ELEMENTS of
PROGRAMMING
INTERVIEWS

ADNAN AZIZ | TSUNG-HSIEN LEE | AMIT PRAKASH.

II

Table of Contents

The Interview
Getting Ready
Strategies For A Great Interview
Conducting An Interview

Problem Solving Patterns

Problems

Primitive Types

51 Computeparity
52 Swaphbits.
53 Reversebits
54 Find a closest integer with the same weight &
55 Compute x X y without multiplyoradd
56 ~Computex/y @
57 Computexy
58 Convertbase...............
59 Compute the spreadsheet column encoding
510 Reversedigits L
511 Check if a decimal integer is a palindrome
512 Generate uniform random numbers
513 Checkif rectanglesintersect
514 Theopendoorsproblem
515 Compute the greatest common divisor &

Arrays
6.1 The Dutch national flag problem
6.2 IncrementaBigInteger

12

19

23

44

45
45
46
46
46
46
47
47
47
47
47
48
48
48
48
48

49
49
50

vi Table of Contents

6.3 Multiply two BigIntegers
64 Checkif aboard gameiswinnable
6.5 Deleteakeyfromanarray
6.6 Delete duplicates from a sorted array
6.7 Find the first missing positiveentry
6.8 Compute the max difference
6.9 Solve generalizations of max difference @
6.10 Compute the maximum product of all but one entries &

6.11 Compute the longest contiguous increasing subarray &
6.12 Enumerate all primeston @
6.13 Permute the elements of anarray &
6.14 Compute the next permutation
6.15 Rotateanarray @ L
6.16 Sampleofflinedata
6.17 Compute a random permutation
6.18 Compute a random subset of {0,1,...,n =1}
6.19 Sampleonlinedata
6.20 Generate nonuniform random numbers
6.21 The Sudoku checker problem
6.22 Printa2Darrayinspiralorder
6.23 Rotatea2Darray
6.24 Compute rows in Pascal’s Triangle
6.25 Identify positions attacked by rooks &
6.26 Identify thecelebrity &

7 Strings
7.1 Interconvert strings and integers
72 Replaceandremove
73 Testpalindromicity
74 Reverseall the wordsinasentence
7.5 Compute all mnemonics for a phonenumber
7.6 Thelook-and-say problem
7.7 Convert from Romantodecimal
7.8 Computeall valid IP addresses
7.9 Writeastring sinusoidally
710 Implement run-lengthencoding
711 Implement Elias gammaencoding
712 Implement the UNIX tail command
713 Leftjustifytext @
7.14 Find the first occurrence of a substring &

8 Linked Lists
8.1 Merge twosorted lists L
8.2 Reverse asingly linked list

50
50
51
51
51
51
52
52
52
53
53
53
53
54
54
54
54
54
55
55
56
56
57
57

58
58
58
59
59
59
60
60
60
61
61
61
62
62
62

63
64
64

ElementsOfProgrammingInterviews.com

Table of Contents vii
83 Reverseasinglesublist. 65
84 Reversesublistskatatime. 65
85 Testforcyclicity L 65
8.6 Test for overlapping lists—lists are cycle-free 65
8.7 Test for overlapping lists—lists may have cycles 66
8.8 Delete a node from a singly linked list 66
8.9 Remove the k-th last element fromalist 66
810 Remove duplicates fromasortedlist 67
8.11 Implement cyclic right shift for singly linked lists 67
812 Implementeven-oddmerge 67
8.13 Implementlist zipping @ 68
814 Copyapostingslist & 68
8.15 Test whether a singly linked list is palindromic 68
8.16 Compute the median of a sorted circular linked list 69
8.17 Implementlist pivoting 69
818 Sortalist 69
819 Addlist-basedintegers L 70

9 Stacks and Queues 71
91 Implementastack withmax APT 71
9.2 Evaluate RPN expressions 72
9.3 Test if parens, brackets, and braces are matched 72
9.4 Compute the longest substring with matching parens @-. 72
9.5 Normalize pathnames 72
9.6 PrintthekeysinaBST 73
9.7 Searchapostingslist 73
9.8 Compute buildings with a sunsetview 73
99 Sortastack. o 74
9.10 Print a binary tree in order of increasing depth 74
9.11 Implementacircularqueue 75
9.12 Implement a queue APl using twostacks 75
9.13 Implementa queue withmax APl & 75
9.14 Compute the maximum of a sliding window & 75
9.15 Compute the minimum number of multiplications to evaluate x" 76

10 Binary Trees 77
10.1 Testif a binary treeisbalanced 79
10.2 Find k-unbalancednodes. 80
10.3 Testif a binary tree is symmetric 80
104 Compute the LCAinabinarytree 80
10.5 Compute the LCA when nodes have parent pointers 81
10.6 Sum the leaves in a binary tree encoding integers 81
10.7 Find a root to leaf path with specified sum 82
10.8 Compute the k-th node in an inorder traversal 82

ElementsOfProgrammingInterviews.com

viii Table of Contents

10.9 Implement an inorder traversal with O(1) space 82
10.10 Implement preorder and postorder traversals without recursion & 82
10.11 Compute thesuccessor 83
10.12 Reconstruct a binary tree from traversaldata 83
10.13 Reconstruct a binary tree from a preorder traversal with marker . 83
10.14 Form a linked list from the leaves of a binary tree 84
10.15 Compute the exterior of abinary tree & 84
10.16 Compute rightsiblings 84
10.17 Implement locking in a binarytree 84
11 Heaps 86
11.1 Mergesortedfiles 86
11.2 Sort a k-increasing-decreasing array 87
11.3 Sortan almost-sorted array 87
114 Compute thekcloseststars 87
11.5 Compute the median of onlinedata 87
11.6 Compute the k largest elements ina max-heap 88
11.7 Compute fairbonuses @ 88
11.8 Find k elements closest to the median & 88
119 Testif x is bigger than the k-th largest element @ 88
11.10 Implement stack and queue APIs usingheaps 89
12 Searching 90
12.1 Search a sorted array for first occurrenceof k 92
12.2 Search a sorted array for the first element greater thank 92
12.3 Searchasorted array for A[i] =i 93
124 Search acyclically sorted array 93
12.5 Search a sorted array of unknownlength @& 93
12.6 Compute the integer squareroot 93
127 Compute the real squareroot 93
12.8 Searchintwosorted arrays @ 94
129 Searchina2Dsortedarray & 94
12.10 Find the min and max simultaneously 94
12.11 Find the k-th largestelement. 94
12.12 Compute the optimum mailbox placement 95
12.13 Find the k-th largest element—large n, smallk & 95
12.14 Find the missing IPaddress 95
12.15 Find the duplicate and missing elements 95
12.16 Find an element that appearsonlyonce @< 96
13 Hash Tables 97
13.1 Partitioninto anagrams 98
132 Test for palindromic permutations 98
13.3 Testif an anonymous letter is constructible 99
134 ImplementanISBNcache 99

ElementsOfProgrammingInterviews.com

Table of Contents ix
13.5 Compute the LCA, optimizing for close ancestors 99
13.6 Compute the K most frequent queries 99
13.7 Find the line through the most points & 99
13.8 Find the nearest repeated entriesinanarray 100
13.9 Find the smallest subarray covering all values & 100
13.10 Find smallest subarray that sequentially covering all values & . 100
13.11 Find the longest subarray with distinct entries & 101
13.12 Find the length of a longest contained range & 101
13.13 Compute all string decompositions 101
13.14 Find a highest affinity pair 101
13.15 Pair users by attributes o oL 102
13.16 Test the Collatz conjecture 102
13.17 Implement a hash function forchess 102
13.18 Find the shortest unique prefix & 103

14 Sorting 104
141 Compute the intersection of two sorted arrays 105
142 Implement mergesortin-place. 105
14.3 Count the frequencies of characters in a sentence 105
144 Find uniqueelements. 106
145 Renderacalendar. 106
146 Addaclosedinterval 106
14.7 Compute the unionof intervals 107
14.8 Theinterval covering problem 107
149 Compute an optimum assignment of tasks @& 107
14.10 Implement countingsort & 108
1411 Teamphotoday—1 108
14.12 Implement a fast sorting algorithm forlists 109
14.13 Compute the smallest nonconstructible change @ 109
14.14 Compute a salary threshold 109
14.15 Implement a variable-lengthsort 109
14.16 Implement a least-distancesort 109
14.17 Schedule timetrials 110
14.18 Find the winnerand runner-up 110

15 Binary Search Trees 111
15.1 Test if a binary tree satisfies the BST property 111
15.2 Find the first occurrence of kinaBST 112
15.3 Find the first key larger thankinaBST 112
15.4 Find the k largest elementsinaBST 113
155 Computethe LCAinaBST 113
15.6 Reconstruct a BST from traversaldata 113
15.7 Compute the closest entries in three sorted arrays 113
15.8 The most visited pages problem 114

ElementsOfProgrammingInterviews.com

X Table of Contents

15.9 Find the most visited pagesinawindow &
15.10 Build a BST fromasortedarray
15.11 Convert a sorted doubly linked listintoa BST @
15.12 Convert a BST to a sorted doubly linked list &
1513 MergetwoBSTs @
1514 UpdateaBST @
15.15 Test if three BST nodes are totally ordered
15.16 Test if a binary treeisanalmost BST &
15.17 Compute the average of the top threescores
15.18 The nearest restaurant problem
15.19 Compute the view fromabove &
1520 Testif a binary treeisamin-first BST
1521 Addcredits
15.22 Count the number of entries in aninterval

16 Recursion
16.1 The Towers of Hanoiproblem
16.2 Implement regular expression matching &
16.3 Enumerate all nonattacking placements of n-Queens
164 Enumerate permutations L.
16.5 Enumeratethepowerset.
16.6 Enumerate all subsetsof sizek
16.7 Enumerate strings of balanced parens
16.8 Enumerate palindromic decompositions
169 Enumeratebinarytrees.
16.10 ImplementaSudokusolver
16.11 ComputeaGraycode
16.12 Synthesizeanexpression.
16.13 Countinversions & i i i it
16.14 Compute the diameterofatree
16.15 Draw theskyline @
16.16 Find the two closestpoints @

17 Dynamic Programming
17.1 Count the number of score combinations
17.2 Compute the Levenshtein distance
17.3 Compute the binomial coefficients
174 Count the number of ways to traversea 2D array
175 Planafishingtrip
17.6 Search forasequenceina2Darray
17.7 Theknapsack problem
17.8 Measure with defectivejugs @
179 Testifatieispossible. L.
17.10 Divide thespoils fairly

114
114
114
115
115
116
116
116
117
117
118
118
119
119

120
120
121
122
122
123
123
124
124
124
124
124
125
126
126
126
127

128
130
130
130
131
131
132
132
133
133
134

ElementsOfProgrammingInterviews.com

Table of Contents xi
17.11 Compute the maximum subarray sum in a circular array & . . . 134
17.12 The bedbathandbeyond.com problem 134
17.13 Determine the criticalheight @& 134
17.14 Find the maximum weight pathin a triangle 135
17.15 Pick up coins for maximumgain 135
17.16 Decompose into palindromicstrings 135
17.17 Testif s is an interleavingof s;ands, 136
17.18 Count the number of stepsinaboard game 136
17.19 Compute the probability of a Republican majority 136
17.20 The pretty printing problem 136
17.21 Find the longest nondecreasing subsequence & 137
17.22 Voltage selection in a logic circuit & 137
17.23 Find the maximum 2D subarray @ 138

18 Greedy Algorithms and Invariants 139
18.1 Implement Huffmancoding @& 140
18.2 Implement a schedule which minimizes waiting time 140
183 Trappingwater & 141
184 Loadbalancing @r 141
185 Pack for USPS prioritymail & 142
186 The3-sumproblem & 142
187 Thegasupproblem 143
18.8 Enumerate numbers of the forma +bvV2 @ 143
18.9 Find the majorityelement 144
18.10 Search for a pair-sum in an abs-sorted array & 144
18.11 Compute the maximum water trapped by a pair of vertical lines . 144
18.12 The heavy hitter problem &= 144
18.13 Find the longest subarray whosesum <k @ 145
18.14 Compute the largest rectangle under the skyline @<. 146

19 Graphs 147
19.1 Searchamaze 150
19.2 PaintaBooleanmatrix 150
19.3 Computeenclosedregions 150
194 Cloneagraph 152
19.5 Transform one string toanother & 152
19.6 Making wired connections oL 152
19.7 Test degrees of connectedness @< 152
19.8 Teamphotoday—2 154
19.9 Compute a minimum delay schedule, unlimited resources & . . 154
19.10 Compute a shortest path with fewestedges 154
19.11 Roadnetwork & 154
19.12 Test if arbitrage is possible & 155

ElementsOfProgrammingInterviews.com

20 Parallel Computing
20.1 Implement caching for a multithreaded dictionary
20.2 Analyze two unsynchronized interleaved threads

20.3 Implement synchronization for two interleaving threads

204 Implementathreadpool
20.5 Implement asynchronous callbacks
20.6 Implementa Timerclass
20.7 The readers-writers problem
20.8 The readers-writers problem with write preference
20.9 The readers-writers problem with fairness
20.10 Implement a producer-consumer queue
20.11 Test the Collatz conjecture in parallel
20.12 Implement broadcast in a tree-structured network
20.13 Design TeraSort and PetaSort
20.14 Implement distributed throttling

21 Design Problems
21.1 Create photomosaics
212 Designaspellchecker
21.3 Design a solution to the stemming problem
214 Plagiarismdetector

&.......

21.5 Design a system for detecting copyright infringement

216 DesignTpX
21.7 Designasearchengine
21.8 Implement PageRank
21.9 Design a scalable priority system
21.10 Implement MileageRun
21.11 ImplementConnexus
21.12 Design an online advertising system
21.13 Design a recommendation system
21.14 Design an optimized way of distributing large files
21.15 Design the World WideWeb
21.16 Estimate the hardware cost of a photo sharing app

IIT Hints

IV Solutions

V Notation and Index

Index of Terms

156
157
157
158
158
158
159
159
159
160
160
160
160
161
161

162
162
162
163
163
163
163
163
164
164
164
165
165
165
165
165
165

166

175

480

483

Table of Contents

I The Interview

1 Getting Ready

2 Strategies For-A Great Interview -
8 Conducting An Interview -

4 Problem Solving Patterns -

II Problems

5 Primitive Types

6 Arrays and Strings -
7 Linked Lists -

8 Stacks and Queues -
9 Binary Trees

10 Heaps -

11 Searching

12 Hash Tables -
13 Sorting -

14 Binary Search Trees -

15 Meta-algorithms

5

6

11
18

22

46
47
52
62
67
73

80

-84

92

98

104

-114

16 Algorithms on Graphs -

17 Intractability -

18 Parallel Computing

19 Design Problems -
20 Probability -

21 Discrete Mathematics -

III Solutions

IV Notation and Index

Index of Terms -

130

138

- 144

150

155

163

171

469

472

Introduction

And it ought to be remembered that there is nothing more
difficult to take in hand, more perilous to conduct, or
move uncertain in its success, than to take the lead in the
introduction of a new order of things.

- N. MacHiaveLLy, 1513

Elements of Programming Interviews (EPI) aims to help engineers interviewing
for software development positions. The primary focus of EPI is data structures,
algorithms, system design, and problem solving. The material is largely presented
through questions. o

An interview problem

Let’s begin with Figure 1 below. It depicts movements in the share price of a company
over 40 days. Specifically, for each day, the chart shows the daily high and low, and
the price at the opening bell (denoted by the white square). Suppose you were asked
in an interview to design an algorithm that determines the maximum profit that
could have been made by buying and then selling a single share over a given day
range, subject to the constraint that the buy and the sell have to take place at the start
of the day. (This algorithm may be needed to backtest a trading strategy.)

You may want to stop reading now, and attempt this problem on your own.

First clarify the problem. For example, you should ask for the input format.
Let’s say the input consists of three arrays L, H, and S, of nonnegative floating point
numbers, representing the low, high, and starting prices for each day. The constraint
that the purchase and sale have to take place at the start of the day means that it

i

Flpeqaitt b
11t f411 } ?
ity - 5“

Day0 Day5 Dayl0 Day15 Day20 Day25 Day30 Day35 Day40

Figure 1: Share price as a function of time.

2 Introduction

suffices to consider 5. You may be tempted to simply return the difference of the
minimum and maximum elements in S. If you try a few test cases, you will see that
the minimum can occur after the maximum, which violates the requirement in the
problem statement—you have to buy before you can sell.

At this point, a brute-force algorithm would be appropriate. For each pair of
indices i and j > i compute p;; = S[f] — S[i] and compare this difference to the
largest difference, d, seen so far. If p;; is greater than d, set d to p;;. You should be
able to code this algorithm using a pair of nested for-loops and test it in a matter
of a few minutes. You should also derive its time complexity as a function of the
length n of the input array. The inner loop is invoked #n — 1 times, and the i-th
iteration processes n — 1 - i elements. Processing an element entails computing a
difference, performing a compare, and possibly updating a variable, all of which
take constant time. Hence the run time is proportional to Y '-2(n -1 - k) = !"—_?-(’-‘1, ie.,
the time complexity of the brute-force algorithm is O(n?). You should also consider
the space complexity, i.e., how much memory your algorithm uses. The array itself
takes memory proportional to 1, and the additional memory used by the brute-force
algorithm is a constant independent of n—a couple of iterators and one temporary
floating point variable.

Once you have a working algorithm, try to improve upon it. Specifically, an
O(n?) algorithm is usually not acceptable when faced with large arrays. You may
have heard of an algorithm design pattern called divide and conquer. It yields the
following algorithm for this problem. Split S into two subarrays, S[0 : |2]] and
S[L3] +1 : n~1]; compute the best result for the first and second subarrays; and
combine these results. In the combine step we take the better of the results for the
two subarrays. However, we also need to consider the case where the optimum buy
and sell take place in separate subarrays. When this is the case, the buy must be in
the first subarray, and the sell in the second subarray, since the buy must happen
before the sell. If the optimum buy and sell are in different subarrays, the optimum
buy price is the minimum price in the first subarray, and the optimum sell price is in
the maximum price in the second subarray. We can compute these prices in O(n) time
with a single pass over each subarray. Therefore the time complexity T(n) for the
divide and conquer algorithm satisfies the recurrence relation T(n) = 2T(§) + O(n),
which solves to O(nlogn).

The divide and conquer algorithm is elegant and fast. Its implementation entails
some corner cases, e.g., an empty subarray, subarrays of length one, and an array in
which the price decreases monotonically, but it can still be written and tested by a
good developer in 20-30 minutes.

- Looking carefully at the combine step of the divide and conquer algorithm, you
may have a flash of insight. Specifically, you may notice that the maximum profit
that can be made by selling on a specific day is determined by the minimum of the
stock prices over the previous days. Since the maximum profit corresponds to selling
on some day, the following algorithm correctly computes the maximum profit. Iterate
through S, keeping track of the minimum element m seen thus far. If the difference of
the current element and m is greater than the maximum profit recorded so far, update

ElementsOfProgrammingInterviews.com

Introduction . 3

the maximum profit. This algorithm performs a constant amount of work per array
element, leading to an O(n) time complexity. It uses two float-valued variables (the
minimum element and the maximum profit recorded so far) and an iterator, ie.,
O(1) additional space. It is considerably simpler to implement than the divide and
conquer algorithm—a few minutes should suffice to write and fest it. Working code
is presented in Solution 6.3 on Page 185.

If in a 45-60 minutes interview, you can develop the algorithm described above,
implement and test it, and analyze its complexity, you would have had a very suc-
cessful interview. In particular, you would have demonstrated to your interviewer
that you possess several key skills:

— The ability to rigorously formulate real-world problems.

— The skills to solve problems and design algorithms.

— The tools to go from an algorithm to a tested program.

— The analytical techniques required to determine the computational complexity
of your solution.

Book organization and study guide

Interviewing successfully is about more than being able to intelligently select data
structures and design algorithms quickly. For example, you also need to know how
to identify suitable companies, pitch yourself, ask for help when you are stuck on an
interview problem, and convey your enthusiasm. These aspects of interviewing are
the subject of Chapters 1-3, and are summarized in Table 1.1 on Page 7.

Chapter 1 is specifically concerned with preparation; Chapter 2 discusses how you
should conduct yourself at the interview itself; and Chapter 3 describes interviewing
from the interviewer’s perspective. Thelatter is important for candidates too, because
of the insights it offers into the decision making process. Chapter 4 reviews problem
solving patterns.

Since not everyone will have the time to work through EPI in its entirety, we have
prepared a study guide (Table 1.2 on Page 8) to problems you should solve, based on
the amount of time you have available.

The problem chapters are organized as follows. Chapters 5-14 are concerned with
basic data structures, such as arrays and binary search trees, and basic algorithms,
such as binary search and quicksort. In our experience, this is the material that
most interview questions are based on. Chapters 15-17 cover advanced algorithm
design principles, such as dynamic programming and heuristics, as well as graphs.
Chapters 18-19 focus on distributed and parallel programming, and design problems.
Chapters 20-21 study probability and discrete mathematics; candidates for positions
in finance companies should pay special attention to them. :

The notation, specifically the symbols we use for describing algorithms, e.g.,
[SI, Ali : jl, is fairly standard. It is summarized starting on Page 470; you are strongly
recommended to review it. Terms, e.g., BFS and dequeue, are indexed starting on
Page 471.

ElementsOfProgrammingInterviews.com

4 Introduction

Problems, solutions, variants, and ninjas

Most solutions in EP] are based on basic concepts, such as atrays, hash tables, and bi-
nary search, used in clever ways. A few solutions use relatively advanced machinery,
e.g., Dijkstra’s shortest path algorithm or random variables. You will encounter such
problems in an interview only if you have a graduate degree or claim specialized
knowledge, such as graph theory or randomized algorithms.

Most solutions include code snippets. These are primarily written in C++, and use
C++11 features. Programs concerned with concurrency are in Java. C++11 features
germane to EPI are reviewed on Page 172. A guide to reading C++ programs for
Java developers is given on Page 172. Source code, which includes randomized and
directed test cases, can be found at ElementsOfProgrammInginterviews.com/code.
System design problems, and some problems related to probability and discrete
mathematics, are conceptual and not meant to be coded.

At the end of many solutions we outline problems that are related to the original
question. We classify such problems as variants and e-variants. A variant is a
problem whose formulation or solution is similar to the solved problem. An e-
variant is a problem whose solution differs slightly, if at all, from the given solution.
Some e-variants may be phrased quite differently from the original problem.

Approximately a quarter of the questions in EPI have a white ninja (§*) or black
ninja (@) designation. White ninja problems are more challenging, and are meant for
applicants from whom the bar is higher, e.g., graduate students and tech leads. Black
ninja problems are exceptionally difficult, and are suitable for testing a candidate’s
response to stress, as described on Page 16. Non-ninja questions should be solvable
within an hour-long interview and, in some cases, take substantially less time.

Level and prerequisites

We expect readers to be familiar with data structures and algorithms taught at the
undergraduate level. The chapters on concurrency and system design require knowl-
edge of locks, distributed systems, operating systems (OS), and insight into com-
monly used applications. Much of the material in the chapters on meta-algorithms,
graphs, intractability, probability, and discrete mathematics is more advanced and
geared towards candidates with graduate degrees or specialized knowledge.

The review at the start of each chapter is not meant to be comprehensive and if
you are not familiar with the material, you should first study it in an algorithms
textbook. There are dozens of such texts and our preference is to master one or two
good books rather than superficially sample many. We like Algorithms by Dasgupta,
Papadimitriou, and Vazirani because it is succinct and beautifully written; Introduc-
tion to Algorithms by Cormen, Leiserson, Rivest, and Stein is more detailed and serves
as a good reference.

Since our focus is on problems that can be solved in an interview, we do not
include many elegant algorithm design problems. Similarly, we do not have any
straightforward review problems; you may want to brush up on these using text-
books.

ElementsOfProgrammingInterviews.com

Part |

The Interview

CHAPTER

Getting Ready

Before everything else, getting ready is the secret of success.

— H. Forp

The most important part of interview preparation is knowing the material and prac-
ticing problem solving. However the nontechnical aspects of interviewing are also
very important, and often overlooked. Chapters 1-3 are concerned with the non-
technical aspects of interviewing, ranging from résumé preparation to how hiring
decisions are made. These aspects of interviewing are summarized in Table 1.1 on
the facing page

Study guide

Ideally, you would prepare for an interview by solving all the problems in EPL This
is doable over 12 months if you solve a problem a day, where solving entails writing
a program and getting it to work on some test cases.

Since different candidates have different time constraints, we have outlined sev-
eral study scenarios, and recommended a subset of problems for each scenario. This
information is summarized in Table 1.2 on Page 8. The preparation scenarios we
consider are Hackathon (a weekend entirely devoted to preparation), finals cram
(one week, 3-4 hours per day), term project (four weeks, 1.5-2.5 hours per day), and
algorithms class (3-4 months, 1 hour per day).

At Google, Amazon, Microsoft, and similar companies, a large majority of the
interview questions are drawn from the topics in Chapters 5-14. Exercise common
sense when using Table 1.2, e.g., if you are interviewing for a position with a financial
firm, you should pay more emphasis to Probability and Discrete Mathematics. If you
have a graduate degree or are interviewing for a lead position, add some starred
problems.

Although an interviewer may occasionally ask a question directly from EPI, you
should not base your preparation on memorizing solutions. Rote learning will likely
lead to your giving a perfect solution to the wrong problem.

Chapter 1. Getting Ready 7

Table 1.1: A summary of nontechnical aspects of interviewing

The Interview Lifecycle, on the current At the Interview, on Page 11

page : - Don't solve the wrong problem

- Identify companies, contacts — Get specs & requirements

- Résumé preparation — Construct sample input/output
o Basic principles — Work on small examples first
o Website with links to projects — Spell out the brute-force solution
o LinkedIn profile & recommendations — Think out loud

— Résumé submission — Apply patterns

— Mock interview practice — Test for corner-cases

— Phone/campus screening — Use proper syntax

— Onrsite interview ~ Manage the whiteboard

— Negotiating an offer — Be aware of memory management

— Get function signatures right

General Advice, on Page 15 Conducting an Interview, on Page 18
— Know the company & interviewers - Don’t be indecisive

— Communicate clearly ~ Create a brand ambassador

— Be passionate ~ Coordinate with other interviewers
~ Be honest o know what to test on

— Stay positive o look for patterns of mistakes

— Don't apologize ~ Characteristics of a good problem:
— Be well-groomed o no single point of failure

- Mind your body language o has multiple solutions

— Leave perks and money out o covers multiple areas

- Be ready for a stress interview o is calibrated on colleagues

— Learn from bad outcomes o does not require unnecessary domain

— Negotiate the best offer knowledge
- Control the conversation
o draw out quiet candidates
o manage verbose/overconfident candi-
dates
~ Use a process for recording & scoring
— Determine what training is needed
- Apply the litmus test

The interview lifecycle

Generally speaking, interviewing takes place in the following steps:

1. Identify companies that you are interested in, and, ideally, find people you
know at these companies.

2. Prepare your résumé using the guidelines on the following page, and submit
it via a personal contact (preferred), or through an online submission process
or a campus career fair.

3. Perform an initial phone screening, which often consists of a question-answer
session over the phone or video chat with an engineer. You may be asked to
submit code via a shared document or an online coding site such as ideone.com
or collabedit.com. Don’t take the screening casually—it can be extremely chal-
lenging.

4. Go for an on-site interview—this consists of a series of one-on-one interviews

ElementsOfProgrammingInterviews.com

8 Chapter 1. Getting Ready

Table 1.2: First read Chapter 4. For each chapter, first read its introductory text. Use textbooks for
reference only. Uniess a problem is italicized, it entails writing code. For Scenario 1, write and test code
for the problems in Columns 0 to i — 1, and pseudo-code for the problems in Column 4.

c1 c c3 ca
52,55-56 57-5.8 53,511-512 54,513
6.14,6.22 63,69 615,619,621 6.17-6.18,6.12, 6.23
7.2,7.4 757679 - 7.7-7.8 7.3,7.10-7.11
83,8589 810,812 84,86,814 - 82,88
9.7,9.12-913 92,98 9.6,9.9 9.14

101 106,108 102,105 14.16-103 107,109

112 1131113 111,119 11.5,11.15 11.7,11.12

129 122,127 12.1,12.8 12.5,12.13 14.17,12.16

135 132,13.12 13.1,136,1310 18.14,137 13.8,13.14

141 145,14.12 144,147 14.11,14.22 14.6,14.13, 14.21

1511 154,1522 152,1512,1526 15.10,15.15 15.14, 15.25, 15.27

161 167,1610 163,166 16.5,16.9 1611, 16.13

172 178,172 17.4,17.10 17.1,17.9 17.3,17.11

185 18.1,18.8 18.3-18.4 182,186 18.11,18.15

191 194,197 19.12,19.15 19.2,19.5,19.8 19.6,19.13

206 203,205 20.2,20.7 201,204 20.12, 20.19

211 212,214 21.5-21.6 21.9-21.10 21.7-21.8,21.17

with engineers and managers, and a conversation with your Human Resources
(HR) contact.

