

Table of Contents

I The Interview 6

1 Getting Ready 7

2 Strategies For A Great Interview 12

3 Conducting An Interview 19

4 Problem Solving Patterns 23

II Problems 44

5 Primitive Types 45
5.1 Compute parity . 45
5.2 Swap bits . 46
5.3 Reverse bits . 46
5.4 Find a closest integer with the same weight 46
5.5 Compute x ⇥ y without multiply or add 46
5.6 Compute x/y . 47
5.7 Compute xy . 47
5.8 Convert base . 47
5.9 Compute the spreadsheet column encoding 47
5.10 Reverse digits . 47
5.11 Check if a decimal integer is a palindrome 48
5.12 Generate uniform random numbers 48
5.13 Check if rectangles intersect . 48
5.14 The open doors problem . 48
5.15 Compute the greatest common divisor 48

6 Arrays 49
6.1 The Dutch national flag problem 49
6.2 Increment a BigInteger . 50

vi Table of Contents

6.3 Multiply two BigIntegers . 50
6.4 Check if a board game is winnable 50
6.5 Delete a key from an array . 51
6.6 Delete duplicates from a sorted array 51
6.7 Find the first missing positive entry 51
6.8 Compute the max di↵erence . 51
6.9 Solve generalizations of max di↵erence 52
6.10 Compute the maximum product of all but one entries 52
6.11 Compute the longest contiguous increasing subarray 52
6.12 Enumerate all primes to n . 53
6.13 Permute the elements of an array 53
6.14 Compute the next permutation . 53
6.15 Rotate an array . 53
6.16 Sample o✏ine data . 54
6.17 Compute a random permutation 54
6.18 Compute a random subset of {0, 1, . . . ,n � 1} 54
6.19 Sample online data . 54
6.20 Generate nonuniform random numbers 54
6.21 The Sudoku checker problem . 55
6.22 Print a 2D array in spiral order . 55
6.23 Rotate a 2D array . 56
6.24 Compute rows in Pascal’s Triangle 56
6.25 Identify positions attacked by rooks 57
6.26 Identify the celebrity . 57

7 Strings 58
7.1 Interconvert strings and integers 58
7.2 Replace and remove . 58
7.3 Test palindromicity . 59
7.4 Reverse all the words in a sentence 59
7.5 Compute all mnemonics for a phone number 59
7.6 The look-and-say problem . 60
7.7 Convert from Roman to decimal 60
7.8 Compute all valid IP addresses . 60
7.9 Write a string sinusoidally . 61
7.10 Implement run-length encoding 61
7.11 Implement Elias gamma encoding 61
7.12 Implement the UNIX tail command 62
7.13 Left-justify text . 62
7.14 Find the first occurrence of a substring 62

8 Linked Lists 63
8.1 Merge two sorted lists . 64
8.2 Reverse a singly linked list . 64

ElementsOfProgrammingInterviews.com

Table of Contents vii

8.3 Reverse a single sublist . 65
8.4 Reverse sublists k at a time . 65
8.5 Test for cyclicity . 65
8.6 Test for overlapping lists—lists are cycle-free 65
8.7 Test for overlapping lists—lists may have cycles 66
8.8 Delete a node from a singly linked list 66
8.9 Remove the k-th last element from a list 66
8.10 Remove duplicates from a sorted list 67
8.11 Implement cyclic right shift for singly linked lists 67
8.12 Implement even-odd merge . 67
8.13 Implement list zipping . 68
8.14 Copy a postings list . 68
8.15 Test whether a singly linked list is palindromic 68
8.16 Compute the median of a sorted circular linked list 69
8.17 Implement list pivoting . 69
8.18 Sort a list . 69
8.19 Add list-based integers . 70

9 Stacks and Queues 71
9.1 Implement a stack with max API 71
9.2 Evaluate RPN expressions . 72
9.3 Test if parens, brackets, and braces are matched 72
9.4 Compute the longest substring with matching parens 72
9.5 Normalize pathnames . 72
9.6 Print the keys in a BST . 73
9.7 Search a postings list . 73
9.8 Compute buildings with a sunset view 73
9.9 Sort a stack . 74
9.10 Print a binary tree in order of increasing depth 74
9.11 Implement a circular queue . 75
9.12 Implement a queue API using two stacks 75
9.13 Implement a queue with max API 75
9.14 Compute the maximum of a sliding window 75
9.15 Compute the minimum number of multiplications to evaluate xn 76

10 Binary Trees 77
10.1 Test if a binary tree is balanced . 79
10.2 Find k-unbalanced nodes . 80
10.3 Test if a binary tree is symmetric 80
10.4 Compute the LCA in a binary tree 80
10.5 Compute the LCA when nodes have parent pointers 81
10.6 Sum the leaves in a binary tree encoding integers 81
10.7 Find a root to leaf path with specified sum 82
10.8 Compute the k-th node in an inorder traversal 82

ElementsOfProgrammingInterviews.com

viii Table of Contents

10.9 Implement an inorder traversal with O(1) space 82
10.10 Implement preorder and postorder traversals without recursion 82
10.11 Compute the successor . 83
10.12 Reconstruct a binary tree from traversal data 83
10.13 Reconstruct a binary tree from a preorder traversal with marker . 83
10.14 Form a linked list from the leaves of a binary tree 84
10.15 Compute the exterior of a binary tree 84
10.16 Compute right siblings . 84
10.17 Implement locking in a binary tree 84

11 Heaps 86
11.1 Merge sorted files . 86
11.2 Sort a k-increasing-decreasing array 87
11.3 Sort an almost-sorted array . 87
11.4 Compute the k closest stars . 87
11.5 Compute the median of online data 87
11.6 Compute the k largest elements in a max-heap 88
11.7 Compute fair bonuses . 88
11.8 Find k elements closest to the median 88
11.9 Test if x is bigger than the k-th largest element 88
11.10 Implement stack and queue APIs using heaps 89

12 Searching 90
12.1 Search a sorted array for first occurrence of k 92
12.2 Search a sorted array for the first element greater than k 92
12.3 Search a sorted array for A[i] = i 93
12.4 Search a cyclically sorted array . 93
12.5 Search a sorted array of unknown length 93
12.6 Compute the integer square root 93
12.7 Compute the real square root . 93
12.8 Search in two sorted arrays . 94
12.9 Search in a 2D sorted array . 94
12.10 Find the min and max simultaneously 94
12.11 Find the k-th largest element . 94
12.12 Compute the optimum mailbox placement 95
12.13 Find the k-th largest element—large n, small k 95
12.14 Find the missing IP address . 95
12.15 Find the duplicate and missing elements 95
12.16 Find an element that appears only once 96

13 Hash Tables 97
13.1 Partition into anagrams . 98
13.2 Test for palindromic permutations 98
13.3 Test if an anonymous letter is constructible 99
13.4 Implement an ISBN cache . 99

ElementsOfProgrammingInterviews.com

Table of Contents ix

13.5 Compute the LCA, optimizing for close ancestors 99
13.6 Compute the K most frequent queries 99
13.7 Find the line through the most points 99
13.8 Find the nearest repeated entries in an array 100
13.9 Find the smallest subarray covering all values 100
13.10 Find smallest subarray that sequentially covering all values . 100
13.11 Find the longest subarray with distinct entries 101
13.12 Find the length of a longest contained range 101
13.13 Compute all string decompositions 101
13.14 Find a highest a�nity pair . 101
13.15 Pair users by attributes . 102
13.16 Test the Collatz conjecture . 102
13.17 Implement a hash function for chess 102
13.18 Find the shortest unique prefix 103

14 Sorting 104
14.1 Compute the intersection of two sorted arrays 105
14.2 Implement mergesort in-place . 105
14.3 Count the frequencies of characters in a sentence 105
14.4 Find unique elements . 106
14.5 Render a calendar . 106
14.6 Add a closed interval . 106
14.7 Compute the union of intervals . 107
14.8 The interval covering problem . 107
14.9 Compute an optimum assignment of tasks 107
14.10 Implement counting sort . 108
14.11 Team photo day—1 . 108
14.12 Implement a fast sorting algorithm for lists 109
14.13 Compute the smallest nonconstructible change 109
14.14 Compute a salary threshold . 109
14.15 Implement a variable-length sort 109
14.16 Implement a least-distance sort . 109
14.17 Schedule time trials . 110
14.18 Find the winner and runner-up . 110

15 Binary Search Trees 111
15.1 Test if a binary tree satisfies the BST property 111
15.2 Find the first occurrence of k in a BST 112
15.3 Find the first key larger than k in a BST 112
15.4 Find the k largest elements in a BST 113
15.5 Compute the LCA in a BST . 113
15.6 Reconstruct a BST from traversal data 113
15.7 Compute the closest entries in three sorted arrays 113
15.8 The most visited pages problem 114

ElementsOfProgrammingInterviews.com

x Table of Contents

15.9 Find the most visited pages in a window 114
15.10 Build a BST from a sorted array . 114
15.11 Convert a sorted doubly linked list into a BST 114
15.12 Convert a BST to a sorted doubly linked list 115
15.13 Merge two BSTs . 115
15.14 Update a BST . 116
15.15 Test if three BST nodes are totally ordered 116
15.16 Test if a binary tree is an almost BST 116
15.17 Compute the average of the top three scores 117
15.18 The nearest restaurant problem . 117
15.19 Compute the view from above 118
15.20 Test if a binary tree is a min-first BST 118
15.21 Add credits . 119
15.22 Count the number of entries in an interval 119

16 Recursion 120
16.1 The Towers of Hanoi problem . 120
16.2 Implement regular expression matching 121
16.3 Enumerate all nonattacking placements of n-Queens 122
16.4 Enumerate permutations . 122
16.5 Enumerate the power set . 123
16.6 Enumerate all subsets of size k . 123
16.7 Enumerate strings of balanced parens 124
16.8 Enumerate palindromic decompositions 124
16.9 Enumerate binary trees . 124
16.10 Implement a Sudoku solver . 124
16.11 Compute a Gray code . 124
16.12 Synthesize an expression . 125
16.13 Count inversions . 126
16.14 Compute the diameter of a tree . 126
16.15 Draw the skyline . 126
16.16 Find the two closest points . 127

17 Dynamic Programming 128
17.1 Count the number of score combinations 130
17.2 Compute the Levenshtein distance 130
17.3 Compute the binomial coe�cients 130
17.4 Count the number of ways to traverse a 2D array 131
17.5 Plan a fishing trip . 131
17.6 Search for a sequence in a 2D array 132
17.7 The knapsack problem . 132
17.8 Measure with defective jugs 133
17.9 Test if a tie is possible . 133
17.10 Divide the spoils fairly . 134

ElementsOfProgrammingInterviews.com

Table of Contents xi

17.11 Compute the maximum subarray sum in a circular array . . . 134
17.12 The bedbathandbeyond.com problem 134
17.13 Determine the critical height 134
17.14 Find the maximum weight path in a triangle 135
17.15 Pick up coins for maximum gain 135
17.16 Decompose into palindromic strings 135
17.17 Test if s is an interleaving of s1 and s2 136
17.18 Count the number of steps in a board game 136
17.19 Compute the probability of a Republican majority 136
17.20 The pretty printing problem . 136
17.21 Find the longest nondecreasing subsequence 137
17.22 Voltage selection in a logic circuit 137
17.23 Find the maximum 2D subarray 138

18 Greedy Algorithms and Invariants 139
18.1 Implement Hu↵man coding 140
18.2 Implement a schedule which minimizes waiting time 140
18.3 Trapping water . 141
18.4 Load balancing . 141
18.5 Pack for USPS priority mail . 142
18.6 The 3-sum problem . 142
18.7 The gasup problem . 143
18.8 Enumerate numbers of the form a + b

p
2 143

18.9 Find the majority element . 144
18.10 Search for a pair-sum in an abs-sorted array 144
18.11 Compute the maximum water trapped by a pair of vertical lines . 144
18.12 The heavy hitter problem . 144
18.13 Find the longest subarray whose sum  k 145
18.14 Compute the largest rectangle under the skyline 146

19 Graphs 147
19.1 Search a maze . 150
19.2 Paint a Boolean matrix . 150
19.3 Compute enclosed regions . 150
19.4 Clone a graph . 152
19.5 Transform one string to another 152
19.6 Making wired connections . 152
19.7 Test degrees of connectedness 152
19.8 Team photo day—2 . 154
19.9 Compute a minimum delay schedule, unlimited resources . . 154
19.10 Compute a shortest path with fewest edges 154
19.11 Road network . 154
19.12 Test if arbitrage is possible . 155

ElementsOfProgrammingInterviews.com

20 Parallel Computing 156
20.1 Implement caching for a multithreaded dictionary 157
20.2 Analyze two unsynchronized interleaved threads 157
20.3 Implement synchronization for two interleaving threads 158
20.4 Implement a thread pool . 158
20.5 Implement asynchronous callbacks 158
20.6 Implement a Timer class . 159
20.7 The readers-writers problem . 159
20.8 The readers-writers problem with write preference 159
20.9 The readers-writers problem with fairness 160
20.10 Implement a producer-consumer queue 160
20.11 Test the Collatz conjecture in parallel 160
20.12 Implement broadcast in a tree-structured network 160
20.13 Design TeraSort and PetaSort . 161
20.14 Implement distributed throttling 161

21 Design Problems 162
21.1 Create photomosaics . 162
21.2 Design a spell checker . 162
21.3 Design a solution to the stemming problem 163
21.4 Plagiarism detector . 163
21.5 Design a system for detecting copyright infringement 163
21.6 Design TEX . 163
21.7 Design a search engine . 163
21.8 Implement PageRank . 164
21.9 Design a scalable priority system 164
21.10 Implement Mileage Run . 164
21.11 Implement Connexus . 165
21.12 Design an online advertising system 165
21.13 Design a recommendation system 165
21.14 Design an optimized way of distributing large files 165
21.15 Design the World Wide Web . 165
21.16 Estimate the hardware cost of a photo sharing app 165

III Hints 166

IV Solutions 175

V Notation and Index 480

Index of Terms 483

5 Primitive Types· 47

6 Arrays and Strings· 52

7 Linked Lists· 62

8 Stacks and Queues . 67

9 Binary Trees· 73

10 Heaps· 80

11 Searching· 84

12 Hash Tables· 92

13 Sorting' 98

14 Binary Search Trses - 104

15 Meta-algorithms ·114

46II Problems

3 Oonductlnq An Interview· 18

4 Problem Solving Patterns- 22

5

Getting Ready· 6

2 Strategies For·A Great Interview· 11

The Interview

Table of Contents

I

Index of Terms· 472

469

171

16 Algorithms on Graphs· 130

17 Intractability· 138

18 Parallel Computing ·144

19 Design Problems ·150

20 Probability· 155

21 Discrete Mathematics' 163

IV Notation and Index

III Solutions

1

Figure 1: Share price as a function of time.

Da:y0 Day5 Day10 Day 15 Day20 Day25 Day30 Day35 Day40

An interview problem

Let'sbegin with Figure1below. Itdepictsmovements in the shareprice of a company
over 40 days. Specifically,for each day, the chart shows the daily high and low,and
the price at the opening bell (denoted by thewhite square). Suppose you were asked
in an interview to design an algorithm that determines the maximum profit that
could have been made by buying and then selling a single share over a given day
range, subject to the constraint that the buy and the sell have to take place at the start
of the day. (Thisalgorithmmay be needed to backtest a trading strategy.)

Youmay want to stop reading now, and attempt this problem on your own.
First clarify the problem. For example, you should ask for the input format.

Let's say the input consists of three arrays L,H, and 5, of nonnegative floating point
numbers, representing the low,high, and starting prices for each day. The constraint
that the purchase and sale have to take place at the start of the day means that it

Elements of Programming Interviews (EPI) aims to help engineers interviewing
for software development positions. The primary focus of EPI is data structures,
algorithms, system design, and problem solving. The material is largely presented
through questions.

- N.MACH'AVILLI,1513

And it ought to be remembered tluJt there is nolhing ,"em!
difflcuJt to tllb In l1111fd,mem! per{W1I$ to cond'lct, or
mOI'I!ullCtrtain in Ussuccess,tIIIIn to t/lb the ItsIdin the
introduction of IInew order of things.

Introduction

ElementsOfProgranuninglntervietls. com

suffices to consider S. Youmay be tempted to simply return the differenceof the
minimum and maximum elements in S. If you try a few test cases, you will see that
the minimum can occur after the maximum, which violates the requirement in the
problem statement-you have to buy before you can sell.

At this point, a brute-force algorithm would be appropriate. For each pair of
indices i and j > i compute Pi,} = S[]1- S[i] and compare this difference to the
largest difference,d, seen so far. If Pi,} is greater than d, set d to Pi,i' Youshould be
able to code this algorithm using a pair of nested for-loops and test it in a matter
of a few minutes. You should also derive its time complexity as a function of the
length n of the input array. The inner loop is invoked n - 1 times, and the i-th
iteration processes n - 1 - i elements. Processing an element entails computing a
difference, performing a compare, and possibly updating a variable, all of which
take constant time. Hence the run time is proportional to r,~~(n -1-k) = (n-~)(n),i.e.,
the time complexity of the brute-force algorithm isO(n2). Youshould also consider
the space complexity,i.e.,how much memory your algorithm uses. The array itself
takesmemory proportional to n,and the additional memory used by the brute-force
algorithm is a constant independent of n-a couple of iterators and one temporary
floating point variable.

Once you have a working algorithm, try to improve upon it. Specifically,an
O(n2) algorithm is usually not acceptable when faced with large arrays. Youmay
have heard of an algorithm design pattern called divide and conquer. It yields the
following algorithm for this problem. Split S into two subarrays, S[O: LV] and
S[L¥J+ 1 : n - 1]; compute the best result for the first and second subarrays; and
combine these results. Inthe combine step we take the better of the results for the
two subarrays. However, we also need to consider the casewhere the optimum buy
and sell take place in separate subarrays. When this is the case, the buy must be in
the first subarray, and the sell in the second subarray, since the buy must happen
before the sell. If the optimum buy and sell are in different subarrays, the optimum
buy price is the minimum price in the first subarray, and the optimum sell price is in
the maximumprice in the second subarray. Wecancompute these prices inO(n) time
with a single pass over each subarray. Therefore the time complexity T(n) for the
divide and conquer algorithm satisfies the recurrence relation T(n) = 2T(V +O(n),
which solves toO(n logn).

The divide and conquer algorithm is elegant and fast. Its implementation entails
some corner cases, e.g., an empty subarray, subarrays of length one, and an array in
which the price decreases monotonically,but it can still be written and tested by a
good developer in 20-30minutes.

Lookingcarefully at the combine step of the divide and conquer algorithm, you
may have a flash of insight. Specifically,you may notice that the maximum profit
that can be made by selling on a specificday is determined by the minimum of the
stockprices over the previous days. Sincethemaximum profit corresponds to selling
on some day,the followingalgorithm correctlycomputes themaximum profit. Iterate
through S,keeping track of the minimum elementm seen thus far. If the differenceof
the current element and m is greater than themaximum profit recorded so far,update

Introduction2

ElementsOfProgramminglnterviews.com

Book organization and study guide

Interviewing successfully is about more than being able to intelligently select data
structures and design algorithms quickly. For example, you also need to know how
to identify suitable companies, pitch yourself, ask for help when you are stuck on an
interview problem, and convey your enthusiasm. These aspects of interviewing are
the subject of Chapters 1-3, and are summarized in Table 1.1 on Page 7.

Chapter 1 is specifically concerned with preparation, Chapter 2 discusses how you
should conduct yourself at the interview itself and Chapter 3 describes interviewing
from the interviewer's perspective. The latter is important for candidates too, because
of the insights it offers into the decision making process. Chapter 4 reviews problem
solving patterns.

Since not everyone will have the time to work through EPI in its entirety, we have
prepared a study guide (Table 1.2 on Page 8) to problems you should solve, based on
the amount of time you have available.

The problem chapters are organized as follows. Chapters 5-14 are concerned with
basic data structures, such as arrays and binary search trees, and basic algorithms,
such as binary search and quicksort. In our experience, this is the material that
most interview questions are based on. Chapters 15-1.7 cover advanced algorithm
design principles, such as dynamic programming and heuristics, as well as graphs.
Chapters 18-19 focus on distributed and parallel programming, and design problems.
Chapters 20-21 study probability and discrete mathematics: candidates for positions
in finance companies should pay special attention to them.

The notation, specifically the symbols we use for describing algorithms, e.g.,
ISI,A[i: j], is fairly standard. It is summarized starting on Page 470i you are strongly
recommended to review it. Terms, e.g., BPS and dequeue, are indexed starting on
Page 471.

the maximum profit. This algorithm performs a constant amount of work per array
element, leading to an O(n) time complexity. It uses two float-valued. variables (the
minimum element and the maximum profit recorded so far) and an iterator, i.e.,
0(1) additional space. It is considerably simpler to implement than the divide and
conquer algorithm-a few minutes should suffice to write and test it. Working code
is presented in Solution 6.3 on Page 185.

If in a 45-60 minutes interview, you can develop the algorithm described. above,
implement and test it, and analyze its complexity, you would have had a very suc­
cessful interview. In particular, you would have demonstrated to your interviewer
that you possess several key skills:

- The ability to rigorously formulate real-world problems.
- The skills to solve problems and design algorithms.
- The tools to go from an algorithm to a tested program.
- The analytical techniques required to determine the computational complexity

of your solution.

3Introduction

ElementsOfProgrammingInterviews.com

Level and prerequisites

We expect readers to be familiar with data structures and algorithms taught at the
undergraduate level. The chapters on concurrency and system design require knowl­
edge of locks, distributed systems, operating systems (OS), and insight into com­
monly used applications. Much of the material in the chapters on meta-algorithms,
graphs, intractability, probability, and discrete mathematics is more advanced and
geared towards candidates with graduate degrees or specialized knowledge.

The review at the start of each chapter is not meant to be comprehensive and if
you are not familiar with the material, you should first study it in an algorithms
textbook. There are dozens of such texts and our preference is to master one or two
good books rather than superficially sample many. We like Algorithms by Dasgupta,
Papadimitriou, and Vazirani because it is succinct and beautifully written; Introduc­
tion toAlgorithms by Cormen, Leiserson, Rivest, and Stein is more detailed and serves
as a good reference.

Since our focus is on problems that can be solved in an interview, we do not
include many elegant algorithm design problems. Similarly, we do not have any
straightforward review problems; you may want to brush up on these using text­
books.

Problems, solutions, variants, and ninjas

Most solutions in EPI are based on basic concepts, such as arrays, hash tables, and bi­
nary search, used in clever ways. A few solutions use relatively advanced machinery,
e.g., Dijkstra's shortest path algorithm or random variables. Youwill encounter such
problems in an interview only if you have a graduate degree or claim specialized
knowledge, such as graph theory or randomized algorithms.

Most solutions include code snippets. These are primarily written in C++, and use
C++l1 features. Programs concerned with concurrency are in Java. C++l1 features
germane to EPI are reviewed on Page 172. A guide to reading C++ programs for
Java developers is given on Page 172. Source code, which includes randomized and
directed test cases, can be found at ElementsOfProgrammlnginterviews. com/code.
System design problems, and some problems related to probability and discrete
mathematics, are conceptual and not meant to be coded.

At the end of many solutions we outline problems that are related to the original
question. We classify such problems as variants and s-variants. A variant is a
problem whose formtilation or solution is similar to the solved problem. An e­
variant is a problem whose solution differs slightly, if at all, from the given solution.
Some s-variants may be phrased quite differently from the original problem.

Approximately a quarter of the questions inEPI have a white ninja (~) or black
ninja (0') designation. White ninja problems are more challenging, and are meant for
applicants from whom the bar is higher, e.g., graduate students and tech leads. Black
ninja problems are exceptionally difficult, and are suitable for testing a candidate's
response to stress, as described on Page 16. Non-ninja questions should be solvable
within an hour-long interview and, in some cases, take substantially less time.

Introduction'4

The Interview

Part I

6

Ideally,you would prepare for an interview by solving all the problems in EPI. This
is doable over 12months if you solve a problem a day,where solving entails writing
a program and getting it to work on some test cases.

Sincedifferent candidates have different time constraints, we have outlined sev­
eral study scenarios,and recommended a subset of problems for each scenario. This
information is summarized in Table 1.2 on Page 8. The preparation scenarios we
consider are Hackathon (a weekend entirely devoted to preparation), finals cram
(oneweek, 3-4 hours per day), term project (fourweeks, 1.5-2.5hours per day), and
algorithms class (3-4 months, 1 hour per day).

At Coogle, Amazon, Microsoft, and similar companies, a large majority of the
interview questions are drawn from the topics in Chapters 5-14. Exercisecommon
sense when using Table1.2(e.g., ifyou are interviewing fora position with a financial
firm, you should pay moreemphasis to Probabilityand DiscreteMathematics. If you
have a graduate degree or are interviewing for a lead position, add some starred
problems.

Although an interviewer may occasionally ask a question directly from EPr, you
should not base your preparation on memorizingsolutions. Rote learning will likely
lead to your giving a perfect solution to the wrong problem.

Study guide

The most important part of interview preparation is knowing the material and prac­
ticing problem solving. However the nontechnical aspects of interviewing are also
very important, and often overlooked. Chapters 1-3 are concerned with the non­
technical aspects of interviewing, ranging from resume preparation to how hiring
decisions are made. These aspects of interviewing are summarized in Table LIon
the facingpage

Beforeeverything else,getting ready is the secret of success,

-H.PoRD

Getting Ready

CHAPTBR

ElementsOfProgrammingInterviews.com

The interview lifecyc1e

Generally speaking, interviewing takes place in the following steps:
1. Identify companies that you are interested in, and, ideally, find people you

know at these companies.
2. Prepare your resume using the guidelines on the following page, and submit

it via a personal contact (preferred), or through an online submission process
or a campus career fair.

3. Perform an initial phone screening,which often consists of a question-answer
session over the phone or video chat with an engineer. Youmay be asked to
submit codevia a shared document or an online coding site such as ideone.com
or collabedit.com.Don't take the screening casually-it can be extremely chal­
lenging.

4. Go for an on-site interview-this consists of a series of one-on-one interviews

Conducting an Interview, on Page 18
- Don't be indecisive
- Create a brand ambassador
- Coordinate with other interviewers

o know what to test on
o look for patterns of mistakes

- Characteristics of a good problem:
e no single point of failure
e has multiple solutions
o covers multiple areas
o is calibrated on colleagues
e does not require unnecessary domain

knowledge .
- Control the conversation

o draw out quiet candidates
o manage verbose/overconfident candi-

dates
- Use a process for recording & scoring
- Determine what training is needed
- Apply the litmus test

At the IntervIew, on Page 11
- Don't solve the wrong problem
- Get specs & requirements
- Construct sample input/output
- Work on small examples first
- Spell out the brute-force solution
- Think out loud
- Apply patterns
- Test for comer-cases
- Use proper syntax
- Manage the whiteboard
- Be aware of memory management
- Get function Signatures right

General Advice, on Page 15
- Know the company & interviewers
- Communicate clearly
- Be passionate
- Behonest
- Stay positive
- Don't apologize
- Be well-groomed
- Mind your body language
- Leave perks and money out
- Be ready for a stress interview
- Learn from bad outcomes
- Negotiate the best offer

The Interview Lifecycle, on the current
page
- Identify companies, contacts
- Resume preparation

o Basic principles
o Website with links to projects
o LinkedIn profile & recommendations

- Resume submission
- Mock interview practice
- Phone/campus screening
- On-site interview
- Negotiating an offer

Table 1.1: A summary of nontechnical aspects of interviewing

7Chapter 1. GettingReady

ElementsOfProgramminglnterviews.co2

Italways astonishes us to see candidates who've worked hard for at least four years

The resume

with engineers and managers, and a conversation with your Human Resources
(HR) contact.

5. Receive offers--these are usually a starting point for negotiations.
Note that there may be variations=-e.g., a company may contact you, or you

may submit via your college's career placement center. The screening may involve
a homework assignment to be done before or after the conversation. The on-site
interview may be conducted over a video chat session. Most on-sites are half a day,
but others may last the entire day. For anything involving interaction over a network,
be absolutely sure to work out logistics (a quiet place to talk with a landline rather
than a mobile, familiarity with the coding website and chat software, etc.) well in
advance.

We recommend that you interview at as many places as you can without it taking
away from your job or classes. The experience will help you feel more comfortable
with interviewing and you may discover you really like a company that you did not
know much about.

Scenariol Scenario 2 Scenario 3 Scenarlo4
Finals cram Tenn project- . Algorithm. class
~davs . 1month 4months

CO C2 C3 C4
5.1 5.2, 5.5-5.6 5.7-5.8 5.3,5.11-5.12 5.4,5.13
6.1 6.14,6.22 6.3,6.9 6.15,6.19,6.21 6.17-6.18,6.12,6.23
7.1 7.2,7.4 7.5-7.67.9 . 7.7-7.8 7.3,7.10-7.11
8.1 8.3, 8.5, 8.9 8.10,8.12 8.4,8.6,8.14 . 8.2,8.8
9.5 9.7,9.12-9.13 9.2,9.8 9.6,9.9 9.14
10.1 10.6,10.8 10.2,10.5 14.16-10.3 10.7,10.9
11.2 11.3,11.13 11.1,11.9 11.5,11.15 11.7,11.12
12.9 12.2,12.7 12.1,12.8 12.5,12.13 14.17,12.16
135 13.2,13.12 13.1,13.6,13.10 18.14,13.7 13.8,13.14
14.1 14.5,14.12 14.4,14.7 14.11,14.22 14.6, 14.13, 14.21
15.11 15.4,15.22 15.2, is.iz, 15.26 15.10, 15.15 15.14,15.25,15.27
16.1 16.7,16.10 16.3,16.6 16.5,16.9 16.11,16.13
17.2 17.8,17.12 17.4,17.10 17.1,17.9 17.3,17.11
185 18.1,18.8 18.3-18.4 18.2,18.6 18.11,18.15
19.1 19.4,19.7 19.12, 19.15 19.2, 19.5, 19.8 19.6,19.13
20.6 20.3,205 20.2,20.7 20.1,20.4 20.12,20.19
21.1 21.2,21.4 21.5-21.6 21.9-21.10 21.7-21.8,21.17

Table 1.2: First read Chapter 4. For each chapter, first read its introductory text. Use textbooks for
reference only. Unless a problem is italicized, it entails writing code. For Scenario i,write and test code
for the problems in Columns 0 to i- 1,and pseudo-<:adefor the problems in Column i.

Chapter1. Getting Ready8

ElementsOfProgrammingInterviews.com

in school, and often many more in the workplace, spend 30 minutes jotting down
random factoids about themselves and calling the result a resume.

A resume needs to address HR staff, the individuals interviewing you, and the
hiring manager. The HR staff, who typically first review your resume, look for
keywords, so you need to be sure you have those covered. The people interviewing
you and the hiring manager need to know what you've done that makes you special,
so you need to differentiate yourself.

Here are some key points to keep in mind when writing a resume:
1. Have a clear statement of your objective; in particular, make sure that you tailor

your resume for a given employer.
- Rg., "My outstanding ability is developing solutions to computationally

challenging problems; communicating them in written and oral form;
and working with teams to implement them. I would like to apply these
abilities at XYZ."

2. The most important points-the ones that differentiate you from everyone
else-should come first. People reading your resume proceed in sequential
order, so you want to impress them with what makes you special early on.
(Maintaining a logical flow, though desirable, is secondary compared to this
principle.)

- As a consequence, you should not list your programming languages,
coursework, etc. early on, since these are likely common to everyone. You
should list significant class projects (this also helps with keywords for
HR.), as well as talks/papers you've presented, and even standardized
test scores, if truly exceptional.

3. The resume should be of a high-quality: no spelling mistakes; consistent spac­
ings, capitalizations, numberings; and correct grammar and punctuation. Use
few fonts. Portable Document Format (PDF is preferred, since it renders well
across platforms.

4. Include contact information, a Linkedln profile, and, ideally, a URL to a per­
sonal homepage with examples of your work. These samples may be class
projects, a thesis, and links to companies and products you've worked on.
Include design documents as well as a link to your version control repository,

5. If you can work at the company without requiring any special processing (e.g.,
if you have a Green Card, and are applying for a job in the US), make a note of
that.

6. Have friends review your resume: they are certain to find problems with it that
you missed. It is better to get something written up quickly, and then refine it
based on feedback.

7. A resume does not have to be one page long-two pages are perfectly appro­
priate. (Over two pages is probably not a good idea.)

8. As a rule, we prefer not to see a list of hobbies/extracurricular activities (e.g.,
"reading books", "watching TV", "organizing tea party activities") unless they
are really different (e.g., "Olympic rower'') and not controversial.

9Chapter 1. GettingReady

ElementsO£Progr~nglnterviews.com

Mock interviews are a great way of preparing for an interview. Get a friend to ask
you questions (fromBPIor any other source) and solve them on a whiteboard, with
pen and paper, or on a shared document. Have your friend take notes and give you
feedback,both positive and negative. Make a video recording of the interview. You
will cringe as you watch it, but it is better to learn of your mannerisms beforehand.
Also ask your friend to give hints when you get stuck. Inaddition to sharpening
your problem solvingand presentation skills, the experiencewill help reduceanxiety
at the actual interview setting.

Mock interviews

Whenever possible,have a friend or professional acquaintance at the company route
your resume to the appropriate manager/HR contact-the odds of it reaching the
right hands are much higher. At one company whose practiceswe are familiarwith,
a resume submitted through a contact is 50 times more likely to result in a hire than
one submitted online. Don't worry about wasting your contact's time-employees
often receive a referral bonus, and being responsible for bringing in stars is also
viewed positively,

Chapter1. Getting Ready10

11

Nomatter how cleverand well prepared you are, the solution to an interview problem
may not occur to you immediately. Here are some things to keep in mind when this
happens.

Clarify the question: This may seem obvious but it is amazing how many inter­
views go badly because the candidate spends most of his time trying to solve the
wrong problem. If a question seems exceptionally hard, you may have misunder­
stood it.

A goodway ofclarifyingthe question is to state a concreteinstanceofthe problem.
For example, if the question is "find the first occurrenceof a number greater than k
in a sorted array", you could ask "if the input array is (2,20,30) and k is 3, then are
you supposed to return 1, the index of 20?" These questions can be formalized as
unit tests.

Work on small examples: Consider Problem 21.1 on Page 163, which entails
determining which of the SOD doors are open. This problem may seem difficult at
first. However, if you start working out which doors are going to be open up to the
fifth door, you will see that only Door 1 and Door 4 are open. This may suggest to
you that the door is open only if its index is a perfect square. Once you have this
epiphany, the proof of itscorrectness isstraightforward. (Keepin mind this approach
will not work for all problems you encounter.)

Spell out the brute-force solution: Problems that are put to you in an interview
tend to have an obvious brute-force solution that has a high time complexity com­
pared to more sophisticated solutions. For example, instead of trying to work out

Approaching the problem

A typical one hour interview with a single interviewer consists of five minutes of
introductions and questions about the candidate's resume.' This is followed by five
to fifteenminutes of questioning on basic programming concepts. The core of the
interview is one or two detailed design questions where the candidate is expected
to present a detailed solution on a whiteboard, paper, or IDE. Depending on the
interviewer and the question, the solution may be required to include syntactically
correct code and tests.

- M. E. PORTER

The essenceof strategy is choosing wllat not to do.

Strategies For A Great Interview

CHAPTER

ElementsOfProgramminglnterviews.com

Once you have an algorithm, it is important to present it in a clear manner. Your
solution will be much simpler if you use Java or C++, and take advantage of libraries
such as Collections or Boost. However, it is far more important that you use the
language you are most comfortable with. Here are some things to keep in mind
when presenting a solution.

Libraries: Master the libraries, especiaUy the data structures. Do not waste time
and lose credibility trying to remember how to pass an explicit comparator to a SST
constructor. Remember that a hash function should use exactly those fields which
are used in the equality check. A comparison function should be transitive.

Focus on the top-level algorithm: It's OK to use functions that you will implement
later. This will let you focus on the main part of the algorithm, will penalize you
less if you don't complete the algorithm. (Hash, equals, and compare functions are
good candidates for deferred implementation.) Specify that you will handle main
algorithm first, then corner cases. Add TOOO comments for portions that you want
to come back to.

Manage the whiteboard: You will likely use more of the board than you expect,
so start at the top-left corner. Have a system forabbreviating variables, e.g., declare
stackMax and then use sm for short. Make use of functions-skip implementing
anything that's trivial (e.g., finding the maximum of an array) or standard (e.g., a
thread pool).

Test for comer cases: For many problems, your general idea may work f?r

Presenting the solution

a DP solution for a problem (e.g., for Problem 15.12 on Page 121), try all the possi­
ble configurations. Advantages to this approach include: (1.) it helps you explore
opportunities for optimization and hence reach a better solution, (2.) it gives you
an opportunity to demonstrate some problem solving and coding skills, and (3.) it
establishes that both you and the interviewer are thinking about the same problem.
Be warned that this strategy can sometimes be detrimental if it takes a long time
describe the brute-force approach.

Think out loud: One of the worst things you can do in an interview is to freeze
up when solving the problem. It is always a good idea to think out loud. On the
one hand, this increases your chances of finding the right solution because it forces
you to put your thoughts in a coherent manner. On the other hand, this helps the
interviewer guide your thought process in the right direction. Even ifyou are not able
to reach the solution, the interviewer will form some impression of your intellectual
ability.

Apply patterns: Pattems-general reusable solutions to commonly occurring
problems-can be a good way to approach a baffling problem. Examples include
finding a good data structure, seeing if your problem is a good fit for a general
algorithmic technique, e.g., divide and conquer, recursion, or dynamic programming,
and mapping the problem to a graph. Patterns are described in much more detail in
Chapter 4.

Chapter 2. Strategies For A Great Interview12

ElementsOfProgramminglnterviews.com

Know your interviewers & the company

It can help you a great deal if the company can share with you the background of
your interviewers in advance. Youshould use search and social networks to learn
more about the people interviewing you. Letting your interviewers know that you
have researched them helps break the ice and forms the impression that you are
enthusiastic and will go the extra mile. For fresh graduates, it is also important to
think from the perspective of the interviewers as described in Chapter 3.

Once you ace your interviews and have an offer,you have an important decision
to make-is this the organization where you want to work? Interviews are a great
time to collectthis information. Interviews usually end with the interviewers letting
the candidates ask questions. Youshould make the best use of this time by g~tting
the information'you would need and communicating to the interviewer that you are
genuinely interested in the job. Basedon your interaction with the interviewers, you
may get a good idea of their intellect,passion, and fairness. This extends to the team
and company.

most inputs but there may be pathological instances where your algorithm (or your
implementation of it) fails. For example, your binary search code may crash if the
input is an empty arraYioryou may do arithmetic without considering the possibility
of overflow. It is important to systematically consider these possibilities. If there is
time,write unit tests. Small,extreme,or random inputs make forgood stimuli. Don't
forget to add code for checking the result. Often the code to handle obscure corner
casesmay be too complicated to implement in an interview setting. If so,you should
mention to the interviewer that you are aware of these problems, and could address
them if required.

Syntax: Interviewers rarely penalize you for small syntax errors since modern
integrated development environments (IDEs)excelat handling these details. How­
ever lots of bad syntax may result in the impression that you have limited coding
experience. Once you are done writing your program, make a pass through it to fix
any obvious syntax errors before claiming you are done.

Have a convention for identifiers, e.g., i, j ,k for array indices, A, B,C for arrays,
hm for HashMap,s for a String, sb for a StringBui'lder, etc.

Candidates often tend to get function signatures wrong and it reflects poorly on
them. Forexample, it would be an error to write a function in C that returns an array
but not its size. In C++ it is important to know whether to pass parameters by value
or by reference. Use const as appropriate.

Memory management: Generally speaking, it is best to avoid memory manage­
ment operations all together. In C++, if you are using dynamic allocation consider
using scoped pointers. The run time environment will automatically deallocate the
objecta scoped pointer points to when it goes out of scope. If you explicitlyallocate
memory,ensure that in every executionpath, this memory is de-allocated. Seeif you
can reuse space. For example, some linked list problems can be solved with 0(1)
additional spaceby reusing existing nodes.

13Chapter 2. Strategies ForA Great Interview

ElementsOiProgramminglnterviews.com

Often interviewers will ask you questions about your past projects, such as a senior
design project or an internship. The point of this conversation is to answer the
following questions:

Can the candidate clearly communicate a complex idea? This is one of the most
important skills for working in an engineering team. If you have a grand idea to
redesign a big system, can you communicate it to your colleagues and bring them
on board? It is crucial to practice how you will present your best work. Being
precise, clear, and having concrete examples can go a long way here. Candidates
communicating in a language that is not their first language, should take extra care
to speak slowly and make more use of the whiteboard to augment their words.

Is the candidate passionate about his work? We always want our colleagues to
be excited, energetic, and inspiring to work with. If you feel passionately about your
work, and your eyes light up when describing what you've done, itgoes a long way
in establishing you as a great colleague. Hence when you are asked to describe a

General conversation

In addition to knowing your interviewers, you should know about the company
vision, history, organization, products, and technology. You should be ready to talk
about what specifically appeals to you, and to ask intelligent questions about the
company and the job. Prepare a list of questions in advance; it gets you helpful
information as well as shows your knowledge and enthusiasm for the organization.
You may also want to think of some concrete ideas around things you could do for
the company; be careful not to come across as a pushy know-it-all.

All companies want bright and motivated engineers. However, companies differ
greatly in their culture and organization. Here is a brief classification.

Startup, e.g., Quora: values engineers who take initiative and develop products
on their o~. Such companies do not have time to train-new hires, and tend to hire
candidates who are very fast learners or are already familiar with their technology
stack, e.g., their web application framework, machine learning system, etc.

Mature consumer-facing company, e.g., Google: wants candidates who under­
stand emerging technologies from the user's perspective. Such companies have
a deeper technology stack, much of which is developed in-house. They have the
resources and the time to train a new hire.

Enterprise-oriented company, e.g., Oracle: looks for developers familiar with
how large projects are organized, e.g., engineers who are familiar with reviews,
documentation, and rigorous testing.

Government contractor, e.g., Lockheed-Martin: values knowledge of specifi­
cations and testing, and looks for engineers who are familiar with govemment­
mandated processes ..

Embedded systems/chip design company, e.g., National Instruments: wants
software engineers who know enough about hardware to interface with the hardware
engineers. The tool chain and development practices at such companies tend to be
very mature.

Chapter 2. Strategies For A Great Interview14

ElementsOfProgramminglntervi~ws.com

Be honest: Nobody wants a colleaguewho falsely claims to have tested code or
done a code review. Dishonesty in an interview is a fast pass to an early exit.

Remember,nothing breaks the truth more than stretching it-you should be ready
to defend anything you claimon your resume. Ifyour knowledge ofPython extends
only as far as having cut-and-paste sample code, do not add Python to your resume.

Similarly,if you have seen a problem before, you should say so. (Besure that it
really is the same problem, and bear in mind you should describe a correct solution
quickly if you claim to have solved it before.) Interviewers have been known to
collude to askthe same question ofa candidate to see ifhe tells the secondinterviewer
about the first instance. An interviewer may feign ignorance on a topic he knows in
depthto see if a candidate pretends to know it.

Keep a positive spirit: A cheerful and optimistic attitude can go a long way.
Absolutely nothing is to be gained, and much can be lost, by complaining how
difficult your journey was, how you are not a morning person, how inconsiderate
the airline/hotel/Hk staffwere, etc.

Don't apologize: Candidates sometimes apologize in advance for a weak GPA,
rusty coding skills, or not knowing the technology stack. Their logic is that by being
proactive they will somehow benefit from lowered expectations. Nothing can be
further from the truth. It focuses attention on shortcomings. More generally, if you
do not believe in yourself, you cannot expect others to believe in you.

Appearance: Most software companies have a relaxed dress-code, and new grad­
uates may wonder if they will look foolishby overdressing. The damage done when
you are too casual is greater than the minor embarrassment you may feel at being
overdressed. It is always a good idea to err on the side of caution and dress formally
for your interviews. At the minimum, be clean and well-groomed.

Beaware of your body language: Think of a friend or coworker slouched all the
time or absentmindedly doing things that may offendothers. Workon your posture,
eye contact and handshake, and remember to smile.

Keep money and perks out of the interview: Money is a big element in any job
but it is best left discussed with the HR division after an offer ismade. The same is
true for vacation time, day care support, and funding for conference travel.

Other advice

project fromthe past, it is best to pick something that you are passionate about rather
than a project that was complexbut did not interest you.

Is there a potential -interest match with some project? The interviewer may
gauge areas of strengths for a potential projectmatch. If you know the requirements
of the job, you may want to steer the conversation in that direction. Keep in mind
that because technology changes so fast many teams prefer a strong generalist, so
don't pigeonhole yourself.

15Chapter 2. Strategies For A Great Interview

ElementsOfProgramrningInterviews.com

Negotiating an offer

An offer is not an offer till it is on paper, with all the details filled in. All offers are
negotiable. We have seen compensation packages bargained up to twice the initial
offer, but 10-20%is more typical. When negotiating, remember there is nothing to be
gained, and much to lose, by being rude. (Being firm is not the same as being rude.)

To get the best possible offer, get multiple offers, and be flexible about the form of
your compensation. For example, base salary is less flexible than stock options, sign­
on bonus, relocation expenses, and Immigration and Naturalization Service (INS)
filing costs. Be concrete-instead of just asking for more money, ask for a P% higher
salary. Otherwise the recruiter will Simply come back with a small increase in the
sign-on bonus and claim to have met your request.

Your HR contact is a professional negotiator, whose fiduciary duty is to the com­
pany. He will know and use negotiating techniques such as reciprocity, getting
consensus, putting words in your mouth ("don't you think that's reasonable?"), as

The reality is that not every interview results in a job offer. There are many reasons
for not getting a particular job. Some are technical: you may have missed that key
flash of insight, e.g., the key to solving the maximum-profit on Page 1in linear time.
If this is the case, go back and solve that problem, as well as related problems.

Often, your interviewer may have spent a few minutes looking at your resume­
this is a depressingly common practice. This can lead to your being asked questions
on topics outside of the area of expertise you claimed on your resume, e.g., routing
protocols or Structured Query Language (SQL). If so, make sure your resume is
accurate, and brush up on that topic for the future.

You can fail an interview for nontechnical reasons, e.g., you came across as un­
interested, or you did not communicate clearly. The company may have decided
not to hire in your area, or another candidate with similar ability but more relevant
experience was hired.

You will not get any feedback from a bad outcome, so it is your responsibility
to try and piece together the causes. Remember the only mistakes are the ones you
don't learn from.

Learningfrom bad outcomes

Some companies, primarily in the finance industry, make a practice of having one
of the interviewers create a stressful situation for the candidate. The stress may be
injected technically, e.g., via a ninja problem, or through behavioral means, e.g., the
interviewer rejecting a correct answer or ridiculing the candidate. The goal is to see
how a candidate reacts to such situations-does he fall apart, become belligerent, or
get swayed easily. The guidelines in the previous section should help you through a
stress interview. (Bear in mind you will not know a priori if a particular interviewer
will be conducting a stress interview.)

Stress interviews

Chapter 2. Strategies For A Great ltlterview16

ElementsOfProgramminglnterviews.com

well as threats, to get the best possible deal for the company. (Thisis what recruiters
themselves are evaluated on internally.) The Wikipedia article on negotiation lays
bare many tricks we have seen recruiters employ.

One suggestion: stick to email, where it is harder for someone to paint you into
a corner. If you are asked for something (such as a copy of a competing offer),get
something in return. Often it is better to bypass the HR contact and speak directly
with the hiring manager.

At the end of the dar- remember your long term career iswhat counts, and joining
a company that has a brighter future (social-mobilevs. legacy enterprise), or offers
a position that has more opportunities to rise (developer vs. tester) is much more
important than a 10-20%difference incompensation.

17Chapter 2. Strategies For A Great Interoieui

18

The ultimate goal of any interview is to determine the odds that a candidate will
be a successful employee of the company. The ideal candidate is smart, dedicated,
articulate, collegial, and gets' things done quickly, both as an individual and in a
team. Ideally, your interviews should be designed, such that a good candidate scores
1.0 and a bad candidate scores 0.0.

One mistake, frequently made by novice interviewers, is to be indecisive. Unless
the candidate walks on water or completely disappoints, the interviewer tries not to
make a decision and scores the candidate somewhere in the middle. This means that
the interview was a wasted effort.

A secondary objective of the interview process is to turn the candidate into a
brand ambassador for the recruiting organization. Even if a candidate is not a good
fit for the organization, he may know others who would be. It is important for the
candidate to have an overall positive experience during the process. Itseems obvious

Objective

In this chapter we review practices that help interviewers identify a top hire. We
strongly recommend interviewees read it-knowing what an interviewer is looking
for will help you present yourself better and increase the likelihood of a successful
outcome.

For someone at the beginning of their career, interviewing may feel like a huge
responsibility. Hiring a bad candidate is expensive for the organization, not just
because the hire is unproductive, but also because he is a drain on the productivity
of his mentors and managers, and sets a bad example. Firing someone is extremely
painful as well as bad for to the morale of the team. On the other hand, discarding
good candidates is problematic for a rapidly growing organization. Interviewers
also have a moral responsibility not to unfairly crush the interviewee's dreams and
aspirations.

- "TheArt otWar, H

SUNTzu,515 B.C.

~2.~flt,a~;f%·
TTtm$lated-HIf you maw both yourself and
your enemy, you can win numerous battles
without jeopardy."

Conducting An lnterview

CHAPTER

Element sOfProgramminglntervi elqs. com

One important question you should ask yourself as an interviewer is how much
training time your work environment allows. For a startup it is important that a
new hire is productive from the firstweek, whereas a larger organization can budget
for several months of training. Consequently, in a startup it is important to test the
candidate on the specific technologies that he will use, in addition to his general
abilities.

For a larger organization, it is reasonable not to emphasize domain knowledge
and instead test candidates on data structures, algorithms, system design skills, and
problem solving techniques. The justification for this is as follows.Algorithms, data
structures, and system design underlie all software. Algorithms and data structure
code is usually a small component of a system dominated by the user interface
(UI),I/O, and format conversion. It is often hidden in library calls. However, such
code is usually the crucial component in terms of performance and correctness, and
often serves to differentiate products. Furthermore, platforms and programming
languages change quicklybut a firmgrasp of data structures, algorithms, and system
design principles, will always be a foundational part of any successful software
endeavor. Finally,many of the most successfulsoftwarecompanies have hired based
on ability and potential rather than experienceor knowledge of specifics,underlying
the effectivenessof this approach to selecting candidates.

Most big organizations have a structured interview process where designated
interviewers are responsible for probing specific areas. For example, you may be
asked to evaluate the candidate on their coding skills, algorithm knowledge, critical
thinking, or the ability to' design complex systems. This book gives interviewers
access to a fairly large collection of problems to choose from. When selecting a
problem keep the following in mind:

No single point of failure-if you are going to ask just one question, you should
not pick a problem where the candidate passes the interview if and only if he gets
one particular insight. Thebest candidate may miss a simple insight, and amediocre
candidate may stumble across the right idea. There should be at least two or three
opportunities for the candidates-to redeem themselves. For example, problems that
can be solved by dynamic programming can almost always be solved through a
greedy algorithm that is fast but suboptimum or a brute-force algorithm that is slow
but optimum. Insuch.cases;even if the candidate cannot get the key insight, he can
still demonstrate someproblem solving abilities. Problem6.3on Page53exemplifies
this type of question.

Multiple possible .solutions-if a given problem has multiple solutions, the

What to ask

that it is a bad idea for an interviewer to check email while the candidate is talking
or insult the candidate over a mistake he made, but such behavior is depressingly
common. Outside of a stress interview, the interviewer should work on making the
candidate feel positively about the experience, and, by extension, the position and
the company.

19Chapter 3. ConductingAn Interview

Eleme.ntsOfProgramminglnterviews. com

Conducting the interview

Conducting a good interview is akin to juggling. At a high level, you want to ask
your questions and evaluate the candidate's responses. Many things can happen in
an interview that could help you reach a decision, so it is important to take notes. At
the same time, it is important to keep a conversation going with the candidate and
help him out if he gets stuck. Ideally, have a series of hints worked out beforehand,
which can then be provided progressively as needed. Coming up with the right set
of hints may require some thinking. You do not want to give away the problem, yet
find a way for the candidate to make progress. Here are situations that may throw
you oft

A candidate that gets stuck and shuts up: Some candidates get intimidated by
the problem, the process, or the interviewer, and just shut up. Insuch situations, a
candidate's performance does not reflect his true caliber. It is important to put the
candidate at ease, e.g., by beginning with a straightforward question, mentioning
that a problem is tough, or asking them to think out loud.

A verbose candidate: Candidates who go off on tangents and keep on talking
without making progress render an interview ineffective. Again, it is important to
take control of the conversation. For example you could assert that a particular path
will not make progress.

An overconfident candidate: It is common to meet candidates who weaken their
case by defending an incorrect answer. To give the candidate a fair chance, it is
important to demonstrate to him that he is making a mistake, and allow him to
correct it. Often the best way of doing this is to construct a test case where the
candidate's solution breaks down.

chances of a good candidate coming up with a solution increases. It also gives
the interviewer more freedom to steer the candidate. A great candidate may finish
with one solution quickly enough to discuss other approaches and the trade-offs
between them. For example, Problem 11.15 on Page 90 can be solved using a hash
table or a bit array; the best solution makes use of binary search.

Cover multiple areas-even if you are responsible for testing the candidate on
algorithms, you could easily pick a problem that also exposes some aspects of design
and software development. For example, Problem 18.4 on Page 146 tests candi­
dates on concurrency as well as data structures. Problem 17.1 on Page 139 requires
knowledge of both dynamic programming and probability.

Calibrate on colleagues-interviewers often have an incorrect notion of how
difficult a problem is for a thirty minute or one hour interview. It is a good idea to
check the appropriateness of a problem by asking one of your colleagues to solve it
and seeing how much difficulty they have with it.

No unnecessary domain knowledge-it is not a good idea to quiz a candidate on
advanced graph algorithms if the job does not require it and the candidate does not
claim any special knowledge of the field. (The exception to this rule is if you want to
test the candidate's response to stress.)

Chapter3. ConductingAn Interview20

ElementsOfProgramminglnterviews.com

At the end of an interview, the interviewers usually have a good idea of how the
candidate scored. However, is important to keep notes and revisit them before
making a final decision. Whiteboard snapshots and samples of any code that the
candidate wrote should also be recorded. Youshould standardize scoring based on
which hints were given, how many questions the candidate was able to get to, etc.
Although isolated minor mistakes can be ignored, sometimes when you look at all
the mistakes together, clear signs of weakness in certain areas may emerge, such as
a lack of attention to detail and unfamiliarity with a language.

When the right choice is not clear,wait for the next candidate instead of possibly
making a bad hiring decision. The litmus test is to see if you would react positively
to the candidate replacing a valuable member of your team.

Scoring and reporting

21Chapter 3. ConductingAn Interview

22

Data structure patterns

A data structure is a particular way of storing and organizing related data items
so that they can be manipulated efficiently. Usually the correct selection of data
structures is key to designing a good algorithm. Differentdata structures are suited
to different applications; some are highly specialized. For example, heaps are par-

Developing problem solving skills is like learning to playa musical instrument­
books and teachers can point you in the right direction, but only your hard work
will take you there. Just as a musician, you need to know underlying concepts, but
theory is no substitute forpractice.
.Great problemsolvers have skillsthat cannotbe rigorously formalized. Still,when

faced with a challenging programming problem, it is helpful to have a small set of
"patterns"-general reusable solutions to commonlyoccurring problems-that may
be applicable.

Wenow introduce several patterns and illustrate them with examples. Wehave
classifiedthese patterns into three categories:

- data structure patterns,
- algorithm design patterns, and
- abstract analysis patterns.

These patterns are summarized in Table4.1on the facingpage, Table4.2on Page 28,
and Table4.3on Page 38,respectively.

At a meta-level, concrete inputs are the best starting point for many problems.
Smallinstances, suchasan array or aBSTcontaining5-7 elements,specialized inputs,
e.g., binary values, nonoverlapping intervals, connected graphs, etc., and extreme
cases, for instance input that is sorted or contains duplicates, can offer tremendous
insight.

The notion of patterns is very general; in particular, many patterns arise in the
context of software design-the builder pattern, composition, publish-subscribe, etc.
These are more suitable to large-scalesystems, and as such are outside the scope of
EPI,which is focused on smaller programs that can be solved in an interview.

- A. EINSTBIN

It's not IIlIII I'nI so smart, it's just that I stay with problems longer.

Problem Solving Patterns

CHAPTER

ElementsOfProgramminglnterviews.com

Youshould be comfortablewith the basic types (chars, integers, doubles, etc.), their
variants (unsigned, long, etc.), and operations on them (bitwise operators, compar­
ison, etc.). Don't forget that the basic types differ among programming languages.

Know how inti char, double, etc. are represented in
memory and the primitive operations on them.
Fast access for element at an index, slow lookups (un­
less sorted) and insertions. Be comfortable with no­
tions of iteration, resizing, partitioning, merging, etc.
Knowhow strings are represented inmemory. Under­
stand basic operators such as comparison, copying,
matching, joining, splitting, etc.
Understand trade-offswith respect to arrays. Becom­
fortable with iteration, insertion, and deletion within
singly and doubly linked lists. Know how to imple­
ment a list with dynamic allocation, and with arrays.
Understand insertion and deletion. Know array and
linked list implementations.
Use for representing hierarchical data. Know about
depth, height, leaves,searchpath, traversal sequences,
successor/predecessor operations.
Keybenefit: 0(1) lookup find-max,O(logn) insertion,
and O(logn) deletion of max. Node and array repre­
sentations. Min-heap variant.
Key benefit: 0(1) insertions, deletions and lookups.
Key disadvantages: not suitable for order-related
queries; need for resizing; poor worst-case perfor­
mance. Understand implementation using array of
buckets and collisionchains. Knowhash functions for
integers, strings, objects. Understand importance of
equals function. Variants such as Bloomfilters.
Key benefit: O(logn) insertions, deletions, lookups,
find-min, find-max, successor,predecessor when tree
is balanced. Understand implementation using nodes
and pointers. Be familiarwith notion of balance, and
operations maintaining balance. Know how to aug­
ment a binary search tree, e.g., interval trees and dy­
namic order statistics.

Table 4.1: Data structure patterns.

PRIMITIVE TYPES

Binary search trees

Hash tables

Heaps

Binary trees

Stacksand queues

Lists

Arrays & strings

Primitive types

ticularly well-suited for algorithms that merge sorted data streams, while compiler
implementations usually use hash tables to look up identifiers.

Solutions often require a combination of data structures. Our solution to the
problem of tracking the most visited pages on a website (Solution14.18on Page 110)
involves a combination of a heap, a queue, a binary search tree, and a hash table.

23Chapter 4. ProblemSolving Patterns

ElementsOfProgramminglnterviews.com

An abstract data type (ADT) is a mathematical model for a class of data structures
that have similar functionality. Strictly speaking, a list is an ADT, and not a data
structure. It implements an ordered collection of values, which may be repeated. In
the context of this book we view a list as a sequence of nodes where each node has a
link to the next node in the sequence. In a doubly linked list each node additionally
has a link to the prior node.

LISTS

Conceptually, an array maps integers in the range [0,n -1] to objects of a given type,
where n is the number of objects in this array. Array lookup and insertion are fast,
making arrays suitable for a variety of applications. Reading past the last element of
an array is a common error, invariably with catastrophic consequences.

The following problem arises when optimizing quicksort: given an array A whose
elements are comparable, and an index i,reorder the elements of A so that the initial
elements are all less than A[i], and are followed by elements equal to A[i], which in
tum are followed by elements greater than A[il, using 0(1) space.

The key to the solution is to maintain two regions on opposite sides of the array
that meet the requirements, and expand these regions one element at a time. Details
are given in Solution 6.1 on Page 183.

ARRAYS AND STRINGS

Por example, Java has no unsigned integers, and the number of bits in an integer is
compiler- and machine-dependent in C.

A common problem related to basic types is computing the number of bits set
to 1 in an integer-valued variable x. To solve this problem you need to know how
to manipulate individual bits in an integer. One straightforward approach is to
iteratively test individual bits using an unsigned integer variable m initialized to 1.
Iteratively identify bits of x that are set to 1by examining the bitwise AND of m with
x, shifting m left one bit at a time. The overall complexity is O(n)where n is the length
of the integer.

Another approach, which may run faster on some inputs, is based on computing
y = x & !(x - I), where & is the bitwise AND operator .. This is 1 at exactly the
rightmost bit of x. Consequently, this bit may be removed from x by computing xey.
The time complexity is 0(5), where 5 is the number of bits set to 1 in x.

In practice if the computation is done repeatedly, the most efficient approach
would be to create a lookup table. In this case, we could use a 256 entry integer­
valued array P such that P[tl is the number of bits set to 1 in i. If x is 32 bits, the
result can be computed by decomposing x into 4 disjoint bytes, b3, b2, bl, and bOoThe
bytes are computed using bitmasks and shifting, e.g., bi is (x &OxffOO)» 8. The final
result is P[b3] + P[b2] + P[bl] + P[bO]. Computing the parity of an integer is closely
related to counting the number of bits set to I, and we present a detailed analysis. of
the parity problem in Solution 5.1 on Page 173.

Chapter 4. Problem Solviltg Patterns24

ElementsOfProgramminglnterviews.com

A binary tree is a data structure that is used to represent hierarchical relationships.
Binary trees most commonly occur in the context of binary search trees, wherein
keys are stored in a soi:ted fashion. However, there are many other applications
of binary trees. Consider a set of resources organized as nodes in a binary tree.
Processes need to lockresource nodes. A node may be locked if and only if none of
its descendants and ancestors are locked. Your task is to design and implement an
application programming interface (API)for locking.

BINARY TREBS

Stackssupport last-in, first-out semantics for inserts and deletes,whereas queues are
first-in, first-out. Bothare ADTs,and are commonly implemented using linked lists
or arrays. Similarto lists, stacks and queues are usually building blocks in a solution
to a complexproblem, but can make for interesting problems in their own right.

As an exampleconsider the problem ofevaluatingReversePolishnotation expres­
sions, i.e., expressions of the form "3,4,X, 1,2,+,+", "1,1, +, -2, x", or "4,6,/,2, [".
A stack is ideal for this purpose-operands are pushed on the stack, and popped as
operators are processed, with intermediate results being pushed back onto the stack.
Details are given in Solution 8.2on Page 221.

STACKS AND QUEUES

The solution is based on an appropriate iteration combined with "pointer swap­
ping", i.e., updating next field for each node. Refer to Solution 7.11on Page 216for
details.

Figure 4.1: Zipping a list.

(b) List after zipping. Note that nodes are reused-flo memory has been allocated.

DJ~~.{IJ~[]I~'~I--~.1~4~1'~I--~.{IJl[I]1~'~I--••I[~~~I~I--~.{IJI[2]lx~1
t.1... &rZ2$G '112.t .12U. 'x183'

(a) US! before zipping. The rumber in hex below each noQerepresents its address in memory.

DJ~~.~I~~Ji~'~I--~~{IJl[I~r--+.{IJh~I~'~1--••[I~~~I3r--~.1~4:Qlxgl
.Xlttlll &x1241 .,,183' 8>.211' '&22"

A list is similar to an array in that it contains objects in a linear order. The key
differencesare that inserting and deleting elements in a list has time complexity0(1).
On the other hand, obtaining the k-th element in a list is expensive, having O(n)
time complexity. Lists are usually building blocks ofmore complex data structures.
However, they can be the subject of trickyproblems in their own right, as illustrated
by the following:

Given a singly linked list (/0, Iv 12, ... ,1"-1), define the "zip" of the list to be
(lO,l,,-I,III 1,,-2, ...). Suppose you were asked to write a function that computes the
zip of a list,with the constraint that it uses 0(1) space. Theoperation of this function
is illustrated in Figure 4.1.

25Chapter 4. ProblemSolvingPatterns

ElementsOfProgr~nglnterviews.co~

Binary search trees (BSTs)are used to store objects that are comparable. The underly­
ing idea is to organize the objects in a binary tree in which the nodes satisfy the BST
property: the key stored at any node isgreater than or equal to the keys stored in its

BINARY SEARCH TREES

A hash table is a data structure used to store keys, optionally with corresponding
values. Inserts, deletes and lookups run in 0(1) time on average. One caveat is that
these operations require a good hash function-a mapping from the set of allpossible
keys to the integers which is similar to a uniform random assignment. Another is
that if the number of keys that is to be stored is not known in advance then the
hash table needs to be periodically resized, which depending on how the resizing is
implemented, can lead to some updates having 8(n) complexity.

Suppose you were asked to write an application that compares n programs for
plagiarism. Specifically, your application is to break every program into overlapping
character strings, each of length 100, and report on the number of strings that appear
in each pair of programs. A hash table can be used to perform this check very
efficiently if the right hash function is used. Details are given in Solution 12.13 on
Page 286.

HAsH TABLES

A heap is a data structure based on a binary tree. It efficiently implements an ADT
called a priority queue. A priority queue resembles a queue, with one difference;
each element has a "priority" associated with it, and deletion removes the element
with the highest priority.

Suppose you are given a set of files, each containing stock trade information. Each
trade appears as a separate line containing information about that trade. Lines begin
with an integer-valued timestamp, and lines within a file are sorted in increasing
order of timestamp. Suppose you were asked to design an algorithm that combines
the set of files into a single file R in which trades are sorted by timestamp.

This problem can be solved by a multistage merge process, but there is a trivial
solution based on a min-heap data structure. Entries are trade-file pairs and are
ordered by the timestamp of the trade. Initially the min-heap contains the first trade
from each file. Iteratively delete the minimum entry e = (t,f) from the min-heap,
write t to R, and add in the next entry in the file f. Details are given in Solution 10.1
on Page 248.

A reasonable API is one with isLockO, lockO, and unLockO methods. Naively
implemented the time complexity for these methods is O(n),where n is the number of
nodes. However these can be made to run in time 0(1), O(h), and O(h), respectively,
where II is the height of the tree, if nodes have a parent field. Details are given in
Solution 9.4 on Page 238.

Chapter4. ProblemSolvingPatterns26

ElementsOiProgramminglnterviews.com

The data structures described above are the ones commonly used. Examples of other
data structures that have more specialized applications include:

- Skip lists, which store a set of comparable items using a hierarchy of sorted
linked lists. Lists higher in the hierarchy consist of increasingly smaller subse­
quences of the items. Skip lists implement the same functionality as balanced
BSTs,but are Simpler to code and faster, especially when used in a concurrent
context.

- Treaps, which are a combination of a BST and a heap. When an element
is inserted into a treap it is assigned a random key that is used in the heap
organization. The advantage of a treap is that it is height-balanced with high
probability and the insert and delete operations are considerably simpler than
for deterministic height-balanced trees such as AVL and red-black trees.

- Fibonacci heaps, which consist of a series of trees. Insert, find minimum,
decrease key, and merge (union) run in amortized constant time; delete and
delete-minimum take O(1ogn) time. In particular Fibonacci heaps can be used
to reduce the time complexity of Dijkstra's shortest path algorithm from O((lEI+
IVI) log IV!) to O(lEI + 1Vii0g IV!)·

- Disjoint-set data structures, which are used to manipulate subsets. The ba­
sk operations are union (form the union of two subsets), and find (determine
which set an element belongs to). These are used ina number of algorithms, no­
tably intracking connected components in an undirected graph and Kruskal's

Other data structures

left subtree and less than or equal to the keys stored in its right subtree. Insertion
and deletion can be implemented so that the height of the BST is O(1ogn), leading
to fast (O(1ogn» lookup and update times. AVL trees and red-black trees are BST
implementations that support this form of insertion and deletion.

BSTs are a workhorse of data structures and can be used to solve almost every
data structures problem reasonably efficiently. It is common to augment the BST to
make itpossible to manipulate more complicated data, e.g., intervals, and efficiently
support more complex queries, e.g., the number of elements in a range.

As an example application of BSTs,consider the following problem. You are given
a set of line segments. Each segment is a closed interval [II, fl] of the x-axis, a C0101~

and a height. For simplicity assume no two segments whose intervals overlap have
the same height. When the z-axis is viewed from above the color at point x on the
x-axis is the color of the highest segment that includes z. (If no segment contains x,
the color is blank.) You are to implement a function that computes the sequence of
colors as seen from the top.

The key idea is to sort the endpoints of the line segments and do a sweep from
left-to-right. As we do the sweep, we maintain a list of line segments that intersect
the current position as well as the highest line and its color. To quickly lookup the
highest line in a set of intersecting lines we keep the current set in a BST,with the
interval's height as its key. Details are given in Solution 14..20 on Page 327.

27Chapter 4. ProblemSolving Patterns

ElementsOfprogramminglnterviews.com

State

Approximation

Caching
Randomization

Parallelism

Incremental improve­
ment
Elimination

The greedy method

Divide and conquer

Sorting
Recursion

Uncover some structure by sorting the input.
If the structure of the input is defined in a recursive
manner, design a recursive algorithm that follows the
input definition.
Divide the problem into two or more smaller inde­
pendent subproblems and solve the original problem
using solutions to the subproblems.
Compute solutions for smaller instances of a given
problem and use these solutions to construct a solution
to the problem. Cache for performance.
Compute a solution in stages, making choicesthat are
locally optimum at step; these choices are never un­
done.
Quicklybuild a feasiblesolution and improve its qual-
ity with small, local updates. .
Identify and rule out potential solutions that are sub­
optimal or dominated by other solutions.
Decompose the problem into subproblems that can be
solved independently on differentmachines.
Store computation and later look it up to save work.
Use randomization within the algorithm to reduce
complexity.
Efficientlycompute a suboptimum solution that is of
acceptablequality.
Identify an appropriate notion of state.

program-Dynamic
ming

Table 4.2: Algorithm design patterns.

Algorithm design patterns

An algorithm is a step-by-stepprocedure forperforming acalculation. Weclassify
common algorithm design patterns in Table 4.2. Roughly speaking, each pattern
corresponds to a design methodology. An algorithm may use a combination of
patterns.

algorithm for the minimum spanning tree. Weuse the disjoint-set data struc­
ture to solve the offlineminimum problem (Solution6.8 on Page 189).

- Tries,which are a tree-based data structure used to store strings. Unlike BSTs,
nodes do not store keys; instead, the node's position in the tree determines the
key it is associatedwith. Triescan have performance advantages with respect
to BSTsand hash tables; they can also be used to solve the longest matching
prefixproblem (Solution19.3 on Page 417).

Chapter4. ProblemSolvingPatterns28

ElementsOfProgramminglnterviews.com

A divide and conquer algorithm works by decomposing a problem into two or more
smaller independent subproblems, until it gets to instances that are simple enough
to be solved directly: the results from the subproblems are then combined. More
details and examples are given in Chapter lSi we illustrate the basic idea below.

DIVIDE AND CONQUBR

A recursive function consists of base cases, and calls to the same function with
different arguments. A recursive algorithm is appropriate when the input isnaturally
expressed using recursive functions.

String matching exemplifies the use of recursion. Suppose you were asked to
write a Boolean-valued function which takes a string and a matching expression,
and returns true iff the matching expression "matches" the string. Specifically- the
matching expression is itself a string, and could be

- x where x is a character, for simplicity assumed to be a lower-case letter (matches
the string "x").

- . (matches any string of length 1).
- X" (matches the string consisting of zero or more occurrences of the character x).
- ." (matches the string consisting of zero or more of any characters).
- '1'2 where '1 and '2 are regular expressions of the given form (matches any

string that is the concatenation of strings 81and 52,where '1 matches 81 and '2

matches 82).
This problem can be solved by checking a number of cases based on the first one

or two characters of the matching expression, and recursively matching the rest of
the string. Details are given in Solution 6.23 on Page 206.

RSCURSION

Certain problems become easier to understand, as well as solve, when the input is
sorted. The solution to the calendar rendering problem (problem 13.10 on Page 101)
entails taking a set of intervals and computing the maximum number of intervals
whose intersection is nonempty. Naive strategies yield quadratic run times. How­
ever, once the interval endpoints have been sorted, it is easy to see that a point of
maximum overlap can be determined by a linear time iteration through the end-
points. .

Often it is not obvious what to sort on-for example, we could have sorted the
intervals on starting points rather than endpoints. This sort sequence, which in some
respects ismore natural, does not work. However, some experimentation with it will
likely lead to the correct criterion.

Sorting is not appropriate when an O(n) (or better) algorithm is possible, e.g.,
determining the k-th largest element (Problem 11.13 on Page 89). Furthermore,
sorting can obfuscate the problem. For example, given an array A of numbers, if we
are to determine the maximum of A[ll- AU], for i < j, sorting destroys the order and
complicates the problem.

SORTING

29Chapter 4. ProblemSolving Patterns

ElementsOfProgramminglnterviews.com

Divide and conquer is a good strategy for this problem. Instead of the 8 x 8
Mboard, let's consider an n X n Mboard. A 2 x 2 Mboard can be covered with one
triomino since it is of the same exact shape. You may hypothesize that a triomino
placement for an n x n Mboard with the top-left square missing can be used to
compute a placement for an (n + I) x (n + 1)Mboard. However you will quickly see
that this line of reasoning does not lead you anywhere.

Another hypothesis is that ifa placement exists for an n x nMboard, then one also
exists for a 2n x 2n.Mboard. Now we can apply divide and conquer. work. Take four
n x n Mboards and arrange them to form a 2n x 2n square in such a way that three of
the Mboards have their missing square set towards the center and one Mboard has
its missing square outward to coincide with the missing comer of a 2n x 2n Mboard,
as shown in Figure 4.2(b}. The gap in the center can be covered with a triomino and,
by hypothesis, we can cover the four n x nMboards with triominoes as well. Hence
a placement exists for any n that is a power of 2. In particular, a placement exists for
the 23 x 23Mboard: the recursion used in the proof directly yields the placement.

Divide and conquer is usually implemented using recursion. However, the two
concepts are not synonymous. Recursion is more general-subproblems do not have
to be of the same form.

In addition to divide and conquer, we used the generalization principle above.
The idea behind generalization is to find a problem that subsumes the given problem
and is easier to solve. We used it to go from the 8 x 8 Mboard to the 2" x 2" Mboard.

(bl Four4 x 4 Mboards.

Figure 4.2: Mutilated chessboards.

Cal An 8 x 8 Mboard.

A triomino is formed by joining three unit-sized squares in an L-shape. A mu­
tilated chessboard (henceforth 8 x 8 Mboard) is made up of 64 unit-sized squares
arranged in an 8 x 8 square, minus the top-left square, as depicted in Figure 4.2(a}.
Suppose you are asked to design an algorithm that computes a placement of 21 tri­
ominoes that covers the 8 x 8 Mboard. Since the 8 x 8 Mboard contains 63 squares,
and we have 21 triominoes, a valid placement cannot have overlapping triominoes
or triominoes which extend out of the 8 x 8 Mboard.

Chapter 4. Problem Solvillg Patterns30

ElementsOfProgramminglnterviews.com

Dynamic programming (DP)is applicable when the problem has the "optimal sub­
structure" property, that is, it ispossible to reconstruct a solution to the given instance
from solutions to subinstances of smaller problems of the same kind. A key aspect
of DP ismaintaining a cache of solutions to subinstances. DP can be implemented
recursively (in which case the cache is typically a dynamic data structure such as a
hash table or a BST),or iteratively (inwhich case.the cache is usually a one- or multi­
dimensional array). It is most natural to design a DP algorithm using recursion,
Usually,but not always, it is more efficientto implement it using iteration.

As an example of the power of DP, consider the problem of determining the
number of combinations of 2, 3, and 7 point plays that can generate a score of
222. Let C(s) be the number of combinations that can generate a score of s. Then
C(222) = C(222 - 7) + C(222 - 3) + C(222 - 2), since a combination ending with a 2
point play is different fromone ending witha 3point play, and a combination ending
with a 3 point play is different from one ending with a 7 point play, etc.

The recursion ends at small scores, specifically,when (1,) s < 0 ~ C(s) = 0, and
(2.) s = 0 ~ C(s) = 1..

Implementing the recursion naively results in multiple calls to the same subin­
stance. Let C(a)C(b) indicate that a call to Cwith input a directlycallsCwith input
b. Then C(213) will be called in the order C(222)C(222 - 7)C«222 - 7) - 2), as
well as C(222) -t C(222 - 3) -t C«222 - 3) - 3) -t C«(222 - 3) - 3) - 3).

This phenomenon results in the run time increasing exponentially with the size
of the input. The solution is to store previously computed values of C in an array of
length 223. Details are given in Solution 15.15 on Page 354.

Sometimes it is profitable to study the set of partial solutions. Specificallyit may
be possible to "prune" dominated solutions, i.e., solutions which cannot be better
than previously explored solutions. The candidate solutions are referred to as the
"efficientfrontier" that is propagated through the computation.

For example, if we are to implement a stackthat supports amax operation, which
returns the largest element stored in the stack,we can record for each element in the
stackwhat the largestvalue stored at orbelow that element isby comparing the value
of that elementwith the value of the largest element stored below it. Details aregiven
in Solution8.1 on Page 219. The largest rectangle under the skyline (Problem15.8 on
Page 120)provides a more sophisticated example of the efficientfrontier concept.

Another consideration is how the partial solutions are organized. Inthe solution
to the longest nondecreasing subsequence problem 15.6 on Page 340, it is better to
keep the efficientfrontier sorted by length of each subsequence rather than its final
index.

DYNAMIC PROGRAMMING

Other examples of divide and conquer include counting the number of pairs of
elements in an array that are out of sorted order (Solution 15.2 on Page 334) and
computing the closest pair of points in a set of points in the plane (Solution 15.3 on
Page 335). ' .

31Chapter 4. Prob'leni Solving Patterns

ElementsO!ProgrammingInterviews.com

When you are faced with the problem of computing an optimum solution, it is
often straightforward to come up with a candidate solution, which may be a partial
solution. This solution can be incrementally improved to make it optimum. This is
especially true when a solution has to satisfy a set of constraints.

As an example consider a department with n graduate students and n professors.
Each student begins with a rank ordered preference list of the professors based on
how keen he is to work with each of them. Each professor has a similar preference list
of students. Suppose you were asked to devise an algorithm which takes as input the
preference lists and outputs a one-to-one pairing of students and advisers in which
there are no student-adviser pairs (sO,aO) and (51,a1) such that sOprefers a1 to aD and
al prefers sOto sl.

Here is an algorithm for this problem in the spirit of incremental improvement.
Each student who does not have an adviser "proposes" to the most-preferred profes­
sor to whom he has not yet proposed. Each professor then considers all the students
who have proposed to him and says to the student in this set he most prefers "1
accept you"; he says "no" to the rest. The professor is then provisionally matched to

lNCRBMBNTAL IMPROVEMENT

A greedy algorithm is one which makes decisions that are locally optimum and
never changes them. This strategy does not always yield the optimum solution.
Furthermore, there may be multiple greedy algorithms for a given problem, and
only some of them are optimum.

For example, consider 2n cities on a line, half of which are white, and the other
half are black. We want to map white to black cities in a one-to-one fashion so that
the total length of the road sections required to connect paired cities is minimized.
Multiple pairs of cities may share a single section of road, e.g., ifwe have the pairing
(0,4) and (1,2) then the section of road between Cities 0 and 4 can be used by Cities 1
and 2. The most straightforward greedy algorithm for this problem is to scan through
the white cities, and, for each white city, pair it with the closest unpaired black city.
It leads to suboptimum results: consider the case where white cities are at 0 and at 3
and black cities are at 2 and at 5. lf the straightforward greedy algorithm processes
the white city at 3 first, it pairs it with 2,forcing the cities at 0 and 5 to pair up, leading
to a road length of 5,whereas the pairing of cities at 0 and 2, and 3 and 5 leads to a
road length of 4.

However, a slightly more sophisticated greedy algorithm does lead to optimum
results: iterate through all the cities in left-to-right order, pairing each city with the
nearest unpaired city of opposite color. More SUCcinctly,let W and B be the arrays
of white and black city coordinates. Sort Wand B, and pair W[i] with B[l1. We can
prove this leads to an optimum pairing by induction. The idea is that the pairing for
the first city must be optimum, since if it were to be paired with any other city, we
could always change its pairing to be with the nearest black city without adding any
road.

THE GRBEDYMBTHOD

Chapter4. ProblemSolvingPatterns32

ElernentsOiPrograrnminglnterviews.com

One common approach to designing an efficient.algorithm is to use elimination­
that is to identify and rule out potential solutions that are suboptimal or dominated
by other solutions. Binary search, which is the subject of a number of problems in
Chapter 11, uses elimination. Solution 11.9on Page 267,where we use elimination
to compute the square root of a real number, is especially instructive. Belowwe
consider a fairly sophisticated application of elimination.

Suppose you have to build a distributed storage system. A large number, n, of
users will share data on your system,which consistsofm servers, numbered from0to
m-1. Oneway todistribute users acrossservers is to assign the user with loginID I to
the server h(l) mod m,where hO is a hash function. If the hash function does a good
job, this approach distributes users uniformly across servers. However, if certain
users require much more storage than others, some serversmay be overloaded while
others idle.

ELIMINATION

a student; this is the candidate solution. In each subsequent round, eachstudent who
does not have an adviser proposes to the professor to whom he has not yet proposed
who ishighest on his preferencelist. He does this regardless ofwhether the professor
has already been matched with a student. The professor once again replies with a
single accept, rejecting the rest. In particular, he may leave a student with whom he
is currently paired. That this algorithm is correct is nontrivial-details are presented
in Solution 21.18on Page 459.

Many other algorithms are in this spirit: the standard algorithms for bipartite
matching (Solution21.19on Page 460),maximum flow (Solution21.21on Page 462),
and computing all pairs of shortest paths in a graph (Solutions 16.11on Page 386
and 16.12 on Page 387) use incremental improvement. Other famous examples
include the simplex algorithm for linear programming, and Euler's algorithm for
computing a path in a graph which covers each edge once.

Sometimesit is easier to start with an infeasiblesolution that has a lower cost than
the optimum solution, and incrementally update it to arrive at a feasible solution
that is optimum. The standard algorithms for computing an MST(Solution17.6on
Page 393)and shortest paths in a graph from a designated vertex (Solution 16.9on
Page 384)proceed in thi~fashion.

It is noteworthy that naively applying incremental improvement does not always
work. For the professor-student pairing example above, ifwebegin with an arbitrary
pairing of professors and students, and search for pairs p and s such that p prefers
s to his current student, and 5 prefers p to his current professor and reassign such
pairs, the procedure will not always converge.

Incremental improvement is often useful when designing heuristics, i.e., algo­
rithms which are usually faster and/or Simpler to implement than algorithms which
compute an optimum result, but may return a suboptimal result. The algorithm we
present for computing a tour for a traveling salesman (Solution17.6on Page 393)is
in this spirit.

33Chapter 4. ProblemSolving Patterns

ElementsOfProgramminglnterviews.com

Caching is agreat toolwhenever computations are repeated. Forexample, the central
idea behind dynamic programming is caching results from intermediate computa­
tions. Caching isalso extremelyuseful when implementing a service that is expected

CACH1NG

In the context of interview questions, parallelism is useful when dealing with scale,
i.e., when the problem is too large to fit on a single machine or would take an
unacceptably long time on a single machine. The key insight you need to display is
that you know how to decompose the problem so that

1. each subproblem can be solved relatively independently, and
2. thesolution to theoriginal problemcanbeefficientlyconstructed fromsolutions

to the subproblems.
Efficiencyis typically measured in terms of central processing unit (CPU)time, ran­
dom accessmemory (RAM), network bandwidth, number ofmemory and database
accesses,etc.

Consider the problem of sorting a petascale integer array. Ifwe know the distri­
bution of the numbers, the best approach would be to define equal-Sizedranges of
integers and send one range to one machine for sorting. The sorted numbers would
just need to be concatenated in the correct order. If the distribution is not known
then we can send equal-Sizedarbitrary subsets to each machine and then merge the
sorted results, e.g., using amin-heap. Details aregiven in Solution 18.14onPage 414.

PARALLELISM

Let b, be the number of bytes of storage required by user i. Wewill use values
leo< kl < ... < km-'1. to partition users across the m seivers-a user with hash code c
gets assigned to the server with the lowest TO i such that c !> k;, or to server m - 1
if no such iexists. Wewould like to select leo,kl' ... , Jc.,.-2 to minimize the maximum
number of bytes stored at any server.

The optimum values for leo,kl' ... ,km-2 can be computed via DP-the essence of
the program is to add one server at a time. The straightforward formulation has an
O(nm2) time complexity.

However, there is a much faster approach based on elimination. The search for
values leo,klt ... , k,.-2 such that no server stores more than b bytes can be performed
in O(n) time by greedily selecting values for the k;s. We can then perform binary
search on b to get the minimum b and the corresponding values for leo,klt" .,km-2•
The resulting time complexity isO(n logW),where W = r,;:Ol bi'

For the case of 10000users and 100servers, the DP algorithm took over an hour;
the approach using binary search for b with greedy assignment took 0.1 seconds.
Details are given in Solution 15.24on Page 365.

The takeaway is that there may be qualitatively different ways to search for a
solution, and that it is important to look for ways in which to eliminate candidates.
The efficient frontier concept, described on Page 31, has some commonalities with
elimination.

Chapter 4. Problem Solving Pattern»34

ElementsOfprogramminglnterviews.com

In the real-world it is routine to be given a problem that is difficult to solve exactly,
either because of its intrinsic complexity, or the complexity of the code required.
Developers need to recognize such problems, and be ready to discuss alternatives

ApPROXIMATION

Suppose you were asked to write a routine that takes an array A of n elements and
an integer k between 1 and n, and returns the k-th largest element in A.

This problem can be solved by first sorting the array, and returning the element
at index k in the sorted array. The time complexity of this approach is O(n logn).
However, sorting performs far more work than is needed. A better approach is to
eliminate parts of the array. We could use the median to determine the n/2 largest
elements of A; if nl2 <! k, the desired element is in this set, otherwise we search for
the (k - nI2)-th largest element in the n/2 smallest elements.

It is possible, though nontrivial, to compute the median in O(n) time without
using randomization. However, an approach that works well is to select an index T

at random and reorder the array so that elements greater than or equal to A [T] appear
first, followed by A[T], followed by elements less than or equal to A[T]. Let A[T] be the
k-th element in the reordered array A'. If k = nl2, A'[k] = A[T] is the desired element.
If k > nl2, we search for the n/2-th largest element in A'lO : k - 1]. Otherwise we
search for the (n/2-k)-th largest element inA'[k+ 1:n -1]. The closer A[T] is the true
median, the faster the algorithm runs. A formal analysis shows that the probability
of the randomly selected element repeatedly being far from the desired element falls
off exponentially with n. Details are given in Solution 11.13 on Page 270.

Randomization can also be used to create "signatures" to reduce the complexity of
search, analogous to the use of hash functions. Consider the problem of determining
whether an m X m array S·of integers is a subarray of an n X n array T. Formally,
we say 5 is a subarray of T iff there are p, q such that S[i][j] ; T[p + i][q + j], for
all 0 S i, j S m - 1. The brute-force approach to checking if 5 is a sub array of T
has complexity O(n2m2)-O(n2) individual checks, each of complexity O(m2). We
can improve the complexity to O(n2m) by computing a hash code for 5 and then
computing the hash codes for m X m subarrays of T. The latter hash codes can be
computed incrementally in Oem) time if the hash function is chosen appropriately.
For example, if the hash code is simply the XOR of all the elements of the subarray,
the hash code for a subarray shifted over by one column can be computed byXORing
the new elements and the removed elements with the previous hash code. A similar
approach works for more complex hash functions, specifically for those that are a
polynomial.

RANDOMlZATION

to respond to many requests over time, and many requests are repeated. Workloads
on web services exhibit this property. Solution 18.1on Page 403 sketches the design of
an online spell correction service; one of the key issues is performing cache updates
in the presence of concurrent requests.

35Chapter 4. Problem Soluing Patterns

ElementsOfProgramminglnterviews.co~

The problem of finding a warehouse assignment that has the minimum cost is
known to be NP-complete. However, consider the following algorithm for com­
puting k cities. We pick the first warehouse to be the city for which the cost is
minimized-this takes 6(n2) time since we try each city one at a time and check its
distance to every other city. Now let's say we have selected the first i-1warehouses
{CI,C2, •.• ,Ci-l} and are trying to choose the i-th warehouse. A reasonable choice for
Ci is the city that is the farthest from the i - 1 warehouses already chosen. This city
can be computed in O(ni) time. This greedy algorithm yields a solution whose cost
is no more than 2x that of the optimum solution; some heuristic tweaks can be used
to further improve the quality. Details are given in Solution 17.7 on Page 394.

As another example of approximation, consider the problem of determining the
k most frequent elements of a very large array. The direct approach of maintaining
counts for each element may not be feasible because of space constraints. A natural
approach is to sample the set to determine a set of candidates, exact counts for which
are then determined in a second pass. The size of the candidate set depends on the
distribution of the elements.

FIgure 4.3: An instance of the warehouse location problem. The distance between cities at (p,q) and
(;',s) is .J(p - r)2 + (q - 5)2.

180ISO30 60 90 120-90

with the author of the problem. In practice a solution that is "close" to the optimum
solution is usually perfectly acceptable.

Let lAo,A1, ••• ,AlI-1} be a set of n cities, as in Figure 4.3. Suppose we need to
choose a subset of A to locate warehouses. Specifically, we want to choose k cities in
such a way that cities are close to the warehouses. Define the cost of a warehouse
assignment to be the maximum distance of any city to a warehouse.

Chapter4. ProblemSolvingPatterns36

ElernentsOfProgramminglnterviews.com

In case analysis a problem is divided into a number of separate cases, and analyzing
each such case individually suffices to solve the initial problem. Cases do not have
to be mutually exclusive;however, they must be exhaustive, that is cover all possi­
bilities. For example, to prove that for all n, n3 mod 3 is 0,1,or 8,we can consider the
casesn = 3m,n = 3m+ 1,and n = 3m+2. These'casesare individually easy to prove,
and are exhaustive. Case analysis is commonly used in mathematics and games of
strategy. Herewe consider an application of case analysis to algorithm design.

Suppose you are given a set S of 25distinct integers and a CPU that hasa special
instruction, SORTS, that can sort five integers in one cycle.Yourtask is to identify the
largest, second-largest, and third-largest integers in S using SORTS to compare and
sort subsets of S; furthermore, you must minimize the number of calls to SORTS.

If allwe had to compute was the largest integer in the set, the optimum approach
would be to form five disjoint subsets SlI' .. , Ssof S, sort each subset, and then sort

CASH ANALYSIS

Abstract analysis patterns

The mathematician George Polya wrote a book How to Solve It that describes a
number of heuristics for problem solving. Inspired by this work we present some
heuristics that are effectiveon common interview problems; they are summarized in
Table4.3on the followingpage.

Formally,the state of a system is information that is sufficientto determine how that
system evolves as a function of future inputs. Identifying the right notion of state
can be critical to coming up with an algorithm that is time and space efficient,as well
as easy to implement and prove correct.

There may be multiple ways in which state can be defined, all of which lead to
correct algorithms. When computing the max-difference(Problem 6.3on Page 53),
we could use the values of the elements at all prior indices as the state when we
iterate through the array. Of course, this is inefficient,since allwe really need is the
minimum value.

One solution to computing the Levenshtein distance between two strings (Prob­
lem15.11onPage120)entails creatinga2D arraywhose dimensions are (m+ l)x(n+l),
where m and n are the lengths of the strings being compared. For large strings this
sizemay be unacceptably large. The algorithm iteratively fills rows of the array, and
reads values from the current row and the previous row. This observation can be
used to reduce the memory needed to two rows. Amore careful implementation can
reduce the memory required to just one row.

More generally, the efficient frontier concept on Page 31 demonstrates how an
algorithm can be made to run faster and with less memory if state is chosen care­
fully. Other examples illustrating the benefitsof careful state selectioninclude string
matching (Problem6.20on Page 59)and lazy initialization (Problem6.2on Page 53).

STATE

, 37Chapter 4. ProblemSolving Patterns

ElementsOfProgrammingInterviews.com

Problems that seem difficult to solve in the abstract can become much more tractable
when you examine small concrete instances. For instance, consider the following
problem. Five hundred closed doors along a corridor are numbered from 1 to 500.
A person walks through the corridor and opens each door. Another person walks
through the corridor and closes every alternate door. Continuing in this manner, the
i-th person comes and toggles the state (open or closed) of every i-th door starting
from Door i. You must determine exactly how many doors are open after the S()()..th
person has walked through the corridor.
It is difficult to solve this problem using an abstract approach, e.g., introducing

Boolean variables for the state of each door and a state update function. However
if you try the same problem with 1,2,3,4,10, and 20 doors, it takes a short time to
see that the doors that remain open are 1,4,9,16, ... , regardless of the total number
of doors. The 10 doors case is illustrated in Figure 4.4 on the facing page. Now

SMALL EXAMPLBS

{max5}, ... , max 55}. This takes six calls to SORTS but leaves ambiguity about the
second and third largest integers.

It may seem like many additional calls to SORTS are still needed. However if you
do a careful case analysis and eliminate all x E 5 for which there are at least three
integers in 5 larger than x, only five integers remain and hence just one more call to
SORTS is needed to compute the result. Details are given in Solution 21.2 on Page 447.

Variation

Write an equation

Graph modeling

Reduction

Iterative refinement

Small examples

Case analysis Split the input/execution into a number of cases and
solve each case in isolation.
Find a solution to small concrete instances of the prob­
lem and then build a solution that can be generalized
to arbitrary instances.
Most problems can be solved using a brute-force ap­
proach. Find such a solution and improve upon it.
Use a well known solution to some other problem as
a subroutine.
Describe the problem using a graph and solve it using
an existing algorithm.
Express relationships in the problem in the form of
equations (or inequalities).
Solve a slightly different (possibly more general) prob­
lem and map its solution to the given problem.
Find a function of the state of the given system that re­
mains constant in the presence of (possibly restricted)
updates to the state. Use this function to design an al­
gorithm, prove correctness, or show an impossibility
result.

Invariants

Analysis principle

Table4.3:Abstractanalysistechniques.

Cl,apter4. ProblemSolving Patterns38

ElementsOfProgramminglnterviews.com

Many problems can be solved optimally by a simple algorithm that has a high
time/space complexity-this is sometimes referred to-asabrute-force solution. Other
terms are exhaustive search and generate-and-test. Often this algorithm can be refined
to one that is faster. At the very least itmay offerhints into the nature of the problem.

As an example, suppose you were asked to write a function that takes an array A
of n numbers, and rearranges A's elements to get a new array B having the property
that B[O] s 8[1] ~ 8[2] s B[3] ~ 8[4] s B[5] ~

One straightforward solution is to sort A and interleave the bottom and top
halves of the sorted array. Alternately,w.ecould sort A and then swap the elements
at the pairs (A[1],A[2]), (A[3],A[4]), Both these approaches have the same time
complexity as sorting, namely O(n logn).

You will soon realize that it is not necessary to sort A to achieve the desired
configuration-you could simply rearrange the elements around the median, and
then perform the interleaving. Median finding can be performed in timeO(n) (Solu­
tion 11.13on Page 270),which is the overall time complexity of this approach.

Finally,you may notice that the desired ordering is very local, and realize that it
is not necessary to find the median. Iterating through the array and swapping A[i]
and A[i + 1]when i is even and A[i] > A[i + 1]or i is odd and A[11<Ali + 1]achieves
the desired configuration. Incode:

ITBRATTVB RBFINEMBNT OF A BRUTE-FORCE SOLUTION

Optimally selecting a red card (Problem 20.18on Page 160)and avoiding losing
at the alternating coin pickup game (Problem21.20on Page 168)are other problems
that benefit from use of the "small example" principle.

Figure 4.4: Progressive updates to 10 doors.

(f) AflerPerson 10.(e) After Person 4.

DDDDDDDDDD DDDrnOODDD
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(d) After Person3.(c) After Person 2.

DDDDDDDDDDDDDDDDDDDD
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(b) After Person 1.(a) Inilialconfiguration.

the pattern is obvious-the doors that remain open are those corresponding to the
perfect squares. Once you make this connection, it is easy to prove it for the general
case. Hence the total number ofopen doors is lVSOOJ = 22. Solution21.1on Page446
develops this analysis in more detail

39Chapter 4. ProblemSolving Patterns

ElementsOiProgramminglnte.rviews. com

This approach has time complexity O(n),which is the same as the approach based
on median finding. However it is much easier to implement, and operates in an
online fashion, Le., it never needs to store more than two elements in memory or
read a previous element.

As another example of iterative refinement, consider the problem of string
search (problem 6.20 on Page 59): given two strings s (search string) and t (text),
find all occurrences of 5 in t. Since s can occur at any offset in t, the brute-force
solution is to test for a match at every offset. This algorithm is perfectly correct; its
time complexity is O(nm),where nand m are the lengths of 5 and t.

After trying some examples, you may see that there are several ways to improve
the time complexity of the brute-force algorithm. As an example, if the character t[i)
is not present in S you can advance the matching by n characters. Furthermore, this
skipping works better ifwe match the search string from its end and work backwards.
These refinements will make the algorithm very fast (linear time) on random text and
search strings; however, the worst-case complexity remains O(nm).

You can make the additional observation that a partial match of 5 that does not
result in a full match implies other offsets that cannot lead to full matches. If 5 =
abdabcabc and if,starting backwards, we have a partial match up to abcabc that does
not result in a full match, we know that the next possible matching offset has to be
at least three positions ahead (where we can match the second abc from the partial
match).

By putting together these refinements you will have arrived at the famous Boyer­
Moore string search algorithm-its worst-case time complexity is O(n +m) (which
is the best possible from a theoretical perspective); it is also one of the fastest string
search algorithms in practice.

Many other sophisticated algorithms can be developed in this fashion. As another
example, the brute-force solution to computing the maximum subarray sum for an
integer array of length n is to compute the sum of all subarrays, which has O(n3)
time complexity. This can be improved to 0(n2) by precomputing the sums of all the
prefixes of the given arrays; this allows the sum of a subarray to be computed in0(1)
time. The natural divide and conquer algorithm has an O(n log n) time complexity.
Finally, one can observe that a maximum subarray must end at one of n indices, and
the maximum subarray sum for a subarray ending at index i can be computed from
previous maximum subarray sums, which leads to an O(n) algorithm. Details are
presented on Page 117.

7.}

I te.plate <typeAaae T>
2 void rearrange(vector<T> &A)

for (int i • I; i < A.size() - 1; ++i) {

if «i & 1 && A[iJ < A[i + 1J) I I «i & 1) =a I && A[iJ > A(i + 1J» {
swap(A(iJ. A[i + 1J);

Chapter 4. Problem Solving Patterns40

Elemen'tsOiProgranuningln'terviews.com

Wecanmodel the problem with a graph where currencies correspond to vertices,
exchanges correspond to edges, and the edge weight is set to the logarithm of the

Table 4.4: Exchange rates for seven major currencies.
Symbol USD EUR GBP JPY CHF CAD AUD
USD 1 0.8148 0.6404 78.125 0.~784 0.9924 0.9465
BUR 1.2275 1 0.7860 96.55 1.2010 1.2182 1.1616
GBP 1.5617 1.2724 1 122.83 1.5280 1.5498 1.4778
JPY 0.0128 0.0104 0.0081 1 1.2442 0.0126 0.0120
CHF 1.0219 0.8327 0.6546 80.39 1 1.0142 0.9672
CAD 1.0076 0.8206 0.6453 79.26 0.9859 1 0.9535
AUD 1.0567 0.8609 0.6767 83.12 1.0339 1.0487 1

Drawing pictures is agreat way tobrainstorm for apotential solution. If the relation­
ships in a given problem can be represented using a graph, quite often the problem
canbe reduced to a well-known graph problem. For example, suppose you aregiven
a set of exchange rates among currencies and you want to determine if an arbitrage
exists, i.e., there is a way by which you can start with one unit of some currency C
and perform a series of barters which results in having m?re than one unit ofC.

Table 4.4 shows a representative example. An arbitrage is possible for this
set of exchange rates: 1USD -+ 1 x 0.8123 = 0.8123 EUR -+ 0.8123 x 1.2010 =
0.9755723 CHF -+ 0.9755723 x 80.39 = 78.426257197 JPY -+ 78.426257197 x 0.0128 =
1.00385609212USD.

GRAPHMODELING

Consider the problem of finding if one string is a rotation of the other, e.g., IIcar" and
"arc" are rotations of eachother. A natural approach may be to rotate the first string
by every possible offsetand then compare it with the second string. This algorithm
would have quadratic time complexity.

Youmay notice that this problem is quite similar to string search, which can be
done in linear time, albeit using a somewhat complex algorithm. Therefore it is
natural to try to reduce this problem to string search. Indeed, if we concatenate the
second string with itself and search for the first string in the resulting string, we will
find a match iff the two original strings are rotations of each other. This reduction
yields a linear time algorithm for our problem.

The reduction principle is also illustrated in the problem of checking whether a
road network is resilient in the presence ofblockages (Problem16.4 on Page 133) and
the problem of finding the minimum number ofpictures needed to photograph a set
of teams (Problem16.7 on Page 135).

Usually you try to reduce the given problem to an easier problem. Sometimes,
however, you need to reduce a problem known to be difficult to the given prob­
lem. This shows that the given problem is difficult, which justifies heuristics and
approximate solutions. Such scenarios are described in more detail in Chapter 17.

REDUCTION

41Chapter 4. ProblemSolving Patterns

ElementsO!ProgrammingInterviews.com

The idea of thevariation pattern is to solve a slightly different (possiblymore general)
problem and map its solution to your problem.

Supposewewere asked todesign an algorithmwhich takesas input an undirected
graph and produces as output a black or white coloring of the vertices such that for
every vertex at least half of its neighbors differ in color from it.

Wecould try to solve this problem by assigning arbitrary colors to vertices and
then flipping colorswherever constraints are not met. However this approach may
lead to increasing the number of vertices that do not satisfy the constraint.

It turns out we can define a slightly different problem whose solution will yield
the desired coloring. Define an edge to be diverse if its ends have differentcolors. It is
straightforward to verify that a coloring that maximizes thenumber ofdiverse edges
also satisfies the constraint of the original problem, so there always exists a coloring
satisfying the constraint.

It is not necessary to find a coloring that maximizes the number of diverse edges.
All that is needed is a coloring in which the set of diverse edges is maximal with
respect to single vertex flips. Sucha coloringcan be computed efficiently;details are
given in Problem 15.29on Page 128.

VARIATION

This identity leads to a straightforward recursion for computing G)which avoids the
problems described above. DP has to be used to achieve good time complexity­
details are in Solution 15.14on Page 353.

Some problems can be solved by expressing them in the language of mathematics.
Suppose you were asked to write an algorithm that computes binomial coefficients,
G) = t!(::k)I'

Theproblem with computing the binomial coefficientdirectly from the definition
is that the factorial function grows quickly and can overflow an integer variable. If
we use floatingpoint representations fornumbers, we loseprecisionand theproblem
ofoverflow doesnot go away. Theseproblems potentially exist even if the final value
ofG) is small. One can try to factorthe numerator and denominator and try to cancel
out common terms but factorization is itselfa hard problem.

The binomial coefficientssatisfy the addition formula:

WRITS AN I!QUATION

exchange rate. Ifwe can find a cycle in the graph with a positive weight, wewould
have found such a seriesof exchanges. Sucha cyclecan be solved using the Bellman­
Ford algorithm, as described in Solution 16.12on Page 387.

C}J(lpter4. Problem Solvitlg Patterns42

£lementsOiProgramminglnterviews.com

Here is a simple argument that no covering exists. Think of the 8 x 8 square as
a chessboard as shown inFigure 4.5(b). Then the two removed squares will always
have the same color, so there will be either 30 black and 32 white squares to be
covered, or 32 black and 30white squares to be covered. Each domino will cover
one black and one white square, so the number of black and white squares covered
as you successivelyput down the dominoes is equal. Hence it is impossible to cover
the given chessboard.

This proof of impossibility is an example of invariant analysis. An invariant
is a function of the state of a system being analyzed that remains constant in the
presence of (possiblyrestricted)updates to the state. Invariant analysis isparticularly
powerful at proving impossibility results as we just saw with the chessboard tiling
problem. Thechallenge is finding a simple invariant.

The argument above also used the auxiliary elements pattern, in which we added
a new element to our problem to get closer to a solution. The original problem did
not talk about the colors of individual squaresi adding these colors made proving
impossibilitymuch easier.
It is possible to prove impossibility without appealing to square colors. Specifi­

cally,orient the board with the missing pieces on the lower right and upper left. An
impossibility proof existsbased on a case-analysis for each column on the height of

Figure 4.5: Invariant analysis exploiting auxiliary elements.

(a) An 8 x 8 square, minus two unit (b) A chessboard,with two dlagonally op-
squaresat oppositecorners. posltecornersremoved.

The followingproblemwas popular at interviews in the early 19905. Youaregiven an
8x 8square with two unit sized squares at the opposite ends of a diagonal removed,
leaving 62 squares, as illustrated in Figure 4.5(a). You are given 31 rectangular
dominoes. Each can cover exactly two squares. How would you cover all the 62
squares with the dominoes?

Youcan spend hours trying unsuccessfully to find such a covering. This experi­
ence will teach you that a problem maybe intentionally worded to mislead you into
following a futile path.

INVARIANTS

43Chapter 4. ProblemSolving Patterns

ElementsOfProgrammingInterviews.com

Complexity Analysis

The run timeof an algorithm depends on the sizeof its input. One common approach
to capture the run timedependency isby expressing asymptoticbounds on theworst­
caserun time as a functionof the input size. Specifically,the run timeofan algorithm
on an input of size n is o(/(n» if, for sufficiently large n, the run time is not more
than fen) times a constant. The big-O notation simply indicates an upper bound;

The optimum strategy for F can be computed using DP (Solution 15.18 on
Page 357). However, if F's goal is simply to ensure he does not do worse than
5, he can achieve this goalwith much less computation. Specifically,he can number
the coinsfrom 1to 16fromleft-to-right,and compute the sum of the even-indexcoins
and the sum of the odd-index coins. Suppose the odd-index sum is larger. Then F
can force5 to always selectan even-indexcoin by selectingthe odd-index coinswhen
it is his own tum, ensuring that 5 cannot win. The same principle holds when the
even-index sum is larger,or the sums are equal. Details are given in Solution 21.5on
Page 447.

Invariant analysis can be used with symmetry to solve very difficult problems,
sometimes in less than intuitive ways. This is illustrated by the game known as
"chomp" in which Player F and Player 5 alternately take bites from a chocolatebar.
The chocolatebar is an n x n rectangle; a bite must remove a square and all squares
above and to the right in the chocolatebar. The first player to eat the lower leftmost
square, which ispoisoned, loses. PlayerFcan forceawinby first selectingthe square
immediately above and to the right of the poisoned square, leaving the bar shaped
like an L,with equal vertical and horizontal sides. Now whatever move 5 makes,
F can playa symmetric move about the line bisecting the chocolate bar through the
poisoned square to recreate the Lshape (thisis the invariant), which forces5 tobe the
first to consume the poisoned square. Details are given in Solution 21.6on Page 448.

Algorithm design using invariants is also illustrated in Solution 12.8on Page 281
(permute the characters in a string to form a palindrome) and in Solution 13.14on
Page 303(find three elements in an array that sum to a given number).

Figure 4.6: Coins ina row.

8e00@080<08080808

the highest domino that is parallel to the base. However, the proof given above is
much Simpler.

Invariant analysis can be used todesign algorithms, aswell as prove impossibility
results. In the coin selection problem, sixteen coins are arranged in a line, as in
Figure4.6.Twoplayers, Fand 5, take turns at choosingone coin each-they can only
choose from the two coins at the ends of the line. Player F goes first. The game ends
when all the coins have been picked up. The player whose coins have the higher
total value wins.

Chapter4. ProblemSolvingPatterns44

ElernentsOfPrograrnminglnterviews.com

if the run time is asymptotically proportional to fen), the complexity is written as
e (f(n»). (Note that the big-O notation is widely used where sometimes e is more
appropriate.) The notation O(f(n» is used to denote an asymptotic lower bound of
fen) on the time complexity of an algorithm.

As an example, searching an unsorted array of integers of length n, for a given
integer, has an asymptotic complexityof e(n) since in theworst-case, the given inte­
ger may not be present. Similarly,consider the naive algorithm for testing primality
that tries all numbers from 2 to the square root of the input number n. What is its
complexity? In the best case, n is divisible by 2. However in the worst-case the
input may be a prime, so the algorithm performs Yn iterations. Furthermore, since
the number n requires 19n bits to encode, this algorithm's complexity is actually
exponential.in the size of the input. The big-Omega notation is illustrated by the
O(n logn) lower bound on any comparison-based array sorting algorithm.

Generallyspeaking, if an algorithm has a run time that is a polynomial, i.e.,O(nk)
for some fixed k, where n is the size of the input, it is considered to be efficient;
otherwise it is inefficient. Notable exceptions exist-for example, the Simplexalgo­
rithm for linear programming is not polynomial but works very well in practice. On
the other hand, the AKSprimality testing algorithm has polynomial run time but
the degree of the polynomial is too high for it to be competitive with randomized
algorithms for primality testing.

Complexity theory is applied as a similarway when analyzing the space require­
ments of an algorithm. Usually- the space needed to read in an instance is not
included; otherwise, every algorithm would have O(n) space complexity.

Several of our problems call for an algorithm that uses 0(1) space. Conceptually­
the memory used by such an algorithm should not depend on the size of the input
instance. Specifically-it should be possible to implement the algorithm without
dynamic memory allocation (explicitly,or indirectly,e.g., through library routines).
Furthermore, the maximum depth of the function callstack should alsobe a constant,
independent of the input. The standard algorithm for depth-first search ofa graph is
an example of an algorithm that does not perform any dynamic allocation, but uses
the function call stack for implicit storage-its space complexity is not 0(1).

A streaming algorithm is one in which the input is presented as a sequence of
items and is examined in only a few passes (typically just one). These algorithms
have limited memory available to them (much less than the input size) and also
limited processing time per item. Algorithms for computing summary statistics on
log file data often fall into 'this category.

As a rule, algorithms should be designed with the goal of reducing theworst-case
complexity rather than average-casecomplexity for several reasons:

1. It is very difficult to define meaningful distributions on the inputs.
2. Pathological inputs are more likely than statistical models may predict. A

worst-case input for a naive implementation of quicksort is one where all
entries are the same, which is not unlikely in a practical setting.

3. Malicious users may exploit bad worst-case performance to create denial-of­
service attacks.

. 4SChapter 4. Problem Solving Patterns

Problems

Part II

47

There are a number of ways in which bit manipulations can be accelerated. For
example, the expression x & (x - 1) equals x with the least significant bit cleared;

5.2 SWAP BITS

The parity of a sequence of bits is 1 if the number of Is in the sequence is odd;
otherwise, it is O. Parity checks are used to detect single bit errors in data storage and
communication. It is fairly straightforward to write code that computes the parity of
a single 64-bit nonnegative integer.

Problem 5.1: How would you go about computing the parity of a very large number
of 64-bit nonnegative integers? pg.173

5.1 COMPUTlNG PARITY

A program updates variables in memory according to the instructions in the program.
The variables are classified according to their type-a type is a classification of data
that spells out possible values for that type and the operations that can be done on
that type.

Types can be primitive, i.e., provided by the language, or defined by the pro­
grammer. The set of primitive types depends on the language. For example, the
primitive types in C++ are boo1, char, short, int, long, float, and double, and in
Java are boolean, char, byte, short, int, long, float, and double. A programmer
can define a complex number type as a pair of doubles, one for the real and one for
the imaginary part.

Problems involving manipulation of bit-level data are often asked in interviews.
An old question goes as follows. Given two integer-valued variables a and b, the
straightforward way of swapping their contents is to use a temporary variable-temp
= a; a = b; b = temp;. The question is: can you swap without using an additional
variable? Surprisingly it is possible-a = a A b; b = a A b; a = a !' b;, where
A is the binary bitwise-XOR operator, does the trick. The same code can be expressed
more tersely as a "= b "= a "= b;.
It is easy to introduce errors in code that manipulates bit-level data-when you

play with bits, expect to get bitten.

- "The Mythical Man Month/'
F. P. BROOKS, 1975

RepresentaHon is the essence of programming.

Primitive Types

CHAPTER

ElementsOfProgrammingInterviews.co~

Problem 5.5: Implement a method that takes as input a set 5 of distinct elements),
and prints the power set of S. Print the subsets one per line, with elements separated
by commas. pg. 175

Agure 5.1: The power set of {A,B, C} is (0, {Al,{Bl,{C},{A, Bl, {B,C}, {A, q, {A,B, ql.

The power set of a set S is the set of all subsets of S, including both the empty set 0
and S itself. The power set of,{A,B,C} is graphically illustrated in Figure 5.1.

5.5 THEPO'WERSET

Define the number of bits that are set to 1in an unsigned 64-bit integer x to be the
weight of x. Let Skdenote the set of unsigned 64-bit integers whose weight is k.

Problem 5.4: Suppose x E Ski and k is not 0 or 64. How would you compute
y E Sk\ {x} such that Iy - xl isminimum? pg.174

5.4 CLOSEST INTEGERS WITH THE SAME WEIGHT

Here is a bit fiddling problem that is concerned with restructuring.

Problem 5.3: Write a function that takes a 64-bit integer x and returns a 64-bit integer
consisting of the bits of x in reverse order. pg.174

5.3 BIT REVERSAL

x & !(x - 1) extracts the lowest set bit of x (all other bits are cleared); and x ED (x:> 1)
is the standard (binary-reflected) Gray code for x.

Problem 5.2: A 64-bit integer can be viewed as an array of 64 bits, with the bit at
index 0 corresponding to the least significant bit, and the bit at index 63corresponding
to the most significant bit Implement code that takes as input a 64-bit integer x and
swaps the bits at indices i and j. pg. 174

5.3. Bit reversal48

ElementsOfProgramminglnterviews.com

Problem 5.8: Write a function that converts Excel column ids to the corre­
sponding integer, with" A" corresponding to 1. The function signature is int
ssDecodeColID(string); you may ignore error conditions, such as col containing
characters outside of [A,Z). How would you test your code? pg. 178

Widely deployed spreadsheets use an alphabetical encoding of the successive
columns. Specifically, consecutive columns are identified by "A", "B", "e', ...,
"'X", "Y", "Z", "AA", "AB", ... , "ZZ'f,"AAA", "AAB",

5.8 SPREADSHEETCOLUMNENCODING

In the decimal system, the position of a digit is used to signify the power of 10 that
digit is to be multiplied with. For example, "314" denotes the number 3 x 100+ 1 x
10 + 4 x 1. (Note that zero, which is not needed in other systems, is essential in the
decimal system, since a zero can be used to skip a power.)

The decimal system is an example of a positional number system, wherein the
same symbol is used for different orders of magnitude (for example, the "ones place",
"tens place", "hundreds place"). This system greatly simplified arithmetic and led
to its widespread adoption.

The base b number system generalizes the above: the string "ak-lak-2... alao",
where 0 ::;ai < b, for each iE [0,k - I) denotes the integer r.~;6aibi.
Problem 5.7: Write a function that performs base conversion. Specifically, the input
is an integer base b1, a string s, representing an integer x in base bll and another
integer base b2; the output is the string representing the integer x in base b2' Assume
2 s bl1b2 s 16. Use" A" to represent 10, "B" for ~1, ... r and "F" for 15. pg. 177

5.7 BASE CONVERSION

A string is a sequence of characters. A string may encode an integer, e.g., "123"
encodes 123. In this problem, you are to implement methods that take a string
representing an integer and return the corresponding integer, and vice versa.

Your code should handle negative integers. It should throw an exception if the
string does not encode an integer, e.g., "123abc" is not a valid encoding .
. Languages such as C++ and Java have library functions for performing this

conversion-vs tod in C++ and parsetnt in Java go from strings to integers;
to_string in C++ and to String in Java go from integers to strings. You cannot
use these functions. (Imagine you are implementing the corresponding library.)

Problem 5.6: Implement string/integer inter-conversion functions. Use
the following function signatures: String intToString(int x) and int
stringTolnt(String s). pg.176

5.6 STRING AND INTEGERCONVERSIONS

495.6. String and integer conuersions

ElementsOfProgramminglnterviews.com

can a rectangle R whose sides are parallel to the z-axis and y-axis xy-aligned. Such
a rectangle is characterized by its left-most lower point (Rx, Ry), its width Rw and its
height Rs.
Problem 5.12: Let Rand S be xy-aligned rectangles in the Cartesian plane. Write a
function which tests if R and S have a nonempty intersection. If the intersection is
nonempty, return the rectangle formed by their intersection. pg. 181

5.12 CHECKING IF RECTANGLES INTERSECT

A natural number is caned a prime if it is bigger than 1 and has no divisors other
than 1 and itself.

Problem 5.11: Write a function that takes a single positive integer argument n (n ~ 2)
and return all the primes between 1 and n. pg. 180

5.11 ENUMBRATING PRIMES

5.10 GREATEST COMMON DIVISOR (Q)t)

The greatest common divisor (GCD) of positive integers x and y is the largest integer
d such that d Ix and diy, where a Ib denotes a divides b, i.e., bmod a = O.

Problem 5.10: Design an algorithm for computing the GCD of two numbers without
using multiplication, division or the modulus operators. pg. 179

A numeral system is a way of writing numbers. The simplest numeral system
is the unary numeral system, in which every natural number is represented by a
corresponding number of symbols. If the symbol I is chosen, for example, then the
number seven would be represented by 1111111.

The Elias gamma code is used to encode positive integers. It is useful when an a
priori upper bound on the integers being encoded is not known.

Specifically, the Elias gamma code of a positive integer n is computed as follows.
- Write n in binary to form string b.
- Subtract 1 from the number of bits written in the first step, and add that many

zeroes to the beginning of string b.
For example, the binary representation of 13 is 1101, which takes four bits to write.
Hence the Elias gamma code for 13 is 000110l.

Problem 5.9: Let A be an array of n integers. Write an encode function that
returns a string representing the concatenation of the Elias gamma codes for
(A[Oj,A[1j, ... ,A[n -1]) in that order, and a decode function that takes a string s
assumed to be generated by the encode function, and returns the array that was
passed to the encode function. pg. 178

5.9 ELIAS GAMMA CODING

so 5.9. Elias gamma codillg

ElementsOfprogranunin9Intervie~ls. com

Problem 5.14: Given two positive integers x and y, how would you compute x/y if
the only operators you can use are addition, subtraction, and multiplication? pg.182

5.14 COMPUTING X/Y (CD<)

5.13 COMPUTING x X Y WITHOUT MULTJPLYOR ADD

Often the processors used in embedded systems do not have a hardware multiplier.
A program that needs to perform multiplication must do so explicitly.

Problem 5.13: Write a function that multiplies two unsigned positive integers. The
only operators you are allowed to use are assignment and the bitwise operators, i.e.,
», «, I,&, ", ". (In particular, you cannot use increment or decrement.) Youmay
use loops, conditionals and functions that you write yourself other functions are
allowed. pg. 182

515.13. Computing x X y without multiply or add

52

Thequicksort algorithm forsorting arrays proceeds recursively-it selectsan element
x (the "pivot"), reorders the array to make all the elements less than or equal to x
appear first, followedby all the elements greater than x. The two subarrays are then
sorted recursively.

Implemented naively,this approach leads to large run times on arrays with many
duplicates. One solution is to reorder the array so that all elements lessthan x appear
first, followed by elements equal to x, followed by elements greater than x. This is
known as Dutch national flag partitioning, because the Dutch national flag consists
of three horizontal bands, each in a different color. Assuming that black precedes
white and white precedesgray,Figure6.1(b)on the facingpage is avalid partitioning
for Figure 6.1(a)on the next page. If gray precedes black and blackprecedes white,

6.1 DuTcHNATIONAL FLAG

The simplest data structure is the array, which is a contiguous block of memory.
Given an array A which holds n objects, A[t1 denotes the i-th object stored in the
array. Retrieving and updating Ali] takes0(1) time. However the size of the array is
fixed,which makes adding more than nobjects impossible. Deletion of the objectat
location i can be handled by having an auxiliaryBooleanassociatedwith the location
iindicating whether the entry is valid.

Insertion of an object into a full array can be handled by allocating a new array
with additional memory and copying over the entries from the original array. This
makes the worst-case time of insertion high but if the new array has, for example,
twice the space of the original array, the average time for insertion is constant since
the expense of copying the array is infrequent. This concept is formalized using
amortized analysis.

Arrays

The machine can alttr the scanned symbol and its bthavior
is in part determined by that symbol,but the symbolson Ihl
tape tlsewhtre do nol affect the behavior of the mIIchine.

- "InlLDigent Machinery,N
A.M TuIUNO, 1948

Arrays and Strings

CHAPTER

ElementsOfProgramminglnterviews.com

The problem of computing the maximum difference in an array, specifically
maxi>j(A[il - A[j]) arises in a number of contexts. We introduced this problem

6.3 MAX DIFFERENCE

Youhave somecodewhich allocatesaBoolean-valuedarrayA. Thememorymanager
allocates this array in 0(1) time, but the contents of the allocated array are arbitrary.
Youwould like to initialize all the entries to O.The length n ofA is potentially huge
and you want to avoid the O(n) time complexityof initialization.

One way to check if an array entry has been written to is to store the indices that
have been written to in a hash table. Suppose the drawbacks of a hash table-poor
performance if the hash codes are not spread out, and the need for rehashing-are
not acceptable.

ProblemS.Z: Design a deterministic schemeby-whichreads and writes to an unini­
tialized array can be made in 0(1) time. Youmay useO(ri) additional storage; reads
to uninitialized entry should return false. pg. 184

6.2 LAZY INITIALIZATION (G><)

Problem 6.1: Write a function that takes an array A and an index i into A, and
rearranges the elements such that all elements less than A[i] appear first, followed
by elements equal to A[i], followed by elements greater than A[i]. Your algorithm
should have 0(1) space complexity and OOAI)time complexity. pg. 183

Figure 6.1: Illustrating the Dutch national flag problem.

(b) A three-waypartitioningresem- (c) Another three-waypartitioning:
blingtheDutchnationalflag. the Russiannationalflag.

(a) Beforepartitioning.

Figure 6.l(c) on the facingpage is a valid partitioning for Figure 6.1(a)on the next
page.

When an array consists of entries from a small set of keys, e.g., (O,1,2), one way
to sort it is to count the number ofoccurrencesof eachkey. Consequently,enumerate
the keys in sorted order and write the corresponding number of keys to the array. If
a BSTis used for counting, the time complexity of this approach isO(n logk),where
n is the array length and k is the number of keys. This is known as counting sort.
Counting sort, as just described, does not differentiate among different objectswith
the same key value. This problem is concerned with a special case of counting sort
when entries are objects rather than keys. Problem 13.4on Page 99 a~dresses the
general problem.

536.2. Lazy initialization (~)

ElementsOfprogr~ngInterviews.com

Problem 6.5: Design an efficient algorithm for the 0mod n-sum subset problem.
pg.187

Figure 6.2: An instance of the 0 mod n-sum subset problem.

A[O) .04(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8) A[9]

Let A be an array of n integers, not necessarily distinct. Let 1= {io,ilt ... ,ik-l) be a
subset of the indices ofA where k :Sn. Define the subset sum for I to be EjElA[ll

Inthe 0 mod n-sumsubset problem, the input isanonempty arrayA. Theproblem
callsfor finding a nonempty subset of the indicesofA whose subset sum is 0modulo
n. For example, for the array inFigure6.2,A[31+A [4]+A[9] mod 10= 0, and {3,4,9)
is a corresponding subset. (Thereare other such subsets.)

Although the problem of finding a subset whose sum is 0mod k for general k is
known tobe NP-complete, the 0mod n-sum subset problem can be solved efficiently.
(Note that n is the length of the underlying array as well as thedivisor.) In particular
there always exists a subset with the desired property.

6.5 SUBSET S1JMMlNG TO 0mod n (~)

Problem 6.3 on the preceding page, which is concerned with computing
IDaXosi<j$n-l (A[J1- A[l1),generalizes naturally to the following three problems.

Problem 6.4: For eachof the following,A is an integer array of length n.
(1.) Compute the maximum value of (A[jol - A[ioD + (A[jI] - A[id), subject to

io < jo < i1< h·
(2.) Compute themaximum value of E~;J(A[j,]- A[it]), subject to io < jo < i1< it <

... < ik-l < jk-1' Here k is a fixed input parameter.
(3.) Repeat Problem (2.)when k can be chosen to be any value from 0 to In/2J.

pg.186

6.4 GBNBRALIZATIONS OF MAX DIFFERBNCB (G<)

in the context of historical stockquote information onPage 1.Here we study another
application of the same problem.

A robot needs to travel along a path that includes several ascents and descents.
When it goes up, it uses its battery to power the motor and when it descends, it
recovers the energy which is stored in the battery. The battery recharging process
is ideal: on descending, every Joule of gravitational potential energy converts to a
Joule of electrical energy which is stored in the battery. The battery has a limited
capacity and once it reaches this capacity,the energy generated in descending is lost.

Problem 6.3: Design an algorithm that takes a sequence of n three-dimensional
coordinates to be traversed, and returns the minimum battery capacity needed to
complete the journey. The robot begins with a fully charged battery. pg. 185

6.4. Generalizationsof max difference (0<>54

ElementsOfProgramminglnterviews.com

Certain applications require arbitrary precisionarithmetic. Oneway to achieve this is
to use strings to represent integers, e.g.,with one digit or negative sign per character
entry,with the most significant digit appearing first.

Problem 6.9: Write a function that takes two strings representing integers, and
returns an integer representing their product. pg. 190

6.9 BIGINTEGBR MULTIPLICATION

Letabe a sequenceoflength nwhose elements are drawn fromZ; = {O,1,2, ... , n-l}.
No element is repeated, which implies that each integer in Zn appears exactly once,
i.e., a is a permutation. We read the elements of a one at a time, storing them in a
set 5, starting with the first element. We extract the minimum element from S after
io $ i1$... $ im-1-thelements have been read.

Problem 6.8: Suppose you know the permutation a and the extract sequence
(io, ill' .. ,im-1)in advance. How would you efficientlycompute the order in which
the m elements are removed from 5? pg. 189

6.8 OFFLINE MINIMUM (0)

Problem 6.7: How would you compute the weakest implied equivalence relation
. given n,A, and B? Youdo not have accessto any data structure libraries. pg. 188

6.7 COMPUTING EQUIVALENCE CLASSES (0)

Formally,an equivalence relation Eon a set S is a subset of Sx Sthat is reflexive(for all
x, (x, x) e E), symmetric (for all x and for all y, (x, y) E E iff (y, x) E E), and transitive
(for all x, for all y, and for all z, (x, y) E E and (y,z) E E implies (x,z) E E). A partition
on a set 5 is a collection of subsets P = {So,51,,, ., Sk-d having the property that
u~;tSI = 5 and S,nSj = 0 if i '* j. Eachsubset is referred to as an equivalence class.An
equivalence relation Eon 5 naturally implies a partition: the equivalence classesare
maximal subsets of elements all of which are equivalent under Eto one another.

Let S = (O,l,,,.,n -I). Let A and Bbe two arrays of length m whose entries
are integers from S. These arrays are used to specify equivalence information; in
particular, that A[k] and B[k] are equivalent. The weakest implied equivalence relation is
the equivalence relation in which x, YES are assigned to the same equivalence class
iff the given equivalence information forces them to be equivalent. For example,
if n = 7, A = [1,5,3,6], and B = [2,1,0,5], then the weakest implied equivalence
relation is ({O,3), (I, 2,5,6), {4}}.

6.6 LONGEST CONTIGUOUS INCREASING SUBARRAY (0)

An array is increasing if each element is less than its succeeding element except for
the last element.

Problem 6.6: Design and implement an algorithm that takes as input an array A
of n elements, and returns the beginning and ending indices of a longest increasing
subarray ofA. pg. 187

556.6. Longest contiguous increasing subarray (i)-)

ElementsOfProgr~nglnterviews.com

6.13 ROTATB AN ARRAY (e-)

Let A be an array of n elements. Ifwe have enough memory to make a copy of A,
rotating A by ipositions is trivial; we just compute B[11 = A[(i + J) mod n]. If we
are given a constant amount of additional memory c, we can rotate the string by C

positions a total of k = fn/cl times but this increases the time complexity to S(nk).
Youcannot use the rotate library function in C++. (imagine you are implementing
the library function rotate.)

Problem 6.13: Design a Sen)algorithm for rotating an array A of n elements to the
right by j positions. Youare allowed 0(1) additional storage. pg. 194

Problem 6.12: Given a permutation p represented as a vector, return the vector
corresponding to the next permutation under lexicographic ordering. If p is the
last permutation, return empty vector. For example, if p = (1,0,3,2), your function
should return (1,2,0,3). pg. 193

A permutation of a set of n elements can be represented using a vector of n integers
from (O,l, ... , n -11, eachone appearing once. Thereexist exactlyn! permutations of
n elements. Thesecanbe totally ordered using the lexicographicardering-p <lex q if in
the first placewhere p and q differ in their vector representations, the corresponding
entry forp is less than that for q. For example, (2,0,1) <lex (2,1,0).

6.12 NEXT PERMUTATION

Every one-to-oneonto mapping is invertible, Le.,ifI is one-to-one onto, then there
exists a unique function1-1 such thatr1(f(x» = x. In particular, for any permutation
TI,there exists a unique permutation TI-l that is the inverse of TI.

Givena permutation represented by an array A,you can compute its inverse Bby
simply assigning B[A[i]]= i for all values of i.
Problem 6.11: Given an array A of integers representing a permutation TI, update
A to represent n-1 using only constant additional storage. pg. 193

6.11 INVBRT A PBRMUTATION

6.10 PERMUTING THB BLEMBNTS OP AN ARRAY (Ci><)

Apermutation oflength n isa one-to-oneonto mapping a from (O,1,... ,n-11to itself.
We can represent a permutation using an array Fl: set TI[Il = a(i). A permutation
can be applied to an array A of n elements: TI(A) is defined by TI(A[ll) = A[TI[i]j for
o ~ i~n -1. It issimple to apply a permutation to a given array if additional storage
is available to write the resulting array.

