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Preface

These lecture notes present material for an introductory course on
optimal control theory including deterministic and stochastic
systems, with discrete- and continuous-time parameter. The
course is introductory in the sense that no previous knowledge of
control theory is required.

There are several well-known techniques to study Optimal
Control Problems (OCPs), but here we are mainly interested in
the Dynamic Programming (DP) approach. This is a very general
technique introduced by Richard E. Bellman (1920–1984) in the
1950s, which is applicable to a large class of optimization and
control problems. (See the remark at the end of this Preface.)

The DP approach gives sufficient conditions for an OCP to
have a solution. The main tool is the so-called Verification
Theorem that can be summarized as follows. Given an Optimal
Control Problem (OCP):

1) Write an associated equation, called the Dynamic
Programming Equation (DPE).

2) If the DPE has a “suitable” solution, then this solution can
be used in turn to solve the given OCP.

Actually, part (1) is straightforward. The main difficulty is part
(2); that is, finding suitable solutions to the DPE can be a non-
trivial matter.

The DPE is known by several names, such as the optimality
equation, the Bellman equation or, for continuous-time OCPs, the
Hamilton–Jacobi–Bellman equation.
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The notes begin in Chapter 1 with a general introduction to
OCPs. This chapter presents basic notions, such as the objective
functionals to be optimized, and the notion of control strategy or
control policy. Some examples illustrate the classes of OCPs to be
studied in the text.

Chapters 2 and 3 concern discrete-time systems. The former
chapter considers the deterministic case in which the typical
dynamic system is of the form

xtþ 1 ¼ Ft xt; atð Þ for t ¼ 0; 1; . . .;T � 1; ð1Þ

with a given initial condition x0 is called the planning horizon.
In (1), xt denote the so-called state and control variables,
respectively. The control actions at are taken according to a given
control policy. Chapter 2 introduces finite (T\1) and infinite
(T ¼ 1) horizon OCPs with objective functionals that are typi-
cally defined by finite or infinite sums, respectively. In the
infinite-horizon case, we also introduce an asymptotic optimality
criterion, namely, the long-run average cost.

The remaining chapters have essentially the same structure as
Chapter 2, except for the dynamic model. In particular, in
Chapter 3 we consider the stochastic analogue of (1) that is,

xtþ 1 ¼ Ft xt; at; ntð Þ; t ¼ 0; 1; . . .;T � 1; ð2Þ

where xt and at are as in (1), and the nt are random variables that
represent random perturbations. It is explained that, depending
on the situation that they represent, these perturbations form
either a driving process or a random noise.

In addition to the “system model” (2), in Chapter 3 we
introduce the “Markov control model” in which we have a tran-
sition probability instead of a transition function Ft as in (2). The
Markov control model was introduced by Bellman (1957b), who
also coined the term “Markov decision process”, and which today
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is also known as a Markov Control Process (MCP). MCPs are
especially useful in control problems (for instance, control of some
queueing systems) in which we do not have an explicit system
model as in (2). On the other hand, it is noted in the text that (1)
and (2) are particular classes of MCPs.

The second half of these lectures concerns continuous-time
OCPs. It begins in Chapter 4 with control problems in which the
state process xð�Þ satisfies an ordinary differential equation (ODE)

_x tð Þ ¼ F t; x tð Þ; a tð Þð Þ for t 2 0;T½ �: ð3Þ

We again consider finite- and (discounted and undiscounted)
infinite-horizon problems in which the “summations” that appear
in Chapter 2 are replaced by integrals.

In several places of Chapter 4 it is emphasized that (3) defines,
in fact, a certain family of continuous-time MCPs. The reason for
doing this is that Chapter 5 introduces a general continuous-time
MCP, in which the evolution of the state process is determined by
an “infinitesimal generator” rather than a system function F as in
(3). Since this fact is difficult to grasp from a conceptual view-
point, immediately after introducing some standard dynamic
programming facts, we show that the results in Chapter 4 are
examples or particular cases of the ideas in Chapter 5.

Finally, as another example of a continuous-time MCP, in
Chapter 6 we study the control of diffusion processes that, for our
present purposes, can be expressed as solutions of certain
stochastic differential equations that generalize the ODEs in (3).

Each of the Chapters 2–6 presents examples to illustrate the
main results. It also includes a section with exercises.

Remark: Why Dynamic Programming? In other words, if
there are several well-known techniques to analyze optimal con-
trol problems (OCPs), why do we emphasize DP? The answer is
simple: it has more advantages than any of the other approaches
to OCPs. Let us explain this.

PREFACE ix



1. DP is applicable to essentially all classes of OCPs, including
deterministic and stochastic problems, with discrete- or
continuous-time parameter, finite- or infinite-dimensional
state space (see Fabbri et al. (2017)), with discrete (that is,
finite or countable spaces) or general metric state space, etc.
(In many applications, such as control of queues or rein-
forcement learning (see e.g. Sutton and Barto (2018)), we
work in finite state spaces.)

2. For discrete–time problems, DP does not require smooth-
ness conditions, which is important in some applications, for
instance in model predictive control (see e.g. Raković and
Levine (2019).)

3. In DP, there are well-known approximation algorithms,
such as the (recursive) value iteration algorithm or the
(monotone) policy iteration algorithm, which are the basis
for some applications, such as adaptive (or approximate)
DP and stabilization problems in control theory.

4. In DP, we automatically obtain feedback (or closed-loop or
Markov) optimal controls, in contrast to the open-loop
controls obtained when using, for instance, the Maximum
Principle.

Some of these advantages, and many others, are practically impos-
sible to obtain when using other solution techniques for OCPs.
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On the negative side, the main disadvantage is what Bellman
(1957a, 1961) called the curse of dimensionality, which basically
refers to the difficulty in solving the DPE when the dimension
increases. �
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Chapter 1

Introduction: Optimal
Control Problems

In a few words, in an optimal control problem (OCP) we are
given a dynamical system that is “controllable” in the sense that
its behavior depends on some parameters or components that we
can choose within certain ranges. These components are called
control actions. When we look at these control actions throught
the whole period of time in which the system is functioning, then
they form control policies or strategies. On the other hand, we are
also given an objective function or performance index that some-
how measures the system’s response to each control policy. The
OCP is then to find a control policy that optimizes the given
objective function.

More precisely, in an OCP we are given:

1. A “controllable” dynamical system, which typically, depending
on the time parameter, can be a discrete–time system or a
continuous-time system. For instance, in the former case, the
dynamical system is of the form

xt+1 = Ft(xt, at, ξt) for t = 0, 1, . . . , T − 1, (1.1)

with some given initial state x0. (In Chaps. 4–6 we consider
continuous–time systems.) In (1.1), at each time t, xt denotes
the state variable, with values in some state space X; at is the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 1 INTRODUCTION: OPTIMAL CONTROL PROBLEMS

control or action variable, with values in some action space
A; and ξt is a disturbance or perturbation in a disturbance set
S. In most applications of control theory, the spaces X, A,
and S are subsets of finite-dimensional spaces. However, for
technical reasons (to be briefly discussed in Remark 1.7), it
is convenient to assume that they are general Borel spaces.
Moreover, depending on the disturbances ξt, the system (1.1)
is classified in deterministic, stochastic or uncertain. This is
explained in Remark 1.2, below.

2. We are also given a set Π of admissible (or feasible) control
policies or strategies, which are sequences π = {a0, a1, ...} with
values at ∈ A.

3. Finally, we are given a real–valued function V on Π × X, which
is the objective function or performance index. The function V
can take many different forms. One of the most common is a
total cost

V (π, x0) :=
T−1∑

t=0

ct(xt, at) + CT (xT ), (1.2)

where π = {a0, . . . , aT−1} denotes the strategy being used, and
x0 is the initial state for the system (1.1). The term ct(xt, at),
which is called the stage cost, denotes the cost incurred at time
t given that xt is the state of the system and at is the applied
control action. The so–called terminal cost function CT (·) in
(1.2) depends on the terminal state xT only. In (1.2), T is called
the OCP’s planning horizon and can be finite or infinite. The
infinite–horizon case is obtained from (1.2) taking CT (·) ≡ 0
and letting T → ∞.

With the above components, we can now state the OCP as
follows: For each initial state x0, optimize the objective function
V (π, x0) over all π ∈ Π subject to (1.1). Here, depending on the
context, “optimize” means either “minimize” (for instance, if V
is a cost function) or “maximize” (if V is a reward or a utility
function). Thus, if we are minimizing V , then the OCP would be:
Find π∗ ∈ Π such that
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V (π∗, x) = inf
π∈Π

V (π, x) ∀ x0 = x, (1.3)

subject to (1.1). If this holds, then π∗ is called an optimal policy
or optimal solution to the OCP, and the function

V ∗(x) := inf
π∈Π

V (π, x) = V (π∗, x) ∀ x ∈ X (1.4)

is the OCP’s value function or minimum cost. If, on the other
hand, V is a profit or reward function to be maximized, then in
(1.3)–(1.4) we write “sup” in lieu of “inf”, and the value function
V ∗ in (1.4) is called the OCP’s maximum utility or maximum
reward, depending on the context.

To ensure that the value function V ∗(·) in (1.4) is finite–valued,
we will suppose that the following assumption holds unless stated
otherwise.

Basic Assumption.

(a) The cost functions ct and CT are nonnegative;

(b) There is a strategy π ∈ Π such that V (π, x) < ∞ for all x ∈ X.

The dynamic programming approach under the condition (a)
in the Basic Assumption (or when the cost functions are bounded
below) is known as the positive case. In the negative case the
cost functions are nonpositive (or bounded above). In Sect. 2.3.3
we will introduce the so-called weighted-norm approach, which
allows positive and negative costs but with a restricted growth
rate (Assumption 2.33(c)).

There are many conditions ensuring that V ∗(·) is finite–valued,
but our Basic Assumption greatly simplifies the mathematical
presentation. For instance, if the condition (a) holds, and ct, CT

are bounded above by a constant M , then the total cost in (1.2)
satisfies that

0 ≤ V (π, x0) ≤ (T + 1)M ∀ π and x0.

The main role of the Basic Assumption is that it helps to fix ideas,
and we can move forward to other aspects on an OCP.

Part (a) in the Basic Assumption guarantees that V (π, x) ≥ 0
for all π ∈ Π and x0 = x ∈ X, and so V ∗(·) ≥ 0. On the other
hand, (b) yields that V ∗(x) < ∞ for all x ∈ X. (Part (a) can
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be replaced by the apparently weaker condition: ct and CT are
bounded below.)

Example 1.1 (A production–inventory system). Consider a pro-
duction system in which the state variable xt ∈ R is the stock or
inventory level of some product. A typical state equation for this
system is

xt+1 = xt + at − ξt ∀ t = 0, 1, . . . , (1.5)

where the control or action variable at ≥ 0 is the amount to be
ordered or produced (and immediately supplied) at the beginning
of period t, and the disturbance ξt ≥ 0 is the product’s demand.
Observe that (1.5) is simply a balance–like equation.

A negative stock, which occurs if ξt > xt + at in (1.5), is inter-
preted as a backlog that will be fulfilled as soon as the stock
is replenished. However, if backlogging is not allowed, then the
model (1.5) can be replaced with

xt+1 = max{xt + at − ξt, 0}.
Usually, production systems have a finite capacity C, so that,

at each period t, we must have xt + at ≤ C or at ≤ C − xt. There-
fore, if the state is xt = x, then we have the control constraint

a ∈ A(x), with A(x) = [0, C − x].

Thus, the action space is A = [0,∞), which contains the control
constraint set A(x) for every state x.

In a production–inventory system the objective function V in
(1.2) is usually interpreted as a total profit or revenue function.
Hence, given the unit sale price (p), the unit production cost (c),
and the unit holding (or maintenance) cost (h), then at each time
t, instead of a cost ct in (1.2), we have a net revenue of the form

rt(xt, at) := pyt − cat − h(xt + at),

where yt = min{ξt, xt + at} is the sale during period t. �

Remark 1.2. (a) The system (1.1) (or (1.5)) is said to be deter-
ministic or stochastic or uncertain depending on whether the
disturbances ξt are, respectively,
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• given constants in (the disturbance set) S,

• S–valued random variables, or

• constants in S but with unknown values.

(b) If (1.1) is a stochastic system, the disturbances ξt are said
to form a driving process if they have a concrete meaning,
say, physical or economical. In contrast, if the disturbances
are generic random variables (with no specific meaning), the
process {ξt} is called a random noise. For instance, in Exam-
ple 1.1, if the demand variables ξt are random, then they
form a driving process. On the other hand, in models of eco-
nomic growth or population growth the disturbances typically
form a random noise. (See Example C.4 and Remark C.5 in
Appendix C.)

(c) If (1.1) is a stochastic system, the cost in the right–hand side
of (1.2) is random. In this case, (1.2) is replaced with the
expected total cost

V (π, x0) := E

[
T−1∑

t=0

ct(xt, at) + CT (xT )

]
. (1.6)

(d) Strategies. To introduce a control policy or strategy π =
{at} it is important to specify the information available
to the controller. In the simplest case, the control actions
depend on the time parameter only; that is, at = g(t) for
some function g. In this case, π is called an open–loop pol-
icy. If, on the other hand, at each time t, the control action
at = g(t, xt) depends on t and the current state xt, then π
is said to be a closed–loop policy, also known as a feedback
or Markov policy. In general, if the actions are of the form
at = g(x0, a0, x1, a1, . . . , xt−1, at−1, xt) so that, at each time t,
the action depends on the whole history of the process up to
time t, then π is called a nonanticipative or history–dependent
policy. In these notes, to fix ideas, we will consider only open–
loop and closed–loop (or Markov) policies unless stated other-
wise. See Fig. 1.1 for a representation of a feedback or closed–
loop scheme. �
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Fig. 1.1 A closed–loop
scheme system

controller

xt

at

Example 1.3 (A portfolio selection problem ≡ A consumption–
investment problem). Let xt be an investor’s wealth at time
t = 0, 1, . . . . At each time t the investor decides how much to
consume of his wealth, say ct, and the rest xt − ct is invested in a
stock portfolio, which consists of

• a risk–free asset (e.g., bonds) with a fixed interest rate r, and

• a risky asset (e.g., stocks) with a random return rate ξt.

Note that {ξt} is a driving process in the sense of Remark 1.2(b).
Thus the control variable is at = (ct, pt) ∈ [0, xt] × [0, 1] with ct =
consumption, and pt = fraction of xt − ct to be invested in the
risky asset, and 1 − pt is the fraction of xt − ct invested in the
riskless asset. The corresponding dynamical model is

xt+1 = [(1 − pt)(1 + r) + ptξt](xt − ct), t = 0, 1, . . . ,

with some given initial wealth x0 = x ≥ 0. Clearly, for the invest-
ment to be profitable, we impose the condition E(ξt) ≥ r for all
t = 0, 1, . . . . (Otherwise, if the interest rate r is greater that the
expected return rate E(ξt), then obviously the best decision would
be to invest in the risk–free asset.)

Hence we have a stochastic control system in which typically
we wish to maximize a so-called expected utility of consumption

V (π, x) := E

[
T∑

t=0

βtu(ct)

]
, with T ≤ ∞, (1.7)

where u(·) is a given utility function. Moreover, given the interest
rate r > 0, the discount factor is β := (1 + r)−1. �

If T = ∞ in (1.7), then we obtain an infinite–horizon objec-
tive function called an infinite–horizon discounted utility. A quite
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different infinite–horizon objective function is the long–run expected
average cost defined as

V (π, x) := lim sup
n→∞

n−1E

[
n−1∑

t=0

c(xt, at)

]
, (1.8)

where, as usual, π = {at} is the control policy being used, x0 = x
is the given initial state, and the lim sup is in order to minimize the
long–run average cost in a worst case scenario. (From a mathemat-
ical viewpoint, taking the lim sup is convenient because it ensures
that (1.8) is well defined, whereas the “limit” might not exist.
Moreover, for theoretical reasons, it is more convenient to take
lim sup rather than lim inf. We will come back to this point in the
following chapters.) Observe that (1.8) is an asymptotic value that
does not depend on the expected cost incurred in any finite num-
ber of stages. In fact, in many cases it is even independent of the
initial state x, that is V (π, x) ≡ V (π) for all x. Long-run average
cost problems appear in both deterministic and stochastic prob-
lems. See, for instance, Sects. 2.5 and 5.5 (or 6.5), respectively.

Example 1.4 (A tracking problem). Consider the general, pos-
sibly stochastic system (1.1) with state space X ⊂ R

k and action
set A ⊂ R

l. In addition, we are given a fixed state trajectory, say,
{x∗

t} in X, and a fixed action trajectory {a∗
t} in A. Finally, con-

sider the long–run expected average cost (1.8) with running cost

c(xt, at) := |xt − x∗
t |2 + |at − a∗

t |2 ∀ t = 0, 1, ...,

which is essentially the distance from (xt, at) to (x∗
t , a

∗
t ). Hence,

the corresponding OCP of minimizing V (π, x) over all π is called
a tracking problem because the underlying idea is that the state–
action pair (xt, at) should “track” or “follow” or “pursue” or “stay
as close as possible to” the given trajectories (x∗

t , a
∗
t ). In partic-

ular, if a∗
t ≡ 0 for all t, then we have a tracking problem with

minimum fuel.
Tracking problems are very common in engineering and eco-

nomics. As an example, controlling the attitude of a satellite or
keeping it as close as possible to a given orbit are tracking prob-
lems. (See Fig. 1.2.) For applications in economics, see Kendrick
(2002).
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Fig. 1.2 Controlling a
satellite’s attitude

If the state dynamics (1.1) in the tracking problem is stochas-
tic (so that the perturbations ξt are random variables), then the
process {ξt} would typically be a random noise. This is simply
because there is no possibility of assigning a “physical” meaning
to ξt. �

Remark 1.5 (Partially observable systems). In the tracking
problem of Example 1.4, suppose that the state xt of the system
is the attitude of a satellite—see Fig. 1.2. Hence we have a par-
ticular case of a so-called partially observable system, which is so–
named precisely because the state of the system is not observable.
Mathematically speaking, one can model this class of systems as
follows.

The evolution of the state process xt is as in (1.1), where usually
the disturbance {ξt} is a random noise. As already noted, the
state xt is not observable, but there is an observation process yt
behaving according to an equation of the form

yt = Gt(xt, ηt) ∀ t = 0, 1, 2, ..., (1.9)

where {ηt} is a random noise influencing the observation process.
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Fig. 1.3 A partially
observable control system

ξt

system
xt

controller

at

observer

yt

ηt

filter
x̂t

Using the observation process {yt} and a suitable filter (that is,
some statistical device), we obtain an (statistical) estimator x̂t of
the state xt, which is used by the controller to obtain a control of
the form at = g(t, x̂t). (See Fig. 1.3 for a graphical representation
of a partially observable control system.)

Under suitable assumptions, a partially observable system con-
sisting of Eqs. (1.1) and (1.9) can be transformed into a completely
observable system in which the original (unobservable) state xt is
replaced by the estimator x̂t. In some particular cases, the estima-
tor x̂t is a finite–dimensional vector, but in general it is a proba-
bility distribution. Hence, the “completely observable” system is
an OCP with state variable x̂t in a space of probability measures!
For details see, for instance, Bäuerle and Rieder (2011), Bertsekas
and Shreve (1978) or Hernández-Lerma (1989). �

We conclude this section with some comments on the
continuous–time systems that we will study in Chaps. 4–6.

Remark 1.6 (Continuous–time control problems). For
continuous–time control problems we again distinguish (as in the
discrete–time case above) between deterministic and stochastic
problems. In the former case, the state equation, which is the
analogue of (1.1), is an ordinary differential equation

ẋ(t) = F (t, x(t), a(t)) for t ∈ [0, T ], (1.10)

with some given initial state x(0) = x0. In (1.10), for each t, x(t)
and a(t) denote the state variable and the control action that
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belong to appropriate spaces, say, X ⊂ R
n and A ⊂ R

m, respec-
tively. Similarly, the cost functional (1.2) is replaced by an integral

V (π, x0) :=

∫ T

0

c(t, x(t), a(t))dt + CT (x(T )), (1.11)

where the instantaneous (or running) cost c(t, x, a) and the ter-
minal cost CT (x) are given functions.

The control variable a(·) in (1.10) and (1.11) depends on the
information available to the controller. Here, to simplify the pre-
sentation, we only consider

• open–loop controls a(t) := g(t), where g : [0, T ] → A is a given
(measurable) function; and

• closed–loop (or feedback or Markov) controls a(t) := g(t, x(t)),
for some (measurable) function g : [0, T ] × X → A.

In the stochastic case, (1.10) is replaced by a stochastic differ-
ential equation

dx(t) = F (t, x(t), a(t))dt + G(t, x(t), a(t))dW (t), (1.12)

with x(·) ∈ R
n, assuming that the state space is X ⊂ R

n, as in
(1.10). Moreover, in (1.12), W (·) ∈ R

d is a d–dimensional Wiener
process (also known as a Brownian motion), and G(t, x, a) is a n–
by–d matrix function. In this case, the cost functional in (1.11)
is a random variable and so we replace it by its expected value:

V (π, x0) := E

[∫ T

0

c(t, x(t), a(t))dt + CT (x(T ))

]
. (1.13)

The stochastic control problem is to minimize (1.13) subject to
(1.12). �

The remainder of these notes is organized as follows. Chap-
ters 2 and 3 deal with discrete–time systems. Chapter 2 considers
deterministic systems, and Chap. 3 is about the stochastic case.

The remaining chapters deal with continuous-time problems.
Chapter 4 concerns control of continuous–time deterministic
systems in which the state dynamics is an ordinary differential
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equation, as in (1.10). Chapter 5 introduces general continuous–
time Markov control processes (MCPs), which include the deter-
ministic systems in Chap. 4 and many other stochastic control
systems. In this general framework we show that some aspects
of stochastic control problems can be analyzed by exploiting the
“Markovian nature” of the involved dynamic systems. As an appli-
cation of the results for general MCPs we show how to recover
some results for the deterministic systems in Chap. 4. (Here,
deterministic systems are viewed as a class of, say, “degener-
ate” MCPs.) Finally, as another application of MCPs, in Chap. 6
we consider a class of controlled stochastic differential equations
(1.12), also known as controlled diffusion processes.

Remark 1.7. Why should we use Borel spaces (see Appendix
A)? To answer this question we should note that the state space
X and the action set A of an OCP can be of a different “topolog-
ical” nature. For instance, in Examples 1.1 and 1.3, X and A are
sets in (finite–dimensional) Euclidean spaces R or R

2. However,
in the control of some queueing systems, for instance, X and A
are discrete spaces, that is, either finite or countably infinite sets.
Indeed, in this case, the state variable xt is typically the “num-
ber of customers” (that is, a nonnegative integer) in the system
at time t. Moreover, the state space X can be finite or infinite,
depending on the system’s “capacity”, and the action set A can
be finite or infinite. For example, in a control of admissions prob-
lem, A is a two-point set {a, b}, where, for each arriving customer,
a := allow the customer to access the waiting line, and b := reject
the customer. At the other extreme, X and/or A can be infinite–
dimensional sets, as in the book by Fabbri et al. (2017). As an
example, consider the partially observable system in Remark 1.5.
If we transform this system into a completely observable one, in
which the state variable is the estimator x̂t, then the new state
space will be a set X̂ of probability measures! Clearly, if we con-
sider separately each of these cases, the theory could be a little
confusing. To avoid this situation, when dealing with a general
OCP we will simply assume that X and A are Borel spaces; this
includes all the cases mentioned above. (See Appendix A.)
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On the other hand, the Borel space context requires a suitable
concept of “measurability” of sets and functions. Here, however, to
avoid being repetitious, throughout these lectures we assume that
all sets and functions are Borel-measurable. In fact, this measur-
ability assumption usually holds in our case, because we mostly
consider standard, “well-behaved” settings in which functions are,
for instance, continuous or differentiable and so forth, and sim-
ilarly for sets—we mostly deal with nice sets, such as closed or
open intervals. To conclude, we believe that to learn from these
lecture notes it is not necessary to know Measure Theory. Nev-
ertheless, if the reader wishes to learn about it, he/she can look
at several introductory reader-friendly texts, such as Ash (1972),
Bartle (1995), Bass (2020), ... �



Chapter 2

Discrete–Time
Deterministic Systems

In this chapter we consider the discrete–time system (1.1) in
the so–called deterministic case (see Remark 1.2(a)), so that the
disturbances ξt are supposed to be given constants in some space
S. Since this information is irrelevant for our present purposes,
we will omit the notation ξt so (1.1) becomes

xt+1 = Ft(xt, at) for t = 0, 1, . . . , T − 1, (2.0.1)

with a given initial condition x0. The state and control spaces X
and A are given spaces. (Recall our assumption in Remark 1.7: In
these lectures, all sets and functions are Borel measurable.)

First, we consider the finite-horizon case, T < ∞. Hence, the
optimal control problem (OCP) we are concerned with is to min-
imize the total cost in (1.2), that is,

V (π, x0) :=
T−1∑

t=0

ct(xt, at) + CT (xT ) (2.0.2)

over the set Π of all control policies (or strategies) π = {a0, . . . ,
aT−1} subject to (2.0.1). At each time t, the set of feasible actions
is a set A(x) ⊂ A, which may depend on the current state x. (If
necessary, the action set A(x) may also depend on the time t.) For
this OCP an optimal policy and the corresponding value function
are defined as in (1.3) and (1.4), respectively.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In the following Sects. 2.1 and 2.2.1 we introduce the dynamic
programming approach to study the OCP (2.0.1)–(2.0.2). This
approach gives sufficient conditions for the existence of an optimal
control policy. In contrast, in Sect. 2.2.2 we introduce the mini-
mum principle (also known as Pontryagin’s principle) that gives
necessary conditions. In Sect. 2.3 we study an infinite-horizon
problem, so T = ∞ in (2.0.1)–(2.0.2), with CT (·) ≡ 0. To this
end we use both DP and the minimum principle in Sects. 2.3.1
and 2.3.2, respectively. Moreover, in Sect. 2.3.3 we introduce the
weighted-norm approach that allows positive and negative cost
functions. In Sect. 2.4 we consider again the infinite-horizon prob-
lem but now from the viewpoint of two approximation schemes,
value iteration (VI) and policy iteration (PI). Both schemes are
very useful in applications, and easily extended to stochastic prob-
lems (as in Chap. 3). We conclude this chapter with an analysis,
in Sect. 2.5, of long-run average cost problems. These problems
are very popular in the control of some queueing systems, and
also in computer and telecommunications applications, in which
we wish to optimize some asymptotic cost.

Remark 2.1. Sometimes, without further comments, we will
tacitly assume that the OCPs we are dealing with are consistent
in the sense that they are well defined and admit optimal solu-
tions. Of course, in all of the particular cases considered below we
give conditions ensuring consistency. �

Recall also the Basic Assumption at the beginning of Chap. 1
about the cost functions ct, CT being nonnegative, and V ∗(·) < ∞.

2.1 The Dynamic Programming
Equation

The dynamic programming (DP) technique is based on the follow-
ing “principle of optimality” stated by Richard Bellman (1920–
1984).
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Lemma 2.2 (The principle of optimality (PO)). Let π∗={a∗
0, . . . ,

a∗
T−1} be an optimal strategy for the OCP (2.0.1)–(2.0.2), that is,

V (π∗, x0) = min
π

V (π, x0) ∀ x0.

Let {x∗
0, . . . , x

∗
T} be the corresponding path obtained from (2.0.1),

so x∗
0 = x0. Then, for any time s ∈ {0, . . . , T − 1}, the “trun-

cated” strategy π∗
s = {a∗

s, . . . , a
∗
T−1} from time s onward is an

optimal strategy that leads the system (2.0.1) from the point x∗
s

to the point x∗
T .

We will next sketch the proof of this lemma. The details are
left as an exercise for the reader. (See Exercise 2.4)

Sketch of the proof of Lemma 2.2. Arguing by contradic-
tion, suppose that the lemma’s conclusion does not hold; that is,
for some 0 ≤ s < T − 1, the truncated policy π∗

s is not optimal.
Therefore, by our consistency assumption in Remark 2.1, there
exists a policy π̂s := {âs, . . . , âT−1} that is optimal in the interval
[s, T − 1] so that

Vs(π̂s, x
∗
s) < Vs(π

∗
s , x

∗
s),

where

Vs(πs, x) :=
T−1∑

t=s

ct(xt, at) + CT (xT ) (2.1.1)

is the total cost from time s onward when using the truncated
policy πs := {as, . . . , aT−1}, given that xs = x. Now consider the
combined policy π̃ = {ã0, . . . , ãT−1} defined as

ãt :=

{
a∗
t if 0 ≤ t < s,

ât if s ≤ t ≤ T − 1.

Then, by definition of π̃, V0(π̃, x0) < V0(π
∗, x0), which contradicts

the optimality of π∗ stated in the lemma. �

We will now show how to use Lemma 2.2 to obtain the dynamic
programming equation (2.1.8)–(2.1.9) below.

Consider the OCP (2.0.1)–(2.0.2) but only from time s onward,
with initial state xs = x, that is, the cost function to be minimized
is as in (2.1.1), i.e.,
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Vs(πs, x) :=
T−1∑

t=s

ct(xt, at) + CT (xT ).

Let vs(x) be the corresponding minimal cost, that is,

vs(x) := inf
πs

Vs(πs, x). (2.1.2)

Moreover, since no control actions are applied at the terminal
time T , we define

vT (x) := CT (x). (2.1.3)

Hence, by Lemma 2.2, (2.1.2) becomes

vs(x) = Vs(π
∗
s , x)

=
T−1∑

t=s

ct(x
∗
t , a

∗
t ) + CT (x∗

T )

= cs(x, a∗
s) + Vs+1(π

∗
s+1, x

∗
s+1)

= cs(x, a∗
s) + vs+1(x

∗
s+1).

Therefore, by (2.0.1),

vs(x) = cs(x, a∗
s) + vs+1(Fs(x, a∗

s)). (2.1.4)

On the other hand, by definition (2.1.2) of vs(x),

vs(x) ≤ cs(x, a) + vs+1(Fs(x, a)) ∀ a ∈ A(x). (2.1.5)

Finally, combining (2.1.4) and (2.1.5) we obtain that, for s∈
{0, . . . , T − 1} and x ∈ X,

vs(x) = min
a∈A(x)

[cs(x, a) + vs+1(Fs(x, a))], (2.1.6)

with terminal condition as in (2.1.3):

vT (x) := CT (x) ∀ x ∈ X. (2.1.7)

Equation (2.1.6) with the terminal condition (2.1.7) is called the
dynamic programming (DP) equation or the Bellman
equation for the OCP (2.0.1)–(2.0.2). The DP equation is the
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basis of the dynamic programming algorithm in the following the-
orem.

Theorem 2.3 (Dynamic programming theorem). Let J0, . . . , JT

be the functions defined “backward” (from s = T to s = 0) on X
by

JT (x) := CT (x), (2.1.8)

and for s = T − 1, T − 2, . . . , 0,

Js(x) := min
a∈A(x)

[cs(x, a) + Js+1(Fs(x, a))]. (2.1.9)

Suppose that for each s = 0, 1, . . . , T − 1, there exists a func-
tion a∗

s : X → A that attains the minimum in the right hand
side of (2.1.9) for all x ∈ X. Then the Markov strategy π∗ =
{a∗

0, . . . , a
∗
T−1} is optimal and the value function coincides with

J0, i.e.,

inf
π

V (π, x) = V (π∗, x) = J0(x) ∀ x ∈ X. (2.1.10)

Actually, for each s = 0, . . . , T, Js coincides with the function in
(2.1.2)–(2.1.3), i.e.,

vs(x) = Js(x) ∀ s = 0, 1, . . . , T, x ∈ X. (2.1.11)

Proof. Let vT , vT−1, ..., v0 be the functions defined by (2.1.2)–
(2.1.3), and let π∗ be the Markov strategy defined in the theorem.
Then, for each s ∈ {0, 1, . . . , T}, the definition of vs yields

vs(x) ≤ Vs(π
∗, x) = Js(x) ∀ x ∈ X,

where the second equality follows from (2.1.9), which can be
expressed as Js(x) = cs(x, a∗

s) + Js+1(x
∗
s+1). Hence, to complete

the proof of (2.1.11), it remains to show that

vs(x) ≥ Js(x) (2.1.12)

for all s ∈ {0, 1, . . . , T} and x ∈ X.
We will prove (2.1.12) using backward induction. Indeed, first

note that, by (2.1.7) and (2.1.8), the equality holds in (2.1.12)
when s = T . Now let us suppose that (2.1.12) holds for s + 1, i.e.,
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vs+1(x) ≥ Js+1(x) ∀ x ∈ X. (2.1.13)

Take an arbitrary policy π = {a0, . . . , aT−1}. Then, for any x ∈
X,

Vs(π, x) = cs(x, as) + Vs+1(π, Fs(x, as))

≥ cs(x, as) + vs+1(Fs(x, as))

≥ cs(x, as) + Js+1(Fs(x, as)) [by (2.1.13)]

≥ min
a∈A(x)

[cs(x, a) + Js+1(Fs(x, a))]

= Js(x).

Since this holds for any policy π, we obtain (2.1.12). �

In the following example we illustrate Theorem 2.3 with an LQ
control problem (also known as a “linear regulator problem”),
which consists of a Linear state equation with a Quadratic stage
cost.

Example 2.4 (Discrete–time LQ system). Consider the linear
system

xt+1 = αxt + βat ∀ t = 0, 1, . . . , T − 1; x0 given,

with nonzero coefficients α,β. The state and action spaces are
X = A = R. The objective function (or performance index) is

V (π, x0) :=
T−1∑

t=0

(qx2
t + ra2

t ) + qTx2
T ,

where r > 0 and q, qT ≥ 0.
In this case, the dynamic programming equation (2.1.8)–(2.1.9)

becomes
JT (x) := qTx2 (2.1.14)

and for s = T − 1, T − 2, . . . , 0:

Js(x) := min
a

[qx2 + ra2 + Js+1(αx + βa)]. (2.1.15)

This equation is solved by backward induction: substituting
(2.1.14) into (2.1.15) we obtain
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JT−1(x) := min
a

[qx2 + ra2 + qT (αx + βa)2].

Therefore,

JT−1(x) := min
a

[(q + qTα2)x2 + (r + qTβ2)a2 + 2qTαβxa].

The right–hand side of this equation is minimized when

a∗
T−1(x) = GT−1x, with GT−1 := −(r + qTβ2)−1qTαβ,

and the minimum is

JT−1(x) = KT−1x
2, with KT−1 := (r + qTβ2)−1qT rα2 + q.

In general, using backward induction we can see that the opti-
mal strategy π∗ = {a∗

0, . . . , a
∗
T−1} is given by

a∗
s(x) = Gsx, with Gs := −(r + Ks+1β

2)−1Ks+1αβ, (2.1.16)

with coefficients Ks defined recursively by KT := qT and for s =
T − 1, . . . , 0:

Ks = (r + Ks+1β
2)−1Ks+1rα

2 + q.

Likewise, the optimal cost (2.1.11) from time s onward becomes

Js(x) = Ksx
2 for s = 0, 1, . . . , T − 1. (2.1.17)

In particular, with s = 0 we obtain the minimum cost in (2.1.10).
�

Remark 2.5. (The nonstationary vector LQ problem.) For nota-
tional ease, we have considered above the scalar (or one-
dimensional) LQ problem in the stationary case, in which the state
and action spaces are X = A = R and the coefficients α,β, q, r are
all time-invariant constants. However, essentially the same argu-
ments (with obvious notational changes) are valid in the general
nonstationary vector case with state and action spaces X = R

n

and A = R
m, respectively, and time-varying matrix coefficients

αt ∈ R
n×n,βt ∈ R

n×m, and quadratic stage costs

c(x, a) = x′qtx + a′rta, t = 0, 1, ...
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where “prime” (′) denotes transpose, and qt and rt are symmetric
matrices, with qt nonnegative definite, and rt positive definite.
(The latter means that, for all t, x ∈ R

n, and a ∈ R
m, we have

x′qtx ≥ 0 and a′rta > 0 for a 
= 0.) In this case, (2.1.16)–(2.1.17)
become

a∗
s(x) = Gsx ∀x ∈ R

n

with
Gs = −(rs + β′

sKs+1βs)
−1β′

sKs+1αs,

where KT = qT and, for s = T − 1, ..., 0,

Ks = α′
s[Ks+1 − Ks+1βs(rs + β′

sKs+1βs)
−1β′

sKs+1]αs + qs.

With this value of Ks, the optimal (minimum) cost in (2.1.17)
becomes Js(x) = x′Ksx for s = 0, 1, ..., T − 1. For further details
see, for instance, Sect. 2.1 in Bertsekas (1987). �

2.2 The DP Equation and Related
Topics

This section is divided in two parts. First, in Sect. 2.2.1 we intro-
duce some variants of the DP equation (2.1.8)–(2.1.9). Then, in
Sect. 2.2.2, we consider the OCP (2.0.2)–(2.0.1) from the view-
point of the minimum principle, which gives necessary conditions
for optimality. The idea is to compare this principle with the DP
approach.

2.2.1 Variants of the DP Equation

Discounted costs. Let us suppose that (2.0.2)–(2.0.1) are of the
form

V (π, x0) =
T−1∑

t=0

αtct(xt, at) + αTCT (xT )

and
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xt+1 = Ft(xt, at) ∀ t = 0, 1, . . . , T − 1,

respectively, where α ∈ (0, 1) is a given discount factor. Then the
DP equation (2.1.8)–(2.1.9) becomes

JT (x) = αTCT (x),

Js(x) = min
a

[αscs(x, a) + Js+1(Fs(x, a))].

Now consider the change of variable Us(x) := α−sJs(x). Then we
obtain the so–called DP equation in the discounted case:

Us(x) = min
a

[cs(x, a) + αUs+1(Fs(x, a))] ∀ s = 0, . . . , T − 1,

(2.2.1)
with

UT (x) = CT (x). (2.2.2)

Example 2.6 (Optimal advertising, Adukov et al. (2015)). Let
us consider a market where a monopolistic firm is entering with
a new product. The firm’s market share at time t is xt, and its
advertising expenditure rate is at. Suppose that the market share
evolves according to the nonlinear system

xt+1 = (1 − δ)xt + ρat(1 − xt)
1−σ for t = 0, 1, . . . , T − 1,

(2.2.3)
where the state and control spaces are X = A = [0, 1], ρ ∈ (0, 1)
is the effectiveness of advertising, δ ∈ [0, 1] is the rate at which
consumers lose interest in the product, and σ ∈ [0, 1] is the non-
linearity parameter.

In order to interpret the nonlinear part of (2.2.3), first note that
from the Taylor expansion for (1 − x)1−σ at x = 0, we have

(1 − x)1−σ = (1 − x) + σx(1 − x) + σ2x2 + ....

Therefore, the nonlinear term ρat(1 − xt)
1−σ can be approximated

by the sum of a portion representing the new consumers due to
the direct advertising, ρat(1 − xt); and the new consumers due to
the word-of-mouth advertising by active consumers xt, namely,
σρatxt(1 − xt).
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Now, going back to our OCP, given an initial state x0, we want
to maximize the profit function

V (π, x0) =
T−1∑

t=0

αt
(
pxt − ca

1
σ
t

)
+ αTpTxT ,

where p > 0 and pT ≥ 0 are potential revenues, and c > 0 is the
advertising cost.

This problem can be solved explicitly by means of Eqs. (2.2.1)–
(2.2.2) for maximization problems. That is

UT (x) := pTx,

and for s = 0, 1, ..., T − 1:

Us(x) := max
a

{
px − ca

1
σ + αUs+1

(
(1 − δ)x + ρa(1 − x)1−σ

)}
.

By backward induction, for s = T − 1, we have

UT−1(x) = max
a

{
px − ca

1
σ + αpT

(
(1 − δ)x + ρa(1 − x)1−σ

)}
.

The maximum is attained at

a∗
T−1(x) = [M (pT ) (1 − x)]σ , where M(τ) :=

(ασρτ

c

) 1
1−σ

,

and so

UT−1(x) = N(pT )x + c
1 − σ

σ
M (pT ) ,

with

N(τ) := p + α(1 − δ)τ − c
1 − σ

σ
M(τ).

Continuing with the backward induction, we obtain that the opti-
mal control policy π∗ = {a∗

0, . . . , a
∗
T−1} is given by

a∗
s(x) =

[
M

(
NT−s−1(pT )

)
(1 − x)

]σ
, s = 0, 1, ..., T − 1,

where NT−s−1 is the (T − s − 1)th iterate of the function N .
From (2.2.3), the corresponding state path is

x∗
s+1 = (1 − δ)x∗

s + ρ[M(NT−s−1(pT ))]σ(1 − x∗
s),
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and the optimal benefit from time s onward turns out to be

Us(x) = NT−s(pT )x + c
1 − σ

σ
αT−s−1

T−s−1∑

i=0

α−iM
(
N i(pT )

)

for s = 0, 1, ..., T − 1. �

Forward form of the DP equation. Consider the DP equa-
tion (2.1.8)–(2.1.9) and let Us := JT−s for s = 0, 1, . . . , T . Then
the DP equation becomes

Us(x) = min
a

{cs(x, a) + Us−1(Fs(x, a))} (2.2.4)

for s = 1, 2, . . . , T , with initial condition

U0(x) = CT (x).

Moreover, if fT−s(x) minimizes the right–hand side of (2.1.9) at
the stage T − s, then gs := fT−s minimizes (2.2.4) at the stage s,
and π∗ = {gT , ..., g1} is an optimal policy, that is

UT (x) = J0(x) = V (π∗, x).

In the discounted case, the forward form of (2.2.1)–(2.2.2) becomes

us(x) = min
a∈A(x)

[cs(x, a) + αus−1(Fs(x, a))] (2.2.5)

for s = 1, 2, . . . , T , with u0(x) = CT (x).

2.2.2 The Minimum Principle

Remark 2.7. (a) In this section, we suppose that the state and
action spaces X and A are subsets of Rn and R

m, respectively.
We also assume that the cost functions in (2.0.2) and the sys-
tem functions in (2.0.1) are differentiable.

(b) Given two column vectors x, y of the same (finite) dimension,
we write their inner product as x · y :=

∑
i xiyi. Sometimes we

also write x · y as 〈x, y〉. If x is a row vector and y a column
vector, then we write their inner product simply as xy.
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(c) Consider the OCP (2.0.1)–(2.0.2) and the Hamiltonian func-
tion

Ht(x, a, ρ) := ct(x, a) + ρ · Ft(x, a), t = 0, 1, ...

for (x, a, ρ) ∈ X × A × R
n. Under the differentiability assump-

tion in (a), the Hamiltonian is also differentiable. �

The conditions in Remark 2.7 are one of the key differences
between the minimum principle (MP) and the dynamic program-
ming (DP) approach. In the former, typically, the state and
action spaces X and A are finite-dimensional and the functions
in (2.0.1)–(2.0.2) require some differentiability condition. In con-
trast, in DP, X and A are general Borel spaces (that is, Borel
subsets of complete and separable metric spaces), and the func-
tions in (2.0.1)–(2.0.2) require some mild condition, for instance,
piecewise continuity.

The minimum principle gives necessary conditions for optimal-
ity. Roughly, it states the following: If π∗ = {a∗

t} is an optimal
strategy and {x∗

t} is the corresponding state path, then the pairs
(x∗

t , a
∗
t ), t = 0, 1, . . . , satisfy, for some vectors ρ0, ρ1, . . ., the con-

ditions (2.2.6)–(2.2.8) below. In particular, (2.2.7) yields that the
optimal controls a∗

t minimize the Hamiltonian function Ht, which
gives the name “the minimum principle”.

The minimum principle was originally developed for continuous-
time problems (Gamkrelidze 1999). In this section we obtain the
discrete–time minimum principle in the form of first–order neces-
sary conditions.

Theorem 2.8. (The minimum principle). Let π∗={a∗
0, . . ., a

∗
T−1}

be an optimal strategy for the OCP (2.0.1)–(2.0.2) and {x∗
0, . . . ,

x∗
T} the corresponding path. Then there exist vectors ρ1, . . . , ρT in

R
n such that

(a) for all t = 1, . . . , T − 1,

∂ct
∂x

(x∗
t , a

∗
t ) + ρt+1

∂Ft

∂x
(x∗

t , a
∗
t ) = ρt, (2.2.6)

(b) for all t = 0, . . . , T − 1,
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∂ct
∂a

(x∗
t , a

∗
t ) + ρt+1

∂Ft

∂a
(x∗

t , a
∗
t ) = 0, (2.2.7)

(c) we have the terminal condition (TC)

ρT =
∂CT

∂x
(x∗

T ). (2.2.8)

Proof. Consider the “cost to go function” from time s using π∗

given x̃s = x, i.e.,

V ∗
s (x) =

T−1∑

t=s

ct(x̃t, a
∗
t ) + CT (x̃T ), (2.2.9)

where each x̃t is generated by (2.0.1) using π∗
s . Note that V ∗

s is a
differentiable function (see (2.2.10) below.)

Define

ρt :=
∂V ∗

t

∂x
(x∗

t ),

for all t = 1, . . . , T .

(a) Taking at = a∗
t in (2.1.6), it follows that V ∗

t (x) = ct(x, a∗
t ) +

V ∗
t+1(Ft(x, a∗

t )) for all t = 1, . . . , T − 1. Differentiating and
evaluating in x∗

t , we obtain

∂V ∗
t (x∗

t )

∂x
=

∂ct
∂x

(x∗
t , a

∗
t ) +

∂Vt+1

∂x
(Ft(x

∗
t , a

∗
t ))

∂Ft

∂x
(x∗

t , a
∗
t ),

(2.2.10)

which is (2.2.6).
(b) By the Principle of Optimality (Lemma 2.2) and (2.1.2),

V ∗
t (x∗

t ) = vt(x
∗
t ). This fact, by (2.1.6), implies

Vt(x
∗
t ) = min

a∈A(x)

{
ct(x

∗
t , a) + V ∗

t+1(Ft(x
∗
t , a))

}
,

for all t = 0, . . . , T − 1. Since a∗
t minimizes the righ–hand side,

we obtain

∂ct
∂a

(x∗
t , a

∗
t ) +

∂V ∗
t+1

∂x
(Ft(x

∗
t , a

∗
t ))

∂Ft

∂a
(x∗

t , a
∗
t ) = 0,

which is (2.2.7).
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(c) Finally, by (2.2.9), we have V ∗
T (x) = CT (x̃T ), so

ρT =
∂VT (x∗

T )

∂x
=

∂CT (x∗
T )

∂x
.

This completes the proof of the theorem. �

Sufficient conditions can also be provided with additional con-
vexity assumptions, as follows.

Theorem 2.9. Suppose that there exists a strategy π∗ = {a∗
0, . . . ,

a∗
T−1

}
and vectors ρ1, . . . , ρT such that (2.2.6), (2.2.7) and (2.2.8)

hold. Define h0 : X × A → R as

h0(x, a) = c0(x, a) + ρ1 · F0(x, a),

and for t = 1, . . . , T − 1, ht : X × A → R as

ht(x, a) = ct(x, a) + ρt+1 · Ft(x, a) − ρt · x.

If ht is convex for all t = 1, . . . , T − 1 and CT is convex, then π∗

is optimal for the OCP (2.0.1)–(2.0.2).

Proof. Since (2.2.6) and (2.2.7) are the first order conditions of
optimality for each ht, the convexity of ht implies that (x∗

t , a
∗
t )

minimizes ht. Analogously, x∗
T minimizes CT (x) − ρT · x.

Let π = {a0, . . . , aT−1} be an arbitrary policy. We have

T−1∑

t=0

ct(a
∗
t , x

∗
t ) + CT (x∗

T ) =
T−1∑

t=0

ht(a
∗
t , x

∗
t ) +

T−1∑

t=1

ρt · x∗
t

−
T−1∑

t=0

ρt+1 · x∗
t+1 + CT (x∗

T )

≤
T−1∑

t=0

ht(xt, at) − ρT · x∗
T + CT (x∗

T )

≤
T−1∑

t=0

ht(xt, at) − ρT · xT + CT (xT )
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=
T−1∑

t=0

ct(at, xt) + CT (xT ).

Thus π∗ is optimal. �

Example 2.10 (An economic growth model). This is a model
introduced by Brock and Mirman (1972). The state and control
variables xt and at denote capital and consumption, respectively,
at time t = 0, 1, . . . . The state and control spaces are X = A =
[0,∞), and the dynamics of the system is given by

xt+1 = cxθ
t − at for t = 0, 1, . . . , T − 1, (2.2.11)

with θ ∈ (0, 1) and x0 given. Let A(x) := (0, cxθ], and consider
the objective function or performance index

V (π, x0) =
T−1∑

t=0

αt log at + αT log xθ
T . (2.2.12)

In this OCP, the economic interpretation is that the controller
wishes to determine a consumption strategy {at} to maximize the
total discounted utility (2.2.12), subject to the capital dynamics
(2.2.11). The term cxθ

t in (2.2.11) represents the output as a func-
tion of the current capital xt and the technological parameter c;
this output is distributed in consumption at and capital xt+1 for
the next period.

To solve this problem we write the minimum principle equations
(2.2.6)–(2.2.8) as follows

ρt+1cθx
θ−1
t = ρt for t = 1, ..., T − 1, (2.2.13)

αt

at

− ρt+1 = 0 for t = 0, ..., T − 1, (2.2.14)

with the terminal condition

ρT =
θαT

xT

. (2.2.15)

From (2.2.14) for t = T − 1 and (2.2.15),
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aT−1 =
αT−1

ρT

=
xT

θα
=

cxθ
T−1 − aT−1

θα

which implies

aT−1 =
cxθ

T−1

1 + θα
.

Again, from (2.2.13) and (2.2.14) for t = T − 2,

aT−2 =
αT−2

ρT−1

=
aT−1

cθαxθ−1
T−1

=
xT−1

θα + (θα)2
=

cxθ
T−2 − aT−2

θα + (θα)2
,

yielding

aT−2 =
cxθ

T−2

1 + θα + (θα)2
.

Continuation of this process backward in time yields the optimal
control policy

a∗
t =

c[x∗
t ]

θ

1 + θα + · · · + (θα)T−t
=

[
c(1 − θα)

1 − (θα)T−t+1

]
[x∗

t ]
θ (2.2.16)

for all t = 0, ..., T − 1. �

Remark 2.11. Theorems 2.8 and 2.9 above, and also Theorem
2.29 below, are simplified versions of results by Domı́nguez-Corella
and Hernández-Lerma (2019). �

2.3 Infinite–Horizon Problems

In this section we consider infinite-horizon problems. First, in
Sect. 2.3.1 we study the so-called stationary discounted case by
means of the DP approach. Then in Sect. 2.3.2 we consider gen-
eral nonstationary problems using the minimum principle (MP).
Again, as in Sect. 2.2.2, the idea is to compare the DP and the
MP techniques. Finally, in Sect. 2.3.3, we introduce the so-called
weighted-norm approach.
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A relevant question is, why should we consider infinite horizon
problems? Do they appear in “real” situations? Are they impor-
tant? Detailed answers will require to refer to the approximation
algorithms and the asymptotic or long-run averages in Sects. 2.4
and 2.5, respectively. Therefore, we defer this topic to the end of
the chapter.

2.3.1 Discounted Case

Instead of the OCP (2.0.1)–(2.0.2), consider the stationary dis-
counted OCP: Minimize

Vn(π, x) :=
n∑

t=0

αtc(xt, at) (2.3.1)

over all policies π = {a0, . . . , an} subject to

xt+1 = F (xt, at) ∀ t = 0, . . . , n − 1, (2.3.2)

with a given initial state x0 = x. In (2.3.1), α ∈ (0, 1) is a given
discount factor.

Remark 2.12. The problem (2.3.1)–(2.3.2) is called stationary
because the cost c(x, a) and the system function F (x, a) are time–
invariant. Similarly, a Markov policy π = {at}, with at = g(t, xt)
for all t = 0, 1, . . . (see Remark 1.2(d)) is said to be stationary
if g(t, x) ≡ g(x) for all t. In other words, the control actions
at = g(xt) depend on the time parameter t only through the state
xt. Stationary control policies usually appear in infinite–horizon
OCPs only. (See Corollary 2.22, for instance.) �

In this section, we are interested in the infinite horizon OCP
obtained from (2.3.1) by letting n → ∞; that is, the OCP now is
to minimize

V (π, x) :=
∞∑

t=0

αtc(xt, at) (2.3.3)

subject to (2.3.2). Let
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V ∗(x) := inf
π

V (π, x) ∀ x ∈ X, (2.3.4)

which is called the α–discount value function. A policy π∗ is
said to be α–discount optimal if

V (π∗, x) = V ∗(x) ∀ x ∈ X.

The infinite-horizon discounted OCP (2.3.2)–(2.3.3) was intro-
duced by Blackwell (1965).

Example 2.13 (Tracking problems). As noted in Example 1.4,
tracking problems are a standard topic in some areas of economics
and engineering, among other fields. The idea is as follows.

We are given a nominal control path {a∗
t , t = 0, 1, . . . } and a

nominal state trajectory {x∗
t , t = 0, 1, . . . }. The OCP is then to

minimize the tracking cost

V (π, x) :=
∞∑

t=0

αt[(xt − x∗
t )

2 + (at − a∗
t )

2] (2.3.5)

subject to a state equation such as (2.3.2). In particular, if this
state equation is linear, say,

xt+1 = Fxt + Gat,

the tracking problem becomes an LQ (Linear–Quadratic) prob-
lem. Observe that, essentially, (2.3.5) is an �2–distance from the
state–control trajectory {(xt, at), t = 0, 1, . . . } to the given nom-
inal trajectory {(x∗

t , a
∗
t ), t = 0, 1, 2, ...}, so the tracking problem

is to keep the state–control trajectory as close as possible to the
nominal trajectory. In particular, if a∗

t ≡ 0 for all t = 0, 1, . . . , in
engineering this is called a tracking problem with minimum fuel.
Similar problems are dealt with in economics. �

In this section we are interested, among other things, in pro-
viding solutions to the following problems.

Problem 1. Let V ∗
n (x) := infπ Vn(π, x) be the minimal cost or

value function for the n–stage OCP. Under what conditions does
it hold that, as n → ∞, V ∗

n converges to V ∗? That is, when do we
have
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lim
n→∞

V ∗
n (x) = V ∗(x) (2.3.6)

for all x ∈ X?
In (2.3.7), below, A(x) ⊂ A denotes the set of feasible control

actions in the state x, for each x ∈ X.

Problem 2. Under what conditions is V ∗ a solution of the
dynamic programming equation, also known as the Bellman
equation or α–optimality equation (α–OE) in the discounted–
cost case, that is,

V ∗(x) = inf
a∈A(x)

[c(x, a) + αV ∗(F (x, a))] (2.3.7)

for all x ∈ X?

To put it in other words, consider the so–called Bellman oper-
ator K defined as

Kv(x) := inf
a∈A(x)

[c(x, a) + αv(F (x, a))] (2.3.8)

for functions v in a certain family. Then we can restate Problem
2 as follows: when is V ∗ a fixed point of K? That is, when can we
ensure that

V ∗ = KV ∗ (2.3.9)

holds?

Remark 2.14. The fact that V ∗ satisfies (2.3.7) or (2.3.9) is
not quite surprising. Indeed, for the α–discounted OCP (2.3.1)–
(2.3.2), the DP equation (2.2.5) becomes

V ∗
n (x) = min

a∈A(x)
[c(x, a) + αV ∗

n−1(F (x, a))] ∀ n = 1, 2, . . .

