
Real-Time
C++

Christopher Kormanyos

E� cient Object-Oriented and Template
Microcontroller Programming

Third Edition

Real-Time C++

Christopher Kormanyos

Real-Time C++
Efficient Object-Oriented and Template
Microcontroller Programming

Third Edition

123

Christopher Kormanyos
Reutlingen
Germany

ISBN 978-3-662-56717-3 ISBN 978-3-662-56718-0 (eBook)
https://doi.org/10.1007/978-3-662-56718-0

Library of Congress Control Number: 2018935981
1st edition: © Springer-Verlag Berlin Heidelberg 2013
2nd edition: © Springer-Verlag Berlin Heidelberg 2015

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of
Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-56718-0

To those who pursue the art of technical
creativity

Preface to the Third Edition

C++ is a modern, expressive object-oriented programming language that continues
to evolve. In keeping up with the exciting development of C++, the third edition of
this book has been updated for C++17.1

With this iteration of the language, the purpose of this book remains the same—
to show through example and text how to leverage C++’s powerful object-oriented
and template features in the realm of microcontroller programming with the goal of
improving software quality and robustness while simultaneously fulfilling efficiency
requirements.

Several new sections have been added and others have been modified or adapted.
These changes cover new language elements and library features in C++17. They
also reflect the trend of improved compiler support for C++11 and C++14.

More errors have been identified, predominantly reported by careful and patient
readers. All errors that have been found have been corrected.

New or Significantly Modified Sections

The third edition of this book contains several new or significantly modified
sections. These include:

• Section 2.2 updated for a newer GCC toolchain with a more simple decorated
name (i.e., GCC version 7.2.0 built for the target avr-g++),

• Section 3.4 adding information on C++17 nested namespace definitions,
• Section 3.17 now including descriptions of the (in the second edition of this book

missing) standardized suffixes if, i and il from the <complex> library,
• Section 3.18 (new) detailing the specifiers alignof and alignas,

1At the time of writing the third edition of this book, state-of-the-art compilers support C++17.
The specification process is ongoing, and some language experts predict that C++20 will be the
next revision of the C++ standard, potentially available in 2020.

vii

viii Preface to the Third Edition

• Section 3.19 (new) for the specifier final,
• Section 3.20 (new) on defining types with C++11 alias,
• Section 9.8 (new) portraying a full example that animates an RGB LED to

produce a colorful light display,
• Section 12.4 covering inclusion of additional mathematical special functions in

<cmath> specified in the C++17 standard,
• several sections in Chap. 13 reflecting improvements of thefixed_point class

in the companion code,
• Section 16.6 (new) presenting an extended-complex template class that promotes

the functionality of the <complex> library to user-defined types other than
float, double and long double,

• Chapter 17 (new) showing how to use C code in a C++ project (hereby
“Additional Reading” has been moved from Chaps. 17 to 18),

• the tutorial of Appendix A, in particular Sect. A.4 updating static_assert
for C++17, Sect. A.15 (new) for the <type_traits> library, Sect. A.16 (new)
on using std::any from the C++17 <any> library, and Sect. A.17 (new)
introducing structured binding declarations (also from C++17).

Improved or New Examples and Code Snippets

All sample projects have been modernized for GCC version 7.2.0 built for
avr-g++ and five new examples have been added.

☞ The chapter06_01 sample project (new) shows step-by-step how to perform
the benchmark of the CRC calculation described in Sects. 6.1 and 6.2.

☞ The chapter09_07 example in Sect. 9.7 has been adapted to architectural
improvements found in the new chapter09_08 sample of Sect. 9.8,

☞ The chapter09_08 sample project (new) animates an industry-standard off-
the-shelf RGB LED. This example incorporates several real-time C++ features
including object-oriented design, peripheral driver development and multitask-
ing. They are merged together within the context of a coherent, intuitive and
visible project. By means of simulation on a PC, the chapter09_08 sample
also exemplifies cross-development and methods for creating portable code.

☞ The chapter12_04 example (new) performs highly detailed calculations of
several mathematical special functions. These are used to provide a benchmark
of floating-point operations.

☞ The chapter17_03 sample project (new) takes an existing C library used
for CRC calculations and wraps the procedural functions in classes that can be
employed in object-oriented C++. This practical exercise shows how to leverage
the power of valuable existing C code within a modern C++ project.

☞ The chapter17_03a sample project (new) uses the CRC classes of the
chapter17_03 example and distributes the work of the calculations among
successive time slices in a multitasking environment.

Preface to the Third Edition ix

With the third edition of this book, code snippets have been made available in the
public domain. The code snippets correspond to certain code samples that appear
in the text. Each code snippet comprises a complete and portable, single-file C++
program. Every program can be compiled and run on a PC or easily adapted to a
microcontroller environment.

To obtain run-ability on a PC, code snippets have been embellished with a
main() subroutine. Some code snippets have been augmented with <thread>
support or other higher-level mechanisms in order to elucidate the topic of the
program. Outputs are printed to the console with <iostream>. The file names
of the code snippets correspond to chapter and section numbers in the book.

Companion Code

The companion code has been improved and extended based on new and reworked
sections of the third edition. Contemporary compiler toolchains are used. Legacy
directories that previously provided for certain aspects of C++11 compatibility have
been removed, as modern compilers now support these.

The entire companion code can be found here:

http://github.com/ckormanyos/real-time-cpp

The reference application is at:

http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app

Example projects can be found here:

http://github.com/ckormanyos/real-time-cpp/tree/master/examples

Code snippets are located at:

http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

Further Notes on Coding Style

The coding style in the third edition of this book stays consistent with that used in the
first and second editions. The code is intended to be easy to read and straightforward
to comprehend while simultaneously utilizing the full spectrum of C++’s traditional
and modern features.

http://github.com/ckormanyos/real-time-cpp
http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app
http://github.com/ckormanyos/real-time-cpp/tree/master/examples
http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

x Preface to the Third Edition

Updated Trademarks and Acknowledgments

In the preface to first edition of this book, we listed several trademarks and
acknowledgments. Meanwhile the authors/holders of certain trademarks/copyrights
and the scope of some of the acknowledgments have changed.

• ATMELR© and AVRR© are registered trademarks of Microchip Technology
Incorporated or its subsidiaries in the US and other countries.

• Real-Time C++: Efficient Object-Oriented and Template Microcontroller Pro-
gramming is a book authored by Christopher Kormanyos and published by
Springer Verlag and has not been authorized, sponsored, or otherwise approved
of by Microchip Technology Incorporated.

• ARDUINOR© is a registered trademark of the Arduino Group.
• The word AUTOSAR is a registered trademark of the AUTOSAR Development

Partnership.
• SPITM is a trademark of Motorola Corporation.
• The circuits of all target hardware described in this book and depicted in various

chapters such as Chaps. 2, 9 and Appendix D were designed and assembled on
solderless prototyping breadboards by Christopher Kormanyos.

• All photographs of target hardware in this book shown in chapters including
Chaps. 2, 9, Appendix D and any others were taken by Christopher Kormanyos.

Reutlingen, Germany Christopher Kormanyos
February 2018

Preface to the Second Edition

C++ seamlessly blends object-oriented techniques with generic template methods,
creating a modern powerful programming language useful for problem-solving in
countless domains. The most recent evolution of C++ from C++11 to C++14 has
brought yet further improvements to this rich language.2 As C++ becomes even
more expressive, growing numbers of embedded systems developers are discovering
new and fascinating ways to utilize its multifaceted capabilities for creating efficient
and effective microcontroller software.

The second edition of this book retains its original purpose to serve as a practical
guide to programming real-time embedded microcontroller systems in C++. New
material has been incorporated predominantly reflecting changes introduced in
the C++14 standard. Various sections have been reworked according to reader
suggestions. Selected passages have been reformulated in a continued effort to
improve clarity. In addition, all known errors throughout the text have been
corrected.

New sections have been added (in particular for C++14) covering:

• digit separators (Sect. 3.15),
• binary literals (Sect. 3.16),
• user-defined literals (Sect. 3.17),
• variable templates (Sect. 5.12),
• and the chapter09_07 sample project (Sect. 9.7) controlling an industry-

standard seven-segment display.

Two new sample projects, chapter02_03a and chapter09_07, have been
added to the companion code.

2At the time of writing the second edition of this book, C++14 is brand new. World-class compilers
are shipped with support for C++14. Work is in progress on C++1z, the next specification of C++
(sometimes known as C++17). Experts anticipate that the specification of C++1z could be finished
in 2017.

xi

xii Preface to the Second Edition

☞ The chapter02_03a sample project implements LED toggling at 1/ 2Hz
with timing provided by a simple multitasking scheduler in combination with a
timer utility.

☞ The chapter09_07 sample project in the newly added Sect. 9.7 uses many of
the advanced programmingmethods in this book to animate an industry-standard
seven-segment display.

Significantly reworked or corrected parts of this book include:

• corrections and clarifications in Chap. 1 on getting started with C++,
• the description of the chapter02_02 project in Sect. 2.2,
• parts of Chap. 3 on the jump-start in real-time C++,
• corrections and clarifications in Chap. 5 on templates,
• Sections 6.1 and 6.2 on optimization and performance,
• parts of Chap. 10 on custom memory management,
• parts of Chaps. 12 and 13 on mathematics,
• the literature list in Sect. 18.1,
• parts of Appendix A in the C++ tutorial,
• and repairs and extensions of the citations in some chapter references.

Companion Code

The companion code continues to be supported and numerous developers have
successfully worked with it on various cross-development platforms. The scope of
the companion code has been expanded to include a much wider range of target
microcontrollers. In addition, the chapter02_03a and chapter09_07 sample
projects that are mentioned above have been added to the companion code.

The companion code is available at:
http://github.com/ckormanyos/real-time-cpp

More Notes on Coding Style

The second edition of this book features slight changes in coding style. These can
be encountered in the code samples throughout the text.

Compiler support for standard C99 and C++11 macros of the form UINT8_C(),
UINT16_C(), UINT32_C(), etc. and corresponding macros for signed types in
the <stdint.h> and <cstdint> headers has become more prevalent (see also
Sect. 3.2). Consequently, these macros are used more frequently throughout the code
samples.

http://github.com/ckormanyos/real-time-cpp

Preface to the Second Edition xiii

These macros are useful for creating integer numeric literal values having
specified widths. The code below, for example, utilizes UINT8_C() to initialize
an 8-bit integer variable with a numeric literal value.

#include <cstdint>

std::uint8_t byte_value = UINT8_C(0x55);

Digit separators have become available with C++14 (Sect. 3.15). These are used
in selected code samples to improve clarity of long numeric literals. Digit separators
are shown in the code sample below.

#include <cstdint>

constexpr std::uint32_t prime_number =
UINT32_C(10’006’721);

constexpr float pi = 3.1415926535’8979323846F;

Other than these minor changes, however, the coding style in the second edition
of this book remains consistent with that of the first edition and is intended to be
clean and clear.

Reutlingen, Germany Christopher Kormanyos
Seattle, Washington
May 2015

Preface to the First Edition

This book is a practical guide to programming real-time embedded microcontroller
systems in C++. The C++ language has powerful object-oriented and template
features that can improve software design and portability while simultaneously
reducing code complexity and the risk of error. At the same time, C++ compiles
highly efficient native code. This unique and effective combination makes C++ well
suited for programming microcontroller systems that require compact size, high
performance and safety-critical reliability.

The target audience of this book includes hobbyists, students and professionals
interested in real-time C++. The reader should be familiar with C or another pro-
gramming language and should ideally have had some exposure to microcontroller
electronics and the performance and size issues prevalent in embedded systems
programming.

About This Book

This is an interdisciplinary book that includes a broad range of topics. Real-
world examples have been combined with brief descriptions in an effort to provide
an intuitive and straightforward methodology for microcontroller programming
in C++. Efficiency is always in focus and numerous examples are backed up with
real-time performance measurements and size analyses that quantify the true costs
of the code down to the very last byte and microsecond.

Throughout the chapters, C++ is used in a bare-bones, no-frills fashion without
relying on any libraries other than those specified in the language standard itself.
This approach facilitates portability.

This book has three parts and several appendices. The three parts generally build
on each other with the combined goal of providing a coherent and effective set of
C++ methods that can be used with a wide range of embedded microcontrollers.

xv

xvi Preface to the First Edition

• Part I provides a foundation for real-time C++ by covering language technolo-
gies. Topics include getting started in real-time C++, object-oriented methods,
template programming and optimization. The first three chapters have a particu-
larly hands-on nature and are intended to boost competence in real-time C++.
Chapter 6 has a unique and important role in that it is wholly dedicated to
optimization techniques appropriate for microcontroller programming in C++.

• Part II presents detailed descriptions of a variety of C++ components that are
widely used in microcontroller programming. These components can be either
used as presented or adapted for other projects. This part of the book uses some
of C++’s most powerful language elements, such as class types, templates and
the STL, to develop components for microcontroller register access, low-level
drivers, custom memory management, embedded containers, multitasking, etc.

• Part III describes mathematical methods and generic utilities that can be
employed to solve recurring problems in real-time C++.

• The appendices include a C++ language tutorial, information on the real-time
C++ development environment and instructions for building GNU GCC cross-
compilers and a microcontroller circuit.

C++ is a rich language with many features and details, the description of
which can fill entire bookshelves. This book, however, primarily concentrates on
how to use C++ in a real-time microcontroller environment. Along those lines,
C++ language tutorials have been held terse, and information on microcontroller
hardware and compilers is included only insofar as it is needed for the examples.
A suggested list of additional reading material is given in Chap. 18 for those
seeking supplementary information on C++, the C++ standard library and STL,
software design, C++ coding guidelines, the embedded systems toolchain and
microcontroller hardware.

When units are needed to express physical quantities, the MKS (meter, kilogram,
second) system of units is used.

Companion Code, Targets and Tools

The companion code includes three introductory projects and one reference project.
The introductory projects treat various aspects of the material presented in Chaps. 1
and 2. The reference project is larger in scope and exercises many of the methods
from all the chapters.

The companion code is available at:
http://github.com/ckormanyos/real-time-cpp
The C++ techniques in this book specifically target microcontrollers in the small-

to-medium size range. Here, small-to-medium spans the following approximate size
and performance ranges.

• 4 kbyte . . . 1Mbyte program code
• 256 byte . . . 128 kbyte RAM

http://github.com/ckormanyos/real-time-cpp

Preface to the First Edition xvii

• 8-bit . . . 32-bit CPU
• 8MHz . . . 200MHz CPU frequency

Most of the methods described in this book are, however, scalable. As such, they
can be used equally well on larger or smaller devices, even on PCs and workstations.
In particular, they can be employed if the application has strict performance and size
constraints.

A popular 8-bit microcontroller clocked with a frequency of 16MHz has been
used as the primary target for benchmarking and testing the code samples in
this book. Certain benchmarks have also been performed with a well-known 32-
bit microcontroller clocked at 24MHz. An 8-bit microcontroller and a 32-bit
microcontroller have been selected in order to exercise the C++ methods over a
wide range of microcontroller performance.

All the C++ examples and benchmarks in the book and the companion code
have been compiled with GNU GCC versions 4.6.2 and 4.7.0. Certain examples and
benchmarks have also been compiled with other PC-based compilers.

The most recent specification of C++11 in ISO/IEC 14882:2011 is used
throughout the text. At the time this book is written, the specification of C++11
is brand new. The advent of C++11 has made C++ significantly more effective and
easy to use. This will profoundly influence C++ programming. The well-informed
reader will, therefore, want to keep in touch with C++11 best practice as it evolves
in the development community.

Notes on Coding Style

A consistent coding style is used throughout the examples in this book and in the
companion code.

Code samples are written with a fixed-width font. C++ language key-
words and built-in types use the same font, but they are in boldface. For instance,

constexpr int version = 7;

In general, the names of all symbols such as variables, class types, members and
subroutines are written in lowercase. A single underscore (_) is used to separate
words and abbreviations in names. For instance, a system-tick variable expressed
with this style is shown in the code sample below.

unsigned long system_tick;

Using prefixes, suffixes or abbreviations to incorporate type information in a
name, sometimes known as Hungarian notation, is not done. Superfluous prefixes,

xviii Preface to the First Edition

suffixes and abbreviations in Hungarian notation may obscure the name of a symbol
and symbol names can be more intuitive and clear without them. For example,

std::uint16_t name_of_a_symbol;

Names that are intended for use in public domains are preferentially long and
descriptive rather than short and abbreviated. Here, clarity of expression is preferred
over terseness. Symbols used for local subroutine parameters or private implementa-
tion details with obvious meanings, however, often have terse or abbreviated names.

The global subroutine below, for example, uses this naming style. It returns the
float value of the squared Euclidean distance from the origin of a point in two-
dimensional Cartesian space R2.

float squared_euclidean_distance(const float& x,
const float& y)

{
return (x * x) + (y * y);

}

C++ references are heavily used because this can be advantageous for small
microcontrollers. Consider an 8-bit microcontroller. The work of copying subrou-
tine parameters or the work of pushing them onto the stack for anything wider
than 8 bits can be significant. This work load can potentially be reduced by using
references. In the previous code sample, for instance, the floating-point subroutine
parameters x and y, each four bytes wide, have been passed to the subroutine by
reference (i.e., const float&).

Fixed-size integer types defined in the std namespace of the C++ standard
library such as std::uint8_t, std::uint16_t, std::uint32_t, and the
like are preferentially used instead of plain built-in types such as char, short,
int, etc. This improves clarity and portability. An unsigned login response with
exactly 8 bits, for instance, is shown below.

std::uint8_t login_response;

Code samples often rely on one or more of the C++ standard library head-
ers such as <algorithm>, <array>, <cstdint>, <limits>, <tuple>,
<vector>, etc. In general, code samples requiring library headers do not explicitly
include their necessary library headers.

Preface to the First Edition xix

The declaration of login_response above, for example, actually requires
<cstdint> for the definition of std::uint8_t. The library file is, however,
not included. In general, the code samples focus on the core of the code, not on the
inclusion of library headers.

It is easy to guess or remember, for example, that std::array can be found
in <array> and that std::vector is located <vector>. It can, however, be
more difficult to guess or remember that std::size_t is in <cstddef> or that
std::accumulate() is in <numeric>. With assistance from online help and
other resources and with a little practice, though, it becomes routine to identify what
standard library parts can be found in which headers.

In cases for which particular emphasis is placed on the inclusion of a header file,
the relevant #include line(s) may be explicitly written. For instance,

#include <cstdint>

std::uint8_t login_response;

Namespaces are used frequently. In general, though, the using directive is not
used to inject symbols in namespaces into the global namespace. This means that
the entire namespace must be typed with the name of a symbol in it. This, again,
favors non-ambiguity over brevity.

The unsigned 16-bit counter below, for example, uses a type from the std
namespace. Since the “using namespace std” directive is not used, the name
of the namespace (std) is explicitly included in the type.

std::uint16_t counter;

Suffixes are generally appended to literal constant values. When a suffix is
appended to a literal constant value, its optional case is uppercase. For example,

constexpr float pi = 3.14159265358979323846F;

constexpr std::uint8_t login_key = 0x55U;

Certain established C++ coding guidelines have strongly influenced the coding
style. For the sake of terseness and clarity, however, not every guideline has been
followed all the time.

xx Preface to the First Edition

One clearly recognizable influence of the coding guidelines is the diligent use of
C++-style casts when converting built-in types. The following code, for instance,
explicitly casts from float to an unsigned integer type.

float f = 3.14159265358979323846F;

std::uint8_t u = static_cast<std::uint8_t>(f);

Even though explicit casts like these are not always mandatory, they can resolve
ambiguity and eliminate potential misinterpretation caused by integer promotion.

Another influence of the coding guidelines on the code is the ordering of class
members according to their access level in the class. The communication class
below, for example, represents the base class in a hierarchy of communication
objects. The members in the class definition are ordered according to access level.
In particular,

class communication
{
public:

virtual ~communication();

virtual bool send(const std::uint8_t) const;
virtual bool recv(std::uint8_t&);

protected:
communication();

private:
bool recv_ready;
std::uint8_t recv_buffer;

};

C-style preprocessor macros are used occasionally. Preprocessor macros are
written entirely in uppercase letters. Underscores separate the words in the names of
preprocessor macros. The MAKE_WORD() preprocessor macro below, for example,
creates an unsigned 16-bit word from two unsigned 8-bit constituents.

#define MAKE_WORD(lo, hi) \
(uint16_t) (((uint16_t) (hi) << 8) | (lo))

Preface to the First Edition xxi

Acknowledgements

First and foremost, I would like to thank my wife and my daughter for encouraging
me to write this book and also for creating a peaceful, caring atmosphere in which I
could work productively. Thank you for your support and your time. You have my
gratitude.

I would also like to express appreciation to family, friends and associates, too
numerous to list, who contributed to this project with their innovative ideas, support,
friendship and companionship.

Thanks go to the members of the C++ standards committee, Boost, the volunteers
at GCC and all the developers in the vibrant C++ and embedded systems commu-
nities. Through your efforts, oftentimes for no pay whatsoever, C++ has evolved
to an unprecedented level of expressiveness, making object-oriented and generic
programming more effective and easier than ever.

Working with Springer Verlag was a delightful experience. I thank my editor,
who first identified the merit of this work and supported me throughout the writing
process. I also thank the copy editing team and all the staff at Springer Verlag for
their professionalism and capable assistance.

• ATMELR© and AVRR© are registered trademarks of Atmel Corporation or its
subsidiaries, in the US and other countries.

• Real-Time C++: Efficient Object-Oriented and Template Microcontroller Pro-
gramming is a book authored by Christopher Kormanyos and published by
Springer Verlag and has not been authorized, sponsored, or otherwise approved
of by Atmel Corporation.

• ARDUINOR© is a registered trademark of the Arduino Group.
• SPITM is a trademark of Motorola Corporation.
• The circuit of the target hardware described in this book and depicted in Chap. 2

and Appendix D was designed and assembled on a solderless prototyping
breadboard by Christopher Kormanyos.

• The photographs of the target hardware described in this book and depicted in
Chap. 2 and Appendix D were taken by Christopher Kormanyos.

Reutlingen, Germany Christopher Kormanyos
Seattle, Washington
September 2012

Contents

Part I Language Technologies for Real-Time C++

1 Getting Started with Real-Time C++ . 3
1.1 The LED Program . 3
1.2 The Syntax of C++ . 6
1.3 Class Types . 6
1.4 Members . 10
1.5 Objects and Instances.. 12
1.6 #include . 13
1.7 Namespaces .. 14
1.8 C++ Standard Library . 16
1.9 The main() Subroutine .. 16
1.10 Low-Level Register Access . 17
1.11 Compile-Time Constant . 18
References .. 19

2 Working with a Real-Time C++ Program on a Board 21
2.1 The Target Hardware . 21
2.2 Build and Flash the LED Program .. 22
2.3 Adding Timing for Visible LED Toggling.. 26
2.4 Run and Reset the LED Program . 28
2.5 Recognizing and Handling Errors and Warnings. 28
2.6 Reaching the Right Efficiency . 30
References .. 33

3 An Easy Jump Start in Real-Time C++ . 35
3.1 Declare Locals when Used . 35
3.2 Fixed-Size Integer Types . 36
3.3 The bool Type . 38
3.4 Organization with Namespaces . 39
3.5 Basic Classes. 41
3.6 Basic Templates. 42

xxiii

xxiv Contents

3.7 nullptr Replaces NULL . 45
3.8 Generalized Constant Expressions with constexpr 46
3.9 static assert . 47
3.10 Using <limits> . 47
3.11 std::array . 48
3.12 Basic STL Algorithms .. 49
3.13 <numeric> . 50
3.14 atomic load() and atomic store() . 51
3.15 Digit Separators . 51
3.16 Binary Literals . 52
3.17 User-Defined Literals . 53
3.18 Using alignof and alignas . 56
3.19 The Specifier final . 57
3.20 Alias as an Alternative to typedef . 58
References .. 60

4 Object-Oriented Techniques for Microcontrollers . 61
4.1 Object Oriented Programming . 61
4.2 Objects and Encapsulation . 66
4.3 Inheritance . 67
4.4 Dynamic Polymorphism.. 69
4.5 The Real Overhead of Dynamic Polymorphism 70
4.6 Pure Virtual and Abstract. 71
4.7 Class Relationships . 72
4.8 Non-copyable Classes . 74
4.9 Constant Methods . 75
4.10 Static Constant Integral Members . 79
4.11 Class Friends . 79
4.12 Virtual Is Unavailable in the Base Class Constructor 81
References .. 84

5 C++ Templates for Microcontrollers . 85
5.1 Template Functions . 85
5.2 Template Scalability, Code Re-Use and Efficiency 87
5.3 Template Member Functions . 90
5.4 Template Class Types. 93
5.5 Template Default Parameters. 94
5.6 Template Specialization . 95
5.7 Static Polymorphism . 97
5.8 Using the STL with Microcontrollers.. 100
5.9 Variadic Templates . 102
5.10 Template Metaprogramming . 104
5.11 Tuples and Generic Metaprogramming .. 107
5.12 Variable Templates . 110
References .. 112

Contents xxv

6 Optimized C++ Programming for Microcontrollers . 113
6.1 Use Compiler Optimization Settings . 113
6.2 Know the Microcontroller’s Performance . 117
6.3 Know an Algorithm’s Complexity . 118
6.4 Use Assembly Listings . 120
6.5 Use Map Files. 120
6.6 Understand Name Mangling and De-mangling . 121
6.7 KnowWhen to Use Assembly and When Not to 123
6.8 Use Comments Sparingly . 124
6.9 Simplify Code with typedef and Alias . 125
6.10 Use Native Integer Types . 127
6.11 Use Scaling with Powers of Two. 129
6.12 Potentially Replace Multiply with Shift-and-Add 130
6.13 Consider Advantageous Hardware Dimensioning 131
6.14 Consider ROM-Ability . 133
6.15 Minimize the Interrupt Frame . 134
6.16 Use Custom Memory Management . 137
6.17 Use the STL Consistently . 137
6.18 Use Lambda Expressions. 139
6.19 Use Templates and Scalability . 140
6.20 Use Metaprogramming to Unroll Loops. 141
References .. 141

Part II Components for Real-Time C++

7 Accessing Microcontroller Registers . 145
7.1 Defining Constant Register Addresses. 145
7.2 Using Templates for Register Access . 147
7.3 Generic Templates for Register Access. 149
7.4 Bit-Mapped Structures . 152
Reference .. 154

8 The Right Start . 155
8.1 The Startup Code . 155
8.2 Initializing RAM.. 158
8.3 Initializing the Static Constructors . 160
8.4 The Connection Between the Linker and Startup 162
8.5 Understand Static Initialization Rules . 164
8.6 Avoid Using Uninitialized Objects . 165
8.7 Jump to main() and Never return. 167
8.8 When in main(), What Comes Next?. 168
References .. 169

9 Low-Level Hardware Drivers in C++ . 171
9.1 An I/O Port Pin Driver Template Class . 171
9.2 Programming Interrupts in C++. 174

xxvi Contents

9.3 Implementing a System-Tick.. 178
9.4 A Software PWM Template Class . 181
9.5 A Serial SPITM Driver Class . 185
9.6 CPU-Load Monitors . 190
9.7 Controlling a Seven-Segment Display . 192
9.8 Animating an RGB LED . 198
References .. 204

10 Custom Memory Management . 205
10.1 Dynamic Memory Considerations . 205
10.2 Using Placement-new . 207
10.3 Allocators and STL Containers . 208
10.4 The Standard Allocator . 209
10.5 Writing a Specialized ring allocator . 210
10.6 Using ring allocator and Other Allocators 213
10.7 Recognizing and Handling Memory Limitations 215
References .. 217

11 C++ Multitasking . 219
11.1 Multitasking Schedulers . 219
11.2 Task Timing .. 221
11.3 The Task Control Block . 222
11.4 The Task List. 224
11.5 The Scheduler . 225
11.6 Extended Multitasking . 226
11.7 Preemptive Multitasking . 228
11.8 The C++ Thread Support Library .. 229
References .. 230

Part III Mathematics and Utilities for Real-Time C++

12 Floating-Point Mathematics . 233
12.1 Floating-Point Arithmetic . 233
12.2 Mathematical Constants . 236
12.3 Elementary Functions . 238
12.4 Special Functions . 239
12.5 Complex-Valued Mathematics . 249
12.6 Compile-Time Evaluation of Functions with constexpr 253
12.7 Generic Numeric Programming .. 257
References .. 264

13 Fixed-Point Mathematics . 267
13.1 Fixed-Point Data Types. 267
13.2 A Scalable Fixed-Point Template Class . 270
13.3 Using the fixed point Class . 274
13.4 Fixed-Point Elementary Transcendental Functions 276
13.5 A Specialization of std::numeric limits 287
References .. 289

Contents xxvii

14 High-Performance Digital Filters . 291
14.1 A Floating-Point Order-1 Filter . 291
14.2 An Order-1 Integer Filter . 294
14.3 Order-N Integer FIR Filters . 298
14.4 Some Worked-Out Filter Examples . 303
References .. 307

15 C++ Utilities . 309
15.1 The nothing Structure . 309
15.2 The noncopyable Class . 312
15.3 A Template timer Class . 314
15.4 Linear Interpolation.. 317
15.5 A circular buffer Template Class . 320
15.6 The Boost Library . 324
References .. 325

16 Extending the C++ Standard Library and the STL . 327
16.1 Defining the Custom dynamic array Container 327
16.2 Implementing and Using dynamic array . 330
16.3 Writing Parts of the C++ Library if None is Available 334
16.4 Implementation Notes for Parts of the C++ Library and STL 334
16.5 Providing now() for <chrono>’s High-Resolution Clock 343
16.6 Extended-Complex Number Templates . 345
References .. 348

17 Using C-Language Code in C++ . 349
17.1 Accessing C Language Code in C++ . 349
17.2 An Existing C-Language CRC Library . 350
17.3 Wrapping the C-Based CRC Library with C++ Classes 352
17.4 Return to Investigations of Efficiency and Optimization 355
References .. 356

18 Additional Reading . 357
18.1 Literature List . 357
References .. 359

Appendices

A A Tutorial for Real-Time C++ . 363
A.1 C++ Cast Operators. 363
A.2 Uniform Initialization Syntax . 364
A.3 Overloading .. 366
A.4 Compile-Time Assert . 367
A.5 Numeric Limits . 367
A.6 STL Containers . 371
A.7 STL Iterators . 373
A.8 STL Algorithms . 375

xxviii Contents

A.9 Lambda Expressions. 379
A.10 Initializer Lists . 380
A.11 Type Inference and Type Declaration with auto

and decltype . 381
A.12 Range-Based for(:) . 382
A.13 Tuple . 382
A.14 Regular Expressions .. 385
A.15 The <type traits> Library . 387
A.16 Using std::any . 389
A.17 Structured Binding Declarations .. 392
References .. 393

B A Robust Real-Time C++ Environment . 395
B.1 Addressing the Challenges of Real-Time C++ . 395
B.2 Software Architecture . 397
B.3 Establishing and Adhering to Runtime Limits . 398
References .. 399

C Building and Installing GNU GCC Cross Compilers 401
C.1 The GCC Prerequisites . 401
C.2 Getting Started . 402
C.3 Building GMP . 403
C.4 Building MPFR . 404
C.5 Building MPC . 404
C.6 Building PPL. 405
C.7 Building ISL . 406
C.8 Building the Binary Utilities for the Cross Compiler 406
C.9 Building the Cross Compiler . 408
C.10 Using the Cross Compiler . 409
References .. 410

D Building a Microcontroller Circuit . 411
D.1 The Circuit Schematic . 411
D.2 Assembling the Circuit on a Breadboard . 413
References .. 414

Glossary . 415

Index . 417

Acronyms

C C represents the set of complex numbers in mathematics.
R R represents the set of real numbers on the real axis in mathematics.
R
2

R
2 represents two-dimensional Cartesian space in mathematics and

geometry.
R
3

R
3 represents three-dimensional Cartesian space in mathematics and

geometry.
Z Z represents the set of integer numbers in mathematics.
ADC Analog-Digital Converter.
ASCII American Standard Code for Information Interchange [25] is a

numerical representation of characters, often used in areas such as
computer programming and telecommunication.

AUTOSAR AUTomotive Open System ARchitecture [2] is a worldwide coopera-
tion of automotive manufacturers and companies supplying electron-
ics, semiconductors and software that concentrates on, among other
things, a standardized architecture for automotive microcontroller
software.

AWG American Wire Gauge.
binutils Binary Utilities [6] are the GNU binary utilities such as archiver,

assembler, linker, object file parsers, etc. for GCC.
C C is the C programming language,which is often referred to as ANSI-

C or C89 [1]. Later versions of C include C99 [13] and C11 [17].

C99 C99 refers to the C programming language, as specified in ISO/IEC
9899:1999 [13].

C11 C11 refers to the C programming language, as specified in ISO/IEC
9899:2011 [17].

C++ C++ refers to the C++ programming language.
C++98 C++98 refers to the C++ programming language, as specified in

ISO/IEC 14882:1998 [12].
C++03 C++03 refers to the C++ programming language, as specified in

ISO/IEC 14882:2003 [15].

xxix

xxx Acronyms

C++11 C++11 refers to the C++ programming language, as specified in
ISO/IEC 14882:2011 [18].

C++14 C++14 refers to the C++ programming language, as specified in
ISO/IEC 14882:2014 [19].

C++17 C++17 refers to the C++ programming language, as specified in
ISO/IEC 14882:2017 [20].

C++20 C++20 [26] is predicted by some C++ language experts to be the
next revision of the C++ standard, possibly to become available in
the year 2020.

CLooG Chunky Loop Generator [4] is a software library used for geometric
polyhedron analysis.

CRC Cyclic Redundancy Check [27].
CPU Central Processing Unit.
ctor constructor of a class object in object-oriented programming is a

special subroutine that is called when an object is created.
DIL Dual In-Line electronic component packaging.
DSP Digital Signal Processor.
dtor destructor of a class object in object-oriented programming is a

special subroutine that is called when an object is destroyed or
deleted.

FIR Finite-Impulse Response is a kind of digital filter.
FLASH Flash Memory is a nonvolatile computer memory that can be electri-

cally written and erased. Flash is commonly used as an alternative to
ROM.

FPU Floating-Point Unit implements floating-point arithmetic in hard-
ware. Many modern high-performance microcontrollers use an FPU
to accelerate floating-point calculations.

GAS is the GNU ASsembler.
GCC GNU Compiler Collection [7] is a collection of free compilers for

several popular programming languages including, among others,
C and C++. GCC is supported for a wide range of targets.

GMP GMP is the GNUMultiple-Precision library [9]. It implements highly
efficient multiple-precision representations of integer and floating-
point data types.

GNU Is a ∗nix-like computer operating system consisting entirely of free
software [8].

GUI Graphical User Interface.
HEX Hexadecimal representation is a base 16 numerical representation

commonly used to store program data in computer engineering.
ICE In-Circuit Emulator is a highly sophisticated hardware device used to

debug embedded microcontroller software with an emulated bond-
out processor.

ISL Integer Set Library [11] is a software library used for manipulating
sets of integers.

Acronyms xxxi

ISP In-System-Programming is the act of programming the program
code of a microcontroller using a communication interface while the
microcontroller is fitted in the application, rather than as a standalone
non-soldered component.

ISR Interrupt Service Routine.
JTAG Joint Test Action Group, later standardized as IEEE 1149.1 [10], is a

protocol and hardware interface used for printed circuit board testing,
boundary scan and recently more and more for debugging embedded
systems.

LED Light-Emitting Diode is a semiconductor-based light source used in
diverse applications such as lighting, consumer electronics and toys.

MCAL Microcontroller Abstraction Layer is a low-level layer in a lay-
ered software architecture (such as AUTOSAR). The interface of
the MCAL is typically written in a portable fashion. The MCAL
implementation itself, however, contains partially non-portable com-
ponents that access microcontroller peripherals and their registers,
such as PWM signal generators, timers, serial UARTs and other
communication interfaces, etc.

MinGW Minimalist GNU [21] is an open-source programming toolset that
emulates ∗nix-like environments.

MKS Meter, Kilogram, Second is a system of units used to express physical
quantities.

MPC Multiple-Precision Complex [22] is a GNU C library that implements
multiple-precision arithmetic of complex numbers.

MPFR Multiple-Precision Floating-Point with correct Rounding [5, 23] is
the GNU multiple-precision floating-point library. It is built on top of
GMP and places special emphasis on efficiency and correct rounding.

MSYS Minimal SYStem [21] is a collection of GNU utilities that enhance
and extend the MinGW shell.

newlib newlib [24] is a free implementation of the C standard library. It is
well suited for use with embedded systems and has been ported to a
variety of CPU architectures.

nop No OPeration is a common assembly instruction that simply does no
operation. One or more nops are often chained sequentially in order
to be used for ultra low-level functions such as creating very short
delays or flushing an instruction pipeline.

opcode OPeration CODE is a machine language instruction containing the
operation to be done.

PC Personal Computer.
POSIX Portable Operating System Interface is an open standardized operat-

ing system specified in ISO/IEC 9945:2003 [14].
PPL Parma Polyhedra Library [3] is a software library for abstract geo-

metrical polyhedron representations.
PWM Pulse-Width Modulated signal is a square wave that usually has a

fixed period and a variable duty cycle.

xxxii Acronyms

RAM Random Access Memory is computer memory with nearly constant
access time regardless of address or memory size. RAM is volatile in
the sense that data are typically lost when the power is switched off.

ROM Read-Only Memory is a class of computer memory that, once
written, can only be modified with external programming tools—or
not be modified at all. ROM has permanent character in the sense that
data are retained throughout power on/off cycles.

SPITM Serial Peripheral Interface bus is a four-wire serial communication
interface commonly used for communication between a microcon-
troller and one or more off-chip devices on the printed circuit board.

STL Standard Template Library is part of the C++ standard library.
The standard template library contains a vast collection of generic
containers, iterators and algorithms.

TO-220 Transistor Outline electronic component packaging, number 220.
TR1 C++ Technical Report 1 includes the standard library extensions

that are specified in ISO/IEC TR 19768:2007 [16]. TR1 has been
predominantly integrated in C++11 (ISO/IEC 14882:2011 [18]).

UART Universal Asynchronous Receiver/Transmitter is an asynchronous
receiver and transmitter commonly used for serial communication
between a PC and a microcontroller.

References

1. ANSI, ANSI X3.159-1989 American National Standard for Information Systems – Program-
ming Language C (American National Standard for Information, New York, 1989)

2. AUTOSAR, Automotive Open System Architecture (2017), http://www.autosar.org
3. BUGSENG, Parma Polyhedra Library (PPL) (2012), http://www.bugseng.com/products/ppl
4. CLooG, Chunky Loop Generator (2015), http://www.cloog.org
5. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision

binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2) (2007).
Article 13

6. Free Software Foundation, GNU Binutils (2011), http://www.gnu.org/software/binutils
7. Free Software Foundation, GNU Compiler Collection (2015), http://gcc.gnu.org
8. Free Software Foundation, GNU Operating System (2015), http://gnu.org
9. GMP, GNU Multiple Precision Arithmetic Library (2012), http://gmplib.org
10. IEEE Computer Society, IEEE Std 1149.1 – 1990: IEEE Standard Test Access Port and

Boundary-Scan Architecture (1990). Available at http://standards.ieee.org/findstds/standard/
1149.1-1990.html

11. ISL, Integer Set Library (2015), http://isl.gforge.inria.fr
12. ISO/IEC, ISO/IEC 14882:1998: Programming Languages – C++ (International Organization

for Standardization, Geneva, 1998)
13. ISO/IEC, ISO/IEC 9899:1999: Programming Languages – C (International Organization for

Standardization, Geneva, 1999)
14. ISO/IEC, ISO/IEC 9945:2003: Information Technology – Portable Operating System Interface

(POSIX) (International Organization for Standardization, Geneva, 2003)
15. ISO/IEC, ISO/IEC 14882:2003: Programming Languages – C++ (International Organization

for Standardization, Geneva, 2003)

http://www.autosar.org
http://www.bugseng.com/products/ppl
http://www.cloog.org
http://www.gnu.org/software/binutils
http://gcc.gnu.org
http://gnu.org
http://gmplib.org
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://isl.gforge.inria.fr

References xxxiii

16. ISO/IEC, ISO/IEC TR 19768:2007: Information Technology – Programming Languages –
Technical Report on C++ Library Extensions (International Organization for Standardization,
Geneva, 2007)

17. ISO/IEC, ISO/IEC 9899:2011: Programming Languages – C (International Organization for
Standardization, Geneva, 2011)

18. ISO/IEC, ISO/IEC 14882:2011: Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2011)

19. ISO/IEC, ISO/IEC 14882:2014: Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2014)

20. ISO/IEC, ISO/IEC 14882:2017: Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2017)

21. MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org
22. MPC, GNU MPC (2012), http://www.multiprecision.org
23. MPFR, GNU MPFR Library (2013), http://www.mpfr.org
24. Red Hat, newlib (2013), http://sourceware.org/newlib
25. Wikipedia, ASCII (2017), http://en.wikipedia.org/wiki/ASCII
26. Wikipedia, C++20 (2017), http://en.wikipedia.org/wiki/C%2B%2B20
27. Wikipedia, Cyclic Redundancy Check (2017), http://en.wikipedia.org/wiki/Cyclic_redundancy

_check

http://www.mingw.org
http://www.multiprecision.org
http://www.mpfr.org
http://sourceware.org/newlib
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/C%2B%2B20
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Part I
Language Technologies for Real-Time C++

Chapter 1
Getting Started with Real-Time C++

C++ programs combine class types that encapsulate objects with procedural subrou-
tines in order to embody the functionality of the application. This chapter presents
these main language elements of C++ using a short, intuitive program that toggles
an LED on a microcontroller output port pin. In addition, other language features
are introduced including the syntax of C++, namespaces, the C++ standard library
and optimization with compile time constants. This chapter uses our target system
with the 8-bit microcontroller.

1.1 The LED Program

A simple microcontroller application is shown in Fig. 1.1 on the following page.
The circuit in this figure has one LED connected to a digital output port pin on
the microcontroller over a resistor to ground. Switching the port pin to high drives
current through the resistor and the LED, and thereby switches the LED on. Setting
the port pin to low stops current flow through the resistor and the LED, subsequently
turning the LED off.

The LED circuit shown in Fig. 1.1 is part of the circuit belonging to our target
system with the 8-bit microcontroller. Further details on the entire circuit in this
application and its electrical components can be found in the figure here and also in
Sect. 2.1 and Appendix D.

An object-oriented C++ program designed to control the LED circuit in Fig. 1.1
is shown below. It is called the LED program. In the LED program, an led object
called led_b5 is created on portb.5. The LED object led_b5 is subsequently
toggled from low to high and vice versa indefinitely without pause, break or return
in an iterative loop in the main() subroutine.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_1&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_1

4 1 Getting Started with Real-Time C++

Fig. 1.1 The circuit of the
LED D1 on our target with
the 8-bit microcontroller is
shown. D1 is connected to
portb.5 on microcontroller
pin 17 over a 750� resistor
R1 to ground

7

portb.5
R1

GND

portb.4

Microcontroller

portb.3
portb.2

16

17

15

14

750Ω

D1

// The LED program.

#include <cstdint>
#include "mcal_reg.h"

class led
{
public:

// Use convenient class-specific typedefs.
typedef std::uint8_t port_type;
typedef std::uint8_t bval_type;

// The led class constructor.
led(const port_type p,

const bval_type b) : port(p),
bval(b)

{
// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

// Note that the address of the port direction
// register is one less than the address
// of the port value register.
const port_type pdir = port - 1U;

reinterpret_cast<volatile bval_type>(pdir)
|= bval;

}

1.1 The LED Program 5

void toggle() const
{

// Toggle the LED via direct memory access.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

private:
// Private member variables of the class.
const port_type port;
const bval_type bval;

};

namespace
{

// Create led_b5 on portb.5.
const led led_b5
{

mcal::reg::portb,
mcal::reg::bval5

};
}

int main()
{

// Toggle led_b5 in a loop forever.
for(;;)
{

led_b5.toggle();
}

}

The LED program uses various C++ language elements. These include classes,
namespaces, type definitions, C++ cast operators, direct memory access and even a
little bit of the C++ standard library.

In particular, the predominant parts of the LED program are:

• the inclusion of header files with #include,
• the led class,
• the led class constructor and class members that encapsulate the initialization

and toggling of the LED via direct memory access,
• the anonymous namespace containing the led_b5 object,
• and the main() subroutine that toggles the led_b5 object indefinitely in a

never-ending for(;;)-loop.

6 1 Getting Started with Real-Time C++

In the following sections of this chapter, we will investigate in detail how each
one of these parts of the LED program is written and how each one works. Along
the way, we will briefly discuss many aspects of the syntax of C++ and efficient
ways to use the C++ language with real-time embedded systems.

1.2 The Syntax of C++

The syntax of C++ is similar to that of C. In fact, C++ is based on C. With a few
minor exceptions, nearly all valid C language constructs can also be used in a C++
program.

As with C, the C++ language uses curly braces { ... } to delimit scope.
Parenthesizing and operator priorities are the same in C++ and C. The C++
language has familiar built-in types such as char, short, int, long, float,
double, etc. C++ also supports C’s well-known #include syntax for inclusion
of user-defined header files and standard library files.

C++ uses C’s iteration statements for, while and do-while. Source-level
comments in C++ can be written in either slash-slash form (//...) or block
form (/*... */). Most C++ developers, however, preferentially use slash-slash
comments instead of C-style block comments. See also Item 4 in Meyers [4].

1.3 Class Types

Classes, structures (structs) and unions are class types in C++. The LED program
has a class called led. In particular,

class led
{

// ...
};

Class types enable object-oriented programming in C++ because they group data
together with functions operating on them in a self-contained entity. The led class,
for example, encapsulates the real LED hardware by grouping the LED’s port pin
together with its toggle function.

Classes, structures and unions typically have a mixture of data, functions and
overloaded operators called members. The public interface of the led class, for
instance, has a constructor (also known as a ctor) and a member function called
toggle().

1.3 Class Types 7

A class constructor has the same name as its containing class. Constructors
can have any number of input parameters. The constructor of led has two input
parameters. They characterize the address of the port data register and the bit-
position of the output port pin of the LED hardware.

Class initialization code can be placed in the body of the constructor. In
particular, the port hardware of the LED is initialized in the body of the led
constructor.

class led
{
public:

// The led class constructor.
led(const port_type p,

const bval_type b) : port(p),
bval(b)

{
// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

// Note that the address of the port direction
// register is one less than the address
// of the port value register.
const port_type pdir = port - 1U;

reinterpret_cast<volatile bval_type>(pdir)
|= bval;

}
// ...

};

Here, the address of the LED’s port direction register is calculated from the
address of its port data register. In addition, the port pin value is set to low before
the port pin direction is set to output. This strategy eliminates potential spikes on
I/O pins. These kinds of electrical characteristics of I/O ports are specific to the
underlyingmicrocontroller hardware and need to be modified when porting the led
class to another system.

8 1 Getting Started with Real-Time C++

The so-called constructor initialization list is placed after the constructor
function parameters and a colon, but before the opening brace of the constructor
body. In particular,

led(const port_type p,
const bval_type b) : port(p),

bval(b)
{

// ...
}

In the constructor initialization list of the led class here, for example, we
initialize the member variables port and bval with the corresponding values
supplied by the input parameters p and b.

Constant member variables must be initialized in the constructor initialization
list. Non-constant member variables should be initialized in the constructor initial-
ization list. The order of all member variables present in the constructor initialization
list should be identical to their order of appearance in the class definition because
the compiler initializes them in the order they are declared. See also Item 13 in
Meyers [4].

The implementation of the led class shown above is entirely contained within
its definition. Alternatively, part or all of the implementation of a class type can be
placed in a separate source file.

The definition of the led class, for instance, could be placed in a header file
called led.h. In other words,

// In the file led.h
class led
{
public:

led(const port_type p,
const bval_type b);

void toggle() const;
// ...

};

The corresponding implementation details of the led class could be put in the
led.cpp source file. For example,

1.3 Class Types 9

// In the file led.cpp
#include "led.h"

led::led(const port_type p,
const bval_type b) : port(p),

bval(b)
{

// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

// Note that the address of the port direction
// register is one less than the address
// of the port value register.
const port_type pdir = port - 1U;

reinterpret_cast<volatile bval_type>(pdir)
|= bval;

}

void led::toggle() const
{

// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

// ...

When members are defined outside of a class definition, the scope resolution
operator (::) is used to resolve the class name from the names of members in the
implementation file. For example,

// The scope resolution operator (::).
void led::toggle() const
{

// ...
}

Including implementation details directly in the class definition can improve
optimization via inlining. There is no need to explicitly recommend inlining to the

10 1 Getting Started with Real-Time C++

compiler with the inline keyword because a function implemented directly in
the class declaration is per default inline. Short, non-virtual subroutines that require
the utmost performance may be implemented in the class definition, allowing for
potential compiler inlining. Long calculations and polymorphic functions that may
be less time critical or rely on the runtime virtual mechanism (Sect. 4.4) should
generally be localized in the source file corresponding to the class definition.

1.4 Members

The led class has a member function called toggle(). In particular,

void toggle() const
{

// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

The toggle() function is responsible for toggling the LED from off to on and
vice versa. The toggling of the port pin is carried out with bit manipulation through
direct memory access. This, as well as C++’s templated reinterpret_cast
operator, will be described in greater detail in Sect. 1.10.

The trailing const qualifier means that toggle() is a constant member
function. A constant member function is not usually intended to alter the state
of any class member variables. A constant function can, however, modify class
member variables that are qualified with the keyword mutable.1 Here, mutable
means capable of being changed. Class member functions that do modify member
variables should, in general, be non-constant (see also Sect. 4.9).

The led class also has two private constant member variables (data members).
These are port and bval. In particular,

private:
const port_type port;
const bval_type bval;

Once set, the value of a constant class data member can not be modified. So after
port and bval are set, they retain their values for the lifetime of the class instance.
The variable port represents the LED’s port address and the variable bval stores
the numerical value corresponding to the pin position of the LED on the port.

1The mutable keyword—although quite useful at times—is not frequently used in this book.

1.4 Members 11

Both member variables, port as well as bval, have the underlying type of
std::uint8_t, which is itself type defined from the built-in type unsigned
char. For the sake of convenience and intuitive legibility, the types of port and
bval have been declared as class-local types using typedef statements.2 The
suggestive names port_type and bval_type (as in bit-value type) are used.

In C++, members of a class type have one of three access controls. These are
public, private or protected, whereby protected access has not been used yet. For
example,

class led
{
public:

// ...

protected:
// ...

private:
// ...

};

The public members of a class constitute its user interface because they can be
accessed by any part of the program. Private members can only be accessed by the
class itself and its friends. Class friends are described in Sect. 4.11. Private members
make it possible to hide selected data and implementation details when desired.
Protected members are useful for code re-use via inheritance in class hierarchies
(Sect. 4.3). Class inheritance is also subject to access control.

Some C++ programming guidelines recommend ordering the appearance of class
members according to access control. Public members should appear first because
users of a class type are most interested in the public interface. Protected members
should come second because authors of derived classes are also interested in the
protected interface. Private members should come last because they are only of
interest to the class author.

If left unspecified, the default levels of member access and inheritance are private
for classes and public for structures. This is the only non-stylistic difference between
classes and structures in C++. Some C++ guidelines do, however, recommend
exclusively using classes for objects having member functions and restricting the
use of structures to more simple data structures that only have data members and
possibly a trivial constructor.

2See also Sect. 3.20 for an intuitive alternative to type definitions provided by the C++11 alias.

12 1 Getting Started with Real-Time C++

1.5 Objects and Instances

A class type is an object that represents an actual thing, concept, or group or
collection thereof that can be manipulated as a cohesive entity. An instance is an
occurrence of a class type. A class defines how instances of it behave. In object-
oriented programming,object is often used interchangeablywith instance of a class.

In the LED program, led_b5 is an instance of the led class. In other words,

const led led_b5
{

mcal::reg::portb,
mcal::reg::bval5

};

The parameters in the constructor of led_b5 use C++’s uniform initialization
syntax (Sect. A.2). This convenient braced initialization syntax allows for uniform
initialization of, well, anything including built-in types, class types, STL containers
and C-style arrays alike. Uniform initialization was introduced with C++11.

Here, led_b5 is a constant object that will not be modified for the entire lifetime
of the program. As such, it is declared using the const keyword. Furthermore,
led_b5 is created using constant register values contained in a user-defined
namespace called mcal::reg. When the register addresses are resolved, the code
of led_b5’s constructor is equivalent to the following.

const led led_b5
{

0x25, // The address of portb.
0x20 // The bit-value of portb.5 (1 << 5).

};

The LED D1 on our target with the 8-bit microcontroller is connected to
portb.5 on the microcontroller. When the constructor code of led_b5 is
executed, the physical address of portb (0x25) is stored in the port member
and the pin’s bit value (0x20) is stored in the bval member.

Since led_b5 is a static instance, its constructor requires initialization code that
needs to execute before the object is used in main(). The compiler takes care of
this by automatically generating an internal subroutine for led_b5’s constructor
that is called from a static initialization mechanism in the so-called startup code.
The startup code executes before the jump to main(), ensuring that led_b5 will
be properly initialized before it is used. See Chap. 8 for more information on startup
code and static initialization.

1.6 #include 13

The led_b5 instance is toggled by calling its toggle() member function in
the for(;;)-loop in main(). In particular,

led_b5.toggle();

Notice, in the way toggle() is called, how led_b5 really does behave like an
encapsulated object in the sense of object-oriented programming, see Chap. 4. The
toggling is also carried out in real-time on our target with the 8-bit microcontroller,
as we will see when we build, flash and run the LED program in Chap. 2.

1.6 #include

Files such as library files or user-defined header files can be included in another file
with the #include syntax. For example,

#include <cstdint>
#include "mcal_reg.h"

With these two lines, the standard library header file <cstdint> and a project-
specific header file called "mcal_reg.h" are included in the LED program. Here,
the acronym MCAL stands for MicroController Abstraction Layer, inspired by the
AUTOSAR [1] software architecture from the automotive industry. The MCAL
directly interfaces with the microcontroller peripherals, and we will be using it in
various parts of this book.

Path information uses dots and forward slashes in the ∗nix-way. In addition to
forward slash, C++ compilers also understand backward slash. It is even possible
mix forward and backward slashes in the same #include line. The forward slash,
however, is considered standard in C++ and should be used consistently throughout
the project.

The C++ compiler has its own specific collection of default include paths
including, among others, the location of the standard library headers. It is also
possible to add other directories to the compiler’s search path using command
line options in order to improve coding ease and portability. Angled brackets
(< ... >) should be used for files that are in the compiler’s default include paths.
Quotation marks (" ... ") should delimit the names of user-defined include files
that are not in the compiler’s default include paths.

14 1 Getting Started with Real-Time C++

1.7 Namespaces

A namespace is a collection of related symbol names. For example, the symbols in
the C++ standard library are contained in the namespace std. In particular,

#include <stdint.h>

namespace std
{

// Inject global ::uint8_t into namespace std.
using ::uint8_t;

// Lots of other standard library stuff
// in lots of files.
// ...

}

Namespaces can be used to create unique names for symbols by adding
additional naming information. For instance,

// chapter01_07-001_namespace.cpp

namespace this_space
{

constexpr int version = 1;
}

namespace another_space
{

constexpr int version = 3;
}

In this case, there are two versions of version in individual namespaces
occurring in the same file-level scope. However, since the two versions of version
are in different namespaces, they are unique. In particular, this_space::-
version and another_space::version are distinct. If namespaces were
not used, there would be a naming conflict due to ambiguity. The scope resolution
operator (::) is used to resolve symbols in namespaces.

The LED program presents another example of a namespace, this time using an
unnamed namespace.

1.7 Namespaces 15

namespace
{

const led led_b5
{

// ...
};

}

A unnamed namespace is called an anonymous namespace. An anonymous
namespace limits the scope of anything within itself to file-level. A file-local anony-
mous namespace guarantees unique names for otherwise same-named symbols
occurring in different files. The anonymous namespace may be considered superior
to C-style static. In fact, some developers consider the anonymous namespace to
be the preferredmechanism for file-level scope localization and reduction of naming
ambiguity in C++ projects.

An optional using directive may be used to eliminate the necessity to type the
namespace prefix. For example,

using namespace std;

When the “using namespace std” directive is present, the code beneath it
can use all the symbols in the namespace std without explicitly typing the std
prefix and scope resolution operator. In particular,

// chapter01_07-002_namespace.cpp

#include <cstdint>

using namespace std;

uint8_t my_u8; // No need for (std::) with uint8_t

It is also possible to inject individual symbols from a named namespace into the
global namespace by using a using directive for only that symbol. For example,

#include <cstdint>

using std::uint8_t;

uint8_t my_u8; // No need for std:: with uint8_t

16 1 Getting Started with Real-Time C++

In this book, however, we generally do not use the using directive in non-library
code. We thereby prefer clarity over terseness in style.

1.8 C++ Standard Library

The namespace std contains all the symbols in the C++ standard library. The
standard library is a vast collection of types, functions and classes that is an essential
part of the C++ language. The standard library also contains an extensive set of
generic containers and algorithms called the standard template library (STL). In
this book, we will make considerable use of the C++ standard library and the STL
part of it. See also Sects. 5.8 and A.6–A.8.

The LED program uses the C++ standard library for std::uint8_t, one
of several available fixed-size integer types. Readers familiar with the C99 spec-
ification of the C language [2] might have experience with <stdint.h>. This
C library file defines identical fixed-size integer types, but in the global namespace.
Using C++’s fixed-size integer types can improve portability because potentially
non-portable user-defined types such as, say, my_uint8, my_uint16, etc. no
longer need to be defined manually and managed with potentially hard-to-read
preprocessor switches. See Sects. 3.2 and 6.10 for additional details on fixed-size
integer types.

1.9 The main() Subroutine

The work of the LED program takes place in the main() subroutine. In particular,

int main()
{

for(;;)
{

led_b5.toggle();
}

}

Every C++ program is required to have one and only one implementation of
main(). In C++, the return type of main() is plain integer, in other words
signed int. When we just write int in C++, we mean signed int. This is
because the default for integral types (if left blank) is signed, unless explicitly
declared as unsigned.

The main() subroutine in the LED program lacks an explicit return code. The
C++ compiler can, however, automatically generate the return code for main() if
needed. If the compiler does generate return code for main(), its type is signed

1.10 Low-Level Register Access 17

int and its value is zero. The implicit generation of code to return a value is specific
to the main() subroutine only. All subroutines other than main() returning any
type other than void must supply explicit return code.

The main() subroutine is called from the startup code after the static initial-
ization mechanisms for RAM and static constructors have been carried out. See
Chap. 8 and Sect. 3.6.2 in [3] for additional information on startup code and static
initialization.

Two portable definitions of main() are allowed according to the C++ standard
(Sect. 3.6.1 in [3]):

int main()
{

// ...
}

and

int main(int argc, char* argv[])
{

// ...
}

The second form is used when program arguments are passed to main(). For
our embedded microcontroller programs, no arguments are passed to main() and
the first form is used.

1.10 Low-Level Register Access

Microcontroller programming in C++ requires low-level register access. For exam-
ple, both the constructor as well as the toggle() function of the led class
manipulate registers via direct memory access to control the LED hardware. See
Chap. 7 for further discussions of register manipulation.

In particular, led’s member function toggle() is responsible for toggling the
LED.

void toggle() const
{

// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

18 1 Getting Started with Real-Time C++

The templated cast operator reinterpret_cast is one of four specialized
cast operators available in C++. See Sect. A.1 for a description of C++ cast
operators. The reinterpret_cast operator is the one that is designed for
casting integral types to pointers and back. Readers familiar with low-level register
access in C might find the following equivalence example helpful.

// C++ register access.

reinterpret_cast<volatile bval_type>(port)
^= bval;

// Equivalent C-style.

((volatile bval_type) port) ^= bval;

1.11 Compile-Time Constant

In the LED program, registers are defined with C++’s generalized constant expres-
sion syntax using the constexpr keyword. In particular,

namespace mcal
{

// Compile-time constant register addresses.
namespace reg
{

// The address of portb.
constexpr std::uint8_t portb = 0x25U;

// The values of bit0 through bit7.
constexpr std::uint8_t bval0 = 1U;
constexpr std::uint8_t bval1 = 1U << 1U;
constexpr std::uint8_t bval2 = 1U << 2U;
constexpr std::uint8_t bval3 = 1U << 3U;
constexpr std::uint8_t bval4 = 1U << 4U;
constexpr std::uint8_t bval5 = 1U << 5U;
constexpr std::uint8_t bval6 = 1U << 6U;
constexpr std::uint8_t bval7 = 1U << 7U;

}
}

A generalized constant expression, denoted with the keyword constexpr,
is guaranteed to be a compile-time constant. In general, using constexpr is

References 19

considered superior to the preprocessor #define because generalized constant
expressions have clearly defined type information. See Sect. 3.8 for more informa-
tion on constexpr and generalized constant expressions, and also Sect. 7.1 for
additional details on register addresses.

An alternative for ensuring that an integral value is a compile-time constant is
with a static constant member of a class type. See also Item 1 in Meyers [4]. There
will be more on static constant integral class members in Sect. 4.10.

Using compile-time constants almost always facilitates optimization in C++.
As mentioned previously in Sect. 1.5, for example, led_b5’s constructor code is
equivalent the following.

const led led_b5
{

0x25, // Address of portb.
0x20 // Bit-value of portb.5.

};

Since the constructor’s parameters are compile-time constants, the compiler
can directly initialize led_b5’s member variables without using the stack or
intermediate CPU registers. This efficient kind of optimization is called constant
folding, and is often useful in real-time C++ programming. Section 2.6 describes
methods for improving performance even further by combining constant folding
with C++ templates.

References

1. AUTOSAR, Automotive Open System Architecture (2017), http://www.autosar.org
2. ISO/IEC, ISO/IEC 9899:1999: Programming Languages – C (International Organization for

Standardization, Geneva, 1999)
3. ISO/IEC, ISO/IEC 14882:2011: Information Technology – Programming Languages – C++

(International Organization for Standardization, Geneva, 2011)
4. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)

http://www.autosar.org

Chapter 2
Working with a Real-Time C++ Program
on a Board

This chapter presents a complete example of building, flashing and executing a
microcontroller C++ program using the LED program. The LED program will
be built with GCC cross tools in the MinGW/MSYS [9] environment. Our target
microcontroller is an 8-bit ATMELR© AVRR© microcontroller [2]. This popular
microcontroller has state-of-the-art quality and widespread availability. In addition,
there is a well-maintained GCC port for this microcontroller making it well-suited
for our example. In the second half of this chapter, we will investigate efficiency
aspects and compiler warnings and errors based on the example of the LED
program.

2.1 The Target Hardware

Our target hardware is shown in Fig. 2.1. It is a single-chip microcontroller circuit
that has been hand-built on a solderless prototyping breadboard. This board uses an
8-bit ATMELR© AVRR© microcontroller [2], featuring 32 kB of program code, 2 kB
of RAM and 1 kB of EEPROM. The microcontroller is clocked with an external
quartz at 16MHz. The schematic for the circuit of our target hardware and details
about building it with discrete components on a solderless prototyping breadboard
are given in Appendix D.

Our target hardware uses the same microcontroller and LED port pin as the
well-known and versatile ARDUINOR© open source project [1, 6, 11]. In addition,
an ARDUINOR© or an ARDUINOR©-compatible board can optionally be used for
the exercises in this chapter. Note, though, that our target hardware is not fully
ARDUINOR©-compatible because it lacks the circuitry for the serial UART interface
that the ARDUINOR© uses for communication with its bootloader.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_2&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_2

22 2 Working with a Real-Time C++ Program on a Board

Fig. 2.1 Our target system
built with discrete
components on a breadboard
is shown

2.2 Build and Flash the LED Program

The workflow for building and flashing a C++ program is shown in Fig. 2.2. The
main steps include compiling the sources, linking the object files, extracting the
HEX-file and flashing it in the microcontroller. We will build the LED program
according to the workflow in Fig. 2.2. We will use traditional ∗nix-style commands
within the MinGW/MSYS [9] environment.1

Here, we assume that the GNU GCC cross compiler [4] has been built and
installed and that its path is known and can be used in a command shell.2 See
Appendix C for details on building and installing a GNU GCC cross compiler.

We will now build the example in the chapter02_02 project of the com-
panion code. In the MinGW/MSYS command shell, navigate to the directory
chapter02_02 and locate the batch file build.bat. The batch file accepts two
command-line parameters, the path of the GCC executable programs and the prefix
of GCC.3

An example of the syntax for calling build.bat in the MinGW/MSYS
command shell for the chapter02_02 project is shown below.

build.bat "C:\gcc-7.2.0-avr\bin" avr

build.bat is intended to compile and link the LED program and subsequently
extract the executable HEX-file according to the workflow in Fig. 2.2. Additional
files containing C++ symbol information, an assembly listing, a report on code

1There are numerous tools and methods available for building microcontroller C++ projects. In
addition to traditional command boxes and ∗nix-style shells, other popular build facilities include
GNUmake [3], the Python programming language [10] and SCons [12]. Furthermore, a variety of
both cost-free as well as commercial GUIs are available for project management and build.
2Here, for instance, we are using GCC 7.2.0.
3Here, the prefix of GCC is the target-specific decoration in the name of the toolchain (such as
avr, avr-unknown-elf or other well-known GCC prefixes.), as described in Appendix C. In
this example, GCC has been built for the target avr.

2.2 Build and Flash the LED Program 23

Fig. 2.2 The workflow for
building, flashing and running
a C++ program is shown

Assemble
startup files

C++ files

Compile C++
files

Link object files

Startup files

Map file

Absolute object
file (ELF)

Extract HEX
file

Program flash

Reset
microcontroller

Object files

HEX file

size, etc. are also created by build.bat. The results of the build are stored in the
bin-directory. In the following paragraphs, we will investigate the most important
commands in build.bat.

The startup code crt0.s (see Sect. 8.1) is assembled with the following
command.

avr-g++ -mmcu=atmega328p \
-x assembler crt0.s -c -o bin/crt0.o

This command means:

• Invoke the cross compiler avr-g++ as an assembler. Here and subsequently,
we use the decorated name of g++ specially built for our target with the 8-bit
microcontroller (Appendix C).

• Select the microcontroller architecture with the -mmcu=atmega328p flag.
• Assemble crt0.s using -x assembler crt0.s -c -o bin/crt0.o.

This produces the object file bin/crt0.o.

The source file led.cpp is compiled with the following command.

avr-g++ -mmcu=atmega328p \
-O2 -std=c++11 -I. -c led.cpp -o bin/led.o

24 2 Working with a Real-Time C++ Program on a Board

This command means:

• Invoke the cross compiler avr-g++ as a C++ compiler.
• Select the microcontroller architecture with the -mmcu=atmega328p flag.
• Use level 2 optimization (a medium-high level) with the -O2 flag, see also

Sect. 6.1.
• Use the C++11 language standard with the -std=c++11 flag.4

• Include the current directory in the compiler’s default include path with the -I.
flag. This is needed for finding the self-written header file <cstdint> present
in the chapter02_02 directory itself.

• Compile led.cpp using -c led.cpp -o bin/led.o. This produces the
object file bin/led.o.

The following command links the LED program to create an absolute object file.
Here, the compiled startup code in bin/crt0.o will be linked with bin/led.o
to create the absolute object file led.elf.

avr-g++ -mmcu=atmega328p \
-nostartfiles -nostdlib \
-Wl,-Tavr.ld,-Map,bin/led.map \
bin/led.o bin/crt0.o -o bin/led.elf

This command means:

• Invoke the cross compiler avr-g++ as a linker.
• Select the microcontroller architecture with the -mmcu=atmega328p flag.
• Use the -nostartfiles flag to prevent the linker from linking with the

compiler’s own startup files. We have provided our own startup code in crt0.s.
• Use the -nostdlib flag to eliminate any standard library object code since we

do not use any standard library functions.
• Use the memory definitions in the linker input file avr.ld and create an output

memorymap file led.mapwith the flags -Wl,-Tavr.ld,-Map,led.map.
• Link the object files bin/led.o and bin/crt0.o. This command creates

the absolute object file bin/led.elf using bin/led.o bin/crt0.o
-o bin/led.elf. The absolute object file is in ELF binary format, the
Executable and Linkable Format [14].

The following command extracts the HEX-file from the absolute object file
using the program objcopy. This command creates the executable HEX-file
bin/led.hex.

avr-objcopy -O ihex bin/led.elf bin/led.hex

4With GCC version 4.9 or later, the newer flag -std=c++14 can be used to select the C++14
language standard.

2.2 Build and Flash the LED Program 25

This command means:

• Invoke object copy avr-objcopy.
• Create an output HEX-file in a well-known 16-bit text-based hexadecimal file

format with the -O ihex flags.
• Extract bin/led.hex from bin/led.elf supplying the input filename and

output filename as bin/led.elf bin/led.hex.

We should now have the HEX-file bin/led.hex that contains the executable
code of the LED program. It is a short, text-based file that should be similar to the
one shown in the listing below.

:040000000E94020058
:1000040011241FBEC0E0D8E0DEBFCDBF0E941100A6
:100014000E941D000E9426000E943700FFCF11E0BD
:10002400A0E0B1E0ECE9F0E002C005900D92A03050
:10003400B107D9F7089511E0A2E0B1E001C01D9223
:10004400A230B107E1F7089510E0C6E6D0E004C09D
:100054002297FE010E943300C436D107C9F70895E0
:1000640040000590F491E02D0994E0910001F0E046
:1000740090910101808189278083FCCFE0E0F1E049
:1000840085E2808380E281832D98E081E150F0E075
:080094008081806280830895E1
:040000030000006495
:00000001FF

This executable HEX-file file can be flashed into the microcontroller’s program
FLASH memory using any of several available cost-free or commercial tools such
as a JTAG [5] debugger, an ICE, etc. The instructions in the chapter02_02
directory show how to flash the HEX-file using a commercially available JTAG
SPITM ISP flash tool.

Users of the ARDUINOR© should, however, note that the bootloader that
comes pre-programmed in the ARDUINOR© will be erased when we flash the
LED program. If needed for development in the ARDUINOR© environment, the
ARDUINOR© bootloader can be re-flashed [1].

When the LED program is executed, the LED D1 should light up because it will
be toggling. The toggling will, however, be extremely rapid, with a frequency of
approximately 1.1MHz. This is far too fast for the human eye to resolve. Toggling
can be viewed with a digital oscilloscope if available. Alternatively, the toggling
frequency can be reduced using a delay loop or a timer, as shown in the following
section.

26 2 Working with a Real-Time C++ Program on a Board

2.3 Adding Timing for Visible LED Toggling

As mentioned above, the LED program toggles the LED too quickly to observe.
Therefore, we will slow down the toggling in another version of the LED program
that uses timing. This version of the program is included in the chapter02_03
project of the companion code and it is partially listed below.

// The LED program with timing.

#include <cstdint>
#include <util/utility/util_time.h>
#include <mcal/mcal.h>

class led
{

// ...
};

namespace
{

// Define a convenient local 16-bit timer type.
typedef util::timer<std::uint16_t> timer_type;

// Create led_b5 at port B, bit-position 5.
const led led_b5
{

mcal::reg::portb,
mcal::reg::bval5

};
}

int main()
{

// Enable all global interrupts.
mcal::irq::enable_all();

// Initialize the mcal.
mcal::init();

// Toggle led_b5 forever with a 1s delay (0.5Hz).

2.3 Adding Timing for Visible LED Toggling 27

for(;;)
{

led_b5.toggle();

// Wait 1s in a blocking delay.
timer_type::blocking_delay(timer_type::seconds(1));

}
}

The major change here is the inclusion of a 1 s blocking delay following the LED
toggle(). In particular, in main(),

// Toggle led_b5 forever with a 1s delay (0.5Hz).
for(;;)
{

led_b5.toggle();

// Wait 1s in a blocking delay.
timer_type::blocking_delay(timer_type::seconds(1U));

}

This reduces the LED toggling frequency to 1/2Hz, allowing the toggling to
be observed with the human eye. In order to implement timing, we have included
more software components. In particular, we have included a timer utility header
file util_time.h and simplified the code with a convenient typedef for a
timer_type. See Sects. 6.9 and 15.3. We have also initialized a small MCAL
in order to create a system-tick, as described in Sect. 9.3.

Try to build, flash and run the LED program with timing in the way previously
described for the original LED program. This should result in a program that has
visually pleasing LED toggling with a frequency of 1/2Hz.

As mentioned above, the LED toggling frequency in the chapter02_03
project comes from a 1 s blocking delay. Using a blocking delay may, however, be
considered poor style. Multitasking methods (Chap. 11) could result in a superior
implementation. To exemplify this, an additional project called chapter02_03a
has been created for Sect. 2.3 and included in the companion code. Example
chapter02_03a also uses material from later in the book to implement a
tiny multitasking scheduler which manages an LED application task. The LED
application task uses a 1 s timer to generate the LED toggling frequency.

28 2 Working with a Real-Time C++ Program on a Board

Fig. 2.3 Pointing toward the
reset button on our target
board is shown

2.4 Run and Reset the LED Program

After the program has been flashed, it stays in flash memory even when the board
is powered off and disconnected from the PC or any other electrical supply. When
the board is supplied with power, the microcontroller boots and program execution
begins. It should not be necessary to push the reset button or do anything else other
than simply plug in the power jack.

It may seem remarkable how quickly the microcontroller boots. It only requires
a few milliseconds for the target system to boot and work through the startup code
(Sect. 8.1). As a result, the LED will seem to start toggling essentially immediately
after power-up.

The program can also be manually reset anytime while it is running using
the reset button on the board. A photograph depicting the microcontroller reset
button on our target system is shown in Fig. 2.3. The reset button gives the
microcontroller an electrical soft-boot signal. This results in immediate program
reset and subsequent execution of the startup code, etc. just like normal power-up.

It may be helpful to become familiar with both power-on reset using the power
jack as well as soft reset using the manual reset button on the board. Try each one
out a few times and make sure everything is working as expected.

2.5 Recognizing and Handling Errors and Warnings

Properly handling errors and warnings is an essential part of learning the C++
language. If a mistake in typing or syntax is present in the code, the compiler will
report an error upon the attempted compilation of it.

2.5 Recognizing and Handling Errors and Warnings 29

We will now provoke an error in order to experience how this works. Consider
typing some nonsensical characters such as “asdf” in one of the blank lines of
led.cpp in the LED program from Sect. 1.1. For example,

// The LED program.

#include <cstdint>
#include "mcal_reg.h"
asdf
class led
{

// ...
};

// ...

The led.cpp file now contains an error. If we save the faulty file and try to
compile it, GCC will report an error message similar to the one shown below.

led.cpp:5:1: error: ’asdf’ does not name a type

It is easy to interpret the error message within the context of the offending code.
The compiler reports an error in line 5 at column 1 of led.cpp.

In addition to errors, the compiler can issue warnings. A warning indicates that
the compiler has encountered ambiguous code. Warnings should be taken seriously
and corrected because the compiler is reporting a potentially false interpretation of
the code.

We will now provoke a warning. Consider removing the “int” part of the code
preceding main() in led.cpp. For instance,

// ...

main()
{

// ...
}

When compiling this code with the -pedantic warning option (see below),
GCC issues the following warning.

led.cpp(50) :6: warning: ISO C++ forbids declaration
of ’main’ with no type [-pedantic]

Here, GCC is warning that the subroutine main() has been declared with no
type. The warning is in line 50 at the beginning of column 6, whereby the beginning
of column 6 is in the middle of the parentheses of the declaration of main().

30 2 Working with a Real-Time C++ Program on a Board

For GCC, the warning options shown below result in a depth of warning that can
be appropriate for most C++ projects.5

-Wall -Wextra -pedantic

This means:

• report warnings for all normal issues,
• also report extra warnings,
• and issue warnings in a pedantic fashion regarding ISO C++ adherence.

Another useful warning option is -Weffc++, which warns about failure to
conform with certain guidelines in Meyers’ well-known books [7, 8].

When the compiler encounters one or more warnings, it nonetheless completes
compilation. The warning option -Werror can be used to treat all warnings as
errors, thereby stopping compilation upon warning (well, now an error).

The error and warning messages shown previously are easy to understand. Error
and warning messages can, however, become quite verbose including long symbol
names and recursive file references. This can complicate tracing the origin of the
offending code. In particular, it can be difficult to properly decipher error and
warning messages originating from C++ templates. With a little practice, though,
properly interpreting error and warning messages becomes routine.

Error and warning messages in C++ can be of immense help when trying to
diagnose coding problems. Using a high warning level will also improve the overall
quality of the code.

2.6 Reaching the Right Efficiency

C++ is a rich language with powerful features, giving vast control over the
implementation details. In order to effectively program microcontrollers in C++,
then, developers need to make insightful and sensible design choices.

When considering the led class in the LED program of Chap. 1, for example, an
experienced microcontroller programmer might be thinking, That class has a lot of
overhead for simply toggling an LED! It may be a poor design choice.

This astute observation would, in fact, be correct in this particular case. Indeed,
the storage requirement alone for led’s member variables is at least two bytes,
possibly even four bytes or eight—depending on the CPU architecture and the
memory alignment characteristics of the compiler. Add to this the overhead of a
potentially non-inlined call to the toggle() function, and the led class may be
excessively bulky for its modest functionality.

5See also [13], in both Chapter 1 (Section Exploring C Warning Messages) as well as Appendix A
in the same source for comprehensive information on GCC’s warning options.

2.6 Reaching the Right Efficiency 31

C++ templates can be used to remedy this situation. A C++ template is a
function or class that can have parameters of different types. See Chap. 5 for more
information on C++ templates.

We will now convert the led class to a template class. In particular,

template<typename port_type,
typename bval_type,
const port_type port,
const bval_type bval>

class led_template
{
public:

led_template()
{

// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

reinterpret_cast<volatile bval_type>(pdir)
|= bval;

}

static void toggle()
{

// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

private:
static constexpr port_type pdir = port - 1U;

};

In the led_template class, the types and member variables present in the
original led class have been replaced with template parameters. This remarkable
method profoundly improves efficiency because template parameters and their
corresponding code are entities known at compile time. Templates can improve
efficiency and reduce potentially redundant code by providing scalability. In this
sense, templates offer high performance and strong generic character. We will
discuss template programming in greater depth in Chap. 5.

