to)e(to) + I ‘ Q c ( f ,  A ) , F ( A ) u ( A )  - K ( A ) w ( A ) I  dA 
(0 

Thus the second term in ( 1  1.29) is 

CE{e( t )w‘( . r ) )  = fo)e( to)E{W‘(T))  

+ c j,)m A ) [ F ( A ) E { u ( A ) w ’ ( . r ) l -  K ( A ) E { w ( A ) w ’ ( 7 - ) ) 1  dA 

(1 1.34) 
Now, as given in (1 1.10A) 

E { u ( A ) w ‘ ( T ) }  = X ( A ) S ( A  - T )  

E { w ( A ) w ’ ( T ) }  = W ( A ) ~ ( A  - T )  
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and 

Thus (1 1.34) becomes 

CE{e( t )w’( i - ) }  = C 

E ( W ’ ( 7 ) )  = 0 

O.,(t, A)[F(A)X(A) - K ( A )  W(A)]G(A - i-) dA I:, 
C@,,(t,  ~)[F(i-)x(i-)  - K ( 7 )  W(i- ) ]  for to < i- 5 t 

= (0 for i ->  t 

(1 1.35) 
The third term in (1 1.29) is given by 

E {  w (  t ) e ’ (  T ) } C ‘  

= E {  w ( t )  [ e’(fO)Qc(i- ,  to) + IT[d(h)F’(A) - w‘(A)K’(A)]O‘,(i-,A) dA 
10 

Reasoning as above we conclude that 

[ X ’ ( t ) F ‘ ( t )  - W(t )K‘ ( t ) ]@: ( i - ,  t )C’  for r o 5  t 5 7 

for t > 7 E {  w ( C) e’( 7)) C ’ = 

(1 1.36) 
Finally, the fourth term on the right-hand side of (1 1.29) is 

E { W ( t ) W ’ ( i - ) }  = W ( t ) S ( t  - 7) ( 1 1.37) 

Combine ( 1  1.33), (1 1.34), (1 1.35), and (1 1.36) to get R,( f, 7) as given by (1 1.29). 
Note, however, that only one nonzero expression of (1 1.35) or (1 1.36) is used in 
the sum, depending on whether i- > t or i- 5 t.  Suppose i- > i. Then 

R , ( t , i - ) = [ C P ( 1 ) + X ’ ( t ) F ‘ ( t )  - W ( t ) K ’ ( t ) ] @ ; ( ~ , t ) c ’ +  w(t)s(t - T )  (11.38) 
Thus, the correlation function for the innovations process has two terms: the 
second term is that of white noise with spectral density W ( t ) ,  and the first term 
is that of a linear system excited by white noise, and having the transition 
matrix Q C ( f ,  T ) .  The covariance matrix of that linear system is 

CP( t )  + X’( t )F‘ (  t )  - W (  t ) K ’ (  t )  

This term is zero, however, if the gain is chosen optimally, i.e., in accordance 
with (11.21). Hence we conclude that the innovations process in the optimum 
observer-the Kalman filter-is white noise having the spectral density W of 
the observation noise. Conversely, if the observer is not optimum, the spectral 
density of the innovations process is not white noise. 

11.6 REDUCED-ORDER FILTERS 
AND CORRELATED NOISE 

A crucial assumption used in the derivation of the Kalman filter is that the 
observation noise vector is white and has a nonsingular covariance matrix W, 
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the inverse of which is used in the formula for the Kalman filter gain. In the 
discussion of white noise in Chap. 10, we made the point -that white noise is a 
convenient abstraction, but it never exists in reality. We are thus faced with an 
annoying paradox: the entire edifice of Kalman filtering is based on an 
assumption which does not apply to the physical world! We should almost 
expect the whole structure to come tumbling down. Fortunately the structure is 
not at all precarious, because the white noise approximation is often quite 
good: the bandwidth of the noise, although finite, is much higher than the 
bandwidth of the dynamic process under consideration. 

There are numerous cases, however, in which the white noise approxima- 
tion is poor. The noise may have a bandwidth that is much lower than the 
dynamic process in question. In this case the white noise approximation is 
unjustified. 

Another common problem is that some sensors may be of such high quality 
that the observation noise may be extremely small. If these sensors are com- 
bined in a system with others that are not of comparable quality, the resulting 
spectral density matrix may be very poorly conditioned. An observation noise 
matrix such as 

w = “  0 o ]  

would wreak havoc with many numerical algorithms for computing the Kalman 
filter gains. It might be preferable to regard the small term as zero and develop 
a technique for dealing forthrightly with observation noise spectral density 
matrices that are singular. 

Methods of dealing with a general singular observation spectral density 
matrix have been developed. (See Note 11.4.) The results, however, although 
not difficult are rather repulsive to look at and tedious. For this reason we 
confine our attention to a very special case, namely the case in which the 
spectral density matrix W is actually zero: there is no noise at all present in the 
observations. Any nonwhite noise (i.e., correlated or “colored” noise) present 
that can be modeled as the response of a linear system can be treated within this 
framework, as we shall show later on. 

For now we consider the dynamic process 

1 = Ax + Bu + Fu (1  1.39) 

with noise-free observations 

y = c x  
A new observation can be obtained by taking the time derivative of the 
observation vector: 

y = CX = C(Ax + Bu + Fv) 

Consider the quantity 

z = y - CBU = CAX + CFU ( 1  1.40) 
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This quantity is linear in the state x and contains white noise, so it is a 
candidate for use as the input to a Kalman filter. To obtain z from y, however, 
entails differentiating the latter which is an undesirable operation. It will turn 
out that the differentiation of y can be avoided, and as a byproduct, the order 
of the filter is reduced. 

The Kalman filter for (11.39) with observations given by (1 1.40) is 
expressed by 

f = Ax^+ Bu + ZZ(Z - C ~ )  ( 1 1.41 ) 

In order to obtain l? we note that the observation noise w = CFu is 
where k is the Kalman filter gain matrix. 

obviously correlated with the excitation noise 2). In particular if 

E { U ( t ) U ' ( T ) }  = VG(t - 7) 

then 

E { u ( ~ ) w ' ( T ) }  = VF'C'G(t - T) 

E { w ( ~ ) w ' ( T ) }  = CFVF'C'G(t - 7) 

Thus the matrices needed to determine the Kalman filter gain, in addition to V, 
are 

X = VF'C' (1 1.42) 

and 

W = CFVF'C' (1  1.43) 

We now make the further assumption that W, as given by ( 1  1.43), is 
nonsingular. (The consequences of this assumption not being valid will be 
discussed later.) In this case, by (11.21), the Kalman filter gain matrix is 
given by 

Iz = (PA! + FVF') cy CFVF'C')-' (11.44) 

where, by ( 1 1.22), the covariance matrix is given by 

P = Aip + P 2  - PA~C~(CFVF'C')-'CA~~ + FPF~ ( 1  1.45) 

where 

A = A - FVFT'(CFVF'C')-'CA 

= [ I  - FVF'C'( CFVF'C')-l CIA ( 1 1.46) 

(1 1.47) 

In the standard Kalman filtering problem, th? covariance matrix P is 
usually positive definite. This is not the case here: P is a singular matrix. This 
can be seen by premultiplying both sides of (1 1.45) by C. This gives 

C = v - VF~C'(CFVFT')-'CFV 

cb = CAP + chi!- CPA~C'(CFVF'C~)-~CAP + CFCF' (1 1.48) 
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But, from ( 11.46), 

c i  = CA - CFVF'C~(CFVF~C')-~CA = o 

CFF = CFV - CFVF'C~ CFVF~C')-~ CFV = o 

cF = cF i  - CFA~C~(CFVF~C~)-'CAF 

and, from ( 1  1.47), 

Hence ( 1  1.48) reduces to 

This is a homogeneous differential equation (i.e., there is no forcing term) and 
it has a solution 

CF( t )  = 0 ( 1  1.49) 

Thus, if the initial condition CF(0) is zero, then CF(t )  remains zero thereafter. 
We assume that this condition holds, and hence that ( 1  1.49) is valid. 

Now consider C$ where is given by ( 1 1.41 ) 

C i  = C(A2 + Bu) + Ck(z  - CA2) ( 1  1.50) 

But, using (1 1.42) and ( 1  1.49), 

ck = c(FA'+ FVF')CI(CFVF~C)-' = I (11.51) 

and hence (1 1 S O )  becomes 

C2 = z + CBu = y (1 1.52) 

using the definition of z as given by ( 1  1.40). Thus, upon integration of ( 1  1.52), 
we obtain 

ci? = y (1 1.53) 

assuming the constant of integration to be zero. This assumption is valid 
because the derivative of y was defined for purposes of the theoretical develop- 
ment; it is not an actual observation. The actual observation is y. 

The result given by ( I  1.53) is not in the least surprising: it asserts that if a 
substate Cx of the state x can be observed without noise, then the optimum 
estimate of that substate is the observation itself. If C is a nonsingular matrix, 
then of course ( 1  1.53) gives 2 = C ' y ,  an  obvious result. The important case, 
however, is when C is not a square matrix: when the number 1 of (independent) 
observed quantities is less than the number k of state variables. In this case 
( 1  1.53) only partially specifies the state. The remaining k - 1 relations are to be 
obtained from (1 1.4 I ) .  Since only k - 1 relations are needed, we should not be 
surprised to find that these can be obtained using a dynamic system of order 
k - 1. This is exactly the way it turns out. 

The key to the result we are seeking is in (11.51): Ck = I. If C were a 
nonsingular matrix k would equal C-l and we could write ( 1  1.53) as 

= c-1 y = K y  
1 
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When C is singular we seek a general estimate of the form 

2 = By + L2y2 (11.54) 

where y2 is the state of a system of order k - I. The route to ( 1  1.54) is 
circuitous. First consider (1  1.41), which can be written 

$ = ( I  - KC)& + RZ + BU ( 1  1.55) 

We have found earlier that Ck = Z ; but this doesn’t mean that kC = I, unless 
C - ’  exists. The matrix I - RC, however, has the property that 

( Z - k C ) ’ = ( I - R C ) ( Z - B C ) = I - 2 K C + B C = I - R C  (11.56) 

A matrix whose square is equal to itself is said to be idempotenr.[4] All of 
the characteristic roots of an idempotent matrix are either zero or unity; the 
number of characteristic roots that are unity equals the rank of the matrix. For 
this case assume that the matrix C is of full rank I ,  that is, that the rows of C 
are linearly independent. Then it is readily shown that I - kC is also of rank I 
and hence, by the above property of idempotent matrices, there exists a 
similarity transformation T such that 

z - Bc = T-‘E,T 
where 

(1  1.57) 

( 1 k - l  is a ( k  - I )  X ( k  - I )  identity matrix.) Although a similarity transformation 
is not unique, one transformation satisfying (1 1.57) is 

( 1  1.58) 

where U,( I - k C )  is a ( k  - I )  x k matrix consisting of ( k  - I )  rows of Z - kC 
linearly independent of the rows of C. (The matrix U, is a ( k  - I )  x k matrix, 
each row of which has all zero elements except a single 1 in the position of the 
row of I - kC to be selected. See the example below.) 

To verify ( 1  1.57), we rewrite it as 

T(Z - kC) = EIT ( 1  1.59) 

Using ( I  1.58), the left-hand side of ( 1  1.59) is 

Note that the idempotency of I - kC was used to obtain the second 
relationship. 

The right-hand side of ( 1  1.59) is 
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Thus ( 1  1.59) is established. Since C was assumed to be of full rank I and the 
rows of Ul(Z - kC) are linearly independent of the rows of C, the rows of T 
are, by construction, linearly independent. Hence T is nonsingular and is a 
transformation matrix satisfying ( 1  1.57). 

We return now to (1 1.55), which can be written 

i = ( I  - kC)Ax^ + k(v - CBu) + Bu 

= ( I  - kC)(Ax  ̂+ Bu) + kj (1 I .60) 

Let 

S = x ^ - k y  (11.61) 

Then 

i = i -  k j = ( I - k C ) [ A ( S + k y ) - t B ~ ]  

= T-’EITIA( t  + k y )  + Bu] 

upon use of ( 1  1.57). Premultiplying both sides of (1 1.62) by T gives 

( 1 1.62) 

T i  = EITIAt + A k y  + Bu] 
Let 

( 1  1.63) 

y =  T t  t =  T - ‘ y  ( 1 1.64) 

Then ( 1 1.63) becomes 

y = El[TAT-’ (y  + T k y )  + TBu] ( 1 1.65) 

Partition y and TAT-’ as follows: 

( 1 1.66) 

Note also that 

Thus ( I 1.65) becomes 

Or, in component form, 

y,  = 0 
( 1 1.67) 

y z = A 2 1 ( y I + y ) + A 2 2 y 2 +  U1(Z- k C ) B u  

Note that 

yI + C t  = C ( 2  - Izy) = c; - y 
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which is assumed to be zero at t = 0. Thus, from (1 1.67), yI = 0 for t 2 0 and 
( 1  1.67) becomes 

y2 = A Z 2 Y 2  + A21y + U,(I  - IZC)Bu ( 1  1.68) 

This is the differential equation of a system of order k - I having inputs y 
and u. 

The state estimate 2 is obtained using ( 1  1.63) and ( 1  1.64) 

P = I Z y + [ = & + T - ' y  (1 1.69) 

If T-I is partitioned as 

T-I = [ LI L2 ] -- 
I k - I  

then, since yI = 0, (1 1.69) reduces to the desired expression as given by ( 1  1.54), 
namely 

P = i y  + L2y,  ( 1  1.70) 

A block-diagram representation of the state estimate expressed by (1 1.68) 
and ( 1  1.70) is shown in Fig. 1 1.4. Note that the structure of the Kalman filter 
with no observation noise is that of a reduced-order observer as developed in 
Chap. 7. It is readily established that the matrices appearing in Fig. 11.4 have 
the properties required of the general matrices of the reduced-order observer. 

A special case of the reduced-order Kalman filter results when CF is a 
nonsingular matrix. In this case, the matrix ? that enters into the variance 
equation (1 1.45) is given by 

? =  V -  V(CF)'(CF)-'V-'(CF)-'CFV= 0 

?' 

Observation ?-ke State 

4 
u, ( / -KC ) R 

Control - A zz 

Figure 11.4 Kalman Elter in absence of observation noise is a reduced-order observer. 
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This means that the forcing term FPF' in (1 1.45) is zero. Then one of the solutions 
to (1 1.45) is k = 0, which would imply that the state x can be estimated without 
steady state error. In this case 

kz = FV( CF)'[(  CF)']- '  V-'( CF)-' = F( CF)- '  ( 1 1.7 1) 

But = 0 may not be the only solution to (1 1.45) with k = 0. In that event, the 
correct solution is the one to which the solution of the differential equation 
converges as t + cx). 

Example 11D Inverted pendulum with velocity sensor Consider the inverted pendulum of 
Example l lA,  except with a velocity sensor instead of a position sensor. The observation 
equation is 

v = w = x 2  

Thus 

Using 

C = [ O  11 

= [:I 
as given in Example 1 I A, we obtain 

C F =  1 

Hence, by ( 1  1.7 1) 

I - I Z C = [ : ,  ; ] - [ 3 1 0  I ] = "  0 0  o] 

Thus 

[Note that the first row of I - kC was selected for U,(I - kc).] Thus 

0 1 0 1  
T A T - 1 =  [I: :][a. O I L  01 =[: :I 

Finally 

and 

U , ( I - Z C ) E = [ I  01 = O  [:I 
Hence the state estimate is given by 

with 

i z  = Y 
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which reduces to 

( 1 1 D. 1 )  
w = y  

In other words, the angular velocity estimate is the measured angular velocity, and the 
estimated angular position is simply the integral of the measured angular velocity. The 
reduced-order Kalman filter has the very essence of simplicity. 

It is of interest to compare the reduced-order filter with the full-order filter which would 
result when the noise in measuring the velocity is not zero. For the covariance matrix 

The gain matrix is 

(1 1 D.2) 

where W is the convariance matrix of the velocity observation noise (not the same W that 
appears in Example 11A). 