(2.3.10)
with V ∗

0 (·) ≡ 0. Therefore, if in (2.3.10) we let n → ∞ and, in
addition, (2.3.6) holds, then we would expect to obtain (2.3.7)
(if interchanging of the “lim” and “min” operations is allowed—
see Lemma 2.15 below). On the other hand, note that, using the
operator K in (2.3.8), we may express (2.3.10) as an iteration of
K, that is,

V ∗
n = KV ∗

n−1 = KnV ∗
0 , with V ∗

0 ≡ 0. (2.3.11)
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Due to this fact, the functions V ∗
n are also known as value iteration

(VI) functions. �

Note that (2.3.7) and (2.3.9) always have the trivial solutions
v ≡ ∞ and v ≡ −∞. We are interested, of course, in finite–valued
functions.

The following lemma gives conditions that allow to interchange
limits and minima.

Lemma 2.15. Let {gk} be a sequence of real–valued functions
on a space Y converging to a function g. Each of the following
conditions (a), (b), (c) ensures that

lim
k

inf
y

gk(y) = inf
y

lim
k

gk(y) = inf
y

g(y).

(a) gk ↓ g,
(b) gk converges uniformly to g; that is, for each ε > 0 there exists

a number k(ε) such that, for all y ∈ Y ,

|gk(y) − g(y)| < ε whenever k > k(ε).

(c) Y is a metric space, the functions gk are inf–compact (that is,
for each k = 1, 2, . . . and r ∈ R, the set {y ∈ Y : gk(y) ≤ r}
is compact), and, moreover, gk ↑ g.

Proof. See Exercise 2.5. �

We will next use some definitions and facts from Appendix B.
Let

K := {(x, a) ∈ X × A|a ∈ A(x)} (2.3.12)

be the graph of the multifunction x �→ A(x). (See Definition
B.1(b).) We denote by F the family of (measurable) functions—
called selectors—f : X → A such that f(x) ∈ A(x) for all x ∈ X.
(Note that a selector f ∈ F is simply a function from X to A
whose graph (x, f(x)) is in K for all x.)

Lemma 2.16. Let u : K → R be nonnegative and K–inf–compact,
that is (as in Definition B.4(a2)), for every compact set X ′ ⊂ X
and every r ∈ R, the set

{(x, a) ∈ G(X ′)|u(x, a) ≤ r}
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is compact, where G(X ′) := {(x, a) ∈ X ′ × A|a ∈ A(x)}. Then

(a) There exists f ∈ F such that

u∗(x) := min
a∈A(x)

u(x, a) = u(x, f(x)) ∀ x ∈ X,

and u∗ is l.s.c.
(b) If u, uk : K → R, for k = 1, 2, . . . , are bounded below and K–

inf–compact, and uk ↑ u, then

lim
k→∞

min
a∈A(x)

uk(x, a) = min
a∈A(x)

u(x, a)

for all x ∈ X.

Proof. (a) This part follows from Theorem B.9. It also follows
from Theorem B.8, using the fact that (by Lemma B.6)

K − inf-compactness ⇒ inf-compactness on K, (2.3.13)

and also implies lower semi–continuity of u (by Theorem B.9).
(b) Fix an arbitrary x ∈ X, and let g(a) := u(x, a) and gk(a) :=

uk(x, a). Then gk ↑ g and, by (2.3.13) again, the functions gk are
inf–compact on A(x). Since x was arbitrary, (b) follows from
Lemma 2.15 (c). �

In the context of the infinite–horizon OCP (2.3.2)–(2.3.3), our
Basic Assumption (in Chap. 1) states that:

(a) the stage cost c : K → R is nonnegative, and
(b) there exists a control policy π ∈ Π such that

V (π, x) < ∞ for all x ∈ X.

In addition to the Basic Assumption, in the remainder of this
section we suppose the following.

Assumption 2.17. (a) The cost function c ≥ 0 is K–inf–compact;
(b) The system function F : K → X in (2.3.2) is continuous.

We will denote by L(X) the family of l.s.c. functions on X,
and by L+(X) the subfamily of nonnegative functions in L(X).
Observe that L+(X) is a convex cone. (See Exercise 2.9.)
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Lemma 2.18. Suppose that Assumption 2.17 holds, and let
L+(X) be the family of nonnegative and l.s.c. functions on X.
Then:

(a) The Bellman operator K in (2.3.8) maps L+(X) into itself;
that is, if v is in L+(X), then so is Kv.

(b) If v is in L+(X), then there exists a selector f ∈ F that attains
the minimum in (2.3.8), i.e.,

Kv(x) = c(x, f(x)) + αv(F (x, f(x))) ∀ x ∈ X.

Proof. Fix an arbitrary function v ∈ L+(X), and define

u(x, a) := c(x, a) + αv(F (x, a)) ∀ (x, a) ∈ K. (2.3.14)

Both results (a) and (b) will follow from Lemma 2.16(a) if we
show that the nonnegative function u is K–inf–compact. To this
end, take an arbitrary compact set X ′ ⊂ X and r ∈ R, and note
that the set

G(X ′)c := {(x, a) ∈ G(X ′)|c(x, a) ≤ r}
is compact, because c is K–inf–compact (Assumption 2.17(a)).
Moreover, G(X ′)c contains the set

G(X ′)u := {(x, a) ∈ G(X ′)|u(x, a) ≤ r}.

Therefore, to see that u is K–inf–compact, it suffices to show
that G(X ′)u is closed, that is, if a sequence of elements (xk, ak) ∈
G(X ′)u converges to (x, a), then (x, a) is in G(X ′)u. This, however,
is obvious because the mapping (x, a) �→ u(x, a) is l.s.c. (Exercise
2.9). �

Remark 2.19. Consider a selector f ∈ F. To simplify the nota-
tion we will write c(x, f(x)) and F (x, f(x)) as c(x, f) and F (x, f),
respectively. Moreover, we will identify f with the stationary
Markov control policy π = {at} such that at(xt) = f(xt) for all
t = 0, 1, . . . . Similarly, if π = f , we will express the total α–
discounted cost in (2.3.3) as V (f, x), that is,

V (f, x) =
∞∑

t=0

αtc(xt, f) (2.3.15)
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for all initial state x0 = x. Note that expanding the righ–hand
side of (2.3.15) we obtain

V (f, x) = c(x, f) + α

∞∑

t=1

αt−1c(xt, f).

Thus, by (2.3.2), we can express (2.3.15) as

V (f, x) = c(x, f) + αV (f, F (x, f)) ∀ x ∈ X

or, using (2.3.2),

V (f, xt) = c(xt, f) + αV (f, xt+1) (2.3.16)

for all t = 0, 1, . . . . �

We need the following “monotonicity property” of the Bellman
operator K before going back to Problems 1 and 2.

Lemma 2.20. Consider the Basic Assumption and Assumption
2.17. If v ∈ L+(X) is such that v ≥ Kv, then

(a) There exists f ∈ F such that v(x) ≥ V (f, x) for all x ∈ X;
therefore,

(b) v ≥ V ∗.

Proof. (a) If v ≥ Kv, then, by Lemma 2.18(b), there exists f ∈ F

such that

v(x) ≥ c(x, f) + αv(F (x, f)) ∀ x ∈ X.

Iteration of this inequality yields, for all n = 1, 2, ... and x ∈ X,

v(x) ≥
n−1∑

t=0

αtc(xt, f) + αnv(xn).

Therefore, since v ≥ 0, letting n → ∞ we obtain

v(x) ≥ V (f, x) ∀ x ∈ X.

(b) Thus, since V (f, ·) ≥ V ∗(·), we conclude that v ≥ V ∗. �

We are now ready to give conditions under which the answer
to both Problems 1 and 2 is affirmative.
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Theorem 2.21. Consider the Basic Assumption and Assump-
tion 2.17. Then

(a) (2.3.6) holds, in fact V ∗
n ↑ V ∗, and

(b) V ∗ is the minimal solution of the α-optimality equation
(2.3.7); that is, V ∗ = KV ∗ and if v ∈ L+(X) also satisfies
v = KV , then v ≥ V ∗.

(c) V ∗ is the “unique” solution of the DPE in the following sense:
If v ∈ L+(X) is such that v = Kv and, in addition, for any
policy π = {at} and the corresponding state trajectory {xt} we
have

lim
n→∞

αnv(xn) = 0, (2.3.17)

then v = V ∗. (The condition (2.3.17) is sometimes called a
“transversality condition”.)

Proof. Since c ≥ 0, the definition of V ∗
n gives

V ∗
n (x) ≤ Vn(π, x) ≤ V (π, x)

for any policy π and x ∈ X, so

V ∗
n (x) ≤ V ∗(x) ∀ x ∈ X. (2.3.18)

On the other hand, since the sequence {V ∗
n } is nondecreasing,

V ∗
n ↑ v for some function v such that, by (2.3.18),

v ≤ V ∗. (2.3.19)

Furthermore, from (2.3.10) and Lemma 2.16(b), v is in L+(X)
and it satisfies (2.3.9), that is,

v = lim
n

V ∗
n = lim

n
KV ∗

n−1 = Kv.

It follows from Lemma 2.20 that v ≥ V ∗. This fact and (2.3.19)
give that v = V ∗. This proves both (a) and (b).

(c) If v = Kv, Lemma 2.20 gives that v ≥ V ∗. To obtain the
reverse inequality first note that v = Kv implies

v(x) ≤ c(x, a) + αv(F (x, a)) ∀ (x, a) ∈ K.
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Therefore, for any policy π = {at} and the associated state tra-
jectory xt,

v(xt) ≤ c(xt, at) + αv(xt+1) ∀ t = 0, 1, . . . .

Iteration of this inequality, given an arbitrary initial state x0 = x,
gives

v(x) ≤
n−1∑

t=0

αtc(xt, at) + αnv(xn) ∀ n = 1, 2, . . . ,

i.e., v(x) ≤ Vn−1(π, x) + αnv(xn). Finally, letting n → ∞, from
(2.3.17) we obtain v(x) ≤ V (π, x). Thus, since π and x0 = x were
arbitrary, it follows that v(·) ≤ V ∗(·). This completes the proof of
part (c). �

As a consequence of Theorem 2.21(b) and Lemma 2.18(b)
we obtain the existence of an optimal stationary policy for the
infinite–horizon OCP (2.3.2)–(2.3.3), as follows.

Corollary 2.22. Under the hypotheses of Theorem 2.21, there
exists f ∗ ∈ F such that f ∗(x) ∈ A(x) attains the minimum in the
right–hand side of (2.3.7), that is,

V ∗(x) = c(x, f ∗) + αV ∗(F (x, f ∗)) ∀ x ∈ X, (2.3.20)

and f ∗ is an optimal stationary policy.

Proof. The existence of f ∗ as in (2.3.20) follows from Lemma
2.18(b). Moreover, as in (2.3.16), iteration of (2.3.20) gives that
V ∗(x) = V (f ∗, x) for all x ∈ X. Therefore, f ∗ is α–discount opti-
mal. �

In the following examples we use the notation in (2.3.2)–(2.3.4).
These examples show that before using DP results (such as The-
orem 2.21) we should carefully verify their hypotheses.

Example 2.23 (Bertsekas 1987, p. 212). Let X = [0,∞),
c(x, a) ≡ 0, and F (x, a) = x/α. Then, for any constant b, the func-
tion V (x) = bx, for x ∈ X, satisfies (2.3.7). Hence, the operator
K in (2.3.8)–(2.3.9) has an infinite number of fixed points in this
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case. However, it has a unique fixed point in the class B(X) of
real–valued bounded functions on X, namely, the zero function
V ∗(·) ≡ 0, which is the optimal cost function for this example.
(See Remark 2.25 below, and also the Exercise 2.7.) �

Example 2.24 (Bertsekas 1987, p. 215). Let X = R, A = A(x) =
(0, 1] for all x ∈ X, c(x, a) = |x|, F (x, a) = α−1ax. It can be veri-
fied that V ∗(x) = |x| for all x ∈ X. Now let π be the stationary
policy such that π(x) = 1 for all x ∈ X. Then the cost function
v(·) = V (π, ·) in (2.3.3) is v(x) = ∞ if x 
= 0 and v(0) = 0, so π is
not optimal because v(·) 
= V ∗(·). Nevertheless, it can be verified
that v is a fixed point of K, so it satisfies (2.3.9). �

The Exercise 2.7 and other results below use the following well-
known fact.

Remark 2.25 (Banach’s fixed point theorem). Let (X , ρ) be
a complete metric space, and T : X → X a contraction mapping,
that is, there exists a number β ∈ (0, 1) such that

ρ(Tu, Tv) ≤ βρ(u, v) ∀ u, v ∈ X .

Then T has a unique fixed point u∗ ∈ X , i.e.,

Tu∗ = u∗.

Moreover, for any u ∈ X , T nu converges to the fixed point u∗; in
fact,

ρ(T nu, u∗) ≤ βnρ(u, u∗) ∀ n = 0, 1, . . . ,

where T n := T (T n−1) for all n = 1, 2, ..., with T 0 :=identity. �

2.3.2 The Minimum Principle

Now we introduce the minimum principle for an infinite–horizon
OCP. As in Sect. 2.2.2, these necessary conditions for optimality
are stated under smoothness properties. We assume that the state
space X is a subset of Rn, the action space A is a subset of Rm, and
the cost functions ct : X × A → R as well as the system functions
Ft : X × A → X are differentiable in the interior of X × A.
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Given an initial state x0 = x and the dynamics (2.0.1), let us
consider the general performance function

V (π, x) =
∞∑

t=0

ct(xt, at),

for which we assume that V (π, x) > −∞ for each admissible
policy π. We also suppose that there is a policy π such that
V (π, x) < ∞ for every x. Under these conditions we first study
the Gâteaux differential of the real valued function V (·, x).

Remark 2.26 (on notation).

(a) Given τ = 0, 1, . . . , a policy

π = {a0, a1, . . . , aτ−1, aτ , aτ+1, . . . },

and an action a ∈ A, we define the policy

π−τ (a) := {a0, a1, . . . , aτ−1, a, aτ+1, . . . },

which is obtained from π by replacing the action aτ with a.

(b) We will denote by x
π−τ (a)
t , t = 0, 1, . . ., the state path corre-

sponding to π−τ (a). Note that

x
π−τ (a)
t+1 := Ft(xt, at) if t < τ ,

:= Fτ (xτ , a) if t = τ ,

:= Ft(x
π−τ (a)
t , at) if t > τ

for all t = 0, 1, ....
(c) We use the following notation for the product of square matri-

ces J1, J2, ... :

t∏

k=τ

Jk := Jτ · · · Jt if τ ≤ t,

:= I if τ > t,

where I is the identity matrix. �

Lemma 2.27. Fix an arbitrary τ in {0, 1, . . . } and y ∈ R
m (a

row vector). Let ψτ ,y be defined by
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ψτ ,y
i :=

{
y for i = τ ,

0 for i 
= τ .

Then, if it exists, the Gâteaux differential of V (·, x) at π in the
direction ψτ ,y is

dV (π; ψτ ,y) =
∂cτ

∂a
(xτ , aτ )y

∗ + λτ+1
∂Fτ

∂a
(xτ , aτ )y

∗,

where y∗ denotes the transpose of y ∈ R
m, and

λτ+1 :=
∞∑

s=τ+1

∂cs
∂x

(xs, as)
s−1∏

k=τ+1

∂Fk

∂x
(xk, ak).

Proof. For δ ∈ [0, 1) small enough so that aτ + δy is in an open
neighborhood of aτ , consider the policy π + δψτ ,y = π−τ (aτ + δy).
Then

V (π + δψτ,y, x) =

τ−1∑

s=0

cs(xs, as) + cτ (xτ , aτ + δy) +
∞∑

s=τ+1

cs

(
x

π−τ (aτ+δy)
s , as

)
.

Thus, the Gateaux differential of V at π in the direction ψτ ,y is
given by

dV (π;ψτ,y) =
d

dδ
V (π + δψτ,y)

∣∣∣
δ=0

=
∂cτ

∂a
(xτ , aτ )y

∗ +
d

dδ

∞∑

s=τ+1

cs

(
x

π−τ (aτ+δy)
s , as

) ∣∣∣
δ=0

.

=
∂cτ

∂a
(xτ , aτ )y

∗

+

⎛

⎝
∞∑

s=τ+1

∂cs
∂x

(xs, as)

s−1∏

k=τ+1

∂Fk

∂x
(xk, ak)

⎞

⎠ ∂Fτ

∂a
(xτ , aτ )y

∗,

where the last equality is obtained applying the chain rule induc-
tively. �

From the above computation, we can see that the existence of
the Gâteaux differential of V (·, x) requires the following additional
hypothesis.
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Assumption 2.28. Let π = {a0, a1, . . . } be a policy. For any τ =
0, 1, . . . , there is an open neighborhood Uτ of aτ such that the
sequence of functions ρτ ,s : Uτ → R given by

ρτ ,s(a) :=
∂cs
∂x

(xπ−τ (a)
s , as)

s−1∏

k=τ+1

∂Fk

∂x
(x

π−τ (a)
k , ak) (2.3.21)

are such that the series
∑∞

s=τ+1 ρτ ,s(a) converges uniformly in Uτ .

Theorem 2.29. Let π = {at, t = 0, 1, . . . } be a policy satisfying
the Assumption 2.28 and {xt, t = 0, 1, . . . } is the corresponding
state trajectory. If π is an optimal policy for the OCP, then there
exists a sequence {λt}∞

t=1 in R
n such that:

1. for each t = 1, 2, . . .,

∂ct
∂x

(xt, at) + λt+1
∂Ft

∂x
(xt, at) = λt, (2.3.22)

2. for each t = 0, 1, 2, . . . ,

∂ct
∂a

(xt, at) + λt+1
∂Ft

∂a
(xt, at) = 0, (2.3.23)

3. Transversality condition (TC): for each τ = 0, 1, 2, . . . ,

lim
t→∞

λt

t−1∏

k=τ

∂Fk

∂x
(xk, ak) = 0. (2.3.24)

Proof. Define, for each t = 1, 2, . . . ,

λt :=
∞∑

s=t

∂cs
∂x

(xs, as)
s−1∏

k=t

∂Fk

∂x
(xk, ak). (2.3.25)

1. A direct calculation gives

λt =

∞∑

s=t

∂cs
∂x

(xs, as)

s−1∏

k=t

∂Fk

∂x
(xk, ak)

=
∂ct
∂x

(xt, at) +

⎛

⎝
∞∑

s=t+1

∂cs
∂x

(xs, as)

s−1∏

k=t+1

∂Fk

∂x
(xk, ak)

⎞

⎠ ∂Ft

∂x
(xt, at)
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=
∂ct
∂x

(xt, at) + λt+1
∂Ft

∂x
(xt, at).

2. From Lemma 2.27, we have

dV (π; ψτ ,y) =
∂cτ

∂a
(xτ , aτ )y

∗ + λτ+1
∂Fτ

∂a
(xτ , aτ )y

∗.

Recalling Theorem 1 from Luenberger (1969), p. 178, a neces-
sary condition for π to be a minimizer of V is that dV (π; ψτ ,y) =
0 for all τ = 0, 1, 2, . . . and every y ∈ R

m. Hence

∂cτ

∂a
(xτ , aτ ) + λτ+1

∂Fτ

∂a
(xτ , aτ ) = 0 for all τ = 0, 1, 2, . . . .

3. Notice that

λt

t−1∏

k=τ

∂Fk

∂x
(xk, ak) =

( ∞∑

s=t

∂cs
∂x

(xs, as)

s−1∏

k=t

∂Fk

∂x
(xk, ak)

)
t−1∏

k=τ

∂Fk

∂x
(xk, ak)

=
∞∑

s=t

∂cs
∂x

(xs, as)

s−1∏

k=τ

∂Fk

∂x
(xk, ak).

From Assumption 2.28, this series is convergent, and so its tail
tends to zero as in (2.3.24). �

Remark 2.30. Let us assume that in Theorem 2.29 the search
of an optimal control is restricted to Markov policies π = {ft},
so that at = ft(xt) for all t = 0, 1, . . . . If π is optimal for the
OPC and {xt}∞

t=0 is the corresponding optimal trajectory xt+1 =
Ft(xt, ft(xt)) for all t = 0, 1, . . . , then (2.3.22)–(2.3.24) are rewrit-
ten as follows:

1. for each t = 1, 2, . . .,

∂ct
∂x

(xt, ft) + λt+1
∂Ft

∂x
(xt, ft) = λt, (2.3.26)

2. for each t = 0, 1, 2, . . . ,

∂ct
∂a

(xt, ft) + λt+1
∂Ft

∂a
(xt, ft) = 0, (2.3.27)

3. Transversality condition (TC): for each τ = 0, 1, 2, . . . ,
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lim
t→∞

λt

t−1∏

k=τ

[
∂Fk

∂x
(xk, fk) +

∂Fk

∂a
(xk, fk)

∂fk
∂x

(xk)

]
= 0. (2.3.28)

Moreover, for each t = 1, 2, . . . we redefine λt in (2.3.25) as

λt :=
∞∑

s=t

[
∂cs
∂x

(xs, fs)
s−1∏

k=t

Ak +
∂cs
∂a

(xs, fs)
∂fs
∂x

(xs)
s−1∏

k=t

Bk

]
,

(2.3.29)
where

Ak :=
∂Fk

∂x
(xk, fk) +

∂Fk

∂a
(xk, fk)

∂fk
∂x

(xk),

Bk :=
∂Fk

∂x
(xk, fk) +

∂Fk

∂a
(xk, fk)

∂fk
∂x

(xk).

The proof is similar to Theorem 2.29. For details see Domı́nguez-
Corella and Hernández-Lerma (2019). �

Example 2.31 (Brock–Mirman infinite-horizon model). We
next consider an infinite-horizon version of the Brock and Mir-
man (1972) model in Example 2.10.

Given an initial state x0, the system evolves according to the
dynamics

xt+1 = cxθ
t − at, t = 0, 1, 2, . . . , (2.3.30)

with θ ∈ (0, 1). We consider again the control constraint sets
A(x) := (0, cxθ]. The performance index, for a feasible policy

π = {at, t = 0, 1, . . . },

is given by

V (π, x0) =
∞∑

t=0

αt log(at).

Thus the minimum principle conditions (2.3.26) and (2.3.27)
become

λt+1cθx
θ−1
t = λt, t = 1, 2, . . . , (2.3.31)

αt

at

− λt+1 = 0, t = 0, 1, . . . . (2.3.32)
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This difference equations can be solved by the “guess and verify
method” as in Chow (1997). To this end, consider a policy at :=
dcxθ

t for some real number d. Then combining (2.3.31) and (2.3.32)
we obtain

λt = λt+1cθx
θ−1
t =

αt

at

cθxθ−1
t =

αtcθxθ−1
t

dcxθ
t

=
θαt

dxt

.

This implies that

λt+1 =
θαt+1

dxt+1

=
θαt+1

d(cxθ
t − at)

=
θαt+1

d(cxθ
t − dcxθ

t )
.

On the other hand, from (2.3.32), λt+1 = αt

dcxθ
t
. Equating both val-

ues, we conclude that d = 1 − θα. Then an optimal policy is

a∗
t = c(1 − θα)[x∗

t ]
θ for t = 0, 1, 2, . . . . (2.3.33)

�

Remark 2.32. From (2.3.33), and in accordance with Corollary
2.22, the optimal stationary policy for the Brock and Mirman
model for the infinite horizon case is f ∗(x) = c(1 − θα)xθ and the
value function is

V ∗(x) =
1

1 − α
log[c(1 − θα)] +

θα

(1 − α)(1 − θα)
log(cθα) +

θ

1 − θα
log(x).

This function satisfies the DP equation (2.3.8). On the other hand,
in the spirit of Theorem 2.21, we can deduce that the optimal
policy (2.2.16) for the finite horizon case converges to the optimal
policy (2.3.33) for the infinite horizon problem. �

2.3.3 The Weighted-Norm Approach

In Sect. 2.3.1 we studied the infinite-horizon discounted OCP
(2.3.2)–(2.3.3) assuming that the stage cost c(x, a) is possibly
unbounded, but nonnegative. This nonnegativity yields that the
infinite series (2.3.3) is well defined (although it might be infinite).
In general, however, considering costs c(x, a) with both positive
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and negative values may create technical complications. To avoid
them, in this section we consider weighted norms, an approach
introduced by Wessels (1977). This approach indeed allows c(x, a)
to take positive and negative values, but its “growth” is restricted
in a suitable sense (see Assumption 2.33(c) and Lemma 2.34(b)).
The basis of this approach is in the following conditions.

Assumption 2.33. For every x ∈ X:

(a) the control constraint set A(x) is compact, and the set-valued
mapping x �→ A(x) is continuous. (It suffices to assume that
x �→ A(x) is u.s.c.)

(b) For (x, a) ∈ K, with K in (2.3.12), the function (x, a) �→
F (x, a) is continuous, and (x, a) �→ c(x, a) is l.s.c.

(c) There is a continuous function w(·) ≥ 1 on X, and positive
constants c̄ and β ≥ 1 such that, for every x ∈ X,

(c1) supa∈A(x) |c(x, a)| ≤ c̄w(x), and
(c2) supa∈A(x) w(F (x, a)) ≤ βw(x), and αβ < 1.

Assumption 2.33 is supposed to hold throughout this section.
The function w in part (c) will be referred to as a weight func-
tion , but in the control literature is also known as a majorant, a
bounding function or a gauge function. Part (c2) is called Wessels
condition. As an example, if the stage cost c is bounded, that is,
|c(x, a)| ≤ c̄ for some constant c̄ and all (x, a) ∈ K, then we may
take w ≥ 1 as a bounded function. On the other hand, a com-
mon situation is when c satisfies a polynomial growth condition, in
which case we may take w as w(x) := D(1 + |x|k). Another com-
mon situation is the exponential growth case, with w(x) := Dek|x|.

The proof of the following lemma is left to the reader (Exercise
2.12). Observe that parts (a) and (b) are a direct consequence of
Assumption 2.33(c) and an induction argument. Part (c) in the
lemma follows from (a)-(b) and the definition (2.3.3) of V (π, ·).
Lemma 2.34. Let {(xt, at), t = 0, 1, ...} be an arbitrary sequence
in K for which (2.3.2) holds, that is, xt+1 = F (xt, at) for all t =
0, 1, .... Then, for every initial state x0 = x and t = 0, 1, ...,

(a) w(xt) ≤ βtw(x); and
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(b) |c(xt, at)| ≤ c̄βtw(x).
(c) For any control policy π = {at, t = 0, 1, ...} and x0 = x,

V (π, x) ≤ c̄
w(x)

(1 − γ)
,

where γ := αβ. (By Assumption 2.33(c2), γ < 1.)

In this section we will be working in the spaces Mw(X) and
Lw(X) defined in the following lemma.

Lemma 2.35. (a) The space Mw(X) of real-valued functions v
on X with a finite w-norm, which is defined as

‖v‖w := sup
x∈X

|v(x)|
w(x)

, (2.3.34)

is a Banach space.

(b) The space Lw(X) := L(X) ∩ Mw(X) of l.s.c. functions in
Mw(X) is a complete metric space with the metric induced
by the w-norm, that is, dist(v, v′) := ‖v − v′‖w.

Proof. Part (a) is straightforward and is left to the reader (Exer-
cise 2.13). To prove (b), let vn be a sequence in Lw(X) that con-
verges in the w-norm to a function v. By part (a), v belongs to
Mw(X). Thus, to complete the proof of (b) it only remains to
show that v is l.s.c. To this end, first observe that

v(x) = [v(x) − vn(x)] + vn(x) ≥ −‖vn − v‖ww(x) + vn(x)

for all x ∈ X and n = 0, 1, .... Now consider a sequence xk → x,
and fix an arbitrary n. Then, since vn is l.s.c. and w is continuous
(by Assumption 2.33(c)),

lim inf
k→∞

v(xk) ≥ −‖vn − v‖ww(x) + vn(x).

Finally, letting n tend to ∞ we obtain lim infk v(xk) ≥ v(x). That
is, v is l.s.c. �

In the following proposition we state the Blackwell conditions
(Blackwell 1965) for an operator to be a contraction. They will
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be used below in connection with Banach’s fixed point theorem in
Remark 2.25 in the case that the metric space X is Lw(X).

Proposition 2.36. Let T : Lw(X) → Lw(X) be a mapping such
that:

(a) T is monotone, that is, if u and v are functions in Lw(X) and
u ≤ v, then Tu ≤ Tv; and

(b) there is a positive number δ < 1 such that, for every v ∈
Lw(X) and every constant k ∈ R, T (v + kw) ≤ Tv + δkw.

Then T is a contraction with modulus δ.

Proof. For any two functions v, v′ in Lw(X),

v ≤ v′ + |v − v′| ≤ v′ + w‖v − v′‖w.

Therefore, by (a)-(b), with k = ‖v − v′‖w,

Tv − Tv′ ≤ δw‖v − v′‖w.

Interchanging v and v′, and then combining with the latter
inequality we obtain

|Tv − Tv′| ≤ δw‖v − v′‖w.

This implies the desired result. �

To state our main result, Theorem 2.38, we will use the follow-
ing fact.

Proposition 2.37. Let x �→ A(x) and w be as in Assumption
2.33. (It suffices to take x �→ A(x) u.s.c.). Suppose that v is a
l.s.c. function on K and such that, for some constant k

sup
a∈A(x)

|v(x, a)| ≤ kw(x) ∀x ∈ X.

Then there exists f ∈ F such that, for all x ∈ X,

v∗(x) := inf
a∈A(x)

v(x, a) = v(x, f(x)) (2.3.35)

and, moreover, v∗ is in Lw(X) with w-norm ‖v∗‖w ≤ k.



48 2 DISCRETE–TIME DETERMINISTIC SYSTEMS

Proof. The proposition follows from Theorem B.3(b) applied to
the nonnegative l.s.c. function v′(x, a) := v(x, a) + kw(x). �

The following Theorem 2.38 is the main result of the weighted-
norm approach to the infinite-horizon discounted OCP (2.3.2)–
(2.3.4). It gives the dynamic programming equation (2.3.7), which
we already obtained in Theorem 2.21 when the stage cost c is non-
negative. In the present case, however, we also obtain the conver-
gence estimate (2.3.37), which is impossible to obtain in Theorem
2.21.

Theorem 2.38. Under the Assumption 2.33 the following holds:

(a) The α-discount value function V ∗ is the unique solution in
Lw(X) of the dynamic programming equation (2.3.7), i.e., for
every x ∈ X,

V ∗(x) = inf
a∈A(x)

[c(x, a) + αV ∗(F (x, a))]. (2.3.36)

Moreover, for every n = 1, 2, ...,

‖V ∗
n − V ∗‖w ≤ c̄γn/(1 − γ), (2.3.37)

where V ∗
n is the VI function in (2.3.10)–(2.3.11), and the con-

stants c̄ and γ := αβ < 1 come from Assumption 2.33.
(b) There exists f ∗ ∈ F such that, for every x ∈ X, f ∗(x) ∈ A(x)

attains the minimum in the right-hand side of (2.3.36), i.e.
(using the notation in Remark 2.19),

V ∗(x) = c(x, f ∗) + αV ∗(F (x, f ∗)), (2.3.38)

and f ∗ is α-discount optimal.

Proof. (a) To prove (2.3.36) we will show that, equivalently, V ∗

is the unique fixed-point in Lw(X) of the Bellman operator K
in (2.3.8). To this end, we will prove that K is a contraction
operator on the complete metric space Lw(X), so (2.3.36)–(2.3.37)
will follow from Banach’s fixed-point theorem (Remark 2.25).

First, we need to show that indeed K maps Lw(X) into itself.
To do this, pick an arbitrary function v in Lw(X). Hence, since v is
l.s.c. and (x, a) �→ F (x, a) is continuous (Assumption 2.33(b)), the
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function (x, a) �→ v(F (x, a)) is l.s.c on K. In addition, by Assump-
tion 2.33(b), (x, a) �→ c(x, a) is l.s.c., so v′(x, a) := c(x, a)+
αv(F (x, a)) is l.s.c. on K. On the other hand, by definition (2.3.34)
of the w-norm and Assumption 2.33(c2), we have

|v(F (x, a))| ≤ ‖v‖ww(F (x, a)) ≤ β‖v‖ww(x).

This inequality together with Assumption 2.33(c1) on c and
Proposition 2.37 give that Kv(x) := infa∈A(x) v

′(x, a) is in Lw(X).
To conclude, K maps Lw(X) into itself.

Now, to prove that K is a contraction operator on Lw(X) we
will verify the Blackwell conditions in Proposition 2.36. First note
that, obviously, K is monotone. On the other hand, for any func-
tion v ∈ Lw(X) and any constant k, Assumption 2.33(c2) gives

K(v + kw)(x) = inf
a

[c(x, a) + αv(F (x, a)) + αkw(F (x, a))]

≤ Kv(x) + kγw(x)

with γ := αβ < 1. Therefore, by Proposition 2.36, K is a contrac-
tion with modulus γ. It follows that K has a unique fixed point
v∗ in Lw(X), i.e., v∗ = Kv∗ or, more explicitly,

v∗(x) = inf
a∈A(x)

[c(x, a) + αv∗(F (x, a))] (2.3.39)

for all x ∈ X.
To complete the proof of part (a) we will show that v∗ = V ∗,

the OCP’s value function. First, by Proposition 2.37, there exists
f ∈ F that minimizes the right-hand side of (2.3.39), i.e.,

v∗(x) = c(x, f) + αv∗(F (x, f)) ∀x ∈ X.

Iteration of this equality gives

v∗(x) =
n−1∑

t=0

c(xt, f) + αnv∗(xn) (2.3.40)

for all x ∈ X and n = 1, 2, . . . . In addition, the last term αnv∗(xn)
tends to zero as n → ∞. In fact, for any function v in Lw(X),
Lemma 2.34(a) yields
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αn|v(xn)| ≤ αn‖v‖ww(xn) ≤ γn‖v‖ww(x) → 0 (2.3.41)

as n → ∞. Thus, for every x ∈ X, (2.3.40) yields v∗(x)=V (f, x) ≥
V ∗(x), i.e.,

v∗(·) ≥ V ∗(·). (2.3.42)

To obtain the reverse inequality, note that (2.3.39) gives that

v∗(x) ≤ c(x, a) + αv∗(F (x, a)) ∀(x, a) ∈ K.

Therefore, for any policy π = at and any initial state x0 = x ∈ X,

v∗(xt) ≤ c(xt, at) + αv∗(xt+1),

so, for every n = 1, 2, ...,

v∗(x) ≤
n−1∑

t=0

c(xt, at) + αnv∗(xn).

Finally, letting n → ∞ and using (2.3.41) again we obtain

v∗(x) ≤ V (π, x) ∀x ∈ X.

Thus, since π was arbitrary, it follows that v∗(·) ≤ V ∗(·). This
inequality and (2.3.42) give that v∗ = V ∗. This fact together with
Banach’s fixed-point theorem complete the proof of part (a).

(b) This part follows from Proposition 2.37, as in (2.3.39)–
(2.3.41). �

In the following section we will present some applications of the
weighted-norm approach.

2.4 Approximation Algorithms

Solving a dynamic programming equation (DPE), such as (2.3.7),
is in general a difficult task. Richard Bellman, in his book Bellman
(1957a) coined the term “the curse of dimensionality” to refer to
the fact that the difficulty in solving a DPE rapidly increases with
the number of dimensions.
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On the other hand, there are two natural ways in which we can
approximate the solution of a DPE, namely, the value iteration
(VI) and the policy iteration (PI) algorithms. These algorithms are
difficult to compare because their performances highly depend on
the particular features of the OCPs being dealt with. In either
case, however, they are the basis for several useful approaches in
so-called adaptive dynamic programming and reinforcement learn-
ing to obtain approximate solutions to a DPE and analyze related
issues, such as the “stabilizability property” of an optimal control.

First, we will consider the VI algorithm (Sect. 2.4.1), and then
the PI algorithm (Sect. 2.4.2). The VI approach is also known as
the method of successive approximations. See Wessels (1977).

2.4.1 Value Iteration

Let K be the Bellman operator in (2.3.8), and consider the VI
functions

V ∗
n = KV ∗

n−1 = KnV ∗
0 for n = 1, 2, ...

in (2.3.11), with V ∗
0 ≡ 0. The VI algorithm refers to Problem 1 in

Sect. 2.2, that is, the convergence V ∗
n → V ∗ in (2.3.6). This conver-

gence was already obtained in Theorems 2.21 and 2.38 under two
different sets of assumptions. In particular, Theorem 2.21 requires
the stage cost c(x, a) to be nonnegative, whereas Theorem 2.38
uses a weighted-norm approach. In this section we analyze addi-
tional properties of the VI algorithm, which concern the VI control
policies defined as follows.

Definition 2.39. A sequence πV I = {fn, n = 1, 2, ...} ⊂ F is
called a VI policy if, for every n = 1, 2, ..., fn ∈ F minimizes the
right-hand side of (2.3.10), i.e.,

V ∗
n (x) = c(x, fn) + αV ∗

n−1(F (x, fn)) ∀x ∈ X. (2.4.1)

We will denote by Fn ⊂ F the subfamily of selectors that satisfy
(2.4.1). (Recall from Remark 2.14 that V ∗

0 (·) ≡ 0. Thus, for πV I

to be a true control policy we may take f0 as any selector in F.)
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To analyze a VI policy we will use the discrepancy function
D : K → R defined as

D(x, a) := c(x, a) + αV ∗(F (x, a)) − V ∗(x) (2.4.2)

for (x, a) ∈ K. By the DPE (2.3.7), D is nonnegative. Moreover,
we can rewrite (2.3.7) as

inf
a∈A(x)

D(x, a) = 0 ∀x ∈ X. (2.4.3)

Similarly, an equality such as (2.3.38) becomes

D(x, f ∗) = 0 ∀x ∈ X, (2.4.4)

where, as in the Remark 2.19, D(x, f ∗) ≡ D(x, f ∗(x)).
The name discrepancy function comes from the fact that, for

any policy π = {at}, we can express the difference or “discrep-
ancy” between V (π, ·) and V ∗(·) in terms of D; in fact, for any
initial state x0 = x,

V (π, x) − V ∗(x) =
∞∑

t=0

αtD(xt, at). (2.4.5)

(See Exercise 2.14) Results such as (2.4.4) and (2.4.5) motivate
the following definition.

Definition 2.40. A Markov policy π = {fn} is said to be asymp-
totically optimal (for the discounted cost criterion) if, for every
x ∈ X,

D(x, fn) → 0 as n → ∞. (2.4.6)

The concept of asymptotic optimality was introduced in adap-
tive Markov control processes (adaptive MCPs), which are MCPs
that depend on unknown parameters, say, θ. In this case, at each
time n, the controller computes an estimate θn of θ, and then
he/she adapts his/her control action fn to this estimate. Thus
(in view of (2.4.4)), (2.4.6) holds if fn is approximating in some
sense an optimal control. Alternatively, asymptotic optimality can
be used to analyze “approximations” to the OCP (2.3.2)–(2.3.3).
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(See, for instance, Sect. 4.6 in Hernández-Lerma and Lasserre
(1996).)

By (2.3.6), a VI policy is a natural candidate to be asymptoti-
cally optimal. This is not necessarily true, however, in the gener-
ality of Theorem 2.21. On the other hand, in the weighted-norm
context of Theorem 2.38 we obtain the following nice result.

Proposition 2.41. Suppose that Assumption 2.33 holds, and let
πV I = {fn} be a VI policy. Then, for every x ∈ X and n = 1, 2, ...,

0 ≤ D(x, fn) ≤ 2c̄γnw(x)/(1 − γ) (2.4.7)

with c̄, w(·), and γ := αβ as in Assumption 2.33. Hence πV I is
asymptotically optimal.

Proof. From (2.4.2) and (2.4.1),

D(x, fn) = c(x, fn) + αV ∗(F (x, fn)) − V ∗(x)

= V ∗
n (x) − V ∗(x) + α[V ∗(F (x, fn)) − V ∗

n−1(F (x, fn))]

for all x ∈ X and n = 1, 2, .... Thus (2.4.7) follows from (2.3.37).
�

Note that (2.4.7) gives an a priori bound for D(x, fn) in the
sense that the right-hand does not depend on neither V ∗ nor V ∗

n .
Now consider the following situation: fix an arbitrary n = 1, 2, ...
and let fn ∈ Fn be the corresponding selector in (2.4.1). Further-
more, consider the stationary Markov policy πn = {gt} ⊂ F such
that gt ≡ fn for all t = 0, 1, .... In other words, we apply the same
control fn at every stage t = 0, 1, .... Then (2.4.8) below states
that πn can be made “arbitrarily close to an optimal policy” if n
is large enough. (See also Proposition 2.43 below.)

Proposition 2.42. With πn as above,

0 ≤ V (πn, x) − V ∗(x) ≤ 2c̄γnw(x)/(1 − γ) (2.4.8)

for all x ∈ X.

Proof. Fix x ∈ X, and consider

V (πn, x) − V ∗(x) ≤ |V (πn, x) − V ∗
n (x)| + |V ∗

n (x) − V ∗(x)|.
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By (2.3.37), the second term on the right satisfies that

|V ∗
n (x) − V ∗(x)| ≤ c̄γnw(x)/(1 − γ). (2.4.9)

Now, by definition of πn, V (πn, x)=c(x, fn)+αV (πn, F (x, fn)).
Combining this equation with (2.4.1) we obtain

|V (πn, x) − V ∗
n (x)| ≤ α|V (πn, F (x, fn)) − V ∗

n−1(F (x, fn))|.
Iteration of this inequality (and recalling that V ∗

0 (·) ≡ 0) gives

|V (πn, x) − V ∗
n (x)| ≤ αn|V (πn, xn)|

≤ c̄αnw(xn)/(1 − γ) [by Lemma 2.34(c)]

≤ c̄γnw(x)/(1 − γ) [by Lemma 2.34(a)].

This inequality and (2.4.9) give (2.4.8). �

Results such as Propositions 2.41 or 2.42 obviously suggest that
the VI selectors fn ∈ Fn might converge to an α-optimal control
f ∗ ∈ F. This is not necessarily true, but we can ensure the follow-
ing.

Proposition 2.43. Suppose that the hypotheses of Theorem
2.38 are satisfied, and consider a VI policy πV I = {fn, n =
0, 1, . . . }. Then there exists f ∗ ∈ F such that fn converges to f ∗

in the sense of Schäl (1975); that is, for each x ∈ X, there is a
sequence ni = ni(x) such that fni

(x) → f ∗(x) as i → ∞.

The proof of Proposition 2.43 follows from Proposition B.12
with vn ≡ V ∗

n and v∗ ≡ V ∗ in (2.4.1) and (2.3.38), respectively.

2.4.2 Policy Iteration

The policy iteration (PI) algorithm is also known as Howard’s
policy improvement method. The algorithm was introduced by
Howard (1960) for a class of discrete-time Markov decision pro-
cesses with finite state space and finite action sets. Nevertheless,
it soon became evident that the PI algorithm could be extended
to many classes of OCPs, including all those considered in these
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lectures. On the other hand, a key difference with respect to the
VI algorithm is that PI gives a monotone sequence of functions
converging to the optimal value function V ∗(·), even if the stage
costs c(x, a) take positive and negative values!

The PI algorithm is based on the “monotonicity property” of
the Bellman operator K (2.3.8) established in Lemma 2.20, under
the assumptions of Theorem 2.21. In the context of Theorem 2.38
the same proof of Lemma 2.20 yields the following.

Lemma 2.44. Suppose that the Assumption 2.33 holds. If v ∈
Lw(X) is such that v ≥ Kv, then

(a) There exists f ∈ F such that v(x) ≥ V (f, x) for all x ∈ X;
and, therefore,

(b) v ≥ V ∗.

Now suppose that the conditions of Lemma 2.20 or Lemma
2.44 are satisfied. Consider an arbitrary selector g0 ∈ F, and let
v0(·) := V (g0, ·) be the corresponding discounted cost. Then (as
in the Remark 2.19)

v0(x) = c(x, g0) + αv0(F (x, g0))

≥ inf
a∈A(x)

[c(x, a) + αv0(F (x, a))], (2.4.10)

so v0 ≥ Kv0. Therefore, by Lemma 2.20(a) or Lemma 2.44(a),
there exists g1 ∈ F such that v0 ≥ v1, where v1(x) := V (g1, x) for
all x ∈ X. Next, in (2.4.10) replace v0, g0 by v1, g1 and repeat the
same argument to obtain g2 ∈ F and v2(·) := V (g2, ·), with v1 ≥
v2. In general, the PI algorithm is as follows, with n = 0, 1, . . .

(PI1) Given gn ∈ F, compute the discounted cost vn(·) ≡ V (gn, ·).
Then, for all x ∈ X,

vn(x) = c(x, gn) + αvn(F (x, gn)) ≥ Kvn(x). (2.4.11)

(PI2) Policy improvement: Find gn+1 ∈ F such that

Kvn(x) = c(x, gn+1) + αvn(F (x, gn+1)) ∀x ∈ X;

so vn ≥ vn+1, where vn+1(·) ≡ V (gn+1, ·). Replace n by n + 1
and go back to step (PI1).



56 2 DISCRETE–TIME DETERMINISTIC SYSTEMS

Theorem 2.45. Suppose that the hypotheses of Theorem 2.21 or
Theorem 2.38 are satisfied, and let vn be as in the PI algorithm.
Then:

(a) If there exists n for which vn(x) = vn+1(x) for all x ∈ X, then
the function v∗(·) ≡ vn(·) satisfies the DPE v∗ = Kv∗. More-
over, v∗ = V ∗ and gn is an optimal control.

(b) In general, as n → ∞, vn ↓ v∗, where v∗ is a solution of the
DPE, and v∗ = V ∗.

Proof. (a) Let v∗(·) := vn(·) ≡ vn+1(·). Then, by (PI1) and (PI2),
v∗ ≥ Kv∗ ≥ v∗, so v∗ satisfies the DPE. This completes the proof
of part (a) under the assumptions of Theorem 2.38. Similarly, in
Theorem 2.21 V ∗ is the minimal solution of the DPE. Therefore,
if v∗ 
= V ∗, then, by (PI2), there exists a control that “improves”
v∗ = vn+1. This is a contradiction.

(b) By construction, the functions vn form a nondecreasing
sequence, which (by Lemma 2.20 or Lemma 2.44) is bounded
below by V ∗. Therefore, vn ↓ v∗ for some function v∗ ≥ V ∗. More-
over, by Lemma 2.15(a) and (2.4.11),

v∗ ≥ Kv∗. (2.4.12)

On the other hand, for all x ∈ X and n = 0, 1, ...,

v∗(x) ≤ vn(x)

= c(x, gn) + αvn(F (x, gn))

≤ c(x, gn) + αvn−1(F (x, gn))

= Kvn−1(x).

Hence, by definition of K in (2.3.8),

v∗(x) ≤ c(x, a) + αvn−1(F (x, a)) ∀ (x, a) ∈ K.

As n → ∞, the latter inequality yields, v∗(x) ≤ c(x, a) + α
v∗(F (x, a)), which in turn gives v∗ ≤ Kv∗. This inequality and
(2.4.12) give that v∗ satisfies the DPE v∗ = Kv∗. The last state-
ment in part (b) is obtained as in (a). �
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Note that Proposition 2.43 remains true if we replace “VI pol-
icy” by “PI policy”. For a more general statement of this propo-
sition, see Theorem B.10 or Proposition B.12 in Appendix B.

Example 2.46. Consider the LQ control problem consisting of
the linear system

xt+1 = δxt + ηat, t = 0, 1, ..., (2.4.13)

with initial state x0 = x, nonzero coefficients δ, η, and a quadratic
stage cost

c(x, a) = qx2 + ra2 for x, a ∈ X = A = R (2.4.14)

with q ≥ 0 and r > 0. Hence the OCP is to minimize the α-
discounted cost

V (π, x) =
∞∑

t=0

αtc(xt, at) (2.4.15)

subject to (2.4.13). Given this OCP, develop:

(a) the VI algorithm, and
(b) a PI algorithm.
(c) Solve the LQ problem (2.4.13)–(2.4.15) by means of the

“guess and verify” approach, which is also known as “the
method of undetermined coefficients”.

Solution of (a). To simplify the notation, we will write the VI
functions V ∗

n as vn. Hence, (2.3.10) becomes

vn(x) = min
a∈A(x)

[c(x, a) + αvn−1(F (x, a))] (2.4.16)

for all x ∈ X and n = 1, 2, ..., with v0(·) ≡ 0. Thus, for n = 1,
(2.4.16) gives

v1(x) = min
a

(qx2 + ra2) = qx2 ∀x ∈ X,

and the minimum is attained at a∗ = f1(x) = 0 for all x. Similarly,

v2(x) = min
a

[qx2 + ra2 + αv1(δx + ηa)]

= min
a

[qx2 + ra2 + αq(δx + ηa)2] (2.4.17)
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Computating the derivative of the right-hand side with respect
to a, and then equating to 0, gives that the minimizer is

f2(x) = −(r + αqη2)−1αqδη · x.

Replacing a = f2(·) in (2.4.17), v2 becomes the quadratic function
v2(x) = C2x

2, with coefficient

C2 :=
qr + (rδ2 + qη2)αq

r + αqη2
.

In general, by induction we can see that, for every x ∈ X,

vn(x) = Cnx
2 ∀n = 0, 1, ..., (2.4.18)

with C0 = 0, and VI controls

fn(x) = −(r + SCn−1)
−1αδηCn−1 · x (2.4.19)

for all n = 1, 2, ..., with f0 ∈ F arbitrary (since v0 ≡ 0), and

Cn =
P + QCn−1

r + SCn−1

∀n = 1, 2, . . . . (2.4.20)

Here
P := qr, Q := (rδ2 + qη2)α, S := αη2.

By means of some technical arguments (which can be seen,
for instance, in Dynkin and Yushkevich (1979), Sect. 2.11, or
Hernández-Lerma and Lasserre (1996), Sect. 4.7) based on the
fixed-point approach to (2.4.20), it can be seen that Cn → C
as n → ∞, where C = z is the unique positive solution of the
quadratic equation

z =
P + Qz

r + Sz
,

which we may be rewrite as

Sz2 + (r − Q)z − P = 0. (2.4.21)

The unique positive solution is

C = [−(r − Q) + ((r − Q)2 + 4PS)1/2]/2S.
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Finally, from Theorem 2.21 and (2.4.18) we conclude that the
α-optimal discounted cost V ∗ is given by

V ∗(x) = lim
n→∞

vn(x) = Cx2. (2.4.22)

Moreover, from (2.4.19) and Proposition B.12(a) (in Appendix
B),

f ∗(x) : = lim
n→∞

fn(x)

= −(r + SC)−1αδηCx (2.4.23)

is an α-optimal selector.
Solution of (b). In the policy iteration (PI) algorithm, first,

we take an arbitrary control g0 ∈ F and then we compute the cor-
responding discounted cost v0(·) = V (g0, ·). (See (2.4.10).) Since
we are not given an indication about how to choose g0, we may
select it so that v0 is easy to compute. This is the case if we choose
g0(·) ≡ 0 (which is the same as f1 in part (a) above). Thus, with
at = 0 for all t = 0, 1, ..., the LQ system (2.4.13)–(2.4.15) becomes

xt+1 = δxt = δt+1x ∀t = 0, 1, ...,

given the initial state x0 = x, and the stage cost c(x, a) = qx2.
Therefore, the corresponding α-discounted cost is

v0(x) = q
∞∑

t=0

αtx2
t = D0x

2

with coefficient D0 := q/(1 − αδ2), assuming that αδ2 < 1. Hav-
ing v0, we then proceed to the policy improvement step. That is,
we wish to find g1 ∈ F such that, for all x ∈ X, g1(x) ∈ A attains
the minimum in the right-hand side of the inequality

v0(x) ≥ min
a

[c(x, a) + αv0(F (x, a))]

= min
a

[qx2 + ra2 + αD0(δx + ηa)2].

Now, the usual calculations (computing the derivative with
respect to a, equating to 0, and so on) give that g1(x) = −G1x,
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with coefficient

G1 :=
αδηD0

r + αη2D0

.

From (2.4.15), the corresponding α-discounted cost v1(x) =
V (g1, x) is v1(x) = D1x

2, where

D1 :=
q + rG2

1

1 − α(δ − ηG1)2
,

assuming that |α(δ − ηG1)
2| < 1. In general, we obtain by induc-

tion that, for all x ∈ X and n = 0, 1, ...,

gn(x) = −Gnx and vn(x) = Dnx
2, (2.4.24)

with coefficients G0 = 0,

Dn =
q + rG2

n

1 − α(δ − ηGn)2
(2.4.25)

and

Gn+1 =
αδηDn

r + αη2Dn

(2.4.26)

for n = 0, 1, ....
Since the functions vn(x) = Dnx

2 form a nonnegative nonin-
creasing sequence (Theorem 2.45), there is a nonnegative function
v∗(x) = D∗x2 such that vn(x) ↓ v∗(x) for all x ∈ X. In particu-
lar, as n → ∞, Dn → D∗ and, therefore, from (2.4.26), Gn → G∗,
with

G∗ =
αδηD∗

r + αη2D∗

=
αδηD∗

r + SD∗ ,

which is the same as the coefficient of (2.4.23), with C = D∗.
Finally, from (2.4.25) and (2.4.22) we conclude that v∗(·) = V ∗(·)
with C = D∗.
Solution of (c). We now wish to solve the infinite-horizon LQ

problem (2.4.13)–(2.4.15) by the “guess and verify” approach. The
idea is to “guess” that the solution of the DPE has a certain form
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and then we verify that this is indeed the case. In the present LQ
problem, from the finite-horizon case en Example 2.4 we know
that the optimal cost is a quadratic function—see (2.1.17). Since
this is the case for any finite horizon T = 1, 2, ..., we immedi-
ately guess that the optimal cost in the infinite-horizon problem
(2.4.13)–(2.4.15) is also of the form

v(x) := Bx2 ∀x ∈ X

for some constant B. To verify that this is correct, we consider
the DPE (2.3.7) with V ∗ = v. Therefore, (2.3.7) becomes

v(x) = min
a∈A

[qx2 + ra2 + αv(δx + ηa)]

or
Bx2 = min

a
[qx2 + ra2 + αB(δx + ηa)2]. (2.4.27)

The minimum in the right-hand side is attained at

f(x) = − αδηB

r + αη2B
· x

= − αδηB

r + SB
· x, (2.4.28)

with S=αη2 as in (2.4.19)–(2.4.20). Replacing a=f(x) in (2.4.27)
and comparing both sides of the resulting equation, we conclude
that v(x) = Bx2 indeed satisfies the DPE if B is the unique pos-
itive solution of the quadratic equation

SB2 + [r − α(rδ2 + qη2)]B − qr = 0.

Since this equation is the same as (2.4.21), we obtain that v(·) =
V ∗(·), the α-optimal discounted cost, and that f(·) in (2.4.28) is
the optimal control.

�
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2.5 Long–Run Average Cost
Problems

In this section, we study undiscounted infinite horizon optimal
control problems with the long–run average cost (AC). This opti-
mality criterion was originally introduced by Bellman (1957b) for
a class of Markov decision processes (as in Chap. 3, below). In this
section we study some aspects of the AC criterion for discrete–
time deterministic systems. In the following chapters we study AC
optimality for other discrete– and continuous–time, deterministic
and stochastic control systems.

Given an initial condition x0 = x ∈ X and a policy π = {at},
let

JT (π, x) :=
T−1∑

t=0

c(xt, at).

We wish to minimize the long-run average cost (AC) J(π, x)
defined as

J(π, x) := lim sup
T→∞

1

T
JT (π, x), (2.5.1)

subject to
xt+1 = F (xt, at), t = 0, 1, . . . . (2.5.2)

The AC value function is

J∗(x) := inf{J(π, x) : π ∈ Π} (2.5.3)

and a control policy π∗ is said to be average–cost optimal (AC–
optimal) if J(π∗, x) = J∗(x) for all x ∈ X.

To avoid trivial situations, we will assume that there is a policy
π ∈ Π such that the mapping x �→ J(π, x) is finite-valued.