Problem 6.10: Given an array A of n elements and a permutation TI, compute TI(A)
using only constant additional storage. pg. 192

6.10. Permuting the elements of atla"ay (~)56

ElementsOfPrograrnminglnterviews.com

Problem 6.15: Implement a functionwhich takesa 2Darray A and prints A in spiral
order. pg. 198

Figure 6.4: A spiral 2D array example.

An n x n 2D array A of integers can be written as a sequence of integers in several
orders-the most natural ones being row-by-row or column-by-column. In this
problemwe explore the problem ofwriting the 2Darray in spiral order. For example,
the answer of the 2D array in Figure 6.4should be "1 23698745".

. 6.15 PRINT 2DARRAYIN SPIRALORDER

Problem 6.14: Check whether a 9 x 9 2D array representing a partially completed
Sudoku is valid. Specifically,check that no row, column, and 3 x 3 2D subarray
contains duplicates. A O-valuein the 2D array indicates that entry is blank; every
other entry is in I1,9]. I pg. 197

(b) A complete solution.

Figure 6.3: Sudoku configurations.

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9.6 3 5
3 4 5 2 8 6 1 7 9

(a)Parllalassignment.

5 3 7
6 1 9 5
9 8 6

8 6 3
4 8 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

Sudoku is apopular logic-basedcombinatorialnumber placement puzzle. Theobjec­
tive is tofill a9x9 gridwith digits subjectto theconstraint that each column, eachrow,
and each of the nine 3 x 3 sub-grids that compose the grid contains unique integers
in I1,9]. The grid is initialized with a partial assignment as shown in Figure 6.3(a);a
partial solution is shown in Figure 6.3(b).

6.14 SUDOKU CHECKER

576.14. Sudoku checker

ElementsOfPrograrnmingInterviews.com

Flgure 6.6: Example 0120 array rotation.

~
~

1131141151161
(a) Inltlal4x 4 20 array. (b) Arrayrotatedby90 degreesclockwise.

Imagerotation isa fundamental operation in computer graphics. Figure6.6illustrates
the rotation operation on a2D array representing abit-map ofan image. Specifically,
the image is rotated by 90 degrees clockwise.

6.17 2D ARRAYROTATION

Problem 6.16: Implement a routine that takes aDxDBooleanarray A together with
an entry (x,Y) and flips the color of the region associated with (x,y). See Figure 6.5
for an example of flipping. pg. 199

Figure 6.5: The color of all squares associated with the first square marked with a x In (a) have been
recolored to yield the coloring in (b). The same process yields the coloring in (c).

(cl(bl(al

J""
!iiOi
~

':lI E l ,
l U -

L";' L-l!..
~'1

L!!:
F .x .:J

~
'I

Let A be a D x D Boolean2D array encoding a black-and-white image. The entry
A(a, b) can be viewed as encoding the color at location (a, b). Definea path fromentry
(a,b) to entry (c,d) to be a sequence of entries «xv Yl), (X2, Y2),... , (x",y,,)} such that

- (a,b) = (Xl' Yl), (c,d) = (x", y,,), and
._ for each i,1 S i < n, we have Ix; - xl+11+ IYi - Yi+tI = 1.
Define the region associatedwith a point (i,J) to be all points (i',j') such that there

exists a path from (i,J) to (i',j') inwhich all entries are the same color. Inparticular
this implies (i,J) and (i',f)must be the same color.

6.16 PAINTING

6.16. Painting58

ElementsOfprogramminglntervie\qs. com

A good string search algorithm is fundamental to the performance of many applica­
tions. Several clever algorithms have been proposed for string search, each with its
own trade-offs. As a result, there is no single perfect answer. If someone asks you this
question in an interview, the best way to approach this problem would be to work
through one good algorithm in detail and discuss at a high level other algorithms.

Problem 6.20: Given two strings s (the "search string") and t (the "text"), find the
first occurrence of 5 in t. pg.203

6.20 FIND TliE FIRSTOCCURRENCEOFA SUBSTRING

Given a string containing a set of words separated by white space, we would like to
transform itto a string in which the words appear in the reverse order. For example,
IIAlice likes Bob" transforms to "Bob likes Alice". We do not need to keep the original
string.

Problem 6.19: .Implement a function for reversing the words in a string. Your
function should use 0(1) space. pg.202

6.19 REVERSEALL THEWORDSIN A SENTENCE

Problem 6.18: Implement run-length encoding and decoding functions. Assume
the string to be encoded consists of letters of the alphabet, with no digits, and the
string to be decoded is a valid encoding. pg. 201

Run-length encoding (RLE)compression offers a fast way to do efficient on-the-flight
compression and decompression of strings. The idea is simple-encode successive
repeated characters by the repetition count and the character. For example, the RLE
of "aaaabcccaa" is "4alb3c2a". The decoding of "3e4f2e" returns "eeeffffee".

6.18 RUN-LENGTH ENCODING

Strings are ubiquitous in programming today-scripting, web development, and
bioinformatics all make extensive use of strings. You should know how strings are
represented in memory, and understand basic operations on strings such as compar­
ison, copying, joining, splitting, matching, etc. Problems 6.18 to 6.23 on Pages 59-{i0
are representative of string-related questions. We now present problems on strings
which can be solved using elementary techniques. Advanced string processing al­
gorithms often use hash tables (Chapter 12) and dynamic programming (Page 117).

Strings

Problem 6.17: Design an algorithm that rotates a nX n 2D array by 90 degrees clock­
wise. Assume that n = 2k for some positive integer k. What is the time complexity of
your algorithm? pg.200

596.18. Run-length encodillg

ElementsOfProgramrninglnterviews.com

6.23 REGULAR BXPRBSSIONMATCHING (0)

A regular expression is a sequence of characters that defines a set of matching strings.
For this problem we define a simple subset of a fun regular expression language.

A simple regular expression (SRE)is an alphanumeric character, the metacharacter
. (dot), an alphanumeric character or dot followed by the meta character ..(star), or the
concatenation of two simple regular expressions. For example, a, aW, aW.9, aW.9.,
and aW.•9. are simple regular expressions.

An extended simple regular expression (ESRE) is an SRE, an SRE prepended with
the metacharacter A, an SRE ended with the metacharacter $, or an SRE prepended

Problem 6.22: Given a cell phone keypad (specified by a mapping M that takes
individual digits and returns the corresponding set of characters) and a number se­
quence, return all possible character sequences (not just legal words) that correspond
to the number sequence. pg. 205

Figure 6.7: Phone keypad.

Each digit, apart from 0 and 1, in a phone keypad corresponds to one of three
or four letters of the alphabet, as shown in Figure 6.7. Since words are easier to
remember than numbers, it is natural to ask if a 7 or 10-digit phone number can be
represented by a word. For example, "2276696" corresponds to "ACRONYM" as
well as "ABPOMZN".

6.22 PHONE NUMBBR MNEMONIC

Consider the following two rules that are to be applied to strings over the alphabets
{Hall, "b", "e", lid"}.

1. Replace each "a" by "dd".
2. Delete each "b".
It is straightforward to implement a function that takes a string s as an argument,

and applies these rules to s if the function can allocate O(lsl) additional storage.

Problem 6.21: Write a function which takes as input a string s, and removes each
"b" and replaces each "a" by "dd". Use 0(1) additional storage-assume s is stored
in an array that has enough space for the final result. pg. 204

6.21 RSPLACE AND REMOVE

60 6.21. Replace and remove

ElementsOfProgramminglnterviews.com

.1

Problem 6.23: Design an algorithm that takes a string 5 and a string r, assumed to
be a well-formed ESRE, and checks if r matches s. pg. 206

with" and ended with $. The previous SRE examples are ESREs, as are I\a, aW$,
and I\aW.9..$.

First we define what it means for an SRE r to strictly match a string s. Recall s"
denotes the k-th suffix of s,
- If r begins with an alphanumeric character and the next character in r is not

star, then r strictly matches s if that same character is at the start of s, and r1
strictly matches 51.

- If r begins with an alphanumeric character and the next character in r is star,
then r strictly matches 5 if s can be written as 51 concatenated by 52, where 51
consists of zero or more of the same character, and 52 strictly matches r2.

- If r begins with dot and the next character in r is not star, then r strictly matches
s if ,1 strictly matches 51.

- If, begins with dot and the next character in r is star, then' strictly matches 5

if 5 can be written as 51 concatenated with 52, where 51 is of length 0 or more,
and r strictly matches 52.

Now we define when an ESREmatches a string. Conceptually, the metacharacters
1\ and $ stand for the beginning and end of the string, respectively. An ESRE r that
does not start with" or end with $ matches s if there is a substring t of 5 such that r
strictly matches t.

An ESRE r beginning with 1\ matches s if there is a prefix sl of 5 such that, strictly
matches 51. An ESRE r ending with $matches 5 if there is a suffix 52 of 5 such that r
strictly matches 52.

The following examples are all concerned with ESREs. aW9 matches any string
containing aW9 as a substring. "a W9 matches aW9 only at the start of a string. aW9$
matches aW9 only at the end of a string. l\aW9$ matches aW9 and nothing else. a.9
matches a89 and xyaW9123 but not aw89. a ...9 matches aw89, and aw ..9 matches
aww9.

616.23. Regular expression matching (Q><)

62

I template <typenaa. T>
1 class node_t {

pubUc:

For all problems in this chapter, unless otherwise stated, L is a singly linked list,
and your solution may not use more than a fewwords of storage, regardless of the
length of the list. Specifically,each node has two entries-a data field, and a next
field, which points to the next node in the list, with the next field of the last node
being null. Its prototype in C++ is listed as follows:

Figure 7.2: Example of a doubly linked list.

Figure 7.1: Exampleof a singly linked list.

DJ~~.~1=2~f~--+.{IJ3~1~11~~.1~5:G1~1--~.{1=3[]r~,rl--+.[122:TIlx~1

A singly linked list is a data structure that contains a sequenceofnodes such that each
node contains an objectand a reference to the next node in the list. The first node is
referred to as the head and the last node is referred to as the tail; the tail's next field is
a reference to null. The structure of a singly linked list is given in Figure 7.1. There
are many variants of linked lists, e.g., in a doubly linked list, each node has a link to
its predecessor, similarly,a sentinel node or a self-loop can be used instead of null.
The structure of a doubly linked list is given in Figure 7.2.Since lists can be defined
recursively,recursion is a natural candidate for list manipulation.

- HRtcursiIlt Functions Of Symbolic Expressions,H
J. McC.um!v, 1959

The S-exprl!Ssions arefonned according to the folluwing re­
eurs/tIt rules.

1. Thealomic JymbolsPt.P1. eta: art S-cqmssions.
2. A nuUapression" is alsoIIdmitted.
3. If e is an S-apression so is (e).
4. If el alld e, are S-txpressions so is (el. e,).

Linked Lists

CHAPTBR

ElementsOfProgrammingInterviews.com

It is relatively straightforward to find the median of a sorted linked list in O(n) time.
However, this problem becomes trickier if the list is circular.

Problem 7.3: Write a function that takes a sorted circular singly linked list and a
pointer to an arbitrary node in this linked list, and returns the median of the linked
~ ~m

7.3 MEDIAN OF A SORTED CIRCULAR LINKED LIST

Problem 7.2: Given a reference to the head of a singly linked list L,how would you
determine whether L ends in a null or reaches a cycle of nodes? Write a function
that returns null if there does not exist a cycle, and the reference to the start of the
cycleif a cycleis present. (Youdo not know the length of the list in advance.) pg.208

Although a linked list is supposed to be a sequence of nodes ending in a null, it
is possible to create a cycle in a linked list by making the next field of an element
reference to one of the earlier nodes.

17.2 CHECKING FOR CYCLICITY

Problem 7.1: Write a function that takes Land F, and returns the merge of Land
F. Your code should use 0(1) additional storage-it should reuse the nodes from
the lists provided as input. Your function should use 0(1) additional storage, as
illustrated in Figure 7.3.The only field you can change in a node is next. pg. 207

III .. I 2 I· I ..I 5 I· I ..I 7 Ixl
'xl'" txl24' tx181'

m .. I 3 I I ..I 11 Ixl
&x2439 &x27&&

(a) Two sortedlists.

[BJ ..I 2 1·1 .. I 3 I I ..I 5 I I ..I 7 I' I ..I 11 Ixl
Ox I ... II<Z43. ..124. tx183' 'x27"

(b) The mergeof the two listsIn (a).

FIgure7.3: Mergingsorted lists.

LetLand F be singly linked lists ofnumbers. Assume the numbers inLand F appear
in sorted order within the lists. Themerge of Land F is a list consisting of the nodes
of Land F in which keys appear in sorted order. The merge function is shown in
Figure 7.3.

7.1 MERGB TWO SORTBD LISTS

T dataj
shared_ptr<node_t<T» next;

6 };

637.1. Merge two sorted lists

ElementsOfProgrammingInterviews.com

Let L = (10,'11'21, •• ,l,,-l) be a sequence. Define even-odd(L} to be the sequence
(10,,21141, •• ,11, '3" ••), i.e., the elements at even indices followed by the elements at
odd indices. The even-odd merge function is shown in Figure 7.6 on the facing page.

Problem 7.6: Write a function that takes a singly linked list L, and reorders the
elements of L so that the new list represents even-odd(L). Your function should use

7.6 EVEN-QOO MBRGE

Problem 7.5: Solve Problem 7.4 for the case where Ll and L2may each or both have
a cycle. If such a node exists, return a node that appears first when traversing the
lists. This node may not be unique-if Ll has a cycle (no, nt, ... r nk-uno), where no is
the first node encountered when traversing LI, then L2may have the same cycle but
a different first node. pg. 212

7.5 OVERLAPPING LISTS-LISTS MAYKAVECYCLES

Problem 7.4: Let hl and h2 be the heads of lists Ll and U, respectively. Assume
that Ll and L2 are well-formed, that is each consists of a finite sequence of nodes. (In
particular, neither list has a cycle.) How would you determine if there exists a node
r reachable from both hl and h2 by following the next fields? If such a node exists,
find the node that appears earliest when traversing the lists. You are constrained to
use no more than constant additional storage. pg. 211

Figure 7.S: Example of overlapping lists.

I I

Given two singly linked lists, Ll and L2, there may be list nodes that are common to
both L1 and L2. (Thismay not be a bug-it may be desirable from the perspective of
reducing memory footprint, as in the flyweight pattern, or maintaining a canonical
form.) For example, Ll and L2 in Figure 7.5 overlap at Node I.

7.4 OvBRLAPPING LISTS-NO LISTSKAVECYCLB

Figure 7.4: Example of a sorted circular linked list.

,,13 lib"I 2~1117

7.4. Overlappinglists-no lists hlWecycle64

ElementsOfProgramminglnterviews.com

Problem 7.9: Give a linear time non-recursive function that reverses a singly linked
list. The function should use no more than constant storage beyond that needed for
the list itself. The desired transformation is illustrated in Figure 7.7. pg. 215

exZZ66 IIx211& 9xl.838 &%1246 8xl669t
Figure 7.7: The reversed list for the list In Figure 7.6(a). Note that no new nodes have been allocated.

Suppose you were given a singly linked list L of integers sorted in ascending order
and you need to return a list with the elements sorted in descending order. Memory
is scarce,but you can reuse nodes in the original list, i.e.,your function can change L.

7.9 REVERSING A SINGLY.LINKED LIST

Without knowing the length of a linked list, it is not trivial to delete the k-th last
element in a singly linked list.

Problem 7.8: Given a singly linked list Land a number k,write a function to remove
the k-th last element from L. Your algorithm cannot use more than a few words of
storage, regardless of the length of the list. In particular, you cannot assume that it is
possible to record the length of the list. pg. 214 .

7.8 REMOVE THE k-TH LAST ELEMENT PROM A LIST

Given a node in a singly linked list, deleting it in 0(1) time appears impossible
because its predecessor's next field has to be updated. Surprisingly, it can be done
with one small caveat-the node to delete cannot be the last one in the list and it is
easy to copy the value part of a node.

Problem 7.7: Let v be a node in a singly linked list L. Node v is not the tail: delete it
in 0(1) time. pg.214

7.7 DELETION PROM A SINGLYLINKED LIST

0(1) additional storage, as illustrated in Figure 7.6.The only field you can change in
aM~~~. nm

Figure 7.6: Even-odd merge example.

(b) even-odd(L)-f1ote that no new nodes have been allocated.

(a) Initial list L. The number In hex below a node Indicates the memory address of that node.

DJ~~.{IJl~O]I~lrl--~~[1~11:I1'31--~~{IJl~2JI~I--~~[I~~:I3-~~{IJ4[]I~xl
@U$f/@ $.124$ ~x183~ &x21l@ $x22$&

657.7. Deletion from a singly linked list

ElernentsOfProgramminglnterviews.com

Problem 7.12: Implement a function which takes as input a pointer to the head of a
postings list L, and returns a copy of the postings list. Your function should take O(n)
time, where 11 is the length of the postings list and should use 0(1) storage beyond
that required for the n nodes in the copy. You can modify the original list, but must
restore it to its initial state before returning. pg. 217

Figure 7.8: A postings list.

Ina "postings list" each node has a data field, a field for the next pointer, and a jump
field-the jump field points to any other node. The last node in the postings list has
next set to null; all other nodes have non-null next and jump fields. For example,
Figure 7.8 is a postings listwith four nodes.

7.12 COPYING A POSTlNGS LIST (0)

7.11 ZIPPING A LIST (~)

Let L = (10, It,12, ••• , In-I)' Define zip(L) to be (10, In-I,ll, In-2, •••). The zip function is
shown in Figure 4.1 on Page 25.

Problem 7.11: Write a function that takes a singly linked list L, and reorders the
elements of L to form a new list representing zip(L). Your function should use 0(1)
additional storage, as illustrated in Figure 4.1 on Page 25. The only field you can
change in a node is next. pg. 216

It is straightforward to check whether the sequence stored in an array is a palindrome.
However, if this sequence is stored as a singly linked list, the problem of detecting
palindromicity becomes more challenging. See Figure 7.1 on Page 62 for an example
of a palindromic singly linked Jist.

Problem 7.10: Write a function that determines whether a sequence represented by
a singly linked list L is a palindrome. Assume L can be changed and does not have
to be restored it to its original state. pg. 216

7.10 PAl.INDROMICITYIN LINKEDLIST

66 7.10. PalitldTOnticity itllitlked list

67

Problem 8.1: Design a stack that supports a maxoperation, which returns the maxi­
mum value stored in the stack, and throws an exceptionif the stackis empty. Assume
elements are comparable. All operations must be 0(1) time. Youcan use O(n) addi­
tional space,beyond what is required for the elements themselves. pg. 219

8.1 STACK WITH MAX OPERATION

Figure 8.1: Operations on a stack.

(c) Perform push 3 on (b).(a) Initial configuration.

pusb3

W
pop

W
(b) Perform pop on (a).

The stack ADT supports two basic operations-push and pop. Elements al'e added
(pushed) and removed (popped) in last-in, first-out order, as shown in Figure 8.1. If
the stack is empty, pop typically returns a null or throws an exception.

When the stack is implemented using a linked list these operations have 0(1)
time complexity. If it is implemented using an array, there is maximum number of
entries it can have-push and pop are stiU0(1). If the array is dynamically resized,
the amortized time for both push and pop is 0(1). A stack can support additional
operations such as peek (return the top of the stackwithout popping it).

Stacks

- "The Art of Computer Programming, Volume 1,"
D. E.KNUT~, 1997

Line4r lists in whicll insertions, delelicns, and accesses
W wlues occur almost always at tile first or the last
node are very frequently encountered, and we give
ibem specittJnames, ..

Stacks and Queues

CHAPTER

ElementsOfProgrammlnglnterviews.com

Postings lists are described in Problem 7.12 on Page 66. One way to enumerate the
nodes in a postings list is to iteratively follow the next field. Another is to always
first follow the jump field if it leads to a node that has not been explored previously,
and then search from the next node. Call the order inwhich these nodes are visited
the jump-first order.

Problem 8.4: Write recursive and iterative routines that take a postings list, and
computes the jump-first order. Assume each node has an order field, which is an
integer that is initialized to -1for each node. pg. 223

8.4 SEARCHING A POSTINGS LIST

BSTsare the subject of Chapter 14. In summary, a SSTis a set of nodes. Each node
n has a reference to a left child (denoted by n.left) and a right child (n.right), and a
key (n.key). Either or both children may be null. The node n is referred to as the
parent of n.left and n.right. The keys are from a totally ordered set, and nodes satisfy
the SSTproperty-if n.left is not null, n.left.key ~ n.key and if n.right is not null,
n.right.key ~ n.key. Node m is said to be a descendant of n ifm = n.left or m = n.right,
or if m is a descendant of n.left or ofn.right.

Problem 8.3: Given a SSTnode n, print all the keys at n and its descendants. The
nodes should be printed insorted order, and you cannot use recursion. Forexample,
for Node I in the binary search tree in Figure 14.1 on Page 105 you should print the
sequence (23, 29,31,37,41, 43,47, 53}. pg.223

8.3 PRINTING THE KEYSIN A 5ST

Problem 8.2: Write a function that takes an arithmetical expression in RPN and
returns the number that the expression evaluates to. pg. 221

A string is said to be an arithmetical expression in ReversePolish notation (RPN) if:
(1.) It is a single digit or a sequence of digits.
(2.) It is of the form" A, B,0" where A and B are RPN expressions and 0 is one of

+,-,x,/.
(3.) It is of the form" -A" where A is an RPNexpression.

For example, the following strings satisfy these rules: "3,4, x,1,2,+, +",
"1,1,+,-2,x", "4,6,/,2,/".

AnRPNexpression can be evaluated uniquely to an integer,which is determined
recursively. The base case corresponds to Rule (1.),which is an integer expressed in
base-lOpositional system. Rules (2.) and (3.) on the current page correspond to the
recursivecases, and the RPNsare evaluated in the natural way,e.g., ifA evaluates to
2 and Bevaluates to 3, then "A,B,x" evaluates to 6.

8.2 ExPRESSION EVALUATION

8.2. Expression eualuation68

ElementsOfProgramminglnterviews.com

A file or directory can be specified via a string called the path name. This string may
specify an absolute path, starting from the root, e.g., /usr /bin/gcc, or a path relative
to the current working directory, e.g., scripts/awkscripts.

8.8 NORMALIZED PATHNAMES

Problem 8.7: Design an algorithm to sort a stack S of numbers in descending order.
The only operations allowed are push, pop, top (which returns the top of the stack
without a pop), and empty. You cannot explicitly allocate memory outside of a few
words. pg. 226

8.7 STACK SORTING

You are given with a series of buildings that have windows facing west. The buildings
are in a straight line, and if a building b is to the east of a building whose height is
greater than or equal to b, it is not possible to view the sunset from b.

Problem 8.6: Design an algorithm that processes buildings as they are presented to
it and tracks the buildings that have a view of the sunset. The number of buildings
is not known in advance. Buildings are given in east-to-west order and are specified
by their heights. The amount of memory your algorithm uses should depend solely
on the number of buildings that have a view; in particular it should not depend on
the number of buildings processed. pg. 226

8.6 VIEWS OP THE SUNSET

Problem 8.5: Exactly n rings on PI need to be transferred to n,possibly using P3
as an intermediate, subject to the stacking constraint. Write a function that prints a
sequence of operations that transfers all the rings from PI ton. pg. 224

Figure B.2: TowersofHanoiforn = 6.

(b) Deslred configuration.

P3PIP3P2

(a) Initial configuration.

PI
I ~ I~ I I

You are given n rings. The i-th ring has diameter i. The rings are initially in sorted
order on a peg (PI), with the largest ring at the bottom. You are to transfer these
rings to another peg (P2),which is initially empty. This is illustrated in Figure 8.2.
You have a third peg (P3), which is initially empty. The only operation you can do is
taking a single ring from the top of one peg and placing it on the top of another peg;
you must never place a bigger ring above a smaller ring.

8.5 TOWERS OP HANOI

69B.S. Towers of Hanoi

ElementsOfprogramminglnterviews.cOM

Binary trees are the subject of Chapter 9. In summary, a binary tree is a root node,
which is either null, or an object with three fields: a key, a left child, and a right

8.9 PRINTING A BINARYTREBIN LBVELORDBR

A deoue, also sometimes called a double-ended queue, is a doubly linked list in
which all insertions and deletions are from one of the two ends of the list, i.e., at the
head or the tail. An insertion to the front is called a push, and an insertion to the back
is called an inject. A deletion from the front is called a pop, and a deletion from the
back is called an ej ect.

Figure 8.3: Examplesof enqueue and dequeue.

(a) InltlalconfigUration. (b) Oueue (a) after dequeue. (c) Oueue (b) after enqueue (4).

I 2 : 0 : 4: ;:..{nqueue 4deqUeue~2: 0 :

The queue ADT supports two basic operations-enqueue and dequeue. (If the queue
is empty, dequeue typically returns a null or throws an exception.) Elements are
added (enqueued) and removed (dequeued) in first-in, first-out order.

A queue can be implemented using a linked list, in which case these operations
have 0(1) time complexity. Other operations can be added, such as head (which
returns the item at the start of the queue without removing it), and tail (which
returns the item at the end of the queue without removing it). A queue can also be
implemented using an array; see Problem 8.10 on the next page for details.

Queues

Here + denotes one or more repetitions or the preceding token, and ? denotes 0 or 1
occurrences of the preceding token. You should throw an exception on invalid path
names. pg. 227

name = [A - Za - zO - 9] +
spdir . I ..

pathname = name I spdir I [spdir I name I pathname]? / + pathname?

The same directory may be specified by multiple directory paths. For exam­
ple, /usr/lib/ .. /bin/gcc and scripts/ /./ .. /scripts/awkscripts/././ specify
equivalent absolute and relative path names.

Problem 8.8: Write a function which takes a path name, and returns the shortest
equivalent path name. Assume individual directories and files have names that use
only alphanumeric characters. Subdirectory names may be combined using forward
slashes (I), the current directory (.), and parent directory (..).

The formal grammar is specified as follows:

B.9. Printing a binary tree in level order70

ElementsOfprogrammingInterviews.com

Queue insertion and deletion follows first-in, first-out semantics; stack insertion
and deletion is last-in, first-out. It can be shown rigorously that it is impossible to
implement a queue with capacity n (i.e.,a queue capableof holding up to n elements
at a time) using a stackwith capacityn and 0(1) additional storage. (Theproof, given
in Li, et al., "The Power of the Queue", is nontrivial.)

Problem 8.12: How would you implement a queue given two stacks and 0(1) addi­
tional storage? Yourimplementation should be efficient-the time to do a sequence
ofm combined enqueues and dequeues should be Oem). pg. 231

8.12 QUEUE PROM TWO STACKS

Problem 8.11: Implement a queue using two unsigned integer-valued variables.
Assume that the only elements pushed into the queue are integers in [0,9]. Your
program should work correctlywhen Osare the only elements in the queue. What is
the maximum number of elements that can be stored in the queue for it to operate
correctly? pg. 230

8.11 IMPLBMENT A QUEUE USING TWO UNSIGNED INTEGERS

A queue canbe implemented using an array and two additional fields, the beginning
and the end indices. This structure is sometimes referred to as a circular queue.
Both enqueue and dequeuehave 0(1) time complexity.If the array is fixed, there is a
maximum number of entries that can be stored. If the array is dynamically resized,
the total time for m combined enqueue and dequeue operations isOem).

Problem 8.10: Implement a queue API using an array for storing elements. Your
API should include a constructor function, which takes as argument the capacity
of the queue, enqueue and dequeue functions, a size function, which returns the
number of elements stored, and implement dynamic resizing. pg. 229

8.10 IMPLEMBNT A CIRCULAR QUEUB

child. The left and right children are themselves binary trees and are required to be
disjoint.

Node d is a descendant of node a iff d = Q or d is a child of Q or d is a descendant
of a child of Q. Assign levels to nodes in a binary tree as follows: level(root)= 0, and
for any node c * root,level(c) = 1+ level(n),where n is the parent of c.

Problem B.9: Given the root node r of a binary tree, print all the keys
and levels at r and its descendants. The nodes should be printed in or­
der of their level. You cannot use recursion. You may use a single queue,
and constant additional storage. For example, you should print the sequence
(314,6,6,271,561,2,271,28,0,3,1,28,17,401,257,641) for thebinary tree in Figure9.1
~~n nm

71B.I0. Implement n,circular quelle

ElementsOfPrograrnminglnterviews.com

Problem 8.14: Let A be an array of length n, and w the window size. Entry A[i]
is a pair (ti' Vi), where ti is the timestamp and Vi the traffic volume at that time.
Assume A is sorted by increasing timestamp. Design an algorithm to compute
Vi=max{vj I(tj - tj) 5w,j 5 iI, for0 5 i 5n - 1. pg.234

Network trafficcontrol sometimes require themaximum trafficvolume m(t,w) in the
time interval [t - w,t] for each time t in the day, where w is the window size. This
problem explores the development of an efficient algorithm for computing these
maximum trafficvolumes.

8.14 MAxIMuMOF A SLIDING WINDOW (~)

The queue ADT is usually expressed in terms of enqueue and dequeue operations.
Suppose the keys are froma totally ordered set, e.g.,integers, and we want to support
a maxoperation, which returns the maximum element stored in the queue.

Problem 8.13: How would you implement a queue so that any series ofm combined
enqueue, dequeue,and max operations can be done in O(m) time? pg.232

8.13 QuSOBWITHMAX «i)-)

B.13. Queue with max (~)72

73

! _-----_.__._--_.

1 template <typename T>
2 class BinaryTree {
3 public:

T data;
5 shared_ptr<BinaryTree<T» left. right;
6 };

Often the root stores additional data. Its prototype in C++ is listed as follows:

Figure 9.1: Example of a binary tree.

257 NII

pKGE

B

D

A binary tree is a data structure that is useful for representing hierarchy. Formally,
a binary tree is a finite set of nodes T that is either empty, or consists of a root node
r together with two disjoint subsets L and R themselves binary trees whose union
with {r} equals T. The set Lis called the left binary tree and R is the right binary tree of
T. The left binary tree is referred to as the left child or the left subtree of the root, and
the right binary tree is referred to as the right child or the right subtree of the root.

Figure 9.1 gives a graphical representation of a binary tree. Node A is the root.
Nodes B and I are the left and right children ofA.

- "Decidability of Second Order Theories trlldAutomata on Trees,"
M. O. RABIN, 1969

The method of solution illooltleS the deuelopment of a theory of finite
automata operating on infinite trees.

Binary' Trees

CHAPTER

ElementsOfprogracminglnterviews.com

Each node, except the root, is itself the root of a left subtree or a right subtree. If /
is the root of p's left subtree, we will say / is the left child of p, and p is the parent of /;
the notion of right child is similar. If n is a left or a right child of p,we say it is a child
of p. Note that with the exception of the root, every node has a unique parent. Often,
but not always, the node has a parent field (which is null for the root). Observe that
for any node n there exists a unique sequence of nodes from the root to nwith each
subsequent node being a child of the previous node. This sequence is sometimes
referred to as the search path from the root to n.

The parent-child relationship defines an ancestor-descendant relationship on
nodes in a binary tree. Specifically, a is an ancestor of d ifa lies on the search path from
the root to d. If a is an ancestor of d, we say d is a descendant of a. Our convention is
that x is an ancestor and descendant of itself. A node that has no descendants except
for itself is called a leaf

The depth of a node n is the number of nodes on the search path from the root to n,
not including n itself. The height of a binary tree is the maximum depth of any node
in that tree.

As concrete examples of these concepts, consider the binary tree in Figure 9.1 on
the preceding page. Node I is the parent of J and O. Node Gis a descendant of B. The
search path to L is (A,I, J,1(.L). The depth of N is 4. Node M is the node of maximum
depth, and hence the height of the tree is 5. The height of the subtree rooted at B is 3.
The height of the subtree rooted at H is O. Nodes D, E,H,M, N, and P are the leaves
of the tree.

A full binary tree is a binary tree in which every node other than the leaves has
two children. A perfect binary tree is a full binary tree in which all leaves are at the
same depth or same level, and inwhich every parent has two children. A complete
binary tree is a binary tree in which every level, except possibly the last, is completely
filled, and all nodes are as far left as possible. (This terminology is not universal,
e.g., some authors use complete binary tree where we write perfect binary tree.) Itis
straightforward to prove using induction that the number of non-leaf nodes in a full
binary tree is one less than the number of leaves. A perfect binary tree of height h
contains exactly 2h+l - 1 nodes, of which 2!' are leaves. A complete binary tree on n
nodes has height LIgnJ.

A key computation on a binary tree is visiting all the nodes in the tree. (Visiting is
also sometimes called walking or traversing.) Here are some ways in which this visit
can be done.

- Visit the left subtree, the root, then the right subtree (an inorder visit).
- VISitthe root, the left subtree, then the right subtree (a preorder visit).
- Visit the left subtree, the right subtree, and then the root (a postorder visit).

Let T be a binary tree on n nodes, with height h. Implemented recursively, these
visits have O(n) time complexity and O(h} additional space complexity. (The space
complexity is dictated by the maximum depth of the function call stack.) If each
node has a parent field, the visits can be done with 0(1} additional space complexity.

Remarkably, an inorder visit can be implemented in 0(1) additional space even
without parent fields. The approach is based on temporarily setting right child fields

Chapter 9. Binary Trees74

75

ElernentsOfProgrammingInterviews.com

Define a node in a binary tree to be k-balanced if the difference in the number of
nodes in its left and right subtrees is no more than k.

Problem, 9.2: Design an algorithm that takes as input a binary tree and positive
integer k, and returns a node u in the binary tree such that u is not k-balanced, but all
of u's descendants are k-balanced. If no such node exists, return null. For example,
when applied to the binary tree in Figure 9.1 on Page 73, your algorithm should
return Node J if k = 3. pg. 236

9.2 k-BALANCED NODES

A binary tree is said to be balanced if for each node in the tree, the difference in the
height of its left and right subtrees is at most one.

Problem 9.1: Write a function that takes as input the root of a binary tree and returns
true or false depending on whether the tree is balanced. Use O(h) additional
storage, where h is the height of the tree. pg. 235

9.1 BALANCED BINARY TREES

2si
26i }L_._._ ••._ •.•.•._ ._"_ . .

The term tree is overloaded, which can lead to confusion; see Page 131 for an
overview of the common variants.

24

10
11 // Build the successor link
12 if (pre->right) { /1 pre->right == n
13 II Revert the successor link if predecessor's successor is n
H pre->right • nullptr;
15 cout « n-odata « endl;
16 n = n->right;
17 else { II if predecessor's successor is not n
~ pre->right = n;
19 n = n->left;
20'

21 else {
n cout « n->data « endl;
~ n = n->right;

1 template <typename T>
2 void inorder_traversal(shared_ptr<BinaryTree<T» n) {

while Cn) {
if (n->left) {

// Find the predecessor of n
shared_ptr<BinaryTree<T» pre = n->left;
while (pre->right && pre->right 1= n) {

pre = pre->right;

for leaf nodes, and later undoing these changes. Code for this algorithm, known
as a Morris traversal, is given below. It is largely of theoretical interest; one major
shortcoming is that it is not thread-safe, since itmutates the tree, albeit temporarily.

9.1. Balanced binary trees

ElementsOfProgramminglnterviews.com

It is trivial to find the k-th node that appears in an inorder traversal with O(n) time
complexity.However,with additional information on each node, you can do better.

9.6 DlrrBRMINING THE k-TH NODE IN AN iNORDER TRAVERSAL

9.5 mORDBR TRAVERSALWITH 0(1) SPACE (0)

The direct implementation of an inorder walk using recursion has O(h) space com­
plexity,where h is the height of the tree. Recursion can be removed with an explicit
stack,but the space complexity remainsO(h). If the tree ismutable,we can do inorder
traversal in 0(1) space-this is theMorris traversal described on the preceding page.
TheMorris traversal does not require that nodes have parent fields.

Problem 9.5: LetT be the rootof abinary tree in which nodes have anexplicitparent
field. Design an iterative algorithm that enumerates the nodes inorder and uses 0(1)
additional space. Youralgorithm cannot modify the tree. pg. 239

Problem 9.4: For a certain application, processes need to locknodes in abinary tree.
Implement a library for locking nodes in a binary tree, subject to the constraint that a
node cannot be locked if any of its descendants or ancestors are locked. Specifically,
write functions isLockO, lockO, and unlock 0,with time complexities0(1), O(h),
and O(h).Here h is the height of the binary tree. Assume that each node has a parent
~. nm

9.4 Locxmc rN A BINARY TREB

Problem 9.3: Writea function that takes as input the root of a binary tree and returns
true or false depending on whether the tree is symmetric. pg. 237

Figure 9.2: Symmetric and asymmetric binary trees.The tree in (a) is structurally symmetric, but sym­
metry requires that corresponding nodes have the same keys; here C and F as well as D and G break
symmetry. The tree in (c) is asymmetric because there is no node corresponding to G.

(c) All asymmetric b!oary tree.(b) All asymmetric binary tree.(a) A symmetric binary tree.

A binary tree is symmetric if you can draw a vertical line through the root and then
the left subtree is the mirror image of the right subtree. The concept of a symmetric
binary tree is illustrated in Figure9.2.

9.3 SYMMBTR.IC BINA.RYTREB

/ 9.3. Symmetric binary tree76

ElementsOfProgramminglnterviews.com

Problem 9.8: Design an O(n) time algorithm for reconstructing a binary tree from
a preorder visit sequence that uses null to mark empty children. How would you

(H, B, F,null, null, E,A, null, null, null, C,null, D,null, G,I,null, null, null)

Many possible binary trees on nodes {VOlVv .. " Vn-l} yield the sequence of nodes
(J = (Vo, VI, ..• r Vn-I) from a preorder walk. Node Vo must be the root, but the left
subtree could consist of {VI, .. " VI} for I E [I,n - 1];it could alsobe empty.

Suppose, the preorder walk routine is modified to mark where a left or right child
was empty. For example, the binary tree in Figure 9.3 is the unique tree that yields
the followingpreorder traversal sequence:

9.8 RECONSTRUCTING A BINARY TREE FROM A PREORDER TRAVERSALWITH MARKER

Problem 9.7: Given an inorder traversal order, and one of a preorder or a postorder
traversal order of a binary tree, write a function to reconstruct the tree. pg. 241

Figure9.3: A binary tree-edges that do not terminate in nodes denote empty subtrees.

Many differentbinary trees yield the same sequence of keys in an inorder, preorder,
or postorder traversal. However, given an inorder traversal and one ofany two other
traversal orders of a binary tree, there exists a unique binary tree that yields those
orders, assuming each node holds a distinct key. For example, the unique binary
tree whose inorder traversal sequence is (F,B,A, E,H, C,D,I, G) and whose preorder
traversal sequence is (H,B,F,E,A, C,D,G,I) is given in Figure 9.3.

9.7 RECONSTRUCTING A BINARY TREB FROM TRAVERSAL DATA

Problem 9.6: Design a function that efficientlycomputes the k-thnode appearing in
an inorder traversal. Specifically,your function should take as input a binary tree T
and an integer k. Each node has a size field, which is the number of nodes in the
subtree rooted at that node. What is the time complexity of your function? pg. 240

779.7. ReconstnlCting a binary tree from traversal data

ElementsOfProgramminglnterviews.com

Problem 9.12 is concerned with computing the LCA in a binary tree with parent
pointers in O(h) time and 0(1) space. The algorithm presented in Solution 9.12 on

9.13 loWEST COMMON ANCESTOR IN A BINARY TREE, CLOSE ANCESTOR

Problem 9.12: Given two nodes in a binary tree T,design an algorithm that computes
their LCA. Assume that each node has a parent pointer. The tree has n nodes and
height h. Your algorithm should run in 0(1) space and O(h) time. pg. 245

9.12 Lowssr COMMON ANCESTOR IN A BINARY TREE, WITHPARS"'" POINTER

Problem 9.11: Design an efficient algorithm for computing the LCA of nodes a and
b in a binary tree in which nodes do not have a parent pointer.. pg. 245

Any two nodes in a binary tree have a common ancestor, namely the root. The lowest
common ancestor (LCA) of any two nodes in a binary tree is the node furthest from
the root that is an ancestor of both nodes. For example, the LCA of M and N in
Figure 9.1 on Page 73 is K.

Computing the LCA has important applications. For example, in an interval tree
(problem 14.23 on Page 113), the LCA of any two nodes is key to computing the
smallest interval that contains the intervals stored at those nodes.

9.11 loWEST COMMON ANCBSTOR IN A BINARY TREE

Problem 9.10: Write a function that prints the nodes on the exterior of a binary tree in
anti-clockwise order, i.e., print the nodes on the path from the root to the leftmost leaf
in that order, then the leaves from left-to-right, then the nodes from the rightmost leaf
up to the root. For example, when applied to the binary tree in Figure 9.1 on Page 73,
your function should return (A,B,C,D,E,H,M,N,P,O,I). (By leftmost (rightmost)
leaf, we mean the leaf that appears first (last) in an inorder walk.) pg. 244

9.10 THE BXTBRlOR OF A BINARY TRBE (0)

In some applications of a binary tree, only the leaf nodes contain actual information.
For example, in a single knockout tournament organized as a binary tree, we can link
the leaves to get a list of participants.

Problem 9.9: Given a binary tree, write a function which forms a linked list from
the leaves of the binary tree. The leaves should appear in left-to-right order. For
example, when applied to the binary tree in Figure 9.1 on Page 73, your function
should return (D,E,H,M,N,P). pg.243

9.9 FORM A LINKED LIST FROM THE LEAVESOF A BINARYTRBB

modify your reconstruction algorithm if the sequence corresponded to a postorder
or inorder walk? pg. 242

9.9. Fonn a linked list from tile leaves of abinary tree78

ElementsOfPrograrnminglnterviews.com

Problem 9.14: Given a.string s and a set of strings D, find the shortest prefix of s
which is not a prefix of any string in D. pg. 247

9.14 SHORTEST UNIQUE PREFIX (C")

'Formally,a sequence is a function whose domain is of the form {O,1,2, ... , n - I}. A
sequence f is often written as <f(O), f(l), ... , fen - 1». A string is a finite sequence
of symbols drawn from an alphabet; the length of the string is the cardinality of its
domain. A string may be of length zero-this is referred to as the empty string, and
is denoted bye. A prefix of a string s defined on domain {O,I, ... ,n - I}is either e or
the restriction of s to domain {O,1,... ,m -I},for 0 :s;m :s; n.

This problem is concernedwith finding the shortest prefix of a string 5 that is not
in a set of strings D. For example:

- If s = "cat" and D = {"dog", "be", "cut"}return "ca".
- If s = "cat" and D = {"dog", "be", "cut", "car"} return "cat".
- If s = "cat" and D = {"dog", "be", "cut", "car", "cat"}return e.

Page 245entails traversing all the way to the root, so even ifmax(da - d},db- dl) « h,
its time complexity remainsO(h).

Problem 9.13: Design an algorithm for computing the LeA of a and b that has time
complexityO(max(da - dl, db - d/». What is the worst-case time and space complexity
~~~~~? ~m

799.14. Shortest unique prefix (Q><>



80

You are given 500 files, each containing stock trade information for an S&P 500
company. A linewithin a file captures a trade as follows:

1232111,AAPL,3&,456.12

The first number is the time of the trade expressed as the number of milliseconds
since the start of the day's trading. Lines within each file are sorted by this value.
(Theremaining values are the stock symbol, number of shares, and price.) Your task
is to createa single filecontaining all the trades sorted by trade times. The individ ual
filesare of the order of5-100megabytes; the combined filewill be of the order of five
gigabytes.

Problem 10.1: Design an algorithm that takes a set of files containing stock trade
information in sorted order, and writes a single filecontaining the lines appearing in
the individual filessorted in sorted order. The algorithm should use very littleRAM,
ideally of the order of a few kilobytes. pg. 248

10.1 MERGING SORTED FILES

A heap is a specializedbinary tree, specificallyit is a completebinary tree. It supports
O(logn) insertions, 0(1) time lookup for the max element, and O(logn) deletion of
the max element. The extract-max operation is defined to delete and return the
maximum element. (The min-heap is a completely symmetric version of the data
structure and supports 0(1) time lookups for the minimum element.)

A max-heap can be implemented as an array; the children of the node at index i
are at indices2i+ 1and 2i+2. Searchingfor arbitrary keyshas O(n)time complexity.
Anything that can be done with a heap can be done with a balanced BSTwith the
same or better time and space complexity but with possibly some implementation
overhead. There is no relationship between the heap data structure and the portion
ofmemory in a process by the same name.

Using F-heapsweareable to obtain improved running
timesfor sem-alndwork optimizAtion algorithms.

- "'Fibonaccihmps tmd thdr uses,W
M.L.FlWlNAN ANDR E. 'fAgJAN,1987

Heaps

CHAPTER



ElementsQfprogramminglnterviews.com

The goal of this problem is to design an algorithm that continuously outputs the k-th
largest element in a sequence of elements that is presented one element at a time.

10.5 THE k-TH LARGBSTELEMBNT-5TRBAMING CASE

Problem 10.4: How would you compute the k stars which are closest to the Earth?
You have only a few megabytes of R.AJ\.1. pg. 251

Consider a coordinate system for the MilkyWay, in which the Earth is at. (0, 0, 0).
Model stars as points, and assume distances are in light years. The Milky Way
consists of approximately 1012 stars, and their coordinates are stored in a file in
comma-separated values (CSV) format-one line per star and four fields per line, the
first corresponding to an ID, and then three floating point numbers corresponding
to the star location. '

10.4 CLOSBST STARS

We discussed the notion of reduction when describing problem solving patterns.
Usually, reductions are used to solve a more complex problem using a solution to a
simpler problem as a subroutine.

Occasionally it makes sense to go the other way-for example, if we need the
functionality of a heap, we can use a SST library, which is more commonly available,
with modest performance penalties with respect, for example, to an array-based
implementation of a heap.

Problem 10.3: How would you implement a stack API using a heap and a queue
API using a heap? pg.250

10.3 STACl<SAND QUBtrSS FROM HEAP

Problem 10.2: Design an efficient algorithm for sorting a k-increasing-decreasing
array. You are given another array of the same size that the result should be written
to, and you can use O(k) additional storage. pg. 249

Figure 10.1: A 4-lncreaslng-decreasing array.

A[D] A[l] A [2] A[3] A[4] A[S] A[6] A[7] A(8) A[9]

An array A of n integers is said to be k-increasing-decreasing if elements repeatedly
increase up to a certain index after which they decrease, then again increase, a total
of k times, as illustrated in Figure 10.1.

10.2 SORT k-INCRBASING-DI!.CREASING ARRAY

8110.2. Sort k-increaslng-decreasing arrllY



ElementsOfProgramminglnterviews.com

10.9 GENBRATING NUMBBRS OF THE FORM a + bV2 (~)
Let Sq be the set of real numbers of the form a + b.yq, where a and b are nonnegative
integers, and q is an integer which is not the square of another integer. Such sets
have special properties, e.g., they are closed under addition and multiplication. The
first few numbers of this form are given in Figure 10.2 on the facingpage.

Problem 10.9: Design an algorithm for efficiently computing the k smallest real
numbers of the form a + bV2 for nonnegative integers a and b. pg. 256

Youwant to compute the running median of a sequence of numbers. The sequence
is presented to you in a streaming fashion-you cannot back up to read an earlier
value, and you need to output themedian after reading in each new element.

Problem 10.8: Designan algorithm for computing the running median ofa sequence.
The time complexity should be O(logn) per element read in, where n is the number
of values read in up to that element. pg. 255

10.8 ONLINEMEDIAN

Problem 10.7: Design anO(n) time algorithm to compute the k elements closest to
the median of an array A. pg.254

10.7 CLOSEST TO MEDIAN (~)

Suppose youhave an arrayAofn items, and youwant tofind the k itemsinA closestto
themedian ofA. Forexample, ifA contains the nine values (7, 14, 10, 12,2, 11, 29,3,4)
and k:: 5, then the answer would be the values {7,14,10,12,ll} where the median is
10.

10.6 APPRoX1¥ATB SORT

Consider a situation whereyour data isalmost sorted-for example,you are receiving
timestamped stock quotes and earlier quotes may arrive after later quotes because
of differencesin server loads and network routes. What would be the most efficient
way of restoring the total order?

Problem 10.6: The input consists of a very long sequence ofnumbers. Eachnumber
is at most k positions away from its correctly sorted position. Design an algorithm
that outputs the numbers in the correct order and uses O(k) storage, independent of
the number of elements processed. pg. 253

(For the first k cycles,the algorithm should output the smallest element.) The length
of the sequence is not known in advance, and could be very large.

Problem 10.5: Design an O(n logk) time algorithm that reads a sequence of n ele­
ments and for each element, starting from the k-th element, prints the k-th largest
element read up to that point. The length of the sequence is not known in advance.
YoW'algorithm cannot use more than O(k) additional storage. pg. 253

10.6. Approximate sort82



ElementsOfProgramminglnterviews.com

Problem 10.10: Design an O(k) time algorithm for determining whether the k-th
largest element in a max-heap is smaller than, equal to, or larger than a given x.
The max-heap is represented using an array. Your algorithm's time complexity
should be independent of the number of elements in the max-heap, and may use
O(k) additional storage. It cannot make any changes to the max-heap, and should
handle the possibility of duplicate entries. pg.258

10.10 COMPARE WITH THB k-TH LARGBSTBLBMBNT (0)

Figure 10.2: Points of the form a + b V2.

(2+2Vi)
4.8283,414 3.8282.0 2.414 2.8281.0 1.414

(l+OVl) (0+1Vl) (2+0V2)(1+1Vi) (0+2V2) (2+1Vi) (1+2V2)(O+OVl)

0.0

8310.10. Compare with the k-tll largestelement (q;p<)



84

Binary search is at the heart of more interview questions than any other single al­
gorithm. Fundamentally, binary search is a natural elimination-based strategy for
searching a sorted array. The idea is to eliminate half the keys from consideration by
keeping the keys in sorted order. If the search key is not equal to the middle element
of the array, one of the two sets of keys to the left and to the right of the middle
element can be eliminated from further consideration.

Binary search

Given an arbitrary collection of n keys, the only way to determine if a search key is
present is by examining each element. This has Sen)time complexity. If the collection
is" organized", searching can be sped up dramatically. If the data are dynamic, that is
inserts and deletes are interleaved with searching, keeping the collection organized
becomes more challenging.

- "TheAMtomy ofA Ltngt-Sc:.aleHyptrlatual WebSearchEngine,"
S. M. BRm AND L. PAct, 1998

Searching

CHAPTBR



85

ElementsOfPro~rammingInterviews.com

The error is in the assignment M = (L + U) / 2 in Line 4, which can lead to
overflow.A common solution is to use M = L + eU - L) / 2.

However, even this refinement is problematic in a C-style implementation. The C
Programming LAnguage (2nd ed.) byKernighan and Ritchie(page 100)states: "If one is
sure that the elements exist, it is alsopossible to index backwards in an array; p [-1] J

P [ - 2], etc. are syntactically legal, and refer to the elements that immediately precede
p[(g]." Inthe expression L + eU - L) / 2, if Uis a sufficientlylargepositive integer
and L is a sufficientlylarge negative integer, (U - L) can overflow,leading to out of
bounds array access.The problem is illustrated below:

Il'define N 3&&&&&&&&&
21 char A[N);
31 char *B = (A + 15&&&&&&&&);
.,int l = -1499&&&&&&;
sl int U = 1499&&&$&&:
6111 On a 32-bit machine (U - L) = -1296967296 because the actual value,
7i II 2998999888 is larger tban 2'31 - 1. Consequently, the bsearch function
8!II called below sets m to -2147483648 instead of 8, which leads to an,

return -1;

Questions based on binary search are ideal from the interviewers perspective: it
is a basic technique that every reasonable candidate is supposed to know and it can
be implemented in a few lines of code. On the other hand, binary search is much
trickier to implement correctly than it appears-you should implement it as well as
write corner case tests to ensure you understand itproperly.

Manypublished implementations are incorrect in subtle and not-so-subtleways­
a study reported that it iscorrectly implemented in only fiveout of twenty textbooks.
Jon Bentley,in hisbook "Programming Pearls" reported that he assigned binary search
in a course for professional programmers and found that 90010 failed to code it cor­
rectly despite having ample time. (Bentley's students would have been gratified to
know that his own published implementation of binary search, in a column titled
''Writing Correct Programs", contained a bug that remained undetected for over
twenty years.)

Binarysearch canbe written in many ways-recursive, iterative, differentidioms
for conditionals, etc. Here is an iterative implementation adapted from Bentley's
book, which includes his bug.

II int bsearch(const int &t. const vector<int> &A)
2' int L = &. U = A.size0 - 1:

while (L <= U) {
'4 int K = (L + U) / 2;

if (A[II] < t) {

L = M + 1:
else if (A[Hl •• t)

return K;
else {
U = M - 1;

Chapter 11. Searcllillg



ElementsOfProgrammingInterviews.com

Problem 11.3: Design an efficient algorithm that takes a sorted array A of distinct
integers, and returns an index isuch that A[i] = i or indicate that no such index exists

11.3 SBARCH A SORTED ARRAYPOR A[11 = i

Sometimeswe want the first element larger than a given element.

Problem 11.2: Design an efficient algorithm that takes a sorted array A and a key
k, and finds the index of the first occurrence an element larger than k; return -1 if
every element is less than or equal to k. For example, when applied to the array in
Figure 11.1your algorithm should return -1 if k = 500; if k = 101,your algorithm
should return 3. pg. 259

11.2 SBARCH A SORTED ARRAYFOR THE FlRST BLEMENT LARGBRTHAN k

Problem 11.1: Write a method that takes a sorted array A and a key k and returns
the index of the first occurrence of kinA. Return -1 if k does not appear in A. For
example, when applied to the array inFigure 11.1your algorithm should return 3 if
k = 108i if k = 285, your algorithm should return 6. pg. 259

Figure 11.1: A sorted array with repeated elements.

A[O) A[l) A[2) A[3) A[4) A[5] A[6j A[7] A [8) A[9j

Binarysearch commonly asks for the index of any element of a sorted array A that is
equal to a given element. The followingproblem has a slight twist on this.

11.1 SBARCH A SORTED ARRAYFOR PIRST OCCURRENCE OP k

The solution is to check the signs of Land U.IfUis positive and Lis negative, M =
(L + U) / 2 is appropriate, otherwise set M = L + (U _ L) / 2.

In our solutions that make use of binary search, Land Uare nonnegative and so
we use M = L + (U _ L) / 2 in the associated programs.

The time complexity of binary search is given by T(n) = T(n/2) + c, where c is a
constant. This solves to T(n) =O(logn), which is far superior to the O(n) approach
needed when the keys are unsorted. A disadvantage of binary search is that it
requires a sorted array and sorting an array takesOinlogn) time. However if there
are many searches to perform, the time taken to sort is not an issue.

Many variants of searching a sorted array require a little more thinking and create
opportunities for missing comer cases.

'I II out-of-bounds access, since the most negative index that can be applied
10 II to B is -15866~~'89.
lI'int result = binary_search(key, B, l, U);

11.1. Search.a sorted array /01'first occurrence 0/ k86



ElementsOiProgramm1nglnterviews.com

Problem 11.6: Let A be a sorted array. The length of A is not known in advance;
accessing A[i] for i beyond the end of the array throws an exception. Design an
algorithm that takes A and a key k and returns an index i such that A[i] = k; return
-1if k does not appear in A. pg. 264

11.6 SBARCH A SORTBDARRAYOF UNKNOWN LBNGTH (C')

Problem 11.5: Design an O(logn) algorithm for finding the position of the smallest
element in a cyclicallysorted array. Assume all elements are distinct. For example,
for the array in Figure 11.3,your algorithm should return 4. pg.263

Figure 11.3: A cyclically sortedarray.

An array A of length n is said to be cyclicallysorted if the smallest element in the
array is at index i,and the sequence (A[ll,A[i + 1), ... ,A[n -1],A(Oj,A[1], ... ,A[i -1])
is sorted in increasing order, as illustrated in Figure 11.3.

11.5 SIlARCH A CYCLICALLYSORTED ARRAY

Problem 11.4: Design an algorithm that takes.an abs-sorted array A and a number
k, and returns a pair of indices of elements in A that sum up to k. For example, if
the input to your algorithm is the array in Figure 11.2and k = 167,your algorithm
should output (3,7). Output (-1, -1) if there is no such pair. pg. 261

Figure 11.2: An abs-sorted array.

~ ~ WI~I~I~I~ ill ml~1
A[O) A[l) 11(2) 11(3) 11(4) 11(5) .14(6) .14(7) .14(8) .14(9)

11.4 SBARCH POR A PAIR IN AN ABS-SORTBD ARRAY (G<)

An abs-sorted array is an array of numbers in which IA[ill ~ IA[J11whenever i < j.
For example, the array in Figure 11.2, though not sorted in the standard sense, is
abs-sorted.

by returning -1. For example, when the input is the array shown in in Figure 11.1
on the preceding page, your algorithm should return 2. pg. 260

8711.4. Search for a pair 171an abe-sorted array (4)><)



ElementsOfProgramminglnterviews.com

Problem 11.10: LetA be an n x n 2D array where rows and columns are sorted in
increasingsorted order. Design an efficientalgorithm that decides whether anumber
x appears in A. How many entries of A does your algorithm inspect in the worst­
case? Can you prove a tight lower bound that any such algorithm has to consider in
the worst-case? pg. 268

11.10 2DARRAYSBARCH (~)

Square root computations can be implemented using sophisticated numerical tech­
niques involving iterative methods and logarithms. However if you were asked
to implement a square root function, you would not be expected to know these
techniques.

Problem 11.9: Implement a function which takes as input a floating point variable
x and returns Vi, pg. 267

11.9 COMPUTING SQUARE ROOTS

11.8 SEARCHJNGIN TWO SORTED ARRAYS (0)

The k-thsmal1estelementirla sorted array A is simplyA[k-1] which takes0(1) time
to compute. Suppose you are given two sorted alTaYsA and B, of length n and m
respectively,and you need to find the k-th smallest element of the array Cconsisting
of the n +m elements of A and B arranged in sorted order. (We'llrefer to this array
as the union ofA and B, although strictly speaking union is a set-theoretic operation
that does not have a notion of order, or duplicate elements.)

Youcould merge the two arrays into a third sorted array and then look for the
answer, but the merge would takeO(n +m) time. Youcan build the merged array on
the first k elements, which would be anO(k) operation.

Problem 11.8: Youare given two sorted arrays A and B of lengths m and n, respec­
tively,and a positive integer k E [I,m + n). Design an algorithm that runs in O(logk)
time for computing the k-th smallest element in array formed by merging A and B.
Array elements may be duplicated within and betweenA and B. pg. 266

Youare working in the financeofficeforABCcorporation. The total payroll expense
last year was $5. This year, the corporation needs to cut payroll expenses to$5'. The
chief executive officerwants to put a cap a on salaries. Every employee who earned
more than $a last ye.arwill be paid $0' this year; employees who earned less than $a
will see no change in their salary.

For example, given five employees with salaries $90,$30,$100,$40, and $20,and
S' = 210,then 60 is a suitable value for c.

Problem 11.7: LetA be an array ofn nonnegative real numbers and S' be a nonneg­
ative real number less than [.7:01A[i]. Design an efficient algorithm for computing a
such that [,7.:01min(A[ll, a) = S', if such a a exists. pg. 265

11.7 COMPLBTION SBARCH

11.7. Completion.senrell88



ElementsOfProgramminglnterviews.com

The goal of this problem is to design an algorithm for computing the k-th largest
element in a sequence of elements that is presented one element at a time. The length
of the sequence is not known in advance, and could be very large.

11.14 THE k-TH LARGESTELBMENT-LARGE n AND SMALLk (G><)

Problem 11.13: Design an algorithm for computing the k-th largest element in an
array A that runs in O(n) expected time. pg. 270

The k-th order statistic of a collection is its k-th smallest value, with the minimum
element being the first order statistic. In this parlance, we are asking for the k + 1-th
order statistic of the collection A.

Let A be an array of length n. Assume that that entries are distinct, l.e., if i "* j then
A[i] :f. AU]. The array B is said to be a descending sorting of A if IBI = 1AI, there
exists a permutation (1 of {O,I, 2, ... r n - 1}such that A[I1 = B[(1(1)1, and B is sorted in
descending order. The k-th largest element of A is defined to be the k-th element of
B.

11.13 THE k-TH LARGESTELEMENT

Given an array of n objects that are comparable, you can find either the min or the
max of the elements in the array with n -1 comparisons. Comparing elements may be
expensive, e.g., a comparison may involve a number of nested calls or the elements
being compared may be long strings. Therefor is is natural to ask if both the min and
the max of an array can be computed with less than the 2n - 3comparisons required
to compute the min and the max independently.

Problem 11.12: Find the min and max elements from an array of n elements using
no more than r3n/21 - 2 comparisons. pg.270

11.12 FINDING THE MIN AND MAXSIMULTANEOUSLY

Now we consider a number of problems related to searching arrays that are not
sorted, implying that we cannot use elimination. The problems in this section can be
solved without sorting, and the solutions have O(n) time complexity, where n is the
length of the array. We study similar problems in Chapter 13, but for those problems,
the best solutions entail sorting.

Searching unsorted arrays

Problem 11.11: How would you organize a tournament with 128players to minimize
the number of matches needed to find the best player? How many matches do you
need to find the best and the second best player? pg. 269

One hundred and twenty eight players take part in a tennis tournament. The "xbeats
y" relationship is transitive, i.e., for all players a,11, and c, if a beats band b beats c,
then a beats c.

11.11 FINDING THBWINNER AND RUNNER-UP

8911.11. Finding the winner and runner-up



ElementsOfProgrammingInterviews.com

11.17 FIND TIm llLEMBl'oI"TTHATAPPI!ARSONLYONCE «i><)
Given an integer array where each element appears twice except forone that appears
only once, we can use O(n} space and O(n} time to find the element that appears
exactly once, e.g., using a hash table. However, there is a better solution: compute
the bitwise-XOR(e) of each element of the array. Becausexex = 0, all elements that
appear an even number of times cancel out, and the element that appears remains.
Therefore,this problem can be solved using 0(1} space.

Problem 11.17: Given an array A, in which each element ofA appears three times
exceptfor one element e that appears once, find e in 0(1) space andO(n) time. pg.274

Let A be an array containing n - 1 integers, each in the set Zn = {O,1, ... , n - I}.
Suppose exactly one element m E Z" is not present in A. Wecan determine m in
O(n} time and O(l} space by computing Sum(A}r the sum of the elements in A. The
sum of all the elements in Z" is Sum(Z,,}'= ,,(11;1). Hence Sum(Z,,) - Sum(A}equals
the missing element m. Similarly,if A contains n + 1elements drawn from the set
Zn, with exactly one element t appearing twice in A, the element t will be equal to
Sum(A)- Sum(Zn)·

Alternately, for the firstproblem, we can compute m by computing theXORofall
the elements in Z" and XORingthat with the XORof all the elements in A~very
element in A, except for the missing element, cancels out since it is also present in
Zn. Therefore the resulting XORequals m. The same approach works for the second
problem.

Problem 11.16: Let A be an array of n integers in Zn, with exactly one element t
appearing twice. This implies exactly one elementm E Z" is missing fromA. How
would you compute t and m inO(n} time and O(I} space? pg. 273

11.16 FIND TIm DUPUCATEAND MISSING llLBMBNTS

The storage capacity of hard drives dwarfs that ofRAM. This can lead to interesting
space-time trade-offs.

Problem 11.15: Supposeyouweregiven a filecontainingroughly onebillionInternet
Protocol (lP) addresses, each of which is a 32-bitunsigned integer. How would you
programmatically find an IP address that is not in the file? Assume you have
unlimited drive space but only two megabytes ofRAM at your disposal. pg. 272

11.15 FINDlNG A MISSINGELEMllNT

Problem 11.14: Design an algorithm for computing the k-th largest element in a
sequence of elements. It should run in O(n} expected time where n is the length of
the sequence, which is not known in advance. The value k is known in advance.
Youralgorithm should print the k-th largest element after the sequence has ended. It
should use O(k} additional storage. pg. 271

11.15. Findinga missing element90



ElementsOiProgramminglnterviews.com

11.19 MAJORITY PIND (~)

Several applications require identification of tokens=objects which implement an
equals method-in a sequence which appear more than a specified fraction of the
total number of tokens. For example, we may want to identify the users using
the largest fraction of the network bandwidth or IP addresses originating the most
Hypertext TransferProtocol (HTTP)requests. Herewe consider a simplifiedversion
of this problem.

Problem 11.19: Youare reading a sequence of words from a very long stream. You
know a priori that more than half the words are repetitions of a single word w (the
"majority element") but the positions where w occurs are unknown. Design an
algorithm that makes a single pass over the stream and uses only a constant amount
ofmemory to identify w. pg. 275

Problem 11.18: Design an efficientalgorithm that takes a close array A, and a key
k and searches for any index j such that A[j} = k. Return -1if no such index exists.
For example, for the array in Figure 11.4,if k = 2, your algorithm should return an
index in {4,S,7}. pg.275

Figure 11.4: A close array,

A(O] All) A(2) A[3] A(4) A(5J A(6] A[7] A(8] A[9J

~ 0 0 1 2 2 1 234

An array of integers A is said to be close if for each i E [O,IAI- 2], lA[i] - A[i + 1]1!> I,
e.g., as in Figure 11.4.

11.18 SEARCHING AN ARRAYWITH CLOSE ENTRIES

9111.18. Seardling an array with close entries



92

Problem 12.1: Design a hash function that is suitable for words in a dictionary.
pg.276

A hash function has one hard requirement-two keys that are identical should yield
the same hash code. This may seem obvious, but is easy to get wrong, e.g., by writing
a hash function that is based on address rather than contents.

12.1 DESIGN A HASH FUNCTION FOR DICTIONARIES

The idea underlying a hash table is to store objects according to their key field in an
array. Objects are stored in array locations based on the "hash code" of the key. The
hash code is an integer computed from the key by a hash function. If the hash function
is chosen well, the objects are distributed uniformly across the array locations.

If two keys map to the same location, a "collision" is said to occur. The standard
mechanism to deal with collisions is to maintain a linked list of objects at each
array location. If the hash function does a good job of spreading objects across the
underlying array and take 0(1) time to compute, on average, lookups, insertions,
and deletions have 0(1 +n/m) time complexity, where n is the number of objects and
m is the length of the array. Ifthe "load" nfm grows large, rehashing can be applied
to the hash table. A new array with a larger number of locations is allocated, and
the objects are moved to the new array. Rehashing is expensive (E>(n +m) time) but
if it is done infrequently (for example, whenever the number of entries doubles), its
amortized cost is low.

A hash table is qualitatively different from a sorted array-keys do not have to
appear in order, and randomization (specifically, the hash function) plays a central
role. Compared to binary search trees (discussed in Chapter 14), inserting and
deleting in a hash table is more efficient (assuming rehashing is infrequent). One
disadvantage of hash tables is the need for a good hash function but this is rarely an
issue in practice. Similarly, rehashing is not a problem outside of realtime systems
and even for such systems, a separate thread can do the rehashing.

Th.7tt!D methods areinlmdtd 10redll~ lheamount ofspacertquired Iocontain
the Ju:sh.codd infonnalitm from thaI associaW with O)/lvtIIllolfDl ~tlwds.
The redllction in spaceisaccomplishtd by t:cploltingIhtpossibility tJrnt asmall
fra<lit>nofmoTS of """mission may be lolerablt in some appli<ations.

- ·S~ime traih-cfls in hash roding with alWwable erroTS,H
B.H. BLOOM, 1970

Hash Tables

CHAPTER



ElementsOfProgramminglnterviews.com

People do not like reading text in which a word is used multiple times in a short
paragraph. Youare to write a functionwhich helps identify such a problem.

Problem 12.3: Let5be an array of strings. Writea functionwhich finds a closestpair
of equal entries. For example, if s = ["All", "work", "and", "no", "play", "makes",

12.3 NSARBST RBPBTITION

The state of a game of chess is determined by what piece is present on each square,
as illustrated in Figure 12.1. Each square may be empty, or have one of six classes
of pieces; each piece may be black or white. Thus flg(l + 6 x 2)1 = 4 bits sufficeper
square, which means that a total of 64 x 4 = 256bits can represent the state of the
chessboard. (Thetrue state is somewhat more complex,as it needs to capture which
side is to move, castling rights, en passant, etc.)

Chessplaying computers need to store sets of states, e.g., to determine if a partic­
ular state has been evaluated before, or is known to be a winning state. To reduce
storage, it is natural to apply a hash function to the 256bits of state, and ignore col­
lisions. Thehash code can be computed by a conventional hash function for strings.
However, since the computer repeatedly explores nearby states, it is advantageous
to consider hash functions that can be efficientlycomputed based on incremental
changes to the board.

Problem 12.2: Design a hash function for chess game states. Your function should
take a state and the hash code for that state, and amove, and efficientlycompute the
hash code for the updated state. pg. 277

12.2 A HASH FUNCTION FOR THE STATEOP A CHESS CAMS

Figure 12.1: Chessboard corresponding to the fastest checkmate, Fool's Mate.

9312.2. A hash function for the state of a chess game



ElementsOiProgramminglnterviews.com

You are building a social network site where each user specifies a set of attributes.
You would like to pair each user with another unpaired user that specified exactly
the same set of attributes.

12.5 PAIR USBRS BYATTRIBUTES

Problem 12.4: Given a set of binary trees AIt ... ,An how would you compute a new
set of binary trees 81, ..• , B; such that for each i,1 SiS n,AI and 81 are isomorphic,
and no pair of isomorphic nodes exists in the set of nodes defined by BIt ... , Bn. (This
is sometimes referred to as the canonical form.) Assume nodes are not shared in
AI, ... ,An· See Figure 12.2 for an example. pg. 278

Figure 12.2; Binarytree canonicalization forTl , 1'2, and 1'3.

(b) Altercanonicalization.

(a) Three binary trees, n,1'2, and 1'3,duplicate Isomorphic nodes.

12.4 BINARY TREB COMPRESSION (G<)

Suppose you have an application which will use a very large number of binary
trees. You know that many of the subtrees will be identical, and you want to avoid
duplicating the storage required for these subtrees by sharing identical subtrees.

Formally, binary trees A and 8 are isomorphic if both are null, or their roots store
the same key and A.left is isomorphic to 8.left and A.right is isomorphic to 8.right.
Since each node in a subtree is the root of a binary tree, the notion of isomorphism
generalizes to nodes.

"for", "no", "work", "no", "fun", "and", "no", "results"], then the second and third
occurrences of "no" is the closest pair. pg. 277

12.4. Biliary tree compression (Go)94



ElementsOfProgramminglnterv1ews.com

Problem 12.10: Let P be a set of n points in the plane. Each point has integer
coordinates. Design an efficient algorithm for computing a line that contains the
maximum number of points in P. pg.282

12.10 LINB THROUGH THE MOST POI!l.1TS (G)<)

A hash table can be viewed as a dictionary. For this reason, hash tables commonly
appear in string processing.

Problem 12.9: Youare required towrite a method which takes an anonymous letter
L and text.from a magazine M. Your method is to return true iff L can be written
using M, i.e., if a letter appears k times in L, it must appear at least k times in M.

pg.282

12.9 ANONYMOUS LETTER

Problem 12.8: Write a program to test whether the letters forming a string s can be
permuted to form a palindrome. For example, "edified" can be permuted to form
"deified". Exploresolutions that trade time for space. pg.281

A palindrome is a word that reads the same forwards and backwards, e.g., "level"
and "rotator".

12.8 CAN A STRING BBPBRMUTBD TO FORM A PALINDROMB?

Anagrams are popular word play puzzles, where by rearranging letters of one set of
words, you get another set of words. For example, "eleven plus two" is an anagram
for "twelve plus one". Crosswordpuzzle enthusiasts would liketobe able togenerate
all possible anagrams for a given set of letters.

Problem 12.7: Write a function that takes as input a dictionary of English words,
and returns a partition of the dictionary into subsets of words that are all anagrams
of each other. pg. 280

12.7 ANAGRAMS

Problem 12.6: SolveProblem 12.5on the facingpage when users are grouped based
on having similar attributes. The similarity between two sets of attributes A and Bis
~. pg.279

12.6 PAIR USERS BYATTRmUTBS, APPROXlMATB MATCHING (~)

Problem 12.5: Youare given a sequenceof userswhere eachuser has a unique 32-bit
integer key and a set of attributes specified as strings. When you read a user, you
should pair that user with another previously read user with identical attributes who
is currently unpaired, if such a user exists. If the user cannot be paired, you should
keep him in the unpaired set. How would you implement this matching process
efficiently? pg.279

9512.6. Pair users by attributes, approximate matching (G<)



ElementsOfProgramminglnterviews.com

When you type keywords in a search engine, the search engine will return results,
and each result contains a digest of the web page, i.e., a highlighting within that
page of the keywords that you searched for. For example, a search for the keywords
"Union" and "save" on apage with the text of the EmancipationProclamationshould
return the result shown in Figure 12.3on the facingpage.

The digest for this page is the text inboldface,with the keywords underlined for
emphasis. It is the shortest substring of the page which contains all the keywords in
the search. The problem of computing the digest is abstracted as follows.

12.14 SMALLEST SUBARRAYCOVERING SET (C<)

Problem 12.13: A pair of strings is k-suspicious if they have a substring of length
greater than or equal to k in common. Design an efficient algorithm that takes as
input a set of strings and positive integer k, and returns all pairs of strings that are
k-suspicious. Assume that most pairs will not be k-suspicious. pg. 286

12.13 PLAGIARISM DBTECTOR

12.12 AUTOMATIC HYPHENATION (0)

To allow efficient usage of paper, and regular appearance of right-side margins,
words may be divided and a hyphen inserted to indicate that the letters form aword
fragment, not a word.

Words cannot be divided arbitrarily. A small set of rules can be applied to most
words to determine where they can be hyphenated; however there are many words
to which they cannot be applied.

LetRbe the set ofwords that can be split using rules and Ethewords that cannot.
The set E is large enough that it must be stored on disk; R is larger still. Since the
majority of words are not in E, it is advantageous to determine if a word is not in E
without going to disk.

Problem 12.12: Design a scheme for checkingmembership in E that minimizes the
number of disk accesses. Assume that IRI= l()6,1E1 = lOS,and you can use up to
1.25x lOSbytes of RAM. pg. 286

12.11 SEARCH FOR PREQUBNT ITEMS (.)

This problem is a continuation of Problem 11.19on Page 91. Inpracticewe may not
be interested in just the majority token but all the tokens whose count exceeds say
1% of the total token count. It is simple to show that it is impossible to do this in a
single pass when you have limited memory but if you are allowed to pass through
the sequence twice, it is possible to identify the common tokens.

Problem 12.11: You are reading a sequence of strings separated by white space.
You are allowed to read the sequence twice. Devise an algorithm that uses O(k)
memory to identify the words that occur at least rrl times, where n is the length of
the sequence. pg. 284

12.11. Search for frequent items «P-)96



ElementsOfProgrammingInterviews.com

Problem 12.16: Implement a cache for looking up prices of books identified by their
ISBN. Use the Least Recently Used (LRU) strategy for ,cache eviction policy. pg. 290

The International Standard Book Number (ISBN) is a unique commercial book iden­
tifier based on the 9-digit standard book numbering code. The 10-digit ISBN was

. ratified by the International Organization for Standardization (ISO) in 1974; since
2007, ISBNs have contained 13 digits. The last digit in a lO-digit ISBN is the check
digit-it is the sum of the first 9 digits, modulo 11; a 10 is represented by an fiX". For
13 digit ISBNs, the last digit is also a check digit but is guaranteed to be between 0
and 9.

12.16 ISBN CACHB

Problem 12.15: Write a function that takes two integer-valued arrays A and Q and
computes a minimum length subarray A[i : j] that sequentially covers Q. Assume
all elements in Q are distinct. pg. 289

In Problem 12.14 on the preceding page we did not differentiate between the order in
which keywords appeared. If the digest has to include the keywords in the order in
which they appear in the search textbox, we may get a different digest. For example,
for the search keywords "Union" and "save", in that order, the digest would be
"Union, and is not either to save".

Building on Problem 12.14 on the facing page, define the sub array A[i : j] to
sequentially cover Q iff there exist leo,kl' ... , k'QI-l such that i = leo < kl < ... < ktQH = j
and for all 1E [O,IQI-1], Q[l] = A[ktJ.

12.15 SMALLESTSUBARRAYSEQUBNTIALLYCOVBRINGSET (G')

Problem 12.14: Let A and Q be arrays of strings. Define the subarray A[i : j] to cover
Q if for all k E [0, IQI-1], there exists 1E [i, j), Q[k] = A[l]. Write a function that takes
two arrays A and Q and computes a minimum length subarray A[i : j] that covers Q.

Suppose that A is presented in streaming fashion, I.e., elements are read one at a
time, and you cannot read earlier entries. The array Q is much smaller, and can be
stored in RAM. How would you modify your solution for this case? pg. 287

Figure 12.3: Search result with digest In boldface and search keywords underlined.

My paramount object in this struggle is to ~ the Union, and is not either
to save or to destroy slavery. If I could save the Union without freeing any
slave I would do it, and if I could save it by freeing all the slaves I would do
it; and jf I could save it by freeing some and leaving others alone I would
also do that.

9712.15. Smallest subarray sequentiallq covering set (G><)



98

Problem 13.1: What is the most efficientsorting algorithm for eachof the following
situations:

- A large array whose entries are random numbers.
- A small array of numbers.
- A large array of numbers that is already almost sorted.
- A large collectionof integers that are drawn from a small range.
- A large collectionofnumbers most ofwhich are duplicates.

13.1 GOOD SORTINGALGORITHMS

Sorting-rearranging a collection of items into increasing or decreasing order-is a
commonproblem in computing. Sorting is used to preprocess the collectionto make
searching faster (aswe saw with binary search through an array), as well as identify
items that are similar (e.g.,students are sorted on test scores).

Naive sorting algorithms run in 9(n2) time. A number of sorting algorithms
run inO(n logn) time-heapsort, merge sort, and quicksort are examples. Each has
its advantages and disadvantages: for example, heapsort is in-place but not stable;
merge sort is stable but not in-place; quicksort runs O(n2) time in worst case. (An
in-place sort is onewhich uses 0(1) space; a stable sort is one where entries which are
equal appear in their original order.) Most sorting routines are based on a compare
function that takes two items as input and returns -1 if the first item is smaller than
the second item, 0 if they are equal and 1 otherwise. However it is also possible to
use numerical attributes directly,e.g., in radix sort.

The heap data structure is discussed in detail in Chapter 10. Briefly,a max-heap
(min-heap) stores keys drawn from an ordered set. It supports O(1og n) inserts and
0(1) time lookup for the maximum (minimum) element; the maximum (minimum)
key can be deleted in O(logn) time. Heaps can be helpful in sorting problems, as
illustrated by Problems 10.1on Page BO, 10.2on Page 81,and 10.6on Page 82.

_ NQuicbcrt,"
C.A.R HOARII, 1962

A descriptlollis giM! ofa newmelhod of sorting in the
random-.ac«S$ store of IIcomputer. The method com­
pares frworobly with other known methods in spe~,
in economy of storage, and in ease of programming.

Sorting

CHAPTER



ElernentsOfProgramminglnterviews.com

A natural implementation for a search engine is to retrieve documents that match the
set of words in a query by maintaining an inverted index. Each page is assigned an
integer identifier, its document-Hr. An inverted index is a mapping that takes a word
w and returns a sorted array of page-ids which contain w-the sort order could be,
for example, the page rank in descending order. When a query contains multiple
words, the search engine finds the sorted array for each word and then computes the
intersection of these arrays-these are the pages containing all the words in the query.

13.5 INTBRSBcr TWO SORTED ARRAYS

13.4 COUNTrNG SORT (e-)

Suppose you need to reorder the elements of a very large array so that equal elements
appear together. More formally, ifA is an array, you are to permute the elements of
A so that after the permutation Vi < j < k A[i] = A[k] ~ A[j] = A[t}

If the entries are integers, this can be done by sorting the array. If the number of
distinct integers is very small relative to the size of the array, an efficient approach to
sorting the array is to count the number of occurrences of each distinct integer and
write the appropriate number of each integer, in sorted order, to the array.

Problem 13.4: You are given an array of n Person objects. Each Person object has
a field key. Rearrange the elements of the array so that Person objects with equal
keys appear together. The order in which distinct keys appear is not important.
Your algorithm must run in O(n) time and O(k) additional space. How would your
solution change if keys have to appear in sorted order? pg. 293

You come across a collection of 20 stone statues in a line. You want to sort them by
height, with the shortest statue on the left. The statues are heavy and you want to
move them the least possible distance.

Problem 13.3: Design a sorting algorithm that minimizes the total distance that
items are moved. pg. 293

13.3 LEAST DISTANCB SORTING

Most sorting algorithms rely on a basic swap step. When records are of different
lengths, the swap step becomes nontrivial.

Problem 13.2: Sort lines of a text file that has one million lines such that the average
length of a line is 100 characters but the longest line is one million characters long.

pg.292

13.2 VARIABLB LENGTH SORT

pg.292

- Stability is required, i.e., the relative order of two records that have the same
sorting key should not be changed.

9913.2. Variable length sort



ElementsOfProgramminglnterviews.com

Suppose you are given a set of names and your job is to produce a set of unique first
names. If you just remove the last name from all the names, you may have some
duplicate firstnames. Creating a set of firstnames that has eachname occurring only
once amounts to the following.

Problem 13.8: Design an efficientalgorithm for removing all the duplicates from an
array. pg. 298

13.8 UNIQUE BLBMBNTS

Computers are ideally suited to taking a large amount of data and summarizing it,
e.g., as gross statistics.

Problem 13.7: Givena strings, print in alphabeticalorder eachcharacter that appears
in 51 and the number of times that it appears. For example, if s ="bcdacebe", output
~~~~~~~~~~. nW

13.7 COUNT THE OCCURRENCBS OF CHARACTERS IN A SENTENCE

Problem 13.6: Design an algorithm that takes as input two teams and the heights of
the players in the teams and checksif it is possible to place players to take the photo
subject to the placement constraint. pg. 296

Figure 13.1: A team photo. Each team has 10 players, and each player in the back row is taller than
the corresponding player In the front row.

,.1'+ ••• '*
t ••• • f • •

Backrow
Front row

You are a photographer for a soccer meet. Youwill be taking pictures of pairs of
opposing teams. All teams have the same number of players. A team photo consist
of a front row of players and a back row of players. A player in the back row must
be taller than the player in front of him, as illustrated inFigure 13.1.All players in a
row must be from the same team.

13.6 TBAM PHOTODAY--l

The most computationally intensive step of doing this is finding the intersection of
the sorted arrays.

Problem 13.5: Given sorted arrays A and Bof lengths n and m respectively,return
an array Ccontaining elements common toA and B. The array C should be free of
duplicates. How would you 'perform this intersection if-(1.) n ~ m and (2.)n«m?

pg.295

13.6. Teamphoto day-1100

ElementsOfProgramminglnterviews.com

Problem 13.10: Given a set of events, how would you determine the maximum
number of events that take place concurrently? pg. 299

Figure 13.2: A set of nine events. The earliest starting even! begins at time 1; the latest ending event
ends at time 17. The maximum number of concurrent events is 3, e.g., {El, E5, E8} aswell as others.

H £9

£5 H E1

£1 E2 £3
~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Consider the problem of designing an online calendaring application. One compo­
nent of the design is to render the calendar, i.e., display it visually.

Suppose each day consists of a number of events, where an event is specified
as a start time and a finish time. Individual events for a day are to be rendered as
non-overlapping rectangular regions whose sides are parallel to the x- and y-axes.
Let the x-axiscorrespond to time. If an event starts at time b and ends at time e, the
upper and lower sides of its corresponding rectanglemust be at band e,respectively.
Figure 13.2represents a set of events.

Suppose the y-coordinates for each day's events must lie between 0 and L(a pre­
specified constant), and the rectangle for each event has the same "height", which is
the distance between the sides parallel to the x-axis is fixed. Yourtask is to compute
the maximum height an event rectangle can have. In essence, this is equivalent to
the followingproblem.

13.10 RENDBRING A CALBNDAR

13.9 TASK ASSIGNMBNT (~)

Weconsider the problem of scheduling n = 2m tasks to be performed bym workers.
Each worker must be assigned exactly two tasks. Each task has a duration. Tasks
are independent, i.e., there are no constraints of the form "Task4 cannot start before
Task3 is completed." Wewant to assign tasks to workers so as to minimize how long
it takes before all tasks are completed.

Formally, let A be an array of positive numbers of length n = 2m, i.e., n is even,
where A[i] represents the duration of Task i. Define a 2-partition n of A to be a
partition nof {O,l, ... ,n -I} into ¥ subsets, PO,Pl,...,P9-l eachwith two elements.
DefineQ(n) to be maxi~~l(Et(;PI A[e]).
Problem 13.9: Design an efficientalgorithm that takes as input an array A of even
length and computes a 2-partition of A that has minimum Q(n). pg. 298

10113.9. Task assignment: «p<>

ElementsOfProgr~ngInterviews.com

Let's say you are responsible for the security of a castle. The castle has a circular
perimeter. A total of n robots patrol the perimeter-each robot is responsible for a
closed connected subset of the perimeter, i.e., an arc. (The arcs for different robots
may overlap.) Youwant to monitor the robots by installing cameras at the center of
the castle that look out to the perimeter. Eachcamera can look along a ray. To save
cost,you would like tominimizethe number of cameras. See Figure13.4 on the next
page for an example.

Problem 13.13: Let [el, CPiJ, for i = 0, ... ,n - 1be n arcs,where the i-th arc is the set of
points on the perimeter of the unit circlethat subtend an angle in the interval te"~CP,]

13.13 RAYsCOVBRING ARCS

Consider an engineer responsible for a number of tasks on the factory floor. Each
task starts at a fixed time and ends at a fixed time. The engineer wants to visit the
floor to check on the tasks. Your job is to help him minimize the number of visits
he makes. Ineach visit, he can check on all the tasks taking place at the time of the
visit. A visit takes place at a fixed time, and he can only checkon tasks taking place
at exactly that time.

Problem 13,12: Youare given a set of n tasks modeled as closed intervals [a"bil, for
i = 0, ... , n-1. A set Sofvisit times covers the tasks if [ai,bilnS :I- 0, fori = 0, ... ,n-l.
Design an efficientalgorithm for finding a minimum cardinality set ofvisit times that
covers all the tasks. pg. 302

13.12 POINTS COVERING INTERVALS

Problem 13.11: Design an algorithm that takes as input a set of intervals I, and
outputs the union of the intervals. What is the time complexity ofyour algorithm as
a function of the number of intervals? pg. 300

Union of intervals
..A..r IO.AI ($.l1) (n.m <,

!2.4) 18,11) (I$, 13) (16,17).____. <>---<I <>--<>
11,1) 1M) 17,8) (12,151
•00
(0,3) 15." (9,11) 112,14)

.....----.<> ~ __.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 •

Figure 13.3: A set of Intervalsand theirunion.

In this problem we consider sets of intervals with integer endpoints; the intervals
may be open or closed at either end. Wewant to compute the union of the intervals
in such sets. A concreteexample is given in Figure 13.3.

13.11 UNION OF INTERVALS

13.11. Unum of intervals102

ElementsOfProgramminglnterviews.com

Problem 13.15: Develop an algorithm for computing a short sequence of flips that
will sort an array A. pg. 304

Figure 13.5: Example of a flip. The spatula is inserted In the middle of the stack of pancakes, as shown
on Ihe le(l, and the flip results In the configuration on the right.

(b)(a)

1111111111111

Suppose you are given an array A of n integers. "Flipping" A at k reverses the sub­
array A[k : n - 1]. Suppose the only way you can move elements in an array is by
flipping. (This restriction is appropriate, for example, when sorting a stack of pan­
cakes of different sizes on a griddle by repeatedly inserting a spatula at appropriate
locations and flipping, as shown in Figure 13.5.)

13.15 PANCAKESORTING(0)

13.14 TAB 3-SUMPROBLBM(G')

LetA be an a~ay ofn numbers. Let t be anumber, and k be an integer in [1,n]. Define
A to k-createt iffthere exists k indices io, it, ... , ik-l (notnecessarilydistinct) such that
E~~A[i,l = t.

Problem 13.14: Design an algorithm that takes as input an array A and a number t,
and determines if A 3-creates i. pg. 303

at the center.A ray is a set ofpoints that all subtend the same angle to the origin, and
is identified by the angle they make relative to the z-axis. A set R of rays "covers"
the arcs if [8i, <P11(') R :I; 0, for i = 0,. '" n -1. Design an efficientalgorithm for finding
aminimum cardinality set of rays that covers all arcs. pg. 303

Figure 13.4: An Instance of the minimum ray covering problem, with 12 partially overlapping arcs. Arcs
have been drawn at diflerent distances for Illustration. For this Instance, six cameras are sufficient,
corresponding to the six rays.

10313.14. 11te3-sum problem (~)

104

Problem 14.1; Write a function that takes as input the root of a binary tree whose
nodes have a key field, and returns true iff the tree satisfies the BSTproperty. pg.305

14.1 DoES A BINARYTREE SATISFYTHBBSTPROPERlY?

6 };

1 template <typena.e T>
2 class BinarySearchTree

public:
T data;
shared_ptr<BinarySearchTree<T» left, right;

Adding and deleting elements to an array is computationally expensive,particularly
when the array needs to stay sorted. BSTsare similar to arrays in that the keys are in
a sorted order. However, unlike arrays, elements can be added to and deleted from
a BSTefficiently. BSTsrequire more space than arrays since each node stores two
pointers, one for each child, in addition to the key.

A BST is a binary tree as defined in Chapter 9 in which the nodes store keys
drawn from a totally ordered set. The keys stored at nodes have to respect the BSf
property-the key stored at a node is greater than or equal to the keys stored at the
nodes of its left subtree and less than or equal to the keys stored in the nodes of its
right subtree. Figure 14.1on the next page shows a BSf whose keys are the first 16
prime numbers.

Keylookup, insertion, and deletion take timeproportional to the height of the tree,
which can in worst-casebeS(n),if insertions and deletions are naively implemented.
However there are implementations of insert and delete which guarantee the tree
has height 8(log n). These require storing and updating additional data at the tree
nodes. Red-black trees are an example ofbalanced BSTsand are widely used in data
structure libraries, e.g., to implement maps in the Standard TemplateLibrary (STL).

The BSTprototype in C++ is listed as follows:

- NA Theorem on Trees,"
A.CAnn,l889

The number of treeswhich can beformed with
n+ 1gillen knots a, p,y, ... = <'I+ 1)0-1.

Binary Search Trees

CHAPTER

ElernentsOfProgramminglnterviews.com

Searching for a key in a BST is very similar to binary search in a sorted array. Many
variants of the basic search problem can be posed for BSTs.

Problem 14.4: Given a BST T, write recursive and iterative versions of a function
that takes a SST T, a key k, and returns the node containing k that would appear first
in an inorder walk. If k is absent, return null. For example, when applie4 to the
BST in Figure 14.2 on the next page, your algorithm should return Node B if k = 108,
Node G if k = 285, and null if k = 143. pg. 311

14.4 SEARCHA BST POR PIRST OCCURRENCE OF k

A BST is a dynamic data structure-in particular, it supports efficient insertions and
deletions of keys.

Problem 14.3: Design efficient functions for inserting and removing keys in a BST.
Assume that all elements in the BSTare unique, and that your insertion method must
preserve this property. You cannot change the contents of any node. What are the
time complexities of your functions? pg. 308

14.3 UPDATING A SST (~)

The successor of a node n in a BST is the node s that appears immediately after n
in an inorder walk. When all keys are distinct, s holds the smallest key larger than
the key at n. (The last node in the inorder walk has no successor.) For example, in
Figure 14.1, the successor of Node G (with key 17) is Node A (with key 19).

Problem 14.2: Given a node x, find the successor of x in a SST. Assume that nodes
have parent fields, and the parent field of root points to null. pg.308

14.2 SUCCBSSOR IN A BST

Figure 14.1: An example SST.•

41 N

D

10514.2. Successor in a BST

ElementsOfProgrammingIntervielvs. com

Problem 14.6: Write a function that takes a min-first BSTT and a key k, and returns
true iff T contains k. pg. 313

Figure 14.3: A min-first SST.

3

A min-first BST is one in which the minimum key is stored at the root; each key in
the left subtree is less than every key in the right subtree. The subtrees themselves
are min-first BSTs. See Figure 14.3 for an example.

14.6 MIN-FIRST BST

Problem 14.5: Write a function that takes a BST T and a key k, and returns the
first entry larger than k that would appear in an inorder walk. If k is absent or no
key larger than k is present, return null. For example, when applied to the BST in
Figure 14.1 on the preceding page you should return 29 if k = 23; if k = 32, you
should return null. pg. 312

BSTs offer more than the ability to search for a key-they can be used to find the
min and max elements, look for the successor or predecessor of a given search key
(which mayor may not be presented in the BST), and enumerate the elements in
sorted order.

14.5 SEARCH BST FOR THE FIRST KBY LARGER THAN k

Figure 14.2: A BST with duplicate keys.

/D

14.5. Search BST for the first key larger than k106

ElementsOfProgramrninglnterviews.com

Figure 14.4: SST to sorted doubly linked list.

(b) The sorted doubly linked list corresponding to the eST In(a).Note how the tree nodes have
beenusod for tho list nodes.

(a) A eST of five nodes_dges that do not terminate in nodes
denote empty subtrees. The number in hex adjacent to each node
represents its address in memory.

14.9 CONVERTA BSTTO SORTEDDOUBLYLINKEDLIST (0)

A BSThas two pointers.Jeft and right. A doubly linked list has two pointers, previous
and next. Ifwe interpret the BST's left pointer as previous and the BST's right pointer
as next, a BST's node can be used as a node in a doubly linked list. Also, the inorder
traversal of a BST represents an ordered set just like a doubly linked list. Hence it
is possible to take a BSTand rewrite its node pointers so that it represents a doubly
linked list such that the resulting list represents inorder traversal sequence of the
tree.

Problem 14.8: Let L be a singly linked list of numbers, sorted in ascending order.
Design an efficient algorithm that takes as input L, and builds a height-balanced BST
on the entries in L. Your algorithm should run in O(n) time, where n is the number
of nodes in L. You cannot use dynamic memory allocation-reuse the nodes of L for
the BST.You can update pointer fields, but cannot change node contents. pg. 314

14.8 BUILDA BST PROMASORTEDLINKBDLIST (~)

Problem 14.7: How would you build a BST of minimum possible height from a
sorted array A? pg.314

Let A be a sorted array of n numbers. A super-exponential number of BSTscan be
built on the elements of A: n~l <';:') to be precise. Some of these trees are skewed, and
are closer to lists; others are more balanced.

14.7 BUILDINGA BSTFROMASORTEDARRAY

10714.7. Building a BST from a sorted array

ElementsOfProgramminglnterviews.com

A BST is a sorted data structure, which suggests that it should be possible to find the
k largest keys easily.

Problem 14.11: Given the root of a BSTand an integer k,design a function that finds
the k largest elements in this BST. Por example, if the input to your function is the
BST in Figure 14.1 on Page lOS and k = 3, your function should retum (53,47,43).

pg.317

14.11 FIND THE k LARGESTELEMENTSIN A BST

Problem 14.10: Let A and B be BSTs.Design an algorithm that merges them in O(n)
time. You cannot use dynamic allocation. You do not need to preserve the original
trees. You can update pointer fields, but cannot change the key stored in a node.

pg.316

(b) Merged BST corresponding to the two BSTs In <a).

Figure 14.5: Example of m~rging two BSTs.

6x376e

<a) Two BSTs.

If A and B are BSTs,it is straightforward to create a BSTcontaining the union of their
keys: traverse one, and insert its keys into the other. Many other constructions are
possible; see Figure 14.5 for an example.

If both BSTsare balanced and the insertion preserves balance, the time complexity
is O(n log n),where n is the total number of nodes in A and B.

14.10 MERGE TWO BSTs (C')

Problem 14.9: Design an algorithm that takes as input a BSTB and returns a sorted
doubly linked list on the same elements. Your algorithm should not allocate any new
nodes. The original BSTdoes not have to be preserved; use its nodes as the nodes of
the resulting list, as shown in Figure 14.4 on the preceding page. pg.315

14.10. Merge two BSTs (G<>108

BlernentsOfProgramminglnterviews.com

Consider the problem of developing a web-service that takes a geographical location,
and returns the nearest restaurant. The service starts with a set S of n restaurant
locations-each location is a pair of x, y-coordinates. A query consists of a location,
and should return the nearest restaurant (ties may be broken arbitrarily).

One approach is to build two SSTs on the restaurant locations: Tx sorted on the
x coordinates, and Ty sorted on the y coordinates. A query on location (p, q) can be
performed by finding all the points PI> whose x coordinate is in the range [p-~, p +~),

14.15 NEARESTRESTAURANT

Problem 14.14: Let r, 5, and m be distinct nodes in a SST. In this SST, nodes do
not have pointers to their parents and all keys are unique. Write a function which
returns true if mhas both an-ancestor and a descendant in the set {r,s}. For example,
in Figure 14.1 on Page 105, if m is Node J, your function should return true if the
given set is {A, K} and return false if the given set is {I, P}. pg. 321

14.14 DESCENDANTANDANCESTOR

Since a SST is a specialized binary tree, the notion of lowest common ancestor, as
expressed in Problem 9.12 on Page 78, holds for SST nodes too.

Ingeneral, computing the LCA of two nodes in a SST is no easier than computing
the LCA Ina binary tree, since any binary tree can be viewed as a SST where all the
keys are equal. However, when the keys are distinct, it is possible to improve on the
LCA algorithms for binary trees.

Problem 14.13: Design an algorithm that takes a SST T of size n and height h,nodes
sand b, and returns the LCA of s and b. Assume s.key < b.key. For example, in
Figure 14.1 on Page 105, if s is node C and b is node G, your algorithm should return
node B. Your algorithm should run in O(h) time and 0(1) space. Nodes do not have
pointers to their parents. pg. 320

14.13 LoWBSTCOMMONANCESTORINASST

Problem 14.12: Which traversal orders-inorder, preorder, and postorder-of a SST
can be used to reconstruct the SST uniquely? Write a program that takes as input a
sequence of node keys and computes the corresponding SST. Assume that all keys
are unique. pg. 318

As discussed in Problem 9.7 on Page 77 there are many different binary trees that
yield the same sequence of visited nodes in an inorder order traversal; the same is
true for a preorder traversal, and a postorder traversal. For a binary tree, given an
inorder traversal and any of the other two traversal orders, there exists a unique
binary tree that yields those orders. However, if a binary tree satisfies the SST
property, the added constraints make it possible to reconstruct the tree with less
traversal information.

14.12 TRAVBRSALORDBRSINASST

10914.12. 'fraversal orders in a BST

ElementsOfProgrammingInterviews.com

Problem 14.18: Implement the API in Problem 14.17. If commonis called after
processing the i-th entry, commonshould return the k most visited pages whose

This problem is a continuation of Problem 14.17. The difference is that only pages
whose timestamps are within a specified duration of the page most recently read are
to be considered.

14.18 MOST VISITED PAGBSIN A WINDOW Ce-)

You are given a log file containing billions of entries. Each entry contains an integer
timestamp and page which is of type string. The entries in a log file appear in
increasing order of timestamp.

Problem 14.17: You are to implement methods to analyze log file data to find the
most visited pages. Specifically, implement the following methods:

- void add (Entry p)-add p.page to the set of visited pages. It is guaranteed
that if add(q) is called after add(p) then q. timestamp is greater than or equal
to p. timestamp.

- List<String> common(k)-return a listof the k most common pages.
First solve this problem when conmon(k) is called exactly once after all pages have
been read. Then solve the problem when calls to commonand add are interleaved.
Assume you have unlimited RAM. pg. 325

14.17 MOST VISITED PAGES

Let A, B, and C be sorted arrays of integers. Define distanceu, j, k) = maxCIA[ll -
B[j]~ !A[i] - C[k]l, IB[]1- C[k]!).

Problem 14.16: Design an algorithm that takes three sorted arrays A, B, and C and
returns a triple (i,j, k) such that distance(i, j, k) is minimum. Your algorithm should
run in OOAI + IBI+ ICI) time. . pg. 323

14.16 MINIMIZE THB DISTANCEIN THREBSOImiD ARRAYS

and all the points QA whose y coordinate is in the range [q - il,q + il], computing
RA = PAn QA and finding the point in R.6 closest to (p,q). Heuristically, if ilis chosen
correctly, RA is a small subset of S, and a brute-force search for the closest point in RA
is fast. Of course, ilhas to be chosen correctly-one approach is to start with a small
value and keep doubling it until RA is nonempty.

This approach performs poorly on pathological data, but works well in practice.
Theoretically better approaches exist, e.g., Quadtrees, which decompose the plane
into regions which are balanced with respect to the number of points they contain, or
k-d trees, which organize points in a k-dimensional space and provide range searches
and nearest neighbor searches efficiently.

Problem 14.15: How would you efficiently perform a range query on a BST?Specif­
ically, write a function that takes as input a BSTand a range [L,U] and returns a list
of all the keys that lie in [L, U]? pg. 322

14.16.Minimize the distance in threesortedA"AyS110

ElernentsOfProgramminglnterviews.com

This is a simplified version of a problem that often comes up in computer graphics.
You are given a set of line segments. Each segment consists of a closed interval

[I;, r,l of the x-axis,a color,and a height. When viewed from above, the color at point
x on the z-axis is the color of the highest segment that includes x. This is illustrated
in Figure 14.7on the followingpage.

Problem 14.20: Implement a function that computes the view from above. Your
input is a sequence of line segments, each specified as a 4-tuple (I, r, c, h), where I
and r are the left and right endpoints, respectively,c encodes the color,and h are the
height. The output should be in the same format. No two segments whose intervals
overlap have the same height. pg. 327

14.20 VIBW PROM ABOVE (\I)<)

Problem 14.19: Writea function that takes a single integer argument nand computes
all the Gaussian integers a+ bi, for -n ~ a,b ~ n that are Gaussian primes. pg. 326

Figure 14.6: Gaussian primes with real part In [1,5) and imaginary part in [0,5). Observe 2 + Oi =
(1+ 1)(1 - I). so 2 + Oi Is not a Gaussian prime.

• •(2 +5i) (4+51)

• •(1 + (1) (5+41)

•(2+ 3i)

• • •(1 + 21) (3+21) (5 + 21)

• • •(1 + Ii) (2 + 11) (4 + 11)

(3+ 01)

14.19 GAUSSIAN PRIMES (c»-)

The Gaussian integers are complex numbers of the form a + hi, where a and bare
integers and i = ...r-:l. The numbers I, -I, i, and -i are known as units. Anonzero
Gaussian integer a is called a Gaussian prime if a = ~y => ~ is a unit or y is a unit.
Examples are given in Figure 14.6.

timestamp is in [t,- W, t,l. Here t, is the timestamp of the i-th entry and W is specified
by the client before any pages are read and does not change. RAM is limited-in
particular you cannot keep a map containing all pages. Maximize time efficiency
assuming callsto addand conunonmaybe interleaved and commonis frequently called.

pg.325

11114.19. Gaussian primes (Ci>'>

ElementsOfProgrammingInterviel·;s. com

One problem with the approach to the restaurant problem outlined in Problem 14.15
on Page 109 is that the number of entries in Pt. could be much larger than the number
of entries in Qt. or vice versa. We can address this by first computing the number of
entries that lie in a range.

14.22 COUNTING THE NUMBEROFENTRIES IN AN INTERVAL

Consider a server that a large number of clients connect to. Each client is identified by
a unique string. Each client has a certain number of" credits", which is a nonnegative
integer value. The server needs to maintain a data structure to which clients can be
added, removed, queried, or updated. Inaddition, the server needs to be able to add
C credits to all clients Simultaneously.

Problem 14.21: Design a data structure that implements the following methods:
- insert (5, c), which adds client s with credit c, overwriting any existing entry

for s.
- remove(s), which removes client s.
- lookup(s), which returns the number of credits associated with client 5, or-1
if s is not present.

- addAll(C), the effect of which is to increment the number of credits for each
client currently present by C.

- max0, which returns the client with the highest number of credits.
The insert(s,c), remove(s), and lookup(s) methods should run in time O(logn),
where n is the number of clients. The remaining methods should run in time 0(1).

pg.330

14.21 AnDING CREDITS

Thus far we have considered BSTs in which each node stores an entry drawn from
a sorted set, a left child, a right child, and a parent. Adding fields to the nodes can
speed up certain queries, as the following problems illustrate.

Augmented BSTs

Figure 14.7: Instance of the view fromabove problem, with patterns used to denote colors.