The components of the variance equation are 

P: 0 = 2p, - - 
W 

P2P3 0 = p3 + R2p1 - ~ 

W 

O=2R2pz--+  P: v 
W 

(1 1 D.3) 

(1 1 D.4) 

( 1  1 D.5) 

From ( 1  1 D.3) either pz = 0 or pr = 2 W. But from (1 1 D.4) 

R2p1 = - p 3 (  1 - %> 
Thus, if p2 = 0 were correct, then R2pl would equal -p3 which is not acceptable since pI and 
p3 must both be positive for a valid covariance matrix. We thus conclude that pz = 2 W. In this 
case 

and, from ( 1  1 D.5), 

p3 = JVW + 4n2 w2 

By ( 1  1 D.2) the gain matrix is 

k2 = J V /  W + 4R2 
= [:J 

Thus the Kalman filter is given by 

s' = G + 2(y - G )  

= n2ê  + k z ( y  - G )  + u 
(11D.6) 
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In the frequency domain, 6 and & are given by 

(k,s + 2 R 7 y  + su 
o =  

s2 + k2s + R2 

(2s2 + kJy + u 
s2 + k,s + e =  

( 1  1 D.7) 

If the sensor noise W tends to zero, then k2 = J V /  W + 4n2 + 00 and ( 1  1D.7) reduces to 

G i = y  

0 = -y 
A 1  

c 

which is the same as  obtained in ( l lD. l )  for the reduced-order filter. When the sensor noise is 
not zero, use of (IID.7) instead of (I1D.I) provides the optimum smoothing of the output 
from the noisy sensor. 

As mentioned in the introduction to this section, the application may arise 
in which the observation noise covariance matrix W is singular, but not zero. 
This case typically arises when some subset of observations are noise-free and 
another subset has the usual white noise: 

with 

YI = CIX 

y, = c 2 x  + w 
where w is a white noise process having a nonsingular covariance matrix W. 
This problem can be treated by the method of this section by defining the vector 
z as 

with 

ZI = Y l  

z2 = Y2 

Thus 

z = c x + [  C I F  0 I["] 
I w  

(11.72) 

where 
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The Kalman filter is governed by the equation 

4 = A2 + Bu + k ( z  - Cx^) 

= A2 + Bu + k , ( j l  - C,Bx^) + k,(y, - C,x̂ ) ( 1 1.73) 

The covariance matrix, which must be derived with proper consideration of the 
cross-correlation between the excitation u and the composite observation noise 
vector [ u ' ,  w']', will turn out to be singular: C , P  = 0. This property makes it 
possible to eliminate the differentiation of y ,  in the implementation of the 
Kalrnan filter, and also to reduce the order of the filter to n - I ,  where I ,  is the 
number of noise-free observations, i s . ,  the dimension of the vector y , .  The 
details of the derivation are straightforward but somewhat tedious. The final 
result is given in [ 5 ] .  See also the discussion in Note 11.4. 

The derivation of the reduced-order Kalman filter is based on differentiat- 
ing the noise-free observation to produce a derived observation which contains 
white noise, and then showing that the differentiation of the observation is not 
required in the implementation. Implicit in the development is that a single 
differentiation of the output produces a signal that contains white noise with a 
nonsingular covariance matrix CFVF'C'. In many cases, if not most, however, 
the spectral density matrix CFVF'C' turns out to be singular. The resulting new 
observation vector z = j ,  - CBu may be thought of as having some components 
which are noise-free and other components which have white noise. Those 
components which are noise-free can be differentiated again to produce still 
another derived observation, which can be adjoined to the original observation 
so that the two together will result in an equivalent observation in which the 
spectral density matrix may be nonsingular. If it is still singular, another derivative 
is taken of those components that still do not have white noise, until finally an 
observation vector is constructed in which there is a nonsingular covariance 
matrix, or a noise-free estimate of the state can be constructed by repeated 
differentiation of the output. The general case, discussed in somewhat greater 
detail in [6], can become very complicated, so we consider a special case which 
is nevertheless of considerable interest. The case is that in which the matrix CF 
turns out to be zero. In this case 

9 = C ( A x  + Bu + Fu) = CAx + CBu 

contains no white noise at all. In this case another time derivative is taken to 
give 

y = CAX + CBU = CA(Ax + BU + Fu) + CBU 

In  this case we let 

z = j ;  - C(ABU + BU) = CA2x + CAFU ( 1 1.74) 

This is in the same form as ( 1  1.39) and if CAFV( CAF)' has an inverse, the 
Kalrnan filter is given by 

4 = ~ x ^ +  B~ + z& - CA,~^)  (1 1.75) 
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The analysis that was used for the case in which (CF) '  VCF is nonsingular also 
applies in this case using CA instead of C. However, since z includes the 
second derivative of y and the transformation procedure used in obtaining the 
reduced-order filter only eliminates one of the derivatives, the resulting filter is 
likely to entail use of the first derivative of y. By assumption y does not contain 
any noise and hence, at least in principle, can be realized without differentiating 
white noise. 

If differentiation of the observation is unacceptable, another approach is 
simply to assume the presence of additional terms in the F matrix such that 
CFV(CF)' is a nonsingular matrix. In some cases, these additional terms may 
be justified as representing possible variations in the parameters of the dynamic 
process. (See Sec. 11.8.) In other cases, however, the only justification is that it 
produces an acceptable observer. 

Both of these approaches are considered in the following example. 

Example 11E inverted pendulum with noise-free position sensor We turn to the previous 
example, except in this case 

v = e  
Then 

+ = e = "  

and still no noise results. The second derivative, however, is 

y = & = n2e + U + U 
The reduced-order filter is given by 

where 

We find that 

Hence 

and, by ( I I .65), 

2, = 8, + k , ( t  - CA'2) 

f2 = R'P, t R,(z - CA28) + u 

z = j ;  - C(ABu + BU) 

CAF = CAB = [ l  01 

C B = [ I  O ] [ : ]  = O  

z = v - u  

Thus ( l l E . l )  reduces to 

( l I E . I )  
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from which we infer that 

f, = j 

2] = y  
( 1 1 E.2) 

This result is entirely expected. If x, = 0 can be measured without noise the optimum estimate 
of x1 is the measurement itself. Since xz is defined as the derivative of x,, and this derivative 
also contains no noise, what better estimate of x2 can there be than y? 

If we are not happy with this result, we can assume that some noise gets into the first 
differential equation defining the process 

( 1  I E.3) 

Since 6 = o is a definition, it is hard to justify the E U  term in ( 1  1 E.3). The result, however, will 
be acceptable, as we shall see. 

In this case 

C F = [ l  O ] [ r ]  = E  

and, by ( 11.65), 

then 

and 

Hence the required submatrices of the reduced-order filter are 

The reduced-order filter is thus given by 

x̂  = [ f ] = [ + [ ;] Y2 

or 

e = y  

& = - y t y z  
1 
& 

with 

y 2 -  - - - y 2 +  ( ; J Y  + 
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Y - 6  
Observed T Angle 

U Y2 

T Control 
velocitv 
estimate 

Figure 11.5 Schematic of reduced-order Kalman filter for observation of angular position. 
(Fictitious noise of spectral density E added to dynamic equations.) 

A block-diagram representation of this filter is shown in Fig. 11.5. It is found that the Laplace 
transform of G is given by 

( S  + E n 2 ) y  + E U  
o =  

E S  + I 

As the time constant E + 0, the transfer function from y to & tends to a pure differentiator. 

The last topic we consider in this section is observations with correlated 

(11.76) 

(also called “colored”) noise. The observation equation for this process is 

-v = cx + q 

where q is not white noise but rather a Markov process 

L j = Q q + w  ( 1 1.77) 

where w is white noise with a spectral density matrix W. Combining ( 1  1.77) 
with the standat-d dynamic equation x = Ax + Bu + Fu gives the metastate and 
observation equations 

with 

x = Ax + Bu + Fv 

y = c x  
(11.78) 

The theory developed earlier applies to the metastate process: the optimum 
estimate is given by 

2 = Ky + Lzyz 
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U 

Y ,  

where k and L2 are obtained as explained above. In particular, it is found that 

- 
B -  Control 

YZ - 1  

Thus the state estimate is given by 

2 = &y+ y2 ( 1 1.79) 

where y2 satisfies a differential equation of order ( n  + m) - m = n. After 
considerable algebra-see [7]--it is determined that 

ZZ, = [P,(A'C'-  C'Q) + FVF'][ W + CFVF'C'I-l 

where P, satisfies the matrix quadratic equation 

in which 
0 = AP, + P,Z - P,ZP, + w (11.80) 

A = A - FVF'C'( W + CFVF'C')-l( CA - Q C )  

2 = ( C A  - QC)'( W + CFVF'C')-'( C A  - QC) ( 1  1.81) 

.r 
Observation 

- 

w = FVF"Z - cy w + c F v F ' c ' ) - ' c F v F ' ]  

Optimum 
state 
estimate 

0 

and yz satisfies the differential equation 

j2 = - k,[(CA - QC)? + Qy] + Bu ( 1  1.82) 
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A block-diagram representation of the filter of (1 1.79). and ( 1 1.82) is shown in 
Fig. 11.6. Note that the structure is very similar to that of a filter with a white 
noise observation. The main difference is the feedforward path from the observed 
quantity y directly into the state estimate i. 

11.7 STOCHASTIC CONTROL: 
THE SEPARATION THEOREM 

In Chap. 10, we studied the design of the optimum “deterministic” control law: 
the control law that minimizes a performance index of the form 

(11.83) 

under the assumption that the state x is accessible to observation and that there 
are no random disturbances acting on the process. (The symbol J is used here 
so that V can be used later on for the spectral density of the white noise 
disturbance.) We have already seen how to optimize the observer for estimating 
the state in the presence of white noise on the observations and white noise 
disturbances. But we have not yet addressed the optimization of performance in 
the presence of disturbances, whether or not the state is accessible to 
observation. 

This would seem to be a serious omission, but it really isn’t, because we 
have in fact already developed the required design procedure. To optimize the 
performance in the presence of white noise disturbances, it is necessary only to 
design the optimum deterministic controller, ignoring the noise, and when the 
state is not accessible for measurement, or when the measurement is noisy, to 
use a Kalman filter to estimate the state. The result is known as the “separation 
theorem” and is one of the cornerstones of modern control theory. (The 
background of the separation theorem is discussed in Note 11.5.) 

It is certainly possible to make use of the separation theorem for system 
design without a knowledge of how it is derived. The development is instructive, 
however: It uses some analytical tools that are often used in other derivations 
and it may sharpen the reader’s insight. 

First we consider the case in which the state x can be measured without 
noise, but there is a white noise disturbance: 

x = Ax + Bu + Fu ( 1  1.84) 

where u is white noise with spectral density V. 
Owing to the presence of the random noise u, the dynamic system ( 1  1.84) is 

a random process for any control law, linear or nonlinear. Since x is a random 
process the integral J of ( 1  1.83) is a random function and hence the optimiz- 
ation problem is meaningful only when its expected value is minimized. Thus 
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the meaningful problem is to minimize 

= E { J }  = E (x’Qx + u’Ru) d7 ( 1  1.85) 

by the choice of the control law u = g(x). The optimum control law is known 
to be linear, but to show this is beyond the scope of this text. Thus we will 
proceed under the assumption that a linear control law 

{ IfT 
u = -Gx ( 1  1.86) 

is to be used, and optimize the selection of the gain G. With this control law, 
the integrand in (1  1.85) becomes 

X’QX + u‘Ru = X’QX + x’G’RGx = X’LX 

with 

L = Q + G ‘ R G  (Note that L = L’) 

Hence ( 1  1.85) becomes 

= E {  IfT x ’ l x d r }  

( 1 1.87) 

(11.88) 

For this control law, the .closed-loop dynamics (1  1.84) become 

X = ( A -  B G ) x + F u  

which has the solution 

X ( T )  = @=(T,  t ) x ( t )  + Z ( T )  ( 1  1.89) 

where 

Z(T) = QC(7, A ) F v ( A )  dA I: ( 1 1.90) 

is the contribution to 
state-transition matrix 
A - BG. The integrand 

the state due to the random noise and is the 
corresponding to the closed-loop dynamics matrix 

of (1 1.88) becomes, using (1 1.89) and ( 1 1.90), 

x ’ ( r ) L x ( T )  = x ‘ ( t )@: . (T ,  f )L@, (T ,  t ) x ( t )  

+ x ’ ( t ) @ L ( T ,  ~ ) L z ( T )  

+ Z ’ ( T ) L @ , ( T ,  t ) x ( r )  

+ Z’( 7) LZ( T )  (11.91) 

The state x ( t )  at the present time t is assumed known: it is not a random 
variable. Moreover, z ( r )  is a random process resulting from excitation by the 
white noise process u. This process is uncorrelated with the initial state x ( t ) ;  
hence the expected values of the second and third items in ( 1  1.91) are zero. 
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Thus 

E { x ' ( T ) L x ( T ) }  = x ' ( t )@: ( r ,  t )LQC(7,  t ) x ( t )  + E { z ' ( T ) L z ( T ) }  (1 1.92) 

Note, however, that 

z'( T)Lz (  T) = tr [Lz(  T ) z ' (  r ) ]  

where tr N denotes the trace of the matrix N. Thus 

E {  Z'( T )  LZ( T)} = E{tr [ LZ( T )  Z'( T ) ] }  = tr [LP, ( T)] ( 1 1.93) 

where 

Pi(,) = E { z ( T ) z ' ( T ) }  

By virtue of ( 1  1.92) and ( 1  1.93), the performance integral to be minimized 
is thus given by 

T 

f = I { x ' ( f ) @ L ( r ,  t )L@.,(T,  f ) x ( t )  + tr[LP,(r)]} dr  
1 

= x ' ( t ) M ( t ,  T ) x ( t )  + ( I  1.94) 

where 

M ( t ,  T )  = @ L ( T ,  ~ ) L @ , ( T ,  t )  dT ( 1  1.95) 

as already defined in Chap. 9. The first term of 4 given by (1 1.94), is thus a 
deterministic term x'( t ) M (  r, T ) x (  t ) .  To this term is added the integral which is 
the contribution due to the white noise. 

The covariance matrix P Z ( 7 ) ,  with z ( r )  given by (1 1.90) can be expressed as 

I, 

@=(r, A)FVF'@:(r,  A )  dA ( 1 1.96) 

Hence the second integral in ( 1 1.94) becomes 

tr [ LP,( T)] dT = IIT { I: tr[LQc(T, A)FVF'@:.(T, A ) ]  dh I,' 
after interchanging the integration and the operation of taking the trace. 

into the product of a matrix S and its transpose 
The spectral density matrix V of the noise excitation can always be factored 

v = SS' (1 1.98) 

Moreover, it is well known that 

tr [AB] = tr [ BA] 
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when AB and BA are both defined. (See Appendix.) It thus follows that 

tr[L@),(7, h)FVF'@,1.(7, A)] = tr[L@',(T, A)FSS'F'@:(7, A)] 

= tr[S'F'@L(.r, h)LQC(7 ,  A)FS] 

And, hence, again interchanging the integration and the trace operation, (1 1.96) 
becomes 

tr { S'F' @:( 7, A)L@,( 7, A )  dA FS d7 ( 1 1.99) 

Inverting the order of integration in (1 1.99)-taking careful note of how the 

J tr [ L P z ( 7 ) ]  d7 = 
1 f I 

limits of integration must be handled-we find that 

.From (1 1.95), however, the inner integral is M ( A ,  T). Thus (1 1.100) becomes 

Ir' tr [ L P z ( 7 ) ]  d7 = tr {S 'F 'M(A,  T ) F S }  dA I,' 
I,' 

Thus, finally, using (1 1.94), we obtain 

J =  x ' ( t ) M ( t ,  T ) x ( t )  + tr{S'F'M(A, T ) F S }  dA (1  1.101) 

Note that the same matrix M that appears in the deterministic contribution 
x'( t ) M (  t, T)x(  t )  to 1 due to the initial state x( f )  also appears under the integral 
sign. It follows that if the gain matrix G is chosen to minimize the peSIformance 
matrix M [which is what we have done in Chap. 9 by choosing G = G as given 
by (9.26) and the matrix Riccati equation (9.27)] then the integral in ( 1  1.101) is 
also minimized. The integral is the contribution due to the noise having the 
spectral density matrix V = SS'. Thus the optimum performance is given by 

( 1  1.102) I,' 3 = x'(t)$f(t, T)x(f) + tr {S'F'$f(A, T ) F S }  dA 

This form of the minimum expected value of the performance criterion 
shows the symmetry of the integrand. Using tr[AB] = tr[BA] in (11.102) 
restores the original spectral density matrix V: 

( 1  1.103) I,' j =  x'(t)fi(t, T)x(t) + tr{FVF'fi(A, T} dA 

for the process ( 1  1-84), i.e., 

x = Ax + Bu + FV 

with u being white noise with spectral density matrix V. 
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As the terminal time T becomes infinite the contribution to J of the 
deterministic component remains finite at x‘( t)&fx( t )  where M is the solution 
to the algebraic Riccati equation (9.29). But the contribution of the integral will 
in general become infi-nite. Thus it is more meaningful to refer to the 
“asymptotic cost rate” j which is the integrand of (1 1.103) and is given by 

2 = tr { F‘ VFfi}  (1 1.104) 

Having now established that the deterministic optimum control law is 
identical to the stochastic optimum control law (when process noise u is 
present), provided a noise-free measurement can be made of the state x, we now 
turn to the more realistic and difficult problem of finding the optimum control 
law when only a noisy observation of the state: 

y = c x + w  (1 1 .lOS) 

is available. We assume, as with the Kalman filter, that w is white noise with a 
spectral density matrix W. 