There are several approaches to analyze the AC optimal con-
trol problem (2.5.1)–(2.5.3). The most common are (i) the AC
optimality equation (ACOE), (ii) the steady state (or stationary
state) approach, and (iii) the vanishing discount approach. We will
briefly discuss each of them. (There is also an infinite-dimensional
linear programming approach to study deterministic AC problems,
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but it is too technical to include it here. The interested reader
may consult, for instance, Borkar et al. (2019.) or Chap. 11 in
Hernández-Lerma and Lasserre (1999).)

Remark 2.47. We will use the following notation:

(a) Given a control policy π ∈ Π, we denote by {xπ
t , t = 0, 1, ...}

the sequence defined by (2.5.2) when at is given by the policy
π, that is, xπ

t+1 = F (xπ
t , at) for all t = 0, 1, ... with some initial

condition xπ
0 = x0. In particular if f ∈ F is an stationary pol-

icy with at = f(xt), then xf
t+1 = F (xf

t , f) for all t = 0, 1, . . . .
(b) For a given function ξ : X → R, let Πξ be the family of control

policies π ∈ Π such that, for every initial state x0,

1

t
ξ(xπ

t ) → 0 as t → ∞. (2.5.4)

Similarly, we denote by Fξ the family of stationary policies
f ∈ F that satisfies (2.5.4) for every initial state x0.

Note that if ξ is bounded, then (2.5.4) holds for all π ∈ Π and all
f ∈ F; hence Πξ = Π, and Fξ = F. For special functions ξ, the rela-
tion (2.5.4) is a transversality-like condition, similar to (2.3.17) in
Theorem 2.21(c). �

2.5.1 The AC Optimality Equation

A pair (j∗, l) consisting of a real number j∗ ∈ R and a function l :
X → R is called a solution to the average cost optimality equation
(ACOE) if, for every x ∈ X,

j∗ + l(x) = inf
a∈A(x)

[c(x, a) + l(F (x, a))]. (2.5.5)

It can be shown that if (j∗, l) is a solution to the ACOE, then
j∗ is unique. Moreover, it is obvious that if l(·) satisfies (2.5.5),
then so does l(·) + k for any constant k.

A solution (j∗, l) to the ACOE is also known as a canonical
pair . If, in addition, f ∗ is a stationary policy that satisfies (2.5.6)
below, then (j∗, l, f ∗) is called a canonical triplet.
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Theorem 2.48. Suppose that (j∗, l) is a solution to the ACOE
(2.5.5), and let Πl be as in Remark 2.47(b) with ξ = l in (2.5.4).
Then, for every initial state x0 = x,

(a) j∗ ≤ J(π, x) for all π ∈ Πl; hence
(b) j∗ ≤ J∗(x) if Π = Πl.

Moreover, suppose that there exists a policy f ∗ ∈ Fl such that
f ∗(x) ∈ A(x) attains the minimum in the right–hand side of
(2.5.5), i.e.,

j∗ + l(x) = c(x, f ∗) + l(F (x, f ∗)) ∀ x ∈ X. (2.5.6)

Then, for all x ∈ X,

(c) j∗ = J(f ∗, x) ≤ J(π, x) for all π ∈ Πl; hence
(d) f ∗ is AC–optimal and J(f ∗, ·) ≡ J∗(·) ≡ j∗ if Πl = Π.

Proof. (a) By (2.5.5), for every (x, a) ∈ K we have

j∗ + l(x) ≤ c(x, a) + l(F (x, a)). (2.5.7)

Now consider an arbitrary policy π = {at} ∈ Πl, and let xt ≡ xπ
t ,

t = 0, 1, . . . , be the corresponding state trajectory for any given
initial state xπ

0 = x0. Hence, by (2.5.7),

j∗ ≤ c(xt, at) + l(xt+1) − l(xt) ∀ t = 0, 1, . . . .

Thus summation over t = 0, 1, ..., T − 1 gives

Tj∗ ≤ JT (π, x) + l(xT ) − l(x0). (2.5.8)

Finally, multiplying by 1/T both sides of this inequality and then
letting T → ∞, (2.5.1) and (2.5.4) yield part (a).

Part (b) follows from (a) if Πl = Π.
(c) If f ∗ satisfies (2.5.6), then we have equality throughout

(2.5.7)–(2.5.8), which yields the equality in (c). The inequality
follows from (a). Finally, (d) is a consequence of (b) and (c). �

As in Remark 2.47, if l is bounded, then Πl = Π, as required in
parts (b) and (d) of Theorem 2.48.

Arguments similar to those in the proof of Theorem 2.48 give
other useful results, such as the following.



2.5 LONG–RUN AVERAGE COST PROBLEMS 65

Proposition 2.49. (a) Suppose that instead of (2.5.7), for some
f ∈ F, we have

j∗ + l(x) ≥ c(x, f) + l(F (x, f)) ∀ x ∈ X. (2.5.9)

If limt→∞ l(xf
t )/t ≥ 0, then j∗ ≥ J(f, x) for all x ∈ X.

(b) If the inequality in (2.5.9) is reversed, i.e.,

j∗ + l(x) ≤ c(x, f) + l(F (x, f)) ∀ x ∈ X, (2.5.10)

and limt→∞ l(xf
t )/t ≤ 0, then j∗ ≤ J(f, x).

The proof of Proposition 2.49 is left to the reader (Exercise
2.11).

Corollary 2.50. (a) If (2.5.9) holds for some f ∈ F, then

j∗ + l(x) ≥ inf
a∈A(x)

[c(x, a) + l(F (x, a))] ∀ x ∈ X.

(b) If (2.5.10) holds for all f ∈ F, then

j∗ + l(x) ≤ inf
a∈A(x)

[c(x, a) + l(F (x, a))] ∀ x ∈ X.

Example 2.51 (The Brock–Mirman model). In the infinite–
horizon Brock and Mirman economic growth model studied in
Example 2.31, the system evolves according to

xt+1 = cxθ
t − at, t = 0, 1, 2, . . . ,

with a given initial state x0 ∈ X and θ ∈ (0, 1). As in Exam-
ples 2.10 and 2.31, we assume that X = A = [0,∞), and A(x) :=
(0, cxθ]. The system function is F (x, a) = cxθ − a, and the stage
reward (or utility) function is r(x, a) = log(a). Thus the perfor-
mance index to be optimized is the long–run average reward (AR)

J(π, x0) = lim inf
T→∞

1

T

T−1∑

t=0

log(at). (2.5.11)

Concerning the “lim inf” in (2.5.11), instead of the “lim sup”
in (2.5.1), see the paragraph and the Remark after expression
(5.2.15) in Sect. 5.2.
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To find the canonical triplet (j∗, l, f ∗) that satisfies the ACOE

j∗ + l(x) = max
a∈A(x)

[r(x, a) + l(F (x, a))] ∀x ∈ X, (2.5.12)

we consider a function l(x) of the form l(x) := b log(x), where b
is an unknown parameter. Under this assumption, the right side
of (2.5.12) reaches the maximum when a = cxθ

1+b
, so we can rewrite

(2.5.12) as

j∗ + b log(x) = log

(
cxθ

1 + b

)
+ b log

(
xθ

(
cb

1 + b

))

= (1 + b)θ log(x) + log

(
c

1 + b

)
+ b log

(
cb

1 + b

)
.

This last equation is satisfied if b = (1 + b)θ, which implies that

b =
θ

1 − θ
. Therefore the canonical triplet (j∗, l, f ∗) is given by

j∗ = log (c(1 − θ)) +
θ

1 − θ
log (cθ) , (2.5.13)

l(x) =
θ

1 − θ
log(x), (2.5.14)

f ∗(x) = c(1 − θ)xθ. (2.5.15)

It can be shown that, for every initial state x0,

xf∗
t = (cθ)

1−θt

1−θ xθt

0 for t = 1, 2, . . . (2.5.16)

and xf∗
t → (cθ)

1
1−θ , which implies that f ∗ satisfies (2.5.4), that

is f ∗ ∈ Fl. Thus by Theorem 2.48(d), j∗ is the optimal average
reward and f ∗is AR-optimal. �

The ACOE (2.5.5) provides a “complete solution” to the AC
control problem in the sense that, in addition to providing a
canonical triplet (j∗, l, f ∗), it also allows us to identify refine-
ments of this triplet, such as “overtaking optimal” or “bias opti-
mal” controls. However, if we are only interested in obtaining
AC-optimal controls, it suffices to obtain an optimality inequality.
This is explained in Sect. 2.5.3 below.
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2.5.2 The Steady–State Approach

Let K be as in (2.3.12). A pair (x∗, a∗) ∈ K is said to be a
steady (or stationary) state-action pair for the system (2.5.2)
if F (x∗, a∗) = x∗. If, in addition, (x∗, a∗) solves the steady state
problem

minimize c(x, a) subject to F (x, a) = x, (2.5.17)

then (x∗, a∗) is said to be a minimum steady state-action pair for
the AC control problem (2.5.1)–(2.5.2).

Assumption 2.52. The OCP (2.5.1)–(2.5.2) satisfies:

(a) There exists a minimum steady state-action pair (x∗, a∗) ∈ K.
(b) Dissipativity. The OCP (2.5.1)–(2.5.2) is dissipative, which

means that there is a so–called storage function λ : X → R

such that, for every (x, a) ∈ K,

λ(x) − λ(F (x, a)) ≤ c(x, a) − c(x∗, a∗). (2.5.18)

(c) Stabilizability. Let Πλ be as in Remark 2.47, with λ as in
(2.5.18). For each initial state x0 ∈ X, there exists a control
policy π̄ ∈ Πλ (which may depend on x0) such that the cor-
responding state–control path (x̄t, āt) converges to the mini-
mum steady state pair (x∗, a∗) in (a).

Observe that, introducing the constant w∗ := c(x∗, a∗), the dis-
sipativity inequality (2.5.18) can be expressed as

w∗ + λ(x) ≤ c(x, a) + λ(F (x, a)) ∀ (x, a) ∈ K, (2.5.19)

which in turn gives

w∗ + λ(x) ≤ inf
a∈A(x)

[c(x, a) + λ(F (x, a))] ∀ x ∈ X. (2.5.20)

Consequently, in view of the similarity between (2.5.20) and the
ACOE (2.5.5), one would expect some connection between the
constants w∗ and v∗. In fact, the following theorem shows that w∗

satisfies conditions similar to (a)–(d) in Theorem 2.48. (See also
Proposition 2.49(b).)
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Theorem 2.53. Suppose that Assumption 2.52 holds and the
stage cost c : K → R is continuous. For the storage function λ in
(2.5.18) let Πλ be as in Remark 2.47. Then, for all x ∈ X,

(a) w∗ = J(π̄, x) ≤ J(π, x) for all π ∈ Πλ, where π̄ satisfies
Assumption 2.52(c); hence

(b) the AC value function satisfies that J∗(x) = c(x∗, a∗), with
(x∗, a∗) as in Assumption 2.52(a), if Πλ = Π.

Proof. (a) Let w∗ := c(x∗, a∗) be as in (2.5.19). Let π = {at} be
an arbitrary control policy in Πλ with corresponding state–action
sequence (xt, at). Then, from (2.5.19),

w∗ ≤ c(xt, at) + λ(xt+1) − λ(xt)

for all t = 0, 1, .... This yields, as in (2.5.7)–(2.5.8),

Tw∗ ≤ JT (π, x) + λ(xT ) − λ(x0) ∀ T = 1, 2, ...,

so, by (2.5.4),

w∗ ≤ J(π, x) for all x ∈ X. (2.5.21)

On the other hand, by the stabilizability in Assumption 2.52(c),
there is a policy π̄ ∈ Πλ for which the state–action sequence
(x̄t, āt) converges to (x∗, a∗). Therefore, since the stage cost c is
continuous, c(x̄t, āt) converges to w∗, which implies that J(π̄, x) =
w∗ for all x. This prove (a).

(b) If Πλ = Π, then part (a) yields that π̄ is AC-optimal and
also that the AC value function is J∗(·) ≡ w∗. �

Example 2.54 (The Brock–Mirman model, cont’d.). In Exam-
ple 2.51, for the system function F (x, a) = cxθ − a and the stage
reward (or utility) function r(x, a) = log(a), it can be verified that
the unique solution to the corresponding steady–state problem
(2.5.17), namely,

maximize: log(a) subject to cxθ − a = x,

is given by

(x∗, a∗) =
(
(cθ)

1
1−θ , c(1 − θ)(cθ)

θ
1−θ

)
. (2.5.22)
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Then using Theorem 2.53(a)

J(π̄, x) = r(x∗, a∗) = log(a∗) = log (c(1 − θ)) +
θ

1 − θ
log (cθ) ;

(2.5.23)
compare this with (2.5.13). To get Assumption 2.52(b), note
that F (x, a∗) − F (x, a) = a − a∗. Thus, the strict concavity of the
stage reward r(x, a) := log(a) gives

r(x, a) − r(x∗, a∗) ≤ ∂r

∂x
(x∗, a∗)(x − x∗) +

∂r

∂a
(x∗, a∗)(a − a∗)

=
1

a∗ (F (x, a∗) − F (x, a)).

Moreover, the system function F (x, a∗) is also concave in x and
∂F
∂x

(x∗, a∗) = 1, so

F (x, a∗) − F (x∗, a∗) ≤ ∂F

∂x
(x∗, a∗)(x − x∗) = x − x∗,

that is, F (x, a∗) ≤ x for all x ∈ X. Therefore, from the last
two inequalities we get the corresponding dissipativity condition
(2.5.18)

r(x, a) − r(x∗, a∗) ≤ λ(x) − λ(F (x, a))

with the storage function λ(x) := 1
a∗ x. Notice that λ is different

from l given in (2.5.14), Example 2.51.
Observe that for any initial state x0 ∈ X, the policy f ∗ in

(2.5.15) with corresponding state-control path (xt, at), where

xt = (cθ)
1−θt

1−θ xθt

0 , at = c(1 − θ)(cθ)
θ−θt+1

1−θ xθt+1

0 ,

satisfies the stabilizability Assumption 2.52(c), i.e., (xt, at) con-
verges to the optimal stationary pair (x∗, a∗).

Hence by Theorem 2.53, c(x∗, a∗) = J(π̄, x) ≥ J(π, x) for all
π ∈ Πλ and all x ∈ X. �

Example 2.55 (The Mitra-Wan forestry model). Consider a
forestland covered by trees of the same species classified by age-
classes from 1 to n. After age n, trees have no economic value.
The state space in this example (Mitra and Wan Jr 1985) can be
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identified with the n–simplex

Δ := {x ∈ R
n :

n∑

i=1

xi = 1, xi ≥ 1, i = 1, ..., n}

where each coordinate xi denotes the proportion of land occupied
by i-aged trees.

Let xt = (x1,t, ..., xn,t) ∈ Δ be the forest state at period t. By
the end of the period the forester must decide to harvest a
proportion of land in any age class, say at = (a1,t, ..., an,t) with
0 ≤ ai,t ≤ xi,t, i = 1, ..., n. Because a tree has no economic value
after age n, an,t = xn,t. Thus, for each x ∈ Δ, the admissible con-
trol set is A(x) = [0, x1] × · · · × [0, xn−1] × {xn}. Suppose that the
forest evolves according to the dynamic model

x1,t+1 = a1,t + · · · + an,t, (2.5.24)

xi+1,t+1 = xi,t − ai,t, i = 1, ..., n − 1, (2.5.25)

where (2.5.24) means that all harvested area at the end of period
t must be sown by trees of age 1 at the beginning of period t + 1.
On the other hand, (2.5.25) states that trees of age i that have
not been harvested until the end of period t become trees of age
i + 1 in period t + 1.

For a planning horizon T , (2.5.24)–(2.5.25) can be written as a
discrete-time linear control system

xt+1 = f(xt, at) := Axt + Bat for t = 0, 1, ..., T − 1, (2.5.26)

where

A :=

⎛

⎜⎜⎜⎜⎝

0 0 . 0 0
1 0 . 0 0
0 1 . 0 0
. . . . .
0 0 . 1 0

⎞

⎟⎟⎟⎟⎠
, and B :=

⎛

⎜⎜⎜⎜⎝

1 1 . 1 1
−1 0 . 0 0
0 −1 . 0 0
. . . . .
0 0 . −1 0

⎞

⎟⎟⎟⎟⎠
. (2.5.27)

Now, assume the timber production per unit area is related to
the tree age-classes by the biomass vector

ξ = (ξ1, ξ2, ..., ξn) ∈ R
n, ξi ≥ 0, i = 1, 2, . . . , n,
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where ξi represents the amount of timber produced by i-aged trees
occupying a unit of land. Hence, the total amount of timber col-
lected at the end of period t is given by

ξ · at = ξ1a1,t + · · · + ξnan,t.

Consider a timber price function p : [0,∞) → [0,∞), assumed to
be increasing and concave. Given a forest state x and an admissi-
ble harvest control a, the stage income is r(x, a) := p(ξ · a). There-
fore, the performance index to maximize is

JT (π, x) :=
T−1∑

t=0

r(xt, at). (2.5.28)

It can be shown that the control system (2.5.26) has a set of
stationary states given by the pairs (x, a) satisfying x1 ≥ x2 ≥
· · · ≥ xn and

a1 = x1 − x2, a2 = x2 − x3, ..., an = xn.

Moreover, for each age class i there is a pair of stationary state
and control (xi, ai), known as normal forest, defined as follows:
the state is xi := (1/i, ..., 1/i, 0, ..., 0), where each of the first i
coordinates are 1/i , and the remaining are 0; and the control is
ai := (0, ..., 0, 1/i, 0, ..., 0), where 1/i is in the i–coordinate.

We choose a normal forest (x∗, a∗) such that

r(x∗, a∗) = max
{
p
(
ξ · ai

)
: i = 1, 2, ..., n

}
.

So, given the concavity of p, there is k ≥ 0 such that

r(x, a) − r(x∗, a∗) ≤ kξ · (a − a∗) for all a ∈ A(x).

Letting N := (1, 2, ..., n) and γ := max{ξ · ai : i = 1, 2, ..., n}, we
get the vector componentwise inequality ξ ≤ γN . Moreover, from
a straightforward calculation we have N · [x − F (x, a)] = N · (a −
a∗) for any x ∈ Δ and all a ∈ A(x). Therefore,

r(x, a) − r(x∗, a∗) ≤ kγN · [x − F (x, a)] for all x ∈ Δ, a ∈ A(x).
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Introducing the function λ : Δ → R, defined by λ(x) = kγN ·
x, and the value j∗ := r(x∗, a∗), we have the corresponding dissi-
pative inequality (2.5.19),

j∗ + λ(x) ≥ r(x, a) + λ(F (x, a)) for all x ∈ Δ, a ∈ A(x).

Thus in particular we conclude that (x∗, a∗) is an optimal sta-
tionary state. Moreover, that optimal stationary state can be
reached by a finite sequence of harvest plans from any initial sta-
tionary state. Hence, this example satisfies the Assumption 2.52,
and the conditions of Theorem 2.53, so the optimal AC value
function is

J∗(x) ≡ r(x∗, a∗) = max

{
p

(
ξi
i

)
: i = 1, 2, ..., n

}
.

�

2.5.3 The Vanishing Discount Approach

The so-called vanishing discount approach to AC-control prob-
lems is based on several connections between discounted cost
problems and the average cost. The most straightforward is the
following. Given an arbitrary control policy π = {at} and initial
state x0 = x, consider the discounted cost V (π, x) in (2.3.3), which
we now write as Vα(π, x) to make explicit the dependence on the
discount factor α ∈ (0, 1), i.e.,

Vα(π, x) =
∞∑

t=0

αtc(xt, at). (2.5.29)

Now, let M be an arbitrary constant and inside the summation
replace c(·, ·) with c(·, ·) ± M . Hence (2.5.29) becomes

Vα(π, x) =
∞∑

t=0

αt[c(xt, at) − M ] +
M

1 − α
,

which, multiplying both sides by 1 − α, we may express as
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(1 − α)Vα(π, x) = M + (1 − α)
∞∑

t=0

αt[c(xt, at) − M ].

In particular, taking M as the average cost J(π, x) it follows that

(1 − α)Vα(π, x) = J(π, x) + (1 − α)
∞∑

t=0

αt[c(xt, at) − J(π, x)].

(2.5.30)
This equation obviously suggests that we can approximate J(π, x)
by (1 − α)Vα(π, x) as α ↑ 1.

A second connection between discounted cost problems and the
average cost is provided by the Abelian theorem in Part (a) of the
following lemma.

Lemma 2.56. Let {ct} be a sequence bounded below, and con-
sider the lower and upper limit averages (also known as Cesàro
limits)

CL := lim inf
n→∞

1

n

n−1∑

t=0

ct, CU := lim sup
n→∞

1

n

n−1∑

t=0

ct,

and the lower and upper Abelian limits

AL := lim inf
α↑1

(1 − α)
∞∑

t=0

αtct, AU := lim sup
α↑1

(1 − α)
∞∑

t=0

αtct.

Then

(a) CL ≤ AL ≤ AU ≤ CU .
(b) If AL = AU , the equality holds in (a), i.e., CL = AL = AU =

CU .

For a proof of Lemma 2.56 see the references in Bishop et al.
(2014) or Sznajder and Filar (1992). Part (b) in Lemma 2.56 is
known as the Hardy-Littlewood Theorem.

Consider now a control policy π = {at}, the corresponding state
trajectory {xt}, and in Lemma 2.56 take ct := c(xt, at). Then the
third inequality in Lemma 2.56(a) gives

lim sup
α↑1

(1 − α)Vα(π, x) ≤ J(π, x) (2.5.31)
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for every initial state x0 = x, with Vα(π, x) and J(π, ·) as in
(2.5.30). Moreover, if V ∗

α (·) ≡ V ∗(·) denotes the α-discount value
function in (2.3.4), then (2.5.31) yields

lim sup
α↑1

(1 − α)V ∗
α (x) ≤ J(π, x).

In fact, since π in the latter inequality is arbitrary, we obtain from
(2.5.3) that, for every x ∈ X,

lim sup
α↑1

(1 − α)V ∗
α (x) ≤ J∗(x). (2.5.32)

In words, (2.5.32) states that, for values of α close to 1, (1 −
α)V ∗

α (·) is a lower bound for the average cost J∗(·).
One more connection between discounted cost problems and the

AC criterion is provided by the α-discount dynamic programming
equation (2.3.7) that we will rewrite as

V ∗
α (x) = inf

a∈A(x)
[c(x, a) + αV ∗

α (F (x, a))] (2.5.33)

Consider an arbitrary constant mα, which may depend on α ∈
(0, 1), and define

hα(x) := V ∗
α (x) − mα, and ρ(α) := (1 − α)mα. (2.5.34)

Some typical choices of the constant mα are mα := V ∗
α (x̄), where

x̄ ∈ X is an arbitrary (but fixed) state, and mα := infx∈X V ∗
α (x),

assuming of course that V ∗
α is bounded below. The first choice of

mα is useful because hα(x̄) = 0, so that we “fix” hα at x̄. The sec-
ond choice is also useful because then hα is a nonnegative function.
Either way, using (2.5.34) the DPE (2.5.33) becomes

ρ(α) + hα(x) = inf
a∈A(x)

[c(x, a) + αhα(F (x, a))]. (2.5.35)

Comparing this equation with (2.5.5), we might try to get con-
ditions for the pair (ρ(α), hα) in (2.5.35) to converge, as α ↑ 1, to
a solution (j∗, l) of (2.5.5).
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We will next show by means of examples the feasibility of this
approach. It should be noted however that, to the best of our
knowledge, there are no general results on the “vanishing dis-
count approach” for deterministic discrete-time systems such as
(2.5.1)–(2.5.2). All the known results on discrete-time AC control
problems refer to stochastic systems. See Remark 2.60.

Example 2.57 (An LQ system, cont’d.). We consider again the
α-discounted LQ control problem (2.4.13)–(2.4.15), with the α-
optimal discounted cost V ∗

α (x) = C(α)x2 in (2.4.22). Here C(α) ≡
C is the unique positive solution of (2.4.21) with coefficients
P,Q = Q(α), S = S(α) as in (2.4.20), i.e.,

P = qr, Q(α) = (rδ2 + qη2)α, S(α) = αη2. (2.5.36)

We suppose again the conditions in Example 2.46, but now we
assume in addition that the coefficients in (2.4.13) are such that
|δ| < 1 and δη > 0.

Now, in (2.5.34) take

mα := inf
x∈X

V ∗
α (x) = V ∗

α (x̄) = 0,

with x̄ = 0. Then ρ(α) = 0 for every α ∈ (0, 1), and, as α ↑ 1, we
obviously have that ρ(α) → j∗ = 0 and

hα(x) = V ∗
α (x) → l(x) := C(1)x2 ∀x

where C(1) is the unique positive solution of the quadratic equa-
tion (2.4.21) when α = 1. We can also see that, as α ↑ 1, the
α-optimal control fα(·) ≡ f ∗(·) in (2.4.23) converges to g∗(x) :=
−θx for all x, where θ := (r + S(1)C(1))−1δηC(1) and S(1) is
given in (2.5.36) when α = 1.

Summarizing, (j∗, l, g∗) is a canonical triplet, as in (2.5.6), with
minimum average cost j∗ = 0. (Here, we are tacitly using the
following fact: If we write at = −θxt in (2.4.13), then xt+1 =
(δ − ηθ)xt is a stable system since the coefficient |δ − ηθ| < 1.)
�

Example 2.58 (The Brock-Mirman model, cont’d.). Consider
the Brock-Mirman model in Example 2.31. In this α-discount
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problem, the performance index to be maximized for a given ini-
tial state x0 = x is

Vα(π, x) =
∞∑

t=0

αt log(at).

The optimal control policy of this problem is f ∗
α(x) := c(1 −

θα)xθ (see (2.3.33)) and the optimal state-control pair path
(x∗

t , a
∗
t ) for t = 1, 2, ... is given by

x∗
t = (cθα)

1−θt

1−θ xθt and a∗
t = c(1 − θα)(cθα)

θ−θt+1

1−θ xθt+1

.

Moreover, from Remark 2.32 the corresponding α-discount value
function is

V ∗
α (x) =

1

1 − α
log[c(1 − θα)] +

θα

(1 − α)(1 − θα)
log(cθα) +

θ

1 − θα
log(x).

Rearranging terms, we have

(1− α)V ∗
α (x) = log[c(1− θα)] +

θα

1− θα
log(cθα) +

θ(1− α)

1− θα
log(x),

and therefore

lim
α↑1

(1 − α)V ∗
α (x) = log(c(1 − θ)) +

θ

1 − θ
log(cθ) = j∗ ∀x.

In other words, the constant function J∗(·) ≡ j∗ is the average
optimal value function which, of course, coincides with (2.5.13)
and (2.5.23).

Finally, notice that, as α ↑ 1, the optimal path (x∗
t , a

∗
t ) con-

verges to the steady-state pair (x∗, a∗) in (2.5.22). �

Remark 2.59 (The Arzela-Ascoli Theorem). Let Cb(X) be the
space of real-valued continuous bounded functions on a met-
ric space X, with the supremum norm ‖f‖ := supx∈X |f(x)|.
The Arzela-Ascoli theorem characterizes compact subspaces of
Cb(X). This result is used, for instance, in the vanishing discount
approach, to decide whether a sequence (say, hαn(·) in (2.5.34))
in Cb(X) has a convergent subsequence. A precise statement is as
follows.
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The Arzela-Ascoli Theorem. Suppose that X is a compact
metric space and let fn be a sequence in Cb(X) such that

(a) fn is bounded, that is, supn ‖fn‖ < ∞, and
(b) fn is equicontinuous, that is, for each ε > 0 there exists δ > 0

such that

sup
n

|fn(x) − fn(y)| < ε if |x − y| < δ.

Then fn has a subsequence converging to some function in Cb(X).
For a proof of this theorem see, for example, Appendix H in

Morimoto (2010). �

Remark 2.60. As already noted in the paragraph before Exam-
ple 2.57, as far as we can tell there are no general results on the
“vanishing discount approach” to discrete-time deterministic AC
problems. (For differential systems, see part (b) below.) In fact,
the closest result we are aware of is the following theorem by Fein-
berg et al. (2012) for Markov decision processes (MDPs), which we
introduce in Chap. 3. Note, however, that this theorem does not
give the ACOE (2.5.5); it gives the optimality inequality (2.5.37)
below, which is the same as the inequality in Corollary 2.50(a).
(Vega-Amaya (2015) presents another proof of this theorem.)

(a) For our deterministic AC control problem (2.5.1)–(2.5.3) the
Feinberg et al. (2012) theorem can be stated as follows.

Theorem (Feinberg et al. (2012)). Suppose that:

(a) Assumption 2.17 holds, that is, the system function F (·, ·)
is continuous, and the stage cost c(·, ·) is nonnegative and
K-inf-compact;

(b) there exists a policy π and an initial state x such that
J(π, x) is finite, and, moreover, the function

h(·) := lim inf
α↑1

hα(·)

is finite-valued, where hα(·) = V ∗
α (·) − mα is as in (2.5.34),

with mα = infx∈X V ∗
α (x).
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Then there exists a l.s.c. function l(·) on X and a stationary
policy f ∈ F such that

j∗ + l(x) ≥ inf
a∈A(x)

[c(x, a) + l(F (x, a))]

= c(x, f) + l(F (x, f)) ∀x ∈ X, (2.5.37)

where j∗ := lim supα↑1 mα is the optimal AC, and f is AC-
optimal, that is, J(f, x) = J∗(x) = j∗ for all x ∈ X.

(b) AC control problems are mainly studied for stochastic sys-
tems, as in Chaps. 3, 5, and 6 below. For discrete-time deter-
ministic systems the AC problems are practically unexplored,
except perhaps for implicit results such as the theorem in part
(a). Similarly, for differential systems (as in Chap. 4, below)
AC problems have been studied in just a handful of papers
such as Arisawa (1997) and Kawaguchi (2003).

�

For additional comments on deterministic AC control problems
see Hernández-Lerma et al. (2023).

Exercises

2.1. Let X and Y be (nonempty) sets, and D ⊂ X × Y . Assume
that the x–section D(x) := {y ∈ Y : (x, y) ∈ D} is nonempty for
all x ∈ X, and similarly for the y–section D(y):={x ∈ X : (x, y) ∈
D} for all y ∈ Y . Let v be a real–valued function on D. Prove that:

(a)

sup
(x,y)∈D

v(x, y) = sup
x∈X

sup
y∈D(x)

v(x, y)

= sup
y∈Y

sup
x∈D(y)

v(x, y).

(b) Show that (a) holds if “sup” is replaced by “inf”.

Remark. Parts (a) and (b) in Exercise 2.1 are called “property of
the repeated supremum” and “property of the repeated infimum”,
respectively.
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2.2. Let g and h be real–valued functions on a set X.

1. If g and h are bounded from above, then

(a1) supx g(x) − supx h(x) ≤ supx[g(x) − h(x)];
(a2) | supx g(x) − supx h(x)| ≤ supx |g(x) − h(x)|.

2. If g and h are bounded from below, then

|infxg(x) − infxh(x)| ≤ supx|g(x) − h(x)|.
2.3. Let X and Y be convex subsets of R, and v a convex function
on a convex set D ⊂ X × Y . Then

v∗(x) := inf
y∈D(x)

v(x, y)

is convex, provided that v∗ is finite–valued, where D(x) is the x–
section defined in Exercise 2.1 above. If v is strictly convex, then
so is v∗.

2.4. Prove Lemma 2.2—Bellman’s principle of optimality.

2.5. Prove Lemma 2.15.
Hint. To prove part (a) note that, if gk ↓ g, then limk gk(y) =
infk gk(y) = g(y) for all y ∈ Y . In other words, limk gk = infk gk.
Now use Exercise 2.1(b) above. Part (b) in Lemma 2.15 follows
from the definition of uniform convergence. Proving part (c) is
a little complicated. The reader might wish to see the proof of
Lemma 4.2.4 in Hernández-Lerma and Lasserre (1996).

2.6. Give an example of a function on a metric space that is l.s.c.
but not inf–compact (as defined in Lemma 2.15(c)).

2.7. Let K be the operator in (2.3.8) defined on the complete
metric space B(X) of measurable bounded functions v with the
supremum norm ‖v‖ := supx∈X |v(x)|. Suppose that the cost func-
tion c(x, a) is bounded. Prove that:

(a) K is a contraction on B(X); in fact, ‖Kv − Kv′‖ ≤ α‖v − v′‖
for all v, v′ ∈ B(X), and

(b) the α–discount value function V ∗ is in the space B(X) and it
is the unique fixed–point of K (see (2.3.9)) in B(X).
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Hint. To prove (a) use Exercise 2.2, part 2. For (b), recall Remark
2.25.

2.8. Let v : K → R be K–inf–compact (see Definition B.4(a2)).
Show that v is l.s.c.

2.9. Let L+(X) be as in Lemma 2.18, that is, the family of non-
negative l.s.c. functions on X. Show that L+(X) is a convex cone,
so if u and v are in L+(X) and k ≥ 0, then u + v and ku are also
in L(X).

2.10. Let v ∈ L+(X) and u be as in (2.3.14). Show that, under
the Assumption 2.17, the functions (x, a) �→ c(x, a), v(F (x, a)),
u(x, a) are all l.s.c.
Hint. Use Exercise 2.8.

2.11. Prove the Proposition 2.49.

2.12. Prove Lemma 2.34.

2.13. Prove Lemma 2.35(a).

2.14. Prove (2.4.6) for any policy π = {at}.
Hint. In (2.4.2), replace (x, a) ∈ K by (xt, at) with t = 0, 1, . . . .
Next multiply by αt both sides of (2.4.2), and then sum over all
t = 0, 1, . . . . Finally, rearrange terms to obtain (2.4.6).

2.15. Let vn (n = 1, 2, ...) and v be functions on X such that
vn ↑ v. Show that if the vn are convex or l.s.c. or monotone, then
so is v, respectively.

2.16. Consider the time-varying control system (2.0.1)–(2.0.2)
with state and action spaces X ⊂ R

n and A ⊂ R
m, respectively,

with A compact. Assume, moreover, that the system function and
the stage costs are linear in the state variable, that is,

Ft(x, a) = F1(t)x + F2(a) and ct(x, a) = c1(t) · x + c2(a),

and terminal cost CT (·) ≡ 0, where F2(·) and c2(·) are continuous
functions.
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(a) Prove that the OCP has an optimal control which is indepen-
dent of the state variable.

Hint. Use the DP algorithm (2.1.8)–(2.1.9). (The result in (a)
is due to Midler (1969).)

(b) Show that, under the appropriate conditions (for instance, as
in Theorem 2.21), the result in (a) also holds in the infinite-
horizon stationary case (2.3.1)–(2.3.2).

2.17. Maximize

V (π, x0) =
T−1∑

t=0

√
atxt

over all π = {at}, with at ∈ [0, 1], subject to xt+1 = ρ(1 − at)xt,
t = 0, 1, ..., T − 1, where x0 > 0 and ρ > 0.

Answer.

a∗
t =

1 − ρ

1 − ρT−t
, Vt(x) =

√

x
1 − ρT−t

1 − ρ
, t = 0, 1, ..., T − 1.

2.18. (A cake eating or nonrenewable-resource extraction prob-
lem.) Maximize

V (π, x0) =
T−1∑

t=0

βt a1−γ
t

1 − γ

over all π = {at}, with at ∈ (0, xt), subject to xt+1 = xt − at, t =
0, 1, ..., T − 1, where 0 < γ < 1 and x0 > 0.

Answer.

a∗
t = x

1 − β1/γ

1 − β(T−t)/γ
, Vt(x) = x1−γ

βt
(
1 − β(T−t)/γ

)

(1 − γ)
(
1 − β1/γ

) , t = 0, 1, ..., T − 1.



Chapter 3

Discrete–Time
Stochastic Control
Systems

For the discrete–time deterministic systems studied in Chap. 2
there is essentially a unique dynamic model, namely,

xt+1 = F (xt, at) ∀ t = 0, 1, . . . , (3.0.1)

with a given initial condition x0. In contrast, in the stochastic case
there are two common dynamic models: the so–called system
model, and the Markov control model.

3.1 Stochastic Control Models

In the system model (SM), also known as the control model, the
controlled system evolves according to a difference equation (sim-
ilar to (3.0.1)) of the form

xt+1 = F (xt, at, ξt) ∀ t = 0, 1, . . . , T − 1, (3.1.1)

for T ≤ ∞, with a given—possibly random—initial condition x0.
Here, the state and control variables xt, at have the same meaning
as in (3.0.1); in particular, they take values in a state space X and
an action set A, respectively, both assumed to be Borel spaces.
Moreover, the ξt are independent random variables with values
in a Borel space S, and they denote random perturbations. These
perturbations (as in Remark 1.2(b)) can form a driving process
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or a random noise. In the former case, the ξt have a physical
or economic interpretation, whereas in the latter case they are
arbitrary random variables. See Example C.4 and Remark C.5 in
Appendix C.

The Markov control model (MCM) approach can be traced back
to the paper by Bellman (1957b) who, in addition, coined the term
Markov decision process, which today is also known as a Markov
control process. The difference between the MCM and (3.1.1) is
that in a MCM the evolution of the system is not specified by a
“system function” F (x, a, s) as in (3.1.1); rather it is specified by
a stochastic kernel or transition probability—as in Definition C.2
in Appendix C. (An approach similar to Bellman’s was introduced
by Shapley (1953) for stochastic games.)

More precisely, a MCM is expressed in the form

(X,A, {A(x) : x ∈ X}, Q, c), (3.1.2)

where, as usual, X and A are Borel spaces denoting the state space
and the control or action set, respectively. Moreover, for each
x ∈ X, A(x) ∈ B(A) represents the set of feasible (or admissible)
actions in the state x. Let

K := {(x, a) ∈ X × A : a ∈ A(x)} (3.1.3)

be the set of feasible state–action pairs, which is assumed to be a
Borel subset of X × A. (In the terminology of Definition B.1, K is
the graph of the multifunction x �→ A(x).) Then Q is a stochastic
kernel on X given K that represents the transition probability
from a state xt to xt+1 under a control action at ∈ A(xt); that is,
for each t = 0, 1, . . . , B ∈ B(X), and (x, a) ∈ K,

Q(B|x, a) := Prob[xt+1 ∈ B|xt = x, at = a]. (3.1.4)

Since this holds for all t, we say that the kernel Q is stationary or
time–homogeneous or time–invariant. Finally, c in (3.1.2) is a real–
valued function on K that is used to define the OCP’s objective
function, below.

Remark 3.1. (a) Consider the SM (3.1.1), and suppose that the
ξt are independent and identically distributed (i.i.d.) random
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variables with a common distribution μ on S. Then, from
(3.1.4), we can see that the stochastic kernel Q is given by

Q(B|x, a) = Prob[F (x, a, ξ) ∈ B]

= μ({s ∈ S : F (x, a, s) ∈ B}) (3.1.5)

= E[IB(F (x, a, ξ))]

where ξ represents a generic random variable with distribution
μ, and IB denotes the indicator function of the set B, that is,

IB(x) :=

{
1 if x ∈ B,

0 otherwise .

Hence, one can easily go from the SM (3.1.1) to the MCM
(3.1.2). One can also go the other way around, from (3.1.2) to
(3.1.1), but this is not very helpful because it is obtained by
means of an “existence” (nonconstructive) proof. (See Gihman
and Skorohod (1979), Sect. 1.1.)

(b) Similarly, if we are given the deterministic system (3.0.1), then
(3.1.4) gives Q(B|x, a) = IB[F (x, a)] or, equivalently,

Q(B|x, a) = δF (x,a)(B), (3.1.6)

where δF (x,a) denotes the Dirac (or point) measure concen-
trated at F (x, a), i.e.,

δF (x,a)(B) :=

{
1 if F (x, a) ∈ B,

0 otherwise .

�

In view of Remark 3.1, in the following we will mainly (but not
exclusively) work with the MCM (3.1.2).

Another key difference between a SM and a MCM is that (3.1.1)
gives explicitly the state and action processes {xt} and {at},
whereas in a MCM it is unclear, at the outset, how to obtain
these processes from (3.1.2). We show next how this is done, but
first we need to formalize the notion of “randomized policy” intro-
duced in the Definition 3.2.
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The remainder of this section is too technical. The reader might
wish to skip it and go directly to Sect. 3.2.

Consider the Markov control model (3.1.2) and, for each t =
0, 1, . . . , define the space Ht of admissible histories up to time t
as H0 := X, and

Ht := K
t × X = K × Ht−1 for t = 1, 2, . . . , (3.1.7)

where K is the set in (3.1.3). A generic element ht of Ht, which
is called an admissible t–history, or simply a t–history, is a vector
of the form

ht = (x0, a0, . . . , xt−1, at−1, xt), (3.1.8)

with (xi, ai) ∈ K for i = 0, . . . , t − 1, and xt ∈ X.

Definition 3.2. A randomized control policy—more briefly, a
control policy or simply a policy—is a sequence π = {πt, t =
0, 1, . . .} of stochastic kernels πt on the control set A given Ht

satisfying the constraint

πt(A(xt)|ht) = 1 ∀ ht ∈ Ht, t = 0, 1, . . . . (3.1.9)

The set of all policies is denoted by Π.

Roughly, a policy π = {πt} may be interpreted as defining a
sequence {at} of A–valued random variables, called actions (or
controls), such that for every t–history ht as in (3.1.8) and t =
0, 1, . . . , the distribution of at is πt(·|ht), which, by (3.1.9), is
concentrated on A(xt), the set of feasible actions in state xt. This
interpretation of π is made rigorous in equation (3.1.10b), below.

Remark 3.3. The canonical construction. Consider the
MCM (3.1.2) and let (Ω,F) be the measurable space consisting of
the (canonical) sample space Ω := (X × A)∞, that is, the space of
sequences ω = (x0, a0, x1, a1, . . . ) with xt in X and at in A for all
t = 0, 1, . . . , and F is the corresponding product σ–algebra. The
proyections (or coordinate variables) ω �→ xt and ω �→ at, from Ω
to X and A, respectively, are called state and action variables.
Observe that Ω contains the space H∞, in (3.1.7), of admissi-
ble histories ω = (x0, a0, x1, a1, . . . ) with (xt, at) ∈ K (that is, by
(3.1.3), at ∈ A(xt)) for all t = 0, 1, . . . .
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Let π = {πt} be an arbitrary control policy and ν an arbitrary
probability measure on X, referred to as the “initial distribution”.
Then, by a theorem of C. Ionescu–Tulcea (Proposition C.8 and
Remark C.9 in Appendix C), there exists a unique probability
measure P π

ν on (Ω,F) which, by (3.1.9), is supported on H∞,
namely, P π

ν (H∞) = 1. Moreover, for all B ∈ B(X), C ∈ B(A), and
ht ∈ Ht as in (3.1.8), t = 0, 1, . . ., we have:

P π
ν (x0 ∈ B) = ν(B), (3.1.10a)

P π
ν (at ∈ C|ht) = πt(C|ht), (3.1.10b)

P π
ν (xt+1 ∈ B|ht, at) = Q(B|xt, at). (3.1.10c)

�

Definition 3.4. The stochastic process (Ω,F , P π
ν , {xt}) is called

a discrete–time Markov control process (or Markov decision pro-
cess).

The process {xt} in Definition 3.4 depends, of course, on the
particular policy π being used and on the given initial distribution
ν. Hence, strictly speaking, we should write, for instance, xπ,ν

t

instead of just xt. However, we shall keep the simpler notation xt

for it will always be clear from the context what particular π and
ν are being used.

The expectation operator with respect to P π
ν is denoted by Eπ

ν .
If ν is concentrated at the “initial state” x ∈ X, then we write P π

ν

and Eπ
ν as P π

x and Eπ
x , respectively.

3.2 Markov Control Processes:
Finite Horizon

In this section we consider the Markov control model (MCM)

(X,A, {A(x) : x ∈ X}, Q, c) (3.2.1)

introduced in (3.1.2)–(3.1.4), and the Markov control processes
(MCP) in Definition 3.4. The optimal control problem (OCP)
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we are concerned with is to minimize the finite–horizon objective
function (or performance criterion)

J(π, x) := Eπ
x

[
N−1∑
t=0

c(xt, at) + cN(xN)

]
, (3.2.2)

which is a stochastic analogue of (2.0.1). Thus, letting

J∗(x) := inf
π
J(π, x), x ∈ X, (3.2.3)

be the corresponding value function or minimum cost func-
tion, the OCP we are dealing with is to find an optimal policy,
that is, a policy π∗ ∈ Π such that

J(π∗, x) = J∗(x) ∀ x ∈ X. (3.2.4)

To this end, we will prove below the stochastic version of the
Dynamic Programming (DP) Theorem 2.3.

Let π = {πt} be an arbitrary policy and, for every
t = 0, 1, . . . , N, let Ct(π, x) be the “cost–to–go” or cost from time
t onwards when using the policy π and given xt = x; that is, for
t = 0, 1, . . . , N − 1,

Ct(π, x) := Eπ

[
N−1∑
n=t

c(xn, an) + cN(xN)|xt = x

]
(3.2.5)

and
CN(π, x) := Eπ[cN(xN)|xN = x] = cN(x). (3.2.6)

In particular, from (3.2.2),

J(π, x) = C0(π, x). (3.2.7)

Moreover, for t = 0, . . . , N , let Jt be the optimal cost from time t
to N , that is,

Jt(x) := inf
π
Ct(π, x) ∀ x ∈ X, t = 0, . . . , N. (3.2.8)

The following lemma states that the functions Jt satisfy the DP
equation (3.2.9) with the condition (3.2.10).
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Lemma 3.5. Suppose that for each t ∈ {0, . . . , N − 1} there is
a policy πt for which the minimum is attained in (3.2.8) for
all x ∈ X, that is Jt(x) = Ct(π

t, x). Then, for each t = N − 1,
N − 2, . . . , 0 and x ∈ X,

Jt(x) = min
a∈A(x)

[c(x, a) +

∫
X

Jt+1(y)Q(dy|x, a)] (3.2.9)

and
JN(x) = cN(x). (3.2.10)

Remark 3.6. Consider a system model (SM) as in (3.1.1), that is,

xt+1 = F (xt, at, ξt) ∀ t = 0, 1, . . .

with S–valued i.i.d. random disturbances ξt with a common dis-
tribution G. Then, in analogy with the right–hand side of (2.1.9),
the integral in (3.2.9) becomes

E[Jt+1(F (xt, at, ξt))|xt = x, at = a] = E[Jt+1(F (x, a, ξt))]

=

∫
Jt+1(F (x, a, s))G(ds).

In a general MCP, the integral in (3.2.9) can be expressed (by
(3.1.10c)) as

E[Jt+1(xt+1)|xt = x, at = a] =

∫
Jt+1(y)Q(dy|x, a). �

Proof of Lemma 3.5. From (3.2.6), the terminal condition
(3.2.10) is obvious. Now let t = 0, 1, . . . , N − 1, and consider a
policy π such that πt = f ∈ F and {πt+1, . . . ,πN−1} is an optimal
policy from time t + 1 onwards. Hence, by (3.2.5),

Ct(π, x) = c(x, f(x)) + Eπ

[
N−1∑
n=t+1

c(xn, an) + cN(xN)|xt = x, at = f(x)

]

= c(x, f(x)) +
∫
X

Jt+1(y)Q(dy|x, f(x))

≥ min
a∈A(x)

[
c(x, a) +

∫
X

Jt+1(y)Q(dy|x, a)
]
;
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therefore,

Jt(x) ≥ min
a∈A(x)

[c(x, a) +

∫
X

Jt+1(y)Q(dy|x, a)].

To obtain the reverse inequality observe that, for any f ∈ F,
(3.2.8) yields

Jt(x) ≤ c(x, f(x)) +

∫
X

Jt+1(y)Q(dy|x, f(x)).

Since f ∈ F was arbitrary, the latter inequality gives that

Jt(x) ≤ min
a∈A(x)

[c(x, a) +

∫
X

Jt+1(y)Q(dy|x, a)] ∀ x ∈ X.

This completes the proof of (3.2.9). �

Remark 3.7. To simplify the notation, if we have a function
g(x, a) on K and use a selector f ∈ F, we will simply write g(x, f)
or gf (x) in lieu of g(x, f(x)). �

From Lemma 3.5 we easily obtain the DP algorithm in the
following theorem.

Theorem 3.8. Let {J0, . . . , JT} be the functions in (3.2.9)–
(3.2.10). Suppose that, for each t = 0, 1, ..., N − 1, there is a selec-
tor ft ∈ F such that ft(x) ∈ A(x) attains the minimum in (3.2.9)
for every x ∈ X, that is (using the notation in Remark 3.7),

Jt(x) = c(x, ft) +

∫
X

Jt+1(y)Q(dy|x, ft). (3.2.11)

Then the deterministic Markov policy π∗ = {f0, . . . , fN−1} is opti-
mal, that is, it satisfies (3.2.4).

Proof. This theorem follows directly from (3.2.11) and (3.2.8),
which yield

inf
π
Ct(π, x) = Ct(π

∗, x)

for every t = 0, . . . , T and x ∈ X. �
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Remark 3.9. (a) Lemma 3.5 and Theorem 3.8 hold, of course,
if the cost function c and the stochastic kernel Q are time–
varying, that is, ct and Qt for t = 0, 1, ... as in Theorem 2.3.

(b) Our approach in this section to obtain the DP Theorem 3.8
is a little different from the approach followed in Sect. 2.1 to
obtain Theorem 2.3. Indeed, here we introduced the functions
Jt in (3.2.8) and then we showed that they satisfy the DP algo-
rithm (3.2.9)–(3.2.10). In contrast, in Theorem 2.3 we started
the other way around: first, we introduced the DP algorithm
(2.1.8)–(2.1.9), and then we obtained (2.1.10)–(2.1.11). �

Remark 3.10. Variants of the D.P. equation.

(a) Nonstationary MCPs. Lemma 3.5 and Theorem 3.8 hold
if the MCM (3.2.1) is nonstationary, that is, all of the com-
ponents in (3.2.1) are time–varying, i.e, Xt, At, At(x), Qt, ct
for t = 0, 1, . . . . For instance, (3.2.9) would be expressed as

Jt(x) = min
a∈At(x)

[
ct(x, a) +

∫
Xt+1

Jt+1(y)Qt(dy|x, a)
]
.

Moreover, there is a well–known state–augmentation pro-
cedure to transform a nonstationary MCM into a station-
ary one. [See, for instance, Bertsekas and Shreve (1978),
Guo et al. (2010), Hernández-Lerma (1989), Hinderer et al.
(2016).]

(b) Discounted costs. Given a discount factor α ∈ (0, 1), the
performance criterion (3.2.2) becomes

Eπ
x

[
N−1∑
t=0

αtc(xt, at) + αNcN(xN)

]

Then, using the same change of variable to obtain (2.2.1)–
(2.2.2), the DP equation in Lemma 3.5 becomes

Vt(x) = min
a∈A(x)

[
c(x, a) + α

∫
X

Vt+1(y)Q(dy|x, a)
]

(3.2.12)
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for t = 0, 1, . . . , N − 1, and

VN(x) = cN(x). (3.2.13)

(c) System models. Consider the SM in Remark 3.6. Then
(3.2.10) remains the same, but (3.2.9) becomes

Jt(x) = min
a∈A(x)

{c(x, a) + E[Jt+1(F (x, a, ξ))]}

= min
a∈A(x)

{c(x, a) +

∫
S

Jt+1(F (x, a, s))G(ds)}. (3.2.14)

In particular, in the discounted case (3.2.12), the expected
value in the right–hand side of (3.2.14) is replaced with

αE[Jt+1(F (x, a, ξ))].

Finally, we can also rewrite (3.2.9)–(3.2.10) in a forward
form, similar to the deterministic case in (2.2.4)–(2.2.5).

3.3 Conditions for the Existence of
Measurable Minimizers

For Theorem 3.8 to be useful we need to ensure the existence
of measurable selectors (or “minimizers”) ft ∈ F as in (3.2.11).
There are many ways of doing this—see, for instance, Bertsekas
and Shreve (1978), Bäuerle and Rieder (2011), Hernández-Lerma
and Lasserre (1996), Hinderer et al. (2016), to mention just a few
references. Here we will use some results in Appendix B, below, to
see how to ensure the existence of measurable minimizers. First,
we consider how to adapt our MCM to Theorem B.3.

Theorem 3.11. Consider the MCM (3.2.1), and a l.s.c. function
u : X → R bounded below. Suppose that, for every x ∈ X,

(a) The action set A(x) is compact;

(b) The function a �→ c(x, a) is l.s.c. on A(x);
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(c) The function a �→ v′(x, a) :=
∫
X
v(y)Q(dy|x, a) is l.s.c. on

A(x) for each continuous and bounded function v on X.

Then the function u∗ defined on X by

u∗(x) := inf
a∈A(x)

[
c(x, a) +

∫
X

u(y)Q(dy|x, a)
]

(3.3.1)

is measurable and there exists a selector f ∈ F such that f(x) ∈
A(x) attains the minimum in (3.3.1) for every x ∈ X, i.e.,

u∗(x) = c(x, f) +

∫
X

u(y)Q(dy|x, f). (3.3.2)

Proof. By the present hypotheses, the result will follow from
Theorem B.3 provided that the integral in (3.3.1) is l.s.c. in
a ∈ A(x) for every x ∈ X. Thus, we need to show that, for each
x ∈ X, if {an} is a sequence in A(x) converging to a ∈ A(x), then

lim inf
n→∞

∫
X

u(y)Q(dy|x, an) ≥
∫
X

u(y)Q(dy|x, a). (3.3.3)

To this end, we will use that u is l.s.c. and bounded below and,
therefore, by Proposition A.2, there is a sequence of continuous
and bounded functions vk on X such that vk ↑ u. Hence, for every
n and k, ∫

X

u(y)Q(dy|x, an) ≥
∫
X

vk(y)Q(dy|x, an),

and, letting n → ∞, the assumption (c) yields

lim inf
n

∫
X

u(y)Q(dy|x, an) ≥
∫
X

vk(y)Q(dy|x, a).

Finally, letting k → ∞, (3.3.3) follows. �

Remark 3.12. (a) Given a real–valued function v on X, let v′ be
as in Theorem 3.11(c), i.e.,

v′(x, a) :=

∫
X

v(y)Q(dy|x, a) ∀ (x, a) ∈ K. (3.3.4)
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The stochastic kernel (or transition probability) Q in (3.1.2)
is said to be weakly continuous (or that it has the weak–
Feller property) if the mapping (x, a) �→ v′(x, a) is continuous
on K for every continuous bounded function v. On the other
hand, Q is called strongly continuous (or that it satisfies the
strong–Feller property) if v′ is continuous for every measurable
bounded function v. It should be noted that here we will be
dealing with the weakly continuous case.

Clearly, since every continuous function is measurable, strong
continuity implies weak continuity, but not conversely. The fol-
lowing examples emphasize this fact. First, consider the sys-
tem model (3.1.1), where the ξt are i.i.d. random variables with
common distribution G on S. Then we can express (3.3.4) as

v′(x, a) = E[v(F (x, a, ξ))] =

∫
S

v(F (x, a, s))G(ds), (3.3.5)

where ξ is a generic random variable with distribution G.
Then, for an arbitrary measurable function v, the function v′ is
not necessarily continuous, even if the map (x, a) �→ F (x, a, s)
is continuous for every s ∈ S. (Take, for instance, v = IB the
indicator function of a set B.) Now suppose that (3.1.1) is the
additive noise system

xt+1 = F (xt, at) + ξt, t = 0, 1, ... (3.3.6)

Moreover, the ξt are i.i.d. disturbances as in (3.3.5), but now
they take values in X = S = R

d and, in addition, the distri-
bution G has a continuous and bounded probability density
g. Then, using the change of variable y = F (x, a) + s, (3.3.5)
becomes

v′(x, a) =

∫
S

v(F (x, a) + s)g(s)ds =

∫
S

v(y)g(y − F (x, a))dy.