o 1 2 3 4 5 6 7 8 9 W II U U H ~ M V W

E3
W/#/W'#t! ~~~~~~'%.,~ E:3

I: : : : : : : : : : : : : : : : :: : : : : : : : : : :1 ~~TlTTTnTTT~I~II~II~1 ~II~II~"~I~"~II~IrTTTTTTITrTnTlTI
~~~~~~~~"'~ 1111111111111111111111111111111111111111111111111111

II!1111:::::IIIIIIEiIlIIII

View from above

14.21. Adding credits112



ElementsOfProgrammingInterviews.com

Problem 14.23: Design a data structure that stores closed intervals and can efficiently
return the complete set of intervals that intersect a specified range [L,U]. Your data
structure must also support efficient insertions and deletions. pg. 332

14.23 QUBRYING SERVERLOGS (0-)

Consider the problem of analyzing web server logs. The logs contain information on
sessions by individual users, including the time when their session began, and when
it ended.

Problem 14.22: Suppose each node .in a BST has a size field, which denotes the,
number of nodes at the subtree rooted at that node, inclusive of the node. How
would you efficiently compute the number of nodes that lie in a given range? Can
the size field be updated efficiently on insert and on delete? pg.331 .

11314.23. Queryillg server logs (Q)<)



114

Divide and conquer

A divide and conquer algorithm works-by repeatedly decomposing a problem into
two or more smaller independent subproblems of the same kind, until it gets to in­
stances that are simple enough to be solved directly. The solutions to the subproblems
are then combined to give a solution to the original problem.

Merge sort and quicksort are classical examples of divide and conquer. In merge
sort, the array A[O : n - 1] is sorted by sorting A[O : Ln/2J] and AfLn/2J + 1 : n - 1],
and merging them. In quicksort, A[O : n - 1] is sorted by selecting a pivot element
A[r] and reordering the elements of A to make all elements appearing before A[Y]
less than or equal to A[r] and allelements appearing after A[Y] greater than or equal
to Afr]. The subarray consisting of elements before Afr] and the subarray consisting
of elements after A[r] are sorted, and the resulting array is completely sorted.

Interestingly, the divide step in merge sort is trivial; the challenge is in combining
the results. With quicksort, the opposite is true. Problems 10.1 on Page 80 and 6.1 on
Page 52 illustrate the key computations in merge sort and quicksort.

A divide and conquer algorithm is not always optimum. A minimum spanning
tree (MST) is a minimum weight set of edges in a weighted undirected graph which
connect all vertices in the graph; refer to Problems 16.13 on Page 137 and 17.6 on
Page 141 for details. A natural divide and conquer algorithm for computing the MST

We now cover three general techniques for algorithm design-divide and conquer,
dynamic programming, and the greedy method. The approaches described previously,
such as mapping a problem into an appropriate data structure, or presorting the
input, are more widely used than the methods in this chapter. However, although
they are specialized, the approaches in this chapter lead to huge efficiency gains
compared to naive algorithms. These techniques are not exhaustive. In later chapters
we will discuss algorithms that use randomization, parallelization, backtracking,
heuristic search, reduction, and approximation.

- HDynamic Programming,"
R.E. B2LLMAN, 1957

The importantfact toobserveis thatwe haveattempted to solve
a ma:rimizationproblem involving a particular value of x and
a particular value of N by first solving the general problem
imlOlvingan arbitrary value of x and an arbitrary value ofN.

Meta-algorithms

CHAPTER



ElementsOfProgramminglnterviews.com

15.2 COUNTING INVERSIONS (@'<)

Let A be an array of n numbers. The pair of indices (i,J) is said to be inverted if i < j
and A[i] >A[j].

pg.332Problem 15.1: Design an efficient algorithm for computing the skyline.

Figure 15.2: Buildings, their skyline, and the largest contained rectangle.

(a)

15.1 DRAWINGTHE SKYLINE (~)

A number of buildings are visible from a point. Each building is a rectangle, and
the bottom of each building lies on a fixed line. A building is specified using its left
and right coordinates, and its height. One building may partly obstruct another, as
shown in Figure IS.2(a). The skyline is the list of coordinates and corresponding
heights of what isvisible.

For example, the skyline corresponding to the buildings in Figure 15.2(a) is given
in Figure 15.2(b). (The patterned rectangles illustrate the largest rectangle under the
skyline problem, which is described in Problem 15.8 on Page 120, and is not relevant
to the current problem.)

The term divide and conquer is also sometimes applied to algorithms that reduce
a problem to only one subproblem, e.g., binary search. Such algorithms can be imple­
mented more efficiently than general divide and conquer algorithms. In particular,
these algorithms use tail recursion, which can be replaced by a loop. Decrease and
conquer is a more appropriate term for such algorithms.

Figure 15.1: Divide and conquer applied to the MST problem is suboptimum.

(c) AnoptimumMST.(a) A weightedundirectedgraph. (b) An MSTbuilt fromthe MSTson
(a,b,c) and (d,e.f).

is to partition the vertex set V into two subsets V1 and V2, compute MSTs for V1 and
V2, and then join these two MSTswith an edge of minimum weight between V1 and
V2. Figure 15.1 shows how this algorithm can lead to suboptimal results.

11515.1. Drawing the skyline <C<>



ElementsOfProgramminglnterviews.com

Let The a tree, where each edge is labeled with a nonnegative real-valued distance.
Define the diameter of T to he the length of a longest path in T. Figure 15.3 illustrates
the diameter concept.

Problem 15.4: Design an efficient algorithm to compute the diameter of a tree.
pg.337

Figure 15.3: The diameter for the above tree is 31, The corresponding path is (A, B,C,D,E}, which is
depicted by the dashed edges.

6',
o

Packets in Ethernet local area networks (LANs) are routed according to the unique
path in a tree whose nodes correspond to clients and edges correspond to physical
connections between the clients. In this problem, we want to design an algorithm
for finding the "worst-case" route, i.e., the two clients that are furthest apart. In the
abstract, we want to solve the following problem:

15.4 TRBE DIAMETER

Suppose you were asked to design a collision warning system for a ship control
system. Specifically, your program receives coordinates for the different ships, and
has to compute the pair of ships that is at greatest risk of collision. Assuming that
the pair with the greatest risk is the pair that is closest, your problem then becomes
the following.

Problem 15.3: You are given a list of pairs of points in the two-dimensional Cartesian
plane. Each point has integer x and y coordinates. How would you find the two
closest points? pg. 335

15.3 NEAREST POINTS IN THEPLANE (~)

Problem 15.2: Design an efficient algorithm that takes an array A of n numbers and
returns the number of inverted pairs of indices. pg. 334

15.3. Nearest points in the plane (0)116



ElementsOfPrograrnmingInterviews.com

The brute-force algorithm, which computes each subarray sum, has O(n3) time
complexity-there are n(n2-1) subarrays, and each subarray sum can be computed in
O(n) time. The brute-force algorithm can be improved to O(n2) by first computing
sums Sri] for subarrays A.[O : i] for each i < n; the sum of subarray A[i : j] is
S[j] - Sri -1], where 5[-1] is taken to beO.

Here is a natural divide and conquer algorithm. We solve the problem for the
subarrays L = A[O : L¥Jl and R = A[LV + 1.: n -1]. In addition to the answers for
each,we also return themaximum subarray sum for any subarray ending at ILI-1for

904 40 523 12 -335 -385 -124 481 I· -31
1

A[OI A[l] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Figure 15.4: An array with a maximum subarray sum of 1479.

DP is a general technique for solving complex optimization problems that can be
decomposed into overlapping subproblems. Likedivide and conquer, we solve the
problem by combining the solutions of multiple smaller problems but what makes
DP different is that the subproblems may not be independent. A key to making
DP efficient is reusing the results of intermediate computations. (The word "pro­
gramming" in dynamicprogramming does not refer to computer programming-the
word was chosen by RichardBellmanto describe a program in the sense of a sched­
ule.) Problems which are naturally solved using DP are a popular choice for hard
interview questions.

Toillustrate the idea underlying OP,consider theproblem ofcomputing Fibonacci
numbers defined by Fn = Fn-1 +Fn-2,Fo = 0and F, = 1. A function to compute Fn that
recursively invokes itself to compute Fn-1 and F,,-2 would have a time complexity
that is exponential in n. However ifwe make the observation that recursion leads to
computing FIfor i E[0,n -1] repeatedly,we can~avethe computation timeby storing
these results and reusing them. This makes the time complexity linear in n,albeit at
the expense of O(n) storage. Note that the recursive implementation requires O(n)
storage too, though on the stack rather than the heap and that the function is not tail
recursive since the last operation performed is + and not a recursive call. .

The key to solving any DP problem efficientlyis finding the right way to break
the problem into subproblems such that

- the bigger problem can be solved relatively,easily once solutions to all the
subproblems are available, and

- you need to solve as few subproblems as possible.
In some cases, this may require solving a slightly different optimization problem
than the original problem. For example, consider the following problem: given an
array of integers A of length n, find the interval indices a and b such that El'.." A[l1
is maximized. As a concrete example, the interval corresponding to the maximum
subarray sum for the array in Figure 15.4is [0,3].

Dynamic programming

11715.4. Tree diameter



ElementsOiProgramminglnterviews.com

Finding the maximum subarray sum in an array can be solved in linear time, as
described on the previous page. However, if the given array A is circular, which

15.5 MAxIMUM SUBARRAY SUM iN A CIRCULAR ARRAY (Q)<)

Here are two variants of the subarray maximization problem that can be solved
with ideas that are similar to the above approach: find indices a and b such that
I:~=aA[i] is-(l.) closest to 0 and (2.) closest to i: (Both entail some sorting, which
increases the-time complexity to O(n log n).) Another good variant is finding indices
a and b such that rrr.."A[i] is maximum when the array contains both positive and
negative integers.

A common mistake in solving OP problems is trying to think of the recursive case
by splitting the problem into two equal halves, a la quicksort, i.e., somehow solve the
subproblems for subarrays A[O : l ~J] and A[l~J +1:n] and combine the results.

A common mistake in solving DP problems is trying to think of the recursive case
by splitting the problem into two equal halves, a la quicksort, i.e., somehow solve
the subproblems for subarrays A[O : l¥J] and A[LV + 1: n] and combine the results.
However in most cases, these two subproblems are not sufficient to solve the original
problem.

{min_idx + 1, i + 1};max_sum = sum - min_sum, range
if (sum - min-sum > max_sum) {

1 template <typename T>
~IIIpair<int, tnt> find_lUaximum_subarray(const vector<T> &A) {
3 II A[range.first : range. second - 11 will be the maximum subarray
I ..,. C" ").'1 pa1r<1nt, 1nt> range "" .. ;
5 int min_idx = -1;
61 T min_sum = 61, sum = fl, max_sum = numeric_limits<T>: :minC);
I71 for Cint i = 61; i < A. sizeO; Hi) {

81 sum += A[i];
9! if Csum < min_sum) {
rcl min_sum = sum, min_idx = i;
j

"1
12;

l3i

!~I
lsi
161 return range;
17j }

L (call this value 1)and starting at 0 for R (call this value r). The maximum sub array
sum for A is the maximum of I+ r, the answer for L, and the answer for R. The time
complexity analysis is similar to that for quicksort, which leads to a O(n log n).

Now we will solve this problem by using DP. A natural thought is to assume we
have the solution for the subarray A[O : n - 2]. However, even ifwe knew the largest
sum subarray for subarray A[O : n - 2], it does not help us solve the problem for
A[O : n -1]. A better approach is to iterate through the array. For each index i. the
maximum subarray ending at j is equal to S[j] - miniSjS[I]. During the iteration,
we cache the minimum subarray sum we have visited and compute the maximum
subarray for each index. The time spent per index is constant, leading to an 8(n)
time and 0(1) space solution. Following is the code in C++:

15.5. Maximum sllbarray slim in a circulararray (~)118



ElementsOfProgramminglnterviews.com

Problem 15.7: Design an algorithm that takes as input an array A of n numbers and
a key k, and returns a longest subarray ofA for which the subarray sum is less than
or equal to k. pg. 342

1431.1 -15 639 342 -14 565 1-9241 635 167 -70

A[D] A[l) A[2] A[3] A[4) A[5j A[6] A[7] A[8] A[9]

Figure 15.6: An array for the longest subarray whose sum ~ k problem.

15.7 LoNGBST SUBARRAYWHOSE SUM s k (0)

Herewe consider finding the longest subarray subject to a constraint on the subarray
sum. For example, for the array in Figure 15.6,the longest subarray whose subarray
sum is no more than 184is A[3 : 6].

Problem 15.6: Given an arrayA ofnnumbers, finda longestsubsequence (io, ... , it-I)
such that ij < ij+1 and A[ij] ~ A[ij+d for any j E [O,k - 2]. pg.34O

Figure 15.5: An array whose longest nondecreaslng subsequences are of length 4.

15.6 LONGEST NONOBCRBASING SUBSEQUBNCB (G><)

The problem of finding the longest nondecreasing subsequence in a sequence ofinte­
gers has implications to many disciplines, including string matching and analyzing
card games. As a concrete instance, the length of a longest nondecreasing subse­
quence for the array A in Figure 15.5is 4. There are multiple longest nondecreasing
subsequences, e.g., (0,4,10,14) and (0,2,6,9).

means the first and last elements of the array are to be treated as being adjacent to
each other, the algorithm yields suboptimum solutions. Forexample, ifA is the array
in Figure 15.4on Page 117, the maximum subarray sum starts at index 7 and ends
at index 3, but the algorithm described on the preceding page returns the subarray
from index0 to index 3.

Problem 15.5: Given a circulararray A, compute itsmaximum subarray sum inO(n)
time, where n is the length ofA. Can you devise an algorithm that takesO(n) time
and 0(1) space? pg.339

11915.6. Longest nondecreasing subsequence (Q><>



ElementsOfPrograrnminglnterviews.com

Spell checkers make suggestions for misspelled words. Given a misspelled string 5,

a spell checker should return words in the dictionary which are close to s.

15.11 LBVBNSHTBIN DISTANCBS

Problem 15.10: Design an algorithm that takes as arguments a 2D array A and a ID
array 5, and determines whether 5 appears in A. If 5 appears inA, print the sequence
of entries where it appears. pg. 348

and 51 = (1,3,4,6), then 51 occurs in A-<onsider the entries
(A[O][O],A[I][O], A[l][I], A [2][1I). However 52 = (1,2,3,4) does not occur in A.

[
1 2 3]

A= 3 4 5
567

Let A be a 2D array of integers, and 5 a ID array of integers. We say 5 occurs in
A if you can start from some entry in A and traverse adjacent entries in A in the
order prescribed by 5 till you get to the end of 5. The entries adjacent to A[zl[]l are
A[i -1][]l,A[i + 1][]l,A[ll[j -II, and A[ll[j + II, assuming the indices are valid. It is
acceptable to visit an entry in A more than once.

For example, if

15.10 SEARCHING FOR A SEQUBNCE IN A 2D ARRAY

15.9 MAXIMUM 2D SUBARRAY (0)

The followingproblem has applications to image processing.

Problem 15.9: Let A be an n x m Boolean 2D array. Design efficient algorithms for
the following two problems:

- What is the largest 2D subarray containing only Is?
- What is the largest square 2D subarray containing only Is?

What are the time and space complexities of your algorithms as a function of n and
~ n~

15.8 LARGEST RBCfANGLE UNDBR THE SKYLINl! (0)

You are given a sequence of adjacent buildings. Each has unit width and an integer
height. These buildings form the skyline of a city. An architect wants to know the
area of a largest rectangle contained in this skyline. For example, for the skyline
in Figure 15.2(b) on Page 115, the largest rectangle is the brick-patterned one. Note
that it is not the contained rectangle with maximum height (which is denoted by
the vertical-patterning), or the maximum width (which is denoted by the slant­
patterning).

Problem 15.8: Let A be an array of n numbers encoding the heights of adjacent
buildings of unit width. Design an algorithm to compute the area of the largest
rectangle contained in this skyline, i.e., compute ~axl<}«j - i + 1) x minLA[kJ).

pg.344

15.S. Largest rectangle wider tile skylille (0)120



ElementsOiPrograrnminglnterviews.com

Problem 15.13: Given text, i.e., a string ofwords separated by singleblanks, decom­
pose the text into lines such that no word is split across lines and the messiness of
the decomposition isminimized. Each line can hold no more than L characters. How
would you change your algorithm if the messiness is the sum of the messinesses of
all but the last line? pg. 352

Figure 15.7: Twolayouts forthe same sequence ofwords; the line lengthL is 36.

I have inserted a large number~
of new'examples from the papersw~
for the Mathematical Tripos duringwu
the last twenty years, which shouldu
be useful to Cambridge students.~u

I have inserted a large number of~
new examples from the papers for the
Mathematical Tripos during the Iast.,
twenty years, which should be useful
to Cambridge students.~~~~w~

Consider the problem of laying out text using a fixedwidth font. Each line can hold
no more than L characters. Wordson a line are to be separated by exactly one blank.
Therefore we may be l~ftwith white space at the end of a line (since the next word
will not fit in the remaining space). Thiswhite space is visually unappealing.

Define the messiness of the end-of-linewhitespace as follows. The messiness of a
line ending with b blank characters is 2b. The total messiness of a sequence of lines is
the sum of the messinesses of all the lines. A sequence of words can be split across
lines in differentways with differentmessiness, as illustrated in Figure 15.7.

'15.13 PRETIY PRINTING ,

15.12 WORD BREAKING

Suppose you are designing a ~earchengine. In addition to getting keywords from
a page's content, you would like to get keywords fromUniform Resource Locators
(URLs). For example, bedbathandbeyond.com should be associated with "bed bath
and beyond" (in this version of the problem we also allow "bed bat hand beyond"
tobe associatedwith it).

Problem 15.12: Given a dictionary and a string 5, design an efficientalgorithm that
checkswhether s is the concatenation of a sequence of dictionary words. If such a
concatenation exists,your algorithm should output it. pg. 351

Problem 15.11: Given two strings, represented as arrays of characters A and B,
compute the minimum number of edits needed to transform the first string into the
second string. pg. 349

In 1965,Vladimir Levenshtein defined the distance between two words as the
minimum number of "edits" it would take to transform the misspelled word into a
correct word, where a single edit is the insertion, deletion, or substitution of a single
character.

12115.12. Word breaking



ElementsOfProgramminglnterviews.com

Problem 15.16: How many ways can you go from the top-left to the bottom-right
in an n x m 2D array? How would you count the number of ways in the presence
of obstacles, specified by an n x m Boolean 2D array B, where a true represents an
obstacle. pg. 356

Flgure15.8: Pathsthrougha 20 array.

Suppose you start at the top-left comer of an n x m 2D array A and want to get to the
bottom-right comer. The only way you can move is by either going right or going
down. Three legal paths for a 5 x 5 2D array are given in Figure 15.8.

15.16 NUMBER OPWAYS

Inan American football game, a play can lead to 2 points (safety), 3 points (field
goal), or 7points (touchdown). Given the final score of a game, we want to compute
how many different combinations of 2, 3, and 7point plays could make up this score.

For example, ifW = {2,3,7}, four combinations of plays yield a score of 12:
- 6 safeties (2 x 6 = 12),
- 3 safeties and 2 field goals (2x 3 +3 x 2 = 12),
- 1 safety, 1 field goal and 1 touchdown (2x 1 +3 x 1 + 7 x 1= 12), and
- 4 field goals (3x 4 :::12).

Problem 15.15: You have an aggregate score sand Wwhich specifies the points that
can be scored in an individual play. How would you find the number of combinations
of plays that result in an aggregate score of s? How would you compute the number
of distinct sequences of individual plays that result in a score of s? pg. 354

15.15 SeORS COMBINATIONS

h b I (11)' h f f "(!t-lHn-k+l) I . th be f chT e sym 0 \,t IS S ort orm or k(k-1}.{3)(2)(1)· t IS e num r 0 ways to oose a
k-element subset from an n-element set.

It is not obvious that the expression defining C) always yields an integer. Further­
more, direct computation of C) from this expression quickly results in the numerator
or denominator overflowing if integer types are used, even if the final result fits in a
32-bit integer. If floats are used, the expression may not yield a 32-bit integer.

Problem 15.14: Design an efficient algorithm for computing C) which has the prop­
erty that it never overflows if C) can be represented as a 32-bit integer; assume n and
k are integers. pg. 353

15.14 COMPUTINC THE BL'JOMIALCOEPPICIBNTS

122 15.14. Computing tI,e binomial coefficients



ElementsOfProgramminglnterviews.com

15.19 VOLTAGE SBLECTION IN A LOGIC CIRCUIT (~)

A logic circuit is an ensemble of logic gates operating on a set of external inputs. The
gates implement basic Boolean operations such as AND, OR and NOT. Formally, a
logic circuit can be modeled as a directed acyclic graph (DAG)-the external inputs
are the sources of the DAG and gates are the remaining nodes.
In this problem we consider the special case where the DAG is a rooted tree. Each

node can use either a high voltage or a low voltage. A low voltage node consumes
less power, but has a weaker signal. It is a design constraint that a low voltage node
should never be input to another low voltage node. Let c" be the number of children.
The power used by a low voltage node is ell + Ii the power used by a high voltage
node is 2(clI + 1).

Figure 15.10 on the next page shows three voltage assignments for the same logic
circuit. All assignments satisfy the design constraint. Figure 15.10(a) on the following
page proceeds greedily in a bottom up fashion, assigning leaves to L. Figure 15.10(b)

In the pick-up-coins game, an even number of coins are placed in a line, as in
Figure 4.6 on Page 44. Two players, F and S, take tums at choosing one coin each­
they can only choose from the two coins at the ends of the line. Player F goes first.
The game ends when all the coins have been picked up. The player whose coins
have the higher total value wins. A player cannot pass his turn.

Problem 15.18: Design an efficient algorithm for computing the maximum margin
of victory for the starting player in the pick-up-coins game. pg.357

15.18 PICKING UP COINS, MAXIMUM GAIN

Problem 15.17: Write a program that computes the maximum value of fish a fisher­
man can catch on a path from the upper leftmost point to the lower rightmost point.
The fisherman can only move down or right, as illustrated in Figure 15.9. pg.357

Figure 15.9: Alternate paths for a fisherman. Different types of fish have different values, which are
known to the fisherman.

,...,.."......,.......,""....,.."--I--tl

... CIt ......

-f--tt--t--il­II..,. I'"

- CD'I I

.. 0 .,.. r-:;;:'
1--1--- 1--1---1--'
I'" .,. I'"
I--f--_.., ,.,I-- _ ,

Q)I 0.... I""

.._ - ..,.

A fisherman is in a rectangular sea. The value of the fish at point (i, j) in the sea is
specified by an n x m 2D array A.

123

15.17 PLANNING A PISHING TRIP

15.17. Planning afishing trip



ElementsOfProgramminglnterviews.com

As described on Page 32, the greedy method is an algorithm design pattern which
results in an algorithm that computes a solution in steps. At each step the algorithm
makes a decision that is locallyoptimum, and never changes that decision.

The example on Page 32 illustrates how different greedy algorithms for the
same problem can differ in terms of optimality. As another example, consider
making change for 48 pence in the old British currency where the coins came in
30,24,12,6,3, and 1 pence denominations. Suppose our goal is to make change us­
ing the smallest number of coins. The natural greedy algorithm iteratively chooses
the largest denomination coin that is less than or equal to the amount of change that

The greedy method

15.20 IMAGE COMPRBSSION (~)

Suppose a rectangular black-and-white image is formally represented by an m x n
Boolean2D array P. Intuitively,if large contiguous regions of the image all have the
same color,the array representation is suboptimum from the perspective ofmemory
usage.

A two-dimensional tree is a data structure that can be used to represent a parti­
tion of a rectangle into subrectangles. Formally, a two-dimensional tree is either a .,
monochromatic rectangle, or consists of a Toot node T, the lower leftmost and upper
rightmost points (a,b) and (c,d) of the corresponding rectangle, a splitting point (s,t),
and an ordered list of four two-dimensional trees Sw,Nw,NE, and SErepresenting
2D subarrays P[a : s - 1,b : t - 1],P[a : s - 1,t : d], F[s : c,t :d], and F[s : c,b : t - 1],
respectively.

Problem 15.20: Implement cutpoint selection to minimize the number of nodes in
the two-dimensional tree representing an image. pg. 359

Problem 15.19: Design an algorithm for minimizing power that takes as input a
rooted tree and assigns each node to a low or high voltage, subject to the design
constraint: pg. 359

Figure 15.10: The node labels L or H indicating a high or low voltage node, respectively.

(a) Power =1+2>C+l+2X3+1 = (b) Power = 2 x 1 + 3 + 2 x 1 + (c) Power= 1+2x3+1+3+2xl =
15 2x3+1 = 14 13

proceeds greedily in a top-down fashion, assigning the root to H, its children to L,
and continuing downwards. Figure 15.10(c)is the optimal assignment.

15.20. Image compression <C<>124



ElementsOfprogramrninglnterviews.com

You are the coordinator of a tutoring service. Each day you receive requests for
lessons. Each lesson has a specified start time between 9:00 a.m. and 5:00 p.m. and
lasts exactly 30 minutes. You have access to an unlimited number of tutors. Tutors
can start work at any time, but must stop tutoring for the day at most two hours after
starting. A tutor can conduct only one lesson at a time.

Problem 15.22: Design an algorithm that computes the least number of tutors needed
to schedule a set of requests. pg. 362

15.22 ScHBDULING TUTORS

A database has to respond to n simultaneous client SQL queries. The service time
required for Query i,where 1 SiS n,equals tjmilliseconds and isknown in advance.
The query lookups are processed by the database one at a time, but can be done in
any order. It is natural to minimize the total waiting time r.f:l Ti, where T; is the time
at which processing for Query ibegins. For example, if the lookups are done in order
of increasing i, then the waiting time for the i-th query is T;= r.j:i tj milliseconds.

Problem 15.21: Given n queries, compute an order in which to process queries that
minimizes the total waiting time. pg. 362

15.21 MINIMIZE WAITINGTIME (G><)

?
remains to be made. If we try this for 48 pence, we get three coins........aO+ 12 + 6.
However the optimum answer would be two coins-24 + 24.

In its most general form, the coin changing problem is NP-hard (Chapter 17) but
for some coinages, the greedy algorithm is optimum-e.g., if the denominations are
of the form {I, r, rl, r3j. (An ad hoc argument can be applied to show that the greedy
algorithm is also optimum for US coinage.) The general problem can be solved in
pseudo-polynomial time using DP in a manner similar to Problem 17.2 on Page 139.

As another example of how greedy reasoning can fail, consider the following
problem: Four travelers need to cross a river as quickly as possible in a small boat.
Only two people can cross at one time. The speed to cross the river is dictated by
the slower person in the boat (if there is just one person, that is his speed). The
four travelers have times of 5, 10, 20, and 25 minutes. The greedy schedule would
entail having the two fastest travelers cross initially (10), with the fastest returning
(5), picking up the faster of the two remaining and crossing again (20), and with
the fastest returning for the slowest traveler (5 + 25). The total time taken would
be 10 + 5 + 20 + 5 + 25 = 6S minutes. However, a better approach would be for the
fastest two to cross (10), with the faster traveler returning (5), and then having the
two slowest travelers cross (25), with the second fastest returning (10) to pick up the
fastest traveler (10). The total time for this schedule is 10 + 5 + 25 + 10 + 10 = 60
minutes.

12515.21. Minimize waiting time (~)



ElementsOfProgramrninglnterviews.com

pg.366Problem 15.25: Implement first-fit to run in O(nlogn) time.

15.25 PACKINGFORUSPSPRIORITY MAIL(0)

TheUnited StatesPostalServices (USPS)makes fixed-sizemail shipping boxes-you
pay a fixedprice for a given box and can ship anything you want that fits in the box.
Suppose you have a set of n items that you need to ship and have a large supply of
the 4 x 12x 8 inch priority mail shipping boxes. Each item will fit in such a boxbut
all of them combined will take multiple boxes. Naturally, you want to minimize the
number ofboxes you use.

The first-fitheuristic is a greedy algorithm for the packing problem-it maintains
a sequence of boxes, and processes items to pack in the sequence in which they are
given. Items are placed in the first box in which they fit.

15.24 LOADBALANCING(0)

Suppose you want to build a large distributed storage system on the web. Millions
of users will store terabytes of data on your servers. One way to design the system
would be to compute a hash code for each user's login ID,partition the hash codes
across equal-sized buckets, and store the data for eachbucket of users on one server.
For this scheme,mapping a user to his server entails evaluating a hash function.

However if a small number of users occupy a large fraction of the storage space,
this schemewill not achieve a balanced partition. One way to solve this problem is
to use a nonuniform partitioning.

Problem 15.24: Youhave n users with unique hash codes 110 through hn-ll and m
servers. The hash codes are ordered by index, i.e., h; < hi+l for i E [O,n - 2]. User i
requires b, bytes of storage. The values leo < kl < ... < km-2 are used to assign users
to servers. Specifically,the user with hash code c gets assigned to the server with the
lowest ID i such that c ~ ~, or to serverm - 1 ifno such iexists. The load on a server
is the sum of the bytes of storage of all users assigned to that server. Compute values
for leo, kI' ... , km-l that minimizes the load on the most heavily loaded server. pg. 365

Wehave m tasks and n servers. Task i consists of T[i] jobs,where a job is a unit of
work. There are no dependencies between jobs in a task. Server j can execute 5[j]
units of work in a unit time. Each T[i] and 5[J1 is a positive integer. We want to
find an assignment of jobs to servers subject to the constraint that no server should
receivemore than one job from a single task.

Problem 15.23: Design an algorithm that takes as input a pair of arrays specifying
jobs per task and server capacities, and returns an assignment of jobs to servers for
which all tasks completewithin one unit time. No server may processmore than one
job for a given task. If no such assignment exists, your algorithm should indicate
that. pg. 363

15.23 JOB ASSIGNMENT(0)

15.23. Job assignment (Q<)126



ElementsOfProgramminglnterviews.com

15.27 NODE REWEIGHING (~)

Let Tbe a rooted tree with n nodes. Eachnode u has a nonnegative weight w(u). The
weight of a path is the sum of the weights of the nodes on the path.

Problem 15.27: How would you efficientlyassign to each node u a new weight
w'(u) such that (1.)each root-to-leafpath has the same weight W', (2.)for all nodes
u, w'(u) ~ w(u), and (3.) L.ltenodes{T) w'(u) is minimum? See Figure 15.11 on the next
page for an example. pg. 372

Problem 15.26: Given a set of symbols with corresponding frequencies, find a code
book that has the smallest average code length. pg. 368

a
b
c u
d m v
e n W

.) f 0 x
g p y
h q z

r

Table 15.1: English characters and their frequencies, expressed as percentages, In everyday docu­
ments.

One way to compress a large text is by building a code book which maps each
character to a bit string, referred to as its code word. Compression consists of
concatenating the bit strings for each character to form a bit string for the entire text.

When decompressing the string, we read bits until we find a string that is in
the code book and then repeat this process until the entire text is decoded. For the
compression to be reversible, it is sufficient that the code words have the property
that no codeword is a prefix of another. For example, 011is a prefix of 0110but not
a prefix of 1100.

Sinceour objective is to compress the text, we would like to assign the shorter
strings to more common characters and the longer strings to less common charac­
ters. Wewill restrict our attention to individual characters. (Wemay achieve better
compression ifwe examine common sequences of characters, but this increases the
time complexity.)

The intuitive notion of commonness is formalized by the frequency of a character
which is a number between zero and one. The sum of the frequencies of all the
characters is 1. The average code length is defined to be the sum of the product of
the length of each character's code word with that character's frequency. Table15.1
.shows the large variation in the frequencies of letters of the English alphabet.

15.26 HUFFMANCODING (~)

12715.26. Huffman coding (G-)



ElementsOfProgramminglnterviews.com

15.29 ASSIGNING RADIOFRBQUENClI!S (C')

If two neighboring radio stations are transmitting at the same radio frequency, there
would be a region geographically between them where the signal from both stations
would be equally strong and the resulting interference would cause neither of the
signals to be usable. Hence neighboring radio stations try to pick different frequen­
cies. Consider the problem where we have just two frequencies available and we are
given the neighborhood graph of a set of radio stations. Ideally, we want to assign

Problem 15.28: Devise an efficient algorithm that takes as input a set P of people
and a set F c P x P of pairs of people and returns a largest subset of P within which
each individual knows three or more other members of P and does not know three
or more other members of P. The "knows" relation is not necessarily symmetric or
transitive. pg. 372

Agure 15.12: A set of eleven people. An edge between two people indicates they know each other.
(For this example, A knows B iff B knows A.)

Leona is holding a party and is trying to select people to invite from her circle of
friends. She has n friends and knows for each pair of her friends if the first friend
already knows the second friend. Leona wants to invite as many friends as possible,
subject to the constraint that each invitee knows at least three other invitees and
does not know at least three other invitees. For example, each of the eight men in
Figure 15.12 knows three other men and does not know four other men, and this is
the largest set that can be invited.

15.28 PLANNING A PARTY

FIgure 15.11: An instance of the node reweighing problem, and tWo rewelghings that satisfy the prob­
lem constraints. Each node is labeled with its weight.

(b) Optimumweights,cost. 32. (c) Suboptimumweights,cost. 41.(a) InitialweighlS.

15.28. Planning aparty128



ElementsOfProgrammingInterviews.com

the frequencies to the radio stations such that the interference is minimized. This is
a difficult problem. Suppose we are interested in a simpler problem where all we
want is that for any given radio station, the majority of its neighbors use a different
frequency from the given station. This can be modeled as a graph coloring problem.

Problem 15.29: Let G = (v,E) be an undirected graph. A two-coloring of G is a
function assigning each vertex of G to black or white. Call a two-coloring diverse if
eachvertex has at least half its neighbors opposite incolor to itself. Does everygraph
have a diverse coloring? How would you compute a diverse coloring, if it exists?

pg.373

12915.29. Asstgnttlg radio frequencies (~)



130

An undirected graph is also a tuple (v,E); however E is a set ofunordered pairs of
V. Graphically,this is captured by drawing arrowless connections between vertices,
as inFigure 16.2on the next page.

Figure 16.1: A directed graph with weights on edges.

Informally,a graph is a set of vertices and connected by edges. Formally,a directed
graph is a tuple (v,E), where V is a set of vertices and E c V x V is the set of edges.
Given an edge e = (u,e), the vertex u is its source, and v is its sink. Graphs are often
decorated, e.g., by adding lengths to edges, weights to vertices,and a start vertex. A
directed graph can be depicted pictorially as inFigure 16.1.

A path in a directed graph from u to vertex v is a sequence of vertices
(vo, Vll···, Vn-1) where Vo = u, V"-1 = v, and (Vt,VI+1)E E for i E {O,... r n - 2}. The
sequence may contain of a single vertex. The length of the path (vo,Vll ... , Vn-1) is
n - 1. Intuitively, the length of a path is the number of edges it traverses. If there
exists a path from u to o, v is said to be reachable from u.

For example, the sequence (a, c,e,d, h) is a path in the graph represented inFig­
ure 16.1.

Concerning these bridges, it was asked whether anyone could ammge a
route in such a way that he would cross eachbridge once and only once.

- "The solution of a problem relating to the geometry of position,"
L. EuuR, 1741

Algorithms on Graphs

CHAPTBR



ElementsOfProgramminglnterviews.com

If G is an undirected graph, vertices u and '0 are said to be connected if G contains a
path from u to 'OJ otherwise, u and '0 are said to be disconnected. A graph is said to be
connected if every pair of vertices in the graph is connected. A connected component
is a maximal set of vertices C such that each pair of vertices in C is connected in G.
Every vertex belongs to exactly one connected component.

A directed graph is called weakly connected if replacing all of its directed edges
with undirected edges produces a connected undirected graph. It is connected if it
contains a directed path from u to '0 or a directed path from v to u for every pair of
vertices u and v. It is strongly connected if it contains a directed path from u to v and
a directed path from v to u for every pair of vertices u and v.

Graphs naturally arise when modeling geometric problems, such as determining
connected cities. However they are more general, and can be used to model many
kinds of relationships.

A graph can be implemented in two ways-using adjacency lists or an adjacency
matrix. In the adjacency list representation, each vertex '0, has a list of vertices to
which it has an edge. The adjacency matrix representation uses a IVI x IVI Boolean­
valued matrix indexed by vertices, with a 1 indicating the presence of an edge. The
time and space complexities of a graph algorithm are usually expressed as a function
of the number of vertices and edges.

A tree (sometimes called a free tree) is a special sort of graph-it is an undirected
graph that is connected but has no cycles. (Many equivalent definitions exist, e.g.,
a graph is a free tree iff there exists a unique path between every pair of vertices.)
There are a number of variants on the basic idea of a tree. A rooted tree is one where
a designated vertex is called the root, which leads to a parent-child relationship on
the nodes. An ordered tree is a rooted tree in which each vertex has an ordering
on its children. Binary trees, which are the subject of Chapter 9, differ from ordered
trees since a node may have only one child in a binary tree, but that node may be a
left or a right child, whereas in an ordered tree no analogous notion exists for a node
with a single child. Specifically, in a binary tree, there is position as well as order
associated with the children of nodes.

As an example, the graph in Figure 16.3 on the following page is a tree. Note that
its edge set is a subset of the edge set of the undirected graph in Figure 16.2. Given
a graph G = elf,E), if the graph G' = (\1, E') where E' c E, is a tree, then G' is referred
to as a spanning tree of G.

Figure 16.2: An undirected graph.

131Chapter 16. Algorithms 011 Graphs



ElernentsOfProgrammingInterviews.com

Problem 16.1: Given a 20 array of black and white entries representing a maze with
designated entrance and exit points, find a path from the entrance to the exit, if one
exists. pg. 374

Figure 16.4: An instance of the maze search problem, with two solutions, where SandE denote the
entrance and exit, respectively.

(b) A path from entrance to exil (c) A shortest path from entrance
to exit.

I[ ~E
I oJ

!lI 'b-

r
M!~ I

oJ

ld ~

S !!_

Ii!! ~ ,*E
I

r1c
r "",
I
j ,
L.

: -
~

S ~!

(a) A maze.

;;.; IE
I
i

~

.. -'~
S j

It is natural to apply graph models and algorithms to spatial problems. Consider a
black and white digitized image of a maze-white pixels represent open areas and
black spaces are walls. There are two special white pixels: one is designated the
entrance and the other is the exit. The goal in this problem is to find a way of getting
from the entrance to the exit, as illustrated in Figure 16.4.

16.1 SBARCHtNGA MAZE

Computing vertices which are reachable from other vertices is a fundamental oper­
ation which can be performed by depth-first search (DFS) and breadth-first search
(BFS).Both are linear time--O(IVI + IE!).They differ from each other in terms of the
additional information they provide, e.g., BFScan be used to compute distances from
the start vertex and OFS can be used to check for the presence of cycles. Key notions
in OFS include the concept of disC(lVery time and finishing time for vertices.

Figure 16.3: A tree.

Graph search

16.1. Searchingamaze132



ElementsOfProgramminglnterviews.com

Intuitively, some graphs are more co~ected than others=-e.g., a clique (an undi­
rected graph in which every two vertices are connected by an edge) is more connected
than a tree. To be more quantitative, we could refer to a graph as being 2V-connected
if it remains connected even if any single edge is removed. A graph is 23-connected
if there exists an edge that can be removed while still leaving the graph connected.

The undirected graph in Figure 16.2 on Page 131 is 2V-connected, since any single
edge can be removed, and there will still exist a path 'from any vertex to any other
vertex. However, if the edge (h,t) is removed, then the remaining graph, though

A connected graph is one in which for any two vertices u and v there exists a path from
u to v. The notion of connectedness holds for both directed and undirected graphs­
for undirected graphs, we sometimes simply say there exists a path between u and
v.

16.4 DEGREES OF CONNECTEDNESS (e-)

Problem 16.3: Design an algorithm. that takes a set of pins and a set of wires con­
necting pairs of pins, and determines if it is possible to place some pins on the left
half of a PCB, and the remainder on the right half, such that each wire is between left
and right halves. Return such a division, if one exists. For example, the light vertices
and dark vertices in Figure 16.5 are such division. pg. 376

Figure 16.5: A set of pins and wires between them.

Consider a collection of electrical pins on a printed circuit board (PCB). For each pair
of pins, there mayor may not be a wire joining them. This is shown in Figure 16.5,
where vertices correspond to pins, and edges indicate the presence of a wire between
pins. (The significance of the colors is explained later.)

16.3 WIRING A PRINTED CIRCUIT BOARD

16.2 TRANSFORM ONE STRING TO ANOTHER (G><)

Let s and t be strings and D a dictionary, i.e., a set of strings. Define s to produce t if
there exists a sequence of strings a = (so,S1l'" ,Sn-l) such that So = 5, Sn-l = i, for all
i,SI E D, and adjacent strings have the same length and differ in exactly one character.
The sequence a is called a production sequence.

Problem 16.2: Given a dictionary D and two strings sand t, write a function to
determine if 5 produces t. Assume that all characters are lowercase alphabets. If
s does produce t, output the length of a shortest production sequence; otherwise,
output -1. pg. 375

13316.2. Transform one string to another (~)



ElernentsOfProgramminglnterviews.com

Problem 16.6: Design an efficient algorithm that takes as input a collection of equal­
ity and inequality constraints and decides whether the constraints can be satisfied
simultaneously. pg. 381

Programs are usually checked using testing-a number of manually written or ran­
domtest cases are applied to the program and the program's results are checked by
assertions or visual inspection.

Formal verification consists of examining a program and analytically determining
if there exists an input for which an assertion fails. Formal verification of programs
is undecidable. However there are Significant sUbclasses of programs for which the
verification problem is decidable.

Consider the following problem. Given a set of variables Xl, ..• , Xn, equality con­
straints of the form Xi = Xj' and inequality constraints of the form Xi '* Xj, is it
possible to satisfy all the constraints Simultaneously? For example, the constraints
Xl = X2JX2 = X:3,X3 = x.., and Xl '* x.. cannot be satisfied Simultaneously. Such con­
straints arise in checking the equivalence of loop-free programs with uninterpreted
functions.

16.6 THEORYOFEQUALITY

Problem 16.5: Devise an efficient algorithm which takes a social network and com­
putes for each individual his extended contacts. pg. 380

A social network consists of a set of individuals and, for each individual, a list of his
contacts. (The contact relationship may not be symmetric-A may be a contact of B
but B may not be a contact of A.) Define C to be an extended contact of A if he is
either a contact of A or a contact of an extended contact of A.

16.5 . ExrENDBD CON'TACTS

connected, is not 2V-connected, since the subsequent removal of edge (/, i) results in
an unconnected graph. For example, there will be no path from a tom, since all paths
in the original graph pass through either (h,t) or (/, I)-

The undirected graph in Figure 16.3 on Page 132 is not 23-connected. However
adding any edge to the graph makes it 23-connected.

One application of this idea is in fault tolerance for data networks. Suppose you
are given a set of data centers connected through a set of dedicated point-to-point
links. You want to reach from any data center to any other data center through
a combination of these dedicated links. Sometimes one of these links can become
temporarily out of service and you want to ensure that your network can sustain up
to one faulty link. How can you verify this?

Problem 16.4: Let G = (V,E) be a connected undirected graph. How would you
efficiently check if G is 23-connected? Can you make your algorithm run in O(IVI)
time? How would you check if G is 2V-connected? pg.378

16.5. Extendedcontacts134



ElementsOfProgramrningInterviews.com

Problem 16.7: How would you generalize your solution to Problem 13.6on Page 100.
to determine the largest number of teams that can be photographed simultaneously
subject to the same constraints? pg. 382

16.7 TBAM PHOTODA¥-2

Advanced graph algorithms

Up to this point we looked at basic search and combinatorial properties of graphs.
The algorithms we considered were all linear time complexity and relatively
straightforward-the major challenge was in modeling the problem appropriately.

Four classes of problems on graphs can be solved efficiently, i.e., in polynomial
time. Most other problems on graphs are either variants of these or, very likely, not
solvable by polynomial time algorithms. These four classes are:

- Shortest paths-given a graph, directed or undirected, with costs on the edges,
find the minimum cost path from a given vertex to all vertices. Variants include
computing the shortest paths for all pairs of vertices, and the case where costs
are all nonnegative.

- Minimum spanning tree-given a connected undirected graph G = (v,E) with
weights on each edge, find a subset E' of the edges with minimum total weight
such that the subgraph G' = (v,E') is connected.

- Matching-given an undirected graph, find a maximum collection of edges
subject to the constraint that every vertex is incident to at most one edge. The
matching problem for bipartite graphs is especially common and the algorithm
for this problem is much simpler than for the general case. A common variant
is the maximum weighted matching problem in which edges have weights and
a maximum weight edge set is sought, subject to the matching constraint.

- Maximum flow-given a directed graph with a capacity for each edge, find the
maximum flow from a given source to a given sink, where a flow isa function
mapping edges to numbers satisfying conservation (flow into a vertex equals
the flow out of it) and the edge capacities. The minimum cost circulation
problem generalizes the maximum flow problem by adding lower bounds on
edge capacities, and for each edge, a cost per unit flow.

In this chapter we restrict our attention to shortest-path and minimum spanning
tree problems: these are subjects which anyone interviewing for a software position
should be familiar with. Ifyou have' specialized knowledge of optimization or graph
theory you may be asked a problem whose solution uses matching or maximum
flow. We have several representative examples in Chapter 21. Specifically, maximum
matching is illustrated by Problems 21.19 to 21.22 on Page 168; maximum flow is the
subject of Problems 21.23 and 21.24 on Page 169. For such problems, you will most
likely be asked to find the right embedding, rather than writing explicit code.

13516.7. Teamphoto day-2



ElementsOfProgramminglnterviews.com

The Texas Department of Transportation is considering adding a new section of
highway to the Texas Highway System. Each highway section connects two cities.
City officials have submitted proposals for the new highway-each proposal includes
the pair of cities being connected and the length of the section.

Problem 16.11: Devise an efficient algorithm which takes the existing highway
network (specified as a set of highway sections between pairs of cities) and proposals

16.11 ROAD NETWORK (e-)

16.10 QUICKBSTROUTE

A flight is specified as a four-tuple: start-time, originating city, destination city, and
arrival-time (possibly on a later day). A time-table is a set of flights. Flights are
assumed to be daily.

Problem 16.10: Given a time-table, a starting city, a starting time, and a destination
city, how would you compute the soonest you could get to the .destination city?
Assume all flights start and end on time, and that you need 60 minutes between
flights. pg. 385

In the usual formulation of the shortest path problem, the number of edges in the
path is not a consideration. For example, considering the shortest path problem from
a to h in Figure 16.1 on Page 130, the sum of the edge costs on the path (a,e,e,d,h) is
22, which is the same as for path (a, b,k, i, j, f,g,h). Both are shortest paths, but the
latter has three more edges.

Heuristically, if we did want to avoid paths with a large number of edges, we can
add a small amount to the cost of each edge. However depending on the structure
of the graph and the edge costs, this may not result in the shortest path.

Problem 16.9: Design an algorithm which takes as input a graph G = (v,E),directed
or undirected, a nonnegative cost function on E, and vertices sand t;your algorithm
should output a path with the fewest edges amongst all shortest paths from s to t.

pg.384

16.9 SHORTEST PATHWITH PBWBSTEDGES

Let T' = {To,Tv ... ,Tn-I} be a set of tasks. Each task runs on a single generic
server. Task Ti has a duration 'ti, and a set Pi (possibly empty) of tasks that must be
completed before Ti can be started. The set isfeasible if there does not exist a sequence
of tasks (To,TI,... rT,,-v To) starting and ending at the same task such that for each
consecutive pair of tasks in the sequence, the first task must be completed before the
second task can begin.

Problem 16.8: Given an instance of the task scheduling problem, compute the least
amount of time in which all the tasks can be performed, assuming an unlimited
number of servers. Explicitly check that the system is feasible. pg. 383

16.8 MINIMUM DBLAYSCHEDULB, UNLIMITBD RBSOURCES

16.8. Minimum delay schedule,unlimited resources136



ElementsOfProgramrninglnterviews.com

Problem 16.13: Let G = (V,E) be an undirected graph with edge weight function
w : E H Z+. You are given TeE, an MST of G. Let e be an edge. Design efficient
algorithms for computing the MST when (L) wee) decreases, and (2.) wee) increases.

pg.389

16.13 UPDATING A MINIMUM SPANNINGTREE

You are exploring the remote valleys of Papua New Guinea, one of the last uncharted
places in the world. You come across a tribe that does not have money-instead it
relies on the barter system. A total of n commodities are traded and the exchange
rates are specified by a 2D array. For example, three sheep can be exchanged for
seven goats and four goats can be exchanged for 200 pounds of wheat.

Transaction costs are zero, exchange rates do not fluctuate, fractional quantities of
items can be sold, and the exchange rate between each pair of commodities is finite.
Table 4.4 on Page 41 shows exchange rates for currency trades, which is similar in
spirit to the current problem.

Problem 16.12: Design an efficient algorithm to determine whether there exists an
arbitrage-a way to start with a single unit of some commodity C and convert it back
to more than one unit of C through a sequence of exchanges. pg. 387

16.12 ARBITRAGB (~)

for new highway sections, and returns a proposed highway section which minimizes
the shortest driving distance between El Paso and Corpus Christi. pg. 386

13716.12. Arbitrage (~)



138

In real-world settings you will sometimes encounter problems that can be directly
solved using efficient textbook algorithms such as binary search and shortest paths.
As we have seen in the earlier chapters, it is often difficult to identify such problems
because the core algorithmic problem is obscured by details. More generally, you
may encounter problems which can be transformed into equivalent problems that
have an efficient textbook algorithm, or problems that can be solved efficiently using
meta-algorithms such as DP.

Often the problem you are given isintractable-i.e., there may not exist an efficient
algorithm for the problem. Complexity theory addresses these problems. Some
have been proved to not have an efficient solution (such as checking the validity
of relationships involving 3,+, <, ~ on the integers) but the vast majority are only
conjectured to be intractable. The conjunctive normal form satisfiability (CNF-SAT)
problem (Problem 17.11 on Page 143) is an example of a problem that is conjectured
to be intractable. Specifically, the CNF-SAT problem belongs to the complexity, class
NP-problems for which a candidate solution can be efficiently checked-and is
conjectured to be the hardest problem in this class.

When faced with a problem P that appears to be intractable, the first thing to do is
to prove intractability. This is usually done by taking a problem which is known to be
intractable and showing how it can be efficiently reduced to P. Often this reduction
gives insight into the cause of intractability.

Unless you are a complexity theorist, proving a problem to be intractable is a
starting point, not an end point. Remember something is a problem only if it has a
solution. There are a number of approaches to solving intractable problems:

- Brute-force solutions which are typically exponential but may be acceptable, if
the instances encountered are small.

- Branch and bound techniques which prune much of the complexity of a brute­
force search.

- Approximation algorithms which return a solution that is provably close to
optimum.

AU of the gentrtll mLJlwds I'mmlly klUlWnfor computing Ihe chromatic
runnba cf. gn;p/t,d«Iding uNIhn a gr"Ph has a HAmUtoniJmeyelt,
or ICItri1tg • ')ISflm cf lm_lMqwJIiJits In !lIilid! tilt ~ tl1'tCOlI­
strrtiM1lob40or1,mplirracombinat0ri4lumdoforrl1hldrtht ...... ,__.
limemplil'fm.nl grows exponentiallywith thtltngth ofth. inJ1ld.

- - /l.t4ucibiJUy Among CQmbinatori41 Probltm$,·
R.M.KARP, 1'112

Intractability

CHAPTER



ElementsOfProgramminglnterviews.com

A thief breaks into a clockstore. His knapsack will hold at most W ounces of clocks.
Clock iweighs Wi ounces.and retails for Vj dollars. The thief must either take or leave

17.2 THB KNAPSACK PROBLBM

Problem 17.1: .How would you programmatically determine if a tie is possible in a
presidential electionwith two candidates, R and D? pg. 389

Table 17.1: Electoralcollegevotes.

"' .. .", s.0
a ama 9 uisiana 8

Alaska 3 Maine 4
Arizona 11 Maryland 10
Arkansas 6 Massachusetts 11
California 55 Michigan 16
Colorado 9 Minnesota 10
Connecticut 7 Mississippi 6
Delaware 3 Missouri 10 Tennessee
Florida 29 Montana 3 Texas
Georgia 16 Nebraska 5 Utah
Hawaii 4 Nevada 6 Vermont
Idaho 4 New Hampshire 4 Virginia
Illinois 20 New Jersey 14' Washington
Indiana 11 New Mexico 5. West Virginia
Iowa. 6 New York 29 WISCOnsin
Kansas 6 North Carolina 15 Wyoming
Kentucky 8 North Dakota 3 Washington, D.C.

The USPresident is elected by the members of the Electoral College. The number
of electors per state and Washington,D.C., are given in Table17.1.All electors from
each state as well asWashington,D.C.,cast their vote for the same candidate.

17.1 TIES IN A PRESIDBNTIALELBCI'rON

Heuristics based on insight, common case analysis, and careful tuning that
may solve the problem reasonably well.
Parallel algorithms,wherein a largenumber ofcomputers canwork on subparts
simultaneously.

Don't forget itmaybe possible to dramatically change the problem formulation while
still achieving the higher level goal, as illustrated in Figure 17.1.

FIgure 17.1: P = NP, by XKCD.

srlLLW®<ItoIG
ONYQOR R~£~

\

6RVT~·f'OIl(.l;:
sot-vnONl
o (().!)

13917.1. Ties in a presidential election



·ElementsOfProgramminglnterviews.com

You have three measuring jugs, A, 8, and C. The measuring marks have worn out,
making it impossible to measure exact volumes. Specifically, each time you measure
with A, all you can be sure of is that you have a volume that is in the range [230,240]
mL. (The next time you use A, you may get a different volume-all that you know
with certainty is that the quantity will be in [230,240] mL.) Jugs B and C can be used
to measure a volume in [290,310] mL and in [500,515] mL, respectively. Your recipe

17.4 MEASURING WITH DEFBCfIVE JUGS (0)

Two thieves have successfully completed a burglary. They want to know how to
divide the stolen items into two groups such that the difference between the value
of these two groups is minimized. For example, they may have stolen the clocks in
Figure 17.2, and would like to divide the clocks between them so that the difference
of the dollar value of the two sets isminimized. For this instance, an optimum split
is {A,G,J,M.,0, P} to one thief and the remaining to the other thief. The first set has
value $1179, and the second has value $1180. An equal split is impossible, since the
sum of the values of all the clocks is odd.

Problem 17.3: Let array A be an array of n positive integers. Entry A[11 is the
value of the i-th stolen item. Design an algorithm that computes a subset S c Z" =
{O,1, 2, ... ,n - I} such that IL.ieSA[11- L.J~\S A[]11 is minimized, pg.390

17.3 DIVIDING THBSPOILS

Problem 17.2: Design an algorithm for the knapsack problem that selects a subset of
items that has maximum value and weighs at most w ounces. All items have integer
weights and values. pg, 390

LSl20,30.... },$320,85OL /(.$7.5,7;.... 4MO. 10... M.SlIlO..95az. H,SICI),SOoz. O,S22I),40oz. P,$II9,IO ee,

Figure 17.2: A clock store.

... ,....
· ..j~l2f,··
... V a ..
~'.', \4~..

JI.$6S,20cz. 8,$35,801. C,$20,60.... D,5195,55OL £,$65,40oz. f,5ISO,11IOL G,5275,85az. H,SI55,2$=

: Xl! ::IXVrn!
: .•. TI •••:

a clock, and he cannot take a fractional amount of an item. His intention is to take
clocks whose total value is maximum subject to the knapsack capacity constraint. His
problem is illustrated in Figure 17.2. If the knapsack can hold at most 130 ounces,
he cannot take all the clocks. If he greedily chooses clocks, in decreasing order of
value-to-weight ratio, he will choose P,H, 0, B,I, and L in that order for a total value
of $669. However, {H,J,O}is the optimum selection, yielding a total value of $695.

17.3. Dividing the spoils140



ElementsOfProgramminglnterviews.com

Suppose a salesman needs to visit a set of citiesAo,Al, ...,An-l• For any ordered pair
of cities (Ai, Aj}, the cost of traveling from the first to the second city is c(At,Aj). We
need to design a low cost tour for the salesman.

A tour is a sequence of cities (Bo,Bl,...,Bn-l, Bo). It can start at any city and the .
salesmancanvisit the citiesin anyorder. All the citiesmust appear in the subsequence
(Bo,Bl, ... ,B,,-l)' (Note that this implies that all the cities in this subsequence are
distinct.) The cost of the tour is the sum of the costs of the n successive pairs
(Bi' Bi+l modn), for i = 0 to n - 1.

Determining the minimum costtour is a classicNP-hard problem and the problem
remains hard even if we just ask for a tour whose cost is within a given multiple M
of the minimum cost tour. However there is a special case for which this problem
can be efficientlysolved Witha reasonable bound on the quality of the solution.

Problem 17.6: Suppose you are given a set of cities in the Cartesian plane, as shown
in Figure 4.3on Page 36. The cost of traveling from one city to another is a constant
multiple of the distancebetween the cities. Givean efficientprocedure for computing
a tour whose cost is no more than two times the cost of an optimum tour. pg.393

17.6 TRAVELINGSALESMANIN THE PLANE (~)

In the conventional form of the shortest-path problem, we seek the path with the
lowest cost. There exist natural situations where each edge has a cost and a delay.
For example, a shipping company may have a number of locations. Sending a
package along a given route incurs a cost and a delay that is the sum of the costs and
delays of the individual edges on the route. This motivates the following.

Problem 17.5: Given a graph G = (V,E), with cost function c : E H Z+, delay
function d : E H Z+,designated vertices 5 and t,and a delay constraint 11E Z+, find
a path from 5 to t with minimum cost, subject to the constraint that the delay of the
path is no more than 11.Costs are additive-the cost of a path is the sum of the costs
of the individual edges: the same holds for delays. pg.392

17.5 DELAY-CONSTRAINED SHORTIlST-PATH (~)

Problem 17,4: Write a program that determines a sequence of steps by which the
required amount of milk can be obtained using the worn-out jugs, The milk is
being added to a large mixing bowl, and hence cannot be removed from the bowL
Furthermore, it is not possible to pour one jug's contents into another, Yourscheme
should always work, i.e., return between 2100and 2300mL of milk, independent
of how much is chosen in each individual step, as long as that quantity satisfies the
given constraints. pg. 391

for chocolate chip cookies calls for at least 2100mL and no more than 2300mL of
milk.

14117,5, Delay-constrained shortest-path <G')



ElementsOfProgrammingInterviews.com

17.10 COMPUTING rt

Astraight-line program for computing rt is a finitesequence (x,xll,;r}2, ... , rt)where
each element after the first is either the square of some previous element or the

Consider an expression of the form Va00 VI 0t 112... 0,,-2 V"+ Suppose the ViSare
constant integers and the 0;s are operators. The expression takes different values
based on what operators we choose.

Determining an operator assignment such that the resulting expression satisfies a
constraint is, ingeneral, a difficultproblem. For example, suppose the operators are
+ and -, and wewant to know whether we can select each0{ such that the resulting
expression evaluates to O. The problem of partitioning a set of integers into two
subsets which sum up to the same value, which is a famous NP-complete problem,
directly reduces to our problem.

Problem 17.9: Given an array of digits A and a nonnegative integer k, intersperse
multiplies (x) and adds (+) with the digits ofA such that the resulting arithmetical
expression evaluates to k. For example, if A is (1,2,3,2,5,3,7,8,5,9) and k is 995,
then k can be realized by the expression "123+ 2+ 5 x 3 x 7+85x 9". pg.398

17.9 ExPRESSION SYNTHESIS

Sudoku is described in Problem 6.14on Page 57. In this problem you are to write
a Sudoku solver. The decision version of the generalized Sudoku problem is NP­
complete;however this is restricted to the traditional 9X 9 grid.

Problem 17.8: Implement a Sudoku solver. Yourprogram should read an instance
of Sudoku from the command line. The command line argument is a sequence of
3-digit strings, each encoding a row, a column, and a digit at that location. pg. 395

17.8 SUDOKU SOLVBR

LetCo,Cl, ..• , c,,-l be n cities. Wewant to choosek of these cities to build warehouses
in. Wewould like the remaining cities to be close to the warehouses. Let's say the
cost of a warehouse assignment is defined tobe the maximumdistance of any city to
a warehouse. Finding an optimum warehouse assignment is known to be NP-hard.

For example, consider the cities specified in Figure 4.3 on Page 36. Assume the
coordinates for each city correspond to their positions in the Cartesian plane, and
distances are the standard Euclidean distance. Then if k = 3, the optimum cities to
place warehouses in are Los Angeles, Dakar, and Darwin. For k = 4, the optimum
cities areMexicoCity,Accra,Irkutsk, and Melbourne.

Problem 17.7: Design a fast algorithm for selecting k warehouse locations that is
provably within a constant factor of the optimum solution. pg. 394

17.7 THB WAR.EHOUSBLOCATION PROBLBM (G><)

17.7. The warellollse location problem (0)142



ElementsOfProgramminglnterviews.com

Problem 17.13: You need to schedule n lectures in m classrooms. Some of those
lectures are prerequisites for others. All lectures are one hour-long and start on the
hour. How would you choose when and where to hold lectures to finish all the
lectures as soon as possible? pg. 402

17.13 MINIMUMDELAYSCHEDULING,LIMITEDRESOURCES(~)

Problem 17.12: How would you test the Collatz conjecture for the first n positive
integers? pg.401

17.12 CHECKINGTHECOLLATZCONJECTURE

Lothar Collatz proposed this remarkable conjecture in 1937: "Define C : {l,2, 3, ... }H
{1,2,3, ... }to be ~ for even n,and3n+l, otherwise. 'Ihenfor any choice ofn.C'(a) :::;1,
for some i." For example, if we start with the number 11 and iteratively compute
onn,we get the sequence (11,34,17,52,26,13,40,20,10,5,16,8,4,2,1).

Despite intense efforts, the Collatz conjecture has not been proved or disproved.
Suppose you were given the task of checking the Collatz conjecture for the first billion
integers. A direct approach would be to compute the convergence sequence for each
number in this set.

A Boolean logic expression using logical OR (+), AND (-)and complement is said to
be in conjunctive normal form (CNF) if complement is only applied to variables and
the operation + is applied to variables or their negation. For example, (a + b + e') .
(a' + b) . (a + c' + d) is in CNF. The terms a + b + e', a' + b, and a + c' + d are clauses.

A CNF expression is said to be satisfiable if there exists an assignment of Boolean
values to the variables that sets each clause to true. The assignment a :::;b :::;d :::;true,
e = false is a satisfying assignment for the example given above.

Problem 17.11: Design an algorithm for checking if a CNF expression is satisfiable.
pg.401

17.11 CNF-SAT

The number of multiplications to evaluate xn is the number of terms in the shortest
such program sequence minus one. No efficient method is known for the problem
of determining the minimum number of multiplications needed to evaluate Xni the
problem for multiple exponents is known to be NP-complete.

Problem 17.10: Given a positive integer n,how would you determine the minimum
number of multiplications to evaluate xn? pg.400

PI = (x,il,x4 = (X2)2,xB = (X4)2,X12 = xBX4,X14 = X12il,X15 = xt4x)

P2 = (x,x2,X3 = ilx,x? = ~X2,X10 = (x?)2,XtS = x10x?)

product of any two previous elements. For example, the term X15 can be computed
by the straight-line programs PI and P2:

14317.11. eNF-SAT



144

Parallel computation has become increasingly common. For example, laptops and
desktops come with multiple processors which communicate through shared mem­
ory. High-end computation is often done using clusters consisting of individual
computers communicating through a network.

Parallelism provides a number ofbenefits:
- High performance-more processors working on a task (usually) means it is
. completed faster.
- Betteruse of resources-a program can executewhile another waits on the disk

or network.
- Fairness-letting differentusers or programs share amachine rather than have

one program run at a time to completion.
- Convenience-it is often conceptuallymore straightforward to do a task using

a set of concurrent programs for the subtasks rather than have a singleprogram
manage all the subtasks.

- Fault tolerance-if a machine fails in a cluster that is serving web pages, the
others can take over.

Concrete applications of parallel computing include graphical user interfaces
(GUI)(adedicated thread handles UI actions resulting in increased responsiveness),
Java virtual machines (a separate thread handles garbage collectionwhich would
otherwise lead to blocking), web servers (a single logical thread handles a single
client request), scientificcomputing-fa largematrix multiplication can be split across
a cluster), and web search (multiple machines crawl, index, and retrieveweb pages).

The two primary models for parallel computation are the shared memory model,
in which each processor can access any location in memory, and the distributed
memory model, in which a processor must explicitly send a message to another
processor to access its memory. The former is more appropriate in the multicore
setting and the latter is more accurate for a cluster. The questions in this chapter are
mostly focused on the shared memory model. We cover a few problems related to

- "Cooperating 5eqlltlltial processes,"
E. W. DUXSTRA,1965

The activity of a CDmpldermust include the proper reacting to a
possibly grtJlt variety of messages that can be sent to it at un­
predictable moments, a situation which occurs in all information
systems in which a number of computus are coupled to ttlch other.

Parallel Computing

CHAPTER



ElernentsOfProgramminglnterviews.com

Problem 18.2: Suppose you find that the SimpleWebServerhas poor performance
because processReq frequently blocks on I/O.What steps could you take to improve
SimplelVebServer'sperformance? pg.405

The following class, SimpleWebServer,implements part of a simple HTTPserver:

11 public class Simple~lebServer {
2j final static int PORT; 8&8&;
31 public static void main (String [) args) throlls IOException
4 i ServerSocket serversock = new Server Socket (PORT);

561' for (;;) {
Socket sock ~ serversock.accept();

71 ProcessReq(sock);
81 )
9'

10 }

18.2 THRBAD POOLS

Problem 18.1: Design an online spell correction system. It should take as input a
string s and return an array of entries in its dictionary which are closest to the string
using the Levenshtein distance specified in Problem 15.11on Page 120. Cache the
most recently computed result. pg. 403

18.1 SBRVICE WITH CACHING

the distributed memory model, such as leader election and sorting large data sets, at
the end of the chapter. '

Writingcorrectparallel programs is challengingbecause of the subtle interactions
between parallel components. One of the key challenges is races-two concurrent
instruction sequences access the same address in memory and at least one of them
writes to that address, Other challenges to correctnessare

- starvation (aprocessor needs a resource but never gets it, e.g.,Problem 18.5on
the followingpage), '

- deadlock (ThreadA acquires LockL1and Thread B acquiresLockL2, following
which.A tries to acquire L2 and B tries to acquire L1as in Problem 18.10on
Page 148),and

- livelock(a processor keeps retrying an operation that always fails).
Bugs caused by these issues are difficult to find using testing. Debugging them
is also difficult because they may not be reproducible since they are usually load
dependent. It is also often true that it is not possible to realize the performance
implied by parailelism-sometimes a critical task cannot be parailelized, making it
impossible to improve performance, regardless of the number of processors added.
Similarly,the overhead of communicating intermediate results between processors
can exceed the performance benefits.

14518.1. Service witll caching



ElementsOfProgramminglnterviews.com

Consider an object s which is read from and written to by many threads. (For
example, s could be the cache from Problem 18.1 on the previous page.) You need
to ensure that no thread may access s for reading or writing while another thread is
writing to s. (Two or more readers may access s at the same time.)

One way to achieve this is by protecting s with a mutex that ensures that two
threads cannot access s at the same time. However this solution is suboptimal
because it is possible that a reader R1 has locked s and another reader R2wants to
access s. Reader R2does not have to wait until R1 is done reading; instead, R2should
start reading right away.

This motivates the first readers-writers problem: protect s with the added con­
straint that no reader is to be kept waiting if s is currently opened for reading.

Problem 18.5: Implement a synchronization mechanism for the first readers-writers
problem. pg. 407

18.S READERS-WRITERS

Consider a web-based calendar in which the server hosting the calendar has to
perform a task when the next calendar event takes place. (The task could be sending
an email or a Short Message Service (SMS).) Your job is to design a facility that
manages the execution of such tasks.

Problem 18.4: Develop a Timer class that manages the execution of deferred tasks.
The Timer constructor takes as its argument an object which includes a Runmethod
and a name field, which is a string. Timer must support-{1.) starting a thread,
identified by name, at a given time in the future; and (2.) canceling a thread, identified
by name (the cancel request is to be ignored if the thread has already started). pg.407

18.4 TIMER

It is common in a distributed computing environment for the responses to not return
in the same order as the requests were made. One way to handle this is through an
"asynchronous calIback"-a ~ethod to be invoked on response. This is formalized
by a Requester class.

A Requester class implements a Dispatch method which takes a Requester
object. The Requester object includes a request string, a ProcessResponse(string
response) method, and an Execute method that takes a string and returns a string.
Dispatch is to create a new thread which invokes Execute on request. When
Execute returns, Dispatch invokes the ProcessResponse method on the response.

Problem 18.3: Implement a Requester class. The Execute method may.take an
indeterminate amount of time to return; it may never return. You need to have a
time-out mechanism for this. Assume Requester objects have an Error method that
you can invoke. pg. 406

18.3 ASYNCHRONOUS CALLBACKS

146 18.3.Asynchronous callbacks



ElementsOfProgramminglnterviews.com

Consider a barber shop with a single barber 8, one barber chair, and n chairs for
customers who are waiting for their turn for a haircut. The barber sleeps in his chair
when customers are not present. On entering, a customer either awakens the barber
or if the barber is cutting someone else's hair, he sits down in one of the chairs for
waiting customers. If all of the waiting chairs are taken, the newly arrived customer
simply leaves. .

Problem 18.9: Model the barber shop using semaphores and mutexes to ensure
correct behavior. Each customer is a thread, as is the barber. pg. 409

18.9 BARBBR SHOP

Two threads, the producer P and the consumer C, share a fixed length array of strings
A. The producer generates strings one at a time which itwrites into A; the consumer
removes strings from A, one at a time.

Problem 18.8: Design a synchronization mechanism for Awhich ensures that P does
not try to add a string into the array if it is full and C does not try to remove data
from an empty buffer. pg. 409

18.8 PRODUCBR-CONSUMER QUBUB

Problem 18.7: Implement a synchronization mechanism for the third readers-writers
problem. pg. 409

The specifications to both Problems 18.5 on the facing page and 18.6 can lead to
starvation-the first may starve writers and the second may starve readers. The
third readers-writers problem adds the constraint that neither readers nor writers
should starve.

18.7 RBADBRS-WRITBRS WITH fAIRNESS

Suppose we have an object s as in Problem 18.5 on the facing page. In the solution
to Problem 18.5 on the preceding page, a reader R1 may have the lock; if a writer W
is waiting for the lock and then a reader R2 requests access, R2 will be given priority
over W. If this happens often enough, W will starve. Instead, suppose we want W
to start as soon as possible.

This motivates the second readers-writers problem: protect s with "writer­
preference", i.e., no writer, once added to the queue, is to be kept waiting longer
than absolutely necessary.

Problem 18.6: Implement a synchronization mechanism for the second readers­
writers problem. pg. 408

18.6 READERS-WRITERS' WITH WRITB PREFERENCB

14.718.6. Readers-writers with write preference



ElementsOfProgramminglnterviews.com

You are to devise a protocol by which a collection of hosts on the Internet can elect a
leader. Hosts can communicate with each other using Transmission Control Protocol
(TCP) connections. For host A to communicate with host B, it needs to know B's IP
address. Each host starts off with a set of IP addresses and the protocol code that you ~
implement will run on all the hosts on a fixed port.

Problem 18.13: Devise a protocol by which hosts can elect a leader from the set
of all hosts participating in the protocol. The protocol should be fast, in that it

18.13 LEADER ELECTION (G')

Consider a computer network organized as a rooted tree. A node can send a message
to only one child at a time, and ittakes one second for the child to receive the message.
The root periodically receives a message from an external source. It needs to send
thismessage to all the nodes in the tree. The root has complete knowledge of how
the network is organized .:

Problem 18.12: Design an algorithm that computes the sequence of transfers that
minimizes the time taken to transfer a message from the root to all the nodes in the
tree. pg.412

18.12 BROADCAST IN A ROOTED TREE (e-)

InProblem 17.12 on Page 143 and its solution we introduced the Collatz conjecture
and heuristics for checking it. In this problem, you are to build a parallel checker
for the Collatz conjecture. Specifically, assume your program will run on a multicore
machine, and threads in your program will be distributed across the cores. Your
program should check the Collatz conjecture for every integer in [I, U] where U is
an input to your progr~m.

Problem 18.11: Design a multi-threaded program for checking the Collatz conjec­
ture. Make full use of the cores available to you. To keep your program from
overloading the system, you should not have more than n threads running at a time.

pg.410

18.11 CHECKING THE COLLATZ CONJECTURE IN PARALLEL

In the dining philosophers problem n threads, numbered from 0 to n - I, run con­
currently. Resources are numbered from 0 to n - 1. Thread i requires resources iand
i +1mod n before it can invoke a method m. (The problem gets its name because it
models n philosophers sitting at a round table, alternating between thinking, eating,
and waiting. A single chopstick is present between each pair of philosophers. To
eat, a philosopher must hold two chopsticks-one placed immediately to his left and
one immediately to his right.)

Problem 18.10: Implement a synchronization mechanism for the dining philoso­
phers problem. pg..410

18.10 DINING PHILOSOPHERS

148 18.10. Dining philosopJters



ElementsOfprogramminglnterviews.com

Youhave n machines ("crawlers") for downloading the entire web. The responsi­
bility for a given URL is assigned to the crawler whose ID is Hash(URL)mod n.
Downloading a web page takes away bandwidth from the web server hosting it.

Problem 18.15: Implement crawling under the constraint that in any given minute
your crawlers do not request more than b bytes from any website. pg.415

18.15 DISTRIBUTBD THROTTLING

Modem datasets are huge. For example, it is estimated that a popular social net­
working website contains over two trillion distinct items.

Problem 18.14: How would you sort abillion 1000byte strings? How about a trillion
1000byte strings? pg.414

18.14 TERASORT AND PI!TASORT

converges quickly; it should be efficient,in that it should use few connections and
small messages.' pg. 412

14918.14. TeraSort and PetaSort



150

Keyword-based search engines maintain a collection of several billion documents.
One of the key computations performed by a search engine is to retrieve all the
documents that contain the keywords contained in a query. This is a nontrivial task
in part because it must be performed in a few tens of milliseconds.

19.2 SEARCH BNGINB

A photomosaic is built from a collection of images called "tiles" and a target image.
The photomosaic is another image which approximates the target image and is
built by juxtaposing the tiles. The quality of approximation is defined by human
perception.

Problem 19.1: Design a program that produces high quality mosaics with minimal
compute time. pg. 415

19.1 CREATING PHOTOMOSAlCS

This chapter is concerned with system design problems. These problems are fairly
open-ended, and many can be the starting point for a large software project or a
Ph.D. A comprehensive discussion on the solutions available for such problems is
outside the scope of this book. In an interview setting when someone asks such a
question, you should have a conversation in which you demonstrate an ability to
think creatively, understand design trade-of Is, and attack unfamiliar problems. You
should sketch key data structures and algorithms, as well as the technology stack
(programming language, libraries, OS, hardware, and services) that you would use
to solve the problem. Some specific things to keep inmind are implementation time,
scalability, testability, security, and internationalization.

The answers in this chapter are presented in this context-they are meant to be
examples of good responses in an interview and are not definitive state-of-the-art
solutions.

We have described a simple bllt verypqwerful and flexible pro­
tOCXllwhich provides Jqr VQriatWnin individual network packet
sizes, transmission failures, sequencing, j1qw COfltrol, and the
creation and destru'!iDn of process- to-process associations.

- "A ProtocoiforPaded Network Interamrmunialtion,·
V.G. CElIl' AN!) R. E.I<AHN, 1974

Design Problems

CHAPTER



ElementsOiProgramminglnterviews.com

pg.418Problem 19.5: Design a stemming algorithm that is fast and effective.

When a user submits the query "computation" to a search engine, it is quite possible
he might be interested in documents containing the words "computers", "compute",
and "computing" also. If you have several keywords in a query, it becomes difficult
to search for all combinations of all variants of the words in the query.

Stemming is the process of reducing all variants of a given word to one common
root, both in the query string and in the documents. An example of stemming
would be mapping (computers, computer, compute} to compute. It is almost impossible
to succinctly capture all possible variants of aUwords in the English language but a
few simple rules can get us most cases.

19.5 STEMMING

pg.417Problem 19.4: How would you build a spelling correction system?

Designing a good spelling correction system can be challenging. We discussed
spelling correction in the context of edit distance (Problem 15.11 on Page 120). How­
ever in that problem, we only computed the Levenshtein distance between a pair of
strings. A spell checker must find a set of words that are closest to a given word
from the entire dictionary. Furthermore, the Levenshtein distance may not be the
right distance function when performing spelling correction-it does not take into
account the commonly misspelled words or the proximity of letters on a keyboard.

19.4 SPBLL CHBCKBR

In many applications instead of an exact match of strings, we are looking for a prefix
match, i.e., given a set of strings and a search string, we want to find longest string
from the set that is a prefix of the search string. One application is the IP route lookup
problem. When an IP packet arrives at a router, the router looks up the next hop
for the packet by searching the destination IP address of the packet in its routing
table. The routing table is specified as a set of prefixes of IP addresses and the router
has to identify the longest matching prefix. If this task is to be done only once, it
is impossible to do better than testing each prefix in the routing table. However an
Internet core router does millions of lookups on destination addresses over the set of
prefixes each second. Therefore it is advantageous to do some precomputation.

Problem 19.3: You are given a large set of strings S. Given a query string Q, how
would you design a system that can quickly identify the longest string pES that is a
prefix of Q? pg. 417

Here we consider a smaller version of the problem where the collection of docu­
ments can fit within the RAM of a single computer.

Problem 19.2: Given a million documents with an average size of 10 kilobytes,
design a program that can efficiently return the subset of documents containing a
given set of words. pg. 416

19.3 IP PORWARDING (Gt)

15119.3. IP fortoarding (G><)



ElernentsOfProgramminglnterviews.com

Maintaining a set of prioritized jobs in a distributed system can be tricky. Applica­
tions include a search engine crawling web pages in some prioritized order, as well

19.10 ScALABLE PRIORITY SYSTEM

The PageRank algorithm assigns a rank to a web page based on the number o.f
"important" pages that link to it. Thealgorithm essentially amounts to the following:

1. Build a matrix A based on the hyperlink structure of the web. Specifically,
A;j = t. if page ilinks to page j; here d; is the total number of unique outgoing
links from page i. .

2. Solve forXsatisfyingX = ell] + (1- e)ATX. Here e is a scalar constant (e.g., ~)
and [1] represents a column vector of Is. The value Xli] is the rank of the i-th
page.

The most commonlyused approach to solving the above equation is to start with
a value ofX, where each component is ~ (wheren is the number of pages) and then
perform the following iteration: Xk = ell] + (1- e)ATXk-l-

Problem 19.9: Design a system that can compute the ranks of ten billion web pages
in a reasonable amount of time. pg. 421

19.9 IMPLEMENT PAGERANx

YouTV.comis a successful online video sharing site. Hollywood studios complain
that much of the material uploaded to the site violates copyright.

Problem 19.8: Design a feature that allows a studio to enter a set V of videos that
belong to it, and to determine which videos in the YouTV.comdatabase match videos
in V. pg.420

19.8 COPYRIGHT INFRINGEMENT

pg.419Problem 19.7: Implement the UNIXtail command.

The UNIX tail command displays the last part of a file. For this problem, assume
that tail takes two arguments-~ filename, and the number of lines, starting from
the last line, that are tobe printed.

19.7 UNIX TAIL

pg.418Problem 19.6: How would you implement TEX?

The TEXsystem for typesetting beautiful documents was designed by Don Knuth.
Unlike GUI based document editing programs, TEXrelies on a markup Language,
which is compiled into a device independent intermediate representation. 1EX for­
mats text, lists, tables, and embedded figures: supports a very rich set of fonts and
mathematical symbols, automates section numbering, cross-referencing,index gen­
eration; exports an APIi and much more.

19.6 TsX

19.6. 71;X152



ElementsOfProgramminglijterviews.com

Jingle wants to generate more page views on its news site. A product manager has
the idea to add to each article a sidebar of cIickable snippets from articles that are
likely to be of interest to someone reading the current article.

Problem 19.13; Design a system that automatically generates a sidebar of related
articles. pg. 423

19.13 RECOMMBNDATION SYSTEM

Problem 19.12: Jingle, a search engine startup, wants to monetize its search results
by displaying advertisements alongside search results. Design an online advertising
system for Jingle. pg. 422

19.12 ONLINE ADVERTISING SYSTEM

Here a and Xm are parameters of the distribution. It is one of the heavy-tailed
distributions that commonly occur in various workloads.

Imagine you are running a service on k servers and that any service request can
be processed by any of the servers. A given server can process only one request
at a time. A server takes t(r) time to process request r, and t(r) follows a Pareto
distribution.

Clients of a service often care more about the 99-#1or the 95-th percentile latency
for a request to be served than the average latency since they want most of the
requests to be serviced in a reasonable amount of time even if a request occasionally
takes a long time.

Problem 19.11: You have guaranteed your clients that 99% of their requests will
be serviced in less than one second. How would you design a system to meet this
requirement with minimal cost? pg. 422

if x> x",;
otherwise.

1-(~r,
1,

P[X> x] = {

The Pareto distribution is:

19.11 LATBNCY lUlDUCTION

as event-driven simulation in molecular dynamics. In both cases the number of jobs
is in the billions and each has its own priority.

Problem 19.10: Design a system for maintaining a set of prioritized jobs that imple­
ments the following API:

1. Insert a new job with a given priority.
2. Delete a job.
3. Find the highest priority job.

Each job has a unique ID. Assume the set cannot fit into a single machine's memory.
pg.421

15319.11. Late"cy reductio"



ElementsOfProgramminglnterviews.com

Problem 19.17: Design the World Wide Web. Specifically, describe what happens
when you enter a URL in a browser address bar, and press return. pg. 426

19.17 DESIGN THEWORLD WIDE WEB

Problem 19.16: Design an online poker playing service for Clump Enterprises.
Describe both the system architecture and a set of classes. pg. 425

Clump Enterprises wants to create a website by which gamblers can play poker
online.

19.16 ONLINE POKER

Jingle is developing a search feature for breaking news. New articles are collected
from a variety of online news sources such as newspapers, bulletin boards, and blogs,
by a single lab machine at Jingle. Every minute, roughly one thousand articles are
posted and each article is 100 kilobytes.

Jingle would like to serve these articles from a data center consisting of a 1000
servers. For performance reasons, each server should have its own copy of articles
that were recently added. The data center is far away from the lab machine.

Problem 19.15: Design an efficient way of copying one thousand files each 100 kilo­
bytes in size from a single lab server to each of 1000 servers in a distant data center.

pg.425

19.15 DISTRIBUTiNG LARGEPILES

pg.424Problem 19.14: Design a driving directions service with a web interface.

As a part of its charter to collect all the information in the world and make it univer­
sally accessible, Jingle wants to develop a driving directions service. Users enter a
start and end address; the service returns directions.

19.14 DRIvING DIRECTIONS

19.14. Driving directions154



155

Probability comes up often in computation, e.g., when modeling random events
(input data and arrival time), and designing efficient algorithms, quicksort and
selecting the k-th element being notable ·examples. It is a rich subject and is the
source of many interview questions.

To a first approximation, a probability measure is a function p from subsets of a
set E ofevents to [0,1] that has the properties that p(E) = 1 and p(A UB) = p(A) +p(B)
when A and B are disjoint. Various properties and notations can be given around
these concepts. For example, it is easy to prove that p(A UB) = p(A) + p(B) - p(A n B)
for general A and B.

A random variable X is a function from E to (-oo,oo)i it can be characterized by a
cumulative distribution function Fx : 2t H [a, I], where Fx('C) = p(X:"l«-oo,'C])). When
X takes a finite or countable set of values, we can talk about the probability of X
taking a particular value, i.e.,p(X = 'Ci). IfX takes a continuous range of values and
Fx is differentiable,we talk of Jx('C) = d:: as being the probability density function.

The expected value E[X] of a random variable X taking a finite set of values
T = {'Co,'Cl,' .. , 'Cn-J} is simply L'iET'Ci. p(X = 'Cj), i.e., it is the average value of X,
.weighted by probabilities. The notion of expectation generalizes to countable sets of
values. For a random variable taking a continuous set of values, the sum is replaced
with an integral and the weighting function is the probability density function. The
variance var(X) of a random variable X is the expected value of (X - E[X])2,and,
in some sense, measures how spread out the variable is. Someof the key results in
probability have to do with bounds on the probability of events, e.g., the Chebyshev
bound: Pr(IX- E[X]I~ k.yvar(X»)::; -[2 holds for arbitrary distributions.

The following random variables are frequently encountered. The Bernoulli ran­
dom variable takes only two values, a and L;it is used, for example, in modeling coin
tosses. The uniform random variable takes values in an interval Ui the probability
of leU is proportional to the length of 1. The Poisson random variable takes non­
negative values-it models the number of events in a fixed period of time, e.g., the
number of HTTPrequests in a minute. The Gaussian random variable takes all real
values. Let Xo, Xl,X2, •.. be independent identically distributed random variables

- "Foundations of the Theory of Probability,"
. A. N. KOLMOGOROV, 1933

11111theory of probability, as a mathematical disci­
pline, can and should be developed from axioms in
exactly the same way as Geometry and Algebra.

Probability
.'

CHAPTER



ElementsOiProgrammingInterviews.com

The next problem is motivated by the following scenario. Five friends have to select
a designated driver using a single unbiased coin. The process should be fair to
everyone.

20.4 UNIPORMRANDOMNUMBBRGENERATION

Problem 20.3: Design an algorithm that creates uniformly random permutations of
{O, 1, ... ,n -1}. You are given a random number generator that returns integers in
the set {OJ 1, ... ,n -1} with equal probability; use as few calls to it as possible. pg.429

Problem 20.1 showed that generating random permutations is not as straightforward
as it seems.

20.3 RANDOMPIlRMUTATIONs-2

Problem 20.2: Let A be an array of n distinct elements. Design an algorithm that
returns a subset of k elements of A. All subsets should be equally likely. Use as few
calls to the random number generator as possible and use 0(1) additional storage.
You can return the result in the same array as input. pg. 427

20.2 OFFLINESAMPLING

Consider estimating the probability of winning a game of Blackjack, assuming cards
are shuffled perfectly uniformly before dealing hands an.d everyone is playing ac­
cording to a known strategy. One way to do this would be to generate a few random
permutations of the cards and compute the chances of winning in each case. It is
important that the process used to generate a random permutation. generates each
permutation with equal probability.

Problem 20.1: Does the following process yield a uniformly random permutation
of A? "For i E {O, 1, ... , n -1}, swap A[11 with a randomly chosen element of A." (The
randomly chosen element could be iitself.) pg.427

20.1 RANDOMPBRMUTATIONs-l

each with mean p and variance a2. Then cr.?':-oleXj -p»/...[ri tends to a zero mean
Gaussian random variable with unit variance.

For the most part, probability is intuitive. However, there are notable exceptions.
For example, at first glance, itwould seem impossible for there to exist three 6-sided
dice A, B, and C such that A is more likely to roll a higher number than B, 8is more
likely to roll a higher number than C, and C is more likely to roll a higher number than
A. However if A has sides 2,2,4,4,9, and 9, B has sides 1,1,6,6,8, and 8, and die C
has sides 3,3,5,5,7, and 7, then the probability that A rolls a higher number than B
is ~, the probability that B rolls a higher number than C is ~, and the probability
that C rolls a higher number than A is ~. The Monty Hall problem is another famous.
example.

20.1. Random permutations=-L156



ElementsOfProgramrninglnterviews.com

Suppose youwant toplace abet on the outcome of the coming elections. Specifically,
you are betting if the US House of Representatives will have a Democratic or a
Republican majority. A polling company has computed the probability of winning
for each candidate in the 435 individual elections. You are interested in just one

20.8 HOUSE OF RBPRESBNTATIVBS MAJORITY

The set Zn = {O,I, 2, ... ,n - I}has exactly (~)subsets of size k. Weseek to design an
algorithm that returns anyone of these subsets with equal probability.

Problem 20.7: Design an algorithm that computes an array of size k consisting of
distinct integers in the set {O,I, ... ,n - I}. All subsets should be equally likely and;
in addition, all permutations of elements of the array should be equally likely. Your
time should be O(k). Your algorithm should use O(k) space in addition to the k
element array holding the result. Youmay assume the existenceof a subroutine that
returns integers inthe set {O,1, ... ,n -I} with uniform probability. pg.431

20.7 ONLINE SAMPLING

The followingproblem is motivated by the design of a packet snifferthat provides a
uniform sample ofpackets for a network session.

Problem 20.6: Design an algorithm that reads a sequence ofpackets and maintains
a uniform random subset of size k of the read packets when the n ~ k-th packet is

~ .~-
20.6 RESBRVOIR SAMPLING

Suppose you need to write a load test for a server. Youhave studied the inter-arrival
time of requests to, the server over ~ period of one year and from this data have
computed a histogram of the distribution of the inter-arrival time of requests. In the
load test you would liketo generate requests for the server such that the inter-arrival
times come from the same distribution that was observed in the historical data. The
followingproblem formalizes the generation of inter-arrival times.

Problem 20.5: Youaregivena setTof nnonnegative real numbers {to,tll ... , tn-I}and
probabilitiesPo, PlI' .. , Pn-ll where .E7:01 PI = 1. Assume that to < tl < ... < tn-I' Given
a random number generator that produces values in [0,1]uniformly,how would you
generate a value X from T according to the specifiedprobabilities? pg. 430

20.5 NONUNIFORM RANDOM NUMBER GENERATION

Problem 20.4: How would you implement a random number generator that gen­
erates a random integer i in [a, bl, given a random number generator that produces
either zero or one with equal probability? All generated values should have equal
probability. What is the run time of your algorithm, assuming each call to the given
random number generator takes 0(1) time? pg.429

15720.5. Nonuniform random number generation



ElementsOfProgramminglnterviews.com

Problem 20.12: Gottfried repeatedly rolls an unbiased six-sided die. He stops when
he has rolled all the six numbers on the die. How many rolls will it take, on an
average, for Gottfried to see all the six numbers? pg. 436

20.12 ExPECTED NUMBEROF DIE ROLLS

Problem 20.11: What is the expected number of fixed points of a uniformly random
permutation (J : {O,l, ... .n -1} H {O,l, ... ,n -11, i.e., the expected cardinality of
{i I (J(z) = i}? What is the expected length of the longest increasing sequence starting
at (J(O),Le.,.if k is the first index such that (J(k) < (J(k - 1), what is the expected value
ofk? pg.436

20.11 RANDOM PERMUTATIONS (~)

Suppose n.web servers interact with m clients such that each client picks a server
uniformlyat random. A key benefit of this approach is that no centralized control is
needed. However, some servers may be idle while clients are waiting to be served.
This is often modeled by balls and bins.

Problem 20.10: If m balls are thrown into n bins uniformly randomly and indepen­
dently, what is the expected number of bins that do not have any balls? pg. 435

20.10 BALLS AND BINS (~)

Problem 20.9: You select a coin at random from the bag and toss it five times. It
comes up heads three times. What is the probability that it was the coin that was
biased towards tails? How many times do you need to toss the coin that is biased
towards tails before it comes up with a majority of tails with probability greater than:? pg.434

20.9 DIFFBRENTIATING BIASEDCOINS (G')

Two coins that are identical in appearance are placed in a black cloth bag. One is
biased towards heads-it comes up heads with probability 0.6. The other is biased
towards tails-it comes up tails with probability 0.6. For both coins, the outcomes of
successive tosses are independent.

Problem 20.8: Assuming elections are statistically independent and that the proba­
bility of a Republican winning Election i ispi, how would you compute the probability
of a Republican majority? pg. 432

number-what is the probability that the Republican party is going to have a majority
in the House?

20.9. Differentiating biased coins (~)158



ElementsOfprogrammingInterviews.com

In the multibet card color game, a deck of 52 playing cards is shuffled. and placed
face-down on a table You can bet on the color of the top card at even odds. After
you have placed your bet, the top card is revealed to you and discarded. Betting
continues till the deck is exhausted. You begin with $1. If you can bet arbitrary
fractions of your bankroll, there is a simple strategy which guarantees you willwin,
regardless of the order in which the cards appear, $~ I© "<: 9.08132955.This is
the maximum amount that you can guarantee that you willwin. (A proof of this is

20.17 THEMULTIBBTCARDCOLORGAME(G<)

20.16 THEONCE-OR-TWICEGAME(0)

The Once-or-Twicegame is played against a dealer. Youpay $1 to play the game.
Thedealer gets a random card from a full deck. Youare shown a randomly selected
card from another full deck. Youhave the choice of taking the card or exchanging
it for another card which is also randomly selected from another full deck. Youwin
the game if and only if the face value of your card is greater than that of dealer. If
you win, you get w dollars. (The face value of an Ace is 1; the face values of Jack,
Queen, and King are 11,12,and 13,respectively.)

Problem 20.16: What is the value of w such that Once-or-Twiceis a fair game, i.e.,
for a rational player, the expected gain is O? pg. 438

Suppose youneed to choosea secretary fromapool ofn secretarieswhoyou interview
in a random order. Given any two secretaries,you can tell who is better, and the "is
better" relationship is transitive. Once you interview a secretary 5, you have to select
or reject5 right away. Ifyou select 5, the selectionprocess stops.

Problem 20.15: Design a strategy that selects the best secretary with a probability
greater than 0.25,regardless of n. pg.438

20.15 SBLECTrNGTHEBESTSECRETARY

Problem 20.14: Solve Problem 20.13when ul is uniformly randomly in [0,1] and
u2 is subsequently chosen uniformly randomly in [u1,11.Can you determine which
of these two approaches is more likely to produce a triangle without computing the
exactprobabilities? pg. 437

20.14 FORMINGA TRIANGLE-2(CD<)

20.13 FORMINGA TRIANGLE-1(CD<)

Twonumbers u1 and u2 are selected uniformly randomly and independently in the
interval [0,I}. Three line segments are formed, of lengths min(u1,u2),max(u1,u2) -
min(u1,u2),and 1 - max(ul, u2).

Problem 20.13: What is the probability that these three segments can be assembled
into a triangle? pg.437

15920.13. Forming a triangle-1 (G>-)



ElementsOiProgranuninglnterviel-ls. com

20.21 THBCOMPLEXITY OF AND-OR EXPRBSSIONS (0)

Suppose we are to evaluate an expression of the form «A AB) v (CAD», where A and
v are Boolean AND and OR respectively and A,B,C, and D are Boolean variables. It
isnatural to use lazy evaluation, i.e., when evaluating A A B, ifwe begin with A, and
it evaluates to false, we skip B.

20.20 THBKELLY CRITERION (0)

An roulette wheel has 37 pockets, numbered from 0 to 36 into which a ball is dropped.
Pocket 0 is colored green; the remaining pockets are colored red if the number is odd
and black if the number is even. You can bet on the ball falling into a red pocket at
SO-SO odds, i.e., you get back double the amount you bet if the ball lands on a red
pocket and you lose otherwise. Ordinarily, the ball lands in a pocket uniformly at
random. Therefore, the probability of a bet on red paying off is ~.

Problem 20.20: Your friend at the Acme Casino has rigged their roulette wheel to
make the probability of the ball landing on red ~. You can bet on the same color
exactly 100 times; after that the casino management will be alerted. You start with
$1. On each round, you can bet any amount from 0 to your entire bankroll. What
should your strategy be? pg.442

Problem 20.19: Consider an auction for an item in which the reserve price is a
random variable X uniformly distributed in [0,400]. You can bid B. If your bid is
greater than or equal to the reserve price, you win the auction and have to pay B.
You can then sell the item for an 80% markup over the reserve price. How much
should you offer for the item? pg.442

20.19 OPTIMUM BIDDING

20.18 THBONB RBD CARD GAMB (0)

In the one red card game, a deck of 52 playing cards is shuffled and placed face-down
on a table. To win, you must select a red card. You can either examine or select the
top card. If you choose examine, the top card is revealed and discarded. If you
choose select, the game ends-you win if it is a red card and lose otherwise. After
examining 51 cards, you must select the last card.

Problem 20.18: Design a strategy that maximizes the probability of winning at the
one red card game. pg. 441

sketched at the end of the solution.) In this problem we want to find the maximum
amount you can guarantee that you will win when you can bet in penny increments.

Problem 20.17: Suppose you are playing the multibet card color game and are
restricted to bet in penny increments. Compute a tight lower bound on the amount
that you can guarantee to win under this restriction. pg. 439

20.1B. TI,e one red card game (c-)160



ElementsOfprogramrningInterviews.com

Problem 20.23: Consider the same problem as Problem 20.22, with the existenceof
a third asset class,namely a bond. A $1 bond pays $1.02 in 100days. Youcan borrow

20.23 OP'fION PRICING WITH INTEREST

In the following problem, you begin with a portfolio of Xs shares and Xo options.
Since you are allowed to short shares and sell options Xs and z, may be negative.
An arbitrage is a portfolio which has a negative initial value and, regardless of the
movement in the share price, has a positive future value.

Consider an option to buy a stock S that currently trades at $100. The option
is to buy the stock at $100 in 100 days. Suppose we know only two outcomes are
possible-S will go to $120 or to $70.
If the option is priced at $26, we have an arbitrage: buy one share for $100 and

sell four options-the initial outlay on the portfolio is 100 + 4 X -26 = -$4. If the
stock goes up, the portfolio is worth 120 +4 X -20 = $40. If the stock goes down, the
portfolio isworth $70. In either case,wemake moneywith no initial investment, i.e.,
the option price allows for an arbitrage.

Problem 20.22: Forwhat option price is there no opportunity for arbitrage? pg.444

20.22 OPTION PRICING-DISCRBTB CASB

Option pricing

A call option gives the owner the right to buy something-a share, a barrel of oil, an
ounce of gold-at a predetermined price at a predetermined time (the "expiration
date"') in the future. If the option is not priced fairly,an arbitrageur can eitherbuy or
sell the option illconjunction with other transactions and come up with a scheme of
making money in a guaranteed fashion. A fair price for an option would be a price
such that no arbitrage scheme can be designed around it. Problems 20.22 to 20.24
on Pages 161-162 are related to determining the fair price for an option on a stock,
given the distribution of the stock price for a period of time.

Wenow define a restricted set of expressions. The 1.0 expressions are just Boolean
variables. An Lm expression is of the form «CPo II CP1) V (l/Jo II "'1», where cpo, CPll "'0,
and "'1 are Lk expressions. All Booleanvariables appearing in an Lk expression are
distinct.

Wewant to design an algorithm for evaluating Lk expressions and want to min­
imize the number of variables that it reads. We do not care how much time the
algorithm spends traversing the expression.

Problem 20.21: Prove that an algorithm in which the choice of the next variable
to read in an LK expression is a deterministic function of the values read up to that
point must, in the worst case, read all variables to evaluate the expression. Design a
randomized algorithm that reads fewervariables on an average, independent of the
values assigned to the variables. pg. 443

16120.22. Option pricing-discrete case



ElernentsOfProgrammingInterviews.com

\

Problem 20.24: Suppose the price of Jinglestock 100days in the future is a normal
random variable with mean $300and standard deviation $20. What would be the
fair price of an option to buy a single share of Jingleat $300 in 100days? (Ignore the
effectof interest rates.)' pg.445

20.24 OPTION PRlCINC-CONTINUOUS CASB (e-)

money at this rate or lend it at this rate. Show there is a unique arbitrage-free price
for the option and compute this price. pg. 445

20.24. Option pricing=continuous case (<I>'>162



163

You are the coach of a cycling team with 25 members and need to determine the
fastest, second-fastest, and third-fastest cyclistsfor selection to the Olympic team.

Youwill be evaluating the cyclists using a time-trial course on which only five
cyclists can race at a time. Youcan use the completion times froma time-trial to rank
the five cyclists amongst themselves-no ties are possible. Becauseconditions can
change over time, you cannot compare performances acrossdifferent time-trials. The

21.2 EFFICIBNT TRIALS

Five hundred closed doors along a corridor are numbered from 1 to 500. A person
walks through the corridor and opens each door. Another person walks through the
corridor and closesevery alternate door. Continuing in this manner, the i-th person
comes and toggles the position of every i-th door starting from door i:

Problem 21.1: Which of the 500doors are open after the SOO-thperson has walked
through? pg.446

21.1 500DOORS

Discrete mathematics is used in algorithm design in a variety of places. Examples
include combinatorial optimization, complexity analysis, and bounding probabili­
ties. Discrete mathematics is also the source of enjoyable puzzles and challenging
interview questions. Solutionscan range from simple applications of the pigeon-hole
principle to complex inductive reasoning.

Some of the problems in this chapter fall into the category ofbrain teaserswhere
all that is needed an ahamoment. Theseproblems have fallen out of fashion because
it is difficult to judge a candidate's ability based on whether he is able to make a
tricky observation in a short period of time. However they are asked often enough
that it is important to understand basic principles.

There 15 required, finally, the ratio between tlze fluxion of any
qllantity x you will and tilefluxion of its power x". Let x flow till
it b«omes x + 0 and moltle the power (x + 0)" mto the infinite
series %" +110%,,-1+ i(n2 _n)02%,,-2 + 1(,,3 -3n2+211)0'%,,-3 ...

- "On theQUlldraturt of CUr0e5,"
1.N.WTON, 1693

Discrete Mathematics

CHAPTER



ElementsOfProgrammingInterviews.com

The game called n x n chomp consists of an n x n rectangle in the upper right
quadrant in the Cartesian plane, with the lower leftmost point at (0,0). The block
(0,0) is poisoned. Twoplayers take turns at taking a bite out of the rectangle. A bite
removes a square and all squares above and to the right. The first player to eat the
poisoned square loses.

Problem 21.6: Assuming the players have infinite computational resources at their
disposal, who will win n x n chomp? pg. 448

21.6 n x n CHOMP

Sixteencoins are placed in a line, as in Figure 4.6 on Page 44. Two players, F and
S, take turns at choosing one coin each-they can only choose from the two coins at
the ends of the line. PlayerF goes first. The game ends when all the coins have been
picked up. The player whose coins have the higher total value wins. Each player
must select a coin when it is his turn, guaranteeing that the game ends in sixteen
turns.

Problem 21.5: If you want to ensure you do not lose, would you rather be F or S?
pg.447

21.5 PICKING UP COINS, DON'T LOSE

A Hershey bar is modeled as a rectangle of m x n rectangle-shaped pieces. Youcan
take a bar and break it along a horizontal or vertical axis into two bars.

Problem 21.4: How would you break a 4 x 4 bar into 16pieces using as few breaks
as possible? pg. 447

21.4 HeRSHEY BAR

Albert starts climbing amountain at 9:00a.m. onSaturday. He reaches the summit at
5:00p.m. He camps at the summit overnight and descends the mountain on Sunday.
He begins and ends at the same time and followsexactly the same route. His speeds
may vary and he may take breaks at differentplaces.

Problem 21.3: Prove that there exists a place such that Albert is at that place at the
same time on Sunday as he was on Saturday. . pg. 447

21.3 SPACE-TIMEINTl!RSBCTIONS

relative speeds of cyclistsdoes not change-if a beats b in one time-trial and b beats c
in another tirne-trial, then a is guaranteed to beat c if they are in the same time-trial.

Problem 21.2: What is the minimum number of five man time-trials needed to
determine the top three cyclists froma set of 25cyclists? pg. 447

21.3. Space-time intersections164



ElementsOfProgramminglnterviews.com

In the gasup problem, n cities are arranged on a circular road. Youneed to visit aU
the n cities and come back to the starting city. A certain amount of gas is available
at each city. The total amount of gas is equal to the amount of gas required to go
around the road once. Yourgas tank has unlimited capacity. Calla city ample if you
can begin at it with an empty tank, travel through all the remaining cities,refillingat
each, and return to it. An instance of this problem is given in Figure 21.1.

Figure 21.1: The length of the circular route is 7200 miles, and your vehicle gets 20 miles per gallon.
The distance between successive gas stations is proportional to the angle they subtend at the oenter.

~{f
15G \+

~/
l5G '.....-::.!'..::_:~_ _.

40G 45C

21.10 THE GAStJP PROBLEM

A total of n apartment buildings are coming up on a new street. The postal service
wants to place a singlemailbox on the street. Their objectiveis to minimize the total

. distance that residents have to walk to collect their mail each day.

Problem 21.9: Building i has rl residents, and is at distance di from the beginning of
the street. Devise an algorithm that computes a distancem from the beginning of the
street for themailbox that minimizes the total distance, that residents travel to get to
the mailbox, i.e.,minimizes 1:7,;01rsld! - mi. pg. 449

21.9 MAILBOX PLACEMENT

Problem 21.8: Solve Problem 21.6on the preceding page if the rectangle is of di­
mension n X m. pg. 449

21.8 n X m CHOMP

Problem 21.7: SolveProblem 21.6on the facing page if the rectangle is n long along
the x-axis,and two long along the y-axis. pg. 449

21.7 n X 2 CHOMP

16521.7. n X 2 chomp



ElementsOfProgramminglnterviews. com

In the game of Symmetric-Whack-a-Mole, moles are in one of two states-up or
down. The player has a hammer which he can use to "whack" a mole on the head,
and thereby flip its state.

21.14 SYMMBTRlC-WHACK-A-MoLE(0)

21.13 HEIGHT DBTBRMINATION (e<)

You need to test the design of a protective case. Specifically, the case can protect
the enclosed device from a fall from up to some number of floors, and you want to
determine what that number of floors is. You want to achieve this using no more
than c cases. An additional constraint is that you can perform only d drops before
the building supervisor stops you.

You know that there exists a floor x such that the case will break if it is dropped
from any floor x or higher but will remain intact if dropped from a floor below x. The
ground floor is numbered zero, and it is given that the case will not break if dropped
from the ground floor.

Problem 21.13: Given c cases and d drops, what is the maximum number of floors
that you can test in the worst-case? pg.454

You are given an array A of n elements, n ~ 2, and are asked to find the n - 1elements
in A which have the largest product.

One approach is to form the product P = n~,.otA[ll, and then find the maximum
of the n terms PI = P/A[t1; this takes n - 1 multiplications and n divisions. Suppose
because of finite precision considerations we cannot use the division-based approach
described above; we can only use multiplications. The brute-force solution entails
computing all (,.~l)= n products of n - 1 elements; each such product takes n - 2
multiplications.

Problem 21.12: Given an array A with n elements, compute maxj;J nl'j,t!rl in O(n)
time without using division. Can you design an algorithm that runs in 0(1) space
and O(n) time? Array entries may be positive, negative, or O. pg.452

21.12 THEMAXIMUM PRODUCT OF (n - 1) NUMBERS (0)

21.11 CLOSBST PALINDROMB (0)

A palindromic string is one which reads the same when it is reversed. For example,
the string "malayalam" is a palindrome. An integer can be represented as a string of
digits, so we can speak of palindromic integers.

Problem 21.11: Write a function that takes a nonnegative integer x and returns, as
a string, the integer closest to x whose decimal representation is a palindrome. Por
example, given 1224, you should return 1221. pg. 451

Problem 21.10: Given an instance of the gasup problem, how would you efficiently
compute an ample city if one exists? pg. 450

21.11. Closestpalindrome (0->166



ElementsOfProgramminglnterviews.com

21.18 STABLEASSIGNMENT (0)

Consider a department with n new graduate students and n professors. Eachstudent
has ordered all the professors based on how keen he is to work with them. Similarly,
each professor has an ordered list of all the students.

Problem 21.18: Design an algorithmwhich takes the preference lists of the students
and the professors and pairs students one-to-onewith professors subject to the con­
straint that there do not exist student-professor pairings (sO,pO) and (51, p1) such that
sO prefers pI to pO and pI prefers sOto 51. (The preferences of pO and 51 are not
important.) pg.459

A tournament is a directed graph obtained by assigning a direction for each edge in
an undirected complete graph in which every pair of distinct vertices is connected
by an edge.

Problem 21.1,7: Prove that every tournament has a Hamiltonian path, i.e., a path
that includes each vertex exactly once. pg. 457

21.17 TOURNAMENTS AND HAMILTONIAN PATHS

. 21.16 RAMSEY THBORY (0)

In 1930,Frank Ramsey wrote a paper titled "On a problem in formal logic" which
initiated an entirely new fieldof discretemathematics called "RamseyTheory" in his
honor. He proved what is now called Ramsey's theorem as an intermediate lemma
in a bigger proof. The problem below illustrates Ramsey's theorem.

Problem 21.16: Sixguests attend a party. Any two guests either know each other or
do ~ot know each other. Prove that there exists a subset of three guests who either
all know each other or all do not know each other. pg. 457

Problem 21.15: LetFbe an n x n Boolean2Darray representing the "knows" relation
for n people; F[a][b] is true iffa knows b, and F[a] [a] is always false. Design anO(n)
algorithm to find the celebrity. pg. 456

For any two distinct people a and b,amayor may not know h. However, the "knows"
relation is not symmetric, which means that amay know b, but bmay not know a.
The knows relation is anti-reflexive,Le., a does not know a. At a party, everyone
knows someone else. Now a celebrity joins the party-everyone knows him, but he
knows no one.

21.15 CBLBBRITYIDENTIFICATION (0)

Problem 21.14: Molesare numbered from 0to n -1. Molemhas a set ofneighboring
moles. Whacking m when it is up results in it and all of its neighbors flipping
state. Given a set of moles, the neighbors for each mole, and an initial assignment
of up/down states for each mole, compute a sequence of whacks (if one exists) that
results in each mole being in the down state. pg. 455

16721.15. Celebrity identification (~)



Eleme.ntsOfprogranuninglnterviews. com

21.22 LARGESTCOMMON ROOTEDSUBTREB (foi><)

Define rooted trees A and B to be isomorphic if
- both are null, or
- they have the same number of children, and there exists a one-to-one function f

from the children of A to the children of B such that for all u, feu) is isomorphic
to u.

Define a subtree of a rooted tree A to be a subset S of the nodes of A that form a
rooted tree when the parent-child relationship from A is applied to S.

Figure 21.2 on the next page shows two rooted trees, T1 and 1'2. The gray nodes
indicate a subtree of T1 that is isomorphic to a subtree of 1'2. No larger subtree of T1
is isomorphic to a subtree of 1'2.

Problem 21.22: Let A and B be rooted trees. Design a polynomial time algorithm
for computing a largest common rooted subtree of A and B. pg.463

Problem 21.21: This problem is a continuation of Problems 13.6on Page 100 and 16.7
on Page 135. Design an efficient algorithm for computing the minimum number of
subsets of teams so that (1.) the teams in each subset can be organized to appear in
a single photograph without violating the placement constraint, and (2.) each team
appears in exactly one subset. pg. 462

21.21 TEAM PHOTODA\'-3 (G><)

You are given a chessboard and 31 dominoes. The dominoes are rectangles, and each
domino is equal to two squares from the chessboard.
Ifwe remove two diagonally opposite squares from the chessboard, we cannot

cover the chessboard with the 31 dominoes, since each domino will cover one white
and one black square, and the two removed squares must be of the same color.

In this problem we consider the converse.

Problem 21.20: Suppose two squares of opposite colors are removed from a chess­
board. Design an algorithm for finding a way to cover the remaining squares using
31 dominoes, if a covering exists. pg. 460

21.20 TILINGA CHESSBOARD (C')

You are organizing a celebrity dance for charity. Specifically, a number of celebrities
have offered to be partners for a ballroom dance. The general public has been invited
to offer bids on how much they are willing to pay for a dance with each celebrity.

Problem 21.19: Design an algorithm for pairing bidders with celebrities to maximize
the revenue from the dance. Each celebrity cannot dance more than once, and each
bidder cannot dance more than once. Assume that the set of celebrities is disjoint
from the set of bidders. How would you modify your approach if all bids were for
the same amount? What if celebrities and bidders are not disjoint? pg. 460

21.19 DANCINGwmr THE STARS (C><)

21.19. Dancingwith the stars (C'>168



ElementsOfProgramminglnterviews.com

Problem 21.24: Design an efficient algorithm for computing a rounding of amatrix,
if one exists. pg. 466

['4 2.1 3ElA= 4.0 5.8 6.2
. 7.6 8.1 9.3

then

FA = [~
2

:ol
6
8

is a rounding of A.

Let A be an m x n matrix of nonnegative real numbers. Define a rounding of A to
be an m x nmatrix FA such that for all i and j, FA [i, j] = lA[i, j]J or rAli, j]l, for all
. ~n-IF r"J ~n-lAl"J df 11' ~m-1F ["J ~m-lA[' nI, J..,,;=O A I, J = '-'j=O I, J , an or a J, '-'1=0 A 1,] = '-'1=0 1, JJ.

For example, if

21.24 ROUNDING A MATRIX (G><)

21.23 TEAM ELIMINATION (~)

Towards the end of a season, sportswriters describe Team a as being mathematically
eliminated if, no matter what the outcomes of the remaining games are, some other
team will end up with more wins than a.

Problem 21.23: Consider a league in which teams are numbered from 0 to n -1. At
a certain point in the season, Team i has won Wi games, and has R1,j games remaining
with Team j. Each game will end in a win for one team and a loss for the other team:
Show how the problem of determining whether Team a is mathematically eliminated
can be solved using maximum flow. . pg.464

Figure 21.2: Largestcommon rootedsubtree.

I
I

rool(1'2)

I
I

rool(Tl)

16921.23. Team elimination (~)



ElementsOfProgramrninglnterviews.com

Problem 21.26: Given a payoff matrix, compute values Po,Pv ... , Pm-t for Player 1
that minimize the maximum payoff for Play~ 2. Assume Player 2 knows
Po,pv ... , Pm-to pg. 467

21.26 COMPUTING AN OPTIMUM MIXED-STRATEGY (~)

A payoff matrix A is an m x n 2D array of real numbers. Player 1 selects Row iwith
probability Pi and Player 2 selects Column j with probability qj' Player 1 receives
A[ll[j] as his payoff, and Player 2 receives -A[ll[]l

21.25 COMMON KNOWLEDGB (0)

An explorer comes to the Isle of Logic, which contains 100 inhabitants, half of whom
have blue eyes. The remaining inhabitants have green eyes. The green eyes are
indicative of a disease that brings all the island inhabitants in danger. The inhabitants
have an understanding that whenever someone learns that they have green eyes, they
must leave the island; they never leave the island for any other reason. Inhabitants
are too polite to inform anyone of their eye color.

The inhabitants assemble each day at exactly 9:00 a.m., they see each other, and
then go back to their own houses. They never see anyo~e else for the rest of the day.
Furthermore, they are capable of instant logical reasoning.

The explorer visits one of their daily assemblies and says, "That's interesting­
some of you have blue. eyes and some of you have green eyes".

'Problem 21.25: What follows after the explorer visits the Isle of Logic? 'The explorer
seems to have added no new knowledge since each inhabitant already knows that
some inhabitants have blue eyes and some have green eyes. Why does his observation
change the equilibrium? pg.466

21.25. Common knowledge (Q><)170



Solutions

Part III



Ele.mentsOfProgramminglnterviews. com

C++ is an order of magnitude more complex than Java. Here are some facts about
C++ that can help Java programmers better' understand the solution code.

- Operators in C++ can be overloaded. For example, <can beapplied to compar­
ing BigNumber objects. The array indexing operator ([]) is often overloaded
for unordered maps and tree maps, e.g., map[k] returns the value associated
with key k.

- Java's HashMap and HashSet correspond to C++'s unorderedJnap and
unorderecLset, respectively. Java's TreeSet and TreeHap correspond to C++'s
set and map,

- For set, the comparator is the second argument to the template specification.
For map, the comparator is the third argument to the template specification. (If
< is overloaded, the comparator is optional in both cases.)

- For unorderedJnap the first argument is the key type, the second is the value
type, and the third (optional) is the hash function. For unorderecLset the
first argument is the key type, the second (optional) is the hash function, the
third (optional) is the equals function. The class may simply overload =. i.e.,
implement the method operator=. See Solution 12.10 on Page 282 for an
example.

- C++ uses streams for input-output. The overloaded operators « and » are used
to read and write primitive types and objects from and to streams.

c++ for Java developers

c++ 11 adds a number of features that make for elegant and efficient code. The
C++ 11 constructs used in the solution code are summarized below.

- The auto attribute assigns the type of a variable based on the initializer expres­
sion.

- The enhanced range-based for-loop allows for easy iteration over a list of
elements.

- The emplace_front and emplace_back methods add new elements to the be­
ginning and end of the container. They are more efficient than pusb..front
and pusb..back, and are variadic, i.e., takes a variable number arguments. The
emplace method is similar and applicable to containers where there is only one
way to insert (e.g., a stack or a map) .

- The array type is similar to ordinary arrays, but supports. sizeO and bound­
ary checking. (It does not support automatic resizing.)

- The tuple type implements an ordered set.
- Anonymous functions ('1ambdas") can be written via the [] notation, as illus-

trated in Solution 13.2 on Page 292.
- An initializer list uses the {} notation to avoid having to make explicit calls to

constructors when building list-like objects.
- The function iota(Forwardlterator f, Forwardlterator 1, T v) fills the

range [f, 1) with sequentially increasing values, starting with v and repeti­
tively evaluating HV.

C++ll

C++ll and C++for Java developers172



ElementsOiProgramminglnterviews.com

I short parity3econst unsigned long &x) {
return precomputed_parity(x » 48) A

However, when you have to perform a large number of parity operations, and
more generally, any kind of bit fiddling operation, the best way to proceed is to
pre<;0mputethe answer and store it in an array. Depending upon how much mem­
ory is at your disposal, and how much fits efficiently in cache, you can vary the
size of the lookup table. Below is an example implementation where you build a
lookup table "precomputed_parity" that stores the parity of any 16-bitnumber ias
precomputed_pari ty (i]. This array can either be constructed during static initial­
ization or dynamically-a flag bit can be used to indicate if the entry at a location is
uninitialized. Once you have this array, you can implement the parity function as
follows:

8 }
... .__ ........_..__ -.1'-----_ .._ _-

return resul t ;

I s.hortpari ty2 (unsigned long x) {
short result = &;
while ex) {

result A= 1;
x &= ex - 1): II drops the LSB of x

A neat trick that erases the least Significantbit of a number in a single operation
can be used to improve performance in the best and average cases:

8 }

return result;

1 short parity1(unsigned long x) {
short result = &;
while ex) {

result '. (x & 1);
x »= 1;

_ The:: notation is used to invoke a static member function or refer to a static
field.
c++ has a built-in pair class used to represent arbitrary pairs.
A st.atLc..caat is used to cast primitive types, e.g., int to double, as well as
an object to a derived class. The latter is not checkedat run time. The compiler
checksobvious incompatibilities at compile time.

_ A shared.ipofnt.er is a pointer with a referencecount which the runtime system
uses to implement automatic garbage collection.

Problem 5.1, pg. 47: How would you go about computing tlte parity of a very largenumber
of 64-bit nonnegative integers?
Solution 5.1: The fastest algorithm for manipulating bits can vary based on the
underlying hardware.

The time taken to directly compute the parity of a single number is proportional
to the number of bits:

173Solution 5.1



ElementsOfProgramminglnterviews.com

Problem 5.4, pg. 48: Suppose x E Sk, and k is not 0 or 64. How would you compute
y E Sk \ {x} such that Iy- xl is minimum?

6 }

1 long reverse_bits(const long &x) {
return precomputed_reverse[(x » 48) & 8xFFFF]

precomputed_reverse[Cx » 32) & 8xFFFF] « 16
precomputed_reverse[Cx » 16) & 8xFFFF] « 32
precomputed_reverse[x & 8xFFFF] « 48;

Problem 5.3, pg.48: Write a function that takes a 64-bit integer x and returns a 64-bit
integer consisting of the bits of x in reverse order.

Solution 5.3: Similar to computing parity (Problem5.1on Page 47), the fastest way
to reverse bits is to build a precomputed array precompute<Lreverse such that for
every 16-bitnumber i,precompute<Lreverse [i] holds the bit-reversed i:

5 return x;
6 }

1 long swap_bits(long x, const int &i, const int &j) {
if «(x » i) & 1) != (Cx » j) & 1» {

x A= Cll « i) I Cll « j);

Problem 5.2,pg. 47: A 64-bit integer can be viewed as an array of 64 bits, with the bit at
index 0 corresponding to the least significant bi.t,and the bit at index 63corresponding to the
most significant bit. Implement code that tnJces as input a 64-bit integer x and swaps the bits
at indices iand j.

Solution 5.2: First determine if the bits at indices iand j differ. The bit at index i
is identified by right shifting by iand ANDing with Ii the bit at index j is handled
similarly. Generally speaking, a right-shift of an integer may be signed (the most
significant bit is replicated) or unsigned (Osare inserted). However, it makes no
differenceto our application, since the bits shifted in are ANDed with Os. Here is the
code in C++:

We are assuming that the short type is 16 bits, and the unsigned long is 64
bits. The operation x » 48 returns the value of x right-shifted by 48 bits. Since x
is unsigned, the C++ language standard guarantees that bits vacated by the shift
operation are zero-filled. (The result of a right-shift for signed quantities, is imple­
mentation dependent, e.g.,either 0or the sign bitmay be propagated into thevacated
bit positions.)

3 precoaputed_parity(x » 32) & 8xFFFF] A

precoaputed_parity(x » 16) & 8xFFFF] A

5 precoaputed_parity(x & 8xFFFF];
6

174 Solutiotl5.4



E1ementsOfprogramminglntervie~ls . com

I, template <typename T>
21 void generate_power_set(const vector<T> &S)
311 fo~ (int '.= 19; i < (l « S. sizeO); ++i)
4 1nt x ::::1;
5 while (x) {
61 int tar; log2(x & -(x - 1));
71 cout « S[tar];
81 if (x &= x-I)
91 cout « ',';
10!
IIi

1121 cout « endl;
13'

141 } ----------~------------------------------------------~

Solution 5.5:Thekey to solving this problem is realizing that for a given ordering of
the elements ofS, there exists a one-to-onecorrespondence between the 2151bit arrays
of length lSIand the set of all subsets of S-the Is in the lSI-lengthbit array vindicate
the elements of S in the subset corresponding to v.

For example, if S = (g,l,e} and the elements are ordered g < I < e, the bit array
(0,1,1) denotes the subset {l,e}.
If lSIis less than or equal to the number of bits used to represent an integer on

the architecture (or language) we are working on, we can enumerate bit arrays by
enumerating integers in [0,2151 - 1] and examining the indices of bits set in these
integers. These irldices are determined by first isolating the most significant bit by
computing y = x&!(x - 1)and then getting the index by computing Ig y.

Problem 5.5,pg.48: Implement a method that takes as input a set S of distinct elements,
and prints the power set of S. Print the subsets one per line, with elements separated by
commas.

II Throw error if all bits of x are 9 or 1
throw invalid_argument("all bits are ® or 1");

}

II unsigned long closest_int_same_bits(unsigned long x) {
2 for (int i = ®; i < 63; ++i) {
3' if «(x» i) 8, 1) A «x » (i + 1)) 8, 1)) {

x A= (1UL « i) 1 (lUL « (i + 1)); II swaps bit-i and bit-(i + 1)
return x;

Solution 5.4: The number y can be computed by iterating through the bits of x,
from the least significant bit to the most significant bit and swapping the first two
consecutive bits that differ. Intuitively, this works because we want to change the
least significant bits possible. (Note that simply swapping the least significant bit
with next least significantbit that differsfrom the least significantbit does not work,
e.g., 1011100provides a counterexample.)

175Solutiotl5.5



ElementsOfProgramminglnterviews.com

9 string.;
10 whne (x)
11 s.push_back("· + x ~ 1&);

1 string intToString(int x) {
bool is_negative;

3 if (x < $) {

x • -x. is_negative = true;
else {
ii_negative. fals.;

Solution 5.6: For a positive integer x, we iteratively divide x by 10, and record the
remainder till we get to O.This yields the result from the least Significant digit, and
needs to be reversed. If x is negative, we record that, and negate x, adding a ,_,
afterward. If x is 0, our code breaks out of the iteration without writing any digits,
in which case we need to explicitly set a O. InC++ code:

Problem 5,6,pg. 49: Implement stringlinteger inter-conversion functions. Use the follow­
ingfunction signatures: String intToString(int ]C) and int stringToInt(String
s).

Variant 5,5.1: Print all subsets of size k of {I,2, 3, ... , n}.

g.nerate_power_set_helper(S, i + 1, res);
res.pop_back0 ;

for (tnt i ; idx; i < S.size(); ++i) {
res.•aplace_back(S[i]);

9
10

::1
13
14.

151 }
161
171 teaplate <typename T>lsi void generate_power_set(const vector<T> &S) {
19 vector<T> res;
~ generate_power_set_helper(S. t, res);
11 }

cout « .ndl;

1 te.aplate<typenu. T>
1 void gtnerate_power_set-helper(const vector<T> &S. int idx, vector<T> &res) {

if (r••.•mpty() ;; false) {
II Print the subset
copy(res.cbeginO. res.candO - 1. ostream_iterator<T>(cout, .....»;
cout « res.back()j

Inpractice, it would likely be faster to iterate through all the bits in x, one at a time.
Alternately, we can use recursion. We make one call with the i-th element and one

call without the i-th element. The time complexity is 0(1512151). The space complexity
is 0(151)which comes from the maximum stack depth as well as the maximum size
ofa subset.

Solution 5.6176



ElementsOfProgramminglnterviews.com

ans.push_back(r >= II1l ? 'A' + r - 111l: 'Ill' + r);
x /= b2;

int r = x % b2:

string ans;
while (x) {

II string convert_base(const string &s, const int &bl, const int &b2) {

3
2.1 bool neg = s.front() == '-';

int x = Ill;
41 for (int i = (neg == true ? 1 : Ill); i < s. size (); Hi)
51 x *= bl;
61 x += isdigit(s[iJ) ? sri] - 'Ill' : sri] - 'A' + 1~;
71
8!
9!
10!
III
!

12!
131

14 !
lsi

.Problem 5.7,pg. 49: Write afunction that performs basecJnversion. Specifically, the input
is an integer base bl, a string 5, representing an integer x in base bl, and another integer base
b2; the output is the string representing the integer x in base b2• Assume 2 ~ bl, b2 ~ 16.
Use "A" to represent 10, "B" for 11, ... , and "F" for 15.

Solution 5.7: We can use a reductionist approach to solve this problem. Wehave
seen how to convert integers to strings in Solution 5.6 on the preceding page; this
approach works for any base. Converting from strings is the reverse of this process.
Wecan therefore convert base bl string s to a base 10 integer x, and then convert x to
a base b2 string ans. Following is the code in C++:

33 throw invalid_argument (" illegal input");
34

35

36 return is_negative? -x : x;
37

x • x * I~ + s[i] - '~';
else {

for (int i is_negative; i < s.size(); ++i) {
if (isdigit(s[i]» {

19,
201

2

22111 reverse(s.beginO, s.endO);
retu.rn s; .

23 }

241
~Iint 5tringTolnt(const string &5) {
u,· ~ool is_negative = s[~] .~ '-';
21i 1nt x • ~;

28j
291

30'

311
321

s.push_back('-');

12 X /= I~;
13

14 if (s.empty(»
15 return {"~"}; II x is (i)

16

\7
18 if (is_negative) {

177Solution 5.7



ElementsOfProgramminglnterviews.com

10 string encode(const vectordnt> &A)
11 string ret c H";
121 for (canst int &a : A) {

8 }

return ret;

I string trans_int_to_binary(int decimal) {
string ret;

3 while (decimal) {
ret.insert(e, 1, 'e' + (deciaal & 1»;
decimal »= 1;

Problem 5.9, pg. 50: LetA bean arrayofn integers. Writeanencodefunction that returns a
string representing the concatenationof the Eliasgamma codesfor (A[O),A[1), ... ,A[n -1])
in that order,and adecodefunction that takesa string s assumed to begenerated by theencode
function, and returns the array that was passed to the encodefunction.

Solution 5.9: The code follows in a straightforward way from the above specifica­
tions. Eachencoded number starts with one fewer Os than bits inthe number, which
allows us to uniquely dete~e the length of the result.

Good test cases are around boundaries, e.g., "N', "B", "Y", "Z", "AA", "AB", "ZY",
"ZZ", and some random strings, e.g., "M", "BZ", "CCC".

6' return ret;
7 }

lint ssDecodeColID(const string &col)
int ret = $;
for (const char &c : col) {

ret; ret • 26 + c - 'A' + 1;

Problem 5.8, pg.49: Write a function that converts Excel column ids to the cor­
responding integer, with "A" corresponding to 1. The function signature is int
ssDecodeColID(string);you may ignore error conditions, such as col containing char­
acters outside of [A,Z). How would you test your rode?

Solution 5.8: This problem is similar to the problem of converting a string represent­
ing a base-26 number to the corresponding integer, except that" A" corresponds to 1
nota.

161 if (ans.empty(» {
17 ans.push_back('$');
IS

19 if (neg) {

20 ans.push_back('-');
21
22 reverse(ans.begin(), ans.endO) ;
23 return ans;ul}

Solution 5.9178



ElementsO£Programminglnterviews.com

1 private static Biglnteger TWO = new BiglntegerC"2");

Problem 5.10,pg. 50: Design an algorithm for computing the GCD of two numbers without
using multiplication, division or the modulus operators.

Solution 5.10: The idea is to use recursion, the base case being where one of the
arguments is O. Otherwise, we check if none, one or both numbers are even. If both
are even, we compute the GCDof these numbers divided by 2, and return that result
times 2; if one is even, we half it, and return the GCDof the resulting pair: if both
are odd, we subtract the smaller from the larger and return the GCDof the resulting
pair. Multiplicationby 2 is trivially implemented with a single left shift. Divisionby
2 is done with a single right shift.

Note that the last step leads to a recursive callwith one even and one odd number.
Consequently, in every two calls, we reduce the combined bit length of the two
numbers by at least one,meaning that the run time complexity is proportional to the
sum of the lengths of the arguments.

Languages such as Java and Python include libraries for manipulating integers of
arbitrary length, making them ideally suited for our application.

return ret;

idx = zero_idx + len;

int len = zero_idx - idx + 1:
ret. emplace_backCtrans_binary_to_intCs. substrCzero_idx , len))):

~ ++zero_idx;
36
371

:1
401

4li
421

43 }

'G') {
int zero_idx = idx;
while Czero_idx < s.sizeC) && s(zero_idx]

ml string binary. trans_int_to_binaryCa); .
14 binary. insert CG, binary. size 0 - 1, 'G'); II prepend ss
IS ret += binary;
16
17 return ret;
18 }

19

20 int trans_binary_to_intCconst string &binary) {
21 int ret ..G;
22 for Cconst char &c binary) {
23 ret • (ret « 1) + c - 'G';
24
25 return ret;
26 }

27
28 vector<int> decodeCconst string &s) {
~ vector<int> ret;
30 int idx = &;
31 while Cidx < s.sizeC))
32 II Count the number of consecutive iSIs

179Solution 5.10



ElementsOfProgrammingInterviews.com

// Given n, return tbe primes frolll1 ta n
2 vector<int> generate_primes_frolll_l_to_n(const int &n)

int size = floor(8.5 * (n - 3» + 1;
/1 is_primeli} represents (2i + 3) is pri.e or nat
vector<int> primes; /1 stares the primes from 1 ta n
primes.emplace_back(2);
vector<bool> is_prime(s~ze, true);
for (long i = 8; i < size; ++1) {

if (is_priae[i]) {
10 int P = (i « 1) + 3;
11 primes. emplace_back(p);

Problem 5.11, pg.50: Write a function that takes a single positive integer argument n
(n ~ 2) and return all the primes between 1 and n.

Solution 5.11: We use a bit-vector is_prime oflength n+1 to encode the set of primes.
Initialize each entry to 1. The entry is_prime[i] will eventually be set to 0 iff i is
not a prime. Set p to 2. Count in increments of p and "mark" (set the corresponding
entry in is_prime to 0) each number greater than p in the count to be a non-prime
(since it is divisible by p). Update p to the next unmarked number, and iterate.

This approach can be improved somewhat by ignoring even numbers, and not
allocating entries for i less than 3. The count can also start from'; instead of p, since
all numbers kp,where k < P have already been marked. The code below reflects these
optimizations.

9 }

10
II public static Biglnteger GCD(Biglnteger x, Biglnteger y)
12 if (x.equals(BigInteger.ZERO» {
13 return y;
u else if (y.equals(B1gInteger.ZERO»
15 return x;
16 else if (isEven(x) && isEven(y» {
11 x = x.shiftRight (1);
18 Y = y.shiftRight (1);
~ return TWO.lIIultiply(GCD(x, y»;
20 else if (isOdd(x) && isEven(y»
21 return GCD (x , y.shift!\ight(1» ;
22 else if (isOdd(y) && isEven(x»
23 return GCD(y, x.shiftRight(1»;
24 else if (x.cOlllpareTo(y) <= 8) {
23 retllrn GCD(x, y.subtract(x»;
26 else {
~ return GCD(y, x.subtract(y»;
28
29

1 private static boolean isEven(Bigln~eger x)
return !isOdd(x);

5 }

3 private static boolean isOdd(Biglnteger x) {
return x.testBit(8);

Solution 5.11180



181

ElernentsOfProgrammingInterviews.com

Problem 5.13,pg. 51: Write afunction that multiplies two unsigned positive integers. The
only operators you are allowed to use are assignment and the bitwise operators, i.e., ». «, I,&,

Variant 5.12.2: How would you check if two rectangles,not necessarilyxy-aligned,
intersect?

Variant 5.12.1: Given four points in the plane, how would you check if they are the
vertices of an xy-aligned rectangle?

.__._--- ..._-----------'

9 }

10

11 Rectangle intersect_rectangle(const Rectangle &R. canst Rectangle &S) {
12 if (is_intersect(R. 5» {
13 return {max(R.x. S.x), max(R.y, S.y),
14 min(R.x + R.width, S.x + S.width) - max(R.x, S.x),
u min(R.y + R.height. S.y + S.height) - max(R.y, S.y)};
16 else {
17 return {e. $, -1, -l}; II no intersection
18 }

19 }

6 bool is_intersect(const Rectangle &R. canst Rectangle &5)
return R.x <= S.X + S.width && R.x + R.width >= S.x &&

R.y <= S.y + S.height && R.y + R.height >= S.y;

4 };

1 class Rectangle {
public:

int x, y, width, height;

Problem 5.12, pg. 50: Le't Rand 5 be xy-aligned rectangles in the Cartesian plane. Write a
function which tests ifR and S hIlvea nonempty intersection. If the intersection is nonempty,
return the rectangle formed by their intersection.

Solution 5.12: Let the given rectangles be R = «R",Ry),Rw,RJ.)and S =
«5'11 5y),5w, Sh)' Observe that the rectangles definitely do not intersect if 1:. =
[Rx, Rx + Rw] n [5u 5x + Sw] = 0; similarly, they definitely do not intersect if
Iy = [Ry,Ry+~] n [Sy,5y + Sill = 0.

Conversely,any point p = (x, y) such that x E Ix and y E Iy lies in both Rand S.
Suppose l,= [/lx,bxl and Iy= [ay, by]; then the desired rectangle is «/lx, ay), b" -/lx, by-
ay).

12 II Sieving from pA2, whose index is 2iA2 + 6i + 3
13 for (long j .. «i * i) « 1) + 6 * i + 3; j < size; +'" p) {
14 is_primo ej] " false;
15

16

17
18 return primes:
19 }

Solution 5.12



ElementsOiProgramminglnterviews.com

return 8;

I unsigned dividt_%_y(const unsigned &X, const unsigned &y) (
if ex < y) {

This is not efficientby itself,but we can improve it by computing the largest k such
that 2ky ::; x, inwhich case the recursive step is 21c+ (X-;Y).

if x < Yi
otherwise.

x {O,
y = 1+¥,

Problem 5.14,pg. 51: Given two positive integers x and y, how would you compute x/y if
the only operators you can use are addition, subtraction, and multiplication?

Solution 5.14:Wecan use the following recursion:

I unsigned add_no_operator(const unsigned &a, const unsigned &b)
unsigned sua - 8, carryin • 8, It = l'
while (It) {

unsigned alt= a & It, bit= b & It;
5 unsigned carryout = (alc & bit) 1 (alt& carryin) 1 (bit& carryin);

sum 1= (alt• bit • carryin);
carryin = carryout « 1;

8 It «= 1;
9

10 return SUI!;

n}
12'ul unsigned multiply_no_operator(const unsigned &x, const unsigned &y) {
14 unsigned sum = 8, k = 1, scaled_y = y;
lSI while (It) {
161 / / ExaJlline tbe k - tb hit of %

v if (x & k) {
18 sum = add_no_operator(sum, scaled_y);
19

1O k «= 1;
21 scaled_y «= 1;
22

2)' return sum;
24 }

-, A. (In particular, you cannot use increment or decrement.) You may use loops, conditionals
and functions that you write yourself; other functions are allowed.

Solution 5.13:Wemimic the grade school algorithm for multiplication. Suppose we
are to multiply x and y. Weinitialize sumto 0and iterate through the bits ofx, adding
2ky to sumif bit k of x is 1.

Weimplement addition itself by mimicking the grade school algorithm for addi­
tion. This consists computing the sum bit-by-bit,and "rippling" the carry along. We
use a bitmask that identifies the k-th bits, it also serves to tell us when all bits have
been read.

Solution 5.14182



ElementsOfProgramminglnterviews, com

II template <typename T>
21 void dutch_flag_partition(vector<T> &A, const int &pivot_index)
3 T pivot = A[pivot_index];

41· I""
51 .. Keep the foIl oiling invarian~s during parti ti oning:
6 .. bottom group: A(t') : smaller - 11

* middle group: A(smaller : equal - 11
" unclassified group: A{equal : larger]
" top group: A[larger + 1 : A. size () - 11

10 "I
11 int smaller = e, equal = e, larger = A.size() - 1;
12 II rihen there is any unclassified element
13 while (equal <- larger) {
14 II ACequa11 is the inco.1ng unclassified ele.ent
u if (A(equal] < pivot) {
16 .wap(A[smaller++], A(equal++]);
W else if (A(equal] •• pivot) {
18 ++equal;
19 else { II A{equal) > p1vot
~ Iwap(A(equall, A(larger--]);

Problem 6.1,pg. 52: Write a function that takes an array A and an index i into A, and
rearranges the elements such that all elements less than A[i]appearfirst, followed by elements
equal to A[i], followed by elements greater than A[i], Your algorithm. should have 0(1) space
complexity and 0(1.41)time complexity.

Solution 6.1: This problem is conceptually straightforward: maintain four groups,
bottom (elements less than pivot), middle (elements equal to pivot), unclassified, and
tap (elements greater than pivot). These groups are stored in contiguous order in
A. Tomake this partitioning run in 0(1) space, we use smaller, equal, and larger
pointers to track these groups in the followingway:

bottom: stored in subarray A[O : smaller - 1].
middle: stored in subarray A[smaller : equal-I].

- unclassified: stored in subarray A[equal : larger].
tap: stored in subarray A[larger + 1 : IAI-l].

We explore elements of unclassified in order, and classify the element into one of
bottom, middle, and top groups according to the relative order between the incoming
unclassified element and pivot. Each iteration decreases the size of unclassified
group by 1, and the time spent within each iteration is constant, implying the time
complexity isS(IAI). .

Theimplementation isshort but tricky, pay attention to themovements ofpointers.

int power = $ i
while «lU « power) " y <_ x) {

++power;

10 unsigned part - 1U« (power - 1);
11 return part + divide_x_y(x - part· y, y);
12 }

183Solution 6.1



ElementsOfPro9ramm.in9Intervie~ls. com

const boo1 isValid(const size_t &i) const {
return ($ <= P[i] && P[i] < t && S[P[i)] == i):

size_t II>iii template <typename ValueType,
2 class Array {
II private:
41 ValueType A[N];
51 int P[N], S[N], t:
6;

71
I

8j

Problem 6.2, pg. 53: Design a deterministic scheme by which reads and writes to an
uninitialized array can bemade in 0(1) time. You may ~e O(n) additional storage;reads to
uninitialized entry should return false.

Solution 6.2: Create an (uninitialized) array P ofn pointers. The array P will maintain
a pointer for each initialized entry of A to a back pointer on another array S, itself
an (uninitialized) array of n integers. An integer-valued variable t indicates the first
empty entry in S; initially, t = O. .
. Each time entry i from A is to be read, we can check if that entry has been written

to before by examining P[i]. IfP[tl is outside [0, t -lJ, A[11 is uninitialized. However,
even ifP[i] is uninitialized, it may lie in [0, t-l]. We look at the "back pointer" stored
in S[P[i]] and confirm that it is indeed i.

The first time entry i is written in A, we set S[t] to i, P[ll to t and increment i,
(We can check that the write is the first write to A[l1 by first performing a read and
checking if the entry is uninitialized.)

The approach is illustrated in Figure 21.3 on the facing page. The first three
entries written are at indices 7, 2, and 1, in that order. Checking if the entry at index
6 is initialized entails examining P[6]. If the value in P[6] is not in [0,2], A[6] is
uninitialized. If it is a valid index, e.g., 1, we check if 5[1] is 6. For this example,
P[6] = 1 and S[P[6]] = 2 if:. 6, so A [6] is uninitialized.

e-Variant 6.1.3: Given an array A of objects with Boolean-valued keys, reorder the
array so that all objects that have the same key appear in the same sub array. Use
0(1) additional space and O(IAI) time.

e-Variant 6.1.2: Given an array A of objects with keys that takes one of four values,
reorder the array so that all objects that have the sat:ne key appear in the same
subarray. Use 0(1) additional space and O(lAI) time.

. e-Variant 6.1.1: Assuming that keys take one of three values, reorder the array so that
all objects of the same key appear in the same subarray. The order of the subarrays
is not important. For example, both Figures 6.1(b) and 6.1(c) on Page 53 are valid
answers for Figure 6.1(a) on Page 53. Use 0(1) additional space and O(IAI) time.

Solution 6.2184



11

185

ElementsOfProgramminglntervie~ls. com

IItemplate <typename HeightType>

Problem 6.3, pg. 53: Design an algorithm that takes a sequence of n three-dimensional
coordinates to be traversed, and returns the minimum battery capacity needed to complete
thejourney. The robot begins with afully charged battery.

Solution 6.3: Suppose the three-dimensions correspond to x, y, and z, with z being
the vertical dimension. Since energy usage depends on the change in height of the
robot, we can ignore the x and y coordinates. Suppose the points where the robot
goes in successive order have z coordinates Zo, ... r Zn+ Assume that the battery
capacity is such that with the fully charged battery, the robot can climb B meters.
The robot will run out of energy iff there exist integers i and j such that i < j and
z}- Zi > B, i.e., to go fromPoint i to Point i.the robot has to climbmore than Bmeters.
Therefore,we would like to pick B such that for any i < j, we have B ;:::zJ - Zi.

Wedeveloped severalalgorithms for this problemin the introduction. Specifically,
on Page 2we showed how to compute the minimum B in O(n) time by keeping the
running min as we do a sweep. Incode:

10
11 public:
12 Array(void): t($) {};
13
14 const booI read(const size_t &1, ValueType &v) const {
U if (isValid(i)) {
16 v = A(i];
17 return true;
18

19 return false;
20
21

22 void write(const size_t &i, const ValueType &v) {
n if ~lisValid(i))
~ Set] • i;
25 P(i] = t++;
26
v A(i] = v;
28
29 };

Figure 21.3: Initializing an array in 0(1) time.

7654,2 1083o

7 2 1 ? ? ? ? ? ? ? ? ?
? 2 1 ? ? ? ? 0 ? ? ? ?
? ../ ../ ? ? ? ? ../ ? ? ? ?

s
P
A

t = 3
~

Solution 6.3



ElementsOfProgrammingIntervielfs.com

vector<T> pre_k_sua(k_sum);
for (int j • e, sign = -1; j < k_suD.size() && j <~ i; ++j, sign •• -1) {

for (int i • 8; i < A.size(); .+i) (

) template <typename T>
2 T max_k_pairs_profits(const vector<T>& A, const int &k)

vector<T> k_sum(k « 1, numeric_limits<T>: :min(»;

The key to achieving an O(kn) time bound is the observation that computing B
and S requires computing maxi'<i B~-1and maXi'<iS~-I. These two quantities can be
computed in constant time for each i and j with a conditional update. Incode:

Si = A[i] +mll?'B~I i'<l

B! = max srI - A[11
I i'<i I'

Problem 6.4, pg. 54: For each of the following, A is an integer array of length n.
(1.) Compute the maximum value of (A[jol - A[io)) + (A[hl - A[id), subject to io < jo <

il <h.
(2.) Compute the maximum value of r.::J(A[}tJ - A[id), subject to to < jo < il < it <

... < ilt-l < it-l. Here k isa fixed input parameter.
(3.) Repeat Problem (2.) when k can be chosen to be any value from 0 to In/2J.

Solution 6.4: The brute-force algorithm for (1.) has complexity O(n(). The complexity
can be improved toO(n2)by applying theO(n) algorithm toA[O: 11 andAU+l : n-l)
for each j E [1, n - 2}. However, we can actually solve (1.) in O(n) time by performing
a forward iteration and storing the best solution for A[O : ]1, j E [1,n -1]. We then do
a reverse iteration, computing the best solution for A[j : n-l], j E [0,n-2], which we
combine with the result from the forward iteration. The additional space complexity
is O(n),which is the space used to store the best solutions for the subarrays.

Here is a straightforward algorithm for (2.). Iterate over j from 1 to k and iterate
through A, recording for each index i the best solution for.A[O : I] with j pairs. We
store these solutions in an auxiliary array of length n. The overall time complexity
will be 0(kn2);by reusing the arrays, we can reduce the additional space complexity
to O(n).

Wecan improve the time complexity toO(kn),and the additional space complexity
to O(k) as follows. Define B{to be the most money you can have if you must make
j - 1 buy-sell transactions prior to i and buy at i. Define S{to be the maximum profit
achievable with j buys and sells with the j-th sell taking place at i. Then the following
mutual recurrence holds:

2 HeightType find_battery_capacity(const vector<HeightType>& h) {
HeightType min_height = numeric_limits<HeightType>: :max(), capacity. $;

for (const HeightType &height : h) (
5 capacity ~ max(capacity, height - min_height);
6 min_height • min(min_beight, height);

:j return capacity;
91 }

Solution 6.4186



ElementsOfProgramminglnterviews.com

Solution 6.6: The brute-force algorithm is to compute for each i the length m, of the
longest increasing subarray ending at i. This is mj-l + 1 if i '* 0 and A[i _ 1) < A[iJ,
and 1 otherwise. Thebrute-force algorithm has time complexityO(n), and the space
complexitycan be reduced to 0(1).

Problem 6.6, pg. 55: Design and implement an algorithm that takes as input an array A of
n elements, and returns the beginning and ending indices of a longest increasing subarray of
A.

L- _

18
W table[prefix_sum[i)] i;
10

21 }

return ans;

vector<int> ans(i - table[prefix_sum[i]]);
iota(ans.begin(), ans.end(), table[prefix_sum[iJ] + 1);

else if (table[prefix_sum[iJJ != -1) {
return ans;

vector<int> table(A.size(), -1);
for (int i = ~; i < A.size(); ++i)

if (prefix_sum[i) == ®) {
vector<int> ans(i + 1);
iota(ans.begin(), ans.end(), ~);

II, vectordnt> find_&_sum_subset'(const-:ect'~r<int>&A)
2, vector<int> prefix_sum(A);
31 for (int i = &; i < prefix_sum.sizeO; ++i) {
4! prefix_sum[iJ += i > & ? prefix_sum[i - 1) : &;
51 prefix_sum[iJ %= A.size();
61
I7j

:1
l°r
l1i
12!

:1
161
11!

Problem 6.5,pg. 54: Design an efficient algorithm for the 0 mod n-sum subset problem.

Solution 6.5: Consider prefix_sum[j] = E{.oA[i] mod n. Either each
prefix_sum[j] is distinct, in which case for some c we have prefix_sum[c] = 0
(since prefix_sum takes values in (O,I, ... ,11 _ I), .or for some a < b we have
prefix_sum[a] = prefix_sum[b].

In the first case, the subarray A[O : c] serves as the result. In the second case, the
sum E~a+1 A[k] mod n = 0,so the subarray A[a + 1 : b] can be returned as the result.

Note that the improved solution to (2.)on the preceding page specialized to k = 2
strictly subsumes the solution to (1.) on the facingpage.

Surprisingly,(3.) on the preceding page can be solved trivially-since we can use
an unlimited number ofpairs, we can select allpairs (i,i+1) such that A[i +1] > A[i).

10
II return k_sum.back(); II return the last selling profits as the answer
12 }

T diff = sign' A[iJ'+ (j ~ 7 ~ : pre_k_sum[j - 1));
k_sum[jJ = max(diff, pre_k_sum[jJ);

187Solution 6.6



ElementsOfPrograremingInterviews.com

Problem 6.7,pg. 55: Haw would you compute the weakest implied equivalence relation
given n, A, and B? Youdo not have access to any data structure libraries.

Solution 6.7: The basic idea is to start by mapping each element to itself. This

IS

16

17 II Check forwardly if it is not skippable
18 if (is_skippable == false) {
19 i += .ax_len - 1;
w while (i + 1 < A.size() && &[i] < &[i + 1) {
21 ++i, ++aax_len;
22
23 ans = {i - max_len + 1, i};

:1
26' return ans;
271 }

9
10

II

12

for (int j = i + max_len - 1; j >= i; _oj) {
if (A[j] >= &[j + 1]) {
i = j + 1;
is_skippable = true;
break;

I t~plate <typenaae T>
2'1' pair<int, int> find_longest_increasino_subarray(const veerercr» &A) {
3 int tlax_len = 1;.1 pair<int, int> ans(8, a);
5. int i = 8;
6 while (i < A.size(»

II Cbeck backwardly and skip if A[j1 >= A[j + 11
bool is_skippable = false;

Solution 6.7

Wecan heuristically improve upon the brute-force algorithm by observing that
if A[i - 1] f. Ali] (i.e., we are starting to look for a new subarray starting at 1) and
the longest contiguous subarray seen up to index i has length L,we can move on to
index i + L and work backwards towards i; specifically,if for any i i ~ j < i + Lwe
have A[Il f.A[j + 11we can skip the remaining indices.

This is a heuristic in that it does not improve the worst-case complexity-if the
array consists of alternating Osand Is, we still examine each element-but the best
case complexity reduces to O(max(n/L,L», where L is the length of the longest
increasing subarray.

The average case time complexity depends on the probability distribution func­
tion for the input, and in general is very difficult to compute. For example, if A is a
random permutation, or its entries are independent and uniform in [0,I), it is known
that the expected value for L is x(logn/ log logn). If A's entries are independent
identically distributed Bernoulli random variables, the longest contiguous nonde­
creasing subarray has length x(logn) in expectation. Both these facts are difficult to
prove, and their implications to the average case time complexity are even harder to
analyze.

188



ElementsOfProgramrninglnterviews.com

Problem 6.8, pg. 55: Suppose you know the permutation C1 and the extract sequence
(io, ill' .. , im-1) in advance. How would you efficiently compute the order in which the
m elements are removedfrom S7

Solution 6.8: Our algorithm maintains a collection of subsets {Ra, Rt, ... , Rm} that

2$

29

30', II Generate the weakest equivalence relation
31 for (int &f : F) {

=l' :h~l: ;:f~~F[f]) {
as }
36 return F;
~ } .

__ ._ _ _._._._ •...• . -_._.._-__I

for (int i = @; i < A.size(): ++i) {
int a backtrace(F. A[i]). b = backtrace(F, B[i]);
a < b ? FCb) = a : F[a] = b:

,
12' * For example A[i] = 6 and B[i] = fI indicates that the 6 and fI are to be
131 * grouped into the same equivalence class.
141 )1'

ilSi * r/e return the weakest equivalence relation implied by A and B in an array
161 •• F of length N; F[il holds the smallest index of all the elements that
171 • i is equi valent to.
Isil */
19, vector<int> compute_equival_classes(const int &n. canst vector<int> &A.,
20i canst vectordnt> &B) {

22211,.1. /1 Each 'element maps to itself
vector<int> F(n):

i
iota(F.begin(). F.end()~ @):

11

s I·
* A and B encode pairwise equivalences on a cardinality N set whose elements
* are indexed by fI, 1, 2, ...• N-1 .10

6 }

return idx;

1 int backtrace(const vector<int> &F. int idx) {
while (F(idx) I" idx) {

idx = F[idx):

mapping is stored in an array F, and can be viewed as implementing a tree relation,
with F[ll being i's parent. We iterate through A and B. Since A[i] and B[i] are
equivalent, we scan A[i]'s ancestors and B[i]'s ancestors and update A[iJ's (or B[i]'s)
ancestor to the ancestor which has the smaller index. After all entries in A and B
are processed, we make a last pass through F, compressing the ancestor tree, since
some parent relationship may have been updated as we iterated through A and B.
We return the result as array P; F[i] is the element with the smallest index in the
equivalence classof element i.

Solution. 6.8



-1) {

ElernentsOfPrograrnmingInterviews.com

Problem 6.9, pg. 55: Write a function that takes two strings representing integers, and
returns an integer representing their product.

return ret;

if Cfind_setCset, R[i]) != E.size() && ret[find_set(set, R[i))]
ret[set[R[i)]) = i;
uniolLset(set, set[R[i)), set[R[i)) + 1);

29
30

31

32

=1
35 }

21

22 pre = E[i] + 1;
23

24

23 vector<int> ret(E.size(), -1); II stores the answer
U vector<int> set(E.size() + 1); II the disjoint-set
v iota(set.begin(), set.end(), $); II initializes the disjoint-set
28 for (int i = $; i < A. sizeO; Hi) {

II Initialize the collection of subsets
for (int i = $; i < E.size(); ++i) {

for Cint j = pre; j <= E[i]; ++j) {
R(A[j]] = i;

II path compressionset[x] = find_set(set, set[x]);

11int find_set(vector<int> &set. const int &x)
21 if (set[x] !: x) {

31
4i
5! return set[x];
!

e] }
71
I81 void union_set(vector<int> &set, const int &x, const int &y)

91 int x_root = find_setCset, x), y_root = find_setCset, y);
10 set[~inCx_root, y_root)] = maxCx_root, y_root);
111 }
12!
u!vector<int> offline_minimumCconst vector<int> &A, const vector<int> &E) {
141 'vector<int>R(A.sizeO, E. size0);
lsi int pre = $;

161

17'1
18
191!
21)'

partitions Zn. Specifically, Rk, for 1 ~ k ~ m - 1 consists of elements in a whose
indices are greater than ik-l and less than or equal to ik. Subset Ro is all elements in
a with indices less than or equal to 4J. Subset Rm is all elements in o with indices
greater than im+ It follows from the definition that ik-l = ik implies Rk is empty.

We process each t E [0,n - 1] in ascending order. For each t,we determine if it
is extracted, and, if it is extracted, when it is extracted. We 'do this by seeing which
Rk it belongs to. If k = m, i is never extracted. Otherwise i is removed in the k-th
extraction. Consequently, we remove Rk from the partition and add all its elements
to the first subset that exists in the partition such that Ric', k' > k.

The time complexity is dominated by forming the union of disjoint-sets, and
finding the set each of element belongs to. The disjoint-set data structure is ideally
suited for union-find and has a run time that is essentially linear.

Solution 6.9190



191

ElementsOfProgrammingInterviews.com

e-Variant 6.9.1: Solve the same problem when numbers are represented as lists of

35 II If one number is ~, the result size should be ~
36 if «digits.size() == 1 && digits.front() == Ill)II
37 (n.digits.size() == 1 && n.digits.front() == ill»
$ result.digits.resize(l):
39 else {
~ result.digits.resize(i + j - 1):
41

42 return result ;
43
44 }:

carry;
result.digits[i + j] = n_digit % 1ill:
carry = n_digit / 11\):

int n_digit = result.digits[i + jJ +
(j < digits.size() ? n.digits[i] * digits[j) Ill) +

int carry = 1\):

for (j = 1\): j < digits.sizeO II carry: ++j) {

int i , j:
for (i = 1\); i < n.digits.size(); ++i) {

if (n.digits[iJ) {

result.sign sign * n.sign:

BigInt operator*(const'BigInt &n) const {
BigInt result(digits.size() + n.digits.size(»:

BigInt(const string &s) : sign(s[~J == '-' 7 -1 : 1),
10 digits(s.sizeO - (s[iIlJ== '-'»
II for (int 1 = s , s iz e0 - 1, j = ~: i >= (s [illJ == '-'); - - i, ++j ) {
u if (isdigit(s[iJ» {
13, digits[jJ = s[iJ - '1\)';

141
15

16

17
I

18!

191

:1
22!

231

2,1

251
261
271

:1
301
31!
321

331
34 '

public:
7 BigInt(const int &capacity) : sign(l), digits(capacity) {}

I class BlgInt {
private:

int sign; II -lor 1;
vector<char> digits:

Solution 6.9: Wemimic the grade school algorithm for multiplication, i.e., shift,
multiply by a digit, and add. The number of digits required for the product is either
n +m or n +m - 1 for nand m digit operands, so we allocate a string of size n + m
for the result; the computation determines whether the number of digits is n +m or
n +m - 1. Wedo not store all the partial products, and then add them; rather we add
each partial product into the result. .--------------------------------~

Solution 6.9



ElementsOfprogrammingInterviews.com

The code above will apply the permutation in O(n) time but implicitly uses €l(n)