32 2 Working with a Real-Time C++ Program on a Board

Using the led_template class in code is straightforward. For example,

namespace
{

// Create led_b5 at port B, bit-position 5.
const led_template<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
mcal::reg::bval5> led_b5;

}

int main()
{

// Toggle led_b5 forever.
for(;;)
{

led_b5.toggle();
}

}

In this version of main(), the template instance of led_b5 is used in exactly
the same fashion as the non-template instance has been used previously in Sect. 1.1.
We see that template classes can also be used to encapsulate objects. It can take
a bit of trial-and-error to get accustomed with the syntax of templates and find
stylistically appealing ways to write them in code. These issues are matters of style
and they can be readily resolved with a bit of practice.

This version of the LED program is available in the companion code for Chap. 2.
We can build this template version of the program for our target with the 8-bit
microcontroller and create an assembly listing for the led.cpp file (Sect. 6.4). The
assembly listing reveals that the efficiency of the led_template class approaches
that of hand-programmed assembler. Remarkably, though, we are programming
with a C++ class that utilizes the benefits of object-oriented design and data
encapsulation.

We will now investigate how the efficiency and resource consumption of the
template version of the LED program compare with those of the non-template
version. The storage requirement of the led_template class have been reduced
because the member variables port and bval have been replaced by template
parameters that are compile-time constants. These template parameters can be
eliminated at compile-time via constant folding. In addition, the toggle()
function has been made static. This potentially reduces the call overhead when
servicing the toggle() member.

As shown in Table 2.1, the template version of the program is both smaller and
faster than the non-template one. It is somewhat remarkable, but not uncommon,

References 33

Table 2.1 The resources required for led.cpp for both the template as well as the non-template
versions of the LED program are shown

Code size main() RAM size led_b5 Runtime for(;;)-loop

Class version
[
byte

] [
byte

]
[μs]

Non-template 36 2 0.44

Template 16 0 0.31

that template-based design decreases memory consumption while simultaneously
improving performance.

Selecting a template or a non-template LED class is an example of a typical
design choice in microcontroller C++ programming. Although this is just one small
example from infinitely many potential design choices, it does show how decisions
about design and implementation can crucially impact efficiency.

References

1. ARDUINO R©, ARDUINOR© (2015), http://www.arduino.cc
2. ATMEL R©, 8-bit ATMEL R© Microcontroller with 4/8/16/32K Bytes In-System Pro-

grammable Flash (ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A,
ATmega168PA, ATmega328, ATmega328P), Rev. 8271D-AVR-05/11 (ATMEL R©, 2011)

3. Free Software Foundation, GNUmake Version 3.81 (2006), http://www.gnu.org/software/make
4. Free Software Foundation, The GNUCompiler Collection Version 7.2.0 (2017), http://gcc.gnu.

org
5. IEEE Computer Society, IEEE Std 1149.1 – 1990: IEEE Standard Test Access Port and

Boundary-Scan Architecture (1990). Available at http://standards.ieee.org/findstds/standard/
1149.1-1990.html

6. M. Margolis, ARDUINO R© Cookbook, 2nd edn. (O’Reilly, Sebastopol, 2011)
7. S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

(Addison-Wesley, Boston, 1996)
8. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)
9. MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org
10. Python Software Foundation, Python Programming Language—Official Website (2012), http://

www.python.org
11. M. Schmidt, ARDUINO R©: A Quick-Start Guide (Pragmatic Programmers, Raleigh, 2011)
12. SCons, SCons: A Software Construction Tool (2012), http://www.scons.org
13. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
14. Wikipedia, Executable and Linkable Format (2012), http://en.wikipedia.org/wiki/Executable_

and_Linkable_Format

http://www.arduino.cc
http://www.gnu.org/software/make
http://gcc.gnu.org
http://gcc.gnu.org
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://www.mingw.org
http://www.python.org
http://www.python.org
http://www.scons.org
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Chapter 3
An Easy Jump Start in Real-Time C++

Developers new to real-time C++ may want to obtain some useful results quickly
before taking the time to master all the intricate details of the C++ language. This
chapter addresses this desire by presenting a simple, yet effective, subset of the
C++ language specifically designed for those seeking a lightweight and reliable
jump start in real-time C++. The C++ subset in this chapter represents a judicious
selection of some of the most easy-to-do things in C++ that can potentially be used
in the widest possible range of programming situations. The strategy of this C++
subset is shown in Fig. 3.1.

3.1 Declare Locals when Used

In C++, local variables can be declared where they are first used. They do not
necessarily need to be bound to the opening curly brace of a scope. This can improve
code readability and facilitate compiler optimization.

Fig. 3.1 The sketch suggests
how a small subset of C++
can potentially be used for a
wide variety of programming
situations

C++ subset

Everything I would like
to do in real-time C++

Where the subset can
potentially be used

All of C++

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_3&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_3

36 3 An Easy Jump Start in Real-Time C++

The code below, for example, conveniently declares integral variables i, j and k
near where they are first used in the subroutine.

// chapter03_01-001_declare_locals.cpp

void initialize();
void use_i(const int);
void use_j(const int);
void use_k(const int);

void do_something()
{

// Initialize someting.
initialize();

// Declare i when using it in use_i().
const int i = 3;
use_i(i);

// Declare j when using it in use_j().
const int j = 7;
use_j(j);

// Declare k in the scope of the for-loop.
for(int k = 0; k < 10; ++k)
{

use_k(k);
}

}

3.2 Fixed-Size Integer Types

The C++ standard library has a complete set of portable fixed-size integer types
in its <cstdint> header file. As mentioned in Sect. 1.8, user-defined types such
as my_uint8, my_uint16, and the like can potentially be clumsy and hard-
to-maintain. They can be replaced with standard fixed-size integer types such as

3.2 Fixed-Size Integer Types 37

std::uint8_t, std::uint16_t, std::uint32_t, etc. and corresponding
signed types.1

The code below, for instance, uses integer variables having specified widths such
as exactly 16 bits and at least 32 bits.

// chapter03_02-001_fixed_size_integer.cpp

#include <cstdint>

// This has *exactly* 16-bits signed.
constexpr std::int16_t value16 = INT16_C(0x7FFF);

// This has *at least* 32-bits unsigned.
constexpr std::uint_least32_t value32 =

UINT32_C(4’294’967’295);

Standard macros of the form UINT8_C(), UINT16_C(), UINT32_C(),
etc. and correspondingmacros for signed types are also defined in the <cstdint>
header file.2 As shown above, they can be convenient for creating numeric literal
integral values having specified widths.

These macros also improve the integrity of code. In particular, they can be
superior to commonly used suffixes such as U, L, UL, LL, ULL, etc. Consider, for
example, the initialization of prime_664999 below.3

// To be improved in
// chapter03_02-002_prime_number.cpp

#include <cstdint>

// The suffix U means unsigned int.
constexpr std::uint32_t prime_664999 = 10’006’721U;

This code could potentially be non-robust or suffer from portability prob-
lems. The integer literal constant 10’006’721U, (which is the 664, 999th prime
number) relies on the suffix U, meaning unsigned int. When porting this

1Fixed-size integer types have been available in the C header file <stdint.h> since C99 (in
the global namespace) and in the C++ header file <cstdint> since C++11 (in both the global
namespace as well as in namespace std).
2These macros have been available in the C header file <stdint.h> since C99 and in the C++
header file <cstdint> since C++11.
3The number 10, 006, 721 is the 664, 999th prime number. A listing of all prime numbers up to
and including 10, 006, 721 can be found in [2], which has been reconstructed in [3]. For further
information on the related fascinating prime counting function, see [4].

38 3 An Easy Jump Start in Real-Time C++

code, especially to small 8-bit platforms, unsigned int might not be 32-bits
wide. It might be only 16-bits wide or even merely 8-bits wide. In such cases,
unsigned int is not large enough to contain the integer value 10, 006, 721 and
the initialization could be potentially confusing (or even incorrect).

We will now slightly modify the initialization of prime_664999 in order to
improve coding integrity. In particular,

// chapter03_02-002_prime_number.cpp

#include <cstdint>

// Initialize the 664,999th prime number.
// Macros like UINT32_C() are portable.

constexpr std::uint32_t prime_664999 =
UINT32_C(10’006’721);

In this case, the initialization is unequivocal, clearly formulated and portable.
The macro UINT32_C() is guaranteed to handle all unsigned 32-bit integer values
within the full range of the data type from 0 . . . 4, 294, 967, 295.

3.3 The bool Type

C++ includes a built-in Boolean type bool that has two and only two possible
values, true and false. In C++, the result of a Boolean test has the type bool
and its value is either true or false. Using C++’s built-in Boolean type can
improve the clarity of logic and simplify coding.

The code below, for instance, uses C++’s built-in Boolean type bool in logical
statements.

// chapter03_03-001_bool_type.cpp

bool valid();
bool login();

void start_session();

void do_something()
{

// This Boolean test yields true or false.
const bool session_is_ok = (valid() && login());

3.4 Organization with Namespaces 39

// This tests if (session_is_ok == true).
if(session_is_ok)
{

start_session();
}

}

3.4 Organization with Namespaces

C++ supports namespaces. Namespaces can be used to improve program organiza-
tion and code readability. Namespaces can optionally be employed to correspond
to different parts or functional groups of the software. Namespaces were first
introduced in Sect. 1.7.

The code below, for example, uses C++ namespaces to organize several parts of
the microcontroller abstraction layer (MCAL) in the software architecture.4

// chapter03_04-001_namespaces.cpp

// Namespace for the microcontroller abstraction layer.
namespace mcal
{

// The mcal initialization.
void init();

// The general purpose timer stuff in the mcal.
namespace gpt
{

void init();
std::uint32_t get_time_elapsed();

}

// The ADC stuff in the mcal.
namespace adc
{

void init();
std::uint16_t read_value(const unsigned);

}

4See Sect. 1.6 for the first mention of the MCAL in this book and also Sect. B.2 for additional
details on software architecture.

40 3 An Easy Jump Start in Real-Time C++

}

// Initialize the mcal.
// Note the clean organization with namespaces.
void mcal::init()
{

mcal::gpt::init();
mcal::adc::init();

}

An unnamed namespace (i.e., an anonymous namespace) can be used for file-
level localization. For example,

// chapter03_04-002_anonymous_namespace.cpp

// A file-local anonymous namespace.
namespace
{

unsigned local_counter;
}

As mentioned previously in Sect. 1.7, using unnamed (anonymous) namespaces
can provide an effective mechanism for defining file-level scope localization of
variables, functions, class types, objects, etc.

C++17 introduced support for nested namespace definitions. This can reduce
typing effort when defining multiple layers of nested namespaces.

Consider, for instance, the traditional definition of a made-up nested namespace
called X::Y::Z.

// A traditional namespace definition.
namespace X
{

namespace Y
{

namespace Z
{

int value;
}

}
}

3.5 Basic Classes 41

As of C++17, the definition of a nested namespace such as X::Y::Z can be
written equivalently as

// chapter03_04-003_nested_namespace.cpp

// A C++17 nested namespace definition.
namespace X::Y::Z
{

int value;
}

In this example, the namespace X::Y::Z contains one integer value that can
be accessed in the usual fashion. In particular,

void do_something()
{

X::Y::Z::value = 1;
}

3.5 Basic Classes

It is not difficult to start working with class types in C++. As a first step, simple
C-style structures can be replaced with C++ classes or structures having just a
constructor, a few data members and possibly some simple functions. To keep
things easy at first, it may be preferable to avoid using inheritance and runtime
polymorphism. One can, and really should, use these powerful object-oriented
features when confident enough to do so in order to make full use of C++. Additional
information on classes and object-oriented programming can be found in Chap. 4.

The class below, for instance, encapsulates an unsigned integer coordinate
point located in the first quadrant of two-dimensional Cartesian space R2.

// chapter03_05-001_basic_classes.cpp

#include <cstdint>

// An unsigned xy-coordinate point with some geometry.
class point
{
public:

std::uint8_t my_x;

42 3 An Easy Jump Start in Real-Time C++

std::uint8_t my_y;

point(const std::uint8_t x = UINT8_C(0),
const std::uint8_t y = UINT8_C(0)) : my_x(x),

my_y(y)
{ }

std::uint16_t squared_euclidean_distance() const
{

// Squared Euclidean distance from the origin.
const std::uint16_t x2(std::uint16_t(my_x) * my_x);
const std::uint16_t y2(std::uint16_t(my_y) * my_y);

return x2 + y2;
}

};

point p1;

point p2
{

UINT8_C(31),
UINT8_C(47)

};

// The squared Euclidean distance d1 is 0.
std::uint16_t d1 = p1.squared_euclidean_distance();

// The squared Euclidean distance d2 is 3,170.
std::uint16_t d2 = p2.squared_euclidean_distance();

3.6 Basic Templates

C++ templates use the same code for different types. Templates can reduce the
effort of code upkeep and eliminate redundant sources of error. C++ templates also
allow for scalability. When beginning with templates, it may be preferable to keep
template depth and subroutine complexity low. C++ templates are described in detail
in Chap. 5.

The code below, for instance, implements a template subroutine for computing
the sum of two objects.

3.6 Basic Templates 43

template<typename T>
T add(const T& a, const T& b)
{

return a + b;
}

This template can be used to add different kinds of objects, as long as these
support the addition operator. In particular,

// chapter03_06-001_basic_templates_add.cpp

template<typename T>
T add(const T& a, const T& b)
{

return a + b;
}

const int n = add(1, 2);
// n is 3.

const float f = add(1.2F, 3.4F);
// f is 4.6.

const std::string s
= add(std::string("abc"),

std::string("xyz"));
// s is "abcxyz".

An example of a class template is shown below. It implements a signed or
unsigned xy-coordinate point, potentially residing in any of the four quadrants
of two-dimensional Cartesian space R2. This class is similar to the one shown in the
previous section. But it is implemented as a template class intended to accept either
signed or unsigned integral xy-components.

// chapter03_06-002_basic_templates_xy_point.cpp

#include <cstdint>
#include <type_traits>

// Template version of the xy-coordinate class.

template<typename short_type,
typename long_type>

44 3 An Easy Jump Start in Real-Time C++

class point
{
public:

static_assert(
std::is_integral<short_type>::value

&& std::is_integral<long_type>::value,
"the short and long types must be integral");

short_type my_x;
short_type my_y;

point(const short_type& x = short_type(),
const short_type& y = short_type()) : my_x(x),

my_y(y)
{ }

long_type squared_euclidean_distance() const
{

// Squared Euclidean distance from the origin.
const long_type x2(long_type(my_x) * my_x);
const long_type y2(long_type(my_y) * my_y);

return x2 + y2;
}

};

point<std::int16_t, std::int32_t> p
{

INT16_C(-2129),
INT16_C(+5471)

};

const std::int32_t d = p.squared_euclidean_distance();
// d is 34,464,482

This code snip introduces additional useful C++ language features that are
described later. Note, for instance, the use of compile-time assert (via static_-
assert, Sects. 3.9 and A.4) in combination with the <type_traits> library
(Sect. A.15). This ensures that the template parameters are integral types.

3.7 nullptr Replaces NULL 45

3.7 nullptr Replaces NULL

C++ offers the nullptr keyword (since C++11). The nullptr keyword elim-
inates the need for redundant and potentially conflicting definitions of NULL or
testing with possibly awkward hand-written zero-pointers.

The code below, for example, uses the nullptr keyword to test if a pointer to
some object, a something*, is non-zero.

// chapter03_07-001_nullptr.cpp

class something
{
public:

something() { }
};

namespace
{

// Default initialized to nullptr (i.e., 0).
something* ps;

}

void do_something()
{

// Any kind of zero pointer equals nullptr.
if(ps == nullptr)
{

// Initialize ps.
// ...

}

// Do something with ps.
// ...

}

46 3 An Easy Jump Start in Real-Time C++

3.8 Generalized Constant Expressions with constexpr

Compile-time constants can be defined with constexpr or by using integral class
members of type static constexpr or (the older) static const.5 As briefly
mentioned in Sect. 1.11, constants defined this way are known at compile time and
have clearly defined type information.

The code below depicts various ways to use the constexpr keyword to make
compile-time constants.

// chapter03_08-001_constexpr.cpp

// A compile-time constant version number.
constexpr unsigned int version = 3U;

// A compile-time floating-point value.
constexpr float pi = 3.1415926535’8979323846F;

The constexpr keyword can make compile-time constants from a wider
variety of things than the original const keyword.6 In particular, constexpr
can also be used to define subroutines adhering to low-complexity constraints, cer-
tain constant-valued aggregates such as std::arrays (Sect. 3.11), and member
variables of class types.

// chapter03_08-002_constexpr_more.cpp

#include <array>

// A compile-time constant function of low complexity.
constexpr int three() { return 3; }

// A constant array of integers.
constexpr std::array<int, 3U> my_array
{

{ 1, 2, 3 }
};

5The constexpr keyword has been available since C++11.
6Both the const keyword as well as the constexpr keyword are available for declaring
constant symbols for various use cases in C++11 and beyond.

3.10 Using <limits> 47

struct version_information
{

// A compile-time constant member variable.
static constexpr unsigned version = 3U;

};

3.9 static assert

The C++ compiler can perform checks on Boolean expressions that are known at
compile time using the static_assert facility. There are additional details on
static_assert in Sect. A.4.

The code below, for instance, uses static_assert to ensure that the program
version is high enough. The test with static_assert is performed at compile
time.

// chapter03_09-001_static_assert.cpp

constexpr unsigned int version = 3U;

// Print an error if version is less than 2.
static_assert(version >= 2U, "Version is too low!");

3.10 Using <limits>

The C++ standard library includes portable and convenient numeric limits in its
<limits> header. These can be used for obtaining and querying the limits of
built-in types or also be extended (specialized) for user-defined types. The classes
in <limits> are templates and, as mentioned above, it is common to implement
template specializations of std::numeric_limits for custom user-defined
types. The <limits> library is described in greater detail in Sect. A.5

The code below uses some members of std::numeric_limits to obtain
and check information on limits for built-in integral and floating-point types.

// chapter03_10-001_limits.cpp

#include <limits>
// This is 31 on a system with 4 byte int.

48 3 An Easy Jump Start in Real-Time C++

// The sign bit is not included in digits.
constexpr int n_dig = std::numeric_limits<int>::digits;

// This is 2,147,483,647 if int is 4 bytes.
constexpr int n_max = std::numeric_limits<int>::max();

// Compile-time check if float conforms to IEEE-754.
static_assert(std::numeric_limits<float>::is_iec559,

"float is not IEEE754 conforming!");

constexpr bool is_ieee754_conform =
std::numeric_limits<float>::is_iec559;

3.11 std::array

Perhaps the simplest STL container is std::array. In C++, std::array
can be used as a drop-in replacement for C-style arrays. Since std::array
is a sequential STL container, it offers the benefits of iterators, container size,
compatibility with STL algorithms, etc.

Using the std::array container is key for microcontroller programming
because std::array has the added benefit of size known at compile-time. The
compiler can, therefore, allocate storage for an std::array where it needs
to—on the stack, in static memory, on-the-fly for an std::array declared as
a constexpr, etc. Using std::array provides the comfort of a sequential
container while simultaneously reducing concerns about potential memory frag-
mentation from dynamic memory allocation and the complexity of allocators
(Sect. 10.3).

The code below creates a login key consisting of three 8-bit unsigned integers.

// chapter03_11-001_array.cpp

#include <array>
#include <cstdint>

// A login key stored in an std::array.
constexpr std::array<std::uint8_t, 3U> login_key
{

{
UINT8_C(0x01),
UINT8_C(0x02),

3.12 Basic STL Algorithms 49

UINT8_C(0x03)
}

};

3.12 Basic STL Algorithms

Using STL algorithms in C++ can significantly reduce coding effort and eliminate
potential sources of error from hand-written code sequences. It is easy to get
started with a few intuitive and easy-to-use STL algorithms such as simple mini-
max operations std::min() and std::max(), mutating (i.e. change-causing)
sequence operations like std::fill() and std::copy(), or non-modifying
sequence operations including std::all_of(), std::for_each(), etc. See
also Sects. 5.8, 6.17, and A.6–A.8 in the C++ tutorial for more information on STL
algorithms.

The code below, for example, initializes (and re-initializes) four unsigned integer
counters in an array using the std::fill() algorithm.

// chapter03_12-001_basic_stl.cpp

#include <algorithm>
#include <array>
#include <cstdint>

namespace
{

// Four counters.
std::array<std::uint8_t, 4U> counters;

}

void do_something()
{

// (Re-)Initialize the counters with std::fill().
std::fill(counters.begin(),

counters.end(),
static_cast<std::uint8_t>(0U));

// Do something with the counters.
// ...

}

50 3 An Easy Jump Start in Real-Time C++

3.13 <numeric>

The STL’s <numeric> library has some particularly useful algorithms for micro-
controller programming including, among others, std::accumulate() and
std::inner_product() which can be used for computations such as check-
sums, vector-matrix mathematics, etc. The functions in <numeric> can reduce
code complexity and bring the heart of the algorithm at hand into clear focus. See
Sect. A.8 for further information on <numeric>.

The example below computes the inner product of two arrays.

// chapter03_13-001_basic_stl_numeric.cpp

#include <array>
#include <numeric>

const std::array<int, 3U> u
{

{ 1, 2, 3 }
};

const std::array<int, 3U> v
{

{ 4, 5, 6 }
};

const int uv = std::inner_product(u.begin(),
u.end(),
v.begin(),
0);

// The result is 32.

The result is
(
4 + 10 + 18

) = 32. Readers familiar with physics or vector
mathematics might recognize this as the dot-product

−→
u · −→v = uv (3.1)

in three-dimensional Cartesian space R3, the result of which is a scalar.

3.15 Digit Separators 51

3.14 atomic load() and atomic store()

The C++ standard library includes a collection of safe and portable atomic
operations in its <atomic> library. The <atomic> library is large with many
functions. It is, however, possible to get an easy start in the <atomic> library with
two simple functions, std::atomic_load() and std::atomic_store().

The code below, for example, uses std::atomic_load() to perform a
consistent read of the 32-bit system-tick on an 8-bit CPU. Here, it is assumed that
system_tick is modified in a timer interrupt service routine, thereby making a
consistent read via means such as std::atomic_load() mandatory.

// chapter03_14-001_atomic_operations.cpp

#include <atomic>
#include <cstdint>

namespace
{

// The one (and only one) 32-bit system-tick.
volatile std::atomic<std::uint32_t> system_tick;

}

std::uint32_t get_time_elapsed()
{

// Ensure 32-bit consistency on an 8-bit CPU.
return std::atomic_load(&system_tick);

}

3.15 Digit Separators

The single quote character is used for separating groups of digits in numeric literals.
Digit separators were introduced with C++14.

Consider initializing an integer number with many digits such as 1 trillion, in
other words 1012. In particular,

// chapter03_15-001_digit_separators.cpp

constexpr std::uint64_t one_trillion =
UINT64_C(1’000’000’000’000);

52 3 An Easy Jump Start in Real-Time C++

Digit separators make the initialization of one_trillion easy-to-read
because groups of three zeros can be readily identified.

Digit separators can also be used with floating-point numeric literals. The
code below, for example, initializes a floating-point representation of Archimedes’
constant π .7

// chapter03_15-002_digit_separators.cpp

constexpr long double pi =
3.1415926535’8979323846’2643383279’5028841972L;

Here, we use the built-in floating-point type long double. The floating-point
initialization is carried out with 40 decimal digits of precision after the decimal
point. Digit separators are used between groups of ten digits. This makes the
initialization more legible and appear in a well-organized fashion.

The granularity of digit separators is not restricted to clusters of three digits or ten
digits or any other grouping. Digit separators can be used with arbitrary numbers of
digits between the separations. As such, digit separators can improve the readability
of numeric literals according to the standardizations of different locales.

3.16 Binary Literals

Binary literals are numeric literals written in binary form using any of the prefixes
0b, 0B, b or B. Binary literals were introduced with C++14.

The following code, for example, initializes easy-to-recognize constant unsigned
integer values using binary literals.

// chapter03_16-001_binary_literals.cpp

constexpr std::uint8_t one = UINT8_C(0b1);

constexpr std::uint8_t seven = UINT8_C(0b0000’0111);

In microcontroller programming, binary literals are particularly useful because
hardware registers often have detailed bit-level descriptions.Manipulating hardware
registers via binary literals can make it easier to understand which register bits will
be set and cleared. The following example uses a binary literal numeric constant to
switch the value of portb.5 from low to high.

7See also Sect. 12.2 and [1] for more information on mathematical constants.

3.17 User-Defined Literals 53

// chapter03_16-002_binary_literals.cpp

void do_something()
{

// The address of the portb register.
constexpr std::uint8_t portb = UINT8_C(0x25);

// Switch portb.5 from low to high.

reinterpret_cast<volatile std::uint8_t>(portb)
|= UINT8_C(0b0010’0000);

}

3.17 User-Defined Literals

User-defined literals provide a syntax for applying custom suffixes to literal values.
The following code, for instance, uses the specialized user-defined suffixes _inch,
_foot and _yard for conversions from traditional length units to units of meters
in the MKS system.8

// chapter03_17-001_user_defined_literals.cpp

inline constexpr float
operator"" _inch(long double inches)
{

return static_cast<float>(inches * 0.0254L);
}

inline constexpr float
operator"" _foot(long double feet)
{

return static_cast<float>(feet * 0.294L);
}

inline constexpr float
operator"" _yard(long double yards)

8The conversions are approximate, based on 3–4 decimal digits of precision resulting from
common conversion factors. As such, the conversions here are not carried out with full scientific
precision of long double.

54 3 An Easy Jump Start in Real-Time C++

{
return static_cast<float>(yards * 0.9144L);

}

With these suffixes, lengths expressed as literal values in inches, feet and yards
are converted to meters at compile time. For example,

constexpr float
one_foot = 12.0_inch; // 0.3048m

constexpr float
basketball_player = 7.0_foot; // 2.058m

constexpr float
football_field = 100.0_yard; // 91.44m

Here, we convert one_foot to 0.3048m, basketball_player to 2.058m
and football_field to 91.44m.

Several user-defined literals were standardized with C++14. In particular, the
standard library supports a string suffix s for character string literals, such as those
used with std::string.9 For example,

// chapter03_17-002_user_defined_literals.cpp

#include <string>

using namespace std::string_literals;

std::string str = "creativity"s;

There are also several standardized chronological suffixes h, min, s, ms, us and
ns. These are used for expressing time-spans in common units. The standardized
chronological suffixes are available in <chrono>.10 The code sequence below, for
instance, portrays a 10ms time-span.

9Standardized suffixes are defined in various namespaces. In particular, the string suffix s can
be found in any of std::literals, std::string_literals and std::literals::
string_literals.
10Along the same lines, the standardized chronological suffixes are available in the namespaces
std::literals, std::chrono_literals and std::literals:: chrono_liter-
als.

3.17 User-Defined Literals 55

// chapter03_17-003_user_defined_literals.cpp

#include <chrono>

using namespace std::chrono_literals;

// time_span is 10.
std::chrono::milliseconds time_span = 10ms;

When considering the suffix s, it could stand for character string or time in
seconds. The compiler can, however, properly identify the theme of the use-case.
This renders the suffix s non-ambiguous and contextually meaningful for use with
both literal strings as well as literal chronological values.

In addition, standardized suffixes are available in <complex> for signifying the
imaginary part of a complex number.11

Consider a potential floating-point expression of the complex number

z = 1.2 + 3.4i . (3.2)

This complex number could be represented in C++ as shown below.

// chapter03_17-004_user_defined_literals.cpp

#include <complex>

using namespace std::complex_literals;

std::complex<float> z = 1.2f + 3.4if;

In this example, z approximates a complex number from the standard library’s
std::complex template class made from real and imaginary parts composed of
the built-in floating-point type float. The suffix if appended to the floating-point
literal value 3.4 is used to initialize the imaginary part of z.

The complex suffixes if, i and il are defined in the <complex> library. The
complex suffixes are intended to be used with literal values of the built-in floating-
point types float, double, and long double respectively. See also Sect. 12.5
for additional information on the <complex> library and complex-valued math
in C++.

11Similarly, the standardized complex suffixes are present in the namespaces std::literals,
std::complex_literals and std::literals:: complex_literals.

56 3 An Easy Jump Start in Real-Time C++

In the following practical example, we will compute and print the approximate
value of sin (1.2 + 3.4i) ≈ 13.9794 + 5.42282i, expressed as std::complex-
<double>.

// chapter03_17-005_user_defined_literals.cpp

#include <complex>

using namespace std::complex_literals;

const std::complex<double> z = 1.2 + 3.4i;

// (13.9794,5.42282)
const std::complex<double> s = std::sin(z);

The standardized complex suffixes can also be used with integral literal values.
The sequence below defines the double representation of z = 1 + i, where the
complex part of z is written as a binary literal constant (see also Sect. 3.16).

// chapter03_17-006_user_defined_literals.cpp

#include <complex>

using namespace std::complex_literals;

// (1,1)
std::complex<double> z = 1.0 + 0b0000’0001i;

3.18 Using alignof and alignas

In embedded microcontroller programming, it can often be useful to investigate
the memory alignment of an entity. This can be accomplished with the alignof
operator. For instance,

// chapter03_18-001_alignment.cpp

auto as = alignof(short); // Could be 2, 4,...
auto ai = alignof(int); // Could be 2, 4,...
auto aL = alignof(long); // Could be 4, 8,...
auto aLL = alignof(long long); // Could be 8,...

3.19 The Specifier final 57

The result of alignof is specified as an unsigned integral value having
type std::size_t. Values returned from alignof are typically unique for a
given microcontroller-compiler system and may vary from one system to another
depending on the underlying microcontroller and compiler characteristics.

The related specifier alignas can be used to ensure that an entity is actually
stored with a particular memory alignment. The alignas specifier can be
especially useful in embedded microcontroller programming, for instance, when
creating memory-mapped structures and objects that are intended to be exactly
aligned with the corresponding addresses of a piece of underlying hardware such
as a microcontroller peripheral unit. Consider, for example, the registers of a made-
up timer shown below.

// chapter03_18-002_alignment.cpp

struct alignas(16) timer_register_type
{

std::uint32_t tmr_ctrl1;
std::uint32_t tmr_ctrl2;
std::uint32_t tmr_cntr1;
std::uint32_t tmr_cntr2;

};

In this code sample, we have defined a structure that maps a fictive timer register
set aligned on a 16-byte boundary.

3.19 The Specifier final

Another very useful specifier is known as final. The specifier final can be
used to restrict the ability to derive a from another class previously occurring in its
hierarchy. Consider the code sample below.

// chapter03_19-001_final.cpp

class base
{
public:

virtual ~base() { }

base& operator=(const base&) = default;

protected:
base() { }

58 3 An Easy Jump Start in Real-Time C++

};

class derived final : public base
{
public:

derived() { }

virtual ~derived() { }

derived& operator=(const derived&) = default;
};

This sample presents a simple class hierarchywith one base class and one derived
class. The derived class is specified as final. It is not intended to subsequently
derive additional classes from derived. Attempting to do so results in an error.

Embedded systems with microcontrollers often feature very specific electronic
sub-circuits that exist only within the application.12 When this kind of system
element is embodied in a class, it might be a good design choice to exclude class
inheritance via final. This can make sense if the class already represents the
highest level of abstraction expected to be necessary for the underlying object.13

The following code sequence shows an attempt to derive another class from the
derived class. But since derived is already specified as final, there is an
error.

// chapter03_19-002_final.cpp

class derived_another : public derived
{

// This class should result in an error.
};

3.20 Alias as an Alternative to typedef

In C++11 and beyond, an alias can be used an alternative to a classical typedef.
Consider the traditional type definition of an unsigned integral type below.

12An example of this is the simple LED circuit shown in the first chapter of this book in Sect. 1.1.
13It might also be desirable to make this sort of class non-copyable (Sect. 15.2). In particular, this
can be done if the class uniquely maps a given electronic sub-circuit or peripheral device in the
application that is not intended to be copied.

3.20 Alias as an Alternative to typedef 59

// chapter03_20-001_alias.cpp

// Traditional typedef.
typedef unsigned int uint_type;

With a C++11 alias, this can be written similarly as follows.

// C++11 alias.
using uint_type_alias = unsigned int;

Some developers find the syntax of C++11 alias to be more legible and intuitive
than that of the original C–style typedef. This can be particularly noticeable when
dealing with long names of types. For instance,

// chapter03_20-002_alias.cpp

#include <algorithm>
#include <array>
#include <cstdint>

void do_something()
{

// Alias for unsigned int.
using uint_type = unsigned int;

// Alias for array of uint_type.
using array_type = std::array<uint_type, 3U>;

// Alias for reverse iterator of array of uint_type.
using reverse_iterator_type =

array_type::const_reverse_iterator;

constexpr array_type my_array({{ 1U, 2U, 3U }});

// Find result is 2.
const reverse_iterator_type ri =

std::find(my_array.crbegin(),
my_array.crend(),
2U);

}

60 3 An Easy Jump Start in Real-Time C++

References

1. S.R. Finch, Mathematical Constants (Cambridge University Press, Cambridge, 2003)
2. D.N. Lehmer, List of Prime Numbers from 1 to 10,006,721 (Carnegie Institution of Washington,

Washington, DC, 1914)
3. LORIA, D. Roegel, The LORIA Collection of Mathematical Tables, DTL (Digital Tables

Library)—Reconstructed tables—A reconstruction of Lehmer’s table of primes (1914). HAL
Id: hal-00654443, http://locomat.loria.fr/locomat/reconstructed.html (2017) and http://locomat.
loria.fr/lehmer1914/lehmer1914doc.pdf (2017)

4. Wikipedia, Prime-counting function(2017), http://en.wikipedia.org/wiki/Prime-counting_
function

http://locomat.loria.fr/locomat/reconstructed.html
http://locomat.loria.fr/lehmer1914/lehmer1914doc.pdf
http://locomat.loria.fr/lehmer1914/lehmer1914doc.pdf
http://en.wikipedia.org/wiki/Prime-counting_function
http://en.wikipedia.org/wiki/Prime-counting_function

Chapter 4
Object-Oriented Techniques
for Microcontrollers

Object-oriented programs are built from various class objects that intuitively
embody the application through their actions and interrelations among each other.
This chapter introduces object-oriented real-time C++ methods using classes for
LEDs, PWM signal generators and communication interfaces.

4.1 Object Oriented Programming

Consider the application shown in Fig. 4.1 below.
This application has four LEDs and two peripheral timers used as pulse-width

modulated (PWM) signal generators. The LEDs L0 and L1 are connected to port
pins P2.0 and P2.1, respectively. These LEDs have the same circuit as the one
shown previously in Chap. 1, Fig. 1.1. They are controlled with bit manipulation of
the microcontroller’s port P2, as introduced in the LED program of Sect. 1.1.

Fig. 4.1 An application with
four LEDs is shown

L3

Microcontroller
timer1

port2.1
port2.0

GND

L2

R3R2R1R0

L1L0
led_pwm

led_base

led_port

Developer

timer0

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_4&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_4

62 4 Object-Oriented Techniques for Microcontrollers

The LEDs L2 and L3 are connected to PWM signals generated from peripheral
timers in the microcontroller. L2 is connected to timer0 and L3 is connected to
timer1. Setting the duty cycle of the PWM signal to 0% or 100% switches the
corresponding LED off or on, respectively. Intermediate duty cycles with values
greater than 0% but less than 100% can be used for dimming the corresponding
LED. Dimming is an additional feature that an LED on a simple digital I/O pin does
not have.

We will now design a class hierarchy for the LED objects in Fig. 4.1. This is the
class hierarchy that the developer in Fig. 4.1 is considering. The two types of LEDs
can be represented with a base class and two derived classes. The base class is
called led_base. The two derived classes are called led_port and led_pwm.

One potential implementation of the led_base class is shown below.

class led_base
{
public:

virtual void toggle() = 0; // Pure abstract.
virtual ~led_base() { } // Virtual destructor.

// Interface for querying the LED state.
bool state_is_on() const { return is_on; }

protected:
bool is_on;

// A protected default constructor.
led_base() : is_on(false) { }

private:
// Private non-implemented copy constructor.
led_base(const led_base&) = delete;

// Private non-implemented copy assignment operator.
const led_base& operator=(const led_base&) = delete;

};

The public interface of the led_base class has two virtual functions, the virtual
toggle() function and a virtual destructor called ~led_base().

In object-oriented programming, a derived class provides its own specific version
of a virtual function in its base class. This is called a function override. When calling
a member function on a base class pointer or reference to an object, the virtual
function in the derived class will be used.

4.1 Object Oriented Programming 63

This is the virtual function mechanism in C++, and it is an essential part of
dynamic polymorphism in object-oriented programming.

In dynamic polymorphism, derived classes in a class hierarchy can be manipu-
lated with a common interface yet still exhibit specialized behavior. In our case here,
it means that any kind of LED derived from led_base can toggle() in its own
way.

In general, the destructor of a derived class should be virtual. This ensures that
the proper derived class destructor is called when destroying an object via a base
class pointer.

For more information on virtual function overrides and virtual destructors,
consult Eckel [4], Chapter 15, Subsection “virtual functions” and also Section
“Destructors and virtual destructors”.

Another interesting feature of the led_base class is its protected constructor.
The protected constructor can not be called from any other parts of the program
except classes derived from led_base. This makes sense because led_base is
intended to be just that, a base class. No one is actually supposed to create instances
of led_base. Furthermore, if one were to try, the compiler would forbid it.

Now that we have the led_base class, we can derive another class from it
called led_port.

class led_port : public led_base
{
public:

typedef std::uint8_t port_type;
typedef std::uint8_t bval_type;

led_port(const port_type p,
const bval_type b) : port(p),

bval(b)
{

// ...
}

virtual ~led_port() { }

virtual void toggle()
{

// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

// Toggle the is_on indication flag.
is_on = !is_on;

}

64 4 Object-Oriented Techniques for Microcontrollers

private:
const port_type port;
const bval_type bval;

};

The led_port class is specifically designed to toggle LEDs connected to a
port pin. In our case here, this means L0 and L1 in Fig. 4.1. The led_port class
is similar to the led class from the LED program in Sect. 1.1. There is nonetheless
an important distinction between the two. The led_port class is derived from
led_base.

Take a moment to notice how both led_base as well as led_port have
the virtual toggle() function. This is a common interface that is shared by
led_port and led_base.

A virtual override in a derived class does not need to explicitly use the virtual
keyword, unless this is required for further derived classes. Some developers feel
that supplying the optional virtual keyword in a derived class is redundant and
should be avoided. Others consider it to be a helpful reminder that the function is
virtual and is, in fact, overriding a function with the same signature in its base class.

For the LEDs on PWM signal generators in Fig. 4.1, we need an LED class that
encapsulates a second kind of LED driver. Instead of manually switching an LED
on and off by toggling a port pin, this class controls the brightness of its LED with
a PWM signal generator. In particular,

class led_pwm : public led_base
{
public:

explicit led_pwm(pwm* p) : my_pwm(p) { }
virtual ~led_pwm() { }

virtual void toggle()
{

// Toggle the LED with the PWM signal.
is_on = (my_pwm->get_duty() > 0U);

my_pwm->set_duty(is_on ? 0U : 100U);

is_on = !is_on;
}

// This LED class also supports dimming.
void dimming(const std::uint8_t duty)
{

my_pwm->set_duty(duty);
is_on = (duty != 0U);

4.1 Object Oriented Programming 65

}

private:
pwm* my_pwm;

};

Just like the led_port class, led_pwm has its own override of the toggle()
function. This is led_pwm’s specialized way to toggle(). Notice in the imple-
mentation of the toggle() member how the led_pwm class uses its private
variable my_pwm for manipulating the PWM signal generator connected to its
corresponding LED.

In addition to the toggle() function, led_pwm also has a dimming()
function. As mentioned above, dimming can be used to set intermediate values of
LED brightness that lie between 0% and 100%. There is additional logic in the
toggle() algorithm that synchronizes dimming with toggling. If the PWM signal
has any non-zero duty cycle upon entering the toggle() function, then the LED
is assumed to be on and it will be switched off by setting the duty cycle to 0%. If
the PWM signal has a duty cycle of 0%, then toggle() switches the LED on by
setting the duty cycle to 100%.

The constructor of the led_pwm class is declared with the explicit keyword.
This ensures that the constructor can only be used if the input parameters are
supplied and prevents potential unintended automatic compiler conversion of the
class to another type. See also Eckel [4], Chapter 12, Subsection “Preventing
constructor conversion”.

The PWM signal generators can be encapsulated with a pwm class. In particular,

class pwm
{
public:

explicit pwm(const int channel) : duty_cycle(0U) { }
~pwm() { }

void set_duty(const std::uint8_t duty)
{

// Limit the duty cycle to 0...100.
duty_cycle = std::min<std::uint8_t>(duty, 100U);

// Set the duty cycle in the PWM hardware.
// ...

}

std::uint8_t get_duty() const
{

return duty_cycle;

66 4 Object-Oriented Techniques for Microcontrollers

}

private:
std::uint8_t duty_cycle;

};

The pwm class has a simple public interface consisting of its ctor and two
functions, set_duty() and get_duty(). These two functions are designed for
setting and retrieving the value of the pwm’s duty cycle. In our example here, we
assume that the duty cycle can be set from 0 . . . 100% in 101 discrete steps. The
microcontroller-specific code sequences required for initializing the PWM hardware
and setting the duty cycle are not shown. These are treated in greater detail in
Sect. 9.4.

4.2 Objects and Encapsulation

Objects, through their actions and relations among each other (both concrete as well
as abstract), compose the functionality of an object-oriented application. Objects
for microcontrollers usually encapsulate electronic sub-circuits or control functions
such as digital filters, regulation loops, communication devices, measurement
equipment, graphical instruments, etc.

The LED class hierarchy and the pwm class, for example, encapsulate the
electronic sub-circuits shown in Fig. 4.1 by uniting their respective functionalities
with their internal data. In particular, the code sample below shows led_port,
led_pwm and pwm objects.

namespace
{

// Two LEDs on port2.0 and port2.1
led_port led0
{

mcal::reg::port2,
mcal::reg::bval0

};

led_port led1
{

mcal::reg::port2,
mcal::reg::bval1

};

// Two PWMs on channels timer0 and timer1.

4.3 Inheritance 67

pwm pwm0 { 0 };
pwm pwm1 { 1 };

// Two LEDs connected to pwm0 and pwm1.
led_pwm led2 { &pwm0 };
led_pwm led3 { &pwm1 };

}

This code has instances of all four LEDs (L0–L3) and the two PWM signals from
Fig. 4.1. The pwm instances, objects themselves, are used to initialize the led_pwm
objects.

Now that we have our LEDs, it is straightforward to toggle them. For example,

void do_something()
{

// Toggle L0-L3.
led0.toggle();
led1.toggle();
led2.toggle();
led3.toggle();

}

This code toggles led0–led3. Notice how the uniform toggle() interface
makes it convenient to toggle both kinds of LEDs using the same function call. This
is an example of object-oriented microcontroller programming in C++.1

4.3 Inheritance

Consider class inheritance in object-oriented C++ programming. For example,

class led_port : public led_base
{

// ...
};

A derived class inherits data members and methods from its base(s) and can
use them subject to access control. For example, led_port can use led_base’s

1This code does not yet make use of the runtime virtual function mechanism. We will re-
examine this example in association with dynamic polymorphism and the runtime virtual function
mechanism in Sect. 4.4.

68 4 Object-Oriented Techniques for Microcontrollers

public and protected members. In particular, led_port can directly manipulate
led_base’s protected member is_on.

class led_port : public led_base
{
public:

virtual void toggle()
{

// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

// Toggle the is_on indication flag.
is_on = !is_on;

}

// ...
};

The toggle() function also toggles the state of is_on from false to true
and vice versa after toggling the LED. Since led_port is publicly derived from
led_base, it is allowed to manipulate the protected member variable of its base
class. Clients of classes derived from led_base can query the state of is_on by
calling the state_is_on() method.

Each successively more derived class adds to the inheritance chain. For example,
led_port and led_pwm add their individualized toggle() capabilities. In
addition, led_pwm adds its dimming function. We could potentially derive another
kind of PWM-based LED class, say led_pwm2, from led_pwm. This new class
would inherit both the toggle() function as well as the dimming() function—
and could even add other functions of its own.

As mentioned earlier in Sect. 1.4, inheritance has three access controls: public,
protected and private.When not explicitly specified, the default inheritance level of a
class is private. The default inheritance level of a struct is public. Private inheritance
is less common, but can be useful. The noncopyable class of Sect. 15.2 shows an
interesting example of private inheritance used to control the access level of class
copying. The access level of inheritance allows for fine-tuning copy semantics and
hiding private data in class hierarchies.

Inheritance runs through the class hierarchy, providing for distribution of pro-
gram complexity. Armed with the right object granularity and prudent design of
class hierarchies, it is possible to build powerful and expressive object-oriented
microcontroller programs in C++.

4.4 Dynamic Polymorphism 69

4.4 Dynamic Polymorphism

Dynamic polymorphism, or runtime polymorphism, is one of the most powerful
tools in object-oriented C++ programming. Dynamic polymorphism in C++ uses a
runtime virtual function mechanism to call methods of a derived class by accessing
them from a base class pointer or reference. For example,

void led_toggler(led_base* led)
{

// Use dynamic polymorphism to toggle
// a base class pointer.
led->toggle();

}

void do_something()
{

led_toggler(&led0); // Toggle an led_port.
led_toggler(&led1); // Toggle an led_port.
led_toggler(&led2); // Toggle an led_pwm.
led_toggler(&led3); // Toggle an led_pwm.

}

In this code, led_toggler() uses dynamic polymorphism on a base class
pointer (led_base*) to call the toggle() function for two different kinds of
LED objects (i.e., led_port and led_pwm). The virtual function mechanism
selects the right toggle() function at runtime. The compiler has automatically
generated a small amount of object code for this.

In the calls to led_toggler() above, the compiler automatically downcasts
the led_port and led_pwm pointers to base class pointers. Explicit downcast is
possible, and exemplified below.

void do_something()
{

led_toggler(static_cast<led_base*>(&led0));
led_toggler(static_cast<led_base*>(&led1));
led_toggler(static_cast<led_base*>(&led2));
led_toggler(static_cast<led_base*>(&led3));

}

According to stylistic preferences and coding guidelines, some developers
prefer to supply the explicit downcast. Others consider a non-necessary downcast
redundant. They believe that it makes code “over-casted” and reduces legibility.

70 4 Object-Oriented Techniques for Microcontrollers

Dynamic polymorphism also works with a base class reference. For example,

void led_toggler(led_base& led)
{

// Use dynamic polymorphism to toggle
// a base class reference.
led.toggle();

}

void do_something()
{

led_toggler(led0); // Toggle an led_port.
led_toggler(led1); // Toggle an led_port.
led_toggler(led2); // Toggle an led_pwm.
led_toggler(led3); // Toggle an led_pwm.

}

The microcontroller programmer needs to be aware that dynamic polymorphism
has slight runtime and size costs. When designing classes and class hierarchies, one
should be sure that the benefits of dynamic polymorphism are worth its overhead.
The following section provides more detail on this.

Dynamic polymorphism and the runtime virtual function mechanism are pow-
erful object-oriented methods. They allow specialized objects that share a common
inheritance to be treated identically while still retaining their own specific character-
istics. This allows for enormous design flexibility because a uniform interface can
be used throughout the entire class hierarchy.

4.5 The Real Overhead of Dynamic Polymorphism

One may wonder how much overhead is associated with dynamic polymorphism
and the runtime virtual function mechanism in C++. Since the implementation
details of the virtual function mechanism depend on the compiler’s internals, there
is no exact answer to this question. In general, though, the best compilers in the
market have remarkably low overhead for dynamic polymorphism.

We will now examine a scheme commonly used to implement the runtime virtual
mechanism in C++. Many compilers store the addresses of virtual functions in a
compiler-generated table at a location that could be either in static RAM or program
code. A general rule-of-thumb, then, is that each virtual function of a class costs
one chunk of memory large enough to hold a function pointer. Consider an 8-bit
platform. If a function pointer requires two bytes on this platform and a derived
class has three virtual functions, then the implementation of the derived class might
require six bytes of storage for its virtual function table.

4.6 Pure Virtual and Abstract 71

Calling a virtual function can be efficient because all the compiler needs to do
is select the proper entry from the virtual function table and call it. This might be
only slightly slower than a normal function call. In addition, the call overhead of a
virtual function remains the same regardless of howmany levels of inheritance there
are. It is always the same effort for accessing the virtual function table. Readers
interested in additional details on the overhead associated with the runtime virtual
function mechanism can consult FAQ 20.4 of Parashift [1] or Eckel [4], Chapter 15,
Sect. “Under the hood”.

Even though modern C++ compilers have little overhead associated with
dynamic polymorphism, low-level drivers that are called very often (e.g. in high-
frequency interrupts) may be unsuited for dynamic polymorphism. Procedural
methods or static polymorphism (Sect. 5.7) could be better options for extremely
time critical code. Functions in the application layer that are less time critical can
greatly benefit from well-designed class hierarchies because the advantages of
dynamic polymorphism usually far outweigh its modest costs.

4.6 Pure Virtual and Abstract

Examination of the led_base class implementation reveals that its toggle()
function does not have a body. Rather, the toggle() function of led_base is
a so-called pure virtual function, implemented with the unmistakably recognizable
syntax “= 0”. In other words,

class led_base
{
public:

virtual void toggle() = 0; // Abstract.

// ...
};

A class that has one or more pure virtual methods is called an abstract class.
An abstract class is the generalized notion of something, as opposed to a concrete
example of a specific thing. As such, the pure virtual functions of an abstract class
are not intended to be called. Instead, pure virtual functions define a mandatory
interface for derived classes. In other words, pure virtual functions define a sort of
blueprint for derived classes.

Consider an abstract base class. Any to-be-instantiated class derived from it
must implement overrides for each pure virtual method of its base(s). Otherwise,
no objects of the derived class can be instantiated.

For example, both led_port as well as led_pwm are derived from the
abstract led_base class. Therefore, both of them must provide a member override

72 4 Object-Oriented Techniques for Microcontrollers

for toggle(). In this way, C++ provides clear language semantics for data
abstraction.

Say we derive a class called led_no_toggle from led_base but fail to
include the required virtual toggle() function. If anyone attempted to instantiate
an instance of led_no_toggle, there would be a compiler error. In particular,

class led_no_toggle : public led_base
{
public:

led_no_toggle() { }
virtual ~led_no_toggle() { }

// Does not have a toggle function.
// ...

};

namespace
{

led_no_toggle led_no; // Compiler error!
}

As mentioned above, an abstract object is an idealization—not intended to be
created. It is usually a good idea to protect the constructor of an abstract class type.
This is why the constructor of led_base is protected. The protected constructor
ensures that no one is able to create led_base objects. Yet the constructor is only
protected, and not private. Publicly derived classes are, therefore, granted access to
the base class constructor.

A derived class can, itself, contribute methods to the abstract interface by adding
pure virtual functions of its own. However, it is always important to remember that
class types with pure virtual functions are not intended to be instantiated and hence
will lead to a compiler error.

4.7 Class Relationships

There is a variety of well-known class relationships in object-oriented design. In
fact, we have already worked with some of them without even explicitly mentioning
them. Possibly the most important class relationship is the is-a relationship for
which a derived class is-a subclass of a base class. In other words, led_port
is-a subclass of led_base, and led_pwm also is-a subclass of led_base.

Another special relationship is that of has-a, in the sense of having something.
The led_pwm class exhibits the has-a relationship with its member variable pwm.
In other words, the led_pwm class has its own PWM signal generator. Since it

4.7 Class Relationships 73

has its own pwm object, it can use this for the internal workings of the toggle()
function.

There is also the uses-a relationship. The relationship of using usually requires
some way to pass the thing-being-used to its user. This can be done, for example, via
function parameter or by accessing an existing instance through pointer or reference.

The difference between has-a and uses-a can be subtle, but important. In
particular, if led_pwm were to use a pwm and not have one, then its toggle()
function would need an input pwm pointer or reference parameter. Note, though,
that this would break the uniformity of the toggle() interface within the class
hierarchy.

We will now visualize these important class relationships with a few simple code
snippets.

The led_pwm class is-a specialized kind of led_base.

class led_pwm : public led_base
{

// led_pwm is-a led_base.
// ...

};

The led_pwm class has-a class-owned pwm.

class led_pwm : public led_base
{

// ...

private:
// led_pwm has-a pwm.
pwm* my_pwm;

};

Perhaps in a different implementation, the led_pwm class might use-a PWM
signal. In this case, a pointer to a PWM signal, in other words a pwm*, could be
used as a subroutine input parameter to the toggle() function instead of being
a class member. Even though this would wreck the uniformity of the toggle()
interface in our example, the use-a relationship can be a useful class relationship in
many other cases.

class led_pwm : public led_base
{

// ...

// This led_pwm uses the use-a relationship

74 4 Object-Oriented Techniques for Microcontrollers

// to toggle.
virtual void toggle(pwm* p)
{

// ...
}

};

Careful consideration of class relationships is necessary for successful object-
oriented design because class relationships strongly influence the efficiency and
cleanliness of the interfaces in a software project. A thorough description of class
relationships can be found in Sect. 6.4 in Coplien [2]. Additional information on
the is-a relationship is available in Eckel [4], Chapter 1, Sect. “Is-a vs. is-like-a
relationships”.

4.8 Non-copyable Classes

The led_base class has private yet non-implemented declarations of a copy
constructor and a copy assignment operator. In particular,

class led_base
{
public:

// ...

private:
// Private non-implemented copy constructor.
led_base(const led_base&) = delete;

// Private non-implemented copy assignment operator.
const led_base& operator=(const led_base&) = delete;

};

This means that the led_base class and its derived classes are non-copyable.
Declaring a private copy constructor and a private copy assignment operator and
qualifying them with the delete keyword tells the compiler that a given class and
its derived classes should be treated as strictly non-copyable without exception.

When using non-copyable classes, the compiler will issue an error for any code,
including compiler-generated code, that tries to copy the class. This technique is
often done on purpose in order to eliminate the risk of both intentional as well as
unintentional attempts to copy a class instance.

Explicitly making certain classes non-copyable can be particularly useful in real-
time C++ because some classes or class instantiations may be intimately linked to a

4.9 Constant Methods 75

particular hardware unit or peripheral device. For instance, an LED on a port pin, a
PWM signal on a timer output or a communication interface such as a serial UART
may be bound to a unique microcontroller peripheral resource.

If only one instance of a class should be allowed to use a single resource, then
non-copyable semantics can reduce the risk of unintentionally using the resource
with multiple class instances. Non-copyable semantics can also improve intuitive
clarity in the code by unmistakably indicating if a class is intended to be copied or
not.

In fact, the non-copyable mechanism is so widely established that some high-
reliability guidelines [8] recommend using it when appropriate. In addition, a
standard C++ utility called noncopyable in Boost [3] has been invented to
simplify the semantics of making a class object non-copyable. See Sect. 15.2 for
our own version of the noncopyable utility.

Class copying is a rich topic involving issues such as eliminating reliance on
compiler generated default copy, deep-copy mechanisms for pointer members,
checking for self-assign, etc. For additional information on class copying, see
Eckel [4], all of Chapter 11 “References & the Copy-Constructor” and also
Chapter 12, Section “Overloading assignment”. Meyers [7] describes deep-copy
mechanisms in Item 11 and copy assignment in Items 15, 16 and 17.

4.9 Constant Methods

We have already encountered several examples of constant member functions
previously. For example, the toggle() function in the LED program of Sect. 1.1
and the squared_euclidean_distance() member of the point structure
in Sect. 3.5 are both constant methods.

Constant member functions have read-only character regarding the member
variables of a class. As such, they can not modify the value of any class member
variable. If there are good reasons to do so, however, a constant member function
can modify a non-constant variable if that variable is qualified with the mutable
keyword.

We will now examine an example of a richer class that has both constant as well
as non-constant member functions. Consider a communication class designed
to send and receive single-byte data frames.

extern "C"
void com_recv_isr() __attribute__((interrupt));

class communication
{
public:

communication() : recv_buf(0U),

76 4 Object-Oriented Techniques for Microcontrollers

has_recv(false) { }
~communication() { }

bool send_byte(const std::uint8_t by) const
{

reinterpret_cast<volatile std::uint8_t>(tbuf)
= by;

}

bool recv_ready() const { return has_recv; }

std::uint8_t recv_byte()
{

if(has_recv)
{

has_recv = false;
return recv_buf;

}

return 0U;
}

private:
static constexpr std::uint8_t tbuf = 0xAAU;
static constexpr std::uint8_t rbuf = 0xAEU;

std::uint8_t recv_buf;
bool has_recv;

communication(const communication&) = delete;
const communication& operator=(const communication&)

= delete;

friend
void com_recv_isr() __attribute__((interrupt));

};

The communication class is simple and versatile. It is designed for low-level
asynchronous communication with a microcontroller peripheral interface. With
slight modification, the communication class can be used with physical layers
such as SPITM, CAN [6], etc. The serial SPITM driver class in Sect. 9.5, for example,
is based on the communication class shown above.

For now, do not worry about the friend function com_recv_isr() nor about
its interrupt __attributes__(). Class friends are described in greater detail in

4.9 Constant Methods 77

Sect. 4.11, and additional information on interrupts and GCC’s language extensions
for them is provided in Sect. 9.2.2

Byte transmission is carried out with the send_byte() member using direct
memory access to write a to-be-transmitted byte to communication’s transmit
buffer tbuf. As such, send_byte() does not need to modify any class-internal
data and can be declared as const. In particular,

class communication
{
public:

// ...

bool send_byte(const std::uint8_t by) const
{

reinterpret_cast<volatile std::uint8_t>(tbuf)
= by;

}
};

A client using a constant instance of class can only call constant members of the
class. For instance,

bool wakeup(const communication& com)
{

// OK. Call a const member of a const reference.
return com.send_byte(0x12U);

}

In this code, wakeup() uses a constant communication reference, in other
words const communication&, to send the wake-up pattern. The wake-up is
sent with a call to the constant send_byte() member. This compiles without
error.

Consider the implementation of a communication login that sends the wake-up
pattern 0x12 and expects to receive the login response 0x34. In particular,

bool login(const communication& com)
{

// OK. Call the const send_byte on a const reference.
const bool wakeup_is_ok = com.send_byte(0x12U);

2In the example here, however, simplified interrupt attributes have been used for the sake of clarity.

78 4 Object-Oriented Techniques for Microcontrollers

if(wakeup_is_ok)
{

// Compiler error!
return (com.recv_byte() == 0x34U);

}
else
{

return false;
}

}

In login(), the call of the constant send_byte() member on the constant
communication class reference compiles without error. The attempted call of the
non-constant recv_byte() member, however, does not. The compiler issues an
error because calling a non-constant member on a constant object is not allowed.

In order to call recv_byte(), the reference to communication must be
made non-constant in the input parameter to the login() function. In other words,

bool login(communication& com)
{

// OK.
const bool wakeup_is_ok = com.send_byte(0x12U);

if(wakeup_is_ok)
{

// OK.
return (com.recv_byte() == 0x34U);

}
else
{

return false;
}

}

Many development guidelines recommend making member functions constant
whenever it makes sense to do so. This provides additional intuitive insight into how
a class and its interface are intended to be used. This is a part of what is generally
known as const-correctness in the literature.

There are no added runtime or storage costs associated with qualifying member
functions as const. So the microcontroller programmer can freely use constant
methods to improve program clarity without introducing undue resource consump-
tion.

4.11 Class Friends 79

4.10 Static Constant Integral Members

The communication class has two static constant integral data members, tbuf
and rbuf. We first encountered static constant integral members of a class in
Sect. 3.8. Similar to symbols defined with a preprocessor #define, static constant
integral members of class types are compile-time constants.

For effective C++ design, it is essential to understand that static constant integral
members have distinct advantages over preprocessor #defines. For example,
static constant integral members have a clearly defined type and name. They may,
thus, potentially have compiler symbol information. Symbols that have been defined
with a preprocessor #define, on the other hand, are used exclusively by the
preprocessor and lack these. Type and symbol information can be useful with
a debugger or when examining program contents in a linker map file (see also
Sect. 6.5).

At the same time, static constant integral class members are guaranteed to be
known at compile time. Using them often eliminates the code overhead associated
with runtime address load or move operations by taking advantage of constant
folding (Sect. 2.6). For further discussions of static constant integral members
versus preprocessor #defines, see Item 1 in Meyers [7].

4.11 Class Friends

Byte reception in the communication class of the previous section uses the
member function recv_byte(). This receive function does not directly retrieve
the byte by reading the UART’s hardware buffer register. Instead, recv_byte()
reads the software receive buffer, recv_buf. It thereby also checks and clears the
has_recv-flag. In this way, communication is designed for asynchronous byte
reception.

To provide a mechanism for asynchronous receive, communication uses a
friend subroutine called com_recv_isr(). As perhaps expected, the “isr”-part
of the friend subroutine’s name is, in fact, intended to indicate that this an interrupt
service routine.

extern "C"
void com_recv_isr() __attribute__((interrupt));

class communication
{

// ...

80 4 Object-Oriented Techniques for Microcontrollers

friend

void com_recv_isr() __attribute__((interrupt));
};

A friend of a class is allowed to access any class member variable or method
regardless of its access level, public, protected or private. Class friends can be
either global or local functions, member functions or even other class types. Note
that friend functions do not necessarily need to have C-linkage (qualified with
extern "C"). This is a characteristic of the particular example at hand which
uses a friend function that just so happens to be an interrupt service routine.

A possible implementation of com_recv_isr() is shown below.

extern "C"
void com_recv_isr() __attribute__((interrupt));

communication com;

// Communication’s friend and also an ISR.
void com_recv_isr()
{

// Asynchronous byte reception can use the
// private members of com.

com.recv_buf =

reinterpret_cast<volatile std::uint8_t>
(communication::rbuf);

com.has_recv = true;
}

The communication object com is a static instance of the communication
class with global scope. When an asynchronous hardware receive interrupt occurs,
the microcontroller calls com_recv_isr(). This interrupt service routine sub-
sequently reads the hardware receive buffer (communication::rbuf) and
fills com’s receive buffer with the received byte. The com_recv_isr() inter-
rupt also activates the has_recv-flag. This announces the new reception to a
polling listener. In this way, com_recv_isr() executes asynchronous byte-
reception. Notice in all this how the interrupt service routine—a friend of the
communication class—can access communication’s private members.

Another part of the program such as a cyclical task can poll com, querying its
Boolean member function recv_ready() to find out if a new byte has been
received. Upon reception of a new byte, recv_ready() returns true. The new

4.12 Virtual Is Unavailable in the Base Class Constructor 81

byte in the receive queue can be retrieved with the recv_byte subroutine. For
example,

extern communication com;

void task_poll_the_com()
{

if(com.recv_ready())
{

const std::uint8_t the_byte = com.recv_byte();

// Do something with the_byte.
// ...

}
}

Some developers avoid using class friends, arguing they break data hiding and
fragment encapsulation.3 This is not necessarily the case. Using class friends in
certain cases can actually improve data encapsulation by eliminating thin set()-
and-get() interfaces that might weaken class boundaries by exposing internal
class details. For such reasons, using class friends tends to ensure that private
members remain private. See also FAQ 14.2 at Parashift [1] for a further discussion
of this.

It can be wise to use class friends, but sparingly, and only if the use of friendship
is justified by tangible design improvement beyondmere convenience. For example,
interrupt service routines require static C-linkage, making them difficult to be
encapsulated in a class while simultaneously included in the interrupt vector table
(Sect. 9.2). When accessing a global object such as com within an interrupt service
routine, class friendship can provide just the rightmechanism to retain encapsulation
while adhering to the constraints of interrupt programming.

4.12 Virtual Is Unavailable in the Base Class Constructor

The virtual function mechanism for a given class is neither available in its own class
constructor nor in any base class constructor because the object is not fully formed
yet. Any attempt to use the virtual function mechanism within a base class construc-
tor will result in undefined behavior. In the code below, communication_base

3The high-integrity coding guidelines in [8], for example, recommend avoiding the use of class
friends (with certain justified exceptions), indicating that class friends may potentially degrade the
strength of encapsulation.

82 4 Object-Oriented Techniques for Microcontrollers

is a base class for communication and communication_serial is a specialized
class derived from it. In particular,

class communication_serial : public communication_base
{
public:

communication_serial(const std::uint16_t c,
const std::uint8_t b)

: channel(c),
baud(b) { }

virtual ~communication_serial() { }

virtual void init()
{

// Initialize this communication_serial class.
// ...

}

private:
const std::uint8_t channel;
const std::uint16_t baud;

};

The candidate base class communication_base is shown below. It makes
erroneous, undefined use of the virtual function mechanism in the base class
constructor.

class communication_base
{
public:

virtual ~communication_base() { }

// A virtual initialization function.
virtual void init() { }

protected:
communication_base()
{

// Undefined use of the virtual mechanism!
init();

}
};

4.12 Virtual Is Unavailable in the Base Class Constructor 83

Here, the constructor of communication_base attempts to use the virtual
function mechanism to call init(). Unfortunately, this code might not do what
its author intended. The code is meant to use the virtual function mechanism to
call the init() function of the derived class in the base class constructor. The
virtual function mechanism is, however, unavailable in the base class constructor.
Therefore, the communication_serial object might be created using the
empty init() function of communication_base.

The compiler might not even issue a warning for attempting to use the virtual
mechanism in a base class constructor because it may be incapable of differentiating
an inadvertent to-be-warned virtual function call from an intended it’s-my-own-
member call.

In order to properly initialize communication_serial, its init() func-
tion needs to be explicitly called after the constructors are finished. In particular,
we will redesign communication_base such that its constructor no longer calls
init().

class communication_base
{
public:

// ...

protected:
// Remove initialization from the base class ctor.
communication_base() { }

};

class communication_serial : public communication_base
{

// ...
};

Now the constructor of the communication_base class no longer attempts
to call the virtual init() function. Clients of the communication_serial
class need to explicitly call the init() method after the object has been created.
For example,

void do_something()
{

// Create com_serial on channel 1 with 9600bps.
communication_serial com_serial(1U, 9600U);

// Explicitly initialize com_serial.
// It is fully formed.
com_serial.init();

84 4 Object-Oriented Techniques for Microcontrollers

// Use com_serial.
// ...

}

Understandably, it can be all too easy to forget to explicitly call the init()-
like functions of a class needing explicit initialization after creation. One possible
remedy for this problem uses an abstract interface (often called a factory) to
dynamically create objects and simultaneously ensure that they are explicitly
initialized when fully formed, but before being used.4

Through empirical investigations or trial-and-error, one may find compilers for
which, by chance, the virtual function mechanism seems to be available in the
base class constructor. Relying on this behavior, however, is unreliable and can be
confusing because the code might work with one compiler yet be broken by another.

Always remember that the C++ language specification is clear on this matter. The
virtual function mechanism is not available in the base class constructor. Potential
confusion can be spared by remembering and adhering to this rule. See Item 23.5 at
Parashift [1] for more information on the unavailability of the virtual function
mechanism in the base class constructor.

References

1. M. Cline, Parashift C++ FAQ (2012), http://www.parashift.com/c++-faq
2. J.O. Coplien, Advanced C++ Programming Styles and Idioms (Addison-Wesley, Boston, 1992)
3. B. Dawes, D. Abrahams, Boost C++ libraries (2012), http://www.boost.org
4. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (Pearson Prentice

Hall, Upper Saddle River, 2000)
5. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software (Addison-Wesley, Boston, 1994)
6. ISO, ISO 11898–1:2003: Road vehicles – Controller area network (CAN) – Part 1: Data Link

Layer and Physical Signaling (International Organization for Standardization, Geneva, 2003)
7. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)
8. Programming Research Ltd., High integrity C++ coding standard version 4.0 (2015), http://

www.codingstandard.com/HICPPCM/index.html

4Factories are described in good design books such as [5]. In addition, Sect. 5.9 in this book uses a
simple factory to introduce variadic templates.

http://www.parashift.com/c++-faq
http://www.boost.org
http://www.codingstandard.com/HICPPCM/index.html
http://www.codingstandard.com/HICPPCM/index.html

Chapter 5
C++ Templates for Microcontrollers

C++ templates use the same source code for different types. This can improve code
flexibility and make programs easier to maintain because code can be written and
tested once, yet used with different types. Templates can also be used in generic
programming that treats different types with the same semantics. This chapter
introduces templates and static polymorphism, the STL, template metaprogramming
and some generic programming methods, and shows how these can be used
effectively for microcontrollers.

5.1 Template Functions

Consider the simple template function below.

// chapter05_01-001_template_add.cpp

template<typename T>
T add(const T& a, const T& b)
{

return a + b;
}

The template function add() returns the sum of (a + b), where a, b and
the return value of add() all have the same type as the template parameter T.
A template parameter can be considered a placeholder for a not-yet-specified
type. Template parameters can be class types, built-in types, constant integral or
pointer values, but not floating-point values. See Sect. 4.3 in Vandevoorde and
Josuttis [3].

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_5&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_5

86 5 C++ Templates for Microcontrollers

When a template is used in code, the compiler instantiates it for a known type by
filling in the template code corresponding to its template parameters at compiler
time. This is the same vocabulary that is used for instances of a class types in
object-oriented programming. The context should be considered when discerning
the two.

The code below, for example, uses add() twice, one time to add two integer
variables and a second time to add two variables of type std::string, the
standard library’s string class.

// chapter05_01-001_template_add.cpp

const int n = add(1, 2); // 3

const std::string s =
add(std::string("abc"),

std::string("xyz")); // "abcxyz".

In the calls to add() above, the template parameter is not explicitly given.
The compiler can automatically deduce the types of template parameters if it has
sufficient information to do so from the context of usage. Even if the template
parameters could be deduced, though, they can still be optionally provided. For
example,

const int c = add<int>(a, b);

The template parameters must be compatible with the functionality of
the template code. In order to be used with add(), for example, a given
template parameter must support the binary addition operator (in other words
operator+).

The compiler does not automatically perform type conversion for templates. So
if the function’s parameters do not exactly match those of the template, then the
template parameters must be explicitly provided. For example,

double d1 = add(1.1, 2.2); // OK, 3.3, double
double d2 = add(1.1, 2); // Not OK, ambiguous
double d3 = add<double>(1.1, 2); // OK, 3.1, double

If multiple types are needed, template functions can have more than one template
parameter.1

1Multiple template parameters are provided in a comma-separated template parameter list in angled
brackets.

5.2 Template Scalability, Code Re-Use and Efficiency 87

For instance,

// chapter05_01-002_template_add2.cpp

template<typename T1,
typename T2>

T1 add(const T1& a, const T2& b)
{

return a + T1(b);
}

const double d =
add(1.1, 2); // OK, 3.1, double

5.2 Template Scalability, Code Re-Use and Efficiency

Templates are scalable. For instance, we will now consider a scalable template
function that may be useful in microcontroller programming. It is based on the
ubiquitous “MAKE_WORD()” preprocessor macro. The MAKE_WORD() macro
is normally used to make a 16-bit unsigned integer from two constituent 8-bit
unsigned bytes. One possible implementation of MAKE_WORD() using a C-style
preprocessor macro with #define is shown below.

// chapter05_02-001_make_word.cpp

#define MAKE_WORD(lo, hi) \
(uint16_t) (((uint16_t) (hi) << 8) | (lo))

We will now replace the C-style MAKE_WORD() preprocessor macro with a
more generic template function called make_large(). In particular,

// chapter05_02-002_make_large.cpp

template<typename ularge_type,
typename ushort_type>

ularge_type make_large(const ushort_type& lo,
const ushort_type& hi)

88 5 C++ Templates for Microcontrollers

{
constexpr int ushort_digits

= std::numeric_limits<ushort_type>::digits;

constexpr int ularge_digits
= std::numeric_limits<ularge_type>::digits;

// Ensure proper width of the large type.
static_assert(ularge_digits == (2 * ushort_digits),

"error: ularge_type size mismatch");

// Shift the high part to the left.
const ularge_type uh

= static_cast<ularge_type>(hi) << ushort_digits;

// Return the composite result.
return static_cast<ularge_type>(uh | lo);

}

The make_large() template function returns the composite value of a larger
unsigned type ularge_type made from two constituents of a smaller unsigned
type ushort_type. Here, ularge_type is twice as wide as ushort_type.
The high-part of the composite value is first shifted left by an amount corresponding
to the width of the smaller unsigned type ushort_type. Afterward, the low-part
is OR-ed with the shifted high-part to generate the result.

The standard library’s std::numeric_limits template is used to obtain
the number of binary digits in the large and short types (Sect. A.5). This template
function also uses static_assert to ensure that the ularge_type has exactly
twice as many binary digits as ushort_type. It can be wise to build these
types of checks into template utilities to prevent error caused by instantiation with
non-compatible types. Further security could be included by adding compile-time
assertions that verify that ularge_type and ushort_type are both unsigned
integer types.

Using make_large() in code is simple. For example,

// chapter05_02-002_make_large.cpp

std::uint8_t lo8 = UINT8_C(0x34);
std::uint8_t hi8 = UINT8_C(0x12);
std::uint16_t u16

= make_large<std::uint16_t>(lo8, hi8);

5.2 Template Scalability, Code Re-Use and Efficiency 89

std::uint16_t lo16 = UINT16_C(0x5678);
std::uint16_t hi16 = UINT16_C(0x1234);
std::uint32_t u32

= make_large<std::uint32_t>(lo16, hi16);

std::uint32_t lo32 = UINT32_C(0x9ABC’DEF0);
std::uint32_t hi32 = UINT32_C(0x1234’5678);
std::uint64_t u64

= make_large<std::uint64_t>(lo32, hi32);

This code uses make_large() to make three results of widths 16, 32 and
64-bit, respectively. The results are made from their corresponding half-width
constituents. This shows how templates are scalable. Notice how make_large()
automatically scales its width at compile time to accommodate different integer
types.

One of the great features of templates is code re-use. To provide the same
scalability with preprocessor macros, three individual ones would be needed. In
particular, we would need equivalent preprocessor macros such as MAKE_WORD()
for 16-bit results, MAKE_DWORD() for 32-bit results and MAKE_QWORD() for
64-bit results. The make_large() template is superior to multiple preprocessor
macros because it only needs to be implemented once and maintained in one place.

A generic template, tested and written in a type-safe fashion, is a tool that can
be used, re-used and readily ported to other platforms without needing redesign.
Furthermore, preprocessor macros can be plagued by non-safe side-effects such as
unwanted parameter modification, etc. C++ Templates are freed from the problems
of C-style macros and generally improve code portability and robustness.

Templates are not necessarily expanded inline by default because template
inlining is relegated to the compiler’s internal optimization characteristics. The
inline keyword can be used in order to recommend to the compiler to treat
a template function as inline. The compiler can, however, still optionally choose
to disregard the inline keyword based on its optimization settings, and the
length and complexity of a given template. See Sect. 6.1 for further information
on optimization.

Templates facilitate efficiency because they make all of their code and template
parameters known to the compiler at compile time. Templates can, however,
also incur additional code costs. Each time the compiler encounters a template
subroutine or object, it must create new code for each individual instance. This
phenomenon can potentially lead to excessive code bloat if left unchecked. For
additional discussion on code bloat and how to avoid it, see Eckel [1], Chapter 5,
Sect. “Preventing template code bloat”. The microcontroller C++ programmer must
be aware of this trade-off and wisely find the right mixture of templates and non-
templates when designing code. When used properly, templates can be highly
effective for optimized programming. The benefits of improved performance and
scalability often far outweigh any potential costs.

90 5 C++ Templates for Microcontrollers

5.3 Template Member Functions

Member functions of class types can be templates. For example, consider a
simplified version of the communication class from Sect. 4.9.

// chapter05_03-001_communication_nontemplate.cpp

class communication
{
public:

communication() { }

virtual ~communication() { }

virtual bool send_byte(const std::uint8_t b) const
{

// ...
}

std::uint8_t recv_byte() const
{

return recv_buffer;
}

private:
std::uint8_t recv_buffer;

};

Say we would like to add the capability of sending larger chunks of data with
the communication class. For example, in addition to 8-bit unsigned bytes
(std::uint8_t), we would also like to send 16-bit or 32-bit unsigned integers
over the communication interface. In order to do this, we could add a new
template send_uint() member function. For example,

// chapter05_03-002_communication_template.cpp

class communication
{
public:

// ...

// Add a template send_uint function.
template<typename unsigned_type>

5.3 Template Member Functions 91

bool send_uint(const unsigned_type& u) const
{

constexpr bool type_is_signed
= std::numeric_limits<unsigned_type>::is_signed;

// Ensure that unsigned_type is unsigned.
static_assert(type_is_signed == false,

"error: type must be unsigned");

constexpr std::size_t count =
std::numeric_limits<unsigned_type>::digits / 8;

std::size_t i;

for(i = 0U; i < count; i++)
{

const std::uint8_t by(u >> (i * 8U));

if(send_byte(by) == false)
{

break;
}

}

return (i == count);
}

};

In this listing, the template Boolean member function send_uint() has
been added to the communication class. The type of unsigned_type
is intended to be a right-shift-capable unsigned integral type. Similar to the
send_byte() function, send_uint() performs data transmission. However,
instead of transmitting a single byte, send_uint() transmits the number of
bytes contained in its template parameter type unsigned_type. For example,
send_uint() sends one byte if unsigned_type is std::uint8_t, two
bytes for std::uint16_t, four bytes for std::uint32_t and eight bytes for
std::uint64_t.

Calling template class member functions is straightforward. In fact, template
class methods can be called just like non-template ones using the usual member
selection operators (.) and (->). For example, we will now use the modi-
fied communication class to simulate communication with an external target
system.