(3.3.7)
Therefore, assuming that the mapping (x, a) �→ F (x, a) is con-
tinuous, it follows that the function v′ in (3.3.7) is continuous,
even if the bounded function v is just measurable! In other
words, the additive noise system (3.3.6) is strongly continuous.
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(b) For the deterministic system (3.0.1), the transition probabil-
ity Q turns out to be the Dirac measure (3.1.6) and so the
function v′ in (3.3.4) becomes

v′(x, a) = v(F (x, a)).

Therefore, Q is weakly continuous (in the sense of part (a)) if
the system function F : K → X is continuous, as in Assump-
tion 2.17. However, requiring that Q is strongly continuous (so
that v′ is continuous for every measurable bounded function
v) would be extremely restrictive.

(c) As in the proof of (3.3.3) (replacing u with v), it can be seen
that: If Q is weakly continuous and v : X → R is l.s.c. and
bounded below, then the mapping (x, a) �→ v′(x, a) in (a) is
l.s.c. and bounded below on K. �

Theorem 3.11 requires the action sets A(x) to be compact.
This requirement is replaced, in the following theorem, by inf–
compactness on K (see Definition B.4(a3)).

Theorem 3.13. Consider the MCM (3.2.1) and let u : X → R

be as in Theorem 3.11, that is, u is l.s.c. and bounded below. In
addition, let us assume that

(a) the cost function c is l.s.c., bounded below, and inf–compact
on K;

(b) the transition probability Q is weakly continuous (see Remark
3.12(a)).

Then the conclusions of Theorem 3.11 hold again, that is, the
function u∗ in (3.3.1) is measurable, and there exists a selector
f ∈ F such that (3.3.2) holds for every x ∈ X. Moreover, for each
x ∈ X, let Au(x) be the set of actions a∗ ∈ A(x) where the right-
hand side of (3.3.1) attains the minimum, i.e.,

u∗(x) = c(x, a∗) +

∫
X

u(y)Q(dy|x, a∗),

and suppose that the multifunction x �→ Au(x) is l.s.c. (see Defi-
nition B.4(b)). Then the function u∗ is l.s.c. on X.
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Proof. See Exercise 3.1(a). �

In Theorem 3.13, to conclude that u∗ is l.s.c., we assumed that
the multifunction x �→ Au(x) is l.s.c. In the following Theorem
3.14, to obtain that u∗ is l.s.c., we replace the assumption on
x �→ Au(x) by the condition that the stage cost c is K–inf–compact
(see Lemma 2.16 or Definition B.4(a2)).

Theorem 3.14. Consider the MCM (3.2.1), and let u : X → R

be l.s.c. and bounded below. In addition,

(a) the stage cost c : K → R is nonnegative and K–inf–compact;
and

(b) the transition probability Q is weakly continuous.

Then the conclusions in Theorem 3.11 hold, that is, the function
u∗ in (3.3.1) is measurable and there exists f ∈ F that satisfies
(3.3.2). Moreover, u∗ is l.s.c.

Proof. See Exercise 3.1(b). �

3.4 Examples

Example 3.15 (Stochastic LQ systems) We now consider a
stochastic version of the LQ system in Example 2.4. The state
and action spaces are X = A = R and the dynamics is given by

xt+1 = γxt + βat + ξt, t = 0, 1, . . . , N − 1, (3.4.1)

with nonzero coefficients γ and β. The disturbances ξt are i.i.d.
random variables, independent of the initial state x0, with a com-
mon distribution G that has zero mean and finite variance, i.e.,

E(ξ) = 0 and σ2 := E(ξ2) < ∞, (3.4.2)

where ξ is a generic real–valued random variable with distribution
G. The performance criterion is as in (3.2.2), with one–stage costs

c(x, a) = qx2 + ra2 and cN(x) = qNx
2, (3.4.3)
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with nonnegative coefficients q and qN , and r > 0. Hence, from
Lemma 3.5 and Remark 3.6, the D.P. equation (3.2.9)–(3.2.10)
becomes

Jt(x) = min
a

[qx2 + ra2 + EJt+1(γx + βa + ξ)] (3.4.4)

for t = N − 1, N − 2, ..., 0, and

JN(x) = qNx
2. (3.4.5)

Note that, from (3.4.5) and (3.4.2),

EJN(γx + βa + ξ) = qNE(γx + βa + ξ)2

= qN(γ2x2 + σ2 + 2γβxa + β2a2).

Inserting this quantity in the right–hand side of (3.4.4) and min-
imizing over all a ∈ A we obtain the minimizer fN−1 ∈ F given
by

fN−1(x) = GN−1x, with GN−1 := −(r + qNβ2)−1qNγβ.

Replacing this value of a = fN−1(x) in (3.4.4) we obtain

JN−1(x) = KN−1x
2 + qNσ2 ∀ x ∈ R

with
KN−1 := [1 − (r + qNβ2)−1qNβ2]qNγ2 + q.

Similarly, we replace JN−1 in (3.4.4) to obtain the minimizer
fN−2 ∈ F and the function JN−2. In general, by backward induc-
tion, we obtain the optimal policy π∗ = {f0, . . . , fN−1} with

ft(x) = Gtx, where Gt := −(r + Kt+1β
2)−1Kt+1γβ, (3.4.6)

with
Kt = [1 − (r + Kt+1β

2)−1Kt+1β
2]Kt+1γ

2 + q

for t = N − 1, ..., 1, 0. The optimal cost function from time t to N
(see (3.2.8)), with JN in (3.4.5) and t = 0, 1, . . . , N − 1, is

Jt(x) = Ktx
2 + σ2

N∑
n=t+1

Kn. (3.4.7)
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In particular, from (3.2.4) and (3.2.8),

J∗(x) = J0(x) = K0x
2 + σ2

N∑
n=1

Kn

for every initial state x0 = x. �

Example 3.16. Stochastic LQ system with discounted cost. Let
us consider again the LQ system (3.4.1)–(3.4.3), except that now
we use the α-discounted DP equation (3.2.12) with terminal cost
VN(·) ≡ 0 in (3.2.13). The optimal cost is again of the form

J0(x) = K0x
2 + σ2

N−1∑
t=1

Kt

with Kt given by a backward recursion from t = N − 1, ..., 1, 0 by

Kt = [1 − (rαt + Kt=1β
2)−1Kt+1β

2]Kt+1γ
2 + qαt

with KN = 0.
To complement these results, note that Sect. 3.5 in

Hernández-Lerma and Lasserre (1996) as well as Sect. 2.1 in Bert-
sekas (1987) present the nonstationary vector case of the LQ sys-
tem (3.4.1)–(3.4.2) in which the state and control variables xt and
at are vectors in, say, Rn and R

m, respectively, and the coefficients
γt,βt, qt, rt are matrices of suitable dimensions. On the other hand,
observe that the optimal control ft in (3.4.6) is the same as in
the deterministic case (2.1.16). This property is sometimes called
the certainty–equivalence principle of LQ systems. This principle
is shared by other stochastic systems. For an extension of the
certainty–equivalence principle to a class of stochastic differential
games see Josa-Fombellida and Rincón-Zapatero (2019). �

Example 3.17 (A consumption–investment problem). At each
time t = 0, 1, . . . , N − 1, an investor wishes to allocate his/her
current wealth xt between investment (at) and consumption
(xt − at). Hence, if xt = x, the corresponding investment or con-
trol set is A(x) = [0, x]. The wealth at time t + 1 is

xt+1 = atξt, t = 0, 1, . . . , N − 1,
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that is, the wealth is proportional to the amount invested at time
t, where ξt ≥ 0 denotes a “random interest rate”. These “distur-
bances” ξt are i.i.d. random variables, assumed to be independent
of the initial wealth x0. Moreover, to ensure that reinvestment
is indeed profitable, we assume that the ξt have a (finite) mean
m = E(ξt) > 1. The investor’s problem is to find an investment
strategy π = {a0, a1, . . . , aN−1} that maximizes an expected total
discounted utility from consumption defined as

J(π, x) := Eπ
x

[
N−1∑
t=0

αtu(xt − at)

]
,

for every initial wealth x0 = x ≥ 0, where α is a discount factor,
and u(x − a) is a given utility of consumption. We will take the
state and action spaces as X = A = [0,∞).

Since we are now maximizing, the discounted D.P. equation
(3.2.12)–(3.2.13) becomes, for every x ∈ X and t = N − 1,
N − 2, . . . , 0,

JN(x) = 0, (3.4.8)

Jt(x) = max
a∈A(x)

[u(x − a) + αEJt+1(aξt)]. (3.4.9)

The solution to (3.4.8)–(3.4.9) depends, of course, on the utility
function u. Here, we will consider two cases.

Linear case. Suppose that u(x − a) = b · (x − a) for some b > 0.
We will assume that αm > 1. In this case, the optimal investment
policy is π∗ = {f0, . . . , fN−1} with fN−1(x) = 0, and

ft(x) = x ∀ t = 0, 1, . . . , N − 2. (3.4.10)

Moreover, for all x ∈ X, and t = N − 1, . . . , 0,

Jt(x) = (mα)N−t−1bx. (3.4.11)

In particular, J∗(x) = J0(x) = (mα)N−1bx, for any initial state
x0 = x.

Nonlinear case. Assume that u(x − a) = (b/k)(x − a)k. Here
b > 0 and 0 < k < 1. The function u(x) = (b/k)xk is called the
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isoelastic utility function or power utility function. In this case,
the solution of (3.4.8)–(3.4.9) is

Jt(x) = (b/k)Dtx
k ∀ t = N − 1, N − 2, . . . , 0, (3.4.12)

whereas the optimal maximizers are fN−1(x) = 0 and, for t = N −
2, . . . , 0,

ft(x) = x/[1 + δD
1/(k−1)
t+1 ], (3.4.13)

with δ = (αEξk)1/(k−1), and Dt is given recursively by DN−1 = 1
and for t = N − 2, . . . , 0,

Dt = δk−1Dt+1/[1 + δD
1/(k−1)
t+1 ]k−1. (3.4.14)

(See Exercise 3.4.) �

3.5 Infinite–Horizon Discounted
Cost Problems

In this section we consider the Markov control model (MCM)
(3.1.2):

(X,A, {A(x) : x ∈ X}, Q, c).

The objective function to be minimized is the infinite–horizon
expected total discounted cost

V (π, x) := Eπ
x

[ ∞∑
t=0

αtc(xt, at)

]
(3.5.1)

for every policy π ∈ Π, and every initial state x ∈ X, where α ∈
(0, 1) is a given discount factor. A policy π∗ such that

V (π∗, x) = inf
π
V (π, x) =: V ∗(x) ∀ x ∈ X (3.5.2)

is said to be α–discount optimal, and V ∗ is called the α–discount
value function, also known as the α–discount optimal cost function.

We can analyze the infinite-horizon discounted cost problem
in the context of any of the Theorems 3.11, 3.13 or 3.14. Here,
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however, to fix ideas we will follow Theorem 3.13. (The analysis
following Theorem 3.14 is quite similar.)

The following assumption, which is supposed to hold through-
out this section, includes some of the hypotheses of Theorem 3.13.
(See also Theorem 3.13 or Remark 3.12(a) for the definition of
weak continuity of Q.)

Assumption 3.18. (a) The stage cost c : K → R is l.s.c., non-
negative, and inf-compact on K, that is (by Definition B.4
(a3)), for each r > 0, the set {a ∈ A(x)|c(x, a) ≤ r} ⊂ A is
compact.

(b) The multifunction x �→ Ac(x) is l.s.c. (see Definition B.4(b)),
where, for every x ∈ X, Ac(x) stands for the set of control
actions a∗ ∈ A(x) such that c(x, a∗) = mina∈A(x) c(x, a).

(c) The transition law Q is weakly continuous.

Observe that the LQ system in Examples 3.15 and 3.16 satis-
fies Assumption 3.18. In particular, since c(x, a) = qx2 + ra2 (see
(3.4.3)) and there are no control constraints (i.e, A(x) = A = R

for all x ∈ X) the multifunction x �→ Ac(x) in Assumption 3.18(b)
is “constant”, that is, Ac(x) = {0} for all x ∈ X; hence, it is triv-
ially l.s.c. Similarly, Q is weakly continuous because, from (3.4.1)
and the Remark 3.12(a), the mapping

(x, a) �→
∫
X

v(y)Q(dy|x, a) =

∫
R

v(γx + βa + s)G(ds)

is continuous for every continuous bounded function v. Assump-
tion 3.18 can also be verified for the Example 3.17. Nevertheless,
since the problem aims to maximize a utility, the reader might
wish to make the “change of variable” c(x, a) := −u(x − a) to
put Example 3.17 in the format of Assumption 3.18.

In our present context, the Basic Assumption in Chap. 1 is that

(a) the cost function c is nonnegative, and

(b) the value function V ∗ is finite–valued.

Part (a) is included in Assumption 3.18(a). Part (b) follows from
the following Assumption 3.19.
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Assumption 3.19. There exists a policy π such that V (π, x) <
∞ for each x ∈ X.

We denote by Π0 the family of policies that satisfy Assumption
3.19. For instance, if the cost c is bounded, say 0 ≤ c ≤ M , then

0 ≤ V (π, x) ≤ M(1 − α) ∀ π ∈ Π, x ∈ X.

Hence, in this case, Π0 = Π.
In the remainder of this section we roughly follow the dynamic

programming (DP) approach in Sect. 2.3.1 for deterministic
infinite–horizon problems. In particular, we wish to prove that
the α–discount value function V ∗ in (3.5.2) satisfies the DP
equation—compare (2.3.7) and (3.5.5). To this end, we again con-
sider the family L+(X) of nonnegative l.s.c. functions on X, intro-
duced in Lemma 2.18. (See also the Exercise 2.10.)

For each u ∈ L+(X), let Tu : X → X be defined as

Tu(x) := inf
a∈A(x)

[
c(x, a) + α

∫
X

u(y)Q(dy|x, a)
]
. (3.5.3)

One of the main results in this section is that the value function
V ∗ is a solution of the α–discount DP equation (also known as the
α–discount optimality equation)

u(x) = inf
a∈A(x)

[
c(x, a) + α

∫
X

u(y)Q(dy|x, a)
]
. (3.5.4)

By (3.5.3), a solution u ∈ L+(X) to (3.5.4) is a fixed point of T ,
that is, Tu = u.

Remark 3.20. The following Theorem 3.21 is quite similar to
Theorem 4.2.3 in Hernández-Lerma and Lasserre (1996) except
for a key difference: In the latter reference, the transition law Q is
supposed to be strongly continuous (see Remark 3.12(a)), whereas
here Q is weakly continuous (Assumption 3.18(c)). This implies
(by the Remark 3.12(b)) that Theorem 3.21 includes as a special
case the “deterministic” results in Theorem 2.21 and Corollary
2.22. This fact is not true in the cited reference. �
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Theorem 3.21. Suppose that Assumptions 3.18 and 3.19 hold.
Then:

(a) The α–discount value function V ∗ is the pointwise minimal
solution of (3.5.4); that is, for every x ∈ X,

V ∗(x) = min
a∈A(X)

[
c(x, a) + α

∫
X

V ∗(y)Q(dy|x, a)
]
, (3.5.5)

equivalently V ∗ = TV ∗, and, in addition, if u is another solu-
tion of (3.5.4), then u(x) ≥ V ∗(x) for all x ∈ X.

(b) There is a selector f∗ ∈ F such that f∗(x) ∈ A(x) attains the
minimum in (3.5.5), that is,

V ∗(x) = c(x, f∗) + α

∫
X

V ∗(y)Q(dy|x, f∗) ∀ x ∈ X, (3.5.6)

and the deterministic stationary policy f∞
∗ = {f∗, f∗, . . . } is

α–discount optimal; conversely, if f∞
∗ = {f∗, f∗, . . .} is α–

discount optimal, then f∗ ∈ F satisfies (3.5.6).

(c) If π∗ is a policy such that V (π∗, ·) satisfies (3.5.4) and, more-
over, the condition

lim
n→∞

αnEπ
xV (π∗, x) = 0 ∀π ∈ Π0 and x ∈ X (3.5.7)

holds, then π∗ is α–discount optimal. In other words, if (3.5.7)
holds, then π∗ is α–optimal if and only if V (π∗, ·) satisfies the
α–discount D.P. equation.

(d) If an α–discount optimal policy exists, then there exists one
that is deterministic stationary.

The conclusion of part (d) in Theorem 3.21 is important
because it ensures that, even if we work in the space of all ran-
domized, history–dependent policies (see the Remark 1.2(d) or
the Remark 3.3), to solve the infinite–horizon discounted cost
problem it suffices to consider deterministic stationary policies
f∞ = {f, f, ...}, with f ∈ F.
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The proof of Theorem 3.21 requires some preliminary results
that are important in themselves. The first one is that the operator
T in (3.5.3) maps L+(X) into itself.

Lemma 3.22. If u is a function in L+(X), then so is Tu and,
moreover, there exists a selector f ∈ F such that f(x) ∈ A(x)
attains the minimum in the right-hand side of (3.5.3), that is,

Tu(x) = c(x, f) + α

∫
X

u(y)Q(dy|x, f) ∀ x ∈ X. (3.5.8)

Proof. First, note that the hypotheses (a)-(b) in Theorem 3.13
are the same as the Assumptions 3.18(a),(c). Moreover, our
Assumptions 3.18(a),(b),(c) yield that the multifunction x �→
Au(x) in Theorem 3.13 is l.s.c. Therefore, the conclusion in
Lemma 3.22 follows from Theorem 3.13. �

The expression (3.5.9) below is the “stochastic version” of
(2.3.16). In fact, the arguments in the Remark 2.19 are a sim-
plified version of the arguments in the proof of Lemma 3.23.

Lemma 3.23. Given a selector f ∈ F, consider the deterministic
stationary policy f∞ = {f, f, . . . }. Then the α–discounted cost
vf (x) := V (f∞, x) satisfies that, for every x ∈ X,

vf (x) = c(x, f) + α

∫
X

vf (y)Q(dy|x, f). (3.5.9)

Proof. Given f ∈ F, from (3.5.1) we obtain

vf (x) = Ef∞
x

[ ∞∑
t=0

αtc(xt, f)

]

= Ef∞
x

[
c(x0, f) +

∞∑
t=1

αtc(xt, f)

]

= c(x, f) + αEf∞
x (Θ), (3.5.10)

where Θ :=
∑∞

t=1 αt−1c(xt, f). Then, by the properties of the con-
ditional expectation and the Markov–like property (3.1.10c),

Ef∞
x (Θ) = Ef∞

x

[
Ef∞

x (Θ|x0, a0, x1)
]
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= Ef∞
x

[
Ef∞

x (Θ|x1)
]

=

∫
X

Ef∞
[ ∞∑

t=1

αt−1c(xt, f)|x1 = y

]
Q(dy|x, f)

=

∫
X

vf (y)Q(dy|x, f).

The latter fact together with (3.5.10) gives (3.5.9). �

Compare part (a) of the following lemma with Lemma 2.20.

Lemma 3.24. (a) If u ∈ L+(X) satisfies that u ≥ Tu, then there
exists a selector f ∈ F such that u(x) ≥ vf (x) for every x ∈ X.
Hence u ≥ V ∗.

(b) Let u : X → R be a measurable function such that Tu is well
defined. In addition, suppose that u ≤ Tu and

lim
n→∞

αnEπ
x [u(xn)] = 0 ∀ π ∈ Π0 and x ∈ X. (3.5.11)

Then u ≤ V ∗.

Proof. (a) Let u ∈ L+(X) be such that u ≥ Tu. Then, by Lemma
3.22, there exists f ∈ F for which, for every x ∈ X,

u(x) ≥ c(x, f) + α

∫
u(y)Q(dy|x, f).

Iteration of this inequality yields, for every n = 1, 2, . . . and
x ∈ X,

u(x) ≥ Ef
x

[
n−1∑
t=0

αtc(xt, f)

]
+ αnEf

xu(xn),

where Ef
xu(xn) =

∫
u(y)Qn(dy|x, f) and Qn(·|x, f) is the n–step

transition probability of the Markov process {xt} when using the
policy f∞. Therefore, since u is nonnegative,

u(x) ≥ Ef
x

[
n−1∑
t=0

αtc(xt, f)

]
,

and letting n → ∞ we obtain u(·) ≥ vf (·).
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(b) First, note that u ≤ Tu and (3.5.4) imply that, for every
x ∈ X and a ∈ A(x),

u(x) ≤ c(x, a) + α

∫
u(y)Q(dy|x, a). (3.5.12)

On the other hand, for arbitrary π ∈ Π and x ∈ X, the Markov–
like property (3.1.10c) yields

Eπ
x

[
αt+1u(xt+1)|ht, at

]
= αt+1

∫
X

u(y)Q(dy|xt, at)

≥ αt [u(xt) − c(xt, at)] (by (3.5.12)),

so
αtc(xt, at) ≥ −Eπ

x [αt+1u(xt+1) − αtu(xt)|ht, at].

Thus, taking expectations Eπ
x and summing over t = 0, . . . , n − 1,

we have

Eπ
x

[
n−1∑
t=0

αnc(xt, at)

]
≥ u(x) − αnEπ

xu(xn) ∀ n.

Finally, letting n → ∞ and using (3.5.11), we obtain that
V (π, x) ≥ u(x) for all x ∈ X. Therefore, since π ∈ Π was arbi-
trary, it follows that V ∗ ≥ u. �

The following Lemma 3.25 extends Theorem 2.21 to the stochas-
tic case. It shows the convergence to V ∗ of the value iteration
(VI) functions {vn} defined as v0 ≡ 0, and vn := Tvn−1 for all
n = 1, 2, . . . , that is,

vn(x) := min
a∈A(x)

[c(x, a) + α

∫
X

vn−1(y)Q(dy|x, a)] (3.5.13)

for all x ∈ X. The lemma is a key result in the theory and appli-
cations of dynamic programming. Before stating it, however, note
that the convergence of vn to V ∗ is to be expected, because
using the forward form of the D.P. equation (3.2.9)–(3.2.10) with
cN ≡ 0, we have that

vn(x) = inf
π
Vn(π, x), (3.5.14)
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where Vn is the n–stage α–discounted cost with zero terminal cost.
Hence, since Vn(π, x) ↑ V (π, x) as n → ∞, one would expect that,
interchanging “lim” and “inf”,

vn(x) ↑ inf
π
V (π, x) = V ∗(x) ∀ x ∈ X. (3.5.15)

Lemma 3.25 confirms that this is indeed the case.

Lemma 3.25 (Convergence of the α—VI functions). Under the
Assumptions 3.18 and 3.19:

(a) vn is in L+(X) for every n,

(b) the convergence in (3.5.15) holds, and

(c) V ∗ satisfies the α–discount DP equation (3.5.5).

Proof. Part (a) follows from the Assumption 3.18 (in particular,
part (c)) and Lemma 3.22.

(b)–(c) By (3.5.14) and the monotonicity of {vn}, there is a
function v ≤ V ∗ such that vn(x) ↑ v(x) for all x ∈ X. On the
other hand, from Lemma 2.15(c) we obtain that v satisfies the α–
discount DP equation v = Tv. Hence, by Lemma 3.24(a), v ≥ V ∗.
This yields (b) and (c). �

We are finally ready for the proof of Theorem 3.21.

Proof of Theorem 3.21.

(a) The DP equation (3.5.5) follows from Lemma 3.25. The fact
that V ∗ is the minimal solution of (3.5.5) is a consequence of
Lemma 3.24(a).

(b) The existence of a selector f∗ ∈ F satisfying (3.5.6) follows
from Lemma 3.22. Further, from (3.5.6) and Lemma 3.22, f∞

∗
is optimal. The converse is also obtained from Lemma 3.23.

(c) If V (π∗, .) satisfies (3.5.5), then part (a) or Lemma 3.24(a)
give that V (π∗, .) ≥ V ∗(.). The reverse inequality follows from
(3.5.7) and Lemma 3.24(b).

(d) This part is a consequence of (a) and (b). �
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The convergence of the α–VI functions vn = Tvn−1, or vn =
T nv0, also known as the method of successive approximations,
is inspired in Banach’s fixed point theorem. (See Remark 2.25)
Value iteration is one of the two most popular algorithms to solve
a dynamic programming equation. The other most popular algo-
rithm is the policy iteration (PI) algorithm, which we introduce
in the next section.

Example 3.26 (Exhaustible resource extraction). The optimal
exhaustible resource extraction—also known as a cake-eating
problem—is one of the most studied in environmental and resource
economics; see for example Hung and Quyen (1994), or Long and
Kemp (1984). In this example, we present a discrete version of the
continuous model in Dasgupta and Heal (1974); see also Pindyck
(1980) for a stochastic version.

Consider an agent that exploits a certain nonrenewable
resource. Let xt and at be the stock of the nonrenewable resource
and the agent’s consumption at time t, respectively. The initial
stock of the resource is x0 = x > 0 and the law of motion of xt is

xt+1 = ξt(xt − at) for t = 0, 1, 2, ..., (3.5.16)

where {ξt}∞
t=0 is a sequence of i.i.d. binomial random variables

such that

ξt =

{
1 with probability p,
d with probability 1 − p,

(3.5.17)

at each time step t, where 0 ≤ d < 1, and 0 < p < 1. The value
1 − d can be interpreted as the loss caused by bad natural con-
ditions in the extraction. The state space and control spaces
are, respectively, X = (0, x0], A = (0, x0], and A(x) = (0, x] for all
x ∈ X.

The agent’s OCP is to find a consumption trajectory {at}∞
t=1

that maximizes the following discounted utility function, with α ∈
(0, 1),

Eπ
x

[ ∞∑
t=0

αt log at

]
(3.5.18)
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subject to (3.5.16). The D.P. equation (3.5.4) becomes

V (x) = max
a∈[0,x]

[
log(a) + αE[V (xt+1)|xt = x, at = a]

]
. (3.5.19)

We next solve (3.5.19) using the method of undetermined coeffi-
cients. To this end, let

V (x) := b1 + b2 log x, (3.5.20)

where b1 and b2 are unknown parameters to be determined. Hence

E[V (xt+1)|xt = x, at = a] = b1 + b2E[log ξt] + b2 log(x − a),

and (3.5.19) becomes

V (x) = max
a∈(0,x]

[
log(a) + α (b1 + b2E[log ξ0] + b2 log(x − a))

]
,

(3.5.21)
which has a unique solution given by

a =
x

1 + αb2
.

Next, substituting this value of a in (3.5.21) and solving the sys-
tem for b1 and b2, we obtain

b1 =
α

(1 − α)2
E[log ξ0] +

1

1 − α
log(1 − α),

b2 =
1

1 − α
.

With these values of b1 and b2 in (3.5.21), it follows that the
optimal control and the corresponding state trajectory are

f ∗(x) = x(1 − α) and xt+1 = αξtxt, t = 0, 1, ...,

and the optimal discounted utility is

V (x) =
α

(1 − α)2
E[log ξ0] +

1

1 − α
log(1 − α) +

1

1 − α
log x,

where E[log ξ0] = (1 − p) log(d). �
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3.6 Policy Iteration

Let g0 ∈ F be a selector such that the deterministic stationary
policy g∞

0 has a finite α–discounted cost

w0(x) := V (g∞
0 , x) < ∞ ∀ x ∈ X. (3.6.1)

By Lemma 3.23,

w0(x) = c(x, g0) + α

∫
X

w0(y)Q(dy|x, g0)

≥ min
a∈A(x)

[c(x, a) + α

∫
X

w0(y)Q(dy|x, a)].

Hence, by Lemma 3.22, there exists g1 ∈ F such that, for all
x ∈ X,

w0(x) ≥ c(x, g1) + α

∫
X

w0(y)Q(dy|x, g1).

Iteration of the latter inequality, as in the proof of Lemma 3.24(a)
gives, for all x ∈ X,

w0(x) ≥ w1(x), with w1(x) := V (g∞
1 , x). (3.6.2)

Iteration of these arguments yields the PI algorithm:

Step 1. (Initialization step.) Pick an arbitrary selector g0 ∈ F as
in (3.6.1).

Step 2. (Policy improvement.) Given gn ∈ F, compute the corre-
sponding α–discounted cost wn(·) := V (g∞

n , ·) as in (3.5.9). Then,
as in (3.6.2), find a selector gn+1 such that

wn(x) ≥ c(x, gn+1) + α

∫
X

wn(y)Q(dy|x, gn+1) (3.6.3)

for all x ∈ X, so that wn(·) ≥ wn+1(·) := V (g∞
n+1, ·).

Step 3. (Checking optimality.) Is wn(x) = wn+1(x) for all x ∈ X?
If “yes”, then stop. If “no”, then go back to step 2 replacing n
with n + 1.
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Thus, the PI algorithm gives a sequence of selectors gn ∈ F with
corresponding α–discounted cost wn ∈ L+(X) forming a nonin-
creasing sequence that satisfies the following.

Theorem 3.27. (a) If there is an integer n such that wn(x) =
wn+1(x) for all x ∈ X, then w := wn is a solution to the α–
discount DP equation w = Tw. If, in addition, w satisfies the
condition (3.5.7), that is,

lim
t→∞

αtEπ
xw(xt) = 0 (3.6.4)

for all π ∈ Π0 and x ∈ X, then w = V ∗ and g∞
n is α–discount

optimal.
(b) In general, as n → ∞, wn ↓ w, where w is a solution to

the α–discount DP equation. Moreover, if w satisfies (3.6.4), then
w = V ∗ and an α–optimal policy can be determined as in Theorem
3.21(b).

Proof. (a) If there exists n such that wn = wn+1 =: w, the argu-
ments leading to (3.6.2) give that w satisfies the α–discount DP
equation w = Tw. If, moreover, (3.6.4) holds, the desired conclu-
sion follows from Theorem 3.21(c).

(b) In general, using the arguments in the proof of Lemma
3.24(a), it can be seen that (3.6.3) gives wn ≥ Twn ≥ wn+1. Hence,
since the sequence {wn} is bounded below (wn ≥ 0 for all n), there
exists w such that wn ↓ w and so, by Lemma 2.15(a), w ≥ Tw ≥
w, i.e., w = Tw. Therefore, if (3.6.4) holds, the desired conclusion
follows from Theorem 3.21(c). �

3.7 Long-Run Average Cost
Problems

In Sect. 2.5 we considered long-run average cost (AC) problems for
discrete-time deterministic systems. We now briefly introduce AC
problems for the stochastic system (3.1.1) and the Markov con-
trol model (MCM) (X,A, {A(x) : x ∈ X}, Q, c) in (3.1.2)–(3.1.4).
This material requires a working knowledge of probability and
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discrete-time stochastic processes, in particular, Markov chains
with a general state space. Hence, to avoid excessive technicali-
ties, most of the results in this section are stated without proof.
Some references are provided in appropriate places.

For each T = 1, 2, ..., x ∈ X and π = {at} ∈ Π, let

JT (π, x) := Eπ
x [

T−1∑
t=0

c(xt, at)] (3.7.1)

be the T -step expected cost when using the policy π, given the
initial step x0 = x. The corresponding long-run expected average
cost J(π, x) is defined as

J(π, x) := lim sup
T→∞

1

T
JT (π, x). (3.7.2)

Then, as usual, the AC value function is

J∗(x) := inf{J(π, x) : π ∈ Π},
and a policy π∗ is said to be AC-optimal if J(π∗, x) = J∗(x) for
every initial state x.

For stochastic control systems, in addition to the expected aver-
age cost in (3.7.2) one can study a pathwise average cost. In this
case, the T -stage expected cost JT (π, x), T = 1, 2, ..., in (3.7.1)–
(3.7.2) is replaced by the pathwise or random cost

J0
T (π, x) :=

T−1∑
t=0

c(xt, at). (3.7.3)

The analysis of this stochastic control problem is more technical
than the expected case and it will not be considered in these notes.

For the AC control problem in the deterministic case (2.5.1)–
(2.5.3), we considered three approaches or techniques:

(i) the average cost optimality equation (ACOE),

(ii) the vanishing approach, and

(iii) the steady state approach.
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In this section we combine the approaches (i) and (ii). (For the
steady state approach (iii), which is based on the constrained
optimization problem (2.5.17), there is no direct analogue in the
stochastic case. In the latter case, it can be seen that the closest
thing to (2.5.17) is an infinite-dimensional linear programming
problem, such as, for instance, (MP1) in page 150 of Hernández-
Lerma and Lasserre (1996).)

Definition 3.28. A pair (j∗, l) consisting of a real number j∗ and
a real-valued function l on X is said to be:

(a) a solution to the average cost optimality equation (ACOE) if,
for every x ∈ X and t = 0, 1, ...,

j∗ + l(x) = inf
a∈A(x)

[c(x, a) + E[l(xt+1)|xt = x, at = a]] ,

(3.7.4)
where

E[l(xt+1)|xt = x, at = a] =

∫
X

l(y)Q(dy|x, a) (3.7.5)

denotes the conditional expectation of l(xt+1) given (xt, at) =
(x, a) for (x, a) ∈ K; and

(b) a solution to the average cost optimality inequality (ACOI)
if, for every x ∈ X and t = 0, 1, ..., the equality in (3.7.4) is
replaced by the inequality ≥, that is (using (3.7.5)),

j∗ + l(x) ≥ inf
a∈A(x)

[c(x, a) +

∫
X

l(y)Q(dy|x, a)]. (3.7.6)

When dealing with the system model (3.1.1) with i.i.d. ran-
dom disturbances ξt with distribution G, the expected value (or
integral) in (3.7.4)–(3.7.6) becomes

E[l(F (x, a, ξ)] =

∫
S

l(F (x, a, s))G(ds) (3.7.7)

for all (x, a) ∈ K, where ξ is a generic random variable with dis-
tribution μ.
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In the remainder of this section we proceed essentially as in
Sect. 2.5.3 for deterministic systems. That is, we use the Abelian
theorem in Lemma 2.56 and functions as in (2.5.34) to obtain
a solution to the ACOI. (Note that inequalities such as (2.5.31)
and (2.5.32) are valid in the present, stochastic case because they
only depend on the fact that the sequence {ct} in Lemma 2.56 is
bounded below.)

3.7.1 The Average Cost Optimality
Inequality

Throughout the remainder of this section we suppose that
Assumptions 3.18 and 3.19 are satisfied. Consequently, for each
α ∈ (0, 1), Theorem 3.21 ensures that the α-discount value func-
tion Vα satisfies the dynamic programming equation (3.5.5), i.e.,

Vα(x) = min
a∈A(x)

[c(x, a) + α

∫
X

Vα(y)Q(dy|x, a)]. (3.7.8)

Now, pick an arbitrary state x̄ and, as in (2.5.34), let

mα := Vα(x̄)

and

hα(x) := Vα(x) − mα and ρ(α) := (1 − α)mα. (3.7.9)

In addition to Assumptions 3.18 and 3.19, we suppose the fol-
lowing.

Assumption 3.29. There exists α0 ∈ (0, 1), positive constants
N and M , and an u.s.c. function b(·) ≥ 1 on X such that, for
every α ∈ [α0, 1) and x ∈ X,

(a) ρ(α) ≤ M , and

(b) −N ≤ hα(x) ≤ b(x).

Assumption 3.29 and many of its variants are well known in the
study of MDPs with the AC criterion. The main ideas probably
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go back to Sennott (1986) for MDPs with a countable state space
and finite action sets.

By Assumption 3.29(a), ρ(α) has a limit point, say j∗ ∈ [0,M ],
as α ↑ 1. Hence, there is a sequence αn ↑ 1 such that

ρ(αn) → j∗ (3.7.10)

as n → ∞. From (3.7.10) and (3.7.9) we obtain the following fact.

Lemma 3.30. Let αn be as in (3.7.10). Then

lim
n→∞

(1 − αn)Vαn(x) = j∗ (3.7.11)

for all x ∈ X.

Proof. Write Vα(x) = hα(x) + mα. Multiply this equality by
(1 − α) to obtain, from (3.7.9),

|(1 − α)Vα(x) − j∗| ≤ |(1 − α)|hα(x)| + |ρ(α) − j∗|
≤ (1 − α) max{N, b(x)} + |ρ(α) − j∗|,

with N and b(·) as in Assumption 3.29(b). Finally, replace α by
αn and then use (3.7.10) to obtain (3.7.11). �

Now, in (3.7.8) replace Vα(·) with hα(·) + mα. Then, by (3.7.9),
we can express the α-discount DCOE (3.7.8) as

ρ(α) + hα(x) = min
a∈A(x)

[c(x, a) + α

∫
X

hα(y)Q(dy|x, a)]. (3.7.12)

Moreover, by Theorem 3.21, for each α ∈ (0, 1) there exists fα ∈
F such that, for every x ∈ X, fα(x) ∈ A(x) attains the minimum
in (3.7.12), i.e.,

ρ(α) + hα(x) = c(x, fα) + α

∫
X

hα(y)Q(dy|x, fα). (3.7.13)

Finally, replacing α in (3.7.12)–(3.7.13) by αn in the proof of
Lemma 3.30 and letting n → ∞, some technical arguments yield
the ACOI in the following theorem.
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Theorem 3.31. Suppose that Assumptions 3.18, 3.19 and 3.29
are satisfied and let j∗ be as in (3.7.12). Then there exists a func-
tion h∗ ∈ L+(X) and a stationary policy f ∗ ∈ F such that

j∗ + h∗(x) ≥ min
a∈A(x)

[c(x, a) +

∫
X

h∗(y)Q(dy|x, a)]

= c(x, f ∗) +

∫
X

h∗(y)Q(dy|x, f ∗) ∀x ∈ X.

Moreover, f ∗ is AC-optimal and J∗(x) = J(f ∗, x) = j∗ for all
x ∈ X.

For the proof of Theorem 3.31 see Costa and Dufour (2012).
Similar results appear in Feinberg et al. (2012) or Vega-Amaya
(2015). These papers provide many earlier references.

3.7.2 The Average Cost Optimality
Equation

To obtain the ACOE starting from the ACOI in Theorem 3.31 we
impose another assumption.

Assumption 3.32. Let b(·) ≥ 1 be as in Assumption 3.29. We
suppose that:

(a)
∫
X
b(y)Q(dy|x, f) < ∞ for all x ∈ X and f ∈ F.

(b) For each f ∈ F there exists a probability measure μf on X
such that:

(b1)
∫
X
b(y)μf (dy) < ∞.

(b2) As t → ∞, |Ef
x [v(xt)] −

∫
X
v(y)μf (dy)| → 0 for each ini-

tial state x ∈ X and each real-valued function v on X
such that supy∈X |v(y)|/b(y) < ∞.

We now obtain the ACOE as follows.

Theorem 3.33. Suppose that 3.18, 3.19, 3.29 and 3.32 are satis-
fied. Let j∗ and f ∗ be as in Theorem 3.31, and μf∗ as in Assump-
tion 3.32(b). Then there exists a function h on X such that
supy |h(y)|/b(y) < ∞ and, furthermore, for every x ∈ X,
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j∗ + h(x) = min
a∈A(x)

[c(x, a) +

∫
X

h(y)Q(dy|x, a)]

= c(x, f ∗) +

∫
X

h(y)Q(dy|x, f ∗) (3.7.14)

for μf∗-almost all x ∈ X, that is, there exists a set C ⊂ X such
that μf∗(C) = 0 and (3.7.14) holds for x in the complement of C.

For the proof of Theorem 3.33 see Costa and Dufour (2012).
Note, however, that the theorem’s conclusion is on the “weak”
side in the sense that the ACOE (3.7.14) is valid “almost every-
where” only. To obtain the ACOE “everywhere”, that is, for all
x ∈ X, requires strong conditions that we do not state here. On
the other hand, the reader may consult Sect. 1 in Vega-Amaya
(2018) for a review of results on the ACOE, as well as a presen-
tation of the fixed-point approach, which we have not considered.
For surveys of results up to the late 1990s see Chap. 5 and Chap.
11 in Hernández-Lerma and Lasserre (1996, 1999), respectively.

3.7.3 Examples

Example 3.34 (An LQ average cost problem). Consider the dis-
counted LQ problem in Exercise 3.10 below, assuming that the
i.i.d. random variables ξt have a bounded continuous density.

Thus, for each α ∈ (0, 1), the α-discount value function Vα and
the optimal stationary policy fα are given, respectively, by

Vα(x) = Cαx
2 + (1 − α)−1Cαασ2 (3.7.15)

and
fα(x) = −(r + αβ2Cα)−1αβγCαx, (3.7.16)

where C ≡ Cα is the unique positive solution of the quadratic
equation

Fz2 + Gz + qr = 0, (3.7.17)

with coefficients

F ≡ Fα := αβ2 and G ≡ Gα := r + (rγ2 + qβ2)α. (3.7.18)
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Therefore, taking x̄ = 0, mα and (3.7.9) become

mα = Vα(0) = (1 − α)−1Cαασ2, hα(x) = Vα(x) − mα = Cαx
2,

(3.7.19)
and

ρ(α) = (1 − α)mα = Cαασ2. (3.7.20)

Moreover, a direct calculation shows that for all α sufficiently close
to 1, say α0 < α < 1 for some α0 ∈ (0, 1), the positive number Cα

is bounded above by

L := (r + rγ2 + qβ2)/β2α0.

This yields the Definition 3.28(a), i.e., ρ(α) ≤ M with M := Lσ2.
Definition 3.28(b) is similarly verified, with N = 0 and b(x) :=
Lx2.

Finally, to obtain the ACOI in Theorem 3.31 take αn ∈ (0, 1)
such that αn ↑ 1 as n → ∞. Then (as in (3.7.10) and (3.7.11)) we
can see from (3.7.20) that

ρ(αn) → j∗ := kσ2 (3.7.21)

where k is the unique positive solution of (3.7.17)–(3.7.18) with
α = 1. Likewise, from (3.7.19), as n → ∞ we obtain

hαn(x) → h∗(x) := kx2 (3.7.22)

for all x ∈ X. We can now verify that the pair (j∗, k∗(·)) is a
solution to the ACOI (3.7.6). In fact, if in (3.7.16) we replace α
by αn ↑ 1, then in the limit we obtain

f ∗(x) = −(r + kβ2)−1βγkx ∀x ∈ X

and (j∗, h∗(·), f ∗(·)) is a canonical triplet that satisfies the AC
optimality equation (ACOE) (3.7.14) for all x ∈ X. (Note that
we didn’t have to verify Assumption 3.32. This is because of the
particular characteristics of LQ problems, but it is not the general
case.) �

Example 3.35 (The Brock-Mirman model with technological
shocks). In the infinite-horizon Brock and Mirman model studied
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in Examples 2.10, 2.31 and 2.51, the system evolves according to

xt+1 = ctx
θ
t − at for t = 0, 1, 2... (3.7.23)

with initial condition x0 = x > 0 and θ ∈ (0, 1). Now, we suppose
that the technological parameter {ct} behaves as a Markov
process such that

log(ct+1) = ρ log(ct) + ξt for t = 0, 1, 2... (3.7.24)

with ρ > 0, initial condition c0 > 0, and where {ξt} is a collection
of independent and identically distributed normal random
variables with mean 0 and variance σ > 0. Under this hypothesis,
(3.7.24) yields ct+1 = cρ

te
ξt , where eξt has a log-normal distribu-

tion. This stochastic model was introduced by Brock and Mirman
(1972, 1973).

The state space and control spaces are, respectively, X × C =
[0,∞) × [0,∞), A = (0,∞), and A(x, c) = (0, cxθ] for x > 0.

Consider the objective function to be optimized as the long–run
average reward (AR)

J(π, (x, c)) = lim inf
T→∞

1

T
Eπ

x,c

[
T−1∑
t=0

log(at)

]
. (3.7.25)

This AR problem is, of course, analogous to the AC problem in
(3.7.2), so the AR value function is

J∗(x, c) := sup{J(π, (x, c)) : π ∈ Π}. (3.7.26)

To find a canonical triplet (j∗, l, f ∗) that satisfies the average
reward optimality equation (as in Definition 3.28(a) or Theorem
3.33), i.e.,

j∗ + l(x, c) = max
a∈A(x,c)

[log(a) + E[l(xt+1, ct+1)|(xt, ct) = (x, c), at = a]]

(3.7.27)
for all (x, c) ∈ X × C, we consider a function l(x, c) of the form

l(x, c) := b1 log(x) + b2 log(c),

where b1 and b2 are unknown parameters to be determined.
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In this case

E[l(xt+1, ct+1)|(xt, ct) = (x, c), at = a] = b1 log(cxθ − a) + b2ρ log(c).

Hence, (3.7.27) reaches the maximum at a = cxθ

1+b1
, and so we can

express (3.7.27) as

j∗ + b1 log(x) + b2 log(c) = b1 log(b1) − (1 + b1) log(1 + b1) +

θ(1 + b1) log(x) + [1 + b1 + b2ρ] log(c).

This last equation is satisfied if

j∗ = b1 log(b1) − (1 + b1) log(1 + b1),

b1 = θ(1 + b1),

b2 = 1 + b1 + b2ρ,

which implies that

b1 =
θ

1 − θ
, b2 =

1

(1 − θ)(1 − ρ)
.

Therefore the canonical triplet (j∗, l, f ∗) for the stochastic
Brock-Mirman model (3.7.23)–(3.7.25) is given by

j∗ =
θ

1 − θ
log

(
θ

1 − θ

)
− 1

1 − θ
log

(
1

1 − θ

)
, (3.7.28)

l(x, c) =
θ log(x)

1 − θ
+

log(c)

(1 − θ)(1 − ρ)
,

f ∗(x, c) = (1 − θ)cxθ.

�

Example 3.36 (The stochastic Brock-Mirman model). We wish
to solve again the stochastic average reward Brock-Mirman model
in Example 3.35 (see (3.7.23)–(3.7.25)), but now using the van-
ishing discount approach. To this end, consider the α-optimal dis-
counted utility Vα(x, c) in the Exercise 3.14. Then

(1 − α)Vα(x, c) = (1 − α)B +
(1 − α)αθ

1 − θ
log(x) +

1 − α

1 − αθ
log(c),
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with B as in Exercise 3.14. Therefore, letting α ↑ 1 we obtain the
optimal average reward

J∗(x, c) = lim
α↑1

(1 − α)Vα(x, c) = j∗

for all (x, c), with j∗ as in (3.7.28). �

Exercises

3.1. (a) Prove Theorem 3.13.
Hint. Use the proof of (3.3.3) or the Remark 3.12(c). Moreover,
since c and u are bounded below, without loss of generality you
can assume that they are nonnegative. Then use Theorem B.7.

(b) Prove Theorem 3.14.

Hint. Recall Remark 3.12(c) and Lemma 2.16(a).

3.2. Consider the MCM (3.1.2), the set K in (3.1.3), and a real–
valued function v on K. (Recall the notation in Remark 3.7:
v(x, f) := v(x, f(x)).) Show that, for each x ∈ X,

sup
a∈A(x)

v(x, a) = sup
f∈F

v(x, f).

Hint. Fix an arbitrary x ∈ X. For any f ∈ F, v(x, f) ≤
supa∈A(x) v(x, a). Hence supf∈F v(x, f) ≤ supa∈A(x) v(x, a). To
obtain the reverse inequality, fix an arbitrary a ∈ A(x), and let
h ∈ F be any selector. Define the mapping g : X → A as

g(y) :=

{
a if y = x,

h(y) if y = x.

Then g is measurable and so it belongs to F. Therefore,

v(x, a) = v(x, g) ≤ sup
f∈F

v(x, f).

Thus, supa v(x, a) ≤ supf v(x, f).

3.3. Use backward induction to verify (3.4.6)–(3.4.7).

3.4. In Example 3.17, prove (3.4.10)–(3.4.11) and (3.4.12)–
(3.4.13).
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3.5. In the MCM (3.2.1), suppose that Q is weakly continuous
(see Theorem 3.13(b)), and let u be a real–valued l.s.c. function on
X that is bounded below. Show that, then, the mapping (x, a) �→∫
X
u(y)Q(dy|x, a) is l.s.c. on K.

3.6. Consider a MCM in which the cost–per–stage c is bounded—
see the paragraph after Assumption 6.2. Show that, then, V ∗ is
the unique bounded solution to the α–discount DP equation. (The
latter equation, however, may have several unbounded solutions—
see, for instance, the following exercise.)

3.7. The following MCM by Sennott (1986) shows that the α–
discount DP equation may have several unbounded solutions. Let
X = {1, 2, . . . }, A = {1}, c(x, a) ≡ 0 for all x, a, and transition
law

Q({1}|x, 1) = 2x/3(2x − 1) and Q({2x}|x, 1) = (4x − 3)/3(2x − 1)

for all x ∈ X. Let α = 3/4. Show that V ∗(·) ≡ 0, but the iden-
tity function u(x) = x for all x ∈ X is also a solution to the DP
equation (3.5.4).

3.8. (Blackwell 1965) Consider the MCM with components X =
{0}, A = {1, 2, ...}, c(0, a) = 1/a and, of course, Q(0|0, a) = 1 for
all a ∈ A. Note that the optimal cost function is V ∗(0) = 0.

(a) Is V ∗ a solution of the DP equation (3.5.4)? Explain.

(b) Does it exist an optimal policy? Explain.

3.9. Consider a MCM with X = {1}, A(1) = {1, 2, . . . }, and
c(1, a) = (1 + a)/a for all a. Show that V ∗(1) = 1/(1 − α), but
there is no optimal control policy; in other words, there is no π
such that V (π, ·) = V ∗(·). However, for any ε > 0, there exists an
ε–optimal policy—that is, for each ε > 0, there exists a policy
π ≡ πε such that V (π, x) ≤ V ∗(x) + ε for all x ∈ X.

3.10. The infinite–horizon LQ discounted problem. Con-
sider the discounted LQ problem in Example 3.16; that is, the
system (3.4.1)–(3.4.3) with state and action spaces X = A = R,
quadratic cost c(x, a) = qx2 + ra2, and linear system equation
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xt+1 = γxt + βat + ξt ∀ t = 0, 1, . . . ,

where the random perturbations ξt are i.i.d. random variables
with mean zero and finite variance σ2 = E(ξ2). The coefficients q
and r are both positive, and γ · β = 0. Show that the α–discount
optimal cost is, for every x ∈ X,

V ∗(x) = Cx2 + (1 − α)−1Cασ2,

and the α–optimal stationary policy is determined by

f ∗(x) = −(r + αβ2C)−1αβγCx,

where C = z1 is the unique positive solution of the quadratic equa-
tion

Fz2 + Gz + qr = 0,

with F = αβ2 and G = r + (rγ2 + qβ2)α. (Concerning the LQ
discounted problem, note that some of the hypotheses in Theo-
rem 3.21 were already verified in the paragraph after Assumption
3.18.)

3.11. Let π be a policy such that its cost function V (π, ·) ≡ u(·)
is “almost” a solution to the α–discount D.P. equation (3.5.4) in
the sense that, for some ε > 0,

u(x) ≤ c(x, a) + α

∫
X

u(y)Q(dy|x, a) + ε(1 − α)

for all x ∈ X and a ∈ A(x). In addition, suppose that u satisfies
the condition (3.5.11). Show that π is an ε–optimal policy, that
is, u(x) ≤ V ∗(x) + ε for all x ∈ X.

3.12. Consider the MCM (X,A, {A(x)|x ∈ X}, Q, c) in (3.1.2),
and let B(X) be as in Exercise 2.7. Suppose that the cost function
c is bounded, say 0 ≤ c ≤ M , and for each u ∈ B(X), let Tu be
as in (3.5.3). Show that the operator T satisfies (a) and (b) in
Exercise 2.7; that is,

(a) T is a contraction on B(X), and

(b) the value function V ∗ in (3.5.2) is the unique fixed point of T
in B(X). Moreover,

(c) the α–VI functions vn := T n0 in (3.5.13) converge to V ∗.
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3.13. (a) Consider the time-varying additive-noise system

xt+1 = F1(t)xt + F2(t, at) + ξt, t = 0, 1, ..., T − 1,

with state and action spaces X ⊂ R
n and A ⊂ R

m, respec-
tively. Note that the system is linear in the state. The stage
cost is of the same form, so the associated performance crite-
rion is

J(π, x) = Eπ
x

[
T−1∑
t=0

[c1(t)xt + c2(t, at)]

]
.

Assume that A is compact, and the functions F2(t, a) and
c2(t, a) are continuous in a ∈ A. Moreover, the random vari-
ables ξt (t = 0, ..., T − 1) have finite means, and they are inde-
pendent and also independent of the initial state x0. Prove
that the OCP has an optimal control that is independent of
the state variable.

(b) Show that the conclusion in part (a) also holds in the time-
homogeneous infinite-horizon discounted OCP with the sys-
tem model (3.1.1) and discounted cost (3.5.1) with

F (x, a, s) := F1x + F2(a) + s, c(x, a) := c1x + c2(a),

respectively, under the Assumption 3.18. (Part (a) is due to
Midler (1969). See Exercise 2.16 for a deterministic version of
this exercise.)

3.14. An stochastic Brock-Mirman (1972) model. Consider
a Brock-Mirman economic growth model as in Example 2.10 and
Example 3.35

xt+1 = ctx
θ
t − at t = 0, 1, ... (3.7.29)

except that the “technological parameter” c is now a Markov pro-
cess that evolves as

log(ct+1) = ρ log(ct) + ξt, t = 0, 1, ... (3.7.30)

where the ξt are i.i.d. Gaussian (or normal) random variables with
zero mean and standard deviation σ > 0. In (3.7.30) we assume
that c0 is independent of the sequence {ξt}. As in Example 2.10,
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xt and at denote capital and consumption both with values in
[0,∞), but now the state variable is the pair (xt, ct) with values
in X × C with X = C = [0,∞). Consider the discounted utility

Eπ
(x,c)

[ ∞∑
t=0

αt log(at)

]

with initial condition (x0, c0) = (x, c). Show that the optimal dis-
counted utility Vα(x, c) is

Vα(x, c) = B +
αθ

1 − θ
log(x) +

1

1 − αθ
log(c)

with

B =
1

1 − α

[
αθ

1 − θ
log

(
αθ

1 − αθ

)
− 1

1 − αθ
log

(
1

1 − αθ

)]
.

Hint. Solve the corresponding α-DP equation by means of the
“guess and verify” approach (or method of undetermined coef-
ficients) with a logarithmic function of the form v(x, c) = b1 +
b2 log(x) + b3 log(c).



Chapter 4

Continuous–Time
Deterministic Systems

We now consider a deterministic continuous–time optimal control
problem (OCP) in which the state process x(·) evolves in the state
space X := R

n according to an ordinary differential equation

ẋ(t) = F (t, x(t), a(t)) for t ∈ [0, T ], (4.0.1)

for a given initial state x(0) = x0 ∈ X, and a given system func-
tion F : [0, T ] × X × A → X, where A is a separable metric space
that stands for the action (or control) set. For the time being,
in (4.0.1) we consider so-called open–loop controls a(·), that is,
controls in the family A[0, T ] of piecewise continuous functions
a(·) : [0, T ] → A.

Remark 4.1. We assume that, for each control function a(·),
(4.0.1) has a unique solution x(·). To this end, it suffices to assume
that, for instance, F is a continuous function and has continuous
first partial derivatives with respect to the components of x ∈ X.
(For a more precise statement, see Assumption 4.2 below.) ♦
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4.1 The HJB Equation and Related
Topics

4.1.1 Finite–Horizon Problems: The HJB
Equation

The performance index or cost functional associated to (4.0.1) is

J(a(·)) :=

∫ T

0

c(t, x(t), a(t))dt + C(x(T )), (4.1.1)

where c and C are given nonnegative functions, called the running
or instantaneous cost and the terminal cost, respectively.

Assuming that (4.0.1) has a unique solution and that (4.1.1) is
well defined, the OCP we are concerned with is the following:
OCP Minimize (4.1.1) over A[0, T ].