It is beyond the scope of this book to show that the optimum control law is 
linear, and in the form given by the separation principle of Chap. 8. (See Note 
11.6.) If we are willing to accept this form of the control law, however, then we 
can determine the optimum controller and observer gains. 

In addition to the process dynamics (1 1.84), we have the observer 

i = A i  + Bu + K ( y  - C i )  ( 1  1.106) 

with the observation y given by (1 1.105) and the control u given by 

u = -Gi  (1 1.107) 

Using ( 1  1.107), we obtain from (I 1.88) 

X = A X - B G ~ + F V  ( 1  1.108) 

and, with (11.107) and (11.105), we obtain from (11.106) 

i = A; - BGi - K [ C ( x  - 2) + W ]  ( 1 1.109) 

As we did in Chap. 8, we define the estimation error by 
1 e = x - x  (1 1.1 10) 

(11.11 1 )  

(11.112) 

Then, ( I  1.108) becomes 

X = ( A  - B G ) x  + BGe + Fv 

d = (A - K C ) e  + Fv - Kw 

And, on subtracting ( 1  1.109) from ( 1  1.1 1 I ) ,  we also get 

Note that ( 1 1.1 1 1) and (1 1.1 12) have the same form as deterministic equations 
(8.8) and (8.9) except that now the excitation noise u and the observation noise 
w are present. 
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Combine the two systems ( 1 1.1 1 1 ) and ( 1 1.1 12). into the metasystem: 

We still want to minimize 

I J = E{ Jr' (x'Qx + u'Ru) dt (11.114) 

For the sake of simplicity, we continue the development under the assumption 
that we are interested only in the contribution to due to the noise and not due 
to the initial conditions. The effects of initial conditions can be included 
without any difficulty, but there will be more terms to carry around. 

The integrand in ( 1  1.1 14) can be expressed as a quadratic form in the 
metastate [x ' ,  e']': 

X'QX + U'RU = x'Qx + P'G'RG$ = X'QX + ( x  - e ) ' G ' R G ( x  - e )  = x'Lx 

(11.115) 

where 
X =  [x] L =  [ Q + G ' R G  - G ' R G ]  

e - G ' R G  G ' R G  

Thus, as in the earlier development 

J = E {  IrT x'Lx dr} = IT tr [ L P ( r ) ]  dr ( 1  1.1 16) 
1 

for the process ( 1 1.1 13) 

i = A,x + Fv (11.117) 

where 

A - B G  BG ] F =  [' ] (11.118) 
A , = [  A - K C  F - K  

and P (  7) is the covariance matrix for the process defined by ( 1 1.1 17). Continuing 
as we did in (11.100)-(11.103) we find that 

T 

J = [  tr{FVF'M(T,T)}dT V = [ "  '1 (11.119) 
r o w  

where M satisfies the same equation, namely (9.16), that it4 satisfies for the 
deterministic system, except that A, and L as given by ( 1 1.1 18) and (1 1.1 15) are 
used in place of A, and L as defined in (9.16). Thus M satisfies the matrix 
differential equation 

-M = MA, + A:.M + L ( 1 1.120) 
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Partition M as follows 

( 1  1.121) 

In terms of the submatrices of M in ( 1  1.121) we find that ( 1  1.120) expands to 
three equations: 

-hi, = M,(A - BG) + (A - BG)'Mx + Q + G ' R G  ( 1  1.122) 

-fixe = M,BG + M,,(A - K C )  + ( A  - GB)'M,,  - G ' R G  ( 1  1.123) 

-&fe = M,(A - K C )  + (A - KC)'M, + ML,BG + G'B'M,, + G ' R G  ( 1  1.124) 

We now have to find two matrices: the control matrix G and the observer 
matrix K that minimize the trace of the m@x FVF'M, We can proceed as we 
did in Sec. 9.4, by letting M = M + N, G = G + Z, K = 4 + Y, substituting these 
into ( 1  1.122)-( 1 1.124), and thereby determining 6 and K .  (This derivation is left 
to the reader.) We can reduce the amount of calculation, however, by noting that 
( 1  1.122) for M, is exactly the same as the equation (9.20) for the deterministic 
gain. Thus we minimize the M ,  component of M by computing the control gain 
G in exactly the same way as in the deterministic case, i.e., 

G = 6 = ~-1~12~ ( 1  1.125) 

where 

-2, = A ~ ~ A  + ~ t A 2 ~  - A ? x ~ ~ - ' ~ r M x  + Q (1 1.126) 

as in (9.26) and (9.27). Having thus determinedJhe optimum control gain we 
can proceed to find the optimum observer gain K using (1 1.123) and ( 1  1.124). 
In particular, ( 1  1.123) can be written 

-Mxc = (A?,€? - 6 " R ) G  + M,,(A - K C )  + (A - B6)'Mx, (11.127) 

But, by ( 1  1.125), k X B  - G ' R  = 0. Thus the forcing term on ( 1  1.123) vanishes 
and we may thus conclude that 

M.x, = 0 (11.128) 
A 

This means that the optimum matrix M is block diagonal. Hence 

W F f M = [ F  ][ v o  ][: ''I[: i,] F - K  O W  - K' 

1 FVF'M, FVF' Me 
FVF'M, (FVF'+ KWK')M, 

( 1  1.129) 

The off-diagonal elements do not contribute to the trace of a matrix. Thus 

tr[FVF'Ml= tr[FVF'M,]+ tr[(FVF'+ KWK')M,] (11.130) 

Having already determined the control gain matrix M, = hx to minimize 
tr[FVF'Mx] we now need to determine the gain matrix K that minimizes 
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t r [ (FVF'+ KWK')M,] where Me satisfies ( 1  1.124) with M,, = 0 and G = 6, 
i.e., 

-Me = M,(A  - KC)  + ( A  - KC)'M, + 6 l R 6  (11.131) 

With 6 given ( 1  1.13 1) is a linear equation, the solution 
expressed in terms of the observer transition matrix @,, 
A, = A - KC: 

~ ~ ( 7 ;  T )  = @ ; ( A ,  T)6 f~6@o(~ ,  7) dh I- 
Then the second term in ( 1 1.130) can be written 

t r [ (FVF'+ KWK')M,(T, T ) ]  

of which can be 
corresponding to 

= I T  t r [ (FVF'+  KWK')@;(h, : ) 6 ' R 6 @ , ( h ,  T)] dh 
7 " - 

A B 

again using tr ( A B )  = tr (BA) .  Thus we have 

t r [ (FVF'+ KWK')M,(T, T ) ]  

@ , ( A ,  T ) ( F V F ' +  KWK')@;(h, T)  dh (11.132) 1 
Hence, the contribution to J of ( 1  1.119) due to ( 1  1.132) is the integral thereof 
from f to T :  

J0 = I I T t r  [ 6 ' R 6  ['@,(a, T)(FVF'+  KWK')@L(A, T )  dh dr  
7 1 

= tr [,'d'R6{ [* @,(A, 7)(FVF'+ KWK')@;(h, T) d7 dh (11.133) 
I 

upon inversion of the order of integration as was done in going from ( 1  1.99) to 

The inner integral is in the form of a covariance matrix (10.57) for a system 
having the state transition matrix Q0 and an excitation noise covariance matrix 
FVF'+  KWK'. Thus we can write 

( I  1.100). 

Jo = tr 6 " R 6 P ( A )  dh I,' 
where, by (10.58), 

( 1 1.134) 

P = ( A - K C ) P +  P I A - K C ) ' + F V F ' + K W K '  (11.135) 
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But ( 1  1.135) is exactly the matrix ficcati  equation ( 1  1.13) for the optimum 
observer for the case in which u and u are uncorrelated. Thus we can conclude 
that Jo is minimized by selecting the observer gain as the Kalman filter gain 

. L A  

K = K = PC‘R- ‘  (1  1.136) 

where b is given by 

F = AF + F A  - Fclw-‘cF + FVF’ 

which is the same as ( 1 1.15). 

theorem,’’ which can be summarized as follows: 
The result that we have just obtained is the celebrated “separation 

To minimize the expected error in controlling a linear system, 

1 = AX + Bu + FU 

with observations 

y = c x + w  

( a )  Use the control law 

u =  -62 
where 2 is the output of a linear observer 

1 = ~ 2 +  BU + B(,  - c;) 
( b )  Find the control gain matrix 6 as the solution of the corresponding deter- 

ministic optimum control probLem. 
( c )  Find the observer gain matrix K as the optimum gain for the corresponding 

Kalman filter. 

When the gains are chosen in accordance with the separation theorem, the 
minimum value of the expected performance is given by 

( 1  1.137) 

To the two integrals in ( 1  1.137) we must add the contribution of a nonzero 
initial condition x ‘ ( t )  A( t ,  T ) x (  t ) .  The first integral in (1 1.137) was already 
obtained in (1 1.102) for the case in which the entire state vector is measured 
without noise. The cost of measurement noise is thus given by tbe second 
integral, which is seen to involve both the optimum gain matrix G and the 
Kalman filter covariance matrix F. 

If the final time T is infinite, then, as in the case of noise-free observations, 
it is more meaningful to use the asymptotic cost rate 

i = tr { F V F ’ M  + C R G P )  (11.138) 
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where A?, G, and p refer to the steady state (algebraic) control and variance 
equations. 

Example 11F Forcerebalanced accelerometer In Example 11B we considered the design of a 
Kalman filter for estimating the state in a " force-rebalanced" accelerometer for which the 
control law was obtained in Example 9B. In this example we shall study the behavior of the 
closed-loop system. 

The complete block-diagram of the accelerometer is shown in Fig. 11.7, which is based on 
the dynamic model 

X = a + u  (1lF.1) 

where a is the external acceleration and u is the control input, given by 

u = -g, f  + gzf - a  ̂ ( 1  1 F.2) 

where f = f,, f = f,, and a  ̂ are the estimated position, velocity, and acceleration of the proof 
mass. The control gains, as found in Example 9B, are 

g l = c  g,=& (llF.3) 

where c is the reciprocal of the control weighting and may be regarded as one of the design 
parameters. 

The Kalman filter is given by 

Unknown input 
acceleration x x X 

a 

( I  I F.4) 

Proof 
mass 
position 

Y 

I ii 

Estimated 
acceleration 
output 

Figure 11.7 Force-rebalanced accelerometer with capture-loop dynamics. 
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where, as determined in Example 1 1 B, the Kalman filter gain matrix is given by 

(1 1F.5) 

where V is the spectral density of the acceleration rate to be measured, and W is the spectral 
density of the noise in measuring the pick-off position. Thus, as noted in Example 11  .B, 0 can 
be regarded as a measure of the signal-to-noise ratio. 

Note that the Kalman filter (observer) in this application not only produces the feedback 
signal to keep the proof mass "captured," but also provides an estimate a  ̂ of the unknown 
input acceleration a. To the extent that the input acceleration is a random walk and the noise 
in measuring the proof mass position is white noise, the estimate 6 is "optimum." Otherwise 
the parameters 0 and c are design parameters which can be varied to shape the dynamic 
characteristics of the accelerometer. 

By the separation principle, the (nominal) closed-loop pole locations are the zeros of the 
characteristic polynomial for full-state feedback and the zeros of the characteristic polynomial 
of the Kalman filter. From Example 9B, the former are at 

- 
J 2 c  

5 --(I 2 * j )  

and, from Example 1 I.B, the latter are at 

J3 
s = -a and s = -a( + j T )  

( I 1  F.6A) 

( I  1F.6B) 

There are thus five poles in the closed-loop system having the nominal locations shown in Fig. 
11.8. Three poles lie upon a circle of radius 0: on the negative real axis and on rays at 60" 
angles to it. These poles are due to the Kalman filter. The poles due to the full-state feedback 
control lie on a circle of radius 2c on rays at 45" from the real axis. 

One of the problems that might arise in a practical force-rebalanced accelerometer is a 
variation in the scale factor of the feedback loop. In ( I  1F.1) we assumed that the control input 
u has the same scale as the acceleration: one unit of control force for one unit of acceleration. 
This ideal condition can only be approximated in a real accelerometer in which the control 
force is produced by a suitable type of electrical or electromagnetic transducer that converts 
electrical signals to mechanical force. The hallmark of quality in an accelerometer is the 
stability of the transducer scale factor. 

To assess the effects of variation of the transducer scale factor, suppose that the scale 
factor is 

y = I + &  

instead of I .  The variation E in the scale factor is not known. Hence the control signal that is 
fed back to the observer is 

= - K ;  

while the actual control signal is 

u = yli 

Let H,(s) be the compensator transfer function, i t . ,  

( I  I F.7) 4 s )  
V b )  

H,(s) = ~ = G(s1 - A + BG + K C ) - ' K  

Then the transfer function from the unknown acceleration a to the proof mass position y is 

( 1  1 F.8) 
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Figure 11.8 Closed-loop poles of force-rebalanced accelerometer. 

Evaluating ( 1  1 F.7) we find that 

(1 1 F.9) 

The characteristic polynomial for the system, on substituting (llF.9) into ( I  1F.8), is 

D(s) = s5 + ( k ,  + g2)sd  + (gl + kz + k,g2).v3 

( 1  1F.10) + y [ ( ~ i k i  + g2k2 + k , ) s2  + ( g i k 2 +  g z k , ) s  + g i k J  

( I  lF.11) 

where DG(s) = s'+ g2s  + g ,  and D K ( ~ )  = s3 + k , s 2  + k,s + k3.  D,(s) is thecharacteristicpoly- 
nomial of the full-state feedback system and D,(s) is the characteristic polynomial of the 
Kalman filter. This result is of course a consequence of the separation principle. [Verify ( I  IF. I 1) 
by multiplying D,(s) by D, (s).] 