92 5 C++ Templates for Microcontrollers

// chapter05_03-003_communication_session.cpp

class communication
{

// ...
};

bool start_session(const communication& com)
{

constexpr std::uint32_t login_key =
UINT32_C(0x12345678);

// Send the 32-bit login key.
const bool start_session_is_ok =

com.send_uint(login_key);

return start_session_is_ok;
}

The start_session() subroutine above depicts a made-up command for
starting a communication session with an off-chip target system. The new template
send_uint() member function added to the communication class is used
to send the 32-bit login_key. The subroutine returns true if the login send is
successful.2

Just as with non-class template subroutines, the compiler is capable of deducing
the template parameters of template class methods. Of course, sufficient information
still needs to be available to the compiler for automatic template deduction via the
type(s) of the input argument(s).

Template member functions can improve coding quality and clarity of design
when used sensibly. For example, the template send_uint() member function
adds flexibility and scalability to communication’s send mechanisms. In addi-
tion, the template send_uint() function only needs to be implemented and
debugged once. Furthermore, it works for various types. This eliminates potential
sources of error and reduces coding complexity when using communication to
send multiple bytes of data.

2Notice, as an aside, how a constant reference (i.e., a communication&) is used as the input
parameter to the start_session() subroutine. Remember from Sect. 4.3 how this technique
could also use dynamic polymorphism if communication were to be a base class.

5.4 Template Class Types 93

5.4 Template Class Types

A class types can also be a template. This can be convenient for making re-usable
or scalable objects. For example, a coordinate point in two-dimensional Cartesian
space R2 can be implemented as a scalable template. In particular,

// chapter05_04-001_template_point.cpp

template<typename x_type,
typename y_type>

class point
{
public:

x_type my_x;
y_type my_y;

point(const x_type& x = x_type(),
const y_type& y = y_type()) : my_x(x),

my_y(y) { }
};

// An (x16, y16) point.
point<std::uint16_t,

std::uint16_t>
pt16_16
{

UINT16_C(1234),
UINT16_C(5678)

};

// An (x8, y8) point.
point<std::uint8_t,

std::uint8_t>
pt08_08
{

UINT8_C(12),
UINT8_C(34)

};

// An (x8, y16) point.
point<std::uint8_t,

std::uint16_t>
pt08_16
{

94 5 C++ Templates for Microcontrollers

UINT8_C(34),
UINT16_C(5678)

};

5.5 Template Default Parameters

Template functions and class types support default template parameters. For
example,

// chapter05_05-001_template_point.cpp

template<typename x_type = std::uint16_t,
typename y_type = x_type>

class point
{

// ...
};

// An (x16, y16) point.
point<> pt16_16
{

UINT16_C(1234),
UINT16_C(5678)

};

// An (x8, y8) point.
point<std::uint8_t>
pt08_08
{

UINT8_C(12),
UINT8_C(34)

};

// An (x8, y16) point.
point<std::uint8_t,

std::uint16_t>
pt08_16
{

UINT8_C(34),
UINT16_C(5678)

};

5.6 Template Specialization 95

A default template parameter type can be set to the symbolic typename of one
of the previously supplied template parameters. For example, the default type of the
template parameter y_type above is x_type.

When writing templates with default template parameters, it is not necessary
to supply defaults for each template parameter. Template default parameters begin
with the last template parameter and work sequentially toward the beginning of the
template parameter list.

// chapter05_05-002_template_point.cpp

// Both template parameters have default types.
template<typename x_type = std::uint8_t, // OK.

typename y_type = std::uint16_t> // OK
class point
{

// ...
};

// chapter05_05-003_template_point.cpp

// Only the second template parameter
// has a default types.
template<typename x_type,

typename y_type = std::uint16_t> // OK
class point
{

// ...
};

template<typename x_type = std::uint16_t, // Not OK
typename y_type>

class point
{

// ...
};

5.6 Template Specialization

Templates can be specialized for a particular type. This creates a unique tem-
plate specialization for this type. When writing a template specialization, the
to-be-specialized parameter is removed from original template parameter list and

96 5 C++ Templates for Microcontrollers

added to a second comma-separated template parameter list following the symbol
name.

In particular, suppose that the project design rules discourage the use of
floating-point types. In order to enforce this design rule, we might explicitly cause
errors when using built-in floating-point types with the add template by making
specialized versions with errors for float, double and long double. For
example,

// chapter05_06-001_template_specialization.cpp

// The original add template function.
template<typename T>
T add(const T& a, const T& b)
{

return a + b;
}

// Make template specializations of add() with
// easy-to-detect errors for float, double
// and long double.

template<>
float add<float>(const float&, const float&)
{

// Explicitly create an erroneous result!
return 0.0F;

}

template<>
double add<double>(const double&, const double&)
{

// Explicitly create an erroneous result!
return 0.0;

}

template<>
long double add<long double>(const long double&,

const long double&)
{

// Explicitly create an erroneous result!
return 0.0L;

}

5.7 Static Polymorphism 97

Template specialization can be applied to templates with multiple parameters
and also to specialize different parameters. When a subset of template parameters
is specialized, it is called a partial template specialization. For example, we will
now make a partial template specialization of the point class whose x-coordinate
members are of type std::uint8_t. In particular,

// chapter05_06-002_template_point.cpp

// The original point template class.
template<typename x_type,

typename y_type>
class point { ... };

// A partial specialization of the point
// class with x-axis having type std::uint8_t.

template<typename y_type>
class point<std::uint8_t, y_type>
{
public:

std::uint8_t my_x;
y_type my_y;

point(const std::uint8_t& x = x_type(),
const y_type& y = y_type()) : my_x(x),

my_y(y)
{
}

};

5.7 Static Polymorphism

Templates provide a mechanism for static polymorphism, or in other words, for
polymorphic behavior determined at compile time. This is distinctly different from
the dynamic (runtime) polymorphism described in Sect. 4.4.

Consider once again the two LED classes in the class hierarchy of Sect. 4.1,
led_port and led_pwm. We will now take a look at static polymorphism using
these two LED classes. We will first slightly modify these classes to be better
suited for static polymorphism instead of dynamic polymorphism. In particular,
we will remove the classes from a class hierarchy and eliminate the virtual
functions.

98 5 C++ Templates for Microcontrollers

class led_port // No base class.
{
public:

led_port(const port_type p,
const bval_type b);

void toggle() // Not virtual.
{

// ...
}

// ...
};

class led_pwm // No base class.
{
public:

led_pwm(pwm* p);

void toggle() // Not virtual.
{

// ...
}

// ...
};

These new LED classes are no longer related to each other through a class
hierarchy. Both of these new LED classes do, however, now have a non-virtual
toggle() function. Therefore, static polymorphism can be used to create a
generic toggle mechanism for them. For example,

template<typename led_type>
void led_toggler(led_type& led)
{

// Toggle with static polymorphism.
led.toggle();

}

The led_toggler() subroutine accepts a reference to an led_type. Thus,
any led_type object that has a toggle() member can be successfully toggled
with led_toggler(). Instead of using the virtual function mechanism to select
the right toggle function at runtime, the compiler generates the appropriate call

5.7 Static Polymorphism 99

of each object’s toggle() member at compile time. This is static polymor-
phism.

As a final example of static polymorphism, we will redo the toggle code of the
LEDs L0 . . .L3 from Sect. 4.2. This time we will use static polymorphism in place
of dynamic polymorphism.

namespace
{

// Two LEDs connected P2.0-P2.1
led_port led0 { mcal::reg::port2, 1U };
led_port led1 { mcal::reg::port2, 2U };

// Two PWMs on channels T0 and T1.
pwm pwm0 { 0 };
pwm pwm1 { 1 };

// Two LEDs connected to pwm0 and pwm1.
led_pwm led2 { &pwm0 };
led_pwm led3 { &pwm1 };

}

void toggle_all_leds()
{

led_toggler(L0); // Uses led_port::toggle().
led_toggler(L1); // Uses led_port::toggle().

led_toggler(L2); // Uses led_pwm::toggle().
led_toggler(L3); // Uses led_pwm::toggle().

}

Static polymorphism removes the runtime overhead caused by the virtual func-
tion mechanism. As such, static polymorphism can improve runtime performance.
At the same time, though, a given implementation based on static polymorphism
might have significantly more code than a comparable implementation based on
dynamic polymorphism because of multiple instantiation. On the other hand, static
polymorphism could just as well result in improved performance and reduced code
due the potentially improved optimizationmade possible by templates. This can also
be observed in Table 2.1 of Sect. 2.6.

The microcontroller programmer should be cognizant of the existence of static
polymorphism and dynamic polymorphism and be aware of potential advantages
or costs resulting from their use. When designing code, one should try to identify
situations in which each one (or a mixture of the two) can produce the most effective
and reliable results.

100 5 C++ Templates for Microcontrollers

5.8 Using the STL with Microcontrollers

The Standard Template Library (STL) is an innovative collection of containers,
iterators, algorithms, etc. The STL provides a remarkably complete and powerful
set of generic tools and is highly regarded as an example of generic programming
in C++. See Sect. 14.5, “Generic Programming” in [3].

The STL is part of the C++ standard library. This section provides only a brief
introduction to the richness of the STL. Consult [2] and also Appendix A for further
details on the STL.

The code below uses the STL’s template std::vector container in combina-
tion with the std::for_each() algorithm.

#include <algorithm>
#include <vector>

void do_something_with_the_stl()
{

// Create v with the decimal values (1, 2, 3).
// Initialize with a convenient initializer_list.

std::vector<char> v { 1, 2, 3 };

// Use an algorithm with a lambda function.
// Convert from decimal int to ASCII char.

std::for_each(v.begin(),
v.end(),
[](char& c)
{

c += 0x30;
});

}

In this example, the three characters in the vector v with decimal values
(1, 2, 3) are converted to ASCII characters [4] having values (’1’, ’2’, ’3’). The
conversion from decimal to ASCII is carried out with a so-called lambda expression
as the third input parameter to std::for_each(). The vector v is constructed
and initialized at the same time using a convenient std::initializer_list
in combination with uniform initialization syntax. The initializer list is also an
STL container. See Sect. A.2 for more information on uniform initialization syntax,
Sect. A.9 for lambda expressions and Sect. A.10 for initializer lists.

Sometimes more than one algorithm is available for a particular programming
task. The conversion of the characters in v from decimal to ASCII could, for
example, just as well be accomplished with std::transform().

5.8 Using the STL with Microcontrollers 101

#include <algorithm>
#include <vector>

void do_something_with_the_stl()
{

std::vector<char> v { 1, 2, 3 };

std::transform(v.begin(),
v.end(),
v.begin(),
[](char& c) { c += 0x30; });

}

These kinds of conversion operations—and many others like them—often arise
in real-time C++ software. Although the conversion from decimal to ASCII is
somewhat trivial, these examples do provide a glimpse into the power and flexibility
of the STL.

The code of the STL can be found in the include path where the compiler’s
STL headers are stored.3 Those curious about the implementation details of the
compiler’s STL can simply investigate the source code.

The std::for_each() algorithm, for example, could be implemented in the
STL in a way similar to the code shown below.

namespace std
{

template<typename iterator_type,
typename function_type>

function_type for_each(iterator_type first,
iterator_type last,
function_type function)

{
while(first != last)
{

function(*first);
++first;

}

return function;
}

}

3It might be difficult to read the code, but it’s there!

102 5 C++ Templates for Microcontrollers

Using the STL can simplify programming, reduce error and improve efficiency
and portability in microcontroller programming. Instead of arduously developing
and testing hand-written containers and loops, the standardized components of
the STL can be used out-of -the-box. With the consistent use of the standardized
containers, iterators, algorithms, etc. of the STL, code will adopt a recognizable
look and feel with easy-to-understand style.

One might also want to glance ahead to Sects. 10.3 and 10.5 which describe
methods for outfitting STL containers with custom dynamic memory management
mechanisms appropriate for microcontrollers. These techniques allow us to fit
surprisingly many parts of the STL into the strictly limited memories of even the
most tiny embedded controllers.

5.9 Variadic Templates

Variadic templates are template functions or class types that have a variable number
of template parameters. Variadic templates were introduced in C++11.

Consider a simple software factory.

template<typename type_to_make>
type_to_make* factory(void* mem)
{

// Construct a new pointer of kind type_to_make
// with the placement-new operator.

type_to_make* p = new(mem) type_to_make;

return p;
}

This factory() makes products of kind type_to_make. The placement-
new() operator, described in Sect. 10.2, is used to create the product in a caller-
supplied memory pool.

We will now make something with this factory(). For example,

class something
{
public:

something() { }
};

extern void* pool;

something* ps = factory<something>(pool);

5.9 Variadic Templates 103

Here, ps is created in the memory pool. The newly created ps is just like any
other pointer. It can be used accordingly and deleted when no longer needed.

Consider, next, another class called something_else.

class something_else
{
public:

something_else(const int M, const int N) : m(M),
n(N) { }

virtual ~something_else() { }

private:
int m;
int n;

};

Imagine that we would like to create a pointer to something_else. Unlike
the constructor of the something class, the constructor of something_else
supports has up to two input parameters. In this case, our factory() is not
flexible enough to create something_else because it can only create things with
parameter-less constructors.

In order to make a flexible factory(), then, we can use a variadic template.
For example,

template<typename type_to_make,
typename ...parameters>

type_to_make* factory(void* mem,
parameters... params)

{
// Construct a new pointer of kind type_to_make
// with the placement-new operator
// and a parameter pack argument.

type_to_make* p = new(mem) type_to_make(params...);

return p;
}

Here, the variadic template parameter parameters can contain any number
of all kinds of things, including built-in types, class types, etc. Notice that
operator... is used in two different ways. The operator... is used on
the left side to declare a parameter pack in the template parameter list and on the

104 5 C++ Templates for Microcontrollers

right side to unpack the parameter pack into separate arguments in the function
call. The parameter pack will be unpacked at compile time. In this case, C++ trades
compilation effort for improved runtime efficiency, which is usually the right trade-
off for real-time C++.

With this new, more flexible version of our factory(), we can successfully
create objects of any class types having any kinds and numbers of constructor
parameters. An instance of something_else, for example, can readily be made
with the new factory(). In particular,

class something_else
{

// ...
};

extern void* pool;

something_else* p_else
= factory<something_else>(pool, 12, 34);

Variadic templates add a new dimension of flexibility to template programming.
They can be used to elegantly solve a class of problems that arise when multiple
varying types need to be handled by a generic mechanism.

5.10 Template Metaprogramming

Template metaprogramming uses templates at compile time to do work that may
otherwise need to be done during runtime. Template metaprogramming can be
useful for sophisticated optimizations such as compile-time generation of constant
values and loop unrolling.

The archetypal introductory template metaprogram computes the value of the
unsigned integer factorial function at compile time. The factorial function N ! is
defined by

N ! ≡ N (N − 1) · · · 2 · 1 . (5.1)

A possible implementation of a template metaprogram for computing N ! is
shown below.

template<const std::uint32_t N>
struct factorial
{

// Multiply N * (N - 1U) with template recursion.

5.10 Template Metaprogramming 105

static constexpr std::uint32_t value
= N * factorial<N - 1U>::value;

};

template<>
struct factorial<0U>
{

// Zero’th specialization terminates the recursion.
static constexpr std::uint32_t value = 1U;

};

When the compiler instantiates factorial<N>::value for a given value
of N, it recursively multiplies N with factorial<N - 1>::value. Template
recursion terminates with the template specialization of factorial<0U>::
value. The compiler produces no intermediate code and the result of the factorial
is generated as a compile-time constant.

Consider, for example, the computation of 5! below.

constexpr std::uint32_t fact5 = factorial<5U>::value;

Here, the factorial template is used to calculate 5!, the result of which is
5 × 4 × 3 × 2 × 1 = 120. This value is generated by the compiler and directly
injected into the code as a compile-time constant. The factorial example, although
somewhat trivial, shows how template metaprogramming uses recursive templates
for radical compile-time optimization.

A less trivial metaprogram computes the inner product of two equally sized
ranges of adjacent iterator types. Consider the inner_product structure below.

template<const std::size_t N,
const std::size_t M = 0U>

struct inner_product
{

template<typename iterator_left,
typename iterator_right,
typename result_type>

static result_type sum(iterator_left u,
iterator_right v,
const result_type& init)

{
// Add (u[M] * v[M]) recursively.
const result_type uvm

= *(u + M) * result_type(*(v + M));

106 5 C++ Templates for Microcontrollers

return uvm
+ inner_product<N, M + 1U>::sum(u, v, init);

}
};

template<const std::size_t N>
struct inner_product<N, N>
{

template<typename iterator_left,
typename iterator_right,
typename result_type>

static result_type sum(iterator_left,
iterator_right,
const result_type&)

{
// N’th specialization terminates the recursion.
return result_type(0);

}
};

The inner_product structure computes the inner product of the elements in
the range [M, N-1). The template parameters M and N are used to represent the start
index and total length of the inner product, respectively. The Mth value of the sum is
recursively passed to the (M + 1)th index in the inner product. Template recursion
stops when the index parameter M reaches the upper bound of the inner product N.
The inner_product template can be used with C-style arrays, std::array,
std::vector, etc. (Sect. 5.8).

The template parameter result_type provides for optional scalability of the
result. Notice that the start index M need not necessarily begin with zero. The inner
product can start with an index higher than zero by appropriately setting M in the
calling code.

The following code uses the inner_product metaprogram to compute the
inner product of two std::arrays, u and v, where each array has three elements.

constexpr std::array<unsigned, 3U> u
{

{ 1U, 2U, 3U }
};

constexpr std::array<unsigned, 3U> v
{

{ 4U, 5U, 6U }
};

5.11 Tuples and Generic Metaprogramming 107

constexpr unsigned w
= inner_product<3U>::sum(u.begin(),

v.begin(),
0U);

// The result is 32.

In this example, the values in both arrays u and v as well as the index parameters
are known at compile time. Therefore, the compiler can fully compute the constant
value of the inner product when setting w. This metaprogramming technique can
be useful in areas involving coordinates such as linear algebra graphics, vehicle
dynamic detection, navigation, etc.4

5.11 Tuples and Generic Metaprogramming

One of the most versatile templates added to the standard library with C++11 is
std::tuple. The std::tuple template is a generalization of std::pair to
triple, quadruple, quin-tuple, sex-tuple, etc. See Sect. A.13 for more information on
tuples.

Unlike template STL containers such as std::vector, a tuple can contain
different kinds of objects. For example,

#include <tuple>

class apple
{

// ...
};

class car
{

// ...
};

class tiger
{

// ...
};

std::tuple<apple, car, tiger> things;

4This example can be compared with the second example in Sect. 3.13, in which the same inner
product was computed dynamically using std::inner_product from the standard library’s
<numeric> header.

108 5 C++ Templates for Microcontrollers

Grouping objects of different types together can be useful if they need to be
organized and manipulated as a cohesive collection. For example, the things tuple
above can be passed by reference to a subroutine or included in a class as a member
variable. In this way, tuples can improve program organization.

Another advantage of tuples is their ability to be manipulated with templates
and metaprogramming. For example, imagine that all of the seemingly unrelated
objects in the things tuple, the apple, car and tiger, have a same-named
public member function called setup(). In other words, the apple class has
apple::setup(), the car class has car::setup() and the tiger class has
tiger::setup(). In this made-up example, the setup() member functions
are responsible for setting up the internals of their respective class, such as the
apple’s ripeness, the car’s fuel level or the tiger’s state of health. For instance,

class apple
{
public:

apple() { }

void setup() { /* ... */ }
};

class car
{
public:

car() { }

void setup() { /* ... */ }
};

class tiger
{
public:

tiger() { }

void setup() { /* ... */ }
};

We will now take our things tuple and explicitly setup() each element in it
using the STL’s template std::get() facility. In particular,

std::tuple<apple, car, tiger> things;

void do_something()
{

5.11 Tuples and Generic Metaprogramming 109

std::get<0>(things).setup();
std::get<1>(things).setup();
std::get<2>(things).setup();

}

Here, std::get() is used to get a reference to each object in the things
tuple by index. Since each one of the objects in things has a setup() function,
it can be called with the regular member selection operator (.) for references.

This situation lends itself well to generic metaprogramming. In particular, we
could easily modify the inner product example from the last section to run through
the indexes in a tuple and call each object’s setup() function.

template<const unsigned N,
const unsigned M = 0U>

struct tuple_setup_each
{

template<typename tuple_type>
static void setup(tuple_type& t)
{

// Setup the M’th object and the next higher one.
std::get<M>(t).setup();
tuple_setup_each<N, M + 1U>::setup(t);

}
};

template<const unsigned N>
struct tuple_setup_each<N, N>
{

template<typename tuple_type>
static void setup(tuple_type&) { }

};

With the tuple_setup_each metaprogram, it’s almost trivial to setup()
the objects in the things tuple. In particular,

std::tuple<apple, car, tiger> things;

void do_something()
{

// Setup the things.
tuple_setup_each<3U>::setup(things);

}

110 5 C++ Templates for Microcontrollers

The tuple_setup_each metaprogram recursively generates setup code for
each object in the things tuple via its setup() member.

This code can be made even more generic by strategically employing the
standard std::tuple_size facility. The std::tuple_size facility returns
the number of objects in a tuple-type as a compile-time constant. We will now
slightly modify the code accordingly.

// Use a convenient type definition for the tuple_type.
typedef std::tuple<apple, car, tiger> tuple_type;

tuple_type things;

// Use tuple_size to get the size of the things.
constexpr unsigned size

= std::tuple_size<tuple_type>::value;

void do_something()
{

// Setup the things.
tuple_setup_each<size>::setup(things);

}

This metaprogramming technique can setup the things in any tuple with any
number and all kinds of elements—as long as the type of each element in the
tuple has a setup() function. Generic metaprogrammingwith tuples can be useful
when objects with a partially or wholly common interface are to be treated with the
same semantics.

5.12 Variable Templates

In addition to class types and functions, variables can also be templates. Variable
templates were introduced with C++14. Variable templates can improve generic
programming and reduce the complexity of template code.

The following code sets the value of the prime_number variable template
equal to 541, the value of the 100th prime number. The variable template is
instantiated as a 16-bit unsigned integer.

// chapter05_12-001_prime_number.cpp

template<typename T>
constexpr T prime_number = T(541);

5.12 Variable Templates 111

constexpr std::uint16_t p =
prime_number<std::uint16_t>;

Variable templates can be particularly useful in generic numeric programming
(Sect. 12.7). The code sequences below, for example, define scalable represen-
tations of two well-known mathematical constants, Archimedes’ constant (π ≈
3.14159 . . .),

// chapter05_12-002_constants.cpp

template<typename T>
constexpr T pi =

T(3.1415926535’8979323846’2643383279’5028841972L);

and the natural logarithmic base (e ≈ 2.71828 . . .).

// chapter05_12-002_constants.cpp

template<typename T>
constexpr T e =

T(2.7182818284’5904523536’0287471352’6624977572L);

Consider a non-trivial mathematical computation such as Stirling’s approxima-
tion of the Gamma function for large argument expanded to order 2. In particular,

Γ (x) ≈
(x

e

)x
{√

2π

x
+ 1

6

√
π

2

(
1

x

)3/ 2 }
, for x � 1 . (5.2)

We can use the representations of π and e above to simplify typing in a template
implementation of this approximation. For instance,

// chapter_05_12-003_stirlings_approx.cpp

template<typename T>
T tgamma_order_1(T x)
{

using std::pow;
using std::sqrt;

const T one_over_x = T(1.0L) / x;
const T sqrt_one_over_x = sqrt(one_over_x);

112 5 C++ Templates for Microcontrollers

const T term0 = sqrt(T(2.0L) * pi<T>)

* sqrt_one_over_x;
const T term1 = (sqrt(pi<T> / T(2.0L))

* (sqrt_one_over_x

* one_over_x))
/ T(6.0L);

return pow (x / e<T>, x) * (term0 + term1);
}

// Test tgamma_order_1(20.0F).
// Result: 1.21644237 e+17.
// Compare with: 1.2164510041...e+17.

In addition to the variable template representations of π and e, this order-2
implementation of Stirling’s approximation also uses the elementary transcendental
functions std::pow() and std::sqrt() from the <cmath> header file in
the standard library (see also Sect. 12.3). These library functions have overloads
(Sect. A.3) for the built-in data types float, double and long double.

The order-2 approximation of Γ (20), as programmed above, obtains a result of
1.21644237 . . . × 1017. This agrees with the known value of 1.2164510041 . . . ×
1017 to within about 5–6 decimal digits of precision.

This template approximation of the Gamma function can be instantiated for
float, double and long double. Via inclusion of the using directives for
std::pow and std::sqrt, this template approximation can also be used with
user-defined types that support elementary transcendental functions, such as the
fixed_point class described in Chap. 13.

References

1. B. Eckel, Thinking in C++ Volume 2: Practical Programming (Pearson Prentice Hall, Upper
Saddle River, 2004)

2. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-Wesley,
Boston, 2011)

3. D. Vandevoorde, N.M. Josuttis, C++ Templates: The Complete Guide (Addison-Wesley, Boston,
2003)

4. Wikipedia, ASCII (2017), http://en.wikipedia.org/wiki/ASCII

http://en.wikipedia.org/wiki/ASCII

Chapter 6
Optimized C++ Programming
for Microcontrollers

Embedded systems software, possibly even more than other kinds of software,
is time critical and has cost-sensitive size constraints. Literally every bit of the
microcontroller software costs precious code space and cycles. Even the most
minute software weakness can lead to system-debilitating resource problems.
Writing efficient C++ code for microcontrollersmandates command of the language
and solid development practices. This chapter aids this endeavor by providing a
selection of helpful tips for optimized C++ microcontroller programming.

6.1 Use Compiler Optimization Settings

Compiler optimization settings allow for flexible tuning of the compiler’s code gen-
eration. It is possible to optimize with emphasis on space, speed or a combination
thereof. GNU compilers have a particularly rich set of command-line optimization
settings. See van Hagen [3] Chapter 5 and Appendix A for further information on
optimization settings in GCC.

When researching microcontroller optimization techniques for this book, a
computationally intensive code sequence rich in 32-bit operations implementing
a CRC32 cyclic redundancy check [6] was benchmarked. There are numerous
well-known types of CRC calcuations with various bit widths ranging from 4 to 64-
bits. In this benchmark, we use a CRC32/MPEG-2 algorithm, also commonly
used for data-integrity verification in MPEG-2 program streaming [2, 4]. For the
investigation here, the code has been optimized and specially designed for reliable
porting to 8, 16, and 32-bit microcontrollers.

After being prepared for efficient use with microcontrollers, the CRC32 code was
compiled three times for our target with the 8-bit microcontroller, the first two times
optimized for speed and the third time optimized for space.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_6

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_6&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_6

114 6 Optimized C++ Programming for Microcontrollers

Table 6.1 The code size and runtime for a CRC32 algorithm on our target with the 8-bit
microcontroller with optimization tuned for space (with -Os) and speed (with -O2 and -O3)
are listed

Code size CRC32 Runtime CRC32(0x31 . . . 0x39)

Optimization goal [byte] [μs]
Space (with -Os) 280 320

Speed (with -O2) 320 300

Speed (with -O3) 1700 280

When benchmarking the CRC32 program for speed, two runs were made with
optimization settings -O2 and -O3. The space optimized run used the optimization
setting -Os. For the GNU C++ compiler, optimization setting -O2 performs most
available optimizations that do not strongly increase code size. Optimization setting
-O3 performs all the optimizations of level -O2 plus additional potentially expen-
sive optimizations such as inline functions and loop distribution. See also [1, 3] for
further details on GCC optimization settings.

Table 6.1 shows the benchmark results for the computation of the CRC32 of
the 8-bit ASCII characters [5] representing the nine digits 1–9 (in other words:
0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39).1 Both the space-
optimized version as well as each of the two speed-optimized versions obtain the
correct result for the CRC32.2 In particular,

CRC32 (0x31 . . . 0x39) = 0x0376’E6E7 . (6.1)

The space-optimized version of the algorithm results in a code size about 20%
smaller than the version optimized for speed with -O2, whereas, the version
optimized for speed with -O2 runs approximately 10% faster than the space-
optimized one. In general, space and speed are opposing optimization goals.
Improvements in speed are usually obtained at the cost of larger code size. The
benchmark results shown above confirm this tendency.

Differences between speed and space optimization can be strongly pronounced
if inline-depth control, loop unrolling and common subexpression elimination
are available. In particular, the size and speed of template-intensive code can be
significantly influenced by the compiler optimization settings.

1Calculating the CRC of the ASCII characters representing the nine digits 1–9 has evolved into a
standard test for CRC checksum algorithms.
2This is another testament to the quality and language standards adherence capabilities of GCC.
GCC correctly compiles this 32-bit computationally intensive CRC32 calculation with ease and
absolute correctness—even for an 8-bit platform.

6.1 Use Compiler Optimization Settings 115

The impact of these factors can be observed in Table 6.1. Consider the code sizes
and the runtime characteristics resulting from optimization settings -O2 and -O3.
The version fully optimized with -O3 runs about 10% faster than the version
optimized with -O2, as expected. The code size, however, significantly increases
with optimization setting -O3. In fact, the resulting code size with optimization
setting -O3 is about a five times larger than the code size resulting from optimization
setting -O2. Does a 10% improvement in runtime justify a fivefold increase in code
size? This depends on the characteristics and design goals of the application.

It is usually best to carefully study the available compiler optimization settings.
If possible, try to understand which optimization features get activated at each
optimization level. Investigate the benefits of certain optimizations and determine
if others are too expensive. Try to select the right overall compiler optimization
settings for the project.

The CRC32 code used for the benchmark in this section is shown in its entirety
below. It is also included in the companion code as a standalone header file in the
reference project and also in the example project chapter06_01.

The CRC32 calculation is based on 4-bit nibbles. It uses a look-up table with six-
teen unsigned 32-bit integer entries derived from the polynomial 0x04C1’1DB7.

template<typename input_iterator>
std::uint32_t crc32_mpeg2(input_iterator first,

input_iterator last)
{

// Name : CRC-32/MPEG-2
// Polynomial : 0x04C11DB7
// Initial value : 0xFFFFFFFF
// Test: ’1’...’9’ : 0x0376E6E7

// ISO/IEC 13818-1:2000
// Recommendation H.222.0 Annex A

// CRC-32/MPEG-2 Table based on nibbles.
const std::array<std::uint32_t, 16U> table =
{{

UINT32_C(0x00000000), UINT32_C(0x04C11DB7),
UINT32_C(0x09823B6E), UINT32_C(0x0D4326D9),
UINT32_C(0x130476DC), UINT32_C(0x17C56B6B),
UINT32_C(0x1A864DB2), UINT32_C(0x1E475005),
UINT32_C(0x2608EDB8), UINT32_C(0x22C9F00F),
UINT32_C(0x2F8AD6D6), UINT32_C(0x2B4BCB61),
UINT32_C(0x350C9B64), UINT32_C(0x31CD86D3),
UINT32_C(0x3C8EA00A), UINT32_C(0x384FBDBD)

}};

116 6 Optimized C++ Programming for Microcontrollers

// Set the initial value.
std::uint32_t crc = UINT32_C(0xFFFFFFFF);

// Loop through the input data stream.
while(first != last)
{

// Define a local value_type.
typedef typename
std::iterator_traits<input_iterator>::value_type
value_type;

const value_type value = (*first) & UINT8_C(0xFF);

const std::uint_fast8_t byte = uint_fast8_t(value);

std::uint_fast8_t index;

// Perform the CRC-32/MPEG-2 algorithm.
index = ((std::uint_fast8_t(crc >> 28))

^ (std::uint_fast8_t(byte >> 4))
) & UINT8_C(0x0F);

crc = std::uint32_t(std::uint32_t(crc << 4)
& UINT32_C(0xFFFFFFF0))

^ table[index];

index = ((std::uint_fast8_t(crc >> 28))
^ (std::uint_fast8_t(byte))

) & UINT8_C(0x0F);

crc = std::uint32_t(std::uint32_t(crc << 4)
& UINT32_C(0xFFFFFFF0))

^ table[index];

++first;
}

return crc;
}

6.2 Know the Microcontroller’s Performance 117

6.2 Know the Microcontroller’s Performance

The same C++ code running on different microcontrollers can have vastly different
performance on each of them. Consider the two microcontrollers used in this book,
the 8-bit target running at 16MHz and the 32-bit target clocked at 24MHz. These
are both excellent microcontrollers offering the industry’s highest levels of product
quality combined with world-class CPU architectures and peripherals. In addition,
both microcontrollers can readily be programmed in C++ with the versatile GCC.
The two microcontrollers are, however, in radically different performance classes,
and this must be taken into account when assessing their ranges of application.

Table 6.2 compares the code size and runtime for the CRC32 algorithm from the
previous section on these two microcontrollers. As mentioned above, this CRC32
code is computationally intensive and has numerous 32-bit integer operations.
Consequently, the program runs significantly faster—about 30 times faster—on the
32-bit microcontroller than on the 8-bit machine. In addition, the code on the 32-bit
target requires merely 1/3 of the program space taken up by the corresponding code
on the 8-bit target.

The reasons for these performance and size differences are easy to understand.
Basic operations on 32-bit integers such as shift and bitwise logic operations make
up the core of the CRC32 algorithm. These operations require significant software
support on the 8-bit microcontroller, whereas they are single opcodes on the 32-
bit target. From the perspective of code size, on the other hand, 32-bit opcodes are
wider than the 8-bit or 16-bit opcodes in the vocabulary of the 8-bit machine. So
32-bit code could, in general, be larger than corresponding 8-bit code.3 In the case
of the CRC32 algorithm, however, the improved efficiency of 32-bit operations is
so overwhelmingly beneficial for the CRC32 that both the code size as well as the
runtime are significantly better on the 32-bit machine.

Bigger and faster is not always better. If the application is cost-sensitive and only
needs to perform a few functions, then a small 8-bit microcontroller can be the right
choice. A big 32-bit microcontroller might be too expensive for the application. If,

Table 6.2 The code size and runtime for a CRC32 algorithm on our targets with 8-bit and 32-bit
microcontrollers are listed

Code size CRC32 Runtime CRC32(0x31 . . . 0x39)

Target system [byte] [μs]
32-Bit target at 24MHz (-O2) 110 10

8-Bit target at 16MHz (-O2) 320 300

The compiler optimization has been tuned for speed

3In fact, it is not uncommon that code compiled for an 8-bit target is more compact than the
corresponding code compiled for a 32-bit target. This usually only occurs if the code at hand can,
without introducing error, be scaled to the architecture using, among other things, the so-called
native integer width of the CPU (Sect. 6.10).

118 6 Optimized C++ Programming for Microcontrollers

however, the microcontroller lacks sufficient resources for the requirements of the
application, then the CPU may be overloaded and the system could be unreliable
or might even fail. In this case, a larger 32-bit CPU may be necessary. In order
to guarantee the right efficiency for the application, it is a good idea to select a
microcontroller with the right performance and size.

A chunk of portable, computationally intensive microcontroller C++ code with
a non-trivial result such as a CRC32 algorithm can be used as part of a benchmark
to provide reliable data for proper microcontroller selection. There are additional
notes on microcontroller selection in the checklist of Sect. B.1 and some details on
establishing reliable runtime limits in Sect. B.3.

6.3 Know an Algorithm’s Complexity

In computer science, the limiting behavior of algorithmic complexity can be charac-
terized by the number of terms N in the algorithm’s input size. The so-called big-O
notation (pronounced big-oh) is often used to express the algorithmic complexity
as a power of N . For example, counting loops, simple additive checksums such
as CRCs and digital filters (Chap. 14) have linear complexity of order-N , in other
words O (N). Traditional grade-school multiplication of a × b, where both a and
b have N constituents, has quadratic complexity of O

(
N2

)
.

The runtime of an algorithm may grow rapidly or—for all practical matters—
become essentially unbounded as N increases. In such cases, it usually makes sense
to find better algorithms for large N . For example, interpolation in an ordered set of
points can use either a linear search or a binary search (Sect. 15.4). A linear search
has complexity of O (N) because it loops through the points until the interpolation
pair is found. A binary search, on the other hand, uses interval-halving methods
with logarithmic complexity of O

(
log2 N

)
. If N is 128, then a linear search has

a maximum complexity of ∼128, while the corresponding binary search with the
same N has a complexity of ∼7. Many searching and sorting algorithms in the STL
use a binary search under-the-hood. These algorithms, therefore, benefit from the
efficiency of logarithmic complexity, as opposed to linear complexity.

The speed of multiplication often determines the performance of mathematical
calculations because many mathematical calculations spend the majority of their
time doing multiplications. The efficiency of multiplication can have a particularly
strong influence on common integer calculations such as graphics algorithms, sensor
data analysis, hashing functions, fixed-point computations, etc. When designing
code, then, writing multiplication operations in the optimum way can improve
performance.

Consider the multiplication of two unsigned 16-bit integers with an unsigned 32-
bit integer result. One potentially efficient way to express this multiplication in C++
on an 8-bit CPU architecture is shown below.

6.3 Know an Algorithm’s Complexity 119

std::uint16_t a = UINT16_C(55555);
std::uint16_t b = UINT16_C(61234);

void do_something()
{

// Unsigned 16 x 16 --> 32-bit = 3,401,854,870.

std::uint32_t result =
a * static_cast<std::uint32_t>(b);

}

In this example, only one side of the multiplication of a × b has been casted
to std::uint32_t. The compiler can, therefore, optionally choose between the
better of 16 × 16 → 32-bit multiplication and 32 × 32 → 32-bit multiplication
and still get the right answer. For an 8-bit CPU architecture, a good compiler will
select 16 × 16 → 32-bit multiplication with algorithmic complexity 2N = 22 =
4. Casting both a and b to std::uint32_t would, however, force the compiler
to use 32 × 32 → 32-bit multiplication with complexity 2N = 24 = 16. The
code as written above is portable, yet still allows the compiler to take advantage of
the optimization of half-sized multiplication when necessary.

In mathematics, graphics, signal processing, etc., a convolution such as a fast
Fourier transform (FFT) is often used to reduce the computational complexity of an
algorithm in the transform space. Transformation makes sense if the added runtime
effort of the transformation is more than compensated by reduced work in the
transform domain. There is often a cut-off point, in other words a particular value
of N , above which the transformation reduces an algorithm’s runtime and below
which it does not.

Hardware accelerators and digital signal processors (DSP) can be integrated in
microcontrollers to perform some functions faster than possible in software. They
are commonly used for mathematical operations like multiplication and division,
transformations such as FFT, checksums such as CRC, hashing algorithms, digital
filters and other common signal processing tasks. If computationally intensive oper-
ations play a central role in the application, preferentially selecting a microcontroller
with the appropriate accelerator or DSP can significantly reduce the CPU work load.

In general, one should attempt to understand the algorithmic complexity and
input sizes that are expected in the project. Is binary arithmetic coded with ideal
operand sizes? Are linear algorithms adequate? Are optimized algorithms such as
those in the STL consistently used? Does the application need hardware acceleration
or even a dedicated DSP? These are the kinds of design questions that should be
considered when selecting the chip and the software libraries or beginning with
software design and implementation.

120 6 Optimized C++ Programming for Microcontrollers

6.4 Use Assembly Listings

Assembly listings allow us to follow the original high-level C++ source code into
the intricate depths of compiler-generated assembly language and machine-level
opcodes. Analyses of assembly listings facilitate the process of designing and
writing optimized code because assembly listings show the actual code which will
run on the target processor in a very low-level form.

In general, the way in which C++ code is written strongly influences how the
compiler generates assembly code and, ultimately, which machine-level opcodes
are placed in the executable. A basic understanding of assembly file listings makes it
possible to guide the implementations of time critical code sequences in a controlled
and iterative fashion. In this way, highly optimized results can be achieved.

By studying assembly listings one will, over time, obtain an intuitive feeling for
efficient coding. Developing this skill is a long-term process. Investigating assembly
listings can teach us when and how to use templates and how to develop efficient
class objects. Assembly listings can also reveal the benefits and costs of runtime
polymorphism, inline functions, templates, using the STL, etc.

With GNU compilers, an assembly listing can be generated with the objdump
program. The object dump program is available in GCC’s binary utilities and also in
the bash shell on most ∗nix-like environments. A sample command using objdump
is shown below.

objdump -j .text -S my_file.o > my_file.lst

In this command, my_file.o is an object file that has been created with g++.
The text-based results are piped into my_file.lst.

6.5 Use Map Files

Most linkers can generate a map file. Map files contain detailed information about
the addresses, types and sizes of program components such as program code, static
variables and objects, interrupt tables, debug sections, etc.

Map files can be used to verify that the program parts are properly located in
memory and also to investigate their resource consumption. This facilitates guided
size optimization. Together with assembly listings, it is possible to use map file
information to iteratively find the best compromise between space and speed in the
code.

With GNU compilers, a map file can be generated by the linker when creating
the absolute object file. For example, app.map can be created with the following
command.

g++ a.o b.o c.o -Wl,-Tldef.ld,-Map,app.map -o app.elf

6.6 Understand Name Mangling and De-mangling 121

In this command, the files a.o, b.o and c.o are object files compiled from the
corresponding source codes a.cpp, b.cpp and c.cpp. The file ldef.ld is a
linker definition file (Sect. 8.4). The absolute object file app.elf is the output of
the linker in ELF binary format. In this particular example, the map file is a by-
product of linking the program.

ELF files are in binary format and can be read with the utility programreadelf.
Again, readelf is a standard tool available in GCC’s binary utilities and on most
∗nix-like environments. A sample command using readelf is shown below.

readelf --syms app.elf > app.txt

Here, app.elf is the absolute object file mentioned above. The text-based
results from readelf are piped into app.txt. The command program option
--syms stands for display the symbol table and is equivalent to the short-hand
option -s.

6.6 Understand Name Mangling and De-mangling

Symbol names created by the C++ compiler can be difficult to read in the map
file. C++ supports namespaces, function overrides, etc. This means that symbols
can potentially have the same name. For example, both integers in the two separate
namespaces below are named the_int.

namespace this_space
{

int the_int;
}

namespace another_space
{

int the_int;
}

Same-named symbols such as the_int need to be uniquely identifiable. In
order to guarantee non-conflicting symbol names in C++, the compiler needs
to make decorated internal names for variables and subroutines using additional
information based on the partial names of parameters, namespaces, classes, etc.
These can be optionally combined with random numbers, letters and selected non-
alphanumeric characters such as ‘&’, ‘_’, ‘?’, ‘!’, ‘@’, etc. to create unique names.

In practice, the names that a C++ compiler makes can be so long and difficult
to read that the name-decorating process has come to be known as name mangling.
Name mangling is mandatory for establishing unequivocal symbol names in C++.
As an aside, note that name mangling is dreadfully compiler-specific. Mangled

122 6 Optimized C++ Programming for Microcontrollers

names can not be found in the source code. Mangled names are constructed by
the compiler for internal use and will only be encountered in map files, assembly
listings, debuggers, etc.

Consider the rather uncomplicated subroutine declaration below.

os::event_type os::get_event(const os::task_id_type);

This is the name of a multitasking scheduler’s get_event() function (such
as the kind mentioned toward the end of Chap. 11). This function resides in the
namespace os. Its sole input parameter is a typedef-ed enumeration for task-
IDs, also located within the namespace os. GCC creates the mangled name shown
below for the subroutine os::get_event().

__ZN2os9get_eventENS_17enum_task_id_typeE

The essential elements of the original name are recognizable and it is possible
to vaguely guess how the name mangling has augmented the original name with
namespace and parameter information to create a unique name. Nonetheless, the
mangled name is rather hard to read.

With the c++filt program, it is possible to demangle the mangled names
created by g++. Yes, it really is called name demangling. The sample bash session
below illustrates how c++filt can be used to demangle the mangled name of
os::get_event().

chris@chris-PC ~
$ c++filt __ZN2os9get_eventENS_17enum_task_id_typeE
os::get_event(os::enum_task_id_type)

chris@chris-PC ~
$ exit

It can also be convenient to initially produce a list of mangled names with nm,
the names program, and subsequently demangle themwith c++filt. For example,
the following command extracts the mangled names from app.elf with nm,
subsequently sorts them numerically (by address) and demangles them by piping
the sorted list to c++filt.

nm --numeric-sort app.elf | c++filt

This simple command demangles even the most complicated names from g++,
creating a clean, easy to read list of recognizable symbol names. A basic understand-
ing of name mangling and how to de-mangle names with readily available tools can
be helpful when interpreting map files.

6.7 Know When to Use Assembly and When Not to 123

6.7 KnowWhen to Use Assembly and When Not to

Assembly programming, by its very nature, is non-portable and should be avoided
in C++. Nonetheless, there are a few rare situations in microcontroller programming
which require assembly. This can be the case either because assembly programming
is the only way to accomplish the programming task at hand or because the
efficiency can be so radically improved (e.g. for a time critical sequence that runs
frequently) that using assembly is justified.

Assembly sequences should be buried within the microcontroller layer of the
software architecture in order to shield the system and application layers from non-
portability. See Sect. B.2 for information on layered software architecture. For short
assembly sequences of just a few lines, it may be preferable to use so-called inline
assembly, directly integrated into the C++ compiler via language extension. For
larger assembly sequences with more than, say, ten or twenty lines (e.g., for parts
of an extended multitasking scheduler), a dedicated assembly file may be more
appropriate.

GCC’s inline assembly syntax uses microcontroller-specific assembly dialects
expressed in the language of GAS, the GNU assembler. Other compilers have
similar language extensions with varying syntaxes.

Inline assembly can be convenient for creating short inline functions for things
such as global interrupt enable and disable, the nop operation, etc. For example,

namespace mcal
{

namespace irq
{

// Interrupt enable/disable.
inline void enable_all () { asm volatile("sei"); }
inline void disable_all() { asm volatile("cli"); }

}
}

namespace mcal
{

namespace cpu
{

// The no-operation.
inline void nop() { asm volatile("nop"); }

}
}

124 6 Optimized C++ Programming for Microcontrollers

Calling a C++ function, whether inline or non-inline, that is either partly or
completely composed of assembly is done in the same way as calling a normal C++
function. For example, the code sample below enables global interrupts in main()
via call of mcal::irq::enable_all().

int main()
{

// Enable all global interrupts.
// The enable_all() function uses assembly!
mcal::irq::enable_all();

// Initialize the mcal.
// ...

// Start multitasking.
// ...

}

6.8 Use Comments Sparingly

Once, I wrote the following line of code:

CalculateSpeed(); // Calculate speed.

Years after its origination, an amused colleague indicated that the comment does not
foster understanding, but detracts from code legibility instead.

Long, redundant comments throttle coding efficiency, obscuring clarity and
readability. Comments can also be a source of error. Code evolves over time and
comments, once written by a motivated programmer, often disagree with the code at
a later stage in its evolution. In fact, a skeptical developer once said, If the code and
the comment disagree, then they are probably both wrong. Trying to improve poorly
written code by adding comments simply sidesteps an underlying quality problem.
Commenting clear code is superfluous.

On the other hand, comments that explain non-obvious algorithm details or
illuminate the obscure meaning of register bit assignments do deserve to be
commented in the code. It is important to find the right compromise between
legibility and understanding and, above all, strive to write code that is clear, terse
and self-explanatory.

6.9 Simplify Code with typedef and Alias 125

6.9 Simplify Code with typedef and Alias

Using typedef can reduce typing effort and simultaneously make code easier to
read and understand. Equivalently a convenient C++11 alias (Sect. 3.20) can be used
instead of a traditional typedef. In Sect. 7.3 ahead, we will define a template class
used for generic access to microcontroller registers. In particular,

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val>

class reg_access
{
public:

static void reg_set() { /* ... */ }
static void reg_and() { /* ... */ }
static void reg_or () { /* ... */ }
static reg_type reg_get() { /* ... */ }

static void bit_set() { /* ... */ }
static void bit_clr() { /* ... */ }
static void bit_not() { /* ... */ }
static bool bit_get() { /* ... */ }

static void variable_reg_set(const reg_type)
{

// ...
}

};

The versatile reg_access template can be used for most common register
manipulations. For example, we can use the bit_not() member to toggle
portb.5. In other words,

// Toggle portb.5.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
5U>::bit_not();

126 6 Optimized C++ Programming for Microcontrollers

That is quite a bit of typing for the modest task of toggling a port bit. It
is, however, possible to reduce the typing effort of the toggle operation with a
typedef. For instance,

typedef reg_access<std::uint8_t,
std::uint8_t,
mcal::reg::portb,
5U> port_b5_type;

// Toggle portb.5.
port_b5_type::bit_not();

Previously in Sect. 2.6, we defined the led_template class and used it to
encapsulate an LED on portb.5. Combining the reg_access template with
typedefs can simplify the implementation of this class. In particular,

template<typename port_type,
typename bval_type,
const port_type port,
const bval_type bval>

class led_template
{
public:

led_template()
{

// Set the port pin value to low.
port_pin_type::bit_clr();

// Set the port pin direction to output.
port_dir_type::bit_set();

}

static void toggle()
{

// Toggle the LED.
port_pin_type::bit_not();

}

private:
static constexpr port_type pdir = port - 1U;

// Type definition of the port data register.
typedef reg_access<std::uint8_t,

std::uint8_t,

6.10 Use Native Integer Types 127

mcal::reg::portb,
port> port_pin_type;

// Type definition of the port direction register.
typedef reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
pdir> port_dir_type;

};

Here, the strategic use of templates and typedefs makes the functionality of
the led_template class more intuitive and easier to understand. Throughout this
book, typedef is used to simplify code and improve program clarity.

Optionally in this example, we could also use a C++11 alias to accomplish the
same type definition of port_b5_type (see Sect. 3.20). In particular,

using port_b5_type = reg_access<std::uint8_t,
std::uint8_t,
mcal::reg::portb,
5U>;

// Toggle portb.5.
port_b5_type::bit_not();

6.10 Use Native Integer Types

Operations with integers have optimum performance if implemented with the so-
called native integer type, in other words either the signed or unsigned version
of plain int. These are the native integer types of the microcontroller. They are, in
some sense, indigenous to the CPU architecture insofar as they typically have the
same width as CPU registers. The C99 specification calls signed and unsigned
int the natural integer types.

For example, 32-bit signed and unsigned integers are the native integer types on
a 32-bit machine, whereas 8-bit integers are native to an 8-bit architecture.

Consider the loop operation shown in the subroutine checksum() below.

std::uint8_t checksum(const std::uint8_t* p,
const std::uint8_t len)

{
std::uint8_t sum = UINT8_C(0);

128 6 Optimized C++ Programming for Microcontrollers

for(std::uint8_t i = UINT8_C(0); i < len; i++)
{

sum += *p;
++p;

};

return sum;
}

Here, the checksum() subroutine computes the byte-wise std::uint8_t
sum as a simple additive summation. In other words,

sum =
i < len∑

i = 0

pi , (6.2)

where pi is the zero-based ith element in an std::uint8_t-pointer sequence of
length len, and

0 ≤ len < 256 . (6.3)

We will now compile the checksum() subroutine for our target with the 32-
bit microcontroller. The compiled subroutine requires 192 bytes of program code,
which is excessively large for this simple checksum. Investigations of the assembly
listing reveal that the compiler generates code for loading and manipulating 8-bit
entities, struggling through numerous zero-clear actions on the three unused bytes
in 32-bit registers after loading a value. These operations are inefficient for this 32-
bit machine and not actually needed for the checksum algorithm.

Using native integer types improves efficiency. For example, we will now simply
change the types of sum, len and the index i from std::uint8_t to the
compiler’s fastest 8-bit unsigned integer type std::uint_fast8_t. This is an
integer type that is guaranteed to have at least 8-bits (but may optionally have more)
and is intended to be the fastest one of its kind on its target architecture.4 We
have selected std::uint_fast8_t instead of, say, std::uint_fast32_t
because the resulting code will also be fast on 8-bit and 16-bit architectures, yet still
fulfill the requirements of the checksum operation.

4Here, the C++ specification leaves the interpretation of fastest open to the compiler implemen-
tation. In widespread practice, though, the fast integer types simply have the same width as CPU
registers on the target architecture.

6.11 Use Scaling with Powers of Two 129

The modified source code is shown below.

std::uint8_t checksum(const std::uint8_t* p,
const std::uint_fast8_t len)

{
std::uint_fast8_t sum = UINT8_C(0);

for(std::uint_fast8_t i = UINT8_C(0); i < len; i++)
{

sum += *p;
++p;

};

return sum;
}

This minor code change switching from std::uint8_t with exactly 8 bits
to std::uint_fast8_t with at least 8 bits vastly improves the algorithm’s
efficiency on the 32-bit target. In particular, the disassembled source code is
markedly shorter.

The compiled subroutine using std::uint_fast8_t has a size of 24 bytes.
Compare 24 bytes with the 192 bytes from the previous listing. Using the fastest
8-bit integer type for the inner loop of the algorithm has improved the space and
performance by a factor of ∼8. Yes, that is right, an eightfold improvement. This
striking betterment shows that using native integer types can really pay off.

6.11 Use Scaling with Powers of Two

Multiplication and division with powers of two can be replaced by efficient shift
operations. For example, division by 4 can be replaced with a right-shift of 2.
Multiplication with 32 can be replaced with a left-shift of 5. All good compilers do
this automatically, assuming that the right-hand operator is a compile-time constant.
One of the simplest and most effective ways to remove costly multiply and divide
operations is to scale with powers of two.

Consider a software counter, in other words a prescaler, used to divide a timebase
into slower secondary frequencies.

namespace { std::uint_fast16_t prescaler; }

void do_something()
{

++prescaler;

130 6 Optimized C++ Programming for Microcontrollers

do_it_at_01x_period();

if((prescaler % 2U) == 0U)
{

do_it_at_02x_period();

if((prescaler % 4U) == 0U)
{

do_it_at_04x_period();

if((prescaler % 8U) == 0U)
{

do_it_at_08x_period();
}

}
}

}

In this example, different software operations are carried out with frequencies
of 1, 1/2, 1/4 and 1/8 of the base frequency. The conditional operations are per-
formed with modulus 2n so the compiler automatically uses shifts instead of costly
division for them. If a base-10 prescaler were used instead, it would require division.
This would be much less efficient. Here, we assume that the do_it_at...()
functions are frequently-called inline functions, possibly in an interrupt service
routine, quick enough in call and execution to warrant the prescaler optimization. A
further refinement is achieved by nesting the if-statements, reducing the average
load of conditional-testing, making it non-constant though.

6.12 Potentially Replace Multiply with Shift-and-Add

For some microcontrollers, the compiler might replace potentially slow multipli-
cation operations with fast shift-and-add sequences. This is particularly prevalent
for small microcontrollers that lack fast hardware multiplication.5 Good compilers
know which is faster, a shift-and-add sequence or its corresponding multiplication
operation. For example, a long sequence of shift-and-add algorithms might be
slower than a single multiplication with a large integer or an integer having a non-
simple prime factorization. Consider multiplication by 23, which needs three shifts

5Even though most modern microcontrollers have fast hardware multiplication, replacing multiply
with shift-and-add can still be useful for older microcontrollers or price-sensitive microcontrollers
that emulate multiplication in software.

6.13 Consider Advantageous Hardware Dimensioning 131

and three adds (i.e., 23 = 16+ 4+ 2+ 1). This is a lot of shift-and-add and it might
be slower than the corresponding multiplication operation.

Modern compilers are remarkably aware of these situations and preferentially
select the faster of multiply or shift-and-add. Positive integers that are small-valued,
even and non-prime lend themselves well to optimization with shift-and-add. Pref-
erentially using them can lead to significant performance improvements. Check the
assembly listings (Sect. 6.4) to ensure that the compiler is aware of optimization via
shift-and-add, and preferentially use compile-time constants that lend themselves
well to shift-and-add.

6.13 Consider Advantageous Hardware Dimensioning

Peripheral hardware can be dimensioned so that it simplifies microcontroller
programming. In particular, carefully designed hardware can make it possible to
write code for which the compiler can replace costly multiplication and/or division
with shift operations. In this way, a few simple hardware design considerations can
significantly improve software efficiency.

For example, scaling with 2n can be directly designed into the microcontroller
board. Consider the simple Analog-Digital Converter (ADC) circuit shown in
Fig. 6.1. Suppose the ADC has 10-bit resolution and 5V logic. Conversion results
range from 0 . . . 1023 steps for ADC voltage after the voltage divider (VADC)
ranging from 0 . . . 5V.

We will now design the ADC circuit for input voltage VIN � 25V and
simultaneously select the voltage divider parameters such that software conversion
from ADC raw value to mV can be accomplished with multiplication by 32, which
is a left shift by 5.

The maximum ADC result of 1023 steps should occur when the maximum
readable input voltage of 32V× 1023 = 32,736mV lies on VIN . This corresponds
to the maximum ADC voltage of 5V (in other words 5000mV) on VADC . So the

Fig. 6.1 An ADC circuit is
shown ADC.3

ADC.2

ADC.1

ADC.0

Microcontroller

R1

C1

GND

ADC

R2

VIN
VADC

132 6 Optimized C++ Programming for Microcontrollers

voltage divider made from R1 and R2 should be dimensioned according to

VADC

VIN

= 5000

32,736
= R2

R1 + R2
, (6.4)

which gives

R2 =
(

5000

27,736

)
× R1 . (6.5)

We will use resistors with 1% tolerance and limit the worst-case injection current
on the ADC pin to �1/2mA for VIN = 25V by selecting the resistor R1 =
64.9 k�. This results in R2 ≈ 11.70 k�, which is very close to the nearest standard
1% resistor value of 11.8 k�. So, the final dimension of the voltage divider is R1 =
64.9 k� and R2 = 11.8 k�. We can complete the circuit by selecting C1 = 22 nF
such that the low-pass filter has a rise time of τ ∼ 1.4ms.

We will now verify the dimension of the ADC circuit. For an input voltage VIN

of 16V, the voltage on VADC is

16V ×
(

11.8

64.9 + 11.8

)
≈ 2.462V , (6.6)

resulting in an integer conversion value of

1023 ×
(
2.462

5.0

)
= 503 . (6.7)

To check the result, multiply 503 × 32mV, giving 16,096mV. This result is
within 1% of the true value of 16,000mV. The circuit dimension is quite acceptable.
The accuracy of the software conversion is less than but comparable to the total
hardware uncertainty, estimated by

√

2 (0.01)2 +
(

2

1023

)2

� 2% , (6.8)

originating from two resistors with 1% tolerance and 2 LSB tolerance (a typical
value) for the ADC.

When the software designers write a conversion routine from ADC raw to mV
for this circuit, it will be a simple multiplication with 32. For example,

inline std::uint16_t raw2mv(const std::uint16_t& raw)
{

return raw * UINT16_C(32);
}

6.14 Consider ROM-Ability 133

6.14 Consider ROM-Ability

In microcontroller programming, every resource is limited. In many projects,
though, the most rare resource of all can be RAM. This makes it essential to
preferentially use objects that can be entirely placed in read-only program memory,
so-called ROM-able objects. A ROM-able object is entirely constant, in other words
bitwise constant, and the compiler can save costly RAM by locating ROM-able
objects in program code.

Consider the two version strings shown below.

namespace
{

// A version stored in a constant std::string.
const std::string version_string1("1.23");

// A version stored in a constant std::array.
const std::array<char, 5U> version_string2
{

{ ’1’, ’.’, ’2’, ’3’, ’\0’ }
};

}

In this example, version_string1 is stored in a constant std::string
and version_string2 is stored in a constant std::array. Both version
strings have roughly equivalent values for the user. They both represent the ASCII
character string “1.23” [5]. The storage requirements, however, can be quite
different for the two version strings.

Benchmark examinations of various map files for a few different CPU architec-
tures revealed that version_string1must always be stored in RAM, whereby
version_string2 can potentially be stored in read-only program code for some
targets. Furthermore, version_string1 requires the overhead of compiler-
generated code for the pre-main() initialization of its static constructor (Sect. 8.3).

The instance of version_string1 is not ROM-able because, among other
reasons, it is a complex object involving runtime initialization with a constructor
and memory allocation (e.g., with a custom allocator, as described in Sect. 6.16 and
Chap. 10). The instance of version_string2, on the other hand, is ROM-able
because its contents are entirely known at compile time and can be directly placed
in program code accordingly—or even used by the compiler on-the-fly.

In fact, std::arrays of constant-valued built-in types fulfill the requirements
for constexpr (Sect. 3.8). It is, therefore, possible to force the compiler to treat
the version string as a compile-time entity by using constexpr instead of const.

134 6 Optimized C++ Programming for Microcontrollers

In particular,

namespace
{

// A version that is compile-time constant.
constexpr std::array<char, 5U> version_string
{

{ ’1’, ’.’, ’2’, ’3’, ’\0’ }
};

}

It can be even more efficient (and the version string is just as constant) if the data
are placed in a constant std::initializer_list. For example,

namespace
{

// A version that is compile-time constant.
constexpr std::initializer_list<char> version_string
{

’1’, ’.’, ’2’, ’3’, ’\0’
};

}

When programming with constant-valued objects, consider their ROM-ability
and their potential to be treated as compile-time constant. Preferentially employing
ROM-able constant objects when possible can save significant RAM in the project.

6.15 Minimize the Interrupt Frame

Interrupts can be called frequently, so it is essential they be programmed efficiently.
We will now examine how the code in an interrupt service routine can influence
the efficiency of its interrupt frame. The interrupt frame is the compiler-generated
assembly code at the head and tail of the interrupt service routine that brackets the
user-written code. The interrupt frame is responsible for context save and restore at
interrupt entry and exit. See Sect. 9.2 for more information on interrupts.

The code below establishes the system timebase of the software by incrementing
the system_tick in timer interrupt __timer0_cmp_a_isr(). Essentially
the same code can be found in the general-purpose-timer (gpt) part of the MCAL
in the reference project of the companion code. It is the interrupt service routine for
the timer0 compare register a match event.

6.15 Minimize the Interrupt Frame 135

namespace
{

volatile std::uint16_t system_tick;
}

// Attributes indicate interrupt service routine.
extern "C"
void __timer0_cmp_a_isr() __attribute__((interrupt));

// This is the interrupt service routine.
// This interrupt occurs when the 8-bit timer0
// counter register reaches the value in the
// compare register a.
void __timer0_cmp_a_isr()
{

// Increment the system-tick.
++system_tick;

}

A summarized representation of the assembly code that the GNU compiler
creates for the interrupt service routine __timer0_cmp_a_isr() is shown
below.

extern "C" void __timer0_cmp_a_isr()
{

; Save the ISR context.
; 7 assembly lines to save the context.

; Increment the system-tick.
; ++system_tick;
; 5 assembly lines to increment the system_tick.

; Restore the ISR context.
; 7 assembly lines to restore the context.

}

The interrupt frame is relatively brief. It uses 7 assembly lines to push a handful
of registers in preparation for the interrupt. In the body of the interrupt service
routine, the value of the 16-bit system_tick is incremented. This requires
only two 8-bit CPU registers. Since just a few registers are used in the ISR, the
compiler knows that it does not have to save and restore the entire register context
information, just those registers that are actually used in the interrupt service routine

136 6 Optimized C++ Programming for Microcontrollers

itself. All good C and C+++ compilers keep track of the registers used in an interrupt
service routine. Consequently, the compiler generates a minimal interrupt frame.

If more complicated code is placed in an ISR, the interrupt frame grows
accordingly. The worst situation results from calling a non-inline, external function
in an ISR. Consider an alternative way to increment the system-tick using a
subroutine call in the interrupt service routine. For instance,

extern "C"
void __timer0_cmp_a_isr() __attribute__((interrupt));

extern void increment_system_tick();

void __timer0_cmp_a_isr()
{

// Increment the system-tick with a subroutine call.
increment_system_tick();

}

This version of the interrupt service routine __timer0_cmp_a_isr() also
increments the system-tick. The system_tick variable is, however, not directly
incremented. Rather the increment operation takes place in a non-inline, external
subroutine called increment_system_tick().

The corresponding interrupt frame generated by the compiler for this version of
the interrupt service routine is extensive. The synopsis is shown below.

extern "C" void __timer0_cmp_a_isr()
{

; Save the ISR context.
; 17 assembly lines to save the context.

; Increment the system_tick in a function.
; increment_system_tick();

; Restore the ISR context.
; 17 assembly lines to restore the context.

}

This is certainly a drastic difference caused by changing just one line of code. The
sizes of the head and tail in the interrupt frame have grown from 7 to 17 lines in the
assembly listing. The increased size of the interrupt frame is, however, mandatory.
As far as the compiler knows, there might be complicated operations or secondary
subroutine calls in increment_system_tick(). The values of every register
might be changed or modified (i.e., clobbered). Perhaps none or only some registers

6.17 Use the STL Consistently 137

will really be clobbered. The compiler, however, has no way to determine what
happens in the function call because it lacks call-tree analysis capabilities.

Instead of saving and restoring the registers used before and after the call of
increment_system_tick(), then, the compiler must perform a full context
save and restore of all the user-registers in the interrupt frame of this version of
__timer0_cmp_a_isr(). Each register is sequentially push-ed onto the stack
in the head of the interrupt frame. Each register is subsequently restored via pop
instruction in reverse order in the tail thereafter.

The difference in performance and size is striking. To do the same tick incre-
menting, the total work of the interrupt routine has grown significantly. This kind
of hidden performance hit can be eliminated by avoiding complicated code in
interrupts, especially calls to non-inline external functions. This minimizes the
interrupt frame and saves precious cycles.

6.16 Use Custom Memory Management

Small-to-medium size microcontrollersmight have a tiny heap for dynamicmemory
allocation, or even no heap at all. It rarely makes sense, therefore, to allow
unconditional use of new and delete. When using new and delete during
runtime, the heap quickly runs out of memory or becomes fragmented beyond
repair, taking on a non-usable form. In addition, the standard implementations of
global new and deletemay require undesired linked-in object code from the C++
library.

Developers can forget to catch() an std::bad_alloc exception thrown
by a potentially failed allocation attempt, Sect. 10.7. This can result in a hard-to-
find defect because a non-caught exception or a non-thrown one can be difficult to
detect or reproduce during testing.

The problems outlined above can be avoided, and in most cases eliminated
altogether, if careful, attentive use is made of user-defined memory management
using placement-new. STL containers can also take advantage of user-defined
memory allocation using custom allocators based on placement-new. User-defined
allocation provides fine-grained control over dynamic memory resulting in efficient
resource use and error reduction. Using placement-new and designing custom
allocators for STL containers are described in Chap. 10.

6.17 Use the STL Consistently

Use the STL consistently throughout the entire microcontroller software project. In
doing so, it is possible to significantly decrease coding complexity while simulta-
neously improving legibility, portability and performance. Loops previously written
with laborious, possibly error-prone attention to detail will become simple, eloquent

138 6 Optimized C++ Programming for Microcontrollers

one-liners. For all good compilers, the STL authors havemeticulously optimized the
STL implementation for the specific characteristics of the compiler at hand. One can
be relatively certain that the library developers have used programming idioms that
can be optimized particularly well by the compiler. When using anything from the
STL, then, one can be relatively sure that these parts of the code will reach the
highest level of efficiency that the compiler has to offer.

As a case in point, reconsider the checksum algorithm from Sect. 6.10. We will
now investigate the efficiency of the summation if, instead of a manually-written
algorithm, std::accumulate() from STL’s <numeric> is used.

#include <numeric>

std::uint8_t checksum(const std::uint8_t* p,
const std::uint_fast8_t len)

{
return std::accumulate(p,

p + len,
std::uint_fast8_t(0U));

}

The implementation is a simple one-liner. In addition, it is even more efficient
than the second optimized implementation in Sect. 6.10. It is an interesting exercise
to use reverse engineering in an effort to find out how the STL might program
this particular algorithm with such high efficiency. After a few attempts via trial-
and-error, the implementations shown below has been discovered. It has the same
efficiency as the STL implementation.

std::uint8_t checksum(const std::uint8_t* p,
const std::uint_fast8_t len)

{
std::uint_fast8_t sum = UINT8_C(0);
const std::uint8_t* end = p + len;

while(p != end)
{

sum += *p;
++p;

};

return sum;
}

6.18 Use Lambda Expressions 139

This, for example, may or may not be how one programs. It is, nonetheless,
probably the most efficient way to implement this particular algorithm in C++ for
this compiler. When investigating this benchmark, for example, I did not innately
program in such a way as to reach the compiler’s highest efficiency. The STL
implementation beat me by two lines of assembly.

A common algorithm rarely needs to be reinvented and programed from scratch
because the algorithm is probably available in the STL. In addition, the STL
authors have diligently optimized it and tested it. Using the STL throughout the
project, therefore, results in a more legible, efficient and portable body of source
code, automatically. In addition, other developers will find it easy to analyze and
review source code that uses the STL because the standardized template interface
encourages consistent style and reinforces coding clarity.

6.18 Use Lambda Expressions

The example below is based on part of the startup code as described in Sect. 8.3.
The code initializes the static ctors before the jump to main(). The code calls the
compiler-generated ctors in the range

[
ctors_begin, ctors_end

)
using the

STL’s std::for_each() algorithm.
We will now write this part of the startup code in two ways. The first uses the

std::for_each() algorithm in combination with a lambda expression, whereas
the second uses a function with static linkage.

The code below is written with a lambda expression.

typedef void(*function_type)();

function_type ctors_end[];
function_type ctors_begin[];

void init_ctors()
{

std::for_each(ctors_begin,
ctors_end,
[](const function_type& pf)
{

pf();
});

}

140 6 Optimized C++ Programming for Microcontrollers

The following code uses a static function.

typedef void(*function_type)();

function_type ctors_end[];
function_type ctors_begin[];

namespace
{

void call_ctor(const function_type& pf) { pf(); }
}

void init_ctors()
{

std::for_each(ctors_begin, ctors_end, call_ctor);
}

Analyses of the assembly listings of the two cases reveal that the version
using the algorithm with the lambda expression has higher performance. In my
benchmark, the version using the lambda expression had a savings of about 25%
in runtime.

Lambda expressions offer the compiler more opportunities to optimize by mak-
ing the function, its iterator range and its parameters visible to the compiler within
a single block of code. In this way, the compiler has access to richer set of register
combinations, merge possibilities, etc. and it can do a better optimization. Using
lambda expressions consistently throughout an entire project can save significant
code and generally improve the performance of the whole software.

6.19 Use Templates and Scalability

Templates expose all of their code, their template parameters, function calls,
program loops, etc. to compiler optimization at compile time. This provides the
compiler with a wealth of information allowing for many intricate optimizations
such as constant folding and loop unrolling. Using templates can result in many
(sometimes subtle) improvements in runtime performance.

Always remember, though, that additional template instantiation could result in
the creation of additional code. Although this does not necessarily have to be the
case because added code resulting from templates might be more than offset by
size reductions gained from improved compilation efficiency. So, if performance
and size really matter, consider template design. Write the code without templates.
Write it again with templates. If a mix is better, templates can be combineed with

References 141

non-templates. Analyze the assembly code listings along the way and strike the right
balance between using templates and using non-templated classes and subroutines.

As mentioned above in Sect. 6.17, one of the most effective ways in which
templates can improve overall performance is simply by using the STL. In many
senses, making consistent use of the STL is a kind of global project optimization.

Templates provide for scalability, allowing the scale and complexity of a
particular calculation to be adjusted by changing the template parameters. For
example, the timers of Sect. 15.3 are implemented as scalable templates. The best
efficiency of these timers can be achieved if the template parameter uses the native
unsigned integer type (Sect. 6.10). The digital filter classes of Chap. 14 are also
scalable. Section 14.4 shows how to achieve maximum filter performance and
functionality by properly scaling the template parameters.

6.20 Use Metaprogramming to Unroll Loops

Template metaprogramming can be used to improve code performance by forcing
compile-time loop unrolling. An interesting analysis of this can be found by
revisiting the inner product metaprogram in the code samples of Sect. 5.10.

In the original example, both sides of the dot-product, (−→u · −→v) including their
ranges were compile-time constants, allowing for complete evaluation of the result
at compile time. In other situations, however, the values of the container elements
might not be known at compile time. For example, if dynamic containers with
variable size unknown to the compiler are used or if a lower optimization level
is applied, the inner product might not be unrolled by compiler optimization alone.

A template metaprogram will always force loop unrolling, regardless of the con-
tainer type or optimization level. Care must be taken, though, to ensure that the range
index stays in bounds when unrolling dynamic containers with metaprogramming.
Loop unrolling with template metaprogramming is a versatile programming tool
that can be employed to improve performance in many different situations.

References

1. Free Software Foundation, Invoking GCC: 3.10 Options That Control Optimization (2015),
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

2. ISO/IEC, ISO/IEC 13818-1:2000: Information Technology – Generic Coding of Moving
Pictures and Associated Audio Information: Systems (International Organization for Standard-
ization, Geneva, 2010)

3. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
4. Wikipedia, MPEG Program Stream (2015), http://en.wikipedia.org/wiki/MPEG_program_

stream
5. Wikipedia, ASCII (2017), http://en.wikipedia.org/wiki/ASCII
6. Wikipedia, Cyclic Redundancy Check (2017), http://en.wikipedia.org/wiki/Cyclic_redundancy_

check

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://en.wikipedia.org/wiki/MPEG_program_stream
http://en.wikipedia.org/wiki/MPEG_program_stream
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Part II
Components for Real-Time C++

Chapter 7
Accessing Microcontroller Registers

Microcontroller programming requires efficient techniques for register access.
Registers are used to configure the CPU and peripheral hardware devices such as
flash access, clocks, I/O ports, timers, communication interfaces (UART, SPITM,
CAN [1]), etc. This chapter describes C++ methods that can be used to manipulate
microcontroller registers. The focus of this chapter is placed on template methods
that provide for efficient, scalable and nearly portable register access.

7.1 Defining Constant Register Addresses

C programmers often define register addresses with a preprocessor #define. For
example,

// The 8-bit address of portb.
#define REG_PORTB ((uint8_t) 0x25U)

The preprocessor symbol REG_PORTB represents the 8-bit address of portb
on our target with the 8-bit microcontroller. We first encountered this register in
the LED program of Sect. 1.1. The value of portb’s address is 0x25. The type
of the address is uint8_t. In addition, the type information is tightly bound to
the preprocessor definition with a C-style cast operator. All-in-all, this is a robust
register definition in C.

As mentioned in association with the LED program in Sect. 1.10, portb can
also be manipulated via direct memory access in the C language. For example, the
following C code sets the value of portb to zero.

// Set portb to 0.

((volatile uint8_t) REG_PORTB) = UINT8_C(0);

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_7&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_7

146 7 Accessing Microcontroller Registers

In C++ it can be convenient to define register addresses with compile-time
constant static integral members of a class type (such as a structure) or using the
constexpr keyword. This technique has already been used a few times in this
book and is described in greater detail in Sect. 4.10. In particular,

namespace mcal
{

struct reg
{

static constexpr std::uint8_t portb =
UINT8_C(0x25);

// Additional registers
// ...

};
}

Register addresses can alternatively be defined as compile-time constants with
constexpr possibly in a namespace for naming uniqueness. For example,

namespace mcal
{

namespace reg
{

constexpr std::uint8_t portb = UINT8_C(0x25);

// Additional registers
// ...

}
};

The mcal::reg structure (or the mcal::reg namespace) can be used to
define a variety of microcontroller register addresses. Each register address needed
in the program can be included as a compile-time constant. In the mcal::reg
structure above, for example, the 8-bit address of portb on our target with the
8-bit microcontroller has a compile-time constant value equal to 0x25.

Using the mcal::reg structure (or alternatively the namespace mcal::reg)
it is straightforward to set portb via direct memory access in C++. For instance,

// Set portb to 0.

reinterpret_cast<volatile std::uint8_t>
(mcal::reg::portb) = UINT8_C(0);

7.2 Using Templates for Register Access 147

As mentioned in Sects. 1.10 and 4.10, compile-time constants are just as efficient
as preprocessor #defines, but have superior type information. Compile-time
constants are well-suited for defining register addresses because they require no
storage and are available for constant folding. Register addresses defined as
compile-time constants can also be used as parameters in C++ templates. This
can be used to create highly optimized template classes that can be mapped to
the microcontroller’s peripherals resulting in efficient hardware-access code that
possesses a high degree of portability. This technique will be shown in the next
section and also used for a serial SPITM driver in Sect. 9.5.

7.2 Using Templates for Register Access

Consider the template class below. It is a scalable template class designed for setting
the value of a microcontroller register.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val>

class reg_access
{
public:

static void reg_set()
{

reinterpret_cast<volatile reg_type>(addr) = val;
}

};

The reg_access class has four template parameters that specify the charac-
teristics of the microcontroller register. The addr_type parameter defines the
type of the register’s address. When used with portb on our target with the 8-
bit microcontroller, for example, the type of addr_type is std::uint8_t.
The reg_type parameter defines the physical width of the register. This is also
std::uint8_t for portb on our target with the 8-bit microcontroller.1. The
last two template parameters, addr and val, define the register’s address and the
value that should be written it. These two parameters must be integral compile-time
constants.

1Note, however, that a register’s width need not necessarily have the same type as its address. One
often encounters registers with 8-bit width or 16-bit width on a 32-bit machine, etc.

148 7 Accessing Microcontroller Registers

The reg_access template has one static method called reg_set(). This
function is designed for setting a register at a fixed address with a constant value.
For example,

// Set portb to 0.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(0x00)>::reg_set();

As in the examples in the previous section, this code also sets the value of the
portb register to zero. This is accomplished by calling the reg_set() function.
Notice how this code obtains the address of portb from the mcal::reg class.

There are several advantages to implementing register access functions in a
templated class such as reg_access. In particular, reg_access offers scal-
ability and portability because it can be used with different register types and
microcontroller architectures.

In the code below, for example, a register with a 32-bit address and an 8-bit width
is set with an 8-bit value.2

// Set timer0 mode register tm0ctl0 to zero.
reg_access<std::uint32_t,

std::uint8_t,
mcal::reg::tm0ctl0,
UINT8_C(0x00)>::reg_set();

In the following code, a register with a 32-bit address and 16-bit width is set with
a 16-bit value.

// Set timer0 compare register tm0cmp0 to 32,000.
reg_access<std::uint32_t,

std::uint16_t,
mcal::reg::tm0cmp0,
UINT16_C(32000)>::reg_set();

2This example and the following one have been taken from code originally written to initialize
timer0 for a well-known 32-bit microcontroller.