As in previous chapters, when using dynamic programming
associated to an OCP we consider, for each time s ∈ [0, T ), an
OCP from s to the terminal time T . That is, for each (s, y) ∈
[0, T ) × X, we consider the dynamic system (as in (4.0.1))

ẋ(t) = F (t, x(t), a(t)) for t ∈ [s, T ], x(s) = y. (4.1.2)

The controls in (4.1.2) are restricted to the interval [s, T ], so a(·) is
in A[s, T ], the family of piecewise continuous functions a(·) from
[s, T ] to A, and the performance index in (4.1.1) is replaced with

J(s, y; a(·)) :=

∫ T

s

c(t, x(t), a(t))dt + C(x(T )). (4.1.3)

This new OCP is called OCPsy. If (s, y) = (0, x0), then the prob-
lem OCPsy reduces, of course, to the original OCP.

If a∗(·) minimizes (4.1.3) over all a(·) ∈ A[s, T ] and x∗(·) denotes
the corresponding solution to (4.1.2), then we say that a∗ is an
optimal control and (x∗(·), a∗(·)) is an optimal pair of problem
OCPsy.

To ensure that OCPsy is well defined for each initial condition
(s, y) in [0, T ] × X we impose the following hypotheses.
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Assumption 4.2. Let ϕ(t, x, a) be any of the functions F (t, x, a),
c(t, x, a), C(t) in (4.0.1)–(4.1.1) (or (4.1.2)–(4.1.3)). The function
ϕ is uniformly continuous and, moreover, there is a constant L
such that

(a) |ϕ(t, x, a) − ϕ(t, x̂, a)| ≤ L|x − x̂| ∀ t ∈ [0, T ], x, x̂ ∈ X,
a ∈ A.

(b) |ϕ(t, 0, a)| ≤ L ∀ (t, a) ∈ [0, T ] × A.

Under this assumption, (4.1.2) has a unique solution x(·) ≡
x(·; s, y, a(·)) for every initial condition (s, y) ∈ [0, T ] × X and
every control a(·) ∈ A[s, T ]. (See Exercise 4.4.) Moreover, (4.1.3)
is well defined.

Consider now the value function corresponding to OCPsy:

V (s, y) := inf
a(·)∈A[s,T ]

J(s, y; a(·)) ∀ (s, y) ∈ [0, T ) × X, (4.1.4)

V (T, y) = C(y) ∀ y ∈ X.

The following theorem states that V satisfies Bellman’s principle
of optimality (4.1.5). (See also Corollary 4.4.)

Theorem 4.3. Suppose that Assumption 4.2 holds. Then, for
any (s, y) ∈ [0, T ) × X and ŝ ∈ [s, T ],

V (s, y) = inf
a(·)∈A[s,T ]

[∫ ŝ

s

c(t, x(t), a(t))dt + V (ŝ, x(ŝ))

]
. (4.1.5)

Proof. Denote by V̄ (s, y) the right–hand side of (4.1.5). It is easy
to see that

V (s, y) ≤ V̄ (s, y). (4.1.6)

Indeed, by definition (4.1.4), for any control a(·) ∈ A[s, T ] we
have

V (s, y) ≤ J(s, y; a(·))
=

∫ ŝ

s

c(t, x(t), a(t))dt + J(ŝ, x(ŝ); a(·))

and then, taking the infimum over a(·) ∈ A[s, T ], (4.1.6) follows.
To obtain the reverse inequality, fix an arbitrary ε > 0, and choose
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a control aε(·) ∈ A[s, T ] such that

V (s, y) + ε ≥ J(s, y; aε(·))
≥

∫ ŝ

s

c(t, x(t), a(t))dt + V (ŝ, xε(ŝ))

≥ V̄ (s, y),

where xε(·) = x(·; s, y, aε). The latter inequality and (4.1.6) give
(4.1.5). �

Assuming the existence of optimal controls, Theorem 4.3 yields
Bellman’s principle of optimality in the usual form of Lemma 2.2;
namely, if the control a∗(·) is optimal on [s, T ], with initial condi-
tion (s, y), then restricted to [ŝ, T ], for any ŝ ∈ (s, T ), a∗(·) is also
optimal with initial condition (ŝ, x∗(ŝ)). A more precise statement
in terms of the value function V in (4.1.4) is the following.

Corollary 4.4. Suppose that (x∗(·), a∗(·)) is an optimal pair of
problem OCPsy. Then, for any ŝ ∈ (s, T ),

V (ŝ, x∗(ŝ)) = J(ŝ, x∗(ŝ); a∗(·)). (4.1.7)

Conversely, if (x∗(·), a∗(·)) satisfies (4.1.7) for all 0 ≤ s < ŝ < T ,
then (4.1.5) holds.

Proof. By the optimality of (x∗(·), a∗(·)),
V (s, y) = J(s, y; a∗(·))

=

∫ ŝ

s

c(t, x∗(t), a∗(t))dt + J(ŝ, x∗(ŝ); a∗(·))

≥
∫ ŝ

s

c(t, x∗(t), a∗(t))dt + V (ŝ, x∗(ŝ))

≥ V (s, y) [by (4.1.5)].

That is, the latter inequality is in fact an equality and it yields
(4.1.7). The converse is obvious. �

Corollary 4.4 gives a necessary condition for a∗(·) to be optimal.
For practical purposes, however, this is not very helpful because
the corollary does not say how to find neither V nor a∗(·). Never-
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theless, proceeding as in Sect. 2.1, we can try to use the principle
of optimality (Lemma 2.2) to find the dynamic programming (or
Bellman) equation (in (2.1.6)–(2.1.7)). In our present case, the lat-
ter procedure shows that, under suitable hypotheses, (4.1.5) yields
the DP equation (4.1.8)–(4.1.9) below, which in the continuous–
time case is called the Hamilton–Jacobi–Bellman (HJB) equation
associated to OCP.

Remark 4.5. Given a real-valued function (t, x) �→ v(t, x) on
(0, T ) × R

n we denote by vt the partial derivative of v with
respect to t and by vx the gradient of v, that is, the (row) vec-
tor (vx1 , ..., vxn) of partial derivatives. Further, C1(Y ) denotes the
family of real-valued continuously differentiable functions on the
space Y . ♦

Theorem 4.6. In addition to Assumption 4.2, suppose that the
value function V : [0, T ] × X → R in (4.1.4) is continuously dif-
ferentiable. Then:

(a) V satisfies the first-order partial differential equation

Vt + inf
a∈A

[c(t, x, a) + Vx · F (t, x, a)] = 0 ∀ (t, x) ∈ [0, T ) × X,

(4.1.8)
V (T, x) = C(x) ∀ x ∈ X. (4.1.9)

(b) Furthermore, if there exists a control function a∗ : [0, T ) ×
X → A such that a∗(t, x) ∈ A attains the minimum in (4.1.8)
for every (t, x) ∈ [0, T ) × X, then a∗(t) := a∗(t, x∗(t)) is an
optimal control.

Before proving Theorem 4.6 we mention other equivalent forms
of expressing the HJB equation (4.1.8).

Remark 4.7. (a) The function within brackets in (4.1.8), that
is,

H(t, x, a,λ) := c(t, x, a) + λ · F (t, x, a), with λ = Vx

(4.1.10)
is called the Hamiltonian associated to the OCP (4.0.1)–
(4.1.1). In terms of the Hamiltonian, the HJB equation (4.1.8)
becomes
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Vt + inf
a∈A

H(t, x, a, Vx) = 0 (4.1.11)

for all (t, x) ∈ [0, T ) × X, with the terminal condition (4.1.9).
We will use this form of the HJB equation to obtain necessary
conditions for optimality in Sect. 4.1.2.

(b) For each a ∈ A and each real–valued continuously differen-
tiable function v on [0, T ] × X, let

Lav(t, x) := vt(t, x) + vx(t, x) · F (t, x, a). (4.1.12)

Interpreting (4.0.1)–(4.1.1) as a Markov control problem , the
operator La in (4.1.12) denotes the infinitesimal generator of
the “controlled Markov process” x(·) in (4.0.1). (We will come
back to this point in Chap. 5.) Moreover, we can rewrite the
HJB equation (4.1.8) as

inf
a∈A

[c(t, x, a) + LaV (t, x)] = 0. (4.1.13)

(c) For future reference, note that (4.1.12) is the derivative of
v(t, x(t)) with respect to t, given that (t, x(t), a(t)) = (t, x, a);
indeed, by the chain rule and (4.1.2),

Lav(t, x) =
d

dt
v(t, x(t))

∣∣∣∣
(t,x,a)

= [vt(t, x(t)) + vx(t, x(t)) · ẋ(t)] |(t,x,a)
= vt(t, x) + vx(t, x) · F (t, x, a).

(d) In the time-homogeneous (or time-invariant) case in which
c(t, x, a) and F (t, x, a) in (4.1.1)–(4.1.2) are replaced by c(x, a)
and F (x, a), respectively, the operator La in (4.1.2) becomes

Lav(x) := vx(x) · F (x, a) =
d

dt
v(x(t))

∣∣∣∣
(x,a)

for v ∈ C1(X).
Summarizing, in addition to the “explicit form” (4.1.8) of the

HJB equation, we also have (4.1.11) and (4.1.13). ♦
In part (a) of the following proof we use the fact that, for ϕ = F

or c,
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lim
t↓s

sup
y∈X,a∈A

|ϕ(t, y, a) − ϕ(s, y, a)| = 0. (4.1.14)

This follows from the uniform continuity of F and c in Assump-
tion 4.2.

Proof of Theorem 4.6.

(a) Fix an arbitrary a ∈ A, and let x(·) be the solution of (4.0.1)
when using the control a(·) ≡ a. Then, from (4.1.5),

V (ŝ, x(ŝ)) − V (s, y) +

∫ ŝ

s

c(t, x(t), a)dt ≥ 0.

Multiplying both sides of this inequality by (ŝ − s)−1 and then
letting ŝ ↓ s we obtain

c(s, y, a) + Vt(s, y) + Vx(s, y) · F (s, y, a) ≥ 0.

Therefore, since a ∈ A was arbitrary, it follows that

Vt(s, y) + inf
a∈A

[c(s, y, a) + Vx(s, y) · F (s, y, a)] ≥ 0. (4.1.15)

To obtain the reverse inequality, for any ε > 0 and ŝ ∈ [s, T ]
such that ŝ − s > 0 is small enough, there exists a control
a(·) ≡ aε,ŝ(·) in A[s, T ] such that

∫ ŝ

s

c(t, x(t), a(t))dt ≤ V (s, y) − V (ŝ, x(ŝ)) + ε(ŝ − s).

Therefore, since V is continuously differentiable, and from
Remark 4.7(c),

ε ≥ (ŝ − s)−1

[
V (ŝ, x(ŝ)) − V (s, y) +

∫ ŝ

s

c(t, x(t), a(t))dt

]

= (ŝ − s)−1

∫ ŝ

s

[
La(t)V (t, x(t)) + c(t, x(t), a(t))

]
dt

≥ (ŝ − s)−1

∫ ŝ

s

inf
a∈A

[c(t, x(t), a) + LaV (t, x(t))] dt

→ inf
a∈A

[c(s, y, a) + LaV (s, y)] as ŝ ↓ s,
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by (4.1.14). The last inequality and (4.1.13) conclude the
proof of part (a).

(b) We will use the HJB equation in the form (4.1.13). Hence, for
any a(·) ∈ A[0, T ] we have

c(t, x(t), a(t)) + La(t)V (t, x(t)) ≥ 0 (4.1.16)

and so integration on [s, T ] yields (by the Remark 4.7(c))

∫ T

s

c(t, x(t), a(t))dt + V (T, x) − V (s, x) ≥ 0. (4.1.17)

Therefore, by (4.1.9) and (4.1.3),

V (s, x) ≤ J(s, x; a(·)). (4.1.18)

Finally, let a∗(t, x) be as in (b) and let x∗(·) be the solution
of (4.0.1) when using the control a∗(t) := a∗(t, x∗(t)). Then,
replacing the pair (x(·), a(·)) by (x∗(·), a∗(·)), we obtain equal-
ities in (4.1.16)–(4.1.18); in particular, (4.1.18) becomes

V (s, x) = J(s, x; a∗(·)) ∀ (s, x) ∈ [0, T ] × X.

Thus, a∗(·) is an optimal control. �
Theorem 4.6 is called a verification theorem. It is so–named

because it gives the following “verification technique” to solve the
OCP (4.0.1)–(4.1.1):

Step 1. Solve the HJB equation (4.1.8)–(4.1.9) to find the value
function V (t, x).

Step 2. Find the minimizer a∗(t, x) in (4.1.8).
Step 3. Solve (4.0.1) with a = a∗ to obtain the optimal pair

(x∗(·), a∗(·)).
Clearly, step 1 is the most demanding from a technical viewpoint,
because it hinges on the fact that (i) V is continuously differ-
entiable, that is, V ∈ C1([0, T ] × X), and (ii) the HJB equation
admits a unique classical solution. Unfortunately, neither (i) nor
(ii) are true in general. For instance, Example 2.4 in Yong and
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Zhou (1999), pp. 163–164, is an innocent–looking OCP in which
V does not satisfy (i). See also Exercise 4.4.

4.1.2 A Minimum Principle from the HJB
Equation

In Sects. 2.2.2 and 2.3.2, we respectively considered finite- and
infinite-horizon versions of the Minimum Principle in discrete
time. We now discuss an analogous principle in continuous time.

Consider the OCP with dynamics (4.0.1) and cost functional
(4.1.1). Suppose that Assumption 4.2 holds and the value function
V is of class C2. Let (x∗(·), a∗(·)) be an optimal pair. Put

λ(s) := Vx(s, x
∗(s)) 0 ≤ s ≤ T.

Recall the Hamiltonian

H(s, x, a,λ) = c(s, x, a) + λ · F (s, x, a)

introduced in Remark 4.7(a).
The minimum condition. We start by differentiating, with respect
to s, both sides of the equality

V (s, x∗(s)) =

∫ T

s

c(t, x∗(t), a∗(t))dt + C(x∗(T ))

to obtain

Vt(s, x
∗(s)) + Vx(s, x

∗(s)) · ẋ∗(s) = −c(s, x∗(s), a∗(s))

which is equivalent to

− Vt(s, x
∗(s)) = c(s, x∗(s), a∗(s)) + Vx(s, x

∗(s)) · F (s, x∗(s), a∗(s))

= c(s, x∗(s), a∗(s)) + λ(s) · F (s, x∗(s), a∗(s))

= H(x, x∗(s), a∗(s),λ(s)) (4.1.19)

for each s in [0, T ). On the other hand, by Theorem 4.6, V satisfies
the HJB equation (4.1.8)–(4.1.9). In particular,
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−Vt(s, x∗(s)) = inf
a∈A

[c(s, x∗(s), a) + λ(s) · F (s, x∗(s), a)], 0 ≤ s < T.

From the latter equality and (4.1.19), we conclude that

H(s, x∗(s), a∗(s),λ(s)) = min
a∈A

H(s, x∗(s), a,λ(s)), 0 ≤ s < T.

(4.1.20)
The adjoint equation. Let us now assume that, for each fixed s,

x �→ inf
a∈A

H(s, x, a, Vx(s, x)) (4.1.21)

is differentiable and its derivative at x∗(s) equals

cx(s, x
∗(s), a∗(s)) + λ(s)Fx(s, x

∗(s), a∗(s))

+ Vxx(s, x
∗(s)) · F (s, x∗(s), a∗(s)). (4.1.22)

Remark 4.8. Results about sufficient conditions for differentia-
bility of mappings like (4.1.21) are usually called Envelope Theo-
rems. An example of such sufficient conditions—as well as a for-
mula that yields (4.1.22)—is given in Exercise 4.8.

After taking the partial derivative with respect to x in both
sides of (4.1.8) and evaluating at x = x∗(s), we have

−Vtx(s, x
∗(s)) = cx(s, x

∗(s), a∗(s)) + λ(s)Fx(s, x
∗(s), a∗(s))

+Vxx(s, x
∗(s)) · ẋ∗(s)

for each s in [0, T ). Then

cx(s, x
∗(s), a∗(s)) + λ(s)Fx(s, x

∗(s), a∗(s))

= −Vtx(s, x
∗) − Vxx(s, x

∗(s)) · ẋ∗(s) = − d

dt
Vx(s, x

∗(s)),

that is,

− λ̇(s) = cx(s, x∗(s), a∗(s)) + λ(s)Fx(s, x∗(s), a∗(s)), 0 ≤ s < T.
(4.1.23)

Besides, the terminal condition

λ(T ) = Cx(x
∗(T )) (4.1.24)

follows from the definition of λ and (4.1.9).
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Finally, the so-called Minimum Principle can be stated as fol-
lows.
The Minimum Principle. Under the assumptions made above, if
(x∗(·), a∗(·)) minimizes the cost functional (4.1.1) subject to the
dynamics (4.0.1), then there exists a function λ : [0, T ] → R

n that
satisfies the minimum condition (4.1.20) and the adjoint equation
(4.1.23)–(4.1.24).

Remark 4.9. (a) The way we obtained the Minimum Principle
is similar to that in Bertsekas (2005). For a general treatment
about the relationship between the Minimum Principle and
the HJB equation, see Yong and Zhou (1999). In the latter
reference, the stochastic case is also considered.

(b) If we consider maximization problems, then (4.1.20) is
replaced by a maximum condition. This is one reason why
the Minimum Principle is also known as Maximum Princi-
ple. Another name for the principle is Pontryagin’s Maximum
Principle because the Soviet mathematician L. S. Pontrya-
gin started the research on a class of OCPs and formulated a
first version of the above equations. According to Gamkrelidze
(1999), the complete formulation of the Maximum Principle
as well as a full proof were accomplished however by Pontrya-
gin and two of his close collaborators V. Boltyanski and R.
V. Gamkrelidze.

(c) In the optimal control literature, the adjoint equation (4.1.23)
is also named costate equation whereas the variable λ is called
adjoint or costate variable. In particular, in economics, λ can
be interpreted as a shadow price; see, for instance, Sect. 2.2.4
in Sethi (2021). Likewise, the terminal condition (4.1.24) is
also called transversality condition. ♦

The Minimum Principle provides only necessary conditions for
optimality. However, the Minimum Principle along with some
additional conditions are sufficient to find solutions in a class of
OCPs. The following result is a simplified version of a theorem in
Mangasarian (1966) (see Remark 4.11 below).
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Theorem 4.10. Let x∗(·), a∗(·), and λ(·) satisfy (4.1.20),
(4.1.23), and (4.1.24). Suppose the following

(a) A and X are convex sets,
(b) the functions C(·) and H(t, ·, ·,λ(t)) are convex and contin-

uously differentiable for each t, and
(c) a∗(t) is an interior point of A for each t.

Then (x∗(·), a∗(·)) minimizes the cost functional (4.1.1) subject to
(4.0.1).

Proof. Consider a control function a(·) ∈ A[0, T ], and let x(·) be
the corresponding solution to (4.0.1). Put

D :=
∫ T

0

c(t, x∗(t), a∗(t)) dt + C(x∗(T )) −
∫ T

0

c(t, x(t), u(t)) dt − C(x(T )),

H∗(t) := H(t, x∗(t), a∗(t),λ(t)), 0 ≤ t < T,

H∗
x(t) := Hx(t, x

∗(t), a∗(t),λ(t)), 0 ≤ t < T,

H∗
a(t) := Ha(t, x

∗(t), a∗(t),λ(t)), 0 ≤ t < T,

and
H(t) := H(t, x(t), a(t),λ(t)), 0 ≤ t < T.

By assumptions (b)–(c) and (4.1.23),

H∗(t) − H(t) ≤ Hx(t) · [x∗(t) − x(t)] + H∗
a · [a∗(t) − a(t)]

= Hx(t) · [x∗(t) − x(t)] + 0 (4.1.25)

= −λ̇(t) · [x∗(t) − x(t)]

and

C(x∗(T )) − C(x(T )) ≤ Cx(x
∗(T )) · [x∗(T ) − x(T )].

Then
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D =

∫ T

0

[H∗(t) − λ(t)ẋ∗(t)]dt + C(x∗(T ))

−
∫ T

0

[H(t) − λ(t)ẋ(t)]dt − C(x(T ))

=

∫ T

0

[H∗(t) − H(t)]dt +

∫ T

0

λ(t)[ẋ(t) − ẋ∗(t)]dt

+C(x∗(T )) − C(x(T ))

≤
∫ T

0

λ̇(t)[x(t) − x∗(t)]dt +

∫ T

0

λ(t)[ẋ(t) − ẋ∗(t)]dt

+Cx(x
∗(T )) · [x∗(T ) − x(T )]

=

∫ T

0

(
d

dt

{
λ(t)[x(t)−x∗(t)]

})
dt+Cx(x

∗(T )) · [x∗(T ) − x(T )]

= λ(T )[x(T ) − x∗(T )] − 0 + Cx(x
∗(T )) · [x∗(T ) − x(T )]

= 0.

That is, D ≤ 0 so

∫ T

0

c(t, x∗(t), a∗(t)) dt + C(x∗(T )) ≤
∫ T

0

c(t, x(t), u(t)) dt + C(x(T )),

which yields the required conclusion. �
Remark 4.11. We point out that Theorem 4.10 is still valid
without the assumption (c). Indeed, from (4.1.25), we notice that
the inequality

H∗
a · [a∗(t) − a(t)] ≤ 0

(instead of the equality) is enough to prove the theorem. The
latter inequality holds under assumptions (a) and (b) of the
theorem—see Proposition 2.1.1 in Borwein and Lewis (2006). ♦

Theorem 4.10 can be used to solve OCPs according to the fol-
lowing procedure:

Step 1. From (4.1.20), find a∗ (as a function of x∗ and λ) that
minimizes the Hamiltonian.

Step 2. Substitute a∗ in (4.0.1) and (4.1.23) to obtain a system
of two ordinary differential equations in the variables x∗

and λ.
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Step 3. Determine x∗ and λ by using the initial condition x∗(0) =
x0 and the terminal condition (4.1.24).

Step 4. Go to Step 1 and find the open-loop policy a∗.
Step 5. Verify the assumptions (a), (b), and (c) in Theorem 4.10.

The following example illustrates the above procedure to find an
optimal policy of a scalar LQ system, by means of the Minimum
Principle.

Example 4.12. Let X = A = R, γ,β ∈ R, r > 0, and q ≥ 0. Con-
sider the linear system

ẋ(t) = γx(t) + βa(t), x(0) = x0, (4.1.26)

and the functional cost

1

2

∫ T

0

[qx2(t) + a2(t)]dt +
r

2
x2(T ).

For notational ease, we simply write a(t) and x(t) instead of a∗(t)
and x∗(t). We observe that

a(t) = −βλ(t) (4.1.27)

minimizes the Hamiltonian

H(t, x(t), a,λ(t)) =
1

2
[qx2(t) + a2] + λ(t)[γx(t) + βa].

Thus the dynamics (4.1.26) and the adjoint equation (4.1.23)
become {

ẋ(t) = γx(t) + βa(t), x(0) = x0

λ̇(t) = −qx(t) − γλ(t), λ(T ) = rx(T ).

The solution (x(·),λ(·)) to this (linear and homogeneous) system
of ordinary differential equations can be found by standard meth-
ods. Finally, notice that assumptions (a), (b), and (c) in The-
orem 4.10 hold. Therefore, (4.1.27) gives an open–loop optimal
policy. ♦
Remark 4.13. The Minimum Principle holds, with the corre-
sponding changes, for other classes of OCPs. For instance, when
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there is a constraint for the terminal state, say g(x(T )) = 0 or
h(x(T )) ≥ 0; see Chap. 5 in Li and Yong (1995). Another class
consists of OCPs with infinite horizon; see Halkin (1974).

4.2 The Discounted Case

Consider the OCP at the beginning of this chapter, except that
(4.1.1) is replaced with

J(a(·)) :=

∫ T

0

e−rtc(t, x(t), a(t))dt + e−rTC(x(T )), (4.2.1)

where r > 0 is a given discount factor. In this case, the HJB equa-
tion (4.1.8)–(4.1.9) becomes

Vt + inf
a∈A

[e−rtc(t, x, a) + Vx · F (t, x, a)] = 0

for (t, x) ∈ [0, T ) × X, with terminal condition V (T, x)=e−rTC(x).
With the change of variable v(t, x) := e−rtV (t, x), it can be seen
that the HJB in the discounted case becomes

vt + inf
a∈A

[c(t, x, a) + vx · F (t, x, a)] = rv (4.2.2)

for all (t, x) ∈ [0, T ) × X, and

v(T, x) = C(x) ∀ x ∈ X. (4.2.3)

Note that if r = 0, then (4.2.1) and (4.2.2) reduce to (4.1.1) and
(4.1.8), respectively. Similarly, (4.1.11) and (4.1.13) become

vt + inf
a∈A

H(t, x, a, vx) = rv (4.2.4)

and
inf
a∈A

[c(t, x, a) + Lav(t, x)] = rv (4.2.5)

for (t, x) ∈ [0, T ) × X, with the terminal condition (4.2.3). ♦

Example 4.14 (The discounted LQ case). In the general LQ
problem (also known as the linear regulator problem) the state and
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control spaces are general finite–dimensional spaces, say, X = R
n

and A = R
m, respectively. Here, however, to simplify the presen-

tation we shall consider the scalar case n = m = 1, so X = A = R.
The state process is given by

ẋ(t) = γ(t)x(t) + β(t)a(t), for t ∈ [0, T ], (4.2.6)

with continuously differentiable coefficients γ(·) and β(·), and a
given initial condition x(0) = x0. The Eq. (4.2.6) is of course of the
form (4.0.1) with

F (t, x, a) = γ(t)x + β(t)a.

The associated cost functional is a discounted cost, as in (4.2.1),
with

c(t, x, a) := Q(t)x2 + R(t)a2 and C(x) := x2

with coefficients Q(·) ≥ 0 and R(·) > 0. Hence, the HJB equation
(4.2.2) becomes

rv = inf
a

[c(t, x, a) + vt + vx · F (t, x, a)]

= Qx2 + vt + vx · γx + inf
a

[Ra2 + vx · βa], (4.2.7)

with terminal condition v(T, x) = x2. The minimum in (4.2.7) is
attained at

a∗(t, x) = −(2R(t))−1β(t) · vx. (4.2.8)

Inserting this value of a∗ in (4.2.7) we obtain the partial differen-
tial equation

Qx2 + vt + γxvx − (βvx)
2/4Q = rv (4.2.9)

for (t, x) ∈ [0, T ) × X, and v(T, x) = x2. The problem now is how
to obtain a solution to (4.2.9). By the form of the LQ problem
(or by analogy with the discrete-time case—see Example 2.4), we
may try a solution of the form

v(t, x) = k(t)x2 + h(t) for 0 ≤ t < T, (4.2.10)
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with continuously differentiable coefficients k(t), h(t), and k(·) ≥ 0.
Note that the terminal condition v(T, x) = k(T )x2 + h(T ) = x2

gives that
k(T ) = 1, h(T ) = 0. (4.2.11)

From (4.2.10), vt = k̇(t)x2 + ḣ(t) and vx = 2k(t)x. Replacing these
values in (4.2.9) we obtain the equation

[k̇ + (2γ − r)k + (kβ)2/R + Q]x2 + (ḣ(t) − rh(t)) = 0,

which in turn yields two ordinary differential equations:

k̇ + (2γ − r)k + (kβ)2/R + Q = 0, (4.2.12)

and the linear equation ḣ(t) = rh(t). In view of the terminal con-
dition h(T ) = 0 in (4.2.11), it can be seen that h(t) = 0 for all
t ∈ [0, T ]. Therefore, the function v in (4.2.10) becomes

v(t, x) = k(t)x2,

where k(t) is the solution of the Riccati equation (4.2.12). (The
existence of this solution is ensured in our present context. See, for
instance, Theorem 5.2 in Fleming and Rishel (1975), Sect. IV.5.)
Finally, since vx = 2k(t)x, from (4.2.8) we obtain that the optimal
control for the LQ problem is a∗(t, x) = −R(t)−1β(t)k(t)x, which
is a linear function in the state x. ♦

4.3 Infinite–Horizon Discounted
Cost

We consider again the system (4.0.1) except that now it is defined
for all t ≥ 0, i.e.,

ẋ(t) = F (t, x(t), a(t)) for t ≥ 0, (4.3.1)

with the same initial condition x(0) = x0. Recall that the state
space is X := R

n. Moreover, instead of the discounted cost (4.2.1)
we consider the infinite–horizon discounted cost functional
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V (x0; a(·)) :=

∫ ∞

0

e−rtc(t, x(t), a(t))dt.

We will assume that the running (or instantaneous) cost c(t, x, a)
is nonnegative and, in addition, the set Ax0 of piecewise–
continuous controls a(·) : [0,∞) → A such that V (x0; a(·)) < ∞
is nonempty. In this context, the verification Theorem 4.6, con-
cerning the HJB equation (4.2.2) (or (4.2.5)) becomes as follows.

Theorem 4.15. Let v : [0,∞) × X → R be a continuously dif-
ferentiable function that satisfies the equation

rv(s, x) = inf
a∈A

[c(s, x, a) + Lav(s, x)] (4.3.2)

for all (s, x) ∈ [0,∞) × X, with La as in (4.1.12). Then:

(a) v(s, x) ≤ V (s, x; a(·)) for each control a(·) ∈ Ax0 such that,
as t → ∞,

e−rtv(t, x(t)) → 0, (4.3.3)

where

V (s, x; a(·)) :=

∫ ∞

s

e−r(t−s)c(t, x(t), a(t))dt.

(b) If a∗ ≡ a∗(s, x) ∈ A attains the minimum in (4.3.2), i.e.

rv(s, x) = c(s, x, a∗) + La∗
v(s, x) ∀ (s, x), (4.3.4)

then a∗(·) ≡ a∗(·, x(·)) is optimal within the class of controls
in Ax0 that satisfy the condition (4.3.3).

Proof. (a) By (4.3.2),

rv(s, x) ≤ c(s, x, a) + Lav(s, x) ∀ (s, x, a). (4.3.5)

Let u(s, x) := e−rsv(s, x) and note that, by (4.1.12),
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Lau(s, x) := us + ux · F (s, x, a)

= e−rs[vs(s, x) − rv(s, x) + vx(s, x) · F (s, x, a)]

= e−rs[Lav(s, x) − rv(s, x)]

≥ −e−rsc(s, x, a), [by (4.3.5)]

that is, Lau(s, x) ≥ −e−rsc(s, x, a) for all (s, x, a). Integrating
both sides of the latter inequality, and recalling the Remark 4.7(c),
we obtain

u(T, x(T )) − u(s, x) ≥
∫ T

s

e−rtc(t, x(t), a(t))dt. (4.3.6)

Equivalently, by definition of u,

v(s, x) ≤
∫ T

s

e−r(t−s)c(t, x(t), a(t))dt + e−r(T−s)v(T, x(T )).

Finally, letting T → ∞, (4.3.3) yields the desired conclusion in
part (a).

(b) On the other hand, if (4.3.4) holds, we have equalities
throught (4.3.5)–(4.3.6) with a = a∗, and part (b) follows. �

Example 4.16. Consider the OCP: Minimize, over all nonnega-
tive controls a(·) ∈ Ax0 , the objective function

V (x0; a(·)) =

∫ ∞

0

e−rt[x(t) + ka(t)2]dt

subject to
ẋ(t) = p − a(t)x(t)1/2 ∀ t > 0,

with k and x(0) = x0 both positive. Note that this is an
autonomous or stationary or time–invariant OCP because both
the instantaneous cost c(t, x, a) ≡ c(x, a) = x + ka2 and the state
transition function F (t, x, a) ≡ F (x, a) = p − ax1/2 are indepen-
dent of the time variable t, in which case the value function v
depends only on the state variable x. Therefore, the HJB equa-
tion (4.3.2) becomes

rv = inf
a≥0

[x + ka2 + vx · (p − ax1/2)], (4.3.7)
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that attains its minimum at a∗ ≡ a∗(x) = (2k)−1vx · x1/2. Substi-
tuting this value in (4.3.7) we obtain

rv(x) = x + p · vx − (4k)−1x · v2
x. (4.3.8)

Guessing that a possible solution of this equation could be of the
form v(x) = Px + Q, for some constants P,Q, substitution of this
function v(x) in (4.3.8) gives that it indeed solves (4.3.8) provided
that P and Q satisfy the equations rQ = pP and

P 2 + 4krP − 4k = 0. (4.3.9)

Hence v(x) = Px + Q solves (4.3.8) if Q = pP/r and P is the
positive solution of (4.3.9). Further, since vx = P , the optimal
control is a∗(x) = (2k)−1Px1/2. ♦

Remark 4.17. For OCPs in an infinite horizon there are several
optimality concepts, in addition to the discounted cost in Sect.
4.3. For instance, Carlson et al. (1991), Sect. 1.5, introduce the
following concepts: (a) Strong optimality; (b) Overtaking optimal-
ity; (c) Weak overtaking optimality; (d) Finite optimality. They
also show the following chain of implications: (a) ⇒ (b) ⇒ (c) ⇒
(d). ♦

Example 4.18 (An infinite-horizon discounted LQ problem).
Consider an infinite-horizon scalar (i.e., X = A = R) LQ problem
in which we wish to minimize

V (x; a(·)) =

∫ ∞

0

e−rt[Qx2(t) + Ra2(t)]dt (4.3.10)

subject to

ẋ(t) = δx(t) + ηa(t), t ≥ 0, x(0) = x. (4.3.11)

The coefficients Q and R are both positive, and η �= 0. Since the
system (4.3.10)–(4.3.11) is time-homogeneous or time-invariant
(in particular, all the coefficients are constant), the HJB equation
(4.2.2) or (4.3.2) for v(x) becomes

rv = inf
a∈A

{
Qx2 + Ra2 + vx · (δx + ηa)

}
. (4.3.12)
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As in similar LQ problems (see Examples 2.46 or 4.14, for
instance), we seek a solution of (4.3.12) of the form v(x) =
kx2 + h, where k > 0 and h are constants to be determined. With
this value of v(·), (4.3.12) can be expressed as

(rk − Q − 2δk)x2 = min
a

{Ra2 + 2ηkxa}.

The minimum is attained at the stationary Markov control

f ∗(x) = −R−1ηkx ∀x ∈ R,

and the value function is vr(x) = V (x, f ∗) = kx2 + h, where h = 0
and k is the positive solution of the quadratic equation

η2k2 + (r − 2δ)Rk − RQ = 0. (4.3.13)

Finally, observe that f ∗ satisfies (4.3.3), i.e.,

e−rtv(x∗(t)) → 0 as t → ∞.

Therefore Theorem 4.15 gives that f ∗ is indeed optimal in the
class Ax0 . ♦

4.4 Long-Run Average Cost
Problems

Consider the infinite-horizon control system

ẋ(t) = F (x(t), a(t)), t ≥ 0, x(0) = x, (4.4.1)

with state space X = R
n and control (or action) set A ⊂ R

m. We
denote by A the family of piecewise–continuous control functions
a(·) : [0,∞) → A.

For each control a(·) ∈ A and each T > 0, let

JT (x, a(·)) :=

∫ T

0

c(x(t), a(t))dt, (4.4.2)
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where the running cost c is nonnegative. In this section we wish
to minimize the long–run average cost (AC)

J(x, a(·)) := lim sup
T→∞

1

T
JT (x, a(·)) (4.4.3)

subject to (4.4.1). The AC-value function is

J∗(x) := inf
a(·)

J(x, a(·)) (4.4.4)

for all x ∈ X. As usual, a control function a∗ is said to be AC–
optimal if

J(x, a∗(·)) = J∗(x) for all x ∈ X.

We will assume the existence of a control function a(·) such
that J(x, a(·)) < ∞ for every x ∈ X. This condition ensures that
J∗(·) is a finite–valued function.

The OCP (4.4.1)–(4.4.4) is, of course, a deterministic
continuous–time version of the discrete–time AC problems in
Sects. 2.5 and 3.7. Hence it is no surprise that some of the
techniques for discrete–time problems are also applicable, with
obvious changes, to the continuous–time case. These techniques
include the average cost optimality equation (ACOE), the steady
state approach, and the vanishing discount approach, which we
introduce in the remainder of this section.

4.4.1 The Average Cost Optimality
Equation (ACOE)

In addition to the AC control problem (4.4.1)–(4.4.3), consider
the operator La in the Remark 4.7(d), i.e,

Lav(x) = vx(x) · F (x, a) (4.4.5)

for v ∈ C1(X). Note that, by (4.4.1) and the chain rule,

Lav(x) =
d

dt
v(x(t))|(x,a). (4.4.6)
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The ACOE approach to the AC problem is based on the so–
called Poisson equation in the following lemma.

Lemma 4.19. Let j ∈ R and h(·) ∈ C1(X) be such that the pair
(j, h) satisfies the Poisson equation

j = c(x, a) + Lah(x) ∀ x, a. (4.4.7)

Moreover, let a(·) ∈ A be a control function such that, as t → ∞,

h(xa(t))/t → 0 (4.4.8)

for every initial state x(0) = x, where xa is the solution of (4.4.1)
when using the control a(·). Then

(a) j = J(x, a(·)) for all x ∈ X.
(b) If the equality in (4.4.7) is replaced by ≥ (resp. ≤), then in

(a) we have j ≥ J(x, a(·)) (resp. ≤) for all x.

Proof.

(a) For notational ease, we will write xa(·) as x(·). Then, by the
Remark 4.7(d), the Poisson equation (4.4.7) yields

j = c(x(t), a(t)) +
d

dt
h(x(t)) ∀ t ≥ 0. (4.4.9)

It follows that, for all T > 0,

Tj =

∫ T

0

c(x(t), a(t))dt + h(x(T )) − h(x). (4.4.10)

Multiplying both sides by 1/T and then letting T → ∞, from
(4.4.8) and (4.4.3) we obtain part (a).

(b) In (4.4.7) replace = with either ≥ or ≤. Then in (4.4.9)–
(4.4.10) we obtain ≥ or ≤ , respectively, in lieu of = . �

Remark. Observe that Lemma 4.19 tacitly assumes the existence
of a solution (j, h) to the Poisson equation (4.4.7). In other words,
the lemma itself does not guarantee the existence of such a solu-
tion. If, however, that solution exists, then necessarily j is unique
and h is unique up to additive constants. A similar result holds
for the ACOE (4.4.12) below. (See Exercise 4.14.) ♦
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From the Poisson equation (4.4.7) we obtain the average cost
optimality equation (ACOE) in Theorem 4.20, below, where we
use the following notation: Given a function h : X → R, we denote
by Ah the family of controls a(·) ∈ A such that

1

t
h(xa(t)) → 0 as t → ∞ (4.4.11)

where xa is the solution of (4.4.1) when using the control a, for
any initial state x(0) = x.

The ACOE (4.4.12) is also known as the HJB (or the dynamic
programming or simply the Bellman) equation for the AC control
problem (4.4.1)–(4.4.3).

Theorem 4.20. Let us assume that j ∈ R and h ∈ C1(X) form
a solution to the ACOE

j = inf
a∈A

[c(x, a) + Lah(x)] ∀ x ∈ X. (4.4.12)

Then, for every initial state x(0) = x,

(a) j ≤ J(x, a(·)) for all a(·) ∈ Ah; hence
(b) j ≤ J∗(x) if A = Ah.

In addition, let us suppose that there exists a control a∗(·) ∈ Ah

that attains the minimum in the right–hand side of (4.4.12), i.e.,
for every x ∈ X, a∗(x) ∈ A is such that

j = c(x, a∗(x)) + La∗(x)h(x) ∀ x ∈ X. (4.4.13)

Then, for all x ∈ X,

(c) j = J(x, a∗(·)) ≤ J(x, a(·)) for all a(·) ∈ Ah; hence
(d) a∗(·) is AC–optimal and J(·, a∗(·)) ≡ J∗(·) ≡ j if A = Ah.

Proof. If (4.4.12) holds, then

j ≤ c(x, a) + Lah(x) ∀ (x, a) ∈ X × A.

Consequently, (a) follows from Lemma 4.19(b). On the other
hand, if A = Ah, then (b) follows from (a).
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Suppose now that the Poisson equation (4.4.13) holds. Then
Lemma 4.19(a) yields the equality in (c), whereas the inequality
is obtained from (a). Finally, (d) follows from (c). �

Remark 4.21. If the pair (j, h) is a solution to the ACOE
(4.4.12), then it is also called a canonical pair. Similarly, if (4.4.13)
holds, then (j, h, a∗) is said to be a canonical triplet. Unfortu-
nately, Theorem 4.20 does not say how to solve the ACOE, and
all the known results (see, for instance, Arisawa (1997)) impose
restrictive conditions such as compact state space and/or compact
control set and/or bounded running cost. However, none of these
conditions is satisfied in the following LQ example but still we do
obtain a canonical triplet. ♦

Example 4.22. We again consider the scalar LQ system in
Example 4.18 with state equation in (4.3.11), i.e.,

ẋ(t) = δx(t) + ηa(t), t ≥ 0, x(0) = x,

and running cost c(x, a) = Qx2 + Ra2. In this case the ACOE
(4.4.12) is

j = inf
a

[Qx2 + Ra2 + h′(x) · (δx + ηa)]. (4.4.14)

In view of previous LQ examples, we conjecture that the function
h is of the form h(x) = bx2 for some constant b > 0. To verify that
this is indeed the case, we insert h in (4.4.14) and obtain that, for
each x ∈ X, the minimum is attained at

a∗(x) = −Bx with B := R−1bη. (4.4.15)

Therefore, (4.4.14) can be expressed as

j = (Q + 2bδ − R−1b2η2)x2 ∀ x ∈ X.

This equation holds provided that j = 0 and b solves the quadratic
equation

R−1η2b2 − 2δb − Q = 0. (4.4.16)

To proceed further observe that, with a∗ as in (4.4.15), the state
equation becomes
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ẋ(t) = Δx(t), with Δ := R−1(Rδ − bη2).

Now, let us assume that b is such that Δ < 0. Then the corre-
sponding state trajectory

x∗(t) = x0e
Δt → 0 as t → ∞ (4.4.17)

for every initial state x0. Moreover, J(x, a∗(·)) = 0 = j for all x0 =
x.

Finally, from (4.4.15)–(4.4.16) we conclude that, if b is the pos-
itive solution of (4.4.16), then (j, h(·), a∗(·)) is a canonical triplet
for the ACOE and, by Theorem 4.20, a∗ is AC–optimal in the
class of controls Ah.

It should be noted that the results in this “scalar” LQ example
are valid in the general vector case, with state and control spaces
X = R

n and A = R
m, respectively, except that now we require

special concepts from linear systems theory, say “stabilizability”,
“detectability”, and so forth. For details, see Theorem 5.4.4 in
Davis (1977), for instance. ♦

Example 4.23 (Example 4.16 cont’d.). Let us consider the AC
problem (4.4.1)–(4.4.3) with transition function F (x, a) and run-
ning cost c(x, a) as in the Example 4.16, i.e.,

c(x, a)=x+ka2 and F (x, a)=p − ax1/2, with x(0) = x > 0,
(4.4.18)

where k and p are given positive constants. The OCP is to min-
imize the average cost J(x, a(·)) in (4.4.3) over all the controls
a(·) ≥ 0 in A. In this case, the ACOE (4.4.12) becomes

j = inf
a≥0

[x + ka2 + h′(x) · (p − ax1/2)], (4.4.19)

where h′(x) = dh(x)/dx. By comparison with the r-discount HJB
equation (4.3.7), we will propose h(x) = Rx as a possible solution
of (4.4.19), with the coefficient R to be determined. Replacing
h(·) in (4.4.19) we obtain

j = x + pR + inf
a

[ka2 − Rx1/2a], (4.4.20)
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which attains the minimum at

a∗(x) = (2k)−1Rx1/2 ∀x ≥ 0. (4.4.21)

With this value of a = a∗, (4.4.20) becomes

j = pR + (1 − R2/4k)x ∀x ≥ 0,

which yields j = pR and R2/4k = 1, i.e., R = 2k1/2. Hence, we
already have a canonical triplet (j, h, a∗), that is, a triplet satis-
fying (4.4.13). Finally, to use Theorem 4.20 we will identify the
family Ah of controls that satisfy (4.4.11).

Let F (x, a) = p − ax1/2 be as in (4.4.18), and a(·) = a∗(·) as
in (4.4.21). Then the corresponding state trajectory x∗(·) is the
solution of the linear equation

ẋ(t) = −δx(t) + p, with δ := R/2k = k−1/2,

for each initial x(0) = x0 > 0. Hence, for some constant C,

x∗(t) = Ce−δt + p/δ,

which yields (4.4.11), that is, since h(x) = Rx,

1

t
h(x∗(t)) → 0 as t → ∞. (4.4.22)

Therefore, by Theorem 4.20(c) we conclude that a∗(·) in (4.4.21)
is AC-optimal within the class of controls that satisfy (4.4.22). ♦

4.4.2 The Steady-State Approach

Let us consider again the AC control problem (4.4.1)–(4.4.3). As
in the discrete-time case (see (2.5.17)), the steady-state approach
to the AC problem hinges on the existence of state-action pairs
(x̄, ā) which are “steady” in the sense that F (x̄, ā) = 0. Let K ⊂
X × A be the set of all such pairs. Then a pair (x̄, ā) in K is said
to be a minimum steady pair if it is a solution of the constrained
optimization problem:
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minimize c(x, a) subject to F (x, a) = 0. (4.4.23)

We denote by K∗ the family of minimum steady pairs. We wish to
find conditions under which a minimum steady pair gives the AC-
value function J∗ in (4.4.4). In particular, the following Theorem
4.24 mimics the discrete-time result in Theorem 2.53.

Theorem 4.24. Suppose that the running cost c is continuous
and, in addition, the AC control problem (4.4.1)–(4.4.3) is such
that:

(a1) There exists a minimum steady pair (x∗, a∗) ∈ K∗.
(a2) The control system is dissipative with respect to the pair

(x∗, a∗) in (a1), in the following sense: There exists a real-
valued function l ∈ C1(X) such that

c(x∗, a∗) ≤ c(x, a) + Lal(x) (4.4.24)

for all x ∈ X, a ∈ A.
(a3) The control system is stabilizable, that is, there exists a con-

trol ā(·) ∈ Al such that, as t → ∞,

(x̄(t), ā(t)) → (x∗, a∗) (4.4.25)

with Al as in (4.4.11).

Then j∗ := c(x∗, a∗) is such that, for all x ∈ X,

(b1) J(x, ā(·)) = j∗ and, moreover, j∗ ≤ J(x, a(·)) for all a(·) ∈
Al;

(b2) The control ā(·) is AC-optimal and the AC-value function
is J∗(·) ≡ j∗ if A = Al.

Proof. (b1) Since c is continuous, (4.4.25) yields

c(x̄(t), ā(t)) → c(x∗, a∗) =: j∗

as t → ∞. This implies that J(·, ā(·)) ≡ j∗. Moreover, the inequal-
ity j∗ ≤ J(·, a(·)) follows from (4.4.24) and Lemma 4.19(b) (with
the inequality ≤).

On the other hand, if A = Al, then (b2) follows from (b1). �
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Remark 4.25. (a) Under the hypotheses of Theorem 4.24,
(x∗, a∗) is a so-called minimum pair in the sense that

j∗ := c(x∗, a∗) = inf
x

inf
a(·)

J(x, a(·)).

(b) Recalling (4.4.6), we can rewrite (4.4.24) as

l(x(t)) − l(x) +

∫ t

0

[c(x(s), a(s)) − c(x∗, a∗)]ds ≥ 0

for any solution (x(·), a(·)) of (4.4.1). (Reader beware: The
definition of “dissipativity” is not standard; that is, different
authors may use different definitions.)

Example 4.26. Consider the LQ system in Example 4.22, in
which the system function and the running cost are

F (x, a) = δx + ηa and c(x, a) = Qx2 + Ra2,

respectively.Hence, (x, a) is a steady state-actionpair ifF (x, a) = 0,
which holds if a = −δx/η. Replacing this value in c(x, a) we see
that

c(x, a) = (Q + Rδ2/η2)x2.

Therefore, we have the minimum steady pair (x∗, a∗) = (0, 0), that
is, the hypothesis (a1) in Theorem 4.24. The hypotheses (a2) and
(a3) can be obtained from (4.4.14)–(4.4.17). ♦

Example 4.27. We continue Example 4.23. From (4.4.18),
F (x, a) = 0 if a = px−1/2. With this value of a, we obtain

c(x, a) = x + ka2 = x + kp2/x

which is minimized at x = pk1/2 > 0. Thus, we have the minimum
steady pair (x∗, a∗) = (pk1/2, p1/2k−1/4), with corresponding mini-
mum AC cost j∗ = c(x∗, a∗) = 2pk1/2 as in Example 4.23. The lat-
ter example also yields the remaining parts of Theorem 4.24. ♦

Remark 4.28. In Example 4.29, below, we wish to maximize
over A a long-run average reward (AR) defined as
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JAR(x, a(·)) := lim inf
T→∞

1

T

∫ T

0

r(x(t), a(t))dt

subject to (4.4.1), where r(x, a) is the given running (or instan-
taneous) reward function. In this case, the ACOE (4.4.12) is
replaced by the average reward optimality equation (AROE)

ρ = sup
a∈A

[r(x, a) + Lah(x)] ∀x ∈ X (4.4.26)

for some function h ∈ C1(X) and some constant ρ. Theorems 4.20
and 4.24 are modified accordingly. In particular, the existence of
a minimum steady pair is replaced by a maximum steady pair
(x∗, a∗) that solves the constrained optimization problem:

Maximize r(x, a) subject to F (x, a) = 0, (4.4.27)

whereas the dissipativity inequality (4.4.24) is replaced by

r(x∗, a∗) ≥ r(x, a) + Lah(x)

for all x ∈ X, a ∈ A. ♦

Example 4.29 (Control of pollution accumulation). The control
of pollution accumulation is a standard OCP in environmental
economics since the years 1970s. Here we consider a special case of
an application by Kawaguchi (2003) in which he wishes to obtain
a consumption strategy a(·) that maximizes the long-run average
welfare

JAR(a(·)) = lim inf
T→∞

1

T

∫ T

0

[U(a(t)) − D(x(t))]dt (4.4.28)

where x(t) is the stock of pollution at time t associated to
a(·). Furthermore, U : A → [0,∞) is a social utility function and
D : X → [0,∞) is a disutility function, with state and control
sets A = X = [0,∞). Both functions are assumed to be con-
tinuously differentiable functions and satisfying suitable concav-
ity/convexity conditions. The stock of pollution evolves according
to the equation
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ẋ(t) = a(t) − ϕ(x(t)), with x(0) = x0 > 0 (4.4.29)

where ϕ(·) denotes the rate of pollution decay.
Kawaguchi gives general conditions ensuring that the HJB

equation associated to (4.4.28)–(4.4.29) has a “classical” solution.
Here, however, to illustrate the steady state approach we will sup-
pose that the utility and disutility functions and the pollution
decay are of the form

U(a) = 2a1/2, D(x) = d1x, ϕ(x) = d0x (4.4.30)

for some positive constants d0, d1. Hence, to obtain a maximum
steady state-action pair first note that, from (4.4.29)–(4.4.30),

F (x, a) = a − ϕ(x) = a − d0x = 0

holds if a∗ = a∗(x) = d0x. With this value of a∗ the running
reward r(x, a) := U(a) − D(x) becomes r(x, a) = 2(d0x)1/2 − d1x,
which is maximized at x∗ = d0/d

2
1. Therefore, we have obtained

a maximum steady pair (x∗, a∗) = (d0/d
2
1, (d0/d1)

2), as in the
hypothesis (a1) of Theorem 4.24. Hence

r∗ := r(x∗, a∗) = U(a∗) − D(x∗) = d0/d1. (4.4.31)

To verify the hypotheses (a2)-(a3), let us try to obtain the AROE
in (4.4.26), i.e., from (4.4.28)–(4.4.30),

r∗ = sup
a>0

[r(x, a) + h′(x)F (x, a)]

= sup
a>0

[U(a) − D(x) + h′(x)(a − d0x)]

= −(d1 + d0h
′(x))x + sup

a>0
[2a1/2 + h′(x)a]. (4.4.32)

Clearly, the maximum at the right-hand side of (4.4.32) is attained
at

a∗(x) = 1/(h′(x))2. (4.4.33)

Finally, in (4.4.32) let us try a solution h(·) of the form h(x) = h0x
for a constant h0 to be determined. We then see that (4.4.32)
indeed holds with h(x) = h0x if h0 = d1/d0. Moreover, (4.4.33)
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shows that the AR-optimal control is the constant a∗(·)≡(d0/d1)
2,

which is the same as a∗ in (4.4.31). ♦

4.4.3 The Vanishing Discount Approach

As in Sect. 2.5 for discrete-time OCPs, we can relate AC and dis-
counted cost problems directly from the definition of a discounted
cost functional. To this end, consider the problem of minimizing
the discounted cost

Vr(x, a(·)) =

∫ ∞

0

e−rtc(x(t), a(t))dt (4.4.34)

for a given discount factor r > 0, subject to the dynamics (4.4.1).
Inside the integral in (4.4.34) replace the cost c(x, a) by c(x, a) ±
M for some constant M . Then (4.4.34) can be expressed as

Vr(x, a(·)) =

∫ ∞

0

e−rt[c(x(t), a(t)) − M ]dt +
M

r
;

that is,

rVr(x, a(·)) = M + r

∫ ∞

0

e−rt[c(x(t), a(t)) − M ]dt.

In particular, taking M as the average cost j(x) := J(x, a(·)), we
obtain

rVr(x, a(·)) = j(x) + r

∫ ∞

0

e−rt[c(x(t), a(t)) − j(x)]dt. (4.4.35)

This relation obviously suggests that, as r → 0+,

rVr(x, a(·)) → j(x) (4.4.36)

provided that the rightmost term in (4.4.35) tends to 0 as r ↓ 0.
An example of this situation is in the context of Theorem 4.24, as
in the following Proposition 4.30. (The proof is left to the reader:
Exercise 4.11.)

Proposition 4.30. Suppose that c is continuous and that the
hypotheses (a1) and (a3) of Theorem 4.24 hold; that is, there exists
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a minimum steady pair (x∗, a∗) and a control ā(·) that satisfy
(4.4.25). Let j∗ := c(x∗, a∗). Then

lim
r↓0

rVr(x, ā(·)) = J(x, ā(·)) = j∗

for every initial state x(0) = x.

In general, (4.4.36) can be obtained by means of an Abelian
theorem as in parts (b)–(c) of the next lemma, where we use
essentially the same terminology as in Lemma 2.56.

Lemma 4.31. For t ≥ 0, let ψ(t) be a nondecreasing continu-
ous function with ψ(0) = 0. Define the upper and lower (Cesàro)
limits

CL := lim inf
t→∞

ψ(t)/t, CU := lim sup
t→∞

ψ(t)/t,

and the lower and upper Abelian limits

AL := lim inf
r↓0

r

∫ ∞

0

e−rtdψ(t), AU := lim sup
r↓0

r

∫ ∞

0

e−rtdψ(t).

Suppose that
CU < ∞. (4.4.37)

Then:

(a)
∫ ∞

0
e−rtdψ(t) = r

∫ ∞
0

e−rtψ(t)dt for every r > 0.
(b) CL ≤ AL ≤ AU ≤ CU .
(c) If the limit j := limt→∞ ψ(t)/t exists, then

lim
r↓0

r

∫ ∞

0

e−rtdψ(t) = j.

(In other words, if CL = CU = j, then AL = AU = j.)

Proof. Part (a) follows from the integration-by-parts formula

∫ t

0

e−rsdψ(s) = e−rtψ(t) + r

∫ t

0

e−rsψ(s)dt, (4.4.38)

and noting that (4.4.37) implies

lim sup
t→∞

e−rtψ(t) = 0. (4.4.39)
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To prove the third inequality in (b), we use (4.4.37) again and
choose an arbitrary ε > 0 and let T = T (ε) be such that

sup
s≥t

ψ(s)/s ≤ CU + ε ∀t ≥ T.