5. Receive offers—these are usually a starting point for negotiations.

Note that there may be variations—e.g., a company may contact you, or you
may submit via your college’s career placement center. The screening may involve
a homework assignment to be done before or after the conversation. The on-site
interview may be conducted over a video chat session. Most on-sites are half a day,
but others may last the entire day. For anything involving interaction over a network,
be absolutely sure to work out logistics (a quiet place to talk with a landline rather
than a mobile, familiarity with the coding website and chat software, etc.) well in
advance.

We recommend that you interview at as many places as you can without it taking
away from your job or classes. The experience will help you feel more comfortable
with interviewing and you may discover you really like a company that you did not
know much about. =

The résumé

It always astonishes us to see candidates who've worked hard for at least four years

ElementsOfProgrammingInterviews.com

Chapter 1, Getting Ready ' 9

in school, and often many more in the workplace, spend 30 minutes jotting down
random factoids about themselves and calling the result a résumé.

A résumé needs to address HR staff, the individuals interviewing you, and the
hiring manager. The HR staff, who typically first review your résumé, look for
keywords, so you need to be sure you have those covered. The people interviewing
you and the hiring manager need to know what you've done that makes you special,
so you need to differentiate yourself.

Here are some key points to keep in mind when writing a résumé:

1. Have a clear statement of your objective; in particular, make sure that you tailor

your résumé for a given employer. _

- E.g, “My outstanding ability is developing solutions to computationally
challenging problems; communicating them in written and oral form;
and working with teams to implement them. I would like to apply these
abilities at XYZ.”

2. The most important points—the ones that differentiate you from everyone
else—should come first. People reading your résumé proceed in sequential
order, so you want to impress them with what makes you special early on.
(Maintaining a logical flow, though desirable, is secondary compared to this
principle.) :

— As a consequence, you should not list your programming languages,
coursework, etc. early on, since these are likely common to everyone. You
should list significant class projects (this also helps with keywords for
HR.), as well as talks/papers you've presented, and even standardized
test scores, if truly exceptional.

3. The résumé should be of a high-quality: no spelling mistakes; consistent spac-
ings, capitalizations, numberings; and correct grammar and punctuation. Use
few fonts. Portable Document Format (PDF is preferred, since it renders well
across platforms.

4. Include contact information, a LinkedIn profile, and, ideally, a URL to a per-
sonal homepage with examples of your work. These samples may be class
projects, a thesis, and links to companies and products you've worked on.
Include design documents as well as a link to your version control repository.

5. If you can work at the company without requiring any special processing (e.g.,
if you have a Green Card, and are applying for a job in the US), make a note of
that.

6. Have friends review your résumé; they are certain to find problems with it that
you missed. It is better to get something written up quickly, and then refine it
based on feedback.

7. A résumé does not have to be one page long—two pages are perfectly appro-
priate. (Over two pages is probably not a good idea.)

8. As arule, we prefer not to see a list of hobbies/extracurricular activities (e.g.,
“reading books”, “watching TV”, “organizing tea party activities”) unless they
are really different (e.g., “Olympic rower”) and not controversial.

ElementsOfProgrammingInterviews.com

10 Chapter 1. Getting Ready

Whenever possible, have a friend or professional acquaintance at the company route
your résumé to the appropriate manager/HR contact—the odds of it reaching the
right hands are much higher. At one company whose practices we are familiar with,
a résumé submitted through a contact is 50 times more likely to result in a hire than °
one submitted online. Don’t worry about wasting your contact’s time—employees
often receive a referral bonus, and being responsible for bringing in stars is also
viewed positively.

Mock interviews

Mock interviews are a great way of preparing for an interview. Get a friend to ask
ydu questions (from EPI or any other source) and solve them on a whiteboard, with
pen and paper, or on a shared document. Have your friend take notes and give you
feedback, both positive and negative. Make a video recording of the interview. You
will cringe as you watch it, but it is better to learn of your mannerisms beforehand.
Also ask your friend to give hints when you get stuck. In addition to sharpening
your problem solving and presentation skills, the experience will help reduce anxiety
at the actual interview setting,

ElementsOfProgrammingInterviews.com

Strategies For A Great Interview

The essence of strategy is choosing what not to do.

— M. E. Porter

A typical one hour interview with a single interviewer consists of five minutes of
introductions and questions about the candidate’s résumé. This is followed by five
to fifteen minutes of questioning on basic programming concepts. The core of the
interview is one or two detailed design questions where the candidate is expected
to present a detailed solution on a whiteboard, paper, or IDE. Depending on the
interviewer and the question, the solution may be required to include syntactically
correct code and tests.

Approaching the problem

No matter how clever and well prepared you are, the solution to an interview problem
may not occur to you immediately. Here are some things to keep in mind when this
happens. : :

Clarify the question: This may seem obvious but it is amazing how many inter-
views go badly because the candidate spends most of his time trying to solve the
wrong problem. If a question seems exceptionally hard, you may have misunder-
stood it.

A good way of clarifying the question is to state a concrete instance of the problem.
For example, if the question is “find the first occurrence of a number greater than k
in a sorted array”, you could ask “if the input array is (2,20,30) and k is 3, then are
you supposed to return 1, the index of 20?” These questions can be formalized as -
unit tests.

Work on small examples: Consider Problem 21.1 on Page 163, which entails
determining which of the 500 doors are open. This problem may seem difficult at
first. However, if you start working out which doors are going to be open up to the
fifth door, you will see that only Door 1 and Door 4 are open. This may suggest to
you that the door is open only if its index is a perfect square. Once you have this
epiphany, the proof of its correctness is straightforward. (Keep in mind this approach
will not work for all problems you encounter.)

Spell out the brute-force solution: Problems that are put to you in an interview
tend to have an obvious brute-force solution that has a high time complexity com-
pared to more sophisticated solutions. For example, instead of trying to work out

11

12 Chapter 2. Strategies For A Great Interview

a DP solution for a problem (e.g., for Problem 15.12 on Page 121), try all the possi-
ble configurations. Advantages to this approach include: (1.) it helps you explore
opportunities for optimization and hence reach a better solution, (2.) it gives you
an opportunity to demonstrate some problem solving and coding skills, and (3.) it
establishes that both you and the interviewer are thinking about the same problem.
Be warned that this strategy can sometimes be detrimental if it takes a long time
describe the brute-force approach.

Think out loud: One of the worst things you can do in an interview is to freeze
up when solving the problem. It is always a good idea to think out loud. On the
one hand, this increases your chances of finding the right solution because it forces
you to put your thoughts in a coherent manner. On the other hand, this helps the
interviewer guide your thought process in the right direction. Even if you are not able
to reach the solution, the interviewer will form some impression of your intellectual
ability. '

Apply patterns: Patterns—general reusable solutions to commonly occurring
problems—can be a good way to approach a baffling problem. Examples include
finding a good data structure, seeing if your problem is a good fit for a general
algorithmic technique, e.g., divide and conquer, recursion, or dynamic programming,
and mapping the problem to a graph. Patterns are described in much more detail in
Chapter 4. '

Presenting the solution

Once you have an algorithm, it is important to present it in a clear manner. Your
solution will be much simpler if you use Java or C++, and take advantage of libraries
such as Collections or Boost. However, it is far more important that you use the
language you are most comfortable with. Here are some things to keep in mind
when presenting a solution.

Libraries: Master the libraries, especially the data structures. Do not waste time
and lose credibility trying to remember how to pass an explicit comparator to a BST
constructor. Remember that a hash function should use exactly those fields which
are used in the equality check. A comparison function should be transitive.

Focus on the top-level algorithm: It's OK to use functions that you will implement
later. This will let you focus on the main part of the algorithm, will penalize you
less if you don’t complete the algorithm. (Hash, equals, and compare functions are
good candidates for deferred implementation.) Specify that you will handle main
algorithm first, then corner cases. Add TODO comments for portions that you want
to come back to. '

Manage the whiteboard: You will likely use more of the board than you expect,
so start at the top-left corner. Have a system for abbreviating variables, e.g., declare
stackMax and then use sm for short. Make use of functions—skip implementing
anything that’s trivial (e.g., finding the maximum of an array) or standard (e.g., a
thread pool).

Test for corner cases: For many problems, your general idea may work for

ElementsOfProgrammingInterviews.com

Chapter 2. Strategies For A Great Interview 13

most inputs but there may be pathological instances where your algorithm (or your
implementation of it) fails. For example, your binary search code may crash if the
inputis an empty array; or you may do arithmetic without considering the possibility
of overflow. It is important to systematically consider these possibilities. If there is -
time, write unit tests. Small, extreme, or random inputs make for good stimuli. Don’t
forget to add code for checking the result. Often the code to handle obscure corner
cases may be too complicated to implement in an interview setting. If so, you should
mention to the interviewer that you are aware of these problems, and could address
them if required. '

Syntax: Interviewers rarely penalize you for small syntax errors since modern
integrated development environments (IDEs) excel at handling these details. How-
ever lots of bad syntax may result in the impression that you have limited coding
experience. Once you are done writing your program, make a pass through it to fix
any obvious syntax errors before claiming you are done.

Have a convention for identifiers, e.g., i, j,k for array indices, A,B,C for arrays,
hm for HashMap, s for a String, sb for a StringBuilder, etc.

Candidates often tend to get function signatures wrong and it reflects poorly on
them. For example, it would be an error to write a function in C that returns an array
but not its size. In C++ it is important to know whether to pass parameters by value
or by reference. Use const as appropriate.

Memory management: Generally speaking, it is best to avoid memory manage-
ment operations all together. In C-++, if you are using dynamic allocation consider
using scoped pointers. The run time environment will automatically deallocate the
object a scoped pointer points to when it goes out of scope. If you explicitly allocate
memory, ensure that in every execution path, this memory is de-allocated. See if you
can reuse space. For example, some linked list problems can be solved with O(1)
additional space by reusing existing nodes.

Know your interviewers & the company

It can help you a great deal if the company can share with you the background of
your interviewers in advance. You should use search and social networks to learn
more about the people interviewing you. Letting your interviewers know that you
have researched them helps break the ice and forms the impression that you are
enthusiastic and will go the extra mile. For fresh graduates, it is also important to
think from the perspective of the interviewers as described in Chapter 3.

Once you ace your interviews and have an offer, you have an important decision
to make—is this the organization where you want to work? Interviews are a great
time to collect this information. Interviews usually end with the interviewers letting
the candidates ask questions. You should make the best use of this time by getting
the information you would need and communicating to the interviewer that you are
genuinely interested in the job. Based on your interaction with the interviewers, you
may get a good idea of their intellect, passion, and fairness. This extends to the team
and company.

ElementsOfProgrammingInterviews. com

14 Chapter 2. Strategies For A Great Interview

In addition to knowing your interviewers, you should know about the company
vision, history, organization, products, and technology. You should be ready to talk
about what specifically appeals to you, and to ask intelligent questions about the
company and the job. Prepare a list of questions in advance; it gets you helpful
information as well as shows your knowledge and enthusiasm for the organization.
You may also want to think of some concrete ideas around things you could do for
the company; be careful not to come across as a pushy know-it-all.

All companies want bright and motivated engineers. However, companies differ
greatly in their culture and organization. Here is a brief classification.

Startup, e.g., Quora: values engineers who take initiative and develop products
on their own. Such companies do not have time to train new hires, and tend to hire
candidates who are very fast learners or are already familiar with their technology
stack, e.g., their web application framework, machine learning system, etc.

Mature consumer-facing company, e.g., Google: wants candidates who under-
stand emerging technologies from the user’s perspective. Such companies have
a deeper technology stack, much of which is developed in-house. They have the
resources and the time to train a new hire.

Enterprise-oriented company, e.g., Oracle: looks for developers familiar with
how large projects are organized, e.g., engineers who are familiar with reviews,
documentation, and rigorous testing.

Government contractor, e.g., Lockheed-Martin: values knowledge of specifi-
cations and testing, and looks for engineers who are familiar with government-
mandated processes. '

Embedded systems/chip design company, e.g., National Instruments: wants
software engineers who know enough about hardware to interface with the hardware
engineers. The tool chain and development practices at such companies tend to be
very mature.

General conversation

Often interviewers will ask you questions about your past projects, such as a senior
design project or an internship. The point of this conversation is to answer the
following questions:]

Can the candidate clearly communicate a complex idea? This is one of the most
important skills for working in an engineering team. If you have a grand idea to
redesign a big system, can you communicate it to your colleagues and bring them
on board? It is crucial to practice how you will present your best work. Being
precise, clear, and having concrete examples can go a long way here. Candidates
communicating in a language that is not their first language, should take extra care
to speak slowly and make more use of the whiteboard to augment their words.

Is the candidate passionate about his work? We always want our colleagues to
be excited, energetic, and inspiring to work with. If you feel passionately about your
work, and your eyes light up when describing what you've done, it goes a long way
in establishing you as a great colleague. Hence when you are asked to describe a

ElementsOfProgrammingInterviews.com

Chapter 2. Strategies For A Great Interview 15

project from the past, it is best to pick something that you are passionate about rather
than a project that was complex but did not interest you.

Is there a potential interest match with some project? The interviewer may
gauge areas of strengths for a potential project match. If you know the requirements
of the job, you may want to steer the conversation in that direction. Keep in mind
that because technology changes so fast many teams prefer a strong generalist, so
don’t pigeonhole yourself. :

Other advice

Be honest: Nobody wants a colleague who falsely claims to have tested code or
done a code review. Dishonesty in an interview is a fast pass to an early exit.

Remember, nothing breaks the truth more than stretching it—you should be ready
to defend anything you claim on your résumé. If your knowledge of Python extends
only as far as having cut-and-paste sample code, do not add Python to your résumé.

Similarly, if you have seen a problem before, you should say so. (Be sure that it
really is the same problem, and bear in mind you should describe a correct solution
quickly if you claim to have solved it before.) Interviewers have been known to
collude to ask the same question of a candidate to see if he tells the second interviewer
about the first instance. An interviewer may feign ignorance on a topic he knows in
depth to see if a candidate pretends to know it.

Keep a positive spirit: A cheerful and optimistic attitude can go a long way.
Absolutely nothing is to be gained, and much can be lost, by complaining how
difficult your journey was, how you are not a morning person, how inconsiderate
the airline/hotel/HR staff were, etc.

Don't apologize: Candidates sometimes apologize in advance for a weak GPA,
rusty coding skills, or not knowing the technology stack. Their logic is that by being
proactive they will somehow benefit from lowered expectations. Nothing can be
further from the truth. It focuses attention on shortcomings. More generally, if you
do not believe in yourself, you cannot expect others to believe in you.

Appearance: Most software companies have a relaxed dress-code, and new grad-
uates may wonder if they will look foolish by overdressing. The damage done when
you are too casual is greater than the minor embarrassment you may feel at being
overdressed. It is always a good idea to err on the side of caution and dress formally
for your interviews. At the minimum, be clean and well-groomed.

Be aware of your body language: Think of a friend or coworker slouched all the
time or absentmindedly doing things that may offend others. Work on your posture,
eye contact and handshake, and remember to smile.

Keep money and perks out of the interview: Money is a big element in any job
but it is best left discussed with the HR division after an offer is made. The same is
true for vacation time, day care support, and funding for conference travel.

ElementsOfProgrammingInterviews.com

16 Chapter 2. Strategies For A Great Interview

Stress interviews

Some companies, primarily in the finance industry, make a practice of having one
of the interviewers create a stressful situation for the candidate. The stress may be
injected technically, e.g., via a ninja problem, or through behavioral means, e.g., the
interviewer rejecting a correct answer or ridiculing the candidate. The goal is to see
how a candidate reacts to such situations—does he fall apart, become belligerent, or
get swayed easily. The guidelines in the previous section should help you through a
stress interview. (Bear in mind you will not know a priori if a particular interviewer
will be conducting a stress interview.)

Learning from bad outcomes

The reality is that not every interview results in a job offer. There are many reasons
for not getting a particular job. Some are technical: you may have missed that key
flash of insight, e.g., the key to solving the maximum-profit on Page 1 in linear time.
If this is the case, go back and solve that problem, as well as related problems.

Often, your interviewer may have spent a few minutes looking at your résumé—
this is a depressingly common practice. This can lead to your being asked questions
on topics outside of the area of expertise you claimed on your résumé, e.g., routing
protocols or Structured Query Language (SQL). If so, make sure your résumé is
accurate, and brush up on that topic for the future.

You can fail an interview for nontechnical reasons, e.g., you came across as un-
interested, or you did not communicate clearly. The company may have decided
not to hire in your area, or another candidate with similar ability but more relevant
experience was hired.)

You will not get any feedback from a bad outcome, so it is your responsibility
to try and piece together the causes. Remember the only mistakes are the ones you
don’t learn from.

Negotiating an offer

An offer is not an offer till it is on paper, with all the details filled in. All offers are
negotiable. We have seen compensation packages bargained up to twice the initial
offer, but 10-20% is more typical. When negotiating, remember there is nothing to be
gained, and much to lose, by being rude. (Being firm is not the same as being rude.)

To get the best possible offer, get multiple offers, and be flexible about the form of
your compensation. For example, base salary is less flexible than stock options, sign-
on bonus, relocation expenses, and Immigration and Naturalization Service (INS)
filing costs. Be concrete—instead of just asking for more money, ask for a P% higher
salary. Otherwise the recruiter will simply come back with a small increase in the
sign-on bonus and claim to have met your request.

Your HR contact is a professional negotiator, whose fiduciary duty is to the com-
pany. He will know and use negotiating techniques such as reciprocity, getting
consensus, putting words in your mouth (“don’t you think that’s reasonable?”), as

ElementsOfProgrammingInterviews,com

Chapter 2. Strategies For A Great Interview 17

well as threats, to get the best possible deal for the company. (This is what recruiters
themselves are evaluated on internally.) The Wikipedia article on negotiation lays
bare many tricks we have seen recruiters employ.

One suggestion: stick to email, where it is harder for someone to paint you into
a corner. If you are asked for something (such as a copy of a competing offer), get
something in return. Often it is better to bypass the HR contact and speak directly
with the hiring manager.

At the end of the day, remember your long term career is what counts, and joining
a company that has a brighter future (social-mobile vs. legacy enterprise), or offers
a position that has more opportunities to rise (developer vs. tester) is much more
important than a 10-20% difference in compensation.

ElementsOfProgrammingInterviews.com

Conducting An Interview

DAl - HRIRTE o

Translated—"If you know both yourself and
your enemy, you can win numerous battles
without jeopardy.”

— “The Art of War,”
Sun Tzu, 515 B.C.

In this chapter we review practices that help interviewers identify a top hire. We
strongly recommend interviewees read it—knowing what an interviewer is looking
for will help you present yourself better and increase the likelihood of a successful
outcome. :

For someone at the beginning of their career, interviewing may feel like a huge
responsibility. Hiring a bad candidate is expensive for the organization, not just
because the hire is unproductive, but also because he is a drain on the productivity
of his mentors and managers, and sets a bad example. Firing someone is extremely
painful as well as bad for to the morale of the team. On the other hand, discarding
good candidates is problematic for a rapidly growing organization. Interviewers
also have a moral responsibility not to unfairly crush the interviewee’s dreams and
aspirations.

Objective

The ultimate goal of any interview is to determine the odds that a candidate will
be a successful employee of the company. The ideal candidate is smart, dedicated,
articulate, collegial, and gets things done quickly, both as an individual and in a
team. Ideally, your interviews should be designed such that a good candidate scores
1.0 and a bad candidate scores 0.0.

One mistake, frequently made by novice interviewers, is to be indecisive. Unless
the candidate walks on water or completely disappoints, the interviewer tries not to
make a decision and scores the candidate somewhere in the middle. This means that
the interview was a wasted effort.

A secondary objective of the interview process is to furn the candidate into a
brand ambassador for the recruiting organization. Even if a candidate is not a good
fit for the organization, he may know others who would be. It is important for the
candidate to have an overall positive experience during the process. It seems obvious

18

Chapter 3. Conducting An Interview 19

that it is a bad idea for an interviewer to check email while the candidate is talking
or insult the candidate over a mistake he made, but such behavior is depressingly
common. QOutside of a stress interview, the interviewer should work on making the
candidate feel positively about the experience, and, by extension, the position and
the company.

What to ask

One important question you should ask yourself as an interviewer is how much
training time your work environment allows. For a startup it is important that a
new hire is productive from the first week, whereas a larger organization can budget
for several months of training. Consequently, in a startup it is important to test the
candidate on the specific technologies that he will use, in addition to his general
abilities.

For a larger organization, it is reasonable not to emphasize domain knowledge
and instead test candidates on data structures, algorithms, system design skills, and
problem solving techniques. The justification for this is as follows. Algorithms, data
structures, and system design underlie all software. Algorithms and data structure
code is usually a small component of a system dominated by the user interface
(UI), I/O, and format conversion. It is often hidden in library calls. However, such
code is usually the crucial component in terms of performance and correctness, and
often serves to differentiate products. Furthermore, platforms and programming
languages change quickly but a firm grasp of data structures, algorithms, and system
design principles, will always be a foundational part of any successful software
endeavor. Finally, many of the most successful software companies have hired based
on ability and potential rather than experience or knowledge of specifics, underlying
the effectiveness of this approach to selecting candidates.

Most big organizations have a structured interview process where designated
interviewers are responsible for probing specific areas. For example, you may be
asked to evaluate the candidate on their coding skills, algorithm knowledge, critical
thinking, or the ability to design complex systems. This book gives interviewers
access to a fairly large collection of problems to choose from. When selecting a
problem keep the following in mind:

No single point of failure—if you are going to ask just one question, you should
not pick a problem where the candidate passes the interview if and only if he gets
one particular insight. The best candidate may miss a simple insight, and a mediocre
candidate may stumble across the right idea. There should be at least two or three
opportunities for the candidates to redeem themselves. For example, problems that
can be solved by dynamic programming can almost always be solved through a
greedy algorithm that is fast but suboptimum or a brute-force algorithm that is slow
but optimum. In such cases, even if the candidate cannot get the key insight, he can
still demonstrate some problem solving abilities. Problem 6.3 on Page 53 exemplifies
this type of question.

Multiple possible solutions—if a given problem has multiple solutions, the

ElementsOfProgrammingInterviews.com

20 Chapter 3. Conducting An Interview

chances of a good candidate coming up with a solution increases. It also gives
the interviewer more freedom to steer the candidate. A great candidate may finish
with one solution quickly enough to discuss other approaches and the trade-offs
between them. For example, Problem 11.15 on Page 90 can be solved using a hash
table or a bit array; the best solution makes use of binary search.

Cover multiple areas—even if you are responsible for testing the candidate on
algorithms, you could easily pick a problem that also exposes some aspects of design
and software development. For example, Problem 18.4 on Page 146 tests candi-
dates on concurrency as well as data structures. Problem 17.1 on Page 139 requires
knowledge of both dynamic programming and probability.

Calibrate on colleagues—interviewers often have an incorrect notion of how
difficult a problem is for a thirty minute or one hour interview. It is a good idea to
check the appropriateness of a problem by asking one of your colleagues to solve it
and seeing how much difficulty they have with it.

No unnecessary domain knowledge—it is not a good idea to quiz a candidate on
advanced graph algorithms if the job does not require it and the candidate does not
claim any special knowledge of the field. (The exception to this rule is if you want to
test the candidate’s response to stress.)

Conducting the interview

Conducting a good interview is akin to juggling. At a high level, you want to ask
your questions and evaluate the candidate’s responses. Many things can happen in
an interview that could help you reach a decision, so it is important to take notes. At
the same time, it is important to keep a conversation going with the candidate and
help him out if he gets stuck. Ideally, have a series of hints worked out beforehand,
which can then be provided progressively as needed. Coming up with the right set
of hints may require some thinking. You do not want to give away the problem, yet
find a way for the candidate to make progress. Here are situations that may throw
you off: _

A candidate that gets stuck and shuts up: Some candidates get intimidated by
the problem, the process, or the interviewer, and just shut up. In such situations, a
candidate’s performance does not reflect his true caliber. It is important to put the
candidate at ease, e.g., by beginning with a straightforward question, mentioning
that a problem is tough, or asking them to think out loud.

A verbose candidate: Candidates who go off on tangents and keep on talking
without making progress render an interview ineffective. Again, it is important to
take control of the conversation. For example you could assert that a particular path
will not make progress.

An overconfident candidate: It is common to meet candidates who weaken their
case by defending an incorrect answer. To give the candidate a fair chance, it is
important to demonstrate to him that he is making a mistake, and allow him to
correct it. Often the best way of doing this is to construct a test case where the
candidate’s solution breaks down. '

ElementsOfProgrammingInterviews.com

Chapter 3. Conducting An Interview 21

Scoring and reporting

At the end of an interview, the interviewers usually have a good idea of how the
candidate scored. However, is important to keep notes and revisit them before
making a final decision. Whiteboard snapshots and samples of any code that the
candidate wrote should also be recorded. You should standardize scoring based on
which hints were given, how many questions the candidate was able to get to, etc.
Although isolated minor mistakes can be ignored, sometimes when you look at all
the mistakes together, clear signs of weakness in certain areas may emerge, such as
a lack of attention to detail and unfamiliarity with a language.

When the right choice is not clear, wait for the next candidate instead of possibly
making a bad hiring decision. The litmus test is to see if you would react positively
to the candidate replacing a valuable member of your team.

ElementsOfProgrammingInterviews.com

CHAPTER

Problem Solving Patterns

It's not that I'm so smart, it's just that I stay with problems longer.

— A, EmvsTEIN

Developing problem solving skills is like learning to play a musical instrument—
books and teachers can point you in the right direction, but only your hard work
will take you there. Just as a musician, you need to know underlying concepts, but
theory is no substitute for practice.

‘Great problem solvers have skills that cannot be rigorously formalized. Still, when
faced with a challenging programming problem, it is helpful to have a small set of
“patterns”—general reusable solutions to commonly occurring problems—that may
be applicable.

We now introduce several patterns and illustrate them with examples. We have
classified these patterns into three categories:

— data structure patterns,

— algorithm design patterns, and

— abstract analysis patterns.

These patterns are summarized in Table 4.1 on the facing page, Table 4.2 on Page 28,
and Table 4.3 on Page 38, respectively.

At a meta-level, concrete inputs are the best starting point for many problems.
Small instances, such as an array or a BST containing 5-7 elements, specialized inputs,
e.g., binary values, nonoverlapping intervals, connected graphs, etc., and extreme
cases, for instance input that is sorted or contains duplicates, can offer tremendous
insight.

The notion of patterns is very general; in particular, many patterns arise in the
context of software design—the builder pattern, composition, publish-subscribe, etc.
These are more suitable to large-scale systems, and as such are outside the scope of
EPI, which is focused on smaller programs that can be solved in an interview.

Data structure patterns

A data structure is a particular way of storing and organizing related data items
so that they can be manipulated efficiently. Usually the correct selection of data
structures is key to designing a good algorithm. Different data structures are suited
to different applications; some are highly specialized. For example, heaps are par-

22

Chapter 4. Problem Solving Patterns 23

ticularly well-suited for algorithms that merge sorted data streams, while compiler
implementations usually use hash tables to look up identifiers.

Solutions often require a combination of data structures. Our solution to the
problem of tracking the most visited pages on a website (Solution 14.18 on Page 110)
involves a combination of a heap, a queue, a binary search tree, and a hash table.

Table 4.1: Data structure patterns.

Primitive types Know how int, char, double, etc. are represented in
memory and the primitive operations on them.

Arrays & strings Fast access for element at an index, slow lookups (un-
less sorted) and insertions. Be comfortable with no-
tions of iteration, resizing, partitioning, merging, etc.
Know how strings are represented in memory. Under-
stand basic operators such as comparison, copying,
matching, joining, splitting, etc.

Lists Understand trade-offs with respect to arrays. Be com-
fortable with iteration, insertion, and deletion within
singly and doubly linked lists. Know how to imple-
ment a list with dynamic allocation, and with arrays.

Stacks and queues Understand insertion and deletion. Know array and
linked list implementations. _
Binary trees Use for representing hierarchical data. Know about

depth, height, leaves, search path, traversal sequences,
successor/predecessor operations.

Heaps Key benefit: O(1) lookup find-max, O(log n) insertion,
and O(logn) deletion of max. Node and array repre-
sentations. Min-heap variant.

Hash tables Key benefit: O(1) insertions, deletions and lookups.
Key disadvantages: not suitable for order-related
queries; need for resizing; poor worst-case perfor-
mance. Understand implementation using array of
buckets and collision chains. Know hash functions for
integers, strings, objects. Understand importance of

. equals function. Variants such as Bloom filters.

Binary search trees Key benefit: O(logn) insertions, deletions, lookups,
find-min, find-max, successor, predecessor when tree
is balanced. Understand implementation using nodes
and pointers. Be familiar with notion of balance, and
operations maintaining balance. Know how to aug-
ment a binary search tree, e.g., interval trees and dy-
namic order statistics.

PriMITIVE TYPES

You should be comfortable with the basic types (chars, integers, doubles, etc.), their
variants (unsigned, long, etc.), and operations on them (bitwise operators, compar-
ison, etc.). Don't forget that the basic types differ among programming languages.

ElementsOfProgrammingInterviews.com

24 Chapter 4. Problem Solving Patterns

For example, Java has no unsigned integers, and the number of bits in an integer is
compiler- and machine-dependent in C.