When y # I ,  the closed-loop poles are given by the zeros of ( 1  IF.lO). Let us study the 
behavior of the closed-loop poles by a root-locus analysis. From Fig. 11.8 we can see that the 
important parameter is the ratio of the radii of the two circles upon which the closed-loop 
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poles lie (when y = I ) .  Thus we can set R = I and study the behavior of the closed-loop poles 
for y # 1 as a function of c. For R = 1, k ,  = k ,  = 2 and k ,  = I .  (See 11F.5.) And g1 and gz are 
as given by ( 1  I F.3). Thus 

The zeros of H,(s) occur a t  
C 

s = -~ -(I * j )  
2c + J 2 c  

and the poles of HJs) occur a t  

s = o  
and at 

( 1  IF. 12) 

( 1 I F. 13) 

(llF.14) 

As c + 0 we see from ( I  1F.13) that the zeros tend to -Jc/2 ( 1  f j )  and the poles tend to 
- 1  f j .  As c + m the zeros tend to - ( I  f j ) / 2  and the poles tend to -Jc/2(1 * j ) .  Moreover, 
for all values of c the poles are farther from the origin than the zeros. Thus the “constellation” 
of open-loop poles and zeros will have the appearance shown in Fig. 11.9(a) for large c, or in 
Fig. I I .9( b )  for small c. Note the presence of a triple pole at the origin. One of the poles is due 
to the compensator (see 1 IF.2) and a double pole is due to the double integration produced by 
the proof mass. The root loci have the appearance shown. For the nominal scale factor y = I ,  
three poles lie on  the unit circle (for R = 1) and two lie on  the 45” lines connecting the 
open-loop poles to the open-loop zeros. As the scale factor is increased above unity the loci 
approach the imaginary axis; further increase in y makes the loci cross into the right 
half-plane and ultimately become asymptotic to lines at 45” to the positive real axis. It is thus 
apparent that the system has finite gain and phase margins. We shall see that the scale factor 
y appears directly in the transfer function between the unknown input acceleration a and the 
estimated acceleration 6. Consequently, y cannot be permitted to deviate from unity by more 
than a few percent even in an instrument of modest quality. Thus there is little danger that the 
closed-loop system will become unstable due to a change in y. 

A straightforward calculation produces the transfer function from the unknown input a 
to the estimated acceleration 6: 

( I  IF.15) 

where D(s) is given by ( 1  IF.10). 

DK(s) = s2 + k l . s Z +  k,s + k,.  Thus, when y = 1, (llF.15) becomes 
When y = I ,  we found that D(s) factors into the product of Dc(s) = sz + g,s + g, and 

( I  1 F.16) 

which is completely independent of the control gains g, and g,: The dynamics of the 
accelerometer depend entirely on the Kalman filter gains, which can be selected to provide 
whatever frequency response (bandwidth) is desired. Note also that the d c  gain of the 
accelerometer is unity, so the accelerometer tracks an acceleration step with zero steady state 
error. (The control gains, however, must be chosen so that the proof mass is captured 
“tightly” enough; its excursion must not exceed the physical limits of motion under the largest 
acceleration that might be encountered during the operation of the instrument. The transfer 
function F(s) given by ( 1 1 F.8) can be used to help determine these gains.) 

When the scale factor y # 1, then the more general transfer function ( I  IF.15) must be 
used. Since, in practice y = I ,  the dynamic response will not be very much different from 
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,, ( y =  I 

4 
! 

- I  

-2 

\ 
-3 

Figure 11.9 Root-loci for force-rebalanced accelerometer. ( a )  c = 10, fl = 1 ; (6) c = 0.1, fl = 1. 

(llF.16). The principal difference will be in the steady state behavior. From (llF.15) and 
( I  I F.I 0), we see that the dc gain is 

( 1  1 F. 17) 

Thus the scale factor error in producing the feedback signal is also the scale factor error of the 
instrument. An accelerometer of inertial navigation quality could be expected to have a scale 
factor error E = y - 1 of less than The scale factor error of a more modest quality 
accelerometer would be of the order of 1 percent. 

11.8 CHOOSING NOISE FOR ROBUST CONTROL 

White noise, for which the control law of the separation theorem is optimum, is 
doubtless present to some extent in every real system. But in addition to white 
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noise, a real system has many other types of disturbances and uncertainties; 
compared to these, the white noise may be relatively insignificant. Unfortu- 
nately, the theoretical framework hardly exists for the treatment of anything but 
white noise. Thus the designer is faced with the prospect of either approxi- 
mating all types of noise and disturbances as white noise (or, equivalently, as 
random process resulting from passing white noise through a linear system) or 
doing nothing. If the first option is distasteful, the second is even less palatable. 
For expedience it is often necessary to approximate all uncertainties present in 
a system by white noise. Once this is done, no claim to optimality can of course 
be asserted for a design based upon use of the separation theorem. Such a 
design may nevertheless deliver outstanding performance when judged by 
practical standards. 

One of the types of uncertainty to which we have already alluded is 
uncertainty in the parameters (e.g., mass, damping, natural frequency, aerody- 
namic coefficients) that define the dynamics of the process. Uncertainty of this 
nature is far from white noise, but one practical way of dealing with it is to 
“cover” it with white (or correlated) noise. Suppose, for example in a second- 
order system 

X I  = XI 

X, = -Cl2xI - 25,RxZ - 2A5~2 + u 
The term 285x, represents an uncertainty in the dynamics which the control 
system designer might wish to approximate in some manner, perhaps by 
correlated noise of appropriate spectral characteristics and intensity. Thus one 
might employ a model 

1, = -n’x, - 25,nx, + x3 + u 

Where x3 could be a first-order Markov process 

1 3  = -ax3 + u 

which approximates the effect of the uncertainty 2A5x2. One possible way of 
choosing the parameters of xj would be to  make it have the same spectrum as 
2A5x2 where the spectrum of x, is determined by the closed-loop control system 
designed on the assumption that A( is zero and then multiplied by the expected 
value of (AL)’. A correlated noise of this nature might “cover” the actual 
uncertainty 2A5x2 but can never have all the requisite statistical properties. For 
example 2A5x2 is completely correlated with x, but that correlation will be 
absent when the uncertainty is approximated by x3. This method of covering 
uncertainty may not always be successful but no harm, and often much benefit, 
can come from trying it. 

The use of white noise to cover process uncertainty can be theoretically 
justified on the basis of its improvement of the robustness of the resulting 
control system. This case is that in which the control (distribution) matrix B is 
uncertain. 
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In this case the assumption of fictitious white noise, in addition to any 
white noise that may actually be present, enhances the robustness and can, 
asymptotically, as the intensity of the fictitious noise tends to infinity, achieve 
the Doyle-Stein condition (8.74) described in Chap. 8. To see this, consider the 
open-loop process 

X = AX + Bu + Fu, (1  1.139) 

Suppose that there is uncertainty as to the control distribution matrix. To cover 
this uncertainty, we suppose the presence of additional noise u2 acting together 
with the control input. Then, ( 1  1.139) becomes 

X = Ax + B(u + u2)  + Fu = AX + Bu + Fu, + Bu2 

The steady state variance equation for this observer is 

0 = AP + PA'- PC' W-lCP + FV,F'+  BV,B' (1 1.140) 

where V ,  is the spectral density of the noise u,  and V, is the spectral density of the 
noise u2. We are shortly going to let the latter spectral density tend to infinity. 
For this purpose, let 

v, = q 2 v  (1 1.141) 

Then ( 1 1.140) becomes 

0 = AP + PA' - K WK' + FV, F' + q2BVB' ( 1 1.142) 

As 9 + co both p and K tend to infinity. But as shown in [8], P does not 
go to infinity as fast as K when C ( s 1  - A ) - ' B  has no right half-plane 
transmission zeros. Assuming this to be the case we conclude that 

K W K '  + q'BVB' (11.143) 

We can factor ( 1  1.143): 

K W ' j 2  WI/ 'K '  + ( 4 B V l / ? ) ( q V ' / ' B ' )  (1 1.144) 

and identify corresponding factors on the left and the right of ( 1  1.144). Thus, as 
the noise intensity multiplier q tends to infinity, 

K + qBV' /2W-' / '  ( I  1.145j 

This is the asymptotic gain that is used in the Doyle-Stein relation (8.74), the 
right-hand side of which is 

K ( I  + C Q ) K ) - '  + qBV1/ '  W-'"((I + C @ q B V 1 / ' W - ' / ' ) - '  + B(COB)- '  

as ~ + C O  

Thus, by the use of an increasingly large noise in parallel with the input u, we 
can approach the robustness of the Doyle-Stein observer described in Chap. 8. 

It is important to recognize that it may not be possible to use an observer 
gain given exactly by 

K = 9RV1/?W-'/' 
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because a gain matrix of this form may result in the observer closed-loop 
dynamics matrix A, = A - KC not being a stability matrix. But if K is chosen 
as the solution of the variance equation (1 1.140) for any finite (albeit arbitrarily 
large) value of V, = q2V and the process is observable, the corresponding gain 
matrix will necessarily result in a stable observer. 

Example 11G Inverted pendulum control In the observer for control of an inverted pendulum 
that we considered in Example 1 IA, the B matrix and the F matrix were the same 

B = F = [ y ]  
From Sec. 11.8, we know that the control law is made increasingly robust by allowing the 
spectral density of the excitation noise to become infinite. In this example we wish to verify 
this and study the closed-loop behavior. 

In Example 1 I A  we found the observer gain matrix 

where 

- = l + J I + Y , m  a2 as - -+m V 
2 n2 W W 

Does the Doyle-Stein condition (8.74) hold? For this system 
- I  

0 = (sI - A ) - ’  = 

To compute the right-hand side of (8.74) we need 

Then the right-hand side of (8.74) is 

To compute the left-hand side of (8.74) we need: 

Thus the left-hand side of (8.74) is 

s2 - n2 I a’n’/2 an 1 s2 ~ n’ + ans + a’n2/2 
P(2 + c(DP)-I = 

(1IG.1) 

( 1  1G.2) 

( 1  IG.3) 

(1 IG.4) 

(l lG.5) 

( I  1G.6) 

Thus as a + m, the left-hand side of (8.74) as given by ( 1  IG.6), approaches the right-hand side 
as given by (1 1G.5). 

To study the behavior of the closed-loop system we use an observer with the gain matrix 
given by ( l lG . I )  and the control gain matrix as designed in Example 9A: 

G = tgl, g21 = [P2n2/2, Pol (l lG.7) 
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with 

The transfer function of the compensator is given by 

H,(s) = &(sl  - A + E d  t kC)-’k 

( I  1G.8) 

(Note that the compensator transfer function is completely symmetric with respect to a and p .  
Could this have been anticipated?) 

The denominator of ( I  lG.8) is 

with roots at 

n 
2 

s = --[(a + p )  * J 4 -  (a + p)2 ]  

which are two of the open-loop poles of the system. The other open-loop poles are due to the 
dynamics of the inverted pendulum itself and are at 

s = *n 
The numerator has a zero at 

2 a ( l  + a p / 4 )  

f f + P  
Let us investigate how the range of stability depends on the parameters a and p of the 

compensator. With no loss in generality we can take = I .  The limiting case occurs when the 
control “availability” parameter c and the “signal-to-noise” ratio are both zero. This in a 
sense is the worst possible case: The cost of control is very high and the quality of the sensor 
is very low so that its noise W is much larger than V. This sets the lower limit upon 
performance. In this case a = p = 2 and the compensator transfer function is, by (llG.8), 

s =  

8(s + 1) 

(S + 2j2+ 3 
H,(s) = ( l lG.9)  

Thus there 1 s  a zero at s = -1, on top of the stable pole of the pendulum, and poles at 
s = -2 i j J3.  The loop transmission is 

8 
[ (s  + 2)* + 3][s - I ]  

- 
1 

s2 - 1 
F(s) = HC(s)- - 

The return difference in this case is given by 

I 8 
T(s)= l + K H c ( s ) - = 1 + K  

s2-  1 ( S Z  + 4s + 7)(3 - I )  
( I  IG.10) 
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1 
2 

Figure 11.10 Root locus for controlled inverted pendulum (a = f l  = 2). 

The root locus, as shown in Fig. 11.10, corresponding to (1  1G.10), consists of three lines 
intersecting at s = -1 (when K = 1). Since K = 1 is the nominal value of the loop gain, it 
implies that the three closed-loop poles are all at s = -1, which is consistent with the results 
of Examples 9A and 1 I A. (There should also be a fourth pole at s = -1, but that pole is cancelled 
by the zero.) A Routh-Hunvitz analysis readily establishes that the range of gain for stability is 

% < K < 2  

The margin for gain reduction in this case is uncomfortably small. The margin for gain 
increase is better, but still not much to brag about. 

More favorable margins are to be expected when the signal-to-noise ratio (or the control 
availability parameter c)  is higher. Suppose, in particular, that p remains at its minimum value 
of 2 as (Y (and hence V/ W) is increased. In this case (llG.8) gives 

2a ( l  + a/2)(s + I )  
= (s + a ) ( s  + 2) + (1 t a2/2) 

( I  lG.l I )  

There is still a zero at s = - 1 which falls on top of the stable pendulum pole. The compensator 
poles occur at the zeros of the denominator of (1 lG.l I), i.e., at 

( 1  1G.12) 
U I  

2 2  
s = -1 - - + j - d F i Z  
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Note that as a + a, the compensator poles tend to - (a /2)(1 j l ) .  (This was to be expected 
in view of earlier results. See Note 9.4.) A Routh-Hurwitz stability analysis using ( 1  1G.11) 
gives the stability region: 

a212 + 2a + 1 a 
= Kmin < K < K,,, = 1 + - 

a? + 2a 2 
( 1  1G.13) 

The lower limit K,,, of the stability range tends to 1/2. (Since the open-loop system is 
unstable, the closed-loop system must of necessity be only conditionally stable.) The upper 
limit K,,, of the stability range, however, becomes infinite as a + a. Thus it is possible to 
achieve as large a gain (increase) margin as desired by assuming a sufficiently large value of 
v/ w. 

PROBLEMS 

Problem 11.1 Instrument servo 

A compensator based on a Kalman filter is to be designed for the instrument servo of Prob. 9.6. 
Only the position error e is measured, so that 

y = e + w  

where w is white noise with spectral density W. The only excitation noise present occurs at the 
control input, so that the angular velocity is 

ai = - a w  + pu + u 

where u is white noise of spectral density V. 
( a )  Find and tabulate or plot the Kalman filter gains and corresponding closed-loop poles as 

a function of the signal-to-noise ratio V /  W. 
( b )  Using the optimized gains determined in Prob. 9.6, part a, for several values of q:, and 

several values of V /  W, find gain margin, i.e., the range of gain variation for which the closed-loop 
system remains stable. Tabulate the results as functions of q: and V /  W. 

Problem 11.2 Inverted pendulum on cart: compensator for single output 

A compensator for the inverted pendulum on the motor-driven cart of Prob. 3.6 et seq. is to be 
designed using the gains of Prob. 9.10 and a full-order Kalman filter as an observer. 

( a )  Assume that the only excitation noise present is coincident with the control and has the 
spectral density u2, and that the only observation is the cart displacement, which is measured 
through white noise of spectral density w2. Determine and plot or tabulate the Kalman filter gains 
and poles as a function of the ratio u 2 / w 2  for 1 5 u2/ w2 5 lo6. 

( b )  Using the regulator gain matrix of Prob. 9.10, part a, with r' = 0.01, determine the 
compensator transfer function D(s) for the range of u2/ w2 in part a. Note that the compensator has 
poles in the right half-plane. 

in part b, determine that the range of K for which the 
closed-loop system, having the return difference T(s) = 1 + KD(s)H(s) (where H(s) is the transfer 
function of the plant), is stable. 

( c )  For r z  = 0.01 and u2/w2 = 

Problem 11.3 Inverted pendulum on cart: two outputs 

The unstable compensator of Prob. 1 1.2 is undesirable for various reasons, one of which is that 
the compensator must not be turned on without the loop being closed. To achieve better 
performance it is proposed to measure the angular displacement of the pendulum as well as the 
linear displacement of the cart. Thus we have y ,  = x, and y, = x3 = 0 for outputs. Let the output 
spectral density matrix be W = w21. 
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( a )  For 1 5 u2/w2 5 lo6 find the closed-loop poles and the corresponding gain matrices. 
( 6 )  For the same range of u2/w2 as in part a and with the regulator gain matrix of Prob. 9.10, 

part a, with r2 = lo-’, find the poles of the compensator. Is it possible to achieve a stable 
compensator by a proper choice of u2/ w2? 

for the regulator, find the range of gains K for which the 
return difference T(s) = 1 + KD(s)H(s) (where D(s)  and H(s) are the compensator and plant 
transfer functions, respectively) has its zeros in the left half-plane. 