7.3 Generic Templates for Register Access 149

The reg_set() function of the reg_access class is quite efficient because
all the template parameters are compile-time entities. When compiling the sample
above, for example, the compiler eliminates the addr and val template parameters
via constant folding and sees in reg_set() the following statement.

reinterpret_cast<volatile std::uint16_t>
(std::uint32_t(0xFFFFF694)) = UINT16_C(32000);

Since this code is entirely known at compile time, the compiler can optimize
it to the best of its ability. In fact, the compiler could potentially substitute a single
opcode for the operation if one is available for the CPU architecture and the compiler
is capable of recognizing the opportunity to do so.

7.3 Generic Templates for Register Access

Based on the reg_set() subroutine in the previous section, we can add additional
functions such as logic and bit operations to the reg_access class. For example,
we will now add to the reg_access class a function for the logical or operator.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val = 0>

class reg_access
{
public:

static void reg_set()
{

reinterpret_cast<volatile reg_type>(addr) = val;
}

static void reg_or()
{

reinterpret_cast<volatile reg_type>(addr) |= val;
}

};

150 7 Accessing Microcontroller Registers

The reg_or() function is similar to the reg_set() function. The only
difference is that instead of setting the value with operator=, the logical or
operator is used. This subroutine can be used for or-ing the value of a register
at a fixed address with a constant value. In particular,

// Set portb.5 to 1.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(0x20)>::reg_or();

This code is equivalent to

reinterpret_cast<volatile std::uint8_t>(0x25)
|= UINT8_C(0x20);

and it performs a bitwise or of portb with the 8-bit value 0x20. This sets
portb.5 on our target with the 8-bit microcontroller to high.

As a final example, we will add a dedicated bit operation to the reg_access
class. For example,

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val = reg_type(0)>

class reg_access
{
public:

// ...

static void bit_not()
{

reinterpret_cast<volatile reg_type>(addr)
^= reg_type(reg_type(1U) << val);

}
};

The bit_not() function performs a bitwise exclusive-or (xor) of a register
with a bitmask containing a single bit. Notice that the val parameter here is used
to create the bitmask from 1 shifted left val times.

7.3 Generic Templates for Register Access 151

The bit_not() function has the effect of toggling a bit from low to high and
vice versa. For example,

// Toggle portb.5.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(5)>::bit_not();

This code is equivalent to

reinterpret_cast<volatile std::uint8_t>(0x25)
^= UINT8_C(0x20);

and it performs a bitwise xor of portbwith 0x20. This toggles portb.5 on our
target with the 8-bit microcontroller from low to high and vice versa. It is the same
register manipulation that was introduced in the toggle() function of the led
class in the LED program of Sect. 1.1.

So now the reg_access class includes functions for register set, logical or
and bitwise xor. It is straightforward to add even more register functions. For
example, the class synopsis of an extended reg_access class is shown below.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val>

class reg_access
{
public:

static void reg_set() { /* ... */ }
static void reg_and() { /* ... */ }
static void reg_or () { /* ... */ }
static reg_type reg_get() { /* ... */ }

static void bit_set() { /* ... */ }
static void bit_clr() { /* ... */ }
static void bit_not() { /* ... */ }
static bool bit_get() { /* ... */ }

static void variable_reg_set(const reg_type)
{

// ...
}

};

152 7 Accessing Microcontroller Registers

This version of the reg_access class is contained in the companion code of
this book. It has functions for register set, get, various bit operations, etc. In this
sense, the reg_access class is a scalable, flexible and generic template that can
be used for register manipulation on any microcontroller platform, regardless of the
address widths and register types.

Register manipulation code can never be truly portable because the addresses
and purposes of registers are specific to a given microcontroller. The reg_access
class, however, makes no use of these kinds of microcontroller-specific details. So
as long as the microcontroller-specific details are localized somewhere else (such
as in something like the mcal::reg structure), the reg_access class remains
portable—perhaps as portable as possible for microcontroller register access.

7.4 Bit-Mapped Structures

Microcontroller programmers often use C-style structures with bit-fields to
represent bits or groups of bits in a register. This is useful for creating a bit-mapped
structure that identically matches the bits in a hardware register. For example, an
8-bit port register can be represented with the C-style bit-mapped structure shown
below.

typedef struct struct_bit8_type
{

std::uint8_t b0 : 1;
std::uint8_t b1 : 1;
std::uint8_t b2 : 1;
std::uint8_t b3 : 1;
std::uint8_t b4 : 1;
std::uint8_t b5 : 1;
std::uint8_t b6 : 1;
std::uint8_t b7 : 1;

}
bit8_type;

Using the bit8_type structure is straightforward. For example, the code below
sets portb.5 to high.

reinterpret_cast<volatile bit8_type*>
(mcal::reg::portb)->b5 = 1U;

7.4 Bit-Mapped Structures 153

It can also be convenient to combine a built-in integral type with a bit-mapped
register structure in a C-style union. For instance,

typedef union union_reg_map_c
{

std::uint8_t value;
bit8_type bits;

}
reg_map_c;

In this example, we have combined the eight bits in the bit8_type structure
with an std::uint8_t in the reg_map_c union. This makes it possible to
manipulate either the individual bits or the value of the entire register depending
on the coding situation. In particular,

// Set portb to 0.
reinterpret_cast<volatile reg_map_c*>

(mcal::reg::portb)->value = UINT8_C(0);

// Set portb.5 to 1.
reinterpret_cast<volatile reg_map_c*>

(mcal::reg::portb)->bits.b5 = 1U;

In C++, it is possible to take the concept of the reg_map_c union and create
from it a generic template class for register mapping. For example,

template<typename addr_type,
typename reg_type,
typename bits_type,
const addr_type addr>

class reg_map
{
public:

static reg_type& value()
{

return

reinterpret_cast<volatile reg_type>(addr);
}

static bits_type& bits()
{

return

reinterpret_cast<volatile bits_type>(addr);
}

};

154 7 Accessing Microcontroller Registers

The reg_map class has four template parameters similar to the ones in the
reg_access structure from the previous sections of this chapter. In particular,
the addr_type parameter specifies the type of the register’s address. The addr
parameter provides the constant value of the register’s address. The reg_type
gives the type of the register. The new bits_type template parameter is intended
to be a bit-mapped structure representing the bit-mapping of the hardware register.

These template parameters are used by reg_map’s two static members functions
to provide access the register as a value or a bit-map. The value() subroutine
returns a non-constant (i.e., modifiable) reference to the value of the register. The
bits() subroutine returns a non-constant reference to the bit-mapped value of the
register.

Imagine we would like to use the reg_map class to access the portb register
on our target with the 8-bit microcontroller. In particular,

// Set portb to 0.
reg_map<std::uint8_t,

std::uint8_t,
bit8_type,
mcal::reg::portb>::value() = UINT8_C(0);

// Set portb.5 to 1.
reg_map<std::uint8_t,

std::uint8_t,
bit8_type,
mcal::reg::portb>::bits().b5 = 1U;

Bit-mapped structures provide an intuitive and elegant way to identically map
a software structure to a hardware register or set of registers. Using bit-mapped
structures, however, can result in potentially non-portable code. This is because,
according to specification, the type of bit-field members in a structure must be one
of signed or unsigned int. Bit-mapped structures, however, often use other
integral types in order to obtain the right structure packing for the hardware.

If bit-mapped structures are to be used, one may want to check how the compiler
handles them and ensure that the desired bit-mapping is actually carried out. The
code of bit-mapped structures should also be clearly marked with a comment
indicating potential non-portability.

Reference

1. ISO, ISO 11898-1:2003: Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link
Layer and Physical Signaling (International Organization for Standardization, Geneva, 2003)

Chapter 8
The Right Start

The startup code is called by the microcontroller hardware after reset and is the
first code to execute before calling the main() subroutine. The startup code
predominantly consists of initialization code and may include, among other things,
CPU-initialization, zero-clear RAM initialization, ROM-to-RAM static initializa-
tion and static ctor call initialization. The compiler’s default startup code is often
tightly bound to the compiler’s runtime libraries and may not be available as source
code. In addition, even if the source of the startup code is available, it can be hard to
understand because it may be written in assembly and cluttered with a multitude of
options required for supporting a variety of chip derivatives. This chapter describes
how to implement a custom startup code and its initializations written predominantly
in C++, from reset to main().

8.1 The Startup Code

It can be preferable to write a custom version of the startup code. This makes it
possible to include specialized initialization mechanisms for I/O pins, oscillators,
watchdog timers, etc. These might otherwise be postponed to an unduly late time,
such as in the main() subroutine. The flowchart of a custom startup code is shown
in Fig. 8.1.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_8&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_8

156 8 The Right Start

Fig. 8.1 The flowchart of a
customized startup code is
shown

Initialize CPU registers

Initialize chip
(I/O ports, watchdog, clock, etc.)

Zero-clear bss

Initialize static data

Call static ctors

Unexpected return
from main

Jump to main
(and never return)

We will now examine the main parts of a potential startup code going step-
by-step through a real example. The code below shows the implementation of the
startup code for our target with the 8-bit microcontroller in the reference project of
the companion code.

void __my_startup()
{

// Load the sreg register.
asm volatile("eor r1, r1");
asm volatile("out 0x3f, r1");

// Set the stack pointer.
asm volatile

("ldi r28, lo8(__initial_stack_pointer)");
asm volatile

("ldi r29, hi8(__initial_stack_pointer)");

// Load the sph register (stack pointer high).
asm volatile("out 0x3e, r29");

// Load the spl register (stack pointer low).
asm volatile("out 0x3d, r28");

8.1 The Startup Code 157

// CPU Initialization, including watchdog,
// port, oscillators (i.e. clocks).
mcal::cpu::init();

// Initialize statics from ROM to RAM.
// Zero-clear default-initialized static RAM.
crt::init_ram();
mcal::wdg::secure::trigger();

// Call all ctor initializations.
crt::init_ctors();
mcal::wdg::secure::trigger();

// Call main (and never return).
asm volatile("call main");

// Catch an unexpected return from main.
for(;;)
{

// Replace with a loud error if desired.
mcal::wdg::secure::trigger();

}
}

The first part of the startup code initializes the some CPU registers. For other
architectures, it may also be necessary to initialize other kinds of CPU registers
and data pointers needed for rudimentary operations such as bus access, subroutine
calls, etc. These kinds of registers are target-specific and need to be carefully studied
in the microcontroller handbook. This portion of the startup code usually needs to
be written in assembly or, as is the case above, with one or more lines of inline
assembly.

The remaining parts of the startup code can often be written in C++. These
include low-level hardware initialization (Chap. 9), RAM initialization, static con-
structor initialization and the jump to main().

This example of the startup code is primarily written in C++ with small hybrid
assembly components. This makes it convenient to distribute the important parts
of the initialization sequence in procedural subroutines with easy-to-recognize
names. With this technique, it is possible to implement the startup codes for
different microcontrollers in a similar fashion. This can potentially be a significant
improvement over the all-assembly implementations predominantly found for many
compilers and most target systems.

158 8 The Right Start

8.2 Initializing RAM

There are usually at least two kinds of RAM that need to be initialized in the startup
code. These include both non-initialized static variables as well as the initialized
ones. Non-initialized, non-local static variables need to be zero-cleared. Non-local
static variables that are initialized must be set with constant values extracted from a
so-called ROM-to-RAM table. For example,

namespace
{

// Needs zero-clear.
std::uint16_t flag;

// Needs ROM-to-RAM init.
std::uint8_t version = UINT8_C(3);

}

In this code, there are two static variables with file-level scope, flag and
version. The flag variable is not initialized. As such, it needs to be initialized
with the default value of zero. The variable version is initialized with the value 3.
Its initialization is carried out with a runtime mechanism that copies into it the initial
value of 3.

All non-initialized static variables such as the flag variable shown above need
to be zero-cleared. In order to facilitate this, the compiler and linker have located
variables of this kind in special linker section. For GNU compilers, this is often
called the bss-section.

In order to zero-clear the bss-section, the startup code loops through the bss-
section from begin to end and sets its contents to zero. The code below shows a
potential implementation of the zero-clear mechanism for the bss-section.

// Linker-defined begin and end of the .bss section.
extern std::uintptr_t _bss_begin;
extern std::uintptr_t _bss_end;

void init_bss()
{

// Clear the bss segment.
std::fill(&_bss_begin, &_bss_end, 0U);

}

8.2 Initializing RAM 159

The init_bss() subroutine uses std::fill() to loop through the bss-
section and zero-clear its contents. Notice how the external symbols _bss_begin
and _bss_end have been made available to simplify the coding. These symbols
have been defined in the linker script. We will discuss the linker script and the
definitions of these symbols in Sect. 8.4 below.

Initialized static variables such as version shown above need to be initialized
with constant values. The compiler and linker have, once again, created two special
linker sections to facilitate these kinds of initializations. One linker section contains
all the static variables needing initialization. This is often called the data-section.
The other linker section contains a table of the actual values used to initialize them.
This is referred to as the rodata-section (as in “read-only” data).

In order to initialize the static variables, then, all one needs to do is loop through
the data-section and copy to it the contents of the rodata-section. For example,

// Linker-defined begin of rodata.
extern std::uintptr_t _rodata_begin;

// Linker-defined begin and end of data.
extern std::uintptr_t _data_begin;
extern std::uintptr_t _data_end;

void init_data()
{

// Calculate the size of the data section.
const std::size_t cnt = (&_data_end - &_data_begin);

// Copy the rodata section to the data section.
std::copy(&_rodata_begin,

&_rodata_begin + cnt,
&_data_begin);

}

The initialization sequence in init_data() uses std::copy() to loop
through the rodata-section and copy the ROM-to-RAM initialization contents to
the data-section. Again, this mechanism makes use of external symbols that have
been defined in the linker script (Sect. 8.4).

160 8 The Right Start

8.3 Initializing the Static Constructors

As mentioned in Sect. 1.5, static constructors of class types have compiler-generated
constructor code. The same is true for static variables initialized with the return
value of a subroutine. For example, recall the constructor call of led_b5

// Create led_b5 on portb.5.
const led led_b5
{

mcal::reg::portb,
mcal::reg::bval5

};

This code was first introduced in the LED program of Sect. 1.1. It has a static
instance of the led class called led_b5. Since led_b5 must be fully formed
before it can be used in main(), the compiler has automatically generated a
subroutine for its constructor. For example, GCC for our target with the 8-bit
microcontroller creates a subroutine named _GLOBAL__I_main() that carries
out the initialization of led_b5.

The pseudo-code that the compiler generates for _GLOBAL__I_main() is
shown below.

000000ba <_GLOBAL__I_main>:
;led(const port_type p, const bval_type b) : port(p),
; bval(b)

; 4 assembly lines to initialize port, bval.

;{
; // Set the port pin to low.
; *reinterpret_cast<volatile bval_type*>(port)
; &= static_cast<bval_type>(~bval);

; 1 assembly line to clear the port pin.

; // Set the port pin to output.
; *reinterpret_cast<volatile bval_type*>(port - 1u)
; |= bval;

; 1 assembly line to set the port direction.
;}

8.3 Initializing the Static Constructors 161

The original C++ source code from the led class constructor has been included
in this assembly listing in the form of comments. With the source code included,
it is possible to recognize the assembly code sequences generated for both the
constructor initialization list and also for setting the port pin direction to output
and the port pin value to low.

Most C++ programs have numerous objects requiring construction. In general,
the compiler generates a subroutine with construction code for each one of them.
The addresses of these compiler-generated subroutines are stored in a special linker
section. Different compilers use different names for the linker section containing
the constructors. Section names such as ctors, init_array and the like are
used by ports of GCC. Regardless of what the linker section is called, however, it is
essentially just a table of function pointers.

In order to initialize the constructors, then, a mechanism is needed that loops
through the ctors-section and sequentially calls each compiler-generated con-
structor function. For example,

typedef void(*function_type)();

// Linker-defined begin and end of the ctors.
extern function_type* _ctors_begin[];
extern function_type* _ctors_end[];

void init_ctors()
{

std::for_each(_ctors_begin,
_ctors_end,
[](const function_type pf)
{

pf();
});

}

This code was first introduced in Sect. 6.18 as an example providing motivation
to use lambda expressions. As mentioned in that section, the code calls the
compiler-generated constructors in the range

[
ctors_begin, ctors_end

)

with the STL’s std::for_each() algorithm. Thereby, each compiler generated
constructor code is executed and every static object is fully formed before the
jump to main(). Actually, the real code runs through the range of constructors in
reverse order using an std::reverse_iterator because GCC stores its static
constructors in reverse order. This detail is, however, irrelevant for the example.

162 8 The Right Start

8.4 The Connection Between the Linker and Startup

In the previous two sections, we have discussed three initializations that occur before
the jump to main(). These include zero-clearing the bss-section, initializing
statics in the bss-section and calling all of the static constructors in the ctors-
section.

One might wonder how convenient symbols like _bss_begin and _bss_end
for the bss-section or _ctors_begin and _ctors_end for the ctors-section
come into existence and can be used like normal variables in C++ code. The answer
lies in the so-called linker definition file, also known as a linker script. The linker
definition file defines the addresses where all program components will be located.
For example, all normal program code (also known as text) will be located in the
text-section. Static variables that need to be zero-cleared will be located in the
bss-section, and so on.

The linker definition file needs to be written with intimate knowledge of the
microcontroller’s memory map in order to ensure that each program component
gets located in the right place. Components such as program code, the list of static
constructors and the ROM-to-RAM data table should be located in the read-only
program memory of the microcontroller. The contents of the bss-section and the
data-section need to be placed in static RAM.

GNU compilers use a specific language for the linker definition file. A simplified
example of a linker definition file is shown below. For additional information on
GNU linker definition files, turn to Barr’s book [1].

ENTRY(start)

MEMORY
{

ROM(rx) : ORIGIN = 0x08000000, LENGTH = 128K
RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 8K

}

SECTIONS
{

/* Program code, read-only data and static ctors */
.text :
{

. = ALIGN(4);
KEEP(*(.isr_vector))

*(.text)

(.text.)

*(.rodata)

(.rodata)
_ctors_begin = .;

8.4 The Connection Between the Linker and Startup 163

KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
_ctors_end = .;

} > ROM

_rom_data_begin = .;

/* The ROM-to-RAM initialized data section */
.data :
{

. = ALIGN(4);
_data_begin = . ;

*(.data)

(.data.)
_data_end = . ;

} > RAM AT > ROM

/* The uninitialized (zero-cleared) data section */
.bss :
{

. = ALIGN(4);
_bss_begin = .;

*(.bss)

(.bss)
_bss_end = . ;

} > RAM
}

This sketch of a linker definition file shows how the most important linker
sections and symbols can be defined in a linker script. It can be difficult to
understand the language of the GNU linker. Even without understanding every part
of it, though, it is possible to gain an intuitive feeling of how the linker definition file
works. There are three main parts in this linker script. The first part uses the ENTRY
directive to define the startup routine startup(). This is the routine that was first
shown in Sect. 8.1. The second part of the linker definition file uses the MEMORY
directive to define two important memory classes, ROM and RAM. The MEMORY
directive also defines the addresses and sizes of the ROM and RAM. The third part
of the linker definition file uses the SECTIONS directive to define how the various
program sections should be located in ROM and RAM.

It is possible to define variables (in other words symbols) in the linker definition
file. Symbols defined in this way become available for use in the source code as
variables. For example, the bss-section begins at address 0x20000000 in RAM
and includes all non-initialized statics. Bracketing the begin and end of the lines
describing the bss-section are the symbols _bss_begin and _bss_end. These

164 8 The Right Start

symbols can actually be used in C++ code, in particular for the C++ loop that
initializes the bss-section in init_bss above. Similarly, other symbols such
as _ctors_begin, _ctors_end, _data_begin, _data_end, etc. can be
defined in the linker script used in their respective C++ initialization loops.

8.5 Understand Static Initialization Rules

Now that we have discussed RAM and static ctor initialization, we will consider
some of the storage requirements pertaining to initialization. C++ has several rules
governing the initialization of statics. It is essential to understand these rules in
order to avoid redundant initialization code and avoid subtle pitfalls such as using
an object before it has been initialized.

All statics with file-level or global scope, both built-in types and class types alike,
are initialized by the startup code before the jump to main(). In particular, consider
non-local statics with one of the built-in integer, character, floating-point or Boolean
types. These are initialized by the startup code with the appropriate default values
such as 0 for type int, ’\0’ for type char, 0.0F for type float, false for
type bool, etc.

The statics in following code, for example, do not need explicit initialization
because they are default initialized by the startup code.

namespace
{

char chr; // Default initialized.
std::uint8_t key; // Default initialized.
float val; // Default initialized.
bool flag; // Default initialized.

}

struct protocol_frame
{

static std::uint8_t count;
protocol_frame() { }

};

// Default initialized.
std::uint8_t protocol_frame::count;

8.6 Avoid Using Uninitialized Objects 165

If the default value is the desired one, then explicit initialization is not necessary.
For example,

namespace
{

char chr = ’\0’; // Not necessary.
std::uint8_t key = UINT8_C(0); // Not necessary.
float val = 0.0F; // Not necessary.
bool flag = false; // Not necessary.

}

These static variables do no not need explicit initialization. In fact, extra
initialization when the default suffices is redundant. It increases both the code
size and the runtime of the pre-main by adding more entries to the initialization
sequence.

A static with an initial value that differs from the default value must be explicitly
initialized. For example,

namespace
{

char chr = ’A’; // Explicit init.
std::uint8_t key = UINT8_C(3); // Explicit init.
float val = 4.56F; // Explicit init.
bool flag = true; // Explicit init.

}

8.6 Avoid Using Uninitialized Objects

Static initialization also has runtime characteristics that should be kept in mind
when designing stable software. For example, all non-subroutine-local statics must
be initialized by the compiler before the call to main(). This is simply a necessity.

Furthermore, a non-subroutine-local static is guaranteed to be initialized before
any function in its containing file uses it. This rule is simple enough to keep in
mind for any given file. Because C++ supports the translation of separate files,
though, no rule governs the order of initialization of different files. Even though
this aspect of the C++ language is well-known, it understandably remains a big
source of confusion that can lead to an unpredictable program crash.

166 8 The Right Start

We will now examine a case in point. Consider a simple structure called alpha
and a static instance of it named instance_of_alpha residing in alpha.cpp.
For example,

struct alpha
{

std::uint16_t value;
alpha(const std::uint16_t a) : value(a) { }

};

// In file alpha.cpp.
alpha instance_of_alpha(3U);

Imagine, further, that the valuemember of instance_of_alpha is used to
initialize an unrelated static unsigned integer called beta residing in beta.cpp.
In particular,

// In file beta.cpp.
extern alpha instance_of_alpha; // From alpha.cpp.

// Oops, instance_of_alpha might be uninitialized!
std::uint16_t beta = instance_of_alpha.value;

Suppose that the static contents of beta.cpp just happen to be initialized
before those of alpha.cpp. In this case, the instance_of_alpha object in
alpha.cpp will be uninitialized when beta in beta.cpp tries to use it. This
subtle, almost hidden, phenomenon can truly wreak havoc in the code of the unwary
programmer. It afflicts simple built-in types and class types alike, regardless of an
object’s complexity. This makes it all too easy to use something before it has been
initialized.

A well-known design pattern using a so-called singleton instance remedies this
problem.

// In file alpha.cpp.
alpha& safe_reference_to_alpha()
{

static alpha instance_of_alpha(3U);
return instance_of_alpha;

}

// In file b.cpp.
// OK, but mind the overhead.
extern alpha& safe_reference_to_alpha();

8.7 Jump to main() and Never return 167

// OK, safe_reference_to_alpha() always returns
// an initialized object.
std::uint16_t beta = safe_reference_to_alpha().value;

The singleton instance solves this problem because a subroutine-local static will
be initialized one time only, at the moment first encountered in the subroutine.
The solution is simple enough, but it comes at the expense of overhead. In
particular, the singleton instance has overhead for the call of the subroutine
safe_reference_to_alpha(). This overhead includes both the first-time
initialization of the local static object instance_of_alpha as well as the neces-
sity to check its guard-variables every time safe_reference_to_alpha() is
called.1 See Item 47 in Meyers [2] for additional details on the singleton instance.

8.7 Jump to main() and Never return

Near the end of the startup code listed in Sect. 8.1, there is a line which jumps to
main(). In particular,

extern "C" void startup()
{

// ...

// Jump to main (and never return).
asm volatile("bl main");

// ...
}

Since the C++ compiler forbids explicit call of the main() subroutine, the jump
to main() must be programmed in assembly. This line, of course, must be written
in the local assembly dialect of appropriate for the microcontroller being used.

In the startup code presented in this chapter, the program is never expected
to return from main(). This is typical for a microcontroller application that
starts at power-up and never stops execution, only stopping upon hard power-
down (i.e., switching off the microcontroller power). If the application stops with

1Guard-variables are compiler-generated flags used to mark the if a given file-local static has been
initialized—a sort of “I am already set” marker preventing multiple initialization. Note also, as an
aside, that guard-variables usually have severely mangled names.

168 8 The Right Start

a controlled shutdown, then the return from main() must be properly handled and
a mechanism for calling the static destructors should be implemented.

Most of the programs in this book are never expected to return from main().
An unexpected exit from main() is handled with an infinite loop that services the
watchdog timer and never breaks. For example,

extern "C" void startup()
{

// ...

// Catch an unexpected return from main.
for(;;)
{

mcal::wdt::service();
}

}

The strategy used here is to keep the hardware in its last known state and
undertake no further actions as a sensible error reaction to an unexpected exit
from main(). This may or may not be an appropriate reaction for a given
microcontroller application. A reset or some other kind of error reaction may be
better suited to another application.

8.8 When in main(), What Comes Next?

One might be tempted to implement large parts of the application in the main()
subroutine. It can, however, be considered poor style to do so because this detracts
from modularity and clarity of design.

The main() function in a typical real-time C++ project, therefore, might consist
of just a few lines. For instance,

namespace mcal
{

void init();
}

void scheduler();

int main()
{

// Initialize the microcontroller layer.
mcal::init();

References 169

// Call the multitasking scheduler
// and never return.
scheduler();

}

Here, main() is literally a two-liner. After initializing the MCAL (Sect. B.2),
the program calls its multitasking scheduler. This scheme for main() is also used
in Sect. 11.5.

Control never returns to the main() subroutine, and the application runs indefi-
nitely in a multitasking environment. Ideally the application will be robust, designed
with clear modularity, appropriate temporal efficiency and sensible architectural
granularity, as described in Chap. B.

References

1. M. Barr, Programming Embedded Systems with C and GNU Development Tools, 2nd edn.
(O’Reilly, Sebastopol, 2006)

2. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.
(Addison-Wesley, Boston, 2005)

Chapter 9
Low-Level Hardware Drivers in C++

Microcontroller applications usually require low-level drivers for peripheral devices
such as I/O ports, interrupts, timers, communication interfaces like UART, CAN [5],
SPITM, etc. This chapter presents several efficient methods for programming
peripheral hardware drivers in C++. Low-level drivers are inherently dependent on
the microcontroller and its peripherals. Even though the low-level hardware drivers
in this chapter are primarily designed for our target with the 8-bit microcontroller,
an effort has been made to keep them as portable as possible. In this way, they
can be adapted to other microcontrollers. The final two sections in this chapter
present complete, non-trivial examples. The first (chapter09_07) controls a
seven-segment display [4]. The second (chapter09_08) produces colorful light
by animating an RGB LED.

9.1 An I/O Port Pin Driver Template Class

General purpose I/O ports can be used for a variety of interfaces to on-board and
off-board devices. A simple general purpose I/O port can be controlled via three
registers, an output data register for setting the output value, a direction register
for selecting input or output, and an input data register for reading the input value.
Port pins often come grouped in registers that are 8, 16 or 32 bits wide. The general
purpose I/O ports on our target with the 8-bit microcontroller, for example, can be
controlled with three 8-bit registers, the data register, the direction register and the
input register, as shown in Table 9.1.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_9

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_9&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_9

172 9 Low-Level Hardware Drivers in C++

Table 9.1 The registers of
the general purpose I/O ports
on our target with the 8-bit
microcontroller are
summarized

I/O port Data register Direction register Input register

portb 0x25 0x24 0x23

portc 0x28 0x27 0x26

portd 0x2B 0x2A 0x29

We will now write a template port_pin class that encapsulates a port pin in
one of the general purpose I/O ports, portb, portc or portd, as summarized in
Table 9.1.

template<typename addr_type,
typename reg_type,
const addr_type port,
const reg_type bpos>

class port_pin
{
public:

static void set_direction_output()
{

// Set the port pin direction to output.
port_dir_type::bit_set();

}

static void set_direction_input()
{

// Set the port pin direction to input.
port_dir_type::bit_clr();

}

static void set_pin_high()
{

// Set the port output value to high.
port_pin_type::bit_set();

}

static void set_pin_low()
{

// Set the port output value to low.
port_pin_type::bit_clr();

}

9.1 An I/O Port Pin Driver Template Class 173

static bool read_input_value()
{

// Read the port input value.
port_inp_type::bit_get();

}

static void toggle()
{

// Toggle the port output value.
port_pin_type::bit_not();

}

private:
static constexpr addr_type pdir = port - 1U;
static constexpr addr_type pinp = port - 2U;

// Type definition of the port data register.
typedef reg_access<addr_type,

reg_type,
port,
bpos> port_pin_type;

// Type definition of the port direction register.
typedef reg_access<addr_type,

reg_type,
pdir,
bpos> port_dir_type;

// Type definition of the port input register.
typedef reg_access<addr_type,

reg_type,
pinp,
bpos> port_inp_type;

};

The port_pin template class is essentially a light-weight wrapper around
the reg_access template class previously introduced in Chap. 7. The fixed-bit
subroutines of the reg_access class are called in order to manipulate the port
pins. The member functions of port_pin class are all declared with the static
keyword and there is no class constructor because port_pin is designed to be
mapped to a specific port pin using a type definition. In other words, objects of type
port_pin are not intended to be created.

174 9 Low-Level Hardware Drivers in C++

Using the port_pin template class is straightforward. The code below, for
example, maps the port_pin template class to portd.0 and subsequently sets
the I/O pin to output with logic level high.

void do_something()
{

// Map portd.0 using a type definition.
typedef port_pin<std::uint8_t,

std::uint8_t,
mcal::reg::portd,
UINT8_C(0)> port_d0_type;

// Set portd.0 to output with logic level high.
// Set the value before direction to avoid spikes.
port_d0_type::set_pin_high();
port_d0_type::set_direction_output();

}

Additional security can be added to the port_pin template class if desired.
The functions that set the output value, for instance, could first ensure that the port
pin direction is actually set to output before setting the logic level.

9.2 Programming Interrupts in C++

Developing low-level drivers in real-time C++ such as a timer counter or a serial
UART interface may require the programming of one or more interrupts. An
interrupt is an asynchronous signal caused by a hardware or software event that
indicates that a special interrupt service routine should execute.

Interrupt service routines usually have higher CPU priority than the priority of
the main() subroutine. Consider, for example, a microcontroller peripheral timer
that is programmed to count in the upward direction. This up-counting timer can
be configured to generate a hardware interrupt request when the value of the timer
counter register reaches the value programmed in its compare register. In this way,
a timer can be used to call an interrupt service routine with a fixed period. The
resulting interrupt frequency is more precise than that which could be achieved with
the CPU priority of the main() subroutine.

Programming an interrupt in C++ involves three main steps:

• Writing an interrupt service routine.
• Putting the interrupt service routine in the interrupt vector table.
• Activating the interrupt source and enabling global interrupts.

9.2 Programming Interrupts in C++ 175

Among other timers, our target with the 8-bit microcontroller has an 8-bit
peripheral timer called timer0. The timer0 has a compare register a. The
interrupt service routine shown below is designed to be called when the counter
register of timer0 register reaches the value set in its compare register a.
This interrupt service routine has been discussed previously within the context of
efficiency in Sect. 6.15.

// Attributes for an ISR and C-linkage.
extern "C"
void __timer0_cmp_a_isr() __attribute__((interrupt));

// The timer0 compare-a interrupt service routine.
void __timer0_cmp_a_isr()
{

// This interrupt occurs when the counter
// register reaches the compare-a register.

// Do something...
}

The GNU C++ compiler [3] uses special attributes in the function prototype
of an interrupt service routine. These are realized with the __attribute__()
declaration syntax, for example in the prototype of __timer0_cmp_a_isr().
The __attribute__() declaration syntax is a language extension specific to
GNU compilers.1 The pairs of two leading and trailing underscores are intended to
make the __attribute__() language extension uniquely visible.

GCC ports to other microcontrollers use different attribute keys and other
compilers use different language extensions for declaring interrupt service routines,
making interrupt syntax highly compiler-dependent. Declaring an interrupt service
routine in C or C++ always relies on compiler-dependent syntax because it is not
specified by ISO/IEC [6, 7], and is considered to be an implementation detail of the
compiler.

Interrupt service routines abruptly interrupt normal program flow. The compiler
may, therefore, need to create a special subroutine frame consisting of assembly
sequences that save and restore the register context at interrupt entry and exit. The
__attribute__() syntax shown above clearly indicates that this function is
an interrupt service routine, allowing the compiler to generate the interrupt frame.
Assuming that an interrupt service routine can be identified as such via language
extensions, the compiler generates the interrupt frame automatically.

1GNU compilers support numerous attributes for functions, variables, objects and types with its
__attribute__() declaration syntax. See [2] and [10] for additional details.

176 9 Low-Level Hardware Drivers in C++

Depending on the characteristics of the underlying peripherals and the microcon-
troller architecture, it may be necessary to actively clear an interrupt request flag in
software in the interrupt service routine. It is, on the other hand, just as common
for the microcontroller hardware to automatically clear the interrupt request in the
interrupt service routine. In __timer0_cmp_a_isr() above, for instance, it is
not necessary to explicitly clear an interrupt request flag in software because the
microcontroller hardware does it.

Interrupts can be generated for all sorts of hardware and software events, not
only for timers. A communication device such as a serial UART, for instance, will
usually have at least three unique interrupt sources, one for byte reception, a second
for byte transmission and a third for framing error on a failed reception. Typically,
these interrupts will be employed when developing a real-time asynchronous serial
communication driver.

Small microcontrollers usually have a few tens of interrupt sources. Large
microcontrollers may have hundreds of interrupt sources or even more. It is
customary, then, to store the addresses of the interrupt service routines in what is
known as an interrupt vector table.

In practice, the interrupt vector table is implemented as an array of function point-
ers, possibly with added fill bytes, containing the addresses of the interrupt service
subroutines. For example, the interrupt vector table for the 8-bit microcontroller in
the reference project is shown below.

// Declare the interrupt vector table.
extern "C"
const volatile isr_type isr_vectors[26U]

__attribute__ ((section(".isr_vectors")));

// The interrupt vector table.
extern "C"
const volatile isr_type isr_vectors[26U] =
{

{{0x0C, 0x94}, startup }, // 1 reset
{{0x0C, 0x94}, __unused_isr}, // 2 ext0
{{0x0C, 0x94}, __unused_isr}, // 3 ext1
{{0x0C, 0x94}, __unused_isr}, // 4 pin0
{{0x0C, 0x94}, __unused_isr}, // 5 pin1
{{0x0C, 0x94}, __unused_isr}, // 6 pin2
{{0x0C, 0x94}, __unused_isr}, // 7 watchdog
{{0x0C, 0x94}, __unused_isr}, // 8 timer2 cmp a
{{0x0C, 0x94}, __unused_isr}, // 9 timer2 cmp b
{{0x0C, 0x94}, __unused_isr}, // 10 timer2 ovf
{{0x0C, 0x94}, __unused_isr}, // 11 timer1 cap
{{0x0C, 0x94}, __unused_isr}, // 12 timer1 cmp a
{{0x0C, 0x94}, __unused_isr}, // 13 timer1 cmp b

9.2 Programming Interrupts in C++ 177

{{0x0C, 0x94}, __unused_isr}, // 14 timer1 ovf
// 15 timer0 cmp a

{{0x0C, 0x94}, __timer0_cmp_a_isr},
{{0x0C, 0x94}, __unused_isr}, // 16 timer0 cmp b
{{0x0C, 0x94}, __unused_isr}, // 17 timer0 ovf
{{0x0C, 0x94}, __unused_isr}, // 18 spi(TM)
{{0x0C, 0x94}, __unused_isr}, // 19 usart rx
{{0x0C, 0x94}, __unused_isr}, // 20 usart err
{{0x0C, 0x94}, __unused_isr}, // 21 usart rx
{{0x0C, 0x94}, __unused_isr}, // 22 adc
{{0x0C, 0x94}, __unused_isr}, // 23 eep Ready
{{0x0C, 0x94}, __unused_isr}, // 24 comparator
{{0x0C, 0x94}, __unused_isr}, // 25 two-wire
{{0x0C, 0x94}, __unused_isr} // 26 spm

};

The first position in the interrupt vector table is often used by the microcontroller
hardware as the entry point of the program. This is where program execution starts
after microcontroller reset. In the sample above, for instance, startup() is the
program entry point. This is, for example, the same startup() routine that was
described in Sect. 8.1. Notice how the timer0 compare register a interrupt service
routine __timer0_cmp_a_isr() is entered at the 15th position of the interrupt
vector table, which is where it belongs for this particular microcontroller hardware.

The interrupt vector table must usually be mapped to a fixed physical address.
The can be accomplished in software using a linker section. As shown above,
placing objects in a linker section uses special section attributes, again a language
extension particular to GCC. The interrupt vector table uses C-linkage in order
to eliminate potential C++ name mangling. This produces a non-mangled name
for the interrupt vector table and makes it easier to identify it in the map file, for
example, when troubleshooting or verifying the proper location, alignment, contents
and length. See Sects. 6.5, 6.6 and 8.4.

It can be good practice to fill unused entries in the interrupt vector table with
a user-provided handler for unused interrupts. For example, unused interrupts in
the isr_vectors table shown above use the subroutine __unused_isr().
The unused interrupt handler can generate a loud error such as waiting forever in
en endless loop, optionally executing a nop-operation or, even louder, toggling a
digital I/O port. A potential implementation of an unused interrupt service routine
is shown below.

extern "C"
void __unused_isr() __attribute__((interrupt));

// The unused interrupt handler.
extern "C"

178 9 Low-Level Hardware Drivers in C++

void __unused_isr()
{

// Generate a loud error. It could be made
// even louder by toggling an I/O port.
for(;;)
{

mcal::irq::nop();
}

}

For some microcontrollers, it may also be necessary to add fill bytes to the
interrupt vector table. Fill bytes in the interrupt vector table generally have a special
hardware purpose such as ensuring proper memory alignment or executing a low-
level jump operation. The fill bytes {0x0C, 0x94} shown in the sample interrupt
vector table above, for instance, constitute the opcode for a jump operation on our
target with the 8-bit microcontroller. These aspects of interrupt programming in
C++ are notoriously non-portable. They are specific to a given microcontroller and
compiler and usually can not be written in a generic form.

The final step involved in programming an interrupt is enabling the interrupt
source. In practice, this is usually done by writing special enable bits in a special
function register via direct memory access (Chap. 7). For example,

// Enable the timer0 compare match a interrupt.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::timsk0,
UINT8_C(0x02)>::reg_set();

This line of code enables bit-1 in the timsk0 special function register of our
target with the 8-bit microcontroller. This example enables a timer interrupt, and is
described in the following section.

9.3 Implementing a System-Tick

A system-tick is typically an essential part of the low-level driver software because
it provides the timebase for the entire software project. The multitasking scheduler
described in Chap. 11, for instance, uses a timebase that originates from a system-
tick. In this section, we will use timer0 on our target with the 8-bit microcontroller
to create a system-tick. The timer is configured to count in the upward direction in
compare mode. Together with a small amount of software, this underlying timer is
used to build a high-resolution 32-bit system-tick with a frequency of 1MHz.

9.3 Implementing a System-Tick 179

Fig. 9.1 The representation
of the 32-bit system-tick is
shown. The three upper bytes
of the system-tick are stored
in the system_tick
variable. The lower byte of
the system-tick comes from
timer0’s counter register
tcnt0

std::uint32_t
Upper 3 Bytes timer0

0 … 255

auto-reload

byte 3 byte 2 byte 1 tcnt0

void __timer0_cmp_a_isr()
{
// (0 … 16,777,216) << 8
system_tick += 0x80;

}

increment system_tick in ISR

Since timer0 has counter and compare registers that are 8-bits in width, the
32-bit system-tick needs to be synthesized from a combination of hardware and
software. The lower byte of the system-tick comes from the timer0 counter
register tcnt0 and the upper three bytes are stored in the variable system_tick.
This composite representation of the system-tick is shown in Fig. 9.1.

One possible declaration of the system_tick is shown below.

namespace
{

// The one (and only one) 32-bit system-tick.
volatile std::uint32_t system_tick;

}

The system_tick variable is qualified as volatile. This tells the compiler
that it should avoid aggressive optimization involving system_tick. This is
necessary because the value of system_tick value is changed via incrementation
in the interrupt service routine but used elsewhere.

We will now setup timer0 to generate a periodic interrupt for incrementing the
system-tick. The code below initializes timer0 to count in the upward direction.
The frequency of the clock source is set to 2MHz. The timer0 compare register a
is set to 0xFF = 255 and the compare match interrupt is activated.

void mcal::gpt::init()
{

// Clear the timer0 overflow flag.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::tifr0,
UINT8_C(0x02)>::reg_set();

// Enable the compare match a interrupt.

180 9 Low-Level Hardware Drivers in C++

mcal::reg_access<std::uint8_t,
std::uint8_t,
mcal::reg::timsk0,
UINT8_C(0x02)>::reg_set();

// Set ctc mode 2 for timer0 compare match a.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::tccr0a,
UINT8_C(0x02)>::reg_set();

// Set the compare match a value to 255.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::ocr0a,
UINT8_C(0xFF)>::reg_set();

// Set the timer0 source to 16MHz/8 = 2MHz and
// start counting.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::tccr0b,
UINT8_C(0x03)>::reg_set();

}

The mcal::gpt::init() routine is designed to be called once, and only
once, from the initializationmechanism of theMCAL. The result of the initialization
code in mcal::gpt::init() is to set the timer0 frequency to 2MHz and
activate an interrupt at every full cycle of its 8-bit timer period.

When the timer0 counter register rolls over from 255 to 0, an interrupt for
match on compare register a is generated. The corresponding interrupt service
routine __timer0_cmp_a_isr() is called and it increments the upper three
bytes of the system-tick. One possible implementation of this mechanism is shown
in the code sample below.

void __timer0_cmp_a_isr()
{

// This interrupt occurs every 128us.
// Increment the 32-bit system-tick by 128.
system_tick += UINT8_C(0x80);

}

9.4 A Software PWM Template Class 181

Here, the system-tick is incremented with 0x80 which is 128. The 256 timer
ticks required for the compare match interrupt have been divided by 2 because the
underlying timer frequency is 2MHz, which is double the system-tick frequency. In
this way, a 32-bit system-tick with a frequency of 1MHz and a resolution of 1μs
has been created with the 8-bit timer0 hardware and a small amount of software.

To obtain the entire value of the 32-bit system-tick, the timer counter register
tcnt0 is combined with the upper three bytes of the system_tick variable
using logical or. Since the timer counter register is rapidly incremented by the
timer hardware, a consistency check must be included in the routine that reads the
system_tick variable.

The interface to the system-tick can be found in the gpt namespace of the
MCAL in the reference project of the companion code. Here, gpt stands for general
purpose timer. The interface to the system-tick uses a procedural subroutine called
get_time_elapsed(). In other words,

mcal::gpt::value_type mcal::gpt::get_time_elapsed();

Complete details on the implementation of the system-tick for both our targets
with the 8-bit microcontroller and the 32-bit microcontroller can be found in the
reference project of the companion code. For the 32-bit target, a 16-bit timer
hardware counter register is combined with a quad-word in software to synthesize a
64-bit system-tick with a frequency of 1MHz and a resolution of 1 μs.

The standard library time facilities in <chrono> require the implementation
of several clocks, one of them being a high-resolution clock. The system-tick
presented in this section is well-suited for providing the underlying timebase for
the high_resolution_clock in <chrono>. A methodology for using the
system-tick as the timebase for <chrono>’s high-resolution clock is presented in
Sect. 16.5.

9.4 A Software PWM Template Class

A pulse-width modulated signal (PWM) is a square wave that usually has a fixed
period and a variable duty cycle. A PWM signal uses a cyclical counter that
increments and is reset at the end of the PWM period. When the counter reaches
the value matching the duty cycle of the PWM, the output switches from high to
low, thereby creating a square wave. PWM signals with duty cycles of 20%, 50%
and 80% are shown in Fig. 9.2. PWM signals can be generated with software or
with a peripheral timer. The duty cycle, period and resolution of a PWM signal are
determined by the configuration of the underlying software or timer.

Dedicated PWM units are often integrated in the microcontroller hardware
peripherals. For example, a PWM signal can be created with a peripheral timer
that has a counter, a compare register and a dedicated auto-toggle output pin

182 9 Low-Level Hardware Drivers in C++

Fig. 9.2 PWM signals with
duty cycles of 20%, 50%
and 80% are shown

associated with the compare event of the timer compare register. A hardware-based
PWM signal can be set up and programmed to run independently without CPU
supervision.

A typical user interface for a PWM signal generator provides public methods
for setting and retrieving the duty cycle. This interface has been used with the pwm
class in conjunction with the LED class hierarchy presented previously in Sect. 4.1.
The example here makes a more detailed implementation of a dedicated PWM class
called pwm_type.

The synopsis of the pwm_type class is shown below.

class pwm_type
{
public:

pwm_type(const std::uint8_t duty = UINT8_C(0));

void set_duty(const uint8_t duty);

std::uint8_t get_duty() const;
};

A PWM signal generated with software uses a timebase for the counter and
manual manipulation of an I/O pin to toggle the signal. Generating a PWM
signal with software may be more CPU-intensive than using a dedicated hardware
peripheral. A software PWM signal generator does, however, have a slightly higher
degree of flexibility than one in hardware and can also be used even if no dedicated
PWM hardware is available.

We will now write a template class designed to encapsulate a software PWM
signal generator on a digital I/O port.

9.4 A Software PWM Template Class 183

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type bpos,
const std::uint8_t resol = UINT8_C(100)>

class pwm_type
{
public:

pwm_type(const std::uint8_t duty = UINT8_C(0))
: counter(0U),

duty_cycle(duty),
shadow(duty)

{
// Set the pin to output, low.
port_pin_type::set_pin_low();
port_pin_type::set_direction_output();

}

void set_duty(const uint8_t duty)
{

// Set new duty cycle in the shadow register.
std::atomic_store(&shadow,

std::min(duty, resol));
}

std::uint8_t get_duty() const
{

// Retrieve the duty cycle.
return std::atomic_load(&duty_cycle);

}

void service()
{

// Increment the counter.
++counter;

// Set output according to duty cycle.
if(counter <= duty_cycle)
{

port_pin_type::set_pin_high();
}
else
{

port_pin_type::set_pin_low();

184 9 Low-Level Hardware Drivers in C++

}

if(counter >= resol)
{

// Latch in duty cycle from shadow register.
duty_cycle = shadow;

// Reset the counter for a new PWM period.
counter = 0U;

}
}

private:
std::uint8_t counter;
volatile std::uint8_t duty_cycle;
std::uint8_t shadow;

// Define the type for the PWM port pin.
typedef port_pin<addr_type,

reg_type,
addr,
bpos> port_pin_type;

// Make the pwm_type class non-copyable.
pwm_type(const pwm_type&) = delete;
const pwm_type& operator=(const pwm_type&) = delete;

};

This software encapsulation of a PWM signal driver closely mimics a hardware
PWM peripheral timer. When the internal counter is less than the duty cycle, the
output pin is set to high. When the internal counter exceeds the duty cycle, the
output pin is set to low. In this way, the requested signal is generated on the output
pin. The service()member should be called with a fixed tick cycle, such as from
a timer interrupt service routine with a period of 50 μs. If there are, say, 100 ticks
specified with the resol template parameter and a tick cycle of 50 μs, then the
resulting PWM signal will have a frequency of 200Hz and a resolution of 1%.

A new duty cycle can be set with the set_duty()member function. It includes
a range check and an atomic manipulation of the software shadow register. The new
duty cycle is latched in from the shadow register at the end of each full period of
the counter. This avoids incomplete PWM periods when setting the duty cycle in a
process that is asynchronous to the call of the service() routine.

The example below creates a PWM signal generator on portb.0 with the
default initial duty cycle of 0%. The PWM duty cycle is subsequently set to 20%.

9.5 A Serial SPITM Driver Class 185

Here, it is assumed that the PWM’s service() routine is called with a fixed tick
cycle, for instance, in an asynchronous timer interrupt service routine.

// Make a type definition for a PWM signal on portb.0.
typedef pwm_type<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(0)> pwm_b0_type;

// Create pwm0 on portb.0.
pwm_b0_type pwm0;

void do_something()
{

// Set the duty cycle to 20 percent.
pwm0.set_duty(UINT8_C(20));

}

9.5 A Serial SPITM Driver Class

SPITM is a synchronous full-duplex serial communication interface commonly used
for microcontroller communication with other devices. SPITM is a four-wire serial
bus. A single bus master device initiates data frame transfer with one or more slave
devices using three communication lines and one device-select line per slave device.

An example of an SPITM bus with the master device connected to one slave
device is sketched in Fig. 9.3. Data are clocked out from the bus master to the slave
device on the Master-Out-Slave-In line (MOSI) and clocked from the slave device

Fig. 9.3 SPITM

communication with the
master device connected to a
single slave device is shown

SPITM Bus

SCLK

MOSI

MISO

CSN

SPITM

Master
SPITM

Slave Device

186 9 Low-Level Hardware Drivers in C++

into the master on the Master-In-Slave-Out line (MISO). The flanks of the serial
clock line (SCLK) provide the timebase for bit transfer, which can be quite fast
reaching speeds of several mega-bits per second. Depending on the SPITM dialect,
either rising or falling edge can be used for latching the data bits, and the clock can
optionally idle to high or low.

The synopsis of a potential SPITM communication class is shown in the code
below. It is designed for a microcontroller bus master. This SPITM communication
class is derived from a communication base class similar to the one first
introduced in Sect. 4.9.

class spi_communication : public communication
{
public:

typedef circular_buffer<std::uint8_t, 16U> data_type;

spi_communication();
virtual ~spi_communication();

// The virtual communication interface.
virtual bool send(const std::uint8_t byte_to_send);
virtual bool send(const data_type& data_to_send);
virtual bool recv(std::uint8_t& byte_to_recv);
virtual bool recv(data_type& data_to_recv);
virtual std::size_t recv_ready() const;
virtual bool idle() const;

// Specific channel select for SPI(TM).
bool select_channel(const std::uint8_t ch);

private:
// Private class details.
volatile bool send_is_active;
data_type send_buffer;
data_type recv_buffer;
std::uint8_t channel;

// Friend interrupt service routine for Rx/Tx.
friend void ::__vector_spi_rx_tx_isr();

};

The spi_communication class includes members that are intended for send-
ing and receiving both one byte as well as a container of bytes. Here, the container
type is called data_type and this can be type defined from a standard container
such as std::vector or a specialized container. In the class synopsis here, for

9.5 A Serial SPITM Driver Class 187

example, data_type is type defined from the custom circular_buffer class
described in Sect. 15.5.

The spi_communication class also supplies the public member functions
recv_ready() and idle(). These are used for querying the number of bytes
ready in the receive queue and for checking if the SPITM bus is idle.

The interface of the spi_communication class is intended to be completely
independent of the underlying microcontroller registers. Hardware details are
hidden in the source file of the class implementation. In this way, the user interface
of the spi_communication class is completely portable.

A glance at the private details of the spi_communication class reveals that
the send and receive queues use two individual circular buffers (Sect. 15.5). The
sizes of these buffers need to be appropriately set for the intended use of the class.

The work of the spi_communication class is predominantly implemented
in the send and receive algorithms. The send routine is shown below.

bool spi_communication::send(
const std::uint8_t byte_to_send)

{
mcal::irq::disable_all();

// If the SPI(TM) is idle, begin transmission.
if(!send_is_active)
{

// Set the send-active flag.
send_is_active = true;

// Set the chip-select-not to low.
if(channel == UINT8_C(1))
{

mcal::port::port3::set_pin_low();
}
else
{

mcal::port::port2::set_pin_low();
}

// Send the first byte over SPI(TM).
mcal::reg_access

<std::uint8_t,
std::uint8_t,
mcal::reg::spdr>::reg_set(byte_to_send);

// Enable the SPI(TM) rx/tx interrupt.
enable_rx_tx_interrupt();

188 9 Low-Level Hardware Drivers in C++

mcal::irq::enable_all();
}
else
{

// A transmission is already in progress.
// Pack the next byte-to-send in the send-buffer.
send_buffer.in(byte_to_send);

mcal::irq::enable_all();
}

return true;
}

The send() function uses a standard queuing mechanism. When sending data,
the function first checks if the bus is idle by checking the send_is_active flag.
If so, data transfer is initiated by writing the first data byte to the transfer register
spdr. If a send is already in progress, the byte to send is queued in the circular send
buffer. Queued bytes are sent sequentially in a daisy-chained fashion in the SPITM

bus interrupt service routine until the send queue is empty.
This SPITM bus driver is implemented for two slave devices, and the appropriate

chip-select pin is asserted to low prior to the start of data transmission. Enable and
disable of both the global interrupts as well as the send and receive interrupts of the
SPITM bus ensure atomic data consistency in the send buffer.

The SPITM bus interrupt service routine is shown below.

void __vector_spi_rx_tx_isr()
{

// The SPI(TM) interrupt is on end-of-transmission.

// Receive the byte from the last transmission.
const std::uint8_t byte_to_recv

= mcal::reg_access
<std::uint8_t,
std::uint8_t,
mcal::reg::spdr>::reg_get();

mcal::spi::the_spi.recv_buffer.in(byte_to_recv);

const bool send_buffer_is_empty
= mcal::spi::the_spi.send_buffer.empty();

if(send_buffer_is_empty)

9.5 A Serial SPITM Driver Class 189

{
// The send-buffer is empty and reception from
// the previous (final) transmission is done.
// Deactivate the send-active flag.
mcal::spi::the_spi.send_is_active = false;

// Reset the chip-select-not to high.
if(mcal::spi::the_spi.channel == UINT8_C(1))
{

mcal::port::port3::set_pin_high();
}
else
{

mcal::port::port2::set_pin_high();
}

// Disable the SPI(TM) rx/tx interrupt.
disable_rx_tx_interrupt();

}
else
{

// Send the next byte if there is at least
// one in the send queue.
const std::uint8_t byte_to_send

= mcal::spi::the_spi.send_buffer.out();

mcal::reg_access
<std::uint8_t,
std::uint8_t,
mcal::reg::spdr>::reg_set(byte_to_send);

}
}

The SPITM bus interrupt service routine performs several tasks. It reads the
response byte from the receive register and pushes it onto the receive queue. In
addition, the interrupt sends the next queued byte in the send buffer. When the last
queued byte in the send buffer is fully clocked out of the microcontroller, the chip-
select pin is reset to its idle state of high. The SPITM bus interrupt service routine
uses a non-global static spi_communication object and is privy to its class
internals via friendship with the spi_communication class.

The SPITM bus driver presented here is non-trivial, yet robust, and it has a
portable user interface. The implementation of the spi_communication class
in its entirety can be found in the reference project of the companion code.

190 9 Low-Level Hardware Drivers in C++

9.6 CPU-Load Monitors

Robustness and quality can be key goals of embedded microcontroller software
development. Due to potential cost-sensitive constraints prevalent in the industry,
however, efficiency in size and space can also be important. There can, in fact,
sometimes be a tradeoff between size and space while still attempting to retain
reliability.2

It can, therefore, be good practice to monitor the runtime of all tasks and
interrupts in the project during the phases of the development cycle. Adherence to
runtime limits can be tested with runtime monitoring mechanisms such as real-time
measurements via port pins, software timers or in-circuit emulators.

One of the most rudimentary yet effective means for measuring the runtime of
a code sequence is to toggle a digital I/O port to high directly before the sequence
begins and to toggle it to low just after the sequence completes. Using this technique,
we can observe timing results and statistical variances in timing with a digital
oscilloscope.

Extraneous interrupt load can be eliminated from short timing measurements
by disabling all interrupts for the duration of the measurement and enabling them
immediately thereafter.3 Disabling and enabling all interrupts is a CPU-specific
operation that can be accomplished by setting and clearing the global interrupt flag
or manipulating the CPU priority or other microcontroller-specific means. Most of
the real-time measurements in this book have been performed with this kind of
technique.

The code that has been used to measure the runtime of the CRC32 checksum
algorithm in Sects. 6.1 and 6.2, for example, is shown below.

#include <array>
#include <cstdint>
#include <math/checksums/crc/crc32.h>
#include <mcal_benchmark.h>
#include <mcal_cpu.h>
#include <mcal_irq.h>

std::uint32_t app_benchmark_crc;

void app::benchmark::task_func()
{

// Define the test data ’0’ ... ’9’.

2Tradeoffs revolving around code size, code space and software quality are recurring themes in
this book and have also been discussed in Sects. 6.1 and 6.2.
3Note, however, that disabling the interrupts for too long or forgetting to re-enable them in a timely
fashion may lead to a system crash with unpredictable results.

9.6 CPU-Load Monitors 191

constexpr std::array<std::uint8_t, 9U> data =
{{

UINT8_C(0x31), UINT8_C(0x32), UINT8_C(0x33),
UINT8_C(0x34), UINT8_C(0x35), UINT8_C(0x36),
UINT8_C(0x37), UINT8_C(0x38), UINT8_C(0x39)

}};

// Convenient typedef of the benchmark port pin type.
typedef
mcal::benchmark::benchmark_port_type
port_type;

mcal::irq::disable_all();
port_type::set_pin_high();

// Calculate the CRC-32/MPEG-2 checksum.
app_benchmark_crc =

math::checksums::crc32_mpeg2(data.cbegin(),
data.cend());

port_type::set_pin_low();
mcal::irq::enable_all();

if(app_benchmark_crc == UINT32_C(0x0376E6E7))
{

// The benchmark is OK.
// ...

}
}

This code simply uses a regular I/O port pin such as portb.4 configured
as an output pin to generate a time pulse that can be measured with a digital
oscilloscope. The port pin used for the timing measurement is abstracted with
a template class called benchmark_port_type which is typedef-ed from
port_pin (Sect. 9.1) in <mcal_benchmark.h>. The port pin is toggled high
before the CRC32 checksum calculation begins and low after the computation
completes. The interrupts are disabled for the duration of the measurement. This
measurement technique is trivially simple, yet nonetheless highly effective.

The timing result of a real-time performance benchmark is shown in Fig. 9.4.
This benchmark has been carried out with a modern digital oscilloscope. The
oscilloscope has been used to capture the real-time measurement within the range
of its adjustable cursors. The timing result has been acquired over numerous cycles
in order to obtain a stable average.

192 9 Low-Level Hardware Drivers in C++

Fig. 9.4 The timing result of a real-time performance benchmark is shown. The digital oscillo-
scope captures the toggling of the port pin in the microsecond regime

9.7 Controlling a Seven-Segment Display

This section presents a complete example of controlling a seven-segment display4

using our target system with the 8-bit microcontroller. The complete source code for
this example can be found in the chapter09_07 sample project in the companion
code.

This is a non-trivial project that uses state-of-the-art programming technology
to control a classic electronic device. In particular, this project makes com-
bined use of various advanced programming methods including object-orientated
design (Chap. 4), templates and static polymorphism (Chap. 5), low-level hardware
drivers such as the port_pin template class (Sect. 9.1), a multitasking sched-
uler (Chap. 11), and the utility classes noncopyable and timer (Sects. 15.2
and 15.3). These are used to build up a layered architecture (Sect. B.2) that abstracts
low-level pin-driven LED segments to images of hexadecimal digits represented on
the seven-segment display with animation.

A standard seven-segment display with one digit and a decimal point is used.
It has a red color with a character height of 1/ 2 in (≈1.27 cm). The display has a
10-pin package with two common anode pins. The display segments are low-active
and light up when connected over a resistor to ground. Here, we use 750� resistors
resulting in a current of approximately 4.4mA through each LED segment.5

4See also [4] Sect. 9.10 in the paragraph called “Displays” for additional information on seven-
segment displays.
5The forward voltage of the LED in a given display segment is specified with a typical value of
approximately 1.7V such that

9.7 Controlling a Seven-Segment Display 193

Fig. 9.5 Our target system
with the 8-bit microcontroller
wired to the seven-segment
display is shown. The display
has been fitted on a custom
break-out board. Electrical
connections between the
microcontroller ports and the
display board use traditional
wire-wrapping techniques

The display is capable of representing recognizable images of the hexadecimal
digits 0123456789AbCdEF, where b and d are lowercase. A decimal point to the
lower right of the digit can be controlled independently from the digit segments.

In this example, our target system with the 8-bit microcontroller is connected to
the seven-segment display as shown in Fig. 9.5. Electrical connections between the
microcontroller ports and the seven-segment display have been made with a custom
break-out board and traditional wire-wrapping techniques using AWG-30 wire [11].
In order to make room for the seven-segment display, certain component placements
on the board have been changed compared with those shown in Fig. 2.1.

The pin connections between the microcontroller and the seven-segment display
are listed in Table 9.2. Pinning uses a combination of port pins from portc
and portd, and the +5V supply.

The hierarchy of the display classes in the chapter09_07 sample project is
shown in Fig. 9.6. The two most highly derived classes in the diagram are called
display_console and display_board. These two classes are intended to
be instantiated as singleton instances of base class objects and subsequently used in
the application layer.

The display_console class simulates the seven-segment display in a con-
sole. This class is intended to be used for convenient testing of the project on a
PC.6

Iseg ≈ (5.0 − 1.7)V

750�
≈ 4.4mA ,

where Iseg is the current in one switched-on LED segment. On the microcontroller ports, the
current of approximately 4.4mA per port pin is well below the specified maximum value of 40mA
(see Table 29.1 Absolute Maximum Ratings in [1]).
6Console testing is supported via cross development methods that port the entire project to a
PC-based compiler. Hereby, the hardware-specific MCAL has been partially simulated in the PC
environment.

194 9 Low-Level Hardware Drivers in C++

Table 9.2 The pin connections between the microcontroller and the seven-segment display are
listed

Pin on Display pin’s Electrical Microcontroller

7-segment display function connection pin

1 Segment E portc.5 28

2 Segment D portc.0 23

3 Common anode + 5V —

4 Segment C portc.1 24

5 Decimal Point portc.2 25

6 Segment B portc.3 26

7 Segment A portc.4 27

8 Common anode + 5V —

9 Segment F portd.0 2

10 Segment G portd.1 3

Fig. 9.6 The class hierarchy
of the display classes in the
chapter09_07 project is
shown

display_console

noncopyable

display_seven_segment

display_base

display_board

The display_board class encapsulates the real seven-segment display on the
board. This class has been designed to control the display via eight port pins on the
microcontroller (i.e., as wired in Fig. 9.5).

The two base classes, display_base and display_seven_segment,
contain a mixture of both public interface functions as well as abstract methods
(Sect. 4.6). These two classes serve the primary purpose of providing a public
interface for clients of the display classes and ensuring that the necessary abstract
functions are implemented.

The public interface of display_base is shown below.

class display_base : private util::noncopyable
{
public:

virtual ~display_base() { }

bool write(const std::uint8_t value_to_write)
{

9.7 Controlling a Seven-Segment Display 195

return do_write(value_to_write);
}

bool read(std::uint8_t& value_to_read) const
{

return do_read(value_to_read);
}

// Non-public details...
};

The essential functions of display_base can be used to write or read one
single 8-bit character.

The display_base class inherits privately from the noncopyable utility
class (Sect. 15.2). This ensures that all of the classes in the display class hierarchy
can not be copied. This is desired in our design because a given display exists
once and only once on a given board. An instantiation encapsulating a display is,
therefore, not intended to be copied.

The display_seven_segment class adds the ability to write or read a
decimal point character. In particular,

class display_seven_segment : public display_base
{
public:

virtual ~display_seven_segment() { }

bool write_dp(const bool dp_on)
{

return do_write_dp(dp_on);
}

bool read_dp(bool& dp_on) const
{

return do_read_dp(dp_on);
}

// Non-public details...
};

As mentioned above, the actual class that embodies the seven-segment display on
the real board is called display_board. The synopsis of the display_board
class is shown in the code below.

196 9 Low-Level Hardware Drivers in C++

template<typename segment_a_port,
typename segment_b_port,
typename segment_c_port,
typename segment_d_port,
typename segment_e_port,
typename segment_f_port,
typename segment_g_port,
typename segment_dp_port>

class display_board final :
public display_seven_segment

{
public:

display_board() { }

display_board(const std::uint8_t value_to_write,
const bool dp_on)

: display_seven_segment(value_to_write, dp_on)
{ }

virtual ~display_board() { }

private:
virtual bool do_write(const std::uint8_t)

virtual bool do_read(std::uint8_t&) const;

virtual bool do_write_dp(const bool);

virtual bool do_read_dp(bool&) const;
};

The public interface is used for construction and destruction. The private virtual
methods implement write and read of a character and decimal point.

The display_board class is a template class. It accepts eight template
parameters representing the eight port pins connected to the display—seven port
pins for the seven segments in the digit and one port pin for the decimal point. The
public interface of the display_board class provides virtual Boolean functions
for reading and writing both the digit as well as the decimal point.

The port pin types corresponding to the template parameters must adhere to the
public interface of the port_pin template class from Sect. 9.1. This is because the
private details of the display_board class make use of some of port_pin’s
static public member functions such as toggle(), etc. via static polymorphism
(Sect. 5.7). The display_board class and its parents in the class hierarchy can be

9.7 Controlling a Seven-Segment Display 197

readily ported to other microcontroller projects as long as the port_pin template
class is properly supported.

A global display_board object is provided to the application layer by
a subroutine that returns a singleton instance (Sect. 8.6) of the base class. This
mechanism is depicted in pseudo-code below.

display_seven_segment& display0()
{

// Define some board-specific types, etc.
...

// Create a static display_board object...

static display_board the_display;

// ... and return a base class reference to it.

return the_display;
}

Here, the instance is returned in the form of a non-constant reference to the base
class (i.e., display_seven_segment&). This allows display0() to exhibit
runtime polymorphism. In this way, the entire public abstract interface of the display
class hierarchy available to the caller of display0().

The display task in the application layer uses the display0() subroutine
for writing to the seven-segment display. The sixteen hexadecimal digits 0123-
456789AbCdEF are sequentially represented on the display, continually cycling
from 0 to F and beginning anew with the digit 0. The digit on the display is
updated every second (i.e., at a rate of 1 s per digit). The decimal point is toggled
once per group of sixteen hexadecimal digits to add a further detail to the display
animation.

The display task also toggles the user LED on portb.5 at 1/2Hz. This is done
in the same fashion as in the chapter02_03a sample project.

Timing is derived from a simple multitasking scheduler (Chap. 11) in combina-
tion with a static instance of the timer utility class (Sect. 15.3). The display task
is scheduled every 2ms and the timer object provides a secondary timebase that
services the display and LED every 1 s.

The synopsis of the display task is listed in pseudo-code below.7

7Here, the namespace resolutions have been removed from the pseudo-code for the sake of
simplicity.

198 9 Low-Level Hardware Drivers in C++

void task_func()
{

if(app_display_timer.timeout())
{

// Start a new 1s interval.
app_display_timer.start_interval(

timer_type::seconds(1U));

// Toggle the user LED on portb.5.
...

// Select the next hexadecimal digit.
...

// Toggle the phase of the decimal point at
// full cycles of sixteen hexadecimal digits.
...

// Write the decimal point.
display0().write_dp(...);

// Write the hexadecimal digit.
display0().write(...);

}
}

As mentioned at the beginning of this section, the complete source code of the
chapter09_07 project (including various build scripts and the port to the PC-
console) can be found in the companion code. The project has been tested on our
target with the 8-bit microcontroller (as shown in Fig. 9.5). Program verification
has been carried out using both GCC 4.8.1 as well as GCC 4.9.2 [2]8 built for the
avr-unknown-elf target (Sect. 2.2 and Appendix C) and using9 C++11 [7].

9.8 Animating an RGB LED

In this section, we present an example that animates an RGB LED to produce a
colorful light show. An RGB LED is typically composed of three discrete LEDs, in
hues of red, green and blue. The light-emitting segments are housed closely within a

8The original citation here refers to GCC 4.6.2 [2]. At the time of preparing the chapter09_07
sample project and writing the second edition of this book, however, both GCC 4.8.1 as well as
GCC 4.9.2 have been used to build and verify this project. Furthermore, when working on the third
edition of this book, GCC 7.2.0 [3] with C++17 [9] has been used to verify this example.
9Also recall that the C++11 dialect is enabled in GCC with the compiler flag -std=c++11.

9.8 Animating an RGB LED 199

single package. This allows for the appearance of homogeneous color mixing when
the hues are turned on with varying intensity.

In addition to utilizing advanced object-oriented and template methods, this
example (as in the previous exercise of chapter09_07) demonstrates cross-
development within a PC environment. The result is an intuitive object-oriented
program that runs on both our target with the 8-bit microcontroller as well
as on a PC. The complete source code for this example can be found in the
chapter09_08 sample project in the companion code.

The target system is built on a solderless prototyping board, as shown in Fig. 9.7.
An industry-standard off-the-shelf RGB LED is mounted on the panel. Individual
color hues of red, green and blue are set with PWM signals on microcontroller ports
having varying duty cycles. Instances of the PWM software template class described
in Sect. 9.4 are used for this. The current through the RGB LED segments is sourced
directly from the microcontroller port pins.

This RGB LED has a common anode connected to the 5V supply. Because of
the common anode, the PWM duty cycles are inverted. A lower value of PWM duty
cycle results in a deeper color hue. The inversion of the signals takes place in a lower
layer of the software prior to setting the PWM duty cycle.

The electrical characteristics of the RGB LED circuit, including PWM port
connections, LED forward voltages (VLED), voltages on the resistors (VR), and
resistor values (RLED) are summarized in Table 9.3. This system has been designed
to drive approximately 10mA of current through each LED segment. In practice,
variations among different RGB LEDs can be expected. It can, therefore, be a

Fig. 9.7 Our target system
with the 8-bit microcontroller
animating the RGB LED is
shown. PWM signals on
portc.3, portc.4 and
portc.5 control hues of
red, green and blue. In this
figure, a cyan-like color can
be observed

Table 9.3 The electrical
characteristics of the
RGB LED circuit and the
PWM port connections are
summarized

VLED VR RLED

Hue PWM port [V] [V] [�]

R portc.3 ∼ 1.75 ∼ 3.25 ∼ 325

G portc.4 ∼ 2.25 ∼ 2.75 ∼ 275

B portc.5 ∼ 2.50 ∼ 2.50 ∼ 250

Resistors with a tolerance of 1% are used

200 9 Low-Level Hardware Drivers in C++

Fig. 9.8 The class hierarchy
of monochrome LED objects
and RGB LED objects in the
chapter09_08 project is
shown

led_
monochrome_

board

noncopyable

led_
monochrome

led_base

led_
monochrome_

pc

led_
rgb_board

led_rgb

led_
rgb_pc

good idea to measure the LED forward voltage when selecting the resistors.10

This kind of electrical characterization can improve the results of color mix-
ing.

The application layer computes color hues throughout the range of the color
spectrum. The computed values run from 0 . . . 255. The color hue values are
subsequently scaled to percent 0 . . . 100 when setting the PWM duty cycle.
The scaled color hues are passed to the MCAL for setting the PWM signals
at the hardware level. Simultaneously, the user-LED on portb.5 is toggled at
1/2Hz.

The style and architecture of the chapter09_08 sample project are similar
with those of the chapter09_07 project described in Sect. 9.7. The presence of
both monochrome LED objects and RGB LED objects within the class architecture,
however, adds an additional level of depth to the design.

The hierarchy of the LED classes in the chapter09_08 sample project is
shown in Fig. 9.8. There is a base class called led_base. Successive classes
are derived from this base class. The entire class hierarchy encapsulates both
monochrome LED as well as RGB LED.

The most highly derived classes in this example are summarized in Table 9.4.
These classes embody the actual LED objects in the software architecture. There
are specific versions for both our target system with the 8-bit microcontroller as
well as the PC.

The two second-most derived classes are called led_monochrome and
led_rgb. The public interfaces of the base classes and of these second-
most derived classes are intended to be used in the application layer (i.e., via
singleton instance and dynamic runtime polymorphism, see also Sects. 4.4
and 8.6).

The base class in this class hierarchy is called led_base. The public interface
of led_base is shown below.

10It might be necessary to use more than one resistor to attain the approximate desired resistance
level for a given pin due to constraints imposed by the available standard resistor values.

9.8 Animating an RGB LED 201

Table 9.4 The names and purposes of the most highly derived classes used in the chapter-
08_09 example are listed

Class name Class purpose

led_monochrome_board Control the monochrome user LED on our target
with the 8-bit microcontroller.

led_monochrome_pc Control the simulated monochrome user LED on
the PC.

led_rgb_board Control the RGB LED that is wired to PWM
signals on portc.3, portc.4 and portc.5
on our target with the 8-bit microcontroller.

led_rgb_pc Control the simulated RGB LED on the PC.

class led_base : private util::noncopyable
{
public:

virtual ~led_base() { }

void on () { my_on (); is_on = true; }
void off() { my_off(); is_on = false; }

void toggle() { (is_on ? off() : on()); }

// Non-public details...
};

In the base class, we find top-level functions such as on(), off() and
toggle(). Virtual functions are added in the derived classes for carrying out the
necessary class-specific operations. These include essentials such as my_on() and
my_off(), which are used for turning an instance of a given LED class on or off,
respectively.

The led_rgb class adds additional functions for setting and retrieving a 24-bit
color value. Color can be set or retrieved in the form of a native 32-bit unsigned
integer. Alternatively, three individual 8-bit hues of red, green and blue can be
used.11 In particular,

class led_rgb : public led_base
{
public:

virtual ~led_rgb();

11Transparency is not used in the color representation of this example.

202 9 Low-Level Hardware Drivers in C++

void set_color(const std::uint32_t color);

void set_color(const std::uint_fast8_t hue_r,
const std::uint_fast8_t hue_g,
const std::uint_fast8_t hue_b);

std::uint32_t get_color() const;

std::uint_fast8_t get_hue_r() const;
std::uint_fast8_t get_hue_g() const;
std::uint_fast8_t get_hue_b() const;

// Non-public details...
};

As explained previously and listed in Table 9.4, the most highly derived classes
of this example implement control of the LEDs on both the PC as well as on the
board. Base class references to instances of these objects wrapped in singleton
subroutines are used by the application layer. This technique was also used in the
previous example chapter09_07 of Sect. 9.7.

The animation of the LEDs is carried out in the application layer. A partial
synopsis of the application task is shown below.

void task_func()
{

if(app_led_monochrome_timer.timeout())
{

// Toggle the monochrome user LED at 1/2 Hz.
led_monochrome0().toggle();

// Start the next timer interval
// for the monochrome user LED.
app_led_monochrome_timer.start_interval(

app_led_monochrome_timer_type::seconds(1U));
}

if(app_led_rgb_timer.timeout())
{

// Animate the RGB LED with the colors
// of the spectrum at 50 Hz.

// ...

// Initialize the color transition state.

9.8 Animating an RGB LED 203

static color_transition_type
color_transition_state = red_to_yellow;

// Make a smooth color transition and
// increment the color transition state
// if necessary.
switch(color_transition_state)
{

// ...
}

// ...

// Write the next color to the RGB LED.
led_rgb0().set_color(

app_led_hue_r,
app_led_hue_g,
app_led_hue_b);

// Start the next timer interval
// for the RGB LED.
app_led_rgb_timer.start_interval(

app_led_rgb_timer_type::milliseconds(20U));
}

}

In this task, the monochrome user LED is toggled with a frequency of 1/2Hz. In
addition, the colors of the spectrum are changed in the RGB LED with a frequency
of about 50Hz. The color transitions run through red, yellow, green, cyan, blue,
magenta, and ultimately back to red. The number of discrete colors in the complete
color sequence of this example is 6× 256 = 1536. The fine granularity of changing
hues makes the color metamorphosis appear to be smooth. Sequencing through a
full cycle of the color spectrum in this sample takes about 1536/50Hz≈ 30 s on
our target with the 8-bit microcontroller. The overall timing of the PC simulation is
approximately the same.

As mentioned at the beginning of this section, the complete source code of the
chapter09_08 project can be found in the companion code. The project has been
tested on our target with the 8-bit microcontroller. Program verification has been
carried out with various versions of GCC ranging from 5.4.0 through 7.2.0 [2] using

204 9 Low-Level Hardware Drivers in C++

C++11, C++14 and C++17 [7–9].12 The code in this example has also been tested
with several PC-based compilers.

References

1. ATMEL R©, 8-bit ATMEL R© Microcontroller with 4/8/16/32K Bytes In-System Programmable
Flash (ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A, ATmega168PA,
ATmega328, ATmega328P), Rev. 8271D–AVR–05/11 (ATMEL R©, 2011)

2. Free Software Foundation, The GNU Compiler Collection Version 4.6.2 (2012), http://gcc.gnu.
org

3. Free Software Foundation, The GNU Compiler Collection Version 7.2.0 (2017), http://gcc.gnu.
org

4. P. Horowitz, W. Hill, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge,
1989)

5. ISO, ISO 11898–1:2003: Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link
Layer and Physical Signaling (International Organization for Standardization, Geneva, 2003)

6. ISO/IEC, ISO/IEC 9899:1999: Programming Languages – C (International Organization for
Standardization, Geneva, 1999)

7. ISO/IEC, ISO/IEC 14882:2011: Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2011)

8. ISO/IEC, ISO/IEC 14882:2014: Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2014)

9. ISO/IEC, ISO/IEC 14882:2017: Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2017)

10. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
11. Wikipedia, American Wire Gauge (2012), http://en.wikipedia.org/wiki/American_wire_gauge

12When using GCC, the language standards C++11, C++14 and C++17 can be activated with the
command line switches -std=c++11, -std=c++14 and -std=c++17, respectively.

http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://en.wikipedia.org/wiki/American_wire_gauge

Chapter 10
Custom Memory Management

Effective microcontroller programming in C++ mandates dependable memory
management beyond that offered by the language’s default mechanisms. Some of
the countless situations in microcontroller programming that require customized
memory management include dynamic creation polymorphic objects, using STL
containers and mapping hardware devices are. This chapter describes memory
management methods that are robust and reliable enough to perform these tasks
while adhering to the strict constraints of limited microcontrollermemory resources.