additional storage, even if it is borrowed from the sign bit of the entries of the perm
array. We restore perm by adding n to each entry after the permutation has been
applied.

12, pe=[a] -= perm.sizeO;
u a = next_a, temp ..next_temp;
14 while (a 1= i);
IS
16
17

18 II Restore pel'llback
w size_t size ..perD.size();
20 for_each(perm.beginO, penl.endO, [size](T &x) { x += size; });
21 }

11 /1 Hark a as vi si ted by using the sign bi t

I t••plate <typename T>
2 void apply_permutationl(vector<int> &perm, vector<T> &A)
31 for (int i = $; i ;:A.sizeO; ++i) {
4 if (perm[i] >= 8) {

5 int a = i;
T temp = A[i];
do {

int next_a = peroral;
9 T next_temp = A(next_a];
10 A[next_a] = temp;

Problem 6.10,pg. 56: Given an array A of n elements and a permutation 0,compute O(A)
using only constant additional storage.

Solution 6.10: We can use the fact that every permutation can be expressed as a
composition of disjoint cycles, with the decomposition being unique up to ordering.

For example, the permutation (2,0,1,3) can be represented as (0,2,1)(3), i.e., we
can achieve the permutation (2,0,1,3) by these two moves: 0 H 2,2 H 1,1 H 0, and
3H3.

If the permutation is presented as a set of disjoint cycles, it can easily be applied
using a constant amount of additional storage since we just need to perform rotation
by one element. Therefore we want to identify the disjoint cycles that constitute the
permutation.
Itisstraightforward to identify the set of cycles with an additional nbits. Start from

any position and keep going forward (from ito A[i]) till the initial index is reached,
at which point one of the cycles has been found. Then go to another position that is
not yet part of any cycle. Finding a position that is not already a part of a cycle is
trivial using one bit per array element.

One way to perform this without explicitly using additional O(n) storage is to use
the sign bit in the integers that constitute the permutation: Specifically, we subtract
n from each entry in perm after it has been applied. We check if the element at index
ihas already been moved by seeing if perm[ll is negative.

digits.

Solution 6.10192



193

ElementsOfProgramminglnterviews.com

Solution 6.12:The key insight is that if p[k] < p[k + I], and for all i > k,p[i] ~ p[i + I],
then no permutation of the elements consequent to k will lead to a permutation
that is ahead of p in the lexicographic order. Therefore, we must increase p[k]. To

Problem 6.12,pg. 56: Given a permutation p represented as a vector, return the vector cor­
responding to the next permutation under lexicographic ordering. If p is the last permutation,
return empty vector. For example, if p = (1,0,3,2), your function should return (1,2,0,3).

Problem 6.11,pg. 56: Given an array A of integers representing a permutation Il, update
A to represent n- using only constant additional storage.

Solution 6.11:The solution is similar to Solution 6.10on the facingpage. All that is
needed is to decompose the permutation into a set of cyclesand invert each cycleone
step back. For example, the permutation (2,0,1,3) can be represented as (0,2,1)(3).
Hence the inverse can be represented as (1,2,0)(3)which amounts to (1,2,0,3).

To save additional space, we can use exactly the same set of tricks as inSolu­
tion 6.10on the preceding page.

if (is_min)
int a = i;
T temp = A[i];
do {

int next_a = perm[a);
T next_temp = A[next_a];
A[next_a) = temp;
a = next_a, temp = next_temp;
while (a != i):

= perm[j]:

Wecan avoid using 6(n) additional storageby going fromleft-to-right and apply­
ing the cycleonly if the current position is the leftmost position in the cycle.Testing
whether the current position is the leftmost position, entails traversing the cycleonce
more, which increases the run time toO(n2).

11 template <typename T>
2! void apply_permutation2(vector<int> &perm, vector<T> &A)
31 for (int i = Q; i < A.sizeO; ++i) {
41 // Traverse the cycle to see i.f i is tbe min element

bool is_min = true:
int j = perm[i);
while (j != i) {
if (j < i) {

is_min = false;
break;

Solution 6.12



ElementsOfPrograrnminglnterviews.com

Problem 6.13,pg. 56: Design a 8(n) algorithm for rotating an arrayA of n elements to the
right by ipositions. Youare allowed 0(1) additional storage.

Solution 6.13:This is a special case of applying a permutation with constant addi­
tional storage (problem 6.10on Page 56) with the permutation corresponding to a
rotation. A rotation corresponds to a set of cyclesof the form (c,(i + c)mod n, (2i +
c)mod n, ... , (mi + c) mod n) for a number of differentvalues of c. For example, for
the case where n = 6 and i = 2, the corresponding cycles are (0,2,4) and (1,3,5).
When n = 15and i = 6, the cyclesare (0,6,12,3,9), (1,7,13,4,10), and (2,8,14,5,11).

These examples lead us to conjecture the following:

E-Variant 6.12.2: Given a permutation p represented as a vector, return the vector
corresponding to the previous permutation of p under lexicographicordering.

Variant 6.12.1: Compute the k-th permutation under lexicographicordering, start­
ing from the identity permutation, which is the first permutation in lexicographic
ordering.

II Produce the lexicograpbically minimal perautation
reverse(p.begin() + k + 1. p.end(»;
return p;

111

~I
21

22

23

10 int 1;
11 for (int i = k + 1; i < p.size(); ++i) {
12 if (p(i] > p[k])
13 1 = i;
" else {
15 break;
16
17

}
if (k == -1)

return {}; II p is the last per.utation

I vec~or<int> next_perau~ation(vector<int> p)
int k : p.size() - 2;
while (k >= & && p[k] >= p[k + 1]) {
--k;

swap(p[k]. p[l]);

obtain the next permutation we find the largest index I such that p[l] > p[k] (such an
I must exist since p[k) < p[k + 1]). Swapping p[l) and p[k) leaves the sequence after
position k in decreasing order. Reversing this sequence after position k produces
its lexicographicallyminimal permutation, and the lexicographic successor of the
original p.

To find the previous permutation, we apply the same idea with some modifica­
tions.

Solution 6.13194



ElementsOfProgramminglnterviews.com

Wenow prove Conjectures (1.) and (2.).

7 }

Wenow provide an alternative to the permutation 'approach. The new solution
works well inpractice and is considerably Simpler.Assume that A = (1,2,3,4,a,b),
and i = 2. Then in the rotated A there are two subarrays, (1,2,3,4) and (a,b)
that keep their original orders. Therefore, rotation can be seen as the exchanges
of the two subarrays of A. To achieve these exchanges using only 0(1) space
we use a reverse function. Using A and i as an example, we first reverse A
to get A' «1, 2,3,4,a,b) H (b,a,4,3,2,1», then reverse the first i elements of A'
«b,a,4,3, 2,1) H (a,b,4,3, 2,1», and reverse the remaining elements starting from
the i-th element of A' «a,b,4,3, 2,1) H (a,b,I, 2,3,4» which yields the rotated A.
Following is the code in C++:

1~~P~t. <typename T>
2 void rotate_array(vector<T> &A. int i) {

i ". A.size();
reverso(A.begin(), A.end(»;
reverse(A.begin(). A.begin() + i);
revorse(A.begin() + i. A.end(»;

for (int c .. 'ill: c < cycles; ++c)
T temp ..A[c];
for (int j .. 1: j < hops; ++j)

10 swap(A[(c + j * i) % A.sizeO]. temp);
11
12 A[C] .. temp:
13
14 }

I template <typename T>
2 void rotate_array(vector<T> &A. int i) {
3 i X: A.size();

int cycles ..GCD(A.size(). i); II number of cycles in this rotation
int hops. A.size() / cycles; II numb~r of elements in a cycle

(1.) All cycleshave the same length, and are a shifted version of the cycle (0,i mod
n,2i mod n, ... (1- l)i mod n).

(2.) The number of cyclesis the GCDof nand i.
Theseconjecturescan be justifiedon heuristic grounds, specificallyfromconsidering
the prime factorizations for i and n. Seeon the next page for the formal proof.

Assuming these conjectures to be correct, we can apply the rotation one cy­
cle at a time, as follows. The first elements of the different cycles are at indices
0,I, 2, ... ,GCD(n,t) - 1. For each cycle, we assign the index of first element to a
temporary variable[. Weiterativelymove the element atj to (j+ i) mod 11and update
j to (j+ i) mod 11, stopping after n/GCD(n, t) moves. This takes 0(1) space: a variable
to track which cyclewe are processing, a variable to track how many elements we
have processed in the current cycle, as well as temporary variables for performing
the move.

195Solutio" 6.13



ElementsOfProgrammingInterviews.com

Hence the sequence repeats at Go(lo- r), contradicting the maximality of 10'
Define 1, to be the largest integer such that the sequence Ge = (c,(i +

c) mod n, (2i+ c) mod n, (3i+ c) mod n, ... , ((1e - l)i + c) mod n) does not repeat.
Conjecture (1.) on the preceding page, namely that all cycles have the same
length, follows from the observation that the difference between (iJ) mod nand
(ij + c) mod n always equals c mod n.

Now we prove Conjecture (2.) on the previous page, i.e., there exist exactly
GCD(n,t) cycles. Since we have just seen that all cycles have the same length, it
suffices to prove that the length of the cycle containing 0 is n/GCD(n,z).

Let g be the smallest integer greater than 0 that appears in the cycle which
contains O.Because of the modulus operation, g isnot necessarily the number that
follows 0, e.g., when n = 15 and i= 6, g is3, even though the cycle corresponding
to 0 is (0,6,12,3,9). The set So of numbers in the cycle that 0 belongs to is
{x 13j x = ij mod n}. Equivalently, So = {x 13a3b x = (ai + bn) mod n}. Itis a basic
fact that the GCD of i and n is the smallest positive integer of the form ai + bn,
with a and b being arbitrary integers. Therefore g is the GCD of n and i.

We claim that So is exactly equal to the set of numbers in {O,I, ... , n - I} that
are divisible by g. Conjecture (2.) follows from the fact that exactly n/GCD(n,z)
numbers in {O,1, ... ,n - I] are divisible by g.

First we prove that all numbers in Soare divisible by g. If not, say e = ijmod n
is not divisible by g. Then e = gq + r, where r E (0,g) is the remainder. Since
g = ai + bn for some a and b,we have r = (e - (ai+ bn» mod n = (e - at) mod n.
Since e lies in So, all numbers of the form (e+ Gi) mod n, where G ;::0, also lie in
So. Inparticular,letHbe such that Hn=a ;::O.Then (e+ (Hn -a)t) mod n lies in So.
But (e+ (Hn - a)t) mod n = (e - at) mod n = r, which contradicts the minimality
ofg.

Now we show that gI mod n E So for all I. Since g = ai + bn, for some a and b,
we have gI mod n = (ail+bnI)mod n = ali mod n. Let J be such that (In+al) ;::O.
Then (In + aI)i mod n is in So. But an + aI)i mod n = ali mod n = gl mod n,
demonstrating that gI mod n E So.

Go(lo- r) mod n = ((10 - r)t) mod n
= ((lot) mod n - (n)mod n) mod n

((1ot) mod n - Go(r)mod n) mod n
Omodn.

Proof:
First we prove that rotation does result in cycles. Take 10 to be the largest integer

such that the sequence Go = (0, imod n,2i mod n,3i mod n, ... , ((10 -l)t) mod n)
does not repeat. We claim that (loi) mod n = O.Since 10was defined to be maximal,
it must be that (lot) mod n is a value that is already in Go. For contradiction,
suppose it equals Go(r),0 < r < (10 -1). Then

Solution 6.13196



197

ElementsOfProgramminglnterviews.com

38
39
40

41
42

43
44 return true;

true;is_present[A[region_size • I + iJ[region_size • J + j)]
37

/1 Check region constraints
int region_size sqrt(A.size(»;
for (int I = ~; I < region_size; ++I)

for (int J = ~; J < region_size; ++J)
vector<bool> is_present(A.size() + 1, false);
for (tnt i = @; i < region_size; ++i) {

for (int j = ~; j < region_size; ++j) {
if (A[region'_size • I + i][region_size • J + j) 1= ~ &&

is_present[A[region_si~e • I + i)[region_size • J + j))) {
return false;
else {

II Check column constraints
for (int j = ~; j < A.size(): ++j) {

vector<bool> is_present(A.slze() + 1, false);
for (int i = ~; i < A.size(); ++1)

if (A[i][j] != ~ && is_present[A[iJ[jJ) == true)
return false;

} .else {
is_present[A[i) [jJJ true;

true:is_present[A[i] [j))

1 // Check if a partially filled matrix has any conflicts
2 bool is_valid_SudokuCconst vector<vector<int» &A) {

1/ Check row constraints
for (int i = ~; i < A.size(); ++i) {

vector<bool> is_present(A.size() + 1, false);
for (int j = ~; j < A.size(); ++j) {
if (A[i] [j] 1= ~ && is_present[A[i] [j]] == true)

return false;
else {

Solution 6.14: We need to check nine row constraints, nine column constraints, and
nine sub-grid constraints. We use bit arrays to test for constraint violations, that is to
ensure no number in [1,9] appears more than once.

Problem 6.14, pg.57: Check whether a 9 X 9 2D a17ay representing a partially completed
Sudoku is valid. Specifically, check that no row, column, and 3 x 3 2D subarray contains
duplicates. A O-value in the 2D array indicates that entry is blank; every other entry is in
[1,9].

Solution 6.14



ElemenuOfProgrammingInterviews.com

for (int i = e; i < A.size() • A.size(); ++i) {
ceut « A (x] [y] « ' ';
A(X][y] = ';

• int nx = x + sbi£t[dir][e], ny - y + shi£t[dir][l];
, if (nx < 8 II nx >= A.size() II ny < 8 II ny >= A.size() II
10 A[nx] [ny] == 8) {
II dir • (dir + 1) & 3;

I void print_matrix_spiral(vector<vector<int» A) {
2 cons~ array<array<int, 2>, 4> shift = {e, 1, 1, 8, 8, -1, -1, 8};

3. int dir = 9, x = 9, Y = 8;

An alternate solution in C++ writes 0 into array entries to indicate they have been
processed, and a shift 20 array to compress the four iterations above into a single
iterations parametrized by shift:

n print_lIatrix_clockllise(A,offset);
23

2A }

cout « A[i] [offset] « ' ';
for (int i = A.size() - offset - 1; i > offset; --i) {

for (int j = A.size() - offset - 1; j > offset; --j) {
cout « A[A.size() - offset - 1](j] « ' ';

for (in~ i = offset; i < A.size0 - offset'- 1; Hi) {
cout « A[i][A.size() - offset - 1] « ' ';1:1

III
12
131
a
IS
16

17
18 }

19

~ void print_matrix_in_spiral_order(const vector<vector<int» &A) {

21 for (int offset = e; offset < ceil(9.5 * A.size(»; ++offset) {

for (int j = offse~; j < A.size() - offset - 1; ++j) {
cout « A(offset] (j] « ' ';

I void prin~_lIatrix_clockllise(constvec~or<vector<int» &A. const int &offse~)
if (offset == A.size() - offset - 1) { II for .atrix with odd size

3 cout « A(offset][offset];

Problem 6.15,pg.57: Implement afunction which takes a 2D array A and prints A in
spiral order.

Solution 6.15:The outermost elements of an n x n 20 array can be written in spiral
order using four iterations: elements (0,0) to (O,n - 2), then elements (O,n -1) to
(n - 2,n - 1), followed by elements (n - 1,n - 1) to (n - 1,1), and finally elements
(n - 1,0) to (1,0). After this, we are left with the problem of printing the elements of
an (n - 2) x (n - 2) 20 array in spiral order. This leads to an iterative algorithm that
prints the outermost elements of n x ", (n - 2) x (n - 2), (n - 4)x (n - 4),... 20 arrays.

Solution 17.8on Page 395describes how to solveSudoku instances using branch
and bound.

Solution 6.15198



ElementsOfProgrammingInterviews.com

pair<int, int> curreq.front(»;

canst int &y)
-1, 8, 1};

11 void flip_color(vector<vector<bool» &A, canst int &x,
21 const array<array<int, 2>, 4> dir = {-I, e, 1, 8, 8,
3! canst bool color = A[x][y];
41
5! queue<pair<int, int» q;
61 q.emplaceex, y);
71 while (q.empty() == false)
81
91
101

II flip colorA[curr.first][curr.second] = JA[curr.first][curr.second];
for (auto &d : dir) {

Problem 6.16,pg.58: Implement a routine that takes a D x D Boolean array A together
with an entry (x, y) and flips the color of the region associated with (x, y). See Figure 6.5on
Page 58for an example offlipping.

Solution 6.16: Conceptually, we solve this problem by maintaining a queue q of
entries toprocess,and a20 Booleanarray processed indicating whether an entry has
been processed. Initially,all entries in processed are marked false and q contains
(x,y). The queue is popped iteratively, and the neighbors of the popped element are
examined. Anyneighbor which is unprocessed and whose colorneeds tobe changed
is added to q. After its neighbors have been examined, the processed status of the
element just popped is set to true and its color is flipped. The computation ends
when q is empty.

Inpractice,we do not require the processed array,since there are only two colors.
Weonly need to record the color of the initial entry, and compare new entries with
that color.

€-Variant 6.15.3: Write a program to enumerate the first n pairs of integers (a,b) in
spiral order,starting from (O,O)followedby (1,0). For example, ifn = 10,your output
should be (0,0),(I,0),(I,-I), (0,-I), (-1, -I), (-1,0),(-I, I), (0,1),(1,I), (2,1).

€-Variant 6.15.2: Given a sequence of integers a,compute a 20 array A which when
printed in spiral order yields a. (Assume lal = n2 for some integer n.)

[

1 2
A= 8 9

7 6

€-Variant 6.15.1: Given a dimension d,write a program to generate a d x d 20 array
which when printed in spiral order outputs the sequence (1,2,3, ... ,tP). Forexample,
if d ::: 3, the result should be

12 nx a X + shift[dir][e], ny - y + shift[dir) [1];

13
u X .. nx, y = ny :
15

16 }

199Solution 6.16



ElementsOfProgrammingInterviews.com

s-Variant 6.16.2: Design an algorithm that_takes a point (a, b), sets A(a, b) to black,
and returns the size of the black region that contains the most points. Assume this
algorithm will be called multiple times, and you want to keep the aggregate runtime
as low as possible.

c-Variant 6.16.1: Design ~ algorithm for computing the black region that contains
the most points.

flip_color(A, nx, ny);

if (nx >= & && nx < A.size() && ny >= & && ny < A[nx).size() &&
A[nx][ny) == color) {

const int nx = x + d[&], ny = y + del];

const array<array<int, 2>, 4> dir = {-~, &, 1, e, &, -1, &, 1};
const bool color = A[x][y);
A[x)[y] = IA[xl[y]; II flip the color

const int &y)Ii void flip_color(vector<vector<bool» &A, const int &x,
I

21
31
.1
i51

61 for (auto &d : dir)
71
81
91

::1
12i
131 }

We also provide a recursive solution which does not need a queue but implic­
itly uses a stack. This solution does not require a processed array; instead, we
temporarily flip the color of the entry being processed.

Problem 6.17, pg.58: Design an algorithm that rotates a n x n W array by 90 degrees
clockwise. Assume that n = 2k for some positive integer k. What is the time complexity of
your algorithm?

Solution 6.17: It is natural to use recursion: decompose the 2D array into four equal­
sizedsubarrays.Aju : ~ -1][0: ~-l],A[O: ~ -1][~ :n-1],A[~ : n-1][0: ~ -1], and
A[~ : n-1][~:n -1],and recursively rotate each ofthese. Consequently, make a copy
Cof A[O : ~ -1][0 : ~-1], and copy A[O : ~ -1][~ :n -1] into A[O : ~ -1][0 : ~-1],
A[~ : n - 1][~ : n - 1] into A[O : ~ - 1][~ : n - 1],A[¥ : n - 1][0 : ¥ - 1] into
A[¥ : n -1][~ : n -1] and C into A[i : n -1][0': ~-1]. The run time satisfies the
recurrence T(n) = 4T(i) +O~n),which solves to O(nlogn), where n = 22k.

q.popO;

pair<int, int> next(curr.first + d[&), curr.second + d[l));
if (next.first >= & && next.first < A.size() &&

next.second >= & && next.second < A[next.first).size() &&
A[next.first)[next.second) == color) {

q.emplace(next);

III

1211
13
14.

151

::1
::1
21)1 }

Solution 6.17200



ElementsOfProgramminglnterviews.com

Problem 6,18, pg, 59: Implement run-length encoding and decoding functions. Assume
the string to be encoded consists of letters of the alphabet, with no digits, and the string to be
decoded is a valid encoding.

Solution 6.18: The decoding function entails convertinga number represented in
decimal to its integer equivalent; the encoding function entails the reverse. Bothof
these are covered in Solution 5.6on Page 176.The remainder of the code consists of

Variant 6.17,1: Suppose the underlying hardware has support for fast two­
dimensional block copies. Specifically,you can copy an m x m 2D array inOem)
time. How can you exploit the hardware to reduce the time complexity?

Alternately,we could perform the rotation using 0(1) additional memory inO(n)
time by iterating through anyone of the four subarrays, and rotating elements insets
of four.

~ void rotate~matrixCvector<vector<T» &A) {
~ rotate_matrix_helperCA, &, A.sizeC), &, A.size(»;
36j }

<typename T>

rotate_matrix_helperCA, mid_x, x_e, mid_y, y_e);
rotate_matrix_helperCA, mid_x, x_e, y_s, mid_y);

II Recursively rotate submatrices
rotate_matrix_helperCA, x_s, mid_x, y_s, mid_y);
rotate_matrix_helperCA, x_s, mid_x, mid_y, y_e);

:1
:1
=1
:1
311 }

32i
33 template

copy_matrixCA, x_s, mid_x, y_s, mid_y, A, mid_x, y_s);
copy_matrixCA, mid_x, x_e, y_s, mid_y, A, mid_x, mid_y);
copy_matrix(A, mid_x, x_e, mid_y, y_e, A, x_s, mid_y);
copy_matrix(A, x_s, mid_x, mid_y, y_e, C, &, &);

9
10

11
12 template <typename T>
13 void rotate_matrix_helperCvector<vector<T» &A, const int &x_s,
14 const int &x_e. const int &y_s, const int &y_e) {
ul if (x_e > x_s + 1) {
16! int mid_x = x,s + CCx_e - x_s) » 1), mid_y = y_s + CCy_e - y_s) » 1);

17 I I Move submatrices
J8 vector<vector<T» CCmid_x - x_s, vector<T>Cmid_y - y_s»;
J9 copy_matrixCC, &, C.sizeC), &. C.sizeC), A, X_S, y_s);

1 template <typename T>
2 void copy_matrix Cvector<vector <T» &A. const int &A_x_$, const int &A_x_e',

const int &A_y_s, const int &A_y_e,
const vector<vector<T» &5,
const int &S_x, const int &S_y) {

for Cint i c &; i < A_x_e - A_x_s; ++1) {
copyCS[S_x + i).cbeginC) + S_y, S[S_x + i).cbeginC) + S_y + A_y_e - A_y_s,

A[A_x_s + i).beginC) + A_y_s);

201Solution 6.18



ElementsOfProgrammingInterviews.com

10,
II II Reverse the last vord
12 reverse(input.begin(). start, input.end(»;
\3 }

size_t start 5 5, end;
IIhile«end = input.find("" start» 1= string::npos)

II Reverse each word in the string
reverse(input.begin() + start, input.begin() + end);

9 start = end + 1;

IIvoid reverse_vords(string &input) {
2 II Reverse the whole string first

reverse(input.begin(), input.end(»;

Problem 6.19,pg.59: Implement a function for reversing the words in a string. Your
function should u.se0(1) space.

Solution 6.19:Thecode for computing theposition for each character in a singlepass
is fairly complex. However, a two stage iteration is easy. In the first step, reverse the
entire string and in the second step, reverse each word. For example, "ram is costly"
transforms to "yltsoc si mar", which transforms to "costly is ram". Here is code in
c-«

23

24

23

M ss« count « s.back();
~ return ss.str();

++count;
else {
ss « count « sri - 1];
count :D 1;

int count = 1;
stringstrea. ss;
for (int i = 1; i < s.size(); .+1) {

if (s[i] == sri - 1]) {

16

17

18

19

10

II
12 return ret;
\3

14
15 string encoding(const string &s) {

I string decoding(const string &s) {
int count = $;
string ret;
for (const char &c : 5) {

5 if (isdigit(c» {
count s coun~ * 18 + c _ 'S';
else { II isalpha
ret.append(count, c>;
count : 9;

iterating through the input string and appending to the result string.

Solution 6.19202



ElernentsOfProgramrninglnterviews.com

13
14 forCint i ; s.sizeO; i < t.sizeO; ++i) {
15 II In case of hash collision, check the two substrings are actually equal
16: if (t_hash == s_hash && t.compare(i - s.size(), s.size(), s) ;; (\)){

int t_hash ; G, s_hash = &;
for (int i = (\); i < s.sizeO; ++i) {

t_hash ; (t_hash • base + t[iJ) % mod;
s_hash ; (s_hash • base + s[i]) % mod;

return -1; II s is not a substring of t

const string &5)

,.......................................... ._-__ ._._..._-
I const int base; 26, mod = 997;
2
3j int rabin_karp(const string &t,
4! if (s . sizeO > t. sizeO) {

;1
i

:i
10"n12!

Problem 6.20,pg. 59: Given two strings s (the "searchstring") and t (the "text"),find the
first occurrence of s in t.

Solution 6.20:Knuth-Morris-Pratt,Beyer-Moore,and Rabin-Karp. arewidely taught
algorithms for substring search that run in linear time. InpracticeBeyer-Mooreis the
fastest string search algorithm, because for inany applications, it runs in sub-linear
time.

The Beyer-Moore algorithm works by trying to match characters of s in t at a
certain offset in the reverse order (last character of 5matched first). Ifwe can match
all the characters in 5, then we have found a match; otherwise, we stop at the first
mismatch. Thekey ideabehind the Beyer-Moorealgorithm is to skip asmany offsets
as possible when we are done matching characters at a given offset. Wedo this by
building two tables-the good suffixshift table and the bad character shift table.

For a given character, the bad character shift table gives us the distance of the last
occurrence of that character in s to the rightmost string. If the character does not
occur in s, then the entry in the table is lsi.Hence when we find a character in t that
does not match for the current offset,we know how much we must move forward
so that this character can match for the first time.

Thegood suffixshift table is a littlemore complex. Conceptually,for a given suffix
x of s, it tells us what is the shortest suffix y of 5 that is longer than x and has x as
suffix. In practice what we store is how far can we move safely,given that we have
matched up to Ixlcharacters hut did not match the next character.

The Rabin-Karp algorithm is based on the idea of "fingerprinting". It compute
hash codesofeach substring t[i : i+151-1]fori = OtoItHsl-these are the fingerprints.
If h(t[i : i+151-1]) * h(s), the lsilength substring beginning at i cannot equal s. Agood
hash function is one where the probability of collisions is low and h(t[i : i + Isl- 1])
can be incrementally computed, that is the time to compute h(t[i : i + 151- 1]), given
h(t[i -1 : i+ Isl- 2]),is0(1). (Sucha hash function is sometimes referred to as a rolling
hash.) The Rabin-Karpalgorithm isvery simple to implement, and generalizesmore
easily, e.g., to two dimension pattern matching, than the Knuth-Morris-Pratt and
Boyer-Moorealgorithms. The expected time complexity is 0(151 + Itl).

203'Solution 6.20



ElementsOfProgramminglnterviews.com

n s[write_idx--] = s(cur_idx);
23
24 --cur_idx;
25
26 return s;

s[wriu_idx --) td' ;s[wriu_idx--]
else {

:10

II

9 ++a_count;

10
11

12
13 II Allocate space according to tbe number of "a"
14 s.resize(write_idx + a_count);
15 II Replace "a" "itb "dd";
16 int cur_idx • write_idx - 1;
17 write_idx. s.size() _ 1;
18 while (cur_idx >= (9) {

19 if (s[cur_idxJ == 'a') {

7

a if (c == 'a')

s(write_idx++] c;

"a"
11 string replace_and_remove(string s) {
2 II Remove "b" and count the naber of
3 int write_idx = 8, a_count = 8;

5
"1 for (const cha.r&c : s)

if (c 1= 'b') {

Problem 6.21,pg.6(): Write afunction which takes as input a string s, and removes each
"b" and replaces each "a" by "dd". Use 0(1) additional storage-assume s is stored in an
array that has enough spacefor thefinal result.

Solution 6.21:Westart by making a first pass through s in which we delete each lib"
by maintaining a write index, wri te_idx and a current index, cUI'_idx-we achieve
the effect of deleting "b" by skipping over "b". We also count the number of "a"s.
Wethen make a second pass working backwards from the end of the current string,
copying characters to the end of the resulting string (whose size we know from the
number of "a!'s). For each "a", we write "dd".

17 rnurn i - s.she 0; I I find .nch1.
19 t_hash -. (tCi - s.size()] • static_cast<int>(pow(base, s.size() - 1»)

20 " iliad;
11 if (chash < &) {
n t_hash +- iliad;
23
24 t_hash = (t_hash • base + t[i]) " Ilod;
25
16

~ if (t_hash ca s_hash && t.colllpare(t.size()- s.size(), s.size(), s) DO &) {
~ return t.size() - s.size();
19
20 return -1; II s is not a substring of t
31

Solution 6.21204



ElementsOfProgrammingInterviews.com

lvoid phone_mnemonic_helper(const string &num. const int &d. string &ans) {
if (d == num.si%eO) { .

1 cons t array<string, 1&> 11 = {""", "1". ,.ABC" , "DEF". "GHI" , fI lKL" I uKNO",
"PQRS". "TUV". "WXYZ"};

Problem 6.22, pg.60: Given a cell phone keypad (specified by a mapping M that takes
individual digits and returns the corresponding set of characters) and a number sequence,
return all possible character sequences (not just legal words) that correspond to the number
sequence.

Solution 6.22: Recursion is natural. Let P be an n-digit number sequence. Assume
these digits are indexed starting at 0, i.e., prO] is the first digit. Let S be a character
sequencecorresponding to the firstk digits ofP. Wecan generate alllength ncharacter
sequences corresponding to P that have S as their prefix as follows. If k = n, there is
nothing to do. Otherwise, we recurse on each length-k+ 1 sequence of the form Sx,
for each x e M(P[k]).

Variant 6.21.2: Write a function which merges two sorted arrays of integers, A
and B. Specifically,the final result should be a sorted array of length IAI + IB]. Use
0(1) additional storage-assume the result is stored inA,which has sufficientspace.
These arrays are C-stylearrays, i.e., contiguous preallocated blocksofmemory.

e-Variant 6.21.1: Youhave an array Cof characters. The characters may be letters,
digits, blanks, and punctuation. The telex-encoding of the array C is an array T
of characters in which letters, digits, and blanks appear as before, but punctuation
marks are spelled out. For example, telex-encoding entails replacing the character
":" by the string "DOT", the character "," by "COMMA", the character "l" by
"QUESTIONMARK", and the character "!" by ''EXCLAMATIONMARK". Design
an algorithm to perform telex-encodingwith 0(1) space.

271_} -----
Wecan prove that the second step correctly replaces each "a" by "dd" by induction
on the length of the string n.
Proof:

For the base case, i.e., length 1string, there are two possibilities-the string is
"a" or x, where x is one of {"b","c", "d"}. For both possibilities, induction goes
through. Assume by induction that the construction is correct for all strings of
length n > 1. Consider a string 5 of length n + 1. Let's say the length of the final
result is k. If5 ends in "c" or "d", we copy s[n -1] over to s[k-1J. Bythe induction
hypothesis, our construction correctly copies the substring S"-1 consisting of the
firstn -1characters of s to the remaining k - 1locations. Ifs ends in "a",we write
"d" into locationsk-2 and k-l. Now we have to process s=", whichwill require
k - 2 locations. By the induction hypothesis, the construction correctlywrites the
result into these locations, and induction goes through.

205Solution 6.22



£1ementsOfprogramminglnte.rviews.com

17 return true;
1&

7 II Case (2) : ends with ·s·
if (r.front() •• 'S' && r.size() •• 1) {

9 return s.empty();
10

II
12 II Case (4.)
IS if (r.size() >a 2 && r[1] c: '.')

14 for (int i • t; i < s.sizeO && (r.frontO
15 Hi) {

16 if (is_match_here(r.substr(2). s.substr(i + 1») {

'.' II r.frontO =.. sCi]);

I bool is_matcb_here(const string &r, canst string &s) {
II Case (1.)
if (r.elllptyO)

return true;

Problem 6.23, pg. 6(}: Design an algorithm that takes a string s and a string r, assumed to
bea we1l10nned ESRE, and checks if r matches s.
Solution 6.23: The key to solving this problem is using recursion effectively.
If r starts with 1\, then the remainder of r, i.e., rl,must strictly match a prefix of s.

If r ends with a $, some suffix of 5 must be strictly matched by rwithout the trailing
$. Otherwise, r must strictly match some substring of s.

Call the function that checks whether r strictly matches a prefix of string 5

is.....match.This function has to check several cases:
(1.) Length-O ESREs which match everything.
(2.) An ESRE starting with 1\ or ending with $.
(3.) An ESRE starting with an alphanumeric character or dot.
(4.) An ESRE starting with a" match, e.g., a"wxY or ...Wa.
Case (1.) is a base case. Case (2.) involves a check possibly followed by a recursive

call to iSJ1latc}Lbere. Case (3.) requires a single call to is_match....here. Case (4.) is
handled by a walk down the string s, checking that the prefix of s thus far matches
the alphanumeric character or dot until some suffix of s ismatched by the remainder
of the ESRE, i.e., r.

6 cout « ans « endl;
else {
for (const char &c : K[nwa[d] - 't']) {

ans[d] • c;
10 pbone_mnemonic_helper(num, d + 1, ans);
)1~I}
14
~ void pbone_an.aonic(const string &nua)
16 string ans(nua.size(), 9);
17 phone_lIIneaonic_helper(num,9, ans);
18 }

206 Solution 6.23



207

ElementsOfProgramminglnterviews.com

template <typenaae 1>
9 void append_node_and_advanceCshared_ptr<node_t<1» &head,
10 shared_ptr<node_t<T» &tail,
II shared_ptr <node_t<1» &n) {

6 }

1 template <typename T>
2 void append_node(shared_ptr<node_t<T» &head, sbared_ptr<node_t<1» &tail,

shared_ptr<node_t<1» &n) {
head? tail->next = n : head = n;
tail = n; /1 reset tail to the last node

Problem 7.1,pg.63: Write a function that takes Land F, and returns the merge of L
and F. Your code should use 0(1) additional storage-it should reuse the nodes from the
lists provided as input. Yourfunction should use 0(1) additional storage, as illustrated in
Figure 7.3 on Page 63. The only field you can change in a node is next.

Solution 7.1:Wetraverse the lists, usingonepointer per list, eachinitialized to the list
head. Wecompare the contents of the pointer-the pointer with the lesser contents
is to be added to the end of the result and advanced. If either pointer is null, we add
the sublist pointed to by the other to the end of the result. The add can be performed
by a single pointer update-it does not entail traversing the sublist. Theworst case
time complexitycorresponds to the casewhen the lists are of comparable length. In
the best case, one list is much shorter than the other and all its entries appear at the
beginning of the merged list.

s-Variant 6.23.1: Solvethe same problem for regular expressionswithout the A and
$operators.

19
~ return is_match_here(r.substr(2) , 5).
21
22

23 II Case (3.)
2t return Is.empty() && (r.front() == '.' I I r.front() =. s.front(») &&
23 is_match_here(r.substr(l), s.substr(l»;
Z6
Xl
~ bool is_match(const string &r, const string &5) {
29 II Case (2.) : starts wi th 'A'
so if Cr.front0 ." "') {
SI return is_match_here(r.substrCl), S);

32

"34 for Cint i • &; i <= s.sizeC); Hi) {

35 if Cis_match_here(r, s.substr(i))) {
36 return true;
37

38
39 return false;
to

Solution 7.1



ElementsOfProgramminglnterviews.com

Problem 7.2, pg. 63: Given a reference to the head of a singly linked list L, how would
you determine whether L ends in a null or reachesa cycle of nodes? Write afunction that
returns null if there doesnot exist a cycle, and the referenceto the start of the cycle if a cycle
is present. (You do not know the length of the list in advance.)

Solution 7.2:Thisproblem has severalsolutions. If space is not an issue, the simplest
approach is to explore nodes via the next field starting from the head and storing
visited nodes in a hash table-a cycle exists iff we visit a node already in the hash
table. If no cycle exists, the search ends at the tail (oftenrepresented by having the
next field set to null). This solution requires Sen)space, where n is the number of
nodes in the list.

In some languages, e.g., C, the next field is a pointer. Typically,for performance
reasons related to the memory subsystem on a processor, memory is allocated on
word boundaries, and (at least) two of the least Significantbits in the next pointer are
O.Bit fiddling can be used to set the least significantbit on the next pointer to mark
whether a node as beenvisited. This approach has the disadvantage ofchanging the
data structure-these updates can be undone later.

Another approach is to reverse the linked list, in the manner of Solution 7.9 on
Page 215. If the head is encountered during the reversal, it means there is a cycle;
otherwise we will get to the tail. Although this approach requires no additional
storage, and runs in O(n) time, it does modify the list.

A naive approach that does not use additional storage and does not modify the

s-Variant 7.1.1: Solve the same problem when the lists are doubly linked.

return sorted_head;

II Append the re.aining nodes of L .
if (L) {

append_node(sorted_head. tail. L);

II Append the re••jning nodes of F
if (F) {

append_node(sorted_head. tail. F);

12 append_node(head. tail. n);
13 n. n->next; II advance n
14 }
15
16 template <typename T>
17 shared_ptr<node_t<T» ~erg._sorted_linked_lists(shared_ptr<node_t<T» F.
IS shared_ptr<node_t<T» L)
19 shared_ptr<node_t<T» sorted_head • nullptr. tail. nullptr;

20
21 while (F && L) {
~ append_node_and_advance(sorted_head. tail. F->data < L->data ? F L);
Z3

Solution 7.2208



ElementsOfprogramming~terviews.com

while (slow && slow->next && fast && fast->next .&& fast->next->next) {
slow = slow->next. fast = fast->next->next;

7j II Found cycle
si if (51011 == fast) {

II Calculate the cycle length
10 int cycle_len = 19;
II do {
12 ++cycle_len;
19 fast = fast->next;
14 while (slow != fast);
15

161 II Try to find the start of the cycle
17 slow = head. fast = head;
IS II Fast pointer advances cycle_len first
19 while (cycle_len --) {
w fast = fast->next;
21
n II Both pointers advance at the same time

I template <typename T>
2 shared_ptr<node_t<T» has_cycle(const shared_ptr<node_t<T» &head)

shared_ptr<node_t<T» fast = head. slow = head;

Now, assuming that we have detected.a cycle using the above method, we find
the start of the cycle,by first calculating the cyclelength. Wedo this by freezing the
fast pointer, and counting the number of timeswe have to advance the slow pointer
to comeback to the fast pointer. Consequently,we set both slow and fast pointers
to the head. Then we advance fast by the length of the cycle, then move both slow
and fast one at a time. The start of the cycle is located at the node where these two
pointers meet again.

The code to do this traversal is quite simple inC++:

list is to walk the list in two loops-the outer loop visits the nodes one-by-one, and
the inner loop starts from the head, and visits m nodes, where m is the number of
nodes visited in the outer loop. If the node being visited by the outer loop is visited
twice, a loop has been detected. (If the outer loop encounters the end of the list, no
cycleexists.) This approach has O(n2) time complexity.

This idea can be made to work in linear time-use a slow pointer, slow, and a fast
pointer, fast, to visit the list. In each iteration, advance slow by one and fast by
two. The list has a cycleiff the two pointers meet.

This is proved as follows.
Proof:

Number the nodes in the cycleby assigning first node encountered the index O.
LetCbe the total number of nodes in the cycle. If the fast pointer reaches the first
node at iteration F, at iteration i~F, it will be at node 2(i - F) mod C. If the slow
pointer reaches the first node at iteration 5, at iteration i ~ 5, itwill be at node
(i - 5) mod C. The differencebetween the pointer locations after the slow pointer
reaches the first node in the cycle is 2(i - F) - (i - 5)mod C = i - (2F- 5)mod C.
As iincreasesby one in each iteration, the equation (i - (2F- S» mod C = 0has a
solution.

209Solution 7.2



£lernentsOiProgrammingInterviews.com

II Check all nodes are identical or not and identify the start of list

1 te_plate <typename T>
2 double find_median_sorted_circular_linked_list(

const .hared_ptr<node_t<T» &r_node) {
if (Ir_node) {

return 8.8; II no node in this linked list

Problem 7.3,pg. 63: Write afunction that takes a sorted circular singly linked list and a
pointer to an arbitrary node in this linked list, and returns the median of the linked list.

Solution 7.3:Wecan solve this in stages. First we findn, the number of nodes. Then
we identify the first node f with the minimum element. Finally,we return the L¥J-th
element if n 4> odd, with f being the O-thelement, and the average of the ~-thand
(~ + l)-th elements if 11 is even. One comer case to watch out for is all entries being
equal, which we check for in the first stage since we cannot find the first node with
the minimum element.

return nullptr: II means no cycle

return slow: II slow is the start of cycle

while (slow && slow->next && fast && fast->next && fast->next->next) {
slow = slow->next, fast = fast->next->next;
II Found cycle
if (slow == fast) {

II Try to find the start of tbe cycle
slow = head;
II Botb pointers advance at the sa•• time
while (slow I; fast) {

slow = slow->next, fast; fast->next:

1 template <typenaae T>
2 shared_ptr<node_t<T» has_cycle(const shared_ptr<node_t<T» &head) {

shared_ptr<node_t<T» fast. head, slow = bead;

E-VarianI7.2.1: The following program purports to compute the beginning of the
cycle without determining the length of the cycle; it has the benefit of being more
succinct than the code listed above. Is the program correct? '

'0

lS
~ return nullptr; II no cycle
30

2)

14

U
~ return slow; II the start of cycle

while (slow 1- fast)
slow. slow->next, fast; £ast->next;

Solution 7.3210



ElementsOfProgr~minglnterviews.com

1 II Count the list length till end
2 template <typ.name T>
3 int count_len(shared_ptr<node_t<T» L) {

tnt len. $;
while (L) {

+..len. L • L->next;

Problem 7.4,pg. 64: Let hI and h2 be the heads of lists Ll and L2, respectively. Assume that
L1and L2 are well-formed, that is each consists of a finite sequence of nodes. (In particular,
neither list has a cycle.) How would you determine if there exists a node r reachable from
both hI and h2 by following the next fields? If such a node exists, find the node that appears
earliest when traversing the lists. You are constrained to use no more than constant additional
storage.

Solution 7.4:The lists overlap iff both have the same tail node: since each node has
a single next field, once the lists converge at a node, they cannot diverge at a later
node. Let ILl denote the number of nodes in list 1. Checking overlap amounts to
finding the tail nodes for each, which is easily performed in OOLlI+ IL21) time and
0(1) space. Tofind the firstnode, we proceed as above, and in addition we compute
IL11 and IL21· The first node is determined by first advancing through the longer list
by IILII-IL211nodes, and then advancing through both lists in lock-step, stopping at
the first common node.

shared_ptr<node_t<T» curr ..r_node. start r_node;
10 int count .. \9;
11 bool is_identical = true;
12 do {
13 if (curr->data 1= curr->next->data)
14 is_identical = false;
15

16 ....count. curr • curr->next;
17

18 II start will point to the largest element in the list
19 if (start->data <= start->next->data)
~ start. start->next;
21
u whila (curr I- r_node);
13 II If all values are identical. median = curr->dau
24 if (is_identical == true) {
~ return curr->data;
26
27

28 II Since start point to the largest element. its next is the start of list
29 start .. start -onaxt :
30

31 II Traverse to tbe middle of the list and return the median
32 for (int i • $: i < (count - 1) » 1; ..+i) {
33 start • start ->next ;
34
33 return count & 1 ? start->data : \9.5 • (start->data + start->next->data);
36'-------_ _._ .._ _ _----

Solution 7.4 211



ElementsOfProgramminglnterviews.com

Problem 7.5,pg. 64: Solve Problem 7.4on Page 64for the casewhere L1and L2may each
or both have a cycle. If such a node exists, return a node that appearsfirst when traversing
the lists. This node may not beunique-ifLl hasa cycle (no,n1,' .. r nk-u no), where no is the
first node encountered when traversing Ll, then L2 may have the same cycle but a different
first node.

Solution 7.5: Suppose that one, or both, of the lists may have a cycle. Using the
approach inSolution7.2on Page 208,we can determine inlinear time and 0(1) space
whether the lists have a cycle. If neither is cyclic,the lists are well-formed, and we
can checkoverlap using the technique in Solution 7.4on the preceding page. If one
iscyclic,and the other isnot, they cannot overlap.

Figure 21.4: Overlapping llsts,

~ I

Figure 21.4shows an example of lists which overlap and have cycles. For this
example, bothA and B are acceptableanswers.

::1 }
17

18 te~lat. <typen... T>
19 shared_ptr<node_t<T» overlapping_no_eyele_listsCshared_~tr<node_t<T» Ll,
lO sharecLptr<node_t<T» L2)
:n II Count we lengths of Ll and LZ
~ iut ll_len = eount_len<T>Cll), l2_len • eount_len<T>Cl2):
23

24 II Advanee the longer list
~ advanee_list_by_kCll_len> l2_len ? II l2, absCll_len - l2_len»;
26
211 IIhileCli && L2 &&t II 1= l2) {
281 LI - ll->next, L2 = l2->next;
29i~I return ll; II nullptr means no overlap between Ll and L2
311 }
!

9 }

10
11 template <typen..e T>
12 void advanee_list_by_kCshared_ptr<node_t<T» &L. int k) {

~ while Ck--) {
14 l • L->next:

return len:

Solution 7.5212



213

ElementsOfProgrammingInterviews.com

12 oddccurr-onext ~ even_curr ->next;
13 odd_curr c odd_curr ->next;
14

even_curr = even_curr->next;
if (even_curr) {

pre_even_curr = even_curr;
even_curr->next = odd_curr->next;

&L) {
IItemplate <typename T>
2[ shared_ptr cnode.; t <T» even_odd_merg e(canst shared_ptr <node_t<T»
3, shared_ptr<node_t<T» odd = L ? L->next : nullptr;
41 shar edcpt r cncde.rt<T» odd_curr = odd;
51 shared_ptr<node_t<T» pre_even_curr nullptr, even.icur-r L;
6!
I

7' while (even_curr && odd_curr) {

81

1:1
ui

Solution 7.6:Wemaintain two pointers, one iterates through the even elements, the
other iterates through odd elements. Weupdate the next field of the even pointer to
the next of the odd pointer, and vice versa. Finallywe update the next field of the
last of the even elements to the head of the odd list. Care has to be taken to handle
odd/even length lists uniformly, and to correctlyprocess extreme cases (first and last
nodes).

Problem 7.6,pg.64: Write a function that takes a singly linked list L, and reorders the
elements of L so that the new list represents even-odd(L). Your function should use 0(1)
additional storage, as illustrated in Figure 7.6 an Page 65. The only field you can change in
a node is next.

15
16i return nullptr; II one list bas cycle, one list bas no cycle
17 }

10 shared_ptr<node_t<T» temp - 52 ;
11 do {

12 temp = temp-onext ;
IS } while (temp I; sl && temp 1= 52);
14 return temp == 51 ? sl : nullptr;

if (ls1 && 152) {
return overlapping_no_cycle_lists(L1. L2);
else if (sl && s2) { II both lists bave cycles

II Store the start of cycle jf any
shared_ptr<node_t<T» sl = has_cycle<T>(Ll). 52 a has_cycle<T>(L2);

I template <typename T>
2 shared_ptr<node_t<T» overlappino_lists(shared_ptr<node_t<T» Ll,

shared_ptr<node_t<T» L2)

If both are cyclic,and overlap, the cyclesmust be identical Use the technique in
Solution 7.2 on Page 208 to obtain nodes al and a2 on the cycle of Ll and L2. Visit
the cycle from al, stopping when al reappears. If a2 appears during this visit, the
cyclesare identical; otherwise, they are disjoint-the lists have no overlap. If there is
an overlap, the problem specificationallows us to return either al or a2. It is readily
verified that the entire computation runs in O(lLlI + IL21)time and uses 0(1) space.

Solution 7.6



ElementsQ£Programminglnterviews.com

a
9

1 teaplate <typen..e T>
2 void reaove_kth_last(sbared_ptr<node_t<T» &L, const int &k) {

II Advance k steps first
shared_ptr<node_t<T» ahead. L;
int nUIlI= k;
while (ahead && nua--)

ahead = ahead->next;

Problem 7.8, pg. 65: Given a singly linked list Land a number k, write afunction to remove
the k-th last element from L. Your algorithm cannot use more than afew words of storage,
regardless of the length of the list. In particular, you cannot assume that it is possible to
record the length of the list.

Solution 7.8: We use two pointers, curr and ahead. First, the ahead pointer is
advanced by k steps, and then curr and ahead advance in step. When ahead reaches
null, curr points to the k-th last node in L, and we can remove it. Following is the
code in C++:

5 }

1 te89late <typenaae T>
2 void deletion_froll_list{const shared_ptr<node_t<T» &v)

v->data = v->next->data;
v->next - v->next->next;

Solution 7.7: This is more of a trick question than a conceptual one. Given the
pointer to a node, it is impossible to delete it from the list without modifying its
predecessor's next pointer and the only way to get to the predecessor is to traverse
the list from head. However it is easy to delete the next node since it just requires
modifying the next pointer of the current node. Now ifwe copy the value part of the
next node to the current node, this would be equivalent to deleting the current node.

Inpractice this approach would not be acceptable, since it corrupts pointer-valued
variables that point to v's successor.

Problem 7.7, pg. 65: Let v be a node in a singly linked list L. Node v is not the tail; delete
it in 0(1) time.

IS
16
17 II Odd nu.ber of nodes
18 if (even...curr){
19 pre_even_curr • even_curr;
20
21 II Prevent empty list
n if (pre_even_curr) {
~ pre_even...curr->next odd;

:1 !eturn L;
26l2_

Solutio" 7.8214



ElementsOfprogramminglnterviews.com

I template <typename T>
2 shared_ptr<node_t<T» reverse_linked_list(const shared_ptr<node_t<T» &head) {

shared_ptr<node_t<T» prey = nullptr. turr = head:
while (curr) {

shared_ptr<node_t<T» temp = curr->next;
curr->next = prey:
prev curr:
curr : temp;

Iterative implementation:

shared_ptr<node_t <T» new_head reverse_linked_list (head->next) ;
head->next->next = head;
head->next = nullptr;

10 return new_head:
11 }

I t~mplate <typenaae T>
2 shared_ptr<node_t<T» reverse_linked_list(const shared_ptr<node_t<T» &head) {

if (Ihead I I Ihead->next)
return head:

Problem 7.9,pg. 65: Give a linear time non-recursive function that reverses a singly linked
list. The function slwu/d use no more than constant storage beyond that needed for the list
itself The desired transformation is illustrated in Figure 7.7 on Page 65.

Solution 7.9: The natural way of implementing the reversal is through recursion.
However, this approach implicitly uses 6(n) space on the stack. The function is not
tail recursive,which precludes compilers from automatically converting the function
to an iterative one.

Reversalcanbeperformed iteratively-walk the listwith twopointers, and update
the trailing pointer's next field. It uses 0(1) additionciIstorage, and has 6(n) time
complexity.

Recursive implementation, uses 9(n) storage on the function call stack:

10 if (num) {
11 throw length_error("not enough nodes in t,helist");
12
IS
U shared_ptr<node_t<T» pre D nullptr. curr • L:
15 II Find the k-th last node
16 while (ahead) {
17 pre = curr :
IS curr : curr->next. ahead ahead->next;
IP

20 if (pre)
21 pre->next = curr->next;
22 else {
2' L = curr->naxt; II special case: delete L

2'
25

215Solution 7.9



ElementsOfProgramminglnterviews.com

Solution 7.11: The problem can be solved in a straightforward manner-find the
middle of the list, reverse the second half, and then interleave the first and second

Problem 7.11, pg. 66: Write afunction that takes a singly linked list L, and reorders the
elements ofL toform a new list representing zip(L). YOlIrfunction should use 0(1) additional
storage, as illustrated in Figure 4.1 an Page 25. The only field yOll can change in a node is
next.

Variant 7.10.1: Solve the same problem when the list is doubly linked and you have
pointers to the head and the tail.

return false;
!;L->data)if (reverse->data

shared_ptr<node_t<T» reverse; reverse_linked_list<T>(slow);
while (reverse && L) {

II Compare the first balf and reversed second half lists

slow->next;fast ; fast-c-next, slow

fast ~ fast->next;
if (fast) {

L) {
1 template <typename T>
21bOOl is_linked_list_a_palindrome(shared_ptr<node_t<T»
31 II Find ~he middle point of L
'I shared_ptr<node_t<T» slow; L. fast; L;
51 while (fast) {

;1
8i

91
101:~I
131

~I
161
171
181 reverse; reverse->next. L L->next;

: return true;
21 i}

Problem 7.10, pg.66: Write a[unction that determines whether a sequence represented by
a singly linked list L is a palindrome. Assume L can be changed and does not have to be
restored it to its original state.

Solution 7.10: Checking if two lists represent the same sequence is straightforward.
Therefore one way to check if a linked list is a palindrome is to reverse the second half
of the list and compare it with the first half. The middle element can be determined
by using a slow pointer and a fast pointer technique (Solution 7.2 on Page 208), and
reversing a singly linked list can be performed using Solution 7.9 on the previous
page.

This approach changes the list passed in, but the reversed sub list can be reversed
again to restore the original list.

return prevo9110

IIL_} --J

Solution 7.11216



L;

217

ElernentsOfProgramminglnterviews.com

Problem 7.12,pg. 66: Implement afunction which takes as input a pointer to the head of a
postings list L, and returns a copy of the postings list. Your function should take O(n) time,
where n is the length of the postings list and should use 0(1) storage beyond that required
for the n nodes in the copy. You can modify tIle original list, but must restore it to its initial
state before returning.

~ !I connect curr->next to reverse, and advance curr
31 connect_a_next_to_b_advance_a(curr, reverse);
~ if (curr) (
~ II connect reverse->next to curr, and advance reverse
~ connect_a_next_to_b_advance_a(reverse, curr);
35

36
37 return L;
as

zs
21

28 I I Zipping the list
29 wbile (curr && reverse)

pre_slow->next '"nullptr; II split the list into two lists
shared_ptr<node_t<T» reverse = reverse_linked_list<T>(slow), curr

return L; II only contains one node in the list
if (Ipre_slow) {

9 template <typenaae T>
10 shared_ptr <node_t<T» zippin9_linked_lin (const sbarecLptr <node_t <T» &L) {
II shared_ptr<node_t<T» slow'" L, fast. L, pre_slow '"nullptr;
12

13 II Find the middle point of L
14 while (fast) {
15 fast = fast -xnext ;
16 if (fast) {
11 pre_slow = slow;
18 fast '"fast -o-nex t , slow slow->next;
19
20

21

22j
231

:1

1 }

I template <typaname T>
2 void connect_a_next_to_b_advance_a(shared_ptr<node_t<T» &a,

const shared_ptr<node_t<T» &b) {
shared_ptr<node_t<T» temp = a->noxt;
a->1'\(1xt • b;
a = temp;

halves. The middle element can be determined by using a slow pointer and a fast
pointer (Solution 7.2 on Page 208), and reversing a singly linked list can be done
using Solution 7.9 on Page 215. Interleaving is performed by walking the two lists
and updating next field from the first list to the corresponding element in the second
list, and vice versa.

Though this algorithm is conceptually simple, corner cases abound: the empty
list, lists of length I, and even/odd lengths lists.

Solution 7.12



ElementsOfprograztmingInterviews.com

7

a II Jst stage: copy tbe nodes from L
9 sbared_ptr<node_t<T» p ~ L;
10 IIhile (p) {
11 auto ~ellp'"
12 shared_ptr<node_t<T»(nell node_t<T>{p->data, p->nex~, nullp~r});
13 p->next • tellp;
It p = ~emp->nex~;
15
16
17 II 2nd stage: update tbe jump field

I template <typename T>
2 sbared_ptr<nod._~<T» copy_postings_list(const sbared_ptr<node_t<T» &L)
3 II Return e8pty list if L is nullptr

if (IL) {
5 return nullptr;

Code implementing the copy is given below:

Figure 21.5: Duplicating a postings list.

(d) AfterSl~ (3.).(c)AllerStage(2.).

(b) After Stage (1.).(a) In!tiaIlist.

Solution 7.12:Wedo the copy in following three stages:
(1.) First we copy a node Cx per node x in the original list, and when we do the

allocation, we set ex's next pointer to x's next pointer, then update x's next
pointer to ex. (Note that this does not preclude us from traversing the nodes of
the original list..)

(2.) Then we update the jump field for each copied node ex; specifically,if y is x's
jump field, we set ex's jump field to cy, which is the copied node of y. (Wecan
do this by traversing the nodes in the original list; note that cy is just y'S next
field.)

(3.) Now we set the next field for each x to its original value (which we get from
cx's next field), and the next field for each C:t to Cn(x), where n(x) is x's original
next node.

These three stages are illustrated in Figures 21.5(b)to 21.5(d)on the current page.

Solution 7.12218



ElementsOiPrograrnm1nglnterviews.com

10
II const T &max(void) const {
12 if (empty () •• false) {
u return s.top().second;
14

15 throw length_error("elllpty stack");

public:
const bool cmpty(void) const {

return s.empty();

I template <typename T>
2 class Stack {

private: .
stack<pair<T, T» s;

Problem 8.1, pg.67: Design a stack that supports a max operation, which returns the
maximum value stored in the stack, and throws an exception if the stack is empty. Assume
elements are comparable. All operations must be 0(1) time. You can use O(n) additional
space, beyond what is requiredfor the elements themselves.

Solution 8.1:A conceptually straightforward approach to tracking the maximum is
store pairs in a stack. The first component is the keybeing pushed; the second is the
largest value in the stack after the push is completed. When we push a value, the
maximum value stored at or below any of the entries below the entry just pushed
does not change. The pushed entry's maximum value is simply the larger of the
value just pushed and the maximum prior to the push, which can be determined by
inspecting the maximum field of the element below. Sincepopping does not change
the values below, there is nothing special to be done for pop. Of course appropriate
checkshave to be made to ensure the stack is not empty.

This approach has 0(1) time complexity for the the specifiedmethods. The addi­
tional space complexity is E>(n), regardless of the stored keys.

18 p. L;
19 while (p)
20 if (p-> jump)
21 p->next ->jump ..p-»jump ->next;
22
~ P • p->next->next;
24

25

M II 3rd stage: restore tbe next field
'11 p. L;
~ shared_ptr<node_t<T» copied. p->next;
~ while (p->next) (
00 shared_ptr<nod._t<T» temp = p->next;
'1 p->next • t ••p->next;
52 p • temp;
33
34 return copied ;
35

219Solution 8.1



ElementsOfProgramminglnterviews.com

const bool empty(void) const {
9 retUrn s.empty();

10,
II

12 const T &max(void) const {
13 if (emptyO •• false) (
I, return aux.top0 .first;
15
16 throw length_error("empty stack");

public:

II'teaplate<typename T>
2 class Stack {

31 private:
, stack<T> s;
5 stack<pair<T, tnt» aux;
6j

Heuristically, the additional space required can be reduced by maintaining two
stacks, theprimary stack,which holds the keysbeing pushed, and an auxiliarystack,
whose operation we now describe.

The top of the auxiliary stack holds a pair. The first component of the pair is the
maximum key in the primary stack. The second component is the number of times
that key appears in the primary stack.

Let m be the maximum key currently in the primary stack. There are three cases
to consider when a key k is pushed.

1. k is smaller than m. The auxiliary stack is not updated.
2. k is equal to m. Weincrement the second component of the pair stored at the

top of the auxiliary stack.
3. k is greater than m.The pair (k,1) is pushed onto the auxiliary stack.

There are two cases to consider when the primary stack is popped. Let k be the
popped key.

1. k is less than m. The auxiliary stack isnot updated.
2. k isequal to m.Wedecrement the second component of the top of the auxiliary

stack. If its value becomes 0,we pop the auxiliary stack.
These operations are illustrated in Figure 21.6 on Page 222.

void pusb(const T &x) {
s.emplace(x. std::max(x. empty() ? x s.top().second»;

throw lengtb_error("empty stack");

T pop(void)
if (empty() •• false) {

T ret = s.top().first;
s.popO:
return ret;

Solution 8.1220

161
17

18

19

20

:n
22

23

2'
25

=118
251

30 };



ElementsOfProgramminglnterviews.com

Problem 8.2,pg.68: Write a function that takes an arithmetical expression in RPN and
returns the number that the expression evaluates to.

Solution 8.2:Conceptually,the algorithm for evaluating an RPNexpression iterates
through the string from left-to-right. It tokenizes the input into numbers and op­
erators. Numbers are pushed onto a stack. When an operator is read, if it takes k
arguments, and there are fewer than k numbers on the stack, a parse error exception
is thrown. Otherwise, the expression is evaluated by popping the top k elements of
the stack and the operator; the result is pushed back on the stack. When no tokens
are left, the only one value left on the stack is the result; otherwise a parse error is
declared.

"'"' ""(<0 ..... d., ••) {
2 stack<int> eval_stack;
3 string stream 55(5);

Theworst-case additional space complexity is 8(n),which occurswhen each key
pushed is greater than all keys in the primary stack. However, when the number
of distinct keys is small, or the maximum changes infrequently, the additional space
complexity is less, 0(1) in the best case. The time complexity for each specified
method is still 0(1).

else {
aux.emplace(x. 1);

void push(const T &x) {
s.emplace(x);
if (aux.empty() == false)

1f (x == aux.top() .first)
++aux.topl).second;
else if (x> aux.top().first)
aux.emplace(x, 1);

throll length_error("empty 'tack") j

return retj

T pop (void) {
if (emptyO == false)
T ret e s.top();
s ,popO j
if (ret == aux.top().first)

--aux.top().secondj
1f (aux.top().second =a ~) {

aux. popO j

17

18

19

20
21

n
23
24

25
26

27

28

29
30

31

32

33

34
35

36
37

38
39

40

41

42

43,.
45

46 } ;
I

221Solution 8.2



ElementsOiProgrammingInterviews.com

€-Variant 8.2.1: Solve the same problem for expressions inPolish notation, Le.,when

vi eval_stack.emplace(stoi(symbol));

:1
~I return eval_stack.top();
31i }

23

24
2S
26 else { II number

eval_stack.emplace(x w y);
break;

case '/':
eval_stack.emplace(x / y);
break;

../") {"." II symbolII symbol
while (getline(ss, symbol, " '))
if (sYJIlbol== "+" II syntbol

int y = eval_stack.top();
eval_stack.pop();
int x = eval_stack.top();
eval_stack.pop();
switch (symbol.front()) {

case '+ I:
eval_stack.emplace(x + y);
break;

case ,_ I:
eval_stack.emplace(x - y);
break;

case '. t :

string symbol;

Figure 21.6: The primary and auxiliary slacks for the foliowing operations: push(2), push(2),
push(l), push(4), pusheS), push(S), push(3), pop() , pop() , pop() , pop() ,
push(&), push(3). Both stacks are initially empty. and their progression is shown from lett-to­
right. then top-to-bottom. The lop of the auxiliary stack holds the maximum element in the stack, and
the number of times that element occurs in the stack. The auxiliary stack is denoted by aux.

au:<auxall'>:

QIIXau:<au:<

Solution 8.2222



223

ElementsOfProgrammingInterviews.com

1 template <typename T>
21 void search_postings_list_helper(const shared_ptr<node_t<T» &L,

~51 tnt &order) {
• if (L && L->order == -1) {

L->order = order++;
61 search_postings_list_helper<T>(L->jump, order);
711 search_postings_list_helper<T>(L->next, order);

: }

101

Problem 8.4, pg.68: Write recursive and iterative routines that take a postings list, and
computes the jump-first order. Assume each node has an order field, which is an integer
that is initialized to -1 for each node.

Solution 8.4: Recursion is natural-if the current node is unvisited, update the
current node's order, visit the jump node, then visit the next node. The iterative
solution mimics the recursive algorithm using a stack to push nodes that need to be
visited. Becauseof a stack's last-in, first-outsemantics, the next node ispushed first,
since it is to be visited after the jump node. Recursive implementation:

while (Is.empty() II curr) {
if (curr) {

s.push(curr);
9 curr curr->left;
10 else {
11 curr = s.top();
12 S. popO;
13 cout « curr -odat a « endl;
H curr • curr->right;
15
16
17 }

1 template <typename T>
2 void print-BST_in_sorted_order(const shared_ptr<BinarySearchTree<T» &n) {

stack<shared_ptr<BinarySearchTree<T»> 5;
shared_ptr<BinarySearchTree<T» curr = n;

Solution 8.3: The recursive solution is trivial-first print the left subtree, then print
the root, and finally print the right subtree. This algorithm can be converted into a
iterative algorithm by using an explicit stack. Several implementations are possible;
the onebelow is noteworthy in that it pushes the current node, and not its right child,
and it does not use a visited field.

Problem 8.3, pg. 68: Given a BST node n, print aU the keys at n and its descendants. The
nodes should be printed in sorted order, and you cannot use recursion. For example, for
Node I in the binary search tree in Figure 14.1 on Page 105 you should print the sequence
(23,29,31,37,41,43,47,53).

A,B,o is replaced by o,A,B in Rule (2.)on Page 68.

Solution 8.4



ElementsO!Programminglnterviews.com

9

10
11
12 void lIlove_tower..hanoi(constint &n) {
15 array<stack<int>, 3> pegs;
If / / Ini tialize pegs
15 for (int i = n ; i >= 1: --i)
161 pegs[9].push(!):

if Cn > 9) {
transfer(n - I, pegs, from, use, to);
pegs[to].push(pegs(fro.].top(»;
pegs[from].pop();
cout « "!lovefrollpeg" « from « " to peg" « to « endl;
transfer(n - I, pegs, use, to, from);

1 void transfer(const int &n, arraycstackcdnt», 3> &pegs,
const int &from, const int &to, const int &use) {

Problem 8.5,pg. 69: EXIlctly n rings on PI need tobe transferred toPl, possibly using P3
as an intermediate, subject to the stacking constraint. Write afunction that prints a sequence
of operations that transfers all the rings from P1 toPl.

Solution 8.5:Number the n rings from 1 to n. Transfer these n rings fromPI ton as
follows.

1. Recursively transfer n - 1 rings fromPI to P3 usingn.
2. Move the ring numbered n - 1 fromP1 ton.
3. Recursivelytransfer the n - 1 rings on P3 toPl, using Pl.

This is illustrated in Figure 21.7on the next page. Code implementing this idea is
given below.

8

~I
staclc<shared_ptr<node_t<T»> s;
int order = 8:
s.elllplace(L):
while (ls.empty(»

shared_ptr<node_t<T» curr • ,.top():
s.popO;
if (curr && curr->order == -1) {

10 curr->order = order++;
11 s.emplace(curr->next);
12 s.emplace(curr->jump);

I template <typen... T>
2 void search_postings_list(const shared_ptr<node_t<T» &L) {

Iterative implementation:

11 te.plate <typename T>
12 void search_postings_list(const sbared_ptr<node_t<T» &L) {
15 int order = 9;
l' search_postings_list_helper<T>(L, order);
15

Solution 8.5224



ElementsOfProgramminglnterviews.com

Problem 8.6, pg.69: Design an algorithm that processes buildings as they are presented
to it and tracks the buildings that have a view of the sunset. The number of buildings is
not known in advance. Buildings are given in east-to-west order and are specified by their
heights. The amount of memory your algorithm uses should depend solely on the number of
buildings that have a view; in particular it should not depend on the number of buildings

Variant 8.5.5: Find the minimum number of operations ifyou have a fourth peg, P4.

e-Variant 8.5.4: Find the minimum number of operations when the stacking con­
straint is relaxed to the followlng=the largest ring on a peg must be the lowest ring
on the peg. (The remaining rings on the peg can be in any order, e.g., it is fine to have
the second-largest ring above the third-largest ring.)

e-Variant 8.5.3: Find the minimum number of operations subject to the constraint
that a ring can never be transferred directly from PI to P2 (~ansfers from P2 to PI
are allowed). .

s-Variant 8.5.2: Find the minimum number of operations subject to the constraint
that each transfer must be from PI to P2, P2 to P3, or P3 to PI.

e-Variant 8.5.1: Find the minimum number of operations subject to the constraint
that each operation must involve P3.

transfer(n. pegs, $, 1, 2); I
........................................._ _-__. _-_.__.-___._..___j

17

18

19

20 }

Figure 21.7: A recursive solution to the Towers of Hanoi for n = 6.

(d) SoIvedI(c) Move P3 ton using Pl.

P3P2PIP3P2Pi
I ~ I

(b) Move the lowest dlsc from PI ton.(a) Move all but the lowest disc from PI to P3.

P3P2PlP3P2Pi

@ I I

225Solution 8.6



ElementsOfProgramminglnterviews.com

5 else {

6 T f = S.topO;
S.popO;
insert(S, e);

9 S.push(f);

1 template <typename T>
2 void insert(stack<T> &S, const T &e)

if (S.empty() II S.top() <= e) {
S.push(e);

Problem 8.7,pg. 69: Design an algorithm to sort a stack Sof numbers in descending order.
The only operations allowed are push, pop, top (which returns the top of the stack without
a pop), and empty. You cannot explicitly allocatememory outside of afew words.

Solution 8.7: We use recursion-pop the stack and store the result in e, sort the
popped stack, then insert the popped element in the right place. The insertion is also
done using recursion=-if e issmaller than top, then push e and return, elsedo a pop
and store the result in f, insert e in the popped stack, then push f. For both the sort
and the insert functions the empty stack is the base case. This implementation uses
8(n) storage on the function call stack:

e-Variant 8.6.1: Solve the problem subject to the same constraints when buildings
are presented inwest-to-east order.

II Returns buildings with its index and height.

buildings_with_sunset.emplace_back(idx++, height);

1 template <typename T>
2Ivector<pair<int, T» examine_buildings_with_sunset(istringstream &sin)
31 int idx = &; II building's index
4 T height;
sj II Stores (building_idx, building_height) pair with sunset views
61 vector<pair<int, T» buildings_with_sunset;
71 while (sin » height) {
8, while (buildings_with_sunset.empty0 == false &&
9i height >= buildings_with_sunset.back().second)
101 buildings_with_sunset .pop_backO ;

111

::1
1,1
151
161 return buildings_with_sunset;
17h

s

processed.

Solution 8.6: We use a stack to record buildings that have a view. Each time a
building b isprocessed, if it is taller than the building at the top of the stack,we pop
the stack until the top of the stack is taller than Ir-all the buildings thus removed lie
to the east of a taller building.

Although some individual steps may require many pops, eachbuilding is pushed
and popped at most once. Therefore the run time to process n buildings isO(n), and
the stack always holds precisely the buildings which currently have a view.

Solution. 8.7226



ElementsOfProgramminglnterviews.com

string token;
while (getline(ss, 'token, 'I'»

if (token == " .. H) {

vector<string> s; II Use vector as a stack
II Special case: starts with "I", which is an absolute path
if (path.front() == 'I') {

Ii string normalized_path_names(const string &path) {

:1
!

4 !
51
6j
I

:1 stringstream ss (path) ;

91

s.emplace_back("/");

Here + denotes one ormore repetitions or the preceding token, and ? denotes 0or 1occurrences
of the preceding token. You should throw an exception on invalid path names.

Solution 8.8:Thesolution uses a stackwhich will hold the path. Thecandidate string
is parsed from left to right, splitting on I. A leading I is pushed on the stack-this
must be an absolute path name. Consequent names are pushed on the stack. Any ..
causes a pop of a nonempty stack; if the stack is empty, .. is pushed onto the stack.
Any . is skipped.

Theerror conditions are trying topop a stackwhich begins with I,and a substring
which is not a name, the empty string, ., or .. , separated by I.

The finalstate ofthe stack directlycorresponds to the shortest equivalent directory
path. The argument is based on representing the directory hierarchy as a tree rooted
at the root. The directory we compute is a shortest path in the tree. If the bottom of
the stack is /, the path is absolute, otherwise it is relative.

name ;;:: [A - Za -zO - 9]+
spdir = . I ..

pathname = name I spdir I [spdir I name I pathname]?/+ pathname?

Problem 8.8,pg.69: Write a function which takes a path name, and returns the shortest
equivalent path name. Assume individual directories and files have names that use only
alphanumeric characters. Subdirectory names may be combined using forward slashes (/),
the current directory (.), and parent directory ( .. ). The formal grammar is specified as
follou»:

10

11 }

12

IS template <typenallle T>
14 void sort (stack<T> &5)
15 if (15. ellpty 0) {
16 Tee 5. top 0 ;
11 5. popO;
18 sort (S);
19 insert (5, e);
20

21 }'----_ ..,.""""",,,,,,--_ _ ,,,,,,,,,,, _ ..,-,,-,-----,,-"""_,,----,--"------'

227Solution B.B



ElementsOfProgramminglnterviews.com

I tUlplate <typeoue T>
1 void print_binary_tree_level_order(const sharecLptr<BinaryTree<T» &0) {
~ II Prevent empty tree

if (In) {
return ;

Problem 8.9,pg. 70: Giventhe root node r of a binary tree, print all the keys and levels at
r and its descendants. The nodes should be printed in order of their level. You cannot use
recursion. You may lise a single queue, and constant additional storage. For example, you
should print the sequence (314,6,6,271,561,2,271,28,0,3,1,28,17,401,257,641) for the
binary tree in Figure 9.1 on Page 73.

Solution 8.9: We maintain a queue of nodes to process. Specifically the queue
contains nodes at levell followed by nodes at levell + 1. After all nodes from level
1 are processed, the head of the queue is a node at level 1 + 1; processing this node
introduces nodes from levell + 2 to the end of the queue. Weuse a count variable
that records the number ofnodes at the levelof the head of the queue that remain to
be processed. When all nodes at level I are processed, the queue consists of exactly
the set of nodes at level 1+1, and count is updated to the size of the queue.

return noraalized_pat.h;

normalized_path += *it++;

auto i~ = s.cbegin();
normalized_path += *it++;
while (it 1= s.cend(» {
if (*(it - 1) 1= "/") { II previous one is not an absolute patb
noraalized_pa~ += "I";

12 if (s.ellptyO II s.backO EC " .. ") {

13 s. emplace_back (token) ;
14 else {
15 if (s.backO .... "/") {
16 throw invalicLargwltnt("Path error");
11
18 S •pop_back0 ;
19
20 else if (token 1- "." &&token Ie '''') { II name
21 for (const cllar &c : token) {
t2 if (c Ie '.' && isalnull(c) cc falle) {
23 throw invalid_argument("Invalid directory nalle");
24
25~I s.ellplace_back(token);
71

:181
29

30 string norllalizecLpath("");
31 if (s. eII.ptyO =.. false) {

Solution B.9228



ElementsOfProgramminglnterviews.com

.Problem 8.10,pg. 71: Implement a queue API using an array for storing elements. Your
API should include a constructor function, which takes as argument the capacity of the queue,
enqueue and dequeue functions, a size function, which returns the number of elements
stored, and implement dynamic resizing.

Solution 8.10:Weuse an array of length n to store up to n elements. Weresize the
array by a factor of 2 each time we run out of space. The queue has a head field that
indexes the least recently inserted element, and a tail field,which is the index that
the next inserted element will be written to. Werecord the number of elements in
the queue with a count variable. Initially,head and tail are O.When count = nand
a enqueue is attempted we resize. When count = 0 and a dequeue is attempted we
throw an exception.:r:~::!'~i:':::~:n~~~;;------

31 private:
41 size_t head. tail. count;:1 vector<T> data;

71 public:I8: Queue(const size_t &cap '"8) head(@). tail(@). count(@), data({cap}) {}
9
10 void enqueue(const T &x) {
II // Dynamically resize due to data. size () limi t
12 if (count ='" data.size0)
~ data.resize(data.size() « 1);
14
15 / / Perform enqueue
16 data[tail] = x;
17 tail = (tail + 1) % data.size(), ++count;
18

19
20 T dequeue (void)
21 if (count) {
n --count;
~ T ret'" data[head];
24 head'" (head + 1) % data.size();

queue<shared_ptr<BinaryTree<T»> q;
q.emplace(n);

w while (Iq.empty(» {
II cout « q.front()-xdata « • ';
12 if (q.frontO->left) {
13 q.emplace(q.frontO->left);
14
15 if (q.frontO->right) {
16 q.emplace(q.front()->right);
17

18 q.popO;
19
2(J

229Solution B.l0



ElementsOfProgramminglnterviews.com

n

Il

:1
16

17
18

19
30 --size;
2.1 return ret;

unsigned dequeue(void) {
if (size) {

unsigned ret = eo d = floor(log1S(val»;
if (d + 1 :E size) {

ret = val / pow(1S.S. d);
val -. pow(1S.S. d) • ret;

8 void enqueu.(cons~ unsigned &x)

9 val = val • 1e + x;
10 ++size;
II
12

5 public:
Queue() : val(e). size(e) {}

1 class Queue {
private:

Ynsigned val. size;

Problem 8.11,pg.71: Implement a queue using two unsigned integer-valued variables.
Assume that the only elements pushed into the queue are integers in [0,9]. Your program
should work correctly when Os are the only elements in the queue. What is the maximum
number of elements that can be stored in the queue for it to operate correctly?

Solution 8.11: The queue state can be viewed as a sequence of digits, with the
newest element corresponding to the rightmost digit. A sequence of digits uniquely
represents an integer in base-10. Pushing an element corresponds to multiplying
that integer by 10 and adding the new element to the result. Popping an element
corresponds to identifying the most significant digit. The index iof the most signif­
icant digit d is the number of digits in the number, which is computed using log10;
the number encoding the new queue is simply the number encoding the old queue
minus d x io'. The maximumnumber of elementswe can store is dictated by the size
of the integer. For k-bit integers the queue is limited to size lloglO2kJ.

Alternative implementations are possible, e.g., we can avoid using count, and
instead use the differencebetween head and tail to determine the number of ele­
ments. In such an implementation we cannot store more than n - 1 elements, since
otherwise there is no way to differentiatea full queue from an empty one.

const size_t &size(void) const {
return count;

throw lengtb_error("ezpty queue");

re~urn ret;

Solution B.ll230

u
26
77

26

251

30

SI

:n
33 };



ElementsOfProgramminglnterviews.com

d template <typename T>
---I

Problem 8.12,pg. 71: How would you implement a queue given two stacks and 0(1)
additional storage? Your implementation should be efficient-the time to do a sequence of m
combined enqueues and dequeues should be Oem).

Solution 8.12:Call the two stacksA and B.A straightforward implementation of the
queue is to enqueue by pushing the element to be enqueued onto A. The element
to be dequeued is then the element at the bottom of A, which can be achieved by
first popping all the elements of A and pushing them to B, then popping the top
of B (whichwas the bottom-most element of A), and finally popping the remaining
elements from B and pushing them to A.

Theprimary problem with this approach is that every dequeue takes two pushes
and two pops of each element. (Enqueuetakes 0(1) time.)

The statement of the problem has a hint-it says that every sequence ofm com­
bined enqueues and dequeues should take Oem) time. If we could implement en­
queue and dequeue each on O(n this bound would be trivially met. However,
the bound can also be achieved even if individual enqueues and dequeues have
high time complexity,as long as there exist enough fast enqueues and dequeues to
compensate.

We can implement enqueues by always pushing onto A. Dequeues are handled
as follows.

- If B is empty, e.g.,we have not done any dequeues so far or all elements in B
have been popped, we transfer the contents of A over to B, using pops on A
and pushes onto B. Now the top of B contains the element that was enqueued
earliest. Wesimply pop and return that. Wedo not transfer back from B to A.

- IfB isnonempty, e.g.,we had just done a dequeue asabove,we do by dequeuing
from the top of B.

This approach takesOem) time form operations, which can be seen fromthe factthat
each element is pushed no more than twice (firston enqueuing ontoA and then onto
B) and popped no more than twice (firstfromA and then on dequeuing from B). This
style of complexity analysis is known as amortized analysis.

Another minor observation about the implementation is that it can always hold
at least n elements (sinceA is of size n), and in some cases, itmay hold up to 2n - 1
elements before overflowing, e.g., if we do n enqueues, a dequeue, followed by n
enqueues. However, we cannot guarantee supporting more than n elements, e.g., if
we do n :+- I' consecutive enqueues, we will be forced to use stack B, and not be able
to accessthe element enqueued earliest for a dequeue.

6-Variant 8.11.1: Implement a queue with a single integer-valued variable by reserv­
ing the most significant digit for the size.

2S };
24 ----_._------__j
23 throw length_error("empty queue");

231Solution B.12



ElementsOfprogramminglnterviews.com

19

20 tllrowlength..errorC"ellptyqueue");

B.push(A.pop(»;
false) {

T dequeue(void) {
if (B.empty(» {

while (A.ellptyO

10

11
U

13
14

15
16

17 if (B.empty() =~ fals8)
18 return B.pop0 ;

public:
void enqueue(const T &x) {

A.push(x);

s

1 tellplate<typename T>
2 class Queue {

private:
Stack<T> A, B;

Problem 8.13, pg. 72: How would you implement a queue so that any series of m combined
enqueue, dequeue, and maxoperations can be done in Oem) time?

Solution 8.13: This problem can be solved by a combination of Solutions 8.1 on
Page 219 and 8.12 on the preceding page. Build the queue by using two stacks,
each of which supports the maximum operation. This queue will be able to achieve
enqueue, dequeue, and max in amortized 0(1) time.

tllrovlength_error("ellptyqueue");

if (B.empty() == false)
T ret = B.top();
B.popO;
return ret;

T dequeue(void) {
if (B.empty(» {

while (IA.empty(»
B.emplace(A.top(»;
A.popO;

9

10

II

12

13

14

15

16

:1
:1
:1
23

24

25 };

public:
void enqueue(const T &x) {

A.emplaca(x);

2 class Queue {
3 private:

stack<T> A. B;

Solution 8.13232



ElementsOfProgramrninglnterviews.com

18 T ret = Q. front 0 ;
19 if (ret == D.front 0)
20 D. pop_front 0 ;
21

;7

public:
void enqueue(const T &x) {

Q.emplac:e(x);
10 while (D.emptyO == false && D.backO < x) {
11 D. pope.back 0 ;
12
13 D. emp Lacecback Cx) :
14

15

1 template <typename T>
2 class Queue {

private:
queue<T> Q;

5 deque<T> D;

false)
T dequeue(void)
if (Q.emptyO

16

The solution above is fairly indirect. A more straightforward approach is based
on using a deque. Suppose the queue Q consists of elements (eo,el, ... , en-l), where
eo is the element at the head. Call an element ej in Q dominated if there is another
element ej such that j > i and ej < ej. A dominated element can never become the
maximum element in Q; regardless of the sequence of enqueues and dequeues. This
is because ej will be dequeued before ej' and ej > ej. Call e, a candidate if it is not
dominated .
.Wemaintain the set of candidates in a deque D. Elements in Dareordered by their

position in Q, with the candidate closest to the head of Q appearing first. Observe
that each candidate in D is greater than or equal to its successors. Consequently the
largest element in Q appears at the head of D. .

When Q is dequeued, if the element just dequeued is at the head of D, we pop
D from its head, otherwise D remains unchanged. If K is enqueued into Q, we
iteratively ejectD from its tail till the element at D's tail is greater than or equal toK.
Thenwe injectK onto the tail of D. These operations are illustrated in Figure 21.8on
the next page, and implemented in the following code:

------------------------~

throlfleng'th_error("emp'tyqueue");

=1
21128

:L' }32 }
33 l :

return B.empty() ? A.max() std: :max(A.max(). B.max());
else { II A.empty() == true
if (B.empty() == false)

return B. maxO ;

21

22
23 const T &max(void) const {
24 if (A.emptyO == false) {

233Solution B.13



Eleme.ntsOfProgrammi.nglnterviews.com

Problem 8.14, pg. 72: Let A bean array of length n, and w the window size. Entry A[r1isa
pair (ti, Vi)'where ti is the timestamp and Vi the trafficvolume at that time. Assume A is sorted
11y increasing timestamp. Design an algorithm to compute Vi =max{vJ I(tl - ti) ~ w,j ~11,
forO~i~n-1.

Solution 8.14: The brute-force entails finding the maximum in the subarray con­
sisting of elements whose timestamps line in [Ali] - w,A[rl)' It has time complexity
O(nt...,),where t:.11J is the maximum number of array elements whose timestamps are
contained in any lengthw interval.

BSTs, which are the subject of Chapter 14, can reduce the complexity to
O(n logt:.w)-one BSTholds volumes in the current window, another BSTimple­
ments a mapping from timestamps to corresponding nodes in the first BST.

Wenow describe how to use the queue with maximum data structure developed
in Solution 8.13on Page 232to achieve anO(n) time complexity,independent ofw.

Each dequeue operation has time 0(1) complexity. A single enqueue operation
may entail many ejections from D. However, the amortized time complexity of m
enqueues and dequeues isO(m), since an element can be added and removed from
D no more than once. The max operation is 0(1) since it consists of returning the
element at the head of D.

Agure 21.8; The queue with max for the following operations: e.nqueue(l), dequeue 0,
dequeue 0 , e.nqueue(2) , enqueue (4) , dequeue 0 , e.nqueue(4). The queue Initially contains
3,1,3,2, and 0 in that order. The deque D corresponding to queue Q is immediately below Q. The
progression is shown from left-lo-right, then top-to-bottom. The head of each queue and deque Is on
the left. Observe how the head 01 the daque holds the maximum element in the queue.

Q 13:1:3;2:0 Q 13:1;3:2:0;1 Q 11:3:2:°;1 Q 13:2;0:1
o 13;3;2:0 o 13;3;2:1 o cw:I o cw:I

Q 12:0:1:2:4Q IS:2:0;1:2 Q 13;2:°:1:2:. Q 13:2:0:1:2 :.:4
D [hEI o[I oIL o II::!::

throw length_errorC"empty queue");

const T &max(void) const (
if (D.empty() == false) (

return D.front();

throw lengtb_error("eapty queue");

Q. popO;
return ret;

Solution 8.14234

22

23

14

25
26
27

28
29

30

31

31

33

:!4 };



ElementsOfProgramminglnterviews.com

Problem 9.1, pg. 75: Write a junction that takes as input the root of a binary tree and
returns true or false depending on whether the tree is balanced. Use O(h) additional
storage,where h is the height of the tree.

Solution 9.1: Without the O(h) constraint the problem is trivial-we can compute
the height for the tree rooted at each node x recursively. The basic computation
is x.height = max(x.left.height, x.right.height) + I, and in each step we check if the
differencein heights of the left and right children is greater than one. We can store
the heights in a hash table, or in a new field in the nodes. This entails O(n) storage,
where n. is the number of nodes of the tree.

We will solve this problem using O(h) storage by implementing a get..height
function which takes a node x as an argument and returns an integer. The function
get..height returns -2 if the node is unbalanced; otherwise it returns the height of
the subtree rooted at that node. The implementation of get..height is as follows. Ifx
is null, return -1. Otherwise fun get..height on the left child. If the returned value

Each element is enqueued once. Each element is dequeued at most once. Since
the queue with maximum data structure has an 0(1) amortized time complexityper
operation, the overall time complexity is O(n) .. The additional space complexity is
O(.t.lQ)'

•••_. • • __J

cout« "Max after inserting" «i«" is" -:<Q.maxO.volume« endl;

for (int i = &; i < A.size(); ++i) {
Q.enqueue(A[i]);
while (A[i] .time - Q.front() .time > w) {

Q.dequeueO;

16

const bool operator2-(const TrafficElement &that) const
10 return time =~ that.time && volume -~ that.volume;
1\
12 };

13
14 void TrafficVolumes(const vector<TrafficElement> &A, const int &w) {
15 Queue<TrafficElement> q;

const bool operator«const TrafficElement &that) const {
return time < that. time;

\ class TrafficElement {
public:

int time, volume;

InitializeQ to an empty queue with maximum. Iteratively enqueue (ViI tf) in order
of increasing i. For each i,iteratively dequeue Quntil the differenceof the timestamp
at Q's head and ti is less than or equal to w. The sequence ofmaximum values in the
queue for each i is the desired result.

235Solution 9.1



ElementsOfProgramminglnterviews.com

Problem 9.2, pg.75: Design an algorithm that takes as input a binary tree and positive
integer k, and returns a node u in the binary tree such that u is not k-bakmced, but all of II'S
descendants are k-balanced. If no such node exists, return null. For example, when applied
to the binary tree in Figure 9.1 on Page 73, your algorithm should return Node J ifk = 3.

Variant 9.1.1: Write a function that returns the size of the largest subtree that is
complete.

We can improve the space complexity if we know the number of nodes n in the
tree in advance. Specifically, the space complexity can be improved to O(1ogn) by
keeping a global variable that records the maximum height 11Is of the stack. Donald
Knuth (liTheArt ofComputer Programming, Volume 3: Sorting and Searching", Page 460)
proves that the height of a balanced tree on nnodes is no more than h" = l.4405lg( ~+
3) - 0.3277. The stack height is a lower bound on the height of the tree, and therefore
if the stack height ever exceeds h", we return -2.

III
12,

131'

14

lSi
16' if (abs(l..height- r..heigbt)> 1) {
171 return -2; II current node n is not balanced
IS'

191 return max(Lheigbt, r_height) + 1; II retu.rn the height
201 }
21!
221 template <typenaae T>
n bool is_balanced_binary_tree(const shared_ptr<BinaryTree<T» &n) {
241 return get_beight (n) != -2;
25, }

10

s

IItemplate <typenaae T>
2 int get_height(const shared_ptr<BinaryTree<T» &n)

if (In) {
return -1; II base case

int r..height= g~t..height(n->rigbt);
if (r_height == -2) {

return -2; II right subtree is not balanced

z] int l..height~ get_.height(n->left);
if (I_height a. -2) {

return -2; II left subtree is not balanced

I is -2, node x is not balanced; retum -2. Call get..heigbt on x's right child; let the
returned value be r. If r is -2 or II- rl > 1 return -2, otherwise return max(I, r) + 1.

The function get..height implements a postorder walk with some calls being
eliminated because of early detection of unbalance. The function call stack corre­
sponds to a sequence of calls from the root through the unique path to the current
node, and the stack height is therefore bounded by the height of the tree, leading to
an O(h) space bound.

Sollltion 9.2236



237

ElementsOfProgramminglnterviews.com

Problem 9.3, pg.76: Write a function that takes as input the root of a binnry tree and
returns true or false depending on whether the tree issymmetric.

~i int node_num = L.second + R.second + l' II #nodes in n
21' if (abs(L.second - R.second) > k) {
22 return {n, node_num};
23

24 return {nulIptr ,"node_num};
zs] }
I

26'vi template <typename T>
~! shared_ptr<BinaryTree<T» find_non_k_balanced_nodeC~lconst shared_ptr<BinaryTree<T» &n, const int &k) {
00 return find_non_k_bflanced_node_belper<T>(n, k).first;
31 }

----------------~

return R;

II Early return if right subtree is not k-balanced
auto R = find_non_k_balanced_node_belper<T>(n->right, k);
if (R. first) {

return L;

auto L = find_non_k_balanced_node_helper<T>(n->left, k);
if (L.first) {

II Early return if left subtree is not k-balanced

return {nullptr, &};

const shared_ptr<BinaryTree<T» &n, const int &k) {
II Empty tree
if (!n) {

2 pair<shared_ptr<BinaryTree<T», int> find_non_k_balanced_node_belper(
I

3i

·1
5'
6!
:1

19!
101

IIi

::1
151

::1
18'

191

1 template <typename T>
.. _--_._-----, _ _ _ .

Solution 9.2: It is straightforward to compute the number of nodes in each subtree
of abinary treeby a postorder traversal: for eachnode u, count the number ofnodes
in its left and the right subtrees, and add one to the sum of those counts to get the
countforu.

We can extend this computation by keeping a global pointer-valued variable g
that is used to record the result. Initially,g is nulL Wedo the postorder traversal to
compute the number ofnodes'in subtrees asbefore, as long as g is not null. The first
time our traver~al finds a node which is not k-balanced,we set g to r. In the traversal,
if g is not null, we return. The globalg holds the final result.

Sinceit is poor programming practice to use global variables, our implementation
below uses a pointer-integer pair for the return value. The pointer plays the role ofg
as described above. Sinceeach node is processed only after its descendants, we are
guaranteed that the result is set correctly.The time complexity isO(n),where n is the
number of nodes.

Solution 9.3



ElementsOfProgrammingInterviews.com

12113

10 const boo1 &isLock(void) const {
II return locked;

1 te.plate <typenaae T>
2 class BinaryTree {
3 private:

bool locked;
5 int numChildranLocks;,.
1 public:
8 sbared_ptr<BinaryTree<T» left, right, parent;

Problem 9.4, pg. 76: For a certain application, processesneed to locknodes in a binary tree.
Implement a libraryfor locking nodes in a binary tree, subject to the constraint that a node
cannot be locked if any of its descendants or ancestors are locked. Specifically,writefunctions
isLockO, 10ckO, and wtLockO, with time complexities 0(1),O(h), and O(h). Here his
the height of the binary tree. Assume that each node hasa parentfield.

Solution 9.4: Each node has a bool-valued locked field, indicating whether it holds a
lock-this makes the isLock 0 function trivial. Inaddition, we use an integer-valued
numChildrenLocks field for each node n which tracks the number of children in the
subtrees rooted at n that are locked. The lock () function proceeds only if the number
of locked children is 0; if so it checks the state of all the ancestors leading up to the
root. If the node is lockable, the function increments the numChildrenLocks fields
for each of the ancestors. The unLockO function simply sets locked to false, and
decreases the numChildrenLocks field for each ancestor all the way to the root. The
time complexity for lockO and unLockO is bounded by the distance of the node
from the root, i.e., the height of the tree.

if (11 && Ir) {
return true;
else if (1 && r) {

1 return l->data == r->data && is_symaetric_helper<T>(l->left. r->rigbt) &&
is_symaetric_he1per<T>(I->rigbt, r->laft);

9 else { II (l && t r) II (ll U r)
10 return false:
II
12 }

13

If te~late <typenaae T>
U bool is_symmetric(const shared_ptr<BinaryTree<T» &n) {
16 return (!n II is_symmetric_helper<T>(n->left, n->right)):
11 }

1 taaplate <typenaae T>
1 bool is_sy...tric_helper(const sbared_p~r<BinaryTree<T» &1,

const .bared_p~r<BinaryTree<T» &r)

Solution 9.3: We present a recursive algorithm that follows directly from the defini­
tion of symmetry.

Solution 9.4238



ElementsOfPrograrnminglnterviews.com

Problem 9.5, pg. 76: Let T be the root of a binary tree in which nodes have an explicit
parent field. Design an iterative algorithm that enumerates the nodes inorderand uses 0(1)
additional space. Your algorithm cannot modify the tree.

Solution 9.5: The standard idiom for an inorder walk is visit-left, visit-root, visit­
right. Accessing the left child is straightforward. Returning from a left child I to its
parent entails examining l's parent field; returning from a right child r to its parent
is similar.

To make this scheme work, we need to know when we take a parent pointer to
node r if the child we completed v~siting was r's left child (in which case we need
to visit r and then r's right child) or a right child (in which case we have completed
visiting r). We achieve this by storing the child in a prey variable before we move to
the parent, r. We then compare prey with r's left child and the right child.

11 template <typename T>

21 void inorder_traversal(const shared_ptr<BinaryTree<T» &r)
3 1/ Empty tree
4 if (!r) {

n = n->parent;
++n->numChildrenLocks;

locked = true;
n = parent;
while (n) {

// Lock itself and update its parents

22

23

24
25

26
27

28

29

30

31
32

33

3.
35 void unLock(void) ,{

*1 if (locked) {
37 // Unlock itself and update its parents
38 locked = false;
391 shared_pt.r<BinaryTree<T» n = parent;
40! ' while en) {ul --n->numChildrenLocks;
~! n = n->parent;

!
'3'4.1
i

45'
461 };

14 void lock(void) {
IS if (numChildrenLocks -~ & && locked ac false)
16 // Make sure all parents do not lock
17 shared_ptr<BinaryTree<T» n c parent;
18 while (n) {
19 if (n-o-Locked=" true) {
21) return;
21

n = n->parent;

239Solution 9.5



ElementsOfprogram2ingInterviews.co~

1 t~plate <typeD..e T>
2 shared_ptr<BinaryTree<T» find_kth_node_binary_tree(

shared_ptr<BinaryTree<T» r. int k) {
while (k && r) {

int left_size - r->left ? r->left->size $;
if (left_size < k - 1) {
k -= (left_size + 1);
r - r->right;
lIse if (left_size == k - 1)

10 return r;
II J else { I I left_size > k - J
12 r ..r->left;
13

u

Problem 9.6,pg. 76: Design afunction that efficiently computes the k-th node appearing
in an inorder traversal. Specijiallly, your function should take as input a binary tree T and
an integer k: Each node hils a sizefield, which is the number of nodes in the subtree rooted
at tha: node. What is the time complexity of your function?

Solution 9.6: If the left child has k - 1 children, then the root is the k-th node; if the
leftchild has k ormore children, then the k-th node is the k-thnode of the left subtree;
and if the left child has 1< k -1children, the k-th node is the k - (1+ l)-th node of the
right subtree.

e-Variant 9.5.1: How would you perform preorder and postorder walks iteratively
using 0(1) additional space? Youralgorithm cannot modify the tree. Nodes have an
explicit parent field.

12 next so curr->left;
13 else {
u cout « curr-o-daxa « endl;
15 next = (curr->right 7 curr->right curr->parent);
16
17 else if (curr->left == prey) {
18 cout « curr->data « endl;
~ next. (curr->right ? curr->right curr->parent);
20 else II curr->right == prey
n next = curr->parent;
22

n
24 prey = curr;
u curr = next;

shared_ptr<BinaryTree<T» prey - nullptr. curr - r, next;
while (curr) {

$ return;

curr)if (Iprey II prey->left -- curr II prey->right
if (curr->left) {

10

II

240 Soilition 9.6



241

ElementsOfPrograrnminglnterviews.com

return nullptr;

return shared_ptr<BinaryTree<T»(new BinaryTree<T>{
pre[pre_s],
1/ Recursively build the left subtree
reconstruct_pre_in_orders_helper<T>(

pre, pre_s + 1, pre_s + 1 + left_tree_size,
in, in_s, it - in.cbegin()),

1/ Recursively build the right subtree
reconstruct_pre_in_orders_helper<T>(

pre',pre_s + 1 + left_tree_size, pre_e,
in, it - in.cbegin() + 1, in_e)

});

8

9

1 template <typename T>
1 shared_ptr<BinaryTree<T» reconstruct_pre_in_orders_helper(

const vector<T> &pre, const int &pre_s, const int &pre_e,
const vector<T> &in, const int &in_s, const int &in_e) {

5 if (pre_e > pre_s && in_e > in_s) {
6 auto it = find(in.cbegin() + in_s, in.cbegin() + in_e, pre[pre_s]);

int left_tree_size ~ it - (in.cbeginO + in_s);

Problem 9.7,pg. 77: Given an inorder traversal order, and one of a preorder or a postorder
traversal order of a binary tree, write afunction to reconstruct the tree.

Solution 9.7: Suppose we are given the inorder and preorder traversal sequences.
The preorder sequence gives us the key of the root node-it is the first node in
the sequence.. This in turn allows us to split the inorder sequence into an inorder
sequence for the left subtree, followedby the root, followedby the right subtree. The
left subtree inorder sequence allows us to compute the preorder sequence for the left
subtree from the preorder sequence: the nodes in the left subtree appear before all
the nodes in the right subtree in the preorder sequence.

For example, if the inorder sequence is (B,A,D,C,E) and the preorder sequence is
(A,B,C,D,E),we know the root has keyA and the left subtree consists of the single
node with key B. Therefore, in an inorder visit the right subtree nodes appear as
(D,C,E), and in a preorder visit the right subtree nodes appear as (C,D,E). Therefore
the root of the right subtree is a node whose key is C and its left and right subtrees
are the single nodes with keys D and E, respectively.

If the keys are unique, we can use the above algorithm to uniquely reconstruct a
binary tree yielding the given inorder and preorder sequences,but this is not always
true if duplicate keys are present. As an extreme example, if all keys are the same,
all binary trees on n nodes with that key yield identical sequences.

Sincewe descend the tree in each iteration, the time complexity is O(h), where h is
the height of the tree.

15 throw length_error("no k-th node in binary tree");
16 }

Soilltion 9.7



ElementsOfProgr~ngInterviews.com

Problem 9.8,pg. 77: Design an O(n) time algorithm for reconstructing a binary treefrom
a preorder visit sequence that uses nun to mark empty children. How would you modify
your reconstruction algorithm if the sequence corresponded to a postorder or inorder walk?

Solution 9.8:Wetraverse the sequence fromright-to-left, Wepush nodes and nulls
on to a stack;every timewe encountered a non-null node x,wepop the stack twice-­
call the first node popped 1 and the second r. Setx's left and right children to 1 and

Variant 9.7.1: LetA be an array of n distinct integers. Let the index of the maximum
element ofA be m. Define the max-tree on A to be the binary treeon the entries of A
in which the root contains the maximum element ofA, the left child is the max-tree
onA(O : m -1] and the right child is the max-tree onA(m + 1:n -1]. Design an O(n)
algorithm for building the max-tree ofA.

Z3
24. te.plate <typename T>
lSI shared_ptr<BinaryTree<T» reconstruct_post_in..orders(const vector<T> &post,
l6 const vector<T> &in) {
~ return reconstruct_post_in_orders_belper(post. $, post.size(),
281 in, e. in.sizeO):
29' }

n

10

11

12

13

14

15

16

:1
19

lO
n return nullptr:

return shared_ptr<BinaryTree<T»(nev BinaryTree<T>{
post(post_e - 1],
II Rl!cursively build the left subtree
reconstruct_post_in..orders_belper<T>(

post, post_s, post_s + left_tree_size.
in. in..s,it - in.cbegin(».

II Recursively build the right subtree
reconstruct_post_in_orders_belper<T>(

post. post_s + left_tree_size. post_e - 1,

in, it - in.cbegin() + 1. in..e)
});

7

1 template <typenaae T>
2 sbared_ptr<BinaryTree<T» reconstruct_post_in_orders_helper(

const vector<T> &poSt, const int &post_s. 'const int &post_e,
const vector<T> &in, const int &in_s, const int &in..e)

if (post_e > post._s&& in_e > in_a) {
auto it • find(in.cbegin() + in..s,in.cbegin() + in..e,POSt(post_e - 1]);
int left_tree_size = it - (in.cbegin() + in_s);

Werecover the tree from postorder and inorder traversal sequences similarly:

in, $, in.size(»;

l4 template <typen... T>
25 sbared_ptr<BinaryTree<T» reconstruct_pre_in..orders(collstvector<T> &pre.
16 conn vector<T> &in) {
v return reconstruct_pre_in_orders_helper(pre, $. pre.size(),

Solution 9.8242



ElementsOfPrograrnminglnterviews.com

if (n) {

if eln->left && In->right)
L.push_back(n);

} else {

1 template <typename T>
2 void connect_leaves_helpereconst shared_ptr<BinaryTree<T» &n,

list<shared_ptr<BinaryTree<T»> &L)

.--------------_ _.__ ..__._----

Solution 9.9: Weuse recursion, passing in the list Lof leaves. If the node is a leaf,
which We determine by checking if both children are null, we append it to the list
L and return. Otherwise, we recurse on the left and right children, which causes the
leaves on the left subtree to appear before the leaves on the right subtree. The time
complexity isO(n),where n is the number ofnodes .

Problem 9.9,pg.78: Given a binarftree, write afunction which forms a linked list from
the leaves of the binary tree. The leaves should appear in left-to-right order. For example,
when applied to the binary tree in Figure 9.1 on Page 73, your function should return
(D,E,H,M,N,P).

Reconstructingfrom a postorder traversal is similar-we traverse'from the begin­
ning of the sequence, and when popping, the top of the stack is the right child, and
the node below it is the left child. .

Reconstructing from an inorder traversal is impossible, evenwith the null mark­
ers. This is because every binary tree that yields (vo,Vl,"" Vn-l) on an inorder walk
has a modified sequence of (null,vo,null,vl,null,v2/.",null,vn-llnull). An in-

.. order traversal order is not enough to uniquely reconstruct a binary tree, so the
inorder sequence with markers will also be insufficient. If all we want is a binary
tree that yields the given sequence, we can simply return a completely right-skewed
tree, i.e., its root is vo, left child is empty, and right child is reconstructed recursively
from (V1I 'D2, •.. rVn-l)'

243

I te~plate <typename T>
2 shared_ptr<'BinaryTree<T» reconstruct_preorder (

const vector<shared_ptr<T» &preorder) {
stack<shared_ptr<BinaryTree<T»> s;
for (auto it = preorder.crbegin(); it 1= preorder.crend(); ++it) {
if (I(*it» {

s.ernplace(nullptr);
else { II non-nullptr
shared_ptr<BinaryTree<T» 1 = ,.top();

w s.pop();
" shared_ptr<BinaryTree<T» r = ,.tope);
12 S. popO;
13 s.ernp1aceenew BinaryTree<T>{*C*it), 1, r});
14

15
16 return s.tope);
17 }

,.----------_ _ - -- _- ._------ .------------
x, respectively,and push x. When the sequence is exhausted, there will be a single
node on the stack,which will be the root.

Solution 9.9



ElementsOiProgramminglnterviews.com

10
II }

U

13 te.plate <typename T>
I' void rigbt_boundary_b_tree(const sharecLptr<BinaryTree<T» &n,
15 conat booI &is_boundary) {
16 if (n) {
17 right_boundary_b_tree(n->left. is_boundary && In->rigbt);
18 right_boundary_b_tree(n->right. is_boundary);

if (n) {
if (is_boundary II (In->left && In->right» {

cout « n-o data « ' ';

4!

:1
left_boundary_b_tree(n->left, is_boundary);
left_boundary_b_tree(n->rigbt, is_boundary && In->left);

I template <typen~e T>
2 void left_boundary_b_tree(const sharecLptr<BinaryTree<T» &n,

const bool &is_boundary) {

Problem 9.10,pg. 78: Write afunction that prints the nodes on the exterior of a binary tree
in anti-clockwise order, ie., prin_t the nodes on the path from the root to the leftmost leaf in
that order, then the leavesfrom Ieft-ta-right, then the nodes from the rightmost leaf up to the
root. For example, when applied to the binary tree in Figure 9.1 on Page 73, your function
should retum'(A, B,C,D, E,H,M,N,P, 0, 1). (By leftmost (rightmost) leaf, we mean the leaf
that appears first (last) in an inorder walk.)

Solution 9.10: One approach is to print all the nodes leading to the leftmost leaf
first, using a recursive search from the root that favors a left child when available,
followed by the leaves (which can be performed using the technique in Solution 9.9
on the preceding page) followed by printing all nodes from the rightmost leaf to
the root, which is performed using a recursive search from the root that favors the
right. The first and last functions print in preorder and postorder to ensure the right
ordering of nodes.

Alternately, we can print the root, followed by all the required nodes (leftmost
and leaves) from the left subtree followed by all the required nodes (leaves and
rightmost) from the right subtree. The left subtree and right subtree are processed
by symmetric functions. Details are given below.

10

II
12 }

13
14 te.plate <typenaae T>
15 list<sharecLptr<Binary'Tree<T»> connect_leaves(
16 const sharecLptr<BinaryTree<T» &n)
17 list<shared_ptr<BinaryTree<T»> L;

18 connect_leaves_helper (n, L);

19 return L;
20

connect_leaves_helper(n->left, L);
connect_leaves_helper(n->right, L);

Solution 9.10244



ElementsOfProgramminglnterviews.com

Problem 9.12,pg. 78: Given two nodes ina binarytreeT, design an algorithm that computes
their LCA. Assume thai each node has a parent pointer. The tree has n nodes and height h.
Your algorithm should run in 0(1) space and O(h) time.

Solution 9.12: Suppose we know the depths d. and db of nodes a and b. Without loss
of generality, assume d. ~ db' Follow do - db parent pointers starting from a. Let c be
the resulting node. the LeA of a and b is the same as the LeA of band c. We can

auto l_res ~ LCA(n->left, a, b), r_res ~ LCA(n->right, a, b);
if (l_res && f_res) {

return n; II found a and b in different subtrees
else {
return l_res ? l_res : r_res;

if (!n) { II empty subtree
return nullptr;
else if (n ~; a IIn;; b)
return n;

const shared_ptr<BinaryTree<T» &a,
const shared_ptr<BinaryTree<T» &b)

1 template <typename T>
2 shared_ptr<BinaryTree<T» LCA(const shared_ptr<BinaryTree<T» &n,

____ ._._._.._..._--._--r--------------.-.-.--.-------.--

Problem 9.1'J_,pg. 78: Design an efficient algorithm for computing the LCA of nodes a and
b in a binary tree in which nodes do not have a parent pointer.

Solution 9.11: Let a and b be the nodes whose LCA we wish to compute. Observe
that if the root is one of a or b, then it is the LCA. Otherwise, let L and R be the trees
rooted at the left child and the right child of the root. If both nodes lie inL (or R),
their LCA is inL (or R). Otherwise, their LCA is the root itself. This is the basis for
the algorithm presented below. Its time complexity is O(n),where n is the number of
nodes.

301
31
32 }

cout « root->data « ' ';
left_boundary_b_tree(root->left, true);
right_boundary_b_tree(root->right, true);

28
29

191 if (is_boundary II (In->left && In->right)) {
:wI cout « n-odata « ' ';

::1
231 }
241

25 template <typename T>
u void exterior_binary_tree(const shared_ptr<BinaryTree<T» &root) {
27 if (root) {

245Solution 9.12



ElementsO£Progr~nglnterviews.com

Problem 9.13,pg. 78: Design an algorithmfor computing the LCA of aand b that has time
complexity O(max(d. - d"db - d,». What is the worst-case time and space complexity of
your algorithm?

Solution 9.13:Let the sequences of nodes as we traverse parent pointers from a and
b to the root be (a,al,a2, ... ) and (b, bi,b2,... ) respectively. The LeA of a and b is
the first node in either sequence that is common to the two sequences. This leads
to an algorithm for computing the LeA in O(max(da - d"db - d1» time: interleave
traversing parent pointers from a and from b, storing visited nodes in a hash table.
Each time we visit a node we check to see if it has been visited before. We will
revisit a node after exactly2(max(d.,db) - d1) pointers have been traversed, yielding
the desired time complexity.

Note that we are trading space for time. The algorithm for Solution 9.12on the
previous page used 0(1) space and O(h) time,whereas the algorithm presented above

27

28 return a;
29

II Botb pointers advance until tbey found a co~on ancestor
while (a 1= b) {
a = a->parent, b = b->parent;

8 }

9
10 teaplate <typename T>

U
III shared_ptr<BinaryTree <T» LCA (sharecl.ptr<BinaryTree <1» a,

sharecl.Ptr<BinaryTree<T» b)
13i int depth..a = get_depth(a) , depth..b • gu_depth(b);
141 if (depth_b > depth..a) {
151 swap(a, b);
16

17
18 II Advance deeper node first
19 int depth_diff = depth_a - depth_b;
20 while (depth..diff--) {
n a = a->parent;
22

23

S ++d, n = n->parent;

return d;

11 template <typename T>
21int get_depth(shared_ptr<BinaryTree<T» n)
31 int d = $;

while (n) {

now compute the LeA of c and b by iterativelymoving up the tree, from c and from
b till we reach a common node I,which is the desired LeA.

The depth of a node can be computed by following its parent pointers until the
root is reached. This computation has a time complexityO(h), and space complexity
0(1). Therefore the LeA of a and b can be computed inO(h) time and 0(1) space.

Solution 9.13246



ElementsOfProgramminglnterviews.com

10

11 public:
12 Trie() root(shared_ptr<TrieNode>(new TrieNode{false}» {}
13

1 };

shared_ptr<TrieWode> root;

1 class Trie {
private:

class Triellode
public:

bool isString:
unordered_map<char, shared_ptr<TrieNode» 1:

_ _ _ _.._ _---_ .._-._ .._-----_ .._.._ _-----------,

Problem 9.14,pg. 79: Gi'l?ena string s and a set of strings D,find the shortest prefix of s
which is not a prefix of any string in D.

Solution 9.14:A trie is a data structure for storing a set of strings based on positional
trees. To be concrete, suppose the strings are over the alphabet {"a", ''b'', ... ,
"z"}. Each node has a hash table mapping each character in the alphabet to the
corresponding child pointer. Some or all of the children may be null. A path of
length 1 starting from the root naturally corresponds to a string of I characters. Each
node has a Boolean field indicating whether the string corresponding to the path
from the root is a string in the set.

Finding a shortest prefix of s that is not a prefix of any string in the represented
set is simply amatter of finding the firstnode m on the searchpath from the root that
does not have a child corresponding to the next character in s,

W a = a->parent:
11
12 if (b) {

13 if (hash.emplace(b). second false) {
14 return b ; II adds b failed because b exists in hash
15

U b = b->parent:
17

18
19 II Throw error if a and b are not in the same tree
20 throw invalid_argument("a and b are not in the same tree"):
21 }

1 template <typename T>
2 shared_ptr<BinaryTree<T» LCA(shared_ptr<BinaryTree<T» a,

shared_ptr<BinaryTree<T» b)
unordered_set<shared_ptr<BinaryTree<T»> hash:
while (a II b) {
if (a) {

if (hash.emplaca(a) .second false) {
return a: II adds a failed because a exists in hash

uses O(max(d.,dh) - d/) space and time. In the worst case, a and b are leaves whose
LeA.is the root, and we useO(h) space and time.

247Solution 9.14



Eleme.ntsOfPrograminglnterviews. COlli

Problem 10.1, pg.80: Design an algorithm that takes a set of files containing stock trade
information in sorted order, and writes a single file containing the lines appearing in the
individual files sorted in sorted order. The algorithm should use very little RAM, ideally of
the order of afew kilobytes.

Solution 10.1: In the abstract, we are trying to merge k sorted files. One way to
do this is to repeatedly pick the smallest element amongst the smallest remaining
elements from each file. A min-heap is ideal for maintaining a set of elements when

s-Variant 9.14.1: How would you find the shortest string that is not a prefix of any
string inD?

return T.getSbortestUniquePrefix(s);

Trie T;
for (const string &word : D)

T.insert(word);

return {};

p = p->l[c];

35
36

'.rl

38

~I

:1
:1};
45
~ string find_shortest_prefix(const string &s, const unordered_set<string> &0) {

47 II Build a trie according to given dictionary D

string getSbortestUniquePrefix(const string &s) {
shared_ptr<TrieNode> p = root;
string prefix;
for (const char &c s) {

prefix += c;
if (p->l.find(c) == p->l.cend(»

return prefix;

p->isString = true; II inserts s into this trie
return t.rue;

false

23

24

II s already existed in this trie
if (p->isString == true) {

return false;
else { II p->isString

14 bool insert(const string &s) {
15 shared_ptr<TrieNode> p = root;
16 for (const char &c : s) {
17 if (p->l.find(c) == p->l.cendO)
u1 p->l[c] = sbared_ptr<TrieNode>(new TrieNode{false});
19i
211 P = p->l[c];
21

22

248 Solution 10.1



249

ElementsOiProgramminglnterviews.com

Problem 10.2,pg. 81: Design an efficient algorithm for sorting a k-increasing-decreasing
array. You aregiven another array of the same size that the result should be written to, and
you can use O(k) additional storage.

Solution 10.2: The first thing to note is that any array can be decomposed into a
sequence of increasing and decreasing subarrays. If k is comparable to n, then the
problem is equivalent to the general sorting problem.

If k is substantially smaller than n,we could first reverse theorder of thedecreasing
subarrays. Now we can use the techniques in'Solution 10.1on the facingpage to sort
the array in timeO(n logk) time with O(k) space.

Alternately,we could recursively merge the k files, two at a time using the merge
step frommerge sort.

return ret;

min_heap .pop0 ;~i
321
33j
341>

while (!min_heap.empty(»
pair<T, int> p = min_heap.top();
ret.emplace_back(p.first);
II Add the smallest element into beap if possible
if (S_idx[p.second] < S[p.second).size(» {

min_heap. emplaceCS[p.second)[S_idx[p.second)++] • p.second);

vector<T> ret;

10 template <typename·T>
II vector<T> merge_arrays(const vector<vector<T» &S) {
12 priority_queue<pair<T. int>, vector<pair<T. int». Compare<T» min_heap;
IS vector<int> S_idx(S.size(), ~);
14
15 II Every array in S puts its smallest element in heap
16 for (int i = ~; i < S.sizeO; ++i)
w if (S[i).sizeC) > ~) {
18 min_heap.emplace(S[i)[~]. i);
w S_idx[i) = 1;
2()

21

22

2S

8 };

1 template <typename T>
2 class Compare {

public;
const bool oparator()(const pair<T. int> &lhs.

const pair<T, int> &rhs) const {
return lhs.first > rhs.first;

._--_ _._._-_._.._-_ .._-_._ .._.__ .__.._--_.-- __ ..--_ _-_._--------_---_._-----_ _---- .--~

we repeatedly insert and query for the smallest element (both extract-min and insert
takeO(logk) time). Hencewe can do the merge inO(n logk) time,where n is the total
number of elements in the input. Here is the code for this:

Solution 10.2



ElementsOfProgrammingInterviews.com

7 };

1 template <typename T>
2 class Compare (

public:
bool operator()(const pair<int. T> &lhs. const pair<int, T> &rhs) const {

5 return lb'.first < rbs.first;

Problem 10.3,pg. 81: Hoto would you implement a stack API using a heap and a queue
API using a heap?

Solution 10.3:The basic idea is to use an integer-valued variable order that keeps
track of the order in which elements were added.

Wemimica stack 5with amax-heapHbystoring y = (order, x) inH each timexis
pushed in 5, and incrementing order. Heap entries are compared by order. Popping
is simply amatter of extracting the max element.

Wemimicaqueue analogously;exceptthat wedecrement order on inserts, thereby
favoring the element that was inserted first when we do extract-max. It is straight­
forward to support queue inserts and deletes. Supporting a back function, which
returns the element at the queue tail, is more involved. It can be performed with an
additional min-heap.

1 te~plate <typena~e T>
2 vector<T> sort_k_increasing_decre ••ing_array(const vector<T> &A) {

II Deco.pose A into a set of sorted .rrays
vector<vector<T» S;
booI is_increasing = true; II the trend we are looking for
int start_idx = 8;
for (int i • 1; i < A.size(); ++i)

8 if «A[i - 1] < A[i) && lis_increasing) II
(A[i - 1] >= A[i] && is_increasing» {

w if (is_increasing) (
11 S.emplace_back(A.cbegin() + start_idx. A.cbegin() + i);
12 else (
13 S.emplace_back(A.crbegin() + A.size() - i.
14 A. crbeginO + A.sizeO - start_idx);
15
u start_idx • i;
v is_increasing = !is_increasing; II inverse Lbe trend we are looking for
11

19

M if (start_idx < A.size(» {
D if (is_increasing) (
n S.emplace_back(A.cbegin() + start_idx. A.cend(»;
13 else (
24 S.emplace_back(A.crbegin(). A.crbegin() + A.size() - start_idx);
25,

26

77
~ return merge_arrays(S):
29

Solutioll 10.3250



251

Elemen~sOfPro9rammingInterviews.com

Problem 10.4, pg. 81: How would you compute the k stars which are closest to the Earth?
You have only afew megabytes ofRAM.

Solution 10.4: IfRAM was not a limitation, we could read the data into an array, and
apply the selection algorithm from Solution 11.13 on Page 270.

It is not difficult to come up with an algorithm based on processing through
the file, selecting all stars within a distance d, and sorting the result. Selecting d
appropriately is difficult, and will require multiple passes with different choices of d.

A better approach is to use a max-heap H of k elements. We start by adding the
first-k stars to H. As we process the stars, each time we encounter a star s that is
closer to the Earth than the star m in Hthat is furthest from the Earth (which is the
star at the root ofH),we delete m from H, and add 5 to H.

27

28 template <typename T>
29 class Queue: /1 inheri t s empty (). popO. and size () methods
~ public priority_queue<pair<int. T>. vector<pair<int. T». Compare<T»
31 private:
32 int order:
n typedef priority_queue<pair<lnt. T>. vector<pair<int. T». Compare<T» PQ:
34
35 public:
96 Queue0 : order (@) {}

37

38 const T &front0 const
~ return PQ::top().second;
40

41

42 void push(const T &x) {
o PQ::emplace(order--. x);
4. }
4sl.!...: ...._. . _

void push(const T &x) {
PQ::emplace(order++. x):

const T &top() const {
return PQ::top().second;

public:
Stack() : order(S) {}

11

12

13

14

J5

J6

17

18

19

20

21

22

23
24

2S

26 };

9 template <typen.me T>
JO class suck: II inheri ts emptyO. popO. and size 0 methods

public priority_queue<pair<int. T>. vector<pair<int. T». Compare<T»
private:

int order;
typedef priority_queue<pair<int. T>. vector<pair<int. T». Compare<T» PQ:

Solution 10.4



ElementsOfProgramminglnterviews.com

32 Star s{ID. data[8). data[l]. dat.e2]}:
33

34, if (mu_heap. sizeO == k) {
33; II Compare tbe top of beap with the incoming star
~ Star far_star = lIIax_heap.top();
Sl if (5 < far_star) (
M aax_heap.pop();
~ D.x_heap.eDplace(s);
to
41 ebe (
U Dax_heap.eDplace(s);
43
«
45
46 II Store tbe closest" stars
47 vector<Star> closest_stars;
a while (IDax_heap.eDpty(» (
~ close5t_stars.emplace_back(Dax_heap.top(»;
~ .ax_heap.pop();
51

31

getline(line_stream, buf, ',');
int 1D = stoi(buf);
array<double, 3> data; II stores x, Y. and z
for (int i = 8; 1 < 3; ++1) {

getline(line_stream, buf, ',');
data[i] = stod(buf};~I

9
10

II const bool operator«const Star &s) const {
u return distance() < s.distance();
13

14 };

15
16 vector<Star> find_closest_k_stars(istringstreaa &sin, const int &k) {
v II Use max_heap to find the closest k stars
181 priori ty_queue <Star. vector<Star» max_heap;
1911 string line;

: II Record the first k stars
n! while (getline(sin, line» {
nl stringstream line_stream(line);
~; string buf;

II The distance between this star to the Earth
const double distance() const

return sqrt(x • x + y • y + z • z);

I class Star {
public:

int 10;
double x, y, Z;

Theheap-based algorithm hasOin logk) time complexity to find thek closeststars
out of n candidates, independent of the order in which stars are processed and their
locations. Its space complexity isO(k).

SOlrltiOIl 10.4252



ElernentsOfProgramminglnterviews.com

Problem 10.6,pg. 82: The input consists of a venj long sequence of numbers. Each number
is at most k positions away from its correctly sorted position. Design an algorithm that
outputs the numbers in the correct order and uses O(k) storage, independent of the number
of elements processed.

Solution 10.6: The easiest way of looking at this problem is that we need to store
the numbers in memory till all the numbers smaller than this number have arrived.
Once those numbers have arrived and have been written to the output file,we can
go ahead and write this number. Sincewe do not know precisely what order the
numbers appear in, it is not possible.to say when all the numbers smaller than a
given number have arrived and have been written to the output. However since

II After the first k elements, output the k-th largest one
while (sin'» x) {
if (min_heap.top 0 < x)

min_heap .pop0 ;
min_heap.emplace(x);

9

101
111
12'

13
14

15
16

::1
19j}
I- .._._._.. ._..__._.._.._. ._. ._,,"'"'_._....._."'_....._........."......"._..__ ...J

1 template <typename T>
2 void find_k_th_largest_stream(istringstream &sin, const 1nt &k) {

priority_queue<T, vector<T>, greater<T» min_heap;
II The first k elements, output the minimum element
T x;
for (int i = &; i < k && sin » x; ++i) {

7 min_heap.emplace(x);
cout « min_heap.top() « endl;

cout « min_heap.top() « endl;

Problem 10.5,pg. 81: Design an O(n log k) time algorithm that reads a sequence of n
elements and for each element, starting from the k-th element, prints the k-th largest element
read up to that point. The length of the sequence is not known in advance. Your algorithm
cannot use more than O(k) additional storage.

Solution 10.5:Weuse a min-heap of size k. When the first k elements have been read
in, the root holds the k-th largest element. Each successive element 5 is compared
with the minimum element m in the heap. If s is less than or equal to m, do nothing.
Otherwise, we remove m, and add s. The new root (which mayor may not be s)
is the k-th largest element. For the first k iterations, we simply add elements to the
min-heap; the root holds the smallest value.

The time complexityper element processed is dominated by the time to delete the
root, i.e.,O(1ogk). Theworst-case input is one in which elements appear in increasing
order; the best case input is one in which elements appear in decreasing order.

:I} retu.rn closest_stars;

253Solution 10.6



ElementsOiProgrammingIntervielfs. CODI

Problem 10.7,pg. 82: Design an O(n) time algorithm to compute the k elements closest to
the median of an array A.

Solution 10.7: There exists two standard algorithms for computing the median in
O(n) time-one uses randomized partitioning of the array; the other uses divide and
conquer, specifically,it computes the median of the medians of rn/51 subarrays.

Assuming that we have computed the median 11 in O(n) time, we can compute
the k elements closest to 11 by maintaining a max-heap H of elements of the array.
The value associated with the i-th element A[i] is its distance to the median, i.e.,
III- A[lll. Westart by adding the first k elements of the array to H. Now we process
the remaining elements. For j = k to n - I, if III- A[j]!is larger than the maximum
value stored in the heap, we ignore it; otherwise, we remove the maximum element
ofH, and insert A[j] in its place. When all elements are processed, the heap contains
the k elements dosest to the median.

Another approach, which doesnot require theO(k) additional storage entailed by
the max-heap, and runs in O(n) time instead ofO(n logk) time is to first compute the
median Il,and then use a selectionalgorithm.

II Extract tbe rella2n2ng elements in min_beap
while (min_heap. size0) {

cout « min_heap.top() « endl;
min_heap. pop0 ;

II Extract tbe .inilllUlllone for every incoll.ingelement
while (sin » x) (

min_heap.push(x):
cout « min_heap.top() « endl:
min_heap. pop0;

3 priority_queue<T, vector<T>, greater<T» min_heap:
II Flrs~ly push k elements into min_heap
T x:
for (int i = 8: i < k && sin » x: ++i) (

min-heap.push(x):

1 template <typename T>
2 void approximate_sort(istringstream &5in. const intO&k)

we are told that no number is off by more than k positions from its correctly sorted
position, if more than k numbers greater than a given number have arrived and all
the numbers smaller than the given number that arrived have been written, we can
be sure that there are no more other smaller numbers that are going to arrive. Hence
it is safe to write the given numbers.

This essentially gives us the strategy to always keep k +1 numbers in a min-heap.
As soon as we read a new number, we extract the min from the heap and write the
output and then insert the new number.

Solution 10.7254



ElementsOfprogramminglnterviews.com

Problem 10.8,pg. 82: Design an algorithm for computing the running median of a sequence.
The time complexity should beO(logn) per element read in; where n is the number of values
read in up to that element. .

Solution 10.8: Weuse two heaps, L,a max-heap, and H, a min-heap. The invariant
here is that for every incoming element from the stream, we want to let L store the
smaller half of the stream data so far, and letH store the bigger half. Bykeeping this

I II Promote to doublo to prevent precision error
l template <typename T>
8 double find_median(vector<T> &A) {

int half D A.siz.C) » 1:
nth_elementCA.beginO, A.beg1nO + half, A.endO):
if CA.sizeC)'& 1) { II A has odd number elements

return A [half):
else { II A has even number elements
T X " A[half):

10 nth_elementCA.begin(), A.beginC) + half - I, A.endC»:
11 return &.5 * (x + A(hal£ - 1]):
12
IS
14

15 template <typename T>
16 class Comp {
17 private:
18 double m_;
19
20 pUblic:
II Comp(const double &m) : m_Cm) {};
22
~ const bool operatorC)(const T &a, const T &b) const {
24 return fabsCa - IlL) < fabs (b - IlL);

25
26 };
27
:18 template <typename T>
~ vector<T> find_k_closest_to_medianCvector<T> A, const int &k) {
30 II Find the element i where /A[i] - median/ is k-th smallest
31 nth_element (A.begin0, A.begin0 + k - 1, A.end0, COlllp<T>{£ind_median(A))) :
~ return {A.cbegin(), A.cbeginC) + k};
~

Aselectionalgorithm takes as inputs a setA ofn numbers, and an integer i E [I,n]
and returns the i-thsmallest element ofA. Thereexistsa practicalselectionalgorithm,
similar to quicksort, which runs in O(n) expected time.

Ifwe take IA[j] - IIIas the value ofA[jl, and run the selection algorithmwith i = k,
wewill get anelementp. LetSbe the elements strictly less thanp. Suppose lSI= k-l.
Then {P}uS is the result. If lSI< k - I, at least k -lSI duplicates of p are present, in
which case the union of any k -151elements whose value is p with Sis the result.

Note that both approaches start by computing the median, which changes the
original array.

255Solution 10.8



ElementsOfProgrammingInterviews.com

Problem 10.9, pg. 82: Design an algorithm for efficiently computing the k smallest real
numbers of theform a + b -fi for nonnegative integers a and b.

Solution 10.9: We can solve this problem using a min-heap H and a set 5 as follows.
We initialize H to contain 0+0 -fi = 0, and initialize 5 to the empty set. (A simple list
will suffice to represent 5). We now iteratively do the following, stopping when S
has k elements. When we perform an extract-min from Hto obtain a number a+b-fi,
we add it to H, and compute Cl = (a+1)+ b -fi and C2 = a + {b + 1)..fi which we add
toH.

Suppose for the sake of contradiction that 5 is not the desired set. Since 151= k,
there has to be at least one number in the desired set that is not in 5. Let the smallest
such number be m = p + q -fi. Note that p and q cannot both be O. Similarly, there
must be a number I that is in 5 and is greater than all numbers in S~. IfP > 0, consider
the number n = (p - 1) + q -fi. It is less than m, and greater than 0, so it must be in
S, since 5 contains all numbers in the desired set that are smaller than m. But then
when we processed n to put it in 5, we would have added n to H. This contradicts
our adding I to S-the heap would always return n before I.

if (a.size() == L.size(» {
cout « &.5 * (B.top() + L.top(» « endl;
else {
cout « (B.size() > L.size() ? R.top() : L.top(» « endl;

~I
23:

241

=1
281 }29 }

8, T x;
9 while (sin » x) {
10 if (L.ellpty() z= false && x > L.topO) {
II a.empIace(x);
lZ else {
-13 L. emplace(x);

if (a.size() > L.size() + 1) {
L.ellplace(B.top(»;
a.popO;
else if (L.size() > a.size() + 1) (
a.ellplace(L.top(»;
L.popO;

14

15
16

V

18

19

21)

I template <typenall.8T>
1 void online_lIedian(istringstream &sin) {

II Min-beap stores tbe bigger part of tbe strea.
priority_queue<T. vector<T>. greater<T» a;
II Max-heap stores tbe smaller part of tbe stream
priority_queue<T. vector<T>. less<T» L;

invariant, we can output the median easily according to the number of elements we
have seen so far. Following is the implementation in C++:

Solution 10.9256



257

ElernentsOfProgramminglnterviews.com

min_heap.emplace(c2);
if (hash.emplace(c2).second)

min_heap.emplace(cl);

II Add the next two numbers derived from s
Num c1(s,a_ + 1, s.b_), c2(s.a_, s.b_ + 1);
if (hash.emplace(cl).second)

hash.erase(s);
min_heap.pop0 ;

smallest.empla:ce_back(s);
Num s(min_heap.top0) ;

II Initial for ~'+ ~"sqrt(2)
min_heap.emplace(&, &);
hash.emplace(&, &);

return a_ == n.a_ && b_ == n.b_;
const bool operator==(const Hum &n) const {

::1
151
16! };

171
181 II Hash function for Num
19i class HashNum {
201 public:
21 const size_t operator()(const Hum &n) const {
22! retilrnhash<fnt>O(n.a_) A hash<int>O(n.b_);
231
241 };
25,ul vector<Num> generate_first_k(const int &k) {
271 priority_queue<Num, vector<Num» min_heap;
28'1 vector<Num> smallest;
29 unordered_set<Num, HashHum> hash;

30 Ii
31

321

331
34 !!
ss] while (smallest.sizeO < k)
361
37'
381
391
401

411

::1
441
45,

461
471

:1

II Equal function for hash

10

11

const bool operator«const Hum &n) const
return val_ > n.val_:

Num(const int &a',const int &b) : a_(a), b_(b), val_(a + b * sqrt(2)) {}

._--------_ _------------,11ci"~~:~{
21 public:
31 int a.,.b_;
4 double val_;

51
61

It is possible for a number to be inserted twice into the heap. For example, both
1+20 and 2+ 0 produce 2+20. No number can be inserted more than twice:
the irrationality of 0 implies that a + b0 = c + d0 iffa = band c = d. Wecan
checkfor duplicates when we perform extract-min.

Solution 10.9



ElementsOfPrograrnminglnterviews.com

71 int larger • (9, equal = (9;

if (idx < .ax_heap.size())
,. if (lilax..heap[idx] < x) {
1 return;

else if (lIIax_heap[idx]== x)
++equal;

10 else { II max_beap[idxl > x
" ++larger;
12

13
I' if (equal < K && larger < k) {
u compare_K_th_largest_heap-helper(max_heap, k. x, ~idx « 1) + 1, larger,
16 equal);
11 cOlllpare_k_th_largest_heap-helper(aax_heap, k, x, (idx « 1) + 2. larger,

equal);18

19

lO
21 }

22
n II -1 me,ns smaller, 6 means equal, and 1 means larger
2. templete <typenallleT>
~ int coapare_K_th_largest_heap(const vector<T> &.aX-heap, const int &k,
u const T &x) {

I template <typenaae T>
2 void compare_k_th_largest_heap_helper(const vector<T> &max_heap, const int &k,
3 const T &X, const int &idx, int &larger,

int &equal) {

Problem 10.10,pg. 83: Design an O(k) time algorithm for determining whether the k-th
largest element in a max-heap is smaller than, equal to, or larger than.agiven x. The max-heap
is represented using an array. Your algorithm's time complexity should be independent of the
number of elements in the max-heap, and may use O(k) additional storage. It cannot make
any chnnges to the max-heap, and should handle the possibility of duplicate entries.

Solution 10.10:Wecount the number of elements that are greater than or equal to x.
The key to achieving an O(k) time complexity isvisiting max-heap nodes in best-first
order, and stopping the computation as soon as we have found more than Ie nodes
greater than x.

Weuse two integer variables, equal and larger, which are initialized to 0 and
passed by reference to recursive calls of the check function. If the element r at the
root issmaller than x,we know there are no elements in the max-heap larger than x,
so we return right away. Otherwise, if r = x we increment the equal count by Ii if
r » x we increment the larger count by 1. Wethen recurse on the left child and the
right child. At any stage, if we determine there are more than k keys greater than x
ormore than k keys equal to x we return. Within each callw.edo constant work, and
for each recursive call, either we increment equal or larger, or we came from a call
that performed such an increment, implying the number of recursive callsis O(k).

~Iretu.rn amallest;
51 }

SOhltiOlllO.10258



ElementsOfProgramminglnterviews.com

Problem 11.2,pg. 86: Design an effiCientalgorithm that takes a sorted array A and a key k,
and finds the index of the firstoccurrence an element larger than k; return -1if every element
is less than or equal to k. For example, when applied to the array in Figure 11.1 on Page 86
your algorithm should return -1 if k = 500; if k = 101, your algorithm should return 3.

e-Variantll.l.2: A sequence is said to be ascending if each element is greater than
or equal to its predecessor; a descending sequence is one in which each element is
less than or equal to its predecessor. A sequence isstrictly ascending if each element
is greater than its predecessor. Suppose it is known that an array A consists of an
ascending sequence followed by a descending sequence. Design an algorithm for
finding the maximum element in A. Solve the same problem when A consists of a
strictly ascending sequence, followedby a descending sequence.

e-Variant 11.1.1: Let A be an unsorted array of n integers, with A[O] ~ A[l] and
A[n - 2] ~ A[n - 1]. Call an index i a local minimum if A[i] is less than or equal to its
neighbors. How would you efficientlyfind a local minimum, if one exists?

return res;

9
res = m, r = m - 1;
else { II Afm] < k
1 = m + 1;

1 template <typename T>
2 int search_first(const vector<T> &A, const T &k)

int leG, r = A.size() - 1, res -1;
while (1 <= r) {

int m = 1 + «r - 1) » 1);
if (A[m] > k) {

r = m - 1:
} else if (A[m] == k) {

II Record the solution and keep searching the left part

'"-,,,""",,",""""""""""'--------

Problem 11.1,pg. 86: Write a method that takes a sorted array A and a key k and returns the
index of the firstoccurrence ofk in A. Return -1ifk does not appear in A. For example, when
. applied to the array in Figure 11.1 on Page 86 your algorithm should return 3 ifk = 108; if
k = 285, your algorithm should return 6.

Solution 11.1: The key idea is to search for k. However, even if we find k, after
recording this we continue the search on the left subarray. The complexity bound
is still O(logn)-this is because each iteration reduces the size of the subarray being
searched by half. InC++ code:

~: compare_k_th_largest_heap_helper(max_beap, k, x, G, larger, equal):
29 return larger >=,k ? 1 : (larger + equal >= k ? G : -1);

30 }

259Solution 11.2



ElementsOfProg.ramminglntervieW5. com

1 int search_index_value_equalCconst vector<int> &A) {
int 1 = ., r = A.size() - 1;
while (1 <- r) {

int m - 1 + «r - 1) » 1);
int val = Arm] - m;

6 if (val == e) {
return m;
else if (val > $) {

9 r •• - 1;
10 else { II val < 9

Problem 11.3,pg. 86: Design an efficient algorithm that takes a sorted array A of distinct
integers, and returns an index i such that Alt1 = ior indicate ·that no such index exists by
returning -1. For example, when the input is the array shown in in Figure 11..1on Page 86,
your algorithm should return 2.

Solution 11.3:Sincethe array contains distinct integers and is sorted, for any i > 0,
A[i] 2: A[i-1]+ 1. ThereforeB[11= A[11-i is sorted. Itfollowsthat we cando a binary
search for0 in Bto findan index such that A[11= i. (Wedo not need to actually create
B,we can simply useA[i] - iwherever B[i] is referenced.)

Remark: As with Problem 11.1on Page86, the same problem can be posed for BSTs,
and again, the solution is analogous to the one given above.

1 template <typename T>
2 int search_first_larger_kCconst vector<T> &A, const T &k) {
3 int 1 = " r = A.size() - 1, res = -1;

while (1 <= r) {
int m = 1 ~ «r - 1) » 1);
if (Arm]> k) {

II Record the solution and keep searching the left part
res = m, r = m - 1;
else { II A[m] <= k

10 1=Dl+1;
11

121
13 return res;
14 }

Solution 11.2: The naive approach is to look for k via a binary search and then,
if k is found, walk the array forward until either the first element larger than k is
encountered or the end of the array is reached. If k is not found, binary search will
end up pointing to either the first value greater than k in the array, in which case
no further action is requ_iredor the last value smaller than k in which case the next
element, if it exists, is the value that we are looking for. The worst-case run time of
this algorithm is8(n}-an array all of whose values equal k,except for the last one
(which is greater than k), is the worst-case.

A better approach is to use binary search to eliminate half the candidates at each
iteration: if we encounter an element larger than k, we record that element, .and
continue the search in the candidates on the left; otherwise, we continue searching
in the candidates on the right. This algorithm has an O(1ogn) time complexity.

Solutiotl 11.3260



Klemen~sO£Programmingln~erviews.com

10
11

12 while (ret.first < ret.second) {
13 if (A[ret.first] + A(ret.second) •• k) {
1. return ret;
15 } .1•• if (comp(A(ret.first) + A(ret.locondl. k» {

while (ret.first < ret. second && comp(A(ret.second]. 8» {
--ret.second;

while (ret.first < ret.second && cOlllp(A(ret.first].8» {
++ret.first;

pair<int. int> ret(S. A.size() - i);

I template <typename T, typename Comp>
1 pair<int. int> find_pair_usin9_comp(const vector<T> &A, const T &k.

Comp comp) (

Problem 11.4, pg. 87: Design an algorithm that takes an abs-sorted array A and a number
k, and returns a pair of indices of elements in A that sum up to k. For example, if the input
to yow' algorithm is the array in Figure 11.2 on Page 87 and k = 167, your algorithm should
output (3,7). Output (-1, -1) if there is no such pair.

Solution 11.4: First consider the case where the array is sorted in the conventional
sense. In this case we can start with the pair consisting of the first element and the
last element: (A[O],A[n - 1]). Let 5 = A[O] +A[n - 1]. If 5 = k, we are done. If 5 < k,
we increase the sum by moving to pair (A[1],A[n -1]). We need never consider A[O];
since the array is sorted, for all i,A[O] +A[I] ~ A[O] +A[n -1] = k < s. If5> k,we can
decrease the sum by considering the pair (A [0],A[n - 2]); by analogous reasoning, we
need never consider A[n - 1] again. We iteratively continue this process till we have
found a pair that sums up to k or the indices meet, in which case the search ends.
This solution works in O(n) time and 0(1) space in addition to the space needed to
store A.

This approach will not work when the array entries are sorted by absolute value.
In this instance, we need.to consider three cases:
~1.) Both the numbers inthe pair are negative.
(2.) Both the numbers in the pair are positive.
(3.) One is negative and the other is positive.
For Cases (1.) and (2.),we can run the above algorithm separately by just limiting

ourselves to either positive or negative numbers. For Case (3.), we can use the same
approach where we have one index for positive numbers, one index for negative
numbers, and they both start from the highest possible index and then go down.

Variant 11.3.1: Solve the same problem when A is sorted but may contain duplicates.

return -1;

1 .. m + 1;

111
12
13
1.
15 }

~------------------------------------------------------~

261Bolution. 11.4



ElementsOfProgramminglntervieHs.C03

A simpler solution isbased on a hash table (Chapter 12)to store all the numbers
and then for each number x in the array, look up k - x in the hash table. If the

34, --ret.first;

lSi
36:

~! II Find tbe last negative
~! while (ret. second >= 6) && A(ret.second] >= &) {
~ --ret. second;
to
41

42 while (ret.first >= 6) && ret. second >= 8) {
~ if (A[ret.first] + A[ret.second] == k) {
u return ret:
o else if (A[ret.first] + A(ret.second] > k) {
~ do {
47 --ret.first:
'" } while (ret.firn >= $ && A(ret. first] < t):
451 else { II A[ret.first1 + A[ret.secondl < k
so do {
• --ret. second;
~ } while (ret.second >= 6) && A(ret.second] >= &):
53

:1 return {-I, -I}: II no answer
56 }

:1te.plate <typename T>
591 pair<int, int> fincLpair_sut:l_k(constvector<T> &A, const T &k) {
~ pair<int, int> ret = fincLpos_neg_pair(A, k);
61 if (ret.first = -1 && ret.second == -1) {

~ return k >= 8 ? fincLpair_usin9_comp(A, k, less<T>(»
~ find_pair_usin9_comp(A, k, greater_equal<T>(»;
64

65 return ret;
66

19

2f)

:n
22

Z3

~I}..,...I-i. -1}, II ••••,••,

~Itemplate <typename T>
29 pair<int, int> find_pos_neg_pair(const vector<T> &A, con.stT &k) {
30 II ret. first for positive, and ret. second for negative
31 pair<int, int> ret(A.sizeO - I, A.sizeO - 1);
32 II Find tbe last positive or zero
33 while (ret. first >= 8 && A[ret. first] < ') {

do {
++ret. first;

} while (ret.first < ret.second && comp(A[ret.first] , 8»;
else {
do {

--ret.second;
} while (ret. first < ret.second && comp(A[ret.second] , 8»;

Solution 11.4262



ElementsOfProgramminglnterviews.com

int m • I + «r - 1) » 1);
if (A[m] > A[r]) {

1 template <typename T>
2 int search_smallest_helper(const vector<T> &A, const int &1, const int &r) {

if (l •• r) {
return 1;

Notethat this problem cannot be solved in less than linear time when elements
may be repeated. For example, ifA consistsof n -lls and a single0, that 0cannot be
detected in the worst case without inspecting every element. Following is the C++
code for the scenario when elements may be repeated:

return I;

r = m;

11 template <typename T>
2 int searcILslllallest(coDstvector<T> &A)

int I = 6, r = A.size() - 1;
while (1 < r) {

int III = 1 + «r - 1) » 1);
if (A[m] > A(r]) {
I a III + 1;

} else { II A[m1 <= A[r)

Problem 11.5,pg. 87: Design an O(logn) algorithm for finding the position of the smallest
element in a cyclicaUy sorted array. Assume all elements are distinct. For example, for the
array in Figure 11.3 on Page 87, your algorithm should return 4.

Solution 11.5: Wemake use of the decrease and conquer principle. Specifically,we
maintain an interval of candidate indices, and iterativelyeliminate a constant fraction
of the indices in this interval. Let I = [it, rJ] be the set of indicesbeing considered, and
mJbe themidpoint of I, i.e., 11 + L~ J. If A[m1] > A[r1] then [Ir, mr] cannot contain the
index,of the minimum element. Thereforewe can restrict the search to [mr + 1,rl]' If
A[mrl < A[rr] we restrict our attention to [l/tmd. Westart with 1= [0,n - 1], and end
when the interval has one element.

Variant 11.4.1: Design an algorithm that takes as input an array of integers A, and
an integer k, and returns a pair of indices iand j such that AU] - A[iJ = k, if such a
pair exists.

hash function does a good job of spreading the keys, the time complexity for this
approach is O(n). However, it requires O(n) additional storage. If the array is sorted
on elements (and not absolute values), for each A[i] we can use binary search to find
k- A[i]. Thisapproach uses0(1) additional space and has time complexityO(n logn).
However, it isstrictly inferior to the two pointer technique described at the beginning
of the solution.

263Solution 11.5



ElementsOfProgracmiogInterviews.com

u break;
16
17 ++p;
10
19
~ II Binary searcb between indices 2A(p - 1) + 1 and 2Ap - 2
n int I = (1 cc (p - 1» + 1. r. (1 c< p) - 2;
n while (1 c- r) {

II
12

1&
14 catch (exception& e)

w
break;

I te.plate ctypen..e T>
2 int binary_search_unknown_len(const vectorcT> &A. const T &k) {
3 II Find tbe possible range wbere k exists

int p = 8;
while (true) {
try {

7 T val. A.at(Cl « p) - 1);
if (val.. k) {

return (1 c< p) - 1;
else if (val > k) {

Problem 11.6, pg.87: Let A be a sorted array. The length of A is not known in advance;
accessing A[ 11Jor i beyond the end of the array throws an exception. Design an algorithm
that takes A and a key k and returns an index isuch that A[i] = k; return -1 if k does not
appear in A. .

Solution 11.6: The key idea here is to simultaneously do a binary search for the end
of the array as well as the key. We examine A[2P - 11 in the p-th step till we hit an
exception or an entry greater than or equal to k. Then we do a conventional binary
search for k in the range [2P-l + l,2P - 2]. The run time of the search algorithm is
O(log n),where n is the length of A. Incode:

Variant 11.5.1: Design an O(log n) algorithm for finding the position of an element
k in a cyclically sorted array.

9 return search_smallest_helper(A. m + 1. r);
weIse if (A[m] < A[r]) {
II return search_smallest_helper(A, 1. m);
12 else { II A[m] .. " A[r]
13 II Smallest element must ezist in eitber left or rigbt side
14 int I_res ..searcb_smallest_belper(A. 1. m);
u int r_res a search_scallest_helper(A. m + 1. r);
16 return A[r_res] < A[l_res] 7 r_res : I_res;
17

18

19
~ te.plate ctypenaae T>
21 int search_smallest(const vectorcT> &A) {
u return search_smallest_helper(A. 8. A.size() - 1);
Z3

264 Solutio" 11.6



ElementsOfProgranuningInterview.s.com

I double completion_search(vector<double> &A, const double &budget)
sort(A.begin(), A.end());
II Calculate the prefix sum for A
vector<double> prefix_sum;
partial_sum(A.cbegin(), A.cend(), back_inserter(prefix_surn»);
II costs[i] represents the total payroll if the cap is A[i]
vector<double> costs;
for (int i = G; i < prefix_sum.size(); ++i) {

9 costs.emplace_back(prefix_sum[i] + (A.size() - i-I) * A[i);
101

, 111

Problem 11.7, pg. 88: Let A be an array of n nonnegative real numbers and 5' be a
nonnegative realnumber less than I.7:l A[i]. Design an efficientalgorithmfor computing a
such that I.7:01min(A[ij, a) = 5', if such a a exists.

Solution 11.7: Define F(a) = I.7:i min(Ali], a). We are looking for a value of a such
that F(a) = S'. Clearly, F is a continuous function of a. Since 0 ~ 5' ~ I.7:i A[i], by the
intermediate value theorem of calculus, there must exist a value of a in [0,max7:i A[ll]
such that F(a) = S'. Furthermore, since F monotonically increases with a, we can
perform binary search on the interval [0,maxr:i A[i]] to find the correct value of a.
. Assume that A is already sorted, i.e., for all i, A[i] ~ A[i + 1]. Compute the

prefix sum Zk = I.f:~ Ali]. Now, suppose A[k - 1] ~ a ~ A[k]. Consequently,
F(a) = (n - k)a + Zk.

Using the above expression, we can search for the value of k such that F(A[k]) ~
S' ~ F(A[k + 1]) by performing binary search for k. (Since we sort A, the run time
of our solution is already Oin log n), implying we could do a linear search without
changing the time complexity.) ,Once we have found the right value of k, we can
compute the value of aby simply solving the equation for F(a) above.

The most expensive operation for this entire solution is sorting A, hence the run
time is O(n log n). If we are given A sorted in advance and its prefix sums, then for
each value of S', the search would have time complexity O(log n).

39

r = m - 1; II search the left part if out of boundary

23 int rn= 1 + «r - 1) » 1);
24 try {
25 T val A.at(rn);
26 if (val == k) {
27 return m;
26 else if (val> k) {
29 r=m-1;
30 else { II A [mJ < k
31 l=m+l;
32
'33

3' catch (exception& e) {

:1
37
~ return -1; II nothing matched k

265Solution 11.7



ElementsOfProgramminglnterviews.com

while Cl < u) {
w int x = 1 + «u - 1) » 1):
11 T A..x_1- (x <= $ ? numeric_limi ts<1>: :min0 : A (x - 1]);
12 T A_x = (x >= A.size() 7 numeric_limits<T>::max() : A(x]):
13 T B_k-x_1 = (k - x <= $ ? numeric_limits<T>::min() : B(k - x - 1]):

11 template <typename T>
2 T find_kth_in_two_sorted_arrays(const vector<T> &A. const vector<T> &B,

const int &It) {
II Lower bound of elements we will choose in A

5 int 1 = max($, static_cast<int>(k - B.size(»):
II Upper bound of elements we will choose in A
int u = min(static_cast<int>(A.size(», k):

Specifically, we will maintain an interval [I,u1 that contains x, and use binary
search to iteratively half the size of the interval. At each iteration we try x = L I~uJ. If
1= u,we simply return. the larger of A[x-lJ and ~[k-x-l]. (IfA[x-ll = B[k-l-xl,
we arbitrarily return either.) If I '" u but A[x - 1] = B[k - 1 - x], we return A[x - I],
since the first x elements of A and the first k - x elements of B when sorted end in
A[x - 1) or B[k - 1 - x], which are equal.

Otherwise, if A[x] < B[k - x -I], then A[x] must be in the first k elements of the
union, so we can update I to x + 1. Conversely, if B[k - x) < A[x - 1] then A[x - 1]
cannot be in the first k elements, so we can update u to x - 1.

The initial values for 1and uneed to be chosen carefully. Naively setting 1= 0, U = k
does not work, since this choice may lead to x lying outside the range of valid indic~s
for B, i.e., outside [O,n -1]. Setting 1= max(O,k - n) and u = min(m,k) resolves this
problem.

Problem 11.8, pg. 88: You are given two sorted arrays A and B of lengths m and n,
respectively,and apositive integerk E [I,m +n]. Design an algorithm that runs in O(log k)
time for computing the k-th smallest element in arrayformed by merging A and B. Array
elements may beduplicatedwithin and betweenA and B. .

Solution 11.8: Suppose the first k elements of the union of A and B consist of the first
x elements of A and the first k - x elements of B. We'll use binary search to determine
x.

e-Variant 11.7.1: Solve the same problem using only 0(1) space.

121 auto lower = lower_bound(costs. cbeginO, cons. cendO, budget):
~. if (lower •• costs.cend(» {
14 return -1.$: II no solution since budget is too large
13
16
17 if (lower == costs.cbegin(»
18 return budget / A.sizeO:

l'
w int idx = lower - costs.cbegin() - 1:
21 return A(idx] + (budget - costs(idx]) / (A.sizeO - idx - 1):
22

Solutio" 11.8266



267

ElernentsOfProgramminglnterviews.com

lsi 1 = 1.s , r = x ;
161

1 = x , r = 1.&;
else { /1 x >= 1.61

71 }

sl
I91 double square_rootCconst double &x) {

10, // Decide the search range according to x
111 double I, r;
121 if Ccompare CX,' 1. &) < &) { II x < 1.61
131
14,

return diff < -numeri~_limits<double>: :epsilonC) ?
-1 : diff> numeric_limits<double>: :epsilonC);

1r'//....;....~~~~·;·..·~~~·;~·:··..=·~·:;;:;;-sma;~-~;~--~--~~~~~ i~;~er
2i int compareCconst double' &a, const double &b) {
31 II Use normalization for precision problem
41 double di£t' = (a - b) j' b :

51
6,

Problem 11.9, pg. 88: Implement afunction which takes as input a floating point variable
x and returns yx.
Solution 11.9: One of the fastest ways to invert a fast-growing monotone function
(such as the square function) is to do a binary search. Given x, we start with a lower
bound I and an upper bound u on yx. We iteratively check if the square of midpoint
m of [I,u] is smaller than, greater than, or equal to x. In the first case, we update the
lower bound to m; in the second case, we update the upper bound to m; in the third
case, we return m.

When checking for equality, we use a notion of tolerance, eps, since floating point
arithmetic is not exact. This tolerance is user-specified.

Trivial choices for the initial lower bound and upper bound. are 0 and the largest
floating point number that is representable. If x ;::1.0,we can tighten the lower and
upper bounds to 1.0 and x, since x ;::1.0 => x2 ;:: x. If x < 1.0 ~ x2 < x, the previous
choice of 1 and u is incorrect; instead, we can use x and 1.0. The time complexity is
O(1og e~s)since the number of iterations is:affected by the choice of eps. Care has to
be taken to ensure the compare function is resilient to finite precision effects.

14 T B_k..x Ck - x >= B. size 0 ? numeric_limi ts<T>: :max0 B[k - x]);
15
16 if CA_x < B_k..x_1)
17 1 = x + 1;
18 else if CA_x_l > B_k_x)
19 u = X - 1;
20. else {
21 1/ B[k - x - 1J <= A[xJ && A[x - 11 < B[k - x]
22 return maxCA_x_1. B_k_x_1);
23
24

:1 T A_1_1 = 1 <= & ? numeric_limits<T>::minC) : A[l - 1);
~ T B_k_1_1 = k - 1 - 1 < $ ? numeric_limits<T>: :minC) : B[k - 1 - 1];

:~_.~.:.~.::.: .....~~XCA_L1. B_k..l_1);

Solution 11.9



ElementsOfProgramminglnterviews.com

1 template <typename T>
2 bool matrix_search(const vector<vector<T» &A, const T &x) {
31 int r = 6), c = A[8]. sizeO - 1:
41 while (r < A.size() && c >= 8) {
5 if (A[r][c] == x) {
6 return true;

8

71 else if (A[r][c] < x)
++r;
else { II A[r][c] > x

10 --c;
II
12
13 return false:
14 }

Problem 11.10, pg.88: Let A be an n x n W array where rows and columns are sorted
in increasing sorted order. Design an efficient algorithm that decides whether a number x
appears in A. How many entries of A does your algorithm inspect in the worst-case? Can
you prove a tight louier bound that any such algorithm has to consider in the worst-case? .

Solution 11.10: One approach is to start by comparing x to A[O][n - 1]. If x =
A[O][n - 1},stop. Otherwise:

- x > A[O][n - II,in which case x is greater than all elements in Row O.
- x <A[O][n -1], in which case x is less than all elements in Column n - 1.

Ineither case, we have a 2D array with n fewer elements to search ..In each iteration,
we remove a row or a column, which means we inspect at most 2n - 1 elements.

Variant 11.9.1: Given two positive floating point numbers x and y, how would you
compute ~ to within a specified tolerance e if the division operator cannot be used?
You cannot use any library functions, such as log and exp; addition and multiplication
are acceptable.

17
18 II Keep searching if 1 < r
19 while (compare(l, r) == -1)
20 double m = 1 + 6).5 * (r - 1);
n double square_m = m * m;
:n if (compare (square_m, x) == 6)
n return m;
24 else if (compare (square...m,x) == 1) {
2S r = m;
26 else {
'17 1 = m;
28

29
so return l;
31 }

Solution 11.10268



ElementsOfProgramminglnterviews.com

Problem 11.11,pg. 89: How would you organize a tournament with 128players tominimize
the number of matches needed to find the best player? How many matches do you need to
find the best and the second best player?

Solution 11.11: First, we consider the problem of finding the best player. Each game
eliminates one player and there are 128 players; so, 127 matches are necessary and
also sufficient.

To find the second best, we note that the only candidates are the players who are
beaten by the player who is eventually determined to be the best-everyone else lost
to someone who is not the best.

To find the best player, the order in which we organize the matches is
inconsequential-we just pick pairs from the set of candidates and whoever loses is
removed from the pool of candidates. However ifwe proceed in an arbitrary order,
we might start with the best player, who defeats 127 other players and then the
players who lost need to play 126 matches amongst themselves to find the second
best.

To find the second best player, we can do much better by organizing the matches
as a complete binary tree. Specifically, we pair off all the players arbitrarily to form 64
matches. After these matches.we are left with 64 candidates; we pair them off again
arbitrarily and they play 32 matches. Proceeding in this fashion, we organize the 127
matches needed to find the best player and the winner will have played 7 matches.
Therefore we can find the second best player by organizing 6matches between the 7

where entries not shown are chosen so that the matrix is sorted by rows and by
columns. We claim that any algorithm that solves the 2D array search problem will
have to compare x with each of the 2n -1elements shown (Le., the diagonal elements
and the elements immediately below them). Call these elements the D.. elements.
Proof:

Comparing x with other elements does not eliminate any of the D.. elements.
Suppose an algorithm did not compare x with one of the D.. elements .: Then we
could make that element x (instead of x-lor x + 1) and the algorithm would
behave exactly as before and hence return the' wrong result. Therefore at least
2n - 1 compares are necessary which means that the algorithm we designed is
optimum.

x-I
x-I x+l

x-I x+l
x+l

x-I
x+1

For a tight lower bound, let x be any input. Define A to be

269Solution Tl.Tl:



ElementsOfProgrammingInterviews.com

Problem 11.13, pg. 89: Design an algorithm for computing the k-th largest element in an
array A that runs in O(n) expected time.

Solution 11.13: The basic idea is to use decrease and conquer. We pick a random
index r in the array A. Let A[r] = x. Reorder the elements in A in such a way that all
elements that appear before index p are greater than x, and all elements that appear
after p are less than or equal to x. Call the reordered array A'.

IfP=k -I,we are done-A'[p] is the k-th largest element. Otherwise if p > k -1,
the element we are looking for is the k-th largest element of the subarrayA'[O : p -1].
Finally, if P < k - I, the element we seek is the (k - (p + 1»-th largest element of the
subarray A'[p + 1 : n - 1]. Each of the two latter cases can be solved recursively.

Variant 11.12.1: What is the least number of comparisons required to find the min
and the max in the worst case?

18 min_max_pair ; {min(min_max_pair .first, A.back0) ,
19 t:lax(min_max_pair .second, A.back0) };
20

21 return min_max_pair;
22

II need to compare the last element with the existing answer.
if (A.size() & 1) {

II Special case: if tbere is odd number of elements in the array, we still

1IIIIReturn (min, max) pair of elements in A
2. template <typenaae T>
3'11pair<T. T> find_min_max(const vector<T> &A)
4 if (A.size() <; 1) {
51 . return {A.frontO. A.frontO};
6, }
71

9

8,1 II Initialize the min and max pair
pair<T. T> min_max_pair ; minmax(A[$]. A[l]);~lifO~a~::;. \: ~~C~l:P~i; :.:~:~~~A~i;: !~i\ 1]);

u min_max_pair; {min(min_max_pair.first. local_pair.first).
ui max(min_max_pair.second. loca~_pair.second)};
141

IS!

16i
I

17

Problem 11.12, pg. 89: Find the min and max elements from an array of n elements using
nomore than f3n/21 - 2 comparisons.

Solution 11.12: If n = I, no comparisons are needed. Suppose n > 1. Find the
min m and the max M of the first two numbers; this requires a single comparison.
Now process the remaining elements two at a time. Let (x,y) be such a pair. If
min(x, y) < m,update m; ifmax(x, y) >M, update M. This entails three comparisons
for each pair. If n is odd, the last update entails two comparisons, namely comparing
the last element with m and M.

players who lost to the best player, for a total of 127+ (7 - 1) = 133 matches.

Solution 11.13270



271

ElementsOfPrograrnminglntervielvs. com

Problem 11.14, pg.89: Design an algorithmfor computing the k-th largest element in a
sequenceofelements. It shouldrun inO(n) expectedtimewheren is the lengthof thesequence,
which is not known in advance. The value k is known in advance. Your algorithm should
print the k-th largest element after the sequencehas ended. It should use O(k) additional
storage.

Solution 11.14: The natural approach is to use a min-heap containing the k largest

€-Variant 11.13.1: Design an algorithm for finding the k-th largest element of A in
the presence of duplicates. The k-th largest element is defined to be A[k - 1] after A
has been sorted in a stable manner, i.e., if A[i]. = A[j] and i < j then A[11must appear
before A[j] after stable sorting.

"""".---""""" " """"..".-" _-_ ..__-_ _--_ .._ .._._.__ _._ _._.- _-_ _.__ ._.._--'

:1
301

.31132

33 }

default_random_engine gen«random_device())());
uniform_int_distribution<int> dis(l. r); .II generate random int in [1, r]
int p; partition(A, 1, r, dis(gen));
if (p == k - 1) {

return A[pr;
else if (p > k - 1) {
r = p - 1;
else { II p < k - 1
1 " p + l'

22

23
24

23

26

27

III
:I! swap(A[r], A[larger_index]);
14 return larger_index;
IS, }
161

171 template <typename T>
1slT iind_k_th_largest(vector<T> A, const int &k) {
191 int 1 ; 1\), r ; A.sizeO - 1;

:i while (l <= r)

swap(A[pivot], A[r]);
for (int i = 1; i < r; ++i) {

if (A[i] > pivot_value) {
w swap(A[i], A[larger_index++]);

Since we expect to split the array into roughly equal halves on average, intuitively,
the expected time complexity T(n) should satisfy T(n) = O(n) +T(n/2). This solves to
T(n) = O(n). A more formal analysis requires the use of indicator random variables
Xi, for 0 ~ i~k - I, one per choice of t, and leads to the same conclusion.

1III Partition A acco;ding pivot, return its index after partition
2, template <typename T>
31 int partition(vector<T> &A, const int &1, const int &r, const int &pivot)
'sl T pivot_value = A[piv?t];

int larger_index " 1;

Solutio1l11.14



ElementsOfProgramrninglnterviews.com

for (int i = &; i < counter.size(); ++i) {
II Find one bucket contains less than (1 « 16) elements
if (counter[i] < (1 « 16» {

5 ++counter(x » 16];

) int find_missin9_element(ifstream &ifs)
vector<size_t> counter(1 « 16, &);

3 unsigned int x;
while (ifs » x)

Problem 11.15, pg.90: Suppose you were given a file containing roughly one billion
Internet Protocol (IP) addresses, eachof which is a 32-bit unsigned integer. How would you
programmatically find an IPaddress that is not in thefile? Assume you have unlimited drive
space but only two megabytes of RAM at your disposal.

Solution 11.15: Inthe first step, we build an array of 21632-bitunsigned integers that
is initialized to 0 and for every IP address in the me,we take its 16most significant
bits to index into this array and increment the count of that number. Since the me
contains fewer than 232numbers, theremust be one entry in the array thatis less than
216.This tells us that there is at least one IP address which has those upper bits and
is not in theme. In the second pass, we can focus only on the addresses that match
this criterion and use a bit array of size 216to identify one of the missing numbers.

nth_element(lI,begin(). lI.begin() + k - 1, lI,end(), greater<T>(»;
return lI[k- 1]; II return the k-th largest one

II Keep the 'k largest ele.lllents and discard the small ones
nth_element(lI.begin(), lI.begin() + k - 1, lI.end(), greater<T>(»;
lI.resize(k);

} ,

1 template <typename T>
21T find_k_th_largest_unknolm_length(istringstream &sin, const int &k) {
3 vector<T> II:

T x;
while (sin » x) {

lI.emplace_back(x):
if (lI.size()== (k « 1) - 1) {

elements seen thus far. As each new element e is read, it is compared with the value
of the smallest element m in the min-heap: if e ~ m, we continue: otherwise we
deletem and insert e. This approach has time complexityO(n logk), since inserts and
deletes take O(logk) time, and when elements are presented in ascending order, each
new element requires an insert and a delete.

A better approach is to keep the k largest elements in an array M of length 2k- 1.
Weadd elements toM, and each timeM is full,we find the k largest elements using
the selection algorithm in Solution 11.13on Page 270. The smaller elements are
discarded, and we continue. The selectionalgorithm takesO(k) time and isrun every
k elements, implying an O(n) time complexity.

Solution 11.15272



273

ElementsOfProgramminglnterviews.com

The problem with the approach above is that it can lead to overflow. A substan­
tially better approach is to compute the XOR of all the elements in Zn and A-this
yields met. Sincem '* i, there must be some bit in met that is set to 1, i.e., m
and t differ in that bit. We then compute the XOR of all the elements in Zn and in
A in which that bit is 1. Let this XOR be h. By the logic described in the problem
statement, h must be one of m or t. Wecan scan through A to determine if h is the
duplicate or the missing element. This approach is simpler and, since it requires no
arithmetic, it cannot result in an overflow. A disadvantage is that it requires three
passes through A.
1'-..-.-.- .•-.-.-.---- -- ----

a }

}
return {(square_sum / sum - sum) » 1, (square_sum / sum + sum) » 1};

1 II Return pair<int, int>(duplicate, missing)
2 pair<int, int> find_duplicate_missing(c:onst vec:tor<int> &A)

int sum = $, square_sum = &;
for (int i 2 $; i < A.size(): ++i)

sum += i - Ari], square_sum +,. i • i - Ari] * ACi];

Problem 11.16,pg.90: Let A be an array ofn integers in Zn, with exactly one element t
appearing twice. This implies exactly one element m E Zn is missing from A. How would
you compute t and m in O(n) time and 0(1) space?

Solution 11.16: Let Sum(Zn) be the sum of the elements in Zn, and Sqr(Zn) be
the sum of the squares of the elements in Z«. The sum of the elements in A is
exactlySum(Zn) + t - m, and the sum of the squares of the elements in A is exactly
Sqr(Zn}+ t2 - rn2• It is'straightforward to compute m - t: initialize sumto 0, and add
(i - Ali)) to sumfor each index i.A similar computation yields rn2 - t2 (i.e., square_sum
in code). Factoringand canceling the expression m;::2 yields In + t, to which we add
m - t to obtain 2m and subtract rn - t to obtain 2t. Details are given below:

II bltset<(l « 16» bit_vec:;
12 Hs.clurO;
13 ifs. seekg($, ios: :beg);
14 while (ifs » x) {
15 if (I .... (x » 16» {
16 bit_vec:.set«(1 « 16) - 1) & x); II gets the lower 16 bits of x
11
18l' Ifs.c:los. 0 ;
20
21 for (int j • $; j < (1 « 16) j ++j) {
12 if (bit_vec:.test(j) •• $)

~ return (1 « 16) I j;
24
25

26
21

28 }

· Sollttion 11.16



E1ementsOfprogr~ingInterviews.com

Problem 11.17,pg.90: Given an arrayA, in which each element atA appears three times
exceptfor one element e that appearsonce.find e in 0(1) space and O(n) time.

Solution 11.17: One way to view Solution 11.16on the preceding page is that it
counts modulo 2 for each bit-position the number of entries in which the bit in that
position is 1. Specifically,the XORof elements at indices [0,i-IJ, determines exactly
which bit-positions have been 1 an odd number of times in elements of A whose
indices are in [0,i - 1].

'Theanalogous approach for the current problem is to count modulo 3 for each
bit-position the number of times the bit in that position has been 1. The effect of
counting modulo 3 is to eliminate the elements that appear three times, and so the
bit-positions which have a count of 1 are precisely those bit-positions in ewhich are
set to 1.

Representing a number modulo 3 requires two bits. We use two integer-valued
variables, ones and twos, to do the counting. The variable ones denotes whether a
bit-position has been set once (modulo 3) so far; the variable twos denotes whether
a bit-position has been set twice (modulo 3) so far. When a bit-position has a count
of 2 (modulo 3) and another 1 is observed, we reset the ones and twos variables.

Suppose ones and twos have been set appropriately after reading in the first i- 1
elements. After reading Ai-l, bit-position j has a count of 1 modulo 3 iff it had a
count of 1modulo 3 and the j-th bit in A, is a zero or the count was 0modulo 3 and
the j-th bit in A, is a one. This gives us the update equation for ones.

II miss_or_dup is missing element
return {miss_or_dup A miss_XOR-dup. lIIis$_or_dup};

7

• int differ_bit = aiss_XOR_dup & (-Caiss_XOR-dup - 1)). miss_or_dup • 8;
9 for (int i • 8; i < A.siz.(); ++i) {
10 if (i &. differ_bi t) {
u miss_or_dup A= I;
12

13 if (A[i] & differ_bit)
~ miss_or_dup A= A(i];
15

16

17

18 for (const int &A....i: A) {

~ if (A_i == aiss_or_dup) { II find duplicate

1 II Return pair<int. int>(duplicate. missing)
z pair<int. int> find_duplicate_misslng(const v.ctor<int> &A)

int =iss_XOR_dup = 8;
for (int i • 8; i < A.siz.(); ++i) {

aiss_XOR-dup A= i A A[i];

return {miss_or_dup. aiss_or_dup A miss_XOR-dup};

274 Sollltioll11.17



ElementsOfProgramminglnterviews.com

Problem 11.19,pg. 91: You are reading a sequence of words from a very long stream. You
know a priori that more than half the words are repetitions of a single word w (the "majority
element") but the positions where w occurs are unknown. Design an algorithm that makes a
single pass over the stream and uses only a constant amount of memory to identify w.

Solution 11.19:The following observation leads to an elegant solution. If you take
any two distinct elements from the stream and discard them away,the majority ele­
ment remainsthe majorityof the remaining elements. (Thishingeson the assumption
that there exists a majority element to begin with). The reasoning is follows.

A worst-case input is one where all elements have value k - 1, in which case the