(c )  For u 2 / w 2  = lo5, with r2 = 

Problem 11.4 Temperature control: Kalman filters 

Consider the temperature control system for which the control gains were determined in 
Example 9C. A compensator is to be designed using a full-order Kalman filter to estimate the state 
using a measurement y = x, + w where w is white noise of spectral density W. 

( a )  Assume that the exogenous temperature xo is a Wiener process, that is, 1, = u where u is 
white noise of spectral density V. Determine the Kalman filter gains and poles as a function of the 
“signal-to-noise” ratio V/ W. 

( 6 )  Using the gains determined in Example 9C for k = lo-’ find the transfer function of the 
compensator. Calculate and tabulate the gain margins as functions of V/ W. 

Problem 11.5 Three-capacitor thermal system 

A compensator for the three-capacitor thermal system of h o b .  3.7 et seq. is to be designed 
using the optimized gains as determined in Prob. 9.16 and a Kalman filter as the observer. To design 
the Kalman filter, assume that the reference temperature V and the ambient temperature are 
independent Wiener processes 

( a )  Assume that the noise in measurement of temperature is white noise with a spectral 
density of W. Find and tabulate (or plot) the Kalman filter gains and pole locations as the 
signal-to-noise ratio V/ W vanes from 10-a to 1.0. 

(6) Determine the compensator transfer function obtained by combining the control gains of 
Prob. 9.16 with the Kalman filter gains of part a. The results can be arranged in a table as follows: 

Control Signal-to-noise Compensator 
weighting ratio transfer function 

1 

I o - ~  

I 

10-2 

1 

(c )  Determine the gain and phase margins for several of the combinations studied in part b. 
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Problem 11.6 Aircraft stability augmentation: compensator 

A compensator for stability augmentation of the aircraft considered in Example 8C et seq. is 
to be designed based on the separation theorem. 

( a )  Design the Kalman filter: Assume that the process excitation is white noise coincident 
with the control input, and has a spectral density V, and that the only observation is of the pitch 
rate q = x3 which is corrupted by noise of spectral density W. Find and tabulate the Kalman filter 
gains and closed-loop poles as a function of V/ W for 

( b )  Using the control gains determined in part b of Prob. 9.14, find the transfer function of the 
compensator and the gain and phase margins as a function of V/ W in the range of part a. 

( c )  Discuss the similarities and differences of the compensator designed in this problem as 
compared to the compensator described in Example 8C. 

5 V/ W 5 10'. 

Problem 11.7 Aircraft lateral dynamics: Kalman filter 

Design a Kalman filter for the aircraft lateral dynamics (Prob. 8.9 et seq.), using the B matrix 
as the noise distribution matrix (ix., assume that the noise exciting the process enters at the control 
points) with a noise covariance matrix V = u21. The observations are yaw rate r and the roll rate p ,  
with equal amounts of noise on each, i.e., W = w'l. 

( a )  Determine the gains and pole locations of the Kalman filter as a function of the 
"signal-to-noise" ratio u z / w 2 ,  for the case in which 4" is to be regarded as a determined quantity. 

( b )  Modify the Kalman filter of part a to include the estimation of &,. 

Problem 11.8 Aircraft lateral dynamics: compensators 

A compensator for the lateral motion of the aircraft studied in Prob. 11.7 is to be designed by 
combining the compensator designed in that problem with the optimum linear quadratic design 
obtained in Prob. 9.15. 

( a )  Draw the block-diagram of the compensator. 
( b )  Using the control gains found in Prob. 9.15, find the transfer function of the compensator 

in terms of the ratio of u2/w' in the range studied in Prob. 11.7. 
(c) For several of the values of u'/ w2 in part b, plot the minimum and maximum singular 

values of the return difference T,(s),  and use these results to estimate the gain and phase margins 
of the system. (See  Sec. 4.9.) 

Problem 11.9 Aircraft lateral dynamics: reduced-order Kalman filter 

A reduced-order Kalman filter is to be designed for the aircraft lateral dynamics-See Prob. 

( a )  Design the reduced-order (i.e., second-order) filter assuming do is a known quantity. 

( b )  Repeat part a for the third-order filter that includes the estimation of &. 

1 1 . 7 4 1 1  the basis of the assumption that the sensor noise covariance matrix W is zero. 

Compare the result with that obtained in Prob. 11.7 as u2/w2 + m in the latter. 

Problem 11.10 Velocity-aided inertial navigation 

Consider the velocity-aided inertial navigation system described in Example 1 1C. 
( a )  Assume that the accelerometer noise spectral density V, is negligible. Find the steady state 

covariance submatrix 

in terms of the ratio V,/ W. 
( b )  Draw the block-diagram of the Kalman filter. 
( c )  Find the gains and closed-loop poles of the Kalmar. filter. 
( d )  Compare the position and velocity errors of the velocity-aided system with those of the 

unaided system as  determined in Prob. 10.3. 



464 CONTROL SYSTEM DESIGN 

Problem 11.11 Two-axis gyro: Kalman filter and compensator 

Consider the two-axis gyro of Prob. 6.9 et seq. Suppose that there are only two vector noise 
sources present. One source of noise generates the external angular velocity: 

GjxE = U.v 

Gy, = ug 

where u, and u, are independent white noise processes having the same spectral density, i.e., 

(As discussed in Chap. 10, this makes o, and oy Wiener processes.) 

which are - 

The other (vector) source of noise is on the output of the position “pick-offs,” the outputs of 

6, = + w, 

where wx and wV,  like u, and ur are also independent white noise processes: 

Since the noise process [ u , ~  uy] generates the angular velocity components that the gyro is to 
measure, it is really the “signal” to the gyro. Thus it is appropriate to identify the ratio u / w  as the 
“signal-to-noise ratio” of the system. 

( a )  For the state vector x = [S,, S,, oXB, wY8, oXE, w,J’ which the Kalman filter is to estimate, 
find and plot the elements of the Kalman gain matrix and the corresponding closed-loop poles, 
using the numerical data given in Prob. 6.9, with signal/noise ratios in the range [0, 10‘1. 

( b )  Draw the block-diagram of the control system showing the control outputs u, = t X / J D .  
u, = T , / J ,  and the estimates GxE and G Y E  of the input angular velocity. 

Problem 11.12 Distillation column: full-order Kalman filter 

The compensator for the distillation column of Example 6D and Prob. 9.17 is to be designed 
by using a full-order Kalman filter as an observer. 

( a )  Assume that the disturbances represented by the exogenous vector are white noise with a 
2 X 2 spectral density matrix V = u21. The observations are of the temperature differences y ,  = AT, 
and y, = AT,, with the observation matrix C as given by (2G.5) of Chap. 2. Assume that the 2 X 2 
spectral density matnx of the temperature measurements is W = w21. Find and tabulate or plot the 
Kalman filter gains and corresponding observer poles as the ”signal-to-noise ” ratio uz/ w z  varies 
from 0.001 to 100. 

( b )  Using the regulator gains calculated in Prob. 9.17 for r2 = 1.0, find the compensator 
transfer functions and estimate the gain and phase margins using (4.87) of Sec. 4.10. 

(c) A gain margin of at least 3 is desirable for this application. I f  the estimates of the gain 
margin as determined in part b are less than 3, assume the presence of white noise of spectral 
density 9’I at the control input. Increase the value of q2, according to the theory of Sec. 11.8, until 
the desired gain margin of 3 is achieved. 

Problem 11.13 Double-effect evaporator: compensator design 

The design which was started in Prob. 9.18 for the compensator for the double-effect 
evaporator will be completed now. 

( a )  Design the Kalman filter for the process using the observations x3, x,, and x5, assuming 
that the three disturbances d , ,  d,, and d, are white noise with equal spectral density W. Find and 
tabulate the Kalman filter gains and filter poles for the following values of the signal-to-noise ratio: 
vl w = lo2, lo3, lo4. 
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( b )  Select a suitable value of V/ W from part a and a gain matrix from part a of Prob. 9.18, 
and determine the transfer function (matrix) of the compensator obtained by combining these. 
Analyze the robustness of the design by computing the singular values of the return difference. 

( c )  A gain margin of at least 3 (9.5 dB) would be appropriate for this type of system. Does the 
design of part b appear to achieve this margin? (Use the bounds given by (4.88) of Sec. 4.10.) If 
the gain margin is too low, assume the presence of white noise of spectral density V, at each 
of the control inputs. For several values of V,, recompute the Kalman filter gains and the 
corresponding compensator transfer functions. Then repeat the singular-value analysis to determine 
the value of V, and the corresponding compensator transfer function that achieves the desired gain 
margin. 

Problem 11.14 Distillation column: estimation of disturbances 

It is desired to  achieve improved disturbance rejection in the distillation column control system 
by assuming that the disturbances each consist of two components: a white noise component as 
already considered in Prob. 11.12, and, in addition, a Wiener process component Xo (the integral of 
white noise, as  explained in Chap. 10). Thus, for the purpose of designing the Kalman filter we use 
the metastate vectorx = [x’, %A]’ which has six components. The Wiener process component X, satisfies 
f, = 17, where U is a white noise process of spectral density v = V21. 

( a )  Write the differential equations that describe the compensator and draw the block-diagram 
corresponding to it. 

( b )  Study the variation of the Kalman filter poles as  obtained in Prob. I 1.12 as  the white noise 
V responsible for the Wiener process component of the disturbance increases in intensity. 

(c) Find the transfer function of the compensator (which is now of sixth order) using the 
regulator gains of Prob. 9.17 with r2 = 1.0 and the corresponding value of C*, combined with the 
Kalman filter gains for u 2 / w z  = 1.0 and U2/w’  = 0.01. 

( d )  Investigate the robustness of the design by finding the singular values of the return 
difference. 

Problem 11.15 Distillation column: reduced-order Kalman filter 

A compensator for the distillation column of Prob. 11.12 based on  a reduced-order Kalman 
filter is to be designed under the assumption that the temperature measurements are noise-free, i.e., 
that the spectral density matrix W of the observations is zero. The exogenous disturbances are to be 
treated as white noise. 

( a )  Write the equations (algebraic and differential) that define the compensator that uses 
the reduced-order Kalman filter. 

( h )  Find the transfer function D(s) of the compensator from the measured output y to the 
control u. Compare this transfer function with that obtained in Prob. 11.12 as  w + 0. 

( c )  Calculate the return difference T(s) = I + D(s)G(s) and discuss the robustness of the 
closed-loop system. 

Problem 11.16 Constant-altitude autopilot: altimeter is only sensor 

A Kalman filter is to be used as the compensator for the constant-altitude autopilot considered 
in Prob. 6.6 et seq. The only sensor is an altimeter having an output y = h /  V + w where w is white 
noise with spectral density W. 

( a )  Assume that the only excitation noise present is coincident with the control input and has 
a spectral density v (not to be confused with the velocity V of the aircraft). Find and plot the 
Kalman filter gains and observer poles for the following range of “signal-to-noise” ratios: 

( b )  For the v/ W = lo’, lo4, 10’ in part a, and the feedback control gains determined in Prob. 
0.01, find the transfer function of the compensator, and find the 

1 c v/ w 5 10“. 

9.13, with c: = c: = I ,  and r2 
range of loop gains for which the closed-loop system remains stable. 
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Problem 11.17 Constant-altitude autopilot: turbulence excitation 

The compensator for the constant-altitude autopilot is to be designed to provide immunity to 
wind turbulence, which may be assumed to have a Dryden spectrum and can be modeled by a 
second-order system excited by white noise. The effect of the turbulence is to alter the angle of 
attack of the aircraft, i.e., 

rr = q + (ZJ V ) a  + (ZJ V ) S  + ( Z a /  V)a, 

where (I, is the change in angle of attack due to wind turbulence which is equal to the output of 
the system shown in Fig. 10.5. (The turbulence intensity is adjusted by the intensity of the white 
noise at the input in Fig. 10.5.) 

(a) Using a turbulence time constant T = 1.0 s, find the control gains for the additional 
two state variables that model the turbulence using the performance criterion of Prob. 9.13 with 
c2 ~ cz - 

( b )  Find the Kalman filter gains, assuming that the wind turbulence is a (correlated) random 
input in addition to the white noise coincident with the control input. Perform the calculation for 
V/ W = lo2, lo4, lo6, and for several intensities of turbulence. 

(c )  For each of the signal-to-noise ratios V/ W and turbulence intensities of part h, find the 
compensator transfer function and the range of gains for which the closed-loop system is stable. 
How does increasing V/ W affect the gain margin of the system? 

, - - 1.0, and r 2  = 0.01. 

Problem 11.18 Constant altitude autopilot with rate gyro added 

It is proposed to add a rate gyro to the altimeter in the constant altitude autopilot of Prob. 
11.16. There are  now two outputs 

y ,  = h / V +  w ,  y, = q + w2 

( a )  Assume again that the only excitation present is white noise at the control input. Find the 
Kalman filter gains and observer poles for V/ W, = I ,  10, 100 and V/ W, = I ,  10, 100. Does the 
presence of the rate gyro significantly alter the dynamic characteristics of the observer? 

( h )  Find the permissible (for stability) range of gain variation (at the autopilot input) for each 
of the signal-to-noise ratios in part a. Does the rate gyro significantly enhance the stability of the 
autopilot? 

Problem 11.19 Inertial navigation system with position and velocity aids 

In addition to  a velocity aid, it is also possible to obtain independent position measurements 
by which the inertial navigation system can be updated. In a realistic application, these position 
“fixes” would be intermittent; if they were sufficiently accurate, the role of the inertial navigation 
system would be to interpolate between position fixes and to aid in obtaining “smoothed” velocity 
estimates. Optimum filtering of intermittent or sampled data is well known [see [8], for example) 
but beyond the scope of this book. If the position updates are frequent (relative to the 84-minute 
Schuler period) they may be approximated as a continuous updating process in which the error is 
white noise with a spectral density W, = u:T, where u, is the one-sigma position error of each 
position measurement and T is the time interval between position updates. 

(a) Draw the block-diagram of the Kalman filter. 
( h )  Assume that the velocity aid is absent. Find the steady state Kalman filter gains and 

(c)  A velocity aid is contemplated. How low must the spectral density of the velocity noise be 
closed-loop poles as a function of the ratio VG/ W,. (The accelerometer noise is negligible.) 

in order that the steady state position error be significantly reduced [ix., by a factor of 2)? 

Problem 11.20 Hydraulically actuated gun turret 

A Kalman filter is to be used as  an observer in realizing the compensator for the azimuth 
channel of the hydraulically actuated gun turret of Prob. 9.1 1. 
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( a )  For purpose of design the exogenous vector x, is to be represented as white noise with a 
diagonal spectral density matrix with elements made proportional to the square of the expected 
reference or disturbance amplitudes. On the basis of the data given in Ref. [ 11 of Chap. 2 it would 
thus be appropriate to use a spectral density matrix 

riI o o 0 1  

where u2 is a design parameter which can be varied for purposes of achieving robustness. (Figure 
2.9 shows that d,,, the fourth component of the exogenous vector, occurs at the same point of the 
control input.) The observed quantity is the gun azimuth error (y  = 0 ~ 8, = x,) with spectral 
density matrix W = w2. Find and tabulate the Kalman filter gains and poles as the ratio u 2 / w 2  is 
varied from 1 to very large values. 

( b )  For the range of filter gains studied in part a find the transfer function of the compensator 
using the control gains determined in Prob. 9.1 1 with 9’ = 1000. 

( c )  Find the return difference and corresponding stability (gain and phase) margins for three 
of the values of uz/ w2  studied in part a. Verify that the margins increase as u2/  w z  is increased. 

(d) Assume that the reference input 8, and d,  are Wiener processes: 

8, = 6, d, = V3 

where U, and V3 are white noise processes each with spectral density of unity. Adjoin these two 
dynamic variables to the original four to obtain a six-component metastate vector. For the range of 
u 2 / w 2  studied in part a, find the Kalman filter gains, and determine and tabulate or plot the 
corresponding closed-loop poles. 