A common problem related to basic types is computing the number of bits set
to 1 in an integer-valued variable x. To solve this problem you need to know how
to manipulate individual bits in an integer. One straightforward approach is to
iteratively test individual bits using an unsigned integer variable m initialized to 1.
Iteratively identify bits of x that are set to 1 by examining the bitwise AND of m with
x, shifting m left one bit at a time. The overall complexity is O(r) where n is the length
of the integer.

Another approach, which may run faster on some inputs, is based on computing
y = x&l(x — 1), where & is the bitwise AND operator. - This is 1 at exactly the
rightmost bit of x. Consequently, this bit may be removed from x by computing x®y.
The time complexity is O(s), where s is the number of bits set to 1 in x.

- In practice if the computation is done repeatedly, the most efficient approach
would be to create a lookup table. In this case, we could use a 256 entry integer-
valued array P such that P[i] is the number of bits set to 1 in i. If x is 32 bits, the
result can be computed by decomposing x into 4 disjoint bytes, b3, b2, b1, and b0. The
bytes are computed using bitmasks and shifting, e.g., b1 is (x & 0xff00) > 8. The final
result is P[b3] + P[b2] + P[b1] + P[b0]. Computing the parity of an integer is closely
related to counting the number of bits set to 1, and we present a detailed analysis of
the parity problem in Solution 5.1 on Page 173.

ARRAYS AND STRINGS

Conceptually, an array maps integers in the range [0,7 — 1] to objects of a given type,
where 1 is the number of objects in this array. Array lookup and insertion are fast,
making arrays suitable for a variety of applications. Reading past the last element of
an array is a common error, invariably with catastrophic consequences.

The following problem arises when optimizing quicksort: given an array A whose
elements are comparable, and an index 7, reorder the elements of A so that the initial
elements are all less than A[7], and are followed by elements equal to A[i], which in
turn are followed by elements greater than A[i], using O(1) space.

The key to the solution is to maintain two regions on opposite sides of the array
that meet the requirements, and expand these regions one element at a time. Details
are given in Solution 6.1 on Page 183. :

Lists

An abstract data type (ADT) is a mathematical model for a class of data structures
that have similar functionality. Strictly speaking, a list is an ADT, and not a data
structure. It implements an ordered collection of values, which may be repeated. In
the context of this book we view a list as a sequence of nodes where each node has a
link to the next node in the sequence. In a doubly linked list each node additionally
has a link to the prior node.

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns 25

A list is similar to an array in that it contains objects in a linear order. The key
differences are that inserting and deleting elements in a list has time complexity O(1).
On the other hand, obtaining the k-th element in a list is expensive, having O(n)
time complexity. Lists are usually building blocks of more complex data structures.
However, they can be the subject of tricky problems in their own right, as illustrated
by the following:

Given a singly linked list (o, i, I, .., In-1), define the “zip” of the list to be
(o, -1, 11, 1h-2, ...). Suppose you were asked to write a function that computes the
zip of a list, with the constraint that it uses O(1) space. The operation of this function
is illustrated in Figure 4.1.

G [[> X

Gxloon fx1240 Bx1834 Hx2118 fx2206

(a) List before zipping. The number in hex below each nogle represents its address in memory.

b (> >t 5 — 5 [¥]

oxLlaoh Bx2280 dx124¢ 6x2118 Gx1830

(b) List after zipping. Note that nodes are reused—no memory has been allocated.

Figure 4.1: Zipping a list.

The solution is based on an appropriate iteration combined with “pointer swap-
ping”, i.e., updating next field for each node. Refer to Solution 7.11 on Page 216 for
details.

STACKS AND QUEUES

Stacks support last-in, first-out semantics for inserts and deletes, whereas queues are
first-in, first-out. Both are ADTs, and are commonly implemented using linked lists
or arrays. Similar to lists, stacks and queues are usually building blocks in a solution
to a complex problem, but can make for interesting problems in their own right.

As an example consider the problem of evaluating Reverse Polish notation expres-
sions, i.e., expressions of the form “3,4,%,1,2, +,+", “1,1,+,-2,x”, or "4,6,/,2, /"
A stack is ideal for this purpose—operands are pushed on the stack, and popped as
operators are processed, with intermediate results being pushed back onto the stack.
Details are given in Solution 8.2 on Page 221.

BINARY TREES

A binary tree is a data structure that is used to represent hierarchical relationships.
Binary trees most commonly occur in the context of binary search trees, wherein
keys are stored in a sorted fashion. However, there are many other applications
of binary trees. Consider a set of resources organized as nodes in a binary tree.
Processes need to lock resource nodes. A node may be locked if and only if none of
its descendants and ancestors are locked. Your task is to design and implement an
application programming interface (API) for locking.

ElementsCfProgrammingInterviews.com

26 Chapter 4. Problem Solving Patterns

A reasonable APl is one with isLock(), lock(), and unLock() methods. Naively
implemented the time complexity for these methods is O(1), where 7 is the number of
nodes. However these can be made to run in time O(1), O(h), and O(h), respectively,
where h is the height of the tree, if nodes have a parent field. Details are given in
Solution 9.4 on Page 238.

Hears

A heap is a data structure based on a binary tree. It efficiently implements an ADT
called a priority queue. A priority queue resembles a queue, with one difference:
each element has a “priority” associated with it, and deletion removes the element
with the highest priority.

Suppose you are given a set of files, each containing stock trade information. Each
trade appears as a separate line containing information about that trade. Lines begin
with an integer-valued timestamp, and lines within a file are sorted in increasing
order of timestamp. Suppose you were asked to design an algorithm that combines
the set of files into a single file R in which trades are sorted by timestamp.

This problem can be solved by a multistage merge process, but there is a trivial
solution based on a min-heap data structure. Entries are trade-file pairs and are
ordered by the timestamp of the trade. Initially the min-heap contains the first trade
from each file. Iteratively delete the minimum entry e = (¢, f) from the min-heap,
write f to R, and add in the next entry in the file f. Details are given in Solution 10.1
on Page 248.

HasH TABLES

A hash table is a data structure used to store keys, optionally with corresponding
values. Inserts, deletes and lookups run in G(1) time on average. One caveat is that
these operations require a good hash function—a mapping from the set of all possible
keys to the integers which is similar to a uniform random assignment. Another is
that if the number of keys that is to be stored is not known in advance then the
hash table needs to be periodically resized, which depending on how the resizing is
implemented, can lead to some updates having ©(n) complexity.

Suppose you were asked to write an application that compares n programs for
plagiarism. Specifically, your application is to break every program into overlapping
character strings, each of length 100, and report on the number of strings that appear
in each pair of programs. A hash table can be used to perform this check very
efficiently if the right hash function is used. Details are given in Solution 12.13 on
Page 286.

BINARY SEARCH TREES

Binary search trees (BSTs) are used to store objects that are comparable. The underly-
ing idea is to organize the objects in a binary tree in which the nodes satisfy the BST
property: the key stored at any node is greater than or equal to the keys stored in its

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns . 27

left subtree and less than or equal to the keys stored in its right subtree. Insertion
and deletion can be implemented so that the height of the BST is O(logn), leading
to fast (O(logn)) lookup and update times. AVL trees and red-black trees are BST
implementations that support this form of insertion and deletion.

BSTs are a workhorse of data structures and can be used to solve almost every
data structures problem reasonably efficiently. It is common to augment the BST to
make it possible to manipulate more complicated data, e.g., intervals, and efficiently
support more complex queries, e.g., the number of elements in a range.

As an example application of BSTs, consider the following problem. You are given
a set of line segments. Each segment is a closed interval [;, 7] of the x-axis, a color,
and a height. For simplicity assume no two segments whose intervals overlap have
the same height. When the x-axis is viewed from above the color at point x on the
x-axis is the color of the highest segment that includes x. (If no segment contains x,
the color is blank.) You are to implement a function that computes the sequence of
colors as seen from the top.

The key idea is to sort the endpoints of the line segments and do a sweep from
left-to-right. As we do the sweep, we maintain a list of line segments that intersect
the current position as well as the highest line and its color. To quickly lookup the
highest line in a set of intersecting lines we keep the current set in a BST, with the
interval’s height as its key. Details are given in Solution 14.20 on Page 327.

Other data structures

The data structures described above are the ones commonly used. Examples of other
data structures that have more specialized applications include:

~ Skip lists, which store a set of comparable items using a hierarchy of sorted
linked lists. Lists higher in the hierarchy consist of increasingly smaller subse-
quences of the items. Skip lists implement the same functionality as balanced
BSTs, but are simpler to code and faster, especially when used in a concurrent
context.

— Treaps, which are a combination of a BST and a heap. When an element
is inserted into a treap it is assigned a random key that is used in the heap
organization. The advantage of a treap is that it is height-balanced with high
probability and the insert and delete operations are considerably simpler than
for deterministic height-balanced trees such as AVL and red-black trees.

— Fibonacci heaps, which consist of a series of trees. Insert, find minimum,
decrease key, and merge (union) run in amortized constant time; delete and
delete-minimum take O(log) time. In particular Fibonacci heaps can be used
to reduce the time complexity of Dijkstra’s shortest path algorithm from O((|E|+
(VD) log [V]) to O(E| + |V|1og [V]).

— Disjoint-set data structures, which are used to manipulate subsets. The ba-
sic operations are union (form the union of two subsets), and find (determine
which set an element belongs to). These are used in a number of algorithms, no-
tably in tracking connected components in an undirected graph and Kruskal’s

ElementsOfProgrammingInterviews.com

28 Chapter 4. Problem Solving Patterns

algorithm for the minimum spanning tree. We use the disjoint-set data struc-
ture to solve the offline minimum problem (Solution 6.8 on Page 189).

— Tries, which are a tree-based data structure used to store strings. Unlike BSTs,
nodes do not store keys; instead, the node’s position in the tree determines the
key it is associated with. Tries can have performance advantages with respect
to BSTs and hash tables; they can also be used to solve the longest matching
prefix problem (Solution 19.3 on Page 417).

Algorithm design patterns

An algorithm is a step-by-step procedure for performing a calculation. We classify
common algorithm design patterns in Table 4.2. Roughly speaking, each pattern
corresponds to a design methodology. An algorithm may use a combination of
patterns.

Table 4.2: Algorithm design patterns.

Sorting
Recursion

Divide and conquer

Uncover some structure by sorting the input.

If the structure of the input is defined in a recursive
manner, design a recursive algorithm that follows the
input definition.

Divide the problem into two or more smaller inde-
pendent subproblems and solve the original problem
using solutions to the subproblems.

Dynamic program- Compute solutions for smaller instances of a gi{ren

ming problem and use these solutions to construct a solution
to the problem. Cache for performance.

The greedy method Compute a solution in stages, making choices that are
locally optimum at step; these choices are never un-
done.

Incremental improve- Quickly build a feasible solution and improve its qual-

ment ity with small, local updates.

Elimination Identify and rule out potential solutions that are sub-
optimal or dominated by other solutions.

Parallelism Decompose the problem into subproblems that can be
solved independently on different machines.

Caching Store computation and later look it up to save work.

Randomization Use randomization within the algorithm to reduce
complexity. :

Approximation Efficiently compute a suboptimum solution that is of
acceptable quality. _

State Identify an appropriate notion of state.

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns . 29

SORTING

Certain problems become easier to understand, as well as solve, when the input is
sorted. The solution to the calendar rendering problem (Problem 13.10 on Page 101)
entails taking a set of intervals and computing the maximum number of intervals
whose intersection is nonempty. Naive strategies yield quadratic run times. How-
ever, once the interval endpoints have been sorted, it is easy to see that a point of
maximum overlap can be determined by a linear time iteration through the end-
points. '

Often it is not obvious what to sort on—for example, we could have sorted the
intervals on starting points rather than endpoints. This sort sequence, which in some
respects is more natural, does not work. However, some experimentation with it will
likely lead to the correct criterion.

Sorting is not appropriate when an O(n) (or better) algorithm is possible, e.g.,
determining the k-th largest element (Problem 11.13 on Page 89). Furthermore,
sorting can obfuscate the problem. For example, given an array A of numbers, if we
are to determine the maximum of A[i] - A[f], for i < j, sorting destroys the order and
complicates the problem.

v

Recursion

A recursive function consists of base cases, and calls to the same function with
different arguments. A recursive algorithm is appropriate when the input is naturally
expressed using recursive functions. '

String matching exemplifies the use of recursion. Suppose you were asked to
write a Boolean-valued function which takes a string and a matching expression,
and returns true iff the matching expression “matches” the string. Specifically, the
matching expression is itself a string, and could be

— xwhere xis a character, for simplicity assumed to be a lower-case letter (matches
the string “x”).

. (matches any string of length 1).

x+ (matches the string consisting of zero or more occurrences of the character x).
-+ (matches the string consisting of zero or more of any characters).

r1ir, where r; and 7, are regular expressions of the given form (matches any
string that is the concatenation of strings s; and s, where r; matches s; and #;
matches s;).

This problem can be solved by checking a number of cases based on the first one
or two characters of the matching expression, and recursively matching the rest of
the string. Details are given in Solution 6.23 on Page 206.

!

!

D1vIDE AND CONQUER

A divide and conquer algorithm works by decomposing a problem into two or more
smaller independent subproblems, until it gets to instances that are simple enough
to be solved directly; the results from the subproblems are then combined. More
details and examples are given in Chapter 15; we illustrate the basic idea below.

ElementsOfProgrammingInterviews.com

30 i Chapter 4. Problem Solving Patterns

A triomino is formed by joining three unit-sized squares in an L-shape. A mu-
tilated chessboard (henceforth 8 x'8 Mboard) is made up of 64 unit-sized squares
arranged in an 8 X 8 square, minus the top-left square, as depicted in Figure 4.2(a).
Suppose you are asked to design an algorithm that computes a placement of 21 tri-
ominoes that covers the 8 X 8 Mboard. Since the 8 X 8 Mboard contains 63 squares,
and we have 21 triominoes, a valid placement cannot have overlapping triominoes
or triominoes which extend out of the 8 x 8 Mboard.

sz
n

(a) An 8 x 8 Mboard. (b) Four 4 x 4 Mboards.

Figure 4.2: Mutilated chessboards.

Divide and conquer is a good strategy for this problem. Instead of the 8 x 8
Mboard, let’s consider an 7 % 1 Mboard. A 2 x 2 Mboard can be covered with one
triomino since it is of the same exact shape. You may hypothesize that a triomino
placement for an n X n Mboard with the top-left square missing can be used to
compute a placement for an (n + 1) X (n + 1) Mboard. However you will quickly see
that this line of reasoning does not lead you anywhere.

Another hypothesis is that if a placement exists for an 7 xn Mboard, then one also
exists for a 21 X 2n Mboard. Now we can apply divide and conquer. work. Take four
n X1 Mboards and arrange them to form a 2n X 2n square in such a way that three of
the Mboards have their missing square set towards the center and one Mboard has
its missing square outward to coincide with the missing corner of a 21 x 2n Mboard,
as shown in Figure 4.2(b). The gap in the center can be covered with a triomino and,
by hypothesis, we can cover the four n X n Mboards with triominoes as well. Hence
a placement exists for any » that is a power of 2. In particular, a placement exists for
the 23 x 23 Mboard; the recursion used in the proof directly yields the placement.

Divide and conquer is usually implemented using recursion. However, the two
concepts are not synonymous. Recursion is more general—subproblems do not have
to be of the same form.

In addition to divide and conquer, we used the generalization principle above.
The idea behind generalization is to find a problem that subsumes the given problem
and is easier to solve. We used it to go from the 8 X 8 Mboard to the 2" x 2" Mboard.

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns 31

Other examples of divide and conquer include counting the number of pairs of
elements in an array that are out of sorted order (Solution 15.2 on Page 334) and
computing the closest pair of points in a set of points in the plane (Solution 15.3 on
Page 335). ' '

DyNAMIC FROGRAMMING

Dynamic programming (DP) is applicable when the problem has the “optimal sub-
structure” property, that s, it is possible to reconstruct a solution to the given instance
from solutions to subinstances of smaller problems of the same kind. A key aspect
of DP is maintaining a cache of solutions to subinstances. DP can be implemented
recursively (in which case the cache is typically a dynamic data structure such as a
hash table or a BST), or iteratively (in which case the cache is usually a one- or multi-
dimensional array). It is most natural to design a DP algorithm using recursion.
Usually, but not always, it is more efficient to implement it using iteration.

As an example of the power of DP, consider the problem of determining the
number of combinations of 2, 3, and 7 point plays that can generate a score of
222. Let C(s) be the number of combinations that can generate a score of s. Then
C(222) = C(222 - 7) + C(222 — 3) + C(222 — 2), since a combination ending with a 2
point play is different from one ending with a 3 point play, and a combination ending
with a 3 point play is different from one ending with a 7 point play, etc.

The recursion ends at small scores, specifically, when (1.)s <0 = C(s) =0, and
(2)s=0 = C(s)=1.

Implementing the recursion naively results in multiple calls to the same subin-
stance. Let C(a) — C(b) indicate that a call o C with input a directly calls C with input
b. Then C(213) will be called in the order C(222) —+ C(222 - 7) - C((222 - 7) — 2), as
well as C(222) — C(222 - 3) -+ C((222 - 3) — 3) - C(((222 — 3) — 3) - 3).

This phenomenon results in the run time increasing exponentially with the size
of the input. The solution is to store previously computed values of C in an array of
length 223. Details are given in Solution 15.15 on Page 354.

Sometimes it is profitable to study the set of partial solutions. Specifically it may
be possible to “prune” dominated solutions, i.e., solutions which cannot be better
than previously explored solutions. The candidate solutions are referred to as the
“efficient frontier” that is propagated through the computation.

For example, if we are to implement a stack that supports a max operation, which
returns the largest element stored in the stack, we can record for each element in the
stack what the largest value stored at or below that element is by comparing the value
of that element with the value of the largest element stored below it. Details are given
in Solution 8.1 on Page 219. The largest rectangle under the skyline (Problem 15.8 on
Page 120) provides a more sophisticated example of the efficient frontier concept.

Another consideration is how the partial solutions are organized. In the solution
to the longest nondecreasing subsequence problem 15.6 on Page 340, it is better to
keep the efficient frontier sorted by length of each subsequence rather than its final
index.

ElementsOfProgrammingInterviews.com

32 Chapter 4. Problem Solving Patterns

THE GREEDY METHOD

A greedy algorithm is one which makes decisions that are locally optimum and
never changes them. This strategy does not always yield the optimum solution.
Furthermore, there may be multiple greedy algorithms for a given problem, and
only some of them are optimum.

For example, consider 2 cities on a line, half of which are white, and the other
half are black. We want to map white to black cities in a one-to-one fashion so that
the total length of the road sections required to connect paired cities is minimized.
Multiple pairs of cities may share a single section of road, e.g., if we have the pairing
(0,4) and (1, 2) then the section of road between Cities 0 and 4 can be used by Cities 1
and 2. The most straightforward greedy algorithm for this problem is to scan through
the white cities, and, for each white city, pair it with the closest unpaired black city.
It leads to suboptimum results: consider the case where white cities are at 0 and at 3
and black cities are at 2 and at 5. If the straightforward greedy algorithm processes
the white city at 3 first, it pairs it with 2, forcing the cities at 0 and 5 to pair up, leading
to a road length of 5, whereas the pairing of cities at 0 and 2, and 3 and 5 leads to a
road length of 4. '

However, a slightly more sophisticated greedy algorithm does lead to optimum
results: iterate through all the cities in left-to-right order, pairing each city with the
nearest unpaired city of opposite color.” More succinctly, let W and B be the arrays
of white and black city coordinates. Sort W and B, and pair W[i] with B[i]. We can
prove this leads to an optimum pairing by induction. The idea is that the pairing for
the first city must be optimum, since if it were to be paired with any other city, we
could always change its pairing to be with the nearest black city without adding any
road.

INCREMENTAL IMPROVEMENT

When you are faced with the problem of computing an optimum solution, it is
often straightforward to come up with a candidate solution, which may be a partial
solution. This solution can be incrementally improved to make it optimum. This is
especially true when a solution has to satisfy a set of constraints.

As an example consider a department with »n graduate students and n professors.
Each student begins with a rank ordered preference list of the professors based on
how keen he is to work with each of them. Each professor has a similar preference list
of students. Suppose youwere asked to devise an algorithm which takes as input the
preference lists and outputs a one-to-one pairing of students and advisers in which
there are no student-adviser pairs (s0,40) and (s1,41) such that s0 prefers a1 to 20 and
al prefers s0 to s1.

Here is an algorithm for this problem in the spirit of incremental improvement.
Each student who does not have an adviser “proposes” to the most-preferred profes-
sor to whom he has not yet proposed. Each professor then considers all the students
who have proposed to him and says to the student in this set he most prefers “I
accept you”; he says “no” to the rest. The professor is then provisionally matched to

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns _ 33

astudent; this is the candidate solution. In each subsequent round, each student who
does not have an adviser proposes to the professor to whom he has not yet proposed
who is highest on his preference list. He does this regardless of whether the professor
has already been matched with a student. The professor once again replies with a
single accept, rejecting the rest. In particular, he may leave a student with whom he
is currently paired. That this algorithm is correct is nontrivial—details are presented
in Solution 21.18 on Page 459.

Many other algorithms are in this spirit: the standard algorithms for bipartite
matching (Solution 21.19 on Page 460), maximum flow (Solution 21.21 on Page 462),
and computing all pairs of shortest paths in a graph (Solutions 16.11 on Page 386
and 16.12 on Page 387) use incremental improvement. Other famous examples
include the simplex algorithm for linear programming, and Euler’s algorithm for
computing a path in a graph which covers each edge once.

Sometimes it is easier to start with an infeasible solution that has a lower cost than
the optimum solution, and incrementally update it to arrive at a feasible solution
that is optimum. The standard algorithms for computing an MST (Solution 17.6 on
Page 393) and shortest paths in a graph from a designated vertex (Solution 16.9 on
Page 384) proceed in this fashion.

It is noteworthy that naively applying incremental improvement does not always
work. For the professor-student pairing example above, if we begin with an arbitrary
pairing of professors and students, and search for pairs p and s such that p prefers
s to his current student, and s prefers p to his current professor and reassign such
pairs, the procedure will not always converge.

Incremental improvement is often useful when designing heuristics, i.e., algo-
rithms which are usually faster and/or simpler to implement than algorithms which
compute an optimum result, but may return a suboptimal result. The algorithm we
present for computing a tour for a traveling salesman (Solution 17.6 on Page 393) is
in this spirit. '

ErmvinaTion

One common approach to designing an efficient algorithm is to use elimination—
that is to identify and rule out potential solutions that are suboptimal or dominated
. by other solutions. Binary search, which is the subject of a number of problems in
Chapter 11, uses elimination. Solution 11.9 on Page 267, where we use elimination
to compute the square root of a real number, is especially instructive. Below we
consider a fairly sophisticated application of elimination.

Suppose you have to build a distributed storage system. A large number, 7, of
users will share data on your system, which consists of m servers, numbered from 0 fo
m~1. One way to distribute users across servers is to assign the user with login ID [to
the server h(I) mod m, where k() is a hash function. If the hash function does a good
job, this approach distributes users uniformly across servers. However, if certain
users require much more storage than others, some servers may be overloaded while
others idle. '

ElementsOfProgrammingInterviews.com

34 Chapter 4. Problem Solving Patterns

Let b; be the number of bytes of storage required by user i. We will use values
ky <k <+ < ky_o to partition users across the m servers—a user with hash code ¢
gets assigned to the server with the lowest ID i such that ¢ < k;, or to server m — 1
if no such i exists. We would like to select kg, ki, . . ., k-2 to minimize the maximum
number of bytes stored at any server.

The optimum values for ky, ki, . .., k-2 can be computed via DP—the essence of
the program is to add one server at a time. The straightforward formulation has an
O(nm?) time complexity. :

However, there is a much faster approach based on elimination. The search for
values ko, ki, ..., ky-2 such that no server stores more than b bytes can be performed
in O(n) time by greedily selecting values for the k;s. We can then perform binary
search on b to get the minimum b and the corresponding values for ko, ki, ..., Ky—2.
The resulting time complexity is O(nlog W), where W = ¥.7" ;.

For the case of 10000 users and 100 servers, the DP algorithm took over an hour;
the approach using binary search for b with greedy assignment took 0.1 seconds.
Details are given in Solution 15.24 on Page 365.

The takeaway is that there may be qualitatively different ways to search for a
solution, and that it is important to look for ways in which to eliminate candidates.
The efficient frontier concept, described on Page 31, has some commonalities with
elimination.

PARALLELISM

In the context of interview questions, parallelism is useful when dealing with scale,
ie., when the problem is too large to fit on a single machine or would take an
unacceptably long time on a single machine. The key insight you need to display is
that you know how to decompose the problem so that

1. each subproblem can be solved relatively independently, and

2. thesolution to the original problem can be efficiently constructed from solutions

to the subproblems.
Efficiency is typically measured in terms of central processing unit (CPU) time, ran-
dom access memory (RAM), network bandwidth, number of memory and database
accesses, etc. _

Consider the problem of sorting a petascale integer array. If we know the distri-
bution of the numbers, the best approach would be to define equal-sized ranges of
integers and send one range to one machine for sorting. The sorted numbers would
just need to be concatenated in the correct order. If the distribution is not known
then we can send equal-sized arbitrary subsets to each machine and then merge the
sorted results, e.g., using a min-heap. Details are given in Solution 18.14 on Page 414.

CACHING

Caching is a great tool whenever computations are repeated. For example, the central
idea behind dynamic programming is caching results from intermediate computa-
tions. Caching is also extremely useful when implementing a service that is expected

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns 35

to respond to many requests over time, and many requests are repeated, Workloads
on web services exhibit this property. Solution 18.1 on Page 403 sketches the design of
an online spell correction service; one of the key issues is performing cache updates
in the presence of concurrent requests.

Ranpomization

Suppose you were asked to write a routine that takes an array A of n elements and
an integer k between 1 and n, and returns the k-th largest element in A.

This problem can be solved by first sorting the array, and returning the element
at index k in the sorted array. The time complexity of this approacﬁ is O(nlogn).
However, sorting performs far more work than is needed. A better approach is to
eliminate parts of the array. We could use the median to determine the n/2 largest
elements of A; if n/2 > k, the desired element is in this set, otherwise we search for
the (k — n/2)-th largest element in the /2 smallest elements. '

It is possible, though nontrivial, to compute the median in O(n) time without
using randomization. However, an approach that works well is to select an index r
at random and reorder the array so that elements greater than or equal to Afr] appear
first, followed by A[r], followed by elements less than or equal to A[r]. Let A[r] be the
k-th element in the reordered array A’. If k = n/2, A’[k] = A[r] is the desired element.
If k > n/2, we search for the n/2-th largest element in A’[0 : k — 1]. Otherwise we
search for the (n/2 —k)-th largest element in A’[k+1 : n—1]. The closer A[r] is the true
median, the faster the algorithm runs. A formal analysis shows that the probability
of the randomly selected element repeatedly being far from the desired element falls
off exponentially with n. Details are given in Solution 11.13 on Page 270.

Randomization can also be used to create “signatures” to reduce the complexity of
search, analogous to the use of hash functions. Consider the problem of determining
whether an m X m array S of integers is a subarray of an n X n array T. Formally,
we say S is a subarray of T iff there are p,q such that S[i][j] = Tlp + illg + j], for
all 0 < 4,j < m — 1. The brute-force approach to checking if S is a subarray of T
has complexity O(n*m?)—O(n?) individual checks, each of complexity O(m?). We
can improve the complexity to O(n*m) by computing a hash code for S and then
computing the hash codes for m x m subarrays of T. The latter hash codes can be
computed incrementally in O(m) time if the hash function is chosen appropriately.
For example, if the hash code is simply the XOR of all the elements of the subarray,
the hash code for a subarray shifted over by one column can be computed by XORing
the new elements and the removed elements with the previous hash code. A similar
approach works for more complex hash functions, specifically for those that are a
polynomial.

APPROXIMATION

In the real-world it is routine to be given a problem that is difficult to solve exactly,
either because of its infrinsic complexity, or the complexity of the code required.
Developers need to recognize such problems, and be ready to discuss alternatives

ElementsOfProgrammingInterviews.com

36 Chapter 4. Problem Solving Patterns

with the author of the problem. In practice a solution that is “close” to the optimum
solution is usually perfectly acceptable.

Let {Ag, A1, ..., As1} be a set of n cities, as in Figure 4.3. Suppose we need to
choose a subset of A to locate warehouses. Specifically, we want to choose k cities in
such a way that cities are close to the warehouses. Define the cost of a warehouse
assignment to be the maximum distance of any city to a warehouse.

Figure 4.3: An instance of the warehouse location problem. The distance betwsen cities at (p, 4) and

(r,8)is (p—1%+(q—-s)%

The problem of finding a warehouse assignment that has the minimum cost is
known to be NP-complete. However, consider the following algorithm for com-~
puting k cities. We pick the first warehouse to be the city for which the cost is
minimized—this takes @(n?) time since we try each city one at a time and check its
distance to every other city. Now let’s say we have selected the first i — 1 warehouses
{e1,¢2,...,ci-1) and are trying to choose the i-th warehouse. A reasonable choice for
¢; is the city that is the farthest from the i — 1 warehouses already chosen. This city
can be computed in O(ni) time. This greedy algorithm yields a solution whose cost
is no more than 2x that of the optimum solution; some heuristic tweaks can be used
to further improve the quality. Details are given in Solution 17.7 on Page 394.