algorithm is forced to inspect all elements. Hence its time complexity isO(n),where
n is the length of the close array. (Recalltime complexitymeasures performance on
worst-case inputs.) Inthe best case,our algorithm inspects 1/k-th of the array, e.g.,if
all elements are O.

7 }

return idx < A.size() ? idx : -1: II -1 means no result

1 int close_search(const vector<int> &A, const int &k)
int idx = 9:
while (idx < A.sizeO && A[idx] 1= k) {

idx += abs(A(idx] - k):

Problem 11.18,pg. 91: Design an efficient algorithm that takes a close array A, and a key
k and searches for any index j such that A[j] = k. Return -1 if no such index exists. For
example, for the array in Figure 11.4 on Page 91, if k = 2, your algorithm should return an
index in {4,5,7}.

Solution 11.18:The closeproperty allows us to skip indices: if lA[i] - kl = I, then for
no index i' E (i -1, i+ 1)can A[i'] = k. Weuse this test to speedup the basic iterative
search through an array in the code given below.

10 }
return ones:

lint find_element_appears_once(conat vector<int> &A)
int ones. G. twos - G:

3 int next_ones, next_twos:
for (const int &1 : A) {

next_ones. (-1 & ones) I (i & -ones & -twos);
next_twos. (-i & twos) I (i & ones):
onos • next_ones, twos. next_twos:

After reading Ai-l, bit-position j has a count of 2modulo 3 iffit had a count of 2
modulo 3and the j-th bit in A;_l is a zero or the count was 1modulo 3and the j-th
bit in i is a one. This gives us the update equation for twos.

The code below implements the update equations; for the reasons described
above, the final result is ones.

275Solution 11.19



ElementsOfProgramminglnterviews.com

int string_hash(const string &str, const int &modulus) {
const int HULT = 997;

s int val = 19:
41 for (const char &c : str)

Problem 12.1,pg. 92: Design a hash function that is suitable for words in a dictionary.

Solution 12.1: First, the hash function should examine all the characters in each
word. (If this seem obvious, the string hash function in the original distribution of
Java examined at most 16 characters, in an attempt to gain speed, but often resulted
in very poor performance because of collisions.) It should give a large range of
values, and should not let one character dominate (e.g., if we simply ca~t characters
to integers and multiplied them, a single 0 would result in a hash code of 0). We
would also like a rolling hash function, one in which if a character is deleted from
the front of the string, and another added to the end, the new hash code can be
computed in 0(1) time (see Solution 12.13 on Page 286). The following function has
these properties:

The code above assumes a majority word exists in the sequence. If no word has a
strict majority, it still returns a word from the stream, albeit without any meaningful
guarantees on how common that word is. We could check with a second pass whether
the returned word was a majority. Similar ideas can be used to identify words that
appear more than n/k times inthe sequence, as discussed inProblem 12.11on Page 96.

return candidate:

count " 1;
else if (candidate == buf) {
++countj

else {
--count;

1 string majority_search(istringstream &sin) {
string candidate. buf;
int count = 8;
while (sin ». buf) {

if (count == 6) {
candidate = bUf:

Proof:

Let's say the majority element occurred m times out of n elements in the stream
such that i > ~.The two distinct elements that are discarded can have at most one
of the majority elements. Hence after discarding them, the ratio of the previously
majority element to the total number of elements is either ('~2) or ~j?. Itis simple

to verify that if i > ~,then (n~2) > t~;?> ~.

Now, as we read the stream from beginning to the end, as soon as we encounter
more than one distinct element, we can discard one instance of each element and
what we are left with in the end must be the majority element.

Solution 12.1276



ElementsOiProgramminglnterviews.com

10
11 return closest_dis;
12 }

string_to_location[s[i]] = i;

1 int find_nearest_repetition(const vector<string> &5) {

unordered_map<str~ng. int> string_to_location;
int closest_dis = numeric_limits<i~t>: :max();
for (int i = &; i < s.size(); ++i) {

auto it = string_to_location.find(s(i]);
if (it 1= string_to_location.end()) {

closest_dis = min(closest_dis, i - it->second);

Problem 12.3,pg. 93: Let s bean array of strings. Write afunction whichfinds a closest pair
of equal entries. For example, if s = ["All", "work", "and", "no", "play", "makes", "for",
"no", "work", "no", "fun", "and", "no", "results"], then the second and third occurrences
of "no" is the closest pair.

Solution 12.3: We make a scan through the array. 1'01' each i, we determine the
index j of the most recent occurrence of s[i]. If i - j is less than the differenceof the
closest duplicate pair seen so far,we update that differenceto i - j. Themost recent
occurrence of s[i] is computed through a hash table lookup. The time complexity is
O(n), since we perform a constant amount of work per entry. The space complexity
is Oed),where d is the number of distinct strings in the array.

Problem 12.2,pg. 93: Design a hash function for chess game states. Your function should
take a state and the hash codefor that state, and a move, and efficiently compute the hash code
for the updated state.

Solution 12.2:A straightforward hash function is to treat the4x64 bits that constitute
the board as a sequence of 64 digits in base 13, and use the hash function [.1':0 Cipi,
where Ci is the digit in location i, and p is a prime (see Solution 12.1on the facing
page).

Thishash function doeshave ability tobe updated incrementally-if, for example,
a black knight on one square is replaced by a white bishop, the hash code update
simply requires subtracting C:ptl and c~pi2, and adding C~ptl and cepi2,where it and
i?, are the initial locations of the knight and the bishop, respectively,and cZ,c~,Ce are
the codes for black knight, white bishop, and empty space, respectively.

Amore efficienthash function is based on creating a random 64-bit integer code
for each of the 4 x 64 assignments of pieces to squares. The hash code for the state
of the chessboard is the XORof the code for each piece. Updates are trivial-for the
example above, we XORthe code for black knight on iI,white bishop on i2, white
bishop on iI,and blank on iz-

'---_._ _--_ _ _._ _._ ..-----8 }

return val;

val = (val * MULT + c) % modulus;

277Solution 12.3



ElementsOiProgramminglnterviews.com

33
M BinaryTreeNode n = (BinaryTreeNode)o;
35

29

30
31 if (1(0 instanceof BinaryTreeNode))
~ return false;

$Override
public boolean equals(Object 0) {

if (0 == this)
return true;

int x = 3 * key;
int y = this.left == null? 5 S· this.left.hashCode();
int z = this.right == null? 7 : 7 * this.right.hashCode();
this.cachedRash = x + y + z;
return this.cachedHash;

@.Override
public int hashCode()

if (this.cachedRash != null)
return this.cachedHash;

public BinaryTreeNode(int k. BinaryTreeNode 1. BinaryTreeNode r) {
this.key = k;
this. left = 1;
this.right = r;
this.cachedBash = null;

Integer cachedBash;

static class BinaryTreeNode {
int key;
BinaryTreeHode left. right;

Sollltioll12.4

Problem 12.4, pg. 94: Given a set of binary trees All' .. , An how would you compute a
new set of binary trees B1I ••. , Bn such that for each i, 1~ i ~ n, Aj and Biare isomorphic,
and no pair. of isomorphic nodes exists in the set of nodes defined by BlI· .. ,Bn. (This is
sometimes referred to as the canonical form.) Assume nodes are not shared in Al, ... ,An.
See Figure 12.2 on Page 94for an example.

Solution 12.4: We will refer to Bl, ... ,B; as the canonicalform for All ... ,An. We can
greatly accelerate the computation of the canonical form by caching. Specifically, we
will cache the hash code for canonical nodes. Also, to compute the canonical node
for a node n insome Ai, we will first compute the canonical nodes for n's children.

We need to define a hash function and an equality function for nodes. The hash
function must have the property that isomorphic nodes are mapped to identical hash
codes. The equality function should implement the isomorphism check.

The equality function can be implemented directly from the definition of isomor­
phism. The hash function can also be implemented fairly easily, e.g., h(null) = 1 and
h(x) = 3h(x.key) +5h(x.left) +7h(x.rlght).

278



ElementsOfProgramminglnterviews.com

Problem 12.6,pg. 95: Solve Problem 12.5on Page 94 when users are grouped based on
having similar attributes. The similarity between two sets of attributes A and B is ~.

Problem 12.5,pg. 94: You aregiven a sequence of users where eachuser has a unique 32-bit
integer key and a set of attributes specified as strings. When you read a user, you should
pair that user with another previously read user with identical attributes who is currently
unpaired, if such a user exists. If the user cannot be paired, you should keep him in the
unpaired set. How would you implement this matching process efficiently?

Solution 12.5: Each user is associated with a set of attributes and we need to find
users associatedwith agiven set of attributes quickly.Ahash table would be a perfect
solution here but we need a hash function over the set of attributes. If the number of
attributes is small, we can represent a subset of attributes as a bit array,where each
bit represents a specificattribute. Oncewe have a canonical representation for sets,
then we can use any hash function for bit arrays.

If the set of possible attributes is large, a better way to canonically represent a
subset of attributes is to sort the attributes. (Any arbitrary ordering of attributes will
work.) Wecan represent the sorted sequenceofattributes as a string by concatenating
the individual elements, and use a hash function for strings.

€-Variant 12.4.1: Design an efficient algorithm that computes the largest subtree
common to two binary trees.

Incidentally, the implementation above illustrates what is known as the flyweight
pattern.

M if (n a. null II key != n.key) {
~ return false;
38
39 II Assuming that equals is called on nodes
40 II where children are already in canonical form
41 return (left •• n.left && right •• n.right);
42
~
44

U static Map<BinaryTreeNode, BinaryTreeNode> nodeToCanonicalNode
46 new RashMap<BinaryTreeNode, BinaryTreeNode>();
47
48 static BinnryTreeNode getCanonieal(BinaryTreeNode n) {
49 BinaryTreeNode Ie g (n.left •• null) ? null: getCanonical(n.left);
~ BinaryTreeNode rc m (n.right •• null) ? null: getCanonical(n.right);
51 BinaryTreeNode nc • new BinaryTreeNode(n.key, le, rc);
51
~ if (nodeToCanonicalNode.contains~.y(nc»
54 return nodaToCanonicalNode.get(nc);
55
~ nodeToCanonicalNode.put(nc, nc);
51 return nc :
38

279Solution 12.6



ElementsOfProgramminglnterviews.com

Problem 12.8,pg. 9S: Write a program to test whether the letters forming a string s can be
permuted to form a palindrome. For example, "edified" can be permuted to form "deified".

string sorted_str(s);
II Use sorted string as tbe basb code
sort(sorted_str.begin(), sorted_str.end(»;

8 hash[sorted_str].emplace_back(s);

1:1
U' for (const pair<string, vector<string» &p : hash) {
12 II Multiple strings witb tbe saae basb code => anagrams
U if (p.second.size() >= 2) {
14 II Output all strings
IS copy(p.second.begin(), p.second.end(),
16 ostreaJILiterator<string>(cout, " "»;
17 cout « endl;
18
19

20 }

unordered_map<string, vector<string» hash;
for (const string &s : dic~ionary) {

II Get tbe sorted string and tben insert into basb table
dvoid find_anagrams(const vec,or<s~ring> &4ictionary)

;1

Problem 12.7,pg. 95: Write afunction that takes as input a dictionary of English words,
and returns a partition of the dictionary into subsets of words that are all anngrams of eadi
other.

Solution 12.7: Given a string s, let sort(s)be the string consistingof the characters in s
rearranged so that they appear in sorted order. Observe that x and yare anagrams iff
sort(x) = sort(y). For example, sort("logarithmic'') and sort("algorithmic") are both
"acghiilmort". Thereforeanagrams canbe identified by adding sort(s)for each string
s in the dictionary to a hash table.

If two sets of attributes 51and 52are similar, then the probability ofMt(51)= Mt(52)
is high, specifically it is 151n5211151n521. Wemap each set of attributes 5 to the
sequence (Ml (5),M2(S), ... ,Mk(S», Wecan use one of two criterion for identifying
similar users. The first is that users who have the same sequences are potentially
similar. Thesecond is that users who have any hash code in common are candidates
for being similar. The first criterion will have a higher false negative rate, whereas
the second will have a higher false positive rate. In either case the problem has
been reduced to hashing. The parameter k can be varied to increase or decrease the
likelihood of falsenegatives.

Solution 12.6: Grouping users based on similarity makes the problem significantly
more difficult.Min-hashing is a common approach. Essentially,we construct a set of
k independent hash functions, hlth2, ••• ,Iit. Then for the set of attributes 5 of each
user,we define

Solution 12.8280



281

ElementsOfProgrammingInterviews.com

1/ A string can be permuted as a palindrome if the number of odd time
// chars <= 1
return odd_count <= 1;

if (nuM_curr,char & 1) {
++odd_count;

10

11

num_curr_char = l'
else {
++nulII..curr_char;

++odd._count;

for (int i = 1; i < s.size() && odd_count <= 1; ++i) {
if (s(i) 1= sri - 1])

if (num_curr_char & 1) {

'[bOOl can_5trin9_be_a_palindrome(string s)
2 50rt(s.begin(), s.end(»;
3 int odd_count = $, num_curr_char = 1;

:1
:1

When the character set is large, we can perform the check without additional
storage by sorting the string-this can be done in O(n logn) time and 0(1) space.
Then we make a pass through the string determining character frequencies. (This
approach changes the string itself.)

---_ _--_ _ _.

// A string can be permuted as a palindrome if the number of odd time
// chars <.. 1
int odd_count = $;

for (const pair<char, int> &p : hash) {
10 if (p.second & 1 && ++odd_count > 1) {

111 break;

121

::1 return odd_count <= 1;
IS }

bool can_string_be_il_palindrome(const string &5) {
unordered_map<char, int> hash;

3 II Insert each char into hash
for_each(s.begin(), s.end(), [&hash)(const char &c) { ++hash[c); });

Explore solutions that trade time for space.

Solution 12.8:If the string is of even length, a necessary and sufficientcondition for
it to be a palindrome is that each character in the string appear an even number of
times. If the length is odd, all but one character should appear an even number of
times. Both these cases are covered by testing that at most one character appears an
odd number of times, which can be checked using a hash table mapping characters
to frequencies.

Solutio)! 12.8



ElementsOfProgramminglnterviews.com

Problem 12.10,pg. 95: Let P be a set of n points in the plane. Each point has integer
coordinates. Design an efficient algorithm for computing a line that contains the maximum
number of points in P.

Solution 12.10:Every pair of distinct points defines a line. Wecan use a hash table
H to map lines to the set of points in P that lie on them. (Eachcorresponding set of
points itselfcould be stored using a hash table.)

There are n(n2-1) pairs of points, and for each pair we have to do a lookup in H,
an insert into H if the defined line is not already in H, and two inserts into the
corresponding set of points. The hash table operations are 0(1) time, leading to an
0(n2) time bound for this part of the computation.

Wefinish by finding the line with the maximum number of points with a simple
iteration through the hash table searching for the line with the most points in its

20jl

Remark: If the characters are coded inASCII, we could do away with HL and use a
256 entry integer array A, with A[i] being set to the number of times the character i
appears in the letter.

return true;

hash.erase(it);
if (hash,empty0 true)

auto it = basb.find(c);
if (it != hash.cend()) {

if (--it->second == &)

II Cbeck cbars in IItbat could cover cbars in a basb table
for (const char &c : K) {

5

:1
91
101ul
:1
14
i

15
16

V
18 II No entry in basb means L can be covered by II
19 return hash.empty0 ;

1 bool anonymous_le~ter(const string &L. const string &K) {
unordered_map<char. int> bash;
II Insert all cbars in L into a hash table
for_eacb(L.begin(), L.end(), [&bash](const char &c) { ++hash[c]; });

Problem 12.9,pg. 95: You are required to write a method which takes an anonymous letter
L and text from a magazine M. Your method is to return true iff L can be written using M,
i.e., ifa letter appears k times in L, itmust appear at least k times in M.

Solution 12.9: In the problem scenario, it is likely that the string encoding the
magazine is much longer than the string encoding the anonymous letter. Webuild
a hash table HL for L, where each key is a character in the letter and its value is
the number of times it appears in the letter. Consequently, we scan the magazine
character-by-character.When processingc, if cappears inHL, we reduce its frequency
count by 1;we remove it from HLwhen its count goes to zero. If HLbecomes empty,
we return true. If it isnonempty when we get to the end ofM,we return false.

Solution 12.10282



283

ElementsOfProgramminglnterviews.com

public:
Il'Store the numerator and denominator pair of slope unless the line is
II parallel to y-axis that We store 119
pair<int, int> slope;
II Store the numerator and denominator pair of the y-intercept unless
II the line is parallel to y-axis that we store the x-intercept
pair<int, int> intercept;

private:
static pair<int, int> get_canonical_fractionalCint a, int b) {

int gcd = GCD(abs(a), abs(b));
a /= ged. b /= gcd;
return b < @ ? make_pair(-a, -b) make_pair(a, b);

const bool operator==(const Point &that) const {
return x == that.x && y == that.y;

5

:1
:, };
10

111 II Hash function for Point
121 class HashPoint {

131 public:·
14 const size_t operator()(const Point &p) const
I~ return hash<int>()(p.x) A bash<int>() (p.y);

I~!' }
111 };
181
19 II Line function of two points. a and b, and the equation is~!II y ~ x(b.y - a.y) I (b.x - a.x) + (b.x * a.y - a.x w b.y) I (b.x - a.x)
21' class Line {

IIEqual function for hash

I class Point {
public:

3 int x , y;

One idea would be to compute a hash code from the slope and the y-intercept of this
line as an ordered pair of doubles. Becauseof finite precision arithmetic, we may
have three points that are collinearmap to distinct buckets.

A more robust hash function treats the slope and the y-intercept as rationals. A
rational is an ordered pair of integers: the numerator and the denominator. Weneed
to bring the rational into a canonical form before applying the hash function. One
canonical form isto make the denominator always nonnegative, and relativelyprime
to the numerator. Lines parallel to the y-axis are a special case. For such lines, we
use the z-intercept in place of the y-intercept: and use ~as the slope.

corresponding set.
The design of a hash function appropriate for lines is more challenging than it

may seem at first. The equation of line through (x" Yl) and (X2, Y2) is

501utio1l12.10



ElementsOiProgramminglnterviews.com

Problem 12.11, pg. 96: You are reading a sequence of strings separated btl white space.
You are alwwed to read the sequence twice. Devise an algorithm that uses O(k) memory to
identify the words that occur at least ri1times, where n is the length of the sequence.

Solution 12.11: This is essentially a generalization of Problem 11.19 on Page 91. Here
instead of discarding two distinct words, we discard k + 1distinct words at any given
time and we are guaranteed that all the words that occurred more than ltimes the
length of the sequence prior to discarding continue to appear more than ~ times in
the remaining sequence. To implement this strategy, we need a hash table of the
current candidates. Here is the code inC++:

return a.second.size() < b.second.size();
})->first;14

75 }

II Return the line with most points have passed
return max_element(table.cbegin(), table.cend(),

[J(const pair<Line. unordered_set<Point, HashPoint» &a.
const pair<Line, unordered~set<Point, HashPoint» &b)

.sa'~ILine find_line_with_most_points(const vector<Point> &P) {
rol II Add all possible lines into hash table
611 unor-der-ed.jaap ct.ine , unordered_set <Point. HashPoint>. HashLine> table;
621 for (int i = (\);i < P.sizeO; ++i) {
631 for (int j = i + 1; j < P.sizeO; ++j)

6S

~11 Line l(P[i]. prj]);
table[l].emplace(P[iJ), table[l].emplace(P[j]);

:1
I

681
69j

~I
I

721
73·

55

56
57 };

hash<int>()(l.intercept.first) • hash<int>()(l.intercept.second);

4S
461
~11

=1 :~ Hash function for Line
DI class HashLine {
52 public:
~I const size_t operator()(const Line &1) const {
Mj return hash<int>()(l.slope.first) A hash<int>()(l.slope.second) A

const bool operator==(const Line &that) const {
return slope == that. slope && intercept == that.intercept;

36
31 Line(const Point &a, const Point &b) :
~ slope(a.x != b.x ? get_canonical_fractional(b.y - a.y, b.x - a.x)
39 make_pair 0, (\)),
o intercept(a.x != b.x ?
41 get_canonical_fractional (b.x * a.y - a.x * b.y, b.x - a.x)
42 make_pair (a.x , 1» {}
43

44 II Equal function for hash

Solution 12.11284



ElementsOiProgramminglnterviews.com

The code may appear to take O(nk) time since the inner loop may take k steps
(decrementing count for all k entries) and the outer loop is called n times. However
each word in the sequencecan be erased only once, so the total time spent erasing is
O(n) and the rest of the steps inside the outer loop run in 0(1) time.

The first step yields a set S of not more than k words; set S is a superset of the
words that occur greater than or equal to r~ltimes. Toget the exact set, we need to

II Reset the stream and read it again
sin.clearO;
si.n.. seekg (Ill, ios: :beg) ;
II Count the occurrence of each candida te word

23 it.second • 9;
26
11

18

29
30
31
31 while (sin» buf) {
~ auto it = hash.find(buf);
Sf if (it 1= hash.endO) {
~ ++it->second;
36
31

3S
~ vector<string> ret;
40 for (const pair<string, int> &it : hash) {
41 II Select tbe word which occurs >= n I k times
42 if (it.second >= static_cast<double>(n) I k) {
~ ret.emplace_back(it.first);
44

45

46 retu.rn ret;
41

15

16

11
18

19

20
21
22

23 II Reset hash for the £0110wing counting
24 for (auto &it : hash) {

hash.erase(it++); II remove tbe empty entry
else {
++it;

while (sin » buf) {
++hash[buf], ++n;
II Detecting k + 1 items in hash, at least one of the. must bave exactly 1

10 II in it. liewill discard those k + 1 items by 1 for each.
" if (hash.lize() == k + 1) {
12 auto it. hash.begin0 ;
13 while (it I- hash.endO) {
w if (--(it->second) =_ &)

1 vector<string> Search_frequent_iteml(istringstrea. &sin, const int &k) {
II Find the candidates wbich may occur >= n I k times
string buf;
unordered_map<string, int> hash;
int n • &; II count the number of strings

285Solution 12.11



E1ementsOfprogramminglnterviews.co~

Problem 12.13, pg. 96: A pair of strings is k-suspicious if they have a substring of length
greater than or equal to k in common. Design an efficient algorithm that takes as input a
set of strings and positive integer k; and returns all pairs of strings that are k-suspicious.
Assume that most pairs will not be k-suspicious.

Solution 12.13: Let Ijbe the length of the i-th string. For each string we can compute
Ii- k +1hash codes, one for each k length substring.

We insert these hash codes in a hash table G, recording which string each code
corresponds to, and the offset the corresponding substring appears at. A collision
indicates that the two length-k substrings are potentially the same.

Since we are computing hash code for each k length substring, it is important
for efficiency to have a hash function which can be updated incrementally when we
delete one character and add another. Solution 12.1 on Page 276 describes such a
hash function.

In addition, it is important to have many slots in G, so that collisions of unequal
strings is rare. A total of .E~l{h - k + 1) strings are added to the hash table. If k is

Solution 12.12: One approach may be to use the RAM to store E. However, we have
only 1.125 bytes per word, which is not enough to store E. Ifwe keep a subset of E in
RAM, we cannot decide if a word is in R by looking at the subset of E. Alternately,
we could keep a subset of R in RAM. However, R is lOx the size of E, and only a
very small subset of R would fit. Potentially, we could sort R in descending order of
frequency of occurrence, and fit as much as possible in RAM, but this is not effective
if words occur uniformly.

A better approach is to use a Bloom filter to over-approximate E. We use the
RAM to create a bit array A consisting of n = l()6 bits, initialized to O. We then
have k hash functions ho, ,h,.-l that we apply to each word winE, and set bits
ho{w) mod n,ht(w) mod n, ,hrc-t{w) mod n in A. When we get a new word x, we
examine locations ho(x) mod n,h1{x) mod n, ... ,hrc-I(X) mod n in A-if any location
is 0, we know x ¢ E and we use the rules to hyphenate it.

There may be words x E R for which locations ho(x) mod n, hI (x) mod
n, ... ,hk-l(x)mod n are all set to Ii however, when we go to disk we'll see that
x ¢ E, so we simply use the rules.

Since most words are in R and not inE, the intent is that A carlbe used to eliminate
those words from R. The optimum choice for k depends on lEI and n, and can be
computed using simulation, or through analytical methods. Itcan be shown that in
the optimum case, half the bits end up being set.

Problem 12.12, pg. 96: Design a scheme for checking membership in E that minimizes tIre
number of disk accesses. Assume that IRI = 1()6, lEI = lOS, and you can use up to 1.25 x lOS
bytes of RAM.

make another pass over the sequence and count the number of times each word in S
actually occurs. We return the words in S which occur greater than or equal to frl
times.

Solution 12.13286



ElementsOfPrograrnminglnterviews.com

I pair<int, int> find_smallest_subarray_covering_subset(
const vector<string> &A, const vector<string> &Q) {

unordered_set<string> dic~(Q.cbegin(), Q.cend(»;
unordered_map<string, in~> coun~_Q;
int 1 s &, r = &;
pair<int, int> res(-l, -1);
while (r < static_cast<int>(A.size(»)
II Keep moving r until it reacbes end or count_Q bas /Q/ items
while (r < atatic_cast<int>(A.size(» && count_Q.size() < Q.size(»

10 if (dict.find(A(r» I- dic~ .•nd(» {
II ++count_Q[A[rJJ;
12
13 ++r;

Problem 12.14,pg. 96: Let A and Q be arrays of strings. Define the subarray A[i : j] to
cover Q if Jor all k E [O,IQI- 1], there exists 1 E [i,71,Q[k] = A[l]. Write ajunction that
takes two arrays A and Q and computes a minimum length subarray A[i : 11 that covers Q.
Suppose that A is presented in streaming fashion, i.e., elements are read one at a time, and
you cannot read earlier entries. The array Q is much smaller, and can be stored in RAM.
How.would you modify your solution for this case?

Solution 12.14:Wekeep two pointers,'left and right, which mark aminimal subarray
ofA that contains all the words in Q. A hash tableH maps strings in Q that appear in
the subarray to their frequency.The leftand right pointers are initialized to O.While
the subarray does not contain all of Q, which is checked by looking at the size of
H, we advance the right pointer. As soon as Q is covered, we record the separation
of left and right, and advance left until Q is not covered. Then we advance right
till it is covered again. In this way we track all minimal subarrays ofA that contain
Q. Assuming A is longer than Q (if it isnot, we can immediately return false), the
complexity isO(n),where n is the length ofA, since for each of the two pointers we
do constant work per advance, and each is advanced at most n - 1 times.

small relative to the string length and Ghas significantly fewer slots than the total
number of characters in the strings, then we'are certain to have collisions.

If it is not essential to return an exact answer, we can save storage by only consid­
ering a subset of substrings, e.g., those whose hash codes have Osin the last b bits.
This means that on average we consider f& of the total set of substrings (assuming
the hash function does a reasonable job of spreading keys).

As an alternative to storing all the hash codes for all the strings in a hash table,
we can record the hash codes in a Bloomfilter,as in Solution 12.12on the preceding
page. This results in huge storage efficiencies,since in a Bloomfilter,half the bits are
set toone in an optimum configuration,whereas in the hash table approach, wewant
to have many more slots than elements. The negative of the Bloomfilter approach is
that it does not tell us where the potentially equal substring is. Basedon the problem
size, and the number of expected matching strings, we could create Bloomfilters for
subsets that partition the set of all strings, and then match each string d against the
subsets, essentially using the Bloom filter to eliminate subsets of strings at a time
from comparison with d.

287Soilltion 12.14



ElementsOfProgramminglnterviews.com

9 paircint. int> res(-I. -1) ;

10 int idx = 9;

111

string s;
12 while (sin » s) (

13 auto it = diet.find(s);
14. if (it != dict .endO) { II s is in 0
151 if (it ->second 1= loc.endO) {

1 paircint, int> find_smallest_subarray_coverin9_subset(
istringstream &sin. const vectorcstring> &Q) {

listcint> loc; II tracks the last occurrence (index) of eaeh string in Q
unordered_mapcstring, listcint>::iterator> diet;

5 for (const string &s : Q) {
dict.emplace(s, loe,end(»;

The disadvantage of this approach is that we need to keep the subarrays in
memory. We can achieve a streaming algorithm by keeping track oflatest occurrences
of query keywords as we process A. We use a doubly linked list L to store the last
occurrence (index) of each keyword in Q, and hash table H to map each keyword in
Q to the corresponding node in L. Each time a word in Q is encountered, we remove
its node from L (which we find by using H), create-a new node which records the
current index in A, and append the new node to the end of L. We also update B.
By doing this, each keyword in L is ordered by its order in A; therefore, if L has IQI
words (i.e., all keywords are shown) and the current index minus the index stored in
the first node in L is less than current best, we update current best. The complexity
is still O(n).

::1
16 if (count_Q.size() == Q.size() &&
1.1 «res. first == -1 && res.second = -1) II
~ r - 1 - 1 c res.second - res.first» {
~ res = Il, r - I};
20
21
n II Keep moving 1 until it reaches end or count_Q has less /0/ items
~ while (1 c static_castcint>(A.size(» && count_Q.size() == Q.size(»
~ if (dict.find(A[l]) != dict,end(» {
~ auto it = count_Q.find(A[l]);
~ if (--(it->second) == 9) {
~ count_Q.erase(it);
2.8 if «res. first == -1 && res.second -1) II
29 r - 1 - 1 c res.second - res.firn) {
30 res = {l, r - I};
31

321
331
I341 ++1;

351
361
37 return res;
38 }

Solution 12.14288



ElementsOfProgrammingInterviews.coM

II Initialize K
7 for (int i a &; i < Q.size(); ++i) {

I pair<int, int> find_smallest_sequentially_covering_subset(
const vector<string> &A, const vector<string> &Q) {

3 unordered_map<string, int> K;
vector<int> L(Q.size(), -1). D(Q.size(). numeric_limits<int>::max(»;

Processing each entry of A entails no more than a constant number of lookups
and updates, leading to an O(lAI) time complexity. The additional space complexity
is dominated by the three hash tables, i.e., O(IQI).

D[,l = i - L[j - 1] +D[j - IJ

Problem 12.15, pg.97: Write a function that takes two integer-valued arrays A and Q
and computes a minimum length subarray A[i : j] that sequentially covers Q. Assume all
elements in Q are distinct.

Solution 12.15: We solve this with a single pass over the elements of A. We maintain
three data structures:
(1.) A hash map Kwhich maps each element of Q to its index in Q, i.e., K(Q[f]) = j.
(2.) An array L which maps j to the index of Q[j]'s most recent occurrence in A.
(3.) An array D which maps j to the length of the shortest subarray of A that ends

at L[,l and sequentially covers subarray Q[O : 11-
When processing A[l], if A[i] = Q[j], we set L[J1 = i. The update for D is based

on the observation that if A[iJ = Q[;l then the shortest subarray of A that ends at
A[i] and sequentially covers sub array Q[O : 11 consists of the shortest subarray that
sequentially covers the nearest previous Qlj - 11(which is at index LU - 1]) together
with all the indices in [L[j - 1] + I, i]. We use K to get j from Q[j]. Therefore, we can
write the following equation for D:

Variant 12.14.1: Given an array A, find a longest subarray Ali : j] such that all
elements in A[i : j] are distinct.

27 ++idx;
28
29 return res;
30

16

~ loc.erase(it->second);
17

18 loc.emplace_back(idx) ;
19 it->second • --loc.endO;
:10
21
22 if (loc.size() == Q.size() && II found IQI keywords
U «res.first == -1 && res.second == -1) II
14 idx - loc.frontO < r.....cond - res.first» {
~ res. {loc.front(), idx};

289Solution 12.15



ElementsOfProgrammingInterviews.com

1 template <typename ISBllType, type.nalllePriceType, size_t capacity>
2 class LRUCache {

Problem 12.16,pg. 97: Implement a cachefor looking up prices of books identified by their
ISBN. Use the Least Recently Used (LRU) strategy for cacheeviction policy.

Solution 12.16:Weuse a hash table to quickly lookup price. Keys are ISBNs.Along
with each key, we store the price and the most recent time a lookup was done on
that key. However it takes O(n) time to find the LRUitem in a hash table with this
scheme,where n is the number of entries in the hash table.

Oneway to improve performance is to use lazy garbage collection,which amor­
tizes the costof removing the LRUISBNs.Tobe concrete,let's saywe want the cache
to be of size n. Wedo not delete any entries from the hash table until it grows to 2n
entries. At this point we iterate through the entire hash table, and find the median
age of items. Subsequently we discard everything below the median. The worst­
case time to delete becomesSen)but it will happen at most once every n operations.
Therefore the amortized cost of deletion is 0(1) at the cost of doubling the memory
consumption.

An alternative is to maintain a separate queue ofkeys. In the hash table we store
for each key a reference to its location in the queue. Each time an ISBNis looked up
that is found in the hash table, it is moved to the front of the queue. (This requires
us to use a linked list implementation of the queue, so that items in the middle of
the queue can be moved to the head.) When the queu!'!exceeds length n, each time
a lookup is performed that is not found in the hash table, the result is placed in the
hash table and at the head of the queue; the item at the tail of the queue is deleted
from the queue and the hash table.

return res;

}

if (it->second == Q.size() - 1 &&
D.back() < res.second - res.first + 1)

res = {i - D.back() + 1, i};

10

II pair<in~, int> res(-1, A.size(»; II default value
12 for (in~ i = &; i < A.size(); ++i) {
13 auto h = K.find(A[i]);
H if (i~ != K.cend(» {
15 if (it->second == 9) { II first one, no predecessor
16 D[&] = 1; II base condi tion
17 else if (D[it->second - 1] != numeric_limits<int>: :maxO)
18 D[i~->second] = i - L[it->second - 1] + D(it->second - 1];
19

K.emplace(Q[i], i);

L[i~->second] = i:

Solution 12.16290



291

ElementsOfPrograrnminglnterviews.com

------------

data.erase(it->second.first):
cache.erase(it):
return true:

const bool erase(const ISBNType &isbn) {
auto it = cache.find(isbn);
if (it == cache.end(»

return false:

data.emplace_front(isbn);
cache.emplace(isbn, data.begin(), price);

void insert(const ISBNType &isbn, const PriceType &price) {
auto it = cache.find(isbn):
if (it != cache.end(» {

moveToFront(isbn, it);
else {
II Remove the le~st recently used
if_(cache.size() == capacity)

cache.erase(data.back(»;
data . pop.rback0 ;

*price = it->second.second;
moveToFront(isbn, it);
return true;

public:
const bool l-ookup(c,onstISBNType &isbn, PriceType* price) {

auto it = cache.find(isbn);
if (it == cache,end(» {

return false;

10
11

12

13
14

15

16
17

18
19

20

21

22

23
24

25
26

::1
29

:1
32

331

:1
36!

137,

381
391
401
411
~21

431,
44

45

46

47
48

49

50
51

52

53
54

55 }:

II Hove the most recent accessed item to the iront
void moveToFront(const ISBNType &isbn,

const typename Table: :iterator &it)
data.erase(it->second.first);
data.emplace_front(isbn);
it->second.first c data.begin();

private:
typedef unordered_map<

ISBNType, pair<typen~e list<ISBNType>: :iterator , PriceType» Table;
Table cache;
list<ISBNType> data:

Solution 12.16



ElementsOfProgramminglnterviews.com

Problem 13.2,pg. 99: Sort lines of a text file that has one million lines such that the average
length of a line is 100 characters but the longest line is one million characters long.

Solution 13.2: Almost all sorting algorithms rely on swapping records. However
this becomes complicatedwhen the record size varies. One way of dealing with this
problem is to allocate for the maximum possible size for each record=-this can be
wasteful if there is a large variation in the sizes.

Problem 13.1,pg.98: What is the most efficient sorting algorithm for each of thefollowing
situations:

- A large array whose entries are random numbers.
- A small array of numbers.
- A large array of numbers that is already almost sorted.
- A large collection of integers that are drawn from a small range.
- A large collection of numbers most of which are duplicates.
- Stability is required, i.e., the relative order of two records that have the same sorting

key should not be changed.

Solution 13.1: In general, quicksort is considered one of the most efficient sorting
algorithms since it has an average case run time of e(n logn) and it sorts in-place
(sorted data are not copied to someother buffer). For a large set of random integers,
quicksort would be our choice.

Quicksort is more nuanced than appears at a first glance. For example, in a
naive implementation, an array with many duplicate elements leads to quadratic
run times "(and a high likelihood of stack space being exhausted because of the
number of recursive calls). This can be managed by putting all keys equal to the
pivot in the correct place. Similarly,it is important to call the smaller subproblem
first-this, in conjunctionwith tail recursion ensures that the stack depth isO(logn).

However there are caseswhere other sorting algorithms are preferable.
- Small set-for a small set (for example, 3-10 numbers), a simple implementa­

tion such as insertion sort is easier to code, and runs faster in practice.
- Almost sorted array-if every element is known to be at most k places from

its final location, a min-heap can be used to get an O(n log k) algorithm (Solu­
tion 10.6on Page 253).

- Integers from a small range, or a few distinct keys-counting sort, which
records for each element, the number of elements less than it. This count can
be kept in an array (if the largest number is comparable in value to the size of
the set being sorted) or a BST,where the keys are the numbers and the values
are their frequencies.

- Many duplicates-we can add the keys to a BST,with linked lists for elements
which have the same key; the sorted result can be derived from an in-order
walk of the BST

- Stability is required-most useful sorting algorithms are not stable. Merge
sort, carefullyimplemented, can be made stable; another solution is to add the
index as an integer rank to the keys to break ties.

Solution 13.2292



ElernentsOiProgramminglnterviews.com

Problem 13.4,pg. 99: You are given an array of n Person objects. Each Person object
has afield key. Rearrange the elements of tlte array so that Person objects with equal keys
appear together. The order in which distinct keys appear is not important. Your algorithm
must run in O(n) time and O(k) additional space. How would your solution change if keys
have to appear in sorted order?

Solution 13.3:Whenever the swap operation forthe objectsbeing sorted isexpensive,
one of the best things to do is indirect sort, i.e., sort references to the objectsfirst and
then apply the permutation that was applied to the references in the end.

In the case of statues, we can assign increasing indices to the statues from left-to­
right and then sort the pairs of statue height and index. The indices in the sorted
pairs would give us the permutation to apply. While applying permutation, we
would want to perform it in a way that we move each statue the minimum possible
distance. Wecan achieve this if each statue ismoved exactlyto its correct destination
exactly once (no intermediate swaps).

Problem 13.3,pg.99: Design. a sorting algorithm that minimizes the total distance that
items are moved.

1/ Output file
ofstream ofs(file_name.c_str(»;
for (const T* p : P) {

ofs « p « endl;

22

10
11 // Initialize P
12 vector<T·> P;
13 for (T &a : A) {
14 P.e~place_back(&a);
15
16
17 II Indirect sort file
18 sort(P.begin(), P.end(), ()(const T* e, const T· b) -> bool {
~ .return *a < *b;
w });
21

1 template <typename T>
2 void indirect_sort (const string &fne_name)

II Store fIle records into A
ifstream if,(file_name.c_str(»;
vector <T> A;
T x;
while (if, » x) {

A.emplace_back(x);

Thebetter solution is indirect sort. First,build an array P ofpointers to the records.
Then sort the pointers using the compare function on the dereferenced pointers.
Finally,iterate through P writing the dereferenced pointers.

293Solution 13.4



ElementsOfProgrammingInterviews.com

unordered_map<ReyType. int> key_to_offset;
8 int offset = 9;

for (const auto p : key_to_count) {
10 key_to_offset [p.first] = offset;
11 offset += p.second;
12

1'3
14 while (key_to_offset.size(» {
15 auto from = key_to_offset.begin();
16 auto to = key_to_offset.find(people[from->second].key_);
17 swap(people[from->second]. people[to->second]);
18 II Use key_to_count to see when we are finisbed with a particular key
19 if (--key_to_count[to->first]) {
~ ++to->second;
21 else {
tl key_to_offset.erase(to);
23
24

25

I11 template <typename KeyType>
21void counting_sort(vector<Person<KeyType» &people)
31' unordered_map<KeyType. int> key_to_count;
4 for (const Person<ReyType> &p : people) {
5 ++key_to_count[p.key_];

Solution 13.4: We use the approach described in the introduction to the problem.
However, we cannot apply it directly, since we need to write objects, not integers­
two objects may have the same key but other fields may be different.

We use a hash table C to count the number of distinct occurrences of each key. We
iterate over each key kine and keep a cumulative count s which is the starting offset
in the array where elements with key k are to be placed. We put the key-value pair
(k,s) in a hash table M-basically M partitions the array into the subarrays holding
objects with equal keys.

We then iteratively get a key k from M and swap the element e at k's current offset
(which we get from M) with the location appropriate for e's key e.key (which we also
get from M). Since e is now in its correct location, we update M by advancing the
offset corresponding to e.key, taking care to remove e.key from M when all elements
with key equal to e.key are correctly placed.

The time complexity isO(n), since the first pass entails n hash table inserts, and the
second pass performs a constant amount of work to move one element to the right
location. (Selecting an arbitrary key from a hash table is a constant time operation.)
The additional space complexity dictated by C and M, and is O(k), where k is the
number of distinct keys.

If the objects are additionally required to appear in sorted key order, we can store
M using a BST-based map instead of a hash table. The time complexity becomes
O(n +klogk), since BST insertion takes time O(logk). This should make sense, since
if k =n,we are doing a regular sort, which isknown to be O(n log n) for sorting based
on comparisons.

Solution 13.4294



295

ElementsOfPrograrnmingInterviews.com

1 template <typename T>
vector<T> intersect_arrs3(const vector<T> &A, const vector<T> &B) {

vector<T> intersect;
int i = 6l,j " &;

Now our algorithm time complexity isO(n log m). We can further improve our run
time by choosing the longer array for the inner loop since if n « m then m log(n) »
nlog(m).

This is the best solution if one set is much smaller than the other. However it is
not optimal for cases where the set sizes are similar because we are not using the
fact that both arrays are sorted to our advantage. In that case, iterating in tandem
through the elements of each array in increasing order will work best as shown in
this c++ code:

10 return intersect;
11 }

1 template <typename T>
2 vector<T> intersect_arrs2(const vector<T> &A, const vector<T> &B) {
3 vector<T> intersect:

for (int i ~$: i < A.size(); ++i) {

if «i "" (i) II A[i] != A[i - 1]) &&
binary_search(B.cbegin(), B.cend(), A[i]» {

intersect.emplace_back(A[i):

However since both the arrays are sorted, we can make some optimizations. First,
we can scan array A and use binary search in array B, find whether the element is
present in B.

11
12

13
14 return intersect:
IS }

I template <typename T>
1 vector<T> intersect_arrsl(const vector<T> &A. const vector<T> &B) {

vector<T> intersect;
for (int i • &: i < A.size(): ++i) {

if (i •• & II A(i] != A(i - 1]) {
for (int j • $; j < B.size(); ++j)

if (A[i] == B[j]) {
intersect.emplace_back(A[i):
break:

Problem 13.5, pg. 99: Given sorted arrays A and Bof lengths nand m respectively, return
an array C containing elements common toA and B. The array Cshould befree of duplicates.
How would you perform this intersection if-(1.)n ~ m and (2.) n « m?

Solution 13.5: The simplest algorithm is a "loop join", i.e., walking through all the
elements of one array and comparing them to the elements of the other array. This
has O(mn) time complexity, regardless of whether the arrays are sorted or unsorted:

Solutio" 13.5



ElementsOfProgrammingInterviews.com

9 };

10

II teaplate <typename HeightType>
12 class TeaJl (
13 private:
It vector<Player<ReightType» members;
15
16 vactor<Player<HeightType» sortHeightK.abars(void) const
V vector<Player<HeightType» sorted_members(Jleabers);
~ sort(sorted_members.begin(), sorted_a.Jlbers.end(»;
19 return sorted_llembers;
lID

const bool operator«const Player &that) const {
return height < that.height;

I template <typename HeightType>
21' class Player {
3 public:
t' HeightType height;

Figure 21.9: The teams from Figure 13.1 on Page 100 in sorted order.

t t • • • • t t i i
• • • • • t • • t

Back row
Front row

Problem 13.6, pg.100: Design an algorithm that takes as input two teams and the heights
of the pinyers in the teams and checks if it is possible toplace plnyers to take the photo subject
to the placement constraint.

Solution 13.6: Let A and B be arrays. Write A < B if A[11 < B[11 for each i. Let
(Xo, Xl" .. , x,,-l) bean array of the heights of the players inTeam X and (Yo,Yl,' .. , Yn-l)
be an array of the heights of the players inTeam Y. By the transitivity of <,Team X can
be placed in front of Team Y iff sort(Xo, ... ,Xn-l) < sort(YO/' .. , Yn-l), so the problem

. reduces to sorting. Figure 21.9 shows the teams inFigure 13.1 on Page 100 sorted by
their heights.

The run time for this algorithm is Oem + n).

13

14

151 return intersect;
16 }

8 ++1, ++j;
else H (A (i] < B(j]) {

10 ++i;
II else { II ACi1 > BCi1
12 ++j;

'I while (1 < A.sizeO && j < B.sizeO) {
6 if (A[i] == BU] && (i == $ II A[i] ,- A[i - 1]» (

intersect.emplace_back(A[i]);

Solution 13.6296



ElementsOfProgramminglnterviews.com

Variant 13.7.1: The array A is an array of person objects.Aperson objecthas an age
field, which is an integer in the range [0,150],and a name field, which is a string.
The array is to be sorted on the age field and the sort must be stable. Design anO(n)
time algorithm for sortingA. Is it possible to sort inO(n) time if ties are tobe broken
on the name field?

As an alternative, we could use an auxiliary array of integers indexed by char­
acters, which counts the number of occurrences of each character. The sort routine
itself can be based on radix sort, since the elements can be viewed as integers taking
values in [0,M - 11 for a relatively small M. (Wecould also use a BSTor a hash table
in which keys are characters, and values are counts.)

++count;
8 else {
9 cout « '(' « S[i - 1] « ' , « count « .),";
10 count = 1:
11
12
13 cout« '(' « S.back() « ',' « count « ')' « endl;;
14 }

int count = 1;
51 for (int i = 1: i < S.sizeO; ++i) {

if (S[i) == Sri - 1]) {

I void count_occurrences(string 5) {
sort(S.begin(), S.end(»;

-------_. __ ...

Problem 13.7,pg.l00: Given a string s, print in alphabetical order each character that
appears in s, and the number of times that it appears. For example, if s ="bcdacebe", output
"(a, 1), (b,2), (c,2), (d, 1), (e,2)"..

Solution 13.7:Many solutions exist for this problem. In the code below,we treat the
string as an array of characters and sort that array; consequently,we iterate through
the sorted array and count the number of occurrencesof each character.

21
22 public:
n const bool operator«const Team &that) const {
u vector<Player<HeightType» this_.orted(sortHeightMembers(»;
~ vector<Player<HeightType» that_sorted(that.sortHeightMembers(»:
u for (tnt i e 6: i < this_sorted.size() && i < that_sorted.size(): ++i) {
'rJ if (this_sorted[i) < that_sorted[i) •• false) {
24 return false:
29

30
31 return true:
32
33 }:_.._ _._ .._.._ _._ _-_-----

297Solution 13.8



Eleme.ntsOiProgramminglnterviews.com

Problem 13.9,pg.l0l: Design an efficient algorithm that takes as input an array A of even
length and computes a 2-partition of A that has minimum Q(TI).

Solution 13.9: Consider the task I that has the longest'duration, i.e.,All] ;:;A[i] for
all i '* I. Task I must be assigned to some worker w, and that worker must do some
other additional Tasks. The fastestw can complete both tasks isA[l] +A[s], and this
is minimized for sumw such that A[s] is a minimum element ofA-

Wenow claim that there is always an optimum assignment in which the longest
duration Task1and shortest duration Tasks are assigned to the same worker.
Proof:

Leta be any assignment in which I and s are not paired. Suppose a pairs Iwith
s' and s with I', where by supposition A[l] ;:; A[l'] and A[s] S A[s']. Consider the
assignment f3 where I and s are paired and l' and s' are paired, with the remaining
pairings unchanged from a. ObserveA[l] +A[s'] ;:; A[I] +A[s] due to A[s'] ;:;A[s).
SinceA[l] ;:;A[I'] we haveA[l] +A[s'] ;:;A[I'1 +A[s'), which implies that the pairing
of I' and s' in f3 is still better than the maximum delay pairing in a (which must

€-Variant 13.8.1: Given an array A with possible duplicate entries, find the k entries
that occurmost frequently.

Another efficientway is to use hash table where we store each record into a hash
table as the key with no value and then write out all the keys in the hash table.
Sincehash table inserts can be done in 0(1) time and iterating over all the keys takes
O(n) time, this solution has much better time complexity than the sorting approach.
However, in practice for small inputs, the sorting approach will likelybe faster since
it canbe done in-place.

A counting sort (Solution13.4on Page293is appropriate if the number ofdistinct
elements is small and the array is very large.

1 ~e.pla~e <typename T>
2 int eliminate_duplicate(vector<T> &A) {

sort(A.begin(). A.end(»; II makes identical elements become neighbors
auto it = unique(A.begin(). A.end(»; II removes neighboring duplicates

51 A.resize(it - A.cbegin(»; II truncates the unnecessary trailing part
61 return it - A.cbegin();
7 }

Problem 13.8, pg.l00: Design an efficient algorithm for removing all the duplicates from
an array.

Solution 13.8: An efficientway of eliminating duplicates from any set of records,
where a "less-than" operator can be defined, is to sort the records and then eliminate
the duplicates in a single pass over the data.

Sorting can be done in O(n logn) time; the subsequent elimination of duplicates
takes El(n)time. If the elimination of duplicates is done in-place, it would be more
efficientthan writing the unique set in a separate array sincewewould achievebetter
cacheperformance. Here is the code that does in-place duplicate removal:

Solution 13.9298



ElementsOfProgramminglnterviews.com

7 template <typename TimeType>
8j class Endpoint
91 public:

11 template <typename TimeType>
21 class Interval {
3 public:
4 TimeType start, finish;
5 };

Problem 13.10, pg.l01: Given a set of events, hour would you determine the maximum
number of events that take place concurrently?

Solution 13,10: Each event corresponds to an interval [b, e]i let band e be the earliest
starting time and last ending time. Define the function c(t) for t E [b, e] to be the
number of intervals containing t. Observe that c('t) does not change if 't is not the.
starting or ending time of an event.

This leads to an 0(n2) brute-force algorithm, where n is the number of intervals:
for each interval, for each of its two endpoints, determining how many intervals
contain that point. The total number of endpoints is 2n and each check takes O(n)
time, since checking whether an interval [bi,ei] contains a point t takes 0(1) time
(simply check if bi S t S el).

We can improve the run time to O(n log n) by sorting the set of all the end points
in ascending order. If two endpoints have equal times, and one is a start time and
the other is an end time, the one corresponding to a start time comes first. (If both
are start or finish times, we break ties arbitrarily.)

We initialize a counter to 0, and iterate through the sorted sequence S from smallest
to largest. For each endpoint that is the start of an interval, we increment the counter
by 1, and for each endpoint that is the end of an interval, we decrement the counter by
1. The maximum value attained by the counter is maximum number of overlapping
intervals.

$ return P;
9 }

1 vector<pair<T. T» task_assignment(vector<T> A)
sort(A.begin(), A.end());
vector<pair~T, T» P;
for (int i = e, j = A.size() - 1; i < j; ++i, --j) {

P.emplace_back(A[i), A[j));

1 template <typename T>

I have duration at least A[l] +A[s'] or A[l'] + A[s)).

Note that we are not claiming that the time taken for the optimum assignment is
A[l] +A [s]. Indeed this may not even be the case, e.g., if the two longest duration tasks
are close to each other in duration and the shortest duration task takes much less
time than the second shortest task. As a concrete example consider A = (1,8,9,10)
where maximum delay is 8 + 9 = 17.

299Solution 13.10



ElementsO!ProgrammingInterviews.com

Problem 13.11,pg.l02: Designan algorithm that takes as input a set of intervals I, and
outputs the union of the intervals. What is the time complexity of your algorithm as a
function of the number of intervals?

Solution 13.11:Webegin with by sorting the intervals I on their left endpoints. If
left endpoints a and b are equal, with a corresponding to a closed interval and b to an
open interval, a comes first; otherwise, we break ties arbitrarily.

Let the sorted sequence be (Io,lt, ... ,ln-t). We create the result (Ro,Rt, ... ,Rm)

where m ;S; n by processing intervals in order; the Ris will be sorted by their left end­
points. Let t and s be interval-valued variables initialized to 10,and It, respectively;
we will show how-to extend t to Ro. Let the left and right endp?ints of t(s) be t.l(s.l)
and t.r(s.r),respectively.Wehave the following cases:

(s.l > t.r): Ro is t, since no later interval can overl.apor be adjacent to t.
(5.1 = t.r) and (s is left open and t is right open): we set Ro to ·t, since s and t
cannot be merged and no later interval can overlap or be adjacent to t.

€-Variant 13.10.1: Users 1,2, ... .nshare an Internet connection. User i uses b; band­
Width from time Sj to fi, inclusive. What is the peak bandwidth usage?

10 TimeType time;
II bool isS tart ;
12

IS const bool operator«const Endpoint &e) const {
14 return time 1= e.time ? time < e.time : (isStart && !e.isStart);
15

16 };

::1 template <type.naae TimeType>
19 int find_max_concurrent_events (const vector<Interval <TillleType» &A) {

WII' II Build tbe endpoint array
21 vector<Endpoint<TimeType» E;
~231 for (const Interval<TimeType> &i : A) {

E. emplace_back(Endpoint<TimeType>{i. start, .true});
241 E. emplace_back(Endpoint <TimeType>{i .finish, false});
23

UI II Sort tbe endpoint array according to the time

=1 sort(E.begin(), E.end(»;

~I II Find the maximum number of events overlapped~I int max_count = $, count ~ $;
31 for (const Endpoint<TimeType> &e : E) {~I if (e.isStart) {
~ max_count = max(++count, max_count);
34,. else {
as --count;
:36
371~I return max_count;
39j}

300 Solutioll 13.11



I) {

301

ElementsOfProgramminglnterviews.com

Problem 13.12, pg.102: You aregiven a set of n tasks modeled as closed intervals [ai,bil,for

29 vector<Interval<TimeType» uni;
30 for (int 1 = 1; i < l.sizeO; ++i) {
31 if (1[i) .left.val < curr.right.val II
32 (I[l).left.val == curr.right.val &&
~ (I[i] .1eft.isClose I I curr.right.isClose»)
M if (I[i] .right.val > curr.right.val I I
~ (1[1) .right.val == cllrr.right.val && I[i].right.isClose»
~ curr.right = I[I).right;
'Sl
38 else {
~ uni.ellplace_back(curr);
~ Cllrr. 1(1);
41

42

~ uni.emplace_back(curr);
44 return uni;
45

II 50rt intervals according to tbeir left endpoints
sort(I.begin(), I.end(»;

19'1 template <typename TimeType>
20 vector<Interval<TimeType» Union_intervals(vector<Interval<TimeType»
21! II Empty .input
nl if (I.empty(»
231 retllrn {};
ul
:1
211
28' Interval<TimeType> curr(l. front0) ;

10 pllblic:
n Endpoint left, right;
12

13 const bool operator«const Interval &i) const {
II return left.val 1= Lleft. val 7
15 left.val < i.left.val : (left.hClose && Ii.left.isClose);
16
11 };

18

};

1 tell,plat.<typenall. TimeType>
2 class Interval {

private:
class Endpoint

pllblic:
bool hClos.;
TimeType val;

(s.l < t.r) or (s.l = t.r and (s is left-closed or t is right-closed»: if s.r > t.r or
(s.r = t.r and 5 is right-closed) we extend t's right endpoint to s.r, and t is
right open iff 5 is right open. We assign s to the next unprocessed interval and
continue.

The code below implements this case analysis iteratively:

Solution 13.11



ElementsOfProgramminglntervie~ls.com

31
32

~ vector<TimeType> S:
at while (L. size() && R.size0)
~ TimeType b = R.cbegin()->right;
~ S.emplace_back(R.cbegin()->right);
37
38 II Remove the intervals which intersect with R. cbeglnO
~ auto it = L.cbegin():
to while (it != L.endO && it->left <= b) {
41 R.erase(*it):
42 L.erase(it++);
43

"

&1) {

20

21

22

13 }:

2'
lS template <typename TimeType>
~lvector<TimeType> find_minimum_visits(const vector<Interval<TimeType»
27 set<Interval<TimeType> , LeftComp<TimeType» L;
~i set<Interval<TimeType>, RightComp<TimeType» R;
~ for (const Interval<TimeType> &i : I) {

~ L.emplace(i), R.emplace(i);

Interval<TimeType> &a,
const Interval<TimeType> &b) const

return a.right != b.right ? a.right < b.right : a.left < b.left:

return a.left != b.left ? a i Lef't < b.left : a.right < b.right:

7j template <typenaae TimeType>

81' class LeftComp
9 public:
101 const bool operatorO(const Interval<TimeType> &a.
11 const Interval<TimeType> &b) const {
I

~:I"
14, }:

:1template <typen.aaeTimeType>
17 class RightComp {
181 public:
~! const bool operator()(const

5 }:

I template <typena.e TimeType>
2 class Interval {
3 public:

TimeType left, right;

Solution 13.12: A covering set S must contain at least one point x such that x S
bmin = rnin:':Ol bi. Any such point covers the subset of intervals [a/, bd,Qi S bmin. Of
course, bmin itselfcovers all such intervals and so there exists a minimum cardinality
covering that contains bmin and no other points to its left. The same principle can be
applied to the remaining intervals.

i= 0, ... , n - 1. A set S of visit times covers the tasks if [ai,bi]nS * 0,for i= 0, ... , n - 1.
Design an efficient algorithm for finding a minimum cardinalitt) set of visit times that covers
all the tasks.

Solution 13.12302



ElementsOfProgramminglnterviews.com

while (j <= k) {
if (A[j) + A[k) == t) {

return true;
else if (A[j) + A[k) < t)
++j;

10 else { II AU] + A[k] > t
11 --k;
12

1 template <typename T>
2 bool has_2_sum(const vector<T> &A, const T &t)
3 int j = ~, k'= A.size() - 1;

Problem 13.14, pg.l03: Design an algorithm that takes as input an array A and a number
i,and determines if A 3-creates t.

Solution 13.14: We consider the case where k = 2 and A is sorted in Problem 11.4 on
Page 87. Therefore, one solution is to sort A and for each A[i], search for indices j
and k such that A[j] + A[k] = t - A[i]. The additional space needed is 0(1), and the
time complexity is thesum of the time taken to sort, O(n log n), and then to run the
O(n) algorithm in Solution 11.4 on Page 261 n times, which is 0(n2) overall. The code
for this approach is shown below.__ _-_ __----

Problem 13.13, pg.l02: Let [8it<f>d,fori = 0, ... , n - 1 be n arcs, where the i-th arc is the
set of points on the perimeter of the unit circle that subtend an angle in the interval [8" <Pi]
at the center. A ray is a set of points that all subtend the same angle to the origin, and is
identified by the angle they make relative to the x-axis. A set R of rays" covers" the arcs if
[8il <l>tl nR ;f:. 0, for i= 0, ... , n - 1. Design an efficient algorithm for finding a minimum
cardinality set of rays that covers all arcs.

Solution 13.13: If there exists a point on the circle that is not contained in at least one
of the n arcs, the problem is identical to Problem 13.12 on Page 102. Therefore we
assume every point is contained in one of the narcs.

Without loss of generality, we may assume that a minimum cardinality covering
set S contains only right endpoints of arcs.t.e., "clockwise" right endpoints. The total
number of such endpoints is n. If we choose a given right endpoint and eliminate
all the arcs that are covered by it; the remaining problem is identical to that in
Problem 13.12 on Page 102. This means we can solve the arc-covering problem by
n calls to the algorithm in Solution 13.12 on the facing page, yielding an O(n210gn)
algorithm.

The approach of solving a problem involving a circular array by solving a number
of instances of the same problem on linear arrays is fairly common-see for example
Problem 15.5 on Page 118.

Using a balanced BST (e.g., set in C++), we can implement the search for minimum,
insertion, and deletion in O(log n) time, yielding an O(n log n) algorithm.

451 return s:
46 }

303Solution 13.14



ElementsOfProgramminglnterviews.com

Problem 13.15, pg.l03: Develop an algorithm for computing a short sequence offlips that
will sort an array A.

Solution 13.15: Themost straightforward pancake sorting algorithm is analogous to
insertion sort. Observe that we can move any pancake to any position with at most
two flips: the first flip brings it to the top, the second flip moves it to the desired
location.Wecaniteratively apply this idea to move the largestpancake to the bottom,
followedby moving thesecond largestpancake to just abovethe largestpancake, etc.
Note that the flips do not affectthe positions of the pancakes that have been sorted
by previous flips. Sincewe can put at least one pancake in the right place with two
flips, this algorithm uses at most 2n flips. We can tighten this bound by observing
that a stack of two pancakes requires at most one flip, so the number of flips made
by the algorithm is actually 2(n - 2) + 1= 2n - 3.

Variant 13.14.2: Solve the same problem when k is an additional input.

e-Variant 13.14.1: Solvethe same problemwhen the three elementsmust be distinct.
For example, if A = [5,2,3,4,3] and t = 9, then A[2] + A[2] + A[2] is not acceptable,
A[2] +A[2] +A[4] is not acceptable,but A[l] +A[2] +A [3]and A[l] +A[3] +A[4] are
acceptable.

Remark: Surprisingly, itis possible, in theory, to improve the time complexitywhen
the entries inA are nonnegative integers in a small range, specifically,the maximum
entry is O(n). The idea is to determine all possible 3-sums by encoding the array
as a polynomial PA(x) = L:':01.rAII1.The powers of x that appear in the polynomial
PA(x) XPA(x) corresponds to sums of pairs of elements in A; similarly,the powers of x
in PA(x) X PA(x) XPA(x) correspond to sums of triples of elements in A. Twon-degree
polynomials can be multiplied in O(nlogn) time using the fast Fourier Transform
(FFT). The details are long and tedious, and the approach is unlikely to dowell in .
practice.

return false;

·21 for (const T &a : A) {
II Find if the sum of two numbers in A equals to t - a
if (has_2_sum(A. t - a» {

return 'true;

131
HI return false;

::1 }
17·template <typename T>
18 bool has_3_sum(vector<T> A. const T &t)

19 sort(A.beginO. A.endO);
20

Solution 13.15304



ElementsOfProgramminglnterviews.com

const T &lower.
Ii template <typename T>
21bOOl is_BST_helper(const shared_ptr<BinaryTree<T» &r.
3 const T &upper) {

451 if (Ir) {
return true;

:1 :!::r!f f~~::~ata < lower I I r->data > upper) {

8,

Problem 14.1, pg.l04: Write afunction that takes as input the root of a binary tree whose
nodes have a key field, and returns true iff the tree satisfies the BST property.

Solution 14.1: Several solutions exist, which differ in terms of their space and time
complexity, and the effort needed to code them.

The simplest is to start with the root r, and compute the maximum key r.left.max
stored in the root's left subtree, and the minimum key r.right.min in the root's right
subtree. Then we check that the key at the root is greater than or equal to r.right.min
and less than or equal to rlefi.max. If these checks pass, we continue checking the
root's left and right subtree recursively.

Computing the minimum key in a binary tree is straightforward: we compare the
key stored at the root with the minimum key stored in its left subtree and with the
minimum key stored in its right subtree. The maximum key is computed similarly.
(Note that the minimum may be in either subtree, since the tree may not satisfy the
BSTproperty.)

The problem with this approach is that it will repeat~clly traverse subtrees. In a
worst case, when the tree is BSf and each node's left child is empty, its complexity
is O(n2), where n is the number of nodes. The complexity can be improved to O(n)
by caching the largest and smallest keys at each node; this requires O(n) additional
storage.

We now present two approaches which have O(n) time complexity and O(h)
additional space complexity.

The first, more straightforward approach, is to check constraints on the values for
each subtree. The initial constraint comes from the root. Each node in its left (right)
child must have a value less than or equal (greater than or equal) to the value at the
root. This idea generalizes: if all nodes in a tree rooted at t must have values in the
range [I, u), and the value at t is WE [I, u), then all values in the left subtree of t must
be in the range [I,w], and all values stored in the right subtree of t must be in the
range [w, u). The code below uses this approach.

Note that we are trying to minimize the number of flips, not the time complexity
of the algorithm that computes the sequence of flips. The run time of the algorithm
is O(n2), since reversal takes O(n) and finding the maximum element inan array also
takes O(n), and each of these operations could be performed once per pancake.
Remark: It is known that in the worst case Hn flips are necessary and tfn flips are
sufficient. In other words, the straightforward algorithm does not always yield the
optimum result. The first improvement was made by Bill Gates, when he was a math
undergraduate at Harvard, in collaboration with Christos Papadimitriou,

305Solution 14.1



ElementsOfProgr~~gInterviews.com

~ if (last > n->data)
~ res = false;
31
~ last = n->data;
~ n = n->right;
34

35
36 return res;
37

22

23
24

23
26

21
2S else {

last = n->data;
n = n->right;
else { II if predecessor's successor is not n
pre->rig.ht= n;
n = n->left;

5 bool res = true;
6

1 whUe (n) {
if (n->left)

9 II Find the predecessor of n
10 shared_ptr<BinaryTree<T» pre n->left;
II while (pre->right && pre->right 1= n) {
u pre = pre->right;.
13

14
is II Build the successor link
16 if (pre->right) { II pre->right == n
V II Revert tbe successor link if predecessor's successor is n
U pre->right = nullptr;
~ if (last> n->data) {
20 res = false;
:n

numeric_limits<T>: :lIinO;i.ntlast

I teaplate <typename T>
2 bool is_BST(.shared_ptr<BinaryTree<T» n)

II Store the value of previous visited node

The second approach is to perform an inorder traversal, and record the value
stored at the last visited node. Each time a new node is visited, its value is compared
with the value of the previous visited node; if at any step, the value at the previously
visited node is greater than the node currently being visited, we have a violation of
the BSTproperty. Inprinciple, this approach can use the existenceof an 0(1) space
complexity inorder traversal to further reduce the space complexity.

9
10 return is_BST_helper(r->left, lower, r->data) &&
II is_BST_helper(r->right, r->data, upper);
12

13
14 template <typename T>
u bool is_BST(const shared_ptr<BinaryTree<T» &r) {
16 return is_BST_helper(r, numeric_limits<T>::min(), nuoeric_limits<T>::max(»;
11

Solution 14.1306



ElementsOfProgramminglnterviews.com

25 q. popO;
26

27 return true;

2.

12 q.emplace(QNode<T>{n, numeric_limits<T>: :min(), numeric_limits<T>: :max()});
q while (Iq.empty()) {
14 if (q.frontO .node)
15 if (q.frontO.node->data < q.frontO.lower II
16 q.irontO .node->data > q.front0 .upper) {
17 return false;
18

19
W q.emplace(QNode<T>{q.front() .node->left, q.front().lower,
21 q.front0 .node->data});
22 q.emplace(QNode<T>{q.front() .node->right, q.front().node->data,
~ q.front().upper});

&n) {

The approaches outlined above all explore the left subtree first. Therefore, even
if the BSTproperty does not hold at a node which is close to the root (e.g., the key
stored at the right child is less than the key stored at the root), their time complexity
is stillO(n).

Wecan searchforviolations ofthe BSTproperty in aBFSmanner to reduce the time
complexitywhen the property is violated at anode whose depth is small, specifically
much less than n.

Thecodebelow uses a queue to process nodes. Eachqueue entry contains anode,
as well as an upper and a lower bound on the keys stored at the subtree rooted at that
node. The queue is initialized to the root, with lower bound -00 and upper bound
+00.

Suppose an entry with node n, lower bound 1and upper bound u is popped. Ifn's
left child is not null, a new entry consisting of n.leJt, upper bound n.key and lower
bound 1 is added. A symmetric entry is added if n's right child is not null. When
adding entries, we check that the node's key lies in the range specifiedby the lower
bound and the upper bound; if not, we return immediately reporting a failure.

We claim that if the BSTproperty is violated in the subtree consisting of nodes
at depth d or less, itwill be discovered without visiting any nodes at levels d + 1or
more. This is because each time we enqueue an entry, the lower and upper bounds
on the node's key are the tightest possible. A formal proof of this is by induction;
intuitively, it is because we satisfy all the BSTrequirements induced by the search
path to that node.

Iftemplate <typename T>
21 class QNode {~Ipublic:
• shared_ptr<BinaryTree<T» node;
5' T lower, upper;. :I};
8'1 template.<typename T>
9 bool is_BST(const shared_ptr<BinaryTree<T»
10, queue<QNode<T» q;
III

307Solution 14.1



ElementsOfProgramminglnterviews.com

Problem 14.3,pg.l05: Design efficient functions for inserting and removing keys in a
BST. Assume that all elements in the BST are unique, and that your insertion method must
preserve this property. You amnot change the contents of any node. What are the time
complexities of your functions?

Solution 14.3:Insertion is done as follows.Westart by creating anew node c holding
k. Observe that inserting a key k into a tree that is empty is trivial: we set c to be the
root of the tree. If the tree is nonempty and k is greater than the key r stored at the
root, we need to insert k into the root's right subtree. If r and k are equal, we return,
sincewe do notwant add a duplicate. Otherwisewe insert into the root's leftsubtree.
At some step, we will either return because we found a node containing a key equal
to k, or encounter an empty tree. For this case,we need to set the appropriate child
of the last node whose key we compared k with to c.

Deletion begins with first identifying the node d containing k. (If no such node
exists,nothing needs to be done.) Suppose d has no right child and no left child. In
this case, there is nothing to be done, beyond updating the appropriate child field in
d's parent to null. Otherwise, if d has a right child, we find its successor,can it s,

II Return nullptr means n is the largest in tbis BST
18 return n->parent;
19 }

n = n->parent;

II Find the first parent which is larger than n
while (n->parent && n->parent->right == n) {

return n;

11 te.plate <typenaae T>
2 sharecLptr<BinarySearchTree<T» find_successor_BST(
31 sharecLptr<BinarySearchTree<T» n) {
4 if (n->right) {
5 II Find tbe smallest elesent in n's rigbt subtree
61 n = n->right;
71 while (n->left)
81 n = n->left;
91~~I
121

:1
15,
161
17

Problem 14.2,pg.l05: Given a node x,find the successor ojx in a BST. Assume that nodes
have parent fields, and the paren tfield of root points to null.

Solution 14.2:If there is a right subtree from the given node, we return the smallest
node in the right subtree. If the node does not have a right child, then we need to
keep going up the tree till we find anode which is the left child of its parent, in which
case that parent is the desired successor. Ifwe reach the root then the given node is
the largest node in the tree and has no successor.

l3 }

Solution 14.3308



ElementsOfProgramminglnterviews.com

shared_ptr<TreeNode> root:

if (par->left == child)
par->left = new_link;
else {
par->right = new_link:

if (Ipar)
return;

shared_ptr<TreeHode> child,
shared_ptr<TreeNode> new_link)

n = nul l p't.r ;
·14

15
16
17 1/ Replace the link between par and child by new_link
18 void replaceParentChildLink(shared_ptr<TreeNode> par,

clear(n->left), clear(n->right):

void clear(shared_ptr<TreeNode> &n) {
if (n) {

} ;

T data;
shared_ptr<Treellode> left, right;

public:

~

-."..."."-""-".".--.-.-.-.-.-." ..".."......_-----,
1 mplate <typename T>
2 as~ BinarySearchTree
3 prlvate:
.1 class TreeNode {

:1
71

:1
1°1
:: I
13

which must lie in d's right subtree. We "substitute" d with s-this entails updating
d's parent to point to s instead of d, and setting the children of s to the children of d.
There are a couple of comer cases: if d has no parent, the parent update operation is
skipped; if s is the right child of d, then the right child of s is set to null. If d does
not have a right child, all we do is update d's parent to point to s. There is one comer
case: if d has no parent, i.e., it is the root, the root is updated to s.

Both insertion and deletion times are dominated by the time taken to search
for a key and to find the minimum element in a subtree. Both of these times are
proportional to the height of the tree. In the worst case, the BSTcan grow to be
very skewed. For example, if the initial tree is empty, and n successive insertions
are done, where each key inserted is larger than the previous one, the height of the
resulting tree is n. It is possible to modify the insertion and deletion routines to keep
the tree height O(1og n), where n is the number ofnodes; furthermore, these insertion
and deletion functions continue to have time complexity proportional to the height.
AVLand red-black trees are BSTswith additional state related to height imbalance
stored at each node. Specialized insertion and deletion operations do "rotations"
about nodes to keep the height logarithmic in the number ofnodes.

309Solution 14.3



ElementsOfProgrammingInterviews.com

'/9

80
~ const bool erase(const T &key) {
82 II Find the node with key
63 sharecLptr<TreeRode> curr = root, par nullptr;
N while (curr && curr->data 1= key) {
6S par = curr;
86 curr = key < curr->data ? curr->left curr->right;
871

881

}

par->left = t;
else {
par->right = t;

II Insert Iceyaccording to Iceyand par
if (t->data < par->data) {

curr curr->right;

curr = curr->left;
else II t->data > curr->data

return false; II no insertion for duplicate key
else if (t->data < curr->data)

t = nullptr;

par; curr;
if (t->data == curr->data) {

curr::;; root;
while (curr) {

shared_ptr<TreeRode> curr;
else {
root:: t;

if (emptyO) {
:1
"I55(

:1
59i
(;)1
i

611
62

63
64
6S!
66i
671
661
691
701
n!ni
731
74!
75!
76
71
n return true;

par = nullptr;

48

49 const bool insert(const T &key) {
50 sharecLptr<Treeliode>
51 t = shared_ptr<Treellode>(new Treellode{key, nullptr, nullptr}),

void clear(void)
clear(root);~I

const bool empty(void) const {
return Iroot;

-BinarySearchTree(void)
clearO;

public:
BinarySearchTree(void) : root(nullptr) {}

Solution 14.3310



ElementsOfProgramminglnterviews.com

II template <typename T>

Problem 14.4,pg.l05: Given a BST T, unite recursive and iterative versions of afunction
thai takes a BST T, a key k, and returns the node containing k that would appearfirst in
an inorder walk, If k is absent, return null, For example, when applied to the BST in
.Figure 14.2 on Page 106, your algorithm should return Node B ifk = 108,Node G ifk = 285,
and null ifk = 143,

Solution 14.4: The standard way to search for a key k in a BSTis to first check if the
tree is empty:if so,we return null. Consequently check if the root stores k, in which
casewe return the root, and recur on the left/right child of the root, if k is less/greater
than the value at the root.

For the problem we are given, we need to find thefirst occurrenceof k that would
appear in an inorder walk. Weachieve this by making a simple modification to the
standard search-if k ismatched by the root, we also check to see if it appears in the
root's left subtree, inwhich casewe return the node returned by that call. Correctness
follows from the fact that the nodes in the root's left subtree all appear before the
root in an inorder walk.

curr = nullptr;
return true;

replaceParentChildLink(par, curr, curr->left)i

else {
II Updat,eroot link if needed
if (root == curr) {

root = curr->leftj

root. = r_curr;

II Update root link if needed
if (root == curr) {

II Hove links to erase the node
replaceParentChildLink(par, curr, r_curr)j
raplaceParentChildLink(r_par. r~curr, r_curr->right)j
r_curr->left = curr->left, r_curr->right = curr->rightj

101

102
100

10'
105

106
107

108

109
110

111
112
113

114
115
116

117
;181
1191
1201 } j

89 II 110 node with key in this binary tree
90 if (Icurr) {
91 return false i '
92

93

~ if (curr->right) {
95 II Find the minimumof the right subtree
96 shared_ptr<TraeNode> r_curr = curr->right. r_par ~ currj
97 while (r_curr->le£1:) {
~ r_par = r_curr;
~ r_curr = r_curr->lefti
100

311Solution 14.4



ElementsOfprogrammingInterviews.com

Problem 14.5, pg.l06: Write a function that takes a BST T and a key k, and returns the
first entry larger than k that would appear in an inorder walk. Ifk is absent or no key larger
than k ispresent, return null. For example, when applied to the BST in Figure 14.1on
Page 105 you should return 29 ifk = 23; ifk = 32, you should return null.

Solution 14.5: This problem can be solved using a reductionist approach. First we
find the node n holding k that appears last in an inorder walk of the tree, and then
we find n's successor. The node n can be found using a straightforward modification
of Solution 14.4 on the preceding page. If n does not exist (k is not the value stored
at any node in the tree) or n has no successor (Le., it is the last node in the inorder
walk), we return null.

Amore direct approach is to maintain a candidate node, first. The node first is
initialized to null. Now we look for k using the standard search idiom. If the current
node's key is larger than k, we update first to the current node and continue the

1 teaplate <typename T>
2 shared_ptr<BinarySearchTree <T» find_first_equaLk (

shared_ptr<BinarYSearchTree <T» r, const T &k) {
shared_ptr<BinarySearchTree<T» first = nullptr;
while (r) {

if (r->data < k) {
r = r->right;
else if (r->data > k) {

9 r = r->left;
10 else { II r->data == k
11 II Search for the leftJ:lostin tbe left subtree
12 first" r;
13 r = r->left;
14

15
16 return first;
17 }

The straightforward implementation of the standard SST search is tail recursive,
and can mechanically be converted to iterative code. However, the recursive version
for finding the first occurrence of k is not tail recursive, and needs to be written from
scratch. The iterative code below makes use of the elimination principle.

10

11 II Search left or rigbt tree according to r->data and k
12 return find_first_equal_k(r->data < k 7 r->right : r->left, k);
13 }

21 shared_ptr<BinarySearchTree<T» find_first_equal_k(
3 const shared_ptr<BinarySearchTree<T» &r, const T.&k)

if (Ir) {

5 return nullptr; II no match
6 else if (r->data := k) {

II Recursively search tbe left subtree for first one == k
• shared_ptr<BinarySearchTree<T» n = find_£irst_eq~al_k(r->left, k);

return n 7 n : r;

Solution 14.5312



ElementsOiProgramminglnterviews.com

Variant 14.6.1: Print the keys in a min-first BSTin sorted order.

k);
return search_min_first_BSTCr->left, k) II

return true;

51

~I
101 search_min_first_BST(r->right,
11 }_____________• ._.. . .. •__ ---J

return false;
else if (r->data == k)

Problem 14.6, pg.l06: Write a function that takes a min-first BST T and a key k, and
returns true iffT contains k.

Solution 14.6: The algorithm proceeds inthe followingsequence:
1. If T is empty, or if k is less than the root, it cannot be present in T; we return

false.
2. Otherwise, if k equals the key stored at T's root, we return true.'
3. Otherwise, we recursively search both left and right subtrees and return true
if and only if it is present in either.

1[-~~~la~;:~~;~~~~--~~-~---------------------------..-..-..-------

2!bool search_min_first_BSTCconst shared_ptr<BinarySearchTree<T» &r,

341'. const T &k) {
if C!r II r->data > k) {

return found_k ? first nullptr;

10
11
12

13

141

::1
::1
19' }

while (r) {
if (r->data == k)

found_k = true;
r = r->right;
else if (r->data > k) {
first = r;
r = r->left;
else { // r->data < k
r = r->right;

search in the left subtree. If the current node's key is smaller than k,we search in the
right subtree. Ifthe current node's key is equal to k,we set a Boolean-valuedfound_k
variable to true, and continue search in the current node's right subtree. When the
current node becomesnull, if foun<Lkis tr:ue we return first, otherwise we return
null. Correctness follows from the fact that after first is assigned within the loop,
the desired result is within the tree rooted at first. The concept of this approach is
similar with Solution 11.2on·Page 259.

~1-:~:~!:~'::::~~::~;:!;:hTree<T» fi~d~~:':'=~~~~:~k_Wi th_k_exist (
3 shared_ptr<BinarySearchTree<T» r, const T &k) {

bool found_k = false;
shared_ptr<BinarySearchTree<T» first = nullptr;

313Solutioll14.6



ElementsOfProgrammingInterviews.com

Problem 14.8,pg.l07: Let L be a singly linked list of numbers, sorted in ascending order.
Design an efficient algorithm that takes as input L,and builds a height-balanced BST on the
entries in L. Your algorithm should run in O(n) time, where n is the number of nodes in
L. ;Youcannot llse dynamiC memory allocation-s-reuse the nodes of Lfor the BST. You can
update pointer fields, but cannot change node contents.

Solution 14.8: The straightforward algorithm entails finding the midpoint m of
the list, creating the root with the corresponding key, and recursing on the first
half and the second half of the list. The time complexity satisfies the recurrence
T(n) = O(n) + 2T(¥)-the O(n) term comes from the traversal required to find the
midpoint of the list. This solves to T(n) = O(n logn).

If the nodes were in an array A,we could index directly into A to obtain m, and
the time complexitywould satisfyS(n) = 0(1) + 2S(V, which solves to Sen) = O(n).

) ;

build_BST_from_sorted_array_helper(A. start. mid).
build_.BST_from_sorted_array_belper (A. lIIid+ 1. end)}1:1

1'1~:I return nulIpt.r;

::1 :emPlate <typename T>
V:1'sbared_ptr<BinarySearchTree<T» build_BST_from_sorted_array(
18 const vector<T> &A) {
w return build_BST_from_sorted_array_helper(A. 9. A.size(»;
20 }

return shared_ptr<BinarySearcbTree<T»(new BinarySearchTree<T>{
A[aidJ.

1 II Bu.ild BST based on subarray A[scart : end - 1]
2 te.plate <typename T>
3 sbared_ptr<BinarySearchTree<T» build_BST_from_sorted_array_helper(

const vector<T> &A. const int &start. const int &end) {
5 if (start < end) {

int aid = start + «end - start) » 1);

Problem 14.7,pg.l07: Howwould you build a BST of minimum possible height from a
sorted array A?

Solution 14.7: Intuitively, we want the subtrees to be as balanced as possible. One
way of achieving this is to make the element at entry LV the root, and recursively
compute minimum heightBSTsfor the subarraysA[O : LV-1] and A[L~J+1: n-l].

Variant 14.6.3: Implement insert and delete functions for a min-flrst BST.

Variant 14.6.2: A max-first SST is defined analogously to the min-first SST,the
differencebeing that the largest key is stored at the root. Design an algorithm that
takes an n node min-BSTand converts it to a max-SSTin O(n) time. Use as little
additional space as possible.

Solution 14.8314



ElementsOfprogramrninglnterviews.com

1 /1 Transform a BST into a circular sorted doubly linked list in-place,
/1 return the head of the list
template <typename T>

I shared_ptr<BinarySearchTree<T» BST_to_doubly_listC
const shared_ptr<BinarySearchTrce<T» &n) {

// Empty subtree
if (In) {

Problem 14.9,pg.l07: Design an algorithm that takes as input a BST B and returns a
sorted doubly linked list on the same elements. Your algorithm should not allocateany new
nodes. The original BST does not have to be preserved; use its nodes as the nodes of the
resulting list, as shown in Figure 14.4 on Page 107.

Solution 14.9: Here is a recursive solution. Build a list out of left subtree, append
the root to it, and then append the list from the right subtree. Sincewe do a constant
amount of work per tree node, the time complexity is O(n), where n is the number
of nodes inthe BST.The space complexity is 8(h), where h is the height of the BST.
Theworst case is for a completely left-skewed tree, i.e., a tree in which no node has
a right child-n activation records are pushed on the stack.

...._.__ _---...,..--------,

1», n);

16
17 template <typename T>
18 shared_ptr<BinarySearchTree<T» build_BST_from_sorted_doubly_list(
19 shared_ptr<node_t<T» L, const int &n) {
wll return build_BST_from_sorted_doubly_list_helper(L,
21 }

1 II Build a BST from the (s + l)-th to the e-th node in L
2 template <typename T>
3 shared_ptr<BinarySearchTree<T» build_BST_from_sorted_doubly_list_helper(

shared_ptr<node_t<T» &L, const int &5, const int &e) {
shared_ptr<BinarySearchTree<T» curr = nullptr;
if (s < e) {

int m = s + «e - s) » 1);
curr = shared~ptr<BinarySearchTree<T»(new BinarySearchTree<T»;
curr->left = build_BST_from_sorted_doubly_list_helper(L, 5, m);

w curr->data = L->data;
" L = L->next;
12 curr->right = build_BST_from_sorted_doubly_list_helper(L, m + 1, e);

13
14 return curr;
15

----__ .._ _ -.._ _.._ _..__ __ _ _._ _._.__.__ - __ _ ..__ _ ----,

Wecan avoid the additional space required to convert the list to an array by first
building the tree with empty keys, and then populating itby performing an inorder
walk of the tree in conjunctionwith a traversal of the list.

Specifically,firstwe find the length n of the list,O(n) operation. Wethen create the
balanced tree recursively-create the root node, and abalanced leftchild on L = L~ J,
. and a balanced right child on R = n - L -'1nodes. This entails a 0(1) time spent
per node, and is also an 0(1) operation. The inorder walk entails calling the next
method of the list iterator per visited node, leading to an O(n) complexity for the
final population of the tree nodes.

315Solution 14.9



ElementsOfProgrammingInterviews.com

~ if (head) {
6 tail->right ..n, n->left = tail;
7 else {

head = n:

1 template ctype.nue T>
2 void append_node(sbared_ptr<BinarySearchTreecT» &head.
3 shared_ptrcBinarySearchTreecT» &tail,

sbared_ptrcBinarySearchTreecT» &n) {

Problem 14..10,pg.l08: Let A and B be BSTs. Design an algorithm that merges them in
O(n) time. You cannot use dynamic allocation. You do not need topreserve the original trees.
You can update pointer fields, but cannot change the key stored in a node.

Solution 14.10: Our solution builds on Solution 14.9 on the previous page and
Solution 14.8 on Page 314. We convert each aST into a doubly linked list using
Solution 14.9on the previous page, which runs in O(n) time and O(n) space. These
two lists can be merged in O(n) time and 0(1) space, as described in Solution 7.1
on Page 207. The resulting list can be converted into a BSTusing Solution 14.8on
Page 107,which uses O(n) time and O(1og n) space. Bachof the three sub-routines
does not explicitlyallocatememory.

9
10

II II Recursively build the list from left and right subtrees
u auto l_head(B~T_to_doublY_list(n->left)):
13 auto r_head(BST_to_doubly_list(n->right));
14

15 II Append n to the list fros left subtree
16 shared_ptrcBinarySearchTreecT» l_tail = nullptr;
17 if (Lhead) {
IS Ltail ..l_head->left;
19 Ltail->right ..n;
~ n->left = 1_tai1;
n 1_tai1 - n;
22 else {
D l_head 1_tai1 n'
24

25
26 II Append tbe list fro. right subtree to n
~ shared_ptrcBinarySearchTreec~» r_tai1 = nullptr;
~ if (r_head) {
~ r_tail ..r_head->left;
~ l_tail->right = r_head;
31 r_head->left ..LtaH;
32 else {
~ r_tail ..l_tail:
34

M r_tail->right ..l_head, l_head->left r_tail;
36
~ return l_head;
3S

return nullptr:

Solution 14.10316



317

ElementsOiPrograrnminglnterviews.com

Problem 14.11, pg.l08: Given the root of a BST and an integer k, design a function that
finds the k largest elements in this BST. For example, if the input to your function is the BST
in Figure 14.1 on Page 105 and k = 3, your function should return (53,47,43).

Solution 14.11: We do a reverse inorder traversal of the tree: visit the right subtree,
visit the root, then visit the left subtree. This results in nodes being visited in
descending order. As soon as we visit k nodes, we can halt. Note that the time
complexity of this approach is still O(n) even if k « n, e.g., if the BST is of the form

14 void append_node_and_advanceCshared_ptr<BinarySearchTree<T>> &head,l' shared_ptr<BinarySearchTree<T» &tai1.
16 shared_ptr<BinarySearchTree<T» &n) {
17 append_nodeChead, tail, n)j
18 n ..n->right; II advance n
19

20
21 II Merge two sorted linked lists, return the head of list
22 template <typename T>
n shared_ptr<BinarySearchTree<T» merge_sorted_linked_lists(
24 shared_ptr<BinarySearchTree<T» A, shared_ptr<BinarySearchTree<T» B)
~ shared_ptr<BinarySearchTree<T» sorted_list = nullptr, tail = nullptr;
26

v while CA && B) {
~ append_node_and_advance(sorted_list, tail, A->data < B->data 7 A B);
29
30

31 // Append the remaining of A
32 if (A) {
~ append_node(sorted_list. tail. A);
34

35 // Append the remaining of B
36 if CB) {
~ append_node(sorted_list, tail, B)j
38

391 return sorted_list;

:w
421 template <typename T>
43 shared_ptr<BinarySearchTree<T» merge_BSTs(
44 i shared_ptr<BinarySearchTree<T» A. shared_ptr<BinarySearchTree<T» B) {~l 1/ Transform BSTs A and B into sorted doubly lists
%1 A = BST_to_doub1y_listCA). B = BST_to_doubly_list(B);
471 A->left->right = B->left->right nullptr;
48 A->left = B->left = nullptr;

:1 ~::U~:nb~i~d:;~;:~!::~~~;t!::~:Ubl;:~::;~:~;:!~sorted_linked_lists(A, B),
51 len_A + len_B);
52 }L__ __ ._ _ _. _._.__.._._ _._ .__._.__._---'

n;10
11 }

12

13 template <typename T>

tail

Solution 14.11



ElementsOfProgramminglnterviews.com

Weclaim there exists a unique SSTcorresponding to a sequence of nodes visited
in a preorder traversal.
Proof:

Weuse induction on n, the number of nodes. Only one tree existson one node,
so the base case holds. Assume the claim holds for all n < k. Consider a preorder
traversal sequence (J of length k. The firstvalue v in(J corresponds to the root. The
subsequence (J/ of (J which begins at the second element of (J and ends at the last

Figure 21.10: Five distlnct BSTs for the traversal sequence (1,2,3).

Solution 14.12:The sequence of node keys generated by an inorder traversal is not
enough to reconstruct the tree. For example, the sequence (1,2,3) corresponds to
fivedistinct BSTsas shown in Figure 21.10.

Problem 14.12,pg.l09: Which traversal orders=-inorder, preorder, and postorder-of a
BST can be used to reconstruct the BST uniquely? Write a program that takes as input a
sequence of node keys and computes the corresponding BST Assume that all keys are unique.

10
II

11 }
IS
" template <typen..e T>I' vector<T> find_k_largest_in_BSTCconst shared_ptr<BinarySearchTree<T» &root,
16 const int &k) {
17 vector<T> k_elements;
II find_k_largest_in_BST_helperCroot, k, k_elements);
~ return k_elements;
10

1 teaplate <typename T>
1 void find_k_largest_in_BST_belperCconlt sbared_ptr<BinarySearchTree<T» &r,

const int &k, vector<T> &k_eleaents) {
II Perform reverse inorder traversal
if (r && k_ele~ents.size() < k) {

find_k_largest_in_BST_belper(r->rigbt, k, k_ele~ents);
7 if Ck_elements.sizeC) < k) {

k_ele=ents .•mplace_back(r->data);
find_k_largest_in_BST_helperCr->left, k, k_elements);

of a list. The code below uses a vector to store the desired keys; as soon as the vector
has k elements, we return.

Solution 14.12318



ElementsOfprogramminglpterviews.com

iIi template ctypename T>
2j 5hared_ptrcBinarySearchTree<T» rebuild_BST_from_preorder_helper(
31 cons t vectorcT> &preorder, int &idx, const T &min ,.const T &max)
41 if (idx == preorder.sizeO)
51 return nullptr;

The worst-case input for this algorithm is the pre-order sequence corresponding to a
completely left-skewed tree. The worst-case time complexity satisfies the recurrence
Wen)=W(n-l)+O(n), which solves to G(n-). The best-case input is a sequence corre­
sponding to a completely right-skewed tree, and the corresponding time complexity
is O(n). When the sequence corresponds to a balanced BST, the time complexity is
given by' B(n) = 2B(n/2) +O(n),which solves to O(n log n).

The implementation above potentially iterates over nodes multiple times, which
is wasteful. A better approach is to reconstruct the left subtree in the same iteration
as identifying tJ:\enodes which lie in it. The code shown below takes this approach.
Its worst-case time complexity is O(n), since it performs a constant amount of work
per node. .

I // Build a BST based on preorder[s : e - 11, return its root
2 template ctypename T>
3 shared_ptrcBinarySearchTreecT» rebuild_BST_froM_preorder_helper(

const vectorcT> &preorder. const int &5. const int &e) {
if (5 c e) {

int x :: S + li
7 while (x c e && preorder[x] < preorder[s]) {
s] ++x;
91
101 retu.rn shared_ptr<BinarySearchTree <T» (new BinarySearchTree <T>{
111 preorder[s].
12 rebuild_BST_from_preorder_helper(preorder. s + 1. x).
13 rebuild_BST_from_preorder_helper(preorder, x, e)});
14

IS return nullptr;

-::1 }
1811/ Given a preorder traversal of a BST, return its root
191 template <typename T>
20! shar edi.pt.r' <BinarySearchTree <T» rebuild_BST_from_preorder (ui const vectorcT> &preorder) {
22 i return rebuild_BST_froM_preorder _helper (preorder, 6l, preorder.size0) ;
231 }L ._._. . .._.. . . -'

value less than v, corresponds to the preorder traversal of the root's left subtree.
Its length is less than k. Hence by induction we can reconstruct the left subtree
uniquely. The right subtree corresponds to the subsequence following at, and can
also be reconstructed uniquely by induction.

It is critical that the elements stored in the tree be unique. If the root contains v
and the tree contains more occurrences of u, we cannot identify from the sequence
whether the subsequent vs are in the left subtree or the right subtree.

The above proof can be used to rebuild the BST from a preorder sequence.

319Solution 14.12



Eleme.ntsOfProgramminglntervi ews .com

w if (x->data > b->data)
II x'" x->left; II LCA must be in x's left cbild
12

I teaplate <typenaae T>
2 shared_ptr<8inarySearchTree<T» find_LeA(
3 shared_ptr<BinarySearchTree<T» x,

const shared_ptr<BinarySearchTree<T» &5,
const 5hared_ptr<BinarySearchTree<T» &b)

while (x->data < 5->data II x->data > b->data)
if (x->data < 5->data) {

x '"x->rigbt; II LCA must be in x's right child

Problem 14.13, pg.l09: Design an algorithm tha: takes a BST T of size n and height h,
nodes s and b, and returns the LCA of sand b. Assume s.key < b.key. For example, in
Figure 14.1 on Page 105, if s is node C and b is node G, your algorithm should return node
B. Your algorithm should run in O(h) time and 0(1) space. Nodes do not have pointers-to
their parents.

Solution 14.13: In Solution 9.11 on Page 245 we presented an algorithm for this
problem in the context of binary trees. The idea underlying that algorithm was to
do a postorder walk-the LCA is the first node visited after s and b have both been
visited.

This idea can be refined for BSTs-since nodes satisfy the BSTproperty and keys
are distinct, we prune much of the exploration. Specifically, initialize x to the root.
If x.key = s.key, x.key = b.key, or «s.key < x.key) and (x.key < b.key» then the LCA is x
itself. Otherwise, if x.key > b.key we set x to x.left and continue the search, since the
LCA must lie in x.left. Similarly, if x.key < s.keywe set x to x.right and continue.

T curr '"preorder[idx);
if (curr < min II curr > max) {

10 return nullptr;
II
12
13 ++idx;
14 sbared_pt.r<BinarySearchTree<T> > root(new BinarySearchTrH<T>{ curr,
u rebuild_BST_from_preorder_helper(preorder, idx, min, curr) ,
16 rebuild_BST_from_preorder_helper(preorder, idx, curr, max)});
17 return root;
18
19
10 template <typename T>
n shared_ptr<8inarySearchTree<T> > rebuild_BST_from_preorder(
n const vector<T> &preorder)
23 int idx '"9;
u return rebuild_BST_fro'_preorder_helper(preorder, idx,
23 numeric_limits<T>::min(),
26 .nUlleric_Hmits<T>::lIax(» ;
71

7

Solution 14.13320



ElementsOfProgramminglnterviews.com

11 return true;
12
13 curr_r = curr_r->data > s->data ? curr_r->left curr_r->right;
14 curr_s = curr_s->data > r->data ? curr_s->left curr_s->right;
15

16
17 I I Keep searching from r
18 while (curr_r && curr_r 1= s) {
19 if (curr_r == m) {
~ return true;
21
22 curr_r = curr_r->data > s->data ? curr_r->left curr_r->right;
23

while (curr_r && curr_r )= s && curr_s && curr_s 1= r) {
if (curr_r == m II curr_s == m) {

s :curr_s

J'~'~'~~'i';~'~"""~~~;~;~~"';~-----------------.
21bOOl is_r_s~descendant_ancestor~of_m(
31 const sbared_ptr<BinarySearchTree<T» &r.
4, const sbared_ptr<BinarySearchTree<T» &s.
561' const shared_ptr<BinarySearchTree <T» &m)

shared_ptr<BinarySearchTree<T» curr_r = r.
71
81 II Interleaving searches from rand s

1:1

Problem 14.14,pg.l09: Let r, S, and m be distinct nodes in a BST. In this BST, nodes do
not have pointers to their parents and all keys are unique. Write a function which returns
true ifm has both an ancestor and a descendant in the set {r,s}. For example, in Figure 14.1
on Page 105, if m is Node J, your function should return true if the given set is {A, K} and
return false if the given set is {I,Pl.

Solution 14.14:There are two possibilities:m is a descendant of r and an ancestor of
s, or m is an ancestor of r and a descendant of s.

Consider the first case. Wecan checkifm is adescendant of r,and s is a descendant
of m by simply doing one search for s.key in the subtree rooted at r, and recording
whether mwas encountered during the search. Thesearchfrom r has timecomplexity
O(h),where h is the height of the tree, since we can use the BSTproperty to prune
one of the two children at each node. Tocheck if m is an descendant of 5, and r is a
descendant of m,we do a symmetric search for r.key in the subtree rooted at s.

The disadvantage ofperforming these two searchesone-after-another is that even
when the distancebetween rand s isshort, wemaybegin the search fromthe lowerof
the two, and incur the fullO(h) time complexity.Wecan prevent this by performing
the searches'from s for r.key and from r for s.key in an interleaved way; this way, if
the final result returned is true, we will avoid performing an unsuccessful searchon
a large subtree.

321Solution 14.14



ElementsOiProgrammingInterviews.com

1 template <typename T>
2 shared-ptr<BinarySearchTree<T» flnd-first_larger_equal_k(
3 const sbared-Ptr<BinarySearcbTree<T» &r. const T &k) {

if (Ir) {
return nullptr;
else if (r->data >= k)

7 II Recursively searcb the left subtree for first one >= k
auto n • find-first_larger_equal_k(r->left, k);

9 return n ? n : r;
10
II II r->data < k so search the right subtree
u return find-first_larger_equal_k(r->right. k);
13 }

14
U template <typenaae T>
16 list<shared-ptr<BinarySearchTree<T»> range_query_on_BST(

Problem 14.15, pg.l09: How would you efficiently perform a range query on a EST?
Specifically, write afunction that takes as input a BST and a range [L,U] and returns a list
of all the keys that lie in [L,U)?

Solution 14.15: We can return the list of nodes whose entries lie in [L,U] by first
finding the first node Iwhose entry is greater than or equal to L. Node I can be found
by applying the technique of Solution 14.4 on Page 311. If this returns null (because
no node hasan entry equal to L), I is the first node with a key greater than L; this can
be computed via a slightly modified version of Solution 14.5 on Page 312. Note that
Imay be null (if all node entries are less than L), in which case we return the empty
list.

If I is not null, we make it the start of the result list. Now repeatedly call the
successor function (Solution 14.2 on Page 308), adding successive entries to the list,
stopping when the successor function returns null (which is the case if all node
entries are less than or equal to U), or a node whose entry is greater than U.

The time complexity to find I is O(h),where h is the height of the tree. Individual
calls to the successor function have complexity O(h),which leads to a O(hm) bound
overall, where m is the size of the list.

However, the bound is not tight-m successive calls to successor have time com­
plexity O(h+m). The reason is that we traverse less than or equal to d,+2(m-1)+du
edges, where d, and du are the depths of I and the last node whose key is less than or
equal to U. Both d, and dli are bounded by h, leading to the claimed time complexity.

24 II Keep searcbing fro. s
~ while (curr_s && curr_s 1= r)
U if (curr_s =- ~) {
~ return true;
21

~ curr_s • curr_s->data > r->data ? curr_s->left curr_s->right;
30
31 return false;
32 }

Solution 14.15322



·ElementsO{Programminglnterviews.com

Solution 14.16: We·follow an approach similar to merge sort. Specifically, we keep
three index variables, one for each of A, B, and C. These variables are initialized to 0,
i.e., they index the minimum elements ofA,B,and C. We iteratively identify the index
variable whose corresponding element is the minimum of three, breaking ties by
giving preference to A over B over C, and advance that corresponding index. In each
iteration we record the difference between the largest and the smallest of the three
elements and track the minimum difference m seen, along with the corresponding
indices.

We claim that after all elements are processed, 1?" and its associated triple are
distance minimizing. . .
Proof:

. Clearly m is always an upper bound on the minimum distance. Let (i,i,k)
be a distance minimizing triple. Without loss of generality, assume (1.) A[i1 :$
B[j] :$ C[kj, and (2.) A[i] <A[i + 11 and C[kj > C[k - 1], Since (i, i,k) is optimum,
there cannot exist i' such that Ali'] E (AU]' C[k]), or Ie' such that C[lc']E (A[i], C[k]).
(There may exist one or more i' ::/= j such that B[j'] E (A[i], C[k]).)

Our algorithm will process AU] before C[k], and by the observation in the
previous paragraph, no other element of A or C will be processed afterA[i] is
processed and before C[k1 is processed. Since Ali] s B[j] s C[k], index B[i] will
be processed after A[t1 is processed and before C[k] is processed. When C[k] is
processed, the index variable for Bmust correspond to an element of Bwhich lies
in [A[i],C[k]]. Therefore, when C[k] is processed, the minimum difference will
either already be C[k] - A[i], or updated to C[k] - A[i], i.e., the algorithm computes
the correct result.

In the following code, we implement a general purpose function which finds the
minimum distance in k sorted arrays. These arrays are passed in as arrs. Since
we need to repeatedly find the minimum among all those sorted arrays, we use a
balanced BST to identify the array that contains the minimum element. The BST

Problem 14..16, pg.ll0: Design an algorithm that takes three sorted arrays A, B,and C
and returns a triple (i, j, k) such that distance(i, i.k) is minimum. Your algorithm should run
in OOAI+ IBI + ICI) time.

This solution can be improved by computing the number of entries in a BST in a
range [L,Uj without enumerating all the entries in that range. See Solution 14.22 on
Page 331 for details.

17 shared_ptr<BinarySearchTree<T» n, const T &L, const T &U) {
18 Li stcshared.iptr<BinarySearchTree<T»> res;
19 for (auto it = find_first_larger_equal_k(n, L):

20 it && it->data <= U;
21 it = find_successor_BST(it»
n res.emplace_back(it):
23

24 return res;
25 } _.._._ _._-_._--_._--_ .._._-_.__ _._ .._ __.--------------'

323Solution 14.16



ElementsOfProgrammingInterviews.com

Problem 14.17,pg.ll0: You are to implement methods toanalyze logfile data tofind the
most visited pages. Specifically, implement thefollowing methods:

void add(Entry p)-add p.page to the set of visited pages. It is guaranteed
that if add(q) is called after add(p) then q. timestamp is greater than or equal

22

~ II Eacb o£ arrs puts its minimum element into current_beads
2C for (int i = 9; i < arrs.sizeO; ++i)
~ if (idx[iJ >; arrs[i].size(» {
u return milLdis;
21

28 current_heads .emplace(ArrData<T>{ i. arrs[iHidx [i]]}) ;
29

30
31 while (true) {
32 .in_dis lI.in(milLdis.current_heads. crbeginO -ovaI -
~ current_heads.cbegin()->val);
Mint tar current_heads.cbegin()->idx;
M II Return i£ tbere is no remaining element in one array
~ if (++idx[tar] >= arrs[tarJ.size(» {
Y return milLdis;
38
~ current_heads.erase(current_heads.begin(»;
~ current_heads.emplace(ArrData<T>{tar. arrs[tar][idx[tar]]});
41

41

9
10

11

12
13

14 };

15

16 template <typenaae T>
11 T find_milLdistance_sorted_arrays (const veeeer cvecxercr» &arrs) {
18 II Pointers for eacb o£ arrs
19 vector<int> idx(arrs.sizeO. 8);
W T min_dis ; numeric_limits<T>::max();
n set<ArrData<T» current_heads;

const bool operator«const ArrData &a) const {
if (val !;a.val) {

return val < a.val;
else {
return idx < a.idx;

I template <typename T>
2 class ArrData {

public:
int idx;

s T val;

also allows us to find the differenceof the minimum and maximum values in the
collection efficiently. The overall time complexity is O(nlogk), where n is the total
number of elements in the k arrays. Forthe special casek = 3 specified inthe problem
statement, the time complexity is O(nlog3) =O(n).

Solution 14.16324



ElementsOiProg.rammingInterviews.com

Problem 14.18,pg.ll0: Implement the API in Problem 14.17on Page 110. If commonis
called after processing the i-th entry, commonshould return the k most visited pages whose
timestamp is in [tj - W, tj]. Here tj is the timestamp of the i-th entry and W is specified by
the client beforeany pages are read and does not change. RAM is limited-in particular you
cannot keepa map containing all pages. Maximize time efficiency assuming calls to add and
commonmay be interleaved and common is frequently called.

Solution 14.18:Define the current window when entry i is being processed to be the
time interval [tj - W, tj].

Weuse three data structures:
1. A queue Q containing the entries whose timestamp is in the current window.
2. A BSTB containing page-frequency pairs, where elements are ordered by

frequency.
3. A hash tableM mapping pages to entries in the BSTB.

The k largest elements in Bare the desired pages for the current interval.

Solution 14.17:For the first scenario, we keep a hash table H of (page, count) pairs.
Weprocess the log fileentry-by-entry, inserting a page into H with a count of 1 if the
page is not already present: otherwise we increment the count for the page. After
all pages have been read' we can compute the k most common pages by iterating
through the pairs in H and using, for example, the techniques in 11.13on Page 270
or 11.14on Page 271.

When calls to add and commonare interleaved it is more efficient to use a hash
table M in conjunction with a BSTB. The BSTstores objects which consist of a
frequency and a page-<:ompares are made based on the frequency field, with ties
being broken by the page field. (The tie-breaker is needed to ensure two pages with
the same frequencyhave distinct entries in B.) The hash table Mmaps each page to
its corresponding object in B.Toadd a page p we first do a find in M. If P is present,
the frequency field in the corresponding object in Bis updated. (The simplest way
to update B is to do a delete followed by an insert.) Otherwise a new objectwith
frequency equal to 1 and page equal to p is added to B. The time complexity of add
is dominated by the BSTupdate, which isO(1og n), where n is the number of distinct
pages processed so far.

The commonmethod is implemented by finding the maximum element in B and
making k - 1calls to the predecessor function. If B is balanced, the time complexity
of k - 1 calls to predecessor is O(k + log n). For k « n this compares very favorably
with having to iterate through the entire collection as we did in the first scenario.
The penalty is the added overhead of the BSTB, specificallythe increased time to
perform each add.

to p. timestamp.
- List<String> common(k)-return a list of the k most common pages.

First solve this problem when common(k) is calledexactly once after all pages haoe been read.
Then solve the problem when calls to commonand add are interleaved. Assume you have
unlimited RAM.

325Solution 14.18



ElementsOfProgrammingInterviews.com

:1
16

171

const complex<double> &rhs) const {
if (norm(lbs) 1= norm(rhs» {

return nor.(lhs) < noro(rhs);
else if (lhs.real() != rhs,real(»
return lhs.real() < rhs.real();
else {
return Ibs.imag() < rhs.ieag();

II

U

13

complex<double> &lhs,

5,
I;1 }

81' class ComplexCompare
9 public:
10 const bool operator()(const

(z.real() == -1 && z.imag() == &) II
(z.realO == $ && z.imagO 1) II
(z.real() == $ && z.imag() == -1);

I booI is_unit(const cooplex<int> &z) {
~ return (z.real() == 1 && z.imag() == $) II
3

Problem 14.19,pg.lll: Write a function that takes a single integer argument n and
computes all the Gaussian integers a+ bi,for -n Sa, b S n that are Gaussian primes.

Solution 14.19:Themodulus ofa complexnumber z = a+bi isby definition veil + lfl,
and is commonly denoted by 12:1.
It is straightforward to see that IztZQI = Izll!z2l. Therefore, one approach to com­

puting the Gaussian primes in the desired range is to sort the numbers in the range
based on their modulus. The only numbers with modulus 1 are the units. The next
smallest modulus is Vi, e.g., 1 + i. All numbers whose modulus is Vi must be
Gaussian primes; this follows from the primality of 2 in the conventional integers.
Wecan eliminate all multiples of such numbers by nonunits, and then examine the
remaining candidates for the onewith the smallest modulus, and continue. Wemain­
tain the set of candidates in a BSTusing the modulus to order numbers, breaking
ties lexicographically.This approach is the analog of the sievemethod for ordinary
primes, described in Solution5.11,extended to two dimensions.

The add function enqueues p inQ and increments the corresponding page's fre­
quency in B. The timestamp on p may result in the current window changing. We
examine the head of the queue Q, and iteratively remove entries whose timestamp is
outside the current window. For eachentry that isremoved, we reduce the frequency
of the corresponding page in B. Todo this, we use the hash table M to go from p's
visited_page field to the corresponding entry in B.

The conunonfunction is implemented exactly as in Solution 14.17on the preceding
page.

The time complexity for adding pages isdominated by updates to the BST.Inthe
worst case,~verypage is unique and allappear in the window, leading to aO(n logn)
time complexity,where n is the number of log entries. The space complexity isO(n).

In practical settings, the maximumnumber ofpages in a window, and hence in 8,
will likelybe much less than n. If the number of entries in a window is bounded by
c, then the time complexity for n calls to add isO(n logc)-the logc term corresponds
to the time needed to perform BSTupdates. The space complexity isO(c).

Solution 14.19326



327

ElementsOfProgramminglnterviews.com

Solution 14.20:First observe that the left endpoint and the right endpoint of each
segment in the view from above is the left or right endpoint of an input segment.

This observation leads to the following algorithm. Sort the endpoints of the
segments and then do a sweep from left-to-right. As we sweep, we maintain the set
of segments that intersect the current position; this set is stored in a BSTwith the
height being the key. The color is determined by the highest segment. When we
encounter a left endpoint, we add the corresponding segment in a BST.When we
encounter a right endpoint, we remove the corresponding segment from the BST.
We use the height field as a proxy for the segment, since the problem statement
guarantees that the height uniquely determines the segment.

Problem 14.20,pg.l11: Implement afunction that computes the view from above. Your
input is a sequence of line segments, each specified as a 4-tuple (I,r, c, h), where I and rare
the left and right endpoints, respectively, c encodes the color,and h are the height. The output
should be in the sameformat. No two segments whose intervals ooerlap have the same height.

return primes;

for (int i " max_multiplier; i >= -max_multiplier; --i) {
for (int j c max_multiplier; j >= -max_multiplier; --j)

coaplex<double> x = {i, j};
if (is_unit(x) "" false) {

candidates.erase(x * p);

while (candidates.empty() as false) {
complex<double> p " *(candidates.begin());
candidates.erase(candidates.begin());
primes.emplace_back(p);
tnt max_multiplier = n I £loor(sqrt(norm(p))) + 1;

18
19
20 };

21

n vector<complex<int» generate_Gaussian_primes(const int &n) {
n set<complex<double>, ComplexCompare> candidates;
u vector<complex<int» primes;
2S
26 II Generate all possible Gaussian prime candidatu
21 for (int i = -n; i <= n; Hi) {
28 for (int j = -n; j <" n; ++j) {
29 if (is_unit({i, j}) == false && abs(complex<double>(i, j)) I- $) {

~ candidates. emplace(i , j);
31

32

53

:14
55

Solution 14.20



ElementsOfProgrammingInterviews.com

prey = sharecLptr<LineSeglllent<XaxisType , Color:Type,HeightType»(
new lineSegment<XaxisType, ColorType. HeightType>{

prev_xaxis. e.val(), T.crbegin()->second->color.
T.crbegin()->second->height});

else {
if (prev->height =E T.crbegin()->second->height &&

prev->color == T.crbegin()->second->color) {
prev->right = e.val();
else {
cout « u[n « prev->left « n, n « prev->right « u]n

« •• color = • « prev->color « ", height

44

'"46
47

48

49

SO
51

S1
53

54!

10
11 };

12
13 template <typenaae XaxisType. typenaae ColorType. typename BeightType>
14 class Endpoint {
IS public:
16 bool isLeft;
17 const lineSegment<XaxisType, ColorType, HeightType>* 1;
18
19 const bool operator«const Endpoint &that) const {
10 return valO < that.val0 ;
1I
11
n const XaxisType &val(void) const
24 return isleft ? l->left : l->right;
25
26 };

27

~ teaplate <typename XaxisType. typename ColorType, typename HeightType>
~ void calculate_view_froQ_above(
~ const vector<lineSegment<XaxisType. ColorType. HeightType» &A) {
31 vector<Endpoint<XaxisType. ColorType, HeightType» E;
32 for (int i = 8; i < A.sizeO; ++i) {
~ E.emplace_back(Endpoint<XaxisType, ColorType. HeightType>{true, &A[i]});
~ E.emplace_back(Endpoint<xaxisType, ColorType. HeightType>{false. &A[i]});
3S
3S sort(E.begin(), E.end());
;g

38 XaxisType prev_.xaxis= E.front0 .val0; II the first left end poitu:
~ shared_ptr<LineSegment<XaxisType. ColorType. HeightType» prey = nullptr;
~ map<HeightType. const LineSegaent<XaxisType, ColorType. HeightType>*> T;
41 for (const Endpoint<XaxisType, ColorType. HeightType> &e: E) {

u if (T.e_pty() == false && prev_xaxis != e.val()) {
43 if (prev = nullptr) { II found first se9"'ent

const bool operator«const LineSegment &that) const {
return height < that.height;

J t~plate <typenaae XaxisType. typename ColorType, typename HeightType>
1 class lineSegment {

public:
XaxisType left, right; II specifies the interval
ColorType color;
HeightType height;

Solution 14.20328



ElementsOfProgramminglnterviews.com

Problem 14.21, pg.l12: Design a data structure that implements thefollowing methods:
insert (s, c), which adds client swith credit c, overwriting any existing entry for s.
remove (s), which removes client s.
lookup(s), which returns the number of credits associatedwith client 5, or -1if 5 is
not present.
addAll (C), the effect of which is to increment the number of credits for each client
currently present I7y C.

Variant 14.20.5: Given a set H of nonintersecting horizontal line segments in the
2D plane, and a set V of nonintersecting vertical line segments in the 2D plane,
determine if any pair of line segments intersect.

Variant 14.20.4: Runners Rt, R2, ••• / Rn race on a track of length L. Runner R, begins
at an offset s, from the start of the track, and runs at speed Vi' Compute the set of.
runners who lead the race at some time.

Variant 14.20.3: Design an efficient algorithm for computing the area of a set of
.rectangles whose sides are aligned with the X and Yaxes.

s-Variant 14..20.2: Design an efficient algorithm for computing the length of the
union of a set of closed intervals.

s-Variant 14.20.1: Solve the same problem when multiple segments may have the
same height. Break ties arbitrarily.

« ". color = " « prey->color « ". height
« prev->height « endl;

73

14
7S

76

62
63 if (e.isLeft .5 true) { I I left end point
~ T.emplace(e.l->height. e.l);
6S else { II right end point
56 T.erase(e.l->height);
67

68

69

70 I I Output the remaining segment if any
71 if (prev) {
72 cout « "[" « prev->left « ". " « prev->right « "]"

« prev->heigh~ « end1;
·preve {prev_xaxis. e.val(). T.crbegin()->second->color.

T.crbegin()->second->height};

55

56
57

58
5
60
~ prev_xaxis • e.val();

329Solutioll14.20



ElementsOfProgr~nglnterviews.com

int lookup(const string &s) canst {

18

19

20

21

:1

void remove(const string &5) {
auto credits_it = credit5.find(s);
if (credits_it 1= credits.end(» {

inverse_credits[credits_it->second].erase(s);
credits.erase(credits_it);

void insert(const string &s, const int &c)
credits.emplace(s, c - offset);
inverse_credits(c - offset].~place(s);

1 class ClientsCreditslnfo
private:

int offset;
unordered_map<string, int> credits;

5 map<int, unordered_set<string» inverse_credits;
6

7 public:
ClientsCreditslnfo(void) : offset(Q) {}

- max(),which returns the client with the highest number of credits.
The insert(s, c),remove(s),and 1ookup(s) methods should run in timeOOogn), where
n is the number of clients. The remaining methods should run in time 0(1).

Solution 14.21: We use one hash table, credits and one BSf, inverse_credi ts.
We also use an integer-valued variable offset which is initialized to O. A call to
addAll (C) increments offset by C.

The hash table credits consists of key-value pairs, where the key is the client
string and value is an integer. Itgives us the ability to do lookup in 0(1) time. The
1ookup(s) method returns the sum of offset and the value associated with s in
.credi ts. For lookup(s) to work correctly,we must subtract offset from c when
performing insert(s. c)-this way a client's credits include only the credits added
via adclAllafter it was inserted.

The BST inverse_credits is used to implement maxO in 0(1) time. The en­
tries in inverse_credi ts are key-value pairs, where each key is a value v from
credi ts; its associated value is a hash table of the client strings which v is asso­
ciated with in credits. The insert(s, c) and remove(s) methods entail updat­
ing inverse_credi ts. Insertion consists of a lookup in inverse_credi ts followed
by either adding a new pair to inverse_credi ts (if c - offset is not associated
with any key in credits) or addjng a string to the hash table associated with c _
offset. The time complexity for updating inverse_credi ts when insert (s, c) is
called is OOogn) for the BST lookup plus 0(1) for the hash table creation or update,
i.e.,O(logn). Similarly, the time complexity for updating inverse_credits when
remove(s) is called isOOogn). The detailed implementation is given below.Wetake
advantage of STL's implementation of BST, inwhich the minimum and maximum
entries are computed in constant time, to makemax0 an 0(1) time operation.

Solution 14.21330



ElementsOfPrograrnminglnterviews.com

Variant 14.22.1: Define the "Markowitz bullet" of a set ofpoints P in the upper right
quadrant of the Cartesian plane to be those points which are not below and to the
right of any other point inP. Design a data structure for representing the Markowitz
bullet. Specifically,it should be possible to efficientlycheck if a new point is below
and to the right of some point in the Markowitz bullet, and to add a point to the
Markowitz bullet (whichmay result in other points being removed from the bullet).

Problem 14.22,pg.1l2: Suppose each node in a BST has a size field, which denotes tile
number of nodes at the subtree rooted at that node, inclusive of the node. How would you
efficiently compute the number of nodes that lie in agiven range? Can the size field beupdated
efficiently on insert and on delete?

Solution 14.22:Wecan find the number ofnodes whose entries lie in [L, U] by using
the approach of Solution 14.15on Page 322,and simply counting nodes, rather than
inserting them into a list. This leads to the same time complexity.However, we can
do better by exploiting the size field.

For example, suppose we want to find the number of entries that are less than a
given value v. Initialize the count to O.Wesearch for the first occurrence of v, and
each time we take a left child,we leave count unchanged; each time we take a right
child, we add one plus the size of the corresponding left child. If v is present, when
we reach the firstoccurrenceofv,we add the sizeofv's leftchild. The same approach
can be used to find the number of entries that are greater than v.

The time bound for these computations isO(h),since the search always descends
the tree. Wecan compute the number of nodes in the final result by first computing
the number of nodes less than L and the number of nodes greater than H, and
subtracting that from the total number ofnodes (which is the size stored at the root).

Thesize field can be updated on insert and delete without changing theO(h) time
complexity of both. Essentially, the only nodes whose size field change are those
on the search path to the added/deleted node. Some conditional checks are needed
for each such node, but these add constant time per node, leaving the O(h) time
complexity unchanged.

37 };

~ auto it • credits.find(s);
25 return it -- credits.cend() 7 -1 it->second + offset;
26
27

~ void addAll(const int &C) {
~ offset +- C;
30
31

32 string max (void) const {
33 auto it - inverse_creditl.crbegin();
M return it .= inverse_credits.crend() I I it->second.empty() ?
" : -it->second.cblgin();

331Solution 14.22



ElementsOfProgramminglnterviews.com

Problem 15.1, pg.1l5: Design an efficient algorithm for computing the skyline.

Solution 15.1: The simplest solution is to compute the skyline incrementally. For
one building, the skyline is trivial. Suppose we know the skyline for n - 1buildings,
and need to compute the new skyline when the n-th building (L,.,R7I,H7I) is added.
We now iterate through the existing skyline from left to right to see where L,. should
be added. Next we move through the existing skyline and increase any heights that
are less thanH7I to H7I until we reach R7I.

This algorithm is simple, but hasS(n2) complexity, since adding the n-th building
may entail Sen) comparisons. A better solution is to use divide and conquer: we
compute skylines for the first ¥ buildings and the last ~ buildings, and merge the

Variant 14.23.1: Solve the same problem without modifying the tree.

Problem 14.23, pg.113: Design a data structure that. stores closed intervals and can
efficiently return the complete set of intervals tha: intersect a specified range [L,U]. Your
data structure must also support effident insertions and deletions.

Solution 14.23: The solution to this problem is based on the notion of an interval
tree, This is a BST in which entries are intervals, e.g., [213,455]. For simplicity we
assume closed intervals throughout. Given an interval I = [L, U], we will refer to L
as the left endpoint of I, and U as the right endpoint of I. We use the left endpoint of
the interval as the BSTkey.

Each node a stores an interval [la,ua], and also a max field ms, which is the largest
right endpoint amongst the intervals stored in the subtree rooted at a. It is fairly
straightforward to show that the max field can be updated through inserts and
deletes without changing the time complexity of these operations.

Searching for a node that intersects I = [L, U] is done as follows. If the root r is
null or [lTl u,] has a nonempty intersection with I, return r; otherwise, if r's left child
deft is not null and the max field of deft is greater than or equal to L, recurseon
r.left; otherwise recurse on r's right child.

Since it descends the tree at each step, and performs constant work within a
step, the procedure has time complexity O(h) where h is the height of the tree. Its
correctness follows from basic facts about intervals. The only tricky case is the
justification that we do not need to search r's right subtree when the max field Mof
r.left is greater than or equal to L. The reasoning is as follows. Suppose no interval in
deft overlaps with I.We know there must be at least one interval of the form [m,M]
in r.left. Since I does not intersect any interval in r.left, it must be that U <m or L > M.
The latter is not possible, because the max field Misgreater or equal to than L. Since
the tree satisfies the BSTproperty on the left end points, we know that for each [p,q]
in 1's right subtree, U< p, and hence cannot intersect any interval in that subtree.

The problem statement asked for all intervals in the tree that intersect the given
interval. We can do this by iteratively finding and removing the node returned in the
procedure above, and later putting the nodes back in the tree. The time complexity
isO(mh),where m is the number of nodes in the result.

Solution 15.1332



ElementsOfProgrammingInterviews.com

merged.emplace_back(b). ttb_idx:
a,left ~ b.right:

~I
3,5!
361
371
381
3!1
40

41
(l

~ template <typename CoordType, typename HeightType>
44 vector<Skyline<CoordType, HeightType» merge_skylines(
45 vector<Skyline<CoordType, HeightType» &L,
46 vector<Skyline<CoordType, HeightType» &R) {

471 int i = s. j ~ &:
48 vector<Skyline<CoordType, HeightType» merg'ed:
49

else { II a.rigbt > b.rigbt
if (a.height >= b.height) {

ttb_idx:
else {
if'(a.left 1= b.1eft) {

merged.emplace_back(
Skyline<CoordType, HeightType>{a.left, b.left, a.height}):

29

30

23 Skyline<CoordType, HeightType>{a.left, b.left, a.height}):
26
27 tta_idx:
2B

141
15,

16
17

18

19
~ else if (a.height =~ b.height)
21 b.left = a.left, tta_idx:
22 else { I I a.heigbt < b. height
23 if (a .left 1= b.left) {
24 merged.emplace_back(

if (a.right <~ b.right) {
if (a.height > b.height)

if (b.right 1= a.right) {
Merged.emplace_back(a) , ++a_idx:
b.left = a.right:
else {
++b_idx:

12

IS

8 template <typename CoordType, typename HeightType>
9 void merge_intersect_skylines(vector<Skyline<CoordType, HeightType» &merged,
)0 Skyline<CoordType , HeightType> &a, int &a_idlt,
11 Skyline<CoordType, HeightType> &b, int &b_idx) {

6 l:

1 template <typename CoordType, typename HeigbtType>
2 class Skyline {

public:
CoordType left, right:
HeightType height:

results. Themerge is similar to the procedure for adding a singlebuilding, described
above, and can be performed in O(n) time. Basically,we iterate through the two
skylines together from left-to-right, matching their left and right coordinates, and
adjusting heights appropriately.

333Solution 15.1



ElementsOfProgramminglntervieW5.com

Problem 15.2,pg.115: Design an efficient algorithm that takes an array A of n numbers
and returns the number of inverted pairs of indices.

Solution 15.2: The brute-force algorithm examines all i E [0,n - 1] and all j E
[i+ 1,n -1], and has anO(n2)complexity.Amore efficientapproach is to use merge
sort. Suppose we have counted the number of inversions in the left half L and the
right half R of A. What are the inversions that remain to be counted? Sort the left
and right half arrays, and merge the two halves. For any (if J) pair, if L[zl > R[j], then
for all if 2!: iwe must have L[i'] > R[j], and we need to add m - i to the inversion
count, where m is the length of L.The time complexity is identical to that for merge
sort, i.e.,O(n logn).

Variant 15.1.1: Compute the skyline problem when each building has the shape of
an isoscelestrianglewith a 90 degree angle at its apex.

" while (i < l.sizeO && j < R.sizeO)
51 if (l[i].right < R(j].left) {
52 merged.emplace_back(l[i++]);
» else if (R[jl.right < l[il.left)
~ merged.emplace_back(R[j++]);
ss else if (l[il.left <= R[j].left)
~ merge_intersect_skylines(merged, L(il, i, R(j], j);
~ else { II LCil.1eft > R[il.1eft
~ merge_intersect_skylines(merged, R(j], j, l[i], i);
!!II

60

61
~ copy(L.cbegin() + i, L.cend(), back_inserter(.erged»;
~ copy(R.cbegin() + j, R.cend(). back_inserter(merged»;
M return merged;
65
66
V template <typename CoordType, typename HeigbtType>
68 vector<Skyline<CoordType, HeightType» drawing_skylines_helper(
~ vector<Skyline<CoordType, HeightType» &skylines,
~ const int &start, const int &end) {
71 if (end - start <~ 1) { II (J or 1 skyline, iust copy it
n return {skylines.cbegin() + start, skylines.cbegin() + end};
73
74 int mid = start + «end - start) » 1);
73 auto L = drawing_skylines_helper(skylines, start, mid);
~ auto R = drawing_skylines_helper(skylines. mid. end);
n return merge_skylines(l, R);
78

"19
60 te.•plate <typen_e CoordType. typen_e HeightType>
61 vector<Skyline<CoordType. HeightType» drawing_skylines(
~ vector<Sltyline<CoordType. HeightType» skylines) {
~ return drawing_skylines_helper(skylines. e. skylines.size(»;
84

Solution 15.2334



335

ElementsOfProgramminglnterviews.com

Problem 15.3, pg.116: You are given a list of pairs of points in the two-dimensional
Cartesian plane. Each point has integer x and y coordinates. How would you find the two
closest points?

Solution 15.3:The brute-force solution is to consider all pairs of points: this yields
an O(n2) algorithm.

To improve upon the brute-force solution, it is instructive to consider the one­
dimensional case. The obvious solution for the one-dimensional case is to iter­
ate through the points in sorted order, comparing the distance between successive
points with the running minimum. However, this does not generalize to the two­
dimensional case, since there is no natural total ordering of the points. Another
approach for the one-dimensional case is divide and conquer: partition the set about
the median, solve the problem for the left and right partitions, and combine the

while (left_start < mid && right_start < end)
7 if (A(left_start] <= A(right_start]) {

sorted_A.emplace_back(A(left_start++]):
11.. {

10 II A{l.ft_start :mid - 1] will be the inversions
II inver_count += mid - left_start:
~ sortod_A.emplace_back(A[right_,tart++]):
13I.
15 copy(A.begin() + left_start, A.bag!n() + mid, back_inserter(sortad_A»:
16 copy(A.begin() + right_start. A.begin() + end. back_inserter(sorted_A»:
11

18 II Update A with sorted_A
19 copy(sorte<LA.begin(), sorted_A.end(), A.begin() + start):
W return inver_count:
21 }
22

~ template <typename T>
Mint count_inversions_helper(vector<T> &A, const int &start, const int &end) {
25 if (end - start <= 1) {
26 return &:
27

28
~ int mid ~ start + «end - start) » 1):
~ return count_inversions_helper(A, start, mid) +
31 count_inversions_helper(A, mid, end) + merge(A. start, mid, end):
32

33,
:%1 template <typename T>
35 int count_inversions(vector<T> A) {
361 return count_inversions_helper (A, lSI,A.size0);
37 }

•• •••••••••• 1 -- _- __ .._ ._._ " _ ..

I template <typename T>
int merge(vector<T> &A, const int &start, const int &mid, const int &end) {

vector<T> sorted_A:
int left_start • start, right_start • mid, inver_count : &:

Solution 15.3



ElernentsOfProgramminglnterviews.com

10 II Return the closest two points and its dista~ce as a tuple
11 tuplecPoint, point, double> brute_force(const vectorcPoint> &P, const int &s,
12 const int &e)
1) tuplecPoint, Point, double> ret;
14 getc2>(ret) = numeric_limitscdouble>::cax();
15 for (int i = s; ice; ++i) {
16 for (int j = i + 1; j < .; ++j) {
17 double dis • distance(P(i], prj]);
~ if (dis < get<2>(ret» {
~ ret = {P(i], prj], dis};
lO

11
:u
23 return ret;
14 }

s }

6 double distance(const Point &a, const Point &b) {
return sqrt«a.x - b.x) • (a.x - b.x) + (a.y - b.y) * (a.y - b.y»;

. };
1 class Point {

public:
int x. y;

results. The last step entails finding points closest to the median from the left and
right partitions.

The complexity of the partitioning approach is the same as that of the approach
based on sorting-O(nlogn), where n is the number of points. However the parti­
tioning approach is applicable in more than one dimension. Specifically,we can split
the points into two equal-Sizedsets using a line x = P parallel to the y-axis. (Sucha
line can be found by computing the median of the values for the x coordinates-this
calculation can be performed using the algorithm described in Solution 11.13 on
Page 270.)

Wecan then compute the closestpair of points recursively on the two sets; let the
closest pair of points on the left of P be d, apart and the closest pair of points to the
right of P be d; apart. Let d =min(d"d,).

Now, all we need to look at is points which are in the band [P - d.P + d]. In
degenerate situations, all points may be within this band. If we compare all the
pairs, the complexity becomes quadratic again. However we can sort the points in
the band on their y coordinates and iterate through the sorted list, looking forpoints
d or less distance from the point being processed.

Intuitively, there cannot be many such points since otherwise, the closest pair
in the left and right partitions would have to be less than d ap.art. This intuition
can be analytically justified-Shamos and Hoey's famous 1975 paper "Closest-point
problems" shows that no more than six points can be within d distance of any point
which leads to anO(n logn) algorithm. (The time is dominated by the need to sort.)

The recursion can be sped up by switching to brute-force when a small number
ofpoints remain.

Solution 15.3336



337

ElementsOfProgramrningInterviews.com

Problem 15.4, pg.116: Design an efficient algorithm to compute the diameter of a tree.

53
54 int Ilid..(e + s) » 1;
33 auto I_ret ..find_cIosest_pair_points_belper(P, s, mid);
S6 auto r_ret = find_closest_pair_points_helper(P, mid, e);
571 auto min_l_r = get<2>CLret) < get<2>(r_ret) ? I_ret : r_ret;
S6 vector<Point> remain; II stores the points wbose x-dis < min_d
59 for (const Point &p : P) {
so if (abs(p.x - P[mid).x) < get<2>(min_1_r» {
61 remain.emplace_backCp);
62

63
64

~ auto mid_ret = find_closest_pair_in_remainCremain, get<2>Cmin_1_r»;
~ return get<2>(mid_ret) < get<2>(llin_1_r) 7 mid_ret : min_l_r;
67
68

~ pair<Point, Point> find_cIosest_pair_points(vector<Point> P) {
ro sort(P.begin(), P.end(), [)(const Point &a, const Point &b) -> bool {
n return a.x < b.x;
n });
n auto ret. find_closest_pair_points_helper(P, &, P.size();
74 return (get<&>(ret), get<l>(ret)};
75

U

'2.,
'4 return ret j.,
46

c II Return the closest two points and its distance as a tuple
48 tuple<Point, Point, double> find_closest_pair_points_helper(
~ const vector<Point> &P, const int &s, const int &e) {
so if (e - S <m 3) { II brute-force to find answer if there are <- 3 points

• 51 return brute_force(P, s, e);
52 '

31
32

33 II A t most six points in P
34 .tuple<Point, Point, double> ret;
M get<2>(rct). numeric_limits<double>::max();
S6 for (int i • 19; i < P.sizeO; ++i) {
~ for (int j • i + 1; j < P.size() && P[j].y - P[i].y < d; ++j) {
~ double dis a distance(P[i], prj]);
~ if (dil < get<2>(ret» {
o ret. {P[i], P[j], dis};

n;

25

~ II Return the closest two points and its distance as a tuple
v tuple<Point, Point, double> find_closest_pair_in_remain(vector<Point> &P,
28 const double &d)
~ sort(P.begin(), P.end(), [](const Point &a, const Point &b) -> bool {
~ return a.y < b.y;

Solution 15.4



ElementsOfProgramminglnterviews.com

1 class TreeNode {
public:

3 vector<pair<shared_ptr<TreeHode>, double» edges;. };
51
6 II Return (height, diameter) pair
7 pair<double, double> compute_height_and_diameter(
8 const shared_ptr<TreeNode> &r) {

double diameter. numeric_limits<double>: :.in();
10 array<double, 2> height. {&.&, &.S}; II store the max 2 heights
11 for (const pair<shared_ptr<TreeHode>. double> &e : r->edges) {
u pair<double. double> b_d = compute_height_and_diameter(e.first);
U if (h_d.first + e.second > height(&]) {
14 height(l] = height[&]i
u height(8] = h_d.first + e.second;
16 else if (h_d.first ..e. second> height [1)) {
17 height[l] a h_d.first + e.second;
18
19 diameter = max(diameter, h_d.second);
20

U return {height(&], max(diameter, height(&] + height[l])};

Solution 15.4

Solution 15.4:Wecan compute the diameter by running BFS,described on Page 132,
from each node and recording the maximum value of the shortest path distances
computed. This has O(IVI(IVI + lEI)) = O(lVf) time complexity since lEI = IVI - 1 in a
tree.

We can achieve better time complexity by using divide and conquer. First we
define some notation. If T is a nonempty tree, let root(T) denote the node at the root
of T. Let lu,tI be the length of the edge (u, v). The degree of a node u in a rooted tree
is the number of its children. Define the weighted height hu of a tree rooted at u to be
o if u is a leaf and max~iSn(lIl.root(Ti)+ hroOt(TI»' where Tt, T2, ... , Tn are the subtrees
rooted at u's children.

LetTbe a treewhose root isr. Suppose rhas degreem. Fornow,assumem 2!: 2. Let
dv d2, ••• , d". be the diameters and hv h2' ... , hIt the weighted heights of the subtrees.

Let Abe a longest path in T. Either it passes through r or it does not. If Adoes
not pass through r it must be entirely within one of the m subtrees and hence the
longest path length in T is the maximum of dt, d2, ••• , d".. If it does pass through r,
it must be between a pair of nodes in distinct subtrees that are farthest from r. The
distance from r to the node in T, that is farthest from it is simply fi = ht + 1"i1where
111,0denotes the length of the edge (u, v). Therefore the longest length path in T is the
larger of the maximum of dll d2, •.. , d". and the sum of the two largest fis.

Nowwe consider the cases 111 = 0and m = 1. Ifm = 0 the subtree rooted at t is just
the node t and the length of the longest path is O. If 111 = 1 the length of the longest
path in t ismax(h1+ IT,lld1).

The following algorithm computes the tree diameter. Process the tree in bottom­
up fashion. For each node we process its subtrees one at a time. We update the
maximum tree diameter based on the subtree Weightedheights, diameters, and edge
weights, using the observations above. The time complexity is proportional to the
size of the tree, i.e.,O(IVI).

338



ElementsOfPrograrnmingInterviews.com

14 T find_circular_max_subarray(const vector<T> &A)
II Maximum subarray sum starts at index 9 and ends at or before index i

8 }

9 return maximum;
10

11
12 II Calculate the solution which is circular
13 template <typename T>

vector<T> maximum_begin;
T sum c A.fron~();
maximum_begin.emplace_back(sum);
for (int i = 1; i < A.size(); ++i)

sum += A[i);
maximum_begin.emplace_back(max(maximum_begin.back(), sum));

lSI16

::1'19
20

211
221

231

1 II Calculate the non-circular solution
2 template <typename T>
3 T find_ma~_subarray(const vector<T> &A)

T maximum_till = G. maximum = G:
for (const T &a : A) {

maximum_till = max(a, a + maximum_till);
maximum = max (maximum , maximum_till);

Solution 15.5: First recall the standard algorithm for the conventional maximum
subarray sum problem. This proceeds by computing the maximum subarray sum
S[iJwhen the subarray ends at i,which ismax(S[i- 1]+ A[i],A[ll). Its running time
isO(n), where n is the length of the array.

One approach for the maximum circular subarray is to break the problem into
two separate instances. The first instance is the noncircular one, and is solved as
described above.

Thesecond instance entails lookingfor themaximum subarray that cyclesaround.
Narvely, this entails finding the maximum subarray that starts at index 0, the max­
imum subarray ending at index n - 1, and adding their sums. However, these two
subarrays may overlap, and simply subtracting out the overlap does not always give
the right result (consider the array (10,-4,5, -4, 10».

Instead, we compute for each i the maximum subarray sum SI for the subarray
that starts at 0and ends at or before i, and the maximum subarray E;for the subarray
that starts after i and ends at the last element. Then the maximum subarray sum for
a subarray that cyclesaround is the maximum over aU iofS, +Ej•

Problem 15.5,pg.118: Given a circular array A, compute its maximum subarray sum in
O(n) time, where n is the length of A. Can you devise an algorithm that takes O(n) time and
0(1) space?

22 }
23
24 double compu~e_diameter(const shared_p~r<TreeNode> &T) {
~ return T ? compute_height_and_diameter(T).second : G.G;
26

339Solution 15.5



ElementsOfProgrammingInterviews.com

Problem 15.6, pg.119: Given an array A of n numbers, find a longest subsequence
(io, ... , ik-l) such that iJ < ij+1 and A[iJ] ~ A[ij+1] for any j € [0,k - 2].

Solution 15.6:Wepresent two solutions, an 0(n2), and an O(n log n) one.
We first descnbe the 0(n2) solution. Let Sj be the length of the longest nonde­

creasing subsequence of A that ends at A[i] (specifically,A[i] is included in this

" II Find the .ax in non-circular case and circular case
~ return max(find_optillum_subarray_using_comp(A, max), II non-circular case
16 accwnulate{A. cbeginO, A.cendO, 9) -

111 fincLoptiaum_subarray_using_comp(A, min»; II circular case
18jl

till = coap{a, a + till);
overall = comp(overall, till);

2. T find_optillulI_subarray_using_comp(const vector<T> &A,
3! const T&(*comp)(const T&, const T&» {:1 T till = 9, overall = 8;
~ for (const T &a : A) {
6j

9
:1' return overall;

::1 :emPlate <typename T>
u T lIax_subarray_sum_in_circular{const vector<T> &A) {

1 template <typename T>

Alternately, the maximum subarray that cycles around can be determined by
computing the minimum subarray-the remaining elements yield a subarray that
cyclesaround. (Oneor both of the first and last elements may not be included in this
subarray,but that is fine.) This approach uses 0(1) space and O(n) time; code for it is
given below.

~ T circular_max = 8;
35 for (int i = 8; i <-A.sizeO; ++i)
~ circular_aax = max{circular_max, caximum_begin[i] + maximum_end[i]);
11
~ return circular_max;
39

40

U tellplate <t)'llenaceT> .
42 T max_subarray_sum_in_circular{const vector<T> &A) {01 return max {find_max_subarray (A), find_circular_max_subarray(A»;
44 }

:lO

31

32

~ II Calculate the maximum subarray which is circular

25

26

'Z1

:1

24 II Maximum subarray sum starts at index i + 1 and ends at the last element
vec.or<T> aaxiauc_end{A.size{»;
caximum_end.back{) ; 8;
sue ; 8;
for (int i ; A.size{) - 2; i >= 8; --i) {

sum += A[i + 1];
caximuc_end[il = max{maxicum_end[i + 1], sum);

Solution 15.6340



341

ElementsOfProgramminglnterviews.com

Wenow describea subtler algorithm that hasO(n logn) complexity.LetMl,j be the
smallest possible tailvalue for anynondecreasing subsequenceof length jusing array
elementsA[O],A[11,... , A[ll Note thatfor any i,wemust haveMi,t $ MI,2 $ ... $Mi.j.

Weprocess A's elements iteratively. When processing A[i + 11,we look for the
largest j such thatMI,j $ A[i+ 1]. First, assume such a j exists. Thenwe can construct
a j + 1 length subsequence that ends at A[i + 1]. If no length j + 1 nondecreasing
subsequence exists in A[O],A[l], ... ,A[i], then M1+!,j+!must be A[i + 1],otherwise it
remains equal toMI,j+!' Furthermore,MI+1,y remains unchanged for all j' S j.

Now suppose there does not exist j such that Mid $A[i +1]. This can only be true

31 }

ret[--max_lengthl = A[max_length_idx];
max_length_ldx = previous_index[max_length_idxl:

vector<T> ret(max_length):
while (max_length > (\){

II Build tb~ longest nondecreasing subsequence
lnt max_length = longest_length[max_length_idxl:

~I
231
I

" ::1
27

28

29
30 return ret;

II Record tbe index wbere longest subsequence ends
if (longest_length[i] > longest_length[max_length_idx])

max_length_idx = i:

17

18

vector<int> longest_length(A.size(), 1), previous_index(A.size(), -1):
9 int max_length_idx = &:
10 for (int i • 1: i < A.sizeO; Hi) {
11 for (int j = (\): j < i; ++j ) {
12 if (A[l) >= A[j] && longest_length[j) + 1 > longest_length[l)
13 longesclength[ij longest_length(j) + 1:
u pr~vious_index[i) = j;
15
16

6

7

1 tamplat. <typename T>
2 vector<T> longest_nondecreasing_subsequence(const vector<T> &A) {

II Empty IIrrllY
if (A.empty() .s true) {

return A:

Weuse this recurrenceto fillup a table forSi' The time complexityof this algorithm
is O(n2). Ifwe want the sequence as well, for each i, in addition to storing the length
of the sequence,we store the index of the last element of sequence that we extended
to get the current sequence. Here is an implementation of this algorithm:

if A[j] ~ A[i]; ),1)
otherwise.( (

SJ + 1,
51 = max max

je[O,i-l) 1,

subsequence). Then we canwrite the following recurrence:

Solution 15.6



ElementsOfProgramminglnterviews.com

Problem 15.7,pg.119: Design an algorithm that tilkes as input an array A of n numbers
and a key k, and returns a longest subarray of A for which the subarray sum is less than or
equal tok.

e-Variant 15.6.5: Definea sequenceofpoints in the plane tobe ascending if eachpoint
is above and to the right of the previous point. How would you find a maximum
ascending subset of a set ofpoints in the plane?

e-Variant 15.6.4: Definea sequence of numbers (ao,all' .. , an-I) to be bitonic if there
exists k such that aj < Q;+v for 0 ~ i < k and aj > aj+lI for k ~ i < n - 1. Given an
array of numbers A of length n, find a longest subsequence (io, ... , it-I) such that
(A[io],A[it], ... , A [it-I]) isbitonic.

s-Variant 15.6.3: Define a sequence of numbers (ao,av ... ,an-l) to be convex if aj <
4'-1;"'+1, for 1 ~ i ~ n - 2. Given an array of numbers A of length n, find a longest
subsequence (io, ... , ik-I) such that (A[io],A[it], ... , A [it-I]) is convex.

e-Variant 15.6.2: Definea sequence of numbers (ao,av ... ,an-I) to be weaklyalternat­
ing if no three consecutive terms in the sequence are increasing or decreasing. Given
an array of numbers A of length n, find a longest subsequence (io, ... , it-I) such that
(A[io],A[it], ... ,Alik-l]) isweakly alternating.

e-Variant 15.6.1: Definea sequenceofnumbers (ao,aI, ... , an-I) to be alternating ifaj <
Q;+1for even i and Q; > aj+l for odd i. Given an array of numbers A of length n, find a
longest subsequence (io, ... , ix-I) such that (A(io],A[id, ... ,A[it-l]) is alternating.

return tail_values.size();

7 tail_values.emplace_back(a);
else {
*i~ = a;

Ii template <typenaae T>
21 int longest_nondecreasing_subsequence(const vector<T> &A)
31 vector<T> tail_values;
• for (const T &a : A) {

5 auto it = upper_bound(tail_values.beoin(). tail_values.end(). a);
if (it == tail_values.end(» {

if A[i + 1] is the unique smallest element in A[O : i + 1]. Therefore we set Mj+l,l to
A[i + 1].

Therefore processing A[i + 1] entails a binary search for j and then an update to
M;+1,j+l if possible, leading to anO(n logn) time complexity.

Code implementing this procedure is given below; the appropriate entries from
Mare maintained in the taiLvalues vector.

Solution 15.7342



ElementsOfProgramminglnterviews.com

vector<T> min_prefix_sum(prefix_sum);
for (int i = min_prefix_sum.sizeO - 2; i >= @; ·--i) {

min_prefix_sum[i] = min(min_prefix_sum[iJ, min_prefix_sum[i + 1]);

pair<int. int> arr_idx(&, upper_bound(min_prefix_sum.cbegin(),
min_prefix_sum.cend(), k) -

min_prefix_sum.cbegin() - 1);
for (int i @; i < prefix_sum.size(); ++i) {

._--_ _- _ _ _ _ _._--_ _._---_ - __ ..__.__._ - _._ __ _-_ -.---
11 template <typename T>
2; pair<int, int> find_longest_subarray_less_equal_k(const vector<T> &A,
31!' const T &k) {
'! II Build the prefix sum ac~ording to A

vector<T> prefix_sum;
partial_sum(A.cbegin(), A.cend(), back_inserter(prefix_sum));

Solution 15.7: Let R be the prefix sum array for A, i.e., R[i] = r.~=oA[k]i R can be
computed in a single iteration over A. Note that the sum of the elements in the
subarray A[i : j] is R[j] - R[i -1] (for convenience, take R[-l] = 0).

We can now use the idea of the "efficient frontier" of candidate starting indices:
we will never choose i as the starting index if there exists i' such that i' < i and
R[i'] ~ R[i). The frontier can be captured by the array T[iJ = mink:l(R[k]), which can
be computed by a single iteration over R, starting from the end of R and working
backwards. Observe that the entries in'T are monotonically increasing, i.e., for all
i,T[ij sT[i + 1].

Consider any index i. Let j be the largest index such that T[j] ~ k +R[i]. We claim
the longest subarray starting at i+ 1 that has a sum less than or equal to k must end
at t. inclusive. .
Proof:

First note that by definition of T there exists j' ~ j such that R[j'] = T[j]. Hence
there is a subarray starting at i + 1that has length at least j - i that satisfies the
sub array sum constraint (i.e., R[j] - R[i] ~ k).

Now suppose for contradiction that there exists a longer subarray satisfying
the subarray sum constraint starting at i + 1 and ending at 1"where 1" > j. Since
this subarray satisfies the subarray sum constraint, we have R[j"] - R[i] ~ k, i.e.,
R[j"] ~ k +R[i]. Now j was chosen to be the largest index such that T[;1 ~ k +R[iJ,
and by hypothesis j < j" implies T[j"] s R[j"] s k + R[iJ. This contradicts the
maximality of j, so j is indeed the ending index of the longest sub array starting
at i that satisfies the subarray sum constraint.

We have previously shown how T can be computed in O(n)time. Given an index i
we can compute the corresponding j using the variant of binary search that finds the
greatest entry less than the search key. Specifically, Solution 11.2 on Page 259 shows
how to find the smallest element larger than the search key inO(logn). A symmetric
algorithm solves the problem of finding the greatest element less than the search key.

We do this once for each i,and record the longest subarray seen thus far, leading
to an overall time complexity of O(n log n).

343Solution 15.7



ElementsOfProgramminglnterviews.com

10 L.eaplace_baclt(s.eapty() 7 -1 : s.top(»;

I tUlplate <typenaae T>
2 T calculate_largest_rectangle(coDst vector<T> &A)
3 II Calculate L

stack<lnt> 5;
vectordnt> L;

, for (int i = e; i < A.size(); ++i) {
1 while (Is.empty() && A[s.top()] >- A[i])

s.popO;

Problem 15.8, pg.120: Let A be an array of n numbers encoding the heights of adjacent
buildings of unit width. Design an algorithm to compute the area of the largest rectangle
contained in this skyline, i.e., compute maxl<j«j - i + 1) X ~i A [k]).

Solution 15.8: A brute-force approach is to take each (i,J) pair, find the minimum of
subarray A[i: 11, and multiply that by j -i+ 1. This has time complexityO(n3), which
can improved to O(n2)by iterating over i and then j ~i and tracking the minimum
height of buildings from i to j, inclusive.

Another approach is to iterate over the buildings in the following fashion: when
processing the i-th building, we find the largest rectangle which includes that building
and has height at least A[l], Implemented naIvely, this approach has time complexity
0(n2). However, we can improve upon it greatly with the following observation:
if k < k' ~ i and A[k] > A[k'] then there is no reason to consider Building k, when
processing Building i. Therefore we can maintain an "efficient frontier" of candidates
from Building 0 to Building i. This consists of a stack of buildings: a building is
pushed into the stack iff its height is grea ter than the height of the building on the top
of the stack. Observe that the largest rectangle under Building i that has height A[i]
extends out to the last building to the left that is in the stack and has height greater
than or equal to A[ll Before adding Building i to the stack, we remove buildings
from the stack until the stack is empty or the top building has height less thanA[i]. A
similar stack is used to determine the largest rectangle to the right under Building i.

For each building, itwill at most be pushed and popped from each of the two stacks
at most once, which leads to an amortized 0(1) time complexity per building for stack
updates, and an overall O(n) time complexity. Following is the implementation in
C++:

Variant 15.7.1: Design an algorithm for finding the longest subarray of a given array
such that the average of the sub array elements is ~ k.

17 int idx = upper_bound(mln_prefix_sum.cbegin(), min_prefix_sum.cend(),
18 It + prefix_sum [i]) - lIin_prefix_sum.cbegin0 - 1:
19 if (idx - i - 1 > arr_idx.second - arr_idx.first) {
~ arr_idx = {i + 1, idx};
21
12

n return arr_idx;
24 }

344 Solution 15.8



ElementsOfProgramminglnterviews.com

Problem 15.9, pg.120; Let A be an n x m Boolean 2D array. Design efficient algorithms
for thefollowing two problems:

- What is the largest 2D subarray containing only Is?
- What is the largest square 2D subarray containing only Is?

What are the time and space complexities of your algorithms as afunction of nand m?

Solution 15.9:Abrute-forceapproach is to examineall2D subarrays. Sincea 2Dsub­
array is characterized by two diagonally opposite corners the total number of such
arrays is O(m2n2) Each 2D subarray can be checked by examining the correspond­
ing entries, so the overall complexity is O(m3n3). This can be easily reduced to
O(m2n2) by processing 2D subarrays by size, and reusing results-the 2D subarray
A[i : i + a1[j : j + b) is feasible iff the 2D subarrays A[i : i + a - l][j : j + b - 1],
A[i +a: i+a][j: j + b -l],A[i: i+a -1)[j + b: j + b],andA[i+a: i+a][j + b: j + b]
are feasible. This is a0(1) time operation, assuming that feasibility of the smaller
2Dsubarrays has alreadybeen computed and stored. (Notethat this solution requires
O(m2n2) storage.) .

The following approach lowers the time and space complexity. For each feasible'
entry A[i][j] we record (hi,j, Wi,j), where hi,j is the largest L such that all the entries in
A[i : i + L - 1][j : j] are feasible, and Wi,j is the largest L such that all the entries in
A[i : i][j : j + L - 1] are feasible. This computation can be performed in O(mn) time,
'and requires O(mn) storage.

Now for each feasible entry A[i][j] we calculate the largest 2D subarray that
has A[i][j] as its bottom-left corner. We do thisby processing each entry in A[i :

e-Variant 15.8.1: Find the largest square under the skyline.

- 1));

II For each A[iJ. find its maximum area include it.

s.emplace(i);
s.topO;R(i] = s.empty() ? A.size()

:!
:1
261
271
~i T max_area ~ Gi
230911 for (int i =@;i<A.sizeO;Hi)

max_area = max(max_area. A[i] * (R(i) - L[i)
31~lreturn max_area;
33 }

........_M._ ..M.... HM''' .... _

vector<int> R(A.size());
for (int i = A.size() - 1; i >= Q; --i) {

while (Is.empty() && A[s.top()) >= A[i))
s.popO;

19

13
14 II Clear stack for calculating R
15 while (!s.empty0) {
16 s.popO;
17

18

12

"I s.emplace(i);

345Solution 15.9



ElementsOfProgramminglnterviews.com

Ifwe are looking for the largest feasible square region, we can improve the com­
plexity as follows-we compute the (hl,l,Wi,j) values asbefore. Suppose we know the
length s of the largest square region that has A[i + l][j + 1]as its bottom-left comer.
Then the length of the side of the largest square with A[i, 11as its bottom-left comer
is at most s+ 1,which occurs iffhi.j <! 5 +1and wI,1 <! 5+1. Thegeneral expression for
the length is mines + 1,hj,j,w~J)' Note that this is a 0(1) time computation. In total,
the run time isO(mn),a factor of n better than before.

The calculations above can be sped up by intelligent pruning. For example, if

36

=1
Z1i
281

:1
311
32

33
34

35 return max_reet_area;

II Process (i. j) if it is feasible and is possible to update
II max_rect_area
if (A[i][j] && table[i](j].11 * tabIe[i](j].h > max_rect_area)

int min_width = nu.eric_liaits<int>::aax();
for (int a = 8; a < tabIe[i](j].h; ++a) {

min_width = min(min_width, tabIe[i + a][j).w);
aax_reet_area = aax(aalLrect_area. min_width * (a + 1»;

int max_reet_area = 9;
for (int i = 8; i < A.sizeO; Hi) {

for (int j = 9; j < A[i].size(); ++j)

10 for (int i = A.sizeO - 1; i >= 8; --0
11 for (int j = A[i].size() - 1; j >= 9; _oj)
u II Find the largest h such tbat (i, j) to (i + b - 1. j) are feasible
13 1/ Find the largest II such that (i, j) to Ci, j + Ii - 1) are feasible
14! table[i][j] = A[i][j] ?
~ lIaxHW{i+ 1 < A.size() ? table[i + l][j].h + 1 : 1,
16 j + 1 < A[i] .sizeO ? table[i][j + 1].11+ 1 : 1}
17 lIaxHW{8, 8};
18

19'
21)1

211
22!
I

23j

1 class lIaxHW{
2 public:
31 int h, II;

41 }; .
:1 int aax_rectangle_sub.atrix(const vector<vector<bool» &A) {
1 II DP table stores (h, If) for eacb (i, j)
8 veetor<veetor<lIaxHW» table(A.size(), vector<lIaxHW>(A.front().size(»);

i+hj,j-1}[j : 11Aswe iterate through the entries invertical order, we update w to the
smallest wI,1 amongst the entries processed so far. The largest 2D subarray that has
A[Il[Jl as its bottom-left comer and A[i'1[]1 as its top-left comer has area (i' - i+ l)w.
Wetrack the largest 2Dsubarray seen so far across allA[i][j] processed.

The time complexity per A[i][j) is proportional to the number of rows, i.e.,O(n),
yielding an overall time complexity ofO(mn2), and space complexity ofO(mn).

Solution 15.9346



'.

347

ElementsOfProgramminglnterviews.com

The largest2Dsubarray canbe found inO(nm)time and spaceusing aqualitatively
different approach. Essentially,we reduce our problem to n instances of the largest
rectangle under the skyline problem described in Problem 15.8on Page 120. First,
for eachA[zl[j1 we determine the largesthj,j such that A[i : i+ hj,j-1)[j : Jl is feasible.
(IfA[i][j] = 0 then h',j = 0.) The h values can be computed in O(nm) time by using
DP.Then for each of the n rows, we compute the largest 2Dsubarray whose bottom
edge is on that row in timeO(m), using Solution 15.8on Page 344.This computation
can be performed in time O(n) once the hj,j values have been computed. The final
solution is the maximum of the n instances.

IIint max_rectangle_submatrix(const vector<vector<bool» &A)

38

max_sQuare_area max (max_square_area, side * side);
sri] [j] = side;

28
29
30

31

32

33

34

33
36

37 return max_square_area;

II Get tbe length of largest square with bottom-left corner (i, j)
if (i + 1 < A.size() && j + 1 < A[i + 1].size(» {

side = min(s(i + IJ[j + 1] + 1, side);

~ int max_sQuare_area = &;
2' for (int i = A.sizeO - I: i >- &; --i) {
2.! for (int j = A[iJ.5izeO - 1; j >= &; --j)
u int side = min(table[i)[;).h, table[iJ[j].w):
27 if (A[i][j)) {

MaxHW{&, &};

MaxHW{i + 1 < A.size() ? table[i + IJ[j).h + 1 : 1,
j + 1 < A[iJ.size() ? table[iJ[j + IJ.w + 1 : I}

10

11
12

1$

U

15
16

17

18

19

20

21 II A table stores the length of largest square for each (1, j)
22 vector<vector<int» s(A.size(), vector<int>(A.front().size(), G»~;

for (int i • A.size() - 1; i >- iii; --i) {
for (int j - A[iJ .sizeO - I: j >- &; --j)

II Find the largest b such tbat cs , j) to (1 + b - 1, j) are feas1ble
II Find the largl!St Ii such that (i, j) to (1, j + w - 1) are feasible
table[iJ [jJ • A[iJ[jJ ?

6 int max_square_submatrix(const vector<vector<bool» &A) {
II DP table stor.s (h, w) for each (i, j)
vector<vector<MaxHW» table(A.size(), vector<MaxHW>(A.front().size(»);

, };

I class Ka1MW {
public:

int h, W:

we already have a feasible 2D subarray of dimensions H x W, there is no reason to
process an entry A[i, j] for which h;,j $Hand WI,j SW.

Solution 15.9



ElementsOfProgrammingInterviews.con

13 return true;
14

15
16 if (i < 8 II i >= A.size() II j < 8 II j >= A(i].size() I I
17 cache.find({i, j, len}) != cache.cend(» {

Il

match_helper(const vector<vector<int» &A, const vector<int> &S,
unordered_set<tuple<int, int, int> , HashTuple> cache,
int i, int j, int len) {

if (S.size() == len) {

7 };

li class BashTuple

2sl! public:
size_t operator()(const tuple<int, int, int> &t) const {

return hash<int>()(get<8>(t» A hash<int>()(get<I>(t» A

hash<int>()(get<2>(t»;

Problem 15.10, pg.120: Design an algorithm that takes as arguments a 2D array A and a
1D array 5, and determines whether 5 appears inA. If 5 appears in A, print the sequence of
entries where it appears.
Solution 15.10: We solve this problem using recursion. The Boolean-valued
matchHelper function takes A, 5, a pair of integers (i,J) encoding an entry in A,
and a third integer k encoding the offset into 5 that needs to be matched from (i,J).
The function returns true if k = lSI or if S[k] = A[ll[j] and an entry adjacent to (i,j)
matches S with an offset of k + 1.

To avoid repeated calls to the same function with the same argument, we cache
results. This reduces the complexity to O(nml),where n and m are the dimensions
of A, and I is the length of S-we do a constant amount of work within each call to
match_helper and the number of calls is bounded by the size of the cache. When we
find a match, we print it by printing the arguments to the sequence of calls that led
to the success.

The largest square 2D subarray containing only 1s can be computed similarly,
with a minor variant on the algorithm in Solution 15.8 on Page 344.

9
10 II Find the max among all instances of the largest rectangle
II int max_rect_area = 8;
12 for (const vectord.nt> &t : table) {
13 max_rect_area = max(max_rect_area, calculate_largest_rectangle(t»;

"~ return max_rect_area;
16 }

for (int i = A.size() - 1; i >= 8; --i) {
for (int j = A(i].size() - 1; j >= 8; --j)

table(i](j] = A(i](j] ? i + 1 < A.size() ? table(i + l](j] + 1 8;

vector<vector<int» table(A.size(), vector<int>(A.front().size(»);

·Solution 15.10



ElementsOfProgrammingInterviews.com

Clearly,the expressionon the right hand side is an upper bound on E(A, B).
Toshow that it is a lower bound, if a smaller sequence transforms A into B,
there must be a step where the last character of A becomes the same as the
last character of B. This could happen either by inserting a new character at

[

E(A[O: a - 2J,B[0: b - 2]},1
E(A, B) :: 1+min E(A[O : a - 2J,B),

E(A, B[O : b - 2])

Problem 15.11,pg.120: Given two strings, represented as arrays of characters A and B,
compute the minimum number of edits needed to transform the first string into the second
string.

Solution 15.11: Let the Levenshtein distance between the two strings A and B be
represented by E(A, B). Let's say that a and b are, respectively,the length of strings A
and B. Wenow make'two claims:

- If A[a - 1] :: B[b - I], i.e., the last character of A and B are the same, then
E(A, B) = E(A[O : a - 21,B[O : b - 2]). This is because E(A[O : a - 2], B[O : b - 2]) is
an upper bound and a lower bound on E(A, B). It is an upper bound, sinceone
way to transform A to B is to transform A[O : a - 2] to B[O : b - 2]. It is a lower
bound sincewe can take a transformation ofA to B,and reorder the operations
in it to get a transformation ofA[O : a - 2] into B[O : b - 2] that is no longer than
the original transformation.

- If A[a - 11 '* B[b - I], i.e., the last two characters of the strings do not match,
then

1£ (A[1][j] •• S[len] &&
(match_helper(A, S, cache, i - 1, 50 len + 1) II
match_helper(A, S, cache, t + 1, j. len + 1) II
match_helper(A, S, cache, r. j - 1, len + 1) II
lIatch_helper(A, S, cache. i, j + 1. len + 1») {

return true;

IS return falae;
19
20
11

22
:u
24
:z5
:16

'11
~ cache.insart({i, j, l@n});
29 return false;
30 }

31
l2 bool match(const vactor<v@ctor<int» &A, const vector<int> &S)
~ unordered_ ••t<tuple<int, int, 1nt>, HashTuple> cache;
34 for (tnt 1 • 8; i < A.sizeO; ++1) {
" for (1nt j • $; j < A[1] .sizeO; ++j)
~ ,if (match_helper(A, S, each•. t, j. $»
37 return true;
38
39

40

" return false;
u }

349Solution 15.11



ElementsOiProgramminglnterviews.com

E-Variant 15.11.1: GivenA and Basabove, compute a longest sequence ofcharacters
that is a subsequence ofA and of B.

Figure 21.11on the next page shows the E values for the strings "Carthorse" and
"Orchestra". Upper-case and lower-case characters are treated as being different.
The Levenshtein distance for this two strings is 8. The longest subsequence which is
present in both strings is (r,h,s).

23 }

pre_i_1_j_1 = pre_i_l_j;

for (int i = 1; i <= A.size(); ++i) {
int pre_i_1_j_1 = D[S]; II stores tbe value of DCi - I]Cj - 11
D[8] = i;
for (int j = 1; j <= B.size(); ++j) {

int pre_i_l_j = D[j); II stores tbe value of DCi -11Cj1
D[j] = A[i - 1] = BU - 1] ?

pre_i_1_j_1 : 1 + min(pre_i_l_j_l, min(D[j - 1], D[j]»;
II Previous DCi - 1}[j1 "ill become tbe next DCi - IJ[j - 11

:~I
lli
131

14"15

::1'
19

:10
21
n return D.back();

vector<int> D(B.size() + 1);
II Initialization
iota(D.begin(), D.end(), 8);

6.

}

1 int Levensbtein_distance(string A, string B) {
21 II Try to reduce the space usage
3 if (A.size() < B.size(» {

svap(A, B);

the end, deleting the last character, or substituting the last character ofA with
the last character of B. Wecan reorder the sequence such that this operation
happens at the end. The length of the sequence would remain the same and
we would still end up with Bin the end. If this operation was a "delete", then
by deleting this operation, we get a sequence of operations that tum A[O,a - 2]
into B. If this operation was an "insert", then by dropping this operation,
we would have a set of transformations that tum A into B[O,b - 2]. If this
operation was a "substitute", then by discarding this operation, we would
have a set of transformations that tum A[O, a - 2] intoB[O,b - 2}.Inany of those
cases, it would be a contradiction if there was a sequence of operations that
turned A into Bwhich is smaller than min(E(A[O : a - 2],B[O : b - 2}),E(A[O :
a - 2], B), E(A, B[O : b - 2])) +1.

Weuse the above claims to compute E(A, B). Specifically,we tabulate the values
of E(A[O : k],B[O : 1]) for all values of k < a and 1< b. This takesO(ab) time. Wecan
implement this algorithm using O(min (a,b» space by reusing space, sincewe never
need more than one row of prior solution at a time. Following is the code in C++.

Solution 15.11350



ElementsOfProgrammingInterviews.com

2

1Ivector<string> word_breaking(const string &5.
const unordered_set<string> &dict)

Problem 15.12, pg.121: Given a dictionary and a string s, design an efficient algorithm
that checks whether s is the concatenation of a sequence of dictionary words. If such a
concatenation exists, your algorithm should output it.

Solution 15.12: This is a straightforward DP problem. If the input string s has length
n,we build a table T of length n such that T[k] is a Boolean indicating whether the
substring s(O,k) can be decomposed into a sequence of valid words.

We can build a hash table of all the valid words to determine if a string is a valid
word in 0(1) time. Then T[k] holds iff one of the following two conditions is true:

1. There exists a j E CO,k -1] such that T{j] is true and s(j + l,k) is a valid word.
2. Substring s(O,k) is a valid word.
This tells us if we can break a given string into valid words, but does not yield

the words themselves. We can obtain the words with a little more book-keeping. In
table T, along with the Boolean value, we also store the length of the last word in the
string.

Variant 15.11.3: Given a string A and a regular expression r, what is the string in
the language of the regular expression r that is closest to A? The distance between