( e )  Draw the block-diagram of the compensator and discuss the results for the filter model of 
part d. 

Problem 11.21 Kalman filter gains depend on “signal-to-noise ratio” 

Consider the matrix Riccati equation for the error covariance matrix in the Kalman filter 

Suppose the observation noise covariance matrix V and excitation noise covariance matrix W both 
are multiplied by the same-positive constant, say (1. 

Show that although P changes, the Kalman filter gain k = PC’V-’ does not change. (This 
justifies the claim that the Kalman filter gains depend only on the “ratio” of W to V.) 

Is this result reasonable? (Consider the dual problem of optimum deterministic control.) 

Problem 11.22 Missile autopilot: Kalman filter 

A compensator is to be designed for the missile autopilot considered in Example 9D. The 
sensors consist of an accelerometer which measures e = aNC - aN and a rate gyro that measures the 
pitch rate 9. The only excitation noise present is coincident with the control u and has a spectral 
density V. T h e  spectral density of the accelerometer noise is W, and the spectral density of the gyro 
noise is W,. 

( a )  Assume that the commanded acceleration aNc,  an exogenous variable, can be measured. 
Draw the block-diagram of the Kalman filter. Find and plot or tabulate the filter gains and poles for 

( b )  How must the Kalman filter design of part a be modified if aNC, assumed to be constant, 
1 d v/ w, 5 106, I d v/ w, 5 106. 

must be estimated? 
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Problem 11.23 Missile autopilot: compensator 

A compensator for the missile of Prob. 11.22 is to be designed by combining the full-state 

( a )  Using the controller gains of Example !ID with R = lo7, find the compensator transfer 

( b )  A gain margin of at least 10 is needed. What values of V /  W, and V /  WG are required to 

feedback controller of Example 9D with the Kalman filter of Prob. 11.22. 

functions for the range of V /  W, and V /  WG considered in Rob. 11.22. 

achieve this margin? 

NOTES 

Note 11.1 Background of Kalman filtering 

The basic idea of least-squares filtering is traceable to Gauss,[l2] the fountainhead of many 
concepts in pure and applied mathematics. But the use of statistical methods in control and 
communications systems is largely due to the work of Norbert Wiener[l3]. Wiener was concerned 
with the separation of a signal from a background of noise in which it is imbedded. In his analysis, 
Wiener assumed that the signal and the background noise had statistical properties that were 
characterized by their correlation functions. He expressed the impulse response of the optimum filter 
in the form of an integral equation-the famous Wiener-Hopf equation-involving these correla- 
tion functions. A frequency-domain interpretation of Wiener's results was later given by Bode and 
Shannon[l4] who provided a way of obtaining the fronsferfuncfion of the optimum filter as the 
tandem combination of two other transfer functions, the first of which transforms the observed data 
into white noise and the second of which is the optimum filter for a white noise input. 

Statistical optimization of control systems by frequency-domain methods was a popular 
research topic of the 1950s, but it held little interest for Kalman who was more concerned with the 
state-space representation of deterministic systems and their properties (See Note 1.1). In 1958, 
however, he turned his attention to random processes. His familiarity with state-space methods 
(which he was instrumental in developing) made it natural for him to suggest that stochastic 
processes should be characterized neither by their correlation functions nor by their spectral 
densities, but rather as the responses of linear systems to white noise. Pursuing this idea, he 
discovered that the optimum estimation problem was "dual" (Kalman's expression[ 151) to the 
deterministic optimum control problem. His fundamental papers[ I ,  21 on the state-space approach 
to filtering and prediction followed directly. 

Kalman was concerned with the optimum filter in the probabilistic sense. But it was 
subsequently shown that his results (in the discrete-time case, at least) could be interpreted as the 
solution to the deterministic least-squares problem that had occupied the interests of applied 
mathematicians and scientists since the time of Gauss. (See [12].) 

Note 11.2 f is positive semidefinite 

A well-known criterion for a matrix to be positive semidefinite is that its determinant and the 
determinants of all its principal minors be nonnegative. Thus 

is positive semidefinite if and only if 

Now, by writing Q = V - X W - l X ' ,  we assume that W-' exists. Hence I WI 2 0. There is a 
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well-known determinantal formula[ 101 which asserts that 

Using this formula with V = A, B = X, C = X’, and D = W gives 

Since I WI 2 0 we can divide both sides of (*) by W to obtain 

lGl= IV - XW-IX’I 2 0 

which implies that is positive definite. 

Note 11.3 “Innovations” terminology 

The introduction of the t e r n s  “innovations” or  “innovations process” in the context of 
Kalman filtering is due to Kailath,[ I I ]  although its use in mathematical statistics goes back farther. 
The idea underlying the term is that the new information used to “update” the estimate of the state 
is contained in the innovations process r = y ~ j? The term “residual” is also appropriate as 
suggesting that something is left over when j does not match y and the Kalman filter operates as  a 
feedback system to reduce the leftover to zero. 

Note 11.4 Singular spectral density matrix of observation noise 

The case in which the observation noise is present but has a singular spectral density matrix 
has been considered by Hutton.[5] The basic idea is to transform the observation vector into the 
form j I  = C,x and j 2  = C , x  + w2 where w 2  has a nonsingular spectral density matrix. The 
dimension of J 2  is the rank of the starting spectral density matrix. From that point, the derivation 
of the optimal filter follows the outlines of Sec. 11.6. The order of the resulting filter is k - I , ,  where 
I ,  is the dimension of PI,  that is, the ‘‘nullity” of the starting spectral density matrix. 

Note 11.5 The separation theorem 

The earliest statement of the separation theorem in the literature of control theory was given 
by Joseph and Tou[l6] for discrete-time systems in 1961, only a year after Kalman’s seminal paper 
on  discrete-time optimal filtering.[ I ]  Two years later, Gunckel and Franklin[l7] published a slightly 
more general statement of the theorem. The earliest statement of the separation theorem, although 
not in the control literature, was given by the econometrician H. A. Simon in 1956.[18] Simon 
considered a very simple linear system with a quadratic performance criterion. His result, expressed 
in control terminology, is that a control law that uses the present expected value of the state is 
equivalent to  a control law based on  certain knowledge of the future. Simon called this the 
“certainty equivalence” method and pointed out that linear dynamics and a quadratic performance 
criterion were apparent requirements for the validity of the certainty equivalence method. 

The separation theorem for discrete-time systems was so reasonable and convenient that it was 
immediately adopted, without rigorous proof, for continuous-time systems. A rigorous proof was 
given by Wonham[l9] in 1968. Wonham showed that the separation theorem is valid under more 
general conditions than were previously thought required. In particular, the requirement of a 
quadratic performance criterion (and hence a linear feedback law) was shown to be unnecessary. 
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APPENDIX 
MATRIX ALGEBRA AND ANALYSIS 

A.l INTRODUCTION 

Matrices are widely applied in many branches of contemporary engineering, 
ranging from stress analysis, to electrical circuits, to engineering economics. An 
engineering curriculum without an introduction to matrix theory is difficult to 
conceive. 

This appendix is not intended as a substitute for a text on matrices and their 
applications in engineering; there are many excellent texts available for this 
purpose. Rather it is intended as a concise summary of the facts about matrices 
that the reader will need to know in reading this book. Having them all at hand 
will minimize the need to consult a standard reference book. It also serves to 
define the notation and terminology which are, regrettably, not entirely 
standard. 

While some derivations and proofs are given to provide motivation and 
insight, no attempt has been made at proving or even justifying every statement 
that is made. The interested reader is urged to consult a suitable textbook for 
details of proof, for other properties of matrices, and for many additional 
applications. 

A.2 LINEAR EQUATIONS AND MATRIX NOTATION 

Consider a system of linear equations 

(A.1) 

47 1 

. . . . . . . . . . . . . . . . . .  

y, = an1x1 + . . . + UnrnXrn 
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To reduce the amount of writing, (A.l)  can be expressed as 

The arrays of numbers enclosed by the square brackets are known as matrices. 
In general a rectangular array having m columns and n rows, of the form 

. . .  
A =  

. . .  

is called an n x rn matrix. A single letter A is used to designate the entire n x m 
matrix. The matrices in (A.2) having only one column, namely 

Y =  [ :’] and x =  [:‘I (A.4) 
Y m  Xn 

are generally called vectors. (The three-dimensional vectors of classical physics 
are special cases of the general mathematical vectors used in this book. When, 
as in Chap. 3, we want to refer specifically to a physical vector such as force or 
velocity, we use an arrow over the letter, viz., f ,  17.) 

Since a vector is a 1 x n matrix, any result that applies to all n x m matrices 
also applies to vectors. As is customary in texts on systems, vectors are generally 
denoted by lowercase letters and other matrices are generally denoted by capital 
letters. 

In terms of the notation introduced above, the system of linear equations 
(A.l)  can be written simply as 

+ 

y = Ax (A.5) 

Equation (AS)  can be read as “(the vector) y is the result of multiplying (the 
vector) x by (the matrix) A.” Thus we have defined the operation of multiplying 
a vector by a matrix, as the equivalent of the system of linear equations (A.1). 
Multiplying a vector by a matrix is a special case of multiplying one matrix by 
another. We shall consider this operation and others in the next section. 

A 1 x 1 matrix (i.e., a single component vector) which is just a single 
number, is known as a scalar. 

To save writing, the matrix A is sometimes exhibited as 

A 

where aij is a typical element of the matrix A. 
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A.3 MATRIX OPERATIONS 

Addition and subtraction Matrices can be combined by use of the operations of 
addition, subtraction, and multiplication in much the same manner as scalars. 
These operations may be defined in terms of systems of simultaneous equations. 
Thus, suppose 

y ,  = a l l X l +  . . .  + alnx,, 

y, = U Z , X , +  . . .  + U,,Xn 

y, = a m , x ,  + - . + alnnXn 

. . . . . . . . . . . . . . . . . . . .  

and 

zI  = b , , x ,  + .  . .  + b lnxn  

Z, = b , ,x1  + . . .  + bznXn 
. . . . . . . . . . . . . . . . . . . .  (A.7) 

Z, = b,lxl + . . .  + b,,x,, 

then, adding each equation in (A.6) to the corresponding equation in (A.7) 
gives 

yi + .. = (ail + b l , ) x ,  + .  . .  + (aim + b ln)xn  

y, + .. = (a,, + b , , ) x ,  + . . .  + ( a z n  + b z n ) x ,  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ym + zrn = (am, + bml)x, + .  . .  + ( a n i n  + bmnlxn 

or, in the matrix shorthand, 

Y , +  ZI a l l  + b , ,  . . .  a l n  + bin- 
azl + b,,  - * . a 2 n  + bzn 

Y,n + -7m a,, + b,, . . .  a m n  + bmn. 

. . . . . . . . . . . . . . . . . . . . . . . .  

or 

where 

y + z = ( A  + B ) x  = CX 

Thus each term in the sum of two matrices is the sum of the corresponding 
elements of the summands. It is clear from the definition that two matrices can 
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be added only when they are both of the same dimensions: m X n, and, when 
A + B is defined, 

A + B = B + A  (A.9) 

Subtraction of two matrices is defined by 

(A.lO) 

Multiplication Multiplication of matrices is defined in terms of substitution of 
one linear system of equations into another. Consider 

. . .  

. . .  
i.e., y = A x  

y ,  = a l l X l +  + a , ,x ,  

. . . . . . . . . . . . . . . . . . . .  
y, = + + a, , ,~, ,  

ym = U m 1 X l  + . . .  + amnx,, 

and 

. . .  I i.e., x = Bw X ,  = b,, w1 + + b , , ~ ,  

(A.11) 

(A.12) . . . . . . . . . . . . . . . . . . . .  I 
X, = b,lwI + .  . .  + b,,lwl 1 

Substitute (A.11) into (A.12) to obtain 

yl  = a , , ( b I 1 ~ ,  + .  . .  + bllwl) + a  . .  + a l n ( b n l W I  + .  . .  + b,llWI) 

~ ? = a ~ ~ ( b l l w l + . . . +  b , l w l ) + . . . + a , , ( b , , , w , + . . . +  b.lwr) (A.13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
y ,  = a , , , ( b , , w ,  + ’ . . + bllWI) + . * + amn(bnlW1 + . * . + b,,w,) 

Collecting coefficients of the w, in (A.13) gives 

yI = (~1lbII  + .  . .  + ~l,,b,,I)wl + .  . .  + ( a l l b l l + .  . .  + ~ ~ , , b , l ) w l  

y2 = ( ~ 2 I b l l  + .  . .  + ~l, ,b, ,I)wl + . . .  + ( ~ , l b l l + .  . .  + ~2,b,,r)wr 

y ,  = ( U , , b l l  + . . .  + a,nnbnl)Wl + . . .  + (am,bl l  + . . .  + Umnbnl)W1 

(A.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

or 
. . .  

. . . . . . . .  Y =  
. . .  Y m  
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where 

(A.15) 1 (aiibii + .  . . + alnbnl) . * . ( a , , b I f  + .  . . + alnbnl) 
c =  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( a , , b , ,  + .  . . + arnnbnl) . . * (a , ,b , l  + .  . . + a m J n i )  

y = A x  and x =  Bw 

[ 
Now, since in “shorthand” notation (A.11) and (A.12) are 

we can write 
y = A(Bw) = ABw = CW 

where C is the product matrix defined by (A.15). In words, the (i,j)th element 
cij of the product matrix is computed by multiplying and summing the elements 
of the ith row of the first matrix A by the j t h  column of the second matrix B :  

jth column 

Note that the product C = AB of two matrices A and B is meaningful 
when the number of rows of B is equal to the number of columns of A. 
Matrices having this property are said to be conformable. It is possible for the 
product AB to be defined, and the product BA to be undefined, because the 
number of columns of B may not equal the r,umber of rows of A. Even when 
BA and AB both exist, it is not necessary that AB = BA. For example, suppose 
A is a “row vector” 

A = [a , ,  . . . , a,] 

and B is a “column vector” 

B =  [ b l ]  

bn 
Then 

and 

AB = [a , ,  . . . , a,] [’I] = ( a l b l  + .  . + anbn) ascalar (A.16) 
bn 

. . .  

BA = [ ; : ] [ a , , .  . . , a,] = [::::. ..._-;. an n x n matrix (A.17) 

Clearly AB # BA. 
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( A ( =  

But even when A and B are both square matrices (of dimension n x n) and 
hence both products AB and BA exist, it is not always true that AB = BA. 
When AB = BA the matrices are said to commute. 

A 1 x 1 (or scalar) matrix c is comformable and commutes with any matrix. 

. . .  [ a , ,  = [ c a l l  . . .  caln]  

CA = Ac = c . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  
am, - . .  a m n  caml . . .  cam, 

With scalars, the operation of division by a quantity b, defined as multipli- 
cation by the reciprocal of b, that is, 

a , ,  * . .  Q l n  

. . . . . . . . . . . . .  # O  
a,, . . .  a n ,  

where b-‘ = l /b.  There are several complications in trying to extend the 
concept of division to matrices. First, we need to define the reciprocal (called an 
inverse) of a matrix. Next, we need to determine whether the inverse exists. (We 
know that the reciprocal of every scalar except zero does exist.) And finally, 
even if the inverse B - ’  does exist, it is possible that AB-’ # B - ’ A  since there is 
no assurance that B-’  and A commute. Division of one matrix by another is 
thus not a very useful concept. 

A.4 DETERMINANTS AND MATRIX INVERSION 

A system of n linear equations in n unknowns x,, . . . .  x,, 

y ,  = a l l x l  + . . .  + a,,x,  

y, = anlxl + . . .  + a,,,x, 

. . . . . . . . . . . . . . . . . . .  (A.18) 

may or may not have a unique solution. It is well known that a unique solution 
exists if and only if the determinant of the matrix A is nonzero: 

(A. 19) 

The reader probably knows various definitions of the determinant of a square 
array or matrix. The basic definition of the determinant is the sum of all 
possible products of n elements, each taken from a dilferent column, and with 
the sign of the product taken as (+) if the columns from which the elements are 
taken are in “lexographic order” and as (-) if they are not. (“In lexographic 
order” means that the columns are taken from right to left without jumping 
backward.) 