As another example of approximation, consider the problem of determining the
k most frequent elements of a very large array. The direct approach of maintaining
counts for each element may not be feasible because of space constraints. A natural
approach is to sample the set to determine a set of candidates, exact counts for which
are then determined in a second pass. The size of the candidate set depends on the
distribution of the elements.

ElementsOfProgramuingInterviews.com

Chapter 4. Problem Solving Patterns 37

StaTE

Formally, the state of a system is information that is sufficient to determine how that
system evolves as a function of future inputs. Identifying the right notion of state
can be critical to coming up with an algorithm that is time and space efficient, as well
as easy to implement and prove correct.

There may be multiple ways in which state can be defined, all of which lead to
correct algorithms. When computing the max-difference (Problem 6.3 on Page 53),
we could use the values of the elements at all prior indices as the state when we
iterate through the array. Of course, this is inefficient, since all we really need is the
minimum value.

One solution to computing the Levenshtein distance between two strings (Prob-
lem 15.11 on Page 120) entails creating a 2D array whose dimensions are (m+1)x(n+1),
where m and 7 are the lengths of the strings being compared. For large strings this
size may be unacceptably large. The algorithm iteratively fills rows of the array, and
reads values from the current row and the previous row. This observation can be
used to reduce the memory needed to two rows. A more careful implementation can
reduce the memory required to just one row.

More generally, the efficient frontier concept on Page 31 demonstrates how an
algorithm can be made to run faster and with less memory if state is chosen care-
fully. Other examples illustrating the benefits of careful state selection include string
matching (Problem 6.20 on Page 59) and lazy initialization (Problem 6.2 on Page 53).

Abstract analysis patterns

The mathematician George Polya wrote a book How fo Solve It that describes a
number of heuristics for problem solving. Inspired by this work we present some
heuristics that are effective on common interview problems; they are summarized in
Table 4.3 on the following page. '

CASE ANALYSIS

In case analysis a problem is divided into a number of separate cases, and analyzing
each such case individually suffices to solve the initial problem. Cases do not have
to be mutually exclusive; however, they must be exhaustive, that is cover all possi-
bilities. For example, to prove that for all #, n® mod 3is 0, 1, or 8, we can consider the
cases = 3m, n = 3m +1, and n = 3m + 2. These cases are individually easy to prove,
and are exhaustive. Case analysis is commonly used in mathematics and games of
strategy. Here we consider an application of case analysis to algorithm design.

Suppose you are given a set S of 25 distinct integers and a CPU that has a special
instruction, SORTS5, that can sort five integers in one cycle. Your task is to identify the
largest, second-largest, and third-largest integers in S using SORT5 to compare and
sort subsets of S; furthermore, you must minimize the number of calls to SORTS.

If all we had to compute was the largest integer in the set, the optimum approach
would be to form five disjoint subsets S5, ..., S5 of S, sort each subset, and then sort

ElementsOfProgrammingInterviews.com

38 Chapter 4. Problem Solving Patterns

Table 4.3: Abstract analysis techniques.

Case aalysis ' Split the input/execution into a number of cases and
solve each case in isolation.

Small examples . Find a solution to small concrete instances of the prob-
lem and then build a solution that can be generalized
to arbitrary instances.

Iterative refinement Most problems can be solved using a brute-force ap-
proach. Find such a solution and improve upon it.

Reduction Use a well known solution to some other problem as
a subroutine.

Graph modeling Describe the problem using a graph and solve it using
an existing algorithm.

Write an equation Express relationships in the problem in the form of

_ equations (or inequalities). '

Variation Solve a slightly different (possibly more general) prob-
lem and map its solution to the given problem.

Invariants Find a function of the state of the given system that re-

mains constant in the presence of (possibly restricted)
updates to the state. Use this function to design an al-
gorithm, prove correctness, or show an impossibility
result.

{max$;,...,maxSs}. This takes six calls to SORT5 but leaves ambiguity about the
second and third largest integers.

It may seem like many additional calls to SORTS5 are still needed. However if you
do a careful case analysis and eliminate all x € S for which there are at least three
integers in S larger than x, only five integers remain and hence just one more call to
SORTS is needed to compute the result. Details are given in Solution 21.2 on Page 447.

SMALL EXAMPLES

Problems that seem difficult to solve in the abstract can become much more tractable
when you examine small concrete instances. For instance, consider the following
problem. Five hundred closed doors along a corridor are numbered from 1 to 500.
A person walks through the corridor and opens each door. Another person walks
through the corridor and closes every alternate door. Continuing in this manner, the
i-th person comes and toggles the state (open or closed) of every i-th door starting
from Door 7. You must determine exactly how many doors are open after the 500-th
person has walked through the corridor.

It is difficult to solve this problem using an abstract approach, e.g., introducing
Boolean variables for the state of each door and a state update function. However
if you try the same problem with 1,2,3,4,10, and 20 doors, it takes a short time to
see that the doors that remain open are 1,4, 9,16, ..., regardless of the total number
of doors. The 10 doors case is illustrated in Figure 4.4 on the facing page. Now

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns 39

the pattern is obvious—the doors that remain open are those corresponding to the
perfect squares. Once you make this connection, it is easy to prove'i’c for the general
case. Hence the total number of open doors is _ V500 J 22. Solution 21.1 on Page 446
develops this analysis in more detail.

1 2 3 4

5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(a) Initial configuration. (b) After Person 1.

i 2 3 4 5 6 7 B8 9 10 1 2 3 4 5 6 7 B8 9 10
(c) After Person 2. (d) After Person 3.

T 2 3 4 5 € 7 8 9§ 10 1 2 3 4 5 6 7 85 8. 1
(e) After Person 4.) (f} After Person 10.

Rl

Figure 4.4: Progressive updates to 10 doors.

Optimally selecting a red card (Problem 20.18 on Page 160) and avoiding losing
at the alternating coin pickup game (Problem 21.20 on Page 168) are other p:roblems
that benefit from use of the “small example” principle.

ITERATIVE REFINEMENT OF A BRUTE-FORCE SOLUTION

Many problems can be solved optimally by a simple algorithm that has a high
time/space complexity—this is sometimes referred to as a brute-force solution. Other
terms are exhaustive search and generate-and-test. Often this algorithm can be refined
to one that is faster. At the very least it may offer hints into the nature of the problem.

As an example, suppose you were asked to write a function that takes an array A
of n numbers, and rearranges A’s elements to get a new array B having the property
that B[0] < B[1] = B[2] < B[3] = B[4] < B[5] = -+~

One straightforward solution is to sort A and interleave the bottom and top
halves of the sorted array. Alternately, we could sort A and then swap the elements
at the pairs (A[1], A[2]), (A[3], A[4]),.... Both these approaches have the same time
complexity as sorting, namely O(n log n).

You will soon realize that it is not necessary to sort A to achieve the desired
configuration—you could simply rearrange the elements around the median, and
then perform the interleaving. Median finding can be performed in time O(r) (Solu-
tion 11.13 on Page 270), which is the overall time complexity of this approach.

Finally, you may notice that the desired ordering is very local, and realize that it
is not necessary to find the median. Iterating through the array and swapping A[i]
and A[f + 1] when i is even and A[f] > A[i + 1] or i is odd and A[{] < A[i + 1] achieves
the desired configuration. In code:

ElementsOfProgrammingInterviews.com

40 Chapter 4. Problem Solving Patterns

template <typename T>
void rearrange(vector<T> &A) {
for (int i = 0; 1 < A.size() - 1; ++i) {
if ((i & 1 &% A1) < A1 + 112> |] ((i & 1) == @ && ATi] > A[i + 113) {
swap(A[il, A[L + 1]);
1
}
}

This approach has time complexity O(#), which is the same as the approach based
on median finding. However it is much easier to implement, and operates in an
online fashion, i.e., it never needs to store more than two elements in memory or
read a previous element.

As another example of iterative refinement, consider the problem of string
search (Problem 6.20 on Page 59): given two strings s (search string) and ¢ (text),
find all occurrences of s in . Since s can occur at any offset in ¢, the brute-force
solution is to test for a match at every offset. This algorithm is perfectly correct; its
time complexity is O(nm), where n and m are the lengths of s and £.

After trying some examples, you may see that there are several ways to improve
the time complexity of the brute-force algorithm. As an example, if the character #[i]
is not present in s you can advance the matching by 7 characters. Furthermore, this
skipping works better if we match the search string from its end and work backwards.
These refinements will make the algorithm very fast (linear time) on random text and
search strings; however, the worst-case complexity remains O(nm).

You can make the additional observation that a partial match of s that does not
result in a full match implies other offsets that cannot lead to full matches. If s =
abdabeabe and if, starting backwards, we have a partial match up to abeabe that does
not result in a full match, we know that the next possible matching offset has to be
at least three positions ahead (where we can match the second abc from the partial
match).

By putting together these refinements you will have arrived at the famous Boyer-
Moore string search algorithm—its worst-case time complexity is O(n + m) (which
is the best possible from a theoretical perspective); it is also one of the fastest string
search algorithms in practice.

Many other sophisticated algorithms can be developed in this fashion. As another
example, the brute-force solution to computing the maximum subarray sum for an
integer array of length n is to compute the sum of all subarrays, which has O(n?)
time complexity. This can be improved to O(n?) by precomputing the sums of all the
prefixes of the given arrays; this allows the sum of a subarray to be computed in O(1)
time. The natural divide and conquer algorithm has an O(nlog n) time complexity.
Finally, one can observe that a maximum subarray must end at one of # indices, and
the maximum subarray sum for a subarray ending at index i can be computed from
previous maximum subarray sums, which leads to an O(n) algorithm. Details are
presented on Page 117.

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns ' 41

Repuction

Consider the problem of finding if one string is a rotation of the other, e.g., “car” and
“arc” are rotations of each other. A natural approach may be to rotate the first string
by every possible offset and then compare it with the second string. This algorithm
would have quadratic time complexity.

You may notice that this problem is quite similar to string search, which can be
done in linear time, albeit using a somewhat complex algorithm. Therefore it is
natural to try to reduce this problem to string search. Indeed, if we concatenate the
second string with itself and search for the first string in the resulting string, we will
find a match iff the two original strings are rotations of each other. This reduction
yields a linear time algorithm for our problem.

The reduction principle is also illustrated in the problem of checking whether a
road network is resilient in the presence of blockages (Problem 16.4 on Page 133) and
the problem of finding the minimum number of pictures needed to photograph a set
of teams (Problem 16.7 on Page 135). :

Usually you try to reduce the given problem to an easier problem. Sometimes,
however, you need to reduce a problem known to be difficult to the given prob-
lem. This shows that the given problem is difficult, which justifies heuristics and
approximate solutions. Such scenarios are described in more detail in Chapter 17.

GRAPH MODELING

Drawing pictures is a great way to brainstorm for a potential solution. If the relation-
ships in a given problem can be represented using a graph, quite often the problem
can be reduced to a well-known graph problem. For example, suppose you are given
a set of exchange rates among currencies and you want to determine if an arbitrage
exists, i.e., there is a way by which you can start with one unit of some currency C
and perform a series of barters which results in having more than one unit of C.

Table 4.4 shows a representative example. An arbitrage is possible for this
set of exchange rates: 1USD — 1x0.8123 = 0.8123 EUR — 0.8123 x 1.2010 =
0.9755723 CHF — 0.9755723 x 80.39 = 78.426257197 JPY — 78.426257197 x 0.0128 =
1.00385609212 USD.

Table 4.4: Exchange rates for seven major currencies.

Symbol USD EUR GBP JPY CHF CAD - AUD

UsD 1 0.8148 06404 78125 09784 09924 0.9465
EUR 12275 1 07860 9655 12010 1.2182 1.1616
GBP 15617 1.2724 1 122.83 15280 1.5498 14778
JPY 0.0128 0.0104 0.0081 1 12442 0.0126 0.0120
CHF 1.0219 0.8327 0.6546 80.39 1 1.0142 09672
CAD 1.0076 0.8206 0.6453 79.26 0.9859 1 0.9535
AUD 1.0567 0.8609 0.6767 8312 1.0339 1.0487 1

We can model the problem with a graph where currencies correspond to vertices,
exchanges correspond to edges, and the edge weight is set to the logarithm of the

ElementsOfProgrammingInterviews.com

42 Chapter 4. Problem Solving Patterns

exchange rate. If we can find a cycle in the graph with a positive weight, we would
have found such a series of exchanges. Such a cycle can be solved using the Bellman-
Ford algorithm, as described in Solution 16.12 on Page 387.

WRITE AN EQUATION

Some problems can be solved by expressing them in the language of mathematics.
Suppose you were asked to write an algorithm that computes binomial coefficients,
® = mwear-

The problem with computing the binomial coefficient directly from the definition
is that the factorial function grows quickly and can overflow an integer variable. If
we use floating point representations for numbers, we lose precision and the problem
of overflow does not go away. These problems potentially exist even if the final value
of (§) is small. One can try to factor the numerator and denominator and try to cancel
out common terms but factorization is itself a hard problem.

The binomial coefficients satisfy the addition formula:

ny (n-1 N Lo 1
kK \ k k-1
This identity leads to a straightforward recursion for computing (}) which avoids the

problems described above. DP has to be used to achieve good time complexity—
details are in Solution 15.14 on Page 353.

VARIATION

The idea of the variation pattern is to solve a slightly different (possibly more general)
problem and map its solution to your problem.

Suppose we were asked to design an algorithm which takes as input an undirected
graph and produces as output a black or white coloring of the vertices such that for
every vertex at least half of its neighbors differ in color from it.

We could try to solve this problem by assigning arbitrary colors to vertices and
then flipping colors wherever constraints are not met. However this approach may
lead to increasing the number of vertices that do not satisfy the constraint.

It turns out we can define a slightly different problem whose solution will yield
the desired coloring. Define an edge to be diverse if its ends have different colors. It is
straightforward to verify that a coloring that maximizes the number of diverse edges
also satisfies the constraint of the original problem, so there always exists a coloring
satisfying the constraint.

It is not necessary to find a coloring that maximizes the number of diverse edges.
All that is needed is a coloring in which the set of diverse edges is maximal with
respect to single vertex flips. Such a coloring can be computed efficiently; details are
given in Problem 15.29 on Page 128.

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns 43

INvARIANTS

The following problem was popular at interviews in the early 1990s. You are given an
8 X 8 square with two unit sized squares at the opposite ends of a diagonal removed,
leaving 62 squares, as illustrated in Figure 4.5(a). You are given 31 rectangular
dominoes. Each can cover exactly two squares. How would you cover all the 62
squares with the dominoes? '

You can spend hours trying unsuccessfully to find such a covering. This experi-
ence will teach you that a problem may be intentionally worded to mislead you into
following a futile path.

(a) An 8 X 8 square, minus two unit (b) A chessboard, with two diagonally op-
squares at opposite corners. posite corners removed.

Figure 4.5: Invariant analysis exploiting auxiliary elements.

Here is a simple argument that no covering exists. Think of the 8 X 8 square as
a chessboard as shown in Figure 4.5(b). Then the two removed squares will always
have the same color, so there will be either 30 black and 32 white squares to be
covered, or 32 black and 30 white squares to be covered. Each domino will cover
one black and one white square, so the number of black and white squares covered
as you successively put down the dominoes is equal. Hence it is impossible to cover
the given chessboard.

This proof of impossibility is an example of invariant analysis. An invariant
is a function of the state of a system being analyzed that remains constant in the
presence of (possibly restricted) updates to the state. Invariant analysis is particularly
powerful at proving impossibility results as we just saw with the chessboard tiling
problem. The challenge is finding a simple invariant.

The argument above also used the auxiliary elements pattern, in which we added
a new element to our problem to get closer to a solution. The original problem did
not talk about the colors of individual squares; adding these colors made proving
impossibility much easier.

It is possible to prove impossibility without appealing to square colors. Specifi-
cally, orient the board with the missing pieces on the lower right and upper left. An
impossibility proof exists based on a case-analysis for each column on the height of

ElementsOfProgrammingInterviews.com

44 Chapter 4. Problem Solving Patterns

the highest domino that is parallel to the base. However, the proof given above is
much simpler.

Invariant analysis can be used fo design algorithms, as well as prove impossibility
results. In the coin selection problem, sixteen coins are arranged in a line, as in
Figure 4.6, Two players, F and S, take turns at choosing one coin each—they can only
choose from the two coins at the ends of the line. Player F goes first. The game ends
when all the coins have been picked up. The player whose coins have the higher
total value wins.

Figure 4.6: Coins in a row.

The optimum strategy for F can be computed using DP (Solution 15.18 on
Page 357). However, if F's goal is simply to ensure he does not do worse than
S, he can achieve this goal with much less computation. Specifically, he can number
the coins from 1 to 16 from left-to-right, and compute the sum of the even-index coins
and the sum of the odd-index coins. Suppose the odd-index sum is larger. Then F
can force S to always select an even-index coin by selecting the odd-index coins when
it is his own turn, ensuring that S cannot win. The same principle holds when the
even-index sum is larger, or the sums are equal. Details are given in Solution 21.5 on
Page 447.

Invariant analysis can be used with symmetry to solve very difficult problems,
sometimes in less than intuitive ways. This is illustrated by the game known as
“chomp” in which Player F and Player S alternately take bites from a chocolate bar.
The chocolate bar is an 1 X n rectangle; a bite must remove a square and all squares
above and to the right in the chocolate bar. The first player to eat the lower leftmost
square, which is poisoned, loses. Player F can force a win by first selecting the square
immediately above and to the right of the poisoned square, leaving the bar shaped
like an L, with equal vertical and horizontal sides. Now whatever move S makes,
F can play a symmetric move about the line bisecting the chocolate bar through the
poisoned square to recreate the L shape (this is the invariant), which forces S to be the
first to consume the poisoned square. Details are given in Solution 21.6 on Page 448.

Algorithm design using invariants is also illustrated in Solution 12.8 on Page 281
(permute the characters in a string to form a palindrome) and in Solution 13.14 on
Page 303 (find three elements in an array that sum to a given number).

Complexity Analysis

The run time of an algorithm depends on the size of its input. One common approach
to capture the run time dependency is by expressing asymptotic bounds on the worst-
case run time as a function of the input size. Specifically, the run time of an algorithm
on an input of size n is O (f(n)) if, for sufficiently large 1, the run time is not more
than f(n) times a constant. The big-Q notation simply indicates an upper bound;

ElementsOfProgrammingInterviews.com

Chapter 4. Problem Solving Patterns - 45

if the run time is asymptotically proportional to f(n), the complexity is written as
©(f(n)). (Note that the big-O notation is widely used where sometimes ® is more
appropriate.) The notation Q(f(n)) is used to denote an asymptotic lower bound of
f(n) on the time complexity of an algorithm.

As an example, searching an unsorted array of integers of length », for a given
integer, has an asymptotic complexity of ®(n) since in the worst-case, the given inte-
ger may not be present. Similarly, consider the naive algorithm for testing primality
that tries all numbers from 2 to the square root of the input number n. What is its
complexity? In the best case, n is divisible by 2. However in the worst-case the
input may be a prime, so the algorithm performs +/n iterations. Furthermore, since
the number n requires Ig#n bits to encode, this algorithm’s complexity is actually
exponential in the size of the input. The big-Omega notation is illustrated by the
Q(nlogn) lower bound on any comparison-based array sorting algorithm.

Generally speaking, if an algorithm has a run time that is a polynomial, i.e., O(1n*)
for some fixed k, where n is the size of the input, it is considered to be efficient;
otherwise it is inefficient. Notable exceptions exist—for example, the simplex algo-
rithm for linear programming is not polynomial but works very well in practice. On
the other hand, the AKS primality testing algorithm has polynomial run time but
the degree of the polynomial is too high for it to be competitive with randomized
algorithms for primality testing.

Complexity theory is applied as a similar way when analyzing the space require-
ments of an algorithm. Usually, the space needed to read in an instance is not
included; otherwise, every algorithm would have (1) space complexity.

Several of our problems call for an algorithm that uses O(1) space. Conceptually,
the memory used by such an algorithm should not depend on the size of the input
instance. Specifically, it should be possible to implement the algorithm without
dynamic memory allocation (explicitly, or indirectly, e.g., through library routines).
Furthermore, the maximum depth of the function call stack should also be a constant,
independent of the input. The standard algorithm for depth-first search of a graph is
an example of an algorithm that does not perform any dynamic allocation, but uses
the function call stack for implicit storage—its space complexity is not O(1).

A streaming algorithm is one in which the input is presented as a sequence of
items and is examined in only a few passes (typically just one). These algorithms
have limited memory available to them (much less than the input size) and also
limited processing time per item. Algorithms for computing summary statistics on
log file data often fall into this category.

Asarule, algc;rithms should be designed with the goal of reducing the worst-case
complexity rather than average-case complexity for several reasons:

1. Itis very difficult to define meaningful distributions on the inputs.

2. Pathological inputs are more likely than statistical models may predict. A
worst-case input for a naive implementation of quicksort is one where all
entries are the same, which is not unlikely in a practical setting.

3. Malicious users may exploit bad worst-case performance to create denial-of-
service attacks.

ElementsOfProgrammingInterviews.com

Part Il

Problems

CHAPTER

Primitive Types

Representation is the essence of programming.

— “The Mythical Man Month,”
F. P. Brooks, 1975

A program updates variables in memory according to the instructions in the program.
The variables are classified according to their type—a type is a classification of data
that spells out possible values for that type and the operations that can be done on
that type.

Types can be primitive, i.e.,, provided by the language, or defined by the pro-
grammer. The set of primitive types depends on the language. For example, the
primitive types in C++ are bool, char, short, int, long, float, and double, and in
Java are boolean, char, byte, short, int, long, float, and double. A programmer
can define a complex number type as a pair of doubles, one for the real and one for
the imaginary part. -

Problems involving manipulation of bit-level data are often asked in interviews.
An old question goes as follows. Given two integer-valued variables 2 and b, the
straightforward way of swapping their contents is to use a temporary variable—terp
=a; a = b; b = temp;. The questionis: can youswap without using an additional
variable? Surprisingly it is possible—a = a # b; b = a » b; a = a # b;, where
A is the binary bitwise-XOR operator, does the trick. The same code can be expressed
more tersely asa A= b A= a A= b;. '

It is easy to introduce errors in code that manipulates bit-level data—when you
play with bits, expect to get bitten.

5.1 COMPUTING PARITY

The parity of a sequence of bits is 1 if the number of 1s in the sequence is odd;
otherwise, it is 0. Parity checks are used to detect single bit errors in data storage and
communication. It is fairly straightforward to write code that computes the parity of
a single 64-bit nonnegative integer.

Problem 5.1: How would you go about computing the parity of a very large number
of 64-bit nonnegative integers? pg. 173

5.2 Swar BITS

There are a number of ways in which bit manipulations can be accelerated. For
example, the expression x & (x — 1) equals x with the least significant bit cleared;

47

48 5.3. Bitreversal

x & !I(x — 1) extracts the lowest set bit of x (all other bits are cleared); and x ® (x > 1)
is the standard (binary-reflected) Gray code for x.

Problem 5.2: A 64-bit integer can be viewed as an array of 64 bits, with the bit at
index 0 corresponding to the least significant bit, and the bit at index 63 corresponding
to the most significant bit. Implement code that takes as input a 64-bit integer x and
swaps the bits at indices i and j. pg. 174

5.3 BIT REVERSAL

Here is a bit fiddling problem that is concerned with restructuring.

Problem 5.3: Write a function that takes a 64-bit integer x and returns a 64-bit integer
consisting of the bits of x in reverse order. pg. 174
5.4 (CLOSEST INTEGERS WITH THE SAME WEIGHT

Define the number of bits that are set to 1 in an unsigned 64-bit integer x to be the
weight of x. Let Sy denote the set of unsigned 64-bit integers whose weight is k.

Problem 5.4: Suppose x € S, and k is not 0 or 64. How would you compute
¥ € Sk \ {x} such that |y — x| is minimum? pg. 174
5.5 THE POWER SET

The power set of a set S is the set of all subsets of S, including both the empty set 0
and § itself. The power set of {4, B, C} is graphically illustrated in Figure 5.1.

i)

Figure 5.1: The power set of {4, B, C} is {0, {A}, {B}, {C},{A, B}, {B,C}, {4, C}, {4, B, C}}.

Problem 5.5: Implement a method that takes as input a set S of distinct elements,
and prints the power set of 5. Print the subsets one per line, with elements separated
by commas. rg. 175

ElementsOfProgrammingInterviews.com

5.6. String and integer conversions 49

5.6 STRING AND INTEGER CONVERSIONS

A string is a sequence of characters. A string may encode an integer, e.g., “123”
encodes 123. In this problem, you are to implement methods that take a string
representing an integer and return the corresponding integer, and vice versa.

Your code should handle negative integers. It should throw an exception if the
string does not encode an integer, e.g., “123abc” is not a valid encoding.

Languages such as C++ and Java have library functions for performing this
conversion—stoi in C++ and parselnt in Java go from strings to integers;
to_string in C++ and toString in Java go from integers to strings. You cannot
use these functions. (Imagine you are implementing the corresponding library.)

Problem 5.6: Implement string/integer inter-conversion functions. Use
the following function signatures: String intToString(int x) and int

stringToInt(String s). pg. 176

5.7 BASE CONVERSION

In the decimal system, the position of a digit is used to signify the power of 10 that
digit is to be multiplied with. For example, “314” denotes the number 3 X 100 + 1 x
10 + 4 x 1. (Note that zero, which is not needed in other systems, is essential in the
decimal system, since a zero can be used to skip a power.)

The decimal system is an example of a positional number system, wherein the
same symbol is used for different orders of magnitude (for example, the “ones place”,
“tens place”, “hundreds place”). This system greatly simplified arithmetic and led
to its widespread adoption.

The base b number system generalizes the above: the string “a;1a-2...2140",
where 0 < g; < b, for each i € [0, k — 1] denotes the integer f;; a;lb.

Problem 5.7: Write a function that performs base conversion. Specifically, the input
is an integer base by, a string s, representing an integer x in base b;, and another
integer base by; the output is the string representing the integer x in base b;. Assume
2 £ by, by £16. Use “A” to represent 10, “B” for 11, ..., and “F” for 15. pg. 177

5.8 SPREADSHEET COLUMN ENCODING

Widely deployed spreadsheets use an alphabetical encoding of the successive
columns. Specifically, consecutive columns are identified by “A”, “B”, “C”, ...,
JIXI’, h‘Yh‘! "Z”’ ﬁ'AA}J" flABf!, ey h‘ZZJ!’ JIAAA)‘/’ h‘AAB’I’; e

Problem 5.8: Write a function that converts Excel column ids to the corre-
sponding integer, with “A” corresponding to 1. The function signature is int

ssDecodeColID(string); you may ignore error conditions, such as col containing
characters outside of [4, Z]. How would you test your code? pg. 178

ElementsOfProgrammingInterviews.com

50 5.9. Elias gamma coding

5.9 ELIAS GAMMA CODING

A numeral system is a way of writing numbers. The simplest numeral system
is the unary numeral system, in which every natural number is represented by a
corresponding number of symbols. If the symbol | is chosen, for example, then the
number seven would be represented by ||[|||.

The Elias gamma code is used to encode positive integers. It is useful when an 2
priori upper bound on the integers being encoded is not known.

Specifically, the Elias gamma code of a positive integer n is computed as follows.

— Write n in binary to form string b.

— Subtract 1 from the number of bits written in the first step, and add that many

zeroes to the beginning of string b.

For example, the binary representation of 13 is 1101, which takes four bits to write.
Hence the Elias gamma code for 13 is 0001101.

Problem 5.9: Let A be an array of n integers. Write an encode function that
returns a string representing the concatenation of the Elias gamma codes for
(A[0],A[1],...,Aln — 1]) in that order, and a decode function that takes a string s
assumed to be generated by the encode function, and returns the array that was
passed to the encode function. pg. 178

5.10 GREATEST COMMON DIVISOR ({2r)

The greatest common divisor (GCD) of positive integers x and y is the largest integer
d such thatd | x and d | y, where a | b denotes a divides b, i.e., bmod a = 0.

Problem 5.10: Design an algorithm for computing the GCD of two numbers without

using multiplication, division or the modulus operators. pg. 179

5.11 ENUMERATING PRIMES

A natural number is called a prime if it is bigger than 1 and has no divisors other
than 1 and itself. '

Problem 5.11: Write a function that takes a single positive integer argument n (n = 2)
and return all the primes between 1 and n. pg. 180

5.12 CHECKING IF RECTANGLES INTERSECT

Call a rectangle R whose sides are parallel to the x-axis and y-axis xy-aligned. Such
a rectangle is characterized by its left-most lower point (Ry, R,), its width Ry, and its
height Rj.

Problem 5.12: Let R and S be xy-aligned rectangles in the Cartesian plane. Write a
function which tests if R and S have a nonempty intersection. If the intersection is
nonempty, return the rectangle formed by their intersection. pg. 181

ElementsOfProgrammingInterviews.com

5.13. Computing x X y without multiply or add 51

5.13 COMPUTING X X }f WITHOUT MULTIPLY OR ADD

Often the processors used in embedded systems do not have a hardware multiplier.
A program that needs to perform multiplication must do so explicitly.