strings is the Levenshtein distance specified above.

e-Variant 15.11.2: Given a string A, compute the minimum number of characters
you need to delete from A to make the resulting string a palindrome.

Solutioll15.12 351

C a r t h 0 r s e

° ~1 2 3 4 5 6 7 8 9
~.

0 1 1U\S2 3 4 5 6 7 8 9

r 2 2 2 2 ~3 4 5 6 7 8

c 3 3 3 3 3 4 5 6 7 8-,
h 4 4 4 4 4 3 4 5 6 7

~.

e 5 5 5 5 5 4 4lnSS,,6 6

s 6 6 6 6 6 5 5 5 5~6

t 7 7 7 7 6 6 6 6 6 it
r 8 8 8 7 7 7 7 6 7 7~t
a 9 9 8 8 8 8 8 7 7 8

Figure 21.11: The E tablefor"Carthorse"and "Orcbestra".



ElementsOfProgramminglnterviews.com

Problem 15.13, pg.121: Given text, i.e., a string of words separated by single blanks,
decompose the text into lines such that no word is split across lines and the messiness of the
decomposition is minimized. Each line can hold no more than L characters. How would you
chan~e your algorithm if the messiness is the sum of the messinesses of all but the last line?

Solution 15.13: Let the text W consist of words (we,WI, ... , WIt-l). Let Ik be the
length of Wk. Suppose we know the optimum messiness M(i) for each subtext of
the form WI = (WO,WI, ... ,W/). We find the optimum decomposition for Wi+l =
(wo,Wt, ,Wj+1) as follows. Consider the last line. It will be of the form Wfri+1 =
(Wj,Wj+l, ,Wi+1), where j could be i + 1 (word WI+! lies on a line by itself). The
optimum messiness for a decomposition is then M(j - 1) +2L-I,·I-I:l::/'k+1).

We can compute an optimum messiness for W'+l by iterating from j = i + 1
down to the first f such that Ii+} + .L.~f(lk + 1) > L. For each value of j we perform
constant work to compute the optimum messiness, assuming we form .L.~j(lk + 1)
incrementally. Since each line is constrained to L characters, we will not examine
more than L words for each word processed, leading to an O(nL) time complexity.
Naively, the space complexity isO(n) for storing Mj however, since we never examine

Ifwe want all possible decompositions, we can store all possible values of j that
gives us a correct break with each position. However the number of possible decom­
positions can be exponential here ..This is exemplified by the string "itsitsitsits ... ".

,
10

II II Set T[i] i.f T[j] I: " and s(j + J. i) is a valid word
12 for (int j = '; j < i && T[i] == $; ++j) {
13 if (TU] I- • && dict.find(s.substr(j + 1. i - j» I: dict.cendO)
~ T(i] '"i - j;
15

16
11

18
~ vector<string> ret;
20 II s can be asseabled by valid Iiords
U if (T.back(» {
22 int idx = s.size 0 - 1;
23 while (idx >'" 19){
u ret.emplace_back(s.substr(idx - T[idx] + 1. T[idx]»;
2S idx -= T[idx];
26
~ reverse(ret.begin(). ret.end(»;
28
lSI return ret;
30

II Tei] stores the length of tbe last string wbicb composed of 5($. i)
vector<int> T(s.size() •• );
for (tnt i = &; i < s.size(); ++i) (
II Set T[i] if 5($. i) is a valid word
if (dict.find(s.substr(8. i + 1» I- dict.cend(»

T(i] '"i + 1;

Solution 15.13352



ElementsOfProgrammingInterviews.com

Problem 15.14,pg.122: Design an efficient algorithm for computing G) which has the
property that it never overflows if G) can be represented as a 32-bit integer; assume nand k
are integers.

Solution 15.14: It is tempting to proceed by pairing terms in the numerator and
denominator for the expression for <V that have common factors and cancel them
out. This approach is unsatisfactory because of the need to have factorizations.

The binomial coefficientssatisfy several identities, the most basic of which is the

Variant 15.13.1: Suppose the messiness of a line ending with b blank characters is
defined to be b.Can you solve the messinessminimization problem inO(n) time and
0(1) space?

.............................................._ _ _ __ ••__ __ _._"..,,"'."'__ ._._. __J

1 int find_pretty_printin9(const vector<string> &W, const int &L) {
II Calculate M(i)
vector<long> M(W.size(), numeric_limits<long>::max(»;
for (int i = &; i < W.size(); ++1) {

int b_len • L - W[i).size();
M[i) = Min«i - 1 < 8 7 8 : M[1 - 1]) + (1 « b_len), M[1):
for (int j Q i - 1: j >= 8; _oj) {

b_len -= (W(j].size() + 1);
if (b_len < 8) {

10 break;
11
12 M[i] • min«j - 1 < & ? & H[j - 1]) + (1 « b_len) , H[i]);
13
14

15

16 II Find the minimum cost without considering the last line
17 long min_mess = (W.size0 >= 2 ? M[W.size0 - 2] : &);
18 int b_len = L - W.back().size();
19 for (int i = W.sizeO - 2; i >" &: --1) {
~ b_len -. (W(1].s1ze() + 1);
n if (b_len < 8) {
n return min_mess;
23

24 RlilLlleSS• m1n(min_lless, (1 - 1 < 8 ? 8 M(i - 1)));
2S
26 return min_mess:
27 }

more than Lprevious words on the line that Wi+! is on, we can reuse space and reduce
the additional storage toO(L).

Now we consider the case where the messiness of a decomposition does not
include the messiness of the final line. First, we compute M as above. If the final
line is (Wj' Wj+l,"" Wn-l), the optimum messiness will beM(j - 1). Not more than L
(actually L~ J+1)possibilitiesexistfor the fmalline, and we can compute the optimurn
messiness once M is computed by considering all the possibilities of the final line.
The time and space bounds are the same asbefore.

353Solutiotl15.14



ElementsOfProgrammingInterviews. COlli

Problem 15.15, pg.122: You have an aggregate score 5 and W which specifies the points
that can be scored in an individual play. How would you find the number of combinations of
plays that result in an aggregate score of s7 How would you compute the number of distinct
sequences of individual plays that result in a score of s7

Solution 15.15: Let W = two,Wll' •• , Wn-I} be the possible scores for individual plays.
Let X be the set {(Xo, Xl!' .. , Xn-l) I L,~:olWjXj = s}. We want to compute IXI. Observe
that Xo can take any value in rc.] ~ Jl. Therefore, we can partition X into subsets of
vectors of the form {(Xo,Xl, ... ,Xn-l)}, where 0 ~ Xo ~ L~J. We can determine the
size of each of these subsets by solving the same problem in one fewer dimension­
specifically for each Xo we count the number of combinations inwhich s - XoWo can
be achieved using plays {WI,W2, ... , Wn-l}. The base case corresponds to computing
the number of ways in which a score t ~ s can be formed with the Wn_l-score plays,
which is 1 or 0, depending on whether Wn-l evenly divides t.

7 II Basic case: CCi, i) ; 1
8 for (int i = Ii i <: k; Hi)
9 table[i)[i] = 1;
10
11

12 II CCi, j) = CCi - 1, j) + CCi - 1, j - 1)
13 for Cint i = 2; i <; n; Hi) {
14 for (int j = 1; j < i && j <= k; Hj) {
15 table [i][j] = table [i - IJ[j] + tableU - l][j - 1];
16

17
~ return table[n][k];
19 }

11int compute_binomial_coefficients(const int &n, const int &k)

vector<vector<int» tableCn + 1, vector<int>(k + 1»;
3 II Basic case: CCi, 9) ; 1

for (int i = 9; i <; n; ++i) {
5 t.able[i](&] = Ii

Various proofs exist of this identity, ranging from the combinatorial interpretation to
induction and, finally, direct manipulation of the expressions.

This identity yields a straightforward recursion for C). The base cases are (;) and
G, both of which are 1. The individual results from the subcalls are 32-bit integers
and if C) can be represented by a 32-bit integer, they can too; so, overflow is not a
concern.

The recursion can lead to repeated subcalls and consequently exponential run
times, which can be avoided by caching intermediate results as in DP. The number
of subproblems is 0(n2) and the results can be combined in 0(1) time, yielding an
0(n2) complexity bound.

addition formula:

Sollltioll15.15354



ElementsOfProgramminglnterviews.com

Variant 15.15.2: Suppose the final score is (5,5'). How would you compute the
maximum number of times the team that lead could have changed? For example, if
5 = 10and s' = 6, the lead could have changed 4 times: Team1 scores 2, then Team2
scores 3 (lead change), then Team1scores 2 (lead change), then Team2 scores3 (lead
change), then Team1scores 3 (lead change) followedby 3.

Variant 15.15.1: Suppose the finalscore is given in the form (5, S'), i.e.,Team1scored
s points and Team2scored5' points. Howwould you compute the number ofdistinct
scoring sequences which result in this score? For example, if the final score is (6,3)
then Team 1 scores 3, Team2 scores 3, Team 1 scores 3 is a scoring sequence which
results in this score.

1r:::lln~-~unt_;ermutation~'(const ~;-~t;:-c-;;;-;"~"'-~-e-;~'~r<int>
2 vector<int> permutations(k + 1. S):
3 permutations[S] = 1: II 1 way to reach.
• for (int i = .; i <= k; ++i) {

for (const int &score : score_ways)
if (i >= score) {

71 permutations[i] += permutations[i - score];

:11 }
10 }

11~ return permutations[k]:
12 }

.,,_". 00'_"_' ,_,_,,__ , 0._00_, --J

&score_ways) {

Wecan compute the number ofpermutations of scoreswhich lead to an aggregate
scoreof5 using recursion. Supposewe know for all u < v the number ofpermutations
of ways in which u can be achieved. We can achieve v points by first scoringv - Wi

points followedbyWi. Observe,each'of these is a distinct permutation. The recursion
can be converted to DP by caching the number of permutations yielding t for each
t < 5.

9 return combinations[kl:
10 }

1 int count_combinations(const int &k. const vector<int> &score_lIays)
vector<int> combinations(k + 1. S);
combinations(S] ~ 1; II 1 way to reach.
for (const int &score ; score_ways) {

for (int j c score; j <= k; ++j) {
combinations (j] T= combinations (j - score];

355

The algorithm outlined above has exponential complexity. We can use DP to
reduce its complexity-for each t s 5 and d E [I,n - 1] we cache the number of
combinations of ways in which Wd,' .. , Wn-l can be used to achieve t. By iterating
first over Wand then over t,we can reuse space. This is the approach given below.

Solutiol115.15



ElementsOfProgramminglnterviews.com

I II Given the dimensions of A, n and m, and B, return the nu.ber of ways
2 II from A[fJ}[9} to ACn - I} [III - I} considering obstacles
3 int number_of_Hays_with_obstacles(cons~ int &n, const int &III,

const vector<vector<bool» &8)
vector<vector<int» A(n, vector<int>(a. 8»;
II No way to start frol1l (6. I) if BC'JC'] = true
A[$][8] ~ IB[8][9];
for (int i = 8; i < n; ++i)

for (int j ~9; j < m; .+j)
w if (B[i][j] ••• ) {
II A[i][j] +. (i < 1 ? • : A[i - l][j]) • (j < 1 ? $ A[i][j - 1]);

An even better solution is based on the fact that each path from (0,0) to (n-I, m-1)
is a sequence of m - 1 horizontal steps and n - 1vertical steps. There are (":~;2)=
(".",-2\ (II+m-2)! ch ths This al b ffi' tl d ithm-l ) = (,.-l)!{m-l)! SU pa. v ue can e e cien y compute WI out
division by using DP; refer to Solution 15.14 on Page 353 for details.

Our first solution generalizes trivially to obstacles: if there is an obstacle at (i,J)
there are zero ways of getting from (0,0) to (i,J).

Figure 21.12: The number 01ways to get from (0,0)10(i, J) lor 0 ~ i, j S 4.

11111 1 1

1 12 13 4 5

1 3 ! 6 .10 15

1 4 [ro 20 35

1.5115 35 70

We can improve on the above by noting that we do not need an n x m 2D array, since
to fill in the i-th row we do not need values from rows before i-I.

I in~ number_of_ways(cons~ in~ &n, cons~ in~ &m)
vector<vector<int» A(n, vec~or<int>(m, $»;
A['l[G] = 1; II 1 way to start from (I, 9)
for (in~ i = 8; i < n; +.i) {

5 for (in~ j = '; j < m; .+j) {
6 A[i][j] += (i < 1 ? 8 : A[i - l][j]) + (j < 1 ? $ A[i][j - 1]);

:1
9 return A.back().back();
10 }

Problem 15.16, pg.122: How many ways can you go from the top-left to the bottom-right
in an n x m 2D array? How would you count the number of ways in the presence of obstacles,
specified by an n X m Boolean 2D array B, where a true represents an obstacle.

Solution 15.16: This problem can be solved using a straightforward application of
DP: the number of ways to get to (i, J) is the number of ways to get to (i - 1, J) plus
the number of ways to get to (i, j - 1). (If i = 0 or j = 0, there is only one way to get
to (i,J).} The matrix storing the number of ways to get to (i,J) for the configuration
in Figure 15.8 on Page 122 is show in Figure 21.12.

Solution 15.16356



ElementsOfProgramminglnterviews.com

Problem 15.18, pg.l23: Design an efficient algorithm for computing the maximum margin
of victory for the starting player in the pick-up-coins game.

Solution 15.18: First we note that maximizing the margin of victory for Player F is
the same as maximizing the value of the coins picked up by Player F-this follows
from the fact that the sum of the coins picked by the two players is equal to the total
sum of all the coins.

s-Variant 15.17.1: Solve the same problem when the fisherman can begin and end
at any point. He must still move down or right. (Note that the value at (i, j) may be
negative.)

9 }
return A.back().back();

1 template <typename T>
1 T maximize_fishing(vector<vector<T» A) {

for (int i = &; i < A.size(); ++i) {
for (int j = &; j < A[i].size(); ++j)

A[i][j] += max(i < 1 7 & : A[i - 1][j], j < 1 ? 8 A[i][j - 1]);

Problem 15.17, pg. 123: Write a program that computes the maximum value of fish a
fisherman can catch on a path from the upper leftmost point to the lower rightmost point.
The fisherman can only move down or right, as illustrated in Figure 15.9 on Page 123.

Solution 15.17: The maximum value that the fisherman can obtain while getting to
_ (i,J) is the larger of the maximum value he can catch on hisway to (i-1, j) or (i,j -1)

plus the value of the fish at (i,J). This is the basis for the DP algorithm shown below.
(If i = 0 or j = 0, there is a unique path to (i, j) from (0,0).)

Variant 15.16.2: Call a decimal number D, as defined above, strictly monotone if
D[iJ < D[i + 1J,0 S i < IDI.Write a function which takes as input a positive integer k
and computes the number of decimal numbers of length k that are strictly monotone.

Variant 15.16.1: A decimal number is a sequence of digits, i.e., a sequence over
(0,1,2, ... , 9}. The sequence has to be of length 1 or more, and the first element in the
sequence cannot be O.Call a decimal number Dmonotone ifD[i] S D[i +1], 0 S i < IDI.
Write a function'which takes as input a positive integer k and computes the number
of decimal numbers of length k that are monotone.

11
13

I'
15 return A.back().back();
16 }

357Solutio" 15.18



ElementsOfProgramrningInterviews.com

e-Variant 15.18.1: You are given two fixed arrays of numbers A and B,each of length
k, and another array C, also of length k. You can assign C[11 to one of A[11,B[il, or 0,
subject to the constraint that if C[11= A[11 then C[i - 1] must be assigned 0 if i > O.
Design an algorithm that computes an assignment to C that maximizes the sum of
the elements in C.

The DP algorithm applied to the configuration in Figure 4.6 on Page 44, shows a
maximum gain for F is 140t, i.e., whatever strategy 5 plays, F can guarantee a gain
of at least 140¢.

18 CoinType pick_up_coins(vec~or<CoinType> &C)
~ vector<vector<CoinType» T(C.sizeC), vector<int>(C.size(), -1»;
~ return pick_up_coins_helper(C. 9, C.size() - I, T);
21 }

C[b]
10

11

12

13

14 return T(a] [b];
IS }

16

17 template <typename Coi.nType>

• oin(pick-up_coins_helper(C, a • 2, b, T),
pick_up_coins_helperCC, a + 1, b - 1. T)),

• minCpick_up_coins_helper(C. a + 1, b - I, T),
pick_up_coins_helper(C, a, b - 2. T») ;

if (T(a](b] == -1) {
T[a](b] = ~ax(C(a]

1 teaplate <typename CoinType>
2 CoinType pick_up_coins_helper(const vec~or<CoinType> &C, const int &a,
3 const int &b, vector<vector<CoinType» &T)

if (a > b) {
s return 8; II base condition

The logic is that the second player will choose the coin that maximizes his profit,
which is equivalent to minimizing the profit that the first player will make after the
second player makes his move.

We can solve for fusing DP-there are "(";1) possible arguments for f(a, b)where
n is the number of coins, and the work required to compute f from previously
computed values is constant. Hence f can be computed in O(n2) time.

otherwise.0,

if a ~ b;
[

[] . (f(a + 2, h), ) 1Ca +mm f(a + I,b -1) ,
m~ ,C[b]+mm(j~:,;:~)-I),)f(a,h) =

Call the sum of the coins selected by a player his revenue. Let f(a, h) be the
maximum revenue a player can getwhen it is his tum to play, and the coins remaining
on the table are at indices a to b, inclusive, where a ~ b. Then f(a, h) satisfies the
following equations:

Solution 15.18358



ElementsOfProgramminglnterviews.com

const bool operator>(const Point &that) const {
return i > that.i II j > that.j;

1 class Point {
public:

int i, j;

,-----_ __ _ _-----_._--

Problem 15.20,pg.124: Implement cutpoint selection to minimize the number of nodes in
the two-dimensional tree representing an image.

Solution 15.20: Wemaintain a cache mapping each subrectangle of the image to
the minimum number of nodes needed when representing it as a two-dimensional
tree. Computing a cache entry entails first checking if the corresponding image is
monochromatic. If it is not monochromatic the algorithm tries all possible choices
for the cutpoint. Given a cutpoint, the optimum tree is determined by making four
lookups into the cache.

The cache has no more than «",+1);("+1») = O(n2m2) entries, which is an upper
bound on the number of recursive calls. The time spent within a call is dominated
by iterating through the different choices of the cutpoint, i.e., O(mn), leading to a
0(m3n3) time complexity for the entire algorithm.

If largemonochromatic regions are present in the image, the run time can be sped
up by computing the number of Is in P[O : i,O : 11, for 0 S i < m,O S j < n. Call
this quantity N[i, j). It can be computed in O(nm) time by iterating through rows
in ascending order. Precomputing N accelerates checking subrectangles in P for
monochromaticity: the number of Is in P[i : i', j : j') isN[i', j'l - N[i - 1,j') - N[i', j -
1] +N[i - 1,j - 1].

Using these equations, we can tabulate the values of L and H for all nodes. The
desired solution is the minimum of the values of Land H for the root of the tree.
Since we do a constant number of operations per node, the overall complexity is
O(n),where n is the number ofnodes.

L(r) = l(r) + L.H(c),
eel(r)

H(r) = h(r) +L min (L(c),H(c»).
c:El(r)

Problem 15.19,pg.123: Design an algorithm for minimizing power that takes as input a
rooted tree and assigns each node to a low or high voltage, subject to the design constraint.

Solution 15.19: Let l(r) and h(r) be the power consumption of node r under low
and high voltages, respectively. Let L(r) be the minimum possible power that can
be achieved when we assign a low voltage to r. LetH(r) be the minimum possible
power that can be achieved when r is assigned a high voltage.

Denotethe set of allnodes that are inputs to r by I(r). Then the followingrecurrence
relationships must hold for Land H:

359Solutio" 15.20



ElementsOfProgramminglnterviews.coD

if (table[lower_left].find(upper_right) .~ table[lower_left).cend(» {
if Cis_aonocnromatic(image_sum. lower_left. upper_right» {

share<Lptr<TreeNode> p(new TreeNode{l. lower_left. upper_right});

51 CODst vector<vector<int» &btage. const vector<vector<int» &image_sua,
~ CODst Point 4olower_left. const Point 4oupper_right.
s unordere<Lmap<Point,
54 unorderecLmap<Point. share<Lptr<TreeNode>, HashPoint>,
~ HashPoint> 4otable) {
~ II Illegal rectangle region. returns empty node
• if (lower_left > upper_right) {
~ return share<Lptr<TreeHode>(new TreeHode{&. lower_left, upper_right});
59
60

4.5
46

47

.a
4lI
~ share<Lptr<TreeNode> calculate_optimal_2D_tree_helper(

9 II II totally white
(upper_right.i - lower_left.i + 1) * II totally black
(upper_right.j - lower_left.j·. 1);

return pixel_sum
pixeLsulII

'2 if (lower_left.i >= 1 && lower_left.j >= 1) {
~ pixel_sum += image_sum[lower_left.i - 1) [lower_left.j - 1);
44

if (lower_left.j >= 1) {
pixel_sum -= image_sun(upper_right.i)[lower_left.j - 1);

pixel_sum -: iaage_sum[lower_left.i - 1)[upper_right.j);

~ bool is_monochromaticCconst vector<vector<int» 4oimage_sum.
~ const Point 4olower_left, const Point 4oupper_right)
~ int pixel_sum = image_sum(upper_right.i][upper_right.j];

if (lo~er_left.i >= 1) {

II Bqual function for bash
w const bool operator==(const Point 4othat) const {
II return i == that.! && j == that.j;
12

13 };

If

is II Hasb function for Point
16 class HashPoint {
17 public:
18 const size_t operator()(const Point 4op)const
19 return hashdnt>O (p.i) • hashdnt>O (p.j);
20

21 };

22~'Iclass TreeNode {
24 public:
~ int node_num; II stores tbe nu.ber of node in its·subtree

:1 Point lowerLeft, upperRight;
281
~ II Store tbe SW, NW. HE. and SE rectangles if color is mixed
30 vector<share<Lptr <TreeNode» children;
31 l:
32

Solution 15.20360



361

ElementsOfProgramminglnterviews.com

113 for (tnt i • &; i < image.sizeO; ++1)
114 partiaLsum(image_sum[i] .cbeginO, image_sum[i) .cendO,
115 image_sum[i]. beginO);
116 for (int j • &: i > & && j < imagl[i]. size0 : ++j) {
IV image_sum[i)[j] += image_sum[i - 1][j]:
118

return table[lower_left][upper_right]:

::1
106
107

106

109

UO shared_ptr<TreeNode> calculate_optimal_2D_tree(
111 const vtctor<vector<int» &cimage) {
m vector<vector<1nt» image_sum(image);

tabla[lower_left)[upper_right] • p:

100

101
102

i03

children:
if (node_num < p->node_num) {

p->node_num = node_num, p->children

int node_num = 1; II itself
for (shared_ptr<TreeNode> &child : children)

node_num += child->node_num;
II Remove the child contains no node
if (child->node_num == $) {

child = nullptr;

II SE rectangle
calculate_optimal_2D_tree_helper(image, image_sulI,

Point{s, lower_left.j),
Point{upper_right.i, t - 1),
table)};

II HE rectangle
calculate_optillaL2D_ tree_helper(i •.age, illage_su.,Point (s , t},

upper_right, table),

II NW rectangle
calculate_optimal_2D_tree_helper(image, image_sum,

Po1nt{lower_left.l, t},
Point{s - 1, upper_right.j},
table),

(t I- lower_left.j && t I- upper_right.j + 1» {
vector<shared_ptr<TreeNod.» children = {

II SW rectangle
calculate_optimal_2D_tree_helper (image. image_sum, lower_left,

Point{s - 1, t - 1), table),

71

71

73
7.
;os
76
77

18
?9

80

81

82
83

84

S~

S6
S7

88

89

90

91

92

93

94

64 table[lower_left][upper_right] - p;
6S else {
6S sharld_ptr<TreeNode>
Q p(new TreeNode{numeric_limit,<int>::.ax(). lower_left. upper_right»;
~ for (int s = lower_left.i; s <- upper_right.i + 1; ++') {
69 for (int t = lower_left.j; t <= upper_right.j + 1; Ht)
10 if «s I- lower_left.i && s I- upper_right.! + 1) II

Solution 15.20



ElementsOfProgrammingInterviews.com

Problem 15.22,pg.l25: Designan algorithm that computes the least number of tutors
needed to schedule a set of requests.

10 return waiting;
11 }

T waiting = 8;
for (int i = 9; i < service_time.size(); ++i) {

waiting += service_time(i] * (service_time.size() - (i + 1»;

1 teaplate <typename T>
, T minimu._waiting_time(vector<T> service_time) {

II Sort the query time in increasing order
sort(service_time.begin(), service_time.end(»;

Sincewewant to minimize the total wait time for all the queries and eachCItakes
a value between 1 and n, it follows that the queries that take the smallest time must
get served first. Hence we should sort the queries by their service time and then
process them in the order ofnon-decreasing service time.

n n n

I,i,= I,I,td1= I,ti(n - e;).
i~l I~l j<q i=1

Problem 15.21,pg.l25: Given n queries, compute an order in which to process queries iha:
minimizes the total waiting time.

Solution 15.21: Consider a schedule in which the i-th client is the CI-thone to be
processed; the j-th client processed corresponds to client with ID dj• Then the
waiting time for the i-th client is Ej<q tdr Hence sum of all the wait times would be

Variant 15.20.1: Definethe intersection of two images that have the same dimension
to be the image that iswhite wherever either image iswhite and black otherwise.
Write a function that takes two two-dimensional trees representing images, and
returns a two-dimensional tree that represents their intersection.

119

1M

UI unordered_map<Point,
IU unordered_map<Point, shared_ptr<TreeNode> , HashPoint> ,
123 HashPoint> table;
1M return calculate_optimal_2D_tree_helper(image, image_sum, Point{8, $},
I~ Point{static_cast<int>(
126 image.size0 - 1),
127 static_cast<int>(
1211 image (e] . size0 - 1)},

129 table) ;
130

Solution 15.22362



ElementsOfProgramminglnterviews.com

Problem 15.23, pg.126: Design an algorithm that takes as input a pair of arrays specifying
jobs per task and server capacities, and returns an assignment of jobs to servers for which all
tasks complete within one unit time. No server may process more than one job for a given
task. If no such assignment exists, your algorithm should indicate that.

Solution 15.23: Let X be an m X n Boolean 2D array. Define X to realize (T,S) if for
all i,T[i), ::: I.i;~Xli, j] and for all i, S[i1 ~ I.:~OlX[i, j). Clearly X can be viewed as an
assignment of jobs to servers; since X is Boolean, we never have more than one job
from the same task assigned to the same server.

Let s be the index of a maximal element 5, i.e., a server with maximum capacity.
We claim that (T,S) is realizable iff it can be realized by a 2D array X in which server
s has the greatest load, i.e., Column 5 has the maximum number of 1s out of all the
columns of X.

Solution 15.22: We schedule tutors greedily: as soon as there is a request that cannot
be handled by the previously assigned tutors, we choose a new tutor.

This scheme is simple to implement, but it is not completely trivial to prove that
it is optimum.

We will use the notion of slack to prove optimality. Suppose the last tutor sched­
uled begins at time t, and he completes the last lesson he was assigned at time r:
Then the slack in the schedule is defined to be t+ 120 - t' minutes.

Consider a set of requests h,...,in such that the requests are ordered by the time
they need to be completed. We claim that greedy scheduling is optimum.
Proof:

We use induction on the number of requests. For our induction hypothesis, in
addition to the claim that the number of tutors is minimized, we also claim that
the schedule maximizes the slack. For n :::1, the greedy algorithm sends exactly
one tutor at the start time of the request. Clearly this is the strategy that uses the
minimum number of tutors and no more slack is possible.

Assume the induction hypothesis holds for all n S k. Wewill now prove it for
n :::k + 1. Consider the requests h, ..., jk sorted by their start time. When the next
request ik+l is added to the list, either it can be covered by an existing tutor, which
is determined by the slack, or it may require a new tutor.

If the new request can be covered by the slack, using an existing tutor must
be optimum with respect to the number of tutors. If we needed at least m tutors
to cover the first k requests, we cannot cover the k + 1 requests with fewer tutors.
Also, since the schedule for the first k requests maximized the slack, we cannot
have a schedule with m tutors that covers all k + 1 requests and has more slack.

Ifan additional tutor is needed for the k:+ l-th request, it must be that the moth
tutor did not have the slack to cover the last request. If there exists another way
to cover the requests with m or less tutors, then we can use the same set of tutors
to cover the first k: requests and get a bigger slack, which contradicts the induction
hypothesis. Since the (m+ l)-th tutor will start exactly when the last request starts,
this schedule is slack maximizing.

363Solution 15.23



ElementsOfprogramminglnterviews.com

15
16 vector<pair<int, int» T_idx_data, S_idx_data;
17 for (int i ..9; i < T.s1zeO; Hi) {
18 T_idx_data.emplace_back(i, T[i]);
19
20 for (tnt j .. 9; j < S.sizeO; Hj) {
n S_idx_data.emplace_back(j, S[j]);
22

23

24 sort(S_idx_data.begin(), S_idx_data.end(), comp);
23 vector<vector<bool» X(T.size(), vector<bool>(S.size(), false»;
26 for (int j • 6; j < S_idx_data.sizeO; ++j) {
~ if (S_idx_data(j].second < T_idx_data.size(» {
~ nth_element(T_idx_data.begin(),

5 vector<vector<bool» find_feasible_job_assignm~t(const vector<int> &T,
6 const vector<lnt> &S)

int T_total accumulate(T.cbegin(), T.cend(), $), II aggregated work units
8 S_total accuculate(S.cbegin(), S.cend(), 6,

[&T](const int &X, const int &y) -> int {
10 return x + min(y, static_castdnt>(T. size0» ;
11 }); II tigbter bound of server capacity
12 if (T_total > S_total II *max_element(T.cbegin(), T.cend(» > S.size(»
15 return {}; II too .any jobs or one task needs too many servers
u

3 }

T_idx_data.begln() + S_idx_data[j].second, T_idx_data.and(),
comp);

29

30

31

32

~ II Greedily assign jobs

1 const bool comp(const pair<int, int> &a, const pair<int, int> &b) {
return a.second > b.second;

The above reasoning can be used to develop an algorithm for building the 20
array X that implements the assignment, if a valid assignment exists: initialize X
to all Os. Sort servers in decreasing order of capacity. Starting with a server with
maximum capacity,greedily assign jobs from tasks to that server. Iterate until there
all tasks have been assigned or no servers remain. In the latter case, the above
theorem guarantees that no assignment ofjobs to servers satisfying the constraints.

In the code listed below,we use a straightforward implementation of the greedy
algorithm. Specifically,we iterate over the servers in an outer loop and .tasks in an
inner loop. The time complexity is O(nm). The code includes some heuristics for
early detection of infeasibility,such as a single task requiring more servers than are
available, or the aggregated tasks exceeding the total available server capacity.

Proof:
If in some legal assignment the server 5 is not a most loaded server, look at a

server s' that is most loaded. Theremust exist a task t which utilizes 5' but not 5,
since otherwise 5would be amost loaded server. Wecan then move that job from
t to s without violating any constraints. (Note that 5 must have residual capacity,
since otherwise it would not be the server with maximum capacity)

Solution 15.23364



ElementsOfProgramminglnterviews.com

In other words, to find the optimum assignment of users with hash codes
{ho, hI, ... , hpj to q servers, we find x such that if we assign the first x + 1 users
optimally to q - 1 servers and the remainder to Server q, the maximum load on a
given server isminimized.

We can use the recurrence to tabulate the values in L till we get L(n - I, m - 1).
The base case corresponds to entries of the form L(P,O), in which case the maximum
load is r.f:o bi. The time complexity to compute each L(i, J) is O(n), so the overall
complexity to compute L(n -I,m -1) isO(n2m).

A qualitatively different approach, based on the greedy method, is to check
whether ko,klt ... ,km-l can be chosen so as to ensure that no server stores more
than bbytes. For a given b, this can easilybe done-iterate through the n users in the
order of their hash codes, and assign them to the servers greedily, i.e., assign users
to servers, moving on the next server when the capacity of the current server is ex­
ceeded. Wecan perform binary search to get theminimum b,and the corresponding
values for ko,kl, ..• , km-1. The time complexity of the approach is O(n logW),where
W is.the total number of bytes that are tobe stored, i.e.,W = r.~OI bj•

L(P,q) = min (max (L(X, q - 1),t bi))
xE[O",) 1....+1

Problem 15.24,pg.126: You have n users with unique hash codes Ito through 1In-I, and m
servers. The hash codes are ordered by index, i.e., h; <hi+dor iE [0,n - 2]. User i requires
bj bytes of storage. The values ko < kl < ... < km-2 are used to assign users to servers.
Specifically, the user with hash code c gets assigned to the server with the lowest ID i such
that c s; kj, or to server m - 1 if no such i exists. The load on a server is the sum of the
bytes of storage of all users assigned to that server. Compute values for ko,k1, .. ·,km-l that
minimizes the load on the most heavily loaded server.

Solution 15.24:Let L(p, q) be the maximum load on a server when users with hash
codes Ito through hp are assigned toServers0 through q in an optimum way, i.e.,when
themaximum load isminimized. Then following recurrence holds:

41

42
43 if (T_total)
44 return {}: 1/ still some jobs remain, no feasible assignment
45
46 return X;
.7 }

~ int size. min(static_cast<int>(T_idx_data.size(», S_idx_data[j].second):
3$ for (int i • $: i < size: ++1) {
U if (T_idx_data(i] .second) {
37 X[T~idx_data[i].£irst][S_idx_data[j].£irst] • true:
38 - - T_id./{_data[i].second:
59 --T_total:
40

365SOhlHoII 15.24



ElementsOfProgramming.Interviews.com

Problem 15.25, pg.126: Implement first-fit to run in O(n log n) time.

Solution 15.25: This can be trivially done in O(n2)time ifwe do a linear scan through
the boxes for each new object to find the first box where it would fit.

To speed things up, we maintain a "tournament tree" data structure which captures
remaining capacities as well as the box sequence. The tournament tree is organized

m if (server_idx >- server_num) {
II return false;
12 else {
13 assign_res(server_idxl +: file;
14
IS
16 return true;
17

18
~ vector<iDt> decide_load_balancing(vector<int> user_file_size.
M const int &server_num) {
n II Uses binary searcb to find tbe assignment witb lIIinimized maximum load
22 int 1 = 8,
n r" accumulate(user_file_size.cbegin(), user_file_size.cend(), e);
24 vector<int> feasible_assignment;
2S while (1 <= r) {
u int III = 1 + «r - 1) » 1);
v vector<int> a.ssign_res(server_.nua, 8);
~ bool is_feasible greedy_assignment(user_file_size, server_num, m,
~ assign_res);
~ if (is_feasible)
31 feasible_assignment , assign_res;
32 r = III- 1;
33 else {
34 1=111+1;
35
J6

31 return feasible_assignment;
31

I bool greedy_assignment(const vector<int> &user_file_size,
const int &server_nuIII,const int &limit,

3 vector<int> &assign_res)
int server_idx = &;

5 for (const int &f11e : user_file_size) {
while (server_idx < server_num && file + assign_res(server_idxl > li.it) {

Hserver_idx;

This approach is much faster in practice: when n = 10000, m = 100, and loads
are uniform integer random variables in the range [1,100], the O(n2m)DP algorithm
takes over an hour on our machine. Incontrast, binary search for w took 0.1 seconds.
Furthermore, binary search requires no additional storage beyond that needed to
store the final result. The complexity of the code is also greatly reduced compared to
the DP algorithm.

Solution 15.25366



ElementsOfProgranuninglnterviews.com

void insert(const ItemType &item, const CapacityType &item_cap)

311
• 32

33

II n items, and each box bas unit_cap
Tou.rnamentTree(int n, const CapacityType &unit_cap) :

II Complete tree with n leafs bas 2n - 1 nodes
tree(vector<TreeNode>«n « 1) - I, {unit_cap}») {}

28
29

30

public:

10
11 II Store the complete binary tree. For tree[i],
12 II left subtree is tree[2i + 1], and right subtree is tree[2i + 2].
13 vector<TreeNode> tree;
14

15 II Recursively inserts item in tournament tree
16 void insertHelper(const i.nt&idx, canst ItemType &item,
11 const CapacityType &cap) {
18 int left = (idx « 1) + 1, right = (idx « 1) + 2;
19 if Cleft < tree.sizeO) { II internal node
~ insertHelper(tree[left].cap >= cap? left: right, item, cap);
21 tree[idx].cap = max(tree (left].cap, tree(right].cap);
u else { II leaf node
~ tree[idx).cap -= cap, tree(idx].items.emplace_back(item);
24

25

26
'Zl

} ;

._------_. _._-_._-_._.--....,
I template <typename ItemType, typename CapacityType>
2 class Tourna~entTree {
3 private:

class TreeHode {
5 public:
6 CapacityType cap; II leaf: remaining capacity in the box

II non-leaf: max remaining capacity in the subtree
vector<ItemType> items; II stores the items in the leaf node

as a complete binary tree. Each leaf corresponds to a box, and the leaf order from
left-to-right is the box sequence.

For simplicity, we assume n = 2k for some k. We start with as many boxes as items.
For each internal node v, we record the largest remaining capacity v.max that exists
amongst the boxes corresponding to leaves at the subtree rooted at v. Finding the
first box that has capacity c can be done recursively. Let r be the root: if r.left.max ~ c,
we search the root's left child, otherwise, we must use a box on the right side. (Note
that r.max ~ c always holds, since we have n boxes and n items.)

After an item is placed in a box, the remaining capacity of the box changes. The
only internal nodes v whose v.max changes are those that are ancestors of the leaf
corresponding to that box. Updating these nodes consists of simply updating their
v.max to the maximum of the v.max of their children in a bottom-up order.

A complete binary tree on n leaves has exactly n -1internal nodes. The height of
a complete binary tree on 2n - 1nodes is nog(2n -1)1, implying the update runs in
O(logn) time.

Building the initial tournament tree has time complexity O(n). Each item takes
O(1ogn) time to process, leading to the desired O(n log n) time bound .

367Solution 15.25



ElementsOfProgranuningInterviews.com

6 };

public:
char c ;
double prob;
string code;

I class SYlIIbol

Problem 15.26,pg.127: Given a set of symbols with correspondingfrequencies, find a code
book that has the smallest average code length.

Solution 15.26: Huffman coding yields an optimum solution to this problem. (There
may be other optimum codes as well.) Huffman coding proceeds in three steps:
(1.) Sort characters in increasing order of frequencies and create a binary tree node

for each character. Denote the set just created by S.
(2.) Create a new node nwhose children are the two nodes withsmallest frequencies

and assign n's frequency to be the sum of the frequencies of its children.
(3.) Remove the children from S and add n to S. Repeat from Step (2.) till S consists

of a single node, which is the root.
Mark all the left edges with 0 and the right edges with 1. The path from the root

to a leaf node yields the bit string encoding the corresponding character.
We use a min-heap of candidate nodes to represent S. Since each invocation of

Steps (2.) and (3.) requires two extract-min and one insert operation, we can find the
Huffman codes in O(n log n) time. Here is an implementation of Huffman coding.

Figure 21.13: A tournament tree before anlafter inserting an item of size 0.45.

(b)(a)

The approach is illustrated in Figure 21.13. Assume sizes have been normalized
with respect to the box capacity. InFigure 21.13(a), the tournament tree depicted cor­
responds to six boxes, and five insertions ofitems of normalized sizes 0.6, 0.6,0.55, 0.8,
and 0.5 in that order. Now if an item v of size 0.45 is to be inserted, we first see that
the root node a has a capacity at least 0.45, indicating it is possible to fit that item.
We then check a's left child, node b. It has capacity 0.45, which means we can fit v
in a box in the subtree rooted at b. Since node b's left child has capacity 0.4, we are
forced to go right to c. We first examine c's left child, d, which corresponds to a box
with capacity 0.45,meaning we can pack v in d.We then update the tournament tree
as shown Figure 21.13(b).

insertHelper(e, item, item_cap);:1
36 };

Solutio" 15.26368



369

ElementsOfProgramminglnterviews.com

Applying this algorithm to the frequencies for English characters presented in
Table15.1on Page 127yields the Huffman tree in Figure21.14on the followingpage.
The path from root to leaf yields that character's Huffman code, which is listed in
Table21.1on the next page. For example, the codes for t,e, and z are 000,100,and

-----_ _._---_ _-L- _ _.._ __ .

/1 Traverse tbe binary tree and assign code
assign_huffman_code(min_heap.top(). string(»;

/1 Keep combining two nodes until there is one node left
while (min_heap.size() > 1) {

BinaryTree· 1 = min_heap.top();
min_heap. popO :
BinaryTree· r = min_heap.top();
lIin_heap.pop0;
min_heap. emplace(new BinaryTree{l->prob + r->prob, nullptr, 1, r});

8 class BinaryTree
9 public:
10 double prob:
II sharecLptr<Symbol> s ;
12 BinaryTree ·left, ·right:
13 }:

"Ul class Compare {
16 public:
17 const bool operator()(const BinaryTree* Ihs,
18 const BinaryTree* rhs) const {
19 return lhs->prob > rhs->prob:
20

21 };

22

~II Traverse tree and assign code
14 void assign_huffman_code(const BinaryTree· r, const string &s) {
15 if (r) {
26 II This node (i.e..leaf) contains symbol
~ if (r->s) {
~ r->s->code = 5;
~ else { // non-leaf node
00 assign_huffman_code(r->left, S + '&');
31 assign_huffman_code(r->right, s + '1'):
32

• 33

34

35
~I void Huffman_encoding(vector<Symbol> &symbols) {
~ II Initially assign eacb symbol into .in->beap
38 priority_queue<BinaryTree·, vector<BinaryTree·>, Compare> min_heap;
39 for (Symbol &s : symbols) {
~. min_heap.emplace(new BinaryTree{s.prob, shared_ptr<Symbol>(&s),
o nullptr, nullptr});
42
43

Solution 15.26



ElementsOfProgrammingInterviews.com

The codebook is explicitly given in Table21.1. The average code length for this
coding is4.205. Incontrast, the trivialcoding takes flog261 = 5 bits for each character.

Although it is unlikely that a rigorous proof of optimality would be asked in an
interview setting,we give a proof by induction on the number of characters.
Proof:

For a single character,Huffman codes are trivially optimum. Let's say that for
any distribution of frequencies among ncharacters, Huffmancodes are optimum.
Given this assumption, we will prove it is true for n+1characters. Wedenote the
frequency of character c by f(c).

Suppose there exists an encoding that has a smaller average length of code for
some frequency distributi0!l for n + 1 characters.

For any encoding, we can map the codes to a binary tree by identifying the

u
v
w
x
y
z

m
n
o
p
q
r

c
d
e
f
g
h

Table 21.1: Huffman codes for English characters, assuming the frequencies given in Table 15.1 on
Page 127.

Figure 21.14: A Huffman tree for the English characters, assuming the frequencies given inTable 15.1
on Page 127.

001001000, respectively.

Solution 15.26370



ElementsOfProgramminglnterviews.com

By our inductive assumption, <J{(Pl,"" Pn-ll pn + Pn+1) = A(Pl,"" pn-l, pn +
Pn+l)' Hence <J{(P1l' .. , Pn+l) = A(PlI' .. , Pn+l)' In other words, Huffman coding is
optimum for n + 1 characters if it is optimum for n characters.

From the construction of Huffman codes we know that

null stringwith root and adding a leftedge for each0 and a right edge for each 1-
Wemake several observations about a tree T corresponding to an optimum

encoding:
- Each character must map to a leaf node; otherwise, the coding will violate

our requirements on code prefixes.
- There cannot be a non-leaf node in T that has fewer than two children

(otherwise,we can delete that node, bring its child one level up, and hence
reduce the average code length).

- If we sort the leaves of T by their depths, the two deepest leaves must have
the same depth (sincethe parent of the leafwith the longest path must have
another child). .

- Thetwo deepest leavesin Tmust be assigned to twocharacterswith smallest
frequencies(otherwise,we can swap characters and achievesmaller average
code length).

- Suppose we remove the two smallest frequency characters 5 and t and
replace them with a new character u that has its frequency equal to f(5) +
f(t). Then the optimum prefix coding for this set C' of characters and
corresponding frequencies must have the same average code length as the
treeT' that results from deleting the two lowest frequency leavesin T (which
as previously argued can be taken as siblings) and assigning their parent's
frequency to be the sum of these two frequencies. Otherwise, if a tree S' for
C' has lower average code length than T',we can create a tree S from S' by
replacingthe leafcorresponding touwith an internalnode with two children
corresponding to 5 and t. Theaverage code length for the tree 5 is f(5) + f(t)
plus the average code length of the tree 5', which, by hypothesis, has a
lower average code length than T'. Sinceby construction, the average code
length of T is f(5) + f{t) plus the average code length ofT',this contradicts
the assumed optimality ofT.

Now suppose the characters have frequencies Pi ~ P2 ~ ... ~ pn+l' Let
A(Pl, ... , Pn+l) be the optimum average code length for this frequency distribution
and <J{(Pl,' .. , Pn+l) be the average code length for Huffman coding.

From the above observations, it follows that

371Solutiol115.26



Problem 15.28,pg.128: Devise an efficient algorithm that takes as input a set P of people
and a setF c P x P of pairs of people and returns a largest subset of P within which each
individual knows three or more other members of P and does not know three or more other
members of P. The "knows" relation is not necessarily symmetric or transitive.

Solution 15.28: We compute the optimum invitation list by iteratively removing
people who cannot meet Leona's constraints until there is no one left to remove-the
remaining set is the unique maximum set of people that Leona can invite.

Specifically,we iteratively remove anyone who knows fewer than three people in
the current set and anyone who has fewer than three people they do not know in the
current set. The processmust converge sincewe start with a finitenumber ofpeople
and remove at least one person in each iteration. The remaining set satisfiesLeona's
constraints by construction.

It remains to show that the remaining set ismaximum. Wedo this by proving that
people who are removed could never be in a set that satisfiesthe constraints. Weuse
induction on the k-thperson removed.
Proof:
---r--Let Pl be the first person to be removed. Either PI knows fewer than three

ElementsOfProgrammingInterviews.com

E-Variant 15.27.1: Compute a weighing functionuI which minimizes LlIEIfQks(T) w (u)
subject to the constraint that for each leaf 1the weight of the path from root to 1under
uI equals theweight of the path from root to 1under w.

Problem 15.27,pg.127: How would yau efficiently assign to each node u a new weight
uI(u} such that (1.) each rooi-to-leaj path has the same weight W', (2.) for all nodes u,
uI(u) ;:::w(u}, and (3.) Euenodls(T)w'(u} is minimum? See Figure 15.11 on Page 128for an
example.

Solution 15.27:LetIl(u} be theweight of au-to-leafpath with maximumweight under
the weighing functionw. Since !leu) = w(u) +maxllEchIldrenIl(v), we can compute Il for
all vertices in the tree in a single pass in O(n) time.

Observe that the root T has the largest Il-value. Wewill show how to construct
new weights in which every root-to-leaf path has weight Il(T),while satisfying the
constraints. Sincewe seek tominimize the total weight, we would never use a value
greater than Il(T) for W·.

Wecompute the new weights with a top-down traversal. Weuse a global variable
s that records the updated weight of the path from the root up to, but not including
the current node u. Weassign the new weight of u, uI(u}, to w(u} + Il(T) - (s+ !leu»~,
update s, and recurse on the children. When we finish processing a node, we return
to the parent, again updating the value of s.

Now we justify the algorithm. The term Il(T)- (s+ Il(u» is the "slack" at the node
u. Basically,it tells us how much weight needs to be added to the heaviest u-to-leaf
path to make itsweight Il(r). Optimality cannotbe lost inupdating w(u) by the slack
amount, since otherwise the slackwill have to be added acrossu's subtrees, which
will increase Lu<nodes(T) w(u) if u has more than one child, and not change it if it has
a single child.

Solution 15.28372



ElernentsOfProgrammingInterviews.com

Problem 15.29, pg.128: Let G = (~E) be an undirected graph. A two-coloring of G is a
function assigning each vertex of G to black or white. Call a two-coloring diverse if each
vertex has at least half its neighbors opposite in color to itself. Does everygraph have a diverse
coloring? How would you compute a diverse coloring, if it exists?
Solution 15.29:

Here is a simple greedy algorithm for computing a diverse coloring. Start with
an arbitrary two-coloring. If it is diverse, we are done. Define a vertex to be diverse
under a coloring if at least half its neighbors are opposite in color to itself. Searchfor
a non-diverse vertex v and flip v's color. Stop when the coloring is diverse.

It is implicit in the above description that every graph has a diverse coloring,
Proving that the algorithm converges is slightly tricky, since a flip may increase
the number of non-diverse vertices-see Figures 21.15(a)on the following page
and 21.15(b)on the next page for an example. Hence we cannot prove that the
greedy algorithm convergenceby showing the number ofnon-diverse vertices keeps
decreasing.

The key to proving convergence of the greedy algorithm is.to focus on edges
instead of vertices. For a given coloring, define an edge to be diverse if it connects
vertices of different colors. Weprove that the greedy approach does converge to a
diverse coloring by counting the number of diverse edges.
Proof:

Suppose x is not diverse. Without loss of generality, suppose x is white. Then
by changing x's color toblack,the number ofdiverse edges strictly increases(since
x had morewhite neighbors than blackneighbors, and the diversity ofother edges
is unchanged).

Therefore the greedy algorithm must eventually converge, since the number
of edges is finite. When it stops, all vertices are diverse.

This process is illustrated in Figure 21.15on the following page. The coloring in
Figure 21.15(a)on the nextpage isnot diverse, sinceD is coloredwhite, and has three
white and two black neighbors; it is the only non-diverse vertex. Flipping D's color
makes Enon-diverse (Figure21.15(b)on the followingpage). However, the number
ofnon-diverse edges reduces from fiveto four. Flipping E's colorreduces the number
of non-diverse edges to three, and results in a diverse coloring (Figure 21.15(0)on
the next page).

people in the entire set or Pl does not know fewer than three people in the entire
set. Clearlypi cannot belong to any set that satisfies the constraints.

Inductively assume the first i -1persons removed could not belong to any set
that satisfies the constraints. Consider PI, the i-th person removed. Itmust be that
either fewer than three people know PI in the current set or Pi does not know fewer
than three people in the current set. Butby induction, the current set includes any
set satisfying Leona's constraints, so Pi cannot belong to a set satisfying Leona's
constraints, and induction goes through.

373Solution 15.29



ElementsOfProgramminglnterviews.com

v bool search_maze_helper(vector<vector<int» &maze, const Coordinate &cur,

13
14 }

15
16 II Perforlll DFSto find a feasible path

101 II Check cur is witbin maze and is a wbite pixel
II bool is_feasible(const Coordinate &cur, const vector<vector<int» &maze) {
12 return cur.x >= 8 && cur.x < maze.size() &&

8 };

5 const bool operator==(const Coordinate& that) const {
return (x == that.x && y == that.y);

cur.y >= $ && cur.y < aaze[cur.x].size() && maze[cur.x] [cur.y] == 8;

I class Coordinate
public:

int XI Y;

Solution 16.1: Model the maze as an undirected graph. Each vertex corresponds to a
white pixel. Wewill index the vertices based on the coordinates of the corresponding
pixel; so, vertex Vi.j corresponds to the 2D array entry (i, J). Use edges to model
adjacent pixels: Vj,j isconnected to vertices Vi+1,j,Vi,j+I, Vi-I,jf and Vi,j-I, assuming these
vertices exist-vertex V",b does not exist if the corresponding pixel is black or the
coordinates (a,b) lie outside the image.

Now, run a DFS starting from the vertex corresponding to the entrance. If at
some point, we discover the exit vertex in the DFS, then there exists a path from the
entrance to the exit. If we implement recursive DFS then the path would consist of
all the vertices in the call stack corresponding to previous recursive calls to the DFS
routine.

This problem can also be solved using BFS from the entrance vertex on the same
graph model The BFS tree has the property that the computed path will be a shortest
path from the entrance. However BFS is more difficult to implement than DFS since
in DFS, the compiler implicitly handles the DFS stack, whereas in BFS, the queue has
to be explicitly coded. Since the problem did not call for a shortest path, it is better
to use DFS.

Problem 16.1, pg.132: Given a 2D array oj black and white entries representing a 17UlU

with designated entrance and exit points, find a path from the entrance to the exit, if one
exists.

Figure 21.15: Computing a diverse coloring.

(c)(b)(a)

Solution 16.1374



375

ElernentsOfProgramminglnterviews.com

II Use BFS to find the least steps of transformation
2 int transform_string(unordered_set<string> D, const string &s,

const string &t) {
queue<pair<string, int» q;
D.erase(s); II mark s as visited by erasing it in D
q.emplace(s, Ill}:

Problem 16.2,pg.133: Given a dictionary D and two strings sand i, write a function
to determine if s produces t. Assume that all characters are lowercase alphabets. If s does
produce i,output ·the length of a shortest production sequence; otherwise, output -l.

Solution 16.2:Define the undirected graph G = (D,E)by (u, v) E E iff lui = lvi, and
u and v differ in one character. (Note that the relation "differs in one characterII is
symmetric, which iswhy the graph is undirected.)

A production sequence is simply a path in G,so what we need 'is a shortest path
froms to t inG. Shortest paths in an undirected graph are naturally computed using
BFS.We use a queue and a hash table of vertices (which indicates if a vertex has
already been visited). We enumerate neighbors of a vertex v by an outer loop that
iterates over each position in v and an inner loop that iterates over each choice of
character for that position.

45

46 return path; II empty path means no path between sand e
47

false) {

~ if (search_maz8_helper(maze, next, e. path)) {
00 return true:
31
32 path.pop_back 0 :
33
34

~ return false;
36
37

33 vector<Coordinate> search_maze(vector<vector<int» maze, const Coordinate &s,
39 const Coordinate &e) {
40 vector<Coordinate> path;
41 maze(s.x][s.y] ~ 1;
42 path.emplace_back(s);
43 if (search_maze_helper(maze, s, e, path)
44 path.pop_back():

18
w if (cur ca e) {
20 return true:
21
22
23 const array<array<lnt, 2>, 4> shift. {Ill, 1, Ill, -1, 1, Ill, -1, Ill};
24 for (const array<int, 2> &5 : shift) {
25 Coordinate next{cur.x + s(lIl], cur.y + s(1]}:
26 if (is_feasible(next, maze)) {
v maze(next.x](next.y] = 1;
~ path.emplace_back(next):

const Coordinate &e, vector<Coordinate> &path) {

Solution 16.2



ElementsOfProgrammingInterviews.com

Problem 16.3, pg,133: Design an algorithm that takes a set of pins and a set of wires
connecting pairs of pins, and determines if it is possible to place some pins on the left half
of a PCB, and the remainder on the right half, such that each wire is between left and right
halves. Return such a division, if one exists. For example, the light vertices and dark vertices
in Figure 16.5on Page 133are such division.

Solution 16,3: Assuming the pins are numbered from 0 to P -1, create an undirected
graph G on p vertices Vo,... , Vp-l- Add an edge between Vi to Vi if Pin i and Pin j
are connected by a wire. For simplicity, assume G is connected; if not, the connected
components can be analyzed independently.

Run BFS on G starting with 170' Assign 170 arbitrarily to lie on the left half. All
vertices at an odd distance from 170 are assigned to the right half.

When performing BFS on an undirected graph, all newly discovered edges will
either be from vertices which are at a distance d from Va to undiscovered vertices
(which will then be at a distance d+ 1 from vo) or from vertices which are at a distance
d to vertices which are also at a distance d. First, assume we never encounter an edge
from a distance k vertex to a distance k vertex. In this case, each wire is from a
distance k vertex to a distance k + 1 vertex, so allwires are between the left and right
halves. '

If any edge is from a distance k vertex to a distance k vertex, we stop-the pins
cannot be partitioned into left and right halves as desired. The reason is as follows.
Let u and 17be such vertices. Consider the first common ancestor a in the BFS tree of
u and v (such an ancestor must exist since the search started at 170)' The paths Pll,ll and

24

25
16 str[i) f.first[i); II revert tbe change of str
27
lS q.popO;
29

30

31 return -1; II cannot find a possible transformations
32

D.erase(it); II.ark str as visited by erasing it
q.emplace(str, f.second + 1);

n
23

while (Iq.empty(» {
pair<string, int> f(q.front(»;

10 II Return if we find a matcb
II if (f.first :a t) {
12 return f.second; II number of steps reaches t

13

14
IS II Try all possible transformations of f.first
16 string str = f.first;
17 for (int i : 8; i < str.sizeO; ++i) {
18 for (int j = 61; j < 26; ++j) { II iterates througb 'a' - 'z'
19 str[i) = 'a' + j; II cbange the (i + l)-tb char of str
~ auto it(D.find(str»;
21 if (it != D.end(» {

Soluticm 16.3376



377

ElementsOfProgrammingInterviews.com

Problem 16.4, pg.133: Let G = (,11, E) bea connected undirected graph. How would you

e-Variant 16.3.2: Design an algorithm that checks if a graph is 2-colorable.

e-Variant 16.3.1: Design an algorithm that checks if a graph is bipartite.

return true;

v.d = $;
if (BFS(&v) == false)

return false;

return true;

q ,popO;:1
:1}
16
~ bool is_any_placement_feasible(vect.or<GraphVertex> &G) {
28 for (GraphYertex &v :. G) {

29 if (v. d ~= -1) { II unvisi ted vertex

14 for (GraphVertex * &t : q. front. () ->edges)
15 if (t->d == -1) { II unvisited vertex
16 t->d = q.frontO->d + 1;
17 q.emplace(t);
18 else if (t->d q.frontO->d)
19 return false;
2D

false) {13 while (q.emptyO

10 queue<GraphVertex*> q;
" q.emplace(s);
12

BFS(GraphVertex· s)

:1 }.
81 .
9 bool

GraphVertex(void) : d(-1) {}

1 class GraphVcrtex
public:

int d;
vector<GraphVertex*> edges;

pa,v in the BPS tree from a to u and v are of equal length; therefore the cycle formed
by going from a to u via pa,ul then through the edge (u, v), and then back to a from v
via P.,TJ has an odd length. A cycle in which the vertices can be partitioned into two
sets must have an even number of edges-it has to go back and forth between the
sets and terminate at the starting vertex, and each back and forth adds two edges.
Therefore the vertices in an odd length cycle cannot be partitioned into two sets such
that all edges are between the sets.

Solution 16.3



ElementsO£Progr~ngInterviews.com

Now,we consider the problem of checking ifGis 2V-connected.Clearly,Gis not
2V-connectediff there exists an edge e such that G' = (\I,E\ (e}) is disconnected. The
latter condition holds iffno cycleincludes edge e.

II class Grapbver~ex {
2 public:
31 enUlllColor {wbite, gray, black} color;
tl' vector<GrapbVertex*> edges;

51 };6,
7jbool OFS(GrapbVertex* cur, const GrapbVertex* pre) {

II Visiting a gray vertex means a cycle
9 if (cur->color == GrapbVertex::gray) {
10 return true;
II
U

13 cur->color = GrapbVertex::g.ray; II .arks current vertex as a gray one
It II Traverse the neighbor vertices
15 for (GrapbVertex· &next : cur->edges) {
16 if (next 1= pre && next->color != GrapbVertex::black)
w if (OFS(next, cur» {
18 return true;
19

20

21
n cur->color ~ GrapbVertex::black; II.arks current vertex as black
23 return false;
2f }
25'

2f bool is_grapb_2_exist(vector<GrapbVertex> &G)
u if (G.empty() =- false) {
1& return OFS(&G.front0, nullptr);
29
80 return false;
31 }

efficiently dr.eckif G is 23-connected? Can you make your algorithm run in O(IV!) time?
How would you check ifG is 2V-connected?

Solution 16.4: First, we consider the problem of checking if G is 23-connected. If
G' = (\I,E\ {(u, v)}) is connected, it must be that a path exists between u and v. This is
possible iffu and v lieon a cyclein G.Thus we have reduced the problem ofchecking
ifG is 23-connected to the checking if there exists a cycle in G.

Wecan check for the existence of a cycle in G by running DFSon G. RecallDFS
maintains a color for each vertex. Initially,all vertices are white. When a vertex is
firstdiscovered, it is coloredgray.WhenDFSfinishesprocessing avertex, that vertex
iscolored black.

As soon as we discover an edge from a gray vertex back to a gray vertex which is
not its immediate predecessor in the search, a cycleexists in Gand we can stop.

In general, the time complexity of DFS is O(IVI + IE!). However the algorithm
described above has time complexity O(lV]). This is because an undirected graph
with no cyclescan have at most IVI - 1edges.

Solution 16.4378



ElementsOfProgramminglnterviews.com

€-Variant 16,4.1: Let G be a connected undirected graph. A vertex of G is an
articulation point if its removal disconnects G. An edge of G is a bridge if its removal
disconnects G. A biconnected component (BeC) of G is a maximal set of edges having

'--------_ _.__ .._ _-_ .•._-----_. __ _ _ ..__ _-

22 }

23

u bool is_graph_2_for_all(vector<Graphvertex> &G)

lS! if (G. empty0 == false) {
261 return DFS(&G.front0, nullptr, II);

:1 !eturn true;
19! }

return (pre == nullptr II cur->l < cur->d);21

cur->l • min(cur->l, next->l);

7 bool DFS(GraphVertex· cur, GraphVertex* pre, int time) {
cur->d. ++time, cur->l numeric_li.its<int>::max();
for (GraphVertex* &next : cur->edges)

w if (next ,- pre) {
11 if (next->d != II)( II back edge

5 };

cur->l : min(cur->l, next->d);
else { II forward edge
if (DFS(next, cur, time) aa false)

return false;

11 class GraphVertex {
2 public:
3, int d , 1; II discovery and leaving time

vector<GraphVertex*> edges;

We can find an edge (u, v) that is not on a cycle with DFS. Without loss of generality,
assume u is discovered first. Observe that the removal of (u, v) disconnects G iff no
back edges exist between v or v's descendants and u or u's ancestors. Define I(v) to
be the minimum of the discovery time d(v) of v and dew) of w such that (t,w) is a back
edge from t,where t is a descendant of v, and w is an ancestor of v.

We claim lev) < d(v) iff a back edge exists between v or one of v's descendants to
u or one of u's ancestors. If lev) < d(v), then there exists a path from v through one of
its descendants to an ancestor of v, i.e., v lies on a cycle. For every vertex v, except
the root, if lev) = d(v), it is not possible to get from v back to u; hence removal of (u, v)
disconnects u and v. If the root is connected to an edge whose removal disconnects
G, the other vertex on that edge will be identified by the technique above, meaning
we do not need to consider the root at all.

Now, we show how to compute lev) efficiently. Once we have processed all of v's
children, then lev)= roin(d(v),minxEChildren(l»l(x». This computation does not add to
the asymptotic complexity of DFS since it is just constant additional work per edge,
so we can check 2V-connectedness in O(IVI + lEI) time.

379Solutiolll6.4



ElementsOfprog~ammingInterviews.com

Another approach which has complexityO(lVI3) but which may be more efficient
in practice for dense graphs, i.e.,graphs in which lEI = 6(1V12) is to run an all pairs
shortest paths algorithm with edge weights of 1. If a path exists from u to o, the
shortest path distance from u to V will be finite: otherwise, it will be 00. Wecan
improve this shortest path calculation by simply recording whether there is a path
from u to v. In this way, we need a Boolean 2D array rather than an integer 2D
array encoding the distances between the vertices. Although from an asymptotic
perspective, the approach based on the all pairs shortest paths algorithm has the

7 void DFS(GraphVertex* cur, const int &time, vector<GraphVertex*> &contacts) {
8 for (GraphVertex· &next : cur->edges) {
9 if (next->visitTime != time) {
m next->visitTime = time;
11 contacts.ellplace_back(next);
12 DFS(next, tillie,contacts);
13

1.
15

16
~ void transitive_closure(vector<GraphVertex> &G)
18 II Build extended contacts for each vertex
19 for (int i = S; i < G.sizeO; Hi) {
~ if (G[i].visitTime 1= i) {

5 };

1 class GraphVertex {
public:

int visitTille;
vector<GraphVertex*> edges, extendedContacts;

G[i].visitTime = i;
DFS(&G[i], i, G[i].extendedContacts);

21

Problem 16.5, pg.134: Devise an efficient algorithm which take« a social network and
computes for each individual his extended contacts.

Solution 16.5: It is natural to model the network as a graph: vertices correspond to
individuals, and an edge exists fromA to B if B is a contact ofA. .

For an individual x, we can compute the set of x's contacts by running graph
search (DFSor BFS)from x. Running graph search for each individual leads to a
O(IVI(IVI + IE!» algorithm for transitive closure.

Variant 16.4.2: Solve the 23-connectedness problem for an undirected graph using
only two colors per vertex. (Donot use auxiliary data structures such as hash tables
to mimic the third color.)

. .
the property that any two edges in the set lie on common simple cycle. Design
algorithms for computing articulation points, bridges, and BCCs.

Solution 16.5380



ElementsOfProgramminglnterviews.com

24 const vector<Constraint> &E, II Equality constraints
lSi const vector<Constraint> &1) { II Inequality constraints
26 unordered_map<int, GraphVertex> G;
27 II Build graph G according to E
28 for (cenat Constraint &e : E) {
~ G[e.a).edges.emplace_back(&G[e.b]), G[e.b) .edges.emplace_back(&G[e.a]);
30

31

32 II Assign group index for each connected component
331 int group_count &:

10

11 GraphVartexO: group(-I) {}
12' }:

13

14 void DFS(GraphVertex &u) {

6 class GraphVertex {
public:

8 int group; II represents the connected component it belongs
vector<GraphVertex*> edges:

4 }:

for (GraphVertex* &v : u.edges)
if (v->group == -1) {

v->group = u.group:
DFS(*v):

IS
16

:1
20

21 }

22
~ bool are_constraints_satisfied(

1 class Constraint
public:

int a, b;

Problem 16.6,pg.134: Design an efficient algorithm that takes as input a coUectionof
equality and inequality constraints and decides whether the constraints can be satisfied
simultaneously.

Solution 16.6: Let cp be a set of equality and inequality constraints on variables
Xo,·· .,XII-I·Create an undirected graph G",on vertices Xo, ... ,XII-I;for each equality
XI = xI' add the edge (Xi,Xj).

Now examine the connected components of G.p.Bythe transitivity of equality,we
can infer that XI = Xj for all vertices XI and XI in a common connected component.

Thereforeif for some inequality Xi> '* xq, vertices xp and Xq lie in the same connected
component, the set of constraints cp is not satisfied.

Conversely,let there bek connectedcomponents Co,... ,Ck-I' Assign the variables
in Cj to thevalue i. Thissatisfiesall the equality constraints and sinceall the inequality
constraints involve variables from different connected components, all inequality
constraints are satisfied too.

same complexity as running multiple graph searches, it is likely to be more efficient
in practice because of the use of Booleanarrays.

381Solution 16.6



ElementsOfProgramminglnterviews.com

11 class GraphVertex {

3
21 public:

vector<GraphVertex*> edges;
.i int maxDistance;:1 bool visited;

71 GraphVertex(void) maxDistance(l) , visited(false) 0;
8! };
1:1 void DFS(GraphVertex* cur, stack<GraphVertex*> &vertex_order) {
II cur->visited = true;
12 for (GraphVertex* &next : cur->edges)
13 if (next->visited == false) {
14 DFS(next, vertex_order);
15j

161

171 vertex_order. emplace(cur);::i}
~ stack<GraphVertex*> build_topological_ordering(vector<GraphVertex> &G) {

u stack<GraphVertex*> vertex_order;
22 for (GraphVertex &g: G) {

Problem 16.7, pg.135: Haw would you generalize your solution to Problem 13.6 on
Page 100. to determine the lIlrgest number of teams that can beplwtographed simultaneously
subject to the same constraintsi

Solution 16.7:Let Gbe theDAGwith vertices corresponding to the teams as follows
and edges from vertex X to Y iff sort(X) < sort(Y).

Every sequence of teams where a team can be placed behind its predecessor
corresponds to a path in G. To find the longest such sequence, we simply need to
find the longest path in the DAG G. Wecan do this, for example, by topologically
ordering the vertices in G; the longest path terminating at vertex v is the maximum
of the longest paths terminating at vs fan-ins concatenated with v itself.

The topologicalordering computation isO(lVI + lEI) and dominates the computa­
tion time.

re'turn t"rue;

II Examine eacb inequality constraint to see if tbere is a violation
for (const Constraint &i : I) {

if (G[i.a).group == G(i.b).group) {
return false;

for (pair<int. GraphVertex> vertex: G) {
if (vertex.second.group == -1) { II is a unvisited vertex

vertex. second.group = group_count •• ; II assigns a group index
DFS(vertex.second);

34i
3S

36

~

Solution 16.7382



ElementsOfProgrammiTIglnterviews.com

Problem 16.9, pg.136: Design an algorithm which takes as input a graph G = elf,E),
directed or undirected, a nonnegative costfunction on E, and vertices sand t;your algorithm

Problem 16,8,pg.136: Given an instance of the task scheduling problem, compute the least
amount of time in which all the taskscan be performed, assuming an unlimited number of
servers. Explicitly check that the system is feasible.

Solution 16.8: This problem is naturally modeled using a directed graph. Vertices
correspond to tasks, and an edge from u to v indicates that u must be completed
before v can begin. The system is infeasible iff a cycleispresent in the derived graph.

Wecan check the presence of a cycleby performing a DFS.If no cycle is present,
the DFSnumbering yields a topologicalordering of the graph, i.e., an ordering of the
vertices such that v follows u whenever an edge is present from u to v. Specifically,
the DFSfinishing time gives a topological ordering in reverse order. Therefore both
testing for a cycleand computing a topologicalordering canbe performed inO(n +m)
time, where nand 111 are the number of vertices and edges in the graph, respectively.

Sincethe number of servers is unlimited, T,can be completed 'ti time after all the
tasks it depends on have completed. Therefore we can compute the soonest each
task can complete by processing tasks in topological order, starting from the tasks
that depend on no other tasks. If no such tasks exist, there must be a sequence of
tasks starting and ending at the same task, such that each task requires the previous
task to be completed before it can be started, i.e., the system is infeasible.

When the number of servers is limited, the problem becomesNP-complete. An
equivalent problemwith limited resources is the subjectofProblem17.13onPage143.

23 if (g.visited == false) {
24 DFS (&g, vertex_order);
25
26
27 return vertex_order;
28 }

29
30 int find_longest_path(stack<GraphVertu*> &vertex_order) {
31 int max_distance ~ $;
32 while (vertex_order.empty() ..= false) {
~ GraphVertex* u ..vertex_order.top();
34 max_distanco - max(max_distance, u->maxDistance);
35 for (GraphVertex* &v : u->edges) {
M v->maxDistance = max(v->maxDistance, u->maxDistance + 1);
37
~ vertex_order.pop();
39
.~ return max_distance:
41

42
43 int find_largest_number_teams(vector<GraphVertex> &G) {
44 stack<GraphVertex*> vertex_order(build_topological_ordering(G»;
45 return find_longest_path(vertex_order);
46

383Solution 16.9



ElementsOfProgramminglnterviews.com

33

34
$5~Itemplate <typenallleDistanceType>
~ void Dijkstra_sbortest_path(vector<GraphVertex<DistanceType» &G.
~391 GraphVertex<DistanceType>* s,

GraphVertex<DistanceType>* t)

20 const bool operatorO (const GraphVertex<DistanceType >* Ihs,
u const GraphVertex<DistanceType>* rhs) const {
22 return Ihs->distance.first < rhs->distance. first' II
23 (lhs->distance.first = rhs->distance.first &&
24 lhs->distance.second < rhs->distance. second);
lS!:1};
~I teaplate <typename DistanceType>
~Ivoid output_shortest_path(GraphVertex<DistanceType>* &v) {
301 if (v) {
31 output_shortest_path(v->pred);
~ cout « v->id « " tt;

visited(false) {}

distance(n~eric_li~its<DistanceType>::max(), $),

pred(nullptr) ,

GraphVertex(void)

pair<Distanc~Type, .int> dinance; I I stores (dis, ledges) pair
II stores (vertex, dis) pair
vector<pair<GraphVertex<DistanceType>*, DistanceType» edges;
int id; II stores tbe id of this verte.r
GraphVertex* pred; II stores the pred~cessor in tbe sbortest patb
bool visited;

1 template <typename DistanceType>
2 class GraphVertex {
31 public:

:1
:1
I

8!
!91

loi
111
121
131
14 j

151 };
161 .
171 template <typename DistanceType>
18 class Coop {
191 public:

should OUtputa path with thefewest edges amongst all shortest paths from s to t.

Solution 16.9:Dijkstra's shortest path algorithm uses scalar values for edge length.
However it can easily be modified to the case where the edge weight is a pair if
addition and comparison can be defined over these pairs. In this case, if the edge cost
is c, we say the length of the edge is given by the pair (c,1). Wedefine addition to
be just component-wise addition. Hence ifwe sum up the edge lengths over a path,
we essentially get the total cost and the number of edges in the path. The compare
function is lexicographic,first the total cost, then the number of edges. Wecan run
Dijkstra's shortest path algorithm with this compare function and find the shortest
path that requires the least number of edges.

Sincea heap does not support efficientupdates, it ismore convenient to use aBST
than a heap to implement the algorithm.

Solution 16.9384



ElementsOfProgramminglnterviews.com

Problem 16.10,pg.136: Given a time-table, a starting city, astarting time, anda destination
city, how would you compute the soonest-you could get to the destination city? Assume all
flights start and end on time, and that you need 60 minutes between fligh~s.

Solution 16.10: We use Dijkstra's single-source shortest path algorithm with a minor
variation. At each iteration we add a new city c to the set of cities to which we know
the fastest route. After c is identified, we relax edges out of c by searching for all
flights out of c that depart 60 minutes or later from the earliest we can get to c.We do

s-Variant 16.9.1: Solve the same problem when edge weights are integers in (-00, (0).
You may modify the graph, but must use an unmodified shortest path algorithm.

78

741
75
76 II Output the shortest path with fewest edges
n output_shortest_patb(t):

n break;
73

II u is not a valid vertexelse11

40 II Initialization the distance of starting point
u s->distance. {&, $};

42 set<GraphVertex<DlstanceType>*, Comp<DistanceType» node_set;
43 node_set.emplace(s);
44

45 do {
46 GrapbVertex<DistanceType>* U = nullptr;
~ II Extract the .inimum distance vertex from heap
4S while (node_set. empty0 "" false) (
49 U = *node_set. cbegin();
~ node_set.erase(node_set.cbegin());
81 if (u->visited == false) { II found an unvisited node
52 break;
53
54
55
$6 if (u) { II u is a valid vertex
57 u->visited ,.true; II mark u as visited
55 II Relax neighboring vertices of u
89 for (canst auto &v : u->edges) {
ro DistanceType v_distance " u->distance.first + v.second;
61 int v_num_edges " u->distance.second + 1;
~ if (v.first->distance.first > v_distance I I
~ (v.first->distance.first "" v_distance &&
" v.first->distance.second > v_nWD_edges))
~ node_set.erase(v.first);
66 v.first->pred" u;
~ v.first->distance" {v_distance, v_num_edges};
~ node_set.emplace(v.first);
69

10

false); II until t is visitedwhile (t->visited

385Solutioll16.10



ElementsOfProgramminglnterviews.com

11

12

13

14

IS

for (int i = e; i < G.size(); ++i) {
for (int j = &; j < G.size(); ++j)

if (G[i)[k) 1= numeric_limits<DistanceType>::max() &&
G[k)[j) 1= numeric_limits<DistanceType>::max() &&
G[i)[j) < G[i][k) + G[k)[j]) {

G[i)[j] - G(i](k) + G[k)[j);

Ii template <typenaae DistanceType>
21 class BigbwaySection {~I! public:
• int x, y;
sj DistanceType distance;:, };
31 template <typename DistanceType>
9 void Floyd_Warsball(vector<vector<DistanceType» &G)
10 for (int k = e; It < G.sizeO; Hit) {

Problem 16.11,pg.136: Devise an efficient algorithm which takes the existing highway
network (specified as a set 0/ highway sections between pairs of cities) and proposals /(11'
new highway sections, and returns a proposed highway section which minimizes the shortest
driving distance between EI Paso and Corpus Christi.

Solution 16.11: Note that we cannot add more than one proposal to the existing
network and run a shortest path algorithm-we may end up with a shortest path
which uses multiple proposals.

Let there be n cities,m existing highway sections, and k proposed sections. One
approach is to Simply run a single-source shortest path algorithm from El Paso k
times, one for each of the proposed sections. Dijkstra's single-source shortest path
algorithm can be made to run inO(n logn +m), leading to an overall time complexity
ofO(k(nlogn +m».

Sincem+k canbeas large as n~"2-1),the above approach can have a time complexity
as high as O(n4). Wecan improve upon this by first running an all pairs shortest
paths algorithm, such as the Floyd-Warshallalgorithm which will compute all pairs
of shortest paths distances inO(n3) time.

LetS{u, v) be the 20 array of shortest path distances for each pair of cities. Each
proposal p is a pair of cities (x,y). The best we can do by using proposal p is
min{S{a,b), S{a, x)+d(x,y)+ S{y, b» where d{x,y) is the distance of the proposed high­
way p between x and y, and a and b are ElPasoand Corpus Christi, respectively.This
computation is OCt) time, so we can evaluate all the proposals intime proportional
to the number of proposals after we have computed the shortest path between each
pair of cities. This results in anO(n3 + k) time complexity; since k ~ "(/I2-1), the time
complexity isO(nJ).

not need to relax an edge from c toc more than once, e.g., if two flights from c to c
that satisfy the inter-flight time constraint, we only need to relax the one that arrives
inc sooner.

The time complexity is identical to that of Oijkstra's algorithm with the flights
playing the role of edges, and the cities playing the role of vertices.

Solution 16.11386



387

ElementsOfprogramminglnterviews.com

Problem 16.12,pg.137: Design an efficient algorithm to determine whether thereexists an
arbitrage-a way to start with a single unit of some commodity Cand convert it back tomore
than one unit of C through a sequence of exchanges.

Solution 16.12: We define a weighted directed graph G = (v,E = V x V),where
V corresponds to the set of commodities. The weight w(e) of edge e = (u, v) is the
amount of commodity v we can buy with one unit of commodity u. Observe that an
arbitrage exists iff there exists a cyclein Gwhose edge weights multiply out to more
than 1.

Create a new graph G' = (v,E) with weight function w'(e) = -lg w(e). Since
19(ax b) = 19a + 19b, there exists a cycle in Gwhose edge weights multiply out to
more than 1 iff there exists a cycle in G' whose edge weights sum up to less than

18
19

20

21 }

22

23 template <typename DistanceType>
2. HighwaySection<DistanceType> find_best_proposals(
25 const vector<HighllaySection<DistanceType» &H,
u const vector<HighllaySection<DistanceType» &P,
~ const int &a, const int &b. const int &n) {
28 II G stores the shortest path distance between all pairs
~ vector<vector<DistanceType»
~ G(n, vector<DistanceType>(n, numeric_limits<DistanceType>: :max(»);
31

» II Build graph G based on existing highway sections H
33 for (const HighwaySection<DistanceType> &h : H) {
~ G(h.x}[h.y} • G(h.y](h.x] • h.distance;
35
36 II Perform Floyd Warshall to build the shortest path between vertices
'51 Floyd..Warshall(G) ;

38
~ II Examine each proposal for shorter distance between a and b
.0 DistanceType min_dis_a_b = G(a](b];
41 HighwaySection<DistanceType> best_proposal;
42 for (const HighwaySection<DistanceType> &p : P) {
~ if (G[a][p.x] 1= numeric_limits<DistanceType>: :max() &&
•• G[p.y)(b) != numeric_limits<DistanceType>::max(» {
~ if (min_dis_a_b < G[a][p.x) + p.distance + G[p.y)[b)
~ min_dis_a_b = G[a][p.x) + p.distance + G(p.y][b);
v best_proposal = p;
43
'9 if (min_dis_a_b < G[a](p.y) + p.distance + G(p.x)(b])
~ min_dis_a_b = G[a) [p.y) + p.distance + G[p.x][b];
~ best_proposal = p;

• 52

53
54
35 return best_proposal;
56

Sollltiotl16.12



ElementsOfProgrammingInterviews.com

19 return false;
20

21

22

23 II Detect cycle if ~ere is any fur'~er update
2f for (int i = e; i < G.size(); ++i) {
2S for (int j z $; j < C[i] .sizeO; Hj)
u if (dis_to_source[iJ != numeric_limits<double>::max() &&
v dis_to_source[j] > dis_to_source[iJ + G[i][j) {
28 return true;
2!'
30
31

32 return false;
33

3f
33 bool is_Arbitrage_8xist(vector<vector<double» G) {
36 II Transform uch edge in G
$I for (vector<double> &edge_list : C)

38 for (double &edge : edge_list) {
~ edge = -logl$(edge);
co
41

f2
43 II Use Bellman-Ford to find negative weigbt cycle
« return Bellman_ford(G, $);

9
10

11
Il

13

I'
15
16
17 II No update in ~is iteration means no negative cycle
18 if (have_update = false) {

if (dis_to_source[iJ 1= numeric_limits<double>::max() &&
dis_to_source[jJ > dis_to_source[iJ T G[iJ[jJ)

have_update = true;
dis_to_source[jJ = dis_to_source[iJ + G[i)[j];

5 for (int times "'1; times < C.sizeC); Htimes)
6 bool have_update = false;

for (int i = $; i < G.size(); ++i) {
for (int j = $; j < G[i].size(); T+j)

1 bool Bellman_Ford(const vector<vector<double» &G, const int &source) {
vector<double> dis_to_source(G.size(), nuaeric_limits<double>: :max(»;
dis_to_source[source] = $;

191= O.(Thisproperty is true for logarithms to any base, so if it is more efficientfor
example to use base-e,we can do so.)

The Bellman-Fordalgorithm, which takes O(IVIIEI) time, detects negative-weight
cycles.Usually finding a negative-weight cycle is done by adding a dummy vertex 5

with O-weightedges to eachvertex in the given graph and running the Bellman-Ford
single-source shortest path algorithm from s. However, for the arbitrage problem,
the graph is complete. Hence we can run Bellman-Fordalgorithm from any single
vertex, and get the right result.

Solution 16.12388



ElementsOfProgramminglnterviews.com

10 vector<vector<long» table(V.sizeO +. 1, vector<long>(total_votes + 1, 8));
11 table[&)[8] = 1; II base condition: 1 way to reach 9.
12 for (int i = &; i < V.size(); ++i) {
13 for (int j = &; j <= total_votes; ++j) {
14 table[i + lJ[j] = table[iJ[jJ + (j >= V[iJ ? table[i][j - Veil] 8);
13
16

17 return table(V.size()](tot~l_votes » 1];
18 }

II No way to tie if tbe total number of votes is odd
if (total_votes & 1) {

return &;

1 II V contains the number of votes for each state
2 long ties_election(const vector<int> &V) {

int total_votes ~ accumulate(V.cbegin(), V.cend(), $);

. .
Solution 17.1:Weneed to determine if there exists a subset of states whose Electoral
College votes add up to 1f = 269. This is an instance of the subset sum problem,
and is known to be NP-complete. It is a specialization of the 0-1 knapsack problem
described in Problem 17.2on Page 139and the DP solution to that problem can be
used. Following is the code in C++:

Problem 17.1,pg.139: How would you programmatically determine if a tie is possible in
a presidential election with two candidates, Rand D?

Problem 16.13,pg.137: Let G = (v,E)be an undirected graph with edge weight function
w : E I-t Z+. You are given T c £, an MST of G. Let e be an edge. Design efficient
algorithms for computing the MST when (1.) wee) decreases, and (2.) wee) increases.

Solution 16.13:Wemake use of two key facts about an MSf. The first is that if an
edge e is the unique heaviest weight edge on some cycle,it cannot lie inthe MST. The
second is that if an edge is the unique lightest weight edge insome set of edges that
disconnect the graph, it must lie in the MST.

For the first case, if e E T, then T remains.unchanged. Otherwise, let e = (u, v). We
search for the unique path n in T between u and v. Ifwee) remains greater than or
equal to theweights of the edges on this path, T is unchanged. Otherwise,we obtain
the new MSTby deleting the edge in1twhich has maximumweight, and adding e.

For the second case, if e ~ T, then T will not change. Otherwise, let e = (u, v).
Removing e from T leaves us with two components. Wewant to replace e by the
lowest-weightedge between these components. Wecan find this edgeby first finding
the two components, e.g., by DFS through T \ Ie] from u and from v, and then
enumerating all the edge in G.

In both cases, the time complexity is dominated by the need to do graph search,
i.e., O(WI + lEI).

45 }

389Solutiotl17.1



ElementsOfProgramminglnterviews.com

Problem 17.3, pg.l4(): Let array A be an array of n positive integers. Entry A[11is
the value of the i-th stolen item. Design an algorithm that computes a subset S c ZII =
to, 1, 2, ... , n - II such that IL.iESA[ll- L.jEZ.\S AUII isminimized.

Solution 17.3: We first compute a Boolean-valued array is_Ok, indexed from 0 to
sum= L.7:o1A[i), inclusive. The array is_Ok encodes whether a given iis the sum of
the elements in some subset of stolen items. The is_Ok array entries are initialized to
false for each index greater than OJis_Ok[O]is initialized to true. Weassignvalues to
is_Ok as follows. Set is_Ok[A[O))to true. Then set is_Ok[A[l)) and is_Ok[A[O]+A[l)]
to true. Then set is_Ok[A[2]], is_Ok[A[O]+A[2)), is_Ok[A[1] +A [2]],and is_Ok[A[O]+
A[l) + A[2J] to true. Generalizing, the set of values corresponding to subsets of
{O,I,...,i-I, il is the union of the set of values {vo,VI, ,Vj-l I corresponding to
subsets of (O,l, ... , i-I) and the set {vo + AliI,VI +A[i], ,Vj-l +A[i]}. This new set
of values can be computed by iterating over values V in [sum,A[i]],setting is_Ok[v]
to true wherever is_Ok[v - A[i)) is true. The time complexity isO(n . sum).

Variant 17.2.1: Solve the knapsack problem when the thief can take a fractional
amount of an item.

I template <type.nameValueType>
2 ValueType knapsack(const int &w, const vector<pair<int, ValueType» &items)

vector<ValueType> V(w + 1, Q);
.4 for (int i = Q; i < items.size(); Hi) {
51 for (int j = If; j >= items[i].first; --j)
6) V[j] = max(V[j], V[j - items[i].first] + items[i].second);
1 }

8
9 return V[w];
10! }

For i = 0 or w = 0, we set V[i,w] = O. This DP procedure computes V[n,w) in
O(nw) time, and uses O(nw) space. Note-that the space complexitycan be improved
to O(w) by using a one-dimensional array to store the current optimal result and
rewriting the next step result back to this array. Following is the code in C++:

ifw; ~ Wj

otherwise.V[ ' )={ max(V[i-l,w),V[i-l,w-w;)+v;),
I,W V[i-l,w],

Problem 17.2,pg.139: Design an algorithmfor the knapsack problem that selects a subset .\
of items that has maximum value and weighs at most w ounces. All items have integer
weights and values.

Solution 17.2: Let V[i,w) be the maximum value that can be packed with weight
less than or equal to w using the first i clocks. Then V[i,w) satisfies the following
recurrence:

Solution 17.3390



391

ElementsOfPrograrnminglnterviews.com

Problem 17.4,pg.140: Write a program that determines a sequence of steps by which the
required amount of milk can be obtained using the worn-out jugs. The milk is being added
to a large mixing bowl, and hence cannot be removed from the bowl. Furthermore, it is not
possible to pour one jug's contents into another. Your scheme should always work, i.e., return
between 2100 and 2300 mL of milk, independent of how mucn is chosen in each individual
step, as long as that quantity satisfies the given constraints.

Solution 17.4: It is natural to solve this problem using recursion-if we use jug
A for the last step, we need to correctly measure a volume of milk that is at least
2100- 230 = 1870mL-the lastmeasurement may be as little as 230 mL,and anything
less than 1870 mL runs the risk of being too little. Similarly,the volume must be at
most 2300 - 240 = 2060 mL.The volume is not achievable if it is not achievablewith
anyof the three jugs as ending points. Wecacheintermediate computations to reduce
the number of recursive calls.
In the following code,we implement a general purpose functionwhich finds the

feasibility among n jugs; those arrays are passed in as jugs.
lrc;:SS Jug { ------------------------~

Variant 17.3.1: Solvethe sameproblemwith the additional constraint that the thieves
have the same number of items.

'-- ._. oo _

10

II
12
13
14 II Find the :first i from middle where is_Ok [i1 ..:r true
15 for (int i-sum» 1; i > $; --i) {
16 if (is_Ok.find(l) 1= is_Ok.cend(»
17 return (sum - i) - i;
18

19
~ return sum; II one thief takes all
21 }

unordered_set<int> is_Ok;
is_Ok.emplace(.);
for (const int &item : A)

for (int v - sum » 1; v >- item; --v) {
if (is_Ok.find(v ~ item) 1- i._Ok.eend(»

is_Ok .•mplace(v);

lint minimize_difference(const vector<int> &A) {
int sum. accumulate(A.cbegin(). A.cend() •• );

After obtaining is_Ok we find the best partition by iterating over i fromT down­
wards until we first hit an entry i such that is_Ok[i] is true; this is the closest we
can get to an equal split. Note that is_Ok is symmetric about its midpoint since if
5 c {O,l,2,... r n - I} has a value w, then 5' = Z« \ 5 has a value sum- w, so we do
not need to search is_Ok for indices greater than ~.

Solutioll17.4



ElementsOfProgramminglnterviews.com

Problem 17.5, pg.l41: Given a graph G = CV,E),with cost function c : E H Z+, delay
function d :E H Z+, designated vertices sand t, and a delay constraint /).E Z+, find a path
from s to t with minimum cost, subject to the constraint that the delay of the path is no more
than /).. Costs are additive-the cost of a path is the sum of the costs of the individual edges;
the same holds for delays.

Variant 17.4.1: Suppose Jug i can be used to measure any quantity in [4,Uj] exactly.
Determine if it is possible to measure a quantity of milk between Land U.

return true;

II Check the volume for each jug to see i£ it is possible
for (const Jug &j : jugs) {

if «L <= j.low && j.high <= H) I I II base case: j is contained in [L, HJ
check_feasible..helper(jugs, L - j.low, H - j.high',c) {

return false;26;

vi

:1
311
32i
331
J41
35;
~I c.emplace(L, B); II marks this as impossible"1 return false;
38 }

:l9j
~lbOOl cbeck_feasible(const vector<Jug> &jugs, const int &L, const int &H) {
41 unordered_set<pair<int, int>, HashPair, PairEqual> cache;
421 return cbeck_feasible_helper(jugs, L, H, cache);
431 }

23 HashPair,
:II PairEqual> &c) {
25; if (L > H II c.find({L, H}) != c.cendO II (L < I\) && H < 1\)) {

const int &8, unordered_set<pair<int, int>,22

::1
19' };

20

21 bool check_feasible_helper(const vec t.orcJuq> &jugs, const int &L,

const size_t operator()(const pair<int, int> &p) const
return hash<int>()(p.first) A hasb<int>()(p.second);

public:15

9
10

11

121};
13'
14 class RasbPair {

6 class PairEqual {
public:

const bool operatorO(const pair<i.nt,int> &a,

4 };

const pair<int, int> &b) const

21 public:
int low, bigh;

b.second;return a.first == b.firs~ && a.second

Solution 17.5392



ElementsOfProgramminglnterviews.com

Problem·17.6, pg.141: Suppose you are given a set of cities in the Cartesian plane, as
shown in Figure 4.3 on Page 36. The cost of traveling from one city to another is a constant
multiple of the distance between the cities. Give an efficient procedurefor computing a tour
whose cost is no more than two times the cost of an optimum tour.

Solution 17.6:A good way to approach this problem is to think of a similar problem
that can be solved exactly efficiently.The MSTproblem has an efficient algorithm,
and it yields a way of visiting each city exactly twice--start at any city c and do an
in-order walk in the MSTwith c as the root. This traversal leads to a path in which
each edge is visited exactlytwice. .

Consider any tour. If we drop the edge back to the starting city,the remaining set
of edges constitute a tree. Therefore the cost of the optimum tour is at least as great
as the cost of the MST.

Now wemake use of the fact that the distances between citiessatisfiesthe triangle
inequality to build a tour from the MSTwhose cost is no greater than the MST.When
we perform our in-order walk, we simply skip over citieswe have already visited­
the direct distance from u to v cannot be more than the sum of distances on a path
from u to v.

Basecases include M(s,6) = 0 and M(v, 6) = 00,for 6 < O.
Bycachingvalues,M(t,ll) can be computed inO(lElll) timewith O(lVlll) space for

the cache.
Alternately, we can use branch and bound. We can obtain good lower bounds

using Lagrangian relaxation. The general idea behind Lagrangian relaxation is to
solve constrained optimization problems by adding the constraint as a penalty term
in the objective function. In our specific setting we can use a multiplier A E ~ to
compute a new cost c(u,v) + Ad(u,v) for each edge. Now we run a conventional
shortest path algorithm. The effectof the A term is to avoid paths that incur a large
delay-the larger A is, the more we avoid delay.

Let Copt be the optimum cost for delay feasible paths, and dopt the delay on an
optimum path. Suppose the shortest path for a given A has cost c' +M'. Observe
that if this path is infeasible, i.e., d' > ll, then copt > c,since otherwise it would be
impossible for Copt+Adopt ~ C + Ad'.

Note that each c· + Ad' where d' > II yields a lower bound. The greatest lower
bound across all A may not be Copt. This phenomenon is known as a duality gap.
Furthermore, if d' > ll, then we can say nothing about the relationship between c'
and Copt.

M(v,6) = min (c(u, v) +M(u,c - d(u,v»)
1lEfan.ln(tI)

Solution 17.5: The delay-constrained shortest-path problem is known to be NP­
complete. It can be solved in pseudo-polynomial time using OP.For each vertex v
and delay 6 E [O,ll] we computeM(v, 6), theminimum costpath from s to v that has a
delay less than or equal to 6. The functionM(v, c) satisfiesthe following recurrence:

393Solution 17.6



ElementsOiProgrammingInterviews.com

Problem 17.7,pg.142: Design afast algorithm for selecting k warehouse locations that is
provably within a constant foctor of the optimum solution.

Solution 17.7: A natural approach to this problem is to build the assignment one
warehouse at a time. Wecan pick the first warehouse to be the city forwhich the cost

Figure 21.16: The two key steps 01 the approximation algorithm lor the TSP.

180ISO120~ ~ -30 0 30 60 ~

(b) A touederived from the minimum spanning tree In (a).
-120-150

i
-se -I

30

i,~

60

I
-30 ~I~

(a) A minimum spanning tree for the cities In Figure 4.3 on Page 36.

Hence we have a true tour costing at most twice the cost of the MSTwhich itself
was a lower bound on the cost of the traveling salesman problem, i.e., the tour has a
cost that is at most twice the cost of an optimum tour.

The application of the algorithm described above to the cities in Figure 4.3 on
Page 36 is shown inFigure 21.16.

Solution 17.7394



ElementsOfProgramminglnterviews.com

10 I I Check column constraints
II for (int kRill; k < A.sizeO; ++k) {
U if (val •• A[i)[k)) {
13 return false;
14

I bool valid_to_add(const vector<vector<int» &A, const int &i, const int &j,
const int &val) {

II Cbeck row constraints
for (int k ~ &; k < A.size(); ++k)

if (val E~ A[kJ[jJ) {
return false;

Problem 17.8,pg.l42: Implement a Sudcku solver. Your program should read an instance
of Sudoku from the command line. The command line argument is a sequence of 3-digit
strings, each encoding a row, a column, and a digit at that location.

Solution 17.8:Weuse a straight-forward application of the backtracklng principle.
We traverse the 2D array entries one at a time. If the entry is empty, we try each
value for the entry, and see if the updated 2Darray is still valid; if it is we recurse. If
all the entries have been filled, the search is successful.

In practice it is more efficient to see if a conflict results on adding a new entry
before adding it rather than adding it and seeing if a conflictis present. See the code
for details.

isminimized-this takes 6(n2) time sincewe try each cityone at a time and check its
distance to every other city.

Let's say we have selected the first; - 1 warehouses {WI,W2,... ,WI-I} and are
trying to choose the i-th warehouse. A reasonable choice for the i-th warehouse is
the one that is the farthest from the j - 1warehouses already chosen. This city can
be computed inO(nr} time.

Weuse the computation above to select k warehouses. Let themaximum distance
from the remaining cities to the k warehouses be d",. Then the cost of this assignment
is din' Let e be a city which is dm distance from the warehouse it is closest to. Note
that the k warehouse citiesare all at least dnJ apart; otherwise, we would have chosen
e to locate a warehouse at in one of the first k iterations.

By the pigeonhole principle, at least two of the k + 1 cities (WI,W2, ..• , Wk,e) must
have the same closest warehouse in an optimum assignment. Let p and q be two
such citiesand W be thewarehouse city closest to p and q in an optimum assignment
ofwarehouses. By the triangle inequality,d{p, q) ~ d(w, p) +d(w, q). Sincedin ~ d(p, q),
it follows that at least one of d(w,p) or d(w,q) is greater than or equal to ;.. Hence
the cost of this optimum assignment is at least;', implying our greedy heuristic
produced an assignment that is within a factor of two of the cost of the optimum
assignment,

Note that the initial selection of a warehouse is immaterial for the argument to
work but heuristically,it is better to choose a central city as a starting point.

395Solution. 17.8



ElementsOfProgramrninglnterviews.com

53

54

55

56
$1 A[i][j] = 61; II undo assigllJllent
58 return false;
59

60

61 II Check if a partially filled matrix has any conflicts
~ bool is_valid_Sudoku(const vector<vector<int» &A) {
~ II Check row constraints
" for (int i = $; i < A.sheO; ++i) {
~ vector<bool> is_present(A.size() + 1, false);
66 for (int j = $; j < A.sizeO; ++j) {
67 if (A[i][j] 1= & && is_preSent[A[i] [j]] == true)
66 return false;
69 } else {

for (int val = 1; val <= A.size(); ++val? {
II Note: practically, it's substantially quicker to check if entryval
II conflicts with any of tbe constraints if we add it at (i,j) before
II adding it, rather than adding it and then calling is_valid_Sudoku.
II The reason is that we know we are starting with a valid configuration,
II and the only entry which can cause a problem is entryval at (i,j).
if (valid_to_add(A, i, j, val» {

A[i][j] = va!;
if (solve_Sudoku_helper(A, i + 1, j» {

return true;

II Skip nonempty entries
if (A[i][j] != &) {

return solve_Sudoku_helper(A, i + 1, j);

i = &; II start a new row
if (++j == A[i].size(» {

return true; II entire matrix has been filled without conflict

32

15

16
17 II Check region constraints
IS int region_size • sqrt(A.size(»;
19 int I = i / region_size, J = j / region_size;
20 for (int a = 61; a < region_size; ++a) {
21 for (int b c 61; b < region_size; ++b) {
u if (va! a. A[region_size * I + a][region_size * J + b]) {
13 return false;

2'
15

16
21 return true;
lS

19
~ bool so!ve_Sudoku_helper(vector<vector<int» &A, int i, int j)
31 if (i == A.sizeO) {

Sollltio1l17.8396



true;

397

ElementsOfProgramminglnterviews.com

110 return false;
11~
112
113 if (solve_Sudoku_helper(A, &, &» {
114 for (int i = &; i < A.sizeO; ++i)
115 copy(A[i). beginO, A[i]. endO, ostream_iterator<int>(cout, " "»;
116 cout « endl;
117
118 return true;
119 else {
120 cout « "No solution exists." « endl;
121 return false;
122

123

is_present[A[region_size • I + i][region_size • J + j]]

return false;
else {

95
961
97!

981
99!,
l00!

lOll
102! .
::11 return true;
lOS },
106' .

1071 bool solve_Sudoku(vector<vector<int» &A) {
108! if (is_valid_Sudoku(A) == false) {
109 cout « "Initial configuration violates constraints." « endl;

vector<bool> is_present(A.size() + 1, false);
for (int i = &; i < region_size; ++i) {

for (int j " &; j < region_size; ++j) {
if (A[region_size • I + i][regio~_size • J + j] != & &&

is_present[A[region_size * I + i][region_size * J + j))) {

911

92
i

93
94

80

81
82
83

84

85
86
87 II Check region constraints
~ int region_size sqrt(A.size(»;
89 for (int 1 = &; 1 < region_size; ++1)
90 for (int J = &; J < region_size; ++J)

return false;
else {
is_present[A[i][j]] s true;

70
71

72

73

74
75 II Check column constraints
76 for (int j = &; j < A.sizeO; ++j) {
77 vector<bool> is_present(A.size() + 1, false);
78 for (int i = &; i < A.size(); ++i)
79 if (A[i] [j] I .. & &&is_present[A[iJ [n] ." true)

true;is_present[A[i][j]]

Solution 17.8



ElementsOfProgrammingInterviews.com

1 int evaluate(list<int> operand-list, const list<char> &oper_list)
II Evaluate '*' first
auto operand_it : operand-list.begin();
for (const char &oper : oper_list) {

5 if (oper =: '.') {

int product: ·operand-it;
operand_it = operand-list.erase(operand_it);
product .= ·operand_it;
·operand_it = product;

10 else {
11 ++operand_it;
12

13

14

Problem 17.9, pg.14.2: Given an array of digits A and a nonnegative integer k; intersperse
multiplies (x) and adds (+)with the digits of A such that the resulting arithmetical expression
evaluates tok. For example, ifA is (1,2,3,2,5,3,7,8,5, 9) and kis 995, then kcan berealiUd
by the expression "123 + 2 + 5 x 3 x 7 + 85 X 9".

Solution 17.9: Let A be the array of n digits and k the target sum. We want to
intersperse x and + operations among these characters in such a way that the resulting
expression equals k.

For each pair of characters, (A[ll,A[i + 1]), we can choose to insert a x, a +. or no
operator. The number of such locations is n - 1, implying we can encode the choice
with an array of length n - 1. Each entry is one of three values-x, +, and ...(which
indicates no operator is added at that location). Exactly 3n-1 such arrays exist, so a
brute-force solution is to systematically enumerate all arrays. For each enumerated
array, we compute the resulting expression, and return as soon as we evaluate to k.
The time complexity isO(n3n), since each expression takes time O(n) to evaluate.

The performance can be improved heuristically using pruning. For example, if
we have a partial assignment that inserts + between i and i +1, and an assignment of
operators to A[O : 11 yields an expression that evaluates to k', then we need to search
for an assignment of operators to A[i +1:n -1] that yields k - k', (Note we cannot do
similar pruning with x because x has a higher precedence.) Additional pruning can
be based on the observation that the maximum value of an expression corresponds
to the case where no operators are inserted. For the previous example, if k - k' is
greater than the integer encoded by digits in A[i + 1 :n - 1l,we can stop searching.
Here is an implementation in C++; it makes heavy use of the STL.

Variant 17.8.3: Compute the smallest number of queens that can be placed to attack
each uncovered square.

Variant 17.8.2: Compute a placement of 32 knights, or 14 bishops, 16 kings or eight
rooks on an 8 x 8 chessboard in which no two pieces attack each other.

Variant 17.8.1: Compute a placement of eight queens on an 8 x 8 chessboard in
which no two queens attack each other.

Solutio1l17.9398



399

false) {

ElementsOfPrograrnminglnterviews.com

641 list<char> oper_list;
651 listdnt> cper.and.iList :
I~! if (exp_synthesis_helper(A, k, operand_list, oper_list, ill, &)
!

671 cout. « "no answer" « endl;
681
691 }

exp_synthesisCconst vector<int> &A, const int &k) {

II revert

return true;'
if Cexp_synthesis_helperCA, k, operand_list, oper_list, ill, level + 1)) {
operand_list.emplace_back(cur), oper_list.emplace_back('·');
II Add operator '*'

II revertoperand_list.pop_back() ;

II revertoper_list.pop~back();

return true;
if (exp_synthesis_helper(A, k, operand_list, oper_list, ill, level + 1)) {
oper_list.emplace_back(:+') ;

II pruning

II Add operator '+'
operand_list.emplace_back(cur);
if Ck - evaluateCoperand_list, oper_list) <=

stoi(string(A.cbegin() + level + 1. A.cend())))

return true;
if (exp_synthesis_helper(A, k, operand_list, oper_list, cur. level + 1)) {
I I No operator

operand_list.pop_back();
else {

331
341
3s1
361

:1
391
401

::1
::1
451
461
471

::i
sol
I

511

521
::1
55!
561
I

=1' operand_list.pop_back(), oper_list.pop_back();
591 i .
601 retu.rnfalse:
611 }

621
631 void

32 return true;
« k « endl;cout « "

« oper « ' . « ·operand_it++;cout «

IS II Evaluate '+' second
16 return accumulateCoperand_list.cbegin(), operand_list.cend(), &);

17

18
.19 bool exp_synthesis_helper(const vector<int> &A, const int &k,
20 listdnt> &operand_list, list<char> &oper_list,
21 int cur, const int &level) {
22 cur = cur • 1& + A[levell - '1\)';
~ if (level == A.size() - 1) {
U operand_list.emplace_back(cur);
25 if (evaluate(operand_list, oper_list) == k)
26 auto operand_it = operand_list.cbeginO;
~ cout « *operand_it++:
28 for (const char &oper : oper_list) {

Solution 17.9



ElementsOfProgrammingInterviews.com

return min_exp;

while (exp_lists.empty() == false) {
list<int> exp = exp_lists.front();
exp_lists.pop_front();
II Try all possible combinations in a list
for (canst int &i : exp) {

for (const int &j : exp) {
int SUJ:l = i + j;
if (shortest_size > exp.size() + 1) {

if (sum =~ n) {
min_exp = exp;
min_exp.emplace_back(sum);
shortest_size = exp.size() + 1;
else if (sum < n && sum > exp.back())
list<int> ext = exp;
ext.emplace_back(sum);
exp_lists.emplace_back(ext);

list<list<int» exp_lists;
6 exp_lists.emplace_back(init_list);

list<int> min_exp; .
int shortest_size ~ numeric_limits<int>::max();

1 list<int> get_minimum_expression(const int &n) {
21 listdnt> init_list;
3 init_list.emplace_back(l);

Problem 17.10,pg.l42: Given apositive integer n, how would you determine theminimum
number of multiplications to evaluate r'?

Solution 17.10:It is natural to try divide and conquer, e.g., determine the minimum
number of multiplications for each of x! and xf, for different values of k. This does
not work because the subproblems are not independent-we cannot just add the
minimum number of multiplications to compute ;r;5 and x6 sinceboth may use ;C3.

Instead we resort to branch and bound: we maintain a set of partial solutions
which we try to extend to the final solution. The key to efficiencyis pruning out
partial solutions efficiently.

In our context, a partial solution is a list of exponents that we nave already
computed. Note that in aminimum solution, wewill never have an elementrepeated
in the list. Inaddition, it sufficesto consider partial solutions in which the exponents
occur in increasing order since if k > j and x! occurs before xi in the chain, then x!'
could not be used in the derivation of xi. Hence we lose nothing by advancing the
position of x~.

Here is code that solves the problem:

Solution 17.10400



ElementsOfProgramminglntervieW5.com

Problem 17.12,pg.143: How would you test the Collatz conjecture for the first n positive
integers? .

Solution 17.12: Often interview questions are open-ended with no definite good
solution-all you can do is provide a good heuristic and code it well. For the Collatz
conjecture, the general idea is to iterate through all numbers and for each number
repeatedly apply the rules till you reach 1. Here are some of the ideas that you can
try to acceleratethe check:

Solution 17.11: A reasonable way to proceed is to use backtracking. We choose
a variable v, see if there exists a satisfying assignment when v = O. If no such
assignment exists, we try v = 1. If no satisfying assignment exists for v = 0 and for
v = 1, the expression is not satisfiable.

Oncewechoose avariable and set its value, the expression simplifies-we need to
remove clauses where v appears ifwe set v = 1and remove clauseswhere 'II appears
when we set v =. O. In addition, whenever we get to a unit clause-one where a
single literal appears-we know that in any satisfying assignment for the current
expression, that literal must be set to true; this rule leads to additional simplification.
Conversely, if all the clauses are true, we do not need to proceed further--every
assignment to the remaining variables makes the expression true.

Variablesmaybe chosen invarious ways. One natural choiceis topickthe variable
which appears the most times in clauses with two literals since it leads to the most
unit clauses on simplification. Another choice is to pick the variable which is the
most binate-Le., it appears the most times in negated and non-negated forms.

Problem 17.11,pg.143: Design an algorithm for checking ifa CNF expression is satisfiable.

If n = 30,the code runs in a fractionofa second. It reports (x, i2, x3, x5, Xl0, XIS, xSO).
In all, 7387partial solutions are examined.

Other bounding techniques arepossible. Forexample, fromthebinary representa­
tion of 30 (11110),we know that sevenmultiplications suffice (compute x2,~,x8,X16,
and then multiply these together).

The code could avoid considering all pairs i, j and focus on pairs that just in­
volve the last element since other pairs will have been considered previously. More
sophisticated bounding can be applied: a chain like (x,x2,x3,x6,x7) will require at
least threemore multiplications. The reason is k: multiplications starting at a)( yield a
maximum of ad = a"'2k, and a%·2k~ aY iffx . 2k ~ y. Dividing by x and taking logs,we
see k :<!:: Ig ~. Inparticular, lg ~ > 2.099and so this chain can be safelypruned. When
selecting a partial solution to continue searching from, we could choose one that is
promising, e.g., the shortest solution-this might lead to better solutions faster and
therefore more bounding on other search paths.

For hand calculations, these techniques are important but are trickier to code and
our original code solves the given problem reasonably quickly.

321 }._.--_ _ ,_,,_ _--- _ _-_.
401Solution 17.12



ElementsOfProgramminglntervielois. com

Problem 17.13, pg.l43: You need to schedule n lectures in m classrooms. Some of those
lectures are prerequisitesfor others. All lectures are one hour-long and start on the hour.
How would you choosewhen and where to hold lectures tofinish all the lectures as soon as
possible?

II removes i from tabletable.erase(!);

II n 12test_i »; 1;

test_i = next_test_i;
else { II even number

throw overflow_error("test process overflow");

II 3n + 1long next_test_i ; 3 * test_i + 1;
if (next_test_i <= test_i) {

}

if (table.emplace(test_i).second ;; false)
break; II this number have already be proven to converge to 1

II odd numberif (test_i & 1) {

return false;
false) {if (sequence.emplace(test_i).second

II A cycle means Collatz fails.

unordered_set<long> sequence;
long test_i ; i;
while (test_i !; 1 && test_i >= i) {

II Start from 2 since we don't need to test 1
for (int i = 2; i <= n; ++i) {

Ilbool test_Collatz_conjecture(const int &n) {
2 II Stores the odd number that converges to
3 unordered_set<long> table;

41
:1
:1
i91

101
1

111

121
131

::i
16"17
lsi
191
2O!

211

:1I
251

261

:1
301 return true;
311 }

Reuse computation by storing all the numbers you have already proven to
converge to 1; that way, as soon as you reach such a number, you can assume
it would reach l.
Tosave space, restrict the hash table to odd numbers.
If you have tested every number up to k,you can stop the chain as soon as you
reach a number that is less than or equal to k. Youdo not need to store the
numbers below k in the hash table.
Ifmultiplication and division are expensive, use bit shifting and addition.
Partition the search set and use many computers in parallel to explore the
subsets, as show in Solution 18.11on Page 410.

Since the numbers in a sequence may grow beyond 32 bits, you should use 64-bit
integer and keep testing for overflow; alternately- you can use arbitrary precision
integers.

Solution 17.13402



ElementsOfProgrammingInterviews.com

10

II resp.encodelntoResponse(closestToLastWord);

wLast = w;
closestToLastWord; Spell.closestlnDictionary(w);

public static void service(ServiceRequest req, ServiceResponse resp) {
String w ; req.extractWordToCheckFromRequest();
if (lw.equals(wLast» {

static String wLast ; null;
static String C] closestToLastWord ; null;

extends SpellCheckServiceI public class SI

:1
'I

:1

Problem 18.1,pg.145; Design an online spell correction system. It should take as input a
string s and return an array of entries in its dictionary which are closest to the string using
the Levenshtein distance specified in Problem 15.11 on Page 120. Cache the most recently
computed result.

Solution 18.1: The naive solution would be:

Solution 17.13: We are given a set of n unit duration lectures and m classrooms. The
lectures can be held simultaneously as long as no two lectures need to happen in the
same classroom at the same time and all the precedence constraints are met.

The problem'of scheduling these lectures to minimize the time taken to completion
is known to be NP-complete. (The same problem with an unlimited number of
classrooms can be solved in polynomial time; it is the subject of Problem 16.8 on
Page 136.)

This problem is naturally modeled using graphs. We model lectures as vertices,
with an edge from vertex u to vertex v if u is a prerequisite for v. Clearly, the graph
must be acyclic for the precedence constraints to be satisfied.

If only one lecture room exists, we can simply hold the lectures intopological order
and complete the n lectures in n time (assuming each lecture is of unit duration).

We can develop heuristics using the following observation. Suppose at a given
time S is a set of lectures whose precedence constraints have been satisfied. If the
cardinality of S is less than or equal to m, we can schedule all the lectures in S;
otherwise, we need to schedule a subset.

Subset selection can be based on several heuristic criterion.
- Rank order lectures based on the length of the longest dependency chain that

they are at the start of.
Rank order lectures based on the number of lectures that they are immediate
prerequisites for.
Rank order lectures based on the total number of lectures that they are direct
or indirect prerequisites for.

We can also use combinations of these criteria to order the lectures that are currently
schedulable.

If the candidate set is less than size m, we schedule all the lectures; otherwise, we
choose the m most critical lectures and schedule those-the idea is that they should
be scheduled sooner since they are at the start of longer dependency chains.

403Solution 18.1



ElementsOiProgramminglnterviews.com

Variant 18.1.1: Threads 1 to n execute a method called critical. Beforethis, they
execute a method called rendezvous. The synchronization constraintis that only
one thread can execute critical at a time, and all threads must have completed

In the above code, multiple threads can be in their call to closestInDictionary
which is good because the call may take a long time. Lockingensures that the read
assignment on a hit and write assignment on completion are atomic. Note that
we have to clone cl.osest.Tol.astjtord when assigning to result since otherwise,
closestToLastV1ordmight change beforewe encode it into the response.

22

resp.encodelntoResponse(result);

wLast :: K;
closestToLastWord = result;

result = Spell.closestlnDictionary(w);
synchronized (S2.class) {

if.(result == null) {

result = Arrays.copyOf(closestToLastWord. closestToLastWord.length);
if (w.equals(wLast)) {

String w = req.extractWordToCheckFromRequest();
String [] result = nUll;
synchronized (S2.class) {

public static void service(ServiceRequest req, ServiceResponse resp) {

IIpublic class S2 extends SpellCheckService {
2! static String wLast = null;
3j static String [] closestToLastWord = null;
4;

:1
:1
101
Hi
121

::1
15,

16i
171
lsi

:1

This solution"has a race condition. Suppose Threads A and B run the ser­
vice. Suppose Thread A updates wLast, and then Thread B is scheduled. Now
Thread Breads wLast and closestToLastWord. Since Thread A h~ not updated
cl.osest.rot.astjtord, if wLast equals the check string wpassed to B, the cached
closestToLastWord B returns corresponds to the previous value of ~lLast. The call
to closestToLastl1ord could take quite longor be very fast, depending on the length
and contents of checkWord.Hence it is entirely possible that Thread B reads both
,.Last and closestToLastWord between Thread A's updates them.

A thread-safe solution would be to declare service to be synchronized; in this
case, only one thread could be executing the method and there is no race between
write to wLast and closestToLastWord. This leads to poor performance-only one
thread can be executing at a time.

Thesolution is to lockjust the part of the code that operates on the cachedvalues­
specifically,the checkon the cached value and the updates to the cached values:

121
13 }

Solution 18.1404



ElementsOfProgramminglnterviews.com

-_.
11 class TaskExecutionWebServer {
2 private static final int NTHREADS • 1&$;

The problem with this approach is that we do not control the number of threads
launched. A thread consumes a nontrivial amount of resources, such as the time
taken to start and end the thread and the memory used by the thread. For a lightly­
loaded server, thismay not be an issue but under load, it can result inexceptionsthat
are challenging, if not impossible, to handle.

The right trade-off is to use a thread pool. As the name implies, this is a collection
of threads, the size of which is bounded. Java provides thread pools through the
Executor framework.

10

11 } ;

12 neN Thread(task).start();
13

u
15 }

I class Thr••dPerTaskWebServer {
private static final int SERVBRPORT • 8&8&;
public static void main(String [] args) thrONS IOException {
final ServerSocket serversocket • neN ServerSocket(SERVERPORT);

5 Nhile (true) {
final Socket connection - serversocket.accept();

7 Runnable task = neN Runnable() {
public void rune) {

Worker.handleRequest(connection);

Problem 18.2, pg.145: Suppose you find that the SimpleWebServer has poor perfor­
mance becauseprocessReqfrequently blockson 1/0. What steps could you take to improve
SimpleWebServer's performance?

Solution 18.2:The first attempt to solve this problem might be to have main launch
a new thread per request rather than process the request itself:

Variant 18.1.2: In this problem you are to design a synchronization mechanism for
a pool. This is a data structure that combines requests. Specifically,requests come
from two types of threads. The pool has a capacity of four requests. A thread cannot
have more than one request in the pool. When the pool is full, it must be the case
that requests from both types of threads are present. Exactlyone of the requesting
threads must call the launch functionwhen four requests are in the pool. Each thread
corresponding to a request in the pool should invoke a flush functionbefore launch
is executed. Threads should call flush as late as possible.

executing rendezvous before cri t~cal can be called. Youcan assume n is stored in
a variable n that is accessiblefrom all threads. Design a synchronization mechanism
for the threads. All threads must execute the same code. Threads may call critical
multiple times, and you should ensure that a thread cannot call cri tical a (k + l)-th
time until all other threads have completed their k-thcalls to cri tical.

405Solution 18.2



ElementsOfProgr~gInterviews.com

n innerThread.start();

r.ProcessResponse(respon••);17

18

19 };
W Thread innerThread = new Thread(actualTask);

return error(req);
catch (InterruptedException e) {

II simulate the time taken to perform a computation
Tbread.sleep(delay);:1

51
6

7''I return execu~e(req);
9 }

101public static void Dispa~ch(final
u final
U Runnable task. new Runnable() {
13 public void runO {
14 Runnable actualTask new Runnable()
15 public void run0
16 String response r.execute(request, delay);

I public S~ring execute(String req, long delay) {
try {

Reques~or r, final String request,
long delay) {

Solution 18.3:Our strategy is to launch a thread Tper Requester object. Thread Tin
tumlaunches another thread, 5, which calls execute and ProcessResponse. Thecall
to execute in 5 is wrapped in a try-catch Interrupte<iException lOOPiif execute
completes successfully,ProcessResponse is called on the result.

After launching 5, T sleeps for the timeout interval-when it wakes up, it
interrupts 5. If S has completed, nothing happens, otherwise, the try-catch
InterruptedException calls error.

Code for this is given below:

Problem 18.3,pg.146: Implement a Requester class.The Execute method may take an
indeterminate amount of time to return; it may never return. You need to have a time-out
mechanism for this. Assume Requester objects have an Errormethod that you can invoke.

~
6 public static void main(String[] args) throws IOException {

ServerSocket serversocke~ = new ServerSocket(SERVERPORT);
while (true) {

9 final Socke~ connection serversocke~.accep~();
10 RunnabIe task = new RunnabIe0 {
11 public void runO {
12 Worker.handleRequest(connection);
13
14 };

~ exec.execute(~ask);
16
111
18 }

3 private static final int SERVERPORT = 81988;
private static final Execu~or exec = Executors.newFixedThreadPool(HTHREADS);

Solution 18.3406



ElementsOfProgramminglnterviews.com

Problem 18.5,pg. 146: Implement asynchronization mechanism for thefirst readers-writers
problem.

Solution 18.5:Wewant to indicatewhether the string isbeing read aswell aswhether
the string is being written to. Weachieve this with a pair of locks-LR and LWand a
read counter locked by LR.

A reader proceeds as follows. It locks LR,increments the counter, and releases
LR.After itperforms its reads, it locks LR,decrements the counter, and releasesLR.A
writer locks LW,then performs the following in an infinite loop. It locks LR,checks

Problem 18.4,pg. 146: Develop a Timer class that manages the execution of deferred tasks.
The Timer constructor takes as its argument an object which includes a Run method and
a namefield, which is a string. Timer must support-(1.) starting a thread, identified by
name, at a given time in thefuture; and (2.) canceling a thread, identified by name (the cancel
request is to be ignored if the thread has already started).

Solution 18.4:The two aspects to the design are the data structures and the locking
mechanism.

Weuse two data structures. The first is a min-heap in which we insert key-value
pairs: the keys are run times and the values are the thread to run at that time. A
dispatch thread runs these threads; it sleeps from call to call and may be woken up
if a thread is added to or deleted from the pooL Ifwoken up, it advances or retards
its remaining sleep time based on the top of the min-heap. On waking up, it looks
for the thread at the top of the min-heap-if. its launch time is the current time, the
dispatch thread deletes it from the min-heap and executes it. It then sleeps till the
launch time for the next thread in themin-heap. (Becauseofdeletions, it may happen
that the dispatch thread wakes up and finds nothing to do.)

The second data structure is a hash table with thread ids as keys and entries in
the min-heap as values. If we need to cancel a thread, we go to the min-heap and
delete it. Each time a thread is added, we add it to the min-heap; if the insertion is
to the top of the min-heap, we interrupt the dispatch thread so that it can adjust its
wake up time.

Sincethe min-heap is shared by the update methods and the dispatch thread, we
need to lock it. The simplest solution is to have a single lock that is used for all read
and writes into the min-heap and the hash table.

2'2 try {
23 'thread.sleep (TIIIEOUT)';
24 innerThread.interrupt();
25 catch(InterruptedException e) {

l6 e.printStackTrace();
27
28

2ll } ;
30 new Thread(task).start();
31 }

407Solutiol118.5



ElementsOfi'rogrammingInterviews.col:1

Problem 18.6, pg.147: Implement a synchronization mechanism for the second readers­
writers problem.

RII.lR.notifyO;

:,
27,

281
29

30,

31
32

33
$I

as
36

37

38

39

.0

41
42

~ Task.doSomeThingElse();

synchronized (RW.LW)
boolean done: false;
while (!done) {

synchronized (RW.LR)
if (RII.readCount := 8)

RW.data = new Date().toString();
done: true;
else {
II use waitlnotify to avoid busy waiting
try {

RW .LR.waitO;
catch (InterruptedException e) {
Systell.out.println("InterruptedException in Writer wait");

Task.doSomeThingElse();

::1
18
19' }

20

21 class lidter extends Thread
22 public void run0 {
~ while (true) {

RII.readCount--;
Rli.LR.notifyO;

13

"
IS

Syste•.out.println(RW.data);
synchronized (RII.LR) {

RW.readCount++;
Rli.LR.notifyO;

, class Reader extends Thread
5 public void rune) {
61' while (true) {
7 synchronized (RW.LR)
81
91
1°111
121

1 II LR and LW are static members of type Object in the RW class.
2 II They serve as read and ~rite locks. Tbe static integer
3 II variable readCount in RW tracks tbe number of readers.

to see if the read counter is 0; if so, it performs its write, releases LR, and breaks out
of the loop. Finally, it releases LW.In the code below we use the Java waitO and
notifyO primitives to avoid the CPU cycleswasted in a busy wait.

Solution 18.6408



ElementsOfProgramminglnterviews.com

Problem 18.9,pg.147: Model the barber shop using semaphores and muiexes to ensure
correct behavior. Each customer is a thread, as is the barber.

Solution 18.9:A casual implementation is susceptibleto races. For example, a new
customer may see the barber cutting hair and go to the waiting room. Before this

Problem 18.8,pg.147: Design a synchronization mechanism for A which ensures that P
does not try to add a string into the array if it is full and C doesnot try to remove datafrom
an empty buffer.

Solution 18.8:Thisproblemcanbe solved for a singleproducer and a singleconsumer
with a pair of semaphores-fillCount is incremented and emptyCount is decremented
whenever an item is added to the buffer. If the producer wants to decrement empty­
Count when its count is zero, the producer sleeps. Thenext time an item is consumed,
emptyCount is incremented .and the producer is woken up. The consumer operates
analogously. The Java methods, wait and notify, can be used to implement the
desired functionality.

Inthe presence ofmultiple producers and consumers, the solution above has two
races-two producers can trywriting to the same slot and two consumers can read
from the same slot. Theseraces can be removed by adding mutexes around the insert
and delete calls.

Variant 18.7.1: Categoricalstarvation refers to a phenomenon in which one category
of threads make another category of threads wait indefinitely.BothSolutions 18.5on
Page407and 18.6on the preceding page exhibitcategoricalstarvation, with the read­
ers and writers constituting the categories. Solution 18.7on this page guarantees no
categoricalstarvation. Thread starvation refers to a phenomenon in which a specific
thread waits indefinitelywhile others proceed. SolveProblem 18.7on Page 147with
the added constraint that it is free of thread starvation.

Problem 18.7,pg.147: Implement a synchronization mechanism for the third readers­
writers problem.

Solution 18.7:Wecan achieve fairness between readers and writers by having a bit
which indicates whether a read or a write was the last operation done. If the last
operation done was a read, a reader on acquiring a lock must release the lock and
retry-this giveswriters priority in acquiring the lock;a similar operation is done by
writers.

Note that this solution entails readers and writers having to wait longer than is
absolutely necessary. Specifically,readers may wait even if s is opened for read and
writers may wait even if no one else has a lockon s,

Solution 18.6:Wewant to givewriters the preference.Weachieve this by modifying
Solution 18.5on Page 407to have a reader start by locking LW and then immediately
releasing LW. In this way-a writer who acquires the LW lock is guaranteed tobe ahead
of the subsequent readers.

409Solution 18.9



ElementsOfProgruminglnterviews.com

Problem 18.11, pg.l48: Design a multi-threaded programfor checking the Collatz conjec­
ture. Milke full use of the coresavailable to you. To keep your program from overloading the
system, you should not haue more than n threads running at a time.

Problem 18.10, pg.l48: Implement a synchronization mechanism for the dining philoscr
phers problem.

Solution 18.10: The natural solution is for each resource to have a lock. The problem
arises when each thread i first requests lock i and then lock i + 1 mod n. Since all
locks have already been acquired, the thread deadlocks.

One approach is to have a central controller, which knows exactly which resources
are in use and arbitrates conflicting requests. If resources are not available for a
thread, the controller can reject its request.

A general principle for avoiding livelock is to order the resources and require
that resources be acquired in increasing order and released in decreasing order. For
example, if all threads request simultaneously, Resource n-1will be left unrequested
(since Thread n -1 will request 0 first, and then n -1).Thread n- 2 will then succeed
at acquiring Resource n - 1 since Thread n - 1 will block on Resource O.

This solution is not starvation-free, e.g., Thread 2 can wait forever while Threads
1 and 3 alternate. To guarantee that no thread starves, track of the number of
times a thread cannot execute when its neighbors release their locks. If this number
exceeds some limit, the state of the thread could change to starving and the decision
procedure to enter the critical section is supplemented to require that none of the
neighbors are starving. A philosopher that cannot pick up locks because a neighbor
is starving is effectively waiting for the neighbor's neighbor to finish eating. This
additional dependency reduces concurrency-raising the threshold for transition to
the starving state reduces this effect.

customer gets to there, the barber may complete.the haircut, check the waiting room,
observe it to be empty, and go back to his chair to sleep. This is a form of livelock-ethe
barber and the customer are both idle, waiting for each other. As another example,
in the absence of appropriate locking, two customers may arrive simultaneously, see
the barber cutting hair, and a single vacant seat in the waiting room, and go to the
waiting room to occupy the single chair.

One way to achieve correct operation is to have a single mutex which allows only
one person to change state at a time. The barber must acquire the mutex before
checking for customers; he must release it when he either begins to sleep or begins
to cut hair. A customer must acquire the mutex before entering the shop; he must
release it when he sits in either a waiting room chair or the barber chair.

For a complete solution, in addition to the mutex, we need event semaphores
to record the number of customers in the waiting room and the number of people
getting their hair cut. The event semaphore recording the number of customers in
the waiting room is used to wake up the barber when a customer enters; the event
semaphore recording the number of customers getting a haircut is used to wake up
waiting customers. .

Solution 18.11410



411

ElementsOfProgramminglnterviews.com

21 II Checks an individual number
22 public static boolean CollatzCheck(8igInteger x, Set<Biglnteger> visited) {
n if (x.equals(Biglnteger.ONE» {
24 return true;
~ else if (visited.contains(x»
26 return false;
27

~ visited.add(x);
~ if (x.getLowestSetBit() cc 1) { II odd number

16
11

18 }

19
~ public class Collatz {

+ upper + ")" );" ",System.out.println("(" + lower +

II @Override
12 public void rune) {
13 for (int i clower; i <= upper: ++i) {
M Collatz.CollatzCheck(i, new HashSet<Biglnteger>(»;
15

10

MyRunnable(int lower, int upper) {
this. lower lower;
this.upper = upper;

1 II Performs basic unit of work
2 class MyRunnable implements Runnable {

public int lower;
public int upper;

Solution 18.11:Heuristics for pruning checks on individual integers are discussed
in Solution 17.12on Page 401.The focuson this problem is on implementing amulti­
threaded checker.Wecould have a master thread launch n threads, one per number,
starting with 1,2, ... , x. Themaster thread would keep track of what number needs
to be processed next, and when a thread returned, it could re-assign it the next
unchecked number.

The problem with this approach is that the time spent executing the check in an
individual thread is very small compared to the overhead of communicating with
the thread. The natural solution is to have each thread process a subrange of [I, U].
Wecould do this by dividing [I, U]into n equal sized subranges, and having Thread i
handle the i-th subrange.

The heuristics for checking the Collatz conjecture take longer on some integers
than others, and in the strategy above there is the potential of a situation arising
where one thread takes much longer to complete than the others, which leads to
most of the cores being idle.

A good compromise is to have threads handle smaller intervals, which are still
large enough tooffsetthe thread overhead. Wecanmaintain a work-queue consisting
ofunprocessed intervals, and assigning these to returning threads. TheJavaExecutor
framework is ideally suited to implementing this, and an implementation is given in
the code below:

Solution 18.11



ElementsOfProgrammnglnterviews. com

Problem 18.13, pg.148: Devise a protocol by which hosts can elect a leader from the set
of all hosts participating in the protocol. The protocol should be fast, in that it converges
quickly; it should be efficient, in that it should use few connections and small messages.

Solution 18.13: Think of the hosts as being vertices in a directed graph with an edge
from A to B, ifA initially know B's IP address.

We will study variants of this problem-synchronized or unsynchronized hosts,
and known or unknown bounds on the number of hosts. We will compare solutions
with respect to convergence time, message size, and the number of messages. We
assume the graph is weakly connected (otherwise the problem is unsolvable).

First, assume that the hosts are all synchronized to a common clock (there are

Problem 18.12, pg.l48: Design an algorithm that computes the sequence of transfer» that
minimizes the time taken to transfer a message from the root to all the nodes in the tree.

Solution 18.12: We solve this problem using a straightforward bottom-up recursion.
Let T(u) denote the minimum number of seconds to propagate the message to the
subtree rooted at u. Note that T(u) = 0 if u is a leaf.

Suppose u is not a leaf. Order u's children vo,VI, ... , Vk-l by decreasing transfer
times. It is straightforward to see it is optimum for u to send the messages in this
order. Therefore T(u) = maxosISn-l(T(Vi) + i + 1). The run time is dominated by the
time to sort results from child nodes, leading to an Oin log n) time bound, where n is
the number of nodes in the tree.

~ return CollatzCheck(
M (new Biglnteger("3"».multiply(x).add(Biglnteger.ONE), visited);
~ else { II even numb~r
~ return CollatzCheck(x.shiftRight(l) , visited): II divide by 2
34

35

36
~ public static boolean CollatzCheck(int x, Set<Biglnteger> visited)
~ BigInteger b • Dew Biglnteger(nev Integer(x).toString(»;
39 return CollatzCheck(b, visited);.,
41

42 public static ExecutorService execute() {
~ II Uses the Executor framework for task assignment and load balancing
~ List<Thread> threads: new ArrayList<Thread>();
~ ExecutorService executor = Executors.newFixedThreadPool(NTHREADS):
46 for (int i D fl ; i < (N / RANGESIZE): Hi) {
47 Runnable worker = new "yRunnable(i * RANGESIZE + I,
~ (i + 1) * RANGESIZE);
49 executor.execute(worker);
S)

51 executor.shutdownO;
52 return executor;
35
54

412 Solution 18.13



ElementsOfProgramminglnterviews.com

standard protocols which can allow computers to.synchronize within a few tens of
milliseconds; alternately, Global Positioning System (GPS)signals can be used to
achieve even tighter synchronization).

Wefirst consider the casewhere the number of hosts n and the diameter D of the
network is known to all the hosts. Our algorithm will elect the host with the highest
IP address as the leader.

Sincehosts are synchronized, we can proceed in rounds. The simplest algorithm
for leader election is flooding-each host keeps track of the highest IP address it
knows about; the highest IP address is initialized to its own IF address. In each
round, host propagates the highest IP address it knows of to each of its (initial)
neighbors. After D rounds, if the highest IP address a host knows of is its own, it
declares itself the leader.

Here is a small improvement to this algorithm to reduce the number ofmessages
sent-a host sends out an update only when the highest IP address it knows about
changes.
It takes D rounds to converge and Dm messages are communicated, where m is

the number of edges in the graph. The number of iterations to convergence can be
reduced to lgD by having each host send the set of hosts it has discovered in each
iteration to each host it knows about. This leads to faster convergence since the
distance to the frontier of undiscovered hosts doubles in each iteration. However
it requires much more communication-the final round involves n hosts sending n
messages and eachmessage has the ids of n hosts. Furthermore, unlike the original
algorithm, this variant requires messages to potentially traverse longer routes (in the
original algorithm, a host communicated only with the hosts it knew about initially).
The algorithmworks correctlyeven ifDisjust an upper bound on the true diameter.

Whenn and Darecompletelyunknown, leader electioncanbe performed through
a distributed BPS.Each host starts by sending out a search message to all of its
outgoing neighbors. Inany round, if a host receives a searchmessage, it choosesone
of the hosts fromwhich it receiveda search as its parent and informs its parent about
its selection. (Sincewe are assuming an IPnetwork, a child can directlycommunicate
its selection back to its parent.)

This procedure constructs a BPStree for eachhost. Completion can be detected by
having hosts respond to searchmessages with both a parent or non-parent message
as well as a notification of completion from its children. When BPScompletes, each
host has complete knowledge of the graph and can determine the leader.

Now,we consider the asynchronous case. The floodingalgorithms we considered
earlier cannot be directly generalized to asynchronous hosts because there is no
notion of a round. However we can simulate rounds by having hosts tag their
messages with the round number. A host waits to receive all round r messages
from all its neighbors before performing its round r update. This algorithm cannot
avoid sending messages if the highest IP it knows about does not change in round r
since the neighbors depend on receiving all their round r messages before they can
advance.

413Solution 18.13



ElementsOfProgramdingInterviews.co~

Problem 18.14, pg.l49: How would you sort a billion 1000 byte strings? How about a
trillion 1000 byte strings?

Solution 18.14: A billion 1000byte strings cannot fit in the RAM of a single machine,
but can fit on the hard drive of a single machine. Therefore, one approach is to
partition the data into smaller blocks that fit in RAM, sort each block individually,
write the sorted block to disk, and then combine the sorted blocks. The sorted
blocks can be merged using for example Solution 10.1 on Page 248. The UNIX sort
program uses these principles when sorting very large files, and is faster than direct
implementations of the merge-based algorithm just described.

1£the data consists of a trillion 1000byte strings, it cannot fit on a single machine­
it must be distributed across a cluster of machines. The most natural interpretation
of sorting in this scenario is to organize the data so that lookups can be performed
via binary search. Sorting the individual datasets is not sufficient, since it does not
achieve a global ordering-lookups entail a binary search on each machine. The
straightforward solution is to have one machine merge the sorted datasets, but then
that machine will become the bottleneck.

A solution which does away with the bottleneck is to first reorder the data so
that the i-th machine stores strings in a range, e.g., Machine 3 is responsible for
strings that lie between daily and ending. The range-to-machine mapping R can be
computed by sampling the individual files and sorting the sampled values. 1£ the
sampled subset is small enough, it can be sorted by a single machine. The techniques
in Solution 11.13 on Page 89 can be used to determine the ranges assigned to each
machine. Specifically, let A be the sorted array of sampled strings. Let there be n
machines. Define r, = iA[lAl/n]. Then Machine i is responsible for strings in the
range [ri, ri+1). If the distribution of the data is known a priori, e.g., it is uniform, the
sampling step can be skipped.

The reordering can be performed in a completely distributed fashion by having
each machine route the strings it begins with to the responsible machines.

After reordering, each machine sorts the strings it stores. Consequently queries
such as lookups can be performed by using R to determine which individual machine
to forward the lookup to.

Variant 18.13.2: A set of soldiers is arranged in a line. All soldiers who are not at the
two ends have a copy of the same finite state machine; the soldiers at the ends may
have different finite state machines. The finite state machines operate in lock-step,
i.e., they all update on a common clock. Each of these finite state machines has at
least three states-quiescent, excited, and firing. Design the finite state machines so
that when all soldiers except for one at an end begin in a quiescent state, and the
remaining soldier is in the excited state, all soldiers will enter the firing state at the
same instant at some time in the future.

e-Variant 18.13.1: Devise a protocol by which a collection of hosts on the Internet
can discover each other.

Solution 18.14414



ElementsOiProgrilllllllingInterviews.com

Problem 19.1,pg.150: Design a program tltat produces high quality mosaics with minimal
compute time.

Solution 19.1: A good. way to begin is to partition the image into s X s-sized squares,
compute the average color of each such image square, and then find the tile that is
closest to it in the color space. Distance in the color space can be the L2-distance
over the Red-Green-Blue (RGB) intensities for the color. As you look more carefully
at the problem, you might conclude that it would be better to match each tile with
an image square that has a similar structure. One way could be to perform a coarse
pixelization (2x2 or'3x3) of each image square and finding the tile that is "closest" to
the image square under a distance function defined over' all pixel colors. In essence,
the problem reduces to finding the closest point from a set of points in a k-dimensional
space.

Given m tiles and an image partitioned into n squares, then a brute-force approach
would have O(mn) time complexity. You could improve on this by first indexing the

Problem 18.15,pg. 149: Imple~nt crawling under the constraint that in any given minute
yOU!'crawlers do not request more than. b bytes from any website.

Solution 18.15: This problem, as posed, is ambiguous.
- Since we usually download one file in one request, if a file is greater than bbytes,

there is no way we can meet the constraint of serving fewer than b bytes every
minute, unless we can work with the lower layers of networking stack such
as the transport layer or the network layer. Often the system designer could
look at the distribution of file sizes and conclude that this problem happens so
infrequently that we do not care. Alternately, we may choose to download no
more than the first b bytes of any file.

- Given that the host's bandwidth is a resource for which there could be con­
tention, one important design choice to be made is how to resolve a contention.
Do we let requests get served in first-come first-served order or is there a no­
tion of priority? Often crawlers have a built-in notion of priority based on how
important the document is to the users or how fresh the current copy is.

One way of doing this could be to maintain a permission server with which each
crawler checks to see if it is okay to hit a particular host. The server can keep an
account of how many bytes have been downloaded from the server in the last minute
and not permit any crawler to hit the server ifwe are already close to the quota. Ifwe
.do not care about priority, then we can keep the interface synchronous where a server
requests permission to download a file and it immediately gets approved or denied.
Ifwe care about priorities, then the server may enqueue the request and inform the
crawler when i.t is alright to download the file. The queues at the permission server
may be based on priorities.

If the permission selVer becomes a bottleneck, we can use multiple permission
servers such that the responsibility of a given host is' decided by applying a hash
function to the host name and assigning it to a particular server based on the hash
code.

415Solutio1l19.1



ElementsOiProgrammingInterviews.com

Problem 19.3,pg.151: You aregiven a large set of strings S. Given a query string Q, how

Problem 19.2,pg.150: Given a million documents with an average size of 10 kilobytes,
design a program that am efficiently return the subset of documents containing a given set
of words.

Solution 19.2: The predominant way of doing this is to build inverted indices. In
an inverted index, for each word, we store a sequence of locations where the word
occurs. The sequence itselfcould be represented as an array or a linked list. Location
is defined to be the document ill and the offset in the document. The sequence is
stored in sorted order of locations (first ordered by document ill, then by offset).
Whenwe are looking for documents that contain a set of words, what we need to do
is find the intersection of sequences for each word. Sincethe sequences are already
sorted, the intersection can be done in time proportional to the aggregate length of
the sequences. Welist a few optimizations below.

- Compression-<ompressing the inverted index helps both with the ability to
index more documents as well as memory locality (fewer cachemisses). Since
we are storing sorted sequences, one way of compressing is to use delta com­
pression where we only store the differencebetween the successive entries.
The deltas can be represented in fewer bits.

- Caching-the distribution ofqueries is usually fairlyskewed and ithelps a great
deal to cache the results of some of the most frequent queries.

- Frequency-based optimizatilm-since search results often do not need to return
every document that matches (only top ten or so), only a fraction of highest
quality documents can be used to answer most of the queries. This means that
we can make two inverted indices, one with the high quality documents that
stays in RAMand one with the remaining documents that stays on disk. This
way ifwe can keep the number ofqueries that require the secondary index to a
small enough number, then we can still maintain a reasonable throughput and
latency.

- Intersection order-since the total intersection time depends on the total size of
sequences, it would make sense to intersect the words with smaller sets first.
For example, if we are looking for "USAGDP2009",it would make sense to
intersect the lists for GDP and 2009before trying to intersect the sequence for
USA.

Wecould also build a multilevel index to improve accuracy on documents. For a
high priority web page, we can decompose the page into paragraphs and sentences,
which are indexed individually. That way the intersections for the words might be
within the same context. We can pick results with closer index values from these
sequences. See the sorted array intersection problem 13.5on Page 99 and digest
problem 12.14on Page 96 for related issues.

tiles using an appropriate search tree. You can also run the matching in parallel
by partitioning the original image into subimages and searching for matches on the
subimages independently.

Solution 19.2416



ElementsOfProgramminglnterviews.com

_ Problem 19.4, pg.151: How would you build a spelling correction system?

Solution 19.4: The basic idea behind most spelling correction systems is that the
misspelled word's Levenshtein distance from the intended word tends to be very
small (one or two edits). Hence if we keep a hash table for all the words in the
dictionary and look for all the words that are within two Levenshtein distances of
the text, most likely,the intended word will be found in this set. If the alphabet has
m characters and the search text has n characters, wewould need to perform roughly
nm2 hash table lookups. The intersection of set of all strings at a distance of two or

Solution 19.3: This is a well studied problem because of its implications to building
a high speed Internet backbone. A number of approaches have been proposed and
used in IP routers. One simple approach is to build a trie data structure such that
we can traverse the trie for an IP address till we hit a node that has a labeL This
essentially requires one pointer indirection per bit of input. The lookup speed can
be improved a little at the cost of memory by making fatter nodes in the trie that
consume multiple bits at a time. SeeSolution 9.14on Page 247for more details.

A number of approaches have been tried in software and hardware to speed the
lookup process:

- Binary search on hash tables-we can have one hash table for each possible
prefix length and then do a search for the longest matching prefixby searching
through the hash tables. This can take as many as 32 hash table lookups in the
worst case. One way to reduce the number of lookups is to perform binary
search for the longest matching prefix. For binary search to work, we have
to insert additional prefixes in the hash tables to ensure that if a longer prefix
.exists,binary searchdoes not terminate early. Thiscan be done by performing a
binary search for eachprefix and inserting additional dummy entries wherever
the binary search terminates early. This could inflate the size of hash tables by
a factorof 1932 = 5; in practice the blowup is much smaller.

- Ternary Content Addressable Memory (fCAM). In a conventional RAM, the
user supplies an address, and the RAM outputs the data stored at that address.
Ina ContentAddressableMemory (CAM),theuser supplies akey,and theCAM
returns a Booleanindicating if the key is stored at any address. Depending on
the CAM,itmay also return the lowest address that stores that key,and possibly
a corresponding value. ATCAMisa specializedCAM,where instead ofstoring
Os and Is, a single unit of memory can also store a third state called the "don't
care" state. The contents of memory can be addressed by partial contents of
the memory. A TCAMwhere each memory location stores 32 ternary values
can be used to store prefixes. Each prefix is padded with "don't care" bits to
make it 32 ternary values. Thisway,when we use an IP address to address the
TCAM'we get all the matching prefixes. If we store longer prefixes at lower
memory locations, the TCAMwill return the longest matching prefixes.

would you design a system that can quickly identify the longest string pES that is a prefix
ofQ?

417Solution 19.4



ElementsOfProgrammingInterviews.com

Problem 19.6,pg.152: How would Y(JUimplement 1i3X?
Solution 19.6: Note that the problem does not ask for the design of Tax, which
itself is a complex problem involving feature selection, and language design. There
are a number of issues common to implementing any such program: programming
language selection, lexing and parsing input, error handling, macros, and scripting.

Twokey implementation issues specificto TI;Xare a specifyingfonts and symbols
(e.g.,A.b,f,Lt,ltI),and assembling a document out of components.

Problem 19.5,pg.151: Design a stemming algorithm that isfast and effective.

Solution 19.5: Stemming is a large topic. Here we mention some basic ideas related
to stemming, however this is in no way a comprehensive discussion on stemming
approaches.

Moststemming systems are based on simple rewrite rules, e.g., removesuffixesof
the form lies", "s", and "ation". Suffixremoval does not always work. For example,
wolves should be stemmed to wolf. To cover this case, we may have a rule that
replaces the suffix"ves" with "f".

Most rules amount to matching a set of suffixesand applying the corresponding
transformation to the string. Oneway ofefficientlyperforming this is tobuild a finite
state machinebased on all the rules.

A more sophisticated system might have exceptions to the broad rules based on
the sten:tmatching somepatterns. The Porter stemmer, developed by Martin Porter,
is considered to be one of the most authoritative stemming algorithms in the English
language. Itdefines several rules based on patterns of vowels and consonants.

Other approaches include the use of stochasticmethods to learn rewrite rules and
n-gram based approaches where we look at the surrounding words to determine the
correct stemming for a word.

less from a word and the set of dictionary words may be large. It is important to
provide a ranked list of suggestions to the users, with the most likely candidates are
at the beginning of the list. There are several ways to achieve this.

- Typing errors model-often spelling mistakes are a result of typing errors.
Typingerrors can be modeled based on keyboard layouts.

- Phonetic modeling-a big class of spelling errors happen when the person
spelling it knows how the words sounds but does not know the exact spelling.
Insuch cases, ithelps to map the text to phonemes and then find all the words
that map to the same phonetic sequence.

- History of refinements-often users themselves provide a great amount of
data about themost likelymisspellings by first entering amisspelledword and
then correcting it. This historic data is often immensely valuable for spelling
correction.

- Stemming-often the size of a dictionary can be reduced by keeping only the
stemmed version of each word. (Thisentails stemming the query text.)

Solutioll19.6418



ElementsOfProgrammingInterviews.com

int file_size = file_ptr.tellg(), newline_count = $:
string output; // stores the last tail_count lines
1/ Reads Eile in reverse looking Eor '\n'

8 for (int i = &; i < file_size; ++i) {

file_ptr.seekg($, ios::end):

Problem 19.7,pg.152: Implement the UNIX tail command.

Solution 19.7: The natural approach to this problem is to read the input one line
at a time. Each line can be stored in a queue-when the queue size is equal to the
number of desired lines, each additional line is inserted at the tail, and the line at the
head is deleted. (Acircular buffer is a particularly appropriate implementation for
this application.) The drawback of this approach is that it entails reading the entire
filewhich could be huge.

TheUNIXOSprovides the ability to perform random accesson a file,essentially
allowing us to treat the fileas an array of characters, albeit with much slower access
times. This capability is exposed to C++ programmers through the seekg ("seek
get") function in the Lst reamlibrary. In the codebelow,we use seekg to process the
file in reverse order starting the end of the file. We store the characters in a string,
stopping when the specifiednumber of lines have been read.

11 string tail(C~;-;; string &file_nalle ,'-c-on-s-t-i;':-t-&-ta-i-l-_-co-u-n-t-)---------,

2 fstream file_ptr(file_nalle.c_str(»;
3

Focusing on the second aspect, a reasonable abstraction is to use a rectangular
bounding box to describe components. Thedescription is hierarchical: each individ­
ual symbol is a rectangle, lines and paragraphs are made out of these rectangles and
are themselves rectangles, as are section titles, tables and table entries, and included
images. A key algorithmic problem is to assemble these rectangles,while preserving
hard constraints on layout, and soft constraints on aesthetics. See also Problem 15.13
on Page 121for an example of the latter.

Turning our attention to symbol specification, the obvious approach is to use
a 20 array of bits to represent each symbol. This is referred to as a bit-mapped
representation. The problem with bit-mapped fonts is that the resolution required
to achieve acceptable quality is very high, which leads to huge documents and font­
libraries. Differentsizes of the same symbol need to be individually mapped, as do
italicized and bold-faceversions.

A better approach is to define symbols using mathematical functions. A rea­
sonable approach is to use a language that supports quadratic and cubic functions,
and elementary graphics transformations (rotation, interpolation, and scaling). This
approach overcomes the limitations ofbit-mapped fonts-parameters such as aspect
ratio, font slant, stroke width, serif size, etc. can be programmed.

Other implementation issues include enabling cross-referencing, automatically
creating,indices, supporting colors, and outputting standard page description for­
mats (e.g.,PDF».

Donald Knuth's book "Digital Typography" describes in great detail the design and
implementation of TJY<.

419Solution 19.7



E1ementsOfProor~gInterviews.com

Problem 19.9,pg.152: Design a systemthat can compute the ranks of tenbillion web pages

Variant 19.8.1: -Design an online music identification service.

Problem 19.8,pg.152: Design afeature thllt allows a studio toenter a set V of videos that
belong to it,and todetermine which videos in the YouTV.comdatabase maicn videos in V.

Solution 19.8: If we replaced videos everywhere with documents, we could use
the techniques in Solution 12.13 on Page 286, where we looked for near duplicate
documents by computing hash codes for each length-ksubstring.

Videos differ from documents in that the same content may be encoded in many
different formats, with different resolutions, and levels of compression.

Oneway to reduce the duplicate video problem to the duplicate document prob­
lem is to re-encode all videos to a common format, resolution, and compression
level. This in itself does not mean that two videos of the same content get reduced to
identical files-the initial settings affect the resulting videos. However, we can now
"signature" the normalized video.

A trivial signature would be to assign a 0 or a 1 to each frame based on whether
it has more or less brightness than average. A more sophisticated signature would
be a 3 bit measure of the red, green, and blue intensities for each frame. Even more
sophisticated signatures can be developed, e.g.,by taking into account the regionson
individual frames. The motivation for better signatures is to reduce the number of
false matches returned by the system, and thereby reduce the amount of timeneeded
to review the matches. .

The solution proposed above is algorithmic. However, there are alternative ap­
proaches that could be effective: letting users flag videos that infringe copyright
(and possibly rewarding them for their effort), checking for videos that are iden­
tical to videos that have previously been identified as infringing, looking at meta­
information in the video header, etc.

file_ptr.seekg(file_size - i - 1, ios::beg):
10 char c :
II file_ptr.get(c):
~ if (c •• '\n') {
U ++newline_count:
14 if (newline_count > tail_count) {
15 brealt:
16
17
18 output.pusb..back(c);
19
W II Reverse the output string using tbe reverse function
21 II from the <algorithm> library in STL. Tbe arguments
u II are iterators to the start and end of String object.
D reverse(output.begin(), output.end());
24 return output:
25 }

Solution 19.9420



ElementsOfProgrammingInterviews.com

Problem 19.10,pg.152: Design a system for maintaining a set of prioritized jobs thllt
implements thefollawing API:

1. Insert a new job with a given priority.
2. Delete a job.
3. Find the highest priority job.

Each job has a unique ID.Assume the set cannot fit into a single machine's memory.

Solution .19.10: If we have enough RAM on a single machine, the most simple
solution would be to maintain amin-heap where entries are ordered by their priority.
An additional hash table can be used to map jobs to their corresponding entry in the
min-heap to make deletions fast.

in a reasonable amount of time.

Solution 19.9: Since the web graph can have billions of vertices and it is mostly
a sparse graph, it is best to' represent the graph as an adjacency list. Building
the adjacency list representation of the graph may require a Significantamount of
computation, depending upon how the information is collected. Usually, the graph
is constructed by downloading the pages on the web and extracting the hyperlink
information from the pages. Sincethe URLof a page can vary in length, it is often a
good idea to represent the URLby a hash code.

Themost expensive part of the PageRank algorithm is the repeated matrix multi­
plication. Usually, it is nof possible to keep the entire graph information in a single
machine's RAM.Twoapproaches to solving this problem are described below.

- Disk-based sorting-we keep the column vector X in memory and load rows
one at a time. Processing Row i simply requires adding At"X, to X, for each
j such that AI,j is not zero. The advantage of this approach is that if the
column vector fits in RAM, the entire computation can be performed on a
single machine. This approach is slow because it uses a single machine and
relies on the disk.

- Partitioned graph-we use n servers and partition the vertices (web pages)
into n sets. This partition can be computed by partitioning the set of hash
codes in such a way that it is easy to determine which vertex maps to which
machine. Given this partitioning, each machine loads its vertices and their
outgoing edges intoRAM.Eachmachine alsoloads theportion of the PageRank
vector corresponding to the vertices it is responsible for. Then each machine
does a local matrix multiplication. Some of the edges on each machine may
correspond to vertices that are owned by other machines. Hence the result
vector contains nonzero entries for vertices that are not owned by the local
machine. At the end of the local multiplication it needs to send updates to
other hosts so that these values can be correctly added up. The advantage of
this approach is that it can process arbitrarily large graphs.

PageRank runs in minutes on a single machine on the graph consisting of the six
millionpages that constituteWikipedia. It takes roughly 70iterations to convergeon
this graph. Anecdotally, PageRank takes roughly 200 iterations to converge on the
web graph.

421Solution 19.1Q



E1ementsOfProgr~gInterviews.com

Problem 19.12,pg.153: Jingle, a search engine startup, wants tomonetize its search results
by displaying advertisements alongSide search results. Design an online advertising system
for Jingle.

Problem 19.11, pg.153: You have guaranteed your clients that 99% of their requests will
be seroiced in less than one second. How would you design a system tomeet this requirement
with minimal cost?

Solution 19.11: Suppose at a given time no more than a fixed number of requests can
be served concurrently; pending requests must wait for a slot to open up before they
can be served. It is important to queue requests in such a way that the requests that
take a long time to serve do not block a large number of short requests behind them.

Suppose the time it takes for the server to process a request is a known easy-to­
compute function of the internals of the request, and the service time follows a Pareto
distribution. In such cases, the 99-th percentile latency is dramatically reduced by
maintaining a short-request queue and a long-request queue. A threshold is used
to assign requests to queues. Requests that take longer than the threshold go to
the long-request queue; the remainder are assigned to the short-request queue. We
pick the threshold to make most requests go to the queue of short requests queue.
The requests in the short-request queue are never blocked behind a long-running
request. The longer requests do have longer to wait, but overall this strategy is
extremely effective at reducing the 99-th percentile latency.

Often the system designer does not know how long a given request will take. Even
in this case, it is advantageous to keep two queues. When a request comes in, it is put
in the short-request queue. If it takes longer than a certain threshold T" it is canceled
and added to the long-request queue. Simulation studies and experimentation can
be used to derive a suitable choice for Te.

A more scalable solution entails partitioning the problem across multiple ma­
chines. One approach is to apply a hash function to the job ids and partition the
resulting hash codes into ranges, one per machine. Insert as well as delete require \
communication with just one server. To do extract-min, we send a lookup minimum
message to all the machines, infer the min from their responses, and then delete it.

At a given time many clients may be interested in the the highest priority event,
and it is challenging to distribute this problem well. If many clients are trying to
do this operation at the same time, we may run into a situation where most clients
will find that the min event they are trying to extract has already been deleted. If
the throughput of this service can be handled by a single machine, we can make one
server solely responsible for responding to all the requests. This server can prefetch
the top hundred or so events from each of the machines and keep them in a heap.

In many applications, we do not need strong consistency guarantees. We want to
spend most of our resources taking care of the highest priority jobs. In this setting,
a client could pick one of the machines at random, and request the highest priority
job. This would work well for the distributed crawler application. It is not suited to
event-driven simulation because of dependencies.

Solution 19.12422



ElementsOfProgramminglnterviews.com

Solution 19.13:The key technical challenge in this problem is to come up with the
list of articles-the code for adding these to a sidebar is trivial.

Problem 19.13,pg.l53: Design a system that automatically generates a sidebar of related
articles.

Solution 19.12:Reasonable goals for such a system include
- providing users with the most relevant ads,
- providing advertisers the best possible return on their investment, and
- minimizing the cost and maximizing the revenue to Jingle.
Twokey components for such a system are:
- The front-facing component, which advertisers use to create advertisements,

organize campaigns, limit when and where ads are shown, set budgets, and
create performance reports.

- The ad-serving system,which selectswhich ads to show on the searches.
The front-facingsystem can be a fairly conventional web application, i.e., a set of

web pages, middleware that responds to user requests, and a database. Key features
include:

- User authentication-a way forusers to createaccountsand authenticate them­
selves. Alternately,use an existing single sign-on login service, e.g., Facebook
or Google.

- User input-a set of form elements to let advertisers specify ads, advertising
budget and search keywords to bid on.

- Performancereports-a way togenerate reports on how the advertiser's money
is being spent.

- Customer service-seven the best of automated systems require occasionalhu­
man interaction, e.g., ways to override limits on keywords. This requires an
interface for advertisers to contact customer service representatives, and an
interface for those representatives to interact with the system.

The whole front-end system can be built using, for example, HyperTextMarkup
Language (HTML)and JavaScript. A commonly used approach is to use a LAMP
stack on the server-side: Linux as the OS,Apache as the HTTPserver,MySQLas the
database software, and PHP for the application logic.

The ad-serving system is less conventional. The ad-serving system would build a
specialized data structure, such as a decision tree, from the ads database. It chooses
ads from the database of ads based on their "relevance" to the search. Inaddition
to keywords, the ad-serving systems can use knowledge of the user's searchhistory,
how much the advertiser is willing to pay, the time of day, user locale, and type of
browser. Many strategies can be envisioned here for estimating relevance, such as,
using information retrieval or machine learning techniques that learn from past user
interactions.

The ads could be added to the search results by embedding JavaScript in the
results page. This JavaScript pulls in the ads from the ad-serving system directly.
This helps isolate the latency of serving search results from the latency of serving ad
results.

423Solution 19.13



ElementsOfProgramminglnterviews.co.

Problem 19.14, pg.l54: Design a driving directions service with a web interface.

Solution 19.14: At its core, a driving directions service needs to store the map as a
graph, where each intersection and street address is a vertex and the roads connecting
them are edges. When a user enters a starting address and an ending address, it finds
the corresponding vertices and finds the shortest path connecting the two vertices
(for some definition of shortest). Issues include:

- Address normalization-a given address may be expressed by the user in
different ways, for example, "street" may be shortened to "st", there may not
be a city and state, just zip code or vice versa. We need a way to normalize
the addresses to a standard format. Sometimes an underspecified address may
need to be mapped to some concrete address, for example, a city name to the
~~~ .