A recursive definition of the determinant of a matrix A is 

IAl = a, ,Dl ,  - a , ,D , ,  + a,,D,, - . . * + (--l)nalnDn (A.20) 
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where D, is the determinant of the ( n  - 1) X ( n  - 1) subarray formed from A 
by deleting the ith row and j th  column from the original matrix. There are many 
other algorithms for the calculation of the determinant which can be used as the 
basic definition. 

If IAl # 0 and hence (A.18) has a unique solution, that solution can be 
written 

. . . . . .  

xn = bnlY, + . . .  + b n n Y n  

In matrix notation (A.18) and (A.21) are 

y = AX 

and x = By 

Substitute (A.23) into (A.22) to obtain 

y = ABy = Zy 

which, written out in detail, is 

1 0 . . .  0 [;!=I ’ . . .  0 
. . . . . . . . . . . . .  

y ,  0 0 1 . . .  

[;I 
Y n  

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

The square matrix in (A.25) having 1’s along the main diagonal and 0’s 
everywhere else, is called the ( n  x n )  identify matrix 

(A.26) 

Thus we conclude that the product of A and B in (A.24) is the identity matrix 

A B  = I (A.27) 

If (A.27) holds then B and A are said to be inverses and written 

B = A - ’  A = B - ’  (A.28) 

(It is readily shown that if AB = I ,  then BA = I ;  substitute (A.22) into (A.23), 
for example.) 

If  the determinant of a matrix is zero, the matrix has no inverse and is said 
to be singular; if the determinant of a matrix is nonzero and its inverse does 
exist, the matrix is said to be nonsingular. 

Devising efficient algorithms for computing the determinant and the inverse 
of large matrices has been an important branch of numerical analysis. The 
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obvious algorithms are often unreliable when the dimension of the matrix 
exceeds 100 or so. 

For theoretical developments, the inverse of a matrix can be expressed by 
the formula usually called Cramer’s rule 

(A.29) 

where the matrix written “adj (A)”  is called the adjoint (or adjugate) matrix. 
The (i , j) th element of this matrix is the cofactor of aJ,. The cofactor, or “signed 
minor” is the determinant of the submatrix obtained by deleting the row and 
column containing a,J and having a (+) sign if i + j  is even and a (-) sign if 
i + j is odd. For example, the determinants and adjoint matrices for 2 x 2 and 
3 x 3 matrices are as follows 

n = 2: 

n = 3: 

a22 a23 a13 

lal2 ap31 al31 

1.1, a331 / a 3 ,  ~ ~ l l l  
a21 a23 a l l  a13 

a23 a21 a23 a21 a 2 2  
lAl= a, ,  1.22 a32 a33 I - a 1 2  

a331 + a13 la3I ar21 

(A.30) 

(A.3 1)  

Cramer’s rule is one of the least efficient algorithms for computing the 
inverse of a matrix and is recommended only for the proverbial person stranded 
on a desert island with no references to more efficient algorithms and no desire 
to invent any. 

It can be shown that the determinant of the product of two n X n matrices 
is the product of the determinants: 

IAB( = I.Al . IBI 

Moreover, it is readily seen that 

111 = 1 
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Thus 

or 

A.5 PARTITIONED MATRICES 

We often deal with linear systems of vector-matrix equations 

yl = AIIx,  + A I ~ x ~  + . . . + Aln,xn, 

~2 = A ~ I x I  + A 2 2 ~ 2  + . . . + A2,n~, 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  
y,, = Anlxl + An2x2 + . . . + Anmx, 

(A.32) 

in which the xi's are themselves vectors and the AV's are matrices. We can write 
(A.32) as 

(A.33) 

The vectors y I ,  . . . , y,,, x i , .  . . , x ,  are subvectors of vectors of higher dimension 

and the matrices A, are submatrices of a larger matrix 

(A.34) 

(A.35) 

The vectors x and y in (A.34) and the matrix A in (A.35) are known as 
partitioned matrices. The broken lines are used to show the partitioning and are 
particularly useful when the elements of the submatrices are explicitly shown, 
for example 

(A.36) 
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In this case y and x are both partitioned into two subvectors and A is 
partitioned into 2 x 2 = 4 submatrices of different dimension. 

The dashed lines indicating the partitioning are sometimes omitted for the 
sake of appearance when the context makes it clear that partitioned matrices are 
being considered. For example (A.36) might be written 

where 

YI = [;;I y2 = [;;I 
(A.37) 

(A.38) 

The boldface notation for the subvectors xl,  x2, yl, y 2  are used in this case to 
distinguish subvectors y I  and yz from the components y,,  y 2  (both of which 
appear in subvector y , ) .  

Vectors and matrices may be partitioned into as many subdivisions as are 
convenient for a given application. The only rule that must be observed is that 
the submatrices must be of the proper dimension: The submatrix A, in (A.33) 
must have as many columns as the corresponding subvector xj and as many 
rows as the subvector yi. 

Matrices that are appropriately partitioned may be added, subtracted, and 
multiplied. For example 

is valid provided the partitioning of A and B is such that all the matrix sums 
and products on the right-hand side of (A.39) are of matrices of conformable 
dimensions. 

Partitioning can sometimes be useful for obtaining inverses. Consider the 
system 

(A.40) 

(A.41) 

yl = AX, + B x ~  

y2 = cx, + Dx2 

i.e., 

The inverse of 
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can be expressed in terms of the inverses of the submatrices. Suppose submatrix 
A has an inverse. Then we can solve (A.40) for x1 

Substitute this into (A.41) to obtain 

y2 = CA-'yl - (CA-IB - D)x, 

Whence 

~2 = (CA- 'B  - D)-I( CA-'yl - y2) (A.43) 

which is substituted into (A.42) to yield 

x 1 -  - [ A - ' - A - l  B(CA-'B - D)- 'CA-' ]y l  + A-'B(CA-'B - D)- ' y2  (A.44) 

The solution to (A.40) and (A.41) has thus been obtained, and hence we have 
the inverse of M :  

Thus we have managed to express the inverse of a big matrix M in terms of the 
inverses of smaller matrices A and CA-IB - D. 

If D has an inverse, then the same procedure can be used to obtain another 
expression for M-'  

Since (A.45) and (A.46) give different expressions for the same matrix, each 
submatrix on the right-hand side of (A.46) must equal the corresponding 
submatrix of (A.45). In particular, we must have 

- ( B D - ' C  - A)--' = A - I  - A - ~ B ( C A - ~ B  - D)-'cA-' 

This is a version of a matrix-inversion lemma often attributed to Schur. The 
more familiar form is obtained by replacing D by - D  

( A  + BD-'C)-' = A-' - A- 'B(CA- 'B  + D)- 'CA-'  (A.47) 

This lemma is the basis of many important results in systems and control 
theory. 
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A.6 TRANSPOSITION AND RELATED OPERATIONS: 
SPECIAL MATRIX TYPES 

If the rows of one matrix are the columns of another, the matrices are called the 
transposes of each other: 

a12 * . .  a1m 

A = [i:! A ’ =  
. . . . . . . . . . . . . . . . . .  

anni 

a11 a21 . . .  an 1 

an2 aI2  . . .  
. . . . . . . . . . . . . . . . . .  
alni a2ni ” ’ a n m  

(A.48) 

In (A.48) A and A‘ are transposes of each other. The “prime” (’) symbol is 
used in this book to denote transposition. In other books, transposition is 
sometimes denoted by a superscript T, that is, Ar. 

The following properties are easily proved: 

(A’) ’  = A 

( AB)’  = B‘A’ (A.49) 

IAl = IA’I (if A is a square matrix) 

A (square) matrix whose columns and rows are the same 

a12 . . .  

A =  [::: . . . . . . . . . . . . . . . . . .  ;:; - - .  “‘I = A‘ 

is said to be symmetric. Symmetric matrices play important roles in systems and 
control. 

A matrix whose columns are the negatives of its rows is called skew- 
symmetric. A skew-symmetric matrix has the general form 

(A.50) 

. . .  a, ,  an, 

S =  I -  a12 0 . . .  
(A.51) . . . . . . . . . . . . . . . . . . . . .  I 

(Note that the diagonal elements of a skew-symmetric matrix are always zero.) 
Skew-symmetric matrices occur in studying the dynamics of certain types of 
conservative systems but are not encountered as often as symmetric matrices. 

A matrix whose transpose is equal to its inverse is said to be orthogonal 

From (A.52) 

A‘ = 

A’A = AA’ = I 

(A.52) 

(A.53) 
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This means that the sum of products of the elements 
n 1 a. .a .  = 6. = 

i =  I 

1 for j = k 
0 for j # k 

IJ rk ik (A.54) 

i.e., the sum of products of a row (or column) by the corresponding elements of 
the same row (or column) is 1, but the sum of products of a row (or column) 
by the corresponding elements of a different row (or column) is zero. 

When the elements of a matrix are complex numbers, it is more usual to 
work with the transpose of the complex conjugate of the matrix, which is 
written AH 

. . .  
. . .  . . .  aXr 

. . .  a:,,, 

A =  (A.55) . . . . . . . . . . . . . .  
a,,  a,? . . .  

The complex conjugate transpose of a matrix A is also, regrettably, called the 
adjoint matrix of A. There is no connection between the adjoint of this section 
and the adjoint as defined in Sec. A.4; fortunately the two different adjoints 
rarely occur in the same context. 

A matrix that equals its adjoint ( A H  = A )  is said to be hermitian, and one 
which is the negative of its adjoint (AH = -A)  is said to be skew-hermitian. 

A matrix whose adjoint equals its inverse 

AH = A-' (A.56) 

or 

A A ~  = A ~ A  = I (A.57) 

is said to be unitary. 
Some other special matrix types are frequently encountered in control 

theory. A square matrix whose elements are zero in all positions above the 
principal diagonal 

. . .  [ a , ,  0 0 1  
(A.58) 

is called lower triangular; its transpose 

I . . . . . . . . . . . . . . . . . .  I (A.59) 

. . .  a,,,, 

is called upper triangular. The determinant of a (lower or upper) triangular 
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matrix is the product of the diagonal elements. Hence a triangular matrix is 
nonsingular if and only if its diagonal elements are all nonzero. 

A matrix whose only nonzero elements lie on the main diagonal 

(A.60) 

is called a diagonal matrix and it is customarily written with a capital Greek 
lambda (A) .  

A.7 LINEAR INDEPENDENCE AND RANK 

A set of mathematical objects a , ,  a * , .  . . , a, (specifically, in our case vectors or 
columns of a matrix) is said to be linearly dependent, if and only if there exists 
a set of constants c,, c2 , .  . . , c, not all zero, such that 

c , u l  + c,a, + . . . + c,a, = 0 

If no such set of constants exists, the set of objects is said to be linearly 
independent. 

Suppose A is a matrix (not necessarily square) with a,, a , , .  . . , a,  as its 
columns 

I l l  A = [ a ,  I a, I . . . I  a , ]  

The rank of A, sometimes written rank(A) or r (A)  is the largest number of 
independent columns of A. The rank of A cannot be greater than n of course, 
but it can be smaller than n. 

A fundamental theorem regarding the rank of a matrix can be stated as 
follows : 

(A.61) The rank of A is the dimension of the largest nonzero determinant 
formed by deleting rows and columns from A. 

Thus we can say that the rank of a matrix is the maximum number of 
linearly independent columns of the matrix, the test for which is the largest (in 
dimension) nonsingular determinant found “ embedded” in the matrix. 

The rank of a matrix cannot exceed the number of columns of a matrix. 
Also, because determinants correspond to square arrays, the rank cannot exceed 
the number of rows of a matrix. Thus the rank of a rectangular matrix cannot 
exceed the lesser of the number of rows or the number of columns. A matrix 
whose rank is equal to the lesser of the number of rows and the number of 
columns is said to be offull rank. 

Numerical determination of the rank of a matrix is not a trivial problem: If 
the brute-force method of testing is used, a goodly number of determinants 
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must be evaluated. Moreover, some criterion is needed to establish how close to 
zero a numerically computed determinant must be in order to be declared zero. 
The basic numerical problem is that rank is not a continuous function of the 
elements of a matrix: a small change in one of the elements of a matrix can 
result in a discontinuous change of its rank. 

The rank of a product of two matrices cannot exceed the rank of either 
factor 

rank ( A B )  5 min [rank ( A ) ,  rank (B)] (A.62) 

But if either factor is a nonsingular (square) matrix the rank of the product is 
the rank of the remaining factor: 

rank ( A B )  = rank ( A )  if B-' exists 

rank ( A B )  = rank ( B )  if A-' exists 
(A.63) 

A.8 EIGENVECTORS, EIGENVALUES, 
CHARACTERISTIC EQUATIONS, SIMILAR MATRICES 

A vector v is called an eigenvector of the matrix A if 

sv = Av (A.64) 

i.e., if v is parallel to Av. In order for (A.64) to hold we need 

(sZ  - A ) v  = 0 (A.65) 

Except for the trivial case u = 0, (A.65) can hold only when the matrix 
@(s) = (sZ - A ) - '  (called the resolvent matrix) is singular. In order for @(s) to 
be singular we must have 

I s -all - a l 2  . . . 1 
(A.66) ! = O 

-a2l s - a,z . 
. . . . . . . . . . . . . . . . . . . . . . . .  D(s) = Jsl  - A1 = 

s - a,,, I - . . .  1 -an1 an 2 

On expanding the determinant, we find that D(s), which is called the charac- 
teristic polynomial, is a polynomial of degree n :  

( s l  - A1 = D(s) = sn + a,s"-l + .  . . + a , _ , s  + a,  (A.67) 

To verify that D(s) must be of degree n, note that one term in D(s) is the 
product of the diagonal elements ( s  - a , , ) ( s  - a12) . . . ( s  - arm), which is 
clearly a polynomial of degree n with the coefficient of sn being unity. Every 
other term in the determinant will have, at most, n - 1 diagonal elements and 
will thus be a polynomial of degree n - 1 or less. Hence the coefficient of s"  in 
(A.67) must be unity. 

The equation 
D(S) = sn + a,sn-l  + - . - + a ,_ , s  + a, = 0 (A.68) 
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is called the characteristic equation of the matrix A and its n roots are called the 
characteristic roots, or characteristic values, or eigenvalues of the system. When 
A is the dynamics matrix of a linear system, the eigenvalues determine the 
dynamic response of the system and also turn out to be the poles of the system. 
(See Chap. 3.) 

The resolvent @(s) can be written as follows: 

adj ( s I  - A )  
O(S) = ( s l  - A)-' = 

JsZ - AJ 
(A.69) 

The adjoint matrix adj (sZ - A) is a matrix polynomial of the form 

adj (sZ - A )  = Elsn-l + E2sn-' + . . . + En (A.70) 

where El,  E,, . . . , En are n x n matrices. (This form can be inferred via 
Cramer's rule (A.29).) Thus we can write 

( s l  - A)-'lsI - A1 = Elsn-l  + . . . + En (A.71) 

and, on multiplying both sides of (A.71) by s l  - A, 

Is1 - A J I  = ( s l  - A)(E,s"-I + * . . + En-,s + I?,,) (A.72) 

From (A.67), the left-hand side of (A.72) is 

s"I + a l S n - l z  + * . - + a n z  (A.73) 

and, upon performing the indicated multiplication, the right-hand side of 
(A.72) is 

Elsn  + (E2 - AEI)sn- '  + * * - + (En - AE,-,)s - AE, (A.74) 

Equating coefficients of (A.73) and (A.74) results in the following set of 
equations for the coefficient matrices of adj(sI - A ) :  

El = I 

E2 - AE, = al l  

E ,  - AE, = a21 
................... 