Problem 5.13: Write a function that multiplies two unsigned positive integers. The
only operators you are allowed to use are assignment and the bitwise operators, i.e.,
» « |, & ~, *. (In particular, you cannot use increment or decrement.) You may
use loops, conditionals and functions that you write yourself; other functions are
allowed. pg. 182

5.14 ComruminG x/y (&)

Problem 5.14: Given two positive integers x and y, how would you compute x/y if
the only operators you can use are addition, subtraction, and multiplication? pg. 182

ElementsOfProgrammingInterviews.com

CHAPTER

Arrays and Strings

The machine can alter the scanned symbol and its behavior
is in part determined by that symbol, but the symbols on the
tape elsewhere do not affect the behavior of the machine.

— “Intelligent Machinery,”
A, M. Turing, 1948

Atrrays

The simplest data structure is the array, which is a contiguous block of memory.
Given an array A which holds n objects, A[i] denotes the i-th object stored in the
array. Retrieving and updating A[i] takes O(1) time. However the size of the array is
fixed, which makes adding more than 1 objects impossible. Deletion of the object at
location i can be handled by having an auxiliary Boolean associated with the location
i indicating whether the entry is valid.

Insertion of an object into a full array can be handled by allocating a new array
with additional memory and copying over the entries from the original array. This -
makes the worst-case time of insertion high but if the new array has, for example,
twice the space of the original array, the average time for insertion is constant since
the expense of copying the array is infrequent. This concept is formalized using
amortized analysis.

6.1 DUTCH NATIONAL FLAG

The quicksort algorithm for sorting arrays proceeds recursively—it selects an element
x (the “pivot”), reorders the array to make all the elements less than or equal to x
appear first, followed by all the elements greater than x. The two subarrays are then
sorted recursively.

Implemented naively, this approach leads to large run times on arrays with many
duplicates. One solution is to reorder the array so that all elements less than x appear
first, followed by elements equal to x, followed by elements greater than x. This is
known as Dutch national flag partitioning, because the Dutch national flag consists
of three horizontal bands, each in a different color. Assuming that black precedes
white and white precedes gray, Figure 6.1(b) on the facing page is a valid partitioning
for Figure 6.1(a) on the next page. If gray precedes black and black precedes white,

52

6.2. Lazy initialization (§r) 53

Figure 6.1(c) on the facing page is a valid partitioning for Figure 6.1(a) on the next
page. .

When an array consists of entries from a small set of keys, e.g., {0,1,2]}, one way
to sort itis to count the number of occurrences of each key. Consequently, enumerate
the keys in sorted order and write the corresponding number of keys to the array. If
a BST is used for counting, the time complexity of this approach is O(n log k), where
n is the array length and k is the number of keys. This is known as counting sort.
Counting sort, as just described, does not differentiate among different objects with
the same key value. This problem is concerned with a special case of counting sort
when entries are objects rather than keys. Problem 13.4 on Page 99 addresses the
general problem.

{a) Before partitioning. (b} A three-way partitioning resem- (c) Another three-way partitioning:
bling the Dutch national flag. the Russian national flag.

Figure 6.1: lilustrating the Dutch national flag problem.

Problem 6.1: Write a function that takes an array A and an index i into A, and
rearranges the elements such that all elements less than A[f] appear first, followed
by elements equal to A[i], followed by elements greater than A[{]. Your algorithm
should have O(1) space complexity and O(|A|) time complexity. pg. 183

6.2 LaAzy INITIALIZATION (@)

You have some code which allocates a Boolean-valued array A. The memory manager
allocates this array in O(1) time, but the contents of the allocated array are arbitrary.
You would like to initialize all the entries to 0. The length n of A is potentially huge
and you want to avoid the O(n) time complexity of initialization.

One way to check if an array entry has been written to is to store the indices that
have been written to in a hash table. Suppose the drawbacks of a hash table—poor
performance if the hash codes are not spread out, and the need for rehashing—are
not acceptable.

Problem 6.2: Design a deterministic scheme by which reads and writes to an unini-
tialized array can be made in O(1) time. You may use O(n) additional storage; reads
to uninitialized entry should return false. : pg. 184

6.3 MAX DIFFERENCE

The problem of computing the maximum difference in an array, specifically
max;j(A[i] — Alj]) arises in a number of contexts. We introduced this problem

ElementsOfProgrammingInterviews.com

54 6.4. Generalizations of max difference (&)

in the context of historical stock quote information on Page 1. Here we study another
application of the same problem.

A robot needs to travel along a path that includes several ascents and descents.
When it goes up, it uses its battery to power the motor and when it descends, it
recovers the energy which is stored in the battery. The battery recharging process
is ideal: on descending, every Joule of gravitational potential energy converts to a
Joule of elecirical energy which is stored in the battery. The battery has a limited
capacity and once it reaches this capacity, the energy generated in descending is lost.

Problem 6.3: Design an algorithm that takes a sequence of n three-dimensional
coordinates to be traversed, and returns the minimum battery capacity needed to
complete the journey. The robot begins with a fully charged battery. pg. 185

6.4 (GENERALIZATIONS OF MAX DIFFERENCE (@F)

Problem 6.3 on the preceding page, which is concerned with computing
maxosi<j<n-1(Alf] — Ali]), generalizes naturally to the following three problems.

Problem 6.4: For each of the following, A is an integer array of length n.
(1.) Compute the maximum value of (A[jo] — Alio]) + (Alf1] — A[1]), subject to
i{; < f{] <i < }71.
(2.) Compute the maximum value of ¥i-3(A[j:] - A[i]), subject to iy < jo < i1 < j; <
s+ < igg < jg-1. Here kis a fixed input parameter.
(8.) Repeat Problem (2.) when k can be chosen to be any value from 0 to [1/2].
pg. 186

6.5 Susser sumMInG To 0 mod 1 {(&X)

Let A be an atray of n integers, not necessarily distinct. Let I = {iy,4,...,%-1} be a
subset of the indices of A where k < n. Define the subset sum for I to be I A[jf].

Inthe 0 mod n-sum subset problem, the input is a nonempty array A. The problem
calls for finding a nonempty subset of the indices of A whose subset sum is 0 modulo
n. For example, for the array in Figure 6.2, A[3]+ A[4] + A[9] mod 10 = 0, and {3, 4, 9}
is a corresponding subset. (There are other such subsets.)

Although the problem of finding a subset whose sum is 0 mod k for general k is
known to be NP-complete, the 0 mod n-sum subset problem can be solved efficiently.
(Note that n is the length of the underlying array as well as the divisor.) In partlcular
there always exists a subset with the desired property.

429 | 334 62 711 | 704 | 763 98 733 | 721 | 995

Al0] Al A2l A[B] A4l AIB) Alel A[71 A[B] A[9]

Figure 6.2: An instance of the 0 mod n-sum subset problem.

Problem 6.5: Design an efficient algorithm for the 0 mod n-sum subset problem.
pg. 187

ElementsOfProgrammingInterviews.com

6.6. Longest contiguous increasing subarray (&) 55

6.6 LONGEST CONTIGUOUS INCREASING SUBARRAY (&)

An array is increasing if each element is less than its succeeding element except for
the last element.

Problem 6.6: Design and implement an algorithm that takes as input an array A
of n elements, and returns the beginning and ending indices of a longest increasing
subarray of A. pg. 187

6.7 COMPUTING EQUIVALENCE CLASSES (&

Formally, an equivalence relation E on a set S is a subset of S x S that is reflexive (for all
x, (x,x) € E), symmetric (for all x and for all y, (x, y) € E iff (y,x) € E), and transitive
(for all x, for all y, and for all z, (x, y) € E and (y, z) € E implies (x,z) € E). A partition
on a set S is a collection of subsets P = {Sg,S1,...,Sk-1} having the property that
Us3S; =Sand 5;NS; = 0if i # j. Each subset is referred to as an equivalence class. An
equivalence relation E on § naturally implies a partition: the equivalence classes are
maximal subsets of elements all of which are equivalent under E to one another.

Let S = {0,1,...,n ~1}. Let A and B be two arrays of length m whose entries
are integers from S. These arrays are used to specify equivalence information; in
particular, that A[k] and B[k] are equivalent. The weakest implied equivalence relation is
the equivalence relation in which x, ¥ € S are assigned fo the same equivalence class
iff the given equivalence information forces them to be equivalent. For example,
ifn=7 A=1153,6] and B = [2,1,0,5], then the weakest implied equivalence
relation is {{0, 3}, {1, 2, 5, 6}, {4}}.

Problem 6.7: How would you compute the weakest implied equivalence relation
given n, A, and B? You do not have access to any data structure libraries. pg. 188

6.8 OrrLINE MINIMUM (§F)

Let o be a sequence of length n whose elements are drawn from Z, = {0,1,2,...,n-1}.
No element is repeated, which implies that each integer in Z, appears exactly once,
ie, o is a permutation. We read the elements of o one at a time, stdring them in a
set 5, starting with the first element. We extract the minimum element from S after
ig <4 £+ £ iy1-th elements have been read.

Problem 6.8: Suppose you know the permutation ¢ and the extract sequence
(io, 11, - - ,im-1) in advance. How would you efficiently compute the order in which
the m elements are removed from 5? rg. 189

6.9 BIGINTEGER MULTIPLICATION

Certain applications require arbitrary precision arithmetic. One way to achieve this is
to use strings to represent integers, e.g., with one digit or negative sign per character
entry, with the most significant digit appearing first.

Problem 6.9: Write a function that takes two strings representing integers, and
returns an integer representing their product. pg. 190

ElementsOfProgrammingInterviews.com

56 : 6.10. Permuting the elements of an array (&)

6.10 PERMUTING THE ELEMENTS OF AN ARRAY (&)

A permutation of length # is a one-to-one onto mapping o from {0, 1, ..., n—1} to itself.
We can represent a permutation using an array I'T: set I1[{] = o(i). A permutation
can be applied to an array A of n elements: I1(A) is defined by IT(A[{]) = A[II[i]] for
0 <i<n-1. Itis simple to apply a permutation to a given array if additional storage
is available to write the resulting array.

Problem 6.10: Given an array A of n elements and a permutation I'l, compute I(A)
using only constant additional storage. pg- 192

6.11 INVERT A PERMUTATION

Every one-to-one onto mapping is invertible, i.e., if f is one-to-one onto, then there
exists a unique function f~* such that f~1(f(x)) = x. In particular, for any permutation
T1, there exists a unique permutation I1™! that is the inverse of IT.

Given a permutation represented by an array A, you can compute its inverse B by
simply assigning B[A[i]] = i for all values of i.

Problem 6.11: Given an array A of integers representing a permutation I, update
A to represent IT~! using only constant additional storage. yg. 193

6.12 NEXT PERMUTATION

A permutation of a set of n elements can be represented using a vector of # integers
from {0,1,...,n—1}, each one appearing once. There exist exactly n! permutations of
n elements. These can be totally ordered using the lexicographic ordering—p <iex qifin
the first place where p and g differ in their vector representations, the corresponding
entry for p is less than that for 4. For example, (2,0,1) < (2,1,0).

Problem 6.12: Given a permutation p represented as a vector, return the vector
corresponding to the next permutation under lexicographic ordering. If p is the
last permutation, return empty vector. For example, if p = (1,0,3,2), your function
should return (1, 2,0, 3). pg. 193

6.13 Rotare AN ARRAY (E)

Let A be an array of 1 elements. If we have enough memory to make a copy of 4,
rotating A by i positions is trivial; we just compute B[j] = A[(i + j) mod n]. If we
are given a constant amount of additional memory ¢, we can rotate the string by ¢
positions a total of k = [n/c] times but this increases the time complexity to @(nk).
You cannot use the rotate library function in C++. (Imagine you are implementing
the library function rotate.)

Problem 6.13: Design a ©(n) algorithm for rotating an array A of n elements to the -
right by i positions. You are allowed O(1) additional storage. ps. 194

ElementsOfProgrammingInterviews.com

6.14. Sudoku checker 57

6.14 SUDOKU CHECKER

Sudoku is a popular logic-based combinatorial number placement puzzle. The objec-
tiveis to filla 9x9 grid with digits subject to the constraint that each column, each row,
and each of the nine 3 x 3 sub-grids that compose the grid contains unique integers
in [1,9]. The grid is initialized with a partial assignment as shown in Figure 6.3(a); a
partial solution is shown in Figure 6.3(b).

5|3 7 5/3(416(7]8]9]1]|2
6 119|5 6|7(2]1(9]|5]|3]4|8
98 6 1{9(8|3/4[2]15[6,7

8 6 3 8|5(9|7|6|1]4|2|3
4 8 3 1 4|12|6|8|5/317|9]|1
7 2 6 711(3]|9(2]4]8]|5]6
6 2|8 916/1|5/3|7|2/8|4

4/1(9 5 2|8(7]14(1(9]6/3|5

8 719 314/512(8(611/7]9

(a) Partial assignment. (b) A complete solution.

Figure 6.3: Sudoku configurations.

Problem 6.14: Check whether a 9 x 9 2D array representing a partially completed
Sudoku is valid. Specifically, check that no row, column, and 3 x 3 2D subarray
contains duplicates. A O-value in the 2D array indicates that entry is blank; every
other entry is in [1,9]. * pg. 197

6.15 PriNT 2D ARRAY IN SPIRAL ORDER

Ann xn 2D array A of integers can be written as a sequence of integers in several
orders—the most natural ones being row-by-row or column-by-column. In this
problem we explore the problem of writing the 2D array in spiral order. For example,
the answer of the 2D array in Figure 6.4 should be “123 69874 5",

1 2 3
4 5 6
7 8 9

Figure 6.4: A spiral 2D array example.

Problem 6.15: Implement a function which takes a 2D array A and prints A in spiral
order. ' pg. 198

ElementsOfProgrammingInterviews.com

58 ‘ 6.16, Painting

6.16 PAINTING

Let A be a D X D Boolean 2D array encoding a black-and-white image. The entry
Ala, b) can be viewed as encoding the color at location (a, b). Define a path from entry
(a,b) to entry (c,d) to be a sequence of entries {(x1, 1), (X2, ¥2), - - . , (¥n, ¥»)) such that

__ (H, b) = (xlr 9’1): (Cr d) = ('xm b’n); and

— foreachi, 1 <i<n, wehave |x; — 1| + i — Yl = 1.

Define the region associated with a point (7, j) to be all points (i, j') such that there
exists a path from (i, j) to (¥, /) in which all entries are the same color. In particular
this implies (7, f) and (¢, j’) must be the same color.

(b) ©

Figure 6.5: The color of all squares associated with the first square marked with a % in (a) have been
racolored to yield the coloring in (b). The same process yields the coloring in (c).

Problem 6.16: Implement a routine that takes a D X D Boolean array A together with
an entry (x, y) and flips the color of the region associated with (x, y). See Figure 6.5
for an example of flipping. pg. 199

6.17 2D ARRAY ROTATION

Image rotation is a fundamental operation in computer graphics. Figure 6.6 illustrates
the rotation operation on a 2D array representing a bit-map of an image. Specifically,
the image is rotated by 90 degrees clockwise.

1213 4 13:9 5 1
5 6 7 8 14 /10 6 | 2
9 1011112 i5:11 73
13 11415 16 1612 8 4

(a) Initial 4 x 4 2D array. (b) Array rotated by 90 degrees clockwise.

Figure 6.6: Example of 2D array rotation.

ElementsOfProgrammingInterviews.com

6.18. Run-length encoding 59

Problem 6.17: Design an algorithm that rotates a nx n 2D array by 90 degrees clock-
wise. Assume that n = 2* for some positive integer k. What is the time complexity of
your algorithm? _ pg. 200

Strings

Strings are ubiquitous in programming today—scripting, web development, and
bioinformatics all make extensive use of strings. You should know how strings are
represented in memory, and understand basic operations on strings such as compar-
ison, copying, joining, splitting, matching, etc. Problems 6.18 to 6.23 on Pages 59-60
are representative of string-related questions. We now present problems on strings
which can be solved using elementary techniques. Advanced string processing al-
gorithms often use hash tables (Chapter 12) and dynamic programming (Page 117).

6.18 RUN-LENGTH ENCODING

Run-length encoding (RLE) compression offers a fast way to do efficient on-the-flight
compression and decompression of strings. The idea is simple—encode successive
repeated characters by the repetition count and the character. For example, the RLE
of “aaaabcecaa” is “4alb3c2a”. The decoding of “3e4f2e” returns “eeeffffee”.

Problem 6.18: Implement run-length encoding and decoding functions. Assume
the string to be encoded consists of letters of the alphabet, with no digits, and the
string to be decoded is a valid encoding. pg. 201

6.19 REVERSE ALL THE WORDS IN A SENTENCE

Given a string containing a set of words separated by white space, we would like to
transform it to a string in which the words appear in the reverse order. For example,
“Alice likes Bob” transforms to “Bob likes Alice”. We do not need to keep the original
string.

Problem 6.19: Implement a function for reversing the words in a string. Your
function should use O(1) space. pg. 202

6.20 FIND THE FIRST OCCURRENCE OF A SUBSTRING

A good string search algorithm is fundamental to the performance of many applica-
tions. Several clever algorithms have been proposed for string search, each with its
own trade-offs. As a result, there is no single perfect answer. If someone asks you this
question in an interview, the best way to approach this problem would be to work
through one good algorithm in detail and discuss at a high level other algorithms.

Problem 6.20: Given two sirings s (the “search string”) and ¢ (the “text”), find the
first occurrence of s in £. vg. 203

ElementsOfProgrammingInterviews.com

60 . 6.21. Replace and remove

6.21 REPLACE AND REMOVE

Consider the following two rules that are to be applied to strings over the alphabets
{a”, ", “c”, “d").

1. Replace each “a” by “dd”.

2. Delete each “b".

It is straightforward to implement a function that takes a string s as an argument,
and applies these rules to s if the function can allocate Of[s|) additional storage.

Problem 6.21: Write a function which takes as input a string s, and removes each
“b” and replaces each “a” by “dd”. Use O(1) additional storage—assume s is stored
in an array that has enough space for the final result. vs. 204

6.22 TPHONE NUMBER MNEMONIC

Each digit, apart from 0 and 1, in a phone keypad corresponds to one of three
or four letters of the alphabet, as shown in Figure 6.7. Since words are easier to
remember than numbers, it is natural to ask if a 7 or 10-digit phone number can be
represented by a word. For example, “2276696” corresponds to “ACRONYM" as

well as “ABPOMZN".
ABC | (DEF
GHi) JxL) (MNO
0
PQRS | [TUV | (WXYZ
5
000

Figure 6.7: Phone keypad.

Problem 6.22: Given a cell phone keypad (specified by a mapping M that takes
individual digits and returns the corresponding set of characters) and a number se-
quence, return all possible character sequences (not just legal words) that correspond
to the number sequence. pg. 205

6.23 REGULAR EXPRESSION MATCHING (&)

A regular expression is a sequence of characters that defines a set of matching strings.
For this problem we define a simple subset of a full regular expression language.

A simple regular expression (SRE) is an alphanumeric character, the metacharacter
. (dot), an alphanumeric character or dot followed by the metacharacter * (star), or the
concatenation of two simple regular expressions. For example, a, aW, aW.9, aW.9%,
and aW.#9+ are simple regular expressions.

An extended simple regular expression (ESRE) is an SRE, an SRE prepended with
the metacharacter #, an SRE ended with the metacharacter $, or an SRE prepended

ElementsOfProgrammingInterviews.com

6.23. Regular expression matching (&) 61

with A and ended with $. The previous SRE examples are ESREs, as are "a, aW$,
and AaW.9+$.

First we define what it means for an SRE r to strictly match a string s. Recall s
denotes the k-th suffix of s.

— If r begins with an alphanumeric character and the next character in r is not
star, then r strictly matches s if that same character is at the start of s, and 7*
strictly matches s*.

— If begins with an alphanumeric character and the next character in r is star,
then 7 strictly matches s if s can be written as s1 concatenated by 52, where s1
consists of zero or more of the same character, and s2 strictly matches 2.

— If rbegins with dot and the next character in 7 is not star, then r strictly matches

s if #* strictly matches s*.

If » begins with dot and the next character in r is star, then r strictly matches s
if s can be written as s1 concatenated with s2, where s1 is of length 0 or more,
and #* strictly matches s2.

Now we define when an ESRE matches a string. Conceptually, the metacharacters
A and $ stand for the beginning and end of the string, respectively. An ESRE r that
does not start with or end with $ matches s if there is a substring ¢ of s such that »
strictly matches t.

An ESRE r beginning with / matches s if there is a prefix s1 of s such that r strictly
matches s1. An ESRE r ending with $ matches s if there is a suffix s2 of s such that r
strictly matches s2.

The following examples are all concerned with ESREs. aW9 matches any string
containing aW9 as a substring. AaW9 matches aW9 only at the start of a string. aW9%
matches aW9 only at the end of a string. ~aW9$ matches aW9 and nothing else. a.9
matches a89 and xyaW9123 but not aw89. a.»9 matches aw89, and aw+9 matches
aww9. '

Problem 6.23: Design an algorithm that takes a string s and a string 7, assumed to
be a well-formed ESRE, and checks if ¥ matches s. yg. 206

ElementsOfProgrammingInterviews,com

1
2_E class node_t {

a.

Linked Lists

The S-expressions are formed according to the following re-
cursive rules.

1. The atomic symbols py, pa, etc., are S-expressions.

2. Amnull expression A fs also admitted.

3. Ifeis an S-expression so is (e).

4. Ife; and ez are S-expressions so is (e, €,).

— “Recursive Functions Of Symbolic Expressions,”
. J. McCarthy, 1959

A singly linked list is a data structure that contains a sequence of nodes such that each
node contains an object and a reference to the next node in the list. The first node is
referred to as the head and the last node is referred to as the tail; the tail’s next field is
a reference to null. The structure of a singly linked list is given in Figure 7.1. There
are many variants of linked lists, e.g., in a doubly linked list, each node has a link to
its predecessor; similarly, a sentinel node or a self-loop can be used instead of null.
The structure of a doubly linked list is given in Figure 7.2. Since lists can be defined
recursively, recursion is a natural candidate for list manipulation.

— F— T 3— F— F—{

‘Figure 7.1: Example of a singly linked list.

2 s P B ———— M El s = N ——— N El s - N E3%|

Figure 7.2: Example of a doubly linked Jist.

For all problems in this chapter, unless otherwise stated, L is a singly linked list,
and your solution may not use more than a few words of storage, regardless of the
length of the list. Specifically, each node has two entries—a data field, and a next
field, which points to the next node in the list, with the next field of the last node
being null. Its prototype in C++ is listed as follows:

i_template <typename T>
public:

62

7.1. Merge two sorted lists 63

4i T data;

5} shared_ptr<node._t<T>> next;
|

6 };

7.1 MERGE TWO SORTED LISTS

Let L and F be singly linked lists of numbers. Assume the numbers in L and F appear
in sorted order within the lists. The merge of L and F is a list consisting of the nodes
of L and F in which keys appear in sorted order. The merge function is shown in
Figure 7.3.

[F+—{ +—{7 X

Gx1008 k1249 Q1836

[3—{Tx

Gx2430 Br2748
(a) Two sorted lists.

> G [F— s [+ 7 [F+—{ 1 X

0x1600 ax2430 " exiz4e 9x1830 oX2709

{b) The merge of the two lists in (a).

Figure 7.3: Merging sorted lists.

Problem 7.1: Write a function that takes L and F, and returns the merge of L and
F. Your code should use O(1) additional storage—it should reuse the nodes from
the lists provided as input. Your function should use O(1) additional storage, as
illustrated in Figure 7.3. The only field you can change in a node is next. pg. 207

7.2 CHECKING FOR CYCLICITY

Although a linked list is supposed to be a sequence of nodes ending in a null, it
is possible to create a cycle in a linked list by making the next field of an element
reference to one of the earlier nodes.

Problem 7.2: Given a reference to the head of a singly linked list L, how would you
determine whether L ends in a null or reaches a cycle of nodes? Write a function
that returns null if there does not exist a cycle, and the reference to the start of the
cycle if a cycle is present. (You do not know the length of the list in advance.) pg. 208

7.3 MEDIAN OF A SORTED CIRCULAR LINKED LIST

It is relatively straightforward to find the median of a sorted linked list in O(r) time.
However, this problem becomes trickier if the list is circular.

Problem 7.3: Write a function that takes a sorted circular singly linked list and a
pointer to an arbitrary node in this linked list, and returns the median of the linked

list. pg. 210

ElementsOfProgrammingInterviews.com

64 74. Overlapping lists—no lists have cycle

2 [2 >3 [

Figure 7.4: Example of a sorted ircular linked list.

7.4 (OVERLAPPING LISTS~—NO LISTS HAVE CYCLE

Given two singly linked lists, L1 and L2, there may be list nodes that are common to
both L1 and L2. (This may not be a bug—it may be desirable from the perspective of
reducing memory footprint, as in the flyweight pattern, or maintaining a canonical
form.) For example, L1 and L2 in Figure 7.5 overlap at Node I.

[+ __X]

Figure 7.5: Example of overlapping lists.

Problem 7.4: Let hl and h2 be the heads of lists L1 and L2, respectively. Assume
that L1 and L2 are well-formed, that is each consists of a finite sequence of nodes. (In
particular, neither list has a cycle.) How would you determine if there exists a node
r reachable from both hl and h2 by following the next fields? If such a node exists,
find the node that appears earliest when traversing the lists. You are constrained to
use no more than constant additional storage. pg. 211

7.5 OVERLAPPING LISTS—LISTS MAY HAVE CYCLES

Problem 7.5: Solve Problem 7.4 for the case where L1 and L2 may each or both have
a cycle. If such a node exists, return a node that appears first when traversing the
lists. This node may not be unique—if L1 has a cycle (1, 711, . . ., 1ix—1, 1g), where ng is
the first node encountered when traversing L1, then L2 may have the same cycle but
a different first node.) pg. 212

7.6 EVEN-ODD MERGE

Let L = (lo,l1, ko, ..., l-1) be a sequence. Define even-odd(L) to be the sequence
o, boylsy oo, 11,13,), Le., the elements at even indices followed by the elements at
odd indices. The even-odd merge function is shown in Figure 7.6 on the facing page.

Problem 7.6: Write a function that takes a singly linked list L, and reorders the
" elements of L so that the new list represents even-odd(L). Your function should use

ElementsOfProgrammingInterviews.com

7.7. Deletion from a singly linked list 65

L F— T F— {5 F+—{ X

Gx16t Gxr1249 #1834 ®x2118 9x2206

(a) Initial list L. The number in hex below a node Indicates the memory address of that node.

{0 4+ I | | X

0x1900 @x1830 Bx2280 Br1248 9x1830

(b) even-odd(L)}—note that no new nodes have been allocated.

Figure 7.6: Even-odd merge example.

O(1) additional storage, as illustrated in Figure 7.6. The only field you can change in
anode is next. _ pg. 213

7.7 DELETION FROM A SINGLY LINKED LIST

Given a node in a singly linked list, deleting it in O(1) time appears impossible
because its predecessor’s next field has to be updated. Surprisingly, it can be done
with one small caveat—the node to delete cannot be the last one in the list and it is

easy to copy the value part of a node.

Problem 7.7: Let v be anode in a singly linked list L. Node v is not the tail; delete it
in O(1) time. pg. 214

7.8 REMOVE THE k-TH LAST ELEMENT FROM A LIST

Without knowing the length of a linked list, it is not frivial to delete the k-th last
element in a singly linked list.

Problem 7.8: Given a singly linked list L and a number k, write a function to remove
the k-th last element from L. Your algorithm cannot use more than a few words of
storage, regardless of the Iength of the list. In particular, you cannot assume that it is
possible to record the length of the list. - pg. 214

7.9 REVERSING A SINGLY LINKED LIST

Suppose you were given a singly linked list L of integers sorted in ascending order
and you need to return a list with the elements sorted in descending order. Memory
is scarce, but you can reuse nodes in the original list, i.e., your function can change L.

Fd— s F— F— [F— ¥

0x2280 Bx2118 Ox1838 0x1249 Gx1698
{

Figure 7.7: The reversed list for the st in Figure 7.6(a). Note that no new nodes have been allocated.

Problem 7.9: Give a linear time non-recursive function that reverses a singly linked
list. The function should use no more than constant storage beyond that needed for
the list itself. The desired transformation is illustrated in Figure 7.7. pg. 215

ElementsOfProgrammingInterviews.com

66 7.10. Palindromicity in linked list

7.10 TPALINDROMICITY IN LINKED LIST

Itis straightforward to check whether the sequence stored in an array is a palindrome.
However, if this sequence is stored as a singly linked list, the problem of detecting
palindromicity becomes more challenging. See Figure 7.1 on Page 62 for an example
of a palindromic singly linked list.

Problem 7.10: Write a function that determines whether a sequence represented by
a singly linked list L is a palindrome. Assume L can be changed and does not have
to be restored it to its original state, pg. 216

7.11 Zipring A LIST (83)

Let L = {lg, I, 12, - .., Iu-1). Define zip(L) to be {lp, 11,11, lu-2, .- . }. The zip function is
shown in Figure 4.1 on Page 25.

Problem 7.11: Write a function that takes a singly linked list L, and reorders the
elements of L to form a new list representing zip(L). Your function should use O(1)
additional storage, as illustrated in Figure 4.1 on Page 25. The only field you can
change in a node is next. pg. 216

7.12 CoPYING A POSTINGS LIST ()

In a “postings list” each node has a data field, a field for the next pointer, and a jump
field—the jump field points to any other node. The last node in the postings list has
next set o null; all other nodes have non-null next and jump fields. For example,
Figure 7.8 is a postings list with four nodes.