10.1 Dynamic Memory Considerations

Dynamic memory allocation is useful in C++ programming, in particular for
creating polymorphic objects. The operators new and delete can be used for
dynamic memory allocation and deallocation in C++.

The new operator allocates memory for an object in a heap of dynamic memory.
If sufficient memory is available and allocation succeeds, new initializes the object
in the allocated memory by calling its constructor and returns a pointer to the
object. If insufficient memory is available, new either returns nullptr or throws
an std::bad_alloc exception (depending on the version of new being used).
Calling delete for a memory block allocated with new destroys the object by
calling its destructor and frees the memory.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_10

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_10&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_10

206 10 Custom Memory Management

The syntax of new and delete is shown below.

class something
{
public:

something() { }
~something() { }

void do_my_thing() { }
};

void do_something()
{

// Allocate ps with operator new.
something* ps = new something;

// Do something with ps.
ps->do_my_thing();

// Delete ps when finished with it.
delete ps;

}

As described in Sect. 6.16, the use of new and delete can be inappropriate for
microcontrollers with strictly limited heaps of, say, a few tens or hundreds of bytes.
Consider the example above. In a typical microcontroller situation, the subroutine
do_something()might be called thousands of times—even millions of times. It
might only take a few calls, or at most a few hundred calls of do_something()
and similar subroutines to completely fragment a microcontroller’s tiny heap beyond
repair.

One potential solution to this problem is to overload the global operatorsnew and
delete to provide a memory allocation mechanism for individual classes. This
technique can be effective for making selected dedicated class-specific allocators.
For additional information on overloading the global operators new and delete
for a particular class, see Eckel [1], Chapter 13, Sect. “Overloading new& delete for
a class”. Flexible memorymanagement, however, often requires allocation methods
that are generic and can be used with any kind of object. So we need to investigate
other methods of memory management for microcontroller programming.

10.2 Using Placement-new 207

10.2 Using Placement-new

Fortunately, new is also available in its so-called placement version, known
as placement-new. Placement-new allows programmers to explicitly control a
dynamically created object’s placement in memory (i.e., its physical address).

Placement-new is the essential ingredient for generic memory management in
microcontroller programming. It allows one to determine where (in other words
at which address) a given dynamic allocation should be carried out in memory.
The caller of placement-new is responsible for finding and managing the memory
chunks used in calls to placement-new. These can be carefully defined memory
locations such as the stack in a subroutine call or a local or global static memory
pool.

There are several versions of placement-new. The form shown below is the most
useful one for the purposes of this chapter.

void* operator new(size_t, void*) noexcept;

This version of placement-new creates a pointer to a single object. Placement-
new does not throw any exceptions. The first input parameter to placement-new
(the one of type size_t) gives the size of the object in bytes. The second input
parameter (the one of type void*) specifies the place in memory where the new
object should be created.

For example, placement-new can be used to place an instance of something
in a subroutine-local memory pool on the stack.

class something
{

// ...
};

void do_something()
{

std::uint8_t pool[sizeof(something)];

something* ps = new(pool) something;

// Do something with ps.
ps->do_my_thing();

// Do not delete ps when finished with it.

// The destructor needs to be called manually.
~ps();

}

208 10 Custom Memory Management

In this example,ps is created with placement-new rather than the global operator
new. Instead of using memory from the heap, ps is placed in a memory pool on
the stack. Every time do_something() is called, ps is created on the stack. The
memory used for storing ps is recycled because the stack is cleared upon subroutine
return. Since the heap is not used, there is no risk of fragmenting or overflowing the
heap, as might occur when using the global operator new.

The code sample above presents an uncommon sight in C++ programming—
an explicit call to a class destructor (i.e., the call to ~ps()). Pointers to class
types created with placement-new require manual destructor call. They should not
be deleted with the global operator delete. This differs from pointers created
with the global operator new. These always need a corresponding call to delete
which recycles the memory and also implicitly calls the destructor. Custom memory
management is one of very few programming situations in C++ that requires explicit
call of an object’s destructor.

10.3 Allocators and STL Containers

STL containers have an additional (sometimes overlooked) template parameter that
defines the so-called allocator type used for dynamic memory management. For
example, the full template definition of std::vector has not only an elem_-
type parameter for the element type but also a second alloc_type parameter
for the allocator type. In particular,

namespace std
{

template
<typename elem_type,
typename alloc_type = std::allocator<elem_type>>

class vector
{

// ...
};

}

The second template parameter alloc_type is the allocator type. This is the
allocator that a given instantiation of std::vector uses to allocate and deallocate
elements when dynamically changing its size. If otherwise left unspecified, the
value of this allocator type is the STL’s templated default allocator class std::-
allocator instantiated for the type of element in the container.

The key to using STL containers effectively in microcontrollers is to replace
the default allocator with a specialized custom allocator. The default allocator uses
the global operators new and delete which, as mentioned previously, can be

10.4 The Standard Allocator 209

inappropriate for microcontroller programming. Custom allocators can use memory
policies that rely on placement-new acting on, for example, a pool of local stack
memory or a chunk of re-usable static RAM, etc.

The code below uses std::vector with the default allocator.

#include <vector>

// A vector with three 32-bit uints.
std::vector<std::uint32_t> v(3U);

The code below is almost the same. However, it uses std::vector with a
custom allocator.

#include <vector>
#include "my_allocator.h"

std::vector<std::uint32_t,
my_allocator<std::uint32_t>> v(3U);

Here, my_allocator is assumed to have memory allocation and deallocation
mechanisms suitable for the microcontroller’s memory.

10.4 The Standard Allocator

In order to be used with STL containers, a custom allocator must adhere to the
interface of the standard allocator, std::allocator. The partial synopsis of the
standard library’s default allocator class is shown below.

namespace std {

template<typename T>
class allocator
{
public:

typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;

210 10 Custom Memory Management

allocator() noexcept;
allocator(const allocator&) noexcept;

template<class U>
allocator(const allocator<U>&) noexcept;

~allocator() noexcept;

template <class U>
struct rebind { typedef allocator<U> other; };

size_type max_size() const noexcept;

pointer address(reference) const;
const_pointer address(const_reference) const;

pointer allocate(size_type,
typename allocator<void>::const_pointer = nullptr);

void construct(pointer, const value_type&);

void destroy(pointer);

void deallocate(pointer, size_type);
};

} // namespace std

The complete specification of the behavior and requirements of the default
allocator can be found in [2], with details in Sect. 20.1.5 (especially Table 32) and
Sect. 20.6.9 therein. Consult also Sect. 19.3 of [3] for a detailed description of the
data types and operations of std::allocator.

10.5 Writing a Specialized ring allocator

In the following, we will write a custom ring_allocator. The ring allocator
obtains its memory from a static pool that behaves like a ring buffer. Memory is
consumed as needed for allocation and automatically recycled in the ring buffer.

The functions needing specialization in a custom allocator are max_size(),
allocate() and deallocate() (Sect. 19.2 in [3]). Armed with this list,

10.5 Writing a Specialized ring allocator 211

writing a custom allocator using specialized memory management instead of global
new and delete is straightforward.

We will begin with a base class that predominantly handles the ring allocator’s
memory management. In particular,

class ring_allocator_base
{
public:

typedef std::size_t size_type;

protected:
ring_allocator_base() { }

// The ring_allocator’s buffer size.
static constexpr size_type buffer_size = 64U;

// The ring_allocator’s memory allocation.
static void* do_allocate(const size_type);

};

The ring_allocator_base class defines the buffer_size. It is 64 bytes
in this example. The ring allocator base class also defines a static function called
do_allocate(). The do_allocate() function is responsible for the nuts and
bolts of the memory allocation in the ring buffer. In particular,

void*
ring_allocator_base::do_allocate(const size_type size)
{

// Define a static buffer and memory pointer.
static std::uint8_t buffer[buffer_size];
static std::uint8_t* get_ptr = buffer;

// Get the newly allocated pointer.
std::uint8_t* p = get_ptr;

// Increment the pointer for the next allocation.
get_ptr += size;

// Does this allocation overflow the top
// of the buffer?
const bool is_wrap =

(get_ptr >= (buffer + buffer_size));

if(is_wrap)

212 10 Custom Memory Management

{
// Here, the allocation overflows the top
// of the buffer. Reset the allocated pointer
// to the bottom of the buffer and increment
// the next get-pointer accordingly.
p = buffer;
get_ptr = buffer + size;

}

return static_cast<void*>(p);
}

The do_allocate() subroutine returns a non-constant void-pointer to the
next free chunk of memory in its ring buffer. A local static buffer called buffer
and a ring pointer named get_ptr are defined in the subroutine. The get_ptr
variable cycles through the ring buffer, always pointing to the next block of free
memory.When the top of the requested memory block exceeds the top of the buffer,
get_ptrwraps around to the beginning of the buffer—in the sense of a ring buffer.

Armed with the memory allocation mechanism of the ring allocator base class,
it is straightforward to write the derived ring_allocator template class. For
example,

template<typename T>
class ring_allocator : public ring_allocator_base
{
public:

// ...

size_type max_size() const noexcept
{

// The max. size is based on the buffer size.
return buffer_size / sizeof(value_type);

}

pointer allocate(size_type count,
ring_allocator<void>::const_pointer = nullptr)

{
// Use the base class ring allocation mechanism.
void* p = do_allocate(count * sizeof(value_type));

return static_cast<pointer>(p);
}

void deallocate(pointer, size_type)

10.6 Using ring allocator and Other Allocators 213

{
// Deallocation does nothing.

}

// ...
};

This code sample shows possible implementations of the three subroutines
needing specialization when creating the custom ring allocator—max_size(),
allocate() and deallocate(). The most significant details of these func-
tions include:

• The max_size() member. This function evaluates the maximum available
memory size based on the buffer_size.

• The allocate() function. Memory allocation uses the memory management
scheme of the do_allocate() function in the base class.

• The deallocate() function, which is empty. Memory is simply recycled
and re-used in the ring buffer without being cleared or otherwise modified. The
deallocate() function can, therefore, be empty.

The allocate() function of the ring allocator calls do_allocate()
as its sole instance for memory allocation. The ring buffer cycles through and
eventually wraps around to its start. This means that previously allocated memory
is overwritten without taking any particular precautions or even warning the caller
about buffer overrun. Users of the ring_allocator, then, need to be acutely
aware of this limitation and set the size of the internal buffer accordingly for the
intended use of this allocator.

With additional software, an out-of-memory check could optionally be added to
the class if needed, possibly in conjunction with a mechanism for properly handling
an out-of-memory exception. See Sect. 10.7 for further details on this.

Memory alignment is not taken into consideration in the allocation mechanism of
the ring_allocator. If memory alignment on, say, 4-byte or 8-byte boundaries
is necessary, a simple modulus check needs to be added to the size passed to the
allocation routine.

10.6 Using ring allocator and Other Allocators

The ring_allocator has been designed to be particularly effective when used
with subroutine-local STL containers. Consider, for instance, a subroutine that
prepares a made-up login response.

214 10 Custom Memory Management

// Type definition for the ring allocator of uint8_t.
typedef ring_allocator<std::uint8_t> alloc_type;

// Type definition of a vector using alloc_type.
typedef
std::vector<std::uint8_t, alloc_type> response_type;

// Create the login response in a vector.
void login_response(response_type& rsp)
{

// Reserve memory in the vector.
// This uses the ring allocator.
rsp.reserve(5U);

// Fill the login data in the response vector.
rsp.push_back(UINT8_C(0x55)); // The login-OK key.
rsp.push_back(UINT8_C(0x31)); // Data rsp[1] = ’1’.
rsp.push_back(UINT8_C(0x32)); // Data rsp[2] = ’2’.
rsp.push_back(UINT8_C(0x33)); // Data rsp[3] = ’3’.

// Make a byte checksum of the response payload.
const std::uint8_t checksum =

std::accumulate(rsp.begin(),
rsp.end()
UINT8_C(0));

// Append the checksum to the login response.
rsp.push_back(checksum);

}

The login_response() subroutine prepares a communication frame
responsible for responding to a login request. These bytes represent a fictional
login handshake frame consisting of a key byte (0x55), a response with three data
bytes (’1’, ’2’, ’3’) and a byte-wise checksum over the previous four bytes in
the frame.

The data bytes in the login response are stored in an std::vector that
uses the custom ring_allocator. The significance of this for the real-time
C++ programmer is that the login_response() subroutine can be called time
and time again—thousands of times, millions of times, etc.—without causing any
memory fragmentation whatsoever. Memory for the login response is merely taken
from the internal pool of the ring allocator and the modest memory consumption of
the login response does not overflow the capacity of the allocator’s buffer.

10.7 Recognizing and Handling Memory Limitations 215

The ring_allocator is an efficient, bare-bones allocator. Its allocation
routine is fast, and the overhead of deallocation is entirely eliminated because its
memory is simply recycled through the ring buffer. As mentioned above, though,
care must be taken when using ring_allocator (or something similar) to
ensure that the allocator’s buffer is large enough to prevent buffer overrun for the
use-cases at hand.

Other kinds of custom allocators can also be written for various situations that
commonly arise in microcontroller programming. One may, for example, consider
writing a static_allocator that has a one-shot, non-recyclable memory pool.
This could be useful for static constant STL container objects such as version
strings, lookup tables, etc. that are created once and remain unchanged for the
duration of the program. Another example of a well-known custom allocator is one
that holds a pointer to a buffer called an arena. This kind of arena pool can be
used to create a stack-based allocator. In addition, it is possible to wrap a constant
address in, say, a mapped_allocator. This can be used to overlay a memory-
mapped vector onto a memory-aligned set of hardware registers such as a DMA in
a microcontroller peripheral device.

Custom allocators make it possible to embed the power of STL containers
and algorithms working on them in remarkably tiny microcontrollers—safely and
efficiently—in environments bounded by strict memory limitations. Using custom
STL allocators that are tailored to the needs of the application can potentially add a
new dimension of elegance and ease to microcontroller programming.

10.7 Recognizing and Handling Memory Limitations

Because we are not using C++ exceptions in this book, the ring_allocator
described in the previous section does not include checks for out-of-memory or
for excessive block size. A standards-adherent custom allocator should, however,
include checks for both an out-of-memory error as well as an excessive-length error.
STL authors will, therefore, typically support C++ exceptions when requesting
memory from an allocator.

An ideal allocator should throw an std::bad_alloc exception if the allo-
cator is out of memory. In addition, it should throw an std::length_error
exception if the requested block size exceeds the size returned from max_size().
The code below depicts a possible implementation of the reserve()method that
includes support for std::length_error.

#include <memory>
#include <exception>

template<typename T,
typename alloc = std::allocator<T>>

216 10 Custom Memory Management

class vector
{
public:

// ...

void reserve(size_type count);
{

// Calculate the requested block-size.
const size_type size = count * sizeof(value_type);

// Obtain the maximum size available.
const size_type the_max

= allocator_type().max_size();

// Is the maximum size exceeded?
if(size > the_max)
{

// Throw a length error exception.
throw std::length_error();

}

// Reserve the requested count.
// ...

}

// ...
};

Before allocating any memory, the reserve() method queries the allocator’s
max_size() to find out if the requested memory size exceeds the available size.
If the allocator’s max_size() will be exceeded by the requested allocation, then
there is insufficient memory and an std::length_error exception is thrown.

Developers can check for exceptions using a try-catch clause. We will now
modify the login_response() subroutine from the previous section to catch a
length error exception that may potentially be thrown when attempting to reserve
the response vector.

// Type definition for the ring allocator of uint8_t.
typedef ring_allocator<std::uint8_t> alloc_type;

// Type definition of a vector using the alloc_type.
typedef
std::vector<std::uint8_t,

alloc_type> response_type;

References 217

// Create the login response in a vector.
void login_response(response_type& rsp)
{

// Try to reserve 5 bytes in the vector.
try
{

rsp.reserve(5U);
}
catch(const std::length_error& e)
{

// Catch a length error exception.

// Implement an error reaction.
// ...

}

// ...
}

C++ exception handling can potentially improve the reliability of embedded real-
time software. C++ exception handling may, however, increase the code size of the
project by several tens of kilobytes, depending on the characteristics of the compiler
implementation of exception handling. Enabling and using C++ exceptions should,
therefore, only be undertaken if sufficient resources are available.

References

1. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (Pearson Prentice
Hall, Upper Saddle River, 2000)

2. ISO/IEC: ISO/IEC 14882:2011: Information technology – Programming languages – C++
(International Organization for Standardization, Geneva, 2011)

3. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-Wesley,
Boston, 2011)

Chapter 11
C++ Multitasking

A multitasking scheduler is an indispensable tool for providing temporal and
functional software distribution. In this chapter, we design a cooperative C++
multitasking scheduler that performs a top-down call of its tasks using time slices
and a basic prioritymechanism. This multitasking scheduler is compact and portable
and can be used for a wide variety of projects ranging from small to large. Toward
the end of this chapter, we will discuss additional multitasking features such as
extended scheduling with yield and sleep functions and the C++ thread support
library.

11.1 Multitasking Schedulers

The basic operation of a multitasking scheduler is depicted in Fig. 11.1. In general,
a multitasking scheduler runs, possibly indefinitely, in a loop and uses a scheduling
algorithm to identify and call ready tasks. Here, ready is the state of needing
to be called. The scheduler’s ready-check usually involves timing and possibly
event or alarm conditions. In this way, a multitasking scheduler distributes software
functionality among various modules and time slices.

Consider the multitasking scheduler shown below. This basic multitasking sched-
uler is designed to schedule three tasks, task_a(), task_b() and task_c().

#include <array>
#include <algorithm>

void task_a() { /* ... */ }
void task_b() { /* ... */ }
void task_c() { /* ... */ }

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_11

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_11&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_11

220 11 C++ Multitasking

typedef void(*function_type)();
typedef std::array<function_type, 3U> task_list_type;

const task_list_type task_list
{

{ task_a, task_b, task_c };
}

void scheduler()
{

for(;;)
{

std::for_each(task_list.begin(),
task_list.end(),
[](const function_type& func)
{

func();
});

}
}

Every multitasking scheduler uses some form of scheduling algorithm to search
for ready tasks. In the case of the scheduler() above, for example, the searching
algorithm is trivially simple. It uses neither timing nor priority nor any other kinds
of events or alarms. Since each task is ready to be called at any given time, the
ready condition for a given task is simply unconditional-true. Accordingly, each
task is called via lambda expression in the std::for_each() algorithm of the
multitasking scheduler as soon as its corresponding iterator in the task_list
is reached. The outer for(;;)-loop causes the multitasking scheduler to run
indefinitely.

Fig. 11.1 A multitasking
scheduler and its tasks,
task_a,
task_b, . . . task_x, are
sketched

task_a ready? execute task_a

No

Yes

Scheduler Tasks

task_b ready? execute task_b

No

Yes

task_x ready? execute task_x

No

Yes

11.2 Task Timing 221

This multitasking scheduler is extraordinarily simple, requiring only a few tens
of bytes of program code and no RAM whatsoever. It sequentially calls the tasks in
its task_list, indefinitely without pause, break or return.

Even though the rudimentary temporal distribution of this multitasking scheduler
may be inadequate for most practical situations, this example does, nonetheless,
clearly exhibit the general concept of a multitasking scheduler. In the upcoming
sections, we will add timing and a more sophisticated scheduling mechanism to this
multitasking scheduler.

11.2 Task Timing

We will now discuss timing aspects for our multitasking scheduler. Imagine that
the multitasking scheduler should call task_a(), task_b() and task_c() at
even multiples of 2, 8 and 16 ms, respectively.

With this call scheduling, there are time points at which two or more tasks need
to be called back-to-back. For example, at even multiples of 8 ms, both task_a()
as well as task_b() need to be called. At even multiples of 16 ms, all three tasks
need to be called. This could lead to a timing crunch.

Table 11.1 The call schedules for task_a(), task_b() and task_c() with call cycles of
(2, 8, 16) ms and call offsets of (0, 7, 13) ms are shown

System-tick [ms] Call task_a() Call task_b() Call task_c()

0 •
1 •
2 •
3 •
4 •
5

6 •
7

8 •
9 •

10 •
11

12 •
13

14 •
15

16 •
17 •
18 •
19 •

222 11 C++ Multitasking

In order to avoid timing bottlenecks or at least lessen their impact, call offsets
can be added to the call cycle timing of the scheduler. Small-valued prime numbers
are well-suited for schedule offsets. For example, we will select for task_b() an
offset of 7 ms and for task_c(), an offset of 13 ms, while task_a() retains its
0 ms offset.

The first few scheduled task call times using these offsets are shown in
Table 11.1. The bottleneck situation has been effectively removed. As can be
seen in the table, task_a() is always called at system-tick values which are
multiples of two—and these are always even-numbered. Both task_b() as well
as task_c(), however, are always called at odd-numbered values of the system-
tick. Therefore, the call of task_a() is never scheduled simultaneously with the
calls of either task_b() or task_c(). Furthermore, simultaneous scheduling
of task_b() and task_c() has been eliminated because the call cycles of these
two tasks no longer intersect.

11.3 The Task Control Block

A class which encapsulates the scheduling characteristics of a task is often called a
task control block, sometimes also known as a TCB. Typical things in a task control
block may include:

• The task to be scheduled
• The timing characteristics of the task’s scheduling
• A scheduling function that checks for task-ready
• A task execution mechanism
• Optional event or alarm information

For example, the scheduling characteristics of task_a, task_b and task_c
can be represented with the task control block shown below.

class task_control_block
{
public:

typedef void (*function_type)();

typedef timer<mcal::gpt::value_type> timer_type;
typedef timer_type::tick_type tick_type;

task_control_block(const function_type f,
const tick_type c,
const tick_type o = 0U)

: function(f),
cycle(c),
time(o) { }

11.3 The Task Control Block 223

bool execute();

private:
const function_type function;
const tick_type cycle;
timer_type time;

};

The task_control_block class has three member variables, function,
cycle and time. The variable function is a constant pointer to a void
function with static linkage. This is the function that is encapsulated in the task
control block, in other words it is the task that is to be called by the scheduler. The
variables cycle and time contain the task cycle in milliseconds and its interval
timer. The interval timer uses the timer utility described later in Sect. 15.3.

The time member of the task control block is initialized with the offset of
the task. The type of the time member is timer_type, a class-local type that
is scaled to the width of the system-tick, Sect. 9.3. A less wide timer type could
optionally be used to optimize the RAM storage requirements of the task control
block. This, however, assumes that the necessary intervals can still be represented
by this type.

The member function execute() checks if a task is ready and, if so, calls it.
In particular,

bool task_control_block::execute()
{

// Check if the task is ready via timeout.
if(time.timeout())
{

// Increment the task’s interval timer
// with the task cycle.
time.start_interval(cycle);

// Call the task.
function();

return true;
}
else
{

return false;
}

}

224 11 C++ Multitasking

After a ready task is called, its interval timer is incremented with the task cycle
and the execute() function returns true. Otherwise, execute() leaves the
state of the task unchanged and returns false. Since execute() returns a
Boolean result, it can be used with a predicate-based searching algorithm, as will
be shown below.

11.4 The Task List

The task_list is a list of task_control_block objects that define the
task and timing characteristics of the application. For our system with task_a(),
task_b() and task_c() and the timing characteristics shown in Table 11.1, a
potential task_list is shown below.

#include <array>

typedef
std::array<task_control_block, 3U> task_list_type;

void task_a() { /* ... */ }
void task_b() { /* ... */ }
void task_c() { /* ... */ }

task_list_type task_list
{{

task_control_block
{

task_a,
task_control_block::timer_type::milliseconds(2),
task_control_block::timer_type::milliseconds(0)

},
task_control_block
{

task_b,
task_control_block::timer_type::milliseconds(8),
task_control_block::timer_type::milliseconds(7)

},
task_control_block
{

task_c,
task_control_block::timer_type::milliseconds(16),
task_control_block::timer_type::milliseconds(13)

}
}};

11.5 The Scheduler 225

The task_list is stored in an std::array containing three objects of type
task_control_block. These represent the task control blocks of task_a(),
task_b() and task_c(), and they are to be scheduled with cycles of 2, 8, 16ms
and offsets of 0, 7, 13ms, respectively.

11.5 The Scheduler

Armed with our task_control_block and the task_list, we will now
write a multitasking scheduler(). In particular,

#include <algorithm>

void scheduler()
{

for(;;)
{

// Find the next ready task using std::find_if.
std::find_if(task_list.begin(),

task_list.end(),
[](task_control_block& tcb) -> bool
{

// Call the ready task.
return tcb.execute();

});
}

}

In this multitasking scheduler(), the outer for(;;)-loop contin-
uously polls the task_list and never pauses, breaks or returns. The
std::find_if() algorithm sequentially loops through the task_list. If
a ready task is found, it is called via lambda function in combination with the
execute() method of the task_control_block.

A ready task that is called thereby breaks the loop in std::find_if(). If no
ready task is found, the outer for(;;)-loop continues polling the task_list
waiting for the next ready task.

The STL’s std::find_if() algorithm implements a simple task priority
mechanism. Recall that std::find_if() locates the iterator of the first occur-
rence of an element in a range that satisfies the given find condition. In other
words, it finds the iterator to the reference of a task_control_block in the
task_list whose execute() function returns true. If, however, no task is
ready, the iterator at the end of the task_list is found. All of this means that
std::find_if() performs a priority-based search. The order of the tasks in the
task_list defines the priority of the tasks.

226 11 C++ Multitasking

The multitasking scheduler implemented with the scheduler() function is
designed to be called one time only, for example, in main(). For instance, the
multitasking scheduler might be called after initializing the MCAL. This has been
discussed previously in Sect. 8.8. In particular,

namespace mcal
{

void init();
}

void scheduler();

int main()
{

// Initialize the microcontroller layer.
mcal::init();

// Call the multitasking scheduler
// and never return.
scheduler();

}

Our multitasking scheduler can be used with a wide variety of projects ranging
from small to large. It is efficient. In fact, the entire size of the multitasking
scheduler including the implementation of the task_control_block and the
task_list including three tasks only requires a few hundred bytes of code.

Our multitasking scheduler also has a high degree of portability. The only things
needed to port to another microcontroller are the system-tick and the timer’s
conversion to milliseconds.

11.6 Extended Multitasking

The example of the multitasking scheduler shown in the previous sections has called
its tasks in a top-down fashion. This means that tasks have been implemented
as run-capable entities that are called by the scheduler via top-down subrou-
tine call. Each task always runs to completion before returning control to the
scheduler.

At times, such basic tasks are insufficient for certain multitasking design needs.
For example, it is often desired to wait in a task for an indefinite time within a deeply
nested, polling loop. Perhaps the task needs to wait for a critical communication
response or a reaction from a hardware device. This is shown in the code sample
below.

11.6 Extended Multitasking 227

// External functions in the application.
bool initialize_state();
bool response_ready();
void handle_response();

// An example of an extended task.
void extended_task()
{

// The task initialization.
const bool state_is_valid = initialize_state();

// The task worker loop.
for(;;)
{

if(state_is_valid)
{

// Wait indefinitely for a response.
while(!response_ready())
{

// Yield control to the scheduler.
os::yield();

}

// Handle the communication response.
handle_response();

}
}

}

In this sample, the extended task initializes its state and then enters a loop that
waits indefinitely for a communication response. When waiting for the response,
extended_task() calls os::yield() in order to yield control to the sched-
uler.

The extended task’s yield gives the scheduler the opportunity to check if any
other tasks with higher priority are pending and execute them if so. In this way, a
running task can hand over control to the scheduler, allowing other potentially ready
tasks to run. The scheduler returns control to the task at the same place at which
control was yielded and also ensures that the task has the same state as before. This
form of multitasking is known as cooperative multitasking with extended tasks.

When switching from one task to another, the scheduler is responsible for saving
and restoring the task’s context, in other words its state. This is called context
switching. Context switching can be understood in very simple terms. The scheduler
needs to remember where the task was and also what the task was doing at the time

228 11 C++ Multitasking

of the yield in order to properly save and restore a context. In the listing above,where
the task was is in the while()-loop that calls response_ready(). What the
task was doing is waiting for a communication response. From the perspective of
the CPU, however, the where is represented by the value of instruction pointer (or an
equivalent CPU register). The what is described in terms of the values of the CPU
registers and, possibly, a task stack.

Be aware that context switching is written in target-specific assembly language.
Context switching also requires additional resources. This includes runtime for the
context save and restore, and, in particular, RAM for context storage and individual
task stacks. These efficiency factors should be taken into account when considering
the use of an extended multitasking scheduler.

11.7 Preemptive Multitasking

Certain applications may need preemptive multitasking and synchronization objects
such as mutexes. When deciding whether or not to employ preemptive multitasking,
however, it is essential to carefully consider the expected benefits compared with
the costs. This is because preemptive scheduling and the use of synchronization
mechanisms may lead to significantly increased resource consumption and design
complexity.

In particular, preemptive multitasking might result in a more obscure relation
between the written code and its runtime characteristics. Preemptive multitasking
requires added resources because each preemptive task requires its own individ-
ual stack and context storage. Furthermore, widespread use of synchronization
mechanisms introduces numerous potential sources of error related to re-entrance
and concurrency. Many experienced embedded systems programmers rarely use
preemptive multitasking. It is often possible to eliminate a perceived necessity for
preemptive multitasking. Keep a watchful eye on runtime characteristics and ensure
that object encapsulations and interrelations are clear and efficient. If the project,
nonetheless, really needs preemptive multitasking, then by all means use it.

For preemptive multitasking, one may consider using a third-party operating
system. In particular, LaBrosse’s book [1] describes a popular and robust real-time
kernel that can optionally be used with preemptive scheduling and synchronization
objects. LaBrosse’s kernel is written in C and assembly. It is stable, well-tested and
has been ported to a variety of architectures.

Another widely used free operating system of high-quality is FreeRTOS [2].
The FreeRTOS system has been ported to many CPU architectures and features
a clearly defined, simple interface to the underlying hardware timer and memory
resources. The FreeRTOS licensing also allows the use of FreeRTOS in proprietary
commercial products.

11.8 The C++ Thread Support Library 229

11.8 The C++ Thread Support Library

C++ offers support for multi-threading in its thread support library. Although
implementation of the C++ thread support library can be difficult to find among
microcontroller compilers.

Thread support is predominantly implemented in the <thread> library, which
makes secondary use of the headers <condition_variable>, <chrono> and
<ratio>. The specification of the <thread> library can be found in Chapter 30
of [3]. The <atomic> and <mutex> libraries can be used for synchronizing
access to shared data if a preemptive threading environment is used.

The code sample below uses C++ threads.

#include <chrono>
#include <thread>

void thread_1()
{

for(;;)
{

// Do something in thread_1.
// ...

// Yield control to the scheduler for 2ms.
std::this_thread::sleep_for(2ms);

}
}

void thread_2()
{

for(;;)
{

// Do something in thread_2.
// ...

// Yield control to the scheduler for 7ms.
std::this_thread::sleep_for(7ms);

}
}

void do_something()
{

// Create two threads, thread_1 and thread_2.
std::thread t1(thread_1);
std::thread t2(thread_2);

230 11 C++ Multitasking

// Wait for thread_1 and thread_2 to finish.

// In this example, the join() functions will wait
// indefinitely because neither thread returns.

t1.join();
t2.join();

}

This example creates two std::thread objects, t1 and t2. The first thread
carries out its internal work and subsequently yields control to the scheduler
for 2ms, whereas the second thread has a cycle time of 7ms. The cooperative
multitasking yield is accomplished with the standard library’s sleep_for()
subroutine. Notice how the convenient timing mechanisms from the <chrono>
library can be used compatibly with the thread support library. The durations of
the sleep times in milliseconds are eloquently expressed using the standard library
suffix ms (see Sect. 3.17 on user-defined literals).

After creating the two threads, the do_something() subroutine waits for
both threads to complete before returning. This is accomplished with the join()
method. In this example, however, the program will wait indefinitely because both
threads are programmed to run without return.

The syntax and design of the C++ thread support library were strongly influenced
by the POSIX standard [4]. In addition, C++ threads were implemented in Boost’s
Boost.Thread library prior to becoming part of the C++ language in C++11. So
anyone familiar with POSIX pthreads from <pthread.h> or who has worked
with Boost.Thread, should be able to understand and use C++11 threads with
no trouble at all.

References

1. J. LaBrosse, μC/OS-III, The Real-Time Kernel (Micrium Press, Magalia, 2009)
2. R. Barry, FreeRTOS Home (2012), http://www.FreeRTOS.org
3. ISO/IEC: ISO/IEC 14882:2011: Information Technology – Programming Languages – C++

(International Organization for Standardization, Geneva, 2011)
4. ISO/IEC: ISO/IEC 9945:2003: Information Technology – Portable Operating System Interface

(POSIX) (International Organization for Standardization, Geneva, 2003)

http://www.FreeRTOS.org

Part III
Mathematics and Utilities

for Real-Time C++

Chapter 12
Floating-Point Mathematics

This chapter describes floating-point mathematics for real-time C++ using built-
in floating-point types such as float, double and long double. The first
sections of this chapter introduce floating-point arithmetic, mathematical con-
stants, elementary transcendental functions and higher transcendental functions.
The last sections of this chapter cover more advanced topics including complex-
numbered mathematics, compile-time evaluation of floating-point functions and
generic numeric programming.

12.1 Floating-Point Arithmetic

Floating-point arithmetic can be used effectively in real-time C++. For example, the
simple function below computes the floating-point area of a circle of radius r , where
the area a is given by

a = πr2 . (12.1)

float area_of_a_circle(float r)
{

constexpr float pi = 3.14159265358979323846F;

return (pi * r) * r;
}

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_12

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_12&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_12

234 12 Floating-Point Mathematics

The C++ standard specifies three built-in floating-point types, float, double
and long double.1 The standard, however, does not specify any details about the
internal representations of these types.

Basically, the standard merely states that double needs to provide at least as
much precision as float, and that long double must provide at least as much
precision as double. The way that the compiler internally stores and treats floating-
point types remains implementation-defined. See Sect. 3.9.1, Paragraph 8 in [10] for
additional details.

Most suppliers of high-quality compilers strive to provide conformance with the
floating-point standard IEEE-754:2008 [8]. This standard specifies (among other
things) the following.

• Single-precision is usually implemented as float, which is required to be four
bytes in width and to provide 24 binary digits of precision (∼7 decimal digits).

• Double-precision is often implemented as double, which is required to be eight
bytes in width and to provide 53 binary digits of precision (∼15 decimal digits).

• Quadruple-precision2 is occasionally implemented as long double, which is
required to be sixteen bytes in width and to provide 113 binary digits of precision
(∼ 33 decimal digits).

The IEEE-754 floating-point standard covers an enormous amount of informa-
tion on single-precision, double-precision and quadruple-precision floating-point
representations including rounding characteristics, subnormal numbers such as
infinity (∞) and not-a-number (NaN), conversion to and from integer, etc. We will
not discuss all of these details here due to space considerations. A comprehensive
treatment of floating-point arithmetic can be found in the definitive reference work
on the topic by Muller et al. [17].

Some microcontrollers have hardware support for floating-point arithmetic using
a floating-point unit (FPU). An FPU can make floating-point arithmetic as efficient
as integer calculations—or even more so. Many small-to-medium microcontrollers,
however, do not have an FPU, and floating-point calculations are performed with a
software floating-point emulation library. Floating-point emulation can be slow and
may introduce large amounts of library code in the executable program. The real-
time C++ programmer should attempt to be aware of the potentially high resource
consumption of floating-point arithmetic.

C++ supports many floating-point functions including elementary transcendental
functions, floating-point classification functions, rounding functions, absolute value
functions, etc. These functions are predominantly included in the <cmath>
and <cstdlib> libraries (Sect. 12.3). In addition, care was taken during the

1We primarily use float and double in this book.
2Quadruple-precision is not commonly implemented for microcontroller compilers.

12.1 Floating-Point Arithmetic 235

specifications of C++11 and C99 to improve consistency in floating-point functions
between C and C++ [9, 10].

As mentioned above, floating-point arithmetic in C++ supports the concept
of infinity and other non-representable subnormal floating-point values. Consider
finite, positive x with x ∈ R and x representable in the compiler’s floating-point
implementation of IEEE-754:2008. In this floating-point system, for example, the
result of x/ 0 is ∞ and the result of

√−x is NaN. Subnormals and floating-point
limits are supported in the C++ language with the std::numeric_limits
template, as described in Sect. A.5.

Some developers use the symbol F to denote the set of numbers representable
in a floating-point system. In this book, however, we simply use R for the sake of
convenience.

We will now perform some additional floating-point math using the built-in
float type. Consider the sinc function that often arises in fields such as optics,
scattering and radiation theory,

sinc x = sin x

x
. (12.2)

We will use the following approximation scheme to calculate the sinc function.

sinc x =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 , for |x| < ε ,

1 − x2

6
+ x4

120
− x6

540
, for |x| < 0.03 ,

sin x

x
, otherwise ,

(12.3)

where x ∈ R and x is of type float. Here, ε represents the smallest number
distinguishable from 1 that can be represented by float (in other words ε =
std::numeric_limits<float>::epsilon(), as described in Sects. 13.5
and A.5).

The corresponding code for the sinc function is shown below.

#include <cmath>
#include <limits>

float sinc(const float& x)
{

if(std::fabs(x) <
std::numeric_limits<float>::epsilon())

{
return 1.0F;

}

236 12 Floating-Point Mathematics

else if(std::fabs(x) < 0.03F)
{

const float x2 = x * x;

const float sum = ((- 1.984126984E-04F

* x2 + 8.333333333E-03F)

* x2 - 1.666666667E-01F)

* x2;

return 1.0F + sum;
}
else
{

return std::sin(x) / x;
}

}

As shown in Eq. 12.3, the sinc function is symmetric about the origin which
allows us to use the absolute value function std::fabs() from <cmath> in
key locations. See also Sect. 12.3 for further information on <cmath>. Very small
arguments with |x| < ε return 1. Small arguments with |x| < 0.03 use a Taylor
series of order 6. Larger arguments with |x| ≥ 0.03 use the library function
std::sin() combined with division (in other words, sin(x)/ x). The polynomial
expansion in the Taylor series uses the method of Horner, as described in [14],
Vol. 2, Sect. 4.6.4 in the paragraph named “Horner’s Rule”.

12.2 Mathematical Constants

Some mathematical constants [5] such as
√
2, π , log 2, e, γ and others appear

time and time again in mathematical formulas. It makes sense, then, to implement
these numbers in a dedicated fashion. In C++, it is straightforward to implement
mathematical constants as variable templates (Sect. 5.12) representing compile-time
constant values.

Here, we use approximately 40 decimal digits after the decimal point. This
slightly exceeds the precision of quadruple-precision floating-point with 113 binary
digits, or ∼33 decimal digits. Even if the application does not need this many digits,
the precision is available for any extended-use situation that may arise. Since the
values are compile-time constant, the extra digits do not add any overhead.

12.2 Mathematical Constants 237

The variable template pi below, for example, provides a scalable compile-time
constant floating-point approximation of π .

template<typename T>
constexpr T pi =

T(3.1415926535’8979323846’2643383279’5028841972L);

Using templated constants in code is simple. For example, this new version of
area_of_a_circle() uses the pi variable template to compute the float
area of a circle of radius r .

float area_of_a_circle(const float& r)
{

return (pi<float> * r) * r;
}

A selection of useful mathematical constants is implemented in the variable
templates below, including Pythagoras’ constant (

√
2 ≈ 1.41421 . . .),

template<typename T>
constexpr T sqrt2 =

T(1.4142135623’7309504880’1688724209’6980785697L);

Archimedes’ constant (π ≈ 3.14159 . . .),

template<typename T>
constexpr T pi =

T(3.1415926535’8979323846’2643383279’5028841972L);

the natural logarithm of two (log 2 ≈ 0.69314 . . .),

template<typename T>
constexpr T ln2 =

T(0.6931471805’5994530941’7232121458’1765680755L);

the natural logarithmic base (e ≈ 2.71828 . . .),

template<typename T>
constexpr T e =

T(2.7182818284’5904523536’0287471352’6624977572L);

238 12 Floating-Point Mathematics

the Euler-Mascheroni constant (γ ≈ 0.57721 . . .),

template<typename T>
constexpr T euler_gamma =

T(0.5772156649’0153286060’6512090082’4024310422L);

and ApéRoy’s constant (ζ(3) ≈ 1.20205 . . .).

template<typename T>
constexpr T zeta_three =

T(1.2020569031’5959428539’9738161511’4499907650L);

Boost [3] provides a wide selection of scalable mathematical constants in its
Boost.Math.Constants library. The syntax of Boost’s mathematical con-
stants library is similar to the syntax in the examples above.3

12.3 Elementary Functions

As mentioned previously, C++ supports many floating-pointmathematical functions
and elementary transcendental functions in its C-compatibility headers <cmath>
and <cstdlib>. Basically, <cmath> and <cstdlib> include everything in
the C99 library headers <math.h> and <stdlib.h> and also add overloaded
versions of the functions for float and long double (in addition to the original
versions for double).

The <cmath> and <cstdlib> libraries have a host of functions related to the
floating-point number system including, among others, trigonometric, exponential,
logarithmic, power, hyperbolic, rounding, absolute value functions, etc. Again, see
Sect. 26.8 in [10] for details on the specifications of <cmath> and <cstdlib>.

The code below, for example, computes sin(1.23) for float.

#include <cmath>

const float s = std::sin(1.23F);

3Boost uses template functions in its interface to mathematical constants whereas variable
templates (Sect. 5.12) are used here.

12.4 Special Functions 239

Table 12.1 Resource consumptions for single-precision floating-point functions on our target
with the 8-bit microcontroller are shown

Result Result Runtime Code size

Function (float) (known)
[
μs
] [

byte
]

1.23 × 3.45 4.2435 Exact 10 420

1.23/ 3.45 0.3565217 0.3565217391 · · · 30 430√
1.23 1.109054 1.1090536506 · · · 30 290√
1.232 + 3.452 3.662704 3.6627039192 · · · 60 1,080

sin(1.23) 0.9424888 0.9424888019 · · · 110 890

log(3.45) 1.238374 1.2383742310 · · · 140 1,050

exp(1.23) 3.421230 3.4212295363 · · · 170 1,270

acosh(3.45) 1.909823 1.9098229687 · · · 240 1,670

Γ (3.45) 3.146312 3.1463120534 · · · 280 2,550

Floating-point functions can require significant resources. The results of floating-
point benchmarks on our target with the 8-bit microcontroller are shown in
Table 12.1. Multiplication, division and square root are the fastest functions.
More complicated functions such as hyperbolic arc-cosine and Gamma (Sect. 12.4)
require significantly more resources.

An interesting perspective on the runtime characteristics of floating-point
functions can be obtained by comparing the floating-point benchmark results in
Table 12.1 with those of the CRC32 calculation in Sects. 6.1 and 6.2. For our
target with the 8-bit microcontroller, the CRC32 is a non-trivial, computationally
intensive task that needs about 300 bytes of code and a bit more than 300μs. The
floating-point hyperbolic arc-cosine computation has a similar runtime but requires
significantly more code—possibly due to the inclusion of significant parts of the
software floating-point library.

The performance of floating-point elementary function calculations may vary
considerably from one microcontroller to another. In particular, floating-point
elementary function calculations might be greatly accelerated if an FPU is used.
In addition, there can even be strong variations in size and performance when
switching from one compiler to another or when using different implementations
of the underlying floating-point library. In order to understanding floating-point
efficiency in the project, some simple benchmarking in hard real-time such as the
kind summarized in Table 12.1 above can be performed.

12.4 Special Functions

Some special functions of pure and applied mathematics such as Bessel functions,
orthogonal polynomials, elliptic integrals, the Riemann zeta function, etc. are
specified in both TR1 [12] as well as in the optional special functions part of the C++
standard library [13] (since C++11). As of C++17, however, these mathematical

240 12 Floating-Point Mathematics

special functions have been incorporated into the standard [11]. Here, the general
term special functions means higher transcendental functions as described in depth
in Erdélyi’s three-volume treatise on the subject [4] and also in [1, 18].

Since implementations of special functions are, in fact, relatively new in the
C++ standard and because they can be quite difficult to calculate accurately and
efficiently, compiler support for them may be very limited among embedded targets.
For these reasons, it may be necessary at some point in time to either write certain
special functions oneself or arrange for dedicated compiler support for them in
cooperation with the compiler supplier.

In general, the complexity of computing special functions increases the higher
a function gets. In particular, the Gamma function for modest digit counts Γ (x) is
often considered a relatively straightforward special function to compute.4 Orthog-
onal polynomials are thought to be more difficult to compute than the Gamma
function. Bessel functions such as Jν(x), which require the Gamma function, are
frequently judged to be yet more difficult to compute, etc.

Writing a library of special functions that is accurate, efficient and supports
correct range checking and handling of subnormal values is a task beyond the
scope of this book. To get better acquainted with the ways of programming special
functions in real-time C++, though, we will write an implementation of the Gamma
function Γ (x) for x ∈ R for single-precision float.

The Gamma function Γ (x) is the extension of the integer factorial function to
both real as well as complex numbers x with x ∈ C. The relation between the
Gamma function and the factorial is Γ (n + 1) = n!, where n ∈ Z

+ is a positive
integer or zero. The behavior of the Gamma function is shown in Fig. 12.1 for x ∈

Fig. 12.1 The Gamma
function Γ (x) for x ∈ R

with 0 � x ≤ 4 is shown.
The Gamma function Γ (x)

has a singularity at the origin
and grows rapidly for
increasing x

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

G (x)

x

The Gamma Function

4Even though some compilers do not include Gamma functions, both Γ (x) as well as logΓ (x)

are intended to be available in the optional special functions of C++11 and also in the mandatory
<cmath> library of C++17 for x ∈ R for float, double and long double.

12.4 Special Functions 241

R with 0 � x ≤ 4. The Gamma function has a complex-valued singularity at the
origin and grows rapidly for increasing argument (i.e., like the factorial). Notice at
the right-hand side of the graph the expected value of Γ (4) = 3! = 6.

Our computational scheme for computingΓ (x) is primarily based on polynomial
expansion. In particular, we use

Γ (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

reflection of Γ (x) for x < 0,

NaN for x = 0,

inverse of the Taylor series of 1/ Γ (x) for 0 < x < 0.1,

polynomial expansion of Γ (x + 1) for 0.1 ≤ x < 1,

1 for x = 1 and x = 2,

upward recursion of Γ (x) for x > 1, x �= 2,

and + ∞ for overflow when x is large or near 0.

(12.4)

We have chosen to use polynomial expansion and recursion in this book because
the resulting code is compact and easy to understand. Many numerical specialists
prefer to use a Lanczos-type approximation for small-to-medium values combined
with an asymptotic Stirling-type expansion for large arguments to compute logΓ (x)

and subsequently take the exponent of it forΓ (x). This is, for example, done in GCC
for targets that support the Gamma function.

The small-argument Taylor series for
1

Γ (x)
is given by

1

Γ (x)
= x + γ x2 − 0.6558780715 x3 − 0.0420026350 x4

+ 0.1665386114 x5 − 0.0421977346 x6 + . . . , (12.5)

where γ = 0.5772156649 . . . is the Euler-Mascheroni constant.
An effective polynomial expansion for Γ (x + 1) is given by

Γ (x + 1) =
(

9∑

n = 0

anx
n

)

+ ε(x) , (12.6)

where the relative error |ε(x)| � 3 × 10−8 and the coefficients an are given by5

5A similar polynomial expansion for Γ (x + 1) is given in Sect. 6.1.36 of [1], originating from
the work of C. Hastings in [7]. In the polynomial expansion in Eq. 12.6 here, however, the number
of coefficients has been increased from Hastings’ original 8 up to 10. With 10 coefficients, this
approximation reaches a precision slightly better than the approximate 7 decimal digits of single-
precision float.

242 12 Floating-Point Mathematics

a0 = 0.9999999703 a5 = −0.8649108124

a1 = −0.5772069549 a6 = 0.6721315341

a2 = 0.9887589417 a7 = −0.3860871683

a3 = −0.9035083713 a8 = 0.1405004023

a4 = 0.9539074630 a9 = −0.0235850272 .

(12.7)

These coefficients have been computed with a computer algebra system. A least-
squares curve-fit of a table of Γ (x + 1) with 81 equidistant points in the range
0 ≤ x ≤ 1 has been used. The polynomial fit has been performed with 50 decimal
digits of precision.

For our calculation, we also need both reflection of the Gamma function

Γ (−x) = − π

x Γ (x) sinπx
, (12.8)

as well as upward recursion of the Gamma function

Γ (x + 1) = x Γ (x) . (12.9)

Armed with all these mathematical equations, we are finally ready to implement
the core part of our Gamma function calculation. We will call it gamma1(). It
computes the float value of Γ (x) for 0 < x < 1. In particular,

#include <cmath>

float gamma1(const float& x)
{

// Compute Gamma(x) for 0 < x < 1 (float).
if(x < 0.1F)
{

// Small-argument Taylor series for 1/gamma.
const float sum = (((((((+ 0.0072189432F

* x - 0.0096219715F)

* x - 0.0421977346F)

* x + 0.1665386114F)

* x - 0.0420026350F)

* x - 0.6558780715F)

* x + 0.5772156649F)

* x + 1)

* x;

return 1.0F / sum;
}

12.4 Special Functions 243

else
{

// Do the order-9 polynomial fit.
const float g = ((((((((- 0.0235850272F

* x + 0.1405004023F)

* x - 0.3860871683F)

* x + 0.6721315341F)

* x - 0.8649108124F)

* x + 0.9539074630F)

* x - 0.9035083713F)

* x + 0.9887589417F)

* x - 0.5772069549F)

* x + 0.9999999703F;

// Note: We use one downward recursion here.
return g / x;

}
}

To make the complete implementation of tgamma(), we need to include
range checks, handling of subnormals, possible upward recursion of the result and
reflection for negative arguments. For example,

namespace math
{

float tgamma(float x);
}

template<typename T>
constexpr T pi =

T(3.1415926535’8979323846’2643383279L);

float math::tgamma(float x)
{

// Is the argument a subnormal?
if(!std::isfinite(x))
{

return x;
}

// Check for pure zero argument.
if(x == 0.0F)
{

return std::numeric_limits<float>::quiet_NaN();

244 12 Floating-Point Mathematics

}

// Check for overflow and underflow.
if((x > 35.0F)

|| ((x > -1.0E-4F) && (x < 1.0E-4F))
)

{
return std::numeric_limits<float>::infinity();

}

// Is the argument 1 or 2?
if((x == 1.0F) || (x == 2.0F))
{

return 1.0F;
}

// Use a positive argument for the Gamma calculation.
const bool b_neg = (x < 0.0F);

x = std::fabs(x);

// Get any integer recursion and scale the argument.
const std::uint_fast8_t nx =

static_cast<std::uint_fast8_t>(std::floor(x));

x -= static_cast<float>(nx);

// Calculate gamma of the scaled argument.
float g = gamma1(x);

// Do the recursion if necessary.
for(std::uint_fast8_t i = UINT8_C(0); i < nx; ++i)
{

g *= x;

++x;
}

// Return (and possibly reflect) the result.
if(b_neg == false)
{

return g;
}
else

12.4 Special Functions 245

{
const float sin_pi_x = std::sin(pi<float> * x);

return -pi<float> / ((x * g) * sin_pi_x);
}

}

This implementation of the tgamma() function is relatively complete. In prac-
tice, though, it should throw an std::out_of_range exception for arguments
that are too large or so close to zero or negative integers that the results will be
subnormal. In addition, it may be preferable to switch from recursion to Stirling’s
approximation for arguments above, say, x ≥ 10 since many upward recursions
can be costly. Even with its limitations, though, this version of tgamma() is a
compact efficient Gamma function for float that may be adequate if the compiler
does not include one. A variation of this implementation of tgamma() is included
in the reference project of the companion code.

The numerical results of our tgamma() function are compared with known
control values in Table 12.2. The relative deviations of the calculated values lie in
the range |ε(x)| � 10−7—accurate to within the approximate 7 decimal digits of
single-precision float.

Another example of a special function often needed in real-time C++ is the
cylindrical Bessel function Jν(x). The Taylor series for Jν(z) is

Jν(z) =
(
1

2
z

)ν ∞∑

k = 0

(
− 1

4z
2
)k

k! Γ (ν + k + 1)
, (12.10)

where z, ν ∈ C, see Eq. 9.1.10 in [1] and Eq. 10.2.2 in [19].
Equation 12.10 is a simple enough series. Accurately calculating Bessel func-

tions over a wide range of arguments and orders is, however, relatively complicated.
Numerical methods for computing the Bessel function Jν(x) and other special
functions are described in detail in [6] (in a language-neutral form) and in [23]
(in traditional Fortran 77). In addition, Boost’s Boost.Math library [3] includes
portable and well-tested C++ implementations of numerous higher transcendental
functions for both built-in floating-point types as well as user-defined types.
Boost.Math includes many utilities, tools and all of the mathematical spe-
cial functions specified in TR1 [12] and C++17. The Boost.Math library is

Table 12.2 Calculations of
tgamma(x) are compared
with known values of Γ (x)

x tgamma(x) Γ (x)

0.5 1.7724538 1.7724538509 . . .

8.76 24203.830 24203.81462 . . .

0.02 49.442211 49.4422101631 . . .

−3.45 0.29302791 0.2930279565 . . .

246 12 Floating-Point Mathematics

also designed to interact with its user-defined extended multiple-precision library
Boost.Multiprecision [15].

As mentioned in the beginning of this section, a lot of mathematical special
functions have been incorporated in the specification of C++17. These can be
found in the <cmath> library. This allows for straightforward use of special
functions such as Gamma-type functions, Bessel functions, elliptic integrals, zeta
functions, etc., assuming the compiler implements them.6

The code sample below, for instance, shows how to conveniently retrieve the
value of the cylindrical Bessel function J1.2(3.4) for built-in float.

#include <cmath>

const float jv = std::cyl_bessel_j(1.2F, 3.4F);

// 0.275794

Elliptic integrals are also available in <cmath>. Consider, for example, the
incomplete elliptic integral of the first kind given by [22],

F(ϕ, k) =
∫ ϕ

0

dθ
√
1 − k2 sin2 θ

. (12.11)

The following code snippet computes the float value of F(1/ 2, π/ 2).

#include <cmath>

constexpr float pi_half = pi<float> / 2.0F;

const float e1 = std::ellint_1(0.5F, pi_half);

// 1.68575

A more detailed investigation of another mathematical special function from
<cmath> can be motivated by a well-known series involving the Riemann zeta
function ζ(x) and the Euler-Mascheroni constant γ . In particular, we find from [21]
that

γ = 1 −
∞∑

n = 2

ζ(n) − 1

n
. (12.12)

6At the time of C++17, the newly-specified mathematical special functions are limited to real-
valued implementations only.

12.4 Special Functions 247

Based on this series we can use the std::riemann_zeta() function from
<cmath>, to compute an approximation of γ . This is shown in the following code.

#include <algorithm>
#include <array>
#include <cmath>
#include <cstdint>
#include <numeric>

float euler_gamma_approx()
{

std::array<float, 14U> arg_list;

float f = 1.0F;

// Generate a list of floating-point
// arguments ranging from 2.0 to 15.0.
std::generate_n(arg_list.begin(),

arg_list.size(),
[&f]() -> float
{

return f += 1.0F;
});

// Calculate the gamma approximation.
const float sum =

std::accumulate(
arg_list.cbegin(),
arg_list.cend(),
0.0F,
[](const float prev, const float& n) -> float
{

return prev
+ ((std::riemann_zeta(n) - 1.0F) / n);

});

// Result: 0.577218, compare with 0.5772156649....
const float euler_gamma = 1.0F - sum;

return euler_gamma;
}

This series calculation uses 14 individual calls of the Riemann zeta function
to produce the Euler-Mascheroni constant γ with about 5 decimal digits of

248 12 Floating-Point Mathematics

precision. Even though this is not a particularly efficient calculation of γ , this
example does, nonetheless, provide a strong test of the compiler’s implementation
of std::riemann_zeta() for positive integral arguments.

A benchmark of mathematical special functions can be found in the chapter-
12_04 example. Highly detailed calculations of certain function values are carried
out in this sample, providing an effective stress-test for the compiler’s floating-point
implementation.7 Not all of these functions are included in the C++ standard, so
they are implemented (only for small parameter ranges) in the example.

The code sizes and runtimes are measured for calculations of a cylindrical Bessel
function8

J11/ 9(γ) ≈ 0.1890533652 , (12.13)

a generalized hypergeometric series9

4F5

({
3

7
,
3

8
,
3

9
,

3

10

}
;
{
7

13
,

7

14
,

7

15
,

7

16
,

7

17

}
; log 2

)
≈ 1.5835963139 ,

(12.14)

and a generalized Legendre function of the first kind on the real axis within the unit
circle10

P
14/ 19
1/ 11

(
2

7

)
≈ 0.2937838815 . (12.15)

7The floating-point implementation could use either a hardware FPU or a software floating-point
emulation library.
8This calculation uses a Taylor series (see Eq. 9.1.10 in [1])

Jν(x) =
(
1

2
x

)ν ∞∑

k = 0

(
− 1

4x
2
)k

k! Γ (ν + k + 1)
,

also shown in Eq. 12.10.
9This calculation uses a Taylor series in combination with products of the coefficients (see
Eq. 16.2.1 in [2])

pFq

({ap}; {bq }; x
) =

∞∑

k = 0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k! .

10This calculation uses a hypergeometric representation (see Eq. 8.1.2 in [1])

P μ
ν (x) = 1

Γ (1 − μ)

(
1 + x

1 − x

)μ/ 2

2F1

(
−ν, ν + 1; 1 − μ; 1 − x

2

)
,

which ultimately uses a Taylor series as well.

12.5 Complex-Valued Mathematics 249

Table 12.3 The resource
consumptions in the
benchmark of mathematical
special functions in the
chapter12_04 example
are provided

Runtime Code size

Function
[
μs
] [

byte
]

Jν (x) 800 400

pFq

({ap}; {bq }; x
)

1,600 2,600

P
μ
ν (x) 2,000 600

The runtimes and code sizes of the mathematical special functions calculations
of the chapter12_04 example are provided in Table 12.3. Our target with the
8-bit microcontroller has been used with GCC 7.2.0 and optimization level -O2
for this benchmark. The temporal measurement method using a digital port and an
oscilloscope described in Sect. 9.6 has been employed to determine the runtime.

12.5 Complex-Valued Mathematics

The C++ standard library supports complex-valued mathematics with its tem-
plate data type std::complex. The std::complex data type is defined in
<complex> and specified for (and only for) the built-in types float, double
and long double.

The public interface of the std::complex class supports basic arithmetic
operators, elementary transcendental functions, the norm, polar coordinates, etc. See
Sect. 26.4.1–26.4.9 in [10] for a complete synopsis of the <complex> library.

Consider x and y of type std::complex<float> given by

x = 1.23 + 3.45i

y = 0.77 + 0.22i . (12.16)

The following code computes the complex values

z1 = x/ y

z2 = sin(x) , (12.17)

where z1 and z2 are of type std::complex<float>.

std::complex<float> x(1.23F, 3.45F); // (1.23 + 3.45 I)
std::complex<float> y(0.77F, 0.22F); // (0.77 + 0.22 I)

std::complex<float> z1;
std::complex<float> z2;

z1 = x / y; // (2.6603774 + 3.7204117 I)
z2 = std::sin(x); // (14.859343 + 5.2590045 I)

250 12 Floating-Point Mathematics

The <complex> library also supports, among others, common complex oper-
ations such as norm and absolute value. For the same complex values x and y,
consider the norm and absolute value given by

nx = ‖x‖ = (�x)2 + (�x)2

ay = |y| =
√

(�y)2 + (�y)2 . (12.18)

The following code computes the float values of nx and ay .

std::complex<float> x(1.23F, 3.45F); // (1.23 + 3.45 I)
std::complex<float> y(0.77F, 0.22F); // (0.77 + 0.22 I)

float nx = std::norm(x); // 13.4154
float ay = std::abs(y); // 0.800812

Setting and retrieving the real and imaginary parts of a complex number is done
with the member functions real() and imag(). For instance,

std::complex<float> z(0); // (0 + 0 I)

z.real(1.23F); // Set the real part.
z.imag(3.45F); // Set the imag part.

float zr = z.real(); // Get the real part, 1.23.
float zi = z.imag(); // Get the imag part, 3.45.

It is straightforward to create non-trivial complex-valued computations that
can also use complex-valued elementary functions. We will now convert the
computation of the real-valued sinc function from Sect. 12.1 to a complex-valued
calculation. The code sample below computes the complex-valued sinc function for
std::complex<float>.

#include <complex>
#include <limits>

namespace
{

using local_complex_type = std::complex<float>;
}

local_complex_type sinc(const local_complex_type& z)
{

12.5 Complex-Valued Mathematics 251

if(std::abs(z) <
std::numeric_limits<float>::epsilon())

{
return 1.0F;

}
else if(std::abs(z) < 0.03F)
{

const local_complex_type z2 = z * z;

const local_complex_type sum
= ((- 1.984126984E-04F

* z2 + 8.333333333E-03F)

* z2 - 1.666666667E-01F)

* z2;

return 1.0F + sum;
}
else
{

return std::sin(z) / z;
}

}

Performing a quick test of the computation of sinc (1.2 + 3.4i) results in a
value of 2.70868 − 3.15559i. This compares well with the known control value
of 2.708681783 . . . − 3.155585490 . . . i.

In general, complex-valued floating-point calculations are at least four times
slower than corresponding real-valued computations. The rule of thumb here is
that mathematical software does the majority of its work with multiplication—
an O

(
N2

)
operation. Since complex numbers have two components, real and

imaginary, the computational effort of complex-valued math can be expected to be
at least four times that of real-valued math (i.e., O(N2) → 22 ∼ 4).

For two cases in point, consider the work of multiplying two complex numbers

(a + ib) × (c + id) = (ac − bd) + i (ad + bc) , (12.19)

and that of evaluating the sine of a complex number

sin (x + iy) = sin x cosh y + i cos x sinh y . (12.20)

252 12 Floating-Point Mathematics

Table 12.4 Timing and code
size of complex-valued
floating-point calculations

Runtime Code size

Function
[
μs
] [

byte
]

(1.23 + 3.45i) × (0.77 + 0.22i) 60 900√
1.23 + 3.45i 190 1,600

sin (1.23 + 3.45i) 590 1,700

log (1.23 + 3.45i) 400 1,900

exp (1.23 + 3.45i) 400 1,600

acosh (1.23 + 3.45i) 830 3,200

The multiplication algorithm in Eq. 12.19 requires four real-valued multipli-
cations and two additions.11 The computation of the trigonometric sine function
in Eq. 12.20 requires the evaluation of four real-valued elementary transcendental
functions.12

It can be interesting to measure the efficiency of complex-valued calculations.
Table 12.4 shows the runtime and code size for various complex-valued functions
performed with std::complex<float> on our target with the 8-bit microcon-
troller.13 Comparisons of runtime and size characteristics between complex-valued

11There is also a well-known alternate scheme for multiplication of complex numbers that requires
only three real-valued multiplications, but five additions. In particular,

(a + ib) × (c + id) = (α − β) + i (α + γ) ,

where

α = a (c + d)

β = d (a + b)

γ = c (b − a) .

This alternate scheme for multiplication of complex numbers may or may not be faster than the
original O

(
N2

)
scheme on a given CPU architecture.

12Note here, however, that the sometimes supported function sincos() may boost efficiency
because both sin x as well as cos x are required. In addition, only one exponential calculation of ey

(and its inverse) is needed because

cosh y = ey + e−y

2
,

sinh y = ey − e−y

2
.

13This particular implementation of std::complex is provided in the self-written subset of the
C++ standard library and STL for our target with the 8-bit microcontroller. It can be found in
the companion code of this book. In addition, this interpretation of std::complex is nearly
identical with the self-written extended_complex class presented in Sect. 16.6.

12.6 Compile-Time Evaluation of Functions with constexpr 253

and real-valued calculations (see Table 12.1) confirm the expectation that complex-
valued math is roughly 3–5 times bulkier than real-valued math.

Aside from potential resource consumption issues that need to be kept in mind,
however, there are no other significant technical reasons to avoid using complex-
valued floating-point math in real-time C++. So if a project can benefit from
complex-valued math and the performance constraints can be satisfied, then the
<complex> library can safely be used.

12.6 Compile-Time Evaluation of Functions
with constexpr

Compile-time evaluation of floating-point functions uses the constexpr key-
word. For example, we can re-factor the area_of_a_circle() function from
Sects. 12.1 and 12.2 for compile-time evaluation via constexpr.

template<typename T>
constexpr T area_of_a_circle(T r)
{

return (pi<T> * r) * r;
}

This function returns the floating-point value representing the approximate area
of a circle with radius r as a compile-time constant. For example, to compute the
area of a circle with approximate float radius 1.23 (a ∼ 4.752916), we simply
use

constexpr float a = area_of_a_circle(1.23F);

Using constexpr floating-point values in this way allows for portable and
legible compile-time evaluation of even non-trivial floating-point functions such as
trigonometric functions.

Consider, for instance, an order 19 polynomial approximation of the sine
function,

sin x = sin
(π

2
χ
)

=
⎛

⎝
n = 19∑

n = 1, n odd

anχ
n

⎞

⎠ + O
(
10−20

)
, (12.21)

using the scaled argument

χ = x

(
2

π

)
(12.22)

254 12 Floating-Point Mathematics

in the range −1 ≤ χ ≤ 1, where the coefficients an are given by

a1 = 1.5707963267948966192276341

a3 = −6.4596409750624625337325359 10−1

a5 = 7.9692626246167038770053004 10−2

a7 = −4.6817541353186228516958362 10−3

a9 = 1.6044118478699232812460184 10−4

a11 = −3.5988432339708525153771884 10−6

a13 = 5.6921726597221657560994942 10−8

a15 = −6.6880001786329819459555395 10−10

a17 = 6.0640855645940930588123490 10−12

a19 = −4.2468171354841523379493663 10−14 .

(12.23)

These coefficients have also been computed with a computer algebra system using
a least-squares fitting technique.

It takes a bit of typing, cleverly crafted #defines, and careful considerations
about argument reduction, reflection and the like. It is, however, relatively straight-
forward to write a compile-time sine function for floating-point arguments based
on Eqs. 12.21–12.23. In particular, the subroutine below performs a compile-time
computation of sin x for floating-point argument x with better than 20 decimal digits
of precision.14

// Scale the argument.
#define CHI_S T(T(x * 2) / pi<T>)

// Take the absolute value of CHI.
#define IS_NEG bool(CHI_S < T(0))
#define CHI_A T(IS_NEG ? -CHI_S : CHI_S)

// Do the argument reduction.
#define NPI2 std::uint32_t(CHI_A / 2)
#define NPI std::uint32_t(\

(CHI_A - (NPI2 * 2) > T(1)) \
? NPI2 + 1 \
: NPI2)

14This implementation uses solely range reduction, reflection and the polynomial approximation.
To obtain the highest possible precision-conserving characteristics, however, it may be better to
use Taylor series approximations near the turning points at x = 0 and x = π /2 after the range
reduction. See [16] for further details on techniques for range reduction.

12.6 Compile-Time Evaluation of Functions with constexpr 255

#define CHI T(CHI_A - T(NPI * 2))
#define CHI2 T(CHI * CHI)

// Do the order-19 polynomial expansion.
#define SUM \

(((((((((- T(4.2468171354841523379493663E-14L) \

* CHI2 + T(6.0640855645940930588123490E-12L)) \

* CHI2 - T(6.6880001786329819459555395E-10L)) \

* CHI2 + T(5.6921726597221657560994942E-08L)) \

* CHI2 - T(3.5988432339708525153771884E-06L)) \

* CHI2 + T(1.6044118478699232812460184E-04L)) \

* CHI2 - T(4.6817541353186228516958362E-03L)) \

* CHI2 + T(7.9692626246167038770053004E-02L)) \

* CHI2 - T(6.4596409750624625337325359E-01L)) \

* CHI2 + T(1.5707963267948966192276341E+00L)) \

* CHI

// Reflect the result if necessary.
#define NEEDS_REFLECT bool((NPI % 2) != 0)

namespace math { namespace const_functions {

template<typename T>
constexpr T sin(T x)
{

return ((NEEDS_REFLECT == IS_NEG) ? SUM : -SUM);
}

} } // namespace math::const_functions

Here, the constexpr version of the sin() function has been implemented
within namespace math::const_functions. Thereby, it can be differenti-
ated from global ::sin() and the standard library’s std::sin() in <cmath>
which are often used without namespace resolution.

Using math::const_functions::sin() for compile-time calculations
of the sine function in code is simple. In the example below, for instance, the
compiler computes the approximate double-precision representation of sin (1/ 2).

constexpr double y = math::const_functions::sin(0.5);

If y is subsequently used in a subroutine, the compiler should be able to compute
the value of the sine function at compile time. Investigations of the compiler-
generated assembly code reveal that the compiler directly replaced the variable y

256 12 Floating-Point Mathematics

with the 8-byte hexadecimal representation of

sin (1/ 2) ≈ 0.47942553860420301 = 0x3FDE’AEE8’744B’05F0.

(12.24)

This is an extremely efficient form of constant folding.15 In fact, using
the constexpr subroutine math::const_functions::sin() reduces the
runtime effort for computing sin x for compile-time constant x to that of merely
loading a constant value computed by the compiler into CPU registers.16

With a bit of additional effort, compile-time constant versions of cosine and
tangent can also be written. In particular,

namespace math { namespace const_functions {

template<typename T>
constexpr T cos(T x)
{

return -sin<T>(x - T(pi<T> / 2));
}

template<typename T>
constexpr T tan(T x)
{

return sin<T>(x) / cos<T>(x);
}

} } // namespace math::const_functions

It is possible to use compile-time evaluation of functions to compute essentially
any function, bounded only by the compiler’s internal limits. It is possible to extend
the number of coefficients in polynomial expansions and the like to obtain even
higher precision. In addition, template metaprogramming can be employed for more
complicated range reduction if needed. Compile-time evaluation of floating-point
functions may potentially be a new research topic in the area of high-performance
numerical computing made possible by the abilities of constexpr in C++11.

15This benchmark was investigated with GCC version 4.8.1 for avr-unknown-elf and GCC
version 4.8.3 for a well-known 32-bit microcontroller.
16In this example, the floating-point representation of double is 8 bytes wide and conforms with
double-precision floating-point representation in IEEE-754.

12.7 Generic Numeric Programming 257

12.7 Generic Numeric Programming

Some forms of generic numeric programming employ C++ templates to use
the same code for different data types and function objects.17 We have already
encountered generic numeric programming previously in this chapter. In particular,
recall the templated function area_of_a_circle() from Sect. 12.6.

template<typename T>
constexpr T area_of_a_circle(T r)
{

return (pi<T> * r) * r;
}

This subroutine has strong generic character because it can be used with various
floating-point types to provide results with differing precisions. For example,
if float and double correspond to IEEE-754 single-precision and double-
precision, respectively, on a given system, then the following results are obtained
for the area of a circle with radius 1.23.

constexpr float f = area_of_a_circle(1.23F);
// 4.75292

constexpr double d = area_of_a_circle(1.23);
// 4.752915525616

We will now add even more power to generic numeric programming using not
only different floating-point types but also function objects as template parameters.
Consider some well-known central difference rules for numerically computing the
first derivative of a function f ′(x) with x ∈ R. In particular,

f ′ (x) ≈ m1 + O(dx2)

f ′ (x) ≈ 4

3
m1 − 1

3
m2 + O(dx4)

f ′ (x) ≈ 3

2
m1 − 3

5
m2 + 1

10
m3 + O(dx6) , (12.25)

17See also [20] for a description of a fundamental relationship between mathematics and generic
programming.

258 12 Floating-Point Mathematics

where the difference terms mn are given by

m1 = f (x + dx) − f (x − dx)

2 dx

m2 = f (x + 2dx) − f (x − 2dx)

4 dx

m3 = f (x + 3dx) − f (x − 3dx)

6 dx
, (12.26)

and δx is the step-size of the derivative.
The third expression in Eq. 12.25 is a three-point central difference rule. It

calculates the first derivative of f (x) with respect to x to O(dx6), where δx is
the given step-size. If the step-size is 0.01, for example, this derivative calculation
is expected to provide results having about 6 decimal digits of precision—just about
right for the 7 decimal digits of single-precision float.

We will now make a generic template subroutine using this three-point central
difference rule. In particular,18

template<typename value_type,
typename function_type>

value_type derivative(const value_type x,
const value_type dx,
function_type function)

{
// Compute the derivative using a three point
// central difference rule of O(dx^6).

const value_type dx1 = dx;
const value_type dx2 = dx1 * 2;
const value_type dx3 = dx1 * 3;

const value_type m1 =
(function(x + dx1) - function(x - dx1)) / 2;

const value_type m2 =
(function(x + dx2) - function(x - dx2)) / 4;

18Here, we rearrange the terms in the third expression of Eq. 12.25 such that

f ′ (x) ≈ (15m1 − 6m2 + m3) dx

10 dx
,

where δx is the step-size.

12.7 Generic Numeric Programming 259

const value_type m3 =
(function(x + dx3) - function(x - dx3)) / 6;

const value_type fifteen_m1 = 15 * m1;
const value_type six_m2 = 6 * m2;
const value_type ten_dx1 = 10 * dx1;

return ((fifteen_m1 - six_m2) + m3) / ten_dx1;
}

The derivative() template function can be used to compute the first
derivative of any continuous function to O(dx6). Consider, for example, the first
derivative of sin x evaluated at x = π/ 3, in other words

d

dx
sin x

∣∣
∣
∣

x = π
3

= cos
(π

3

)
= 1

2
. (12.27)

The code below computes this derivative with about 6 decimal digits of precision
using the derivative() function.

const float x = pi<float> / 3.0F;

// Should be very near 0.5.
const float y =

derivative(x,
0.01F,
[](const float& x) -> float
{

return std::sin(x);
});

The expected value is 1/ 2 = 0.5. The compiler that was used to test this
code sequence obtained 0.50000286. This result is within the expected tolerance
of O

(
dx6

)
with dx = 1/ 100 = 0.01.19 This code also makes use of the pi

variable template from Sect. 12.2 and a lambda expression—both of which are C++
language elements with strong generic character as well.

19When using binary floating-point representations, however, best results are typically obtained
from derivative central difference rules with a step-size of the form (1/ 2)n. Using a somewhat
larger step size of 1/ 64 = 0.015625, for example, produces a result of 0.50000173, which is even
slightly better than the result of 0.50000286 obtained with the smaller step-size of 1/ 100 = 0.01.

260 12 Floating-Point Mathematics

The derivative() template function can also be used with function objects.
Consider the quadratic equation,

ax2 + bx + c = 0 . (12.28)

The code below implements a template function object that encapsulates the left-
hand side of the quadratic equation.

template<typename T>
class quadratic
{
public:

const T a;
const T b;
const T c;

quadratic(const T& a_,
const T& b_,
const T& c_) : a(a_),

b(b_),
c(c_) { }

T operator()(const T& x) const
{

return ((a * x + b) * x) + c;
}

};

The first derivative of the quadratic equation can be computed in closed form. In
other words,

d

dx

(
ax2 + bx + c

)
= 2ax + b . (12.29)

The derivative() template function can handily compute the first derivative
of the quadratic function object. In particular, the code below computes

d

dx

(
12

10
x2 + 34

10
x + 56

10

) ∣∣
∣
∣
x = 1

2

= 12

10
+ 34

10
= 4.6 . (12.30)

12.7 Generic Numeric Programming 261

const float x = 0.5F;

// Should be very near 4.6.
const float y =

derivative(x,
0.01F,
quadratic<float>(1.2F, 3.4F, 5.6F));

The expected value is 4.6. The compiler that was used to test this code sequence
obtained 4.60000086, which is well within the expected tolerance of O

(
dx6

)
.

The versatile derivative() template function exemplifies generic numeric
programming because both the floating-point type (value_type) as well as the
function-type (function_type) are template parameters. This means that the
derivative() template function can be used equally well with both built-in
floating-point types (float, double, long double) as well as user-defined
types such as extended precision floating-point types (i.e., as in [15]), fixed-point
types (Chap. 13), etc. Furthermore, the derivative() template function accepts
all valid function types in its third input parameter including functions having static
linkage, lambda expressions, and function objects alike.

A similar generic template method can be used for computing the numerical
definite integral of a function. Recall the definite integral of a real-valued function
f (x) from a to b, in other words

∫ b

a

f (x) dx . (12.31)

The integral() template function shown below uses a recursive trapezoid
rule to perform this kind of numerical integration.20 In particular,

template<typename real_value_type,
typename real_function_type>

real_value_type integral(
const real_value_type& a,
const real_value_type& b,
const real_value_type& tol,
real_function_type real_function)

{
std::uint_fast32_t n2(1);

real_value_type step = ((b - a) / 2U);

20See also Sect. 5.2.2 in [6] for additional information on this recursive trapezoid rule.

262 12 Floating-Point Mathematics

real_value_type result =
(real_function(a) + real_function(b)) * step;

const std::uint_fast8_t k_max = UINT8_C(32);

for(std::uint_fast8_t k(0U); k < k_max; ++k)
{

real_value_type sum(0);

for(std::uint_fast32_t j(0U); j < n2; ++j)
{

const std::uint_fast32_t two_j_plus_one =
(j * UINT32_C(2)) + UINT32_C(1);

sum +=
real_function(a + (step * two_j_plus_one));

}

const real_value_type tmp = result;

result = (result / 2U) + (step * sum);

const real_value_type ratio =
std::abs(tmp / result);

const real_value_type delta = std::abs(ratio - 1U);

if((k > UINT8_C(1)) && (delta < tol))
{

break;
}

n2 *= 2U;

step /= 2U;
}

return result;
}

12.7 Generic Numeric Programming 263

We will now use the integral() template function to compute the value of a
cylindrical Bessel function. Consider the well-known integral representation of the
cylindrical Bessel function of integer order on the real axis. In particular,21

Jn(x) = 1

π

∫ π

0
cos

(
x sin θ − nθ

)
dθ , for x ∈ R , n ∈ Z . (12.32)

The template code below implements cyl_bessel_j() based on the integral
representation in Eq. 12.32.22

template<typename float_type>
float_type cyl_bessel_j(const std::uint_fast8_t n,

const float_type& x)
{

const float_type epsilon =
std::numeric_limits<float_type>::epsilon();

const float_type tol = std::sqrt(epsilon);

const float_type jn =
integral(float_type(0),

pi<float_type>,
tol,
[&x,&n](const float_type& t) -> float_type
{

return
std::cos(x * std::sin(t) - (n * t));

})
/ pi<float_type>;

return jn;
}

Here, we use standard mathematical functions combined with generic template
methods. A lambda function is used for passing the integral representation of the
Bessel function to the recursive trapezoid mechanism in integral().