En - AEn-, = a,-lZ 

-AE, = anl 

(A.75) 

This set of equations provides an algorithm by which it is possible to compute 
El ,  E3,  . . . , En recursively given the coefficients ai of the characteristic poly- 
nomial. It is possible to incorporate the calculation of the ai into the algorithm 
as discussed in Chap. 3. Our purpose here, however, is not to explore this 
algorithm but to develop a fundamental property of the characteristic equation. 
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To this end we write 

E2 = AEI + a l l  = AZ + a l l  = A + a l l  

E, = AE2 + a2Z = A2 + a l A  + a21 

E, = AE, + a,l = A3 + a lA2  + a2A + a,l 

and thus 
En = A"-' + a,An-' + . . . + ( L , - ~ I  (A.76) 

Thus, multiplying both sides of (A.76) by A, we get 

AE, = A" + a lAn- '  + * * . + U , - ~ A  (A.77) 

But, from the last equation in (A.75) 

AE, + a,l = 0 (A.78) 

Thus, adding a,I to (A.77) gives the final equation 

A" + a1A"-' + .  . . + u,-IA + a,l = 0 (A.79) 

This is the famous relation known as the Cayley-Hamilton theorem which some 
regard as the fundamental theorem of matrix algebra. Note that this equation is 
the same as the characteristic equation (A.68) with the scalar s' in the latter 
replaced by the matrix A' ( i  = 1,2, . . . n )  in (A.78). Thus, another way of stating 
the Cayley-Hamilton theorem is: 

" Every matrix satisfies its own characteristic equation." 

If the eigenvalues of A, that is, the zeros of D(s), are distinct, then A does 
not satisfy any equation of lower than nth degree. If one or more eigenvalues 
are repeated, however, A may also satisfy an equation of lower than nth degree 

(A.80) 

I f  A satisfies an equation of lower degree than n, the matrix is called deroga- 
tory ; the corresponding scalar polynomial 

M ( s )  = sk + q s k - l  + * * . + O k  

Ak + nlAk- '  + .  . . + nkl = 0 k < n 

(A.81) 

is called the minimum polynomial. It can be shown that the zeros of the 
minimum polynomial coincide with the zeros of the characteristic polynomial, 
that is, M ( s )  is a factor of the characteristic polynomial. Thus, if A has distinct 
eigenvalues, the minimum and the characteristic polynomials are identical. 

The theory for matrices with repeated eigenvalues is much more involved 
and luxuriant than the theory for matrices with distinct eigenvalues. The 
assumption of distinct eigenvalues usually makes proofs and derivations much 
simpler than they would have to be in the general (i.e., repeated eigenvalues) 
case. 
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For each eigenvalue, say si, we can find an eigenvector vi satisfying (A.64) 

siui = Avi 

If the eigenvalues are distinct, then we can find n eigenvectors 

~ 1 ~ 1  = AD,,  ~ 2 ~ 2  = A u ~ ,  . . . , S,U, = Au, (A.82) 

It should be understood that the directions of the eigenvectors, but not their 
lengths, are determined by (A.82), since any vector ui in (A.82) can be 
multiplied (“scaled”) by any constant without affecting the validity of the 
equations. 

The eigenvector equations (A.82) can be arranged in matrix form 

0 1  p1 0 . . .  

or, more simply, 

V A =  AV (A.83) 

where V is the matrix whose columns are the eigenvectors 

and A is a diagonal matrix 

1 0  s2 A =  I . . . . . . . . . . . . . = diag(s,, . . . , s,) (A.84) . .  O I  

10 0 . . -  s,] 

It can be shown that the eigenvectors are linearly independent and hence the 
matrix V is nonsingular. Thus we can express (A.83) as 

A = VAV-’  (A.85) 

This equation is known as a “similarity transformation” and we can say that 
the matrices A and V are “similar.” Also note that 

A =  V ’ A V  (A.86) 

In the case of distinct eigenvalues, we can thus say that A is “similar to a 
diagonal matrix” by a similarity transformation. Another way of saying this is 
that “ A  can be transformed to a diagonal matrix” by a similarity transfor- 
mation. 

When the eigenvalues of A are not distinct it is sometimes, but not always, 
possible to transform A to a diagonal matrix by a similarity transformation. It 
is always possible, however, to transform A into one of the canonical (i.e., 
standard) forms, such as the Jordan normal form or one of the companion forms 
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described in Chap. 3. Any pair of matrices A and B related by the transfor- 
mation 

B = TAT-' (A.87) 

where T is any (nonsingular) matrix are said to be "similar" to each other. 
Similar matrices have the same characteristic polynomial. This is readily 

seen with the aid of the Cayley-Hamilton theorem. Let the characteristic equation 
for A be 

s n  + a ' s n - 1 - t  . . . + a, , - ,s  + a, = 0 

Then, by the Cayley-Hamilton theorem, 

A" + alAn-l  + . . . + an- ,A + u,J = 0 (A.88) 

If B is similar to A 

A = TBT-' 

A* = (TBT-' ) (  TBT-I) = TB2T-' 
. . . . . . . . . . . . . . . . . . .  

A" = 7-B"T-l 

Then ( A M )  becomes 

T ( B n  + u,B"-' + .  . . + U , - ~ B  + u,,I)T-' = 0 

or 

B" + alBn-l  + .  . . + a n - , B  + anI = 0 (A.89) 

Comparing ( A M )  and (A.89) we see that A and B have the same Characteristic 
equation. 

The coefficients a,, a2,. . . , a, of the characteristic polynomial are thus 
invariant under a similarity transformation and are sometimes referred to as the 
invariants of A. By setting s to zero in D(s), as given by (A.67), we see that 

I-A1 = (-1)"IAl = U, (A.90) 

the other coefficients of the characteristic polynomial can be expressed by 
determinants of submatrices of A. In particular 

n 

a ,  = -tr ( A )  = 1 aii 
i = l  

(A.91) 

(The symbol tr ( A )  is read "trace of A" and, as indicated in (A.9*1), is the sum 
of the diagonal elements of A.)  The other coefficients can be written as 

ai = ( - l ) i  tri ( A )  

where tr, ( A )  signifies the sum of the "principal minors" or A of order i, that is, 
the determinant of the array obtained by deleting the rows and columns containing 
n - i diagonal elements; tr ( A )  = tr, ( A )  and IAl = tr, ( A ) .  
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The trace of a matrix is used often in matrix analysis. The algorithm given 
in Chap. 3 for recursive calculation of the resolvent is expressed in terms of 
traces of matrices. 

One frequently useful relation is 

tr ( A B )  = tr ( B A )  (A.92) 

provided that AB and BA are both defined. It is not necessary for A and B to 
be square matrices, in which case AB and BA will be matrices of different 
dimensions. For example, if A is a row vector and B is a column vector, i.e., 

A = [a,, . . . , a,] B = [ b l ]  

b n  

Then, from (A.16) and (A.17) we see that 

tr ( A B )  = tr ( B A )  = a161 + .  . . + an6, 

This expression is called the inner- or dot-product of the vectors A and B. 
To verify (A.92) note that the ( i ,  j ) t h  element of AB is 

where m is the number of columns of A and rows of B. Thus 

n m  

tr ( A B )  c c U , k b k i  
i = l  k = l  

where n is the number of rows of A and columns of B. In a similar manner we 
find 

m n  

tr (BA)  = 1 c 6 , i U i k  
k = l  i = l  

On interchanging- the order of summation in these expressions we see that they 
are identical. 

A.9 MATRIX FUNCTIONS AND ANALYSIS 

The resolvent O(s) = (sl - A)- ’  is an example of a matrix function of the 
(scalar) variable s; in this case it is expressible as the ratio of a matrix 
polynomial to a scalar polynomial-the characteristic polynomial. The 
reciprocal of the characteristic polynomial could be expressed as a power series 
in s, which when multiplied by adj ( s l  - A )  would result in a power series in A 

O ( s ) = C 0 + C , s + C , s ’ + * . .  
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More generally, a matrix function of a scalar variable may be conceived of 
as a power series in that variable with matrix coefficients 

F ( x )  = F, + F , x  + F,x' + . . .  (A.93) 

The rules of calculus that apply to scalar functions can generally be applied 
to matrix functions. Thus the derivative of a matrix function is given by 

-- d F ( x )  - F,  + 2F2x + 3F3x2 + . . .  
dx 

(A.94) 

and the indefinite integral is 

(A.95) 

Another way of looking at a matrix function of a scalar is as an array in 
which each of the elements is a scalar function 

. . .  

. . .  
F ( x )  = 

From this point of view 

dx 

and 

F ( x )  dx  = I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(A.96) 

(A.97) 

Both ways of looking at matrix functions of a scalar variable are consistent. 
Thus, to obtain the derivative of a function of a matrix, one can either take the 
derivative of each term or one can express the matrix function as a power series 
and then use the formula (A.94) for the derivative of a function defined by a 
power series. 

The rules of calculus of scalar functions generally apply to matrix functions, 
for example, 

(A.98) 
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Note that the order in which the matrices appear in (A.90) is important. It 
would not be correct to interchange A ( x )  and dB(x)/dx unless these two 
matrices commute. 

To find the derivative of the inverse of a matrix requires some care. Suppose 

A ( x ) B ( x )  = Z (A.99) 

and hence A ( x )  and B ( x )  are inverses of each other. Since the derivative of a 
constant matrix (I, in this case) is zero, we have 

dB(x) dA(x)  
A ( x )  7 + - B ( x )  = 0 

dx 

or 

On use of (A.99) this becomes 

(A. 100) 

This is the matrix version of the familiar scalar formula 

The matrix functions of greatest importance in the study of linear dynamic 
systems are the resolvent (sZ - A)-’  already defined, and the exponential 
function 

eA‘ = Z + At + 
(The variable t instead of x is used, 
which t is a more suitable symbol.) 

The derivative of the exponential 

(A. 10 1 )  

because this variable is usually time, for 

is 
7 .- d 

dt 2! 
- ( e A ‘ )  = A + A’t + A3 + . . . 

(A. 1 02) ) ( 2 !  
t2  

= A  I + A t + A 2 - + . . .  = A e A ‘  

which is the same as it is in the scalar case. The definite integral 

(A. 103) 

This expression is valid whether or not A is singular. But if A is nonsingular, 
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(A. 103) can be written 

1 )  - - A - l ( e A r  - 

which is a generalization of the scalar formula 

1 - I,: ea7d-r = ___ 
a 

A.10 QUADRATIC FORMS, NORMS, 
AND SINGULAR VALUES 

An expression of the form 

4 = c aux;x, 
j =  1 

(A. 1 04) 

(A. 105) 

is known as a quadratic form. In  matrix notation, a quadratic form can be 
written as 

a , ,  . . . 

[ a n ,  . . . 
q = x ' A x  = [ x , , .  . . , x n ] .  . . . . . . . . . . . . .  (A.106) [ 111 

Note that the matrix A, in terms of which the quadratic form is expressed, 
is not unique. The coefficient of the product xixJ is (a i i  + a,,), and another 
matrix A for which (a, + uJi) = ( a ,  + aj , )  will produce the same quadratic form. 
To associate a unique matrix with a quadratic form, the matrix A is generally 
taken to be symmetric (A' = A).  

A quadratic form q is said to be positive definite if and only if 

q > o  for all x # 0 (A. 107) 

(Every quadratic form is zero at x = 0.) 
A quadratic form is said to be positive semidefinite if and only if 

q 2 0 for all x (A. 108) 

A positive semidefinite form can never be negative, but it may go to zero for 
values of x other than zero. (The regions for which q goes to zero are lines or 
hyperplanes in the n-dimensional "hyperspace.") 

A quadratic form q is said to be negative definite if - q  is positive definite, 
and is negative semidefinite if - q  is positive semidefinite. 

A quadratic form that is neither positive nor negative definite or semi- 
definite is said to be indefinite. An indefinite form is positive for some values of 
x (i.e., for some region of the n-dimensional hyperspace) and negative for other 
values of x (i.e., for some other region in the space). 
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When x is a two-dimensional vector, the curves 

q = a , , x f  + 2a ,2x ,x2  + u,,x: = c 

define (nested) ellipses when q is positive definite; parabolas, when q is positive 
semidefinite; and hyperbolas when q is indefinite, as shown in Fig. A.l. The 
geometric interpretation generalizes to more than two dimensions. Positive 
definite quadratic forms correspond to hyperellipsoids ; semidefinite forms 
correspond to paraboloids. The situation with indefinite forms, however, is 
more complex. The indefinite form 

2 7  q = (XI - x 2 )  - x ;  

generates parabolas in the subspace defined by { x , ,  x2, 0) but hyperbolas in the 
subspace {0, x2,  x3}  and hence is a very complex “quadric surface” in the general 
three-dimensional space. 

Consider the transformation of variables 

x = Ty 

The quadratic form q = x’Ax can be expressed in terms of y as 

q = y ‘T’ATy  = ~ ’ B v  
The matrix B of the quadratic form y’By is related to the original matrix by the 
relationship 

B = T A T  (A.109) 

Matrices related to each other by a transformation such as given by (A.109) are 
said to be congruent. If A is real then it is always possible to find an orthogonal 
matrix T, that is, T’ = T - ’  as defined by (A.52), for the transformation, and 
moreover, that B is a diagonal matrix. Thus, if A is symmetric, we can also say 
it is orthogonally similar to a diagonal matrix 

A = T-lAT = T ’ A T  (A.110) 

The quadratic form q = x ‘ 4 x  is transformed by T to the quadratic form 

s, 0 . . .  0 r y i  
~ = ~ ~ A y = ~ y l . . . y n l [ o  . . . . . _ . . . . . . . . .  0 s2 1 : ;  j,;j 

= s,yf + s ,y f  + . . . + s,v& (A.111) 

We see immediately that if A is real (and, as already assumed, symmetric) it 
must have real eigenvalues, and the nature of these eigenvalues determine the 
nature of the quadratic form, as summarized in Table A l .  

Quadratic forms are used extensively as the performance integrands in 
optimum control problems. (See Chap. 9.) In addition, they are useful in 
defining the norm of a matrix, which is a measure of the “size” of the matrix 
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I 

((.) 

Figure A l  Three types of quadratic forms. ( a )  Positive definite; ( b )  Positive semidefinite; 
(c)  Indefinite. 
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Table A1 Eigenvalues of A determine nature of 
quadratic form 

Eigenvalues Quadratic form 

s, > 0, all i Positive definite 

si 2 0, all i Positive semidefinite 

s, 2 0, some i 
s, 5 0, some i Indefinite 

s, 5 0 for all i Negative semidefinite 

si < 0 for all i Negative definite 

(not its dimension). We describe the size of a scalar by its magnitude. For a 
matrix, a more general concept is needed. In particular, we can describe the size 
A by its norm 

(A.112) 

i.e., the largest value of the ratio of the length of y to the length of x. The length 
llxll of a vector x is defined as euclidean norm 

as expected. The ratio (A.112) can be expressed using quadratic forms 

IIXJJ = ( X ’ X ) ’ I 2  

and 

Thus 

llAxll = (x ’A ‘Ax) ’ ’~  

(A.113) 

Since A‘A is a symmetric matrix it can be diagonalized by an orthogonal matrix 

A’A = TAT’ 

Let 

x = Ty 

then 

x’A’Ax = y’T’A’ATy = y’Ay 
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and 

X’X = y’T’Ty  = y’y 

because T’ = T-’ .  Thus (A.113) becomes 

YIAY s l y :  + s>y: + . . . + sd ’ ) ’ ’ 2  (A.114) 
y:+ y : + .  . . + y’, 

11 All = max (z) ‘ I 2  = myax ( 
where s,, s2, . . . , s, are the eigenvalues of A’A. It is an easy matter to show that 
the maximum value of the ratio in (A.114) is s,,. Thus we conclude that 

IlAll = lmaximum eigenvalue of A‘A11’2 (A.115) 

The square roots of the eigenvalues of A’A (or for AHA when A is complex) are 
called the singular values of A and are useful in numerical analysis. The norm 
of A is the largest singular value. The ratio of the largest to the smallest singular 
value of A is a measure of how close the matrix A comes to being singular. This 
is used in robustness analysis. (See Chap. 4.) 
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