Figure 7.8: A postings list.

Problem 7.12: Implement a function which takes as input a pointer to the head of a
postings list L, and returns a copy of the postings list. Your function should take O(n)
time, where 7 is the length of the postings list and should use O(1) storage beyond
that required for the # nodes in the copy. You can modify the original list, but must
restore if to its initial state before returning. pg. 217

ElementsOfProgrammingInterviews.com

Stacks and Queues |

Linear lists inwhich insertions, deletions, and accesses
to values occur almost always at the first or the last
node are very frequently encountered, and we give
them special names ...

— “The Art of Computer Programming, Volume 1,"
D. E. KnuTts, 1997

Stacks

The stack ADT supports two basic operations—push and pop. Elements are added
(pushed) and removed (popped) in last-in, first-out order, as shown in Figure 8.1. If
the stack is empty, pop typically returns a null or throws an exception.

When the stack is implemented using a linked list these operations have O(1)
time complexity. If it is implemented using an array, there is maximum number of
entries it can have—push and pop are still O(1). If the array is dynamically resized,
the amortized time for both push and pop is O(1). A stack can support additional
operations such as peek (return the top of the stack without popping it).

pop push 3

(a) Initial configuration. (b) Perform pop on (a). {c) Perform push 3 on (b).

Figure 8.1: Operations on a stack.

8.1 STACK WITH MAX OPERATION

Problem 8.1: Design a stack that supports a max operation, which returns the maxi-
mum value stored in the stack, and throws an exception if the stack is empty. Assume
elements are comparable. All operations must be O(1) time. You can use O(n) addi-
tional space, beyond what is required for the elements themselves. pg. 219

67

68 8.2. Expression evaluation

8.2 EXPRESSION EVALUATION

A string is said to be an arithmetical expression in Reverse Polish notation (RPN) if:
(1.) Itis a single digit or a sequence of digits.
(2.) It is of the form “A, B, o” where A and B are RPN expressions and o is one of
+,—,%, /.
(3.) Itis of the form “~A” where A is an RPN expression.
For example, the following strings satisfy these rules: “3,4,x,1,2,+,+",
“1,1,+,-2,%x","4,6,/,2,".

An RPN expression can be evaluated uniquely to an integer, which is determined
recursively. The base case corresponds to Rule (1.), which is an integer expressed in
base-10 positional system. Rules (2.) and (3.) on the current page correspond to the
recursive cases, and the RPNs are evaluated in the natural way, e.g,, if A evaluates to
2 and B evaluates to 3, then “A, B, X" evaluates to 6.

Problem 8.2: Write a function that takes an arithmetical expression in RPN and
returns the number that the expression evaluates to. pg. 221

8.3 PRINTING THE KEYS IN A BST

BSTs are the subject of Chapter 14. In summary, a BST is a set of nodes. Each node
n has. a reference to a left child (denoted by n.left) and a right child (n.right), and a
key (n.key). Either or both children may be null. The node # is referred to as the
parent of n.left and n.right. The keys are from a totally ordered set, and nodes satisfy
the BST property—if n.left is not null, n.lefbkey < n.key and if n.right is not null,
n.right.key = n.key. Node m is said to be a descendant of n if m = n.left or m = n.right,
or if m is a descendant of n.left or of n.right.

Problem 8.3: Given a BST node n, print all the keys at n and its descendants. The
nodes should be printed in sorted order, and you cannot use recursion. For example,
for Node I in the binary search tree in Figure 14.1 on Page 105 you should print the
sequence (23,29, 31,37,41,43,47,53). pg. 223

8.4 SEARCHING A POSTINGS LIST

Postings lists are described in Problem 7.12 on Page 66. One way to enumerate the
nodes in a postings list is to iteratively follow the next field. Another is to always
first follow the jump field if it leads to a node that has not been explored previously,
and then search from the next node. Call the order in which these nodes are visited
the jump-first order.

Problem 8.4: Write recursive and iterative routines that take a postings list, and
computes the jump-first order. Assume each node has an order field, which is an
integer that is initialized to —1 for each node. pg. 223

ElementsOfProgrammingInterviews.com

8.5. Towers of Hanoi 69

8.5 Towers or HanoO1

You are given n rings. The i-th ring has diameter i. The rings are initially in sorted
order on a peg (P1), with the largest ring at the bottom. You are to transfer these
rings to another peg (P2), which is initially empty. This is illustrated in Figure 8.2.
You have a third peg (P3), which is initially empty. The only operation you can do is
taking a single ring from the top of one peg and placing it on the top of another peg;
you must never place a bigger ring above a smaller ring, '

P1 P2 P3 | P2 3
(a) Initial configuration. (b) Desired configuration.

Figure 8.2: Towers of Hanoi for n = 6.

Problem 8.5: Exactly 7 rings on P1 need to be transferred to P2, possibly using P3
as an intermedjiate, subject to the stacking constraint. Write a function that prints a
sequence of operations that transfers all the rings from P1 to P2. ps. 224

8.6 VIEWS OF THE SUNSET

You are given with a series of buildings that have windows facing west. The buildings
are in a straight line, and if a building b is to the east of a building whose height is
greater than or equal to b, it is not possible to view the sunset from b.

Problem 8.6: Design an algorithm that processes buildings as they are presented to
it and tracks the buildings that have a view of the sunset. The number of buildings
is not known in advance. Buildings are given in east-to-west order and are specified
by their heights. The amount of memory your algorithm uses should depend solely
on the number of buildings that have a view; in particular it should not depend on
the number of buildings processed. pg- 226

8.7 STACK SORTING

Problem 8.7: Design an algorithm to sort a stack S of numbers in descending order.
The only operations allowed are push, pop, top (which returns the top of the stack
without a pop), and empty. You cannot explicitly allocate memory outside of a few
words. pg. 226

8.8 INORMALIZED PATH NAMES

A file or directory can be specified via a string called the path name. This string may
specify an absolute path, starting from the root, e.g., /usr/bin/gcc, or a path relative
to the current working directory, e.g., scripts/awkscripts.

ElementsOfProgrammingInterviews.com

70 8.9. Printing a binary tree in level order

The same directory may be specified by multiple directory paths. For exam-
ple, /usr/lib/../bin/gcc and scripts//./../scripts/awkscripts/././ specify
equivalent absolute and relative path names.

Problem 8.8: Write a function which takes a path name, and returns the shortest
equivalent path name. Assume individual directories and files have names that use
only alphanumeric characters. Subdirectory names may be combined using forward
slashes (/), the current directory (.), and parent directory (. .).

The formal grammar is specified as follows:

name = [A-Za-z0-9]+
spdir = .| . N
pathname = name | spdir | [spdir | name | pathname]?/+ pathname?

Here + denotes one or more repetitions or the preceding token, and ? denotes 0 or 1
occurrences of the preceding token. You should throw an exception on invalid path
names. . g 227

Queues

The gueue ADT supports two basic operations—enqueue and dequeue. (If the queue
is empty, dequeue typically returns a null or throws an exception.) Elements are
added (enqueued) and removed (dequeued) in first-in, first-out order. '
A queue can be implemented using a linked list, in which case these operations
have O(1) time complexity. Other operations can be added, such as head (which
returns the item at the start of the queue without removing it), and tail (which
returns the item at the end of the queue without removing it). A queue can also be
implemented using an array; see Problem 8.10 on the next page for details.

d
[37270: equeue&@“: |2'.°!4'."je“‘1“e“‘34

(a) Initial configuration. (b) Queue (a) after dequeue. (¢} Queue (b) after enqueue(4).

Figure 8.3: Examples of enqueue and dequeue.

A degue, also sometimes called a double-ended queue, is a doubly linked list in
which all insertions and deletions are from one of the two ends of the list, i.e., at the
head or the tail. Aninsertion to the front is called a push, and an insertion to the back
is called an inject. A deletion from the front is called a pop, and a deletion from the
back is called an eject.

8.9 PRINTING A BINARY TREE IN LEVEL ORDER

Binary trees are the subject of Chapter 9. In summary, a binary tree is a root node,
which is either null, or an object with three fields: a key, a left child, and a right

ElementsOfProgrammingInterviews.com

8.10. Implement a circular queue 71

child. The left and right children are themselves binary trees and are required to be
disjoint.

Node d is a descendant of node a iff d = a or d is a child of a or d is a descendant
of a child of a. Assign levels to nodes in a binary tree as follows: level(root) = 0, and
for any node ¢ # root, level(c) = 1 + level(n), where n is the parent of .

Problem 89: Given the root node 7 of a binary tree, print all the keys
and levels at » and its descendants. The nodes should be printed in or-
der of their level. You cannot use recursion. You may use a single queue,
and constant additional storage. For example, you should print the sequence
(314,6,6,271,561,2,271,28,0,3,1,28,17,401, 257, 641) for the binary tree in Figure 9.1
on Page 73. _ pg. 228

8.10 IMPLEMENT A CIRCULAR QUEUE

A queue can be implemented using an array and two additional fields, the beginning
and the end indices. This structure is sometimes referred to as a circular queue.
Both enqueue and dequeue have O(1) time complexity. If the array is fixed, there is a
maximum number of entries that can be stored. If the array is dynamically resized,
the total time for m combined enqueue and dequeue operations is O(m).

Problem 8.10: Implement a queue API using an array for storing elements. Your
API should include a constructor function, which takes as argument the capacity
of the queue, enqueue and dequeue functions, a size function, which returns the
number of elements stored, and implement dynamic resizing. pg. 229

8.11 IMPLEMENT A QUEUE USING TWO UNSIGNED INTEGERS

Problem 8.11: Implement a queue using two unsigned integer-valued variables.
Assume that the only elements pushed into the queue are integers in [0,9]. Your
program should work correctly when Os are the only elements in the queue. What is
the maximum number of elements that can be stored in the queue for it to operate
correctly? pg. 230

8.12 QUEUE FROM TWO STACKS

Queue insertion and deletion follows first-in, first-out semantics; stack insertion
and deletion is last-in, first-out. It can be shown rigorously that it is impossible to
implement a queue with capacity # (i.e., a queue capable of holding up to 1 elements
at a time) using a stack with capacity n and O(1) additional storage. (The proof, given
in Li, ef al., “The Power of the Queue”, is nontrivial.)

Problem 8.12: How would you implement a queue given two stacks and O(1) addi-
tional storage? Your implementation should be efficient—the time to do a sequence
of m combined enqueues and dequeues should be O(m). pg. 231

ElementsOfProgrammingInterviews.com

7 . 8.13. Queue with max ()

8.13 Queuk witH Max (&)

The queue ADT is usually expressed in terms of enqueue and dequeue operations.
Suppose the keys are from a totally ordered set, e.g., integers, and we want to support
amax operation, which returns the maximum element stored in the queue.

Problem 8.13: How would you implement a queue so that any series of m combined
enqueue, dequeue, and max operations can be done in O(j1) time? pg. 232

8.14 MaXIMUM OF A SLIDING WINDOW ()

Network traffic control sometimes require the maximum traffic volume m(t, w) in the
time interval [t — w,] for each time t in the day, where w is the window size. This
problem explores the development of an efficient algorithm for computing these
maximum traffic volumes.

Problem 8.14: Let A be an array of length n, and w the window size. Entry A[i]
is a pair (f;, v;), where f; is the timestamp and v; the traffic volume at that time.
Assume A is sorted by increasing timestamp. Design an algorithm to compute
v = max{vj|(t —f) sw,j<i},for0<i<n-1 rg. 234

ElementsOfProgrammingInterviews.com

CHAPTER

Binary Trees

The method of solution involves the development of a theory of finite
automata operating on infinite trees.

— "“Decidability of Second Order Theories and Automata on Trees,”
M. O. Rapin, 1969

A binary tree is a data structure that is useful for representing hierarchy. Formally,
a binary tree is a finite set of nodes T that is either empty, or consists of a roof node
7 together with two disjoint subsets L and R themselves binary trees whose union
with {r} equals T. The set L is called the left binary tree and R is the right binary tree of
T. The left binary tree is referred to as the left child or the left subtree of the root, and
the right binary tree is referred to as the right child or the right subtree of the root.

Figure 9.1 gives a graphical representation of a binary tree. Node A is the root.
Nodes B and I are the left and right children of A.

Figure 9.1: Example of a binary tree.

Often the root stores additional data. Its protofype in C++ is listed as follows:

1| template <typename T>

2: class BinaryTree {

3 public:

4 T data;

5 shared_ptr<BinaryTree<T>> left, right;
60}

73

74 Chapter 9. Binary Trees

Each node, except the root, is itself the root of a left subtree or a right subtree. If]
is the root of p’s left subtree, we will say [is the left child of p, and p is the parent of [;
the notion of right child is similar. If n is a left or a right child of p, we say it is a child
of p. Note that with the exception of the root, every node has a unique parent. Often,
but not always, the node has a parent field (which is null for the root). Observe that
for any node n there exists a unique sequence of nodes from the root to n with each
subsequent node being a child of the previous node. This sequence is sometimes
referred to as the search path from the root to 7.

The parent-child relationship defines an ancestor-descendant relationship on
nodes in a binary tree. Specifically, a is an ancestor of d if a lies on the search path from
the root to d. If a is an ancestor of d, we say d is a descendant of a. Our convention is
that x is an ancestor and descendant of itself. A node that has no descendants except
for itself is called a leaf.

The depth of a node n is the number of nodes on the search path from the root to n,
not including # itself. The height of a binary tree is the maximum depth of any node
in that tree.

As concrete examples of these concepts, consider the binary tree in Figure 9.1 on
the preceding page. Node I is the parent of] and O. Node G is a descendant of B. The
search path to Lis (A, [,], K, L). The depth of N is 4. Node M is the node of maximum
depth, and hence the height of the tree is 5. The height of the subtree rooted at Bis 3.
The height of the subtree rooted at H is 0. Nodes D, E, H, M, N, and P are the leaves
of the tree. '

A full binary tree is a binary tree in which every node other than the leaves has
two children. A perfect binary tree is a full binary tree in which all leaves are at the
same depth or same level, and in which every parent has two children. A complete
binary tree is a binary tree in which every level, except possibly the last, is completely
filled, and all nodes are as far left as possible. (This terminology is not universal,
e.g., some authors use complete binary tree where we write perfect binary tree.) It is
straightforward to prove using induction that the number of non-leaf nodes in a full
binary tree is one less than the number of leaves. A perfect binary tree of height h
contains exactly 2"*! — 1 nodes, of which 2" are leaves. A complete binary tree on n
nodes has height [1gn]. '

A key computation on a binary tree is visiting all the nodes in the tree. (Visiting is
also sometimes called walking or traversing.) Here are some ways in which this visit
can be done.

— Visit the left subtree, the root, then the right subtree (an inorder visit).

— Visit the root, the left subtree, then the right subtree (a preorder visit).

— Visit the left subtree, the right subtree, and then the root (a postorder visit).

Let T be a binary tree on n nodes, with height h. Implemented recursively, these
visits have O(n) time complexity and O(h) additional space complexity. (The space
complexity is dictated by the maximum depth of the function call stack.) If each
node has a parent field, the visits can be done with O(1) additional space complexity.

Remarkably, an inorder visit can be implemented in O(1) additional space even

without parent fields. The approach is based on temporarily setting right child fields

ElementsOfProgrammingInterviews.com

9.1. Balanced binary trees - 75

for leaf nodes, and later undoing these changes. Code for this algorithm, known
as a Morris traversal, is given below. It is largely of theoretical interest; one major
shortcoming is that it is not thread-safe, since it mutates the tree, albeit temporarily.

template <typename T>
void inorder_traversal(shared_ptr<BinaryTree<T>> n) {
while (n) {
if (n->left) {
// Find the predecessor of n
shared_ptr<BinaryTree<T>> pre = n->left;
while (pre->right &% pre->right != n) {
pre = pre->right;
}

/7 Build the successor link

if (pre->right) { // pre-»>right == n
// Revert the successor link if predecessor’'s successor is n
pre->right = nullptr;
cout << n->data << endl;
n = n->right;

} else { // if predecessor’s successor is not n
pre->right = n;
n = n->left;

}

} else {
cout << n->data << endl;
n = n->right;

The term tree is overloaded, which can lead to confusion; see Page 131 for an
overview of the common variants.

9.1 BALANCED BINARY TREES

A binary tree is said to be balanced if for each node in the tree, the difference in the
height of its left and right subtrees is at most one.

Problem 9.1: Write a function that takes as input the root of a binary tree and returns
true or false depending on whether the tree is balanced. Use O(h) additional
storage, where h is the height of the tree. pg. 235

9.2 k-BALANCED NODES

Define a node in a binary tree to be k-balanced if the difference in the number of
nodes in its left and right subtrees is no more than k.

Problem_9.2: Design an algorithm that takes as input a binary tree and positive
integer k, and returns a node u in the binary tree such that # is not k-balanced, but all
of u’s descendants are k-balanced. If no such node exists, return null. For example,
when applied to the binary tree in Figure 9.1 on Page 73, your algorithm should
return Node J if k = 3. vg. 236

ElementsOfProgrammingInterviews.com

76 , 9.3. Symmetric binary tree

9.3 SYMMETRIC BINARY TREE

A binary tree is symmetric if you can draw a vertical line through the root and then
the left subtree is the mirror image of the right subtree. The concept of a symmetric
binary tree is illustrated in Figure 9.2.

(a) A symmetric binary tree. (b) An asymmetric binary tree. (c) An asymmetric binary tree.

Figure 9.2: Symmetric and asymmetric binary trees.The tree in (a) is structurally symmetric, but sym-
metry requires that corresponding nodes have the same keys; here C and F as well as D and G break
symmetry. The tree in (c) is asymmetric because there is no node corresponding to G.

Problem 9.3: Write a function that takes as input the root of a binary tree and returns
true or false depending on whether the tree is symmetric. pg. 237

9.4 LOCKING IN A BINARY TREE

Problem 9.4: For a certain application, processes need to lock nodes in a binary tree.
Implement a library for locking nodes in a binary tree, subject to the constraint that a
node cannot be locked if any of its descendants or ancestors are locked. Specifically,
write functions isLock(), lock(), and unLock (), with time complexities O(1), O(h),
and O(h). Here I is the height of the binary tree. Assume that each node has a parent
field. pg. 238

9.5 INORDER TRAVERSAL wiTH O(1) space (Ex)

The direct implementation of an inorder walk using recursion has O(k) space com-
plexity, where & is the height of the tree. Recursion can be removed with an explicit
stack, but the space complexity remains O(h). If the tree is mutable, we can do inorder
traversal in O(1) space—this is the Morris traversal described on the preceding page.
The Morris traversal does not require that nodes have parent fields.

Problem 9.5: Let T be the root of a binary tree in which nodes have an explicit parent
field. Design an iterative algorithm that enumerates the nodes inorder and uses O(1)
additional space. Your algorithm cannot modify the tree. pg. 239

9.6 DETERMINING THE k-TH NODE IN AN INORDER TRAVERSAL

It is trivial to find the k-th node that appears in an inorder traversal with O(x) time
complexity. However, with additional information on each node, you can do better.

ElementsOfProgrammingInterviews.com

9.7. Reconstructing a binary tree from traversal data 77

Problem 9.6: Design a function that efficiently computes the k-th node appearing in
an inorder traversal. Specifically, your function should take as input a binary tree T
and an integer k. Each node has a size field, which is the number of nodes in the
subtree rooted at that node. What is the time complexity of your function? pg. 240

9.7 RECONSTRUCTING A BINARY TREE FROM TRAVERSAL DATA

Many different binary trees yield the same sequence of keys in an inorder, preorder,
or postorder traversal. However, given an inorder traversal and one of any two other
traversal orders of a binary tree, there exists a unique binary tree that yields those
orders, assuming each node holds a distinct key. For example, the unique binary
tree whose inorder traversal sequence is (F, B, A, E, H,C, D, I, G) and whose preorder
traversal sequence is (H, B, F,E, A, C, D, G, I) is given in Figure 9.3.

Figure 9.3: A binary tree—edges that do not terminate in nodes denote empty subtrees.

Problem 9.7: Given an inorder traversal order, and one of a preorder or a postorder
traversal order of a binary tree, write a function to reconstruct the tree. pg. 241

9.8 RECONSTRUCTING A BINARY TREE FROM A PREQORDER TRAVERSAL WITH MARKER

Many possible binary trees on nodes {vo, v1,...,0,-1} yield the sequence of nodes
o = {Uy,V1,...,Vp-1) from a preorder walk. Node v, must be the root, but the left
subtree could consist of {vy,..., v} for I € [1,n — 1]; it could also be empty.

Suppose, the preorder walk routine is modified to mark where a left or right child
was empty. For example, the binary tree in Figure 9.3 is the unique tree that yields
the following preorder traversal sequence:

(H,B,Enull,null,E, A,null,null, null, C,null, D,null, G, I,null, null, null)

Problem 9.8: Design an O(n) time algorithm for reconstructing a binary tree from
a preorder visit sequence that uses null to mark empty children. How would you

ElementsOfProgrammingInterviews.com

78 9.9. Form a linked list from the leaves of a binary tree

modify your reconstruction algorithm if the sequence corresponded to a postorder
or inorder walk? pg. 242

9.9 FORM A LINKED LIST FROM THE LEAVES OF A BINARY TREE

_ In some applications of a binary tree, only the leaf nodes contain actual information.
For example, in a single knockout tournament organized as a binary tree, we can link
the leaves to get a list of participants.

Problem 9.9: Given a binary tree, write a function which forms a linked list from
the leaves of the binary tree. The leaves should appear in left-to-right order. For
example, when applied to the binary tree in Figure 9.1 on Page 73, your function
should return (D, E, H, M, N, P). pg. 243

9.10 THE EXTERIOR OF A BINARY TREE (42¥)

Problem 9.10: Write a function that prints the nodes on the exterior of a binary tree in
anti-clockwise order, i.e., print the nodes on the path from the root to the leftmost leaf
in that order, then the leaves from left-to-right, then the nodes from the rightmost leaf
up to the root. For example, when applied to the binary tree in Figure 9.1 on Page 73,
your function should return (4, B,C,D,E,H,M,N,P,O,I). (By leftmost (rightmost)
leaf, we mean the leaf that appears first (last) in an inorder walk.) pg. 244

9,11 LoWEST COMMON ANCESTOR IN A BINARY TREE

Any two nodes in a binary tree have a common ancestor, namely the root. The lowest
common ancestor (LCA) of any two nodes in a binary tree is the node furthest from
the root that is an ancestor of both nodes. For example, the LCA of M and N in
Figure 9.1 on Page 73 is K.

Computing the LCA has important applications. For example, in an interval tree
(Problem 14.23 on Page 113), the LCA of any two nodes is key to computing the
smallest interval that contains the intervals stored at those nodes.

Problem 9.11: Design an efficient algorithm for computing the LCA of nodes 2 and
b in a binary tree in which nodes do not have a parent pointer.. pg. 245

9.12 LowEST COMMON ANCESTOR IN A BINARY TREE, WITH PARENT POINTER

Problem 9.12: Giventwo nodes inabinary tree T, design an algorithm that computes
their LCA. Assume that each node has a parent pointer. The tree has #n nodes and
height k. Your algorithm should run in O(1) space and O(h) time. pg. 245

9.13 LOWEST COMMON ANCESTOR IN A BINARY TREE, CLOSE ANCESTOR

Problem 9.12 is concerned with computing the LCA in a binary tree with parent
pointers in O(k) time and O(1) space. The algorithm presented in Solution 9.12 on

ElementsOfProgrammingInterviews.com

9.14. Shortest unique prefix (&) 79

Page 245 entails traversing all the way to the root, so even if max(d, ~d;, dy —dj) < b,
its time complexity remains O(h).

Problem 9.13: Design an algorithm for computing the LCA of 2 and b that has time
complexity O(max(d, —d;, d, — d;)). What is the worst-case time and space complexity
of your algorithm? : pg. 246

9.14 SHORTEST UNIQUE PREFIX (&)

Formally, a sequence is a function whose domain is of the form {0,1,2,...,n~1}. A
sequence f is often written as (f(0), f(1),..., f(n — 1)). A string is a finite sequence
of symbols drawn from an alphabet; the length of the string is the cardinality of its
domain. A string may be of length zero—this is referred to as the empty string, and
is denoted by €. A prefix of a string s defined on domain {0,1,...,n — 1} is either € or
the restriction of s to domain {0,1,...,m -1}, for 0 < m < n.

This problem is concerned with finding the shortest prefix of a string s that is not
in a set of strings D. For example:

— If s =“cat” and D = {"dog”, “be”, “cut”} return “ca”.

— If s =“cat” and D = {“dog”, “be”, “cut”, “car”} return “cat”.

— Ifs = “cat” and D = {"dog”, “be”, “cut”, “car”, “cat”} return .

Problem 9.14: Given a string s and a set of strings D, find the shortest prefix of s
which is not a prefix of any string in D. ps. 247

ElementsOfProgrammingInterviews.com

CHAPTER

Heaps

LUsing F-heaps we are able to obtain improved running
times for several network optimization algorithms.

— “Fibonacci heaps and their uses,”
M. L. Frepmaw anp R, E. Tarjan, 1987

A heap is a specialized binary tree, specifically it is a complete binary tree. It supports
O(log n) insertions, O(1) time lookup for the max element, and O(logn) deletion of
the max element. The extract-max operation is defined to delete and return the
maximum element. (The min-heap is a completely symmetric version of the data
structure and supports O(1) time lookups for the minimum element.)

A max-heap can be implemented as an array; the children of the node at index i
are at indices 2i + 1 and 2{ + 2. Searching for arbitrary keys has O(n) time complexity.
Anyt}ﬁng that can be done with a heap can be done with a balanced BST with the
same or better time and space complexity but with possibly some implementation
overhead. There is no relationship between the heap data structure and the portion
of memory in a process by the same name.

10.1 MERGING SORTED FILES

You are given 500 files, each containing stock trade information for an S&P 500
company. A line within a file captures a trade as follows:

1232111,AAPL,30,456.12

The first number is the time of the trade expressed as the number of milliseconds
since the start of the day’s trading. Lines within each file are sorted by this value.
(The remaining values are the stock symbol, number of shares, and price.) Your task
is to create a single file containing all the trades sorted by trade times. The individual
files are of the order of 5-100 megabytes; the combined file will be of the order of five

gigabytes. '

Problem 10.1: Design an algorithm that takes a set of files containing stock trade
information in sorted order, and writes a single file containing the lines appearing in
the individual files sorted in sorted order. The algorithm should use very little RAM,
ideally of the order of a few kilobytes. pg. 248

80

10.2. Sort k-increasing-decreasing array . 81

10.2 SORT k-INCREASING-DECREASING ARRAY

An array A of n integers is said to be k-increasing-decreasing if elements repeatedly
increase up to a certain index after which they decrease, then again increase, a total
of k times, as illustrated in Figure 10.1.

57 131 | 493 | 294 | 221 | 339 | 418 | 452

Al0] Al AR A[3] A[4] A[5] Al] A7) A[B] Al9)

442 | 190

Figure 10.1: A 4-increasing-decreasing array.

Problem 10.2: Design an efficient algorithm for sorting a k-increasing-decreasing
array. You are given another array of the same size that the result should be written
to, and you can use O(k) additional storage. pg. 249

10.3 STACKS AND QUEUES FROM HEAP

We discussed the notion of reduction when describing problem solving patterns.
Usually, reductions are used to solve a more complex problem using a solution to a
simpler problem as a subroutine.

Occasionally it makes sense to go the other way—for example, if we need the
functionality of a heap, we can use a BST library, which is more commonly available,
with modest performance penalties with respect, for example, to an array-based
implementation of a heap.

Problem 10.3: How would you implement a stack API using a heap and a queue
API using a heap? rg. 250

10.4 CLOSEST STARS

Consider a coordinate system for the Milky Way, in which the Earth is at (0,0,0).
Model stars as points, and assume distances are in light years. The Milky Way
consists of approximately 10*? stars, and their coordinates are stored in a file in
comma-separated values (CSV) format—one line per star and four fields per line, the
first corresponding to an ID, and then three floating point numbers corresponding
to the star location. "

Problem 10.4: How would you compute the k stars which are closest to the Earth?
You have only a few megabytes of RAM. pg. 251
10.5 THE k-TH LARGEST ELEMENT—STREAMING CASE

The goal of this problem is to design an algorithm that continuously outputs the k-th
largest element in a sequence of elements that is presented one element at a time.

ElementsOfProgrammingInterviews.com

82 10.6. Approximate sort

(For the first k cycles, the algorithm should output the smallest element.) The length
of the sequence is not known in advance, and could be very large.

Problem 10.5: Design an O(nlogk) time algorithm that reads a sequence of n ele-
ments and for each element, starting from the k-th element, prints the k-th largest
element read up to that point. The length of the sequence is not known in advance.
Your algorithm cannot use more than O(k) additional storage. pg. 253

10.6 APPROXIMATE SORT

Consider a situation where your data is almost sorted—for example, you are receiving
timestamped stock quotes and earlier quotes may arrive after later quotes because
of differences in server loads and network routes. What would be the most efficient
way of restoring the total order?