- Definition of shortest-different users may have different preferences for rout­
ing, for example, shortest distance or fastest path (considering average speed
on the road), and avoiding use of freeways. Each of these preferences can be
captured by some notion of edge length.

- Approximate shortest distance-given the enormity of a graph representing
all the roads in a large country, it would be fairly difficult for a single server to
compute the shortest path using standard shortest path algorithms and return
in a reasonable amount of time. However using the knowledge that most long

One suggestion might be to add articles that have proven to be popular recently.
Another is to have links to recent news articles. A human reader at Jingle could tag
articles which he believes to be significant. He could also add tags such as finance,
sports, and politics, to the articles. These tags could also come from the HTML
meta-tags or the page title.

We could also provide randomly selected articles to a random subset of readers
and see how popular these articles prove to be. The popular articles could then be
shown more frequently.

On a more sophisticated level, Jingle could use automatic textual analysis, where
a similarity is defined between pairs of articles-this similarity is a real number and
measures how many words are common to the two. Several issues come up, such as
the fact that frequently occurring words such as "for" and "the" should be ignored
and that having rare words such as "arbitrage" and "diesel" in common is more
significant than having say, "sale" and "international".

Textual analysis has problems, such as the fact that two words may have the same
spelling but completely different meanings (anti-virus means different things in the
context of articles on acquired immune deficiency syndrome (AIDS) and computer
security). One way to augment textual analysis is to use collaborative filtering­
using information gleaned from many users. For example, by examining cookies
and timestamps in the web server's log files, we can tell what articles individual
users have read. If we see many users have read both A and B in a single session,
we might want to recommend B to anyone reading A. For collaborative filtering to
work, we need to have many users.

Solution 19.14424

ElementsOfProgramminglnterviews.com

Problem 19.16,pg.154: Design an online poker playing service for Clump Enterprises.
Describe both the system architecture and a set of classes.

Solution 19.16: An online poker playing service would have a front-end system
which users interact with and a back-end system which runs the games, manages
money;and looks for fraud.

The front-end system would entail a VI for account management-this would
cover first-time registration, logging-in, managing online persona, and sending or
receivingmoney. In addition, there would be the game playing UI-this could be as
simple as someHTMLrendering of the state of the game (cards inhand, cards on the
table, bets) and a form to enter a bet. A more sophisticated VI might use JavaScript

Problem 19.15,pg.154: Design an efficient way of copying one thousand files each 100kilo­
bytes in size from a single lab server to each of 1000seroers in a distant data center.

Solution 19.15:Assume that the bandwidth from the labmachine is a limiting factor,
It is reasonable to first do trivial optimizations, such as combining the articles into a
single fileand compressing this file.

Opening 1000connections from the lab server to the 1000machines in the data
center and transferring the latest news articles is not feasible since the total data
transferred will be approximately 100gigabytes (without compression).

Sincethe bandwidth between machines in a data center is very high, we can copy
the file from the lab machine to a single machine in the data center and have the
machines in the data center complete the copy. Instead of having just one machine
serve the file to the remaining 999machines, we can have each machine that has
received the file initiate copies to the machines that have not yet received the file. In
theory, this leads to an exponential reduction in the time taken to do the copy.

Several additional issues have to be dealt with. Should amachine initiate further
copies before it has received the entire file? (This is tricky because of link or server
failures.) How should the knowledge of machines which do not yet have copies of
the file be shared? (There can be a central repository or servers can simply check
others by random selection.) If the bandwidth between machines in a data center is
not a constant, how should the selectionsbe made? (Serversclose to each other, e.g.,
in the same rack, should prefer communicating with each other.)

Finally,it should bementioned that there areopen sourcesolutions to thisproblem,
e.g.,Unison and BitTorrent,which would be a good place to start.

paths go through a standard system of highways and the fact that the vertices
and edges in the graph represent points in Euclidean space, we can devise
some clever approximation algorithms that run much faster.

The imagery displayed on the web VI can be made out of "tiles"-smaller individ­
ual images. JavaScript handlers pull in more tiles when the user requests a zoom
or moves to a neighboring region. Tiles can be pre-fetched to improve perceived
responsiveness.

425Solution 19.16

ElementsOfProg.rammingInterviews. COlli

Problem 19.17, pg.154: Design the World Wide Web. SpecijiCQlly, describe what happens
when you enter a URL in a browser address bar, and press return.

Solution 19.17: At the network level, the browser extracts the domain name com­
ponent of the URL, and determines the IP address of the server, e.g., through a call
to a Domain Name Server (DNS), or a cache lookup. It then communicates using

to animate the dealing of cards, to change the expression on player's images, and to
display status messages.

The back-end needs to form tables of players, shuffle in a truly random manner,
deal correctly, check if the player's moves are legal, and update player's finances. It
can be implemented using, for example, a Java serviet engine which receives HTTP
requests, sends appropriate responses, and updates the database appropriately.

One of the big challenges in such a system is fault-tolerance. On the server side,
there exist standard techniques for fault-tolerance, such as replication.

On the client side, there exists the possibility that a player may realize he is in
a poor situation and claim that his Internet connection went down. This can be
resolved by having a rule that the server will bid on the player'S behalf if the player
does not respond quickly enough. Another possibility is having the server treat the
disconnected player as being in the game but not requiring any more betting of him.
This clearly can be abused by the player, so the server needs to record how often a
player'S connection hangs in a way that is favorable to him.

Collusion among players is another serious problem. Again, the server logs can be
mined for examples of players working together to share knowledge of their cards or
squeeze other players out. In addition, players can themselves flag suspicious play
and customer service representatives can investigate further.

Random number generation is an intensely studied problem but is still often
done wrong. A fairly frequent problem is using the ID of the process to seed the
random number generator, which means that there are not more than 32768 possible
sequences of shuffles on most UNIX systems. This is much less than the 52! possible
card sequences.

Now we turnour attention to class design. We begin with the Simplest classes: a
card class and a deck of cards class. The first has two data members, the suit and the
rank, both of which should be enumerated types. The second has a single data field,
namely a list of cards; appropriate member functions would be a shuffling routine
and a deal n cards function.

Players are modeled by a class that specifies their current hand, and the amount of
money they have. Attributes such as name, picture, and location, are best inherited
from a user class. Methods include actions to bet/fold, and request cards.

By the rules of poker, a player can bet all that he has left and remain inthe game,
getting the corresponding share of the pot if he wins. Therefore the pot class should
specify how much money has been bet, and who it has been bet by.

The game class itself consists of a deck, a list of players, and a pot. It is responsible
for ensuring that players take an appropriate amount of time to play, and that all
moves are legal

Solution 19.17426

ElementsOfProgramminglnterviews.com

Problem 20.2, pg.156: Let A be an array of n distinct elements. Design an algorithm t11at
returns a subset of k elements of A. All subsets should be equally likely. Use as few calls to
the random number generator as possible and use 0(1) additional storage. You can return
the result in the same array as input.

Problem 20.1, pg. 156: Does the following process yield a uniformly random permutation
of A? "For i E {O,l, ... , n - 1}, swap A[i] with a randomly chosen element of A." (The
randomly chosen element could be i itself)

Solution 20.1: Itdoes not yield all permutations with equal probability. One way to
see this is to consider the case n = 3. The number of permutations is 31= 6. The total
number of ways in which we can choose the elements to swap is 33 = 27 and all are
equally likely. Since 27 is not divisible by 6, some permutations correspond to more
ways than others, ergo not all permutations are equally likely.

The process can be fixed by selecting elements at random and moving them to the
end, similar to how we proceeded in Problems 20.2 on Page 156 and 20.7 on Page 157.

the HTTP protocol with the server. HTTP itself is built on top of TCP/IP, which is
responsible for routing, reassembling, and resending packets, as well as controlling
the transmission rate.

The server determines what the client is asking for by looking at the portion of
the URL that comes after the domain name, and possibly also the body of the HTTP
request. The request may be for something as simple a file, which is returned by
the webserver; HTTP spells out a format by which the type of the returned file is
specified. For example, the URL http://go.comlimgslabc.png may encode a request for
the file whose hierarchical name is Imgs/abc.png relative to a base directory specified
at configuration to the web server.

The URL may also encode a request to a service provided by the web server. For
example, http://go.comllookuplfllght?num=UA37.clty-AUSis a request to the lookup/flight
service, with an argument consisting of two attribute-value pair. The service could
be implemented in many ways, e.g., Java code within the server, or a Common Gate­
way Interface (CGI) script written in Perl. The service generates a HTTP response,
typically HTML, which is then returned to the browser ..This response could encode
data which is used by scripts running in the bro~ser. Common data formats include
JavaScript Object Notation aSON) and Extensible Markup Language (XML).

The browser is responsible for taking the returned HTML and displaying it on the
client. The rendering is done in two parts. First, a parse tree (the Document Object
Model (OOM» is generated from the HTML, and then a rendering library "paints"
the screen. The returned HTML may include scripts written in JavaScript. These
are executed by the browser, and they can perform actions like making requests
and updating the DaM based on the responses-this is how a live stock ticker is
implemented. Styling attributes (Cascading Style Sheets (CSS» are commonly used
to customize the look of a page.

Many more issues exist on both the client and server side: securi t}'- cookies, HTML
form elements, HTML styling, and handlers for multi-media content, to name a few.

427Solution 20.2

)

ElecentsOfProgramminglntervieNs.co~

A.resize(k);
10 return A;

1 template <typenaae T>
z vector<T> offline_salllpling(vector<T>A, const int &k) {

for (int i • '; i < k; ++i) {
default_randoD_engine gen«random_device(»(»; II random num generator

S II Generate random int in [i, A.size() - 11
unifor,_int_distribution<1nt> disCi, A.size() - 1);
swap(A(i], A(dls(gen)]);

and induction goes through.
The algorithm generates all random k-permutations with equal probability, from

which it follows that all subsets of size k are equally likely.
The algorithm just described makes k calls to the random number generator. When

k is bigger than I'we can optimize by computing a subset of n - k elements to remove
from the set. For example, when k = n - 1, this replaces n - 1 calls to the random
number generator with a single call. Of course, while all subsets are equally likely
with this optimization, all permutations are not. Following is the code in C++:

Pr(El n~) = Pr(Ell~)Pr(E2) = _1_ (n -1)1 = (n - I - I)!
n-i n! n!

Solution 20.2: The problem is trivial when k = I-we simply make one call to the
random number generator, take the returned r value mod n. We can swap A[n - 1]
with A[r]; A[n -1] then holds the result.

For k > I, we start by choosing one element at random as above and we now
repeat the same process with the n -1 element sub array A[O : n - 2].Eventually, the
random subset occupies the slots A[n - k : n - 1] and the remaining elements are in
the first n - k slots.

The algorithm clearly runs in 0(1) space. To show that all the subsets are equally
likely, we prove something stronger, namely that allpermutations of size k are equally
likely.

Formally, an m-permutation of a set S of cardinality n is a sequence of m elements
of S with no repetitions. It is easily verified that the number of m-permutations is

nl
(II-"')!'

The induction hypothesis now is that after iteration m, the subarray A[n =m : n -1]
contains each possible m-permutation with probability (11;>1.

The base case holds since for m = I, any element is equally likely to be selected.
Suppose the inductive hypothesis holds for m = 1. Now we study m = 1 + 1.

Consider a particular (I + l)-permutation, say {al,"" a/+1). This consists of a single
element al followed by the I-permutation (au ... , al+1). Let El be the event that al
is selected in iteration I + 1 and E2 be the event that the first 1 iterations produced
{avo .. , al+1)' The probability of {al,' .. , al+l) resulting after iteration 1+ 1 is Simply
Pr(EI n E2) = Pr(El I E2)Pr(E2)' By the inductive hypothesis, the probability of
permutation (a2, ... , a/+1) is ~. The probability Pr(EIIE2) = ":/ since the algorithm
selects from elements in the subarray A[O : n -1-lJ.with equal probability. Therefore

Solutio" 20.2428

ElementsOfProgramminglnterviews.com

Ili~~:~"~~io·;;;;~ra~d~~~~~-;;-(~;~~~int &a,--~~~'~-;:;--~b;""-{""""-"""'
2 int 1 = b - a + 1, res;
3 do {
41 res = ill; .
5 for (int i = ill; (1 « i) < 1; ++i) {

Problem 20.4, pg.156: How would you implement. a random number generator that
generates a random integer i in [a,b], given a random number generator that produces either
zero or one with equaZ'Probability? All generated values should have equal probability. What
is the run time of your algorithm, assuming each call to the given random number generator
takes 0(1) time?

Solution 20.4: Basically, we want to produce a random integer in [0, b - a]. Let
1= b - a + 1. We can produce a random integer in [0,1 - I], as follows. Let j be the
least integer such that l ::;;21.

If I is a power of 2, say 1= 2i,then all we need are i calls to the 0-1 valued random
number generator-the i bits from the calls encode an ibit integer in [0,I-I], and all,
such numbers are equally likely: so, we can use this integer.

If 1is not a power of 2, the icalls mayor may not encode an integer in the range 0
to 1- 1. If the number is in the range, we return it; since all the numbers are equally
likely, the result is correct. .

If the number is outside the range [0;1 - 1], we try again. The probability of
having to try again is less than ~ since I > 21-1. Therefore the probability that we
take exactly k steps before succeeding is at most !(1- ~)k-1 = ~k. This implies the
expected number of trials is less than 1~+2(~)2+3(V+ .. '. Differentiating the identity
l:X = l+x+x2+x3+· ", yields the identity (l!X)l = 1+2x+3x2 +4x3+ Multiplying
both sides by x demonstrate that (l_xx>,= x + 2x2 + 3x3+ 4x4 + .. '. Substituting ~ for

x u{ this last identity proves that 1(~)+ 2m2 + 3m3 + ... = (1-\)2 :: 2. Therefore the
expected number of trials is less than 2.

Problem 20.3, pg.156: Design em algorithm that creates uniformly random permutations
of {O,1, r n -I}. You are given a random number generator that returns integers in the set
{O,1, ,n -IJ with equal probabilitYi use asfew calls to it as possible.

Solution 20.3: Solution 20.2 on Page 427 can be used with k = n. Although the
subset that is returned is unique (it will be (O,1, ... , n - I}), all n! possible orderings
of the elements in the set occur with equal probability. (Note that we cannot use the
trick to reduce the number of calls to the random number generator at the end of
Solution 20.2 on Page 427.)

Variant 20.2.1: The randO function in the standard C library returns a uniformly
random number in [0, RAND_MAX-I]. Does randO mod n generate a number uni­
formly distributed [0,n -I]?

ll._P . ._"" ".""... ,,

429Sollttion 20.4

ElementsOfprogramming.Interviews. com

! (1- _k_) = k!(n - k)l (n +1- k) = kl(n+1 - k)!.
<;) n + 1 nl n + 1 (n+ 1)1

Problem 20.6,pg.157: Design an algorithm that reads a sequence of packets and maintains
a uniform random subset of size k of the read packets when the n ~ k-th packet is read.

Solution 20.6:Westore the first k packets. Consequently,we select the n-th packet
to add to our subset with probability j , If we do choose it, we select an element
uniformly at random to ejectfrom the subset.

Toprove correctness,we use induction on the number of packets that have been
read. Specifically,the inductive hypothesis is that all k-sized subsets are equally
likelyafter n ~ k packets have been read.

The number of k-sizesubsets is <;), implying the probability of any k-sizesubset
should be ID'

For the base case, n = k, there is exactly one subset of size k which is what the
algorithm computes.

Assume the induction hypothesis holds for n > k. Consider ~he(n+ l)-th packet.
The probability of a k-size subset that does not include the (n + 1)-th packet is the
probability that the k-sizesubset was selected after reading the n-th packet and the
(n +1)-thpacket was not selected. These two events are independent, which means
the probability of selectingsuch a subset is

€-Variant 20.5.1: Given a random number generator that produces values in [0,1]
uniformly, how would you generate a value X from T according to a continuous
probability distribution, such as the exponential distnbution?

Problem 20.5,pg.157: You are given a set T ofn nonnegative real numbers {to, tv· .. , tn-t}
and probabilities Po,Pl," ., Pn-l, where E~:olPI = 1. Assume that to < tl < ... < tn-t.
Given a random number generator that produces values in [0,1]uniformly, how would you
generate a value X from T according to the specified probabilities?

Solution 20.5: Let Fx(a) be the probability that X :S a, Le.,Fx(a) = r.tjSaPI. Wedo
the following operation to generate a random value according to X's distribution.
Select a number r uniformly at random in the unitinterval, [0,11 then project baCk
from Fx to obtain a value s for X. More specifically,we return the largest ~ such that
FX(ti) :S r.

Byconstruction, the probability that the value swe return is less than or equal to
a is Fx(a), so the distribution for s is exactly the same as that for X.

II zero_one_random is the system-provided random number generator
res. (res « 1) I zero_one_random();

}
} while (res >= 1);

10 return res + a;
II }

Solution 20.6430

ElementsOfProgrammingInterviews.com

Problem 20.7,pg.157: Design an algorithm that computes an array of size k consisting
of distinct integers in the set {a,1, ... ,n - 1). All subsets should be equally likely and, in
addition, all permutations of elements of the array should beequally likely. Your time should
beO(k). Your algorithm should use O{k) space in addition to the k element array holding
the result. You may assume the existence of a subroutine that returns integers in the set
{a,1, ... , n - 1}with uniform probability.

Solution 20.7:Wemaintain a hash table Hwhich maps a subset of {a,1, ... ,n -1) to
{O,1,... ,k - 1). Initially H is empty. The final result isstored inan array Rof length
k. Wedo k iterations of the following. Choose a random integer r in [i, n - 1],where
i is the current iteration count, starting at O.If r does not lie in H, we set R[i] to r and

10 /1 After the first k elements
11 int element_num = k + 1;

1'1 while (sin» x) {
13 default_randoM_engine gen«random_device(»(»; II rando. nu. generator
I4j // Generate random int in C8. element_nua1
151 uniforlll_int_dis~ribution<int>dis(8, elelllent_nUll1++):
161 int tar = dis(gen);
17 if (tar < k) {
~ R(tar] = x;
19

20
21 return R:
22 }

II template <typename T>
'1 vec~or<T> reservoir_sampling(istringstream &sin, const i.nt&k) {
31 T x;.1 vector<T> R;
5I / / Store the first k elements

for (int i = $; i < k && sin » x; ++i) {
R.emplace_back(x);

so induction goes through for subsets including the (n + 1)-thelement. Following is
the code in C++:

k !{n + (k -1»~ = (n + 1 - k)(n - k)!k! = _1_
n + 1k G) (n + 1)n! (11;1)'

This simplifies to ffi, so induction goes for subsets excluding the n + 1 element.
The probability of a k-sizesubset H that includes the (n+ 1)-thpacket Pn+l can be

computed as follows. LetGbe a k-sizesubset of the first npackets. Theonly way we
can get fromG to H is ifGcontains H \ {Pn+t}. LetG' be such a subset; let {q) = G\ G'.

The probability of going from G to H is the probability of selecting pn+1 and
droppingq, which is equal to lI!ll. There exist -(k-1) candidate subsets for G', each
with probability ill (by the inductive hypothesis) which means that the probability
ofH is given by

431Solution 20.7

ElementsOfProgramminglnterviews.com

Therefore P can be computed using DPi the base cases for the recursion are Pr(O,0) = 1
and Pr(r, n) = 0, for r > n.

The probability of a Republican majority is r.:if!lPr(k,435). Since both r and
n take values from 0 to the total number of elections and computing Pr(r,n) from

Pr(r,n) = Pr(r - I, n - I)Pn + Pr(r - I, n)(1 - Pn).

Problem 20.8, pg.157: Assuming elections are statistically independent and that the
probability of a Republican winning Election i is pi, how would you compute the probability
of a Republican majority?

Solution20.8: Number the individual elections from 1to 435. Letpn be the probability
that the Republican candidate wins Election n. Let Pr(r, n) be the probability that
exactly r Republicans win in elections {I,2, ... , n}.

Exactly r Republicans win in elections {1,2, ... , n} if (1.) r Republicans win in
elections {I,2, ... ,n - I} and the Republican candidate loses election n, or (2.) r - 1
Republicans win in elections {I, 2, ... , n - I} and the Republican candidate wins
election n.