21See, for example, Eq. 10.9.1 in [19].
22This implementation of cyl_bessel_j(), however, only converges well for limited parame-
ter ranges such as small x, n � 5.

264 12 Floating-Point Mathematics

We will now use the cyl_bessel_j() template to compute the approximate
value of J2(1.23) for single-precision float. In other words,

const float j2 = cyl_bessel_j(UINT8_C(2), 1.23F);

// Computed result: 0.16636 94
// Known value: 0.16636 93837...

The result of the computation of j2 is 0.1663694. This computed result agrees
with the known value of J2(1.23) ≈ 0.1663693837 . . . to within the approximate
seven decimal digits of precision had by single-precision float.

As of C++17, the value of this cylindrical Bessel function can also be verified
with std::cyl_bessel_j(), from the mathematical special functions found
in the <cmath> library. In particular,

#include <cmath>

const float j2 = std::cyl_bessel_j(2, 1.23F);

// 0.166369

Generic numeric programming can be quite useful in real-time C++ because
it is flexible and scalable. Since generic numeric programming utilizes template
methods, the results can be highly optimized by the compiler. This can result in
exceptionally efficient algorithms.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 9th Printing (Dover, New
York, 1972)

2. R.A. Askey, A.B. Olde Daalhuis, Generalized hypergeometric functions and Meijer G-
function, in NIST Handbook of Mathematical Functions, chap. 16, ed. by F.W.J. Olver,
D.W. Lozier, R.F. Boisvert, C.W. Clark (Cambridge University Press, Cambridge, 2010)

3. B. Dawes, D. Abrahams, Boost C++ Libraries (2017). http://www.boost.org
4. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions,

vol. 1–3 (Krieger, New York, 1981)
5. S.R. Finch, Mathematical Constants (Cambridge University Press, Cambridge, 2003)
6. A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions (Society for

Industrial and Applied Mathematics, Philadelphia, 2007)
7. C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton,

1955)
8. IEEE Computer Society, IEEE Std 1003.1 – 2008, IEEE Standard 754–2008 (2008). http://

ieeexplore.ieee.org/servlet/opac?punumber=4610933

http://www.boost.org
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

References 265

9. ISO/IEC, ISO/IEC 9899:1999 : Programming Languages – C (International Organization for
Standardization, Geneva, 1999)

10. ISO/IEC: ISO/IEC 14882:2011 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2011)

11. ISO/IEC, ISO/IEC 14882:2017 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2017)

12. ISO/IEC, ISO/IEC TR 19768:2007 : Information Technology – Programming Languages –
Technical Report on C++ Library Extensions (International Organization for Standardization,
Geneva, 2007)

13. ISO/IEC, ISO/IEC 29124:2010 : Information Technology – Programming Languages, Their
Environments and System Software Interfaces – Extensions to the C++ library to Support
Mathematical Special Functions (International Organization for Standardization, Geneva,
2010)

14. D.E. Knuth, The Art of Computer Programming, vol. 1–3, 3rd edn. (Addison-Wesley, Boston,
1998)

15. J. Maddock, C. Kormanyos, Boost Multiprecision (2017). http://www.boost.org/doc/libs/1_65_
1/libs/multiprecision/doc/html/index.html

16. J.M. Muller, Elementary Functions: Algorithms and Implementation (Birkhäuser, Boston,
2006)

17. J.M. Muller, N. Brisebarre, F. de Dinechin, C.M. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, T. Torres, Handbook of Floating-Point Arithmetic (Birkhäuser, Boston,
2010)

18. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical
Functions (Cambridge University Press, Cambridge, 2010)

19. F.W.J. Olver, L.C. Maximon, Bessel functions, in NIST Handbook of Mathematical Functions,
chap. 10, ed. by F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Cambridge University
Press, Cambridge, 2010)

20. A.A. Stepanov, D.E. Rose, From Mathematics to Generic Programming (Addison-Wesley,
Boston, 2014)

21. Wikipedia, Riemann zeta function (2017). http://en.wikipedia.org/wiki/Riemann_zeta_
function

22. Wikipedia, Elliptic integral (2017). http://en.wikipedia.org/wiki/Elliptic_integral
23. S. Zhang, J. Jin, Computation of Special Functions (Wiley, New York, 1996)

http://www.boost.org/doc/libs/1_65_1/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_65_1/libs/multiprecision/doc/html/index.html
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://en.wikipedia.org/wiki/Elliptic_integral

Chapter 13
Fixed-Point Mathematics

Many embedded systems applications need to perform floating-point calculations.
As mentioned in the previous chapter, however, small-scale microcontrollers may
not have hardware support for floating-point calculations with a floating-point unit
(FPU). To avoid potentially slow floating-point emulation libraries manipulating
32-bit single-precision float or even 64-bit double-precision double, many
developers elect to use integer-based fixed-point arithmetic. The first part of this
chapter describes fixed-point data types and presents a scalable template class
representation for fixed-point. In the second part of this chapter, we will use our
fixed-point class to compute some elementary transcendental functions, discuss
fixed-point efficiency and develop a specialization of std::numeric_limits.

13.1 Fixed-Point Data Types

A fixed-point number is an integer-based data type representing a fractional number,
optionally signed, having a fixed number of integer digits to the left of the decimal
point and another fixed number of fractional digits to the right of the decimal
point.1 A fixed-point data type is usually used to hold a real value. Two fixed-point
values, however, could also be used as the real and imaginary components of a
complex class, such as an extended complex numbers class similar to the one used
in Sect. 16.6. Fixed-point data types are commonly implemented in base-2 or base-
10. Fixed-point calculations can be highly efficient in microcontroller programming
because they use a near-integer representation of the data type.

1See Chapter 9 in [5] and also [7] for more information on fixed-point numbers.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_13

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_13&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_13

268 13 Fixed-Point Mathematics

Fig. 13.1 A representation of
the Q7.8 fixed-point type is
shown

std::int16_t
Integer Fraction

+/- 255/256, 254/256 … 1/256, 0127, 126 … 1, 0

Decimal PointSign Bit

F7 F6 F5 F4 F3 F2 F1 F0S0 I6 I5 I4 I3 I2 I1 I0

Consider a base-2 fixed-point system consisting of an integer representation with
four binary digits, having two integer digits to the left of the decimal point and two
fractional digits to the right of the decimal point. In this system, the fractional num-
ber 1.5 could be represented as an integer with binary value 0b0110 (i.e. decimal
value 6). Here, the fractional value has been left-shifted by 2 (multiplied by 4) in
order to fit within the integer representation. The decimal point in this fixed-point
system lies between bits {0 . . . 1} and bits {2 . . . 3}.

High-performance implementations of fixed-point numbers for modern micro-
controllers commonly use base-2. In Fig. 13.1, for example, a common base-2,
signed, 16-bit fixed-point representation is depicted. It has one sign bit, 7 binary
integer digits to the left of the decimal point, and 8 binary fractional digits to the
right of the decimal point.

This is known as a Q7.8 fixed-point type using the Q-notation. In the unam-
biguous Q-notation, the entire fixed-point number is represented as a single
two’s-complement signed integer with an implicit sign bit. For example, Q15.16
describes a fixed-point type with one sign bit, 15 integer bits and 16 fractional bits.
The Q15.16 representation can be stored in a 32-bit signed integer.

Fixed-point numbers generally do not have an exponent field, lending them a
near-integer representation. Therefore, manipulations of fixed-point numbers such
as addition, subtraction, multiplication and division can use integer algorithms
which can be simpler and potentially more efficient than those of conventional
floating-point representations.

The Q7.8 representation can hold real numbers ranging from

±
{
0x00.01 . . . 0x7F.FF

}
, (13.1)

in other words from

±
{

1

28
. . .

(
27 − 1

28

) }
, (13.2)

13.1 Fixed-Point Data Types 269

which is approximately equal to

±
{
0.004 . . . 127.996

}
. (13.3)

The decimal point has been symbolically included in the hexadecimal represen-
tation of Eq. 13.1 in an intuitive fashion. The Q7.8 fixed-point representation has
slightly more than 2 decimal digits of precision both to the left of the decimal point
as well as to the right of the decimal point. Note that the fractional part of the
Q7.8 representation has one binary digit more of precision than the integer part due
to the sign bit in the integer part.

Since the decimal point has a fixed position in the underlying integer data
type, smaller numbers have decreased precision. In fact, the minimum value of
the Q7.8 representation is

(
1/ 28

) ≈ 0.004, with merely one binary digit of
precision. In addition, fixed-point representations lacking an exponent usually have
smaller range than floating-point types. In particular, the maximum value of the
Q7.8 representation is approximately +127.996.

Fixed-point types generally have less range and reduced precision comparedwith
floating-point representations. The underlying reason for this is the near-integer
representation of fixed-point types. This is, however, exactly what lends them their
improved performance. Fixed-point trades reduced range and decreased precision
in favor of potentially improved efficiency using simpler integer algorithms.

It is possible to vary the fundamental integer size and/or the decimal split
characteristics when defining fixed-point types. This can be done in order to obtain
different performances or other numerical ranges. For example, a signed, 32-bit
Q15.16 representation could be used for a fixed-point type with optimized perfor-
mance on a 32-bit architecture. If storage size or performance on an 8-bit platform
are considerations, then an unsigned, 8-bit Q0.8 representation could be used.
The Q0.8 representation is able to store fixed-point numbers with positive values
less than one with about two decimal digits of precision. The Q0.8 representation
could be useful, for example, if the application only needs to implement a couple of
trigonometric calculations, such as sine and cosine functionswith just a few digits of
precision. Whatever the fixed-point representation, one must be aware of its range.
In addition, utmost care must be taken to remain within the numerical limitations at
all times when performing fixed-point calculations.

It is also possible to dynamically vary the characteristics of a fixed-point type’s
decimal split during runtime. This may be desired for optimizing the results of
numerical calculations within specific ranges. For example, calculations of the
exponential function of, say, e2 . . . e3 have results that range from about 7 . . . 20.
Comparing these values with the results of calculations of the sine or cosine
functions, for instance, shows that the exponential function benefits frommore digits
to the left of the decimal point and fewer to the right. So preferentially shifting the
decimal point of the fixed-point type a few places to the right in order to make room
for more digits in the integer part will generally improve fixed-point calculations of
the exponential function.

270 13 Fixed-Point Mathematics

In this book, however, dynamic modification of the decimal split is not done
because it can lead to additional sources of error and a more complicated implemen-
tation. In my opinion, it may be best to consider the kinds of calculations planned
for a particular application up front and, based on the analysis, limit the required
range to some reasonable values, such as 0.001 . . . 1, 000. Once the fixed-point
range has been defined, a dedicated fixed-point type adequate for the given range
can be selected up front.

13.2 A Scalable Fixed-Point Template Class

A class representation of a specialized numeric type in C++ should behave like
a built-in type as closely as possible. In other words, it should be possible to
perform operations on the specialized type such as assignment, binary arithmetic,
comparison, etc. In order to accomplish this, the author of a specialized numeric
class usually needs to implement some or all of the following features.

• Make a copy constructor from the self-type and additional constructors from
other built-in types.

• Implement assignment operators from the self-type and other built-in types.
• Write overloads for the assignment operator and also for arithmetic compound

assignment operators such as operator+=, operator-=, operator*=,
operator/=, etc.

• Make the global unary operators operator+ and operator- as well as
the operators for the pre-forms and post-forms of increment and decrement
operator++ and operator--.

• Implement standard global operators for binary arithmetic operations including
operator+, operator-, operator*, operator/, etc.

• Write global comparison operators for the specialized type as well as other built-
in types such as operator<, operator<=, operator==, operator!=,
operator>=, operator>, etc.

• Optionally implement a template specialization of std::numeric_limits
for the numeric type.

These steps have been carried out in the reference project of the companion code
to make a specialized fixed_point class. The fixed_point class implements
a relatively complete representation of fixed-point arithmetic in C++. This class
is based on a scalable template that supports varying decimal digits of precision
depending on the width of the underlying template parameter.

13.2 A Scalable Fixed-Point Template Class 271

A partial synopsis of the fixed_point template class is shown in the listing
below. Complete implementation details can be found in the source code of the
reference project.

// The scalable fixed_point template class.
template<typename integer_type>
class fixed_point
{
public:

// Signed representation of the fixed_point type.
typedef integer_type signed_value_type;

// Default constructor.
fixed_point();

// Constructors from POD.
fixed_point(const char);
fixed_point(const signed char);
fixed_point(const unsigned char);
fixed_point(const signed short);
fixed_point(const unsigned short);
fixed_point(const signed int);
fixed_point(const unsigned int);
fixed_point(const signed long);
fixed_point(const unsigned long);
fixed_point(const float&);
fixed_point(const double&);

// Copy constructor.
fixed_point(const fixed_point&);

// Copy construction from another fixed-point type.
template<typename other_type>
fixed_point(const fixed_point<other>&);

// Copy assignment operators from POD.
fixed_point& operator=(const char);
fixed_point& operator=(const signed char);
fixed_point& operator=(const unsigned char);
fixed_point& operator=(const signed short);
fixed_point& operator=(const unsigned short);
fixed_point& operator=(const signed int);

272 13 Fixed-Point Mathematics

fixed_point& operator=(const unsigned int);
fixed_point& operator=(const signed long);
fixed_point& operator=(const unsigned long);
fixed_point& operator=(const float&);
fixed_point& operator=(const double&);

// Copy assignment operator.
fixed_point& operator=(const fixed_point&);

// Copy assignment from another fixed-point type.
template<typename other>
fixed_point& operator=(const fixed_point<other>&);

// Negation.
void negate();

// Pre-increment and pre-decrement.
fixed_point& operator++();
fixed_point& operator--();

// Compound assignment operations.
fixed_point& operator+=(const fixed_point&);
fixed_point& operator-=(const fixed_point&);
fixed_point& operator*=(const fixed_point&);
fixed_point& operator/=(const fixed_point&);

// Conversion operations.
float to_float() const;
double to_double() const;
signed_value_type to_int() const;
std::int8_t to_int8() const;
std::int16_t to_int16() const;
std::int32_t to_int32() const;

private:
// Internal data representation.
signed_value_type data;

// Internal structure for special constructor.
typedef nothing internal;

// Special constructor from data representation.
fixed_point(const internal&,

const signed_value_type&);

13.2 A Scalable Fixed-Point Template Class 273

// Comparison functions.
// ...

// Other private implementation details.
// ...

};

// Global post-increment and post-decrement.
// Global binary mathematical operations.
// Global binary comparison operations.
// Global math functions and transcendental functions.

// ...

In the fixed_point class, the decimal split is always in the middle of the
underlying integer representation of the type. The size of the template param-
eter integer_type sets the scale of the fixed_point class. Here, the
integer_type parameter is assumed to be one of the signed fixed-size integer
types such as std::int16_t, std::int32_t, etc. If integer_type is
std::int16_t, for example, then the fixed_point class represents Q7.8
fixed-point numbers. With a larger integer_type such as std::int32_t, the
fixed_point class represents Q15.16 fixed-point numbers.

Dedicated types have been defined for the fixed-point representations that can be
made from the fixed_point class. In particular,

// Define four scalable fixed_point types.
typedef fixed_point<std::int8_t> fixed_point_3pt4;
typedef fixed_point<std::int16_t> fixed_point_7pt8;
typedef fixed_point<std::int32_t> fixed_point_15pt16;
typedef fixed_point<std::int64_t> fixed_point_31pt32;

For our target with the 8-bit microcontroller, the first three can be used effec-
tively. On this 8-bit platform, though, the manipulation of signed 64-bit integers
required for the Q31.32 representation is excessively costly and this fixed-point
type should be avoided. On our target with the 32-bit microcontroller, however, the
Q31.32 representation can be quite efficient. When selecting the right fixed-point
types for a system, it may be beneficial to analyze runtimes and assembly listings in
order to find the right trade-off between performance, range and precision.

274 13 Fixed-Point Mathematics

13.3 Using the fixed point Class

Using the fixed_point class is straightforward. For example, we will set the
value of a Q7.8 fixed-point variable r to approximately 1.23.

// r is approximately 1.23.
const fixed_point_7pt8 r(1.23F);

Here, the fixed-point variable r is constructed from the float representation
of 1.23. It can, however, be more efficient to construct fixed-point values using
pure integers instead of, say, float or double. In particular, we will create the
variable r again—this time using an integer constructor.

// r is approximately 1.23.
const fixed_point_7pt8 r(fixed_point_7pt8(123) / 100);

In this case, r uses an intermediate fixed-point object created from the inte-
ger 123 which is subsequently divided by the integer 100. In general, this kind of
fixed-point construction should offer the best performance, even with subsequent
integer division. In fact, depending on the compiler’s capabilities and the charac-
teristics of the underlying fixed-point type, the compiler may be able to directly
initialize this kind of expression using constant-folding. One does need to carefully
benchmark the results in order to verify that this is, in fact, the case for a particular
fixed-point type on a given architecture.

It is also essential to be aware of the range limitations of fixed-point types. For
example, when setting the intermediate value in the constructor shown above to 123,
we are not far away from the maximum value of 127 that can fit in the integer part
of the Q7.8 representation. An initial value of, say, 234 would overflow the integer
part of the Q7.8 representation.

It is easy to write functions using the fixed_point class. Consider the
template function below that computes the fixed-point area of a circle.

template<typename fixed_point_type>
fixed_point_type
area_of_a_circle(const fixed_point_type& r)
{

return (fixed_point_type::value_pi() * r) * r;
}

In particular, we will use this template with the Q7.8 fixed-point type to compute
the approximate area of a circle with radius 1.23.

13.3 Using the fixed point Class 275

// r is approximately 1.23.
const fixed_point_7pt8 r(fixed_point_7pt8(123) / 100);

// a is approximately 4.723.
const fixed_point_7pt8 a = area_of_a_circle(r);

The result for the area a is ∼ 4.723, which differs from the actual value
of 4.75291 . . . by merely 0.6%.

The fixed_point class can be seamlessly mixed with other built-in integral
and floating-point types in mathematical expressions. For example, a simple
template subroutine that implements the left-hand side of a cubic equation with
signed integer polynomial coefficients could be implemented like this.

template<typename fixed_point_type,
const int_fast8_t c0,
const int_fast8_t c1,
const int_fast8_t c2,
const int_fast8_t c3>

fixed_point_type cubic(const fixed_point_type& x)
{

return (((c3 * x + c2) * x + c1) * x) + c0;
}

As mentioned above, the fixed_point class can also be used with built-
in float. In particular, consider an order 5 polynomial approximation of the
trigonometric sine function

sin x = 1.5704128χ − 0.6425639χ3 + 0.0722739χ5 + ε (x) , (13.4)

where

χ = x

(
2

π

)
. (13.5)

This polynomial approximates sin x in the range −π/ 2 ≤ x ≤ π/ 2 (in other
words −1 ≤ χ ≤ 1) with relative error |ε (x)| � 0.0002.

The polynomial approximation in Eq. 13.4 can be implemented with a template
subroutine using the fixed_point class as follows.2

2This is, though, a somewhat naive and incomplete fixed-point implementation of the sine function.
It loses performance via use of float and is missing range reduction and reflection. A more
efficient and complete fixed-point implementation of the sine function will be shown in the
following section.

276 13 Fixed-Point Mathematics

template<typename fixed_point_type>
fixed_point_type sin(const fixed_point_type& x)
{

// Scale x to chi (+-pi/2 to +-1).
fixed_point_type chi(x * 0.6366198F);

// Calculate chi^2 for the polynomial expansion.
fixed_point_type chi2 = chi * chi;

// Do the order-5 polynomial expansion.
return ((0.0722739F

* chi2 - 0.6425639F)

* chi2 + 1.5704128F)

* chi;
}

We will now use the Q15.16 fixed-point representation to compute the approxi-
mate value of sin (1/ 2).

// 0.47937
fixed_point_15pt16 y = sin(fixed_point_15pt16(1) / 2);

The result for y is 0.47937, which differs from the actual value of approxi-
mately 0.47942 . . . by less than 1 part in 10,000.

13.4 Fixed-Point Elementary Transcendental Functions

Fixed-point math can be used to create elementary transcendental functions such
as trigonometric functions, exponential functions or logarithmic functions. Such
functions can be quite efficient and might significantly outperform corresponding
functions using built-in floating-point types such as float or double. For further
information on efficient algorithms for elementary transcendental functions, the
interested reader can consult [2, 3, 6].

Consider, for example, the naive fixed-point implementation of the trigonometric
sine function based on Eq. 13.4 in the previous section. We will now re-design this
naive implementation using more efficient integer construction of the polynomial
coefficients (instead of construction from float) and also to include range
reduction and reflection.

13.4 Fixed-Point Elementary Transcendental Functions 277

The algorithm for computing the fixed-point sine function uses the following
scheme:

• argument transformation from x to χ according to Eq. 13.5,
• argument reduction via removing multiples of π ,
• reflection for negative arguments and odd integral multiples of π ,
• and polynomial expansion according to Eq. 13.4.

A possible implementation of the fixed-point sine function according to this
scheme is shown below.

friend inline fixed_point sin(const fixed_point& x)
{

// This function uses fixed_point’s internals
// and is, therefore, a friend of fixed_point.

// Transform x to chi (+-pi/2 to +-1).
fixed_point

chi(x * fixed_point::value_two_over_pi());

// Take the absolute value for argument reduction.
const bool is_neg = (chi < 0);

if(is_neg)
{

chi.negate();
}

// Do the argument reduction.
std::uint_fast8_t npi = UINT8_C(0);

// Remove multiples of pi (1 in the units of chi).
if(chi.data > fixed_point::decimal_split_value)
{

const std::uint_fast8_t npi1 =
(chi.data >> 1) >> fixed_point::decimal_split;

npi = ((chi - (npi1 * 2U) > 1U) ? npi1 + 1U
: npi1);

chi -= fixed_point(npi * 2U);
}

const fixed_point chi2 = chi * chi;

278 13 Fixed-Point Mathematics

// Do the polynomial expansion in terms of chi.
const fixed_point sum =
((

fixed_point(internal(), // near 0.072273923
UINT64_C(0x0’1280’8B37) >> (32 - decimal_split))

* chi2 -
fixed_point(internal(), // near 0.642563935

UINT64_C(0x0’A47F’11EE) >> (32 - decimal_split)))

* chi2 +
fixed_point(internal(), // near 1.570412766

UINT64_C(0x1’9206’922F) >> (32 - decimal_split)))

* chi;

// Reflect the result if necessary.
const bool needs_reflect = ((npi % 2U) != 0U);

return ((is_neg == needs_reflect) ? sum : -sum);
}

The sin() function has been implemented as a friend of the fixed_point
class because it makes use of the private decimal split value and a private constructor
from fixed_point. These are optimizations specifically intended to improve the
performance of this implementation of the sine function. In general, one should
try to find and incorporate these and similar kinds of optimizations when devising
fixed-point functions because they can drastically improve the efficiency of fixed-
point functions.

Using the fixed-point sine function in code is straightforward. For example, the
code sequence below computes the approximate fixed-point values of sin (1/ 2) for
several different fixed-point representations.

// 0.438: relative error 960/10,000
fixed_point_3pt4 y0 = sin(fixed_point_3pt4(1) / 2);

// 0.4766: relative error 60/10,000
fixed_point_7pt8 y1 = sin(fixed_point_7pt8(1) / 2);

// 0.47937: relative error 1/10,000
fixed_point_15pt16 y2 = sin(fixed_point_15pt16(1) / 2);

// actual value:
// 0.4794255386...

13.4 Fixed-Point Elementary Transcendental Functions 279

Table 13.1 The performance and efficiency of the computation of sin (1.23) for various fixed-
point types and float on our target with the 8-bit microcontroller are shown

Runtime
Relative time Code size

fp type sin (1.23) Error
[
μs
]

(
fixed_point

float

)
[
byte

]

Q3.4 0.438 10−1 8 0.1 300

Q7.8 0.4766 10−3 17 0.2 520

Q15.16 0.47937 10−4 50 0.5 1, 170

float 0.4794255 10−8 105 — 890

Known value 0.4794255386 . . . —

The runtime values exclude the time needed for float construction from 1.23

This implementation of the fixed-point sine function includes range reduction
and reflection and can, therefore, be used in a robust computational environment.
There are, however, potential improvements including proper handling of exces-
sively large arguments and subnormal numbers such as infinity and NaN. These
features can be optionally included in the sine function if the underlying fixed-point
class supports subnormals.

The computational complexity of fixed-point transcendental functions increases
with increasing precision and width of the underlying fixed-point type used in the
computations. Table 13.1 compares the performance and efficiency characteristics
of the computation of sin (1.23) for various fixed-point types and float on
our target with the 8-bit microcontroller. On this architecture, the fixed-point
calculations are significantly faster and generally smaller than the corresponding
float implementation in the C++ standard library.3

Another common elementary transcendental function that can be readily imple-
mented in fixed-point is the exponential function ex for x ∈ R. The exponential
function has a very wide range of results that are of interest. One of the most
effective methods for reaching a large part of the range of ex is based on argument
scaling via removing integral multiples of log 2 from x.

In particular, we start with

ex = eα−n log2 , (13.6)

where we select

n = x

log 2
, (13.7)

such that − log 2 ≤ α ≤ log 2. The final result of the exponential function is
obtained from

ex = eα 2n . (13.8)

3As mentioned previously, though, our fixed-point sine function does not properly treat subnor-
mals, whereas the float version in the C++ standard library does include this formal correctness.

280 13 Fixed-Point Mathematics

After approximating eα, the final multiplication by 2n requires only a shift
operation. This is very efficient in binary fixed-point arithmetic.

For our calculation, we will approximate eα for − log 2 ≤ α ≤ log 2 using the
polynomial

eα = 1 + c1 α + c2 α2 + c3 α3 + c4 α4 + ε(α) , (13.9)

where the relative error |ε(α)| � 2 × 10−4.
The coefficients cn are given by

c1 = 0.9978546

c2 = 0.4994721

c3 = 0.1763723

c4 = 0.0435108 .

(13.10)

The code corresponding to Eqs. 13.6 through 13.10 for the fixed-point exponen-
tial function can be implemented as shown below.

friend fixed_point exp(const fixed_point& x)
{

// Scale the argument by removing multiples of ln2.
fixed_point x_over_ln2(x);
x_over_ln2 *= fixed_point::value_one_over_ln2();

const std::int_fast8_t n = x_over_ln2.to_int8();

fixed_point alpha(x);
alpha -= (fixed_point::value_ln2() * n);

// Do the polynomial expansion in terms of alpha.
fixed_point sum =
(((

fixed_point(internal(), // near 4.3510841353E-2
UINT64_C(0x0’0B23’8740) >> (32 - decimal_split))

* alpha +
fixed_point(internal(), // near 1.7637226246E-1

UINT64_C(0x0’2D26’BC00) >> (32 - decimal_split)))

* alpha +
fixed_point(internal(), // near 4.9947209750E-1

UINT64_C(0x0’7FDD’6C80) >> (32 - decimal_split)))

* alpha +
fixed_point(internal(), // near 9.9785463267E-1

UINT64_C(0x0’FF73’5F00) >> (32 - decimal_split)))

13.4 Fixed-Point Elementary Transcendental Functions 281

* alpha;

sum.data += decimal_split_value;

// Scale the result by 2^n if necessary.
if(n > 0)
{

sum.data <<= n;
}
else if(n < 0)
{

sum.data >>= (-n);
}

return sum;
}

Using the fixed-point exponential function is easy. The code sample below, for
instance, computes the approximate fixed-point values of exp (3.7) for both the Q7.8
as well as the Q15.16 fixed-point representations. The result of exp (3.7), however,
overflows the Q3.4 representation, so Q3.4 cannot be used for this calculation.

fixed_point_7pt8 y1
= exp(fixed_point_7pt8(37) / 10);

// 40.625: relative error 44/10,000

fixed_point_15pt16 y2
= exp(fixed_point_15pt16(37) / 10);

// 40.4341: relative error 3/10,000

// Actual value:
// 40.4473043601...

To complement the exponential function, we will compute the logarithm function
log x for x ∈ R and x > 0. In our approximation, we will first compute the
base-2 logarithm log2 (x + 1) in the range 0 ≤ x ≤ 1. Argument scaling is done
by removing integer powers of 2 from x. After scaling, the result of the natural
logarithm is obtained from the well-known relation

log x = log 2 × log2 x . (13.11)

282 13 Fixed-Point Mathematics

The logarithm function calculates log2(x + 1) using the polynomial approxima-
tion

log2 (x + 1) = d1 x + d2 x2 + d3 x3 + d4 x4 + ε (x) , (13.12)

where the coefficients dn are given by

d1 = 1.4384189

d2 = −0.6771900

d3 = 0.3218538

d4 = −0.0832229 ,

(13.13)

and the relative error |ε(x)| � 1 × 10−4.
Arguments ranging from 0 < x < 1 use the negated result from one recursive

call of the logarithm function with the argument inverted. In other words,

log (x) = − log

(
1

x

)
. (13.14)

A fixed_point implementation of the logarithm function based on
Eqs. 13.12–13.14 is shown below.

friend inline fixed_point log(const fixed_point& x)
{

// Check for negative arguments.
if(x.data < 0)
{

return fixed_point(0);
}

unsigned_value_type x2_data(x.data);

if(x2_data == decimal_split_value)
{

// The argument is identically equal to one.
return fixed_point(0);

}
else if(x2_data < decimal_split_value)
{

// Invert and negate for 0 < x < 1.
return -log(1 / x);

}

13.4 Fixed-Point Elementary Transcendental Functions 283

std::uint_fast8_t n2 = 0U;

// Remove even powers of two from the argument.
while(x2_data > (decimal_split_value * 2))
{

++n2;
x2_data >>= 1;

}

const fixed_point my_x2 =
fixed_point(internal(),

x2_data - decimal_split_value);

// Do the order-4 polynomial expansion.
const fixed_point sum =
(((
- fixed_point(internal(), // near 8.3222941295E-2

UINT64_C(0x0’154E’1943) >> (32 - decimal_split))

* my_x2 +
fixed_point(internal(), // near 3.2185380545E-1

UINT64_C(0x0’5265’02D0) >> (32 - decimal_split)))

* my_x2 -
fixed_point(internal(), // near 6.7718997268E-1
UINT64_C(0x0’AD5C’5271) >> (32 - decimal_split)))

* my_x2 +
fixed_point(internal(), // near 1.4384189488

UINT64_C(0x1’703C’3967) >> (32 - decimal_split)))

* my_x2;

// Account for 2^n, scale the result and return.
return (sum + n2) * value_ln2();

}

We now have fixed-point implementations for the sine, exponential and logarithm
functions. We can use these basic functions to compute other associated functions
such as the remaining trigonometric functions and the hyperbolic trigonometric
functions.

For example, it is straightforward to derive the fixed-point cosine and tangent
functions from the sine function. In particular,

friend inline fixed_point cos(const fixed_point& x)
{

return -sin(x - half_pi());
}

284 13 Fixed-Point Mathematics

friend inline fixed_point tan(const fixed_point& x)
{

const fixed_point s(sin(x));
const fixed_point c(cos(x));

if(s.data >= decimal_split_value || c.data == 0)
{

return fixed_point(0);
}
else
{

return
fixed_point(internal(),

(s.data << decimal_split) / c.data);
}

}

The hyperbolic trigonometric functions can be derived from the exponential
function using the well-known algebraic relations

sinh x = ex − e−x

2
(13.15)

cosh x = ex + e−x

2
(13.16)

tanh x = sinh x

cosh x
= ex − e−x

ex + e−x
. (13.17)

When computing hyperbolic trigonometric functions, the computation of e−x can
be replaced with more efficient division using the reflection relation

e−x = 1

ex
. (13.18)

The corresponding code for the fixed-point hyperbolic trigonometric functions is
shown below.

friend inline fixed_point sinh(const fixed_point& x)
{

// Compute exp(x) and exp(-x)
const fixed_point ep = exp(x);
const fixed_point em = 1 / ep;

13.4 Fixed-Point Elementary Transcendental Functions 285

// Subtract exp(-x) from exp(x) and divide by two.
fixed_point result(ep - em);
result.data >>= 1;

return result;
}

friend inline fixed_point cosh(const fixed_point& x)
{

// Compute exp(x) and exp(-x)
const fixed_point ep = exp(x);
const fixed_point em = 1 / ep;

// Add exp(x) and exp(-x) and divide by two.
fixed_point result(ep + em);
result.data >>= 1;

return result;
}

friend inline fixed_point tanh(const fixed_point& x)
{

// Compute exp(x) and exp(-x)
const fixed_point ep = exp(x);
const fixed_point em = 1 / ep;

// Do the division and return the result.
return (ep - em) / (ep + em);

}

Inverse trigonometric functions can be computed from polynomial approxima-
tions as well. For instance, the reference project in the companion code uses4

sin−1 x = π

2
− (1 − x)

1
2

(
a0 + a1x + a2x

2 + a3x
3
)

+ ε(x) , (13.19)

for 0 ≤ x ≤ 1. The coefficients an are given by

a0 = 1.5707288

a1 = −0.2121144

a2 = 0.0742610

a3 = −0.0187293 ,

(13.20)

4This polynomial has been taken from Abramowitz and Stegun [1], paragraph 4.4.45. It originates
with the work of C. Hastings [4].

286 13 Fixed-Point Mathematics

and the relative error is |ε(x)| � 5 × 10−5. Negative arguments use odd reflection
with sin−1 x = − sin−1 |x| for −1 ≤ x < 0.

The inverse cosine function is derived from the inverse sine function using

cos−1 x = π

2
− sin−1 x . (13.21)

The inverse tangent function uses

tan−1 x

x
= 1− 0.3282530 x2+ 0.1617571 x4− 0.0484948 x6+ ε(x) , (13.22)

for 0 ≤ x ≤ 1. The coefficients have been derived with computer algebra and the
relative error |ε(x)| � 1 × 10−4. Arguments greater than 1 use

tan−1 x = π

2
− tan−1

(
1

x

)
. (13.23)

Negative arguments use odd reflection with tan−1 x = − tan−1 |x| for x < 0.
The inverse hyperbolic trigonometric functions can be computed with well-

known relations involving logarithmic functions. In particular,5

sinh−1 x = log
(
x +

√
x2 + 1

)
(13.24)

cosh−1 x = log
(
x +

√
x2 − 1

)
(13.25)

tanh−1 x = 1

2
log

(
1 + x

1 − x

)
. (13.26)

In this section, we have used polynomial approximations combined with argu-
ment reduction and reflection to compute real-valued fixed-point elementary tran-
scendental functions. Excellent results for calculating transcendental function in
fixed-point can be obtained from numerous other techniques including table-lookup
methods, Taylor series, Newton iteration, Padé approximations, Chebyshev poly-
nomial expansions, CORDIC (COordinate Rotation DIgital Computer) algorithms,
etc.

CORDIC algorithms provide efficient shift-and-add methods for computing
hyperbolic and trigonometric functions. CORDIC methods are commonly used
when the cost of multiplication is significantly higher than addition, subtraction,
shift and table lookup. Fast CORDIC algorithms have the potential disadvantage of

5Here we use x ∈ R for all three inverse hyperbolic trigonometric functions. For cosh−1 x, we
limit the range of the argument to x ≥ 1. For tanh−1 x, we limit the range of the argument to
|x| < 1 combined with odd reflection with tanh−1 x = − tanh−1 |x| for −1 < x < 0.

13.5 A Specialization of std::numeric limits 287

requiring large tables, making scalability difficult and resulting in potentially large
code size.

13.5 A Specialization of std::numeric limits

Numeric limits are only provided for built-in types including floating-point types,
integer types and bool. The author of a specialized numeric type such as the
fixed_point class is, therefore, responsible for providing a template special-
ization of std::numeric_limits.

Consider, for example, the Q15.16 fixed-point representation. It has 15 binary
digits to the left of the decimal point and 16 binary digits to the right of the decimal
point. A possible implementation of the std::numeric_limits template class
the Q15.16 fixed-point representation is listed below.

namespace std
{

template<>
class numeric_limits<fixed_point_15pt16>
{
public:

static constexpr bool is_specialized = true;

static constexpr fixed_point_15pt16 min()
{ return

fixed_point_15pt16(nothing(), 1); }

static constexpr fixed_point_15pt16 max()
{ return

fixed_point_15pt16(nothing(),
INT32_C(0x7FFFFFFF)); }

static constexpr fixed_point_15pt16 lowest()
{ return min(); }

static constexpr int digits = 16;
static constexpr int digits10 = 4;
static constexpr int max_digits10 = 5;
static constexpr bool is_signed = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 2;
static constexpr T epsilon()

288 13 Fixed-Point Mathematics

{ return
fixed_point_15pt16(nothing(), 7); }

static constexpr T round_error()
{ return

fixed_point_15pt16(nothing(),
INT32_C(0x8000)); }

static constexpr int min_exponent = -15;
static constexpr int min_exponent10 = -4;
static constexpr int max_exponent = 14;
static constexpr int max_exponent10 = 4;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm =

denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity()
{ return fixed_point_15pt16(); }
static constexpr T quiet_NaN()
{ return fixed_point_15pt16(); }
static constexpr T signaling_NaN()
{ return fixed_point_15pt16(); }
static constexpr T denorm_min()
{ return fixed_point_15pt16(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style =

round_toward_zero;
};

}

Certain members of numeric_limits<fixed_point_15pt16>, such as
the value of true for is_specialized, are self-explanatory. Understanding
the values of other class members can be more subtle. The digits member, for
example, contains only the binary digits to the right of the decimal point. This is fair
because any non-trivial fixed-point calculations will lose about half their digits due
to truncation or argument reduction.

References 289

The digits10member is derived from digits. The maximum and minimum
values are given by the internal representations of 0x7FFFFFFF and 1, respec-
tively. The nothing structure, as described in Sect. 15.1, is used in the fixed-point
constructor to set these values without left-shifting them.

The epsilon() member represents the smallest number that, when subtracted
from 1, results in a value that differs from 1. Since this fixed-point type has four
decimal digits of precision to the right of the decimal point, epsilon() for this
type is equal to 0.0001. In other words, epsilon() should return

0xFFFF

10, 000
≈ 7 . (13.27)

Specializations of std::numeric_limits for the fixed_point types in
the reference project of the companion code are implemented as a generic template.
Details can be found in the source code.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 9th Printing (Dover, New
York, 1972)

2. W.J. Cody, W. Waite, Software Manual for the Elementary Functions (Prentice Hall, Upper
Saddle River, 1980)

3. J.W. Crenshaw, Math Toolkit for Real-Time Programming, 1st edn. (CMP Books, Lawrence,
2000)

4. C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton,
1955)

5. J. LaBrosse, Embedded Systems Building Blocks: Complete and Ready-to-Use Modules in C
(CMP Books, Lawrence, 1999)

6. J.M. Muller, Elementary Functions: Algorithms and Implementation (Birkhäuser, Boston, 2006)
7. Wikipedia, Fixed-point arithmetic (2012). http://en.wikipedia.org/wiki/Fixed-point_arithmetic

http://en.wikipedia.org/wiki/Fixed-point_arithmetic

Chapter 14
High-Performance Digital Filters

There may be no other signal-processing tool more widely used in embedded
software than the digital filter because even the simplest applications usually read
some kinds of input signals that need filtering. In this chapter, we will implement
several types of finite impulse response (FIR) filters. The first section of this
chapter presents a simple order 1 floating-point FIR filter. In order to obtain high
performance for filters on microcontrollers without a floating-point unit or digital
signal processor (DSP), however, the filters in the rest of this chapter use pure-
integer mathematics combined with template design.

14.1 A Floating-Point Order-1 Filter

Consider the floating-point filter

y1 = (1 − β) x0 + βx1 , (14.1)

where the weight β ranges from 0 . . . 1. The index convention here uses the highest
index for the newest sample in the delay line. Successively lower indexes are used
for older samples, reaching index 0 for the oldest sample.

Equation 14.1 is a floating-point order 1 low-pass FIR filter. The frequency
response of this filter is given by

H
(
eiω

)
= 1

β
+ e−iω

1 − β
, (14.2)

where ω is the frequency in radians per sample.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_14

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_14&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_14

292 14 High-Performance Digital Filters

At this point, we could investigate a host of theoretical characteristics of this
filter, such as the Z-transform of the impulse response, the absolute value of the
frequency response or the phase response. The rich theory of digital filters and
digital signal processing are, however, beyond the scope of this book. So we will
just concentrate on how to program digital filters. Readers can find additional
information on digital filters in references [1, 2] and [3].

The order 1 FIR low-pass filter from Eq. 14.1 can be implementedwith a template
class. For example,

template<typename T>
class fir_01_fp
{
public:

typedef T result_type;
typedef T value_type;

fir_01_fp(const value_type val = 0) : result(val)
{

std::fill(values.begin(), values.end(), val);
}

void new_sample(const std::array<value_type, 2U>& b,
const value_type& val)

{
// Shift the delay line.
values[0U] = values[1U];

// Put the new sample in the delay line.
values[1U] = val;

// Calculate the FIR algorithm.
result = (b[0U] * values[0U])

+ (b[1U] * values[1U]);
}

const result_type& get_result() const
{

return result;
}

private:
result_type result;
std::array<value_type, 2U> values;

};

14.1 A Floating-Point Order-1 Filter 293

The class fir_01_fp is a template filter class. As indicated by the trailing
“fp” in its name, fir_01_fp is designed for floating-point types. For instance,
fir_01_fp can be effectively used with floating-point types such as float,
double, long double, the fixed_point class from the previous chapter, etc.

The fir_01_fp class has member variables for both the delay line (values)
as well as the filter result (result). Notice how the delay line in values is stored
as an array. The public interface of fir_01_fp has two functions, one called
new_sample() and another called get_result().

Using fir_01_fp in code is straightforward. For example,

fir_01_fp<float> f(4.0F);

constexpr std::array<float, 2U> b
{

{ 0.875F, 0.125F }
};

void do_something()
{

// The result of the first call is 16.0.
f.new_sample(b, 100.0F);

}

The filter coefficients β and (1 − β) from Eq. 14.1 are 1
8 and 7

8 , respectively.
They are stored in the array as the floating-point values 0.125 and 0.875. The filter
f is initialized with 4.0. Thereby, both values of the delay line are initialized to 4.0.

In the first call to the new_sample() function, f’s member variable result
is set to

result = (0.875× 4.0) + (0.125× 100.0) = 16.0 . (14.3)

The new_sample() function executes the filter algorithm and sets the new
value of the filter result each time it is called. Users of fir_01_fp are expected to
call the new_sample() method in a periodic cycle, thereby providing the value
of the new sample and the desired filter coefficients as input parameters. The sum
of the filter coefficients should always be equal to 1.0.

The template coefficients stored in b are passed to the new_sample() function
as a constant reference to std::array. In this case, using a pass-by-reference
(instead of pass-by-value) is essential for maintaining the performance of the filter
function.

294 14 High-Performance Digital Filters

The filter’s get_result() member function can be used for accessing the
filtered result at any time. For example,

const float my_filter_result = f.get_result();

The fir_01_fp template filter class could potentially be used on microcon-
troller platforms that support fast floating-point math. Many small microcontrollers,
however, lack a hardware floating-point unit (FPU) and floating-point math is
emulated with software. This can be very inefficient. Double-precision math is
excruciatingly slow on embedded microcontrollers without a hardware FPU. Even
single-precision and fixed-point math are often unduly inefficient for many practical
microcontroller applications.

For this reason, a floating-point filter such as fir_01_fp may be too slow
for microcontrollers. In order to reach the desired high performance for embedded
systems, we need to design filters that use integer math.

14.2 An Order-1 Integer Filter

When implementing integer filters instead of floating-point filters, one of the
first design steps encountered is to express the floating-point sample values and
coefficients in terms of normalized integer values. This can be accomplished by
rewriting the order 1 FIR filter expression from Eq. 14.1 in integer form,

y1 = β0x0 + β1x1 + 1
2 (β0 + β1)

β0 + β1
, (14.4)

where y1, x0, x1, β0 and β1 are unsigned integer values and the extra term in the
numerator, 12 (β0 + β1), handles unsigned integer rounding.

Equation 14.4 can be implemented in a scalable, optimized fashion using the
template class shown below.

template<const std::size_t resol = 4U,
typename sample_t = std::uint16_t,
typename value_t = sample_t,
typename result_t = sample_t>

class fir_01
{

public:
typedef sample_t sample_type;
typedef value_t value_type;

14.2 An Order-1 Integer Filter 295

typedef result_t result_type;
typedef std::int_fast16_t weight_type;

fir_01(const sample_type& val = 0U)
: result(val * resol)

{
std::fill(values.begin(),

values.end(),
result);

}

template<const weight_type B0,
const weight_type B1>

void new_sample(const sample_type& val)
{

values[0U] = values[1U];

values[1U]
= val * static_cast<value_type>(resol);

value_type new_val = (B0 * values[0U])
+ (B1 * values[1U]);

result = (new_val + ((B0 + B1) / 2)) / (B0 + B1);
}

result_type get_result() const
{

return (result + (resol / 2U)) / resol;
}

private:
result_type result;
std::array<value_type, 2U> values;

};

The class fir_01 is a scalable template filter class. The last three template
parameters, sample_t, value_t and result_t, are scaling parameters that
can be used to define the dimension of the filter. They can be set to 8-bit, 16-bit,
32-bit or even 64-bit. These three template parameters provide for scalability with
several degrees of freedom because the sizes of the variables representing the filter
sample, the delay line and the filter result can be set independently.

296 14 High-Performance Digital Filters

The first template parameter, resol, provides a resolution scale by multiplying
each new sample with a constant integer. Closer approximation to the analog filter
regime is obtained for higher values of the resol parameter. The resolution scale
is removed from the filter result in the get_result() function.

Care should be taken to ensure that resol is a multiple of two. Only then
will the rounding correction (given by resol/ 2) be exact. Furthermore, the best
performance can be achieved if resol is a power of 2n, where n is a small positive
integer value. This is because the compiler can replace the division with a fast,
efficient shift operation. See Sect. 6.11.

The class fir_01 is a template, and its new_sample() function is a template
function within a template class. The template parameters of new_sample()
are the filter coefficients, B0 and B1. These are constant signed integers of type
std::int_fast16_t. Since the filter coefficients are compile-time constants,
the filter algorithm can be optimized to a high degree, see Sect. 6.12. Just as
described above for the resol parameter, the sum of

(
|B0| + |B1|) should also

be a small integer power of two such that the rounding correction is exact and such
that the compiler can replace division by

(
|B0| + |B1|) with an efficient shift

operation.
Care must be taken to select the proper dimension of a filter such that the entire

range of sample values can be filtered without numerical overflow.At the same time,
the filter operations need to be matched to the CPU architecture.

For example, we will dimension a filter running on a 16-bit machine. Imagine a
filter that should be designed to sample 10-bit ADC values ranging from 0 . . . 1023.
Furthermore, say that this filter will be sampled with a high frequency, such as in
an interrupt service routine. For this 16-bit microcontroller, the high performance
of 16-bit math is mandatory, as opposed to costly 32-bit operations. In this case,
all three template parameters (sample_t, value_t and result_t) should be
set to std::uint16_t. The samples need 10 bits. Therefore, there are 6 bits
remaining to be split among the coefficients and the resolution. The resolution could
be set to 4, requiring two bits. This leaves four bits for the filter coefficients. Thus,
the filter coefficients, B0 and B1 can range from 1 . . . 15, whereby the sum of(
|B0| + |B1|) should always be equal to 16.
A filter with larger sample values or higher valued coefficients may need to be

dimensioned with wider data types for one or more of the template parameters. For
example, the following template parameters could be selected for a high-frequency
filter running, for example, on a 32-bit machine.

sample_t = std::uint16_t

value_t = std::uint32_t

result_t = std::uint16_t . (14.5)

14.2 An Order-1 Integer Filter 297

A filter with these dimensions can be used to filter samples within the entire
range of std::uint16_t (0 . . . 65535) because the type of value_t is
std::uint32_t. This is large enough to hold the internal values of the filter
algorithm without overflow. Examples showing how significantly a filter’s dimen-
sion impacts its runtime performance will be shown in Sect. 14.4.

Using an fir_01 object in code is straightforward. For example,

typedef fir_01<> filter_type;
filter_type f(4U);

void do_something()
{

// The result of the first call is 16.
f.new_sample<7, 1>(100U);

}

This sample code creates an fir_01 object called f. The type of its first tem-
plate parameter, sample_t, is std::uint16_t, which is the default template
parameter. By way of default, the other two template parameters, value_t and
result_t are also set to the type of sample_t (i.e., std::uint16_t).

This example has numerical values similar to the example of the floating-point
filter in the previous section. The filter is initialized with an initial value of 4.
The sample function of the filter is called in do_something() with a sample
value of 100. The filter coefficients (B0 and B1) are 7 and 1, respectively. The
new_sample() function places the new sample value of 100 at the top of the
delay line. It is weighted with the coefficient 1. The old value in the delay line is the
initialization value of 4. It is weighted with the coefficient 7. The result of calling
the filter’s template subroutine new_sample<7, 1>(100) is

(7 × 4) + (1 × 100) + (8/ 2)

8
= 16 , (14.6)

where 16 is a rounded pure integer result.
It is interesting to study the disassembled source code listing which the compiler

produces when compiling the code of this example. The constructor code is efficient
because the compiler can unroll the loop in std::fill(). Thereby, the values of
result and those in the delay line can be directly initialized with 16, evaluated
via constant folding from (|resol| × 4) = 16.

Similarly, the filter algorithm of the new_sample() subroutine can be highly
optimized. The compiler can replace all of the multiplication operations in the inner
product of the filter algorithm with fast shift-and-add operations. This, combined
with constant folding, makes the filter code extremely efficient. This is a very
significant result which is essential for obtaining high performance with integer
template filters. A further optimization is the normalizationwith the coefficient sum.
The division by

(
|B0| + |B1|) = 8 can be replaced with a right shift of 3.

298 14 High-Performance Digital Filters

In this example, every part of the filter sampling function can been inlined
and optimized by the compiler. There is no function call to new_sample()
and there are no parameters passed to the subroutine. The disassembled source of
new_sample() is near to, or possibly even is, as optimally efficient as compiled
code can be—approaching the efficiency of assembly programming itself.

The sampling subroutine can be used with equal efficiently in both interrupt
service routines as well as normal task levels. This is a very satisfying result which
exemplifies how the power of C++ templates can be utilized to obtain the highest
possible filter performance.

14.3 Order-N Integer FIR Filters

We will now extend the techniques used for the order 1 FIR filter in the previous
section to order N FIR filters. The order N FIR filter is defined by the difference
equation

yn = b0 x[n] + b1 x[n − 1] + . . . + bN x[n − N] , (14.7)

where x[n] are the delay line values, yn is the filter result, bi are the coefficients and
N is the filter order. An order N FIR filter has N + 1 terms on the right hand side.
These are the filter samples weighted with their coefficients. They are commonly
referred to as taps. Equation 14.7 can also be expressed as

yn =
N∑

i=0

bi x[n − i] . (14.8)

The order 1 filter template class from the previous section can be extended to
order N using Eqs. 14.7 and 14.8. A synopsis of a template class that can be used to
implement these filter algorithms is shown below.

template<const std::size_t order,
const std::size_t resol = 4U,
typename sample_t = std::uint16_t,
typename value_t = sample_t,
typename result_t = sample_t>

class fir_order_n
{
public:

static_assert((order > 0U) && (order < 48U),
"error: filter order must be from 1 to 48");

fir_order_n() { }

14.3 Order-N Integer FIR Filters 299

explicit fir_order_n(const sample_t&) { }

template<typename... dummy_parameters>
void new_sample(const sample_t&) { }

result_t get_result() const { return result_t(0); }
};

The template class fir_order_n has the same template parameters as the
template class fir_01, plus one additional template parameter order that
represents the order of the filter. As can be deduced from the class synopsis, this
class is meant to serve only as a template for further specializations of the order.
Each individual class implementation of the N th filter order must be explicitly
programmed as separate template specialization.

An example of the template class specialization of fir_order_n for order 5
is shown below.

template<const std::size_t resol,
typename sample_t,
typename value_t,
typename result_t>

class fir_order_n<5U,
resol,
sample_t,
value_t,
result_t>

{
public:

typedef sample_t sample_type;
typedef value_t value_type;
typedef result_t result_type;

fir_order_n() : result(0)
{

std::fill(data.begin(), data.end(), result);
}

explicit fir_order_n(const sample_type& x)
: result(value_type(x) * resol)

{
std::fill(data.begin(), data.end(), result);

}

300 14 High-Performance Digital Filters

template<const std::int_fast16_t B0,
const std::int_fast16_t B1,
const std::int_fast16_t B2,
const std::int_fast16_t B3,
const std::int_fast16_t B4,
const std::int_fast16_t B5>

void new_sample(const sample_type& x)
{

// Shift the delay line.
std::copy(data.begin() + 1U,

data.end(),
data.begin());

// Store the new sample at top of delay line.

*(data.end() - 1U) = value_type(x) * resol;

// Calculate the FIR algorithm.
const value_type new_val

= value_type(data[0U] * B0)
+ value_type(data[1U] * B1)
+ value_type(data[2U] * B2)
+ value_type(data[3U] * B3)
+ value_type(data[4U] * B4)
+ value_type(data[5U] * B5);

constexpr std::int_fast16_t weight
= B0 + B1 + B2 + B3 + B4 + B5;

result = (new_val + (weight / 2)) / weight;
}

result_type get_result() const
{

return (result + (resol / 2U)) / resol;
}

private:
result_type result;
std::array<value_type, 6U> data;

};

14.3 Order-N Integer FIR Filters 301

Aside from the constructor and some convenient type definitions, the template
class specialization of fir_order_n has only one function with significant
algorithmic complexity, new_sample(). It is in the new_sample() method
that the FIR algorithm in Eq. 14.7 is implemented. Notice how the delay line is
shifted and the new sample, weighted with the resolution, is put at the top of the
delay line.

The new_sample() function in fir_order_n is a template function with
six integral template parameters. This explains why each individual order N filter
needs to be implemented as a template class specialization. It is because every
different value of the template parameter N needs to have its own specific template
variation of the new_sample() subroutine with N+ 1 template parameters for the
filter coefficients.

This design choice may be considered somewhat inconvenient. There are,
however, not very many ways to accomplish this without making individual
specializations containing template implementations of the new_sample() func-
tion. A variadic template (Sect. 5.9) that accepts a variable number of template
parameters could be considered. This would, however, allow template users to
supply non-integer template parameter types for the filter coefficients, potentially
resulting in undefined behavior. In light of these conditions, each individual orderN
fir_order_n class has been explicitly specialized providing a place in code at
which the specific template variations of new_sample() can be defined.

A collection of template specializations of fir_order_n filters including filter
order ranging from 1 . . . 48 is available in the reference project of the companion
code. In order to avoid tedious typing work and to ensure that the implementations
are error free, these template specializations have been created with a simple,
automatic code generator which has been specifically written for this purpose.

Using fir_order_n objects in code is simple and intuitive. The following
sample code, uses an order 5 low-pass filter that is dimensioned for 16-bit unsigned
math with a coefficient sum of 32 and a resolution scale of 4. The coefficient sum
uses 5 bits and the resolution scale uses 2 bits. Together, they use a total of 7 bits
from the 16 bits available, leaving 9 bits remaining for the range of the sample
values. This filter can filter 9-bit unsigned integer values ranging from 0 . . . 511.

typedef fir_order_n<5U> filter_type;

filter_type f(4U);

void do_something()
{

f.new_sample<5, 5, 6, 6, 5, 5>(100U);
}

302 14 High-Performance Digital Filters

The result of the filter operation is

(5 × 4) + (5 × 4) + (6 × 4) + (6 × 4) + (5 × 4) + (5 × 100) + 16

32
= 19 ,

(14.9)
where 19 is the rounded pure integer result.

As is the case for the order 1 filter in the previous section, the examination of the
disassembled source code listing for this filter operation reveals highly optimized
code. The generation and investigation of this listing are left as exercises for the
reader. In the benchmark carried out, all parts of the new_sample() functionwere
successfully inlined by the compiler. Furthermore, because the filter coefficients are
available at compile time and since the coefficient sum is a power of 2, the compiler
replaced slow multiply and divide operations with fast shift-and-add operations in
the FIR algorithm.

A filter with larger dimensions and a greater number of filter parameters is shown
in the code sample below.

typedef fir_order_n<17U,
64U,
std::uint16_t,
std::uint32_t> filter_type;

filter_type f(4U);

void do_something()
{

f.new_sample<-2, -2, -2, -1, 3, 9, 15, 20, 24,
24, 20, 15, 9, 3, -1, -2, -2, -2>(100U);

}

This is an order 17 low-pass FIR filter. It is also known as an 18-tap filter because
it has 18 filter coefficients. The sum of the filter coefficients is 128 and the resolution
scale is 64. The symmetry of the coefficients has been exploited to write all 18
template parameters of the new_sample() function in a legible fashion. This
filter uses std::uint32_t to represent the internal algorithm values because
they do not always fit within std::uint16_t. This filter can filter input values
within the entire range of std::uint16_t.

The order 17 filter in this example requires significantly more code and runtime
than the order 5 filter from the previous example. This is not only because the filter
has more coefficients, but also because the delay line values are 32 bits wide instead
of 16. With the numerous 32-bit operations of its new_sample() function, this
order 17 filter is definitely over-dimensioned for 8-bit or 16-bit targets. It would be
more appropriate for 32-bit targets. However, it is possible to get the same filter
quality with much less code and runtime expense using two or more cascaded filters

14.4 Some Worked-Out Filter Examples 303

of lower order. This technique will be discussed in Sect. 14.4. This order 17 filter
can be comfortably used with 32-bit targets and examination of its disassembled
source code listing shows the same kind of high-performance optimizations that
were observed for the order 5 filter above—inlining, unrolling, shift-and-add, etc.

The filter coefficients for the order 17 filter operation have been obtained with a
filter design tool. Scaling and rationalization of the coefficients has done with the
filter design tool to obtain pure integer coefficients. Thereby care has been taken to
ensure that the coefficient sum of 128 is an unsigned integer power of two.

14.4 Some Worked-Out Filter Examples

This section presents some worked out filter examples. The results have been
prepared for visualization within a PC environment and also tested in real-time on
two different microcontrollers.

Consider the unfiltered raw signal S shown with connected open circles (◦) in
Fig. 14.1. This signal could, for example, result from a voltage measurement fed to a
10-bit ADC input. The main component of the signal is a sine wave with a frequency
of 60Hz, an amplitude of 150 and an offset of 250. Added to this underlying sine
wave is a strong, asynchronous noise component. The noise has 10 times the signal’s
frequency (10 × 60 = 600Hz), 1

5 of its amplitude (150/ 5 = 30) and an offset of
0.317ms.

The mathematical representation of the signal S is given by

S = 250 + 150 ×
[
sin (0.12πt) + 1

5
sin (0.317 + 1.2πt)

]
, (14.10)

where t is the time in ms.
We will now filter this signal with an order N , low-pass FIR filter such that the

noise component with a frequency of 600Hz is strongly suppressed and the main
component at 60Hz passes through the filter with as little attenuation as possible.

Fig. 14.1 Test results for
various filters are shown. The
connected open circles (◦)
show the digitized test data.
The asterisks (∗) show the
results of an order 17
low-pass filter. The stars (�)
show the results of two
cascaded order 5 low-pass
filters. The solid circles (•)
show the results of an
order 11 high-pass filter

-100

0

100

200

300

400

500

0 5 10 15 20 25

time [ms]

DigitizedEq.14.10

◦
◦◦◦◦◦◦

◦◦
◦◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦

◦
◦◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦

◦◦◦◦◦◦
◦
◦◦◦◦◦◦

◦
◦◦◦◦◦

◦
◦◦◦◦◦◦

◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦

◦
◦◦◦

◦
Order–17

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

∗∗∗
∗∗∗∗∗

∗∗
∗∗∗

∗∗∗
∗∗∗

∗∗∗
∗∗∗

∗∗∗
∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗

∗
Order–5cascaded

�����
���

��
��

��
���

��
���

��
��

��
��

��
��

��
��

���
������������������

�
Order–10high–pass

••••••••••
••••••

•••••••
••••••

•••••••
•••••••

••••••
•••••••

•••••••
••••••

•••••••
•••••••

••••••
•••••••

•••••

•

304 14 High-Performance Digital Filters

This is a typical filter design problem. The first step in designing the filter is to
consider the sampling frequency. Imagine that about 3–4 samples should be taken
per half-wave of noise. As mentioned above, the noise has a frequency of 600Hz.
So, if there should be, say, 3 1

2 samples per half-wave of noise, then the resulting
sampling frequency Ts is given by

Ts = 3
1

2
(2 × 600Hz) = 4, 200Hz ≈ 4, 000Hz, (14.11)

where Ts has been rounded down to 4 kHz. The corresponding sampling period is
250 μs.

To design this filter, we will select a pass-band upper frequency of 200Hz and
a stop-band lower frequency of 600Hz, with a stop-band attenuation of 40 dB. A
ripple of 1 dB is allowed within the pass-band. The pass-band upper frequency
of 200Hz is high enough to expect good signal passing at 60Hz, and the stop-band
lower frequency of 600Hz with 40 dB attenuation should effectively suppress the
noise.

Supplying these filter parameters to the filter design tool and instructing the tool
to compute the unbound optimum number of taps produces 18 double-precision
coefficients for an 18-tap, order 17 filter. These double-precision coefficients
correspond to the scaled integer coefficients in the order 17 filter of Sect. 14.3. In
fact, these filter parameters have been used to generate them.

For the purpose of testing this order 17 filter, a PC-based simulation has been
written. A separate program has been used to generate 101 digitized points from
Eq. 14.10 using the desired sampling frequency of 4 kHz. These are the test data.
They are shown in Fig. 14.1. The test data span 11

2 full periods of the 60Hz signal
and about 15 full periods of the signal’s noise. The code below shows the test data,
stored in a static constant STL array with 101 elements.

#include <cstdint>
#include <array>

const std::array<std::uint16_t, 101U> data =
{

{
250U, 288U, 306U, 301U, 287U, 288U, 312U, 351U,
381U, 386U, 371U, 354U, 357U, 381U, 412U, 428U,
417U, 390U, 370U, 372U, 392U, 411U, 409U, 383U,
347U, 326U, 328U, 343U, 350U, 333U, 296U, 258U,
241U, 246U, 258U, 256U, 231U, 190U, 158U, 150U,
162U, 176U, 170U, 141U, 106U, 87U, 93U, 116U,
132U, 125U, 100U, 77U, 75U, 97U, 129U, 147U,
141U, 123U, 113U, 127U, 162U, 198U, 215U, 209U,
195U, 197U, 224U, 264U, 297U, 306U, 296U, 285U,
293U, 325U, 363U, 386U, 383U, 364U, 352U, 363U,

14.4 Some Worked-Out Filter Examples 305

392U, 420U, 427U, 409U, 381U, 368U, 377U, 400U,
414U, 403U, 371U, 338U, 324U, 332U, 348U, 348U,
322U, 282U, 250U, 240U, 250U

}
};

The code below uses the order 17 filter that we have just designed to filter these
test data.

#include <iostream>
#include <math/filters/fir_order_n.h>

typedef fir_order_n<17U,
64U,
std::uint16_t,
std::uint32_t> filter_type;

void do_something()
{

filter_type f(data[0U]);

std::cout << f.get_result() << "\n";

std::for_each(
data.begin() + 1U,
data.end(),
[&f](const std::uint16_t& s)
{

f.new_sample
<-2, -2, -2, -1, 3, 9, 15, 20, 24,
24, 20, 15, 9, 3, -1, -2, -2, -2>(s);

std::cout << f.get_result() << "\n";
});

}

The order 17 filter, f, sequentially filters the test data in do_something()
using STL’s for_each() algorithm in combination with a lambda expression.
The filter results are printed to the standard output.

The results of this filter simulation are shown in Fig. 14.1. As can be seen
in the figure, the filter quality is excellent. The main component of the signal
at 60Hz passes through the filter essentially unattenuated. The noise at 600Hz
has, for all practical purposes, been eliminated. The filtered signal has a phase shift
corresponding to the delay line of the 18-tap filter.

306 14 High-Performance Digital Filters

The new_sample() function of the order 17 filter runs quickly on 32-bit
targets, requiring just a few microseconds. For example, it requires approximately
9.6 μs on our target with the 32-bit microcontroller. Since the sample rate is 4 kHz
and the corresponding sample period is 250μs, the filter operation requires approx-
imately 9.6/ 250 ≈ 3.8% of the total CPU power. This filter can, therefore, be
comfortably used with this target. The sample rate could even be doubled or four-
folded if higher frequencies need to be filtered.

However, this order 17 filter has many 32-bit operations. In fact, it needs at
least nineteen 32-bit move operations alone for shifting the delay line. In addition,
roughly twice again as many operations are required for the filter algorithm
itself, and most of these are also 32-bit operations. So this filter is actually over
dimensioned for most applications using 16-bit or 8-bit architectures. In comparison
with the runtime of 9.6 μs on the 32-bit target, the new_sample() function
requires approximately 56μs on our 8-bit target, and this corresponds to 56/ 250 ≈
22% of the total CPU power with a 4 kHz sampling rate. This is too much CPU load
for the filter function on this target.

Similar filter quality can be obtained using 16-bit operations that are more appro-
priate for smaller architectures such as our target with the 8-bit microcontroller. One
way to accomplish this is by using two or more cascaded filters with much lower
order. For example, we will use two cascaded, 16-bit order 5 filters instead of the
order 17 filter. When using these, it should be possible to significantly reduce the
CPU load on the 8-bit target.

To design an order 5 filter for this purpose, the filter parameters previously used
to design the order 17 filter can be used. This time, however, the number of taps
is limited to 6. The resulting integer coefficients are (5, 5, 6, 6, 5, 5). The code
sample below shows how to use two cascaded 16-bit, order 5 filters with these
coefficients.

#include <iostream>

typedef fir_order_n<5U> filter_type;

void do_something()
{

filter_type f1(data[0U]);
filter_type f2(f1.get_result());

std::cout << f2.get_result() << std::endl;

std::for_each(
data.begin() + 1U,
data.end(),
[&f1, &f2](const std::uint16_t& s)
{

References 307

f1.new_sample<5, 5, 6, 6, 5, 5>(s);

filter_type::result_type r = f1.get_result();

f2.new_sample<5, 5, 6, 6, 5, 5>(r);

std::cout << f2.get_result() << std::endl;
});

}

This code uses two filters, f1 and f2. The filter result of f1 is supplied to the
new_sample() function of f2. In this way, the filters are cascaded.

The results of this filter operation on the test data are also shown in Fig. 14.1. The
filter quality is just as good as that of the order 17 filter. However, the required CPU
power has been significantly reduced. This cascaded filter operation is acceptable
for 16-bit architectures with a sampling frequency of 4 kHz. The runtime of the
new_sample() function on the 8-bit target has been reduced from 56 μs for the
order 17 filter to 22 μs for two cascaded order 5 filters. In other words, with a
sampling period of 250 μs, the fraction of the total CPU power invested in filter
sampling has been reduced from the unacceptably high level of approximately 22%
to the tolerable amount of 22/ 250 ≈ 9%.

As a final example, we will filter the test data with a high-pass filter. This time, the
filter design tool needs parameters for a high-pass filter. We use a stop-band upper
frequency of 80Hz with an attenuation of 40 dB and a pass-band lower frequency
of 600Hz with a pass-band ripple of 1 dB. The result is an order 10, eleven tap
high-pass filter with the integer coefficients (1, 2, 4, 6, 8, −40, 8, 6, 4, 2, 1).

The results of this filter are signed. Therefore, precautions for signed arithmetic
and rounding need to be included in the filter algorithms. This has been done in the
companion code, but not explicitly listed here.

Programming the PC simulation with the signed high-pass filter is left as an
exercise for the reader. The results that have been obtained when researching for
this book are shown in Fig. 14.1. A few samples are needed before the high-pass
filter attenuates the 60Hz part of the signal, leaving only the ripple at 600Hz part—
as per design goal for this high-pass filter.

References

1. R.G. Lyons, Understanding Digital Signal Processing (Prentice Hall, Upper Saddle River, 2004)
2. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice Hall, Upper Saddle River,

1975)
3. L. Thede, Analog and Digital Filter Design Using C (Prentice Hall, Upper Saddle River, 1996)

Chapter 15
C++ Utilities

This chapter presents a selection of C++ utilities that are useful for solving recurring
problems in microcontroller programming.

15.1 The nothing Structure

Consider the implementation of the nothing structure below.

struct nothing { };

The nothing structure contains no members and encapsulates no functionality
whatsoever. Although the nothing structure does not actually do anything itself,
it can be quite useful as a place holder for other function and template parameters.

Recall the fixed_point class from Sect. 13.2. Consider the constructors of
the fixed_point class that accept integral types as input parameters. These
constructors perform a left-shift of their input parameter before using it to initialize
the internal representation of the fixed-point number. This accounts for the fixed
position of the decimal point. For a simplified version of the Q7.8 fixed-point
representation, for example, we have something like the following.

// A simplified Q7.8 fixed-point representation.
class fixed_point
{
public:

fixed_point(std::uint16_t u) : value(u << 8) { }

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_15

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_15&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_15

310 15 C++ Utilities

private:
std::uint16_t value;

};

At the same time, the values of special fixed-point numbers such as mathematical
constants have a known integral representation in this fixed-point system. The
integral representation of the numerical constant π in this fixed-point system, for
example, is 0x0324. To accommodate construction from a known integral value
that is not supposed to be left-shifted, the fixed_point class has an additional
private constructor that takes an integral type parameter and a nothing-type
structure. In other words,

// A simplified Q7.8 fixed-point representation.
class fixed_point
{
public:

// Construct from integer with left-shift.
fixed_point(std::uint16_t u) : value(u << 8) { }

// Create pi with the special constructor.
static fixed_point value_pi()
{

return fixed_point(nothing(), 0x0324U);
}

private:
std::uint16_t value;

// Constructor from integer without left-shift.
fixed_point(const nothing&,

std::uint16_t u) : value(u) { }
};

Here, the nothing structure provides for unambiguous differentiation between
the normal constructor from std::uint16_t with left-shift and the private
constructor from std::uint16_t without left-shift. If the nothing structure
were not used, the two constructors would be ambiguous. The special private
constructor from an integer without left-shift is used to efficiently return the value
of π in the value_pi() method.

We will now use the nothing structure to create a template class that represents
a collection of three things. We will call this class a triple. The triple class

15.1 The nothing Structure 311

can be made by using three template parameters and supplying defaults for them.
For instance,

struct nothing {};

template <typename first_type = nothing,
typename second_type = nothing,
typename third_type = nothing>

class triple
{
public:

// Constructor with default values.
triple(const first_type& t1_ = first_type(),

const second_type& t2_ = second_type(),
const third_type& t3_ = third_type())

: t1(t1_),
t2(t2_),
t3(t3_)

{
}

// Element access.
first_type& first() { return t1; }
second_type& second() { return t2; }
third_type& third() { return t3; }

private:
first_type t1;
second_type t2;
third_type t3;

};

The triple class is similar to the std::pair class in the standard library’s
<utility> header. The triple class, however, has three elements, whereas
std::pair has two.

Using the triple class is straightforward. The code below, for example, uses a
triple containing a char, an int and an instance of a structure.

struct something
{

something() { }
};

triple<char, int, something>

312 15 C++ Utilities

things(’a’, 123, something());

void do_something()
{

if(things.first() == ’a’)
{
}

}

Techniques using a nothing-like class type are often employed to implement
std::tuple for compilers that lack C++11 support for variadic templates.

15.2 The noncopyable Class

In Sect. 4.8, we first discussed non-copyable classes. Frequently, we would like
to prohibit intentional and unintentional copying of a class object. A potential
implementation of a non-copyable mechanism for classes is shown in below. This
implementation is based on the noncopyable class in Boost.

class noncopyable
{
protected:

noncopyable() {}
~noncopyable() {}

private:
// Emphasize: The following members are private.
noncopyable(const noncopyable&) = delete;

const noncopyable& operator=(const noncopyable&)
= delete;

};

Here, the copy constructor and copy assignment operator have been declared
private and explicitly qualified with delete. This causes all classes that are
privately derived from noncopyable to be non-copyable because derived classes
inherit the private non-copyable members.

It is common in microcontroller programming to purposely prohibit class
copying. Consider, once again, an LED mapped to a port pin. We will use an led
class similar to the one in Sect. 1.1.

15.2 The noncopyable Class 313

class led
{
public:

// The led class constructor.
led(const port_type p,

const bval_type b) : port(p),
bval(b)

{
// ...

}

void toggle() const
{

// ...
}

private:
// Private member variables of the class.
port_type port;
bval_type bval;

};

As in Sect. 1.1, we can create an instance of the led class on microcontroller
port bin portb.5. In particular,

// Create led_b5 on portb.5.
led led_b5
{

mcal::reg::portb,
mcal::reg::bval5

};

Here, led_b5 is directly associated with portb.5 and with no other pin. In the
present form, however, it is possible to copy led_b5. The copy operation below,
for instance, can successfully be compiled.

// Create led_b5 on portb.5.
led led_b5
{

mcal::reg::portb,
mcal::reg::bval5

};

314 15 C++ Utilities

// Copy led_b5 to another led instance.
led led_other = led_b5;

Probably, though, we would prefer to prohibit copying the led class in this
fashion. This policy will help ensure that only one class instance uses the hardware
pin at one time. The modified version of the led class shown below inherits
privately from the noncopyable class.

class noncopyable { /* ... */ };

// Make the led class noncopyable.
class led : private noncopyable
{

// ...
};

Here, the led class has been made non-copyable by simply inheriting privately
from noncopyable.

The noncopyable utility simplifies typing and reduces the burden of code
upkeep because the non-copyable attribute can simply be inherited via private
derivation. This eliminates the need to manually implement a private copy con-
structor and copy assignment operator for each non-copyable class, as was shown
in Sect. 4.8.

15.3 A Template timer Class

A timer class can be used for diverse timing applications in real-time C++. For
example, the visible LED toggling in Sect. 2.3 has used a 1 s blocking delay to create
a toggle frequency of 1/ 2Hz. In addition, the multitasking scheduler in Sect. 11.2
has included interval timing for task scheduling.

We will now present a template timer class. The synopsis of the public interface
of our timer class is shown below.

template<typename unsigned_tick>
class timer
{
public:

// A class-specific tick type.
typedef unsigned_tick tick_type;

// Utility functions for creating timespans.

15.3 A Template timer Class 315

template<typename other>
static tick_type microseconds(const other&);

template<typename other>
static tick_type milliseconds(const other&);

template<typename other>
static tick_type seconds(const other&);

template<typename other>
static tick_type minutes(const other&);

template<typename other>
static tick_type hours(const other&);

// Constructors.
timer();
explicit timer(const tick_type&);
timer(const timer&);

// Copy assignment operator.
timer& operator=(const timer&);

// Interval and relative timeout functions.
void start_interval(const tick_type&);
void start_relative(const tick_type&);

// The timeout, now, and delay functions.
bool timeout() const;
static tick_type now();
static void blocking_delay(const tick_type&);

};

This timer class provides the following operations in its public interface.

• Query the current time point with now().
• Set relative timeouts with start_relative().
• Set interval timeouts with start_interval().
• Wait in a blocking delay with blocking_delay().

This implementation of the timer class requires a timebase in hard real-time.
This may, for example, originate from an underlying microcontroller peripheral
timer. Here, we use the procedural get_time_elapsed() function from the

316 15 C++ Utilities

MCAL, as described in Sect. 9.3. In particular, the timer’s now() function simply
returns the elapsed time from get_time_elapsed(). In other words,

template<typename unsigned_tick>
class timer
{
public:

typedef unsigned_tick tick_type;

// ...

static tick_type now()
{

// Return the elapsed time in microseconds.
return mcal::gpt::get_time_elapsed();

}
};

In our example, the resolution of the underlying timebase is microseconds. The
overlying timer class obtains the same microsecond resolution.

Since the timer class is a template, it can be scaled to various widths such as
16-bit or 32-bit. For example, we can set a relative timeout for a time point that lies
250 μs in the future using a 16-bit timer. In particular,

// Use a convenient type definition.
typedef timer<std::uint16_t> timer_type;

// Set a time point 250us in the future.
timer_type time(timer_type::microseconds(250U));

A polling task can query if the timer object has timed out by calling the
timeout() member function. For instance,

void do_something()
{

if(time.timeout())
{

// Do something at this time.
}

}

The timer class, or a class similar to it, can also be used as a building block
together with callbacks to encapsulate the functionality of event and alarm objects.

15.4 Linear Interpolation 317

To do this, a timer object might be included as a member of a larger alarm or event
object. These composite objects may be stored in a container and manipulated with
a scheduling mechanism to fully implement events and alarms.

15.4 Linear Interpolation

Linear interpolation is a method of curve fitting on data points using linear
polynomials. The need to perform linear interpolation on an ordered set of data
points arises frequently in real-time microcontroller programming. Operations like
sensor calibration and analysis of position data can often be carried out quickly
and with sufficient accuracy using linear interpolation. The data points shown in
Fig. 15.1, for example, are suitable for linear interpolation.

An example of linear interpolation using Eq. 15.2 is shown in Fig. 15.1. Linear
interpolation with a straight line between the two (x, y) points (10, 44) and
(20, 53) gives y = 48 at x = 15. Here, we are using integer calculations.