Problem 10.6: The input consists of a very long sequence of numbers. Each number
is at most k positions away from its correctly sorted position. Design an algorithm
that outputs the numbers in the correct order and uses O(k) storage, independent of
the number of elements processed. pg. 253

10.7 CrosesT TO MEDIAN (&)

Suppose youhave an array A of nitems, and you want to find the kitems in A closest to
the median of A. For example, if A contains the nine values (7,14,10,12,2,11,29, 3,4)
and k = 5, then the answer would be the values {7,14, 10,12, 11} where the median is
10.

Problem 10.7: Design an O(n) time algorithm to compute the k elements closest to
the median of an array A. ps. 254

10.8 ONLINE MEDIAN

You want to compute the running median of a sequence of numbers. The sequence
is presented to you in a streaming fashion—you cannot back up to read an earlier
value, and you need to output the median after reading in each new element.

Problem 10.8: Design an algorithm for computing the running median of a sequence.
The time complexity should be O(log #) per element read in, where # is the number
of values read in up to that element. pg. 255

109 GENERATING NUMBERS OF THE FORM 4 + b V2 (&)

Let S, be the set of real numbers of the form a + b /7, where 2 and b are nonnegative
integers, and g is an integer which is not the square of another integer. Such sets
have special properties, e.g., they are closed under addition and multiplication. The
first few numbers of this form are given in Figure 10.2 on the facing page.

Problem 10.9: Design an algorithm for efficiently computing the k smallest real
numbers of the form a + b V2 for nonnegative integers a and b. pg. 256

ElementsOfProgrammingInterviews,com

10.10. Compare with the k-th largest element (r) 83

0+0v3) (1408) (0+1vV3) (2+0v3) (141VD) (0+243) (2+1v3) (1+2vD) (242+0)
00 10 1414 20 2414 282 3414 3828 488"

Figure 10.2: Points of the form a + b V2.

10.10 ComPARE WITH THE k-TH LARGEST ELEMENT (@)

Problem 10.10: Design an O(k) time algorithm for determining whether the k-th
largest element in a max-heap is smaller than, equal to, or larger than a given x.
The max-heap is represented using an array. Your algorithm’s time complexity
should be independent of the number of elements in the max-heap, and may use
O(k) additional storage. It cannot make any changes to the max-heap, and should
handle the possibility of duplicate entries. pg. 258

ElementsOfProgrammingInterviews.com

Searching

— “The Anatomy of A Large-Scale Hypertextual Web Search Engine,”
. S. M. Brin anD L, Pace, 1998

Given an arbitrary collection of # keys, the only way to determine if a search key is
present is by examining each element. This has ©(n) time complexity. If the collection
is “organized”, searching can be sped up dramatically. If the data are dynamic, that is
inserts and deletes are interleaved with searching, keeping the collection organized
becomes more challenging.

Binary search

Binary search is at the heart of more interview questions than any other single al-
gorithm. Fundamentally, binary search is a natural elimination-based strategy for
searching a sorted array. The idea is to eliminate half the keys from consideration by
keeping the keys in sorted order. If the search key is not equal to the middle element
of the array, one of the two sets of keys to the left and to the right of the middle
element can be eliminated from further consideration.

84

1
2
3
4
5 if (A[M] < t) {
6
7
8
[

Chapter 11. Searching 85

Questions based on binary search are ideal from the interviewers perspective: it
is a basic technique that every reasonable candidate is supposed to know and it can
be implemented in a few lines of code. On the other hand, binary search is much
trickier to implement correctly than it appears—you should implement it as well as
write corner case tests to ensure you understand it properly.

Many published implementations are incorrect in subtle and not-so-subtle ways—
astudy reported that it is correctly implemented in only five out of twenty textbooks.
Jon Bentley, in his book “Programming Pearls” reported that he assigned binary search
in a course for professional programmers and found that 90% failed to code it cor-
rectly despite having ample time. (Bentley’s students would have been gratified to
know that his own published implementation of binary search, in a column titled
“Writing Correct Programs”, contained a bug that remained undetected for over
twenty years.) .

Binary search can be written in many ways—recursive, iterative, different idioms
for conditionals, etc. Here is an iterative implementation adapted from Bentley’s
book, which includes his bug.

int bsearch(const int &t, const vector<int> &A) {
int L = 0, U= A.size() - 1;
while (L <= U) {
int M = (L + U) / 2;

L=HN=+1;

} else if (A[NM] == t) {
return M;

} else {
U=»HM-I;

} .

12 }

e T

return -1;
}

The error is in the assignment M = (L + U) / 2 in Line 4, which can lead to
overflow. A common solutionistouse = L + (U - L) / 2.

However, even this refinement is problematic in a C-style implementation. The C
Programming Language (2nd ed.) by Kernighan and Ritchie (Page 100) states: “If one is
sure that the elements exist, it is also possible to index backwards in an array; p[-1],
p[-2], etc. are syntactically legal, and refer to the elements that immediately precede
p[01.” Inthe expressionL + (U - L) / 2,if Uis a sufficiently large positive integer
and L is a sufficiently large negative integer, (U - L) can overflow, leading to out of
bounds array access. The problem is illustrated below:

#define N 3000060000

char A[N];

char "B = (A + 1500000000);

int L = -1499000000;

int U = 1499006000;

J// On a 32-bit machine (U - L) = -1296967296 because the actual value,

// 2998000000 is larger than 2431 - 1. Consequently, the bsearch function
/¢ called below sets m to -2147483648 instead of @, which leads to an

ElementsOfProgrammingInterviews.com

86 11.1. Search a sorted array for first occurrence of k

s| // out-of-bounds access, since the most negative index that can be applied
w0 // to B is -1500000000.
11} int result = binary_search(key, B, L, U);

i

The solution is to check the signs of L and U. If U is positive and L is negative, M =
(L + U) / 2isappropriate, otherwiseset = L + (U - L) / 2.

In our solutions that make use of binary search, L and U are nonnegative and so
weuseM = L + (U - L) / 2inthe associated programs.

The time complexity of binary search is given by T(n) = T(1n/2) + ¢, where c is a
constant. This solves to T(n) = O(logn), which is far superior to the O(n) approach
needed when the keys are unsorted. A disadvantage of binary search is that it
requires a sorted array and sorting an array takes O(nlog n) time. However if there
are many searches to perform, the time taken to sort is not an issue.

Many variants of searching a sorted array require a little more thinking and create
opportunities for missing corner cases.

11.1 SEARCH A SORTED ARRAY FOR FIRST OCCURRENCE OF k&

Binary search commonly asks for the index of any element of a sorted array A that is
equal to a given element. The following problem has a slight twist on this.

-14 | -10 2| 108 | 108 | 243 | 285 | 285 | 285 | 401

Al0) AL Al] AB) A4 Al Alel Al AB] - A[9]

Figure 11.1: A sorted array with repeated elements.

Problem 11.1: Write a method that takes a sorted array A and a key k and returns
the index of the first occurrence of k in A. Return —1 if k does not appear in A. For
example, when applied to the array in Figure 11.1 your algorithm should return 3 if
k = 108; if k = 285, your algorithm should return 6. pg. 259

11.2 SEARCH A SORTED ARRAY FOR THE FIRST ELEMENT LARGER THAN k
Sometimes we want the first element larger than a given element.

Problem 11.2: Design an efficient algorithm that takes a sorted array A and a key
k, and finds the index of the first occurrence an element larger than k; return -1 if
every element is less than or equal to k. For example, when applied to the array in
Figure 11.1 your algorithm should return -1 if k = 500; if k = 101, your algorithm
should return 3. 8. 259

11.3 SEARCH A SORTED ARRAY FOR Afi] =i

Problem 11.3: Design an efficient algorithm that takes a sorted array A of distinct
integers, and returns an index i such that A[i] = i or indicate that no such index exists

ElementsOfProgrammingInterviews.com

114. Search for a pair in an abs-sorted array () 87

by returning —1. For example, when the input is the array shown in in Figure 11.1
on the preceding page, your algorithm should return 2. rg. 260

11.4 SEARCH FOR A PAIR IN AN ABS-SORTED ARRAY (&F)

An abs-sorted array is an array of numbers in which |A[{]| < |A[j]| whenever i < j.
For example, the array in Figure 11.2, though not sorted in the standard sense, is
abs-sorted. '

-49 75 103 | -147 164 -197 | -238 | 314 | 348 | -422

A[0] A[ll A[2) AlB] A[4) - A[5] Al6] Al A[B] A[9]

Figure 11.2: An abs-sorted array.

Problem 11.4: Design an algorithm that takes an abs-sorted array A and a number
k, and returns a pair of indices of elements in A that sum up to k. For example, if
the input to your algorithm is the array in Figure 11.2 and k = 167, your algorithm
should output (3,7). Output (-1, -1) if there is no such pair. pg. 261

11.5 SEARCH A CYCLICALLY SORTED ARRAY

An array A of length 7 is said to be cyclically sorted if the smallest element in the
array is at index i, and the sequence (A[i], Ali+1],..., Aln—1],A[0], A[1],..., Ali-1])
is sorted in increasing order, as illustrated in Figure 11.3.

378 | 478 | 550 | 631 | 103 | 203 | 220 | 234 | 279 . 368

Al0) A} A[2l A8l Al4]l A[] Alel A7) AIS] A[9]

Figure 11.3: A cyclically sorted array.

Problem 11.5: Design an O(log n) algorithm for finding the position of the smallest
element in a cyclically sorted array. Assume all elements are distinct. For example,
for the array in Figure 11.3, your algorithm should return 4. pg. 263

11.6 SEARCH A SORTED ARRAY OF UNKNOWN LENGTH (§F)

Problem 11.6: Let A be a sorted array. The length of A is not known in advance;
accessing Ali] for i beyond the end of the array throws an exception. Design an
algorithm that takes A and a key k and returns an index i such that A[i] = k; return
—1if k does not appear in A. pg. 264

ElementsOfProgrammingInterviews.com

88 - 11.7. Completion search

11.7 COMPLETION SEARCH

You are working in the finance office for ABC corporation. The total payroll expense
last year was $S. This year, the corporation needs to cut payroll expenses to $S'. The
chief executive officer wants to put a cap ¢ on salaries. Every employee who earned
more than $o last year will be paid $o this year; employees who earned less than $o
will see no change in their salary.

For example, given five employees with salaries $90, $30,$100, $40, and $20, and
§" = 210, then 60 is a suitable value for .

Problem 11.7: Let A be an array of n nonnegative real numbers and 5’ be a nonneg-
ative real number less than Y7} A[4]. Design an efficient algorithm for computing o

such that ¥/ min(A[#],0) = &, if such a o exists. pg. 265

11.8 SEARCHING IN TWO SORTED ARRAYS (@F)

The k-th smallest element in a sorted array A is simply A[k — 1] which takes O(1) time
to compute. Suppose you are given two sorted arrays A and B, of length n and m
respectively, and you need to find the k-th smallest element of the array C consisting
of the n + m elements of A and B arranged in sorted order. (We'll refer to this array
as the union of A and B, although strictly speaking union is a set-theoretic operation
that does not have a notion of order, or duplicate elements.)

You could merge the two arrays into a third sorted array and then look for the
answer, but the merge would take O(n -+ m) time. You can build the merged array on
the first k elements, which would be an O(k) operation.

Problem 11.8: You are given two sorted arrays A and B of lengths m and n, respec-
tively, and a positive integer k € [1,m + n]. Design an algorithm that runs in O(log k)
time for computing the k-th smallest element in array formed by merging A and B.
Array elements may be duplicated within and between A and B. pg. 266

11.9 COMPUTING SQUARE ROOTS

Square root computations can be implemented using sophisticated numerical tech-
niques involving iterative methods and logarithms. However if you were asked
to implement a square root function, you would not be expected to know these
techniques.

Problem 11.9: Implement a function which takes as input a floating point variable
x and returns Vx. pg. 267

11.10 2D ArraY SEARCH (67)

Problem 11.10: Let A be an n X n 2D array where rows and columns are sorted in
increasing sorted order. Design an efficient algorithm that decides whether a number
x appears in A. How many entries of A does your algorithm inspect in the worst-
case? Can you prove a tight lower bound that any such algorithm has to consider in
the worst-case? rg. 268

ElementsOfProgrammingInterviews.com

11.11. Finding the winner and runner-up 89

11.11 FINDING THE WINNER AND RUNNER-UP

One hundred and twenty eight players take part in a tennis tournament. The “x beats
y” relationship is transitive, i.e., for all players 4, b, and ¢, if 2 beats b and b beats c,
then 4 beats c.

Problem11.11: How would you organize a tournament with 128 players to minimize
the number of matches needed to find the best player? How many matches do you
need to find the best and the second best player? pg. 269

Searching unsorted arrays

Now we consider a number of problems related to searching arrays that are not
sorted, implying that we cannot use elimination. The problems in this section can be
solved without sorting, and the solutions have O(n) time complexity, where n is the
length of the array. We study similar problems in Chapter 13, but for those problems,
the best solutions entail sorting,

11.12 FINDING THE MIN AND MAX SIMULTANEOUSLY

Given an array of n objects that are comparable, you can find either the min or the
max of the elements in the array with n—1 comparisons. Comparing elements may be
expensive, e.g., a comparison may involve a number of nested calls or the elements
being compared may be long strings. Therefor is is natural to ask if both the min and
the max of an array can be computed with less than the 2n — 3 comparisons required
to compute the min and the max independently.

Problem 11.12: Find the min and max elements from an array of # elements using
no more than [31/2] — 2 comparisons. pg. 270

11.13 THE k-TH LARGEST ELEMENT

Let A be an array of length 7. Assume that that entries are distinct, i.e., if i # j then
Afi] # A[f]. The array B is said to be a descending sorting of A if |B| = |A|, there
exists a permutation o of {0,1,2,...,1n — 1} such that A[i] = B[o(i)], and B is sorted in
descending order. The k-th largest element of A is defined to be the k-th element of
B, .

The k-th order statistic of a collection is its k-th smallest value, with the minimum
element being the first order statistic. In this parlance, we are asking for the k + 1-th
order statistic of the collection A.

Problem 11.13: Design an algorithm for computing the k-th largest element in an
array A that runs in O(n) expected time. pg. 270

11.14 THE k-TH LARGEST ELEMENT—LARGE # AND SMALL k (&)

The goal of this problem is to design an algorithm for computing the k-th largest
element in a sequence of elements that is presented one element at a time. The length
of the sequence is not known in advance, and could be very large.

ElementsOfProgrammingInterviews.com

90 11.15. Finding a missing element

Problem 11.14: Design an algorithm for computing the k-th largest element in a
sequence of elements. It should run in O(n) expected time where 7 is the length of
the sequence, which is not known in advance. The value k is known in advance.
Your algorithm should print the k-th largest element after the sequence has ended. It
should use O(k) additional storage. pg. 271

11.15 FINDING A MISSING ELEMENT

The storage capacity of hard drives dwarfs that of RAM. This can lead to interesting
space-time trade-offs.

Problem 11.15: Suppose you were given a file containing roughly onebillion Internet
Protocol (IP) addresses, each of which is a 32-bit unsigned integer. How would you
programmatically find an IP address that is not in the file? Assume you have
unlimited drive space but only two megabytes of RAM at your disposal. pg. 272

11.16 FiND THE DUPLICATE AND MISSING ELEMENTS

Let A be an array containing n — 1 integers, each in the set Z, = {0,1,...,n - 1}.
Suppose exactly one element m € Z, is not present in A. We can determine m in
O(n) time and O(1) space by computing Sum(A), the sum of the elements in A. The
sum of all the elements in Z,, is Sum(Z,) = @ Hence Sum(Z,) ~ Sum(A) equals
the missing element m. Similarly, if A contains n + 1 elements drawn from the set
Z., with exactly one element ¢ appearing twice in A, the element ¢ will be equal to
Sum(A) — Sum(Z,,).

Alternately, for the first problem, we can compute m by computing the XOR of all
the elements in Z, and XORing that with the XOR of all the elements in A—every
element in A, except for the missing element, cancels out since it is also present in
Zy. Therefore the resulting XOR equals #1. The same approach works for the second
problem. '

Problem 11.16: Let A be an array of n integers in Z,, with exactly one element ¢
appearing twice. This implies exactly one element m € Z, is missing from A. How
would you compute ¢ and m in O(n) time and O(1) space? pg. 273

11.17 FiND THE ELEMENT THAT APPEARS ONLY ONCE (@F)

Given an integer array where each element appears twice except for one that appears
only once, we can use O(n) space and O(n) time to find the element that appears
exactly once, e.g., using a hash table. However, there is a better solution: compute
the bitwise-XOR (&) of each element of the array. Because x ®x = 0, all elements that
appear an even number of times cancel out, and the element that appears remains.
Therefore, this problem can be solved using O(1) space.

Problem 11.17: Given an array A, in which each element of A appears three times
except for one element e that appears once, find e in O(1) space and O(n) time. pg. 274

ElementsOfProgrammingInterviews.com

11.18. Searching an array with close entries 91

11.18 SEARCHING AN ARRAY WITH CLOSE ENTRIES

An array of integers A is said to be close if for each i € [0, |A| - 2], |A[i] - Al +1]| < 1,
e.g., as in Figure 11.4.

-1 0 0 1 2 2 1 2 3 4

Al0] Alll Al2) A[B] Al4] Al5] Al6] Al7] A8l A[9)]

Figure 11.4: A close array.

Problem 11.18: Design an efficient algorithm that takes a close array A, and a key
k and searches for any index j such that A[j] = k. Return -1 if no such index exists.
For example, for the array in Figure 11.4, if k = 2, your algorithm should return an
index in {4, 5, 7}. pg. 275

11.19 MajoriTy FIND (§)

Several applications require identification of tokens—objects which implement an
equals method—in a sequence which appear more than a specified fraction of the
total number of tokens. For example, we may want to identify the users using
the largest fraction of the network bandwidth or IP addresses originating the most
Hypertext Transfer Protocol (HTTP) requests. Here we consider a simplified version
of this problem. :

Problem 11.19: You are reading a sequence of words from a very long stream. You
know a priori that more than half the words are repetitions of a single word w (the
“majority element”) but the positions where w occurs are unknown. Design an
algorithm that makes a single pass over the stream and uses only a constant amount
of memory to identify w. pg. 275

ElementsOfProgrammingInterviews.com

CHAPTER

Hash Tables

The new methods are intended to reduce th of space required to contain
the hash-coded information from that associated with conventional methods.
The reduction in space is accomplished by exploiting the possibility that a small
fraction of ervors of commission may be tolerable in some applications.

— "Spaceftime trade-offs in hash coding with allowable errors,”
B. H. Broom, 1970

The idea underlying a hash table is to store objects according to their key field in an
array. Objects are stored in array locations based on the “hash code” of the key. The
hash code is an integer computed from the key by a hash function. If the hash function
is chosen well, the objects are distributed uniformly across the array locations.

If two keys map to the same location, a “collision” is said to occur. The standard
mechanism to deal with collisions is to maintain a linked list of objects at each
array location. If the hash function does a good job of spreading objects across the
underlying array and take O(1) time to compute, on average, lookups, insertions,
and deletions have O(1 + 1/m) time complexity, where is the number of objects and
m is the length of the array. If the “load” n/m grows large, rehashing can be applied
to the hash table. A new array with a larger number of locations is allocated, and
the objects are moved to the new array. Rehashing is expensive (©(n + m) time) but
if it is done infrequently (for example, whenever the number of entries doubles), its
amortized cost is low.

A hash table is qualitatively different from a sorted array—keys do not have to
appear in order, and randomization (specifically, the hash function) plays a central
role. Compared to binary search trees (discussed in Chapter 14), inserting and
deleting in a hash table is more efficient (assuming rehashing is infrequent). One
disadvantage of hash tables is the need for a good hash function but this is rarely an
issue in practice. Similarly, rehashing is not a problem outside of realtime systems
and even for such systems, a separate thread can do the rehashing,

12.1 DESIGN A HASH FUNCTION FOR DICTIONARIES

A hash function has one hard requirement—two keys that are identical should yield
the same hash code. This may seem obvious, but is easy to get wrong, e.g., by writing
a hash function that is based on address rather than contents.

Problem 12.1: Design a hash function that is suitable for words in a dictionary.
' pg. 276

92

12.2. A hash function for the state of a chess game 93

1. £3,e52. g4, Wha

Figure 12.1: Chesshoard corresponding to the fastest checkmate, Fool’s Mate.

12.2 A HASH FUNCTION FOR THE STATE OF A CHESS GAME

The state of a game of chess is determined by what piece is present on each square,
as illustrated in Figure 12.1. Each square may be empty, or have one of six classes
of pieces; each piece may be black or white. Thus [1g(1 + 6 X 2)] = 4 bits suffice per
square, which means that a total of 64 X 4 = 256 bits can represent the state of the
chessboard. (The true state is somewhat more complex, as it needs to capture which
side is to move, castling rights, en passant, etc.)

Chess playing computers need to store sets of states, e.g., to determine if a partic-
ular state has been evaluated before, or is known to be a winning state. To reduce
storage, it is natural to apply a hash function to the 256 bits of state, and ignore col-
lisions. The hash code can be computed by a conventional hash function for strings.
However, since the computer repeatedly explores nearby states, it is advantageous
to consider hash functions that can be efficiently computed based on incremental
changes to the board.

Problem 12.2: Design a hash function for chess game states. Your function should
take a state and the hash code for that state, and a move, and efficiently compute the
hash code for the updated state. vg. 277

12.3 NEAREST REPETITION

People do not like reading text in which a word is used multiple times in a short
paragraph. You are to write a function which helps identify such a problem.

Problem 12.3: Letsbe an array of strings. Write a function which finds a closest pair

"o 1

of equal entries. For example, if s = [“All”, “work”, “and”, “no”, “play”, “makes”,

ElementsQfProgrammingInterviews.com

94 12.4. Binary tree compression ()

' L "o ”oa L

“for”, “no”, “work”, “no”, “fun”, “and”, “no”, “results”], then the second and third
occurrences of “no” is the closest pair. pg. 277

12.4 BINARY TREE COMPRESSION (@)

Suppose you have an application which will use a very large number of binary
trees. You know that many of the subtrees will be identical, and you want to avoid
duplicating the storage required for these subtrees by sharing identical subtrees.

Formally, binary trees A and B are isomorphic if both are null, or their roots store
the same key and A.left is isomorphic to B.left and A.right is isomorphic to B.right.
Since each node in a subtree is the root of a binary tree, the notion of isomorphism
generalizes to nodes.

b o

(a) Three binary trees, T1, T2, and T3, duplicate isomorphic nodes.

(b) After canonicalization.

Figure 12.2: Binary tree canonicalization for T1, T2, and T3.

Problem 12.4: Given a set of binary trees A, ..., 4, how would you compute a new
set of binary trees Bj, ..., B, such that for each i, 1 < i < n, A; and B; are isomorphic,
and no pair of isomorphic nodes exists in the set of nodes defined by By, ..., B,. (This
is sometimes referred to as the canonical form.) Assume nodes are not shared in
Ay, ..., Ay See Figure 12.2 for an example. pg. 278 .

12.5 PAIR USERS BY ATTRIBUTES

You are building a social network site where each user specifies a set of attributes.
You would like to pair each user with another unpaired user that specified exactly
the same set of attributes.

ElementsOfProgrammingInterviews.com

12.6. Pair users by attributes, approximate matching (@) : 95

Problem 12.5: You are given a sequence of users where each user has a unique 32-bit
integer key and a set of attributes specified as strings. When you read a user, yon
should pair that user with another previously read user with identical attributes who
is currently unpaired, if such a user exists. If the user cannot be paired, you should
keep him in the unpaired set. How would you implement this matching process
efficiently? pg. 279

12.6 DPAIR USERS BY ATTRIBUTES, APPROXIMATE MATCHING (@F)

Problem 12.6: Solve Problem 12.5 on the facing page when users are grouped based
on having similar attributes. The similarity between two sets of attributes A and B is

ped ps. 279

12.7 ANAGRAMS

Anagrams are popular word play puzzles, where by rearranging letters of one set of
words, you get another set of words. For example, “eleven plus two” is an anagram
for “twelve plus one”. Crossword puzzle enthusiasts would Iike to be able to generate
all possible anagrams for a given set of letters.

Problem 12.7: Write a function that takes as input a dictionary of English words,
and returns a partition of the dictionary into subsets of words that are all anagrams
of each other. rg. 280

12.8 CAN A STRING BE PERMUTED TO FORM A PALINDROME?

A palindrome is a word that reads the same forwards and backwards, e.g., “level”
and “rotator”, ’

Problem 12.8: Write a program to test whether the letters forming a string s can be
permuted to form a palindrome. For example, “edified” can be permuted to form
“deified”. Explore solutions that trade time for space. pg. 281

129 ANONYMOUS LETTER

A hash table can be viewed as a dictionary. For this reason, hash tables commonly
appear in string processing.

Problem 12.9: You are required to write a method which takes an anonymous letter
L and text from a magazine M. Your method is to return true iff L can be written
using M, i.e., if a letter appears k times in L, it must appear at least k times in M.

pg. 282

12.10 LINE THROUGH THE MOST POINTS ()
Problem 12.10: Let P be a set of n points in the plane. Each point has integer

coordinates. Design an efficient algorithm for computing a line that contains the
maximum number of points in P. pg. 282

ElementsOfProgrammingInterviews.com

96 12,11, Search for frequent items (&)

12.11 SEARCH FOR FREQUENT ITEMS

)
This problem is a continuation of Problem 11.19 on Page 91. In practice we may not
be interested in just the majority token but all the tokens whose count exceeds say
1% of the total token count. It is simple to show that it is impossible to do this in a

single pass when you have limited memory but if you are allowed to pass through
the sequence twice, it is possible to identify the common tokens.

Problem 12.11: You are reading a sequence of strings separated by white space.
You are allowed to read the sequence twice. Devise an algorithm that uses O(k)
memory to identify the words that occur at least [4] times, where # is the length of
the sequence. ' pg. 284

12.12 AUTOMATIC HYPHENATION (@F)

To allow efficient usage of paper, and regular appearance of right-side margins,
words may be divided and a hyphen inserted to indicate that the letters form a word
fragment, not a word.

Words cannot be divided arbitrarily.- A small set of rules can be applied to most
words to determine where they can be hyphenated; however there are many words
to which they cannot be applied.

Let R be the set of words that can be split using rules and E the words that cannot.
The set E is large enough that it must be stored on disk; R is larger still. Since the
majority of words are not in E, it is advantageous to determine if a word is not in E
without going to disk.

Problem 12.12: Design a scheme for checking membership in E that minimizes the
number of disk accesses. Assume that |R| = 108, |E| = 105, and you can use up to
1.25 x 10° bytes of RAM. 7g. 286

12.13 PLAGIARISM DETECTOR

Problem 12.13: A pair of strings is k-suspicious if they have a substring of length
greater than or equal to k in common. Design an efficient algorithm that takes as
input a set of strings and positive integer k, and returns all pairs of strings that are
k-suspicious. Assume that most pairs will not be k-suspicious. pg. 286

12.14 SMALLEST SUBARRAY COVERING SET (&)

When you type keywords in a search engine, the search engine will return results,
and each result contains a digest of the web page, i.e., a highlighting within that
page of the keywords that you searched for. For example, a search for the keywords
“Union” and “save” on a page with the text of the Emancipation Proclamation should
return the result shown in Figure 12.3 on the facing page.

The digest for this page is the text in boldface, with the keywords underlined for
emphasis. It is the shortest substring of the page which contains all the keywords in
the search. The problem of computing the digest is abstracted as follows.

ElementsOfProgrammingInterviews.com

12.15. Smallest subarray sequentially covering set (&) 97

My paramount object in this struggle is to save the Union, and is not either
to save or to destroy slavery. If I could save the Union without freeing any
slave I would do it, and if I could save it by freeing all the slaves I would do
it; and if I could save it by freeing some and leaving others alone I would
also do that. '

Figure 12.3: Search result with digest in boldface and search keywords underlined.

Problem 12.14: Let A and Q be arrays of strings. Define the subarray A[i : f] to cover
Qif for all k € [0,|Q] — 1], there exists] € [7, /], Q[k] = A[l]. Write a function that takes
two arrays A and Q and computes a minimum length subarray A[i : j] that covers Q.

Suppose that A is presented in streaming fashion, i.e., elements are read one at a
time, and you cannot read earlier entries. The array is much smaller, and can be
stored in RAM. How would you modify your solution for this case? pg. 287

12.15 SMALLEST SUBARRAY SEQUENTIALLY COVERING SET (£2r)

In Problem 12.14 on the preceding page we did not differentiate between the order in
which keywords appeared. If the digest has to include the keywords in the order in
which they appear in the search textbox, we may get a different digest. For example,
for the search keywords “Union” and “save”, in that order, the digest would be
“Union, and is not either to save”.

Building on Problem 12.14 on the facing page, define the subarray A7 : j] to
sequentially cover Q iffthereexistk, ki, ..., kg1 suchthati=ky <k <+ <kg1 =
and for all [€ [0, (Qf - 1], Q] = Afk].