Hence

r2

∫ t

T

e−rsψ(s)ds = r2

∫ t

T

se−rs[ψ(s)/s]ds

≤ (CU + ε)r2

∫ t

T

se−rsds

≤ CU + ε,

because r2
∫ t

0
se−rsds = 1 − re−rt(1/r + t) ≤ 1. Thus, for t ≥ T ,

(4.4.38) gives

r

∫ t

0

e−rsdψ(s) ≤ re−rtψ(t) + r2

∫ T

0

e−rsψ(s)ds + CU + ε.

Letting t → ∞ and then r ↓ 0, from (4.4.39) we obtain the third
inequality in (b), since ε was arbitrary. The first inequality is
proved similarly, and the second one is obvious.

Finally, Part (c) follows from (b). �

Lemma 4.31 is a well-known result in Laplace transform theory
(see, for instance, Widder (1941), pp. 181–182).

Let us now suppose that the instantaneous cost function c(x, a)
is continuous and nonnegative. Let a(·) ∈ A be any given control
function and x(·) the corresponding solution of (4.4.1). In addi-
tion, let

ψ(t) :=

∫ t

0

c(x(s), a(s))ds, t ≥ 0.

Then (4.4.2)–(4.4.3) yield that the average cost J(x, a(·)) can be
expressed as

J(x, a(·)) = lim sup
t→∞

ψ(t)/t

whereas the r-discounted cost becomes
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Vr(x, a(·)) : =

∫ ∞

0

e−rtc(x(t), a(t))dt

=

∫ ∞

0

e−rtdψ(t).

Hence, from the third inequality in Lemma 4.31(b),

lim sup
r↓0

rVr(x, a(·)) ≤ J(x, a(·)).

Consequently, since the control function a(·) was arbitrary, we
conclude the following.

Proposition 4.32. The AC-value function J∗(·) and the r-
discount value function Vr(x) := infa(·) Vr(x, a(·)) satisfy that

lim sup
r↓0

rVr(x) ≤ J∗(x) (4.4.40)

for all x ∈ X.

In words, (4.4.40) states that, for r sufficiently small, rVr(·) is
a lower bound for J∗(·). We are actually interested in the “con-
vergence”, in some sense, of rVr to some particular value of J∗ as
r ↓ 0. We next explain this.

Suppose that the value function Vr is in C1(X) and satisfies the
HJB equation (4.3.2) in the autonomous (or time-homogeneous)
case, i.e.,

rVr(x) = min
a∈A

[c(x, a) + LaVr(x)], x ∈ X. (4.4.41)

Now pick (and fix) a state x̄ ∈ X, and let

mr := rVr(x̄) and lr(x) := Vr(x) − Vr(x̄) (4.4.42)

for x ∈ X. Then we can rewrite (4.4.41) as

mr + rlr(x) = min
a∈A

[c(x, a) + Lalr(x)].

Finally, the key step is to find a sequence rn ↓ 0 and a pair (j, l(·))
in R × C1(X) such, as n → ∞,
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mrn → j, lrn(·) → l(·), (4.4.43)

and (j, l(·)) satisfies either the ACOE (4.4.12) or the AC optimal-
ity inequality (ACOI)

j ≥ inf
a∈A

[c(x, a) + Lal(x)]. (4.4.44)

Hence, if there exists a control a∗(·) ∈ Ah that attains the mini-
mum in (4.4.44), i.e.,

j ≥ c(x, a∗(x)) + La∗(x)l(x) ∀x ∈ X, (4.4.45)

then a∗(·) is AC-optimal and j is the AC-value function, i.e.,
J∗(·) ≡ j.

The good news is that the procedure (4.4.43) works in many
particular AC control problems. The bad news however is that, to
the best of our knowledge, there are no general results ensuring
the existence of such a pair (j, l(·)). (The existing results require
restrictive hypotheses. See Bardi and Capuzzo-Dolcetta (1997),
Sect. VII.1, for instance.) We will next show some particular cases.

Example 4.33 (Example 4.16 cont’d.). Consider the AC control
problem (4.4.1)–(4.4.3) with system function and running cost as
in Example 4.16, that is,

F (x, a) = p − ax1/2, c(x, a) = x + ka2

with k and x(0) = x0 both positive. In the r-discounted case,
Example 4.16 shows that the OCP value function and the r-
optimal control are

Vr(x) = P (r)x + Q(r) and a∗(x) = (2k)−1P (r)x1/2,

where Q(r) = pP (r)/r and and P = P (r) is the positive solution
of (4.3.9). Hence, for any given (fixed) state x̄ ≥ 0 (4.4.42) gives

mr = rVr(x̄) = r[P (r)x̄ + Q(r)], lr(x) = Vr(x) − Vr(x̄) = P (r)(x − x̄).

It follows that, as r ↓ 0,

mr → pP (0) and lr(x) → P (0)(x − x̄).
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In other words, (4.4.43) holds with j = pP (0) and l(x) =
P (0)(x − x̄), where P (0) = 2k1/2 is the positive solution of
(4.3.9). Moreover, the AC-optimal control is a∗(x) = (2k)−1

P (0)x1/2. ♦

Example 4.34 (Example 4.18 cont’d.). Consider again the r-
discounted LQ problem in Example 4.18, in which the optimal
control is f ∗

r (x) = −R−1ηkx with R and η as in (4.3.10)–(4.3.11),
and k = k(r) is the unique positive solution of (4.3.13). The cor-
responding value function is vr(x) = k(r)x2. In (4.4.42) we can
take an arbitrary state x̄. However, to simplify the presentation
we take x̄ = 0. Therefore, mr = 0 and

lr(x) = vr(x)

= k(r)x2

→ k(0)x2

as r ↓ 0, where k(0) = (RQ)1/2/η is the positive solution of (4.3.13)
with r = 0.

4.5 The Policy Improvement
Algorithm

We will now introduce the policy improvement (or policy iter-
ation) algorithm (PIA) for the discounted and the average cost
problems in Sects. 4.3 and 4.4. The general ideas are, of course,
similar to the discrete-time cases in Sects. 2.4 and 3.6 for deter-
ministic and stochastic problems, respectively. Namely, we wish to
find a sequence of control functions an ∈ A such that, for each n,
an+1 improves an in the sense that the cost vn+1 when using an+1

is “better” than the cost vn when using an, because vn+1 ≤ vn.
Therefore, the cost functions vn form a monotone nonincreasing
sequence.
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4.5.1 The PIA: Discounted Cost Problems

Given a discount factor r > 0, the OCP is to minimize the dis-
counted cost

V (x, a(·)) :=

∫ ∞

0

e−rtc(x(t), a(t))dt (4.5.1)

subject to

ẋ(t) = F (x(t), a(t)), t ≥ 0, x(0) = x. (4.5.2)

The running cost c is supposed to be nonnegative, and the controls
are restricted to the class A∗

SM ⊂ A of stationary Markov controls
for which

e−rtV (x(t), a(·)) → 0 as t → ∞. (4.5.3)

Recall from Chap. 1 that a stationary Markov control (also
known as a feedback or closed-loop control) is a function f(·) :
X → A such that, at any time t ≥ 0, the control action is f(x) ∈
A if x(t) = x. We will denote by ASM the family of stationary
Markov controls, and by A∗

SM the subset of controls that satisfy
(4.5.3).

For notational convenience we will write Markov controls either
as f(·) or a(·). Moreover, we will write c(x, f(x)) and F (x, f(x))
as c(x, f) and F (x, f), respectively.

Before describing the PIA let us note the following.
Initialization. Let f0 ∈ A∗

SM be a control with discounted cost
v0(·) := V (·, f0) ∈ C1(X), so that

rv0(x) = c(x, f0) + v0
x(x)F (x, f0) (4.5.4)

for all x ∈ X. The latter equation yields

rv0(x) ≥ inf
a∈A

[c(x, a) + v0
x(x)F (x, a)]. (4.5.5)

Let us now assume that there exists f1 ∈ A∗
SM that attains the

minimum in (4.5.5); that is, for each x ∈ X, f1(x) ∈ A is such
that
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c(x, f1) + v0
x(x)F (x, f1) = min

a∈A
[c(x, a) + v0

xF (x, a)].

Therefore, we can rewrite the inequality (4.5.5) as

rv0(x) ≥ c(x, f1) + v0
x(x)F (x, f1) ∀x ∈ X. (4.5.6)

A key step in the PIA is to show that (4.5.6) implies that
f1 improves f0 in the sense that v0(·) ≥ v1(·), where v1(x) :=
V (x, f1). More precisely, we have the following.

Lemma 4.35. For any two controls f ≡ f0 and g ≡ f1 in A∗
SM

that satisfy (4.5.4) and (4.5.6) we have V (x, f) ≥ V (x, g) for all
x ∈ X.

Proof. Let u(t, x) := e−rtv0(x). Then, from (4.1.12),

Lf1u(t, x) = ut + ux · F (x, f1)

= e−rt[v0
x(x) · F (x, f1) − rv0(x)]

≤ −e−rtc(x, f1). [by (4.5.6)]

Thus, recalling from Remark 4.7(c) that Lau(t, x) = du(t, x(t))/
dt|(x,a), integration of both sides of the latter inequality from t = 0
to t = T gives

e−rTv0(x(T )) − v0(x(0)) ≤ −
∫ T

0

e−rtc(x(t), f 1)dt.

Finally, letting T → ∞ we see that −v0(x) ≤ −v1(x), which yields
the desired result. �

Having the Initialization step and Lemma 4.35 we can proceed
with the PIA as follows, where fn is a control in A∗

SM with r-
discounted cost vn(·) := V (·, fn) ∈ C1(X).

(PI1) Given fn (n = 0, 1, . . .) compute the corresponding dis-
counted cost vn(·) so, for every x ∈ X,

rvn(x) = c(x, fn)) + vnx(x)F (x, fn).

Hence
rvn(x) ≥ inf

a∈A
[c(x, a) + vnx(x)F (x, a)]. (4.5.7)



166 4 CONTINUOUS–TIME DETERMINISTIC SYSTEMS

(PI2) Policy improvement. Assume that there exists fn+1 ∈
A∗

SM such that, for every x ∈ X, fn+1(x) ∈ A attains the mini-
mum in (4.5.7), that is,

c(x, fn+1) + vnx(x)F (x, fn+1) = min
a∈A

[c(x, a) + vnx(x)F (x, a)].

(4.5.8)
If vn+1(·) ≡ vn(·), then stop the algorithm because vn is the opti-
mal discounted cost (see Proposition 4.36(a) below). Otherwise,
replace n by n + 1 and go back to (PI1).

The existence of fn+1 as in (PI2) is ensured by well known
results. See, for instance, Lemma 2.16(a) above or Theorems B.8
and B.9 in Appendix B.

A first step on the convergence of the PIA is the following.

Proposition 4.36. Let fn and vn (n = 0, 1, . . .) be as in (PI1)
and (PI2).

(a) If for some n we have vn(x) = vn+1(x) for all x ∈ X, then
vn(·) ≡ V (·) is the discounted value function, and fn and fn+1

are optimal controls.
(b) In general, there exists a function v ≥ 0 such that, for every

x ∈ X, vn(x) ↓ v(x).

Proof. (a) If vn(·) = vn+1(·), then in the right-hand side of (4.5.7)
we can replace vn with vn+1, which combined with (4.5.8) gives

rvn(x) ≥ inf
a

[c(x, a) + vn+1
x (x)F (x, a)] = rvn+1(x)

for all x ∈ X. Therefore, v(·) := vn(·) = vn+1(·) satisfies the r-
discounted cost HJB equation

rv(x) = min
a∈A

[c(x, a) + vx(x) · F (x, a)], (4.5.9)

and fn and fn+1 are optimal controls.
(b) This part is a consequence of the monotonicity of {vn}. �

Remark 4.37. Unfortunately, the conditions we have so far on
the OCP (4.5.1)–(4.5.2) are not enough to guarantee two key steps
in the PIA, namely:
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(I) Convergence to the value function; that is, it remains to show
that the limiting function v in Proposition 4.36(b) is in C1(X) and
that it satisfies the HJB equation (4.5.9).

(II) Convergence of controls; that is, convergence of fn (or a
subsequence thereof) to a control f ∈ A∗

SM that attains the min-
imum in (4.5.9), and so it is optimal for (4.5.1)–(4.5.2).

To deal with (I), there are three usual options:
I1. Impose suitable assumptions on the OCP, as in Doshi

(1976a) or Jacka and Mijatović (2017), for instance. Typically,
the idea is to impose conditions ensuring that the Arzela-Ascoli
Theorem in Remark 2.59 is applicable, and then one shows that v
preserves some of the properties of vn, such as v ∈ C1(X). (As an
example of this approach see Kawaguchi (2003)). In general, how-
ever, the assumptions are so restrictive that are not applicable to,
for instance, our Example 4.38 below. (Indeed, the conditions on
the PIA usually require compact state space X and/or compact
control set A and/or bounded running cost c(x, a). None of these
conditions, however, is satisfied in the Example 4.38.)

I2. Use a numerical approach, as in Alla et al. (2015) or Wei
et al. (2020).

I3. The direct approach: Verify the convergence of vn to a func-
tion v ∈ C1(X), and then show that v indeed satisfies (4.5.9). (See
Example 4.38.)

Concerning (II), we can try a direct approach, as in I3 above, or
(if possible) use a general result such as Theorem B.10 or Propo-
sition B.12 in the Appendix B. ♦

Example 4.38. Consider the scalar LQ problem in Example
4.18, where

V (x, a(·)) =

∫ ∞

0

e−rt[Qx2(t) + Ra2(t)]dt (4.5.10)

and

ẋ(t) = δx(t) + ηa(t), t ≥ 0, x(0) = x. (4.5.11)

Recall that Example 4.18 requires η �= 0 and R > 0. Let f0 be the
linear Markov control f0(x) := C0x for some constant C0. In this
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case (4.5.11) becomes

ẋ(t) = D0x(t), with D0 := δ + ηC0,

so x(t) = xeD0t for all t ≥ 0. Hence, with a(t) := f0(x(t)) = C0x(t)
in (4.5.10), we see that v0(x) := V (x, f0) is given by

v0(x) = (Q + RC2
0)x2

∫ ∞

0

e−rte2D0tdt

= F0x
2 with F0 :=

Q + RC2
0

r − 2D0

(4.5.12)

if r − 2D0 > 0, which is assumed hereafter. This implies that, in
particular,

e−rtv0(x(t)) = F0x
2e−(r−2D0)t → 0

as t → ∞, so f0 is indeed in the class of stationary Markov controls
that satisfy (4.5.3). Moreover, v0 is in C1(X) and it can be directly
verified that (4.5.4) holds, i.e.,

rv0(x) = c(x, f0) + 2F0x · F (x, f0) ∀x ∈ X.

The latter equality yields that, for all x ∈ X,

rv0(x) ≥ inf
a

[c(x, a) + 2F0x · (δx + ηa)], (4.5.13)

and the minimum at the right-hand side is attained at

f1(x) = C1x with C1 := −F0η/R.

With this value of a = f1(x) in (4.5.11) we obtain

ẋ(t) = D1x(t) with D1 := δ + ηC1,

so x(t) = xeD1t for all t ≥ 0. Similarly, from (4.5.10) we see that
v1(x) := V (x, f1) is given by

v1(x) = F1x
2 with F1 :=

Q + RC2
1

r − 2D1

if r − 2D1 > 0.
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In general, if for some n = 0, 1, . . . we are given that fn(x) :=
Cnx for some Cn, then

ẋ(t) = Dnx(t) with Dn := δ + ηCn,

so x(t) = xeDnt for all t ≥ 0, and

vn(x) := V (x, fn) = Fnx
2, with Fn :=

Q + RC2
n

r − 2Dn

provided that r − 2Dn > 0. The latter condition yields that fn
satisfies (4.5.3) and, on the other hand, one can directly verify
that (4.5.4) holds with vn and fn. Furthermore, as in (4.5.13), we
can see that, for all x ∈ X,

fn+1(x) = Cn+1x and vn+1(x) = Fn+1x
2

with

Cn+1 := −Fnη/R, Dn+1 := δ + ηCn+1, (4.5.14)

and

Fn+1 :=
Q + RC2

n+1

r − 2Dn+1

(4.5.15)

if r − 2Dn+1 > 0. Now, in (4.5.15) replace Cn+1 and Dn+1 by their
values in (4.5.14) to obtain that

Fn+1 =
QR + (Fnη)2

(r − 2δ)R − 2Fnη2
. (4.5.16)

Then a direct calculation gives that Fn+1 ≤ Fn for all n = 0, 1, . . .;
that is, the sequence {Fn} is nonincreasing. Therefore, there exists
a number k ≥ 0 such that Fn ↓ k. In fact, letting n → ∞ in
(4.5.16) we see that k is the same as the positive solution of the
quadratic equation (4.3.13).

In other words, we conclude that the direct approach in I3 above
works very nicely in this example, that is, the controls fn and the
value functions vn converge to the values f ∗ and vr in Example
4.18. ♦
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Remark 4.39. In Chap. 6, below, we will study stochastic dif-
ferential equations (SDEs) of the form

dx(t) = F (x(t), a(t))dt + σ(x(t))dW (t), (4.5.17)

which of course is an “extension” of the deterministic equation
(4.5.2). An obvious question is if results for (4.5.17), such as the
PIA, are applicable to the deterministic case. The answer, in gen-
eral, is negative!

Indeed, one should be careful because some results for SDEs
require σ(x) to be nonzero. For instance, a typical condition is
that σ(0) may or may not be 0, but |σ(x)| > 0 for all x �= 0. (See
Eq. (6.4.19), for instance.) ♦

4.5.2 The PIA: Average Cost Problems

We will now consider the long-run average cost (AC) problem in
(4.4.1)–(4.4.3). Hence, we wish to minimize over a(·) ∈ A the AC
defined as

J(x, a(·)) := lim sup
T→∞

1

T

∫ T

0

c(x(t), a(t))dt (4.5.18)

subject to

ẋ(t) = F (x(t), a(t)), t ≥ 0, x(0) = x. (4.5.19)

Recall from Sect. 4.4 that the cost c(x, a) is assumed to be non-
negative.

Given a function h ∈ C1(X), we will denote by Ah
SM the family

of stationary Markov controls a ∈ ASM that satisfy (4.4.8), i.e.,

h(xa(t))/t → 0 as t → ∞, (4.5.20)

where xa(·) stands for the state process in (4.5.19) when using the
control function a(·).

Let Lah(x) be as in (4.4.5)–(4.4.6). The PIA in the AC case
hinges on the Poisson equation (4.4.7) and an AC-analogue of
Lemma 4.35, which is the following.



4.5 THE POLICY IMPROVEMENT ALGORITHM 171

Lemma 4.40. Given a stationary Markov control f , let us sup-
pose that there exists a constant j(f) and a function hf ∈ C1(X)
that satisfy the Poisson equation

j(f) = c(x, f) + hf
x(x) · F (x, f) ∀x ∈ X, (4.5.21)

where we are using the notation introduced in Sect. 4.5.1, namely,
c(x, f) := c(x, f(x)) and F (x, f) := F (x, f(x)). We assume that
a(t) = f(x(t)) satisfies (4.5.20). By (4.5.21),

j(f) ≥ inf
a∈A

[c(x, a) + hf
x(x) · F (x, a)] (4.5.22)

for all x ∈ X, and we suppose the existence of a Markov control
g ∈ Ahf

SM that attains the minimum in (4.5.22), so

j(f) ≥ c(x, g) + hf
x(x) · F (x, g) ∀x. (4.5.23)

Then g improves f in the sense that the AC j(g) ≤ j(f), with
j(g) := J(x, g) for all x ∈ X.

Proof. By (4.4.6), we can express the rightmost term in (4.5.23)
as

hf
x(x) · F (x, g) =

d

dt
hf (x(t))|(x,g(x)).

Therefore, integration of (4.5.23) from t = 0 to t = T gives

j(f)T ≥
∫ T

0

c(x(t), g)dt + hf (x(T )) − hf (x).

Finally, multiply both sides of the latter inequality by 1/T and
then let T → ∞ to obtain the desired conclusion. �

We now introduce the PIA for the average cost OCP. Consider
a sequence of Markov controls fn as follows.

(PI1) Given fn, for some n = 0, 1, . . ., suppose that there exists
a solution (j(fn), h

n(·)) ∈ R × C1(X) to the Poisson equation

j(fn) = c(x, fn) + hn
x(x) · F (x, fn),

where fn ∈ Ahn
SM , so (by Lemma 4.19) j(fn) ≡ J(·, fn). It follows

that
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j(fn) ≥ inf
a∈A

[c(x, a) + hn
x(x) · F (x, a)]. (4.5.24)

(PI2)Policy improvement. Assume the existence of fn+1 ∈ Ahn

SM

such that, for every x ∈ X, fn+1(x) attains the minimum in
(4.5.23), i.e.,

c(x, fn+1) + hn
x(x) · F (x, fn+1) = min

a∈A
[c(x, a) + hn

x(x) · F (x, a)],

(4.5.25)
and then find the solution (j(fn+1), h

n+1(·)) of the Poisson equa-
tion corresponding to fn+1.

Proposition 4.41. For n = 0, 1, . . ., let fn and hn be as in (PI1)-
(PI2).

(a) If for some n, j(fn) = j(fn+1), then stop the PIA: fn and fn+1

are both AC-optimal in the class Ahn
SM , that is,

j(fn) = j(fn+1) ≤ J(·, f) ∀f ∈ Ahn
SM .

(b) Otherwise, if j(fn) > j(fn+1) for all n = 0, 1, . . ., then there
exists a number j∗ ≥ 0 such that j(fn) ↓ j∗.

Proof. (a) By Lemma 4.40 and (4.5.25),

j(fn+1) = min
a∈A

[c(x, a) + hn
x(x) · F (x, a)]

≤ j(fn)

= j(fn+1).

Therefore, both fn and fn+1 satisfy the ACOE (4.4.12), and so
the desired result follows from Theorem 4.20(c).

Part (b) is a consequence of Lemma 4.40. �
Remark 4.42. (a) Open problems: The bad news about Proposi-
tion 4.41 is that (as in the Remark 4.37 concerning the discounted
cost) the proposition does not guarantee the “convergence” of the
PIA, that is, it does not state the convergence of the functions
hn(·) nor that j∗ is in fact the AC-value function. Moreover, in
Remark 4.37 we mentioned three options to prove the conver-
gence of the PIA for discounted problems, but two of them are
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not applicable in the AC case; namely, the option I1 (about impos-
ing “suitable assumptions” on the OCP) and the option I2 (about
using a numerical approach) are, to the best of our knowledge,
completely unexplored in the AC case. This situation suggests
some interesting research problems. On the other hand, the good
news is that the option I3 (the direct approach) in the Remark
4.37 is—at least sometimes—applicable to AC problems. See the
following Example 4.43.

(b) The following comment is similar to Remark 4.39: Since
there are some results on the PIA for AC problems related to
stochastic differential equations (see Sect. 6.5) of the form

dx(t) = F (x(t), a(t))dt + σ(x(t))dW (t), (4.5.26)

an obvious question is if one can deduce results for the determin-
istic problem (4.4.1)–(4.4.3) simply by taking σ(·) ≡ 0 in (4.5.26).
The answer, in general, is no. The reason is that (as can be seen
in the references in Sect. 6.5) the AC results in the stochastic case
require |σ(x)| > 0 for all x ∈ X, except perhaps at x = 0. (The
latter fact is required even in the one-dimensional case. See for
instance assumption (A1) in Anulova et al. (2020).) ♦

Example 4.43. Let us consider again the AC control problem in
Example 4.23 with transition function and running cost given by

F (x, a) := p − ax1/2 and c(x, a) := x + ka2. (4.5.27)

The constants p and k, and the initial state x(0) = x are all posi-
tive. To initialize the PIA, take the Markov control f0(x) = C0x

1/2

with C0 > 0. We selected this value of f0 because then the right-
hand side of F is linear in x and similarly for the cost c. More
explicitly, with a = f0(x) the system equation becomes

ẋ(t) = p − C0x(t), t ≥ 0, (4.5.28)

so x(t) = D0e
−C0t + p/C0 with D0 := x(0) − p/C0. Therefore, by

definition of c(x, a) in (4.5.27), the corresponding average cost
j0 = J(f0) is given by
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j0 = lim sup
T→∞

∫ T

0

(1 + kC2
0)x(t)dt,

where the integrand

(1 + kC2
0)x(t) = (1 + kC2

0)D0e
−C0t + (1 + kC2

0)p/C0.

Observe that, in the right-hand side, the first term → 0 as t → ∞.
Consequently,

j0 = (1 + kC2
0)p/C0. (4.5.29)

We now wish to find the Poisson equation associated to f0, i.e.,

j0 = c(x, f0) + h
′
0(x) · F (x, f0) (4.5.30)

for some function h0, where h
′
0(x) = dh0(x)/dx. From the defini-

tion (4.5.27) of F and c we obtain

j0 = (kC2
0 − h

′
0(x)C0 + 1)x + h

′
0(x) · p.

This equation is satisfied if h
′
0(x) · p = j0, or h

′
0(x) = j0/p, and

kC2
0 − j0C0/p + 1 = 0 or

pkC2
0 − j0C0 + p = 0.

(Note that the latter equation is the same as (4.5.29).) This con-
cludes the initialization step in the PIA.

To proceed with the policy improvement procedure, instead of
(4.5.30) we now consider the inequality

j0 ≥ inf
a≥0

[c(x, a) + h
′
0(x)F (x, a)].

Thus, proceeding as usual, the minimum in the right-hand side
is attained at f1(x) = C1x

1/2, with C1 = h
′
0(x)/2k = j0/(2kp).

Hence, the system equation (4.5.28) now becomes ẋ(t) = p −
C1x(t) for t ≥ 0, so

x(t) = D1e
−C1t + p/C1 with D1 := x(0) − p/C1.

Continuing this process we see that the average cost j1 = J(f1) is

j1 = (1 + kC2
1)p/C1 (4.5.31)
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and the Poisson equation

j1 = c(x, f1) + h
′
1(x) · F (x, f1)

is satisfied with h
′
1(x) = j1/p. Moreover, from (4.5.29) and (4.5.31)

we see that j1 < j0.
In general, given the Markov control fn(x) := Cnx

1/2, with
Cn > 0, we obtain the average cost

jn := J(fn) = (1 + kC2
n)p/Cn, n = 0, 1, . . .

and the associated Poisson equation holds with a function hn such
h

′
n(x) = jn/p, whereas Cn is the positive root of the quadratic

equation
pkC2

n − jnCn + p = 0.

One can also show, as in (4.5.29) and (4.5.31), that the jn form a
monotone decreasing sequence and, in fact,

jn ↓ j∗ := (1 + kC2)p/C (4.5.32)

where C is the positive solution of

pkC2 − j∗C + p = 0. (4.5.33)

To conclude, one can verify that the Markov controls fn(x) con-
verge to the optimal AC control f ∗(x) = Cx1/2 and that j∗ is the
optimal average cost, with C > 0 as in (4.5.33). ♦

Exercises

4.1. Solve the following OCP: Minimize

J(a(·)) =

∫ 1

0

c(x(t), a(t))dt

subject to ẋ(t) = a(t)2, with x(0) = x(1) = 0, and control set A =
[−1, 1].
Hint. Note that x(·) = 0.
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4.2. Consider the OCP: minimize∫ T

0

e−rt[x(t) + ka(t)2]dt + e−rT qx(T )

over all control functions a(·) ≥ 0, subject to

ẋ(t) = b − a(t)x(t)1/2, for 0 ≤ t ≤ T, x(0) = x0.

Propose a solution of the form v(t, x) = P (t)x + Q(t) for the cor-
responding HJB equation. Show that, in this case, the coefficients
P (·) and Q(·) should satisfy that

Ṗ (t) = rP (t) + P (t)2/4k − 1, Q̇(t) = rQ(t) − bP (t)

with P (T ) = q,Q(T ) = 0, and the optimal control is

a∗(t, x) = (2k)−1vx · x1/2.

4.3. The goal of this exercise is to prove that, under Assumption
4.2, there is a unique solution to (4.1.2) for every control a ∈ A.

(a) Fix a ∈ A, and let δ > 0 be such s + δ ≤ T . Let C ≡ C([s, s +
δ],Rn) be the complete linear space of continuous functions
x : [s, s + δ] → R

n, with the supremum norm

‖x‖ := sup{|x(t)| : s ≤ t ≤ s + δ}.
For each x ∈ C, define the mapping t → R[x](t), for every
t ∈ [s, s + δ] and some y ∈ R

n, as

R[x](t) := y +

∫ t

s

F (r, x(r), a(r))dr.

Prove that

‖R[x1] − R[x2]‖ ≤ Lδ‖x1 − x2‖ ∀ x1, x2 ∈ C,
where L is the constant in Assumption 4.2.

(b) Show that, for δ small enough, (4.1.2) has a unique solution
in [s, s + δ], and explain how to extend such a solution to the
whole interval [s, T ].
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4.4. (Dockner et al. 2000, p. 44) Let X = R and A = [−1, 1] be
the state and action spaces, respectively. Suppose that we wish to
maximize

J(t, x; a(·)) :=

∫ T

t

x(s)a(s)ds for 0 ≤ t ≤ T

over all a(·) ∈ A[t, T ], subject to ẋ(s) = a(s) and initial condition
x(t) = x ∈ R.

(a) Let xa be the state path associated to the control a(·). Verify
that

−(T − t) ≤ xa(T ) − x ≤ T − t,

and J(t, x; a(·)) = (xa(T )2 − x2)/2 for all t ≤ T .
(b) Show that the control policy a∗ defined, for all s ∈ [t, T ], as

a∗(s) =

{
1 if x ≥ 0,

−1 if x < 0

is optimal.
(c) Show that the value function can be expressed as V (t, x) =

(T−t)2

2
+ (T − t)|x| for t ≤ T, x ∈ R. Note that V is not dif-

ferentiable at (t, 0) for t < T .

4.5. Let X = A = R. Consider the OCP

min
a(·)

[∫ T

t

[1 + a(s)]1/2ds + |y(T ) − b|
]

subject to

ẏ(s) = a(s) ∀ t ≤ s ≤ T, with y(t) = y.

Show that V (t, y) = [(T − t)2 + (b − y)2]1/2 is a solution to the
corresponding HJB equation. Give a geometric interpretation.

4.6. (Managing investment income) Consider an optimal invest-
ment problem at a rate of interest β > 0, with the state space
(capital) X = [0,∞), the set of feasible actions (consumptions)
at the state x given by A(x) = [0,βx], and the performance index
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∫ T

0

e−rt
√

a(t)dt,

subject to ẋ(t) = βx(t) − a(t) and x(T ) = 0. Find a non negative
function v(t) such that the value function is given by V (t, x) :=
e−rt

√
v(t)x.

Hint: The HJB equation (4.2.2) has an optimal action a(t) =
x(t)/v(t), and becomes in v̇(t) − (2r − β)v(t) + 1 = 0 with bound-
ary condition v(T ) = 0.

4.7. (A heuristic derivation of the HJB equation.) Consider the
time–invariant OCP:

min
a(·)

[∫ T

0

c(x(t), a(t))dt + C(x(T ))

]

subject to

ẋ(t) = F (x(t), a(t)) ∀ 0 ≤ t ≤ T, with x(0) = x.

(a) For N = 1, 2, ... and t ∈ [0, T ), let δ := T−t
N

. Assume that the
following discrete–time approximating problem

min

[
N−1∑
k=0

δc(xk, ak) + C(xN)

]

subject to

xk+1 = xk + δF (xk, ak) ∀ k = 0, 1, ..., N − 1, and x0 = x

has a solution. Show that there is a function J that satisfies

J(t, x) = min
a

[δc(x, a) + J(t + δ, x + δF (x, a))] .

Hint. Fix t < T . Let J(t + Nδ, x) := C(x), and then go back-
wards.

(b) Assume that J is a well–defined C1 function in a neighbor-
hood of (t, x). Consider the Taylor’s expansion

J(t + δ, x + δF (x, a)) = J(t, x) + Jt(t, x) · δ + Jx(t, x) · δF (x, a) + o(δ),
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where o(δ)/δ → 0 as δ → 0. Show that

min
a

[c(x, a) + Jt(t, x) + Jx(t, x) · F (x, a)] = 0.

4.8. (Cruz-Suárez and Montes-de Oca (2008)) Let X ⊂ R
n and,

for each x ∈ X, let A(x) ⊂ R
m be a set with nonempty interior.

Moreover, let K = {(x, a) | x ∈ X, a ∈ A(x)}, and c : K → R.
The purpose of this exercise is to provide some sufficient con-
ditions for the differentiability of the function

w(x) := inf{c(x, a) | a ∈ A(x)}.
Assume c is of class C2 in the interior of K and, for each x,
the Hessian matrix caa(x, a) is nonsingular for every a. Further,
suppose there is a function f : X → R

m such that

w(x) = c(x, f(x))

and f(x) is an interior point of A(x) for each x ∈ X. Justify the
equality

ca(x, f(x)) = 0.

Use the Implicit Function Theorem (see for instance Theorem 9.28
in Rudin (1976)) to show that f is differentiable and find fx(x).
Show also that

wx(x) = cx(x, f(x)) x ∈ X. (4.5.34)

4.9. Consider the dynamics (4.0.1) and the cost functional

∫ T

0

c(t, x(t), a(t))dt + C(T, x(T )) (4.5.35)

which is said to be in the Bolza form. The so-called Lagrange form
of the functional happens when C ≡ 0, whereas c ≡ 0 corresponds
to the Mayer form. Suppose that Assumption 4.2 holds with C
as a function of (t, x).

(a) Show that any cost C in the Mayer form can be put in the
Lagrange form.
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Hint. C(T, x(T )) − C(0, x(0)) =
∫ T

0
[ d
dt
C(t, x(t))]dt.

(b) Consider an additional state xn+1 to the system (4.0.1) given
by

ẋn+1(t) = c(t, x(t), a(t)), xn+1(0) = 0.

Prove that the Bolza form (4.5.35) can be put in the Mayer
form.

Answer. xn+1(T ) + C(T, x(T )) where x = (x1, . . . , xn).

4.10. Let a∗, x∗, and λ satisfy the Minimum Principle for the
OCP with cost (4.2.1) and dynamics (4.0.1). Let μ(t) := ertλ(t)
and

H(t, x, a,μ) = c(t, x, a) + μ · F (t, x, a), t ∈ [0, T ].

Show that the minimum condition and the adjoint equation can
be respectively written as

H(t, x∗(t), a∗(t),μ(t)) = min
a∈A

H(t, x∗(t), a,μ(t))

and

−μ̇(t) + rμ(t) = H(t, x∗(t), a∗(t),μ(t)), μ(T ) = Cx(x
∗(T ))

for 0 ≤ t < T .

4.11. Prove Proposition 4.30.

4.12. Consider the r-discount OCP (4.5.1)–(4.5.2) and let f ∈
A∗

SM be a stationary Markov control that satisfies (4.5.3).

(a) Assuming that v(·) := V (·, f(·)) is in C1(X), show that v is
the unique solution of the equation

rv(x) = c(x, f) + Lf(x)v(x) ∀x ∈ X.

(b) Show that the r-discount value function v∗(x):= infa∈A V (x, a
(·)) is the unique solution in C1(X) of the HJB equation

rv∗(x) = inf
a∈A

[c(x, a) + Lav∗(x)].
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Hint. In both cases (a) and (b) consider a function of the
form u(t, x) = e−rtv(x) as in the proof of Lemma 4.35.

4.13. (The Ramsey model). Consider the maximization problem
of the discounted utility functional

V (k0, c(·)) =

∫ ∞

0

u(c(t))e−ρtdt

over all consumption strategies c(·)≥0 subject to k̇(t)=F (k(t))−
c(t), k(0) = k0, where the utility and system functions are given,
respectively, by

u(c) =
c1−σ

1 − σ
and F (k) = Akα, α, A > 0, 0 < σ < 1.

For the particular case α = σ, solve the HJB equation by conjec-
turing the value function as v(k) = B0 + B1k

1−σ, where B0 and
B1 are undetermined coefficients.

Answer.

v(k) =

(
σ

ρ

)σ (
A

ρ
+

1

1 − σ
k1−σ

)
, c∗(t) =

ρ

σ
k∗(t),

k∗(t) =

[
Aσ

ρ
+

(
k1−σ

0 − Aσ

ρ

)
e−(1−σ) ρ

σ
t

] 1
1−σ

.

4.14. Let (j, h(·)) be a solution to the Poisson equation (4.4.7)–
(4.4.8). Prove that j is unique, and h is unique up to additive
constants.
Hint. Recall (4.4.6) and (4.4.10).



Chapter 5

Continuous–Time
Markov Control
Processes

As noted in Remark 4.7(b), the solution x(·) of the (determin-
istic) ordinary differential equation (4.0.1) can be interpreted
as a Markov control process (MCP), also known as a controlled
Markov process. In this chapter we introduce some facts on general
continuous–time MCPs, which allows us to make a unified presen-
tation of related control problems. We will begin below with some
comments on (noncontrolled) continuous–time Markov processes.
(We only wish to motivate some concepts, so our presentation is
not very precise. For further details, see the bibliographical notes
at the end of this chapter.)

For notational convenience, sometimes we write x(t) as xt.

5.1 Markov Processes

Consider a continuous–time stochastic process X = {x(t) : t ≥ 0}
with values in a set X ⊂ R

n for some positive integer n. (In
most applications, X is an open set; perhaps Rn itself. There are,
however, other important cases. For instance, if X is a so–called
jump process, then X is usually a countable set.) Accordingly,
there is a probability space (Ω,F , P ) such that, for each t ≥ 0,
x(t) is a random variable (or measurable function) from Ω to
R

n. Hence, strictly speaking, we have a function of two variables
(t,ω) �→ x(t)(ω) ≡ x(t,ω).
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Summarizing, for each t ≥ 0, we have a random variable ω �→
x(t,ω) on Ω; and, for each ω ∈ Ω, we have a function t �→ x(t,ω),
for t ≥ 0, which is called a trajectory or sample path of X .

By a standard convention, the variable ω is omitted and we
write x(t) rather than x(t,ω).

The continuous–time process X is said to satisfy the Markov
property if, informally, given the “present” state, the future behav-
ior of the process is independent of its past. To be a little more
precise, fix an arbitrary time s ≥ 0, and let x(s) be the “present”
state. Then we can express the Markov property as follows: for
any “future time” t > s and B ⊂ X,

P [x(t) ∈ B|x(r) ∀ r ≤ s] = P [x(t) ∈ B|x(s)]. (5.1.1)

In words, (5.1.1) states that the distribution (or “behavior”) of
the process at any “future” state x(t), for t > s, given the “past
history” {x(r), r ≤ s}, depends only on the present state x(s).

From the right–hand side of (5.1.1) we obtain the transition
probabilities

P (s, x, t, B) := P [x(t) ∈ B|x(s) = x] (5.1.2)

for every 0 ≤ s ≤ t, x ∈ X, and B ⊂ X. If t = s, then (5.1.2)
becomes the Dirac (or unit) measure concentrated at x(s) = x,
i.e.,

P (s, x, s, B) = δx(B),

which is defined as δx(B) := 1 if x ∈ B, and := 0 if x /∈ B. Alter-
natively, δx(B) = IB(x) where IB denotes the indicator function
of the set B, IB(x) := 1 if x ∈ B, and := 0 if x /∈ B.

Remark 5.1. The transition probabilities are called stationary
or time–homogeneous if they depend only on the time difference
t − s, that is,

P (s, x, t, B) ≡ P (t − s, x,B).

In this case, (5.1.2) becomes

P (t, x, B) := P [x(t) ∈ B|x(0) = x] for t ≥ 0,



5.1 MARKOV PROCESSES 185

and the Markov process itself is said to be stationary or time–
homogeneous. ♦

Example 5.2. A deterministic system. Consider the ordinary
differential equation

ẋ(t) = F (t, x(t)) for t ≥ 0, (5.1.3)

with a given initial condition x(0) = x0. Let us suppose that F
is continuous and has continuous first partial derivatives with
respect to the components of x ∈ X, where X ⊂ R

n. In this case,
(5.1.3) has a unique solution

x(t) = x0 +

∫ t

0

F (r, x(r))dr ∀ t ≥ 0,

which can be expressed as

x(t) = x(s) +

∫ t

s

F (r, x(r))dr ∀ 0 ≤ s ≤ t. (5.1.4)

If we interpret x(s) as the “present” state, and x(t), for t ≥ s,
as the “future”, then it follows that (5.1.4) is the “deterministic
version” of the Markov property (5.1.1).

Observe that the deterministic function t �→ x(t) in (5.1.3) or
(5.1.4) can be seen as a “degenerate” stochastic process in the
sense that, for each t ≥ 0, we can interpret x(t) as a constant
random variable, that is, ω → x(t,ω) ≡ x(t). Consequently, the
transition probability in (5.1.2) is a Dirac measure

P (s, x, t, B) = δx(t;s,x)(B), (5.1.5)

where x(t; s, x) is given by (5.1.4) when the “initial condition” is
x(s) = x.

For future reference note that integration with respect to this
Dirac measure (5.1.5) yields

∫
X

P (s, x, t, dy)v(y) = v[x(t; s, x)] (5.1.6)

for any bounded measurable function v on X. ♦
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Example 5.3 (Wiener process.). A Wiener process, also known
as a Brownian motion, is a real–valued stochastic process
{w(t), t ≥ 0} that plays an important role in pure and applied
mathematics, and also in physics, astronomy, economics, mathe-
matical finance, and many other fields. It satisfies that w(0) = 0
and, furthermore, by definition,

(a) it has independent increments, which means that if t0 = 0 <
t1 < · · · < tm, then the “increments”

w(t1) − w(t0), w(t2) − w(t1), ..., w(tm) − w(tm−1)

are independent random variables; and
(b) it has Gaussian stationary increments, that is, for any t ≥ 0

and h > 0, the distribution of the increment w(t + h) − w(t)
is Gaussian (or normal) with 0 mean and variance h. (This
increment is “stationary” in the sense that its distribution
depends on the “time increment” h only, not on t.)

Remark. A continuous–time stochastic process with independent
increments is Markov. (See Ash and Gardner (1975), Theorem
4.6.5) ♦

Hence, by this remark, the Wiener process w(·) is Markov.
Moreover, from (a) and (b) above, for any t > 0 and initial state
w(0) = x, the stationary transition probability is

P (t, x, B) =

∫
B

nx,t(y)dy, (5.1.7)

where nx,t(·) denotes the Gaussian (or normal) density with mean
x and variance t, i.e.,

nx,t(y) = (2πt)−1/2 exp(−|y − x|2/2t) ∀ y ∈ R.

Among the many properties of a Wiener process it is the fact
that it has continuous sample paths t �→ w(t) that are nowhere
differentiable!

A process (w1(t), . . . , wn(t)) ∈ R
n, for t ≥ 0, is called an n–

dimensional Wiener process (or Brownian motion) if w1, ..., wn

are independent 1–dimensional Wiener processes. ♦
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Example 5.4. Stochastic differential equations. In Chap. 6,
below, we consider n–dimensional stochastic differential equations
(SDEs) of the form

dx(t) = b(t, x(t))dt + σ(t, x(t))dw(t), t ≥ 0, (5.1.8)

with a given initial condition x(0) = x0, where w(·) is a Wiener
process. The functions b and σ in (5.1.8) are called the SDE’s drift
coefficient and the diffusion coefficient, respectively. As noted in
Example 5.3, the sample paths t �→ w(t) are not differentiable.
Hence, strictly speaking we should express (5.1.8), for any 0 ≤
s ≤ t, in the integral form

x(t) = x(s) +

∫ t

s

b(r, x(r))dr +

∫ t

s

σ(r, x(r))dw(r), (5.1.9)

where the second integral in the right–hand side is well defined as
a so–called Itô integral.

For our present purposes, it suffices to note that, under suit-
able conditions (see Assumption 6.1), the solution of (5.1.8) is a
Markov process with transition probabilities

P (s, x, t, B) = P [x(t) ∈ B|x(s) = x] = P [x(t; s, x) ∈ B]

for all 0 ≤ s ≤ t, x ∈ R
n, and B ⊂ R

n, where x(t; s, x) is given
by (5.1.9) when the initial condition is x(s) = s. Moreover, with
some additional mild condition (Assumption 6.2) the solutions of
SDEs form a class of so–called diffusion processes, and, therefore,
by an abuse of terminology, sometimes one uses the latter term,
diffusion processes, to refer to the SDEs (5.1.8)–(5.1.9).

If the coefficients b(t, x) ≡ b(x) and σ(t, x) ≡ σ(x) in (5.1.8) do
not depend on the time parameter, then the Markov process x(·)
is time–homogeneous with transition probabilities

P (t, x, B) = P [x(t) ∈ B|x(0) = x].

Finally, observe that an ordinary differential equation as in (5.1.3)
can be seen, of course, as a special case of a SDE with diffusion
coefficient σ(·) ≡ 0. ♦
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We conclude this section with another example of a continuous-
time Markov process, namely, the Poisson process, which is very
useful in some applications, for instance, in the control of queues
and other systems in which the state space is a denumerable (or
countable) set. First, we recall the following definition from ele-
mentary probability.

A random variable N with values in the set of nonnegative
integers N = {0, 1, ...} is said to have a Poisson distribution with
rate λ > 0 if

P (N = k) :=
e−λλk

k!
for k = 0, 1, . . . .

On the other hand, a continuous-time stochastic process {N(t), t≥
0} with values in N is called a counting process if, for any t ≥ 0
and h > 0, the increment N(t + h) − N(t) equals the number of
“events” that have occurred in the interval (t, t + h]. (Compare
the following definition with Example 5.3 above.)

Definition 5.5. A counting process {N(t), t ≥ 0} with N(0) =
0 is called a Poisson process with rate λ > 0 if it has

(a) independent increments, and
(b) Poisson stationary increments with rate λ, that is, for each

t ≥ 0 and h > 0, the increment N(t + h) − N(t) is a Poisson
random variable with parameter λh, i.e.,

P (N(t + h) − N(t) = k) =
e−λh(λh)k

k!

for k = 0, 1, ....

By property (a), a Poisson process is a Markov process. (See
the Remark in Example 5.3)

5.2 The Infinitesimal Generator

As in the previous section, we consider a continuous–time Markov
process X = {x(t) : t ≥ 0} in X ⊂ R

n, with transition probabili-
ties (5.1.2). In this section we introduce the infinitesimal generator
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(or simply the generator) of the Markov process X , which is a key
tool to study different aspects of X .

An important property of the transition probabilities is
expressed by the Chapman–Kolmogorov equation:

P (s, x, r, B) =

∫
X

P (s, x, t, dy)P (t, y, r, B) (5.2.1)

for 0 ≤ s ≤ t ≤ r.
We will now introduce three families M ⊃ M0 ⊃ D of real–

valued measurable functions on X∞ := [0,∞) × X.

Definition 5.6. Let M be the linear space of real–valued mea-
surable functions v on X∞ such that∫

X

P (s, x, t, dy)|v(t, y)| < ∞

for each 0 ≤ s ≤ t, x ∈ X.

For each t ≥ 0, and v ∈ M , let Ttv be the function such that, for
each (s, x) ∈ X∞, the expected value

Ttv(s, x) : =Es,x[v(s + t, x(s + t))]=

∫
X

P (s, x, s + t, dy)v(s + t, y)

(5.2.2)
is well defined (and finite), where Es,x[· · · ] denotes the condi-
tional expectation given the initial condition x(s) = x. The oper-
ators Tt, t ≥ 0, form a semigroup of operators on M , that is,
T0 =Identity, each Tt maps M into itself, and

Tt+r = TtTr ∀ t, r ≥ 0,

where the latter equality follows from the right-hand side of (5.2.2)
and the Chapman–Kolmogorov equation (5.2.1). (See Exercise
5.1.)

Let M0 be the subfamily of M consisting of those functions
v ∈ M such that:

(a) limt↓0 Ttv(s, x) = v(s, x) for every (s, x) ∈ X∞, and
(b) there exists t0 > 0 and u ∈ M such that
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Tt|v|(s, x) ≤ u(s, x) ∀ (s, x) ∈ X∞, 0 ≤ t ≤ t0.

The next definition introduces the infinitesimal generator of the
semigroup Tt.

Definition 5.7. Let D(L) be the subset of functions v ∈ M0 that
satisfy the following conditions:

(a) The limit

Lv(s, x) := lim
t↓0

t−1[Ttv(s, x) − v(s, x)] (5.2.3)

exists for all (s, x) ∈ X∞, and
(b) Lv is in M0.

The operator L in (5.2.3) is called the infinitesimal generator of
the semigroup Tt, and is also known as the infinitesimal generator
of the Markov process X . The set D(L) is called the domain of L.

Example 5.8. (a) Consider the deterministic system in (5.1.3),
and suppose that (t, x) �→ v(t, x) is a real–valued mapping on X∞
such that (for instance) it is continuously differentiable in x with
bounded derivatives, uniformly in t ≥ 0. Then, from (5.1.6) and
(5.2.2),

Ttv(s, x) = v(s + t, x(s + t; s, x))

and (5.2.3) becomes

Lv(s, x) = vs(s, x) + vx(s, x)F (s, x), (5.2.4)

where vs denotes the partial derivative of v with respect to s, and
vx is the gradient of v (in the x–variables), that is, the row vector
of partial derivatives vx1 , ..., vxn . Hence, more explicitly, we can
express (5.2.4) as

Lv(s, x) = vs(s, x) +
n∑

i=1

Fi(s, x)vxi
(s, x).

Compare the expressions (5.2.4) and (4.1.12). Omitting the con-
trol variable a ∈ A in (4.1.12), these expressions are essentially
the same. See also Remark 4.7(d) or (4.4.5)–(4.4.6) for the time-
homogeneous deterministic case.
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(b) Let w(·) be the 1–dimensional Wiener process in Example
5.3, and let x �→ v(x) be a twice continuously differentiable func-
tion. Since w(·) is a time–homogeneous Markov process with tran-
sition probability (5.1.8), suitable calculations yield that (5.2.3)
becomes

Lv(x) = (1/2)vxx(x),

where vxx denotes the second derivative of v with respect to x. In
the n–dimensional case w = (w1, ..., wn),

Lv(x) =
1

2

n∑
i=1

vxixi
(x),

where vxixi
denotes the second partial derivative of v with respect

to xi.
For the SDE in Example 5.4, the corresponding generator Lv

is given in (6.1.4), below. ♦
The infinitesimal generator L is in fact an extension of the

“weak infinitesimal generator” of a semigroup, defined in Chap. 1
of Dynkin (1965), and it has essentially the same properties. For
instance, straightforward modifications of the proofs in the latter
reference give the following results.

Lemma 5.9. If v ∈ D(L), then, for all (s, x) ∈ X∞ := [0,∞) × X,

(a) d+

dt
Ttv := lim

h↓0
h−1[Tt+hv − Ttv] = TtLv;

(b) Ttv(s, x) − v(s, x) =
∫ t

0
Tr(Lv)(s, x)dr.

Moreover, if ρ ≥ 0 and vρ(s, x) := e−ρsv(s, x), then vρ is also in
D(L) and

(c) Lvρ(s, x) = e−ρs[Lv(s, x) − ρv(s, x)].
(d) v is a constant if, and only if, Lv(s, x) = 0 for all (s, x).

The proof of Lemma 5.9 is left to the reader. (See Exercise 5.2.)

Remark 5.10. (a) The expression in Lemma 5.9(b) is called
Dynkin’s formula and using (5.2.2) can be rewritten as
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Es,xv(s + t, x(s + t)) − v(s, x) = Es,x

∫ s+t

s

Lv(r, x(r))dr

(5.2.5)
for v ∈ D(L). In the deterministic case, Dynkin’s formula can
be obtained from Remark 4.7(c):

v(T, x(T )) − v(s, x) =

∫ T

s

Lv(r, x(r))dr.

(b) Under suitable assumptions, (5.2.5) holds if t is replaced by a
(random) stopping time τ . (See, for instance, the “corollary”
in Dynkin (1965), p. 133.)

♦

The proof of the following proposition illustrates the use of
Dynkin’s formula (5.2.5).

Proposition 5.11. Let c and K be nonnegative functions on
XT := [0, T ] × X, for some T > 0. Suppose that c is in M0, and
let ρ ≥ 0.

(a) If v ∈ D(L) satisfies the equation

ρv(s, x) = c(s, x) + Lv(s, x) ∀ (s, x) ∈ XT (5.2.6)

with the “terminal” condition

v(T, x) = K(T, x) ∀ x ∈ X, (5.2.7)

then, for all (s, x) ∈ XT ,

v(s, x) = Es,x[

∫ T

s

e−ρ(t−s)c(t, x(t))dt + e−ρ(T−s)K(T, x(T ))].

(5.2.8)
(a’) If instead of (5.2.6) we have the inequality ρv ≤ c + Lv, then

in (5.2.8) we replace “=” with “≤”. Similarly, if in (5.2.6) we
replace the equality with “≥”, then in (5.2.8) we replace “=”
with “≥”.

(b) Suppose that c is as above, but ρ > 0 and K ≡ 0. Suppose
that v ∈ D(L) satisfies (5.2.6) for all (s, x) ∈ X∞ := [0,∞) ×
X and the condition
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e−ρtEs,xv(s + t, x(s + t)) = e−ρtTtv(s, x) → 0 as t → ∞.
(5.2.9)

Then v ≡ vρ is given by

vρ(s, x) = Es,x

∫ ∞

s

e−ρ(t−s)c(t, x(t))dt

=

∫ ∞

0

e−ρtTtc(s, x)dt. (5.2.10)

(b’) If in (5.2.6) we replace the equality “=” with either “≤” or
“≥”, then in (5.2.10) we replace the equality with “≤” or
“≥”, respectively.

Proof.

(a) As in Lemma 5.9(c), let vρ(s, x) := e−ρsv(s, x) and note that
(5.2.6) can be expressed as Lv(s, x) − ρv(s, x) = −c(s, c).
Hence, Lemma 5.9(c) yields

Lvρ(s, x) = e−ρs[Lv(s, x) − ρv(s, x)] = −e−ρsc(s, x). (5.2.11)

Therefore, applying Dynkin’s formula (5.2.5) to vρ, we obtain

e−ρ(s+t)v(s+t, x(s + t))−e−ρsv(s, x)= −
∫ s+t

s

e−ρrc(r, x(r))dr.

Multiplying both sides of the latter expression by eρs and
taking t = T − s it follows that

e−ρ(T−s)Es,xv(T, x(T )) − v(s, x) = −
∫ T

s

e−ρ(r−s)c(r, x(r))dr.

Finally, rearranging terms and using (5.2.7) we obtain (5.2.8).
(a’)If ρv ≤ c + Lv, then instead of (5.2.11) we obtain Lvρ(s, x) ≥

−e−ρsc(s, x). Thus, with the obvious changes, the proof of (a)
gives also (a’).

(b) If K ≡ 0, (5.2.9) and (5.2.8) give (5.2.10) as T → ∞. The
proof of (b’) is left as an exercise. �
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Proposition 5.11 will be very useful to obtain the dynamic pro-
gramming (or Hamilton–Jacobi–Bellman) equation associated to
some stochastic control problems.

If the function c ∈ M0 in Proposition 5.11 is a “cost rate”, that
is, a cost per unit time, then v(s, x) in (5.2.8) can be interpreted
as a total expected cost during the time interval [s, T ], with ini-
tial state x(s) = x ∈ X and terminal cost K(T, x(T )). Similarly,
(5.2.10) can be seen as an infinite–horizon expected discounted
cost from time s onward, with discount factor ρ > 0 and initial
condition x(s) = x. In the following Proposition 5.13 we present
a result for the long–run expected average cost defined as follows.