Since these events are disjoint, Pr(r, n) is the sum of the probabilities of these two
events. To be precise,

return res;

I
llvector<int> online_sampling(const int &n, const int &k) {
2! unor'deredi.aapcdnt , int> table;

vector<int> res;
for (int i = 9; i < k; ++i) {

5 default_random_engine gene(random_device0) 0) : II random num generator
II Generate random int in Ci, n - 11
uniform_int_distribution<int> disCi, n - 1);
int r = dis(gen);
auto it = table.find(r):
if (it == table.end(» { II r is not in table

res.emplace_back(r);
table.emplace(r, i);
else { II r is in table
res.emplace_back(it->second):
it->second = i:

add (r,t) to H. If r does lie in H,·say (r,J) E H, we set R[zl ='j, remove (r,J) from H,
and add (r,t) to H.

This approach is correct because it mimics the offline sampling algorithm de­
scribed in Solution 20.2 on Page 427. We simulate the array used in that algorithm
with H; when k « n, this results in a huge saving in space, since the array is of length
n, and most of it is unchanged.

Solution 20.8432

ElementsOfProgrammingInterviews.com

Problem 20.9,pg.158: You select a coin at random from the bag and toss it five times.

Variant 20.8.3: Consider the.following three events; getting one or more sixeswhen
six dice are rolled, getting two or more sixes when 12 dice are rolled, and getting
three or more sixes when 18 dice are rolled. Which, if any, of these three events is
most probable?

€-Variant 20.8.2: Richard and Leopold are playing a series of tennis games in which
Richard wins an individual game with probability 0.6. The outcomes of successive
games are independent. The first player to win 11games wins the series. The prize
for winning the series is $100; the winner gets all the prize money. Becauseof the
weather, the series is stopped with Richard leading 7 games to 5. Divide the prize
money fairly between Richard and Leopold.

e-Variant 20.8.1; Compute the probability of a Republican majority given the out­
comes of a subset of the races.

24 II Accumulate the probabilities of majority cases
2S double prob_sum = 8.8;

26 for (int r = ceil (8. 5 * n); r <- n; Hr) {
v prob_sum += house_.ajority_helper(prob, r, n, P);
28~I return prob_sUAi
30 }

23

18
]9
w double house_majority(const vector<double> &prob, const int &n)
21 II Initialize DP table
22 vector<vector<double» pen + 1, vector<double>(n + 1, -1.8»;

]S

16

]7 return P (r](n] ;

if (r > n) {
return 8.8; II base case: not enoug~ Republicans
else if (r == & && n == &)
return 1.$; II base case
elsa if (r < &) {

]0 raturn $.$;
II

12

13 if (P(r)(n) ~~ -1. $) {
14 P(r)[n) = house_majority_helper(prob, r - 1, n - 1, P) * proben - 1) +

house_majority_helper(prob, r, n - 1, P) * (1.8- proben - 1);

] II prob is the probability that each Republican wins.
2 II r is the number of Republicans win., and n is the number of elections.
3 double house_aajority_helper(const vector<doub1e> &prob, const int &r,

const int &n, vector<vector<double» &P) {

earlier values takes 0(1) time, the complexityof computing {Pr(i,j) I0 ~ i ::;j S 435)
is proportional to the square of the number of elections.--------------------------------.---,

433Solution 20.8

ElementsOfProgrammingInterviews. com

For the second part, we can use the Chebyshev inequality to compute the number
of trials we need for a majority of n tosses of the tail-biased coin to be heads with
probability 1~' Let L; be the event that the i-th toss of the tail-biased coin comes up
heads. Itwill be convenient to use a Bernoulli random variable Xi to encode this
event, with a 1 indicating heads and 0 indicating tails.

The mean fl of the sum X of n Bernoulli random variables which are independent
and identically distributed (lID) with probability p is n x p; the standard deviation (J

is ...jnp(l - p). Inour context, fl = OAn and a = .y6nj25.
The Chebyshev inequality gives us an upper bound on the probability of a random

variable being far from its mean. Specifically, Pr(iX - fll ~ ka) ::;;-b. Note that the
event IX- fll ~ ka is a superset of the event X - fl ~ ka.

For the majority of n tosses to not be tails, it is necessary that the sum of 'the n
coin tosses is greater than or equal to O.Sn.To bound this probability by l~ we take
k = 10 in the Chebyshev inequality. Specifically, we need to solve for n such that
0.5n - OAn ~ 10 x .y6nj25, i.e., O.ln ~ 10 x .y6nj25, which is satisfied for n ~ 2400.

The Chebyshev inequality holds for all random variables if they have a variance.
We can obtain a tighter bound by applying a Chernoff bound, which is specific
to the sums of Bernoulli random variables. Specifically, Chernoff bounds tell us

that Pr(X ~ (1 + 6)fl) s e=¢. We want to bound Pr(X ~ 0.5n = (1 + 0.25)(OAn»,

hence 6 = 0.25. Thus we want e~ < 0.01; taking natural logs we obtain
- O,4n~,25)2 < -In'lOO = -4.6, which holds for n > 552.

The Chemoffbound is also pessimistic. Through a simulation, the code for which
is attached below, we determined that when n = 553, only 17 times in 107 trials did

© X 0,43 x 0.62x 0.5 + ~ x 0.42 X 0.63 x 0.5
0.4

Pr(3H5 IL)Pr(L) + Pr(3H5 IU)Pr(U)
~ x 0043 X 0.62 x 0.5

Pr(3H5 n~) +Pr(3H5 nU)
Pr(3H51 L)Pr(L)

=

Pr(3H5 I L)Pr(L)
Pr(3H5 n (LUU))

Pr(3H5 IL)Pr(L)

It comes up heads three times. What is the probability that it was the coin that was biased
towards tails? How many times do you need to toss the coin that is biased towards tails before
it comes up with a majority of tails with probabilitlj greater than ~?

Solution 20.9: Let L be the event that the selected coin is tail-biased, U be the event
that the selected coin is head-biased, and 3H5 be the event that a coin chosen at
random from the bag comes up heads 3 times out of 5 tosses.

We want to compute Pr(L I 3H5). By Bayes' rule, this is Pr(L n3H5)jPr(3H5).
Applying Bayes' rule again, this probability, equals

Solution 20.9434

435

ElementsOfFrogramminglnterviews.com

Variant 20.10.2: How many people need to be at a party before the probability of
two people at the party having a common birthday exceeds 0.5? How many people

Variant 20.10.1: David is the first passenger· to board a flight. He has lost his
boarding card, and selects a seat to sit inuniformly randomly. Successive passengers
either sit in their assigned seat, or, if someone is already in their seat, select another
seat uniformly randomly from the set of remaining einpty seats, Selections are done
independently. Henri is the first to board a different flight. He has also lost his
boarding card, and his flight fills up the same way as David's flight. There are 100
seats on David's flight, and 200 seats on Henri's flight. Both flights are full. Let LA
and L8 be the last passengers to board David's flight and Henri's flight, respectively.
Which of LA and LB are more likely to get their assigned seat?

Problem 20.10, pg.158: If m balls are thrown into n bins uniformly randomly and inde­
pendently, what is the expectednumber of bins that do not haveany balls?

Solution 20.10: The probability that a given ball does not land in a given bin is n~l.
Since throws are independent, the probability that no ball lands in that bin is (n~lr.
Hence the expected number of empty bins is n (n~lr. This is closely approximated
by n x e-m1n• Hence if on an average, each server is handling significantly more than
one client, there should be very few idle servers. If n =m, then the expected number
of empty bins tends to lie times the total number of bins, which is a classical result.

We used the linearity of expectation in an essential way. Linearity of expectation
does not require the individual random variables to be independent. This is crucial,
since bins are not independent, e.g., it is impossible for all bins to be empty.

return fails;

151
16

17

18,
'191 }

if (biased_num < (n » 1» {
++fails :

12

13

14

11

10

I ---.- .••.••••-.-- - •.••....---- .••-.--
1 1/ Return the number of fail trails
1 int simulate_biased_coin(const int &n, const 'int &trails) {

default_random_engine gen«t'andollLdeviceO) 0): . /1 random num generator
II Generate random double in [~.~, 1.~J
uniform_real_distribution<double> dis(&.&, 1.&):
canst double bias &.4:
int fails =.&:
for (int i = &; i < trails; ++i)

int biased_num = &;
for (tnt j = &: j < n: ++j) {

biased_num += (dis(gen) >= bias):

we observe a majority of tails, When n = 148, tails was not a majority in 0.88% of the
trials.

Solution 20.10

ElementsOfProgramminglnterviews.com

Problem 20.12, pg.158: Gottfried repea.tedlyrollsan unbiased six-sided die. He stops when
he has rolled all the six numbers on the die. How many rolls will- it take, on an average,for
Gottfried to see all the six numbers?

Solution 20.12: First we prove that if (Xo,Xl, ...) is a sequence of Bernoulli lID
random variables, with p(Xj = 1) = p, then the expected time to see the first 1 is ~.
The reasoning is as follows. Define F, to be the event that the first 1 comes on the
i-th trial Then Pr(Fj) = (1 - p)i-lp. Hence the expected time is S = r,;:1 i(l _ p)i-lp.
This sum simplifies to ~ (multiply both sides by p, subtract, and sum the infinite
geometric series on the right).

Now, we consider the problem of die rolls. The key is to determine the expected
time to see the k-th new value. Clearly, the expected time to see the first new value
is just 1. The time to see the second new value from the first new value is S;6 since
the probability of seeing a new value, given that one value has already been seen, is
~.Inthis way, the time taken to see the third new value, given that two values have
already been seen, is 4}6' Generalizing this idea, the time taken to see the k-th new
value, given that k-1 values have already been seen, is (6-(k:1»/6' Hence the expected

Problem 20.11, pg.158: What is the expected number of fixed points of a uniformly
random permutation a: {O,1, ... , n -I} H {O,l, ... , n -I}, i.e., the expected cardinality of
(i I a(1) = i}? What is the expected length of the longest increasing sequence starting at a(O),
i.e., ifk is thefirst index such that a(k) < a(k -I),what is the expected value ofk?

Solution 20.11: Let XI be the random variable, which is1 if a(i) = i and 0 otherwise.
Such a random variable is often referred to as an "indicator random variable". The
number of fixed points is equal-to Xo + Xi + ... + Xn-1. Expectation is linear, i.e.,
the expected value of a sum of random variables is equal to the sum of the expected
values of the individual random variables. The expected value of XI is 0 X n;l + I x ~
(since an element is equally likely to be mapped to any other element). Therefore the
expected number of fixed points is n x ~ = 1.

We can compute the expected value of k by defining indicator random variables
Yo,YlI··• Yn-V where Yj = 1 iff for all j < i we have a(j) < a(1). Observe that k is
simply the sum of the Yjs. The expected value of Yi is III' since for all j < i we have
a(J) < a(1)iff the largest of the first i+1 elements isat position i,which has probability
111 since all the permutations are equally likely. Therefore the expected value for k is
1 + ~+ ~+ ... +~, which tends to I0Sen.

For both parts of the problem, we used the linearity of expectation which does
not require the individual random variables to be independent. This property of
expectation is crucial since the XiS and the Yjs are not independent-for example, if
the first n - 1 elements get mapped to themselves, then the n-th element must also
map to itself.

need to be at a party before the probability of one of them having your birthday
exceeds 0.5? (Assume birthdays are uniformly independently distributed across 365
days of the year; nobody isborn on February 29.)

Solution. 20.12436

ElementsOfProgramminglnterviews. com

Problem 20.14, pg.159: Solve Problem20.13 on Page159 when u1 is uniformly randomly
in [0,1] and u2 is subsequently chosen uniformly randomly in [u1, 1]. Can you determine
which of these two approaches is more likely to produce a triangle without computing the
exact probabilities?

s-Variant 20.13.2: If a stick is broken into three pieces uniformly randomly, what is
the expected length of the longest, shortest and middle-sized pieces?

eoVariant 20.13.1: If a stick is broken into two pieces uniformly randomly, what is
the expected length of the longer piece? What is the expected value of the ratio of
the length of the longer piece to the length of the smaller piece?

which evaluates to ~.
By symmetry, the probability of m > 0.5 when u1 > u2 is also]. Hence the

probability of a segment being longer than ~is i+i+i= ~.Therefore the probability
of being able to make a triangle out of the segments is 1 - ~ = i.

£.5 i1 1xdu1 xdu2
u1=0 U2~ul+O.5

Problem 20.13,pg.159: What is the probability that these threesegments can be assembled
into a triangle7

Solution 20.13: The first thing to note is that three segments can make a triangle iff
no one segment is longer than the sum of the other two. The "only if" follows from
the triangle inequality and the "if" follows from a construction-take a segment and
draw circles at the endpoints with radius equal to the lengths of the other circles.

For the case we are considering the three segment lengths add up to 1. Therefore,
there exists a segment that is longer than the sum of the other two iff there exists a
segment that is longer than ~.

Let I =min (u1, u2), m = max (u1, u2) - min(u1, u2), and u = 1-max (u1, u2); these
are the lengths of the first, second, and third segments, from left-to-right, If one
segment is longer than 0.5, then none of the others can be longer than 0.5, implying
the events I > 0.5, m > 0.5, and u > 0.5 are disjoint.

Observe that I > 0.5 iff both u1 and u2 are greater than 0.5; the probability of this
event is ~ x ~ because u1 and u2 are chosen independently. Similarly u > 0.5 iffboth
u1 and u2 are less than 0.5, which has probability! x !.

To compute the probability of m > 0.5, first we consider the case that u1 < u2. For
m > 0.5, we need u1 to be in [0,0.5] and u2 to be in [0.5+ u1, 1]. This probability can
be expressed by the integral

Variant 20.12.1: On average, how many cards on average have to be dealt from a
well-shuffled deck before an ace appears?

time to see the sixth new value is ~ + ~+ ~+ ~+ ~+ i~14.7.

437Solutio" 20.14

ElementsOfProgramminglnterviews.com

Problem 20.16,pg.159: What is the zalue of w such that Once-or-Twice is afair game, i.e.,
for a rational player, the expected gain is O?

Problem 20.15,pg.159: Design a strategy that selects the best secretary with a probability
greater than 0.25, regardless of n.

Solution 20.15:Theonly reasonableinterpretation of random-isthat allpermutations
areequally likely.Therefore,ifwe always selectthe first secretary,we have a ~chance
of selecting the best secretary.

Oneway to do better isto skip the first L ~ J secretariesand then choose the firstone
in the remaining set that is superior to the best secretary interviewed in the first L~J
secretaries. Roughly,the probability of selecting the best secretary with this'strategy
is at least isince the probability that the second best secretary lies in the first set and
the best secretary is in the second set is at least l.

Theprobability isactually greater than lsince if the second best secretary is in the
first set, there is a higher than 0.5probability that the best secretary is in the second
set. When n is even, say n = 2m, the probability that the strategy selects the best
secretary is at least ;;:.,:1 > i.When n is odd, say n = 2m +I, the probability that the
strategy selectsthe best secretary is at least ~1 n;;;.1> i. Note that even if the second
best secretary isnot in the first set, our strategy may still select the best secretary,e.g.,
if the best secretary is the first to appear.
It is known that if we follow a strategy of skipping the first s secretaries and

selecting the first secretary who is superior to all others so far, the probability of
selectingthe best secretary is maximized for s closest to ~, and this probability tends
to :.

Note that the probability density function for u2 is different from the previous case
since u2 is uniform in [u1, 1],not [0,1]. This integral evaluates to 1+1~ t. The third
probability can also be computed using an integral but by symmetry, it must be the
same as the second probability. Hence the ~al probability is l+2 X 1+1~ i~0.807.

Intuitively, the second formulation leads to a higher probability of a long line
segment (whichimplies that we cannot forma triangle)because there is less diversity
in the points. For the first case, the poin~ are spread randomly; for the second, there
is a 0.5probability that the first point itself precludes us from building the triangle.
Another way to think of it is that ifwe put down many points, the first method will
lead to short segments with little variation in lengths but the second method will
give us a skewed distribution and the first fewsegments will be considerably longer.

£.511 1--- X du2 X dul.
=0 ra",u1+O.5 (1- u1)

Solution20.14: Wefail tomake a triangle incaseul > 0.S,u2-ul > 0.S,or1-u2 > 0.5.
The firstprobability is simply ~.

The second probability is given by the integral

Solution 2Q.16438

ElementsOfProgrammingInterviews.com

Hence Q(c,r, t) = max(QR(c,r.t),Q8(C, r, t»)which yields a DP algorithm for comput­
ing the maximum payoff-base cases are of the form Q(c, 0, t) and Q(c, t,r), both of
whichare c x 2'.

Q8(c,r,t) = ~~(min(Q(c+b,r,t-l),Q(C-b,r-l,t-1»)).

The maximum we can make by betting on black cards is

= ~ax (min (Q(c +b.r - I, t -1),Q(c - b,r, t -1»)).o_~c

Problem 20.17, pg.159: Suppose you are playing the multibet card color game and are
restricted to bet in penny increments. Compute a tight lower bound on the amount that you
can guarantee to win under this restriction.

Solution 20.17: A good way to begin is to devise a strategy that guarantees a positive
return. It is possible to guarantee a 2x return by waiting till the last card and betting
the entire amount on the last card whose color is uniquely determined by the 51
cards that have already been seen.

To do better than a 2x return, consider the case of a deck of 4 cards with 2 red cards
and 2 black cards. H we do not bet on the first card, there will be three remaining
cards. Assume, without loss of generality, that two cards are black and one is red. If
we bet $~on the next card being black and are successful, then we have $~which we
can double on the last card for a ~ > 2 return. Ifwe lose, then the two remaining cards
are black, in which case we can double our remaining money twice, i.e., achieve a
~x 2x 2 = ~ > 2 return. Note that this analysis assumes we can bet arbitrary fractions
of the money we possess.

Now, we consider the case where we can only bet in penny increments. Let
Q(c, r, t) be the maximum we can guarantee, when we have c cents to gamble with
and there are r red cards remaining out of a total of t cards. We can bet b cents, for
o ::;;b ::;;c on the next card. Since we have to design a strategy that maximizes the
worst-case payoff, the maximum amount we can make on betting on red cards is
given by

Solution 20.16: H the probability of winning is p, then the expected gain is -1 +p xw.
Hence for a fair game, w = ~.

The face value of the card can be any number between 1 and 13. For the dealer,
all values are equally likely. Hence if the player's card has a face value i, then the
probability of winning for the player is 1ft. If the player always takes only one
random card, his probability of winning is f3 r.l!1 iii = -&. Hence it makes sense to
ask for the next card only if the first card yields a probability less than -&' i.e., the
face value of the first card is less than 7. If the face value of the first card is 7 or more,
then the probability of winning is ~ r.J:7 1ft = !3; otherwise, we pick again, in which
case the probability of winning is 13. Hence the overall probability of winning is
E!3 + 1313 = N9. Thus the fair value is w- ~ 1.707.

439Solution 20.17

ElementsOfProgramminglnterviews.com

Here is a sketch of the proof that 252/(~Dis the maximum amount that you can
guarantee you will win when arbitrary fractions of the stake can be bet.

LetM(r, b) be the maximum amount you can guarantee you will win starting with
$1when there are r red cards and bblack cards remaining, under the assumption that
you can bet any fraction of your current stake. Let I(r, b) e [-1,1] be the optimum
amount to bet on red; I(r, b) could be negative, which is equivalent to betting a

33
3t

35 double compute_best_payoff(const int &cash) {
~ double upper_bound " 9.99 * cash;
37 unordered_map<int, unordered_map<int, unordered_map<int, double»> cache;
~ return compute_best_payoff_helper(cache, upper_bound, cash, 26, 52);
:l9

cache[cash][num_red][num_cards] " best;

24

2.5

26

'l7

28

29.

301
31

32 return cache [cash][num...red~[nulII...cards];

double black_lower_bound " mine
compute_best_payoff_helper(cache, upper_bound, cash - bet,

num...red- 1, num_cards - 1),
compute_best_payoff_helper(cache, upper_bound, cash + bet,

num...red,num_cards - 1»:
best" max (best , max (red_lower_bound, black_lower_bound»:

if (cache[cash][num...red].find(num...cards)== cache [cash][nuM_red] .endO)
double best" numeric_limits<double>::min():
for (int bet" 9: bet <" cash: ++bet)

double red_lower_bound " mine
compute_best_payoff_helper(cache, upper_bound, cash + bet,

num_red - 1, num_cards - 1),
compute_best_payoff_helper(cache, upper_bound, cash - bet,

num._red, nUlILcards - 1»:

if (num...red== num...cardsII num...red 9) {
return cash * pow(2, num...cards):

1 double compute_best_payoff_helper(
unordered_map<int,

unordered_map<int, unordered_map<int. double»> &cache,
const double &upper_bound, const int &cash, const int &num_red,
const int &num_cards) {

if (cash >= upper_bound) {
return cash;

However if we directly try and compute Q(100,26,52), the algorithm runs for
an unacceptably long time. This is because we will be exploring paths for which c
growsvery large. Sincewe aregiven themaximum payoffon adollar when fractional
amounts can be bet is less than 9.09,we can prune computations for Q(c, r, t) when
c ~ 909. The following code implements the OP algorithm with this pruning; it
computes the maximum payoff,808,in two minutes.

Solutio" 20.17440

ElementsOfProgramminglnterviews.com

Variant 20.18.1: An alchemist has discovered several dryads-stones which can
change lead into gold. The rate at which a dryad converts lead into gold is propor­
tional to its weight. The alchemist also has tryads, stones which, by themselves, do
nothing. However, when a tryad is heated together with a dryad, the two stones
combine to form a new stone, which could be either a tryad or a dryad. The weight
is conserved. The probability of the combined stone being a dryad is the weight of
the initial dryad divided by the sum of the weights of the initial stones, He can also
combine tryads with tryads and dryads with dryads, which results in the same stone
with the sum of the constituent weights.

The alchemist wants to combine tryads with dryads to maximize the expected
dryad weight. He could follow many strategies, such as combining the heaviest

Problem 20.18, pg.160: Design a strategy that maximizes the probability of winning at
the one red card game.

Solution 20.18: We can trivially achieve a probability of success of ~ by always
choosing the first card.

A natural way to proceed is to consider the probability Pk(f) of winning for the
optimum strategy after k: cards remain, of which f are red cards. Then Pk(f) =
max (t, tPk-l (f - 1)+ (1 - f)Pk-l(f)).

The base cases for the recurrence are P1(1) = 1 and Pl(O) = O. Applying the
recurrence, we obtain P2(2) = l,P2(l) = !,P2(O) = 0, and 1'3(3) = 1,P3(2) = ~'P3(1) =
i,P3(0) = O. This suggests that Pk(f) = t, which can directly be verified from the
recurrence. Therefore the best we can do, PS2(26) = ~ = ~,is no better than simply
selecting the first card.

An alternate view of this is that since the cards in the deck are randomly ordered,
the probability of the topmost card being red is the same as that of the card at the
bottom of the deck being red. The bottom-most card has a f probability of being red
when there are f red cards and k cards in total.

The base cases are M(r, 0) and M(O,b),which are 2r and 2b, respectively. Induction can
be used to prove that M(r, b) = 2r+b/(r:b). Substituting r = b = 26 yields the desired
result.

M(r b) = 2M(r - I, b)M(r,b - 1) .
, M(r - 1, b) +M(r, b - 1)

Elementary algebra can be used to show that the value for f(r,b) that maximizes
M(r, b) is the one in which (1+ f(r, b»M(r -1, b) = (1- f(r, b»M(r, b -1)i both of these
terms equal M(r, b). The optimum value for f(r,b) is ~. Substituting for f(r,b) in
leads to the following recurrence:

M(r, b) 'f max (min«l + f(r, b»M(r - 1,b), (1- f(r, b))M(r, b -1»).
/(r»le[-l.l)

positive amount on black. Then M and f satisfy the following:

441Solution 20.18

ElementsOfProgrammingIntervieW5.com

Problem 20.20, pg.160: Your friend at the Acme Casino has rigged their roulette wheel to
make the probability of the ball landingon red ~. You can bet on the same colorexactly 100
times; after that the casino management will be alerted. You start with $1. On each round,
you can bet any amount from 0 to your entire bankroll. What should your strategy be?

Solution 20.20: The key to solving this problem is determining what the objective
is. The "obvious" criterion is expectation maximization. It is Simpleto see that the
strategy that maximizes expectation is betting the entire bankroll on red each time.
Theexpected payoffis 2100X ~ 100 ~ 3x 1016i however, the probability that the strategy
does not result in a "bust" (the bankroll going to 0) is ~ 100 ~ 2.39X 10-14•

Wecan avoid busting by maximizing the expectation of the logarithm of the final
bankroll-since logO= -00, any strategy which maximizes this objectivewill never
bet the whole amount on anyone bet. Let p be the odds of winning, and q = 1- P
the odds of losing. If we bet r fraction of the current bankroll B, the expectation of
the logarithm of the resulting bankroll is p 10g(B+ 2rB)+ (1 - p) 10g(B- rB). Simple
calculus shows that the optimum choiceof r = p - q = 2p - 1.

Theabove analysiswas first doneby John LarryKelly,a PhD. fromTheUniversity
ofTexasat Austin, whowent on towork atBellLabs. Thebest referenceis hisoriginal
paper, "A New Interpretation of Information Rate". William Poundstone's "Fortune's

Solution 20.19: The first question to ask is what are you trying to optimize~ The
objectivecould be to maximize expected profit,minimize loss, or maximize ratio of
expected profit to variance.

Let's say we want to maximize expected profit. Let X be the random variable
corresponding to the reserve price. Wewin the auction if the reserve price is less
than or equal to our bid. The selling price is 1.8x the reserve price, and our cost
to buy is fixed at B. Therefore, the expected profit is fx:B 4~ (l.8X - B)dX. This
simplifies to O.9x!-B2,which is negative for all B > 0, i.e.,we should not place a bid.

In retrospect, this result is obvious since if we win the auction, we are paying
twice ofX in expectation and getting only 1.8X in return.

Problem 20.19, pg.160: Consider an auction for an item in which the reserve price is a
random variableX uniformly distributed in [0,400]. You can bid B. If your bid is greater
than or equal to the reserve price, you win the auction and have to pay B. You can then sell
the item for an 80%markup over the reserve price. How much should you offerfor the item?

Variant 20.18.2: Isaac and Leonhard are playing a card game against each other.
Isaac starts with $2 and Leonhard starts with $1. They bet $1 on each game. They
stop playing when one of the two runs out ofmoneYi the other is the overallwinner.
Suppose the probability of Leonhard winning any single game is ~. What is the
probability that heis the overallwinner?

dryad with the lightest tryad, or combining the dryad and tryad that are closest in
weight. What strategy should he follow?

Solution 20.20442

ElementsOfProgramrninglnterviews.com

Solution 20.21: First, we show that any deterministic algorithm must examine all
the Boolean variables. The idea is that an adversary can force the value of any
subexpression to be unknown till all the variables in that sub expression have been
read. For example, suppose variable X is ANDed with variable Y. If the algorithm
reads the value of X before Y,we return true; when Y is queried, we return false. In
this way, the value of X /\ Y is determined only after both the variables are read.

This generalizes with induction: the inductive hypothesis is that an Lk expression
requires all the variables to have been read before its value is determined and its
final value is the value of the last variable read. , For a subexpression of the form
</> /\ t/J, where </> and t/J are Lk expressions, if all the variables from cp are read before

Problem 20.21, pg.160: Prove that an algorithm in which the choice of the next variable
to read in an LK expression is a deterministic function of the values read up to that point
must, in the worst case, read all variables to evaluate the expression. Design a randomized
algorithm that readsfewer variableson an average, independent of the values assigned to the
variables.

Variant 20.20.4: Suppose you can bet a dollar on the ball falling into a pocked
numbered ,1 to 36. If the ball falls in the pocket you selected, you receive $36 in
return; otherwise, you lose your bet. The casino offers you insurance against losing.
Specifically, for $20 you can insure 36 one dollar bets. If you are behind after 36 bets,
the casino will give you $40, otherwise it keeps the premium. Should you buy the
insurance?

Variant 20.20.3: Design a strategy by which you can go to a casino with $100, play
an unrigged Roulette wheel, and leave with more than $100 with probability greater
than 0.98. The casino only accepts positive integer-valued bets. '

Variant 20.20.2: You can choose among k investment types. The return on the i­
th investment type has a normal distribution with mean ri and standard deviation
at The covariance between investment types i and j is aii' Compute a portfolio,
i.e., an allocation of an investment acrossthese k investment types that maximizes
the expected return, subject to the constraint that the aggregate investment has a
variance that is less than a specified constant. How does your approach handle short
positions, i.e., selling an investment type that you do not own? How would you
handle diversification constraints, e.g., a requirement of the form "no more than 20%
of the portfolio can be in any four investment types"? How would you do the same
if there is uncertainty in some of the parameters?

Variant 20.20.1: Find the optimum betting strategy when there are k outcomes, each
with probability PI and return rio .

Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall
Street" is a highly readable account of Kelly's result and its impact

443Solution 20.21

Ele.mentsOfProgranuningInterviews. com

A fair price for the option is one in which no arbitrage exists. If I is less than 0, an
arbitrage exists-we are paid to buy options, lose nothing if the price goes down, and
make $20 per option if the price goes up. Therefore I~0, so we can write the third

120x + 20y ~ 0
70x ~ 0

1oox+yl < 0

Problem 20.22, pg.161: For what aptian price is there no apportunity lor arbitrage?

Solution 20.22: Let I be the price for the option. A fair price is determined by the
no-arbitrage requirement. Suppose we start with a portfolio of x shares and yoptions
in S-x and y may be negative (which indicates that we sell stocks or sell options).

The initial value of our portfolio is 100x +vt On Day 100, two things may have
happened:

- The stock went up and the portfolio is worth 120x + 20y.
- The stock went down and the portfolio is worth 70x.

If we could choose x and y in such a way that our initial portfolio has a negative
value-which means that we are paid to take it on-and regardless of the movement
in the stock, our portfolio takes a nonnegative value, then we will have created an
arbitrage.

Therefore the conditions for an arbitrage to exist are:

From this, Q(k) = 3k. It is straightforward to use induction to show that an Lk

expression contains n = 4k variables, so Q(k) = n10843 = nO.793•

Q(k + 1)s 3Q(k).

all the variables from'" are read, the adversary chooses the last variable read from cP
to be true, forcing the algorithm to evaluate ",. A similar argument can be used for
subexpressions of the form cP v ",.

Suppose we evaluate an expression by choosing one of its two subexpressions at
random to evaluate first; we evaluate the other subexpression only if the expression's
value is not forced by the sub expression that we evaluated first.

For example, if we are to evaluate an Lk+l expression of the form «CPo /\ CPl) v
("'0 /\ "'I», where the subexpressions cpo, CPll "'O,1f;l are Lk expressions, we randomly
choose one of (CPo/\CP1) and ("'0/\ "'1) to evaluate first. If the first expression evaluated
is true, we can ignore the second; otherwise, we evaluate the second. If the first
expression is true, we reduced the number of variables queried by at least half. If
the first expression is false, at least one of the two subexpressions is false and we
have a probability of O.S of selecting that subexpression and avoiding evaluating the
other sub expression. So, in the worst-case, we can expect to avoid one of the four
subexpressions 4>0,CPl, "'0,1f;t. Therefore the expected number of variables queried to
evaluate an Lk+1 expression, Q(k + 1) satisfies

Solution 20.22444

ElementsOfProgramminglnterviews.com

Problem 20.24,pg. ·162: Suppose the price ofJingle stock 100 days in thefuture is a normal
random variable with mean $300 and standard deviation $20. What would be thefair price
of an option to buy a single share of Jingle at $300 in 100 days? (Ignore the effect of interest
rates.)

Writing the linear terms as Ax, if det(A) :;:.0, then there always exists an arbitrage
since we can solve Ax = b, and when bT = (-1,1,1) there is an arbitrage.

The determinant of A equals 70(1.02f - 20) + 1.02(100 x 20 -120 f). This equals 0
when f = 640/51 ""12.549 =r,so an arbitrage definitely exists if the option price is
not equal to r. .

Conversely, ifthe option is priced at f',det(A) = 0 and in particular Ao = 0.6275A I+
0.3583A2' where Ai denotes the i-th row of A. Since Ao is a linear combination of Al
and A2 with positive weights, if A1x 2!: 0 and A2X 2!: 0, then Aox 2!: 0, so no arbitrage
can exist.

100xo + fXt + X2< 0
120XQ+ 20XI + 1.02x2 2!: 0

70Xo+ 1.02x2 2!: 0

Problem 20.23, pg.161: Consider the same problem as Problem 20.22 on Page 161, with
the existence of a third asset class, namely a bond. A $1 bond pays $1.02 in 100 days. You
can borrow money at this rate or lend it at this rate. Show there is a unique arbitrage-free
pricefor the option and compute this price.

Solution 20.23: Suppose our initial portfolio consists of Xostocks, Xl options, and X2
bonds.

Proceeding as above, we see the condition for an arbitrage to exist is:

Combining the two inequalities, we see that any value of bin [-6,_11~) leads to an
arbitrage.

120 +20b ;:: 0

100 + 19b < 0

inequality as y < - Iix. The first equation can be rewritten as y 2!: -6x. Combining
these two inequalities, we see that an arbitrage exists if - 10/< -6, i.e., f > l~.

In summary, there is no arbitrage for f E [0, If]; there is an arbitrage for all other
values of f.

For example, if f = 19 > l~O, then the option is overpriced and we should sell
("write") options. If we write b options and buy one share, we will start with a
portfolio that is worth 100 + 19b. If the stock goes down, the options are worthless
and our portfolio is worth $70. If the stock goes up, we lose $20 on each option we
wrote but see a gain on the stock we bought. We want the net gain to be nonnegative
and the in~tial portfolio to have a negative value, i.e.,

445SOlUti01120.24

ElementsOfProgramminglnterviews.co~

Variant 21.1.1: There are 25 people seated at a round table. Each person has two
cards. Each card has a number from 1 to 25. Each number appears on exactly two
cards. Each person passes the card with the smaller number to the person on his left.

5 }

1 bool is_door_open(const int &i) {
21 doubl. sqrt_i ,.sqrt(i):

int floor_sqrt_i ,.floor(sqrt_i):
return floor_sqrt_i * floor_sqrt_i == i;

Problem 21.1, pg.l63: Which of the 500 doors are open after the SDO-thperson has walked
through?

Solution 21.1: As described on Page 38, analyzing a few small examples suggests
that, independent of n, door k will be open iff k is a perfect square. This can be
rigorously proved as follows.
Proof:

If the number of times a door's state changes is odd, itwill be open; otherwise it
is closed. Therefore the number of times door k's state changes equals the number
of divisors of k. From the small example analysis, we are led to the conjecture that
the number of divisors oiile is odd iff k is a perfect square. Note that if d divides k;
then kid also divides k. Therefore we can uniquely pair off divisors of k,other than
Vk (if it is an integer). Hence, when Vk is not an integer, k has an even number of
divisors. When Vk is an integer, it is the only divisor of k that cannot be uniquely
paired off with another divisor, implying k has an odd number of divisors. By
definition, Vk is an integer iff k is a perfect square, proving the result.

This check can be performed by squaring LViJ and comparing the result with i.

The indefinite integral f wxe-V dw has the closed form solution - '7,which implies

the definite integral equals (1.Jj; ~ 0.39(1. Therefore the expected payoff on the
option on Day 100 is 0.39 x 20 = $7.8.

The integral can be evaluated in closed form-let y = x - 300 and let's write (1
instead of 20. The expression above simplifies to

J: e-~
(x - 300) x ~dx.

300 V2n(20)2

Solution 20.24: Let x be the price of the stock on Day 100. The option is worthless
if x < 300. If the price is x 2: 300, the option is worth x - 300 dollars. The expected
value of x is given by the integral

Solution 21.1446

ElementsOfProgramrninglnterviews.com

Problem 21.5,pg.164: If you want to ensure you do not lose, would you rather be For S7

Problem 21.4,pg.164: How would you breaka 4x4 bar into 16pieces using as feto breaks
as possible?

Solution 21.4:If the assumption is that onceyou have broken the bar into two pieces,
they become separate problems, then it does not matter what order you do it-you
will require IS total breaks in any scenario, since eachbreak increases the number of
pieces by 1.

If, on the other hand, the assumption is that the whole bar stays together (as it
would if you were breaking it in its wrapper, for instance), then you can do a little
better. Youcould simply break it along all axes (say,first the vertical and then the
horizontal) for a total of sixbreaks.

Problem 21.3,pg.164: Prove that there exists a place such that Albert is at that place at
the same time on Sunday as he was on Saturday.

Solution 21.3: The easiest way to prove this is to imagine another hiker (callhim
Max) descending the mountain on Saturday, in exactly the same fashion as Albert
did on Sunday. When ascending on Saturday,Albert will pass Maxat some time and
place-this is the time and place which Albert will be at on Sunday.

Problem 21.2,pg.163: What is the minimum number of five man time-trials needed to
determine the top three cyclists from a set of2S cyclists?

Solution 21.2: Let's start with five time-trials with no cyclist being in more
than one of these five initial time-trials. Let the rankings be (Al,A2,A3,A4,AS),
(Bl,B2,B3,B4,BS),«n,C2,C3,C4,CS),(Dl, D2,D3, D4,DS), and (El, E2,E3,£4,E5),
where the first cyclist in each sequence is the fastest. Note that we can eliminate
A4,AS,B4,BS,C4,CS,D4,QS,E4, and ESat this stage.

Now, we race the winners from each of the initial time-trials. Without loss of
generality,assume the outcome is (AI, Bl, Cl, Dl, E1). At this point, we can eliminate
Dl and E1as well as D2 and D3 and E2and E3.Furthermore, sinceC1was third, C2
and C3cannot be in the top three; Similarly,B3cannot be a contender.

Weneed to find the best and the second best from A2,A3,Bl, B2,and Cl, which
we can determine with one more time-trial. Therefore seven time-trials are enough.

Note that weneed sixtime-trials to determine theoverallwinner, and the sequence
of time-trials to determine the winner is essentially unique-if some cyclistsdid not
participate in the first five time-trials, he would have to participate in the sixth one.
But then one of the winners of the first five time-trials would not participate in the
sixth time-trial and he might be the overall winner. The first six time-trials do not
determine the second and the third fastest cyclists,hence a seventh race is necessary.

This is done iteratively in a synchronized fashion. Show that eventually someone
will have two cards with identical numbers.

447Solution 21.5

ElementsOfProgramminglnterviews.com

II~inChompO:
2 You choose square (1,1);

Problem 21.6,pg.l64: Assuming the players have infinite computational resourcesat their
disposal, who will win n x n chomp?

Solution 21.6: The first player can always win. The key observation in this game
is that we want to force the play to be symmetrical around the diagonal, i.e.,
(0,0),(1,1),... , (n -1, n -1) with oUIopponent forced to be first to break the symme­
try. If that is the case,we can follow each ofhis moves by amatching move reflected
in this diagonal which will eventually forcehim to select the (0,0) space.

The way to force this kind of play is to be the first person to select (1,I)-this
causes the play area to be just the column (0,[0,n - 1]) and the row ([0,n - 1],0) (i.e.,
an "L" shape). At that point, the first player can successfullymirror any move that
the second player makes, forcing the second player to eventually choose (0,0). This
strategy is formalized in pseudocode below.

I II Return 6) means choosing F, and return 1 means choosing S
2 template <typename CoinType>
3 int pick_up_coins(const vector<CoinType> &C)

int even_sum = 9, odd_sum = $;

51 for (int i = 61; i < C. sizeO; ++i) {
61 if (i & 1) { II odd
71 odd_sum += C[i];
8: else { II even
9! even_sum += C[i];
loj
::1 !eturn even_sum >= odd_sum ? $:. 1;
13 }

Solution 21.5: Number the coins from 1 to 16. Player F can choose all the even­
numbered coinsby firstpicking Coin 16and then always picking the coin at an even
index at one of the two ends. Forexample, ifPlayer S choosesCoin 1, then in the next
tum, Player F choosesCoin 2. IfPlayer S choosesCoin 15,then F choosesCoin 14in
the next tum. In this fashion,F can always leave an arrangement where S can only
choose from odd-numbered coins.

If the value of the coins at even indices is greater than that of the coins at odd
indices, F can win by selecting the even indices and vice versa. If the values are
the same, he can simply choose' either and in each case, he cannot lose. For the
configuration in Figure 4.6 on Page 44, the sum of the even-numbered coins is 1251t
and the sum of the odd-numbered coins is 63¢, so F can win by picking up the
even-numbered coins.

The code below implements this idea. It entails a single pass through an array,
and its time complexity is O(n), where n is the number of coins (assumed to be
even). In contrast, the DP algorithm presented in Solution 15.18on Page 357 has
time complexityO(n2).The benefit of the DP algorithm is that it yields the optimum
solution-l40t instead of 1251tfor this example.

Solution 21.6448

ElementsOfProgramminglntervie~ls. com

Problem 21.9, pg.165: Building i has r, residents, and isat distance di/rom the beginning
of the street. Devise an algorithm that computes a distance mfrom the beginning of the street
for the mailbox that minimizes the total distance, that residents travel to get to the mailbox,
i.e., minimizes E7,;Ql rild;- mi.

Solution 21.9: Suppose the total number of residents t = E7:01 r, is odd. Sort the
residents according to their distance from the beginning of the street. The optimum
location for the mailbox is at the building corresponding to the resident at the median
according to the sort order above. Call this resident the median resident.

The argument is as follows. Each location to the left of the building b the median
resident lives inis suboptimum, since we can reduce the total distance by moving the
mailbox to b (more residents see a reduced distance than see an increased distance).
In the same way, each mailbox location to the right of b is suboptimum.

, ,

Solution 21.8: Suppose the second player has a winning strategy. Suppose the first
, player chose (n - I, m - 1) as his initial choice and the second player countered with
position (i,;), leaving the set S of squares. Now, it is the first player'S tum and from
this set, by hypothesis, the second player can force a win. However the first,player
could have chosen (i,J) as his initial move and the set of remaining squares would
be S (since the square (n -I, m -1) is above and to the right of all othersquares) with
the second player's turn. .

This contradicts the hypothesis that the second player has a winning strategy;
therefore the first player must have a winning strategy.

Note that this solution does not give an explicit strategy, unlike Solution 21.6 on
the facing page and Solution 21.7 on the current page. The argument used above is
sometimes called "strategy stealing." Explicit strategies for n x m chomp are known
for only a few specific cases.

Problem 21.8, pg.165: Solve Problem 21.6 on Page 164 if the rectangle is of dimension
n x m.

Problem 21.7, pg.165: Solve Problem 21.6 on Page 164 if the rectangle is n long along the
x-axis, and two l~ng along the y-axis.
Solution 21.7: Suppose the set of remaining squares are of the form ofa rectangle
and one additional square (which must be on the lower row) and the second player
is to move. The remaining set of squares will be in the form of a rectangle (if the
second player plays the lower row) or a rectangle with a set of additional squares on
the lower row. In either case, the first player can recreate the state to be a rectangle
and one additional s'quare, i.e., the first player can force a win. By playing (n - 1,1)
as his initial move, the first player can create this situation and therefore force a win.

Until you win:
Wait for your opponent to choose square (i,j):
You choose square (j.i);

449SoluHon 21.9

ElementsOfProgramminglnterviews.com

Problem 21.11,pg.166: Write afunction that takes a nonnegative integer x and returns, as
a string, the integer closest to x whose decimal representation is a palindrome. For example,

10
11 return min, first;
12 }

1 template <typename T>
2 int find_start_city(const vector<T> &G, const vector<T> &D)

T carry = 8;
pair<int, T> mine8, 8);

5 for eint i = 1; i < G.size(); ++i)

carry += G[i - 1] - D[i - 1];
if (carry < min.second)

8 min = {i, carry};

Problem 21.10,pg.165: Given an instance of the gasup problem, how would you efficiently
compute an ample city if one exists?
Solution 21.10:Consider the thought experiment of starting at an arbitrary citywith
sufficientlylarge amount ofgas so that we can complete the loop. Inthis experiment,
we note the amount of gas in the tank as the vehicle goes through the loop at each
city before loading the gas kept,in that city for the vehicle. Let C be a city where
the ~ount of gas in the tank before we refuel at that city is minimum. Call this
minimum amount of gas m. Now suppose we pick C as the starting point, and we
have no gas. Sincewe never have less gas than we started with at C,we can complete
the journey without running out of gas. The computation to determine C can be
easily done in linear time with a single pass over all the cities.

Variant 21.9.2: Compute a location that minimizes the maximum distance that any
resident travels.

Variant 21.9.1: Compute a location thatminimizes the sum of the squares of the
distances traveled by the residents.

If the number of residents is even, any location between the buildings that the
LtJ-thand (LtJ+1)-thresidents live in is optimum. (If they live in the same building,
which is the optimum building.)
If the buildings are given sorted by distance from the beginning of the street,

the median resident can be found in linear time by iterating through the offsets in
increasing order, adding the corresponding TjS until the count gets to t. Note that
the time complexity isO(n) where n is the number ofbuildings, not O(t).
If the distances are not sorted, we can sort inO(n logn), and then find themedian.

Alternately, we can find the median using extensions of the randomized median
finding algorithm forunweighted data. Inparticular, the randomized median finding
algorithmpresented inSolution11.13onPage 270can bemade to work in linear time,
even for the weighted case.

Solution 21.11450

451

ElementsOfPrograrnminglnterviews.com

break;
Hstr[idx];
else {

if (str[idx) == '9')
str[idx--] ; '@';

else { /1 mirror_left < x
1/ Add one to the left half
while (idx >= 19){

if (str[l9)== '19') { /1 special case, make the whole string as "99...9"
str = to_string(stoul(str); /1 removes the leading 9
£ill(str.begin(), str.end(), '9');

13

14,

lsi
16i
171
lsi
191

2O!
21 i
221

231

241
2Si
26i
:1
29

so
31
32

• 33

34
35

36
37
~ II Make str a palindrome again by mirroring the left half to the right half

/1 Subtract one from the left half
while (idx >; @) {

if (str[idx] ;; '@')

str[idx--] ; '9';
else {
--str[idx);
break;

3 }

:1 unsigned find_closest_palindrome(const unsigned &x)
61 string str(to_string(x));
71 II Make str a palindrome by mirroring the left half to the right half
8 copy(str.cbegin(). str.cbegin() + (str.size() » 1). str.rbegin());

1:1 unsigned mirror_left; stoul(str);
i

II int idx ; (str.size0 - 1) » 1;
12 if (mirror_left >; x) {

unsigned diff(const unsigned &a, const unsigned &b)
return a > b ? a - b : b - a;

given 1224,you should return 1221.

Solution 21.11: If x is a palindrome, we simply return x. Assume x is not a palin­
drome. Treatx as a string of digits. For simplicity, assume x is of even length. Let
t be the left half of x, and b be the right half of x. Let s be the smallest palindrome
greater than x, and I be the largest palindrome smaller than x.

Conceptually, there are three candidates for the palindrome closest to x. One is
the integer which agreeswith the first half of x. The other two are formed from t + 1
and t - 1. In all three cases, the second half of the candidate is implied by the first
half. For the given example,we try 1221,1331,and 1111.Thepalindrome formed by
mirroring t +1maybe strictly greater than Sj if so, s is guaranteed to be the mirror of
t. A parallel result holds for t - 1.

For odd length x,we use the same approach, but take t to be the digits to the left
of the center digit.
-------_ ..------------------_._--------------------._---

Solution 21.11

£lementsOfProgramminglnterviews.com

It is possible to solve this problem with only 0(1) additional storage, with a
sophisticated case analysis. Suppose A[ll '* 0 for all i. If A contains an odd number
of negative entries, the optimum product is formed when we exclude the biggest
negative entry. Otherwise, suppose A contains an even number of negative entries.
If some entries are positive, the optimum product is achieved when we exclude the
smallest positive entry; otherwise, we exclude the smallest negative number.

Now suppose two or more zeros are present in A. Then the product of any n - 1
entries is always O. Suppose there is exactly one zero. IfA contains an odd number
of negative numbers, the optimum product is zero; otherwise it is the product of

11 T forward : i > & ? L [i - 1] : 1;
n T backward = i + 1 < A.size() 7 Rei + 1] : 1;
13 max_product = l1ax(max_product, forward • backward);
14

U return max-product;
16

1. teap1ate <typename T>
211 T find_biggest_n_l_product (const vector<T> &A) {
3 II Build forward product L, and backward product R
'I vector<T> L, R(A.size(»:
51' partiaLsulII(A.cbeginO, A.cend0, bac!t..inserter(L),l1ultiplies<T>O) ;
6 partial_su.(A.crbegin(), A.crend(), R.rbegin(), multiplies<T>(»;

761 II Find the biggest product of (n - 1) nwabers
91 T max_product : numeric_lil1its<T>::min();
10 for (int i : &; i < A.size(): ++i) {

nn-1AII]Problem 21.12,pg.166: Given an array A with n elements, compute max7;J~ in
O(n) time without using division. Can you design an algorithm that runs in 0(1) space and
O(n) time? Array entries may be positive, negative, or O.

Solution 21.12:Let L" = II~=oA[lland R" = IIj.:;! A[l1- Observe computing L" and
R"individually takesp and (n -1) -p multiplications, respectively;however,we can
compute all the L" and R" using 2(n - 1) multiplications, since L" = L,,-tA[p1, and
R" = A[p1R,..1' The product of all elements except the i-th one is simply Lt-IRi+1,
hencewe can compute these n products using nmultiplications, oncewe have Land
R computed. Finding the largest product is simply an iteration with compare and
swap in the loop. The time complexity is O(n) and the solution uses two arrays of
length n each.

E-Variant 21.11.1: Find the palindrome p closest to a nonnegative integer x, subject
to the constraint that p '* z. For example, if x = 999,then p = 1001.

~ copy(str.cbegin(), str.cbegin() + (str.size() » 1). str.rbegin(»:
~ return diff(x, mirror_left) < diff(x, stou1(str» 7
~ mirror_left : stoul(str):
42

Solution 21.12452

453

ElementsO!ProgrammingInterviews.com

~2 return 9:
33 else {
~ x • zero_idx:
35
36 else {
~ if (ne,,_count & 1) { II odd number negative
~ x = b_n.g_idx:
~ else { II even number negative
~ if (pos_count > 8) {
u x • s_pos_idx:
42 else {
~ x = s_neg_idx;
4.
~
46

(7

48 T product • 1;
49 for (int i • 9; i < A. sizeO: ++i) {
.!O if (i I- x) {
51 product •• ACi]:
52

-1 I I ACi) < ACs_pos_idx]) {
18

19

20

21
22

23

24
25 II Try to find I number whose elimination could maximize the product of
26 II the remalning (n - 1) numbers.
27 tnt x; II stores the idx of eliminated one
~ if (zero_count >. 2) {

29 return &:
~ else if (zero_count == 1) {
51 if (neg_count & 1) {

++pos_count:
if (s_pos_idx

s_pos_idx .. i;

16 zero_idx • i, ++zero_count;
17 else { II A[iJ > ill

8) {else if (ACi]

-1 II ACb_ne,,_idx] < ACi]) {if (b_ne,,_idx
b_n.,,_idx • i;

10

II

12

13

"15

s_ne,,_idx • i;
-1 I I ACi) < ACs_neg_idx) {

for (int i • $: i < A.size(); ++i)
if (ACi] < &) {

++neg_count;
if (s_neg_idx

I template <typenama T>
2 T find_biggest_n_1_product(const vector<T> &A) {

int zero_count • &. pos_count • &. neg_count ~ &;
int zero_idx • -1, s_neg_idx. -1, b_neg_idx .. -1, s_pos_idx £ -1;

..-.-__ .__ .._--_._------------
all elements excluding the zero. The code can be readily implemented with a small
number of traversals of the array, leading to an O(n) time complexity.

Solution 21.12

ElementsOfProgramminglnterviews.com

Variant 21.13.2: Men numbered from 1 to n are arranged in a circle in clockwise
order. Every k-th man is removed, until only one man remains. What is the number

Variant 21.13.1: How would you compute the minimum number of drops needed
to find the breaking point from 1 to F floors using c cases?

11 return FCc]Cd];
u
13 }

:1int getHeight(const int &e. const int &d) {
16i veetor<veetor<int» F(c + I, veetor<int>(d + I, -1»;
VI return ge~_height_helper(F, e, d);
18 }

10
9

1 int ge~_heigh~_helper(veetor<vee~or<int» &p. eonst int &e. eonst int &d) {

21 if (d&) {
3 re~urn &;
4 } else if (e == 1) {

return d;
else {
if (FCe]Cd] == -1) {

FCe]ed] = get_height_helper(F. e, d - 1) +
get_height_helper(F, e - I, d - 1) + 1;

We can compute Fusing DP as below:

F(c+ I,d) = F(c,d -1) + 1+ F(c+ I,d -1).

Problem 21.13, pg.166: Given c cases and d drops, what is the maximum number offloors
that you can test in the worst-case?

Solution 21.13: Let F(c,d) be the maximum number of floors we can test with c
identical cases and at most d drops. We know thatF(l, d) = d. Suppose we know the
value of F(i, J} for all i s c and j sd.

Ifwe are givenc+ 1cases and d drops we can start at floor F(c,d -1) + 1and drop
a case. If the case breaks, then we can use the remaining c cases and d - 1 drops to
determine the floor exactly, since it must be in the range [1,F(c,d -1»). If the case did
not break, we proceed to floor F(c,d -1) + 1+ F(c+ I,d -1).

Therefore F satisfies the recurrence

Variant 21.12.1: Let A be as above. Compute an array B where B[I1 is the product of
all elements in A except A[l]. You cannot use division. Your time complexity should
be O(n), and you can only use 0(1) additional space.

=1 return produe~;
55 }

Solution 21.13454

455

ElementsOfProgramminglnterviews.com

;
25; break;
26
27

~ swap(B[iJ, B[idx]);
29

idx = j;

int idx = i;
for (int j = i + 1; j < B.size(); ++j) {
if (B[j][i])

II Find the coefficient starting wi th 1

Gaussian_elimina~ion(const vec~or<vector<bool» &A.
const vector<bool> &y)

9

101 }
111
121 vector<bool>
13!
141 vacr or-xvacrorcbco'l» B(A);
151 for (int i = &; i < B.sizeO; ++i) {
161 B[iJ.push_back(y[i));

. ::1
191 for (int i = 6); i < B.sizeO; ++i)

w!
211
221
23

;24 i

}

for (in~ a ~ &: a < B.size(); ++a) {
if (i !" a && B[a) [j)) {

for (int b = &; b < B[i).size(); ++b) {
B[a)[b) = B[a)[bJ A B[il[bJ;

r------ ..··..------
1 void Elimina~e_rows(vec~or<vec~or<bool» &B. const int &i. const in~ &j)

II Use B[i] to eliminate other rows' entry j

so.Jution 21.14: First we make the observation that any pair of whacks commute, that
is that the state resulting from a whack to mole m, followed by a whack to mole mj
is the same as the state resulting from whacking mj followed by mi. This generalizes
to arbitrary sequences of whacks, which in turn implies that a state can be achieved
from an initial state So iff it can be achieved by whacking each mole at most once.

Introduce a Boolean variable Xi for Mole i-this variable indicates whether the
mole is to be whacked. Observe that the state of Mole i after the whacks encoded by
the 'XiS is Yi = Xi e Xni e Xni ••• e Xni • Therefore the problem reduces to computing

o 1 ik_1
. an assignment to the XiS that sets each Yi to O.

The standard approach to solving linear equations of the form y = Ax is Gaussian
elimination. Iteratively remove variable Xi from all equations after the i-th one.
This results in an equation in one unknown, which is then solved, and iteratively
substituted back into the previous equations.

.------_ ..._----._._._--

Problem 21.14,pg.166: Moles arenumbered from 0 ton-l. Mole m hasa set ofneighboring.
moles. Whacking m when it is up results in it and all of its neighbors flipping state. Given
a set of moles, the neighbors for each mole, and an initial assignment of up/down states for
each mole, compute a sequence of whacks (if one exists) that results in each mole being in the'
down state.

of the last man?

Solution.21.14

ElementsOfProgramminglnterviews.com

lint celebrity_finding(const vector<vector<bool» &F)
II Start checking the relation from F[9][1]
int i = $, j = 1;
while (j < F.size(» {

5 if (FCi][j] == true)
6 i = j++; II all candidates j' < j are not celebrity candidates

} else { II F[i] [j] = false

Problem 21.15,pg.167: Let F be an n x n Boolean 2D array representing the "knows"
relation for n people; F[a][b]is true iff a knows b, and F[a][a]isalways false. Design an
O(n) algorithm tofind the celebrity.

Solution 21.15:Westart by checkingF[OH1],i.e., the relation between Person 0 and
Person 1. Assuming that we are checking F[l][n where i < i. the key idea here is
that if F[i][Jl is false, we know that j is not the celebrity and i is still a possible
celebrity candidate, allowing us to eliminate j from the set of celebrity candidates
by advancing from F[i][j] to F[i][j + 1]. If F[tl[n is true, we know that i is not the
celebrity,and for all r < j, j' isnot a celebritybecauseF[ll[j'] must be false, allowing
us to advance fromF[z1[j]to F[j][j + 1] since i < j. Weeliminate one candidate each
step in 0(1) time which gives us aO(n) time algorithm.

ret.urn x;

vector<bool> x :
for (int i = $; i < B.size(); ++i) {

x.push_back(B[i].back(»;

return {};
cout « "No solution." « endl;

true) {if (have_coefficient == false && B[il.back()

~ II Perform elimination except i-th row
M if (BCi]Ci]) (
~ Eliminate_rows(B, i, i);
33

36
35
:!6 for (int i = B.sizeO - 1; i >a $; --0 {
37 if (BCi][i] == false) {
35 bool have_coefficient = false;
39 for (int j = i + 1; j < A.sizeO; ++j) {
~ if (B[i][j]) {
.1 Eliminate_rows(B, i, j);
u have_coefficient = true;
c swap(B[i], B[j]); II row permutation
" break;
45

46
47

481
~l
:1
521
53i~!
531

:1
581

:1}

456 Solution 21.15

ElementsOfProgramminglnterviews.com

Problem 21.17,pg.167: Prove that every tournament has a Hamiltonian path, i.e., a path
that includes each vertex exactly once.

Solution 21.17:Weuse induction on the number of vertices. Specifically,the induc­
tion hypothesis is that every tournament on n vertices has a Hamiltonian path.

Figure 21.17: Representative graphs on six vertices.

(d)(c)(b)(a)

Problem 21.16,pg.167: Six guests attend a party. Any two guests either know each other
or do not know eachother. Prove that there exists a subset of three guests who either all know
each other or all do not know each other.

Solution 21.16:Thisproblem can bemodeled usingundirected graphs where vertices
correspond to guests. Add an edge between each pair of guests. Color an edge
between a pail' of guest "blue" if they are friends, otherwise, color it "red".

Thenthe theorem is equivalent to the claimthat in any cliqueon sixvertices,where
each edge is either blue or red, there exists a subset of three vertices, all connected
by edges of the same color.

Choose any vertex v. Bxarnlne the five edges having v as an endpoint, By the
pigeon-hole principle, there must be at least three edges which are of the same color
c. Let (v, a), (v, P), and (v, y) be three such edges. Now, either there is an edge colored
c between a,p, and y, in which case v and the two vertices in a,p, and y that are
connected by a c-colored edge are three vertices all connected by c-colored edges,
or there is no such edge. In the latter case, a,p, and y are themselves connected by
edges that are of the same color.

Ramsey's theorem is illustrated in Figure 21.17.In each graph, the three shaded
nodes are either all connected or aUdisconnected.

Variant 21.15.1: Solve the same problem when the knows relation is not reflexive,
nor anti-reflexive,i.e., some people may know themselves, and others may not.

::~_:;~:'_=~j_t_y ~'.d_i_d~'._b_ut_j_j'ne e •__ J
457Solution 21.17

ElementsOfProgramminglnterviews.com

Problem 21.18, pg.167: Design an algorithm uihid: takes the preference lists of the students
and theprofessors and pairs students one-to-one with professors subject to the constraint that

the following: choose i E {O,l,2, ... r n - I} to be maximal such that for every j ~ i
there is an edge from VI to VII;Then the sequence (vo, vv ... r Vi, V", VI+lI ... , Vn-t) is a
Hamiltonian cycle.

Agure 21.18: Case analysisview graphically.

&&8------A------~
(c) Case (3.). (l7Q,lIt, ... ,0(,0", Vi.I,'" 0,,-1) Isa Hamiltonianpath.

&&8-------------------------~
(b) Case (2.). (l7Q,lIt, ... ,V.-1,0,,) Is a HamiltOnian path.

------------------------- ~.

(a) Case (t.), {o",~, lIt, ••. , o,,-I} Is a Hamiltonianpath.

Proof:

The base case, namely n = I, is trivial. For the induction step, let T be a
tournament on n + 1 vertices, and VII be any vertex in T. Note that removing a
vertex together with its incoming and outgoing edges from any tournament on
n +1vertices leaves a tournament on n vertices.'

Let (Vo,VI, ... , Vn-l) be a Hamiltonian path in the 'graph resulting from the
removal of VII from T. Its existence is guaranteed by the induction hypothesis,
There exist three possibilities:
(1.) An edge exists from VII to Vo.Then (VII'Vo,VlI' .. r VII-I) is a Hamiltonian path

in T,so induction goes through.
(2.) An edge exists from VII-l to VII' Then (vo,Vl,' .. ,V,,_lIvn) is a Hamiltonian

path in T,so induction goes through.
(3.) No edge exists from v" to Vo and no edge exists from V,,-l to VII' Then

there must be an edge from Vo to V,,' and an edge from v" to VII-t. Let i be
the maximum over all j such that (Vj,vlI) is an edge in T. Since we have
ruled out i = n -1 above, there must be an edge from Vn to Vi+t. The path
(vo,Vt,·· ., Vi,VII'Vi+l,' .. VII-I) is a Hamiltonian path in T, so induction goes
through.

The different cases are illustrated in Figure 21.18. The proof can be shortened to

Solution 21.17458

ElementsOfProgramminglnterviews.com

14 while (free_student.empty() == false) {
~ int i • free_student.front(); 1/ free student
16 int j • student_preference[i][student_pref_idx[i]]; II target professor
17 if (professor_choice[j) -1) { /1 this professor is free
~ professor_choice[j] = i;

13

9 /1 Records the professor each student have asked
10 vector<1nt> student_pref_idx(student_preference.size(). $);

11 II Records each professor currently student choice
11 vector<int> prof~ssor_choice(professor_preference.size(). -1);

7

1 vector<pair<int. int» find_stable_assignmentC
const vector<vector<int» &professor_preference.
const vector<vector<l.nt» &student_preference) {

queue<int> free_student; 1/ stores currently free students
for (int i - 8; i < student_preference.size(); ++i) {

free_student.emplace(i);

there do not exist student-professor pairings (sO,pO) and (sl, p1) such that sO prefers p1 to
pOand p1 prefers sO to 51. (The preferences of pO and 51are not important.)

Solution 21.18: This problem can be solved using a "proposal algorithm". We will
refer to the professor a student is paired with as his adviser. Each student who does
not have an adviser "proposes" to the professor he likes best to whom he has not yet
proposed. .

Bach professor then considers all the students who have sent him proposals and
tells the student in this set that he most prefers "lets talk more", and he says "no" to
all the other student who proposed him.

In each subsequent round, each student who does not have an adviser proposes to
one professor to whom he has not yet proposed. This is done regardless of whether
the professor has already been matched. The professor once again replies with a
single "lets talk more", rejecting the rest. Note that a professor who has already said
"lets talk more" to a student may switch to another student he prefers more, leaving
the first student unmatched.

This algorithm has two key properties, which immediately yield its correctness.
It converges to a state where everyone is paired: Once a professor begins
talking to a student, he always has a student to talk to. There cannot be a
professor and a student both unpaired since the student must made a request
to that professor at some point-a student will eventually propose to everyone,
if necessary and being unpaired, the professor would have accepted.

- The pairings are stable: Let Riemann be a student and Gauss be a professor.
Suppose Gauss is talking to Dedekind and Riemann is talking to Eisenstein.
Upon completion of the algorithm, it is not possible for both Riemann and
Gauss to prefer each other over their current pairings. If Riemann prefers
Gauss to Eisenstein, he must have asked Gauss before he asked Eisenstein. If
Gauss accepted Riemann, but is not paired to Riemarin at the end, he must have
rejected Riemann for a student he preferred more than Riemann and therefore
does not like Riemann more than Dedekind.

459Solution 21.18

ElementsOfProgrammlnglnterviews.com

Problem 21.20,pg.l68: Suppose two squares of opposite colors are removed from a chess­
board. Design an algorithm for finding a way to cover the remaining squares using 31
dominoes, if a covering exists.

Solution 21.20:Model the original chessboard as a bipartite graph B,with 32white
verticeson the leftand 32blackvertices on the right. Verticescorrespond to squares.
Put an edge between verticeswhose corresponding squares are adjacent. Inparticu­
lar, comer vertices are connected to two edges; edge vertices are connected to three

Problem 21.19,pg.l68: Design an algorithm for pairing bidders with celebrities to max­
imize the revenue from the dance. Each celebrity cannot dance more than once, and each
bidder cannot dance more than once. Assume that the set of celebrities is disjoint from the
set of bidders. How would you modifij your approach if all bids were for the same amount?
What if celebrities and bidders are not disjoint?

Solution 21.19: The problem can directly be mapped into the weighted bipartite
matching problem. Bidders and celebrities constitute the left and right vertices; an
edge exists from b to c iff b has offered money to dance with c, and the weight of
an edge is the amount offered for the dance. It can be solved using specialized
algorithms, flownetwork, or linear programming.

If the bids are all in the same amount, the problem is that of unweighted bipartite
matching. If the requirement that bidders and celebritiesbe distinct is dropped, the
problem becomes a weighted matching problem in a general graph. Both of these,
variants are solvable inpolynomial time.

35

36
'S1 vect orcpafrcfnt , int» match_resul t;
36 for (int j = 8; j < professor_choice.size(); ++j) {
~ match_result.emplace_back(professor_cboice(j), j);
40
(I r~turn match-result;
(2

professor_choice(j] a i;
free_student.pop();

free_student.emplace(professor_choice[j);

professor_preference[j).cbegin();
int new_pref • find(professor_preference[j) .cbegin(),

professor_preference[j].cend(), i) -
professor_preferenca[j).cbegin();

if (new_pref < original_pref) { II this professor pr.fers the new one

professor_pr.ference[j).cend(),
professor_choice[j) -

else { II this professor has student now
int original_pref = find(professor_pr.f.rence[j).cb.gin().

free_stud.nt.pop();:1
21
22

:II
24
25

26
11
:zs
29

30

31
32

33

~ ++stud~nt_pref_idx[i);

Solution 21.20460

ElementsOfProgramminglnterviews.com

Problem 21.21,pg.168: This problem is a continuation of Problems 13.6011 Page 100

Variant 21.20.1: Is it true that when any single square is removed from a ~ x 2i
chessboard, the remaining 2k X 2k - 1squares can be tiled with triominoes? (See also
the discussion ofmutilated chessboards on Page 30.)

Figure 21.19: HamUtoniancycle in a chessboard.

edges; and remaining vertices are connected to four edges.
Removing a white and a black square from the chessboard corresponds to remov­

ing a left and a right vertex, together with the edges they are connected to. Call the
new graph B'.

Observe that a single domino placed on the chessboard covers adjacent white
and black vertices. Therefore a valid placement of dominoes corresponds to a set
of edges, no two of which share a vertex. Such sets are commonly referred to as
matchings.

The desired covering corresponds to a matching inB' containing 31 edges, which
is the maximum possible. Hence we can solve our problem using well-known
algorithms finding a maximum matching in a bipartite graph.

Alternately, it is fairly simple to construct a Hamiltonian cycle in B-a sequence
(vo,VI, ••• , V63,vo),such that for all i,OSiS 63,(Vi, Vi+1mod 6C) is an edge. Ifwe remove
a single black and a single white vertex, we can construct a matching that covers
all the remaining vertices by beginning immediately after the removed vertices and
continuing along the edges in the Hamiltonian cycle. Correctness follows from the
fact that therewill be an even number ofvertices on the subpaths in the Hamiltonian
cyclethat result on the deletion of the two vertices. This construction is illustrated in
Figure 21.19. Therefore, regardless of the white and vertices that are removed, there
will always be a suitable covering of the chessboard. (This is not apparent from the
maximum matching formulation.)

461Solution 21.20

ElementsOfProgramminglnterviews.com

Solution 21.21: InSolution 16.7 on Page 382, we showed how to model the problem
using a DAG, with each vertex corresponding to a team. The current problem is
asking for a minimum cardinality set of paths in this DAG such that each vertex
appears on some path.

This is a classic problem that can be solved using maximum bipartite matching
as a subroutine. Let G = (v,E) be a DAG. Construct a bipartite graph B from G
as follows. Each vertex V E V is represented with two vertices V and 11'. For each
(directed) edge (u, v) E E add an (undirected) edge (u, v') to B.

We now prove a one-to-one correspondence between matchings in B and vertex­
disjoint paths that cover all vertices in G.
Proof:

Let nbe a set of vertex-disjoint paths. Initialize M to the empty set. For each
(u,v,w, ... , x, y) En add the edges (u,v'), (e,w'), ... , (x,1) to M. We claim M is a
matching. For two edges of the form (a,b') and (a, c') to be present in M, the edges
(a, b) and (a, c) must have been present in two different paths. (The paths must
be different since G is a DAG.) This contradicts the assumption that the paths in
n are vertex-disjoint. A similar argument holds for edges of the form (a',b) and
(a', c).

Conversely, let M be a matching in B. Construct a set of vertex-disjoint paths
n that cover G from M as follows. Initialize S to the empty set. While S *' V,
choose a vertex v rt S and iteratively create a path p in G including v as follows.
ITv is matched in M with say a', add (v,a) to p and continue the construction
with a, stopping when an unmatched vertex is encountered. Additionally, if v' is
matched with b add (b, v) to p and continue the construction with b. Since M is a
matching, we will never add the same vertex to two paths. Furthermore, since G
is a DAG, the construction of p will always end.

Observe that Inl = IVI-IMI, since each edge in a path corresponds to a matched
edge inB. Therefore we canfind a minimum vertex-disjoint set of paths that covers
G by finding a maximum matching in B.

The proof shows that each unmatched vertex v corresponds to the last vertex
in a path, and each unmatched vertex 11' corresponds to the first vertex in a path.
Therefore the number of unmatched vertices in B is twice the number of paths in
the corresponding set of vertex-disjoint paths in G. Therefore, the minimum number
of vertex-disjoint paths covering G can be determined by computing a maximum
matching in B.

The construction is illustrated in Figure 21.20 on the facing page. Figure 21.20(a)
on the next page is a DAG covered by four paths, (b,c,d), (f,e,h), (a), and (g). We
use thick edges to denote edges in paths; thin edge are not part of the path cover­
ing. Different paths are shaded differently. The corresponding bipartite graph and

and 16.7 on Page 135. Design an efficient algorithm for computing tile minimum number of
subsets of teams so that (1.) the teams in each subset can be arganized to appear in a single
photograph without violating the placement constraint, and (2.) each team appears in exactly
one subset.

Solution.21.21462

ElementsOfProgramminglnterviews.com

Problem 21.22, pg.168: Let A and B be rooted trees. Design a polynomial time algorithm
for computing a largest common rooted subtree of A and B.

Variant 21.21.2: DefineG to be the graph on V = {O,l, ... ,m - I} X {O,l, ... , n - 1},
and E = {«i,j),(i + l,j» I 0 $ i < m -1,0 s j s n -1} U {«i,]J, (i,j + 1» 10 s i s
m - 1,0 $ j < n - 1}.Let S be a subset of the vertices. How would you compute the
minimum number of paths that begin at (0,0) and end at (m - 1,n - 1) and include
eachvertex in S at least once?

Variant 21.21.1: Define a subset S of Z+ to be division-free if '/.x,y E

S such that x mod y = O. How would you compute a maximum cardinality sub­
set division-free subset of Z,,?

(d) Matching cOfresponding to (c).

Figure 21.20: Relationship between paths and matchlngs.

(b) Matohlng corresponding to (a).

(c) An optimum path covering.

a /Cf 0
: <b ~
J(

(a) A suboptimum path ooverlng.

matching are shown in Figure21.20(b);-darkedges are the ones in the matching. The
unmatched vertices on the lower row are the vertices that end paths, and the un­
matched on the upper row are the vertices that path begin from. An augmenting path
for a matching is a path beginning and ending at unmatched vertices which alter­
nates between unmatched and matched edges. Theexistenceof an augmenting path
(a',c,d',e,h',g),indicates that the matching is suboptimum. The path (a',c,d',e,h',g)
is an augmenting path, demonstrating that the matching in Figure21.20(b)is subop­
timum. Figure 21.20(c)illustrates the same DAGcovered with three paths, (b, c,a),
(f,e,d), and (g,h). The corresponding bipartite graph and matching are shown in
Figure 21.20(d). The matching in Figure 21.20(d)is maximum, since there is no
augmenting path for it.

463SOlllti01121.22

ElementsOfProgrammingInterviews.com

Problem 21.23, pg.169: Consider a league in which teams are numbered from 0 to n - 1.
At a certain point in the season, Team i has won WI games, and has RI,I games remaining
with Team j. Each game will end in awin for one team and a lDssfor the other team. Show
hotu the problem of determining whether Team a is mathematically eliminated can be solved
using maximum flow.
Solution 21.23: The most winsTeam a can end the season with is ~ = We +EjURa,f.
The idea is to use max-flow to check if it is not possible for all other teams to
simultaneously win no more than fla games, in which case a is eliminated.

We define an instance of maximum flow as follows. Let Is} U {ri,i I i '* a, j '*
a, and i < 11U {VI I i '* a} U (t} be a set of vertices. Add an edge from s to each vertex
of the form ri,f with capacity R,j' Add edges from ri,i to Vi and to Vj with capacity 00

for each vertex of the form ri,j' Add an edge from each vertex VI to t with capacity
fla - Wi' This construction is illustrated in Figure 21.21 on the next page.

An integral flow / from s can be interpreted as follows. The flow through (5, (rl,/»
is split into flow through Vi and Vj; it is the assignment of /(5, (r,.j» victories across
Team i and Team j. The maximum number of victories that Team i can have without
eliminating a is fla - Wi; this is captured by the capacities on edges of the form (VI, t).

Variant 21.22.2: Given two binary trees with values stored at nodes, compute the
largest subtree that is contained in both. Isomorphic nodes must have the same
stored values.

Variant 21.22.1: Given two binary trees, compute the largest subtree that is contained
in both. Ignore node contents.

Solution 21.22: We use DP to build a map L from pairs u E A and v E B to the size of
a largest subtree rooted specifically at II and at v.

Denote by C(x) the set of children nodes of x. Suppose we know L(u', if) for
all u' E C(u) and v' E C(v). Finding the largest common subtree rooted at u and v
entails finding a one-to-one mapping m from Mil C C(u) to M" c C(v) that maximizes
EIl'eM. L(u',m(u')).

Form a complete bipartite graph Bon C(u)UC(v),with the weight of edge (u', v')
being L(u', v'). The desired mapping is simply a maximum weighted bipartite match­
ing in B.

The complexity of this procedure is polynomial, but with a high degree. Given a
bipartite graph with IVIvertices and lEIedges, a maximum weighted matching can be
computed in 0(IVI2IEI) time using max-flow algorithms. This can be improved using
specialized matching algorithms to O(IVIIEI+ rVf log IVI). Inour setting lEI= 80Vt2),
since L(x,y) <:!: 1 for all x, y. If A and B each have n nodes, the weighted bipartite
matching algorithm may be called with IVI = 8(n), and 0(n2) such calls are made,
leading to a O(nS) time bound, when the best weighted bipartite matching algorithm
is used. In practice it is unlikely that the matching routine will be called n2 times
with large bipartite graphs.

Solution 21.13464

ElementsOfProgramminglnterviews.com

Variant 21.23.1: Let G be a DAG in which each vertex v has an associated value

Suppose there exists a flow that saturates all the edges emanating from s, i.e., has
value [(1,1111</ and 1,/""1Ri,j. This must be a maximum flow, since it is the capacity of all
the edges emanating from s. By the reasoning above, this flow assigns outcomes to
all the games that remain to be played that do not involve a, and by the (VI,t) edge
capacity constraint, this assignment does not lead to the elimination of a.

Conversely, suppose a is not eliminated because of some combination of outcomes
for the games. These outcomes yield a flow that has value [(1,,111</ and ~~) RI,! which
must satisfy the capacity constraints (since there are Ri,j games remaining between
Team iand Team j, and Team iwins no more than Jla - WI games).

Putting the two arguments together, we have proved that the network has a
maximum flow of value [{(i,!1Ii</ and I,j~a) RI,; iff a is not eliminated.'

As a concrete example, consider five teams, A,B,C,D, and E. We want to check
if Team E is eliminated. Two games remain to be played between each pair in
{A, B,C,D}, and E has a total of five games to play against the remaining four teams.
Currently- E has one victory less than A, two fewer victories than B and C, and three
fewer Victories than D.

The technique we presented above yields the maximum flow problem in Fig­
ure 21.21, and E is not eliminated iff there exists a flow that saturates all the edges
coming out of s. The following flow function achieves this: j(AB,A) = I, j(AB, B) =
l,j(AC,A) = I, j(AC,C) = l,j(AD,A) = 2,f(AD,D) = 0, j(BC,B) = O,j(BC,C) =
2,j(BD, B) = 2, j(BD, D) = 0, j(CD, C) = 0, j(CD, D) = 2, with the remaining values
for j implied by those above.

Figure 21.21: Maximum flow instance for the example described on the current page. Nodes Imme­
diately below s correspond to matches between pairs of teams {A,B,C,DJ. Edges that are nollabeled
with a capacity have Infinite capacity.

465Solution 21.23 .

ElementsOfProgramminglnterviews.com

Problem 21.25, pg.170: What follows after the explorer visits the Isle of Logic? The
explorer seems to have added no new knowledge since each inhabitant already knows that
some inhabitants have blue eyes and some have green eyes. Why does his observation change
the equilibrium?

Solution 21.25: Consider the case where exactly one person has green eyes. The
statement from the explorer would make it clear to the person with green eyes that
he has green eyes sincenobody else that he sees has green eyes.

Now, suppose two inhabitants have green eyes. The first day, each of these two
inhabitants would see exactlyone other person with green eyes. Eachwould see the
other person on the second day too, from which they could infer that there must be
two inhabitants with green eyes, the second one being themselves. Hence both of
them would leave the second day.

Using induction, we can demonstrate that if there are k inhabitants with green
eyes, aU the green-eyed inhabitants would leave after the k-th assembly.
Proof:

Wealready saw the base case, k = 1. Suppose the induction hypothesis holds
k - 1. If the number of inhabitants with green eyes is k, each inhabitant with

greeneyeswould seek-l other inhabitants with greeneyes. Ifat thek-thassembly,

Problem 21.24,pg.169: Design an efficient algorithm for computing a rounding ofamairix,
if one exists.

Solution 21.24:Clearly,anecessary condition for a rounding ofA to exist is that each
row and each column of A sums to an integer. Wewill show that this condition is
also sufficientvia a constructive argument.

Weformulate the problem as a variant of the max-flowproblem, specifically,as
an instance of the circulationwith demands problem.

We define a directed graph G = (v,E) as follows. The vertex set V =
(5,t,!Jo,Ul, ... , u",-l, vo,vlt· .. , Vn-l). Add directed edges (s,Uj), (Vi' t), (Ui'Vj), and (t,s)
for aU 0 :5 i :5 m - 1, 0 :5 j :5 n - 1. Assign a lower bound ("demand") L(x,y) and
upper bound ("capacity") U(x,y) to edges as follows: L(s,Uj) = U(s,Ui) = r.j;~A[i, 71,
L(vj, t) = U(Vj,t) = r.~l A[i, j], L(u{,Vi) = LA[i,]lJ, U(Uj,vi) = rA[i, J1l, L(t, u) = 0,and
U(t,u) = 00.

Weknow that we can assign flows through the edges of G that satisfy the lower
and upper bound constraints by simply setting the flow through each (ui,vi) toA(i, 11,
with the flow through the remaining edges implied by this assignment. Hence the
circulation problem is feasible. The circulation integrality theorem says that if an
instance of the circulation problem has integral lower and upper bounds for each
edge, then the problem is feasible iff there exists a circulationwith integer flows. The
proof is constructive, hence applying the circulation algorithm yields the desired
rounding.

cCV) E Z. How would you select a subset S of vertices having maximum value,
subject to the constraint that if V E S and (u, v) E E then u E S?

Solution 21.25466

ElementsOfProgrammingInterviews.com

Now this optimization problem is an instance of linear programming, and can be
solved using standard algorithms, e.g., Simplex.

m-I

t ~ pTAej = I:pjaj,j, for all if 0 ~ i~n - 1
j=o

m-I

I:Pj = 1
i=O

Pi ~ 0, for all i,0 s ism - 1

Problem 21.26,pg.170: Given a payoff matrix, compute values po,PI, ... ,Pm-tlor Player 1
that minimize tire maximum payoff for Player 2. Assume Player 2 knows po,PI,', .. ,pm-I'

Solution 21.26: Let p = [Po,PI, ... ,Pm-IF and q = [qO,ql,... ,qll-IF. Denote A[i](J1
by al,I' Formally, we want to find a P that minimizes max, pTAq, subject to the
constraints that probabilities are nonnegative, and sum up to 1. When Player 2
knows Po,PI,' .. , pm-I, there always exists a q maximizing pTAq that is a vector of all
Osexcept for a Single 1. The 1is at an index corresponding to the maximum entry in
pTA. (There may be other qs which also maximize, but there is no loss of optimality
in focusing on q~of the specified form.) Let e; denote the n-dimensional vector which
is 1an index i,and 0 everywhere else.

The problem now is to find p that minimizes ma:XOSiSn-1pTAej. Modeling this opti­
mization problem as a linear program requires a trick to deal with the max operation.
The basic idea is that the minimization problem min(maxOSiSn-l(Xo,Xl, ... , Xn-l}) sub­
ject to the constraint C(Xo, Xl, ... , Xn-l) can be cast as a minimization problem which
does not use the max operator. Specifically, this minimization problem is equivalent
to minimizing t subject to C(Xo, Xl, ... , Xn-l) and t ~ Xj, for 0 ~ i ~ n - 1. Therefore
the P we seek is the minimizer of t subject to the following constraints:

they see that nobody has departed, it would indicate that they themselves have
green eyes and hence all the green-eyed inhabitants would leave on the k-th day.

As for the second part of the question, for k = 1, it is fairly obvious that the
explorer gave new knowledge to the person with green eyes. For other cases, the
new information is more subtle. For k = 2, the green-eyed inhabitants would be
able to infer the color of their eyes on the second day based on the information that
everyone on the island knows that there are green-eyed inhabitants and yet no one
left. For k = 3, they are able to infer because everyone knows that everyone knows
that there are green-eyed inhabitants and yet on the second day no one left.

Suppose x is some fact and E(x) represents the fact that everyone knows x to be
_ true. In this case, let g represent the fact that there are some green-eyed inhabitants on

the island. Then on the k-th day, all the green-eyed inhabitants would use EK(g), the
k-iteration of the common knowledge, to infer that they have green eyes. Essentially,
what the explorer did by announcing the fact in the assembly is that it became
"common knowledge", i.e., Eco(g) became true.

467Sollltiotl21.26

ElementsOfProgrammingInterviews.com

Variant 21.26.3: Suppose C E 'RIIXlI and p E 'R. Let r = {F E 'R,.1Ixn I F[t1[;l E

[C[11[;1 - P, C[11[J1 + pJ}.The constraints Ax ~ b for all A E 'F define a subset of 1?'.
Find the radius of a largest sphere contained in this subset.

Variant 21.26.2: Given a subset of 'Rn defined by a set of linear inequalities Ax ~ hi
find the radius of a largest sphere contained in the subset.

Variant 21.26.1: How would you efficientlysolve for the optimum p subject to the
additional constraint that the sum of the k largest values of p is no more than fl?
(Adding ~) additional constraints is not efficient.)

Solution 21.26468

Notation and Index

Part IV

Meanin
logarithm of X to the base b
logarithm of x to the base 2
cardinality of set 5
set difference,Le. 5 ()T',sometimes written as S - T
absolute value of x
greatest integer less than or equal to x
smaJlestinteger greater than or equal to x
sequence of n elements
the sequence (ak,ak+I,'" ,an-I)
sum of all f(k) such that relationR(k) is true
product of all f(k) such that relation R(k) is true
minimum of all f(k) such that relation R(k) is true
maximum of all f(k) such that relation R(k) is true

470

log, x
19x
151
5\T
Ixl
lxJ
rxl
(ao,all ' . ,,an-I)
tt,a = (ao" ",an-I)
LR(k)f(k)
I1R(k)f(k)
minR(t)f(k)
max~f(k)

x,y real-valued variables
a a permutation

m,n

u,v
e

L
5
T
G
V
E
e

set
tree
graph
set ofvertices of a graph
set of edges of a graph
an event froma probability space
vertex-valued variables
edge-valued variable
number of elements in a collection

k-dimensional array
linked list or doubly linked list

Weuse the followingconvention for symbols,unless the surrounding textspecifies
otherwise:

i,j, k nonnegative array indices
t.s.h function
A

-B.S.PARxn

To spttlk about notal/oil as the only 'I.IXtY that you CQn
guamnlee structure of course is alrttldy very susptCt,

Notation

ElementsOfprogrammingInterviews.com

shorthand for E.Sk~ f(k)
shorthand for I1asksb f(k)
set of all a such that the relation R(a) = true
closed interval: {x II~x ~ r}
half-closed, half-open interval: {x II~x < r}
half-open, half-closed interval: (x II< x ~ r)
open interval: (x Ii< x < r)
well-defined collection of elements, i.e., a set
the i-th element of one-dimensional array A
subarray of one-dimensional array A consisting of ele­
ments at indices i to j inclusive
the element in i-th row and j-th column of two­
dimensional array A
2D subarray of two-dimensional array A consisting of
elements from i1-th to irth rows and from h-th to h-th
column, inclusive
binomial coefficient: number of ways of choosing k ele­
ments from a set of n items
n-factorial, the product of the integers from 1to n, inclu­
sive
big-oh complexity of fen), asymptotic upper bound
big-theta complexity of fen), asymptotically tight bound
big-Omega complexity of fen), asymptotic lower bound
mod function
bitwise-XOR function
x is approximately equal to y
pointer value reserved for indicating that the pointer
does not refer to a valid address
empty set
infinity: Informally, a number larger than any number.
Rigorously, a set is infinite iff it can be mapped one-to-one
to a proper subset of itself.
the set of integers (... r -2, -1,0,1,2,3,)
the set of nonnegative integers (0,1,2,3,)
the set (O,I,2,3, ... ,n -1)
the set of real numbers
the set of nonnegative real numbers
much less than
much greater than
function mapping from domain A to range B
logical implication
if and only if
probability of event 0

Z
Z+
z,
'R
'R+
x«y
x»y
AHB
=>
iff
PrCo)

00

o

O(f(n»)
8(f(n»
O(f(n»
xmody
xey
x~y
null

n!

A[11[j] or A[i, jJ

E~""f(k)
I1Z;a fCk)
(a IR(a»)
[I, r]
[I, r)
(I, r]
(I,r)
(a,b, ...)
Ai or A[i]
A[i : j]

471Notation and Index

472

back edge, 379
. backtracking, 114,395,401
balanced BST,27, 80

height of, 309
balanced tree, 236

height of, 236
balls and bins, 158
sec,379, 380
Bellman-Ford algorithm, 42, 388

for negative-weight cycle detection. 388
Bernoulli random variable, 155, 434
BFS, 132, 132.,307, 338, 374-376, 380, 413
BFS tree, 374, 376, 377, 413
biconnected component, see BCC
binary search, 3, 4, 13, 20, 33, 34, 84, 84, 85, 86,

98,105,115,138,260,263-267,295,
342,343,365,366,417

binary search tree, 3, 23, 23, 25, see SST,92
AVL tree, 27, 309
deletion from, 23, 27
height of, 104, 107, 109,309,314,320-322,

332
red-black tree,27, 104,309

binary tree, see also binary search tree, 23, 25, 26,
70, 71, 73--78, 80, 94, 104, 109, 131,
228, 23S--245,269, 278, 305,320,368,
370,464

2.55,258-266,270-275,282,287,289,
292,293,295,297,298,303-305,314,
315,323,324, 334,339-344, 349, 358,
363,390,391,398,403,409,419,427,
431,432,452-454

20,Ste 2D array
bit, see bit array
deletion from, 52

articulation point, 379, 380
ascending sequence, 342
augmenting path, 463, 463
auxiliary elements, 43
AVL tree, 27, 309

abstractanalysis patterns, 22, 37
abstract data type, see ADT
acquired immune de1iciency syndrome,see AIDS
adjacency list, 131, 131,421
adjacency matrix, 131, 131
ADT, 24, 24, 25, 26, 67, 70, 72
AIDS, 424
AKS primality testing, 45
algorithm design patterns, 22, 28
all pairs shortest paths, 33, 135,380,386

Floyd-Warshall algorithm for.,386
alternating sequence, 342
arnortized,67, 232, 290,344
amortized analysis,52, 92, 231
API, 25, 26, 71, 81, 110, 152, 153,229,250,325,421
application programming interlace, see API
approximation, 28, 35, 36, 114, 150, 155
approximation algorithm, 138,394, 425
arbitrage, 41, 41, 137,137, 161, 162, 387, 387, 388,

424, 444, 445
array, 1-4, 11, 13, 23, 23, 24, 25, 29, 31, 34-36,

40,44,45,50,52,52,53-56,58,60,
66, 67,7()...72, 81-84, ~2, 97-101,
103-105,107,110,115-121,126,140,
142. 145,147, 156,157,166,173,174,
178,183,184,186-189,192,193,198,
199,204, 205,229,234, 249, 251,254,

2D array, 37, 57-59, 88, 120, 122-124, 132, 137,
167,170,197-201,268,269,345,348,
356,363,364,374,380,386,395,419,
456

2D subarray, 57, 120, 124, 197,345-34S
23-c0nnected, 133, 134,378
2V~ected,133,134,378
2V-connectedness, 379
~1)space,24,25,45,53,59,76,78,9O,98, 109,

118,183,195,202, 205, 211-213, 245,
246,261,273, 274, 281,306,320,340,
428

0-1 knapsack problem, 140, 389,390

Index of Terms

ElementsOiProgramminglnterviews.com

DAG, 123,123,382,462,463,465
data center, 134, 154, 425
data network, 134
data structure, 22
data structure patterns, 22, 22
database, 34, 125, 152,420,423,426
deadlock, 145,410
decision tree, 423
decrease and conquer, 115, 263, 270
degree

two-coloring, 129, 373
column constraint, 197
combination, 31, 122, 354, 355
Commons Gateway Interface, see CGI
complete binary tree, 74, 74, SO,367

height of, 74, 367
complete bipartite graph, 464
complex number. 47,111,326
complexity analysis, 44
conCl;lrrency,4,410
conjunctive normal form, seeCNF
conjunctive normal form satisfiability, Set CNF-

SAT
connected component, 27, 131,131, 376,381
connected directed graph, 131
connected graph, 133, 133
connected undirected graph, 131, 131, 135
connected vertices, 131, 131
constraint, 1, 25, 32, 42, 76, 101, 119, 126, 128, 135,

141,142,146,147,149,166,167,225,
226,238,305,358,372,373,382,391,
393,409,415,443,458,466-468

capacity, 140, 465
column, 197
delay, 141,392
design, 123, 124,359
equality, 134, 381
flow, 466
hard,419
inequality, 134,381
placement, 100, 168, 296, 462
precedence, 403
row, 197
soft,419
space,36
stacking, 69, 224, 225
sub-grid, 197
subarray sum, 343
synchronization, 404

convex sequence, 342
counting sort, 53, 53, 292
CPU, 34,37
C:SS,427
cumulative distribution function, 155

Elias gamma, 50, 178
hash, see hash code
Huffman, 127,368-371

coin changing, 125
Collatz conjecture, 143,14,3,148,401,410,411
coloring, 42, 58, 129,373

diverse coloring, 129, 373, 374

caching, 28, 34
capacity constraint, 140, 465
cardinality, 79, 102, 103, 158, 302, 303, 403, 428,

436,462, 463
Cascading Style Sheets, see c:ss
case analysis, 37, 38
categorical starvation, 409, 409
central processing unit, see CPU
CGI,427
Chebyshev inequality, 434
chessboard,30, 43, 93, 168, 277, 398, 460, 461

mutilated, 30, 461
child, 68, 71, 74, 77, 104, 131, 238-240, 242, 243,

247,278,308,321,368,371,379,413
left, see left child
right, see right child

circular queue, see also queue
clause, 143,401
clique, 133,457
closed interval, 27, 102, 111, 113, 300, 301, 332
CNF,143,143,401
CNF-SAT, 138, 138
code

complete, 74, 80, 367
full,74
height of, 23, 26, 27, 74-76, 78, 235, 236,

238,245
perfect, 74

binomial coeffident, 42, 122, 353
bipartite graph, 135, 377,460-462,464

complete, 464
bipartite matching, 33, 460, 463
bit array; 20, 175, 197, 272, 279, 286
bitonic sequenee, 342, 342
Bloom filter, 23, 286, 287
B005t,12
Boyer-Moore algorithm, 40, 203
branch and bound, 138, 198,393,400
breadth-first search, see BPS
bridge, 379, 380
brute-force solution, 39
BSf, 12, 26, 26, 27, 28, 31, 53, 68, 81, 104-110,

112, 113,223,234, 260, 292, 297, 303,
305-309,311,312,314-322,325-327,
330-332

buffer, 147, 292, 409, 419
busy wait, 408

473Notation and Index

ElementsOfProgrammingInterviews.com

fast Fourier Transform, see FFT
FFT,304
Fibonacci heap, 27

in Dijkstra' 5 algorithm, 27
Fibonacci number, 117
finishing time, 132, 383
first-in,. first-out, 25, see also queue, 70, 71
flow constraint, 466
flow network, 460,465
Floyd-Warshall algorithm, 386
fractional knapsack problem, 390
free tree, 131, 131
fullbinary tree,74, 74
function

hash, see hash function
probability density, 155, 438

edge, 33, 41, 42, 116, 130, 130, 131, 133, 135, 136,
371,376--382,384,387,393,403,412,
424, 460, 461, 470

bridge, 379, 380
efficient frontier, 31, 31, 34, 37, 343, 344
Elias gamma code, SO,SO, 178
elimination, 28, 33, 84
enqueue,70
equality constraint, 134,381
equivalence class, 55, 55, 189
equivalence relation, 55, 55, 188
Ethernet, 116
Euclidean distance, 142
Euclidean space, 425
expected value, 155, ISS, 158, 188,436,437,446
Extensible Markup Language,see XMl
extract-max, 50, 250
extract-min, 249, 256, 257, 368, 422

Pareto, 153, 422
diverse coloring, 129, 129,373,373,37.
divide and conquer, 2, 3, 12, 28, ~1, 40, 114,

115, 117,254, 332_335, 338, 400
divisor, SO,446

greatest common divisor, SO
ONS, 426
Document Object Model, see DOM
OOM, 4'0, 427
Domain Name Server, see DNS
double-ended queue, see deque
doubly linked list, 23, see also linked list, 24, 62,

62, 70, 107,208, 288, 316, 470
deletion from, 70

OF, 12,31,31,34,42,117,118,125,138,351,354-
358,366,389,390,393,432,439,440,
454,464

dynamic order statistics, 23
dynamic programming, 3, set OF, 31, 117

of a node in a rooted tree,338
of a polynomial, 45, 304, 464
of a subtree, 338

delay constraint, 141,392
deletion

from arrays,52
from binary search trees, 23, '0
from doubly linked lists, 70
from hash tables, 23,92
from heaps, 23
from 1inked list23
from max-heaps, 80
from priority queues, 26
from queues, 23,71
from singly linked lists, 65
from stacks,23, 71

dense graph, 380
depth

of a function call stack, 292
of a node in a binary search tree, 307, 322
of a node in a binary tree, 23, 74, 74, 245,

246
of a node in a Huffman tree, 371
of the function call stack, 45, 176

depth-first search, 45, see OFS
deque, 70, 233
dequeue, 70
design constraint, 123, 124, 359
detenninant,44S
OFS,132, 132,374, 378-380,383,389
diameter

of a network, 413
of a tree, 116,337,338

Dijkstra's algorithm, 4, '0,384-386
implemented with a Fibonacci heap, 27

directed acyclic graph, see OAG
directed graph, 130, see also directed acyclic

graph, see also graph, 130, 131, 133,
135, 167, 383, 412, 466

connected directed graph, 131
tournament, 167
weakly connected graph, 131
weighted,387

discovery time, 132, 379
disjoint-set data structure, 27, 28, 190
distance

Euclidean, 142
Levenshtein, 37, 120, 121, 145, 151,349-

351,403,417
distributed memory, 144, 145
distribution

normal, 443
of the elements, 36
of the inputs, 45
of thenumbers,34

Notation and Index474

ElementsOfProgramminglnterviews.com

I/O, 19, 145,405
IDE, 13
no,434,436
in-place sort, 98
incremental improvement, 28,32,33
independent and identically distributed, see no
indicator random variable, 271,436
indirect sort, 293
inequality

Chebyshev, 434
linear, 138,468
triangle, 393, 395, 437

inequality constraint, 134, 381
insertion sort, 292, 304
integral development environment, see IDE
International Organization for Standardization,

see ISO
International Standard BookNumber, sa ISBN
Internet Protocol, see IP
interval tree, 23, 78,332
Intractability, 4, 138
invariant, 38,43, 44, 255, 256
inverted index, 99, 416
lP,90, 90,91,148,151,272,412,413,417,426,427
ISBN,97, 97, 290

heapsort, 98
height

of a balanced BST,309
of a balanced tree, 236
of a binary search tree, 104,107, 109,309,

314, 32G--322, 332
of a binary tree,23, 26, 27, 74, 74, 75, 76,

78, 235, 236, 238, 245
of a building, 69, l15, 120, 225, 332, 333,

344
of a complete binary tree, 74, 367
of a domino, 43
of a event rectangle, 101
of a line segment, 27, 111, 327, 329
of a perfect binary tree, 74
of a player, 100, 296
of a rectangle, 50
of a stack, 236
of a statue, 99, 293

height-balanced, 27
height-balanced BST,107, 314
height-balanced tree, 27
highway network, 136,386
HTML, 423, 424, 425, 427
HTTP,91, 145, 155,423,426,427
Huffman code, 127,368-371
Huffman tree,369, 370
HyperText Markup Language, s«HTML
Hypertext Transfer Protocol, see HITP

of a biased coin, 158,434
of a deque, 70
of a linked list, 62-64, 207-209, 211, 213,

214
of a mole, 166
of a postings list, 66, 217
of IIqueue, 70,228-230, 290, 326, 419

heap, 22, 23, 23, 26, 27, 80, 80, 81, 98, 117, 250,
254, 255, 422

Fibonacci heap, 2.7
max-heap, 80, 98
min-heap, 80,98
priority queue, 26
tresp, 27

head

Hamiltonian cycle, 138,458,461
Hamiltonian path, 167, 167,457, 457, 458
hard constraint, 419
hash code,34, 35,53,92, 92,93,U6,276-278, 283,

286,287,365,415,420-422
hash function, 23, 26, 26, 33, 35,92, 93, 126, 263,

276-280,283,286,287,415,422
hash table, 4, 20, 23, 23, 26, 28, 31, 53, 59, 90, 92,

95, 208,235,247,262, 279-282, 284,
286-290,297,298,325,326,330,351,
375,380, 402, 407, 417, 421, 431

deletion from, 23, 92

377,380, seealso flow network
bipartite, 135,377,460-462,464
coloring, 129
complete bipartite, 464
tour of, 141

graph modeling, 38,41, 132
graphical user interfaces, see GUT
greatest common divisor, see GCD
greedy, 19, 28, 32, 32, 34, 36, 114, 124-126, 363,

365,395
GUl, 144, 152

130, 131, see also tree, 133, 134, 373,

garbage collection, 144
lazy, 290

Gaussian elimination, 455
Gaussian integer, 111,111,326
Gaussian prime, 111, 111,326
Gaussian random variable, 155, 156
GCD, 50, SO, 179, 195, 196
generalLzatlon principle, 30
Global Positioning System, see GPS
global variable, 236, 237, 372
GPS, 413
graph, seenlso undirected graph, 33, 41, 42, 45,

114,U8-130,seeaZso directed graph,

475

recursive, 29

Notation and Index

ElementsOfProgramminglnterviews.com

negative-weight cycle, 388
network, 144, 148, ill,426

data. 134
highway, 136, 386
local are network, 116
network bandwidth, 34, 91
network !ayet;.415
network route, 82
network session. 157
network traffic control, 72
social, 94.,134, 149,380

network bandwidth. 34,91
network layer, 415
network session. 157

Markowitz bullet, 331
matching, 135

bipartite, 33, 460, 463
maximum. 135, 461, 462
maximum weighted, 135
weighted bipartite, 464

matrix, 131, 152, 169, 466 ..
adjacency, 131
multiplication of. 144,421
payoff, 170,467

matrix multiplication, 144,421
max-heap,80, 83, 98, 250-2:,-1,254, 255, 258

deletion from, 23, 80
maximum bipartite matching, see bipartite

matching
maximum flow, 33, 135, 135, 169,464,465
maximum matching, 135,461,462
maximum weighted matching, 135
mean. 156, 162, 434, 443, 445
median, 35, 39, 40, 63, 82, 210, 2S4-2S6, 290, 335,

336,449, 450
merge sort, 98, 114,249,292,323,334
min-heap, 23, 26, 34, 50, 98, 248, 250, 253-257,

271,272,292,407,421
in Huffman's algorithm, 368

minimum spanning tree, 28, see MSf, 135, 135,
137,394

Kruskal's algorithm for, 27
Morris traversal, 75, 76
MST, 33, 114,115,137,389,393,394
multicore, 144, 148
mutex, 146, 147, 409, 410
mutilated chessboard, 30, 461

longestnondecreasing subsequence, 31, 119, 119,
340,340

longest path, 116,338,371,382
longest weakly alternating subsequence, 342
lowest common ancestor, see LCA, 109
LRU,97,290

deadlock, 145, 410
livelock., 145, 410

longest alternating subsequence, 342
longest bitonic subsequence, 342
longest convex subsequence, 342

of a hash table, 92
of a server, 126, 36S

local area network, see LAN
lock

length
of a string, 287

Levenshtein distance, 37, 120,121, 145, 151,349,
350,351,403, 417

line segment, 27, 111, 159,327,329,437,438
height of, 27, 111,327,329

linear equation, 4SS
linear inequality, 138, 468
linear programming, 33,45,460,467

simplex algorithm £OJ;. 33, 45, 467
linear search, 265
linkedlist, 23, 25, 470
list, 23, see also singly linkedlist, 63-67, 70, 78,92,

107,207,208,210-216, 243, 256, 292,
314,316,318

postings,66,68,217,218,223
livelock, 145, 410
load

Lagrangian relaxation, 393
LAN,l16
last-in, first-out, 25, see also stack, 67, 71, 223
lazy garbage collection. 290
LCA, 78, 78, 79, 109,245-247,320
leaf, 23, 74, 75, 78, 123, 243, 244, 247, 367-369,

371,372,4U
Least Recently Used, see LRU
left child, 68, 70, 71, 73, 74, 77, 112, 131, 235, 239,

240,242-245,258,305,307,308,311,
315,331,332,367,368

left subtree, 27, 73-77, 104, 106,223,237,240,241,
243, 244, 305, 307,308,311,313,315,
317,319

knapsack problem
()..1,140,389,390
fractional, 390

Knuth-Morris-Pratt algorithm, 203
Kruskal's algorithm, 27

JavaScrlpt Object Notation, see JSON
JSON,427

150,97
isomorphicbinary trees, 94
isomorphictree,168
iterative refinement, 38, 39, 40

Notation and Index476

ElementsOfPrograrnminglnterviews.com

RLE,59,59
rolling hash, 203, 276
root, 70, 71, 73-79, 94, 104-106, 108, 124, 127,

131,148,151,223,228,235-247,251,
253,258,305,3fYl, 308, 311, 31~15,

Rabin-Karp algorithm, 203
race, 145,404,409
radix sort, 98, 297
RAM. ~ 80,81, 90, 96, 97, 110,151,248,251,272,

286,287,325,416,417,421
random access memory, SetRAM
random number generator, 156, 157, 426-430
random permutation, 156, 158, 188

uniformly, 156, 158,427,429,436
random variable, 155,155,160,162,366,434-436,

442,445
Bernoulli, 155,434
Gaussian, 155, 156
indicator, 271, 436
Poisson, 155
uniform, 155

randomization. 28, 28, 35,92, 114
randomized algorithm, 45, 161,44.3
reachable, 130, 132
recursion, 12, 28, 29, 29, 30, 31, 42, 62, 68, 71, 76,

117,179,200,205, 206, 215,223, 226,
228,243,336,348,354,355,391,412,
432

recursive function, 29, 29
red-black tree, 27, 104, 309
reduction, 38,41, 81, 114
regular expression, 29,60, 60, 207, 351
rehashing, 53, 92
Reverse Polish notation, 25, see RPN
right child, 68, 70, 71, 73, 74, 77, 112, 131, 223,

235,236,239,242, 243, 245,258, 305,
3fYl-309,311, 315, 331,332

right subtree, 27, 73-76, 104, 106, 223, 237, 240,
241,243,244, 305, 308, 309, 313,315,
317,319,332

queue, 23, 25, 26, 70, 70, 71, 72, 81, 147,199,200,
228-235, 250, 29O,3fYl,325,326,374,
375,415,419,422

deletion from, 71
priority, 26

quicksort, 3, 24, 45, 52, 98, 114, 118, 155, 255, 292

Gaussian, 111, 326
priority queue, 26,26

deletion from, 26
probability density function, 155, 155, 438
probability distribution function, 188
production sequence, 133,375

path,l30
augmenting, 463
Hamiltonian, 167,457
shortest, see shortest paths

payoff matrix, 170, 170,467
PDF,9,419
perfect binary tree, 74, 74

height of, 74
permutation, 55,56,56,89,156,157,189,192-195,

293,355, 427, 428, 431, 436
random, 156, 158, 188
uniformly random, 156, 158,427,429,436

placement constraint, 100, 168,296, 462
Poisson random variable, 155
Polish notation, 222
Portable Document Format, SetPDF
postings list, 66, 66, 68, 217, 218, 223
power set, 48, 48, 175
precedence constraint, 403
prefix

of EIsequence, 205
of a string, 79,127,151,247,248,371,417

prefix sum, 40, 187, 265, 343
primality, Set prime
p~e,45,SO,50,104,18O,277,326

palindrome, 44,66,95, 95, 166,216,280, 281, 351,
450,451

palindromic string, 166
parallel algorithm, 139
parallelism, 28, 34, 144, 145
parent-child relationship, 74,131,168
Pareto distribution, 153,153,422
partition, 34, 55, 95, 101, 115, 126, 142, 190,280,

287,335,354, 391, 402, 414,415, 421,
422

open interval, 300
operating system, Set OS
order statistics, 89, 89

dynamic, 23
ordered pair, 141,283
ordered tree, 131,131
OS,4, 150,419,423
overflow

integer, 42, 85, 122, 273,353,354, 402
of a stack, 231

overlapping intervals, 299

node, 116, 338
nondecreasing subsequence, 341
normal distribution, 443
NP, 138
NP-complete, 36, 54, 142, 143, 383, 389, 393, 403
NP-hard, 125, 141, 142
null string, 371

477Notation and Index

ElementsOfProgramminglnterviews.com

Euclidean. 425
space complexity, .2
space constraint, 36
spanning tree, 131, SU IIlso minimum spanning

tree
SQL, 16, 125
square root, 33, 45, 88
stable sort, 98, 271
stack, 23, 25,31, 67, 67, 69, 71, 76, 81, 103, 200,

215,219-223,226,227,231,232,242,
243,250,344,374

deletion from, 71
height of, 236

stacldng constraint, 69, 224, 225
Standard Template Ubrary, see STL
starvation.145, 147

categorical,409
snuvati~Dree,410
thread, 409

state, 28
sn, 104,330, 398
streaming

algorithm, 45, 288
fashion input, 81, 82.97, 287

string, 23, 23, 26, 28, 29, 37, 40, 41, 44, 49, SO,
55, 56, 59-61, 68, 69, 79, 93, 95-97,
100, 112, 120, 121, 127, 133, 142, 145-
147,149,151,166,17&-178,190,191,
201-206,221,227,247,248,276,279-
282,284,286,287,297,330,349-352,
368,375,395,403,404, 407, 409,414,
41&-419,450,451

null, 371
palindromic, 166

siring matching, 29,37,59,119
Boyer-Moore algorithm for, 40, 203
Knuth-Morris-Pratt algorithm for, 203
Rabin-Karp algorithm for, 203

strongly connected directed graph, 131
Structured Query Language, setSQL
sub-grid constraint, 197
subarray, 2, 35, 40, 52, 55, 97, 103, 117-119, 183,

184, 187, 188, 200, 201,234,249,254,
259,270,287-289,314,339,340,342-
344,428

20, su 20 subarray
subarray sum constraint, 343
subsequence, 27,31,141,318,319,341,350

longest alternating, 342
longest bltonic:, 342
longest convex, 342
longest nondecreasing, 31, 119, 340
longest weakly alternating, 342
nondecreasing, 341

subsetsum,54,54,389space

scheduling, 101, 136,363,383,403
_rching

binary search, see binary search
linear search, 265

sequence, 342, 3SO
alternating, 342
ascending, 342
bitonic,342
convex, 342
production, 133,375
weakly alternating, 342

shared memory, 144, 144
Short Message Service, Ste SMS
shortest path. 33, 132, 136, 138, 338, 374, 380,

384-386, 393, 424
Dijkstra's algorithm for, 4, 27, 384-386

shortest path. unweighted case, 374
shortest paths, 135
shortest paths, unweighted edges, 375
sibling, 371
signature, 35,420
simplex algorithm, 33, 45, 467
singly linked list, 23, 25, 62, 62, 63-65, 213, 214

deletion from. 65
skip list, 27
small example, 38, 38, 39, 446
SMS,146
social network, 13,94, 134, 149, 380
soft constraint.419
sorted doubly linked list, 107, 108,315
sorting, 28, 29, 34, 35, 39, 45, 52, 69, 81, 86, 89, 98,

99, 103, 114, 249, 251, 265, 281, 292,
293, 296-300, 304, 336

counting sort, 53, 292
heapsort, 98
in-place, 98, 292. 298
in-place sort, 98
indirect sort, 293
insertion sort, 292, 304
merge sort, 98, 114, 249, 292, 323, 334
quicksort, 24, 45,52. 98, 114,118,155,255,

292
radix sort, 98, 297
stable, 98, 292. 297
stable sort, 98

317-320,331,332.359,367-369,371,
372,379, 393, 412

rooted ~, 123, 124, 127, 131, 131, 148, 168,359,
412,463

router, 151,417
row constraint, 197
RPN,68, 68, 221
nm-Iength enooding, see RLE

Notation alldIndex478

ElementsOfProgramminglnterviews.com

XML,427

weakly alternating sequence, 342
weakly connected, 412
weakly connected graph, 131
weighted bipartite matching, 464
weighted directed graph, 387
weighted undirected graph, 11"- 115
work-queue,411
World Wide Web, 154,426
write an equation, 38, 42

variance, 155, 156, ~, 443
variation, 38, 42
vertex. 33, 41,42, 114, 115,129,130,130,131-133,

135,136, 141, 167, 181,3n~, 386,
388,392,393,403,4U, 421, 424, 425,
457,458,460-466,470

articulation point, 379, 380
black vertex in DFS, 378
connected, 131
gray vertex in DFS, 378
white vertex in DFS,378

undirected complete graph, 167
undirected graph, 27, 42, 129, 130, 131, 133-135,

137,373-379,381,389,457
clique, 133
undirected complete graph, 167
weighted, 114

uniform random variable, 155
Uniform Resource Locators, see URL
uniformly random permutation, 156, 158, 427,

429,436
UNIX, 152, 414, 419, 426
URL,9, 121, 149, 154, 421, 426, 427
user interface, see UI

UI, 19, 144,425
unconnected graph, 134

of a biased coin, 158, 434, 435
of IIdeque, 70
of a linked list, 62, 65, 208, 211, 214
of a queue, 70,229,230,250,290,419

tail recursion, 115,292
tail recursive, 117,215,312
TCP,148, 427
thread starvation, 409
time complexity, 2, 11
timestamp, 26, 82, 110, 326,424
topological order, 383, 403
topological ordering, 382, 383
total order, 82, 335
tour, 33, 141, 141, 393, 394
tournament, 167,167,457,458
tournament tree, 366-368
Transmission Control Protocol, see TCP
treap, 27, 27
tree, 131,131,132,133,393

AVL,27,309
BFS,374, 376, 377
binary, see binary tree
binary search, see binary search tree
decision, 423
diameter, 116, 337, 338
free, 131
Huffman, 369, 370
interval, 23, 78, 332
isomorphic, 168
ordered, 131
red-black, 27, 1~ 309
rooted, 123, U,,-U7, 131, 148, 168, 359,

412,463
tournament, 366-368
treap,27

triangle inequality. 393, 395, 437
trie, 28, 28, 247, 417
trlomino, 30, 461
two-coloring, 129, 373
two-dtmenslcnal t.ree, 124, 359, 362

tail

substring, 59, 61. 96, 203, 205, 206,227,286, 287,
351,420

subtree, 74, 77, 9"- 106, 107, 113, 168, ~35-238,
240,279,305,307,309,314,321,331,
332, 338, 368, 372, 412, 464

left, see left subtree
right, see right subtree

Sudoku, 57, 57, 142, 197, 198,395
suffix, 61
synchronlzatton constraint, 404

479Notation and Index

Austin, Texas
Belmont, California

Mountain View, California

ADNANAzlZ

AMIT PRAKASH
TSUNG-HsIEN LEE

October, 2012

Several of our friends, colleagues, and readers gave feedback. Wewould like to thank
Senthil Chellappan, Yi-Tmg Chen, Monica Parkash, Cheng- Yi He, Dongbo Hu, [ing­
Tang Keith Jang, Matthieu [eanson, Gerson Kurz, Hari Mony, Shaun Phillips, Gayatri
Ramachandran. Ulises Reyes, Kumud Sanwal, Tom Shiple, Jan Varley, Shaohua Wan,
Don Wong, Xiang Wu, and Chih-Chiang Yu for their input.

I, Adnan Aziz, thank my teachers, friends, and students from lIT Kanpur, UC
Berkeley, and UT Austin for having nurtured my passion for programming. I es­
pecially thank my friends Vineet Gupta, Tom Shiple, and Vigyan Singhal, and my
teachers Robert Solovay, Robert Brayton, Richard Karp, Raimund Seidel, and Som­
enath Biswas, for all that they taught me. My coauthor, Amit Prakash, has been
a wonderful collaborator for many years-this book is a testament to his intellect,
creativity, and enthusiasm. My coauthor, Tsung-Hsien Lee, brought a passion that
was infectious and inspirational; I look forward to a lifelong collaboration with him.

I, Amit Prakash, have my coauthor and mentor, Adnan Aziz, to thank the most for
this book. To a great extent, my problem solving skills have been shaped by Adnan.
There have been occasions in life when I would not have made it through without
his help. He is also the best possible collaborator I can think of for any intellectual
endeavor. I have come to know Tsung-Hsien through working on this book. He
has been a great coauthor. His passion and commitment to excellence can be seen
everywhere in this book. Over the years, I have been fortunate to have had great
teachers at ITTKanpur and UT Austin. I would especially like to thank my teachers
Scott Nettles, Vijaya Ramachandran, and Gustavo de Veciana. I would also like to
thank my friends and colleagues at Google, Microsoft, lIT Kanpur, and UT Austin
for many stimulating conversations and problem solving sessions. Finally, and most
importantly, I want to thank my family who have been a constant source of support,
excitement, and joy all my life and especially during the process of writing this book.

I, Tsung-Hsien Lee, would like to thank my coauthors, Adnan Aziz and Amit
Prakash, who give me this once-in-a-life-time opportunity. I also thank my teachers
Wen-Lian Hsu, Ren-Song Tsay, Biing-Feng Wang, and Ting-Chi Wang for having
initiated and nurtured my passion for computer science in general, and algorithms
inparticular. I would like to thank my friends Cheng- YiHe, Da-Cheng Juan, Chien­
Hsin Lin, and Chih-Chiang Yu, who accompanied me on the road of savoring the joy
of programming contests; and Kuan-Chieh Chen, Chun-Cheng Chou, Ray Chuang,
Wen-Sao Hong, Wei-Lun Hung, Nigel Liang, Huan-Kai Peng, and Yu-En Tsai, who
give me valuable feedback on this book. Last, I would like to thank all my friends
and colleagues at Facebook, National Tsing Hua University, and UT Austin for the
brain-storming on puzzles; it is indeed my greatest honor to have known all of you.

Acknowledgments

	t6c.pdf
	I The Interview
	1 Getting Ready
	2 Strategies For A Great Interview
	3 Conducting An Interview
	4 Problem Solving Patterns

	II Problems
	5 Primitive Types
	5.1 Compute parity
	5.2 Swap bits
	5.3 Reverse bits
	5.4 Find a closest integer with the same weight Replacement
	5.5 Compute x y without multiply or add
	5.6 Compute x/y Replacement
	5.7 Compute xy
	5.8 Convert base
	5.9 Compute the spreadsheet column encoding
	5.10 Reverse digits
	5.11 Check if a decimal integer is a palindrome
	5.12 Generate uniform random numbers
	5.13 Check if rectangles intersect
	5.14 The open doors problem
	5.15 Compute the greatest common divisor Replacement

	6 Arrays
	6.1 The Dutch national flag problem
	6.2 Increment a BigInteger
	6.3 Multiply two BigIntegers
	6.4 Check if a board game is winnable
	6.5 Delete a key from an array
	6.6 Delete duplicates from a sorted array
	6.7 Find the first missing positive entry
	6.8 Compute the max difference
	6.9 Solve generalizations of max difference Replacement
	6.10 Compute the maximum product of all but one entries Replacement
	6.11 Compute the longest contiguous increasing subarray Replacement
	6.12 Enumerate all primes to n Replacement
	6.13 Permute the elements of an array Replacement
	6.14 Compute the next permutation
	6.15 Rotate an array Replacement
	6.16 Sample offline data
	6.17 Compute a random permutation
	6.18 Compute a random subset of {0,1,…,n-1}
	6.19 Sample online data
	6.20 Generate nonuniform random numbers
	6.21 The Sudoku checker problem
	6.22 Print a 2D array in spiral order
	6.23 Rotate a 2D array
	6.24 Compute rows in Pascal's Triangle
	6.25 Identify positions attacked by rooks Replacement
	6.26 Identify the celebrity Replacement

	7 Strings
	7.1 Interconvert strings and integers
	7.2 Replace and remove
	7.3 Test palindromicity
	7.4 Reverse all the words in a sentence
	7.5 Compute all mnemonics for a phone number
	7.6 The look-and-say problem
	7.7 Convert from Roman to decimal
	7.8 Compute all valid IP addresses
	7.9 Write a string sinusoidally
	7.10 Implement run-length encoding
	7.11 Implement Elias gamma encoding
	7.12 Implement the UNIX tail command
	7.13 Left-justify text Replacement
	7.14 Find the first occurrence of a substring Replacement

	8 Linked Lists
	8.1 Merge two sorted lists
	8.2 Reverse a singly linked list
	8.3 Reverse a single sublist
	8.4 Reverse sublists k at a time
	8.5 Test for cyclicity
	8.6 Test for overlapping lists—lists are cycle-free
	8.7 Test for overlapping lists—lists may have cycles
	8.8 Delete a node from a singly linked list
	8.9 Remove the k-th last element from a list
	8.10 Remove duplicates from a sorted list
	8.11 Implement cyclic right shift for singly linked lists
	8.12 Implement even-odd merge
	8.13 Implement list zipping Replacement
	8.14 Copy a postings list Replacement
	8.15 Test whether a singly linked list is palindromic
	8.16 Compute the median of a sorted circular linked list
	8.17 Implement list pivoting
	8.18 Sort a list
	8.19 Add list-based integers

	9 Stacks and Queues
	9.1 Implement a stack with max API
	9.2 Evaluate RPN expressions
	9.3 Test if parens, brackets, and braces are matched
	9.4 Compute the longest substring with matching parens Replacement
	9.5 Normalize pathnames
	9.6 Print the keys in a BST
	9.7 Search a postings list
	9.8 Compute buildings with a sunset view
	9.9 Sort a stack
	9.10 Print a binary tree in order of increasing depth
	9.11 Implement a circular queue
	9.12 Implement a queue API using two stacks
	9.13 Implement a queue with max API Replacement
	9.14 Compute the maximum of a sliding window Replacement
	9.15 Compute the minimum number of multiplications to evaluate xn

	10 Binary Trees
	10.1 Test if a binary tree is balanced
	10.2 Find k-unbalanced nodes
	10.3 Test if a binary tree is symmetric
	10.4 Compute the LCA in a binary tree
	10.5 Compute the LCA when nodes have parent pointers
	10.6 Sum the leaves in a binary tree encoding integers
	10.7 Find a root to leaf path with specified sum
	10.8 Compute the k-th node in an inorder traversal
	10.9 Implement an inorder traversal with O(1) space
	10.10 Implement preorder and postorder traversals without recursion Replacement
	10.11 Compute the successor
	10.12 Reconstruct a binary tree from traversal data
	10.13 Reconstruct a binary tree from a preorder traversal with marker
	10.14 Form a linked list from the leaves of a binary tree
	10.15 Compute the exterior of a binary tree Replacement
	10.16 Compute right siblings
	10.17 Implement locking in a binary tree

	11 Heaps
	11.1 Merge sorted files
	11.2 Sort a k-increasing-decreasing array
	11.3 Sort an almost-sorted array
	11.4 Compute the k closest stars
	11.5 Compute the median of online data
	11.6 Compute the k largest elements in a max-heap
	11.7 Compute fair bonuses Replacement
	11.8 Find k elements closest to the median Replacement
	11.9 Test if x is bigger than the k-th largest element Replacement
	11.10 Implement stack and queue APIs using heaps

	12 Searching
	12.1 Search a sorted array for first occurrence of k
	12.2 Search a sorted array for the first element greater than k
	12.3 Search a sorted array for A[i]=i
	12.4 Search a cyclically sorted array
	12.5 Search a sorted array of unknown length Replacement
	12.6 Compute the integer square root
	12.7 Compute the real square root
	12.8 Search in two sorted arrays Replacement
	12.9 Search in a 2D sorted array Replacement
	12.10 Find the min and max simultaneously
	12.11 Find the k-th largest element
	12.12 Compute the optimum mailbox placement
	12.13 Find the k-th largest element—large n, small k Replacement
	12.14 Find the missing IP address
	12.15 Find the duplicate and missing elements
	12.16 Find an element that appears only once Replacement

	13 Hash Tables
	13.1 Partition into anagrams
	13.2 Test for palindromic permutations
	13.3 Test if an anonymous letter is constructible
	13.4 Implement an ISBN cache
	13.5 Compute the LCA, optimizing for close ancestors
	13.6 Compute the K most frequent queries
	13.7 Find the line through the most points Replacement
	13.8 Find the nearest repeated entries in an array
	13.9 Find the smallest subarray covering all values Replacement
	13.10 Find smallest subarray that sequentially covering all values Replacement
	13.11 Find the longest subarray with distinct entries Replacement
	13.12 Find the length of a longest contained range Replacement
	13.13 Compute all string decompositions
	13.14 Find a highest affinity pair
	13.15 Pair users by attributes
	13.16 Test the Collatz conjecture
	13.17 Implement a hash function for chess
	13.18 Find the shortest unique prefix Replacement

	14 Sorting
	14.1 Compute the intersection of two sorted arrays
	14.2 Implement mergesort in-place
	14.3 Count the frequencies of characters in a sentence
	14.4 Find unique elements
	14.5 Render a calendar
	14.6 Add a closed interval
	14.7 Compute the union of intervals
	14.8 The interval covering problem
	14.9 Compute an optimum assignment of tasks Replacement
	14.10 Implement counting sort Replacement
	14.11 Team photo day—1
	14.12 Implement a fast sorting algorithm for lists
	14.13 Compute the smallest nonconstructible change Replacement
	14.14 Compute a salary threshold
	14.15 Implement a variable-length sort
	14.16 Implement a least-distance sort
	14.17 Schedule time trials
	14.18 Find the winner and runner-up

	15 Binary Search Trees
	15.1 Test if a binary tree satisfies the BST property
	15.2 Find the first occurrence of k in a BST
	15.3 Find the first key larger than k in a BST
	15.4 Find the k largest elements in a BST
	15.5 Compute the LCA in a BST
	15.6 Reconstruct a BST from traversal data
	15.7 Compute the closest entries in three sorted arrays
	15.8 The most visited pages problem
	15.9 Find the most visited pages in a window Replacement
	15.10 Build a BST from a sorted array
	15.11 Convert a sorted doubly linked list into a BST Replacement
	15.12 Convert a BST to a sorted doubly linked list Replacement
	15.13 Merge two BSTs Replacement
	15.14 Update a BST Replacement
	15.15 Test if three BST nodes are totally ordered
	15.16 Test if a binary tree is an almost BST Replacement
	15.17 Compute the average of the top three scores
	15.18 The nearest restaurant problem
	15.19 Compute the view from above Replacement
	15.20 Test if a binary tree is a min-first BST
	15.21 Add credits
	15.22 Count the number of entries in an interval

	16 Recursion
	16.1 The Towers of Hanoi problem
	16.2 Implement regular expression matching Replacement
	16.3 Enumerate all nonattacking placements of n-Queens
	16.4 Enumerate permutations
	16.5 Enumerate the power set
	16.6 Enumerate all subsets of size k
	16.7 Enumerate strings of balanced parens
	16.8 Enumerate palindromic decompositions
	16.9 Enumerate binary trees
	16.10 Implement a Sudoku solver
	16.11 Compute a Gray code
	16.12 Synthesize an expression
	16.13 Count inversions Replacement
	16.14 Compute the diameter of a tree
	16.15 Draw the skyline Replacement
	16.16 Find the two closest points Replacement

	17 Dynamic Programming
	17.1 Count the number of score combinations
	17.2 Compute the Levenshtein distance
	17.3 Compute the binomial coefficients
	17.4 Count the number of ways to traverse a 2D array
	17.5 Plan a fishing trip
	17.6 Search for a sequence in a 2D array
	17.7 The knapsack problem
	17.8 Measure with defective jugs Replacement
	17.9 Test if a tie is possible
	17.10 Divide the spoils fairly
	17.11 Compute the maximum subarray sum in a circular array Replacement
	17.12 The bedbathandbeyond.com problem
	17.13 Determine the critical height Replacement
	17.14 Find the maximum weight path in a triangle
	17.15 Pick up coins for maximum gain
	17.16 Decompose into palindromic strings
	17.17 Test if s is an interleaving of s1 and s2
	17.18 Count the number of steps in a board game
	17.19 Compute the probability of a Republican majority
	17.20 The pretty printing problem
	17.21 Find the longest nondecreasing subsequence Replacement
	17.22 Voltage selection in a logic circuit Replacement
	17.23 Find the maximum 2D subarray Replacement

	18 Greedy Algorithms and Invariants
	18.1 Implement Huffman coding Replacement
	18.2 Implement a schedule which minimizes waiting time
	18.3 Trapping water Replacement
	18.4 Load balancing Replacement
	18.5 Pack for USPS priority mail Replacement
	18.6 The 3-sum problem Replacement
	18.7 The gasup problem
	18.8 Enumerate numbers of the form a + b 2 Replacement
	18.9 Find the majority element
	18.10 Search for a pair-sum in an abs-sorted array Replacement
	18.11 Compute the maximum water trapped by a pair of vertical lines
	18.12 The heavy hitter problem Replacement
	18.13 Find the longest subarray whose sum k Replacement
	18.14 Compute the largest rectangle under the skyline Replacement

	19 Graphs
	19.1 Search a maze
	19.2 Paint a Boolean matrix
	19.3 Compute enclosed regions
	19.4 Clone a graph
	19.5 Transform one string to another Replacement
	19.6 Making wired connections
	19.7 Test degrees of connectedness Replacement
	19.8 Team photo day—2
	19.9 Compute a minimum delay schedule, unlimited resources Replacement
	19.10 Compute a shortest path with fewest edges
	19.11 Road network Replacement
	19.12 Test if arbitrage is possible Replacement

	20 Parallel Computing
	20.1 Implement caching for a multithreaded dictionary
	20.2 Analyze two unsynchronized interleaved threads
	20.3 Implement synchronization for two interleaving threads
	20.4 Implement a thread pool
	20.5 Implement asynchronous callbacks
	20.6 Implement a Timer class
	20.7 The readers-writers problem
	20.8 The readers-writers problem with write preference
	20.9 The readers-writers problem with fairness
	20.10 Implement a producer-consumer queue
	20.11 Test the Collatz conjecture in parallel
	20.12 Implement broadcast in a tree-structured network Replacement
	20.13 Design TeraSort and PetaSort
	20.14 Implement distributed throttling

	21 Design Problems
	21.1 Create photomosaics
	21.2 Design a spell checker
	21.3 Design a solution to the stemming problem
	21.4 Plagiarism detector
	21.5 Design a system for detecting copyright infringement
	21.6 Design TeX
	21.7 Design a search engine
	21.8 Implement PageRank
	21.9 Design a scalable priority system
	21.10 Implement Mileage Run
	21.11 Implement Connexus
	21.12 Design an online advertising system
	21.13 Design a recommendation system
	21.14 Design an optimized way of distributing large files
	21.15 Design the World Wide Web
	21.16 Estimate the hardware cost of a photo sharing app

	III Hints
	IV Solutions
	V Notation and Index
	Index of Terms