We will consider linear interpolation using a straight line between two points
(x0, y0) and (x1, y1). The equation for the straight line between these two points is

y − y0

x − x0
= y1 − y0

x1 − x0
. (15.1)

Solving Eq. 15.1 for an unknown value y at a known value x results in

y = y0 + (x − x0)
y1 − y0

x1 − x0
. (15.2)

Fig. 15.1 A set of data
points suitable for linear
interpolation is shown

Data Points

y

x

20

40

60 (15, 48)

0 5010 20 30 40

318 15 C++ Utilities

A template subroutine for straight-line linear interpolation based on Eq. 15.2 is
shown in the code below.

template<typename point_iterator,
typename x_type,
typename y_type = x_type>

y_type linear_interpolate(point_iterator pts_begin,
point_iterator pts_end,
const x_type& x,
const y_type& offset)

{
if(pts_begin == pts_end)
{

// There are no data points to interpolate.
return y_type();

}
else if((x <= pts_begin->x)

|| (pts_begin + 1U == pts_end))
{

// We are beneath the lower x-range or there
// is only one data point to interpolate.
return pts_begin->y;

}
else if(x >= (pts_end - 1U)->x)
{

// We are above the upper x-range.
return (pts_end - 1U)->y;

}
else
{

// Find interpolation pair with binary search.
point_iterator it

= std::lower_bound(pts_begin,
pts_end,
point<x_type>(x));

// Do the linear interpolation.
const x_type xn = (it - 1U)->x;
const x_type delta_xn = it->x - xn;
const x_type delta_x = x - xn;
const y_type yn = (it - 1U)->y;
const y_type delta_yn = it->y - yn;

const y_type delta_y

15.4 Linear Interpolation 319

= (delta_x * delta_yn) / delta_xn;

return (yn + delta_y) + offset;
}

}

Following some elementary bounds checking, the core of this linear interpo-
lation function uses the std::lower_bound() algorithm to find the pair of
interpolation points. The linear_interpolate() subroutine thereby profits
from the high efficiency of std::lower_bound() which uses a binary search
for sequences having random access iterators.

The fourth input parameter to linear_interpolate() called offset has
a dual role. It allows an optional non-zero offset to be applied to the result of the
linear interpolation. In addition, the offset parameter provides the compiler with
enough information to automatically deduce all of the template parameters.

The linear_interpolate() subroutine is designed to work particularly
well with a template point class type such as the one shown in Sect. 5.4. The
lower-bound algorithm tests for inequality using operator<. In order to be
used with linear_interpolate(), then, the point class needs to have an
implementation of operator<. Here, the sense of less-than is based on the x-
value of a point. In other words, the point (xi, yi) is less than the point

(
xj , yj

)
if

xi < xj .
A modified implementation of the point class that supports operator< is

shown below.

template<typename x_type,
typename y_type = x_type>

class point
{
public:

x_type x;
y_type y;

point(const x_type& x_ = x_type(),
const y_type& y_ = y_type()) : x(x_),

y(y_) { }

bool operator<(const point& other) const
{

return (x < other.x);
}

};

320 15 C++ Utilities

Using linear_interpolate() with a collection of points is straightfor-
ward. The sample below, for instance, performs the linear interpolation that is
depicted in Fig. 15.1.

// The data points.
const std::array<point<std::uint16_t>, 6U> points
{

{
point<std::uint16_t> { 0U, 0U },
point<std::uint16_t> { 10U, 44U },
point<std::uint16_t> { 20U, 53U },
point<std::uint16_t> { 30U, 28U },
point<std::uint16_t> { 40U, 22U },
point<std::uint16_t> { 50U, 47U }

}
};

const std::uint16_t y
= linear_interpolate(points.begin(),

points.end(),
std::uint16_t(15U),
std::uint16_t(0U));

// The value of y is 48.

The linear_interpolate() subroutine can be used with built-in integral
and floating-point types. It can also be used with user-defined types such as the
fixed_point class in Sect. 13.2. If used exclusively for integral types, it may
be beneficial to include a simple rounding correction in the division of the linear
interpolation equation.

15.5 A circular buffer Template Class

A circular buffer can be an efficient storage queue that is useful for communication
interfaces and other input-output operations. The SPITM driver class in Sect. 9.5, for
example, uses circular buffers for its transmit and receive queues.

A possible implementation of a template circular buffer class is shown below.

template<typename T,
const std::size_t N>

class circular_buffer
{

15.5 A circular buffer Template Class 321

public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef std::size_t size_type;
typedef value_type& reference;
typedef const value_type& const_reference;

circular_buffer(
const T& value = value_type(),
const size_type count = size_type(0U))

: in_ptr (buffer),
out_ptr(buffer)

{
const size_type the_count =

(std::min)(N, count);

std::fill(in_ptr,
in_ptr + the_count,
value);

in_ptr += the_count;
}

circular_buffer(const circular_buffer& other)
: in_ptr (other.in_ptr),

out_ptr(other.out_ptr)
{

std::copy(other.buffer,
other.buffer + N,
buffer);

}

circular_buffer& operator=(
const circular_buffer& other)

{
if(this != &other)
{

in_ptr (other.in_ptr);
out_ptr (other.out_ptr);
std::copy(other.buffer,

other.buffer + N,
buffer);

}

322 15 C++ Utilities

return *this;
}

size_type capacity() const { return N; }

bool empty() const
{

return (in_ptr == out_ptr);
}

size_type size() const
{

const bool is_wrap = (in_ptr < out_ptr);

return size_type((is_wrap == false)
? size_type(in_ptr - out_ptr)
: N - size_type(out_ptr - in_ptr));

}

void clear()
{

in_ptr = buffer;
out_ptr = buffer;

}

void in(const value_type value)
{

if(in_ptr >= (buffer + N))
{

in_ptr = buffer;
}

*in_ptr = value;

++in_ptr;
}

value_type out()
{

if(out_ptr >= (buffer + N))
{

out_ptr = buffer;
}

15.5 A circular buffer Template Class 323

const value_type value = *out_ptr;

++out_ptr;

return value;
}

reference front()
{

return ((out_ptr >= (buffer + N))
? buffer[N - 1U]
: *out_ptr);

}

const_reference front() const
{

return ((out_ptr >= (buffer + N))
? buffer[N - 1U]
: *out_ptr);

}

reference back()
{

return ((in_ptr >= (buffer + N))
? buffer[N - 1U]
: *in_ptr);

}

const_reference back() const
{

return ((in_ptr >= (buffer + N))
? buffer[N - 1U]
: *in_ptr);

}

private:
value_type buffer[N];
pointer in_ptr;
pointer out_ptr;

};

The circular_buffer class supports input and output queuing of elements.
There are some STL-like members such as size() and empty(). Full support
for STL iterators, however, has not been included in this implementation. A more

324 15 C++ Utilities

refined circular buffer class with iterator support and STL compliance is included in
Boost [1].

Using the circular_buffer class is simple. For instance,

typedef
circular_buffer<std::uint8_t, 4U>
buffer_type;

void do_something()
{

buffer_type buffer;

// Put three bytes into the buffer.
buffer.in(1U);
buffer.in(2U);
buffer.in(3U);

// The size of the buffer is 3.
const buffer_type::size_type count = buffer.size();

// The buffer is not empty.
const bool is_empty = buffer.empty();

// Extract the first element.
const buffer_type::value_type value = buffer.out();

// The size of the buffer is now 2.
count = buffer.size();

}

15.6 The Boost Library

The Boost library is a large collection of generic utilities aimed at a wide range of
C++ users and application domains. The Boost libraries extend the functionality of
C++ beyond the language specification. Boost contains many individual libraries,
including libraries for generic utilities, numeric and lexical operations, mathematics
and numbers, threading and concurrency, image processing, networking, task
scheduling, regular expressions, etc. The Boost libraries are known for their high
quality, partly because a candidate library is subjected to peer reviews before being
accepted to Boost.

References 325

Some of the concepts in this chapter originate from Boost. For example, the
concept of the noncopyable class in Sect. 15.2 has been taken from the utilities
part of Boost. The circular_buffer class in Sect. 15.5 is similar to Boost’s
circular_buffer.

The Boost website indicates that Boost aims to provide reference implementa-
tions potentially suitable for standardization [1]. This makes Boost a great place
to follow the development of the C++ language. In fact, some of Boost’s active
members are on the C++ standards committee, and a variety of Boost libraries have
been included in the C++11 standard [2], see also [3].

References

1. B. Dawes, D. Abrahams, Boost C++ Libraries (2012). http://www.boost.org
2. ISO/IEC, ISO/IEC 14882:2011: Information Technology – Programming Languages – C++

(International Organization for Standardization, Geneva, 2011)
3. B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost (Addison-Wesley,

Boston, 2005)

http://www.boost.org

Chapter 16
Extending the C++ Standard Library
and the STL

The C++ standard library and the STL provide a wide selection of functions,
classes and generic containers that can be used in common programming situations.
There are, however, times when just the right container or function for a particular
programming task is missing from the standard library and the STL. In the first part
of this chapter, we will extend the C++ standard library and the STL by developing a
custom dynamic_array container that has a functionality that lies between those
of std::array and std::vector. Furthermore, one often encounters a good
C++ compiler that lacks large parts of the C++ standard library such as the STL,
C99 compatibility, the time utilities in <chrono> or the thread support library. The
second half of this chapter shows how to emulate partial standard library support
with certain self-written parts of the C++ standard library and the STL, including a
potential extension of the <complex> library.

16.1 Defining the Custom dynamic array Container

The std::array container can be used when the number of elements is known
at compile time. For instance,

// Fixed-size array of four counters init. to 1.
std::array<unsigned, 4U> counters
{

{ 1U, 1U, 1U, 1U }
};

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_16

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_16&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_16

328 16 Extending the C++ Standard Library and the STL

void do_something()
{

// Increment the counters.
std::for_each(std::begin(counters),

std::end (counters),
[](unsigned& u)
{

++u;
});

// It is not possible to resize the array.
}

On the other hand, the std::vector container is designed for dynamic allo-
cation. Using vector’s constructors or member functions such as push_back(),
resize(), insert(), erase(), etc., the number of elements in a vector can
be changed from zero to the maximum capacity during the entire lifetime of the
object. For example,

// Dynamic vector of four counters init. to 1.
std::vector<unsigned> counters(4U, 1U);

void do_something()
{

// Increment the counters.
std::for_each(std::begin(counters),

std::end(counters),
[](unsigned& u)
{

++u;
});

// We can resize the vector.
counters.push_back(counters.front());

}

16.1 Defining the Custom dynamic array Container 329

Basically, std::array is efficient but has the limitation of constant compile-
time size. While std::vector does offer flexible resizing during runtime, it also
has slight performance and storage disadvantages caused by its dynamic allocation
mechanisms.

At times it may be convenient to use a container with characteristics that lie
between those of std::array and std::vector. For example, consider a
container that can be dynamically allocated one time in the constructor and retains
its size for the lifetime of the object. This container offers the flexibility of dynamic
sizing at creation time without the added overhead needed for reallocation. We will
call this container dynamic_array. For example,

// A dynamic array of four counters initialized with 1.
dynamic_array<unsigned> counters(4U, 1U);

void do_something()
{

// Increment the counters.
std::for_each(std::begin(counters),

std::end(counters),
[](unsigned& u)
{

++u;
});

// It is not possible to resize the dynamic_array.
}

Here, we have created a dynamic_array of counters and initialized them
with 1. Although it is possible to dynamically set the number of elements in this
container during construction, the size can not be modified thereafter. In this way,
dynamic_array is a kind of hybrid container that combines the efficiency of an
array with the dynamic sizing (albeit via one-shot allocation) of std::vector.

As will be described below, the custom dynamic_array container will be
designed to fulfill the general requirements for sequential STL containers.1 In this
way, the dynamic_array container is consistent with the STL and also fills a
functional niche between the fixed-size std::array and that of the dynamic

1The general requirements for STL containers are specified in Paragraph 23.2.1 of [1] and listed in
Tables 96 and 97 therein.

330 16 Extending the C++ Standard Library and the STL

std::vector. This can be considered a kind of user-defined extension of the
STL that, even though not formally standardized in ISO/IEC [1], can potentially be
useful in generic programming.

16.2 Implementing and Using dynamic array

We will now present an implementation of dynamic_array. The class definition
of dynamic_array is similar to that of std::array but also has features in its
constructors closely resembling those of the constructors of std::vector.2 The
class synopsis of a possible implementation of dynamic_array is shown in the
code sample below.

#include <algorithm>
#include <initializer_list>
#include <iterator>
#include <memory>

template<typename T,
typename alloc = std::allocator<T>>

class dynamic_array
{
public:

// Type definitions.
typedef alloc allocator_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* iterator;
typedef const T* const_iterator;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::reverse_iterator<iterator>

reverse_iterator;
typedef std::reverse_iterator<const_iterator>

const_reverse_iterator;

// Constructors.

2Consult Sect. 23.3.2 in [1] for an overview of std::array and Sect. 23.3.6 for a summary of
std::vector.

16.2 Implementing and Using dynamic array 331

dynamic_array();
dynamic_array(size_type);
dynamic_array(

size_type,
const value_type&,
const allocator_type& = allocator_type());

dynamic_array(const dynamic_array&);

template<typename input_iterator>
dynamic_array(

input_iterator,
input_iterator,
const allocator_type& = allocator_type());

dynamic_array(
std::initializer_list<T> lst,
const allocator_type& = allocator_type());

// Destructor.
~dynamic_array();

// Iterator members:
iterator begin ();
iterator end ();
const_iterator begin () const;
const_iterator end () const;
const_iterator cbegin () const;
const_iterator cend () const;
reverse_iterator rbegin ();
reverse_iterator rend ();
const_reverse_iterator rbegin () const;
const_reverse_iterator rend () const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend () const;

// Size and capacity.
size_type size () const;
size_type max_size() const;
bool empty () const;

// Element access members.
reference operator[](const size_type);
const_reference operator[](const size_type);

332 16 Extending the C++ Standard Library and the STL

reference front();
const_reference front() const;
reference back ();
const_reference back () const;

reference at(const size_type);
const_reference at(const size_type) const;

// Element manipulation members.
void fill(const value_type&);

void swap(dynamic_array&);

private:
const size_type N;
pointer elems;

// Note: dynamic_array can not be copied
// with operator=().
dynamic_array& operator=(const dynamic_array&);

};

The dynamic_array class has the standard type definitions and iterator sup-
port required for a sequential STL container such as value_type, iterator,
size_type, etc. In addition, the dynamic_array class has several constructors
responsible for allocation and initialization of the elements. Consider, for example,
the third of dynamic_array’s constructors shown in the class synopsis. This
constructor could be implemented as follows.

dynamic_array(size_type count,
const value_type& v,
const allocator_type& a) : N(count)

{
const size_type the_size =

std::max(size_type(1U), N);

elems = allocator_type(a).allocate(the_size);

if(N > size_type(0U))
{

std::fill_n(begin(), N, v);
}
else

16.2 Implementing and Using dynamic array 333

{
elems[0U] = value_type();

}
}

Here, the elements of the dynamic array are allocated and initialized with the
value stored in the second parameter of the constructor. None of the functions in
dynamic_array other than the constructors modify the number of elements in
the container, meaning that once a dynamic_array is created, it keeps its size for
its entire lifetime. The remaining implementation details of the dynamic_array
class can be found in the companion code.

The dynamic_array container fulfills most of the general requirements for
sequential STL containers. It can, therefore, be used with the standard algorithms
of the STL. The code sample below, for instance, initializes a dynamic_array
with three data bytes from an std::initializer_list and calculates the byte
checksum thereof.

util::dynamic_array<int> values ({ 1, 2, 3 });

int sum = std::accumulate(values.begin(),
values.end(),
0);

The dynamic_array container can also be used with other functions and class
types. Consider, for example, a potential interface to a communication class.

class communication
{
public:

communication() { }
~communication() { }

bool send(const dynamic_array<std::uint8_t>& cmd);
bool recv(dynamic_array<std::uint8_t>& rsp);

};

Here, the communication class has member functions send() and recv()
responsible for sending and receiving communication frames, respectively. Data
transfer in transmission and reception is carried out using dynamic_array
containers holding 8-bit data bytes.

334 16 Extending the C++ Standard Library and the STL

16.3 Writing Parts of the C++ Library if None is Available

Some C++ compilers, even very good ones, fail to provide implementations of the
C++ library and the STL. At times, even if the C++ library and the STL are available,
the implementations provided by the compiler may be incomplete and could lack
some new and potentially useful C++ language features.

If certain components of the C++ library and the STL are missing, it may be
possible to manually write them. This assumes, however, that the development and
testing of these components can be carried out with the reliability mandated by real-
time C++.

Throughout this book, for example, the code samples have used many parts of the
C++ library and the STL. For the most part, these samples have been successfully
tested and executed on several 8-bit and 32-bit microcontrollers. Some of the GCC
ports used for these tests, however, include only an incomplete C++ standard library
and lack the STL entirely. In order to resolve this problem, parts of the C++ library
and STL components were explicitly written for this book. The implementations of
these can be found in the reference project of the companion code.

Writing a complete implementation of the C++ library and the STL that
closely adheres to the standard and provides optimal efficiency is a large-scale
programming endeavor. In fact, this is generally considered to be a task for the
most experienced C++ specialists because it requires the utmost in programming
skill, deep understanding of compiler optimization techniques, meticulous attention
to detail and an extensive testing effort.

Writing a complete standards-adherent C++ library might be a task that lies
beyond the capabilities of most of us. It can, nonetheless, be feasible and practical
to write a small subset of the C++ standard library and the STL. In the following
section, we will consider a strategy for writing a subset of the C++ library.

16.4 Implementation Notes for Parts of the C++ Library
and STL

It may make sense to select a single location for storage of library headers and any
necessary source files when writing a subset of the C++ library and the STL. This
can, for example, be a single root directory combined with additional subdirectories
for the platform-specific library parts. For instance, the directory structure for the
self-written subset of the C++ library for the GCC port for our target with the
8-bit microcontroller is shown in Fig. 16.1. Selecting a single location for self-
written library headers simplifies the process of adding the path information to the
compiler’s default search paths, as described in Sect. 1.6.

The selection of which C++ library components to write may be primarily based
on usefulness and ease of implementation. Consider the subset of the C++ library
and the STL listed below.

16.4 Implementation Notes for Parts of the C++ Library and STL 335

Fig. 16.1 The directory
structure for the self-written
subset of the C++ library and
the STL written for this book
is shown

• The fixed-size integer types including those with an exact number of bits, those
with at least a specific number of bits and the fastest types with at least a certain
number of bits.

• Partial support for std::array, optionally not including reverse iterators.
• Commonly used yet simple-to-write functions from the <algorithm> library

such as the minimax functions, std::min(), and std::max(), and
others operating on sequential iterators such as std::for_each(),
std::fill(), std::copy(), std::find_if(), and others.

• Selected parts of <type_traits>, in particular std::enable_if and a
variety of templates used for checking types such as std::is_integral.

• Common mathematical functions from <cmath> if floating-point calculations
with elementary functions are anticipated in the project.

Fixed-size integer types are defined in <cstdint>. If the C++ compiler has
C99 compatibility and supports the C99 fixed-size integer types, then it is a simple
matter to inject these types into the namespace std. For example,

// A partial implementation of <cstdint>

// Include the C99 fixed-size integers.
#include <stdint.h>

namespace std

336 16 Extending the C++ Standard Library and the STL

{
// Types with an exact number of bits.
using ::uint8_t;
using ::uint16_t;
using ::uint32_t;
using ::uint64_t;

// Types with at least a certain number of bits.
using ::uint_least8_t;
using ::uint_least16_t;
using ::uint_least32_t;
using ::uint_least64_t;

// Fastest types with at least a certain
// number of bits.
using ::uint_fast8_t;
using ::uint_fast16_t;
using ::uint_fast32_t;
using ::uint_fast64_t;

}

If the C++ compiler does not have C99 compatibility, then the fixed-size
integer types must be defined. This can be readily accomplished using simple
typedefs of platform-dependentbuilt-in types such as char, short, int, long
and possibly long long. This does, however, result in slight portability issues
because the widths of the built-in types are compiler-dependent. These portability
issues are easily managed because the fixed-size integer types need be set up only
once for a given platform. Once this is done, it is relatively straightforward to
separate processor-specific versions of header files such as <cstdint> in different
directories or to use preprocessor definitions to achieve separation within larger
header files.

A partial implementation of std::array is shown in the listing below. This
implementation does not include support for reverse iterators.

// A partial implementation of <array>

#include <algorithm>
#include <cstddef>

namespace std
{

template <typename T, size_t N>
struct array

16.4 Implementation Notes for Parts of the C++ Library and STL 337

{
// Type definitions:
typedef T& reference;
typedef const T& const_reference;
typedef T* iterator;
typedef const T* const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;

// Data elements:
T elems[N];

// iterators:
iterator begin() { return elems; }
iterator end() { return elems + N; }
const_iterator begin() const
{ return elems; }
const_iterator end() const
{ return elems + N; }
const_iterator cbegin() const
{ return elems; }
const_iterator cend() const
{ return elems + N; }

// Size-related members:
constexpr size_type size() { return N; }
constexpr size_type max_size() { return N; }
constexpr bool empty() { return false; }

// Element access members:
reference operator[](size_type n)
{ return elems[n]; }
const_reference operator[](size_type n) const
{ return elems[n]; }
const_reference at(size_type n) const
{ return elems[n]; }
reference at(size_type n)
{ return elems[n]; }
reference front()
{ return elems[0U]; }

338 16 Extending the C++ Standard Library and the STL

const_reference front() const
{ return elems[0U]; }
reference back()
{ return elems[N - 1U]; }
const_reference back() const
{ return elems[N - 1U]; }

T* data() { return elems; }
const T* data() const { return elems; }

// Element manipulation members:
void fill(const T& u) { fill_n(begin(), N, u); }
void swap(const array<T, N>& other)
{ swap_ranges(begin(), end(), other.begin()); }

};
}

This implementation of std::array makes use of other parts of the C++
standard library including the types std::size_t and std::ptrdiff_t as
well as the algorithms std::fill_n() and std::swap_ranges(). So these
parts of the library must also be available for this implementation of std::array.

The minimax algorithms std::min() and std::max() can be implemented
as shown below.

// Implement part of <algorithm>

namespace std
{

// Sample implementation of std::min.
template<typename T>
const T& min(const T& a, const T& b)
{

return (a < b ? a : b);
}

// Sample implementation of std::max.
template<typename T>
const T& max(const T& a, const T& b)
{

return (a > b ? a : b);
}

}

16.4 Implementation Notes for Parts of the C++ Library and STL 339

Some examples of sequential STL algorithms that navigate through iterators
include std::fill(), std::for_each() and std::find_if(). These
algorithms have linear complexity and are relatively easy to implement. The
following code samples show possible implementations of these algorithms.

A potential implementation of std::fill() is presented in the code below.

// Implement part of <algorithm>

namespace std
{

// Sample implementation of std::fill.
template<typename forward_iterator,

typename value_type>
void std::fill(forward_iterator first,

forward_iterator last,
const value_type& value)

{
// Fill each element in [first, last) with value.
while(first != last)
{

*first = value;
++first;

}
}

}

A sample implementation of std::for_each() follows below. This particu-
lar version of std::for_each() was previously described in Sect. 5.8.

// Implement part of <algorithm>

namespace std
{

// Sample implementation of std::for_each.
template<typename iterator_type,

typename function_type>
function_type std::for_each(iterator_type first,

iterator_type last,
function_type function)

{
// Apply function to each element in [first, last).
while(first != last)
{

function(*first);

340 16 Extending the C++ Standard Library and the STL

++first;
}

return function;
}

}

A possible realization of std::find_if() is shown in the following code
sequence.

// Implement part of <algorithm>

namespace std
{

// Sample implementation of std::find_if.
template<typename iterator_type,

typename predicate_type>
iterator_type std::find_if(iterator_type first,

iterator_type last,
predicate_type predicate)

{
// Find the first element satisfying predicate.
while((first != last)

&& (false == predicate(*first)))
{

++first;
}

return first;
}

}

Some very useful parts of the <type_traits> library include templates that
query the type of an object at compile time, such as std::is_integral. Writ-
ing such templates begins with the declaration of std::integral_constant.

A potential (but incomplete) implementation appears below.

// Implement part of <type_traits>

namespace std
{

template<typename integral_value_type,
integral_value_type integral_value>

16.4 Implementation Notes for Parts of the C++ Library and STL 341

struct integral_constant
{

typedef integral_value_type value_type;

static constexpr value_type my_value =
integral_value;

typedef
integral_constant<value_type, my_value> type;

operator value_type() const
{

return my_value;
}

};

typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;

}

When equipped with std::integral_constant, it is straightforward to
write numerous compile-time templates such as std::is_integral, and the
like. In particular, inheriting from std::true_type can provide for compile-
time type queries. See the self-written partial implementation of the STL in the
companion code for further hints on this.

We will now investigate possible implementations of parts of the <cmath>
library. Common elementary transcendental functions such as

√
x, sin x, ex , etc. are

overwritten in <cmath>. In fact, overwrites are provided for all three built-in
floating-point types float, double and long double. These mathematical
functions are related to similar C99 functions in the global namespace. For C++,
they are basically wrapped and injected into namespace std. A partial sample
implementation is shown below.

// Implement part of <cmath>

#include <math.h>

namespace std
{

// Overwrites of the square root function.
inline float sqrt(float x)
{

return ::sqrtf(x);
}

342 16 Extending the C++ Standard Library and the STL

inline double sqrt(double x)
{

return ::sqrt(x);
}

inline long double sqrt(long double x)
{

return ::sqrtl(x);
}

// Overwrites of the sine function.
inline float sin(float x)
{

return ::sinf(x);
}

inline double sin(double x)
{

return ::sin(x);
}

inline long double sqrt(long double x)
{

return ::sinl(x);
}

// Overwrites of the exponent function.
inline float exp(float x)
{

return ::expf(x);
}

inline double exp(double x)
{

return ::exp(x);
}

inline long double exp(long double x)
{

return ::expl(x);
}

// ...and numerous other elementary functions.
}

16.5 Providing now() for <chrono>’s High-Resolution Clock 343

16.5 Providing now() for <chrono>’s High-Resolution
Clock

The C++ standard library supports chronological timing functions in its <chrono>
library. Part of the <chrono> library includes support for various clocks such as
a system clock and a high-resolution clock. See Sect. 20.11.7 in [1] for details
on the specification of <chrono>. The standard library’s high-resolution clock
(called std::chrono::high_resolution_clock) may be well-suited for
providing the timebase in a real-time C++ project.

A potential synopsis of std::chrono::high_resolution_clock in
<chrono> is shown below.

namespace std { namespace chrono {

class high_resolution_clock
{
public:

// The resolution of the clock is microseconds.
typedef chrono::microseconds duration;

// Types for representation, period and time point.
typedef duration::rep rep;

typedef duration::period period;

typedef chrono::time_point<high_resolution_clock,
duration> time_point;

// The counter is steady. This means that
// a call to now() always returns a later
// timer than a previous call.

static constexpr bool is_steady = true;

// The platform-specific implementation of now().
// It is declared, but not implemented.

static time_point now() noexcept;
};

} } // namespace std::chrono

344 16 Extending the C++ Standard Library and the STL

Here, the timebase of the high-resolution clock is a static member function called
now(). An up-to-date C++ compiler with standard library support for <chrono>
should have a definition of the high_resolution_clock class. The subroutine
now(), however, could merely be declared in the class, but not implemented. In
other words, it might lack a function body. This makes perfect sense because it may
be impossible for the C++ standard library authors to know which timer or counter
peripheral is used for the timebase in now() or what frequency it has.

For this reason, it might be necessary to manually implement the subroutine
now() for the high_resolution_clock class. This makes it possible to use
the high-resolution chronological functions in the <chrono> library. A potential
implementation of now() is shown below.

// Implement std::chrono::high_resolution_clock::now()
// for the standard library high-resolution clock.
std::chrono::high_resolution_clock::time_point

high_resolution_clock::now()
{

// The high-resolution clock source is microseconds.
typedef
std::chrono::time_point<high_resolution_clock,

microseconds> from_type;

// Get the consistent tick in microseconds.
// This function should be in the mcal.
auto microsecond_tick

= consistent_microsecond_tick();

// Now obtain a time point in microseconds.
auto from_micro

= from_type(microseconds(microsecond_tick));

// Return the duration in microseconds.
return time_point_cast<duration>(from_micro);

}

Here, the timebase of the high-resolution clock is microseconds. Based on the
necessities of the project, the microcontroller performance and the capabilities of
its peripherals, a different timebase can be selected. Other common choices include
milliseconds and nanoseconds.

In the example above, consistent_microsecond_tick() is assumed to
be a project-specific function that returns the underlying hardware system-tick in
microseconds. This subroutine can, for example, be derived from a free-running
timer or a timer interrupt service routine with a fixed period (see also Sect. 9.3).

16.6 Extended-Complex Number Templates 345

16.6 Extended-Complex Number Templates

This section introduces a collection of extended-complex number templates. It
includes both classes representing complex numbers as well as procedural functions
intended for complex-valued arithmetic and elementary transcendental functions.

The extended-complex classes represent complex numbers having real and
imaginary parts that can be composed of either built-in types or user-defined types
(i.e., not strictly limited to built-in types). The behavior of the <complex> library
is only specified for the built-in data types float, double and long double
(Sect. 26.4, §2 of [1] and also Sect. 12.5 of this book). In this way, extended-complex
can be roughly characterized as an extension of <complex> to support operation
with user-defined numeric types. Typical user-defined types suitable for complex
number representation might include, for example, a fixed-point data type (such as
the one in Sect. 13.2) or a multiple-precision data type (potentially from Boost.
Multi precision [2]).3

The extended-complex templates are summarized below. There are some similar-
ities between the synopsis of extended-complex and the synopsis of <complex>
specified in Sect. 26.4.1 of [1].

// Header extended_complex.h.

namespace extended_complex
{

template<typename T>
class complex
{

// Extended-complex template (user-defined type).
...

}

template<>
class complex<float>
{

// Extended-complex template (float).
...

}

template<>
class complex<double>
{

3To successfully interoperate with extended-complex, however, the user-defined type should
behave like a built-in types as closely as possible.

346 16 Extending the C++ Standard Library and the STL

// Extended-complex template (double).
...

}

template<>
class complex<long double>
{

// Extended-complex template (long double).
...

}

// Unary and binary arithmetic operators.
...

// Comparison operators.
...

// Complex and elementary transcendental functions.
...

} // namespace extended_complex

Extended-complex includes generic template implementations for user-defined
types. There are also template specializations for the built-in types float, double
and long double. Support is included for unary and binary arithmetic functions,
comparison operations, complex functions (such as abs(), norm(), real(),
imag(), polar(), etc.) and elementary transcendental functions (like cos(),
exp(), log(), pow(), etc.). The extended-complex templates have been isolated
in the namespace extended_complex. This resolves potential ambiguity with
std::complex from <complex>.

We will now present an instructive use-case for the extended-complex library.
Consider, for example, the complex-valued sinc function,4

sinc z = sin z

z
, where z ∈ C . (16.1)

The following code sample implements a template subroutine that is designed to
return the complex-valued sinc function using extended-complex. In particular,

#include <complex>
#include <cstdint>
#include <limits>

4See also Eq. 12.2 in Sect. 12.1, in which the real-valued sinc function is calculated for built-in
float.

16.6 Extended-Complex Number Templates 347

#include <math/extended_complex/extended_complex.h>

using extended_complex::complex;
using std::complex;

template<typename float_type>
complex<float_type> sinc(const complex<float_type>& z)
{

using std::abs;

const float_type my_epsilon =
std::numeric_limits<float_type>::epsilon();

if(abs(z) < my_epsilon)
{

return complex<float_type>(float_type(1));
}
else
{

return sin(z) / z;
}

}

Using the sinc() template function to obtain complex-valued results for
different kinds of input data types is straightforward. For instance,

#include <boost/multiprecision/cpp_dec_float.hpp>
#include <math/fixed_point/fixed_point.h>

using fp_type =
fixed_point<std::int32_t>;

using mp_type =
boost::multiprecision::cpp_dec_float_50;

// (2.708682 - 3.155585 i)
complex f = sinc(complex(1.2F, 3.4F));

// (2.708681782584397 - 3.15558549026962 i)
complex d = sinc(complex(1.2, 3.4));

// (2.708681782584397 - 3.15558549026962 i)
complex l = sinc(complex(1.2L, 3.4L));

348 16 Extending the C++ Standard Library and the STL

// (2.709 - 3.156 i)
complex fp =

sinc(complex(fp_type(fp_type(12) / fp_type(10)),
fp_type(fp_type(34) / fp_type(10))));

// (2.708681782584397058298888481426441072868726\
098006

// - 3.155585490269623960931511396486590036803379\
// 532893 i)
complex mp =

sinc(complex(mp_type(mp_type(12) / mp_type(10)),
mp_type(mp_type(34) / mp_type(10))));

In this example, the sinc() template function is used with a wide variety of
complex-valued data types. These include complex values comprised of both built-
in floating-point types as well as complex values made from user-defined types such
as the fixed_point class from Sect. 13.2 and the multiple-precision type cpp_-
dec_float_50 from Boost.Multiprecision [2].

References

1. ISO/IEC, ISO/IEC 14882:2011 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2011)

2. J. Maddock, C. Kormanyos, Boost Multiprecision, http://www.boost.org/doc/libs/1_63_0/libs/
multiprecision/doc/html/index.html (2013)

http://www.boost.org/doc/libs/1_63_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_63_0/libs/multiprecision/doc/html/index.html

Chapter 17
Using C-Language Code in C++

This chapter shows how to access C-language code within a C++ project. The
subject of the example is CRC calculations (cyclic redundancy check). There can be
good reasons to mix C and C++ code. Many developers write code in C, particularly
in the realm of embedded microcontroller programming. Sometimes a convenient
module exists in a C-language implementation and it may be desirable to use it
in C++. Consider, for instance, a C language module that exercises a practical
function. Let’s imagine that this C implementation is well-tested and stable. Instead
of rewriting or porting an existing, stable and tested body of code from C to C++, it
might be a wiser choice to simply use the C code unchanged in the C++ project.

17.1 Accessing C Language Code in C++

Consider a function written in C, such as the one shown below.

// This is in a C file.

void FunctionInC(void)
{

// ...
}

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_17

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_17&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_17

350 17 Using C-Language Code in C++

In this example, FunctionInC() is implemented in the C language and stored
in a C file.

In order to call FunctionInC() within a C++ file, the function must be
declared as a subroutine with so-called C-linkage. This can be accomplished with
the declaration extern "C". For instance,

// This is in a C++ file.

// Tell the C++ compiler about the C function.
extern "C" void FunctionInC(void);

void do_something()
{

// Now the C++ compiler can access the C function.
FunctionInC();

}

The extern "C" declaration tells the C++ compiler to deactivate name
mangling for this function (see also Sect. 6.6). This makes FunctionInC()
accessible in both C as well as C++.

17.2 An Existing C-Language CRC Library

When working with embedded microcontroller systems, it can be commonplace to
use CRC calculations [6] to verify the integrity of one or more byte streams of data.
This kind of verification can be useful for checking the content of things such as
communication frames, memory blocks, etc. CRC calculations are well-established.
It can, therefore, be prevalent to encounter existing C-code implementations for
various CRC algorithms.

The AUTOSAR 4.3 Standard [1, 2] specifies the use of at least four kinds of
CRC algorithms including bit-widths of 8, 16, 32, and 64. The main characteristics
of these CRCs are summarized in Table 17.1.1 We will use these four kinds of CRCs
in this section.

Consider, for example, a potential C-language interface to a well-tested and
existing procedural implementation of an 8-bit CRC. The code below shows a
possible declaration of the interface to Crc08.2

1These characteristics and other details on many kinds of CRCs can be found in [3].
2Even though the CRCs used in this example are present in the AUTOSAR 4.3 standard, [2]
the interface shown here does not exactly follow the same design as the interface specified in
AUTOSAR [1].

17.2 An Existing C-Language CRC Library 351

Table 17.1 The main characteristics of some of the CRCs from the AUTOSAR 4.3 standard are
listed (see also [1–3])

CRC name Bits Polynomial CRC(0x31 . . . 0x39)

CRC8/AUTOSAR 8 0x2F 0xDF

CRC16/CCITT-false 16 0x1021 0x29B1

CRC32/AUTOSAR 32 0xF4ACFB13 0x1697D06A

CRC64/XZ 64 0x42F0E1EBA9EA3693 0x995DC9BBDF1939FA

These CRCs have widths of 8, 16, 32 and 64 bits, respectively

void Crc08_Initialize
(Crc8_Context_Type* Crc_Context);

void Crc08_ProcessBytes
(const uint8_t* DataIn,
const size_t DataLength,
Crc8_Context_Type* Crc_Context);

void Crc8_Finalize
(Crc08_Context_Type* Crc_Context);

This C-language interface includes functions for initialization, byte processing,
and finalization. These functions are useful for performing CRC calculations.
The underlying implementations are assumed to be well established within the
development environment and have a tried-and-true character.

Assume that similar reliable C-language implementations also exist for specific
kinds of Crc16, Crc32 and Crc64. The result is a C library with a collection of
trusted CRC implementations.

Using this C-based CRC library is simple. For instance,

// This is in a C file.

#include <stdint.h>

#include <math/checksums/crc/Crc08.h>

static const uint8_t test_data[9U] =
{

0x31U, 0x32U, 0x33U, 0x34U,
0x35U, 0x36U, 0x37U, 0x38U,
0x39

};

352 17 Using C-Language Code in C++

void do_something(void)
{

// Perform the Crc08 with the traditional
// C-language interface.

Crc08_Context_Type CrcContext;

Crc08_Initialize(&CrcContext);

Crc08_ProcessBytes(&test_data[0U],
sizeof(test_data),
&CrcContext);

Crc08_Finalize(&CrcContext);

// The result is 0xDF.
const uint8_t CrcResult = CrcContext.Crc_Value;

(void) CrcResult;
}

Here, a CRC8 of the ASCII characters [5] 1 to 9 is computed. The expected result
is 0xDF.

17.3 Wrapping the C-Based CRC Library with C++ Classes

In this section we will take the existing C-language CRC library from the previous
section (Sect. 17.2) and wrap it with C++ classes. Hereby, we focus on a practical
case study that imports a non-trivial C library into C++. This is done without
modifying the original legacy C code. This provides a class library that enables
various CRC calculations that can be used in object-oriented C++. The complete
source code for this example can be found in the chapter17_03 sample project
in the companion code.

It is straightforward to wrap the traditional C-language CRC implementations
from the previous section in C++ classes. We can start by studying the C-language
interface. We might then try to find a way to embody the data structures and
procedural subroutines in classes.

The hierarchy of CRC classes in this example is shown in Fig. 17.1. It is
convenient to begin with an abstract base class (Sect. 4.6) that mimics the existing
procedural interface. A class called cpp_crc_base serves this purpose. The
public interface of cpp_crc_base is shown below.

17.3 Wrapping the C-Based CRC Library with C++ Classes 353

Fig. 17.1 The hierarchical
architecture of the C++ CRC
classes in the
chapter17_03 project is
shown

cpp_crc08

cpp_crc _base

cpp_crc16 cpp_crc32 cpp_crc64

class cpp_crc_base
{
public:

virtual ~cpp_crc_base() = default;

void initialize();

void process_bytes(const std::uint8_t*,
const std::size_t);

void finalize();

cpp_crc_base& operator=(const cpp_crc_base&);

template<typename value_type>
value_type get_result();

template<typename value_type>
value_type checksum(const std::uint8_t*,

const std::size_t);

The three centrally important functions initialize(), process_-
bytes() and finalize() are intended to be used for streaming CRC operations
on byte streams of data. The process_bytes() subroutine handles successive
chunks, without the need for re-initialization. Note also that process_bytes()
does not finalize the checksum.

The template function checksum() provides a composite function. It will,
with just one single subroutine call, perform initialization, byte processing and
finalization to compute the CRC of a single data packet.

Classes corresponding to the four types of AUTOSAR CRCs are derived from
cpp_crc_base. The public interface of the 64-bit version, for instance, is shown
below.

354 17 Using C-Language Code in C++

class cpp_crc64 final : public cpp_crc_base
{
public:

cpp_crc64();

cpp_crc64(const cpp_crc64&);

virtual ~cpp_crc64() = default;

// ...
};

With this straightforward class hierarchy, it is possible to initialize and carry out
CRC calculations on byte streams of data in various situations of microcontroller
programming. In the application layer, a container of base class pointers is used to
calculate and test four checksums in widths of 8, 16, 32 and 64 bits. The standard
check of the CRC of the ASCII digits 1 through 9 (in other words 0x31 . . .0x39)
is used.3

The inner loop of the application task performing the CRCs uses std::-
for_each from the STL’s <algorithm> to carry out the checksums. The
object-oriented interface of the abstract base class is called by way of the virtual
function mechanism. In particular,

// Calculate and verify the 8-bit, 16-bit,
// 32-bit and 64-bit CRC.

std::for_each(checksums.begin(),
checksums.end(),
[](local_crc_base_type* my_crc)
{

// ...

my_crc->initialize();

my_crc->process_bytes(...);

my_crc->finalize();

// ...
});

3See also Sect. 6.1 for a similar CRC32 measurement.

17.4 Return to Investigations of Efficiency and Optimization 355

See the companion code of the chapter17_03 example for all details. This
project has been verified with GCC 7.2.0 [4] using C++17.

17.4 Return to Investigations of Efficiency and Optimization

We will now consider a CPU run-time measurement of the CRC calculations from
the previous example. Themeasurement uses a microcontroller I/O port and a digital
oscilloscope in accordance with the method of Sect. 9.6.

This run-timemeasurement has been integrated in the chapter17_03 example
project. The measured runtimes (and also the code sizes) for each CRC are
summarized in Table 17.2.4 The trend is clear from the table. The code sizes and
runtimes increase based on the bit width of the CRC, which is the expected tendency.

It is quite interesting to compare the efficiency characteristics of the CRC32 / -
AUTOSAR calculation with those obtained for the CRC32 /MPEG-2 calculation
shown previously in Sect. 6.1. These are summarized in Table 17.3. Although both
CRCs are similar and have the same basic bit-complexity of 32 bits, the runtimes
and code sizes are quite different.

This is because a larger data table featuring 256 entries and an algorithm that uses
full 8-bit byte-wise data processing have been employed for the implementation
of CRC32 /AUTOSAR, whereas a data table having only 16 entries and a data
processing algorithm based on 4-bit nibbles have been used for CRC32 /MPEG-2.

Table 17.2 The code sizes and runtimes for the AUTOSAR CRCs [1] on our target with the 8-bit
microcontroller are listed

CRC name Code size CRC
[
byte

]
Runtime CRC(0x31 . . . 0x39)

[
μs
]

CRC8/AUTOSAR 300 15

CRC16/CCITT-false 600 20

CRC32/AUTOSAR 1,200 30

CRC64/XZ 2,300 90

GCC 7.2.0 with optimization level -O2 has been used

Table 17.3 The efficiency characteristics of CRC32/AUTOSAR (chapter17_03 example)
and CRC32/MPEG-2 (Sect. 6.1) on our target with the 8-bit microcontroller are listed

Code size Runtime CRC(0x31 . . . 0x39)

CRC name Algorithm
[
byte

] [
μs
]

CRC32/AUTOSAR Table[256], 8-bit 1, 200 30

CRC32/MPEG-2 Table[16], 4-bit 320 300

GCC 7.2.0 with optimization level -O2 has been used

4For these measurements we are using our target with the 8-bit microcontroller and GCC 7.2.0.

356 17 Using C-Language Code in C++

On our target with the 8-bit microcontroller, the use of the larger data table com-
bined with the faster byte-wise algorithm requires more storage but results in shorter
runtime.5 As described in Sect. 6.1, this is a common tradeoff (i.e., optimization of
space versus speed) that arises often and recurrently in real-time embedded C++
programming.

An extension of this example called chapter17_03a is provided in the
companion code. This project distributes the work of the CRC calculations over
multiple time slices of a task in a multitasking environment. A straightforward state
machine manages the temporal distribution of the CRC calculations.6

References

1. AUTOSAR, Automotive Open System Architecture (2017). http://www.autosar.org
2. AUTOSAR, AUTOSAR Classic Platform Release 4.3 (2017). http://www.autosar.org/standards/

classic-platform
3. G. Cook, CRC RevEng: Catalogue of Parametrised CRC Algorithms (2017). http://reveng.

sourceforge.net/crc-catalogue
4. Free Software Foundation, The GNU Compiler Collection Version 7.2.0 (2017). http://gcc.gnu.

org
5. Wikipedia, ASCII (2017). http://en.wikipedia.org/wiki/ASCII
6. Wikipedia, Cyclic Redundancy Check (2017). http://en.wikipedia.org/wiki/Cyclic_redundancy_

check

5The increased storage requirement comes predominantly from the table of 256 unsigned 32-bit
integers pulling 1, 024 bytes of constant data into program memory.
6The calculations in this example are only 9 bytes in length. The advantages of this kind of
distribution using a multitasking state machine come into play when large byte streams of kilobytes
or even megabytes need to be performed.

http://www.autosar.org
http://www.autosar.org/standards/classic-platform
http://www.autosar.org/standards/classic-platform
http://reveng.sourceforge.net/crc-catalogue
http://reveng.sourceforge.net/crc-catalogue
http://gcc.gnu.org
http://gcc.gnu.org
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Chapter 18
Additional Reading

This chapter provides additional references covering background information on
C, modern C++ programming, the C++ standard library and STL, C++ coding
guidelines, software design, the embedded systems toolchain, and microcontroller
software and hardware.

18.1 Literature List

Readers seeking additional information may find the following references helpful.
Most of these references have also been mentioned in the previous chapters.

L The specification of the C language in the versions C89, C99 and C11 can be
found in [2, 16, 21].

L A detailed documentation of the original C standard library is provided in [38].
L Embedded extensions to C are specified in [20].
L The formal language specifications of C++98, C++03, C++11, C++14 and

C++17 are available from ISO [15, 17, 22–24]. ISO-published norms may be
prohibitively expensive for hobbyists and students. Cost-free draft versions are
available on the Internet and final versions can be found in any good public
library.

L Comprehensive information on the C++ core language, object-oriented tech-
niques and effective STL usage can be found in [7, 10, 11, 28, 33–35].

L A detailed description of the C++ standard library extensions (TR1) can be
found in [5]. The TR1 extensions were originally published in [19], and are now
predominantly integrated in the C++11 standard [22].

L A well-respected, up-to-date book describing how to use C++11 and C++14
effectively is [36].

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0_18

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56718-0_18&domain=pdf
https://doi.org/10.1007/978-3-662-56718-0_18

358 18 Additional Reading

L A detailed report on C++ performance with particular focus on efficiency
for embedded systems is available in [18]. This report also addresses various
topics discussed in this book such as the special needs of C++ for embedded
systems, space and size considerations in optimization, ROM-ability, hardware
interfacing, etc. The effectiveness of C++ for embedded systems is clearly
demonstrated herein.

L See [25, 31] for in-depth coverage of the containers and algorithms of the STL.
L C++ templates and template metaprogramming are described in [1, 14, 43],

and [43] has been updated for C++11, C++14 and C++17 in [44].
L In [42] the authors describe a fundamental relationship between mathematics

and generic programming. The code examples make extensive use of C++11 and
template programming.

L See [30] for information on C++ I/O streams. Although not used extensively
in this book, I/O streams are useful for PC-based applications. A well-rounded
understanding of C++ should, therefore, include basic knowledge of I/O streams.

L The Boost libraries are intended to provide reference implementations poten-
tially suitable for standardization [9]. This makes Boost a great place to track the
future development of the C++ language.More information on the Boost libraries
can be found in [26, 40].

L C++ coding guidelines can be found in [39].
L A well-respected software design book is [13].
L A comprehensive description of algorithms and computer programming with

code samples written in a language-neutral form can be found in [27].1

L Microcontroller board design, tools, startup, processor architectures and mem-
ory topologies are discussed in [6, 37].

L Additional details on the well-known and versatile ARDUINOR© open-source
microcontroller board project can be found in [3, 32, 41].

L Information on microcontroller programming in C with GNU development tools
can be found in [4, 29].

L Programming microcontrollers in C from the ground up with detailed informa-
tion on software design, architecture and microcontroller peripheral program-
ming is covered in [46].

L A description of mathematical programming in real-time microcontroller envi-
ronments can be found in [8]. This book includes a comprehensive collection of
practical examples and numerous performance analyses.

L Detailed coverage of GNU GCC is available in [45].
L The GCC sources are available at the GNU GCC website [12].

1The original reference here refers to a three volume set. At the time of writing the second edition
of this book, an updated work with an additional fourth volume is available.

References 359

References

1. D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools and Tech-
niques from Boost and Beyond (Addison-Wesley, Boston, 2004)

2. ANSI, ANSI X3.159-1989 American National Standard for Information Systems – Program-
ming Language C (American National Standard for Information, New York, 1989)

3. ARDUINO R©, ARDUINO R© (2015). http://www.arduino.cc
4. M. Barr, Programming Embedded Systems with C and GNU Development Tools, 2nd edn.

(O’Reilly, Sebastopol, 2006)
5. P. Becker, The C++ Standard Library Extensions: A Tutorial and Reference (Addison-Wesley,

Boston, 2006)
6. J. Catsoulis, Designing Embedded Hardware (O’Reilly, Sebastopol, 2005)
7. J.O. Coplien, Advanced C++ Programming Styles and Idioms (Addison-Wesley, Boston, 1992)
8. J.W. Crenshaw, Math Toolkit for Real-Time Programming, 1st edn. (CMP Books, Lawrence,

2000)
9. B. Dawes, D. Abrahams, Boost C++ Libraries (2015). http://www.boost.org
10. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (Pearson

Prentice Hall, Upper Saddle River, 2000)
11. B. Eckel, Thinking in C++ Volume 2: Practical Programming (Pearson Prentice Hall, Upper

Saddle River, 2004)
12. Free Software Foundation, The GNU Compiler Collection Version 4.9.2 (2015). http://gcc.gnu.

org
13. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software (Addison-Wesley, Boston, 1994)
14. D.D. Gennaro, Advanced C++ Metaprogramming (Addison-Wesley, Boston, 2011)
15. ISO/IEC, ISO/IEC 14882:1998 : Programming Languages – C++ (International Organization

for Standardization, Geneva, 1998)
16. ISO/IEC, ISO/IEC 9899:1999 : Programming Languages – C (International Organization for

Standardization, Geneva, 1999)
17. ISO/IEC, ISO/IEC 14882:2003 : Programming Languages – C++ (International Organization

for Standardization, Geneva, 2003)
18. ISO/IEC, ISO/IEC TR 18015:2006 : Information Technology – Programming Languages,

Their Environments and System Software Interfaces – Technical Report on C++ Performance
(International Organization for Standardization, Geneva, 2006)

19. ISO/IEC, ISO/IEC TR 19768:2007 : Information Technology – Programming Languages –
Technical Report on C++ Library Extensions (International Organization for Standardization,
Geneva, 2007)

20. ISO/IEC, ISO/IEC TR 18037:2008 : Programming Languages – C – Extensions to Support
Embedded Processors (International Organization for Standardization, Geneva, 2008)

21. ISO/IEC, ISO/IEC 9899:2011 : Programming Languages – C (International Organization for
Standardization, Geneva, 2011)

22. ISO/IEC, ISO/IEC 14882:2011 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2011)

23. ISO/IEC, ISO/IEC 14882:2014 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2014)

24. ISO/IEC, ISO/IEC 14882:2017 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2017)

25. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-
Wesley, Boston, 2011)

26. B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost (Addison-Wesley,
Boston, 2005)

27. D.E. Knuth, The Art of Computer Programming Volumes 1–3, 3rd edn. (Addison-Wesley,
Boston, 1998)

http://www.arduino.cc
http://www.boost.org
http://gcc.gnu.org
http://gcc.gnu.org

360 18 Additional Reading

28. A. Koenig, B.E. Moo, Accelerated C++: Practical Programming by Example (Addison-
Wesley, Boston, 2000)

29. J. LaBrosse, Embedded Systems Building Blocks: Complete and Ready-to-Use Modules in C
(CMP Books, Lawrence, 1999)

30. A. Langer, K. Kreft, Standard C++ I/O Streams and Locales: Advanced Programmer’s Guide
and Reference (Addison-Wesley, Boston, 2008)

31. R. Lischner, STL Pocket Reference (O’Reilly, Sebastopol, 2004)
32. M. Margolis, ARDUINO R© Cookbook, 2nd edn. (O’Reilly, Sebastopol, 2011)
33. S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

(Addison-Wesley, Boston, 1996)
34. S. Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template

Library (Addison-Wesley, Boston, 2001)
35. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)
36. S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11

and C++14 (O’Reilly, Sebastopol, 2014)
37. T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide for Engineers and

Programmers (Newnes Publishing, Burlington, 2005)
38. P.J. Plauger, The Standard C Library (Prentice Hall P T R, Englewood Cliffs, 1992)
39. Programming Research Ltd., High Integrity C++ Coding Standard Version 4.0, http://www.

codingstandard.com/HICPPCM/index.html (2015)
40. B. Schäling, The Boost C++ Libraries (XML Press, Laguna Hills, 2011)
41. M. Schmidt, ARDUINO R©: A Quick-Start Guide (Pragmatic Programmers, Raleigh, 2011)
42. A.A. Stepanov, D.E. Rose, From Mathematics to Generic Programming (Addison-Wesley,

Boston, 2014)
43. D. Vandevoorde, N.M. Josuttis, C++ Templates: The Complete Guide (Addison-Wesley,

Boston, 2003)
44. D. Vandevoorde, N.M. Josuttis, D. Gregor, C++ Templates: The Complete Guide, 2nd edn.

(Addison-Wesley Professional, Boston, 2017)
45. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
46. E. White, Making Embedded Systems: Design Patterns for Great Software (O’Reilly,

Sebastopol, 2011)

http://www.codingstandard.com/HICPPCM/index.html
http://www.codingstandard.com/HICPPCM/index.html

Appendices

Appendix A
A Tutorial for Real-Time C++

This appendix presents a short tutorial on C++. It is not intended to be a complete
language tutorial, but rather a brief introduction to the most important parts of C++
for programming real-time embedded systems.

A.1 C++ Cast Operators

C++ has four template cast operators. The code below, for instance, uses the
static_cast operator to cast from float to int.

float f = 3.1415926535’8979323846’264338328F;

int n = static_cast<int>(f); // The value is 3

The following code sequence uses the reinterpret_cast operator to set
bit-5 in the microcontroller port register portb.

// The address of portb is 0x25.
constexpr std::uint8_t portb = UINT8_C(0x25);

// Cast std::uint8_t to std::uint8_t*.
volatile std::uint8_t* pb =

reinterpret_cast<volatile std::uint8_t*>(portb);

// Set portb.5.

*pb |= UINT8_C(0x20);

The reinterpret_cast operator is sometimes considered unsafe because
it can convert unrelated types. For a detailed description of the potential

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0

363

https://doi.org/10.1007/978-3-662-56718-0

364 A A Tutorial for Real-Time C++

dangers of reinterpret_cast, see Eckel [1], Chapter 3, in the subsection
on reinterpret_cast. For direct memory access in microcontroller
programming, however, reinterpret_cast can be considered safe and
appropriate.

This book mostly uses the static_cast and reinterpret_cast cast
operators. C++ also offers the dynamic_cast and const_cast operators.
The dynamic_cast operator converts pointers and references. It also performs a
costly but robust runtime check to ensure that the result of the cast is valid. The
const_cast operator can change the constness or volatile qualification of an
object by either setting or removing its const or volatile attribute.

A.2 Uniform Initialization Syntax

C++ has a syntax for fully uniform type initialization that works on any object.
It was introduced with C++11. Uniform initialization syntax can be used along-
side traditional constructor initialization with parentheses and initialization with
operator= alike.

Uniform initialization syntax uses curly braces to hold the initial values. The
code below, for instance, initializes built-in types with uniform initialization syntax.

int n { 123 };

float f { 3.1415926535’8979323846F };

Aggregate types can also be initialized with uniform initialization syntax. The
code below initializes a structure with two data members.

struct my_struct
{

int my_n;
float my_f;

my_struct(const int n = 0,
const float& f = 0.0F) : my_n(n),

my_f(f) { }
};

my_struct instance
{

123, // Initial value of n.
3.1415926535’8979323846F // Initial value of f.

};

A.2 Uniform Initialization Syntax 365

In certain situations the compiler can also deduce the type of an object based on
uniform initialization syntax. For example,

struct my_struct
{

// ...
};

my_struct function()
{

// The compiler correctly deduces the return type.
return
{

456,
0.5772156649’0153286061F

};
}

Uniform initialization syntax can be used in the constructor initialization list of
a class type as well as to initialize an instance of a class type. For instance,

struct point
{

point(const int x = 0,
const int y = 0) : my_x{x},

my_y{y} { }

int my_x;
int my_y;

};

point pt
{

123,
456

};

In addition, uniform initialization syntax can be used to conveniently initialize
STL containers such as std::array and std::vector (Sect. A.6). Some
examples are shown below.

366 A A Tutorial for Real-Time C++

std::array<int, 3U> a
{

{ 1, 2, 3 }
};

std::vector<char> v
{

{ ’a’, ’b’, ’c’ }
};

A.3 Overloading

Function overloading in C++ allows for the creation of several functions with the
same name but different types of input and output parameters. For example,

// The area of a rectangle.
float area(const float& length,

const float& width)
{

return length * width;
}

// The area of a circle.
float area(const float& radius)
{

constexpr float pi = 3.14159265358979323846F;

return (pi * radius) * radius;
}

Global functions and local functions as well as class member functions can be
overloaded. It is essential, however, not to confuse class member overloading with
dynamic polymorphism and the runtime virtual function mechanism, described in
Sect. 4.4.

A.5 Numeric Limits 367

A.4 Compile-Time Assert

The static_assert facility checks a constant expression at compile time. The
syntax of static_assert is

static_assert(expression, message);

Here, expression is a condition to be checked by the compiler and message
contains potentially useful diagnostic text. If the result of expression tests
true, then static_assert does nothing. Compilation continues unabatedly.
If the result of expression tests false, then a compiler error ensues and the
message text is shown like a regular compiler error.

static_assert can be used to perform compile-time diagnostics. This can
be convenient for checking platform-specific requirements. For example,

constexpr unsigned int version = 3U;

// Print error message if version is less than 2.
static_assert(version >= 2U, "Version is too low!");

In this example, static_assert ensures that version is 2 or higher and
issues a compiler error if not.

C++17 has made the error text in static_assert optional. A default text
is provided if needed. This makes it possible to use static_assert without
providing an explicit error message. For instance,

constexpr unsigned int version = 3U;

// Print default error message if version is not 3.
static_assert(version == 3U);

A.5 Numeric Limits

The C++ standard library supports numeric limits of built-in types in its <limits>
header. The <limits> library provides the std::numeric_limits template
and provides specializations for both built-in floating-point and integer types as well
as bool. The member variable is_specialized is true for a specialization
of std::numeric_limits.

368 A A Tutorial for Real-Time C++

The synopsis of the std::numeric_limits template class is shown below.

namespace std
{

template<class T>
class numeric_limits
{
public:

static constexpr bool is_specialized = false;
static constexpr T min () { return T(); }
static constexpr T max () { return T(); }
static constexpr T lowest() { return T(); }

static constexpr int digits = 0;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = false;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 0;
static constexpr T epsilon() { return T(); }
static constexpr T round_error() { return T(); }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm

= denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity () { return T(); }
static constexpr T quiet_NaN () { return T(); }
static constexpr T signaling_NaN() { return T(); }
static constexpr T denorm_min () { return T(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;

A.5 Numeric Limits 369

static constexpr float_round_style round_style
= round_toward_zero;

};
}

The specialization of std::numeric_limits for int on a platform with
32-bit int, for example, might be implemented as follows.

namespace std
{

template<>
class numeric_limits<int>
{
public:

static constexpr bool is_specialized = true;

static constexpr int min() { return 0; }
static constexpr int max()

{ return +2147483647; }
static constexpr int lowest()

{ return -2147483648; }

static constexpr int digits = 32;
static constexpr int digits10 = 9;
static constexpr int max_digits10 = 9;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr int epsilon() { return 0; }
static constexpr int round_error()

{ return 0; }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm

= denorm_absent;
static constexpr bool has_denorm_loss = false;

370 A A Tutorial for Real-Time C++

static constexpr int infinity () { return 0; }
static constexpr int quiet_NaN() { return 0; }
static constexpr int signaling_NaN()

{ return 0; }
static constexpr int denorm_min() { return 0; }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style

= round_toward_zero;
};

}

The std::numeric_limits templates allow the programmer to query
information about the numeric limits of built-in types. For example,

constexpr int n_max = std::numeric_limits<int>::max();

Numeric limits can be conveniently used in other templates. For example,

template<typename unsigned_type>
struct hi_bit
{

// The bit-position of the high bit.
static constexpr int bpos

= std::numeric_limits<unsigned_type>::digits - 1;

// The value of the type with the high-bit set.
static constexpr unsigned_type value

= static_cast<unsigned_type>(1) << bpos;
};

The scalable hi_bit template structure provides compile-time constant values.
For instance,

constexpr std::uint8_t hi08 =
hi_bit<std::uint8_t>::value; // (1 << 7)

constexpr std::uint16_t hi16 =
hi_bit<std::uint16_t>::value; // (1 << 15)

A.6 STL Containers 371

constexpr std::uint32_t hi32 =
hi_bit<std::uint32_t>::value; // (1 << 31)

constexpr std::uint64_t hi64 =
hi_bit<std::uint64_t>::value; // (1 << 63)

Specializations of std::numeric_limits can also be written to provide
information about the numeric limits of user-defined types.

A.6 STL Containers

The C++ standard library has a collection of container types in its STL. Containers
store multiple elements in a single object. There are various kinds of containers in
the STL. Some are optimized for fast random access, others for fast insertion and
deletion, etc. The choice of which container to use depends on the programming
situation at hand.

The most prevalent STL containers appearing in this book are the standard
sequential containers:

• std::array is a fixed-length sequential array aligned in memory.
• std::vector is similar to std::array. The std::vector container,

however, does not have fixed length. Instead, a vector has a size that can
be dynamically changed at any time during its lifetime. The std::vector
container is designed for fast random access at any index within its range.

• std::deque is a double-ended queue. It is designed for fast insertion and
deletion at the front and back ends.

• std::list is a sequence that can be bidirectionally traversed, but lacks
random access. The std::list container supports fast insertion and deletion
anywhere in the sequence.

• std::forward_list is like std::list, but it can only be traversed in the
forward direction.

• std::basic_string, std::string and std::wstring are used to
store character-based sequences (i.e., strings). Even though strings do not fulfill
all the formal requirements for sequential STL containers, many programmers
think of strings as sequential containers.

The STL also includes associative containers such as std::set, std::-
multiset, std::map, and std::multimap. Associative containers are not
sequentially ordered but rather use an internal mapping scheme such as lookup with
a key-and-value mechanism.

372 A A Tutorial for Real-Time C++

The STL also includes a collection of standard adapters such as std::stack,
std::queue and std::priority_queue. These provide different interfaces
by adapting the functionality of existing standard sequential containers.

STL containers are templated, meaning they have strong generic character.
Containers have various constructors, a destructor and a selection of member
functions. Using STL containers is straightforward. For example,

#include <vector>

void do_something()
{

// Create v with three elements having value 0.
std::vector<int> v(3U, 0);

// Set the values in v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

// The initial size is 3.
std::vector<int>::size_type s = v.size();

v.push_back(4);

// The size is now 4.
s = v.size();

int v0 = v.at(0U); // Value of v0 is 1.
int v3 = v.back(); // Value of v3 is 4.

// Copy constructor from another vector.
std::vector<int> v2(v);

// Constructor from other input iterators.
std::vector<int> v3(v.begin(), v.end());

// Support for operator=().
std::vector<int> v4 = v;

}

This code creates a vector of integers, an std::vector<int>, called v. The
vector v is initially created with three elements set to zero. The three elements
are subsequently set to (1,2,3) using the index operator (operator[]). A fourth
element with a value of 4 is pushed back onto the back end of the vector using

A.7 STL Iterators 373

the member function push_back(). The code sample also illustrates some of
std::vector’s other convenient methods such as size(), at() and back().

Containers can be copy constructed, created from another sequence of iterators
and copy assigned. Additional member functions of containers include other access
functions and sequence operations such as insertion, assignment, etc. See [5, 7] for
complete documentation of containers and their member functions.

Templated containers use member type definitions to define common member
types. An example is std::vector’s size_type, shown above. Other common
member types of containers include iterator types, pointer types, reference types and
a value type. Again, consult [5, 7] for complete documentation of these.

STL containers are useful for embedded systems programming and are used
extensively in this book and its companion code. Containers facilitate program
organization and data localization. Containers of base class pointers or references
allow for powerful sequential polymorphism. Containers are particularly useful in
combination with STL algorithms (Sect. A.8).

A.7 STL Iterators

An iterator is an object designed for traversing through the elements of sequential
containers and accessing their values. Iterators can be used to read and write the
elements of standard STL containers. In particular, each standard STL container
facilitates manipulation of its elements via iterators by providing dedicated itera-
tor types and standardized iterator functions such as begin() and end(). For
example,

#include <vector>

void do_something()
{

// Set v to (1,2,3).
std::vector<int> v({ 1, 2, 3 });

// Declare an iterator for std::vector<int>.
std::vector<int>::iterator it;

// Add 5 to each element in v.
for(it = v.begin(); it != v.end(); ++it)
{

*it += 5;
}

// Now v is (6,7,8).
}

374 A A Tutorial for Real-Time C++

This code uses std::vector’s iterator type to walk through v in the
range from v.begin() to the element just before v.end(). The loop statement
adds 5 to each of v’s elements.

An iterator pair that delimits a range in a sequence from First to Last is
denoted by

[
First, Last

)
, (A.1)

where established convention mandates that First points to the first element in
the sequence and Last points to the element that is 1 increment past the final
element. The STL’s standard algorithms (Sect. A.8) use this convention. Using this
convention consistently ensures compatibility with the STL and other code. The
code sample below uses a range of input iterators with std::copy().

#include <algorithm>
#include <array>
#include <vector>

void do_something()
{

// Initialized src with (101, 101, 101).
const std::vector<int> src(3U, 101);

// Uninitialized dst.
std::array<int, 3U> dst;

// Copy from vector src to array dst.
// dst now also contains (101, 101, 101).
std::copy(src.begin(), src.end(), dst.begin());

}

All iterators support incrementing (++) to advance the iterator to the next element
in the sequence. Some STL iterators support decrementing (--) to lower the iterator
to the previous element. In general, the pre-increment and pre-decrement forms of
(++) and (--) are more efficient than the post-increment and post-decrement forms.
Many programmers, therefore, preferentially use the pre-forms in situations for
which pre and post are functionally identical. All STL iterators use the dereferencing
operator (*) or the member selection operator (->) for element access.

C++ has several categories of iterators including (among others) forward itera-
tors, bidirectional iterators and random access iterators.

There is a clear distinction between constant iterators and non-constant iterators.
In particular, constant iterators are limited to read-only access. Non-constant
iterators can read and write container elements.

A.8 STL Algorithms 375

container_type::iterator nonconst_iterator1
= cnt.begin();

container_type::const_iterator const_iterator2
= cnt.begin();

container_type::const_iterator const_iterator3
= cnt.cbegin();

*nonconst_iterator1 = 1; // OK

*const_iterator2 = 2; // Error!

*const_iterator3 = 3; // Error!

The “c” in cbegin() emphasizes that the iterator iterates over constant ele-
ments, as in const_iterator. Some special containermember iterator functions
such as begin() and end() are overridden, having both constant as well as non-
constant versions. Others like cbegin() and cend() are solely constant. The
STL has several iterator classes that can be used standalone or as base classes for
custom iterators. The standard iterator classes are defined in <iterator>.

A.8 STL Algorithms

The STL has an extensive collection of templated algorithms specifically designed
to operate on a range of iterators in a generic way. Most of the standard algorithms
are defined in <algorithm> and some others are defined in <numeric> and
<memory>.

STL algorithms are highly versatile because they can be used generically with
any kind of iterator—even with regular pointers. The standard algorithms can sim-
plify many common coding situations by transferring program complexity from the
user code to the STL. More information on STL algorithms can be found in [2, 5, 7].

There are several categories of algorithms including:

• non-modifying sequence operations like std::all_of(), std::count(),
std::for_each(), std::search(), etc,

• mutating sequence operations that modify the elements in the range including
algorithms such as std::copy(), std::move(), std::fill() and the
like.

• sorting algorithms,
• binary search algorithms operating on sorted ranges,
• merge operations that act on sorted ranges,
• heap operations,
• and comparison operations including algorithms such as the minimax functions

std::min() and std::max() and the generalized alphabetical compare
algorithm std::lexicographical_compare().

376 A A Tutorial for Real-Time C++

A typical function prototype of an STL algorithm is shown below.

template<typename iterator_type,
typename function_type>

function_type std::for_each(iterator_type first,
iterator_type last,
function_type function);

This is the function prototype of std::for_each(), which was also shown
in Sect. 5.8. The std::for_each() algorithm applies its function parameter
(function) to each element in the range

[
first, last

)
.

We will now present several examples showing how to use STL algorithms.

#include <algorithm>
#include <vector>

namespace
{

void add_five(int& elem)
{

elem += 5;
}

}

void do_something()
{

std::vector<int> v(3U);

// Set v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

// Now v is (6,7,8).
std::for_each(v.begin(), v.end(), add_five);

}

In this example, the add_five() subroutine is called for each element in
the range

[
v.begin(), v.end()

)
. An algorithm’s function parameter can be

a function with static linkage that has non-subroutine-local scope.
It is also possible to use a dedicated class type for an algorithm’s function

parameter. This is called a functor, or a function object. In order to work properly,
the functor must support the function call operator, operator(). Dedicated

A.8 STL Algorithms 377

function objects incur overhead. It only makes sense to use one if its advantages
(i.e., encapsulation, data localization and reduction of complexity) justify its costs.

An example using a functor struct is shown below. Also in this code sample,
5 is added to each element in v using std::for_each().

#include <algorithm>
#include <vector>

struct add_five
{

add_five() { }

void operator()(int& elem)
{

elem += 5;
}

};

void do_something()
{

std::vector<int> v(3U);

// Set v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

std::for_each(v.begin(), v.end(), add_five());

// Now v is (6,7,8).
}

Algorithms can use a so-called lambda expression (Sect. A.9) for the function
object. For example,

#include <algorithm>
#include <vector>

void do_something()
{

std::vector<int> v(3U);

// Set v to (1,2,3).
v[0U] = 1;

378 A A Tutorial for Real-Time C++

v[1U] = 2;
v[2U] = 3;

std::for_each(v.begin(),
v.end(),
[](int& elem)
{

elem += 5;
});

// Now v is (6,7,8).
}

Lambda expressions are efficient and elegant when used with algorithms because
they integrate the entire functionality of the function object within the algorithm’s
call parameters. This also facilitates compiler optimization, see Sect. 6.18.

To complete the examples in this section, we will briefly look ahead to Sect. A.10
and initialize the vector with an std::initializer_list.

#include <algorithm>
#include <initializer_list>
#include <vector>

void do_something()
{

// Set v to (1,2,3).
std::vector<int> v({ 1, 2, 3 });

std::for_each(v.begin(),
v.end(),
[](int& elem)
{

elem += 5;
});

// Now v is (6,7,8).
}

In this coding example, the combined use of a standard algorithm, a lambda
expression and an initializer list provides for a high degree of coding efficiency
and performance in C++.

There are many algorithms in the STL and most developers do not rigorously
maintain a complete mental list of all available algorithms and in which situations

A.9 Lambda Expressions 379

to use them. The most important things to remember about the standard algorithms
are that there even are standard algorithms in the first place and where to find help
about them, for example, with help functions, additional literature, etc.

A.9 Lambda Expressions

A lambda expression is an anonymous function that has a body but does not
have a name. Lambda expressions are stylistically eloquent and can be optimized
particularly well when used with the standard algorithms of the STL.

A C++ lambda expression has the form shown below [8].

[capture](arguments) -> return-type { body }

We have already used lambda expressions with STL algorithms previously in
this book. Lambda expressions can also be used as standalone function objects. The
lambda expression shown below, for example, computes the float value of the
hypotenuse,

h =
√

x2 + y2 . (A.2)

#include <cmath>

void do_something()
{

const float x = 3.0F;
const float y = 4.0F;

// Capture x and y by reference.
// The lambda expression has no input parameters.
// The lambda expression returns the float value
// of the hypotenuse.

const float h
= [&x, &y]() -> float

{
return std::sqrt((x * x) + (y * y));

}();

// The value of h is 5.0F.
}

380 A A Tutorial for Real-Time C++

The local variables x and y are captured by reference. The body of the
anonymous function is implemented within the scope of the curly braces. The
trailing set of parentheses after the closing curly brace effects the function call.

A.10 Initializer Lists

C++11 added several useful templated container classes to the STL. One of these
is std::initializer_list. An initializer list is a sequential list of constant
objects or values. Elements in an initializer list must be type-identical or type-
convertible. STL containers can be conveniently initialized with an initializer list.
These convenient kinds of initializations were not possible prior to the inclusion of
std::initializer_list in the STL.

The following pseudo-code sequences, for example, use an std::initial-
izer_list to initialize a (non-specified) STL container with constant values.

// Initialization with the assignment operator.
container c1 = { 1, 2, 3 };

// Initialization with the ctor.
container c2({ 1, 2, 3 });

// Uniform initialization syntax.
container c3 { { 1, 2, 3 } };

Functions can accept initializer lists as parameters. In addition, initializer lists
support iterators. For example,

#include <initializer_list>
#include <numeric>

constexpr std::initializer_list<int> lst {1, 2, 3};

const int sum = std::accumulate(std::begin(lst),
std::end(lst),
0);

Initializer lists are quite useful for embedded systems programming because, just
like tuples, they provide a way to group objects while incurring low code overhead
and shifting the work of the program to compile time. Because their values are
potentially compile-time constant, initializer lists lend themselves well to inlining
and template metaprogramming.

A.11 Type Inference and Type Declaration with auto and decltype 381

A.11 Type Inference and Type Declaration with auto
and decltype

What follows is a note for C and traditional C++ programmers. The meaning of
the auto keyword drastically changed as C++ evolved from C++03 to C++11
and beyond. The original legacy auto keyword was used, in both C as well as
C++03 and C++98, as a qualifier for local variables. It was a hint to the compiler to
preferentially store a local variable on the stack instead of in a CPU register.

C++11, C++14 and later, however, use the auto keyword for automatic compile-
time type inference. For example,

auto n = 3; // n is int.
auto u = std::uint8_t(3U); // u is std::uint8_t.

// A bit more complicated... Here, the type
// of collection is std::initializer_list<int>.
auto collection { 1, 2, 3 };

Type inference can reduce the complexity of code. In particular, instead of
writing long iterator type names such as this:

for(std::array<int>::const_iterator i = a.cbegin();
i != a.cend();
++i)

{
// ...

}

automatic type inference with auto can be used like this:

for(auto i = a.cbegin(); i != a.cend(); ++i)
{

// ...
}

This can be made even more generic and flexible with the STL’s range access
template functions std::cbegin() and std::cend(). See, for example,
Sect. 24.6.5 in [4]. In particular,

for(auto i = std::cbegin(a); i != std::cend(a); ++i)
{

// ...
}

382 A A Tutorial for Real-Time C++

The related keyword decltype can be used to determine the underlying type
of something that has been previously declared. For instance,

// The type of a is int.
int a = 1;

// The type of b is int.
decltype(a) b = 2;

The keywordsauto and decltype come in handy for numerous programming
situations, in particular generic template programming.

A.12 Range-Based for(:)

C++11 added a simplified range-based for(:) short-hand notation for iterating
over the elements of a list. This simplified range-based iteration statement allows
for easy navigation through a list of elements. For example,

std::vector<char> v({1, 2, 3});

for(char& c : v)
{

c += static_cast<char>(0x30);
}

This simplified loop basically means, iterate over every character in v, and add
0x30 to each one. The traditional for(;;)-loop and the for_each() algorithm
still work and can be used for the same things. The new shorthand of the range-based
for(:)-loop is, however, potentially more convenient and terse.

Range-based for(:)-loops work for C-style arrays, initializer lists, and any
type that has the normal begin() and end() functions. This includes all of the
standard library containers that have begin() and end().

A.13 Tuple

A tuple is the generalization of an ordered group of objects, such as a pair or a triple,
a quadruple, a quin-tuple, a sex-tuple, etc. While other programming languages such
as Python and Perl have had tuples for quite a while, they are relatively new in C++,

A.13 Tuple 383

available with C++11. Tuples are implemented as template classes. The template
parameters of a tuple define the number of tuple objects and their types.

For example, a tuple consisting of three objects, a float, a char and an int,
can be created and used as shown below.

#include <tuple>

typedef std::tuple<float, char, int> tuple_type;

void do_something()
{

// Make a tuple of a float, char and an int.
tuple_type t(1.23F, char(’a’), 123);

// Get element number 1 of the tuple (’a’).
char c = std::get<1>(t);

// Get element number 2 of the tuple (123).
int n = std::get<2>(t);

// Use the type member of tuple_element to obtain
// the float value of the zero’th tuple element.
std::tuple_element<0, tuple_type>::type val

= std::get<0>(t);

// Get the size of the tuple.
int size = std::tuple_size<tuple_type>::value;

}

Tuples can be created and initialized with their ctor using appropriate arguments.
tuple also provides a default ctor which uses the default ctors of its respective
elements. TheN th element of an ordered tuple or a reference thereto can be retrieved
with the template std::get() function. STL’s std::tuple_size wraps the
tuple element count by storing the number of elements in its member variable
value. The std::tuple_element template wraps the type of a tuple element.
Note in the listing that a convenient type definition has been used in order to avoid
typing long and complicated tuple types.

Tuples can be copy assigned with operator=. They can also be copy con-
structed. Copy and assign use member-wise assignment. Copy and assign also
require that for each element pair the destination can be converted from the source.