First, given a “cost rate” c ∈ M0 and t > 0, let

vt(s, x) := Es,x

[∫ s+t

s

c(r, x(r))dr

]

=

∫ t

0

Trc(s, x)dr (5.2.12)

be the total expected cost in the interval [s, s + t], given the initial
condition x(s) = x ∈ X at time s ≥ 0. Then

Jt(s, x) :=
vt(s, x)

t
(5.2.13)

denotes the expected average cost during the time interval [s, s + t],
with initial condition x(s) = x. To define the “long–run expected
average cost” we would like to take the limit as t → ∞ in (5.2.13). A
priori, however, we do not know if such a limit exists; hence, we can
take instead either the “lim sup”, i.e.,

J sup(s, x) := lim sup
t→∞

Jt(s, x), (5.2.14)

or the “lim inf”,

Jinf(s, x) := lim inf
t→∞

Jt(s, x). (5.2.15)

For theoretical reasons, taking the lim sup is more convenient, so
we will take (5.2.14) as the definition of the long–run expected
average cost. (As an example, taking the average cost as J sup in
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(5.2.14) simplifies the calculations to obtain results as in Exercise
5.8(b),(c).)

Remark 5.12. (a) As a rule of thumb, if we wish to minimize
a long–run expected average cost, we use the lim sup as
in (5.2.14). (We thus take a “conservative” or “minimax”
attitude—we wish to minimize a “maximum” or “lim sup”.)
Nevertheless, if we wish to maximize a long–run average reward
(or utility or income), then we use the lim inf in (5.2.15). (This
is again a “conservative”, in fact, “maximin” attitude.)

(b) Since the long-run expected average cost (5.2.14) concerns
the convergence of time averages (5.2.13), it is also known as
an ergodic cost. (See, for instance, Arapostathis et al. (2012)
or Arisawa (1997).) ♦

The following Proposition 5.13 is a general version of Lemma
4.19 for deterministic continuous-time systems.

Proposition 5.13. Let c ∈ M0 be a given function, and suppose
that there exists a number j(c) ∈ R and a function hc ∈ D(L) such
the pair (j(c), hc) satisfies, for all (s, x) ∈ X∞ := [0,∞) × X, the
so–called Poisson equation

j(c) = c(s, x) + Lhc(s, x). (5.2.16)

Moreover, suppose that, for all (s, x) ∈ X∞, hc is such that

lim
t→∞

Tthc(s, x)/t = 0. (5.2.17)

Then:
(a) The constant j(c) = J sup(s, x) for all (s, x) ∈ X∞.
(b) If the equality in (5.2.16) is replaced with “≤”, then the equal-
ity in (a) is replaced with “≤”; that is, if

j(c) ≤ c(s, x) + Lhc(s, x) ∀ (s, x),

then j(c) ≤ J sup(s, x) for all (s, x). This result is also true if we
have “≥” in lieu of “≤”.

Proof. (a) By Dynkin’s formula in Lemma 5.9(b) (or (5.2.5)),



196 5 CONTINUOUS–TIME MARKOV CONTROL PRORCESSES

Tthc(s, x) − hc(s, x) =

∫ t

0

Tr(Lhc)(s, x)dr

= Es,x

∫ t

0

Lhc(s + r, x(s + r))dr

[by (5.2.17)]

= tj(c) − Es,x

∫ t

0

c(s + r, x(s + r))dr

= tj(c) −
∫ t

0

Trc(s, x)dr.

Hence, rearranging terms and multiplying by t−1,

j(c) = t−1

∫ t

0

Trc(s, x)dr + t−1[Tthc(s, x) − hc(s, x)].

Finally, letting t → ∞, (5.2.17) yields (a).
The proof of part (b) is similar. �

Remark 5.14. (a) The pair (j(c), hc) in Proposition 5.13 is called
a canonical pair or a solution of the Poisson equation (5.2.16)
corresponding to the function c ∈ M0. There are several
approaches to obtain such a pair. Some of these approaches
are briefly introduced in part (d) below, in Sect. 5.5, and also
in the exercise section. See also Sect. 4.4 for the deterministic
case.

(b) If (j(c), hc) is a solution to (5.2.16), then j(c) is unique, but
hc is unique up to additive constants only. More precisely,
suppose that, for i = 1, 2, the pair (ji, hi) ∈ R × D(L) is a
solution to (5.2.16), i.e.,

ji = c(s, x) + Lhi(s, x) ∀ (s, x),

and it satisfies (5.2.17). Then j1 = j2, and h1, h2 differ by a
constant: h1 = h2+ constant. (See Exercise 5.6.)

(c) For a stationary (or time–homogeneous) Markov process, the
notation and results in this section simplify in the obvious
manner. For instance, the linear space M in Definition 5.6



5.2 THE INFINITESIMAL GENERATOR 197

becomes the space of measurable functions v : X → R such
that ∫

X

P (t, x, dy)|v(y)| < ∞ ∀ t ≥ 0, x ∈ X,

and (5.2.2) becomes

Ttv(x) = Exv(x(t)) =

∫
X

P (t, x, dy)v(y) ∀ t ≥ 0, x ∈ X.

(d) As in part (c), above, consider a time–homogeneous Markov
process X with transition probabilities P (t, x, ·), and a func-
tion c ∈ M0. Let μ be a probability measure on X, which is
an invariant probability measure1 for X ; that is, for each Borel
set B ⊂ X, t ≥ 0, and x ∈ X, we have

μ(B) =

∫
X

P (t, x, B)μ(dx).

Let ‖ · ‖∗ be a norm on the linear space of finite signed mea-
sures on X. We assume that our Markov process is uniformly
ergodic (or geometrically ergodic) with respect to the norm
‖ · ‖∗, that is, there exist positive constants θ and γ such that,
for all t ≥ 0 and x ∈ X,

‖P (t, x, ·) − μ(·)‖∗ ≤ θe−γt. (5.2.18)

In this case, as t → ∞, P (t, x, ·) converges geometrically fast
to μ(·) for any initial state x. (For conditions ensuring geomet-
ric ergodicity, see the references in Exercise 5.9.) Finally, sup-
pose that c ∈ M0 is bounded2 by some constant c̄: |c(x)| ≤ c̄.
Let

j(c) :=

∫
X

c(x)μ(dx), and hc(x) :=

∫ ∞

0

[Ttc(x) − j(c)]dt

(5.2.19)

1 The probability measure μ is said to be “invariant” or a “stationary measure” for X
because if the initial state x(0) has distribution μ, then the state x(t) has distribution μ
for all t ≥ 0. A Markov process is called ergodic if it has a unique invariant probability
measure.
2 The requirement that c is bounded simplifies the presentation, but it is not necessary.

(See the references in Exercise 5.9.)
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for x ∈ X. Then hc is in D(L), and the pair (j(c), hc) is a
solution to the Poisson equation

j(c) = c(x) + Lhc(x) for all x ∈ X. (5.2.20)

(See Exercise 5.9.) ♦

5.3 Markov Control Processes

For our present purposes, a continuous–time Markov control pro-
cess (MCP) is specified by:

(a) Two sets X ⊂ R
n and A ⊂ R

m, called the state space and the
action set (or action space), respectively;

(b) The law of motion: Corresponding to each action a ∈ A, there
exists a linear operator La that is the infinitesimal generator
of a X–valued Markov process with transition probabilities

P a(s, x, t, B).

(c) A cost rate function c(s, x, a), which is a real–valued measur-
able function defined on [0,∞) × X × A. We assume that c is
nonnegative.

The quadruple (X,A,La, c) in (a), (b), (c) expresses in a compact
form a continuous–time MCP. (In a more general context, X and
A can be complete and separable metric spaces, also known as
Polish spaces. Moreover, the condition that the cost rate c is non-
negative simplifies some theoretical and computational aspects,
but strictly speaking it is not necessary.)

Example 5.15. The (deterministic) differential system (4.0.1)
defines a continuous–time MCP with state and action spaces X
and A as in Chap. 4, and infinitesimal generator La in (4.1.12),
that is,

Lav(s, x) := vs(s, x) + vx(s, x) · F (s, x, a). (5.3.1)
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The situation is essentially the same as in Examples 5.2 and 5.8(a)
except that now the system function F depends also on the control
variable a ∈ A. Compare (5.3.1) and (5.2.4).

On the other hand, the cost rate function c(s, x, a) is as in
(4.1.1), and in some cases—as in the finite–horizon case (4.1.1)—
we also need to specify a terminal cost function C(x). ♦

Given a MCP, we will only consider Markov control policies
(also known as closed–loop or feedback controls), that is, measur-
able functions π : [0,∞) × X → A such that aπ := π(s, x) denotes
the control action prescribed by π when the state x ∈ X is
observed at time s. A Markov policy is said to be stationary if
it is independent of the time parameter s, that is, π(s, x) ≡ π(x)
for all (s, x). We will denote by Π the set of all Markov policies,
and by ΠS the subset of stationary policies. Moreover, for techni-
cal reasons, we restrict ourselves to the class Π of Markov policies
for which the corresponding state (Markov) processes are nicely
behaved, in the following sense.

Assumption 5.16. For each π ∈ Π there exists a continuous–
time Markov process xπ(·) = x(·) such that:

(a) Almost all the sample paths of x(·) are right–continuous, with
left–hand limits, and have only finitely many discontinuities
in any finite interval of time.

(b) x(·) is a Markov process with transition probability denoted
by P π(s, x, t, B) and associated semigroup T π; see (5.2.2).

(c) The substitution property. The infinitesimal generator Lπ of
x(·) satisfies that

Lπ = La if π(s, a) = a.

(d) The process x(·) is conservative in the sense that if v(s, x) ≡ 1
for all (s, x), then Lπv = 0.

(e) There is a nonempty subfamily Π0 of Π such that D(Lπ)
is nonempty for all π ∈ Π0, and, furthermore, the cost rate
c(s, x, a) is such that the function is in M0 for all π ∈ Π0,
where cπ(s, x) := c(s, x,π(s, x)) for all π ∈ Π0.

To state our final assumption in this chapter we note that, for
each π ∈ Π, the function sets M ⊃ M0 ⊃ D(L) in Sect. 5.2 depend
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on the policy π being used, so they now will be written as Mπ,Mπ
0 ,

and D(Lπ), respectively. With this notation and the family Π0 in
Assumption 5.16(e), we have the following.

Assumption 5.17. There exist nonempty sets M ⊃ M0 ⊃ D
such that, for all π ∈ Π0,

M ⊂ Mπ, M0 ⊂ Mπ
0 , and D ⊂ D(Lπ).

Remark 5.18 (Notation). Given a policy π ∈ Π0 and the cost
rate c(s, x, a) we will use the notation:

cπ(s, x) = c(s, x,π) = c(s, x,π(s, x)) if x(s) = x. (5.3.2)

In particular, if c(s, x, a) = c(x, a) is independent of the time
parameter s, then (5.3.2) means:

cπ(s, x) = c(x,π(s, x)) if x(s) = x. (5.3.3)

If, in addition, π is stationary, so π(s, x) ≡ π(x), then (5.3.3)
becomes

cπ(x) = c(x,π) = c(x,π(x)). (5.3.4)

Similarly, when using a policy π ∈ Π0, expectations such as (5.2.2)
will be written as

T π
t v(s, x)=Eπ

s,xv(s + t, x(s + t))=

∫
X

P π(s, x, s+t, dy)v(s + t, y)

(5.3.5)
or, by the substitution property in Assumption 5.16(c),

T a
t v(s, x)=Ea

s,xv(s + t, x(s + t))=

∫
X

P a(s, x, s + t, dy)v(s + t, y)

(5.3.6)
if π(s, x) = a. In particular, for a time–homogeneous MCP and a
function v(s, x) ≡ v(x) in D, if π(s, x) = a, then

T π
t v(s, x) = T a

t v(x) and Lπv(s, x) = Lav(x). (5.3.7)

♦
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5.4 The Dynamic Programming
Approach

As noted in previous chapters, when using the dynamic program-
ming (DP) approach to study a given optimal control problem
(OCP) the idea is to obtain an equation—the so–called Bellman
equation or dynamic programming equation (DPE)—from which
we can obtain, under appropriate conditions, the OCP’s value
function and also optimal control policies.

Remark 5.19. For continuous–time MCPs, the dynamic pro-
gramming (or Bellman) equation is also known as the Hamilton–
Jacobi–Bellman (HJB) equation. ♦

In the remainder of this chapter we use the DP approach to
analyze some OCPs associated to a general continuous–time MCP
(X,A,La, c) that satisfies the conditions in Sect. 5.3, in particular,
Assumptions 5.16 and 5.17. We consider, first, a finite–horizon
OCP.

Fix ρ ≥ 0 and T > 0. Consider the cost functional

V (s, x,π) := Eπ
s,x[

∫ T

s

e−ρ(t−s)cπ(t, x(t))dt + e−ρ(T−s)K(T, x(T ))

(5.4.1)
with 0 ≤ s ≤ T, x ∈ X, and π ∈ Π0, where K ∈ M is a given non-
negative function representing a “terminal cost” at the terminal
time T . (Recall that M is the set in Assumption 5.17.)

For future reference, compare (5.4.1) and (5.2.8): they are essen-
tially the same except that (5.4.1) depends on π.

If ρ = 0 in (5.4.1), then V (s, x,π) is called the expected total
cost during the interval [s, T ] when using the policy π. If, on the
other hand, ρ > 0 then V is the discounted cost during [s, T ] when
using π. In either case, the OCP is to find a policy π∗ such

V (s, x,π∗) = inf
π
V (s, x,π) =: V ∗(s, x) ∀ (s, x) ∈ XT . (5.4.2)

If this is the case, then we say that π∗ is an optimal policy, and
the function V ∗ is called the OCP’s value function or optimal
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cost function. The corresponding dynamic programming theorem
is Theorem 5.21 below.

Remark 5.20. Compare Theorem 4.6 and the following The-
orem 5.21 with ρ = 0: the theorems are the same except that
Lav in (5.4.3) is written in the form (4.1.12), and the termi-
nal cost K(T, x) in (5.4.4) takes the form C(x) in (4.1.9). In
other words, Theorem 4.6 is a special case of Theorem 5.21 when
the Markov control problem is given by the deterministic system
(4.0.1)–(4.1.1). Similarly, in the following chapter we will special-
ize Theorem 5.21 (and also Theorem 5.23) to controlled diffu-
sion processes, which is a class of controlled stochastic differential
equations. ♦

Recall that D is the set in Assumption 5.17.

Theorem 5.21. Suppose that v ∈ D satisfies the equation

ρv(s, x) = inf
a∈A

[c(s, x, a) + Lav(s, x)] ∀ (s, x) ∈ XT (5.4.3)

with the boundary (or “terminal”) condition

v(T, x) = K(T, x) ∀ x ∈ X. (5.4.4)

Then:

(a) v(s, x) ≤ V (s, x,π) for all (s, x) ∈ XT and π ∈ Π0.
(b) If π∗ ∈ Π0 is an admissible Markov policy such that π∗(s, x)

attains the minimum in the right-hand side of (5.4.3), that is
(using the notation in Remark 5.18),

ρv(s, x) = cπ∗
(s, x) + Lπ∗

v(s, x) ∀ (s, x) ∈ XT , (5.4.5)

then v(s, x) = V (s, x,π∗), and so (by part (a)) π∗ is an opti-
mal policy and v = V ∗ is the optimal cost function in (5.4.2).

Proof.

(a) Suppose that v satisfies (5.4.3). Then, for all (s, x) ∈ XT and
a ∈ A,

ρv(s, x) ≤ c(s, x, a) + Lav(s, x).
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Therefore, for any π ∈ Π0,

ρv(s, x) ≤ cπ(s, x) + Lπv(s, x).

Note that this inequality can be written as in Proposition
5.11(a’), that is, ρv ≤ cπ + Lπv. Hence, this inequality and
(5.4.4) yield (by Proposition 5.11(a’) and comparing (5.4.1)
with (5.2.8))

v(s, x) ≤ V (s, x,π) ∀ (s, x) ∈ XT .

This completes the proof of part (a).
(b) If (5.4.5) and (5.4.4) hold, then Proposition 5.11(a) and (5.4.1)

give
v(s, x) = V (s, x,π∗) ∀ (s, x) ∈ XT .

Thus, part (a) and (5.4.2) yield the desired conclusion. �

To conclude this section, we consider the infinite–horizon ver-
sion of (5.4.1), with ρ > 0, a given discount factor, and K ≡ 0.
Hence, consider

V∞(s, x,π) := Eπ
s,x

∫ ∞

s

e−ρ(t−s)cπ(t, x(t))dt (5.4.6)

= lim
T→∞

Eπ
s,x

∫ T

s

e−ρ(t−s)cπ(t, x(t))dt

for all (s, x) in X∞ := [0,∞) × X, and π ∈ Π0. (Compare (5.4.6)
and (5.2.10).) The corresponding value (or optimal cost) function
is

V ∗
∞(s, x) := inf

π
V∞(s, x,π).

As usual, a policy π∗ ∈ Π0 is said to be optimal if V∞(s, x,π∗) =
V ∗

∞(s, x) for all (s, x) ∈ X∞. On the other hand, to have a non-
trivial OCP we assume the following.

Assumption 5.22. There exists an admissible policy π ∈ Π0

such that V∞(s, x,π) < ∞ for every (s, x) ∈ X∞.

Assumption 5.22 ensures that V ∗
∞(s, x) < ∞ for every initial

condition (s, x). As an example, Assumption 5.22 trivially holds
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if c(s, x.a) is bounded, that is, for some positive constant K, 0 ≤
c(s, x, a) ≤ K for all (s, x, a) ∈ X∞ × A. In this case, (5.4.6) yields

V∞(s, x,π) ≤ K/ρ ∀ s, x,π.

In the infinite–horizon case (5.4.6), the DP Theorem 5.21
becomes as follows. (Note that Theorem 4.15, in Sect. 4.3, is
a deterministic version of Theorem 5.23. In particular, compare
(5.4.8) and (4.3.3).)

Theorem 5.23. Suppose that v ∈ D satisfies the equation

ρv(s, x) = inf
a∈A

[c(s, x, a) + Lav(s, x)] (5.4.7)

for all (s, x) ∈ X∞. Then:

(a) v(s, x) ≤ V∞(s, x,π) for every policy π ∈ Π0 such that

e−ρtT π
t v(s, x) → 0 as t → ∞. (5.4.8)

(b) If π∗ ∈ Π0 is such that π∗(s, x) ∈ A attains the minimum in
(5.4.7), that is,

ρv(s, x) = cπ∗
(s, x) + Lπ∗

v(s, x) (5.4.9)

for all (s, x) ∈ X∞, then π∗ is optimal within the class of
policies π ∈ Π0 that satisfy (5.4.8) and, moreover, v(s, x) =
V ∗

∞(s, x) = V∞(s, x,π∗) for all (s, x).

Proof. As in the proof of Theorem 5.21(a), the relation (5.4.7)
implies that

ρv ≤ cπ + Lπ ∀ π ∈ Π0.

If, in addition, π ∈ Π0 satisfies the condition (5.4.8), then Propo-
sition 5.11(b’) yields that

v(·, ·) ≤ V (·, ·,π).

This proves part (a). Similarly, if π∗ satisfies (5.4.9) and (5.4.8),
then Proposition 5.11(b) gives that
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v(·, ·) = V∞(·, ·,π∗).

Therefore, the desired conclusion in (b) follows from (a). �

5.5 Long–Run Average Cost
Problems

In this section we consider a time-homogeneous continuous–time
MCP (X,A,La, c), with a nonnegative cost function c. We will
use the notation (5.3.3), (5.3.4), and (5.3.7).

For each t ≥ 0, x ∈ X, and π ∈ Π, let

Jt(x,π) := Eπ
x

∫ t

0

cπ(r, x(r))dr (5.5.1)

be the total expected cost in [0, t], when using the control pol-
icy π, given the initial state x(0) = x. (In (5.5.1) we are using
the notation (5.3.3), according to which cπ(r, x) := c(x,π(r, x)) if
x(r) = x.)

As in (5.2.13)–(5.2.14), we now consider the long-run expected
average cost, or simply the average cost (AC), when using π ∈ Π,
defined as

J(x,π) := lim sup
t→∞

Jt(x,π)/t (5.5.2)

for each initial state x. (As a particular case, see the deterministic
problem (4.4.1)–(4.4.3).)

Assumption 5.24. There exists a policy π ∈ Π such that
J(x,π) < ∞ for every x ∈ X.

For instance, if c is bounded (say, there is a constant c̄ such
that 0 ≤ c(x, a) ≤ c̄ for all x ∈ X and a ∈ A), then Assumption
5.24 holds with J(x,π) ≤ c̄ for all x, π.

Under our current assumptions, the AC–value function

J∗(x) := inf
π∈Π

J(x,π), x ∈ X, (5.5.3)

is finite–valued. As usual, a policy π∗ ∈ Π is said to be optimal
with respect to (5.5.2), or AC–optimal, if
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J(x,π∗) = J∗(x) ∀ x ∈ X.

To analyze the AC–optimal control problem, we will first use
Proposition 5.13 to obtain a characterization of J(x,π).

Remark 5.25. In (5.5.4)–(5.5.5) below we use the notation (5.3.3)
and (5.3.7). ♦

Proposition 5.26. (a) Let π ∈ Π be a policy for which the fol-
lowing holds: There exists a number jπ and a function hπ ∈ D
such that the pair (jπ, hπ) satisfies the Poisson equation

jπ = cπ(s, x) + Lπhπ(s, x) ∀ s, x (5.5.4)

and, furthermore,

lim
t→∞

T π
t h

π(s, x)/t = 0. (5.5.5)

Then J(·,π) is the constant jπ, i.e.,

jπ = J(x,π) ∀ x ∈ X. (5.5.6)

(b) If in (5.5.4) we replace the equality by either ≤ or ≥, then in
(5.5.6) the equality is replaced by ≤ or ≥, respectively.

We will omit the proof of Proposition 5.26 because it is the
same as that of Proposition 5.13. On the other hand, observe
that (5.5.5) is obviously true if hπ is a bounded function.

We will next consider the AC optimal control problem in which
we wish to minimize the function π �→ J(x,π) for every x ∈ X.
To this end we introduce the following definition.

Definition 5.27. Consider a pair (j∗, h∗) that consists of a real
number j∗ and a function h∗ ∈ D. The pair (j∗, h∗) is called
(a) a solution to the average cost optimality equation (ACOE) if

j∗ = inf
a∈A

[c(x, a) + Lah∗(x)] ∀ x ∈ X; (5.5.7)

(b) a solution to the average cost optimality inequality (ACOI) if

j∗ ≥ inf
a∈A

[c(x, a) + Lah∗(x)] ∀ x ∈ X. (5.5.8)
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A large part of the analysis of AC problems concerns either
the ACOE (5.5.7) or the ACOI (5.5.8). This is mainly due to the
following theorem.

Theorem 5.28. Let (j∗, h∗) ∈ R × D be a solution to the ACOE
(5.5.7). Let ΠAC ⊂ Π be family of policies π ∈ Π such that

lim
t→∞

T π
t h

∗(s, x)/t = 0 ∀ s, x. (5.5.9)

Then for every x ∈ X :
(a) j∗ ≤ infπ∈ΠAC J(x,π); hence
(a’) j∗ ≤ J∗(x) if ΠAC = Π, where J∗(·) is the AC–value function
in (5.5.3). Moreover, let ΠAC

S ⊂ ΠS be the family of stationary
policies that satisfy (5.5.9). If π∗ ∈ ΠAC

S is such that, for every
x ∈ X, π∗(x) ∈ A minimizes the right–hand side of (5.5.7), i.e.,

j∗ = cπ∗
(x) + Lπ∗

h∗(x) ∀ x ∈ X, (5.5.10)

then, for all x ∈ X,
(b) j∗ = J(x,π∗) = infπ∈ΠAC

S
J(x,π); hence

(b’) j∗ = J(x,π∗) = J∗(x) if ΠAC = Π. In words, if π∗ ∈ ΠS is a
stationary policy that satisfies (5.5.10) and, in addition, (5.5.9)
holds for every π ∈ Π, then π∗ is AC–optimal, and the optimal
cost is the constant J(·,π∗) ≡ j∗.
(c) Suppose that, instead of (5.5.10), π∗ ∈ ΠAC

S minimizes the
right–hand side of the ACOI (5.5.8), i.e.,

j∗ ≥ cπ∗
(x) + Lπ∗

h∗(x) ∀ x ∈ X. (5.5.11)

Then
j∗ ≥ J(x,π∗) ≥ J∗(x) ∀ x ∈ X. (5.5.12)

(c’) Part (b’) holds, that is, j∗ = J(·,π∗) = J∗(·) if ΠAC = Π.

Proof. (a) By (5.5.7),

j∗ ≤ c(x, a) + Lah∗(x) ∀ x ∈ X, a ∈ A,

and so
j∗ ≤ cπ(s, x) + Lπh∗(s, x) ∀ π ∈ Π.
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Therefore, by Proposition 5.26(b) and (5.5.9),

j∗ ≤ J(x,π) ∀ x ∈ X,π ∈ ΠAC .

This implies (a), and also (a’) if ΠAC = Π.
(b) From Proposition (5.2.14)(a), j∗ = J(x,π∗) for all x ∈ X.

Hence, (b) follows from part (a). Clearly, (b) implies (b’).
(c) The first inequality in (5.5.12) is a consequence of (5.5.11)

and Proposition 5.26(b). The second inequality follows from the
definition (5.5.3) of J∗. Finally, parts (c) and (a) give (c’). �

Remark 5.29. In results such as Theorem 5.28(a’) or (c), we
require conditions ensuring the existence of measurable mappings
π∗ : X → A such that, for every x ∈ X, π∗(x) ∈ A attains the
minimum in the right–hand side of (5.5.7) or (5.5.8); that is, if

v(x, a) := c(x, a) + Lah∗(x), (5.5.13)

then
inf
a∈A

v(x, a) = vπ∗
(x) := v(x,π∗(x)) (5.5.14)

for all x ∈ X. These conditions can be obtained from results as
those in Appendix B. For example, suppose that A is a compact
metric space, and in Theorem B.3 consider the “constant” mul-
tifunction Φ(·) ≡ A. Suppose, in addition, that v in (5.5.13) is
such that a �→ v(x, a) is l.s.c. on A for each x ∈ X. Then Theo-
rem B.3 gives the existence of π∗ that satisfies (5.5.14). If A is not
compact, we can try to use Theorems B.8 or B.9, for instance. ♦

Theorem 5.28 shows that the ACOE (5.5.7) and the ACOI
(5.5.8) give a lower bound or an upper bound, respectively, for
the optimal AC function J∗(·). They also give means to obtain
an AC–optimal policy π∗ ∈ ΠAC

S . Then the obvious question is, of
course, how to obtain a solution (j∗, h∗) to (5.5.7) or (5.5.8)? There
are several ways to answer this question, depending on the under-
lying assumptions, such as the ergodicity approach, the vanishing
discount approach, the infinite–dimensional linear programming
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approach,..., etc. In fact, to the best of our knowledge, none of
these approaches has been developed for the general MCPs intro-
duced in this chapter. The first two, however, can be naturally
extended to our current context—see the following Sects. 5.5.1
and 5.5.2. The infinite-dimensional linear programming approach
requires a more technical background, but the general ideas are as
in the discrete-time case in Hernández-Lerma and Lasserre (1996)
and (1999) Chaps. 6 and 12, respectively.

5.5.1 The Ergodicity Approach

In Remark 5.14(d) and Proposition 5.26, let us suppose that for
each stationary policy π ∈ ΠS, the corresponding Markov process
x(·) is uniformly geometrically ergodic in the sense of (5.2.18),
that is, for every π ∈ ΠS, t ≥ 0, and x ∈ X,

‖P π(t, x, ·) − μπ(·)‖∗ ≤ θe−γt, (5.5.15)

where θ and γ are positive constants. Let us suppose, in addi-
tion, that the cost function c is bounded. Then defining jπ ∈ R

and hπ(·) ∈ D as in (5.2.19), we obtain a solution (jπ, hπ) to the
Poisson equation (5.5.4), i.e., for each π ∈ ΠS,

jπ = cπ(x) + Lπhπ(x) ∀ x ∈ X. (5.5.16)

Moreover, since c is bounded, then so is hπ and hence (5.5.5)
holds. Therefore, from (5.5.6), for every π ∈ ΠS and x ∈ X,

jπ = J(x,π) ≥ inf
π∈ΠS

J(x,π). (5.5.17)

For examples and further comments on the ergodicity approach,
see Sect. 6.5. In the meantime, note that results such as (5.5.15)
are well known in the literature on Markov processes; see, for
instance, Down et al. (1995) or Lund et al. (1996).
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5.5.2 The Vanishing Discount Approach

The vanishing discount approach to the AC problem refers to the
analysis of the ρ–discounted cost (5.4.6) for a time–homogeneous
MCP, say,

V ρ(x,π) := Eπ
x

∫ ∞

0

e−ρtcπ(x(t))dt (5.5.18)

as “the discount ρ vanishes”, that is, as ρ ↓ 0. (For deterministic
continuous-time AC problems, the vanishing discount approach is
studied in Sect. 4.4.3.)

There are several way to see the connection between (5.5.18)
and the AC (5.5.2). For instance, from the Abelian theorems in
Exercises 5.7 and 5.8(c) it can be seen that if (5.5.2) holds with
“lim sup” replaced by “limit”, i.e.,

J(x,π) = lim
t→∞

Jt(x,π)/t,

then

lim
ρ↓0

ρV ρ(x,π) = J(x,π). (5.5.19)

(See Exercise 5.8(b) or (c).)
Alternatively, (5.5.19) can be obtained in the context of

(5.5.15)–(5.5.17). Indeed, inside the integral in (5.5.18) replace
cπ(·) with cπ(·) − jπ + jπ, with jπ = J(x,π) as in (5.5.17). Then
V ρ(x,π) can be expressed as

V ρ(x,π) = Eπ
x

∫ ∞

0

e−ρt[cπ(x(t)) − jπ]dt + jπ/ρ,

so, multiplying both sides by ρ, we obtain

ρV ρ(x,π) = jπ + ρEπ
x

∫ ∞

0

e−ρt[cπ(x(t)) − jπ]dt. (5.5.20)

Therefore, this fact yields again (5.5.19) provided that the right-
most term in (5.5.20) tends to zero as ρ ↓ 0, i.e.,

lim
ρ↓0

ρEπ
x

∫ ∞

0

e−ρt [cπ(x(t)) − jπ] dt = 0. (5.5.21)
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As an example, this is true if (5.5.15) holds. (See Exercise 5.10.)
The starting point of the so–called “vanishing discount

approach” in stochastic control theory is the ρ–discount dynamic
programming equation (5.4.7) for a time–homogeneous MCP, that
is, with vρ(·) ≡ v(·),

ρvρ(x) = inf
a∈A

[c(x, a) + Lavρ(x)], x ∈ X. (5.5.22)

Recall that, in the time-homogeneous case,

vρ(x) := inf
π
vρ(x,π),

with vρ(x,π) := Eπ
x

∫ ∞
0

e−ρtcπ(x(t))dt.
For applications of the vanishing discount approach to con-

trolled diffusion processes, see Sect. 6.5.

Notes—Chapter 5

1. Most of the material in this chapter comes from Hernández-
Lerma (1994) but, in fact, general continuous–time MCPs are
a standard subject; see Doshi (1976a, b, 1979), Fleming (1984),
Gihman and Skorohod (1979), Hernández-Lerma and Govindan
(2001), Rishel (1990), and their references. For noncontrolled
continuous-time Markov processes, as in Sects. 5.1 and 5.2, above,
there are many excellent textbooks; see, for instance, Evans (2013)
or Mikosch (1998) or the introductory chapters in Arnold (1974),
Hanson (2007), Øksendal (2003), ...

2. In these notes, as examples of continuous–time MCPs, we
only consider the deterministic systems in Chap. 4, and the con-
trolled diffusion processes in Chap. 6. There are, however, many
other important classes of continuous–time MCPs, such as con-
trolled jump-Markov processes with a countable state space (see,
for instance, Guo and Hernández-Lerma (2009) or Prieto-Rumeau
and Hernández-Lerma (2012)) or an uncountable (Borel) state
space (as in Piunovskiy and Zhang (2020)), and controlled jump–
diffusion processes (as in Hanson (2007) or Øksendal and Sulem
(2007)).
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Exercises

5.1. Let Tt be as in (5.2.2). Prove that Tt, t ≥ 0, is a semigroup
of operators on M , that is, T0 =Identity, each Tt maps M into
itself, and Tt+r = TtTr for all t, r ≥ 0.

5.2. Prove Lemma 5.9.

5.3. Prove Proposition 5.11(b’).

5.4. Show directly that Propositions 5.11(a) and (a’) hold when
ρ = 0. More explicitly, suppose that the functions c and K are as
in Proposition 5.11. Then:
(a) If v ∈ D(L) satisfies that

c(s, x) + Lv(s, x) = 0 ∀ (s, x) ∈ XT ,

with the terminal condition (5.2.7), then

v(s, x) = Es,x[

∫ T

s

c(t, x(t))dt + K(T, x(T ))] ∀ (s, x) ∈ XT .

Similarly for (a’).

Remark. Let bM0 be the class of functions c ∈ M0 that are
bounded in the supremum norm, ‖c‖ := sups,x |c(s, x)|. For fixed
ρ > 0, the operator Rρ on bM0 defined by (5.2.10), i.e.,

Rρc(s, x) :=

∫ ∞

0

e−ρtTtc(s, x)dt (5.5.23)

is called the resolvent of the semigroup Tt. The following exercise
shows that the resolvent is the unique solution of (5.2.6) in D(L)
if c is in bM0. ♦
5.5. Show that if c is in bM0, then the resolvent v := Rρc in
(5.5.23) is the unique function in D(L) that satisfies (5.2.6) for
all (s, x) ∈ X∞.

5.6. Prove the statement in Remark 5.14(b).
The result in the following Exercise 5.7 is a so–called Abelian

theorem, well known in Laplace transform theory. (See Widder
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(1941), pp. 181–182, for instance.) As shown in Exercise 5.8,
Abelian theorems establish a connection between discounted costs
(as in (5.2.10)) and long–run average costs (as in (5.2.14)). Exer-
cises 5.7 and 5.8 extend to general MCPs the results in Lemma
4.31 and Proposition 4.32.

5.7. For t ≥ 0, let t �→ α(t) be a nondecreasing function with
α(0) = 0. Define

αinf := lim inf
t→∞

α(t)/t, αsup := lim sup
t→∞

α(t)/t

and suppose αsup < ∞. Prove that, for every ρ > 0,
(a)

∫ ∞
0

e−ρtdα(t) = ρ
∫ ∞

0
e−ρtα(t)dt;

(b) αinf ≤ lim infρ↓0 ρ
∫ ∞

0
e−ρtdα(t) ≤ lim supρ↓0 ρ

∫ ∞
0

e−ρtdα(t) ≤
αsup;
(c) If the limit α(t)/t → α∗ exists, then

α∗ = lim
ρ↓0

ρ

∫ ∞

0

e−ρtdα(t).

5.8. Let c ∈ M0 be nonnegative. In Exercise 5.7, let

α(t) :=

∫ t

0

Trc(s, x)dr,

so the discounted cost vρ in (5.2.10) and the long-run average cost
J sup in (5.2.14) become

vρ(s, x) =

∫ ∞

0

e−ρtTtc(s, x)dt

=

∫ ∞

0

e−ρtdα(t)

and J sup(s, x) = αsup, respectively, with αsup < ∞ as in Exercise
5.7. Then
(a) for every ρ > 0,

vρ(s, x) = ρ

∫ ∞

0

e−ρt

[∫ t

0

Trc(s, x)dr

]
dt;

(b) Jinf(s, x) ≤ lim infρ↓0 ρvρ(s, x)
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≤ lim supρ↓0 ρvρ(s, x) ≤ J sup(x, s),
with J sup and Jinf as in (5.2.14) and (5.2.15), respectively.
(c) If Jt(s, x) → j∗ as t → ∞, then limρ↓0 ρvρ(s, x) = j∗.

5.9. Prove the statement in Remark 5.14(d). More explicitly, let
X = {x(t), t ≥ 0} be a time–homogeneous Markov process with
an invariant probability measure μ and geometrically (or uni-
formly) ergodic in the sense of (5.2.18). Let c ∈ M0 be a bounded
function, say, |c(x)| ≤ c̄ for all x ∈ X. Then the function hc in
(5.2.19) is in D(L), and the pair (j(c), hc) in (5.2.19) is a solution
to the Poisson equation (5.2.20). (The uniform ergodicity condi-
tion (5.2.18) is well known for several norms ‖ · ‖∗ and different
Markov processes. See for instance (5.3.1))
Solution. Observe that, for all r ≥ 0 and x ∈ X,

|Trc(x) − j(c)| = |
∫
X

[P (r, x, dy) − μ(dy)]|c(y)|
≤ c̄‖P (r, x, ·) − μ(·)‖∗

≤ c̄θe−γr. (5.5.24)

In the latter inequality we used (5.2.18). Note that hc is bounded,
because (from (5.2.19) and (5.2.20))

|hc(x)| ≤
∫ ∞

0

|Trc(x) − j(c)|dr
≤ c̄θ/γ ∀ x ∈ X.

Moreover (since (5.5.24) allows the interchange of integrals),

Tshc(x) =

∫ ∞

0

[Tr+sc(x) − j(c)]dr

=

∫ ∞

s

[Trc(x) − j(c)]dr

= hc(x) −
∫ s

0

[Trc(x) − j(c)]dr;

that is,

Tshc(x) − hc(x) = −
∫ s

0

[Trc(x) − j(c)]dr.
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Finally, multiplying by 1/s and then letting s ↓ 0, the Poisson
equation (5.2.20) follows. �

5.10. Prove: (5.5.15) implies (5.5.21).
Solution. As in (5.5.24), for every t ≥ 0 and x ∈ X,

|Eπ
xc

π(x(t)) − jπ| ≤ c̄θe−γt,

where c̄ is an upper bound for c(x, a). Consequently, for every
x ∈ X,

|ρEπ
x

∫ ∞

0

[cπ(x(t)) − jπ]dt| ≤ ρc̄θ/γ.

This fact yields (5.5.21). �



Chapter 6

Controlled Diffusion
Processes

6.1 Diffusion Processes

In the remainder of these notes we consider a class of Rd–valued
Markov processes {x(t), t ≥ 0} called (Markov) diffusion pro-
cesses. These are processes that are characterized in a suitable
sense by a function b : [0,∞) × R

d → R
d called the drift vec-

tor, and a d × d matrix D on [0,∞) × R
d called the diffusion

matrix, which is assumed to be symmetric and nonnegative def-
inite. In the extreme case in which D ≡ 0, the zero matrix, the
process x(·) is the solution of an ordinary differential equation
ẋ(t) = b(t, x(t)), t ≥ 0. At the other extreme, if b ≡ 0 and D ≡ I
the identity matrix, then x(·) is a Markov process called Wiener
process or Brownian motion. (See Example 5.3, above, or any
introductory book on stochastic analysis or stochastic differen-
tial equations, for instance, Arnold (1974), Evans (2013), Mikosch
(1998), Øksendal (2003),...)

More precisely, we will consider so–called Itô diffusions or Itô
processes {x(t), t ≥ 0} that are solutions of stochastic differential
equations (SDEs) of the form

dx(t) = b(t, x(t))dt + σ(t, x(t))dw(t), (6.1.1)

where b(t, x) and σ(t, x) are given functions from [0,∞) × R
d to

R
d and R

d×n, respectively, and {w(t), t ≥ 0} is a standard n–
dimensional Wiener process. To begin, throughout the following

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Hernández-Lerma et al., An Introduction to Optimal Control
Theory, Texts in Applied Mathematics 76,
https://doi.org/10.1007/978-3-031-21139-3 6
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we impose conditions on the coefficients b and σ ensuring that
(6.1.1) has indeed a well-defined (and well–behaved) solution.

Assumption 6.1. Itô conditions. The functions b(t, x) and
σ(t, x) are measurable and satisfy:

(a) Linear growth: For every T > 0, there is a constant K =
K(T ) such that, for all 0 ≤ t ≤ T and x ∈ R

d,

|b(t, x)| ≤ K(1 + |x|), |σ(t, x)| ≤ K(1 + |x|),
(where, for a matrix d = (dij), we define its norm |d|2 :=
Tr(dd∗) =

∑
ij d

2
ij, with d∗ := transpose of d, and Tr(D) :=

Trace of a matrix D); and

(b) Lipschitz conditions: For every T > 0 and r > 0, there is a
constant K ′ = K ′(T, r) such that

|b(t, x) − b(t, y)| ≤ K ′|x − y|, |σ(t, x) − σ(t, y)| ≤ K ′|x − y|
for all 0 ≤ t ≤ T and |x| ≤ r, |y| ≤ r.

The conditions (a) and (b) in Assumption 6.1 are implied, for
instance, by the following:

(a’) The components of b(t, x) and σ(t, x) are continuously differ-
entiable in x with bounded derivatives, uniformly in t ≥ 0;

(b’) |b(t, 0)| + |σ(t, 0)| ≤ K for all t ≥ 0, for some constant K.

Under Assumption 6.1 the SDE (6.1.1) has a unique continuous
solution x(·), which is a Markov process with transition probabil-
ities

P (s, x, t, B) = P (x(t) ∈ B|x(s) = x) = P (x(t; s, x) ∈ B) (6.1.2)

for all 0 ≤ s ≤ t, x ∈ R
d, B ∈ B(Rd) where x(t) = x(t; s, x)

denotes the solution of (6.1.1) for t ≥ s, with initial condition
x(s) = x. Moreover, denoting by Es,x the conditional expectation
given the initial condition x(s) = x, we also have

Es,x|x(t)|k ≤ (1 + |x|k)eC(t−s) (k = 1, 2, . . .) (6.1.3)

for some constant C depending on the integer k and the constant
K in Assumption 6.1(a).
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The solution process x(·) has other nice properties. For instance,
it is continuous and satisfies the “Feller property”, which implies
that x(·) is in fact a strong Markov process. (We do not use these
assertions here.)

We will also suppose:

Assumption 6.2. The functions b and σ are continuous in the
time variable t ≥ 0.

Assumptions 6.1 and 6.2 imply that the solution x(·) of (6.1.1)
is a Markov diffusion process with drift coefficient b(t, x) and dif-
fusion matrix D(t, x) := σ(t, x)σ(t, x)∗, where σ(t, x) is the diffu-
sion coefficient in (6.1.1). (Recall that σ∗ denotes the transpose of
σ.) We will next obtain the infinitesimal generator L (see (5.2.3))
of x(·).
Definition 6.3. Let C1,2 ≡ C1,2([0,∞) × R

d) be the class of real–
valued continuous functions v(s, x) on [0,∞) × R

d such that v is
of class C1 in s and of class C2 in x, that is, the partial derivates
vs, vxi

, vxixj
, for i, j = 1, . . . , d, are continuous. If v ∈ C1,2, let

Lv(s, x) := vs(s, x) + vx(s, x)b(s, x) +
1

2
Tr[vxx(s, x)D(s, x)],

(6.1.4)
where D(x, s) is the diffusion matrix, the row vector vx:=(vx1 , . . . ,
vxd

) is the gradient of v (in the x–variables), and vxx = (vxixj
) is

the Hessian matrix. The last term in (6.1.4) can be expressed
more explicitly as

1

2
Tr[vxx(s, x)D(s, x)] =

1

2

d∑

i,j=1

vxixj
(s, x)dij(s, x),

where dij are the components of D = σσ∗.

In terms of L we may write the important Itô’s differential rule
as in (6.1.5), below.

Theorem 6.4. Let x(·) be the solution of (6.1.1). If v ∈ C1,2,
then the process v(t, x(t)) satisfies the SDE

dv(t, x(t)) = Lv(t, x(t))dt + vx(t, x(t))σ(t, x(t))dw(t). (6.1.5)
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In integral form, we may write (6.1.5) for t ≥ s ≥ 0, given
x(s) = x, as

v(t, x(t)) − v(s, x) =
∫ t

s
Lv(r, x(r))dr +

∫ t

s
vx(r, x(r))σ(r, x(r))dw(r).

(6.1.6)
If v and σ are such that, for each t > s,

Es,x

∫ t

s

|vx(r, x(r))σ(r, x(r))|2dr < ∞, (6.1.7)

then the expected value of the last integral in (6.1.6) is zero.
Therefore, if in addition to (6.1.7) we have that

Es,x

∫ t

s

|Lv(r, x(r))|dr < ∞, (6.1.8)

then taking expectations Es,x in (6.1.6) we obtain

Es,xv(t, x(t)) − v(s, x) = Es,x

∫ t

s

Lv(r, x(r))dr. (6.1.9)

Multiplying both sides of (6.1.9) by (t − s)−1 and letting t ↓ s we
obtain, from (5.2.3), the infinitesimal generator Lv = Lv. More
explicitly, we have shown the following.

Theorem 6.5. If v ∈ C1,2 is such that (6.1.7) and (6.1.8) hold,
then v is in the domain D(L) and Lv is given by

Lv(s, x) = vs(s, x) + vx(s, x)b(s, x) +
1

2
Tr[vxx(s, x)D(s, x)].

(6.1.10)

With Lv = Lv, (6.1.9) is a particular form of Dynkin’s formula
in Remark 5.10(a).

Remark 6.6. A function f(s, x) is said to satisfy a polyno-
mial growth condition if there are constants K and j such that
|f(s, x)| ≤ K(1 + |x|j) for every (s, x). Now, using the inequality
(6.1.3) and Assumption 6.1, one can see that if v ∈ C1,2 and its
partial derivates vs, vxi

, vxixj
satisfy polynomial growth condi-

tions, then (6.1.7) and (6.1.8) are satisfied. �
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Remark 6.7. (a) Let v ∈ C1,2 be as in Theorem 6.5, and let τ
be a stopping time for x(·) such that Es,x(τ) < ∞. Then (6.1.9)
holds when t is replaced by τ . (See, for instance, Friedman (1975)
p. 85.) This fact is analogous to Remark 5.10(b).

(b) Strictly speaking, for every t ≥ s ≥ 0 and every initial con-
dition x(s) = x, the SDE (6.1.1) is a compact form of expressing
the integral equation

x(t) = x +

∫ t

s

b(r, x(r))dr +

∫ t

s

σ(r, x(r))dw(r),

where the second integral on the right–hand side, with respect
to the Wiener process w(·), is an Itô integral. Developing this
approach, however, is out of the scope of these lecture notes. We
are thus proceeding as in Chap. 5, in which instead of analyzing
the properties of a Markov process x(·) we use directly the corre-
sponding generator. Formally, this is all we need to develop the
dynamic programming approach, as in Sect. 5.4.

6.2 Controlled Diffusion Processes

Let A, the control (or action) set, be a closed subset of Rm and,
instead of (6.1.1), consider the controlled SDE

dx(t) = b(t, x(t), a(t))dt + σ(t, x(t), a(t))dw(t), (6.2.1)

with coefficients b and σ, which are functions from [0,∞) × R
d ×

A to R
d and R

d×n, respectively, and a(t) ∈ A, for t ≥ 0, being
the control process. As in Chap. 5, we will only consider Markov
control policies, so that a(·) is of the form a(t) = π(t, x(t)),
with π : [0,∞) × R

d → A a measurable function. We also need to
restrict the set Π of admissible control policies. Thus, in view of
the Assumptions 6.1, 6.2 and Remark 6.6, we define Π as follows.

Definition 6.8. A Markov control policy π is said to be admis-
sible (and we write π ∈ Π) if
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(a) The functions bπ(t, x) := b(t, x,π(t, x)) and σπ(t, x) :=
σ(t, x,π(t, x)) satisfy the Assumptions 6.1 and 6.2—the cor-
responding solution x(·) of (6.2.1) is written as xπ(·);

(b) The generator Lπ of x(·) satisfies that Lπ = La if π(s, x) = a,
where, from (6.1.10),

Lav(s, x) = vs(s, x) + vx(s, x)b(s, x, a) +
1
2
Tr[vxx(s, x)D(s, x, a)]

(6.2.2)

with D(s, x, a) = σ(s, x, a)σ(s, x, a)∗ (recall that σ∗ = trans-
pose of σ, and Tr(·) = Trace).

In some cases it is easy to give conditions for a policy to be
admissible. For instance, suppose that the control set A contains
the origin 0 ∈ R

m, and also (see (a’) and (b’) in the paragraph
following Assumption 6.1):

(a’) The functions b(t, x, a) and σ(t, x, a) are continuous, of class
C1 in x ∈ R

d and a ∈ A with bounded derivatives (i.e., |bx|,
|ba|, |σx|, |σa| ≤ C for some constant C) uniformly in t ≥ 0;

(b’) |b(t, 0, 0)| + σ|(t, 0, 0)| ≤ C ∀t ≥ 0 and some constant C.

Then a continuous function π : [0,∞) × R
d → A is an admissi-

ble Markov control policy if, for instance, it satisfies:

(c’) For every T > 0, there is a constant KT (which may also
depend on π) such that |π(t, x)| ≤ KT (1 + |x|) for all 0 ≤
t ≤ T and x ∈ R

d;
(d’) For every T > 0 and r > 0, there is a constant KT,r (which

may depend on π) such that

|π(t, x) − π(t, y)| ≤ KT,r|x − y|
for all 0 ≤ t ≤ T , and |x|, |y| ≤ r.

The conditions (c’) and (d’) are of course suggested by (a’), (b’)
and the Itô conditions in Assumption 6.1.

Finally, we will suppose that Assumptions 5.16(e) and 5.17
hold. Notice in particular that, for instance (in view of (6.1.3)), a
sufficient condition for the cost rate c(s, x, a) to satisfy Assump-
tion 5.16(e) is that cπ(s, x) satisfies a polynomial growth condi-
tion, say
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|cπ(s, x)| ≤ K(1 + |x|j) ∀π ∈ Π, (6.2.3)

where K and j are positive constants, and cπ(s, x) := c(s, x,
π(s, x)).

We have thus completed the description of the controlled SDE
(6.2.1) in the general MCP setting of Sect. 5.3.

6.3 Examples: Finite Horizon

For a cost functional as in (5.4.1), with ρ = 0, and a controlled dif-
fusion process determined by (6.2.1), the Dynamic Programming
(DP) Theorem 5.21 is valid provided of course that v satisfies the
conditions in Theorem 6.5 (that is, v ∈ C1,2 and (6.1.7), (6.1.8)
hold). In this case, the generator La in (5.4.3) is given by (6.2.2),
so that (5.4.3), with ρ = 0, becomes

vs(s, x) + min
a∈A

[

vx(s, x)b(s, x, a) +
1

2
Tr(vxx(s, x)D(s, x, a))

(6.3.1)

+c(s, x, a)

]

= 0

for (s, x) in XT := [0, T ] × R
d, with the boundary condition

v(T, x) = K(T, x), x ∈ R
d. (6.3.2)

Moreover, using the Remark 6.7 we obtain in fact a slightly more
general form of Theorem 5.21. To state it, let Q be a given open
subset of XT , and let ζ be the exit time of (t, x(t)) from Q, given
the initial condition (s, x) ∈ Q, that is,

ζ := inf{t > s|(t, x(t)) /∈ Q}. (6.3.3)

(In particular, if Q := (0, T ) × R
d, then ζ = T .) Now let ∂∗Q be a

closed subset of the boundary ∂Q of Q such that (ζ, x(ζ)) ∈ ∂∗Q
with probability 1 for every initial condition (s, x) ∈ Q and every
admissible policy π. Finally, in the expression (5.4.1) of the cost
functional V (s, x,π), with ρ = 0, replace T with ζ to obtain
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V (s, x,π) = Eπ
s,x

[∫ ζ

s

cπ(t, x(t))dt + K(ζ, x(ζ))

]

. (6.3.4)

Then Theorem 5.21 is valid if (6.3.1) is restricted to hold for
(s, x) ∈ Q, and instead of the boundary condition (5.4.4) we take

v(s, x) = K(s, x) ∀(s, x) ∈ ∂∗Q. (6.3.5)

Remark. For the existence of solutions to (6.3.1) with either
the boundary condition (6.3.2) or (6.3.5), see Bensoussan (1982),
Fleming and Rishel (1975), Hanson (2007) or Krylov (1980), for
instance.

Example 6.9. (LQ systems). To simplify the exposition we con-
sider first the scalar case (d = n = m = 1 in (6.2.1)). The state
x(·) ∈ R of the system is supposed to satisfy the linear SDE

dx(t) = [γ(t)x(t) + β(t)a(t)]dt + σ(t)dw(t), (6.3.6)

with coefficients γ(·), β(·) and σ(·) of class C1[0, T ], and the cost
functional

V (s, x,π) := Eπ
s,x

[∫ T

s

(q(t)x2(t) + r(t)a2(t))dt + qTx
2(T )

]

,

(6.3.7)
where q(·) ≥ 0 and r(·) ≥ ε > 0 are continuous functions; and
qT ≥ 0. Thus the cost rate and the terminal cost are given, respec-
tively, by

c(s, x, a) := q(s)x2 + r(s)a2, and K(s, x) := qTx
2. (6.3.8)

We assume that there are no control constraints, so A = R. Notice,
on the other hand, that the coefficients of (6.3.6),

b(t, x, a) = γ(t)x + β(t)a, and σ(t, x, a) = σ(t) (6.3.9)

satisfy the conditions (a’), (b’) in the paragraph after Definition
6.8.

Now, from (6.3.8)–(6.3.9), the DP Eq. (6.3.1)–(6.3.2) becomes
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vs + γ(s)xvx +
1

2
σ2(s)vxx + q(s)x2 + min

a∈R
[β(s)vxa + r(s)a2] = 0

(6.3.10)
with

v(T, x) = qTx
2, x ∈ R. (6.3.11)

The minimum in (6.3.10) is reached at a∗ = π∗(s, x) given by

π∗(s, x) = −β(s)vx/2r(s), (6.3.12)

which inserted in (6.3.10) yields

vs + γ(s)xvx +
1

2
σ2(s)vxx + q(s)x2 − (β(s)vx)

2/4r(s) = 0.

(6.3.13)
The question now is how to obtain a solution of (6.3.13). However,
by the form of this equation (or by analogy with the discrete–time
case), we may try a solution of the form

v(s, x) = k(s)x2 + g(s), (6.3.14)

with k(·) and g(·) of class C1, and k(·) ≥ 0. Moreover, for (6.3.11)
to hold we require

k(T ) = qT , and g(T ) = 0. (6.3.15)

With this value of v(s, x), the Eq. (6.3.13) becomes

[k′(s) + q(s) + 2γ(s)k(s) − β2(s)k2(s)/r(s)]x2 + g′(s) + σ2(s)k(s) = 0

(where “prime” denotes derivative with respect to s). Hence, for
v in (6.3.14) to be a solution of (6.3.13) it suffices that k(·) and
g(·) satisfy

k′(s) = −q(s) − 2γ(s)k(s) + r(s)−1β2(s)k2(s) (6.3.16)

and
g′(s) = −σ2(s)k(s)

for s < T . Thus, combined with the boundary condition (6.3.15),
g(·) is given by
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g(s) =

∫ T

s

σ2(t)k(t)dt, s ≤ T,

and k(·) is uniquely determined by the (Riccati equation) (6.3.16)
with the terminal condition k(T ) = qT . Finally, from (6.3.12) and
(6.3.14), the optimal policy π∗ is

π∗(s, x) = −r(s)−1β(s)k(s)x. (6.3.17)

Observe that π∗ satisfies the conditions (c’) and (d’) in Sect. 6.2,
and so it is admissible (in the sense of Definition 6.8). Moreover,
from Theorem 5.21(b), with ρ = 0, the value function of the LQ
problem (6.3.6)–(6.3.7) is

V ∗(s, x) = v(s, x) = k(s)x2 +

∫ T

s

σ2(t)k(t)dt. (6.3.18)

The vector case. Let us suppose now that in (6.3.6), x ∈ R
d,

a ∈ R
m, w ∈ R

n, with γ(·), β(·) and σ(·) matrices of appropri-
ate dimensions, of class C1[0, T ] again. Furthermore, the costs in
(6.3.7) (see (6.3.8)) are now the quadratic forms

c(t, x, a) := x∗q(t)x + a∗r(t)a, K(T, x) := x∗qTx,

where q(·), qT ∈ R
d×d are symmetric and nonnegative definite, and

r(·) ∈ R
m×m is symmetric and positive definite. We also assume

that q(·) and r(·) are continuous.
The analysis in the vector case is completely analogous to

that presented in (6.3.10)–(6.3.18), and it yields that the optimal
Markov policy and the optimal value function are [see (6.3.17),
(6.3.18)]

π∗(s, x) = −r(s)−1β(s)∗k(s)x, (6.3.19)

and

J∗(s, x) = x∗k(s)x +

∫ T

s

Tr[D(t)k(t)]dt (6.3.20)

where D(t) = σ(t)σ(t)∗, and k(·) ∈ R
d×d is the solution to the

matrix Riccati equation [see (6.3.16)]
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k′(s) = −k(s)γ(s) − γ(s)∗k(s) + k(s)β(s)r(s)−1β(s)∗k(s) − q(s),
(6.3.21)

for s ≤ T , with the boundary condition k(T ) = qT . �

Example 6.10. (Optimal portfolio selection.) Let us now con-
sider an example formulated in the context of a financial market
with two assets, or “securities”. One of them is a risk–free asset,
called a bond, and the other one is a risky asset called a stock.
In a consumption–investment problem, also known as an optimal
portfolio selection problem, a “small investor”, that is, an eco-
nomic agent whose actions cannot influence the market prices,
may choose a portfolio (investment strategy) and a consumption
strategy that determine the evolution of his wealth. The problem is
to choose these strategies to maximize some “utility” criterion. In
this example, the problem is to maximize the expected discounted
total utility from consumption (6.3.25) below; in the following
Example 6.11, the investor wishes to maximize the expected util-
ity from terminal wealth (6.3.31).

Let x(t) denote the investor’s wealth at time t, and suppose
that the price p1(t) of the risk–free asset (the bond) is given by

dp1(t) = rp1(t)dt,

whereas the price p2(t) of the risky asset (the stock) changes
according to the linear SDE

dp2(t) = p2[αdt + σdw(t)],

where w(·) is a 1–dimensional standard Wiener process. Here, r,
α, and σ are constants with r < α, and σ > 0. A consumption–
investment policy π is a pair (a1(·), a2(·)) consisting of a portfolio
process a1(·) and a consumption rate process a2(·). That is, a1(t)
(respectively, 1 − a1(t)) is the fraction of wealth invested in the
stock (respectively, the bond) at time t, and a2(t) is the consump-
tion rate, satisfying the control constraints

0 ≤ a1(t) ≤ 1, a2(t) ≥ 0. (6.3.22)

Thus, when using a given consumption/investment policy π, the
wealth x(·) ≡ xπ(·) changes according to the SDE
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dx(t) = (1 − a1(t))x(t)rdt + a1(t)x(t)[αdt + σdw(t)] − a2(t)dt.
(6.3.23)

The three terms on the right–hand side of (6.3.23) correspond,
respectively, to:

(i) gains from money invested in the bond,

(ii) gains from investment in the stock, and

(iii) the decrease in wealth due to consumption.

Rewritten in the standard form (6.2.1), Eq. (6.3.23) becomes

dx(t) = [(r + (α − r)a1(t))x(t) − a2(t)]dt + σa1(t)x(t)dw(t).
(6.3.24)

Now let U be a utility function, that is, U is a nonnegative func-
tion on [0,∞), of class C2, strictly increasing, strictly concave, and
such that U ′(0) = +∞. Then the consumption–investment prob-
lem we are concerned with is to maximize the expected discounted
utility from consumption:

V (s, x,π) = Eπ
s,x

∫ T

s

e−ρtU(a2(t))dt, (6.3.25)

with discount rate ρ > 0. In this case, the DP Eq. (6.3.1)–(6.3.2)
becomes

vs +max
a

{

e−ρsU(a2) + [(r + (α − r)a1)x − a2]vx +
1
2
(σa1x)2vxx

}

= 0,

(6.3.26)
with terminal condition v(T, x) = 0, and the maximization is over
the set of pairs a = (a1, a2) satisfying (6.3.22). Ignoring for the
moment the constraints (6.3.22), an elementary calculation shows
that the function within brackets in (6.3.26) is maximized by a∗ =
(a∗

1, a
∗
2) such that

a∗
1 = −(α − r)vx/σ

2xvxx, U ′(a∗
2) = eρsvx (6.3.27)

provided that vx > 0 and vxx < 0 for x > 0. The solution to our
problem will depend of course on the particular utility function
U used in (6.3.25).
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Let us suppose that the utility function is of the form U(a2) =
aγ
2, with 0 < γ < 1, and propose a solution to (6.3.26) of the form

v(s, x) = h(s)xγ, with h(T ) = 0. (6.3.28)

In this case, (6.3.27) yields

a∗
1 = (α − r)/σ2(1 − γ), a∗

2 = x[eρsh(s)]1/(γ−1). (6.3.29)

Replacing these values in (6.3.26) we obtain

[h′(s) + Cγh(s) + (1 − γ)h(s)(eρsh(s))1/(γ−1)]xγ = 0, (6.3.30)

where C := r + (α − r)2/2σ2(1 − γ). Since the latter equation
holds for all x > 0, the function in brackets must be 0. This yields
a differential equation for h, which can be solved (making the
substitution g = (eρsh)1/(γ−1)) to obtain

h(s) = e−ρs[β − βe−(T−s)/β]1−γ,

with β := (1 − γ)/(ρ − Cγ). Thus with this function h, and if
α − r ≤ σ2(1 − γ), the optimal consumption–investment policy is
given by (6.3.29). Notice in particular that the optimal process
a∗
1(·) is constant, and the optimal consumption rate a∗

2(·) is a
linear function of x. �

Example 6.11. In the same context of Example 6.10, let us now
suppose that there is no consumption, say a2(·) ≡ 0, so that the
wealth Eqs. (6.3.23)–(6.3.24) becomes

dx(t) = [r + (α − r)a(t)]x(t)dt + σa(t)x(t)dw(t),

where a(·) = a1(·). Moreover, we wish to maximize the expected
utility from terminal wealth

V (s, x; π) := Eπ
s,xU [x(ζ)], (6.3.31)

where U is a utility function such that U(0) = 0, and ζ is the first
exit time from the open set Q = (0, T ) × (0,∞). Observe that the
utility criterion (6.3.31) is of the form (6.3.4) with

c(s, x, a) ≡ 0 and K(s, x) = U(x).
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Then the DP equation is

vs + max
0≤a≤1

[

(r + (α − r)a)xvx +
1

2
σ2a2x2vxx

]

= 0, (6.3.32)

with the boundary condition (see (6.3.5))

v(s, x) = U(x) for (s, x) ∈ ∂∗Q,

where ∂∗Q is the union of [0, T ] × {0} and {T} × [0,∞). Again
ignoring for the moment the constraint 0 ≤ a ≤ 1 in (6.3.22), we
find that the maximization in (6.3.32) is obtained with

a∗ = π∗(s, x) = −(α − r)vx/σ
2xvxx (6.3.33)

if vx > 0 and vxx < 0. Substitution of a∗ in (6.3.32) yields

vs + rxvx − (α − r)2v2x/2σ
2vxx on Q, (6.3.34)

with

v(s, x) = U(x) for s = T or x = 0. (6.3.35)

To solve (6.3.34)–(6.3.35) we suppose that the utility function is
U(x) = xγ, with 0 < γ < 1, and we try a solution of the form

v(s, x) = h(s)xγ, where h(T ) = 1.

With this choice of v, Eq. (6.3.34) becomes

h′(s) + Cγh(s) = 0,

with C as in (6.3.30). Hence h(s) = eCγ(T−s) for s ≤ T , so that

v(s, x) = eCγ(T−s)xγ, and π∗(s, x) = (α − r)/σ2(1 − γ).
(6.3.36)

Thus if (α − r)/σ2(1 − γ) ≤ 1, then we conclude that the func-
tions in (6.3.36) correspond to the optimal value function
J∗(s, x) = v(s, x) and the optimal control policy (or portfolio pro-
cess) π∗, which is a constant. �
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6.4 Examples: Discounted Costs

We now specialize the infinite–horizon discounted cost problem in
(5.4.6) and Theorem 5.23 to

dx(t) = b(x(t), a(t))dt + σ(x(t))dw(t), t ≥ 0. (6.4.1)

In contrast to (6.2.1), the coefficients b and σ are time–invariant,
and therefore (6.4.1) is an “autonomous” equation. (Observe that
σ in (6.4.1) is independent of the controls a ∈ A.) The cost rate
c(s, x, a) is also time–invariant, c(s, x, a) = c(x, a), and so the
meaning of the notation bπ, σπ and cπ in Definition 6.8(a) and
(6.2.3) is as in (5.3.3):

bπ(t, x) := b(x,π(t, x)), σπ(x) := σ(x), cπ(t, x) := c(x,π(t, x)).

If π is stationary, we use the notation (5.3.4): bπ(x) = b(x,π),
cπ(x) = c(x,π).

For a function v(s, x) = v(x) of class C2 in x ∈ R
d (assuming

that it satisfies the assumptions of Theorem 6.5), the expression
(6.2.2) for the generator La reduces to

Lav(x) = vx(x)b(x, a) +
1

2
Tr[vxx(x)D(x)], (6.4.2)

with D(x) = σ(x)σ(x)∗. Let V (x,π) be as in (5.4.6) but in the
time–homogeneous case:

V (x,π) := Eπ
x

∫ ∞

0

e−ρtcπ(t, x(t))dt

where π is an admissible policy in the sense of Definition 6.8.
Moreover, let V ∗ be the value function

V ∗(x) := inf
π
V (x,π) ∀ x ∈ R

d.

Then, under Assumption 5.22, V ∗(x) < ∞ for every x ∈ X and
the DP equation is given by (5.4.7), with La as in (6.4.2), i.e.,
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− ρv(x) +
1

2
Tr[vxx(x)D(x)] + min

a∈A
[c(x, a) + vx(x)b(x, a)] = 0.

(6.4.3)

Definition 6.12. Let v ∈ D be a solution of (6.4.3). We denote
by ΠD the class of stationary policies π ∈ Π for which the following
condition

lim
t→∞

e−ρtEπ
xv(x(t)) = 0 ∀ x ∈ R

d (6.4.4)

is satisfied.
Note that (6.4.4) is a time–homogeneous version of (5.4.8).

Remark 6.13. By Theorem 5.23(b), if π∗ ∈ ΠD attains the min-
imum in (6.4.3), that is

c(x,π∗) + vx(x)b(x,π∗) = min
a∈A

[c(x, a) + vx(x)b(x, a)] ∀x,

then π∗ is ρ–discount optimal in the class ΠD. �

Example 6.14. (LQ systems). Consider the time–invariant
scalar linear system [see (6.3.6)]

dx(t) = [γx(t) + βa(t)]dt + σdw(t), t ≥ 0, (6.4.5)

with constant coefficients γ, β, σ (β 
= 0), and the ρ–discounted
cost functional

V (x,π) := Eπ
x

∫ ∞

0

e−ρt(qx2(t) + ra2(t))dt, (6.4.6)

where q ≥ 0, r > 0. Thus, using the notation vx = v′ and vxx = v′′,
the DP Eq. (6.4.3) becomes

− ρv +
1

2
σ2v′′ + min

a
[qx2 + ra2 + (γx + βa)v′] = 0, (6.4.7)

where the minimum is over A = R. As in (6.3.10), we will try to
solve (6.4.7) with a function of the form

v(x) = kx2 + g ∀ x ∈ R; k and g constants. (6.4.8)

For this function v, (6.4.7) becomes
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− ρ(kx2 + g) + σ2k + min
a

[qx2 + ra2 + 2(γx + βa)kx] = 0

(6.4.9)
and the minimum is attained at a = π∗ given by

π∗(x) = −r−1βkx, x ∈ R. (6.4.10)

Inserting this value of a = π∗ in (6.4.9), we obtain

[q + (2γ − ρ)k − r−1β2k2]x2 + (kσ2 − ρg)

which is zero for all x ∈ R if

g = kσ2/ρ,

and k satisfies the equation

q + (2γ − ρ)k − r−1β2k2 = 0. (6.4.11)

Assuming that q > 0, the latter equation has a unique positive
solution. Thus the function v(x) in (6.4.8) is given by

v(x) = kx2 + kσ2/ρ, x ∈ R, (6.4.12)

where k is the unique positive solution to (6.4.11).
Thus to conclude that π∗ in (6.4.10) is optimal in the sense of

Remark 6.13, it only remains to verify that π∗ satisfies (6.4.4). To
do this, in (6.4.5) take a(t) = π∗(x(t)), to obtain

dx(t) = −αx(t)dt + σdw(t), x(0) = x, (6.4.13)

with α = r−1β2k − γ, which is the so–called Langevin equation.
Thus, as is well known (see, for instance, Arnold (1974) Sect. 8.3,
or Øksendal (2003) p. 75) the solution of (6.4.13) is

x(t) = xe−αt + σ

∫ t

0

e−α(t−s)dw(s) for t ≥ 0.

Therefore, by the properties of stochastic integrals,

Eπ∗
x [e−ρtx2(t)] = x2e−(ρ+2α)t + σ2e−ρtEπ∗

x

(∫ t

0

e−α(t−s)dw(s)

)2



234 6 CONTROLLED DIFFUSION PROCESSES

= (x2 − σ2/2α)e−(ρ+2α)t + σ2e−ρt/2α. (6.4.14)

Finally, from (6.4.11) and the definition of α, we have

ρ + 2α = [(2γ − ρ)2 + 4r−1β2q] > 0.

Therefore,
lim
t→∞

Eπ∗
x [e−ρtx2(t)] = 0, (6.4.15)

which in turn, by (6.4.12), implies (6.4.4) for π = π∗. Hence from
the Remark 6.13 we conclude that π∗ minimizes (6.4.6) within the
class of admissible stationary policies π that satisfy

lim
t→∞

Eπ
x [e−ρtx2(t)] = 0, (6.4.16)

and the value (or minimum) cost function is v(·)≡vρ(·) in (6.4.12),
where k is the unique positive solution of the quadratic equation
(6.4.11). �

Remark. The same argument leading from (6.4.13) to (6.4.14)
shows that (6.4.15) holds for every policy of the form π(x) =
−Gx if G is a constant such that ρ + 2(βG − γ) > 0, that is,
G > (γ − ρ/2)/β.

The vector case. The above results are easily extended to n–
dimensional systems (6.4.5) with q and r in (6.4.6) being sym-
metric matrices, q nonnegative definite, and r positive definite. In
this case, (6.4.8)=(6.4.12) and (6.4.10) result

v(x) = x∗kx + g, and π∗(x) = −r−1β∗kx,

where g is a constant, and k is the symmetric and positive definite
solution of a matrix equation corresponding to (6.4.11). �

Example 6.15. (Maximization of total discounted utility from
consumption). The problem is to choose a consumption process
a(t) = π(x(t)) to maximize the expected total discounted utility

V (x,π) = Eπ
x

∫ ∞

0

e−ρtU [a(t)]dt, ρ > 0, (6.4.17)
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where U is a utility function, and the wealth x(·) = xπ(·) satisfies,
for t ≥ 0,

dx(t) = x(t)[αdt + σdw(t)] − a(t)dt, x(0) = x; (6.4.18)

[see (6.3.23)–(6.3.24) with a1(·) ≡ 1 and a2(·) = a(·)]. In (6.4.18),
which can also be written as

dx(t) = [αx(t) − a(t)]dt + σx(t)dw(t), x(0) = x > 0; (6.4.19)

we assume that α > 1, σ2 > 0, and the initial wealth x is positive,
whereas a(t) = π(x(t)) is subject to the constraint

0 ≤ π(x) ≤ x ∀x. (6.4.20)

Then for a general utility function U , the DP equation (6.4.3)
becomes (with vx = v′ and vxx = v′′)

− ρv(x) +
1

2
σ2x2v′′(x) + αxv′(x) + max

a
[U(a) − av′(x)] = 0.

(6.4.21)
We will solve (6.4.21) for the particular utility function U(a) =
aγ/γ, with 0 < γ < 1, and try a solution of the form [see (6.3.28)]

v(x) = hxγ, h > 0. (6.4.22)

In this case, the function U(a) − av′(x) is maximized when a =
π∗(x) is given by

π∗(x) = (γh)−1/(1−γ)x ∀x ≥ 0. (6.4.23)

Inserting this value of a = π∗(x) in (6.4.21) gives the following
equation for h:

−[ρ + σ2γ(1 − γ)/2 − αγ] + (1 − γ)(γh)−1/(1−γ) = 0.

Therefore

h = γ−1θ−(1−γ), with θ := [ρ + σ2γ(1 − γ)/2 − αγ]/(1 − γ),
(6.4.24)

and, from (6.4.23),
π∗(x) = θx. (6.4.25)
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This is the optimal consumption process provided that it satisfies
(6.4.20), so that we must have

0 < θ ≤ 1, (6.4.26)

and provided also that the condition (6.4.4) holds.
To verify (6.4.4), let us apply Itô’s differential rule (Theorem

6.4) to the process y(t) = log x(t), with x(·) = xπ∗
(·) in (6.4.19),

to obtain

dy(t) =

(

α − θ − 1

2
σ2

)

dt + σdw(t).

This equation, in integral form, yields

log[x(t)/x] =

(

α − θ − 1

2
σ2

)

t + σw(t);

that is,

x(t) = x exp

[(

α − θ − 1

2
σ2

)

t + σw(t)

]

. (6.4.27)

Therefore, since w(t) is a Gaussian variable N(0, t) (see Example
5.3), from (6.4.22) we obtain

Eπ∗
x [e−ρtv(x(t))] = hxγ exp

(

−
[

ρ +
1

2
σ2γ(1 − γ) − αγ + θγ

]

t

)

= hxγe−θt [from (6.4.24)]

→ 0 as t → ∞,

provided that (6.4.26) holds. Thus from Remark 6.13 we conclude
that, assuming (6.4.26), the consumption process in (6.4.23) is
optimal within the class of admissible stationary policies π for
which

Eπ
x [e−ρtv(x(t))] = he−ρtEπ

x [xγ(t)] → 0 as t → ∞.

Moreover, when using π∗, the corresponding wealth is the log–
normal process in (6.4.27), and the optimal expected discounted
utility is given by (6.4.22) and (6.4.24) for any initial wealth x > 0.

�
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6.5 Examples: Average Costs

Let us consider again the autonomous SDE (6.4.1) with generator
La in (6.4.2). As in Sect. 5.5, we wish to minimize the long–run
expected average cost (AC)

J(x,π) = lim sup
t→∞

Jt(x,π)/t, (6.5.1)

with Jt(x,π) as in (5.5.1). As in Assumption 5.24, we suppose that
there exists a control policy π ∈ Π such that J(x,π) < ∞ for every
x ∈ R

d, where Π is the set of admissible policies in Definition 6.8.
Finally, observe that, from (6.4.2), the AC optimality equation
(ACOE) in Definition 5.27 can be expressed as

j∗ = inf
a∈A

[c(x, a) + hx(x)b(x, a)] +
1

2
Tr[hxx(x)D(x)] (6.5.2)

in terms of a solution pair (j∗, h(·)).
Example 6.16. (LQ problems). This example is related to the
deterministic LQ problem in Example 4.22. First, we consider a
stochastic version and then we show how it reduces to the deter-
ministic case.

(a) The stochastic case. Consider the LQ system in Example
6.14, with state equation (6.4.5), with β 
= 0. The cost Jt in
(6.5.1) is

Jt(x,π) = Eπ
x

∫ t

0

c(x(t), a(t))ds,

with quadratic instantaneous (or running) cost c(x, a) :=
qx2 + ra2, where both q and r are positive numbers. For
notational ease, we will write the derivatives hx and hxx in
the ACOE (6.5.2) as h′ and h′′, respectively. Hence, (6.5.2)
becomes

j∗ = inf
a∈R

[qx2 + ra2 + (γx + βa)h′(x)] +
1

2
σ2h”(x). (6.5.3)

Note that this equation is similar to (6.4.7). Therefore, as a
first “guess”, we may try to solve (6.5.3) with a function of
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the form (6.4.8), i.e.,

h(x) = kx2 + g, x ∈ R, (6.5.4)

for some constants k and g. Observe, however, that these con-
stants are NOT the same as in (6.4.8), and (6.4.12), because
the latter equations depend on the discount factor ρ. Thus,
to avoid confusions, we will rewrite (6.4.12) as

vρ(x) = k(ρ)x2 + k(ρ)σ2/ρ, (6.5.5)

where k(ρ) is the unique positive solution of (6.4.11).

Inserting h(·) in (6.5.3), the same calculations used in (6.4.9)–
(6.4.11) now show that the minimum in (6.5.3) is attained at
ā = π̄(x) given by

π̄(x) = −r−1βkx ∀ x ∈ R. (6.5.6)

With this value of a = ā, (6.5.3) becomes

j∗ = σ2k + x2(q + 2γk − r−1β2k2) (6.5.7)

for all x ∈ R. Therefore (recalling that q > 0), taking k∗ as
the unique positive solution of the quadratic equation

q + 2γk − r−1β2k2 = 0, (6.5.8)

we obtain
π̄(x) = −r−1βk∗x. (6.5.9)

Thus, from (6.5.7) and (6.5.4), we have that the pair (j∗, h(·))
consisting of

j∗ = σ2k∗, and h(x) = k∗x2 + g ∀ x, (6.5.10)

where g is an arbitrary constant, is a solution to the ACOE
(6.5.3).
We now wish to show, using Theorem 5.28(b), that π̄ is AC–
optimal in the family ΠAC

S of stationary policies that satisfy
(5.5.9), which in our present situation becomes
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lim
t→∞

t−1E π̄
xh(x(t)) = 0 ∀ x.

This condition, by the definition of h in (6.5.10), is equivalent
to

lim
t→∞

E π̄
x [x2(t)]/t = 0 ∀ x. (6.5.11)

To prove this, note that inserting a(t) = π̄(x(t)) in the lin-
ear equation (6.4.5) we obtain again a Langevin equation
(6.4.13) but now with coefficient α := r−1β2k∗ − γ. Hence,
from (6.4.14)–(6.4.15) with π∗ = π̄ and ρ = 0, we have

E π̄
x [x2(t)] = (x2 − σ2/2α)e−2αt + σ2/2α. (6.5.12)

This clearly yields (6.5.11) since, from (6.5.8), α = (γ2+
β2q/r)1/2) > 0. Therefore, from Theorem 5.28(b) we con-
clude the desired result: π̄ is AC–optimal in ΠAC

S , and the
minimum average cost is j∗ in (6.5.10).

(b) The deterministic LQ case. The AC results for the deter-
ministic LQ system are obtained by taking the coefficient
σ = 0 in (6.4.5) and “everywhere” in part (a) above; in par-
ticular, the state Eq. (6.4.5) is now

ẋ(t) = γx(t) + βa(t), t ≥ 0, (6.5.13)

with constant coefficients γ, β, with β = 0. Moreover, from
(6.5.7)–(6.5.10) with σ = 0, we conclude that the optimal
average cost is j∗ = 0, and the AC–optimal policy is again
π̄ in (6.5.9). �

Remark 6.17. (The certainty–equivalence principle). Consider
an stochastic optimal control problem (OCP) with state equation
as in, say, (6.2.1):

dx(t) = b(t, x(t), a(t))dt + σ(t, x(t), a(t))dw(t).

Consider also an associated deterministic OCP in which the
corresponding state equation is obtained from (6.2.1) taking
σ(·) ≡ 0. If the optimal control policy in the stochastic case is
the same as in the associated deterministic problem, it is then
said that the stochastic system satisfies the certainty–equivalence
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principle. From the Example 6.16(a), (b) we can see that this
principle is satisfied by the average cost problem for LQ systems.
This fact is also true in the discounted cost case. Can you guess
why? �

In the following example we wish to maximize the long-run
average reward (AR) defined as

JAR(x, a(·)) := lim inf
T→∞

jT (x, a(·))/T, (6.5.14)

where, given a control policy a(·) and the running (or instanta-
neous) reward function r(x, a),

jT (x, a(·)) := Ex[

∫ T

0

r(x(t), a(t))ds],

given the one-dimensional Eq. (6.4.1). In this case, the optimal-
ity Eq. (6.5.2) becomes the average reward optimality equation
(AROE)

j∗ = sup
a∈A

[r(x, a) + h′(x)b(x, a) +
1

2
h′(x)σ2(x)], (6.5.15)

where j∗ = supa(·) JAR(x, a(·)), and h′, h′′ denote the first and sec-
ond derivatives of h with respect to x.

Example 6.18. (Average welfare in a pollution accumulation
model). This example is a particular case of the control problem
in Kawaguchi and Morimoto (2007) or Sect. 10.1 in Morimoto
(2010), and it is also an extension to controlled diffusion pro-
cesses of the deterministic Example 4.29. Now, instead of (4.4.28)–
(4.4.30), the stock of pollution x(·) evolves according to the one-
dimensional stochastic differential equation

dx(t) = [a(t) − d0x(t)]dt + σ · x(t)dw(t), x(t) = x > 0, (6.5.16)

where a(·) denotes the flow of consumption (or pollution), d0>0
is the constant rate of pollution decay, and σ > 0 is a given con-
stant.

The long-run average reward (or average welfare) is as in
(6.5.14) with instantaneous reward r(x, a) = U(a) − D(x), where
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U(a) is the social utility function of the consumption a, and D(x)
is the social disutility of the pollution stock x. Kawaguchi and
Morimoto (2007) consider general utility and disutility functions.
Here, however, as in (4.4.30), we will assume that U and D are of
the particular form

U(a) = 2a1/2 and D(x) = d1x, d > 0,

in which case the AROE (6.5.15) becomes

j∗ = sup
a≥0

[2a1/2 − d1x + h′(x)(a − d0x)] +
1

2
h′′(x)σ2x2. (6.5.17)

Note that the right-hand side of (6.5.17) is maximized at a =
a∗(x) = 1/(h′(x))2. The problem then is how to find a suitable
function h.

Observe that the drift coefficient b(x, a) = a − d0x in (6.5.16) is
the same as the right-hand side of (4.4.29) with ϕ(x) as in (4.4.30).
Therefore, in view of the results in Example 4.29, we conjecture
that h is of the form h(x) = −h1x + h2 for some constants h1, h2

that need to be determined. Replacing this function h in (6.5.17)
and using that a∗(x) = 1/(h′(x))2 = 1/h2

1, (6.5.17) reduces to

j∗ =
1

h1

+ (h1d0 − d1)x ∀x ≥ 0.

Therefore, h1 = d1/d0 and j∗ = 1/h1 = d0/d1. This gives a pair
(j∗, h(·)) that satisfies (6.5.16). However, to conclude from The-
orem 5.28 that j∗ has some optimality property we still need to
verify (5.5.9) for some family of policies π ∈ Π, so that

1

t
Eπ

xh(x(t)) → 0 as t → ∞. (6.5.18)

To this end, in (6.5.16) take a(·) ≡ a∗ := (d0/d1)
2. Then for any

initial state x(0) = x > 0 and any positive integer k such that

2d0 > (k − 1)σ2 (6.5.19)

the solution x(·) of (6.5.16) satisfies that
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sup
t≥0

E[x(t)k] ≤ xk + C

for some constant C > 0. (See Morimoto (2010), Lemma 10.2.1 or
Proposition 10.2.2.) The latter inequality obviously yields (6.5.18)
provided that the coefficients d0 and σ satisfy (6.5.19).

To conclude, note that the optimal control a∗(x) = 1/(h′(x))2

in this example is the same as the optimal control a∗ in the deter-
ministic control problem of Example 4.29. Hence we have another
example of the certainty-equivalence principle in Remark 6.17.
Can you explain why? �

Notes—Chapter 6

1. The setting in this chapter—imposing Assumptions 6.1, 6.2,
and the notion of admissibility in Definition 6.8—is very restric-
tive, but it suffices to analyze some stochastic control problems by
means of concepts from undergraduate calculus, such as continu-
ity, differentiability, and so forth. The setting can be considerably
relaxed but at the cost of introducing nontrivial mathematical
complications.

To illustrate this, consider the following innocent–looking one–
dimensional control problem in which the system Eq. (6.3.6) and
the cost functional (6.3.7) are of the form

dx(t) = a(t)dt + dw(t), 0 ≤ t ≤ 1, (6.5.20)

J(0, x,π) = Eπ
x [x(1)2],

respectively, with control set A = [−1, 1]. Then the optimal con-
trol is

π∗(s, x) = −sign(x)

[see Beneš (1974), or Christopeit and Helmes (1982)], which is
not an admissible Markov policy in the sense of Definition 6.8. In
fact, if we write a(t) = π∗(t, x(t)) in (6.5.20), the resulting equa-
tion does not satisfy the Assumption 6.1(b), so in our context we
cannot claim that the equation has a “solution”. This kind of situ-
ations can be dealt with in a number of ways (typically, by “weak-
ening” the notion of solution of a SDE); see Fleming and Soner
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(2006), Hanson (2007), Morimoto (2010), Pham (2009), Yong and
Zhou (1999),...

2. The examples in Sects. 6.3 and 6.4 are standard, see e.g.
Fleming and Rishel (1975) Chap. 6, or Øksendal (2003) Chap.
11. The Example 6.10 is originally due to Merton (1971). For
related applications and further references on financial economics
see, for instance, Chang (2004), Karatzas (1989), Karatzas and
Shreve (1998), Merton (1990), Morimoto (2010), Pham (2009).

3. The control problems in which the coefficients b and σ of
(6.2.1) are of the form b(t, x, a) = a, σ(t, x, a) = σ(t, x), and A =
R

m (which is the case in (6.5.20)), are called stochastic calculus
of variations problems: Fleming (1983), Loewen (1987).

4. For the existence of solutions to the DP Eq. (6.4.3) see
e.g. Bensoussan (1982), Morimoto (2010), Pham (2009), Krylov
(1980).

5. The Example 6.15 is due to Merton (1971). For other dis-
counted problems in economics and finance see the references in
Note 2 above. For other applications see, for instance, Mangel
(1985), and Whittle (1982).



Appendix A

Terminology and
Notation

For technical reasons, all the sets and functions considered in these
lecture notes are assumed to be Borel measurable. If the reader
is not familiar with this concept, don’t worry: we only consider
nice sets and functions, for instance, open sets and continuous (or
even differentiable) functions. It is important, however, to know
at least the following basic terminology.

Let X be a metric space. The Borel sigma–algebra of X, denoted
by B(X), is the smallest sigma–algebra that contains all the open
subsets of X. The sets in B(X) are called Borel sets.

If X is a complete and separable metric space (also known as
a Polish space), then a Borel subset of X is called a Borel space.
The following are examples of Borel spaces:

• Any open or any closed subset of Rn.

• A discrete space X, that is, a finite or denumerable set with the
discrete topology (the topology consisting of all the subsets of
X).

• A compact metric space (which is complete and separable).

• If X1, X2, ... is a (finite or countable) sequence of Borel spaces,
then the product space Y := X1 × X2 × · · · is also a Borel space
with the (product) Borel sigma–algebra.

• If X is a Borel space, then the space P(X) of probability mea-
sures on X with the topology of weak convergence is also a Borel
space.
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For further details on measurability and related concepts, see
any introductory book on Real Analysis, for instance, Ash (1972),
Bartle (1995), Bass (2020), etc.

Lower Semicontinuous Functions

Let X be a metric space and v a function from X to R ∪ {+∞}
such that v(x) < ∞ for at least one point x ∈ X. This function v
is said to be lower semicontinuous (l.s.c.) at x ∈ X if

lim inf
n→∞

v(xn) ≥ v(x)

for any sequence {xn} in X that converges to x. The function v
is called lower semicontinuous (l.s.c.) if it is l.s.c. at every point
of X.

Proposition A.1. The following statements are equivalent:

(a) v is l.s.c.;

(b) the set epi(v) := {(x,λ) ∈ X × R | v(x) ≤ λ}, called the epi-
graph of v, is closed;

(c) all of the lower sections (or level sets) Sλ(v) are closed, where

Sλ(v) := {x ∈ X | v(x) ≤ λ}, λ ∈ R.

Let L(X) be the family of l.s.c. functions on X, and L+(X) the
subfamily of nonnegative l.s.c. functions. (In many applications it
suffices to assume that L+(X) consists of l.s.c. functions that are
bounded below. Clearly, if v is l.s.c. and v(·) ≥ −m for some m,
then v(·) + m is in L+(X).)

Proposition A.2. A function v is in L+(X) if and only if there
exists a sequence of continuous and bounded functions vn on X
such that vn ↑ v.

Proposition A.3. If v, v1, . . . , vn belong to L+(X), then

(a) the functions αv, with α≥0, v1 + . . . + vn, and mini vi, belong
to L+(X);
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(b) if X is compact, then v attains its minimum, that is, there
exists a point x∗ ∈ X such that v(x∗) = infx v(x).

For proofs of Proposition A.1–A.3 see Ash (1972), Appendix A6
or Bertsekas and Shreve (1978), Sect. 7.5.

On the other hand, v is upper semicontinuous (u.s.c.) if and
only if −v is l.s.c. Moreover, v is continuous if and only if v is
both l.s.c. and u.s.c.



Appendix B

Existence of Measurable
Minimizers

In this appendix X and A denote Borel spaces. In the previous
chapters, they denote the state space and the action space (or
control set) of an OCP, respectively.

Let 2A denote the family of all nonempty subsets of A. A set–
valued mapping Φ : X → 2A is called a multifunction, also known
as a correspondence. In this case, a (measurable) function f : X →
A such that f(x) ∈ Φ(x) for all x ∈ X is said to be a selector (or
selection) of Φ. We denote by F the family of selectors of Φ.

Sometimes we write Φ(x) as A(x).

Definition B.1. (a) The lower inverse of B ⊂ A with respect to
Φ is defined as

Φ−1[B] := {x ∈ X : A(x) ∩ B �= ∅}.
(b) The graph of Φ, which we will denote by K, is given by

K := {(x, a) ∈ X × A : a ∈ A(x)}.
(c) Φ is said to be Borel measurable if the lower inverse Φ−1[B]

is a Borel subset of X for every closed set B ⊂ A.

Theorems B.2 and B.3, below, are obtained in Himmelberg et al.
(1976) and in Schäl (1975); they are also reproduced in Appendix
D of Hernández-Lerma and Lasserre (1996).
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Theorem B.2. Suppose that Φ is compact–valued, that is, Φ(x)
is compact for every x ∈ X. Then the following statements are
equivalent:

(a) Φ is Borel measurable.

(b) Φ−1[B] ⊂ X is a Borel set for every open set B ⊂ A.

(c) The graph of Φ is a Borel subset of X × A.

Theorem B.3. Suppose that Φ is compact–valued. Let v : K →
R be a Borel function such that v(x, ·) is lower semicontinuous
(l.s.c) on Φ(x) for every x ∈ X. Then:

(a) there exists a (Borel measurable) selector f ∗ ∈ F such that

v(x, f ∗(x)) = v∗(x) := min
a∈A(x)

v(x, a) ∀ x ∈ X, (B.1)

and v∗ is measurable.

(b) If the set-valued mapping x �→ A(x) is u.s.c. and v is l.s.c. and
bounded below, then there exists f ∗ ∈ F that satisfies (B.1)
and, furthermore, v∗ is l.s.c. and bounded below.

Theorems B.2 and B.3 require Φ to be compact–valued. In con-
trast, Theorem B.8 below does not require compactness, but we
need the following concepts.

Definition B.4. (a) Consider a function v : K → R.

(a1) v is called inf–compact if, for every r ∈ R, the set

{(x, a) ∈ K|v(x, a) ≤ r}
is compact;

(a2) v is called K–inf–compact if, for every compact set X ′ ⊂ X
and every r ∈ R, the set

{(x, a) ∈ G(X ′)|v(x, a) ≤ r}
is compact, where G(X ′) := {(x, a) ∈ X ′ × A|a ∈ A(x)};

(a3) v is called inf–compact on K if, for every x ∈ X, the func-
tion a �→ v(x, a) is inf–compact on A(x), that is, the set

{a ∈ A(x)|v(x, a) ≤ r} ⊂ A
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is compact for every r ∈ R.

(b) Consider a compact-valued multifunction Φ : X → 2A as
above, with A a separable metric space. Then Φ is said to
be:

(b1) lower semicontinuous (l.s.c.) at x ∈ X if it satisfies that: If
xn → x and a is in A(x), then there exist an ∈ A(xn) such
that an → a. Φ is called l.s.c. on X if it is l.s.c. at every
x ∈ X.

(b2) upper semicontinuous (u.s.c) at x ∈ X if it satisfies that: If
xn → x and an ∈ A(xn) is such that an → a, then a is in
A(x). Φ is u.s.c. on X if it is u.s.c. at every x ∈ X.

(b3) continuous on X if it is both l.s.c and u.s.c. on X.

Remark B.5. (a) For calculations, it is convenient to restate
Definition B.4(a2) as follows (see Feinberg et al. 2021). A
function v : K → R is K-inf-compact if and only if for every
sequence {(xt, at)} in K such that, for some x ∈ X, xt → x
and v(xt, at) is bounded above, it holds that the sequence {at}
has an accumulation point a ∈ A(x).

(b) As a simple example of Definition B.4(b), consider the spaces
X = A = R. Then the multifunction

Φ1(x) :=

{
[0, 1] if x �= 0

[0, 1/2] if x = 0

is l.s.c. On the other hand, the multifunction

Φ2(x) :=

{
[0, 1] if x �= 0

[0, 2] if x = 0

is u.s.c., whereas the “constant” multifunction Φ(x) := [0, 1]
for all x ∈ X is continuous. ♦

Lemma B.6. For v as in Definition B.4 (a): (a1) ⇒ (a2) ⇒(a3).

To verify that a multifunction is l.s.c., the following proposition
from Michael (1970) is useful.
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Proposition B.7. (Michael, 1970). Consider a multifunction Φ :
X → 2A. If for every x ∈ X and a ∈ Φ(x) there is a continuous
selector f of Φ such that f(x) = a, then Φ is l.s.c.

Theorem B.8. Let us suppose that K is a Borel subset of X × A,
v is l.s.c., bounded below, and inf-compact on K. Then

(a) There exists a Borel selector f ∗ ∈ F for which (B.1) holds.

(b) If, in addition, the multifunction x �→ A∗(x), where

A∗(x) := {a ∈ A(x) : v∗(x) = v(x, a)}
is l.s.c., then v∗ is l.s.c. If, moreover, v is continuous, then so
is v∗.

Proof. For part (a) see Rieder (1978); for (b) see Hernández-
Lerma and Runggaldier (1994). �

The conclusions (a) and (b) in Theorem B.8 can be obtained in
several ways. For instance, from our Definition B.4(a) above and
Feinberg et al. (2013) we obtain the following.

Theorem B.9. Let v be a real–valued function on K (with K as
in Definition B.1(b)). If v is K–inf–compact (Definition B.4(a2)),
then there exists f ∗ ∈ F that satisfies (B.1). Moreover, v is l.s.c.
on K, and v∗ is l.s.c. on X.

We conclude this appendix with a useful result from Schäl
(1975), Proposition 12.2, which is reproduced as Proposition D.7
in Hernández-Lerma and Lasserre (1996).

Theorem B.10. Let X be an arbitrary metric space, A a sep-
arable metric space, and Φ a compact-valued multifunction from
X to 2A. Let F be the family of measurable selectors of Φ. In
fn is a sequence in F, then there exists f ∈ F such that, for each
x ∈ X, f(x) ∈ A(x) is an accumulation point of {fn(x)}. In other
words, for each x ∈ X, there is a sequence ni = ni(x) such that
fni

(x) → f(x) as i → ∞.

If fn and f satisfy the conclusion of Theorem B.10, then we say
that the sequence {fn} converges in the sense of Schäl to f .
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Remark B.11. Theorem B.10 is useful, for instance, in opti-
mization problems such as the following. Let X,A and Φ be as in
Theorem B.10, and consider a sequence of real-valued functions
vn on X × A such that vn → v∗. Suppose that, for each n, there
exists fn ∈ F such that

vn(x, fn(x)) = inf
a∈A(x)

vn(x, a) ∀x ∈ X.

Then, by Remark B.11, the sequence of “minimizers” {fn} con-
verges in the sense of Schäl to some f ∗ ∈ F. The obvious question
now is, is f ∗ a “minimizer” for v∗? More explicitly, is f ∗(x) ∈ A(x)
such that

v∗(x, f ∗(x)) = min
a∈A(x)

v∗(x, a) ∀x ∈ X?

The answer to this question depends on the underlying assump-
tions. For examples in which the answer is affirmative, see Sect.
2.4 above, or Sect. 4 in Escobedo-Trujillo et al. (2020). Another
example is given in the following proposition, which requires A
to be a locally compact space (that is, for each a ∈ A, there is an
open set containing a and such that its closure is compact). For
example, Euclidean spaces R

d are locally compact. ♦

Proposition B.12. (a) Let v and vn (n = 1, 2, . . .) be l.s.c. func-
tions, bounded below, and inf-compact on K. Let, for x ∈ X,

v∗
n(x) := min

a∈A(x)
vn(x, a), v∗(x) := min

a∈A(x)
v(x, a).

For each n, let fn ∈ F be a minimizer of vn, i.e., v∗
n(x) =

vn(x, fn(x)). If A is locally compact and either vn ↑ v or vn ↓ v,
then fn converges in the sense of Schäl (1975) to some f ∈ F

that is a minimizer of v, i.e., v∗(x) = v(x, f(x)) for all x ∈ X.
(b) The conclusion in part (a) is also valid if the Assumption 2.33

(in Sect. 2.3.3 above) holds, the functions v and vn belong to
Lw(X), and vn → v as n → ∞.

For a proof of Proposition B.12(a), see Lemma 4.6.6 in
Hernández-Lerma and Lasserre (1996). Part (b) follows from The-
orem B.10.



Appendix C

Markov Processes

Let {xn} be a discrete–time stochastic process, that is, a sequence
of random variables, with values in a space S. We will assume that
S is a Borel space.

The process {xn} is called a Markov chain or a discrete–time
Markov process with state space S if, for every n ≥ k ≥ 0 and
B ∈ B(S),

P (xn ∈ B | x0, . . . , xk) = P (xn ∈ B | xk). (C.1)

The interpretation of (C.1) is as follows. Let us refer to k as
the “present (or current) time”, n ≥ k as the “future”, and n ≤
k − 1 as the “past”. Then (C.1) states that the distribution of the
sequence at any future time n, given the “history” of the process
up to the current time k depends only on the current state xk.

In fact, the so-called Markov property (C.1) holds iff (C.1) holds
for n = k + 1 only; that is, (C.1) is equivalent to the following: For
every k ≥ 0 and B ∈ B(S),

P (xk+1 ∈ B | x0, . . . , xk) = P (xk+1 ∈ B | xk). (C.2)

In other words, to verify the Markov property it is not necessary
to check (C.1) for every n ≥ k; it suffices to check (C.2) for n =
k + 1.

The right–hand side of (C.2) defines the one–step transition
probabilities

Pk(x,B) := P (xk+1 ∈ B | xk = x)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
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for all x ∈ S,B ∈ B(S), and k = 0, 1, . . . . If the transition proba-
bilities are independent of k, that is,

P (x,B) ≡ P (xk+1 ∈ B | xk = x) ∀ k ≥ 0,

then {xn} is said to be a stationary or time–homogeneous Markov
chain. Here, unless noted otherwise, we will consider stationary
Markov chains only.

Remark C.1. We will try to explain the origin of the name
Markov chain. The Russian mathematician Andrei A. Markov
(1856–1922) considered a sequence {xk} of random variables with
values in a finite set S, and such that

P (x0 = i0, x1 = i1, . . . , xn = in)

= P (x0 = i0)p(i0, i1)p(i1, i2) · · · p(in−1, in) (C.3)

for every n ≥ 1 and every sequence of states i0, . . . , in in S, where

p(ik, ik+1) := P (xk+1 = ik+1|xk = ik)

denote the one–step transition probabilities. It can be shown
(Exercise 2) that (C.2) and (C.3) are equivalent; that is, the finite–
valued sequence {xk} is a Markov chain iff (C.3) holds. Moreover,
because of the right–hand side of (C.3), Markov referred to {xk}
as a sequence whose probabilities were “chained”. These facts
appeared in a paper by Markov, in 1906. The name “Markov
chain” was used for the first time by Bernstein (1927). For addi-
tional details on Markov’s contributions see the paper by Basharin
et al. (2004). ♦

The following definition generalizes the concept of transition
probability.

Definition C.2. Let X and Y be Borel spaces. A stochastic ker-
nel on X given Y (also known as a transition probability from Y
to X) is a real–valued function Q(·|·) such that

(a) B → Q(B|y) is a probability measure on B(X) for each fixed
y ∈ Y , and
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(b) y → Q(B|y) is a measurable function on Y for each fixed Borel
set B ⊂ X.

Note that a (Markov) transition probability P (x,B) as above,
written in the form P (B|x), is a stochastic kernel with X = Y .

Proposition C.3. Let {xn, n = 0, 1, . . . } and {ξn, n = 0, 1, . . . }
be stochastic processes in Borel spaces X and S, respectively.
Suppose that ξ0, ξ1, . . . are independent, and also independent of
x0. If there is a measurable function F : X × S → X such that

xn+1 = F (xn, ξn) ∀ n ≥ 0, (C.4)

then {xn} is a Markov chain. The converse is also true.

Example C.4. Let {ξn} be a sequence of independent random
variables, and x0 a given random variable independent of {ξn}.
By Proposition C.3, the following are examples of Markov chains.

(a) A Markov chain that evolves as

xn+1 = F (xn) + ξn ∀ n = 0, 1, . . . (C.5)

is called a first order autoregressive process, and {ξn} is
said to be an additive noise. (C.5) includes linear systems

xn+1 = Gxn + ξn, (C.6)

where G is a constant, which can be a matrix in the vector
case. If the ξn and the initial state x0 are Gaussian random
variables, then (C.6) is called a Gaussian–Markov system.

(b) Consider an inventory–production system

xn+1 = xn + f(xn) − ξn, n = 0, 1, . . . ,

where xn is the stock or inventory level (of a certain product)
at time n, f(x) is the production strategy given the stock level
x, and ξn is the demand of the product in period n.

(c) Consider a water reservoir with capacity Q. Let xn be the
amount of water in the reservoir at time n, and f(xn) the
amount of water discharged in period n (for instance, for irri-
gation or to produce electrical energy). Then we can express
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xn+1 as
xn+1 = min [xn − f(xn) + ξn, Q],

where ξn is the amount rainwater deposited in the reservoir in
period n.

Remark C.5. In Example C.4(a), the sequence {ξn} is, in gen-
eral, a random noise, that is, a sequence of arbitrary random vari-
ables with no particular interpretation or meaning. In contrast, in
(b) and (c) the sequence is a driving process, that is, the random
variables ξn have a physical or economic interpretation. Usually,
this is also the case in queueing systems, in which the “random
perturbations” ξn represent the arrival process.

Continuous–Time Markov Processes

Let {xt, t ≥ 0} be a continuous–time stochastic process with val-
ues in a Borel space X. We say that {xt} is a Markov process
if, for every t ≥ s ≥ 0 and B ∈ B(X),

P (xt ∈ B | xr ∀ r ≤ s) = P (xt ∈ B | xs) (C.7)

The interpretation of (C.7) is analogous, of course, to that of
(C.1), where s is the “present time”, t > s is the “future”, and
r < s is the “past”.

From the right–hand side of (C.7) we obtain the transition prob-
abilities

P (s, x, t, B) := P (xt ∈ B | xs = x) (C.8)

for every t ≥ s, x ∈ X, and B ∈ B(X). The transition probabil-
ities are called stationary or time–homogeneous if they depend
only on the time–difference t − s. In this case we rewrite (C.8) as

P (t, x, B) := P (xt ∈ B | x0 = x).

Example C.6. The simplest example of a continuous–time
Markov process is the solution {xt} of an ordinary differential
equation
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ẋt = F (xt) for t ≥ 0,

for some given initial condition x0. Under suitable assumptions
on F , there is a unique solution

xt = x0 +

∫ t

0

F (xu)du,

which can be expressed, for every t ≥ s ≥ 0, as

xt = xs +

∫ t

s

F (xu)du.

This is the deterministic analogue of the Markov property (C.7).

Example C.7. [Brownian motion.] The one–dimensional Brown-
ian motion, also known asWiener process, is a process {w(t), t ≥ 0}
with values w(·) ∈ R and:

(a) continuous trajectories t �→ w(t), with w(0) = 0;

(b) independent increments, that is, for any positive integer n
and times 0 = t0 < t1 < · · · < tn, the increments

w(t1) − w(t0), w(t2) − w(t1), ..., w(tn) − w(tn−1)

are independent random variables; and

(c) stationary Gaussian increments, that is, for any t > s ≥ 0,
the increment w(t) − w(s) has a normal (or Gaussian) dis-
tribution with zero mean, and variance E[(w(t) − w(s))2] =
t − s.

The Wiener process has many interesting properties. In particu-
lar, from the independence of increments (b), it is a continuous–
time Markov process.

A process w(t), t ≥ 0 with values w(·) = (w1(·), . . . , wn(·)) ∈
R

n is a n–dimensional Brownian motion (or Wiener process) if
the components w1(·), . . . , wn(·) are independent one–dimensional
Brownian motions.
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Theorem of C. Ionescu–Tulcea

The following proposition in used in the analysis of Markov chains.

Proposition C.8. (Theorem of C. Ionescu Tulcea.). Let X0,
X1, . . . be a sequence of Borel spaces and, for n = 0, 1, . . . , define
Yn := X0 × · · · × Xn and Y := Π∞

n=0Xn. Let ν be an arbitrary
probability measure on X0 and, for every n = 0, 1, . . . , let Pn

(dxn+1|yn) be a stochastic kernel on Xn+1 given Yn. Then there
exists a unique probability measure Pν on Y such that, for every
measurable rectangle B0 × · · · × Bn in Yn,

Pν(B0 × · · · ×Bn) =

∫
B0

ν(dx0)

∫
B1

P0(dx1|x0)

∫
B2

P1(dx2|x0, x1)

· · ·
∫
Bn

Pn−1(dxn|x0, . . . , xn−1). (C.9)

Moreover, for any nonnegative measurable function u on Y , the
function

x �→
∫

u(y)Px(dy)

is measurable on X0, where Px stands for Pν when ν is the prob-
ability concentrated at x ∈ X0.

Proof. See Ash (1972, p. 109), Bertsekas and Shreve (1978, pp.
140–141), or Neveu (1965, p. 162). �

Remark C.9. Let us (informally) write the measure Pν in (C.9)
as

Pν(dx0, dx1, dx2, . . .) = ν(dx0)P0(dx1|x0)P1(dx2|x0, x1) · · · ,
and let π = {πt} be an arbitrary control policy. Then the measure
P π

ν in Chap. 3 [see (3.1.10a)–(3.1.10c)] can be written in the form

P π
ν (dx0, da0, dx1, da1, . . .) = ν(dx0)π0(da0|x0)Q(dx1|x0, a0).

·π1(da1|x0, a0, x1)Q(dx2|x1, a1) · · · .
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Exercises—Appendix C

1. Prove that (C.1) and (C.2) are equivalent.
2. Prove that (C.2) and (C.3) are equivalent.
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Abelian theorem
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discrete–time, 73

Action, see Policy

Average cost optimality equation
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discrete–time, 63, 116

Average cost optimality inequality
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discrete–time, 113

Average cost problems

continuous–time, 147

discrete–time, 62, 111
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Banach’s fixed point theorem, 38

Bellman equation, see Dynamic pro-
gramming equation

Bellman operator, 31, 102

Bellman’s principle of optimality, see
Principle of optimality (PO)

Blackwell’s conditions, 46
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Bounding function, see Weight function
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Brownian motion, 186

C

Canonical pair

continuous–time, 151, 196

discrete–time, 63
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Chapman–Kolmogorov equation, 189

Consumption–investment problem, 6,
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Control, see Policy

Control model, see Optimal control

problem

Control policy, see Policy

Control problem, see Optimal control
problem

D

Differential equation
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stochastic, 10, 187

Diffusion coefficient, 187

Diffusion process, 187, 217

Dirac measure, 85, 184, 185
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Economic growth model, see Brock–

Mirman model
Envelope Theorems, 136
Ergodic Markov process, 197

F
Feller property, 94, 219

G
Gauge function, see Weight function
Generator, see Infinitesimal generator
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Hamilton–Jacobi–Bellman (HJB), 132,
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Hamilton–Jacobi–Bellman (HJB) equa-
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Hardy-Littlewood Theorem, 73
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Indicator function, 85, 184
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Invariant probability measure, 197
Ionescu Tulcea Theorem, 260
Itô integral, 187
Itô processes, 217
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Langevin equation, 233
Law of motion, 198
Long–run expected average cost, 7, 194,

195, 205, 237
LQ control problem
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155, 224, 232, 237

discrete–time, 18, 30, 57, 75, 96, 98,
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M
Majorant, see Weight function
Markov control model (MCM), 83, 87,

91, 100

Markov control problem

continuous–time, 132
Markov control process

continuous–time, 183, 198
discrete–time, 84, 87

Markov decision process, see Markov
control process

Markov process
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190
Minimal cost, see Value function
Minimum principle
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discrete-time, 38

Minimum steady state
continuous–time, 153
discrete–time, 67

Minimumprinciple
discrete-time, 23
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continuous, 251
lower semicontinuous (l.s.c.), 251
upper semicontinuous (u.s.c.), 251

O
Optimal control problem

finite–horizon, 128
Optimal control problem (OCP), 1, 13,

87
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discounted case, 141
discrete–time, 1, 13, 87, 100
finite-horizon, 87
infinite–horizon, 28, 100, 143
long–run average cost (AC), 62, 72
stationary discounted, 28

Optimality equation, see Dynamic pro-
graming equation

P
Partially observable systems, 8
Poisson equation, 149, 195, 196, 198, 209
Policy, 86

history–dependent, 5
action, see Control policy
closed–loop, see Markov
control, 5, 86
feedback, see Markov policy
Markov, 5, 10, 199
open–loop, 5, 10, 127
optimal, 3, 88
randomized control, 86

stationary Markov, 53, 199
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Policy iteration (PI) algorithm, 54, 108,
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Pollution accumulation, 156, 240

Pontryagin’s Maximum Principle, see
Minimum principle

Portfolio selection problem, see
Consumption–investment prob-
lem

Principle of optimality (PO), 15, 129

Production–inventory system, 4

R

Random noise, see Driving process

S

Sample path, 184

Selector, 32, 249

Semigroup of operators, 189, 190

Stationary measure, see Invariant prob-
ability measure

Stochastic differential equations (SDEs),
see Differential equation

Stochastic kernel, 84, 86, 93, 256, 260

Stochastic process

continuous–time, 183, 186

Stopping time, 192

Strategy, see Policy

T
Tracking problem, 7, 30

Transition probability, 84, 93, 184, 187,
198, 256, 260

U
Uniformly ergodic Markov process, see

Geometrically ergodic Markov
process

Uniformly geometrically ergodic Markov
process, see Geometrically ergodic
Markov process

V
Value function, 3, 30, 62, 88, 100, 129,

201, 205, 236, 237
Value iteration (VI)

algorithm, 51
functions, 32, 106

Vanishing discount
continuous–time, 158, 210
discrete–time, 72

Verification theorem, 133, 134, 144

W
Weight function, 45
Weighted-norm, 44
Wiener process, see Brownian motion
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