384 A A Tutorial for Real-Time C++

Tuples can be assigned using STL’s std::make_tuple() facility. For exam-
ple, the tuple in the listing above could be created with std::make_tuple().
In particular,

#include <tuple>

typedef std::tuple<float, char, int> tuple_type;

tuple_type t = std::make_tuple(1.23F, char(’a’), 123);

Tuples can be compared. Comparison functions use relational operators and
perform pair-wise comparison. Comparison stops when the first element pair
comparison yields true.

The code sample below shows tuple copy and compare.

#include <string>
#include <tuple>

void do_something()
{

std::tuple<int, std::string> t1(123, "identical");
std::tuple<int, std::string> t2 = t1;
std::tuple<int, std::string> t3(t1);

bool result;

result = (t1 == t2); // true
result = (t1 == t3); // true

std::get<0>(t2) += 1; // 123 -> 124

result = (t2 > t1); // true

// Transform identical -> xdentical
std::get<1>(t3).at(0U) = ’x’;
result = (t3 > t1); // true

}

Tuples are immensely useful because they can group collections of objects
together in a single representation. At the same time, tuples incur a minimum of
code overhead because tuple elements are partly or completely available at compile-
time. In particular, the template facilities std::get(), std::tuple_size
and std::tuple_element can be optimized particularly well at compile time.
Tuples lend themselves readily to template design and template metaprogramming,
see Sect. 5.10.

A.14 Regular Expressions 385

A.14 Regular Expressions

Support for lexical parsing of regular expressions in C++ is implemented in the
<regex> library. A complete implementation of <regex> involves extensive
templates and a significant amount of object code. Therefore, <regex> is often
too large scale for most microcontroller projects.

Microcontroller programming, however, usually involves other associated PC-
based programs and utilities used for a variety of purposes such as manipulat-
ing files, automatic code generation, designing specialized language parsers, etc.
Lexical parsing with regular expressions can drastically simplify the implementa-
tions of these programs. Therefore, the microcontroller programmer should have
basic competence with <regex>.

Consider a regular expression designed for parsing a composite string composed
of three substrings. The first substring is an alphanumeric name including under-
scores. The second substring is a hexadecimal number. The third substring is a
base-10 unsigned integer. For example,

_My_Variable123 03FFB004 4

A regular expression for parsing this composite string is shown below:

const std::regex
rx(std::string("([_0-9a-zA-Z]+)") // Alnum name.

+ std::string("[[:space:]]+") // 1+ spaces.
+ std::string("([0-9a-fA-F]+)") // Hex integer.
+ std::string("[[:space:]]+") // 1+ spaces.
+ std::string("([0-9]+)")); // Base-10 int.

This regular expression (rx) uses POSIX syntax [3]. The <regex> library
supports several syntaxes, POSIX being the default. The first, third and fifth
strings in the definition of the regular expression are enclosed in parentheses.
The parentheses indicate a capture group of the regular expression. A capture
group contains an expression which should be caught, in other words stored, when
checking for a regular expression match.

A program showing how to use this regular expression is shown in the sample
code below.

#include <algorithm>
#include <iostream>
#include <iterator>
#include <regex>
#include <string>

386 A A Tutorial for Real-Time C++

int main()
{

const std::regex rx(std::string("([_0-9a-zA-Z]+)")
+ std::string("[[:space:]]+")
+ std::string("([0-9a-fA-F]+)")
+ std::string("[[:space:]]+")
+ std::string("([0-9]+)"));

const std::string str("_My_Variable123 03FFB004 4");

std::match_results<std::string::const_iterator> mr;

if(std::regex_match(str, mr, rx))
{

std::copy(mr.begin(),
mr.end(),
std::ostream_iterator

<std::string>(std::cout, "\n"));
}

}

The regex_match() function is a Boolean subroutine with three input
parameters. There are six different overwritten forms of regex_match(). The
form used in the listing checks if its input string, str, identically matches its input
regular expression, rx. If the regular expression matches, then regex_match()
returns true. The match results, mr, contain the results of the regular expression
match.

The output of the program is:

_My_Variable123 03FFB004 4
_My_Variable123
03FFB004
4

A successful match has N + 1 elements in the match results, where N is the
number of capture groups in the regular expression. The 0th match result contains
the entire string submitted to the match. In this example, there are four elements in
the match results, one for the input string and three for the capture groups.

Regular expressions are templated. For example, std::regex is actually a
type definition for std::basic_regex<char>. Therefore, regular expressions
can be used with strings or sequences of other types. In addition,match_results
are templated and support iterators allowing for convenient manipulation with STL
standard algorithms.

A.15 The <type traits> Library 387

Additional information on std::regex can be found in [6]. Even though this
reference describes the Boost.Regex library, it is also applicable here because
std::regex originates from Boost.

A.15 The <type traits> Library

The <type_traits> library can be used to find out or modify information about
the type of an object. In particular, <type_traits> supports numerous useful
templates such as is_arithmetic, is_integral, is_floating_point,
is_unsigned, is_signed, is_void, is_assignable, is_same, and
others. These utilities can be conveniently and elegantly used to find out (at compile
time) useful type information about an object, which can be also helpful in generic
programmingwith templates. The <type_traits> library first became available
in C++11.

The code sample below, for instance, queries the underlying type of my_int,
which type defined as integer_type. In particular, the sophisticated facilities of
<type_traits> successfully determine that integer_type is an arithmetic
signed integral type.

#include <type_traits>

typedef int integer_type;

// Is integer_type arithmetic, integral and signed?
constexpr bool is_signed_integral =

(std::is_arithmetic<integer_type>::value
&& std::is_integral <integer_type>::value
&& std::is_signed <integer_type>::value);

// Yes: Result is true.

Additional useful templates in <type_traits> can be used to add or remove
qualifiers such as const and volatile. Consider the example below which
makes use of the std::remove_volatile template.

#include <type_traits>

// The variable pv is volatile.
volatile int* pv = nullptr;

// Remove the volatile qualifier from pu.
auto pu = std::remove_volatile<int*>::type(pv);

388 A A Tutorial for Real-Time C++

// Verify that the type of pu is simply int*.
// In other words, volatile has been removed.
static_assert(std::is_same<int*, decltype(pu)>::value,

"Can not remove the volatile qualifier");

With other functions available in the <type_traits> library, it is possible
to enable template code sequences such as declaration of class types, constructors
and functions at compile time using std::enable_if. The code below shows
an integer_wrap class. This class performs a trivial wrap of an integral value
having type long long.

class integer_wrap
{
public:

integer_wrap(const long long n = 0LL)
: my_value(n) { }

long long get_value() const { return my_value; }

private:
long long my_value;

};

The integer_wrap class shown above features a constructor from built-in
long long. It may, however, be convenient to enable construction of this class
from all kinds of built-in integral types such as signed and unsigned versions of
char, short, int, long, long long, etc. Writing all these constructors could
be tedious, requiring a significant amount of effort for creating and maintaining
the code. This overhead can be reduced by employing compile-time enable via the
standard library’s std::enable_if template found in <type_traits>.

We will now rework the constructor of the integer_wrap class using
compile-time enable. We will now rework the constructor using a template in the
code snippet below.

#include <type_traits>

class integer_wrap
{
public:

template
<typename integral_type,
typename std::enable_if

A.16 Using std::any 389

<std::is_integral<integral_type>::value>::type* =
nullptr>

integer_wrap(const integral_type n = 0)
: my_value(static_cast<long long>(n)) { }

long long get_value() const { return my_value; }

private:
long long my_value;

};

The second template parameter uses a somewhat complex compile-time Boolean
expression involving std::enable_if and std::is_integral in combi-
nation with the default template parameter nullptr. This assortment of template
parameters enables individual class constructors for all built-in integral types for
which the Boolean expression evaluates to true. These include built-in integral
types such as signed and unsigned versions of char, short, int, long,
long long, etc.

The new constructor of the integer_wrap class, in fact, embodies numerous
constructors that the compiler can instantiate for all built-in integral types. This
allows construction from, say, char to long long and all the signed and unsigned
integral types in between. For example,

#include <cstdint>
#include <type_traits>

class integer_wrap
{

...
};

integer_wrap nc (char(’a’));
integer_wrap u16(std::uint16_t(UINT16_C0x5555));
integer_wrap nn (1234);

A.16 Using std::any

C++17 includes several novel additions to the C++ standard library. A very useful
one is std::any, which is a template object from the <any> library. An instance
of std::any can be used to store both built-in types as well as objects of any kind.
The code sample below, for example, creates three instances of std::any.

390 A A Tutorial for Real-Time C++

#include <any>
#include <string>

// Create from int.
std::any ai(42);

// Create from float.
std::any af(1.23F);

// Create from std::string.
std::any as(std::string("hello"));

In this code snippet, three instances of std::any hold values of type int,
float and std::string, respectively. The implementation of std::any uses
templates for construction and assignment. Initializing an instance of std::any
with the constructor or with the assignment operator uses automatic template
parameter deduction based on the type of the input. So it is not necessary to
explicitly provide template parameters when creating an initialized instance of
std::any.

Retrieving a value from std::any can be accomplished with the std::-
any_cast template function. This mandates explicit use of template parameters
to extract the value of the underlying type. In particular,

#include <any>
#include <string>

// Create from int.
std::any ai(42);

// Create from float.
std::any af(1.23F);

// Create from std::string.
std::any as(std::string("hello"));

// Retrieve int value.
int i = std::any_cast<int>(ai);

// Retrieve float value.
float f = std::any_cast<float>(af);

// Retrieve std::string value.
std::string s = std::any_cast<std::string>(as);

A.16 Using std::any 391

It is also possible to convert (via assignment operator) any std::any to another
std::any. In fact, this even works no matter if the underlying types are the same
or not. For instance,

#include <any>

// Create from int.
std::any ai(42);

// Create from float.
std::any af(1.23F);

void do_something()
{

// Assign an std::any holding int
// to an std::any holding float.
ai = af;

}

It can be convenient to store multiple instances of std::any in an STL
container. This allows us to operate on instances of std::any collected in a single
container. The code below, for example, stores three instances of std::any in an
std::array and subsequently manipulates them.

#include <any>
#include <algorithm>
#include <array>
#include <iomanip>
#include <iostream>
#include <string>

// Fill an array with three instances of any.
const std::array<std::any, 3U> many
{{

std::any(42), // from int
std::any(1.23F), // from float
std::any(std::string("hello")) // from string

}};

int main()
{

// Use random access.
std::cout << std::any_cast<int>(many[0U])

<< std::endl;

392 A A Tutorial for Real-Time C++

std::cout << std::any_cast<float>(many[1U])
<< std::endl;

std::cout << std::any_cast<std::string>(many[2U])
<< std::endl;

// Query the container size.
std::cout << many.size() << std::endl;

// Iterate in an algorithm
// and use a member function.
const bool has_many_values =

std::all_of(many.cbegin(),
many.cend(),
[](const std::any& a) -> bool
{

return a.has_value();
});

std::cout << std::boolalpha
<< has_many_values
<< std::endl;

}

// 42
// 1.23
// hello
// 3
// true

A.17 Structured Binding Declarations

C++17 has introduced structured binding declarations. A structured binding dec-
laration can produce an identifier that refers to an existing object or variable. For
instance,

// my_array is initialized to {0,1,2}.
unsigned int my_array[3U] = { 0U, 1U, 2U };

auto& [x0, x1, x2] = my_array;

References 393

// x0 is 0 and refers to my_array[0U].
// x1 is 1 and refers to my_array[1U].
// x2 is 2 and refers to my_array[2U].

void do_something()
{

x0 += 5U;
x1 += 5U;
x2 += 5U;

// x0, x1 and x2 have been incremented by 5.
// This means that my_array is now {5,6,7}.

}

In this example, the identifiers x0, x1 and x2 refer to the elements of my_-
array and are used to modify the original values in the array.

Structured binding declarations can also be convenient for accessing and manip-
ulating the elements in a tuple, see also Sects. 5.11 and A.13.

References

1. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (Pearson Prentice
Hall, Upper Saddle River, 2000)

2. B. Eckel, Thinking in C++ Volume 2: Practical Programming (Pearson Prentice Hall, Upper
Saddle River, 2004)

3. ISO/IEC, ISO/IEC 9945:2003 : Information Technology – Portable Operating System Interface
(POSIX) (International Organization for Standardization, Geneva, 2003)

4. ISO/IEC, ISO/IEC 14882:2011 : Information Technology – Programming Languages – C++
(International Organization for Standardization, Geneva, 2011)

5. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference 2nd edn. (Addison-Wesley,
Boston, 2011)

6. B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost (Addison-Wesley,
Boston, 2005)

7. R. Lischner, STL Pocket Reference (O’Reilly, Sebastopol, 2004)
8. Wikipedia, Anonymous Function (2012). http://en.wikipedia.org/wiki/Anonymous_function

http://en.wikipedia.org/wiki/Anonymous_function

Appendix B
A Robust Real-Time C++ Environment

Real-time programming is characterized by demanding performance, size and safety
constraints. This, combined with the large scope of the C++ language and a
potentially complex set of development tools, can make the creation of high-quality
real-time C++ software a truly challenging endeavor. In the harsh world of real-
time C++, the stability of the development environment can contribute to the overall
quality of the software as much or even more than the actual coding itself. This
chapter discusses various aspects related to the robust real-time C++ environment.

B.1 Addressing the Challenges of Real-Time C++

Microcontroller software is usually cost sensitive, safety critical or both and
demands the utmost in efficiency and robustness. The development environment and
the executable program usually run on separate systems. In addition, flashing the
microcontroller generally uses a connection with a hardware interface for in-system
programming (ISP) with an on-chip debugger or an in-circuit emulator (ICE).
This can make it particularly difficult to visualize, debug and test microcontroller
software.

When addressing the challenges of real-time C++ programming, it may be best
to start with a simple project and build up tools, coding competence and a collection
of re-usable software components steadily and methodically. The brief checklist
below describes some considerations that need to be made when doing real-time
C++ programming.

✓ Select the right microcontroller for the application. Consider performance and
cost aspects. Decide if the application needs a cost-sensitive 8-bit microcontroller
or a more powerful, more expensive 32-bit or 64-bit microcontroller. Try to
estimate how much program memory and RAM are needed and select the
microcontroller accordingly. If future versions of the application are planned,

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0

395

https://doi.org/10.1007/978-3-662-56718-0

396 B A Robust Real-Time C++ Environment

it may be advisable to use a scalable microcontroller family that includes pin-
compatible chip derivatives accommodating potential extensions of functionality.

✓ Get a microcontroller prototype up and running. Students and hobbyists may be
well served with a commercially available microcontroller starter kit including
a board, a debug interface and a demo compiler. Using a starter kit can ease the
learning curve by providing a functioning set of hardware, software and code
examples, all in one package. If working in a production environment, try to
ensure that a functioning prototype board is available early in the development
cycle.

✓ Obtain a high-quality C++ compiler. Compiler availability can be an issue and
successful development mandates that a good C++ compiler is available for
the microcontroller. GCC [2] is cost free and known for having a high degree
of language standards conformance. Professionally supplied compilers might
beat the performance of GCC, particularly for low-level hardware programming
requiring intimate knowledge of the microcontroller architecture. At the same
time, professionally supplied compilers tend to be prohibitively expensive for
students and hobbyists. Those interested in assessing compiler price and per-
formance may want to carry out market research in combination with compiler
benchmarks for the domain of the application.

✓ Depending on project necessities, make sure a microcontroller programmer, a
simulator, a debugger or an ICE, or several of these are available. If other test
and measurement devices such as an oscilloscope or logic analyzer are required,
verify that the equipment is available. One should verify that the equipment
works and that one has basic knowledge of how to use it, or knows where to
find help if not.

✓ Design and use a software architecture (Sect. B.2). The architecture significantly
influences the overall quality of the entire software. When doing any robust
microcontroller programming in C++, it is essential to use a layered software
architecture that shields the application layer from the low-level hardware-
specific, non-portable register manipulation code. In this way, application soft-
ware can be used and re-used, thereby improving portability and localizing the
work of switching the microcontroller to the hardware layer.

✓ Establish coding competence. C++ is a rich, multifaceted language. If working
alone, try to learn the C++ language as best as possible through independent
study. Keep in touch with other programmers and best-practice in the community
e.g., via Internet forums, additional literature, etc.

✓ Software reliability can be improved by adhering to established coding guide-
lines, such as [1]. Conforming to guidelines can be mandatory when working in
a professional setting where proving reliability to customers may be required in
an assessment or audit situation. When working on projects that demand high
reliability, consider using a static syntax checker in addition to the compiler.

✓ Build up a library of re-usable code. Programming microcontrollers in C++
can be a long-term process based on years of effort. Over the course of time, a
body of re-usable, portable code can be built up for programming situations that
repeatedly arise. Some examples of components that I have collected in my own

B.2 Software Architecture 397

libraries, and partially in this book, include register manipulation mechanisms
(Chap. 7), custom allocators (Chap. 10), timers (Sect. 15.3), multitasking sched-
ulers (Chap. 11), filter functions (Chap. 14), mathematical functions (Chap. 12),
convenient utilities (Chap. 15), etc.

B.2 Software Architecture

No matter how small or large a given software may be, it is essential to use a good,
properly sized software architecture. The architecture may contribute to the overall
quality of the software more strongly than any other factor. Programming skill and
elegance of implementation alone can only augment software quality, not create
it. The combination of solid architecture and competent coding ultimately leads to
success in real-time C++.

When working in a project with a documented software architecture, one is
not merely programming but engaging in software engineering and system design
instead. Metaphorically speaking, software architecture comprises the foundation,
floors and walls of the project; the code being the plaster, paint and furniture. In the
absence of a stable and robust architecture, even good code will, in time, erode and
crumble under its own weight.

Designing a software architecture can start with a simple block diagram of
the major software layers and components such as the one shown in Fig. B.1.
Initially, this can be a rudimentary hand-sketched diagram. Create the corresponding
directories and files and fill them with preliminary namespaces, classes and func-
tions that embody the most important interfaces. At first, classes and functions can
be incomplete skeletons. Implementation details can be added later. Try to ensure
that names of namespaces, classes, functions, etc. have recognizable associations
with the architecture sketch.

Software architecture need not be complicated. A straightforward one with a few
clearly defined layers is usually best. Consider, once again, the software architecture

Fig. B.1 A layered
microcontroller software
architecture is shown

A Microcontroller Software Architecture

Microcontroller Abstraction Layer

Oscillator Watchdog Timer Serial

System Layer

Startup Monitor Debug Idle

Application Layer

Appl_1 Appl_2

O
pe

ra
tin

g
Sy

st
em

U
til

iti
es

398 B A Robust Real-Time C++ Environment

shown in Fig. B.1. This architecture consists of three layers that have successively
higher levels of abstraction.

The MCAL contains microcontroller-specific peripheral drivers such as timer,
watchdog or communication interfaces. Intermediate system-level software such as
startup routines and monitor functions can be implemented in the System Layer.
The Application Layer contains high-level application software. Modules in the
application layer should be kept entirely portable. The operating system and project
utilities can be used by all three layers in the architecture. Over the years, I have
had good results with this kind of layered architecture in numerous projects with
varying application size.

When developing a software architecture, try to achieve easy-to-understand
modularity and object granularity. Avoid overly long files, classes and subroutines.
It may take a few iterations until the architecture and functional granularity feel
right. Time invested in designing software architecture is, however, time spent well
because the architecture provides for long-lasting organization in a project that may
potentially be worked on for years.

B.3 Establishing and Adhering to Runtime Limits

Microcontroller programming is time critical and things tend to go wrong if the
software has unpredictable timing. For example, a late response from a communi-
cation attempt might be just as bad as the wrong response, regardless of its content.
To address this problem, it can be helpful to establish runtime limits and adhere to
them.

This can be done by identifying the priority classes of tasks and interrupts in
the system and defining runtime constraints for them. Table B.1, for example, lists
potential runtime limits selected for a system with three priority classes: high-
priority interrupts, low-priority interrupts and the task-level priority. The runtime
constraints are given in a form indicating a typical value representing the design
target and a maximum limit which should never be exceeded and only sporadically
neared under worst-case load conditions.

When designing an embedded microcontroller system, the most time consuming
software processes should be identified up front and designed with a temporal
granularity that facilitates an even distribution of the work load. In general, it is poor
form to programwith blocking calls that engage the CPU for long time spans such as

Table B.1 The runtime limits for a system with three priority classes are shown

Priority class Design target
[
μs
]

Worst-case maximum
[
μs
]

High-priority interrupts < 10 � 25

Low-priority interrupts < 40 � 100

All tasks < 500 � 1,000

References 399

hundreds of microseconds or even several milliseconds. It is much better to program
short, fast sequences in a multitasking environment that process information or
service a state machine quickly and rapidly relinquish control to other processes in
the system. Interrupt service routines should be held terse and efficient. Keeping the
runtime within the established limits generally leads to a more predictable software
with higher quality and reliability.

References

1. Programming Research Ltd., High Integrity C++ Coding Standard Version 4.0, http://www.
codingstandard.com/HICPPCM/index.html (2015)

2. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)

http://www.codingstandard.com/HICPPCM/index.html
http://www.codingstandard.com/HICPPCM/index.html

Appendix C
Building and Installing GNU GCC Cross
Compilers

There are several reasons one might want to build GCC [5], such as to obtain
the newest version of the compilers or to enable additional language features or
other languages. This appendix provides step-by-step instructions for building a
GNU GCC cross compiler for our target with the 8-bit microcontroller. GCC can
be most easily built on ∗nix-like systems. In this example, the build is done in
MinGW/MSYS [9] using standard GNU auto-tools configure scripts and make
procedures. The methods in this chapter can easily be adapted for building a cross
compiler targeted to another microcontroller architecture.

C.1 The GCC Prerequisites

Building GCC has prerequisites [6]. This means that certain libraries must be
installed and available to the build system before GCC can be built. If any
prerequisites are missing, these either need to be installed or built from source before
building GCC. At the time of writing this book, the prerequisites for building GCC
include:

• GMP [7], the GNU multiprecision library.
• MPFR [3, 11], the GNU multiprecision floating-point library.
• MPC [10], a C library for the multiprecision arithmetic of complex numbers.
• PPL, the Parma Polyhedra Library [1], used for abstract geometrical polyhedron

representation.
• Binutils [4], the binary utilities for the cross compiler such as linker, assembler,

object dump, C++ name demangler, etc.

The prerequisites for building GCC evolve over time. At the time of writing the
second edition of this book, the prerequisites for building GCC include:

• GMP [7], the GNU multiprecision library.
• MPFR [3, 11], the GNU multiprecision floating-point library.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0

401

https://doi.org/10.1007/978-3-662-56718-0

402 C Building and Installing GNU GCC Cross Compilers

• MPC [10], a C library for the multiprecision arithmetic of complex numbers.
• ISL [8], the integer set library used for manipulating sets of integers. GCC uses

ISL for its graphite loop optimizations [6]. Building ISL requires an installed
CLooG library [2], another software library used for polyhedron analysis.

• Binutils [4], the binary utilities for the cross compiler such as linker, assembler,
object dump, C++ name demangler, etc.

It may seem odd that GCC has prerequisites for such exotic mathematical
functions as multiprecision floating-point numbers and geometrical polyhedron
representations. The multiprecision functions in GMP, MPFR and MPC are needed
by GCC for compile-time calculation of floating-point mathematical expressions.
The geometrical polyhedron representations in PPL (or ISL) are used for high-level
optimizations including program loop analysis, parallelization and vectorization.

Perhaps the binary utilities should be considered part of the compiler rather than
a prerequisite. Here, we will call the binary utilities a prerequisite simply because
the build of GCC needs to use them. This, in turn, means that the binary utilities
need to be built and installed prior to building GCC.

C.2 Getting Started

Building the GCC prerequisites and GCC can take several hours of manual work.
At times, this work can be tedious involving intricate command lines, detailed
operating system operations and careful monitoring. It may, therefore, be best to
undertake building the GCC prerequisites and GCC only if ample time and peace of
mind are available for this kind of endeavor. The process of building, installing and
using GCC constitutes a rich topic, see [5, 13].

Sometimes building a GNU cross compiler works. At other times, it does not.
There are several reasons why building GCC might fail. The prerequisites might
be absent or improperly built. The binary utilities or the compiler sources might be
flawed for the particular compiler version and target. Very experienced compiler
builders often patch the sources of a new compiler version, thereby correcting
minor flaws. The strategy thereby is to integrate the patches in a compiler bug-fix in
a later subversion.

Middle-of-the-road compiler builders and users should probably avoid such
advanced compiler development as patching the sources. It may, therefore, be
necessary to do a bit of trial-and-error work in order to find a combination
of prerequisites, binary utilities and a compiler version that harmoniously build
together. The components selected in this appendix have been successfully built.

The entire build session including all the prerequisites, the binary utilities and
GCC can best be organized within a single root directory. It is not a good idea to
perform the build of a given component in its own source tree directory. For each
component, therefore, we use two directories, one for the component’s source tree
and another sibling object directory next to the source tree in which the build is
carried out.

C.3 Building GMP 403

We begin by creating a root directory for all the builds. Here, for example, we
will use the directory/home/tmp as the root directory for performing the builds.

• Create the directory /home/tmp.

C.3 Building GMP

We will now build GMP version 5.0.5 in MinGW/MSYS.

• cd /home/tmp
• Get the GMP sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-gmp-5.0.5 in order to make the

GMP sibling directory.
• cd objdir-gmp-5.0.5

The source tree of GMP should be in the GMP source directory:

/home/tmp/gmp-5.0.5

We should now be in the GMP sibling object directory:

/home/tmp/objdir-gmp-5.0.5

In the objdir-gmp-5.0.5 GMP sibling object directory, configure GMP
with the following command:

../gmp-5.0.5/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static --enable-cxx CPPFLAGS="-fexceptions"

This configuration defines the characteristics that will be used when building
GMP. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.

In the objdir-gmp-5.0.5 GMP sibling object directory, make GMP with
the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-gmp-5.0.5 GMP sibling object directory, install GMP with
the command:

make install

404 C Building and Installing GNU GCC Cross Compilers

C.4 Building MPFR

We will now build MPFR version 3.1.1 in MinGW/MSYS.

• cd /home/tmp
• Get the MPFR sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-mpfr-3.1.1 in order to make the

MPFR sibling directory.
• cd objdir-mpfr-3.1.1

The source tree of MPFR should be in the MPFR source directory:

/home/tmp/mpfr-3.1.1

We should now be in the MPFR sibling object directory:

/home/tmp/objdir-mpfr-3.1.1

In the objdir-mpfr-3.1.1MPFR sibling object directory, configureMPFR
with the following command:

../mpfr-3.1.1/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static --with-gmp=/usr/local

This configuration defines the characteristics that will be used when building
MPFR. It defines the prefix where the build results will be installed, specifies the
build system and instructs the build to create static libraries, not dynamic link
libraries. The configuration also tells the build of MPFR where the installation of
GMP can be found.

In the objdir-mpfr-3.1.1 MPFR sibling object directory, make MPFR
with the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-mpfr-3.1.1 MPFR sibling object directory, install MPFR
with the command:

make install

C.5 Building MPC

We will now build MPC version 0.9 in MinGW/MSYS.

• cd /home/tmp
• Get the MPC sources and unpack them in /home/tmp.

C.6 Building PPL 405

• Perform the command mkdir objdir-mpc-0.9 in order to make the MPC
sibling directory.

• cd objdir-mpc-0.9

The source tree of MPC should be in the MPC source directory:

/home/tmp/mpc-0.9

We should now be in the MPC sibling object directory:

/home/tmp/objdir-mpc-0.9

In the objdir-mpc-0.9 MPC sibling object directory, configure MPC with
the following command:

../mpc-0.9/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static --with-gmp=/usr/local \
--with-mpfr=/usr/local

This configuration defines the characteristics that will be used when building
MPC. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.
The configuration also tells the build of MPC where the installations of GMP and
MPFR can be found.

In the objdir-mpc-0.9 MPC sibling object directory, make MPC with the
command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-mpc-0.9 MPC sibling object directory, install MPC with the
command:

make install

C.6 Building PPL

We will now build PPL version 0.12.1 in MinGW/MSYS.

• cd /home/tmp
• Get the PPL sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-ppl-0.12.1 in order to make the

PPL sibling directory.
• cd objdir-ppl-0.12.1

406 C Building and Installing GNU GCC Cross Compilers

The source tree of PPL should be in the PPL source directory:

/home/tmp/ppl-0.12.1

We should now be in the PPL sibling object directory:

/home/tmp/objdir-ppl-0.12.1

In the objdir-ppl-0.12.1 PPL sibling object directory, configure PPL with
the following command:

../ppl-0.12.1/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static CPPFLAGS="-fexceptions" \
--with-gmp=/usr/local

This configuration defines the characteristics that will be used when building
PPL. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.
The configuration also tells the build of PPL where the installation of GMP can be
found.

In the objdir-ppl-0.12.1 PPL sibling object directory, make PPL with the
command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-ppl-0.12.1 PPL sibling object directory, install PPL with
the command:

make install

C.7 Building ISL

Building ISL in MinGW/MSYS (and CLooG if necessary) follow the same schema
as described above for PPL. Separate up-to-date instructions for building ISL and
CLooG can be found in the Internet.

C.8 Building the Binary Utilities for the Cross Compiler

We will now build the binary utilities (binutils) version 2.22 in MinGW/MSYS. The
binary utilities provide tools needed by the cross compiler such as the assembler,
the linker, the library archiver and assorted utilities for manipulating binary files in
ELF binary format.

C.8 Building the Binary Utilities for the Cross Compiler 407

In this example, the binary utilities will be specifically built in preparation
for building GCC version 4.6.2 for the --target=avr-unknown-elf cross
target.

• cd /home/tmp
• Get the binutils sources and unpack them in /home/tmp.
• Perform mkdir objdir-binutils-2.22-avr-unknown-elf in order

to make the binutils sibling directory.
• cd objdir-binutils-2.22-avr-unknown-elf

The source tree of the binutils should be in the binutils source directory:

/home/tmp/binutils-2.22

We should now be in the binutils sibling object directory:

/home/tmp/objdir-binutils-2.22-avr-unknown-elf

In the objdir-binutils-2.22-avr-unknown-elf binutils sibling
object directory, configure the binutils with the following command:

../binutils-2.22/configure \
--prefix=/usr/local/gcc-4.6.2-avr-unknown-elf \
--target=avr-unknown-elf --build=i686-pc-mingw32 \
--disable-__cxa_atexit --disable-nls \
--disable-threads --disable-shared \
--enable-static --disable-win32-registry \
--disable-sjlj-exceptions --with-dwarf2 \
--with-gmp=/usr/local --with-mpfr=/usr/local \
--with-mpc=/usr/local --with-ppl=/usr/local

This configuration defines the characteristics that will be used when building
the binutils. It defines the prefix where the build results will be installed, specifies
the build system and instructs the build to create static libraries, not dynamic
link libraries. For building the binutils, there are additional configuration flags for
compiler details. The configuration also tells the build of the binutils where the
installations of GMP, MPFR, MPC and PPL can be found.

In the objdir-binutils-2.22-avr-unknown-elf binutils sibling
object directory, make the binutils with the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-binutils-2.22-avr-unknown-elf binutils sibling
object directory, install the binutils with the command:

make install

408 C Building and Installing GNU GCC Cross Compilers

C.9 Building the Cross Compiler

We will now build GCC version 4.6.2 in MinGW/MSYS. GCC will be built for the
--target=avr-unknown-elf cross target. GCC will be built with the newlib
library [12].

• cd /home/tmp
• Get the GCC sources and unpack them in /home/tmp.
• Get the newlib sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-gcc-4.6.2-avr-unknown-elf

in order to make the GCC sibling directory.

The source tree of the GCC should be in the GCC source directory:

/home/tmp/gcc-4.6.2

After unpacking GCC and newlib, the newlib sources need to be copied to the
GCC source tree. For newlib version 1.20.0, for example,

cd /home/tmp/newlib-1.20.0
cp -r newlib libgloss ../gcc-4.6.2

Return to the GCC sibling object directory for building GCC with:

cd /home/tmp/objdir-gcc-4.6.2-avr-unknown-elf

We should now be in the GCC sibling object directory:

/home/tmp/objdir-gcc-4.6.2-avr-unknown-elf

In the objdir-gcc-4.6.2-avr-unknown-elfGCC sibling object direc-
tory, configure GCC with the following command:

../gcc-4.6.2/configure \
--prefix=/usr/local/gcc-4.6.2-avr-unknown-elf \
--target=avr-unknown-elf --build=i686-pc-mingw32 \
--enable-languages=c,c++ --with-newlib \
--disable-__cxa_atexit --disable-nls \
--disable-threads --disable-shared --enable-static \
--disable-win32-registry --disable-sjlj-exceptions \
--with-dwarf2 --with-gmp=/usr/local \
--with-mpfr=/usr/local --with-mpc=/usr/local \
--with-ppl=/usr/local

This configuration defines the characteristics that will be used when building
GCC. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.
There are additional configuration flags for compiler details including the languages
to build (C and C++) and to use newlib. The configuration also tells the build of GCC
where the installations of GMP, MPFR, MPC and PPL can be found.

C.10 Using the Cross Compiler 409

In the objdir-gcc-4.6.2-avr-unknown-elfGCC sibling object direc-
tory, make GCC with the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-gcc-4.6.2-avr-unknown-elfGCC sibling object direc-
tory, install GCC with the command:

make install

C.10 Using the Cross Compiler

We will now assume that the work of building the GCC prerequisites and GCC has
been successfully completed. If this is the case, the GCC build results should be
located in the installation directory:

/usr/local/gcc-4.6.2-avr-unknown-elf

Note, however, that the /usr directory in MinGW/MSYS could be an alias for
a directory such as /msys/1.0.

We will now investigate the structure of the build results. In particular, two ver-
sions of the compiler should have been installed. There should be one version with
tools having decorated names and a second version with tools having undecorated,
plain names.

In /usr/local/gcc-4.6.2-avr-unknown-elf, the installation direc-
tory, there should be versions of the tools with decorated names. For example, the
version of g++ with a decorated name is:

bin/avr-unknown-elf-g++.exe

In /usr/local/gcc-4.6.2-avr-unknown-elf, the installation direc-
tory, there should also be versions of the tools with undecorated names. For example,
the version of g++ with an undecorated name is:

avr-unknown-elf/bin/g++.exe

Both the decorated version of the toolchain as well as the undecorated one
function equivalently. It is, however, best to use only one of them at one time.
Consider which version of the toolchain to use for cross development and use it
consistently.

When using GCC, it can be convenient to add the path of the compiler executa-
bles to the PATH variable of the shell. In MinGW/MSYS, path information for the
cross compiler can be added to the PATH variable in the file /etc/profile. In
other ∗nix-like systems, path information for the cross compiler can added to the
PATH variable in the file /home/.bashrc.

410 C Building and Installing GNU GCC Cross Compilers

Some developers recommend not moving an installation of GCC. It is, however,
possible to move a fully-built installation of GCC to another location provided the
entire directory tree of the compiler is moved. In our example, for instance, this
means moving all files, directories, etc. in gcc-4.6.2-avr-unknown-elf/*
from their installed location to another place as a cohesive unit.

A GCC installation that has been built in MinGW/MSYS can also be used outside
of the MinGW/MSYS environment, for example, by employing another command
line interface. When doing so, it is necessary to include several dynamic link
libraries from the MinGW/MSYS installation in the path of the compiler’s binaries
or in the build environment. This technique is used in the reference project of the
companion code.

References

1. BUGSENG, Parma Polyhedra Library (PPL) (2012). http://www.bugseng.com/products/ppl
2. CLooG, Chunky Loop Generator (2015). http://www.cloog.org
3. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision

binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007)
4. Free Software Foundation, GNU Binutils (2011). http://www.gnu.org/software/binutils
5. Free Software Foundation, GNU Compiler Collection Version 4.6.2 (2012). http://gcc.gnu.org
6. Free Software Foundation, Prerequisites for GCC (2015). http://gcc.gnu.org/install/

prerequisites.html
7. GMP, GNU Multiple Precision Arithmetic Library (2012). http://gmplib.org
8. ISL, Integer Set Library (2015). http://isl.gforge.inria.fr
9. MinGW, Home of the MinGW and MSYS Projects (2012). http://www.mingw.org
10. MPC, GNU MPC (2012). http://www.multiprecision.org
11. MPFR, GNU MPFR Library (2013). http://www.mpfr.org
12. Red Hat, newlib (2013). http://sourceware.org/newlib
13. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)

http://www.bugseng.com/products/ppl
http://www.cloog.org
http://www.gnu.org/software/binutils
http://gcc.gnu.org
http://gcc.gnu.org/install/prerequisites.html
http://gcc.gnu.org/install/prerequisites.html
http://gmplib.org
http://isl.gforge.inria.fr
http://www.mingw.org
http://www.multiprecision.org
http://www.mpfr.org
http://sourceware.org/newlib

Appendix D
Building a Microcontroller Circuit

This appendix provides details on assembling the microcontroller circuit depicted in
Fig. 2.1. Information on the circuit, the schematic and its assembly on a solderless
prototyping breadboard are included.

D.1 The Circuit Schematic

Recall the microcontroller circuit on the prototyping breadboard first presented in
Sect. 2.1, Fig. 2.1. The corresponding schematic for this circuit is shown in Fig.D.1
on the following page. This is a simple microcontroller circuit that can be assembled
with just a handful of components.

Our microcontroller circuit consists of the following three main circuit groups:

1. 5 V Regulator
2. Microcontroller and Peripheries
3. JTAG Connector

The 5V regulator group is shown in the upper right of the schematic. It is
responsible for converting an input voltage ranging from about +8V . . . 24V to
the+5V TTL voltage required by the microcontroller. The ideal input voltage range
is around +9V . . . 12V.

Moving counterclockwise, down and to the left, we encounter the second circuit
group, which is the microcontroller and its peripheries. This circuit group contains
the microcontroller, its crystal quartz oscillator circuit, a reset push button and the
LED D1. Note that the LED D1 in our circuit diagram here is the same LED that
was first presented in the LED program of Chap. 1, see Fig. 1.1.

The third circuit group located to the right and above the circuit label is the JTAG
connector. This is a six-pin connection that can interface to a commercially available
SPITM programmer or JTAG ICE debugger.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0

411

https://doi.org/10.1007/978-3-662-56718-0

412 D Building a Microcontroller Circuit

C3
22pF

22pF

16
MHz

GND

GND

GND

GND

GND

GND

GND
GND

GND

C4

Q1

1

10

+5V

+5V

+5V

+5V

C6
68nF

Vcc
7

8

RST

RST

XTAL 2

XTAL 1

MOSI

MOSI

MISO
MISO

SCK

SCK

9

17

18

19

IC1

R1
750Ω

15KΩ

D1
GREEN

R3
750Ω
R2

INPUT

+9....12V

SWITCH 1

D3
IN 4002

C5 C1
68nF 1μF

C2
2μF

IC 2
LM 7805

IN OUT

+ D2
RED

CON 1
02 04 06

01 03 05

Breadboard
ATMega® 328P

ATMega®328P Christopher Kormanyos

04-Aug-2012

+

Fig. D.1 The schematic of our target system is shown

Table D.1 The discrete components in our microcontroller circuit are listed

Label Type Value Function

D3 1N4002-type rectifier 100V Short-circuit protection

Linear voltage regulator

IC2 7805 voltage regulator +5V in TO-220 package [5]

C1 Electrolytic capacitor 1μF Input stabilization

C2 Electrolytic capacitor 2μF +5V stabilization

R1, R2 1/ 4 Watt resistor 750� LED current limitation

D2 LED red 5–10mA Power indicator

C5, C6 Ceramic capacitor 68 nF High-frequency filter

8-bit microcontroller

IC1 ATMEL R© AVR R© ATmega328P [1] – in DIL-28 package [4]

D1 LED green 5–10mA User LED on pin 17

Q1 Quartz 16MHz Oscillator circuit

C3, C4 Ceramic capacitor 10 pF Oscillator circuit

R3 1/ 4 Watt resistor 15 k� +5V pull-up on reset

SWITCH1 Mini push-button – Manual reset button

CON1 6-pin 2.54mm connector – SPITM connector

A microcontroller circuit assembled on a breadboard generally does not have the
robustness necessary for high-volume production. Circuit assembly on a solderless
prototyping breadboard does, however, provide adequate quality for microcontroller
benchmarking and compiler testing.

D.2 Assembling the Circuit on a Breadboard 413

The part list for our microcontroller circuit is provided in Table D.1. All of the
components needed for our microcontroller circuit should be available at any good
electronics store.

D.2 Assembling the Circuit on a Breadboard

Our microcontroller circuit assembled with discrete components on a solderless
prototyping breadboard is shown in Fig.D.2. The three main circuit groups are
highlighted in rectangular boxes.

Circuit assembly uses standard breadboard methods. See, for example,
Sects. 3.2–3.3 in [2] for additional information on working with a breadboard.
An effort should be made to keep wire connections as short as possible and flat on
the breadboard. In general, try prevent wire crossings as far as possible. Optionally,
a kit containing pre-formed wires, isolated and bent for the breadboard slots, can be
conveniently used for some connections.

For other connections, it may be better to make custom-length isolated wires.
AWG-22 [3] conducting wire cut to length and appropriately bent for the slots
is suitable for breadboard connections. AWG-22 wire has a diameter of approx-
imately 0.6mm. Custom breadboard wires can be isolated with commercially
available skinny, round silicon tubes or small heat-shrink tubing.

Critical circuit components requiring high electromagnetic stability benefit from
short, soldered connections. In our circuit on the breadboard, for example, the quartz
periphery and the JTAG SPITM connector have been fitted on secondary snap-on
boards built with soldered connections.

In addition, overall stability of the board can be improved by keeping capacitors
physically near the components they are meant to stabilize. For example, C1 and C2

Fig. D.2 Our microcontroller
circuit assembled with
discrete components on a
breadboard is shown

414 D Building a Microcontroller Circuit

are placed near the +5V voltage regulator, C5 is close to the input rectifier and C6
is tight on the microcontroller VCC and GND pins.

Assembling a microcontroller circuit on a breadboard requires reliable work. It is
best to work methodically, properly fitting one circuit group at a time. A volt meter
can be used to check the proper placement of the components and their electrical
connections.

References

1. ATMEL R©, 8-bit ATMEL R© Microcontroller with 4/8/16/32K Bytes In-System Programmable
Flash (ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A, ATmega168PA,
ATmega328, ATmega328P), Rev. 8271D-AVR-05/11 (ATMEL R©, 2011)

2. M. Schmidt, ARDUINO R©: A Quick-Start Guide (Pragmatic Programmers, Raleigh, 2011)
3. Wikipedia, American Wire Gauge (2012). http://en.wikipedia.org/wiki/American_wire_gauge
4. Wikipedia, Dual In-line Package (2012). http://en.wikipedia.org/wiki/Dual_in-line_package
5. Wikipedia, TO-220 (2012). http://en.wikipedia.org/wiki/TO-220

http://en.wikipedia.org/wiki/American_wire_gauge
http://en.wikipedia.org/wiki/Dual_in-line_package
http://en.wikipedia.org/wiki/TO-220

Glossary

Bootloader A bootloader is a small program, the job of which is to program
another application via communication with another part of memory and/or another
device.

Build Build is the process of building a software project including compiling the
sources, linking them, extracting the executable program and optionally program-
ming it into the microcontroller memory.

Debug Debug means finding and removing software defects caused by errors or
flaws in coding, design, timing characteristics or any other mistake.

Flash, flashing Flashing is the act of programming an executable program into the
FLASH program memory of the microcontroller.

Flashed Flashed is the state of the FLASH programmemory of the microcontroller
having undergone flash programming.

Heap The term heap commonly refers to a pool of computer memory typically
used for dynamic memory allocation and deallocation.

Multitasking Multitasking is a programming technique used to distribute the work
of a computer program among more than one task or process, thereby potentially
improving program robustness via carefully designed temporal and functional
distribution.

Stack A stack is a linear chunk of computer memory usually used for storing
local variables and preserving register contents within one or more (possibly nested)
subroutine or interrupt call(s).

Standard library The standard library refers to the C++ standard library (as
specified in ISO/IEC 14882:2017), which is an extensive collection of types,
functions, classes, generic containers and algorithms.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0

415

https://doi.org/10.1007/978-3-662-56718-0

416 Glossary

Startup code The startup code is the part of the program that runs before the
main() subroutine. The startup code is responsible for initializing RAM and static
constructors and subsequently calling main().

Index

#define, 19, 145, 147
#include, 5, 6, 13
<algorithm>, xviii, 49, 100, 219, 225, 330,

335, 336, 374–378, 385
<any>, viii, 389
<array>, xviii, xix, 46, 48–50, 190, 219,

224, 304, 374
partial implementation of, 336

<atomic>, 51, 229
<chrono>, 54, 181, 229, 343
<cmath>, viii, 234, 235, 238
<complex>, vii, viii, 249, 345
<condition variable>, 229
<cstddef>, xix, 336
<cstdint>, xii, xviii, xix, 3, 13, 15, 24, 26,

29, 36, 37, 41, 43, 46, 48, 49, 51,
190, 304, 335

partial implementation of, 335
<cstdlib>, 234, 238
<initializer list>, 330, 378
<iostream>, 385
<iterator>, 330, 385
<limits>, xviii, 47, 235, 367
<math.h>, 238
<memory>, 375
<memory>, 330
<mutex>, 229
<numeric>, 375
<numeric>, xix, 50, 138
<pthread.h>, 230
<ratio>, 229
<regex>, 385
<stdint.h>, xii, 16, 335
<stdlib.h>, 238
<string>, 385
<thread>, 229

<tuple>, xviii, 107, 383
<type traits>, viii, 387
<vector>, xviii, xix, 100, 374, 376–378

attribute , 75, 135, 136, 175
C++03, xxix, 357
C++11, xi, xii, xvii, xxx, 357

-std=c++11 GCC flag, 24
auto keyword, 381
consistency with C99, 235
constexpr, 256
decltype keyword, 382
evolution from C++03 to C++11, 381
evolution of best-practice, xvii
initializer list, 380
range-based for(:), 382
thread library, 230
TR1, 357
tuple, 383
type inference, 381
uniform initialization syntax, 12, 364
variadic template, 102

C++14, xi, xxx, 357
-std=c++14 GCC flag, 24
and second edition of this book, xi
binary literal, xi, 52
digit separator, xi, xiii, 51
standard user-defined literals, xi, 54
variable template, xi, 110

C++17, vii, xi, xxx, 40, 239, 357, 367, 389
and third edition of this book, vii
default text for static assert, 367
mathematical special functions, 239
nested namespace definitions, 40
std::any, 389
structured binding declarations, 392

C++1z, xi

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
C. Kormanyos, Real-Time C++, https://doi.org/10.1007/978-3-662-56718-0

417

https://doi.org/10.1007/978-3-662-56718-0

418 Index

C++20, vii, xxx
C++98, xxix, 357
C++

C++03, 357
C++11, xi, xvii, 325, 357
C++14, xi, 357
C++17, vii, 40, 239, 357, 367, 389
C++20, vii
C++98, 357
evolution of, vii, xi
introduced, xv
object-oriented programming, 61
syntax of, 6
tutorial, 363

C++ standard library
see standard library, C++, 5

1N4002-type rectifier, 412

7805 voltage regulator, 412

abstract class, 71
access control, 11
ADC

see analog-digital converter, 131
add() template function, 85
algorithm (STL) see STL algorithms, 375
algorithmic complexity, 118

linear, 118
logarithmic, 118
quadratic, 118

alias, 58, 125, 127
alignas, vii, 57
alignof, vii, 56
allocator

std::allocator, 209
and STL containers, 208
custom, 137, 208, 209
ring allocator, 210

Americal wire guage (AWG), xxix, 193, 413
analog-digital converter (ADC), xxix, 131,

296, 303
optimizing circuit of, 131

ApéRoy’s constant, ζ(3), 238
Archimedes’ constant, π , 111, 233, 236, 237,

274, 277
Archimedes’ constant, π , 52
architecture (of software), 397

AUTOSAR architecture, 13, 350
layered, 397
MCAL, 13

ARDUINO R©, 21
bootloader, 21, 25

area
of circle, 233, 274, 366
of rectangle, 366

array, C-style, 12
and inner product, 106
and range-based for(:), 382
and std::array, 48

ASCII, xxix, 100, 101, 114, 133, 352, 354
assembly

dedicated file, 123
GCC inline syntax, 123
in startup code, 157
inline, 123

assembly listing, 120
from objdump, 120
mangled names in, 122

auto keyword, 344, 381
AUTOSAR, xxix, 13, 350
AWG (American wire gauge), xxix, 193, 413

bash (∗nix shell), 122
Bessel functions, 239
big-O notation, 118
binary literal, xi, 52
binary utilities (binutils), xxix, 120, 401, 402

build, 406
bit-field, 152
bitwise constant, 133
bool, 38
Boost, 324

and C++ standardization, 325
Boost.Math, 245
Boost.Math.Constants, 238
Boost.Multiprecision, 246, 345,

348
Boost.Regex, 387
Boost.Thread, 230
circular buffer, 325
noncopyable, 75

boot
ARDUINO R© bootloader, 21, 25
microcontroller boot time, 28

braced initialization syntax
see uniform initialization syntax, 12

breadboard, 21, 411
working with, 413

built-in types, xviii, 6
and numeric limits, 47, 370
and std::complex, 249, 345
and uniform initialization syntax, 364
as template parameter, 85
as variadic template parameter, 103
C99 compatibility, 336

Index 419

conversion with cast operator, xx
fixed-point emulation of, 270
initialization of global, 164

C, xxix, 357
ANSI C, xxix
C11, xxix, 357
C89, xxix, 357
C99, xii, xxix, 16, 127, 238, 336, 357
embedded extensions, 357
similar syntax of C and C++, 6
standard library, 357

C++, vii, xi, xv
c++filt program, 122
C-linkage, 80, 177, 350
C-style

arrays, 12, 48
block comments, 6
direct memory access, 18
preprocessor macros, xx, 87
register access, 145
static, 15
structures, 41
structures with bit-fields, 152
union, 153

capacitor
ceramic, 412
electrolytic, 412

Cartesian space
R
2, xviii, 93

R
2, 41

R
3, 50

cast operators, C++, 363
const cast, 364
dynamic cast, 364
in coding style, xx
reinterpret cast, 10, 18, 363
static cast, 363

char, 6
circular buffer class, 186, 320
class, 6, 41

base class, 62, 194, 200
class hierarchy, 62, 193, 200
class types, 6
derived class, 62
template class types, 93

class relationships, 72
has-a, 72
is-a, 72
uses-a, 73

CLooG, 402
code snippets, viii, ix

coding style, xii, xvii
and the STL, 102

comment
block form (/* ... */), 6
slash-slash form (// ...), 6
source-level, 6
use sparingly, 124

common subexpression elimination, 114
companion code, ix, xii, xvi

chapter02_02 sample project, 22
chapter02_03 sample project, 26
chapter02_03a sample project, xi, 27,

197
chapter06_01 sample project, viii,

115
chapter09_07 sample project, xi, 192
chapter09_08 sample project, viii, 199
chapter12_04 sample project, viii, 248
chapter17_03 sample project, viii, 352,

355
chapter17_03a sample project, viii,

356
compile-time assert

see static assert, 367
compile-time constant

see constant, compile-time, 18
const cast, 364
constant

bitwise, 133
const correctness, 78
generalized constant expressions, 18, 46

constant folding, 19, 32, 79, 140, 147, 149,
256, 274, 297

constant, compile-time, 18, 46
and metaprogramming, 105
and shift-and-add, 131
and user-defined suffixes, 54
constexpr, 18, 46
mathematical constants, 236
register addresses, 146
static const members, 79
with std::tuple size, 110

constexpr, 18, 46
superior to #define, 19, 147

constructor, 6
initialization code in, 7
initialization list, 8
private, 312
protected, 63, 72

container
custom dynamic array, 329
STL see STL containers, 371

CORDIC algorithms, 286

420 Index

CPU performance, 117
8-bit compared with 32-bit, 117
load monitor, 190
range used in this book, xvii

CRC (cyclic redundancy check), viii, 113, 349,
350

in AUTOSAR 4.3, 350
CRC32 algorithm, 113

benchmark results two CPUs, 117
CRC32/MPEG-2, 113
CRC32 /MPEG–2, 355

CRC32 algorithm
benchmark results space/speed, 114

cross compiler, 22, 401

delete keyword, 74, 312
delete operator, 137, 205
derivative

central difference rules, 257
of a function, 257

derivative() template function, 258
destructor, 62

explicit call, 208
virtual, 62

digit separator, xi, xiii, 51
digital filter, 291

cascaded filters, 306
filter design tool, 303
FIR, 291, 298
floating-point, 291
integer, 294
order 1, 294
order 10 high-pass FIR, 307
order 17 low-pass FIR, 302
order 5 low-pass FIR, 299
tap (coefficient), 298
worked-out examples, 303

digital signal processor (DSP), 119, 291
DIL–28 package, 412
direct memory access, 3, 5, 10, 17, 77, 145,

178, 364
dot-product, 50, 141
double, 6, 96, 233, 234, 257

and std::complex, 249
in IEEE–754 specification, 234
in C++ standard, 234
precision of, 234
versus fixed-point, 276
with digital filter, 293

double-precision, 234
dynamic array class, 330
dynamic cast, 364

elementary functions, 112, 238
floating-point timing, 238
in <cmath> and <cstdlib>, 238

ELF binary format, 24, 121, 406
elliptic integrals, 239
enable if, 388
Euler-Mascheroni constant, γ , 236, 238, 241
exception

and memory management, 213
std::bad alloc, 137, 205, 215
std::length error, 215
std::out of range, 245

explicit keyword, 65
extended-complex, viii, 345
extended complex class, 345
extern "C" (C-linkage), 75, 80, 135, 156,

175, 177, 350

F, set of floating-point numbers, 235
factorial meta-structure, 104
factory, 102

factory() variadic template, 103
filter see digital filter, 291
final, viii, 57
fixed-point, 267

arithmetic, 267
efficiency of, 267, 268, 279
number, 267
Q-notation for, 268
transcendental functions, 276

fixed-size integer types, 36
and improving portability, 16
implementation of, 335
in <cstdint>, 36, 335

fixed point class, viii, 270, 348
std::numeric limits for, 287
synopsis of, 271
using the, 274

float, 6, 96, 233, 234, 257
and std::complex, 249
in IEEE–754 specification, 234
in C++ standard, 234
precision of, 234
versus fixed-point, 276
with digital filter, 293

floating-point
efficiency aspects of, 239
elementary function timing, 238
floating-point arithmetic, 233
floating-point unit (FPU), 234

font
in coding style, xvii

Index 421

Fortran 77, 245
and special functions, 245

FPU (floating-point unit), xxx, 234, 267,
294

friend (of class), 79
and class access level, 80
and data encapsulation, 81
example of, 80

Gamma function Γ (x), 111, 240
float version, 240
polynomial approximation O(10−8),

241
Stirling’s approximation, 111, 245
Taylor series, 241

GAS (GNU assembler), 123
GCC (GNU compiler collection), xxx

C++ standards adherence of, 114
as used in this book, xvii
attribute syntax, 175
building, 401
building the LED program with, 21
cross compiler, 402
errors and warnings, 29
optimization with, 113
warning options, 30

GCC prerequisites, 401
binutils, 401, 402
CLooG, 402
GMP, 401
ISL, 402
MPC, 401, 402
MPFR, 401
PPL, 401

generic programming
and LED toggle mechanism, 98
and templates, 85, 89
and variable template, 111
numerical, 257
STL as example of, 100
tuples and metaprogramming, 107

GMP (GNU multiple-precision library), xxx,
401

building, 403

heap, 137, 205
fragmentation, 206

heat-shrink tubing, 413
HEX-file, 24

format, 25
high resolution clock

in std::chrono, 181, 343

Horner, method of, 236
Hungarian notation

not used, xvii

IEEE–754 specification, 234, 235, 256
in-circuit emulator (ICE), xxx, 25, 395
in-system programming (ISP), 25, 395
include syntax, 6
infinity, 235
inheritance, 11, 41, 67

access control of, 11, 68
private, 68

and noncopyable class, 312
initialization

and uninitialized objects, 165
RAM, 157, 158
singleton instance, 166
static constructor, 12, 157, 160
static initialization rules, 164

inner product, 50, 105, 141
inner product meta-structure, 105
int, 6
integral

of a function, 261
recursive trapezoid rule, 261

integral constant, 340
interpolation

see linear interpolation, 317
interrupt, 174

timer0 cmp a isr, 134
and C-linkage, 80, 177
frame, 134, 175
global disable, 123
global enable, 123, 174
programming in C++, 174
service routine, 134, 174
syntax for, 175
unused interrupt handler, 177
vector table, 176

is arithmetic, 387
is assignable, 387
is floating point, 387
is integral, 387
is same, 387
is signed, 387
is unsigned, 387
is void, 387
ISL (integer set library), 402

build, 406
iteration

in range-based for(:), 382
Newton, 286
statement, 6

422 Index

with STL iterator, 373
iterator (STL) see STL iterators, 373

JTAG
connector, 411
debugger, 25
flash tool, 25

jump
in interrupt vector table, 178
to main(), 156, 167

lambda expression, 100, 161, 220, 259, 305,
377, 379

optimization with, 139
LED, 3, 61

circuit, 3, 61
dimming, 62
LED program, 3
LED program, build the, 22
LED program, flash the, 25
LED program, reset the, 28
LED program, run the, 28
on breadboard, 3, 25, 411, 412
RGB, viii, 171, 198

led class, 5, 6
led base class, 62
led port class, 62, 63
led pwm class, 62, 64
led template class, 31
linear interpolation, 317
linker

definition file, 162
logarithm of two, log 2, 236, 237
long, 6
long double, 96, 233, 234

and std::complex, 249
in C++ standard, 234
precision of, 234
with digital filter, 293

loop unrolling, 104, 114, 140, 141
metaprogramming, 141

main(), 5, 16
and C++ standard, 17
in startup code, 157
jump to, 12, 157, 167
never return to, 167
typical example of, 168
unexpected return from, 168

make large() template function, 87
MAKE WORD() preprocessor macro, xx, 87

map file, 120
g++ command line for, 120
mangled names in, 122

mathematical constants, 236
and digit separators, 52
ApéRoy’s constant, ζ(3), 238
Archimedes’ constant, π , 237
Archimedes’ constant, π , 52
constexpr templates for, 237
Euler-Mascheroni constant, γ , 238
logarithm of two, log 2, 237
natural logarithmic base, e, 111, 237
Pythagoras’ constant,

√
2, 237

mathematical functions
absolute value, 238
and Fortran 77, 245
Bessel, 245, 246, 248
elementary functions, 238
elliptic integrals, 246
exponential, 238, 276
Gamma function, Γ (x), 240
hyperbolic, 238
hypergeometric, 248
Legendre, 248
logarithmic, 238, 276
power, 238
Riemann zeta, 246
rounding, 238
sinc function, 235
sinc function, 346
special functions, viii, 239
trigonometric, 238, 276
zeta, 246

MCAL (microcontroller abstraction layer), 3,
13, 27, 39, 134, 146, 169, 180, 226,
316, 398

member (data member)
constant data member, 10
in constructor initialization list, 8, 10
static const integral, 19, 79

member (method/function member), 6
constant methods, 75

member (of class type), 6
memory

customized management, 137
dynamic allocation, 137, 205
FLASH, xxx, 25
flashing a program, 22, 25
handling limitations, 215
RAM, xxxii
ROM, xxxii

metaprogramming, 104
compile-time evaluation, 104
factorial meta-structure, 104

Index 423

inner product meta-structure, 105
loop unrolling, 104, 141

MinGW/MSYS
building binutils in, 406
building CLooG in, 406
building GCC in, 401, 408
building GMP in, 403
building ISL in, 406
building MPC in, 404
building MPFR in, 404
building PPL in, 405
building the LED program in, 21
PATH variable in, 409

MKS (meter, kilogram, second), xvi, 53
MPC, 401, 402

build, 404
MPFR, 401

build, 404
multitasking, 27, 219

C++ thread support, 229
and system design, 399
basic, 219
extended, 226
preemptive, 228, 229
preemptive, pros and cons, 228
start in main(), 169, 226

multitasking scheduler, 123, 169, 219
scheduler(), 225
scheduling algorithm, 219
start in main(), 169, 226
task control block, 222
task list, 224
task timing, 221

mutable, 10, 75
mutex, 228

name mangling, 121
and demangling, 122

namespace, 5, 14
anonymous, 5, 15, 40
nested namespace definitions, 40
program organization with, 39
std namespace, 14

NaN (not-a-number), 234, 235, 279
native (natural) integer types, 127
native code, xv
natural logarithmic base, e, 111, 236, 237
new operator, 137, 205

placement, 207, 209
newlib, 408

build GCC with, 408
copy to GCC source tree, 408

Newton iteration, 286

nm (the names program), 122
non-copyable class mechanism, 74, 184, 312
noncopyable class, 68, 75

in Boost, 75
class, 312
nop operation, 123, 177
nothing structure, 309

as place-holder, 309
in fixed point class, 310
in triple class, 311

nullptr, 45
replaces NULL, 45

numeric algorithms (STL)
see STL numeric, 50

numeric limits, 47, 88, 235, 367
and subnormals, 235
specialization for fixed point, 287
specialization of, 270, 367
specialization for 32-bit int, 369
std::numeric limits synopsis, 368

numeric limits in std
see numeric limits, 367

object file
absolute, 24
crt0.o, 24
led.elf, 24
led.o, 24

object-oriented programming, 61
opcode

and bit operations, 149
generated by compiler, 120
in assembly listings, 120
jump, 178
width of for differenct CPUs, 117

operating system, 228
FreeRTOS, 228
LaBrosse’s, 228

optimization
and tuples, 384
common subexpression elimination, 114
compiler settings, 113
constant folding, 19, 32, 79, 140, 147, 149,

256, 274, 297
CRC32 benchmark, 113
hardware dimensioning, 131
lambda expressions, 139
loop unrolling, 104, 114, 140, 141
metaprogramming, 141
minimize interrupt frame, 134
native integer types, 128
ROM-able objects, 133, 358
shift-and-add, 130

424 Index

space, 113
space versus speed, 114, 356
speed, 113

orthogonal polynomials, 239
oscillator circuit

capacitor in, 412
quartz in, 412

overload, 366
function overloading, 366
math functions in <cmath>, 112, 238
new and delete, 206
operator overloading, 6
overloading assignment, 75, 270

package
10-pin 7-segment display, 192
DIL–28, 412
TO–220, 412

point class, 41
template version, 93

polymorphism
dynamic, 41, 63, 69, 120, 200, 366
dynamic, example of, 69
dynamic, overhead of, 70
static, 85, 97
static versus dynamic, 99
static, example of, 99

pop opcode, 137
port, I/O

driver class, 171
LED on port, 3, 4, 61
registers, 145
toggle for loud error, 177

POSIX, 230
regular expression syntax, 385
threads (pthreads), 230

power jack, 28
PPL, 401

build, 405
prefix

of Hungarian notation, not used, xvii
priority

class (of program parts), 398
of tasks in multitasking, 220, 225

pull-up resistor, 412
pulse-width modulated signal (PWM), 61,

181
driver class, 182

pure virtual see virtual, 71
push opcode, 135, 137
pwm class, 65
pwm type class, 182
Pythagoras’ constant,

√
2, 236, 237

Q-notation (for fixed-point), 268
quadratic equation, 260

derivative of, 260
quadruple-precision, 234
quartz, 412

R, set of real numbers, 235
R
2, two-dimensional Cartesian space, xviii, 93

R
2, two-dimensional Cartesian space, 41

R
3, three-dimensional Cartesian space, 50

range-based for(:), 382
applicable uses of, 382

readelf program, 121
reg access structure, 147, 149
register, 145

access, 145
access template, 147, 149
address, 145

regular expression, 385
Boost.Regex, 387
capture group, 385
POSIX syntax, 385

reinterpret cast, 363
in the LED program, 10, 18
potential dangers of, 364

remove volatile, 388
reset button, 28, 412
resistor, 4, 132, 192, 412
RGB LED, viii, 171, 198
Riemann zeta function, 239
ring allocator class, 212
ROM-able, 133, 358

scope
and static initialization rules, 164
delimited with curly braces, 6, 35
file-level, 14, 158
file-level via anonymous namespace, 15
global, 80
non-subroutine-local, 376
of for(;;)-loop, 36
of the C++ language, 395
of this book’s reference project, xvi

scope resolution operator (::), 9, 14, 15
and using directive, 15
with class members, 9
with namespaces, 14

seven-segment display, xi, 171, 192
shift-and-add, 130

CORDIC algorithms, 286
in digital filters, 297, 302, 303
replace multiply and divide, 130

Index 425

short, 6
short-circuit protection, 412
sine function

complex argument, 249
sin constexpr version, 254
derivative of, 259
fixed-point version, 277
fixed-point version (naive), 275
float version, 238
in fixed-point cosine, 283
in fixed-point tangent, 283
in sinc function, 236
in reflection of Gamma, 242

single-precision, 234
singleton instance, 166, 193, 197, 200
SPITM, 185

driver class, 186
SPITM

connector, 412
SPITM

flash tool, 25
spi communication class, 186
standard library, C, 357
standard library, C++, 5, 16

algorithms see STL algorithms, 375
atomic operations, 51
containers see STL containers, 371
fixed-size integer types, 36
iterators see STL iterators, 373
limits see numeric limits, 47
namespace std, 14
numeric see STL numeric, 50

standard user-defined literals, xi, 54
startup code, 12, 28, 155

customized, 155
static

constructor initialization, 155, 160
initialization, 17, 164
ROM-to-RAM static initialization, 155,

158
zero-clear static initialization, 158

static, 12
and singleton instance, 166
and uninitialized objects, 165
C-style, 15
constructors, 17
member function, 32
non-subroutine-local, 165, 376
static const member, 19

static assert, 47, 87, 298, 367
static cast, xx, 363

and explicit downcast, 69
std::any, viii, 389
Stirling’s approximation, 111, 245

STL (standard template library), xxxii, 100
efficiency, 102
portability, 102
use consistently, 137
using with microcontrollers, 100, 102

STL algorithms, 49, 100, 375
and lambda expressions, 100
and STL containers, 373
categories of, 375
minimax, 49, 335, 338
minimax std::min and std::max,

375
std::all of(), 49, 375
std::copy(), 49
std::count(), 375
std::fill(), 49
std::for each(), 49, 100, 139, 161,

219, 305, 327, 375–377
std::lower bound(), 319
std::search(), 375

STL containers, 48, 100, 371, 382
std::array, 371
std::array, xix, 46, 48, 50, 106, 190,

224, 292, 293, 320, 327, 336, 365,
381

std::array, 133
std::basic_string, 371
std::deque, 371
std::forward_list, 371
std::initializer list, 380
std::list, 371
std::string, 371
std::string, 54, 86, 384, 385
std::string, 133
std::vector, 371
std::vector, xix, 100, 106, 107, 186,

208, 209, 327, 365, 372, 373, 376
std::wstring, 371

STL iterators, 48, 100, 319, 335, 373
categories of, 374
constant, 374
in dynamic array class, 330
in task-list priority, 225
non-constant, 374
range in sequence, 140, 374
std::reverse iterator, 161

STL numeric, 50
std::accumulate(), 50
std::inner product(), 50

structure, 6
bit-field, 152
bit-mapped, 152
bit-mapped, non-portable, 154
C-style, 152

426 Index

data structure, 11
difference between classes/structures,

11
structured binding declarations, viii, 392
subnormal numbers, 234, 279

infinity, 234, 279
NaN, 234, 279

suffix
of Hungarian notation, not used, xvii
user-defined suffixes, 53
with literal constant values, xix

system-tick, 178
system tick variable, xvii, 134, 179

task control block class, 222
task list (of task control blocks), 224
template, 42, 85

and scalability, 42, 87
and static polymorphism, 97
and the STL, 100
class member functions, 90
class types, 93
default parameters, 94
functions, 85
metaprogramming, 104
parameter, 85
scalability, 140
specialization, 95
specialization, partial, 97
variable template, 110
variadic, 102

template parameter
see template, parameter, 85

tgamma()
float implementation, 243
numerical results, 245

thread
C++ thread support, 229
Boost.Thread, 230
POSIX threads (<pthread.h>), 230

TO–220 package, 412
tuple, 380, 382

and generic metaprogramming, 107
std::get() facility, 108, 384
std::make tuple facility, 384
std::tuple element facility, 384
std::tuple size facility, 110, 384
things tuple, 108

type detection see decltype keyword, 381
type inference see auto keyword, 381
typedef, 11

in the LED program, 3
simplify code with, 125

underscore
in GCC attribute syntax, 175
in preprocessor macros, xx
in symbol names, xvii

uniform initialization syntax, 12, 364
and aggregate types, 364
and built-in types, 364
and std::initializer list, 100
and STL containers, 365
in constructor initialization list, 365

union, 6
C-style, 153
with bit-mapped structure, 153

user-defined literals, 53, 230
using directive, 15

variable
local variables, 35
variable template, 110

variable template, xi, 110
and generic programming, 111

variadic template, 102
and operator..., 103
example of, 103
parameter pack, 103

virtual
pure virtual, abstract, 71

virtual
destructor, 62, 63
member function, 62
override, 62
using the virtual keyword, 64

virtual function mechanism, 63, 354, 366
and dynamic polymorphism, 63
overhead of, 70
unavailable in the base class, 81

volt meter, 414
voltage divider, 131

zeta function, 239

	Preface to the Third Edition
	New or Significantly Modified Sections
	Improved or New Examples and Code Snippets
	Companion Code
	Further Notes on Coding Style
	Updated Trademarks and Acknowledgments

	Preface to the Second Edition
	Companion Code
	More Notes on Coding Style

	Preface to the First Edition
	About This Book
	Companion Code, Targets and Tools
	Notes on Coding Style
	Acknowledgements

	Contents
	Acronyms
	References

	Part I Language Technologies for Real-Time C++
	1 Getting Started with Real-Time C++
	1.1 The LED Program
	1.2 The Syntax of C++
	1.3 Class Types
	1.4 Members
	1.5 Objects and Instances
	1.6 #include
	1.7 Namespaces
	1.8 C++ Standard Library
	1.9 The main() Subroutine
	1.10 Low-Level Register Access
	1.11 Compile-Time Constant
	References

	2 Working with a Real-Time C++ Program on a Board
	2.1 The Target Hardware
	2.2 Build and Flash the LED Program
	2.3 Adding Timing for Visible LED Toggling
	2.4 Run and Reset the LED Program
	2.5 Recognizing and Handling Errors and Warnings
	2.6 Reaching the Right Efficiency
	References

	3 An Easy Jump Start in Real-Time C++
	3.1 Declare Locals when Used
	3.2 Fixed-Size Integer Types
	3.3 The bool Type
	3.4 Organization with Namespaces
	3.5 Basic Classes
	3.6 Basic Templates
	3.7 nullptr Replaces NULL
	3.8 Generalized Constant Expressions with constexpr
	3.9 static assert
	3.10 Using <limits>
	3.11 std::array
	3.12 Basic STL Algorithms
	3.13 <numeric>
	3.14 atomic load() and atomic store()
	3.15 Digit Separators
	3.16 Binary Literals
	3.17 User-Defined Literals
	3.18 Using alignof and alignas
	3.19 The Specifier final
	3.20 Alias as an Alternative to typedef
	References

	4 Object-Oriented Techniques for Microcontrollers
	4.1 Object Oriented Programming
	4.2 Objects and Encapsulation
	4.3 Inheritance
	4.4 Dynamic Polymorphism
	4.5 The Real Overhead of Dynamic Polymorphism
	4.6 Pure Virtual and Abstract
	4.7 Class Relationships
	4.8 Non-copyable Classes
	4.9 Constant Methods
	4.10 Static Constant Integral Members
	4.11 Class Friends
	4.12 Virtual Is Unavailable in the Base Class Constructor
	References

	5 C++ Templates for Microcontrollers
	5.1 Template Functions
	5.2 Template Scalability, Code Re-Use and Efficiency
	5.3 Template Member Functions
	5.4 Template Class Types
	5.5 Template Default Parameters
	5.6 Template Specialization
	5.7 Static Polymorphism
	5.8 Using the STL with Microcontrollers
	5.9 Variadic Templates
	5.10 Template Metaprogramming
	5.11 Tuples and Generic Metaprogramming
	5.12 Variable Templates
	References

	6 Optimized C++ Programming for Microcontrollers
	6.1 Use Compiler Optimization Settings
	6.2 Know the Microcontroller's Performance
	6.3 Know an Algorithm's Complexity
	6.4 Use Assembly Listings
	6.5 Use Map Files
	6.6 Understand Name Mangling and De-mangling
	6.7 Know When to Use Assembly and When Not to
	6.8 Use Comments Sparingly
	6.9 Simplify Code with typedef and Alias
	6.10 Use Native Integer Types
	6.11 Use Scaling with Powers of Two
	6.12 Potentially Replace Multiply with Shift-and-Add
	6.13 Consider Advantageous Hardware Dimensioning
	6.14 Consider ROM-Ability
	6.15 Minimize the Interrupt Frame
	6.16 Use Custom Memory Management
	6.17 Use the STL Consistently
	6.18 Use Lambda Expressions
	6.19 Use Templates and Scalability
	6.20 Use Metaprogramming to Unroll Loops
	References

	Part II Components for Real-Time C++
	7 Accessing Microcontroller Registers
	7.1 Defining Constant Register Addresses
	7.2 Using Templates for Register Access
	7.3 Generic Templates for Register Access
	7.4 Bit-Mapped Structures
	Reference

	8 The Right Start
	8.1 The Startup Code
	8.2 Initializing RAM
	8.3 Initializing the Static Constructors
	8.4 The Connection Between the Linker and Startup
	8.5 Understand Static Initialization Rules
	8.6 Avoid Using Uninitialized Objects
	8.7 Jump to main() and Never return
	8.8 When in main(), What Comes Next?
	References

	9 Low-Level Hardware Drivers in C++
	9.1 An I/O Port Pin Driver Template Class
	9.2 Programming Interrupts in C++
	9.3 Implementing a System-Tick
	9.4 A Software PWM Template Class
	9.5 A Serial SPI™ Driver Class
	9.6 CPU-Load Monitors
	9.7 Controlling a Seven-Segment Display
	9.8 Animating an RGB LED
	References

	10 Custom Memory Management
	10.1 Dynamic Memory Considerations
	10.2 Using Placement-new
	10.3 Allocators and STL Containers
	10.4 The Standard Allocator
	10.5 Writing a Specialized ring allocator
	10.6 Using ring allocator and Other Allocators
	10.7 Recognizing and Handling Memory Limitations
	References

	11 C++ Multitasking
	11.1 Multitasking Schedulers
	11.2 Task Timing
	11.3 The Task Control Block
	11.4 The Task List
	11.5 The Scheduler
	11.6 Extended Multitasking
	11.7 Preemptive Multitasking
	11.8 The C++ Thread Support Library
	References

	Part III Mathematics and Utilities for Real-Time C++
	12 Floating-Point Mathematics
	12.1 Floating-Point Arithmetic
	12.2 Mathematical Constants
	12.3 Elementary Functions
	12.4 Special Functions
	12.5 Complex-Valued Mathematics
	12.6 Compile-Time Evaluation of Functions with constexpr
	12.7 Generic Numeric Programming
	References

	13 Fixed-Point Mathematics
	13.1 Fixed-Point Data Types
	13.2 A Scalable Fixed-Point Template Class
	13.3 Using the fixed point Class
	13.4 Fixed-Point Elementary Transcendental Functions
	13.5 A Specialization of std::numeric limits
	References

	14 High-Performance Digital Filters
	14.1 A Floating-Point Order-1 Filter
	14.2 An Order-1 Integer Filter
	14.3 Order-N Integer FIR Filters
	14.4 Some Worked-Out Filter Examples
	References

	15 C++ Utilities
	15.1 The nothing Structure
	15.2 The noncopyable Class
	15.3 A Template timer Class
	15.4 Linear Interpolation
	15.5 A circular buffer Template Class
	15.6 The Boost Library
	References

	16 Extending the C++ Standard Library and the STL
	16.1 Defining the Custom dynamic array Container
	16.2 Implementing and Using dynamic array
	16.3 Writing Parts of the C++ Library if None is Available
	16.4 Implementation Notes for Parts of the C++ Library and STL
	16.5 Providing now() for <chrono>'s High-Resolution Clock
	16.6 Extended-Complex Number Templates
	References

	17 Using C-Language Code in C++
	17.1 Accessing C Language Code in C++
	17.2 An Existing C-Language CRC Library
	17.3 Wrapping the C-Based CRC Library with C++ Classes
	17.4 Return to Investigations of Efficiency and Optimization
	References

	18 Additional Reading
	18.1 Literature List
	References

	Appendices
	A A Tutorial for Real-Time C++
	A.1 C++ Cast Operators
	A.2 Uniform Initialization Syntax
	A.3 Overloading
	A.4 Compile-Time Assert
	A.5 Numeric Limits
	A.6 STL Containers
	A.7 STL Iterators
	A.8 STL Algorithms
	A.9 Lambda Expressions
	A.10 Initializer Lists
	A.11 Type Inference and Type Declaration with auto and decltype
	A.12 Range-Based for(:)
	A.13 Tuple
	A.14 Regular Expressions
	A.15 The <type traits> Library
	A.16 Using std::any
	A.17 Structured Binding Declarations
	References

	B A Robust Real-Time C++ Environment
	B.1 Addressing the Challenges of Real-Time C++
	B.2 Software Architecture
	B.3 Establishing and Adhering to Runtime Limits
	References

	C Building and Installing GNU GCC Cross Compilers
	C.1 The GCC Prerequisites
	C.2 Getting Started
	C.3 Building GMP
	C.4 Building MPFR
	C.5 Building MPC
	C.6 Building PPL
	C.7 Building ISL
	C.8 Building the Binary Utilities for the Cross Compiler
	C.9 Building the Cross Compiler
	C.10 Using the Cross Compiler
	References

	D Building a Microcontroller Circuit
	D.1 The Circuit Schematic
	D.2 Assembling the Circuit on a Breadboard
	References

	Glossary
	Index