Problem 12.15: Write a function that takes two integer-valued arrays A and Q and
computes a minimum length subarray A[Z : j] that sequentially covers Q. Assume
all elements in Q are distinct. pg. 289

12.16 ISBN cacHE

The International Standard Book Number (ISBN) is a unique commercial book iden-
tifier based on the 9-digit standard book numbering code. The 10-digit ISBN was

" ratified by the International Organization for Standardization (ISO) in 1974; since
2007, ISBNs have contained 13 digits. The last digit in a 10-digit ISBN is the check
digit—it is the sum of the first 9 digits, modulo 11; a 10 is represented by an “X”. For
13 digit ISBNS, the last digit is also a check digit but is guaranteed to be between 0
and 9.

Problem 12.16: Implement a cache for looking up prices of books identified by their
ISBN. Use the Least Recently Used (LRU) strategy for cache eviction policy. pg. 290

ElementsOfProgrammingInterviews. com

CHAPTER

Sorting

Adescription is given of a new tnethod of sorting in the
random-access store of a computer. The method com-
pares favorably with other known methods in speed,
in economy of storage, and in ease of programming.

— "Quicksort,”
C. A R. Hoars, 1962

Sorting—rearranging a collection of items into increasing or decreasing order—is a
common problem in computing. Sorting is used to preprocess the collection to make
searching faster (as we saw with binary search through an array), as well as identify
items that are similar (e.g., students are sorted on test scores).

Naive sorting algorithms run in ®(n?) time. A number of sorting algorithms
run in O(n log n) time—heapsort, merge sort, and quicksort are examples. Each has
its advantages and disadvantages: for example, heapsort is in-place but not stable;
merge sort is stable but not in-place; quicksort runs O(n?) time in worst case. (An
in-place sort is one which uses O(1) space; a stable sort is one where entries which are
equal appear in their original order.) Most sorting routines are based on a compare
function that takes two items as input and returns —1 if the first item is smaller than
the second item, 0 if they are equal and 1 otherwise. However it is also possible to
use numerical attributes directly, e.g., in radix sort.

The heap data structure is discussed in detail in Chapter 10. Briefly, a max-heap
(min-heap) stores keys drawn from an ordered set. It supports O(log n) inserts and
O(1) time lookup for the maximum (minimum) element; the maximum (minimum)
key can be deleted in O(logn) time. Heaps can be helpful in sorting problems, as
illustrated by Problems 10.1 on Page 80, 10.2 on Page 81, and 10.6 on Page 82.

13.1 GOOD SORTING ALGORITHMS
Problem 13.1: What is the most efficient sorting algorithm for each of the following

situations:
— A large array whose entries are random numbers.

A small array of numbers.
- A large array of numbers that is already almost sorted.
— Alarge collection of integers that are drawn from a small range.

A large collection of numbers most of which are duplicates.

98

13.2. Variable length sort 99

— Stability is required, i.e., the relative order of two records that have the same

sorting key should not be changed.
pg. 292

13.2 VARIABLE LENGTH SORT

Most sorting algorithms rely on a basic swap step. When records are of different
lengths, the swap step becomes nontrivial.

Problem 13.2: Sort lines of a text file that has one million lines such that the average
length of a line is 100 characters but the longest line is one million characters long.
pg. 292

13.3 LEAST DISTANCE SORTING

You come across a collection of 20 stone statues in a line. You want to sort them by
height, with the shortest statue on the left. The statues are heavy and you want to
move them the least possible distance.

Problem 13,3: Design a sorting algorithm that minimizes the total distance that
items are moved. p8- 293

13.4 CouNTING SORT (&

Suppose you need to reorder the elements of a very large array so that equal elements
appear together. More formally, if A is an array, you are to permute the elements of
A so that after the permutation i < j < k A[i] = A[k] = Alj] = Alf].

If the entries are integers, this can be done by sorting the array. If the number of
distinct integers is very small relative to the size of the array, an efficient approach to
sorting the array is fo count the number of occurrences of each distinct integer and
write the appropriate number of each integer, in sorted order, to the array.

Problem 13.4: You are given an array of # Person objects. Each Person object has
a field key. Rearrange the elements of the array so that Person objects with equal
keys appear together. The order in which distinct keys appear is not important.
Your algorithm must run in O(n) time and O(k) additional space. How would your
solution change if keys have to appear in sorted order? P8 293

13.5 INTERSECT TWO SORTED ARRAYS

A natural implementation for a search engine is to retrieve documents that match the
set of words in a query by maintaining an inverted index. Each page is assigned an
integer identifier, its document-ID. An inverted index is a mapping that takes a word
w and returns a sorted array of page-ids which contain w—the sort order could be,
for example, the page rank in descending order. When a query contains multiple
words, the search engine finds the sorted array for each word and then computes the
intersection of these arrays—these are the pages containing all the words in the query.

ElementsOfProgrammingInterviews.com

100 13.6. Team photo day—1

The most computationally intensive step of doing this is finding the intersection of
the sorted arrays.

Problem 13.5: Given sorted arrays A and B of lengths 7 and m respectively, return
an array C containing elements common to A and B. The array C should be free of
duplicates. How would you perform this intersection if—(1.) n ~ m and (2.) n < m?

pg. 295

13.6 Team PHOTO DAY—1

You are a photographer for a soccer meet. You will be taking pictures of pairs of
opposing teams. All teams have the same number of players. A team photo consist
of a front row of players and a back row of players. A player in the back row must
be taller than the player in front of him, as illustrated in Figure 13.1. All players in a
row must be from the same team.

Backrow & & § ¢ & + & & § 4
Front row ¥y b ¢ & b

Figure 13.1: A team photo. Each team has 10 players, and each player in the back row is taller than
the corresponding player in the front row.

Problem 13.6: Design an algorithm that takes as input two teams and the heights of
the players in the teams and checks if it is possible to place players to take the photo
subject to the placement constraint. pg. 296

13.7 COUNT THE OCCURRENCES OF CHARACTERS IN A SENTENCE

Computers are ideally suited to taking a large amount of data and summarizing it,
e.g., as gross statistics.

Problem13.7: Givenastrings, printinalphabetical order each character that appears
in s, and the number of times that it appears. For example, if s =“bcdacebe”, output
“(a, 1), (b, 2), (¢, 2),(d, 1), (e, 2)". pg. 297

13.8 UNIQUE ELEMENTS

Suppose you are given a set of names and your job is to produce a set of unique first
names. If you just remove the last name from all the names, you may have some
duplicate first names. Creating a set of first names that has each name occurring only
once amounts to the following.

Problem 13.8: Design an efficient algorithm for removing all the duplicates from an
array. pg. 298

ElementsOfProgrammingInterviews.com

13.9. Tusk assignment (&) , 101

13.9 Task AsSIGNMENT (&)

We consider the problem of scheduling n = 2m tasks to be performed by m workers.
Each worker must be assigned exactly two tasks. Each task has a duration. Tasks
are independent, i.e., there are no constraints of the form “Task 4 cannot start before
Task 3 is completed.” We want to assign tasks to workers so as to minimize how long
it takes before all tasks are completed.

Formally, let A be an array of positive numbers of length n = 2m, i.e., n is even,
where A[i] represents the duration of Task i. Define a 2-partition IT of A to be a
partition ITof {0,1,...,n — 1} into % subsets, Py, Py, ..., Pyq each with two elements.

Define Q(IT) to be max ;' (L cz, Ale]).

Problem 13.9: Design an efficient algorithm that takes as input an array A of even
length and computes a 2-partition of A that has minimum Q(IT). pg. 298 -

13.10 RENDERING A CALENDAR

Consider the problem of designing an online calendaring application. One compo-
nent of the design is to render the calendar, i.e., display it visually.

Suppose each day consists of a number of events, where an event is specified
as a start time and a finish time. Individual events for a day are to be rendered as
non-overlapping rectangular regions whose sides are parallel to the x- and y-axes.
Let the x-axis correspond to time. If an event starts at time b and ends at time g, the
upper and lower sides of its corresponding rectangle must be at b and ¢, respectively.
Figure 13.2 represents a set of events.

Suppose the y-coordinates for each day’s events must lie between 0 and L (a pre-
specified constant), and the rectangle for each event has the same “height”, which is
the distance between the sides parallel to the x-axis is fixed. Your task is to compute
the maximum height an event rectangle can have. In essence, this is equivalent to
the following problem.

E8 E9
= ; —]
r E5 1 Eg E7

[E1l 1 E E2 } E E3 } Fﬁ‘}

0123456?891011121314151617-:

Figure 13.2: A set of nine events. The earliest starting event begins at time 1; the latest ending event
ends at time 17. The maximum number of concurrent events is 3, e.g., {E1, E5, E8} as well as others,

Problem 13.10: Given a set of events, how would you determine the maximum
number of events that take place concurrently? rg. 299

ElementsOfProgrammingInterviews.com

102 ' 13.11. Union of intervals

13.11 UnionN OF INTERVALS

In this problem we consider sets of intervals with integer endpoints; the intervals
may be open or closed at either end. We want to compute the union of the intervals
in such sets. A concrete example is given in Figure 13.3.

Union of intervals
Y (511 pean
! . -
[2,4) [8,11) (13,13) (16,17}
P] *—0 O— o—0
w1 34 7.8 (12,15]
L] —0 *—0
©,3) 157 ®11) (12,14)
—0 - —s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 =

Figure 13.3: A set of intervals and their union.

Problem 13.11: Design an algorithm that takes as input a set of intervals I, and
outputs the union of the intervals. What is the time complexity of your algorithm as
a function of the number of intervals? pg. 300

13.12 TPOINTS COVERING INTERVALS

Consider an engineer responsible for a number of tasks on the factory floor. Each
task starts at a fixed time and ends at a fixed time. The engineer wants to visit the
floor to check on the tasks. Your job is to help him minimize the number of visits
he makes. In each visit, he can check on all the tasks taking place at the time of the
visit. A visit takes place at a fixed time, and he can only check on tasks taking place
at exactly that time.

Problem 13.12: You are given a set of n tasks modeled as closed intervals [a;, b;], for
i=0,...,n—1. Aset§ of visit times covers the tasks if [a;, b;]NS # @, fori =0,...,n-1.
Design an efficient algorithm for finding a minimum cardinality set of visit times that
covers all the tasks. pg. 302

13.13 RAyS COVERING ARCS

Let’s say you are responsible for the security of a castle. The castle has a circular
perimeter. A total of n robots patrol the perimeter—each robot is responsible for a
closed connected subset of the perimeter, i.e., an arc. (The arcs for different robots
may overlap.) You want fo monitor the robots by installing cameras at the center of
the castle that look out to the perimeter. Each camera can look along a ray. To save
cost, you would like to minimize the number of cameras. See Figure 13.4 on the next
page for an example.

Problem 13.13: Let [0, ¢], fori=0,...,n—1ben arcs, where the i-th arc is the set of
points on the perimeter of the unit circle that subtend an angle in the interval [6;, ¢;]

ElementsOfProgrammingInterviews.com

13.14. The 3-sum problem (&) B 103

Figure 13.4: An instance of the minimum ray covering problem, with 12 partially overlapping arcs. Arcs
have been drawn at different distances for illustration. For this instance, six cameras are sufficient,
corresponding to the six rays.

at the center. A ray is a set of points that all subtend the same angle to the origin, and
is identified by the angle they make relative to the x-axis. A set R of rays “covers”
the arcs if [0, ¢;]NR # @, fori = 0,...,n— 1. Design an efficient algorithm for finding
a minimum cardinality set of rays that covers all arcs. . ps. 303

13.14 Tue 3-suMm prOBLEM (&)

Let Abe an array of n numbers. Let t be a number, and kbe an integer in [1, n]. Define
A to k-create ¢ iff there exists k indices iy, 11, ., Ix-1 (not necessarily distinct) such that

2 j=0 A[i;] =t
Problem 13.14: Design an algorithm that takes as input an array A and a number £,
and determines if A 3-creates f. pg. 303

13.15 Pancake sorTING (@)

Suppose you are given an array A of 7 integers. “Flipping” A at k reverses the sub-
array Alk : n - 1]. Suppose the only way you can move elements in an array is by
flipping. (This restriction is appropriate, for example, when sorting a stack of pan-
cakes of different sizes on a griddle by repeatedly inserting a spatula at appropriate
locations and flipping, as shown in Figure 13.5.)

(a) ®)

Figure 13.5: Example of a flip. The spatula is inserted in the middle of the stack of pancakes, as shown
on the left, and the flip results in the configuration on the right.

Problem 13.15: Develop an algonthm for computmg a short sequence of flips that
- will sort an array A. pg. 304

ElementsOfProgrammingInterviews.com

CHAPTER

Binary Search Trees

The number of trees which can be formed with

n+ 1 given knots &, B,y,... = (n+ 1)"1,
— “A Theorem on Trees,”
A. CayLry, 1889

Adding and deleting elements to an array is computationally expensive, particularly
when the array needs to stay sorted. BSTs are similar fo arrays in that the keys are in
a sorted order. However, unlike arrays, elements can be added to and deleted from
a BST efficiently. BSTs require more space than arrays since each node stores two
pointers, one for each child, in addition to the key.

A BST is a binary tree as defined in Chapter 9 in which the nodes store keys
drawn from a totally ordered set. The keys stored at nodes have to respect the BST
property—the key stored at a node is greater than or equal to the keys stored at the
nodes of its left subtree and less than or equal to the keys stored in the nodes of its
right subtree. Figure 14.1 on the next page shows a BST whose keys are the first 16
prime numbers.

Key lookup, insertion, and deletion take time proportional to the height of the tree,
which can in worst-case be @(n), if insertions and deletions are naively implemented.
However there are implementations of insert and delete which guarantee the tree
has height @(log). These require storing and updating additional data at the tree
nodes. Red-black trees are an example of balanced BSTs and are widely used in data
structure libraries, e.g., to implement maps in the Standard Template Library (STL).

The BST prototype in C++ is listed as follows:

template <typename T>
class BinarySearchTree {
public:
T data;
shared_ptr<BinarySearchTree<T»>> left, right;

o e G R e

s

14.1 DOES A BINARY TREE SATISFY THE BST PROPERTY?

Problem 14.1: Write a function that takes as input the root of a binary tree whose
nodes have a key field, and returns true iff the tree satisfies the BST property. pg. 305

104

14.2. Successor in a BST 105

Figure 14.1: An example BST,

14.2 Successor N 4 BST

The successor of a node » in a BST is the node s that appears immediately after
in an inorder walk. When all keys are distinct, s holds the smallest key larger than
the key at 7. (The last node in the inorder walk has no successor.) For example, in
Figure 14.1, the successor of Node G (with key 17) is Node A (with key 19).

Problem 14.2: Given a node x, find the successor of x in a BST. Assume that nodes
have parent fields, and the parent field of root points to null. ps. 308

14.3 Upparing A BST (&r)

A BST is a dynamic data structure—in particular, it supports efficient insertions and
deletions of keys. '

Problem 14.3: Design efficient functions for inserting and removing keys in a BST.
Assume that all elements in the BST are unique, and that your insertion method must
preserve this property. You cannot change the contents of any node. What are the
time complexities of your functions? pg. 308

144 SgarcH A BST FOR FIRST OCCURRENCE OF k

Searching for a key in a BST is very similar to binary search in a sorted array. Many
variants of the basic search problem can be posed for BSTs.

Problem 14.4: Given a BST T, write recursive and iterative versions of a function
that takes a BST T, a key k, and returns the node containing k that would appear first
in an inorder walk. If k is absent, return null. For example, when applied to the
BST in Figure 14.2 on the next page, your algorithm should return Node B if k = 108,
Node G if k = 285, and null if k = 143. pg. 311

ElementsOfProgrammingInterviews.com

106 14.5. Search BST for the first key larger than k

Figure 14.2: A BST with duplicate keys.

14.5 SearcH BST FOR THE FIRST KEY LARGER THAN K

BSTs offer more than the ability to search for a key—they can be used to find the
min and max elements, look for the successor or predecessor of a given search key
(which may or may not be presented in the BST), and enumerate the elements in
sorted order.

Problem 14.5: Write a function that takes a BST T and a key k, and returns the
first entry larger than k that would appear in an inorder walk. If k is absent or no
key larger than k is present, return null. For example, when applied to the BST in
Figure 14.1 on the preceding page you should return 29 if k = 23; if k = 32, you
should return null. pg. 312

14.6 Min-rirsT BST

A min-first BST is one in which the minimum key is stored at the root; each key in
the left subtree is less than every key in the right subtree. The subtrees themselves
are min-first BSTs. See Figure 14.3 for an example.

Figure 14.3: A min-first BST.

Problem 14.6: Write a function that takes a min-first BST T and a key k, and returns
true iff T contains k. pg. 313

ElementsOfProgrammingInterviews.com

14.7. Building a BST from a sorted array 107

14.7 BuiLping A BST rFROM A SORTED ARRAY

Let A be a sorted array of # numbers. A super-exponential number of BSTs can be
built on the elements of A: -1 (%) to be precise. Some of these trees are skewed, and

are closer to lists; others are more balanced.

Problem 14.7: How would you build a BST of minimum possible height from a
sorted array A? pg. 314

14.8 Buirp A BST FROM A SORTED LINKED LIST (&)

Problem 14.8: Let L be a singly linked list of numbers, sorted in ascending order.
Design an efficient algorithm that takes as input L, and builds a height-balanced BST
on the entries in L. Your algorithm should run in O(n) time, where # is the number
of nodes in L. You cannot use dynamic memory allocation—reuse the nodes of L for
the BST. You can update pointer fields, but cannot change node contents. pg. 314

14.9 Convert A BST T0 SORTED DOUBLY LINKED LIST (&)

A BST has two pointers, leftand right. A doubly linked list has two pointers, previous
and next. If we interpret the BST’s left pointer as previous and the BST’s right pointer
as next, a BST’s node can be used as a node in a doubly linked list. Also, the inorder
traversal of a BST represents an ordered set just like a doubly linked list. Hence it
is possible to take a BST and rewrite its node pointers so that it represents a doubly
linked list such that the resulting list represents inorder traversal sequence of the
tree,

ox1840] 3 | _ ox1430

axzoS};-\ 0x2466(5 |

(a) A BST of five nodes—edges that do not terminate in nodes
denote empty subtrees. The number in hex adjacent to each node
represents its address in memory.

BR2856 @x1848 Bx2466 gx1800 Bx1438

(b) The sorted doubly linked list corresponding to the BST in (a). Note how the tree nodes have
been used for the list nodes,

Figure 14.4: BST to sorted doubly linked list.

ElementsOfProgrammingInterviews.com

108 14.10. Merge two BSTs (@)

Problem 14.9: Design an algorithm that takes as input a BST B and returns a sorted
doubly linked list on the same elements. Your algorithm should not allocate any new
nodes. The original BST does not have to be preserved; use its nodes as the nodes of
the resulting list, as shown in Figure 14.4 on the preceding page. pg. 315

14.10 Merce Two BSTs (@r)

1f A and B are BSTs, it is straightforward to create a BST containing the union of their
keys: traverse one, and insert its keys into the other. Many other constructions are
possible; see Figure 14.5 for an example.

If both BSTs are balanced and the insertion preserves balance, the time complexity
is O(nlog n), where # is the total number of nodes in A and B.

§x 1840 ﬂ

Ox4128

§32050)

#2466

©r370% 8x3810 012598

(b) Merged BST corresponding to the two BSTs in (a).

Figure 14.5: Example of merging two BSTs.

Problem 14.10: Let A and B be BSTs. Design an algorithm that merges them in O(n)
time. You cannot use dynamic allocation. You do not need to preserve the original
trees. You can update pointer fields, but cannot change the key stored in a node.

pg. 316

14.11 FinD THE k LARGEST ELEMENTS IN A BST

A BST is a sorted data structure, which suggests that it should be possible to find the
k largest keys easily.

Problem 14.11: Given the root of a BST and an integer k, design a function that finds
the k largest elements in this BST. For example, if the input to your function is the
BST in Figure 14.1 on Page 105 and k = 3, your function should return (53, 47, 43).

pg. 317

ElementsOfProgrammingInterviews.com

14.12. Traversal orders in a BST 109

14.12 TrAVERSAL ORDERS IN A BST

As discussed in Problem 9.7 on Page 77 there are many different binary trees that
yield the same sequence of visited nodes in an inorder order traversal; the same is
true for a preorder traversal, and a postorder traversal. For a binary tree, given an
inorder traversal and any of the other two traversal orders, there exists a unique
binary tree that yields those orders. However, if a binary tree satisfies the BST
property, the added constraints make it possible to reconstruct the tree with less
traversal information.

Problem 14.12: Which traversal orders—inorder, preorder, and postorder—of a BST
can be used to reconstruct the BST uniquely? Write a program that takes as input a
sequence of node keys and computes the corresponding BST. Assume that all keys
are unique. pg. 318

14.13 LOWEST COMMON ANCESTOR IN A BST

Since a BST is a specialized binary tree, the notion of lowest common ancestor, as
expressed in Problem 9.12 on Page 78, holds for BST nodes too.

In general, computing the LCA of two nodes in a BST is no easier than computing
the LCA in a binary tree, since any binary tree can be viewed as a BST where all the
keys are equal. However, when the keys are distinct, it is possible to improve on the
LCA algorithms for binary trees.

Problem 14.13: Design an algorithm that takes a BST T of size n and height k, nodes
s and b, and returns the LCA of s and b. Assume s.key < b.key. For example, in
Figure 14.1 on Page 105, if s is node C and b is node G, your algorithm should return
node B. Your algorithm should run in O(h) time and O(1) space. Nodes do not have
pointers to their parents. vg. 320

14.14 DESCENDANT AND ANCESTOR

Problem 14.14: Let 7, s, and m be distinct nodes in a BST. In this BST, nodes do
not have pointers to their parents and all keys are unique. Write a function which
returns true if 7 has both an-ancestor and a descendant in the set {#, s}. For example,
in Figure 14.1 on Page 105, if m is Node J, your function should return true if the
given set is {4, K} and return false if the given set is {I, P}. pg. 321

14.15 NEAREST RESTAURANT

Consider the problem of developing a web-service that takes a geographical location,
and returns the nearest restaurant. The service starts with a set S of n restaurant
locations—each location is a pair of x, y-coordinates. A query consists of a location,
and should return the nearest restaurant (ties may be broken arbitrarily).

One approach is to build two BSTs on the restaurant locations: Ty sorted on the
x coordinates, and Ty sorted on the y coordinates. A query on location (p, 4) can be
performed by finding all the points P, whose x coordinate is in the range [p— A, p+ A),

ElementsOfProgrammingInterviews.com

110 14.16. Minimize the distance in three sorted arrays

and all the points Qs whose y coordinate is in the range [g - A, g + A], computing
Ra = Py NQ, and finding the point in R, closest to (p, g). Heuristically, if A is chosen
correctly, R, is a small subset of 5, and a brute-force search for the closest point in R,
is fast. Of course, A has to be chosen correctly—one approach is to start with a small
value and keep doubling it until R is nonempty.

This approach performs poorly on pathological data, but works well in practice.
Theoretically better approaches exist, e.g., Quadtrees, which decompose the plane
into regions which are balanced with respect to the number of points they contain, or
k-d trees, which organize points in a k-dimensional space and provide range searches
and nearest neighbor searches efficiently.

Problem 14.15: How would you efficiently perform a range query on a BST? Specif-
ically, write a function that takes as input a BST and a range [L, U] and returns a list
of all the keys that lie in [L, U]? pg. 322

14.16 MINIMIZE THE DISTANCE IN THREE SORTED ARRAYS

Let A, B, and C be sorted arrays of integers. Define distance(i, j, k) = max(JA[i] —
Bl |A[i] - CIK], IB[7] - CIK]D

Problem 14.16: Design an algorithm that takes three sorted arrays A, B, and C and
returns a triple (i, j, k) such that distance(i, j, k) is rm‘nimur_m Your algorithm should
run in O(|A| + |B| + |C|) time. ' ' vg. 323

14.17 MOST VISITED PAGES

You are given a log file containing billions of entries. Each entry contains an integer
timestamp and page which is of type string. The entries in a log file appear in
increasing order of timestamp.

Problem 14.17: You are to implement methods to analyze log file data to find the
most visited pages. Specifically, implement the following methods:

— void add(Entry p)-—add p.page to the set of visited pages. It is guaranteed
that if add(q) is called after add(p) then q.timestamp is greater than or equal
to p.timestamp.

— List<String> common(k)—return a list of the k most common pages.

First solve this problem when common (k) is called exactly once after all pages have
been read. Then solve the problem when calls to common and add are interleaved.
Assume you have unlimited RAM. pg. 325

14.18 MOST VISITED PAGES IN A WINDOW (&)

This problem is a continuation of Problem 14.17. The difference is that only pages
whose timestamps are within a specified duration of the page most recently read are
to be considered.

Problem 14.18: Implement the API in Problem 14.17. If common is called after
processing the i-th entry, common should return the k most visited pages whose

ElementsOfProgrammingInterviews.com

14.19. Gaussian primes (&) 111

timestamp is in [f; — W, ;]. Here #; is the timestamp of the i-th entry and W is specified
by the client before any pages are read and does not change. RAM is limited—in
particular you cannot keep a map containing all pages. Maximize time efficiency
assuming calls to add and common may be interleaved and common is frequently called.

rg. 325

14.19 GaussiaN PrRIMES (8F)

The Gaussian integers are complex numbers of the form a + bi, where @ and b are
integers and i = V—1. The numbers 1,-1, i, and ~i are known as units. A nonzero
Gaussian integer a is called a Gaussian prime if ¢ = gy = fisaunitor y is a unit.
Examples are given in Figure 14.6.

T

@ +50) @+ 5)

® e L]

1+4) 5447

L]

(2 +3i)
L] 2 L] o []

(1 +2i) (3+2i) (5 +2i)

141y e+1) @+1)

S
*

3+0)

Figure 14.6: Gaussian primes with real part in [1,5] and imaginary part in [0,5]. Observe 2 + 0f =
(1 +)(1 — i), so 2 + 0i Is not a Gaussian prime.

Problem 14.19: Write a function that takes a single integer argument n and computes
all the Gaussian integers a + bi, for —n < a,b < n that are Gaussian primes. pg. 326

14.20 View rroM aBOVE (&F)

This is a simplified version of a problem that often comes up in computer graphics.

You are given a set of line segments. Each segment consists of a closed interval
[Li,7;] of the x-axis, a color, and a height. When viewed from above, the color at point
x on the x-axis is the color of the highest segment that includes x. This is illustrated
in Figure 14.7 on the following page.

Problem 14.20: Implement a function that computes the view from above. Your
input is a sequence of line segments, each specified as a 4-tuple (I, 7 ¢, k), where |
and r are the left and right endpoints, respectively, ¢ encodes the color, and h are the
height. The output should be in the same format. No two segments whose intervals
overlap have the same height. ps. 327

ElementsOfProgrammingInterviews.com

112 : ' 14.21. Adding credits

View from above
/\.

- ~
NN e s s s e 1 1 1 1 DRSSl T T—— e s 3 NI}
=
FRHRRRHRR | NN [MIm

R R s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 14.7: Instance of the view from above problem, with patterns used to denote colors.

Augmented BSTs

Thus far we have considered BSTs in which each node stores an entry drawn from
a sorted set, a left child, a right child, and a parent. Adding fields to the nodes can
speed up certain queries, as the following problems illustrate.

14.21 ADDING CREDITS

Consider a server that a large number of clients connect to. Each client is identified by
aunique string. Each client has a certain number of “credits”, which is a nonnegative
integer value. The server needs to maintain a data structure to which clients can be
added, removed, queried, or updated. In addition, the server needs to be able to add
C credits to all clients simultaneously.

Problem 14.21: Design a data structure that implements the following methods:

— insert(s,c), which adds client s with credit ¢, overwriting any existing entry

fors:

— remove(s), which removes client s.

— lookup(s), which returns the number of credits associated with client s, or —1

if s is not present.

— addAll(C), the effect of which is to increment the number of credits for each

client currently present by C,

— max (), which returns the client with the highest number of credits. _
The insert(s,c), remove(s), and lookup(s) methods should run in time O(logn),
where 7 is the number of clients. The remaining methods should run in time O(1).

pg. 330

14.22 COUNTING THE NUMBER OF ENTRIES IN AN INTERVAL

One problem with the approach to the restaurant problem outlined in Problem 14.15
on Page 109 is that the number of entries in P, could be much larger than the number
of entries in Q, or vice versa. We can address this by first computing the number of
entries that lie in a range.

ElementsOfProgrammingInterviews.com

14.23. Querying server logs (&) - 113

Problem 14.22: Suppose each node in a BST has a size field, which denotes the
number of nodes at the subtree rooted at that node, inclusive of the node. How
would you efficiently compute the number of nodes that lie in a given range? Can
the size field be updated efficiently on insert and on delete? pg. 331

..

Consider the problem of analyzing web server logs. The logs contain information on
sessions by individual users, including the time when their session began, and when
it ended.)

14.23 QUERYING SERVER LOGS (

Problem 14.23: Design a data structure that stores closed intervals and can efficiently
return the complete set of intervals that intersect a specified range [L, U]. Your data
structure must also support efficient insertions and deletions. pg. 332

ElementsCfProgrammingInterviews.com

CHAPTER

Meta-algorithms

The important fact to observe is that we have attempted to solve
a maximization problem involving a particular value of x and
a particular value of N by first solving the general problem
involving an arbitrary value of x and an arbitrary value of N.

— "Dynamic Programming,”
R.E. BeLLman, 1957

We now cover three general techniques for algorithm design—divide and conguer,
dynamic programming, and the greedy method. The approaches described previously,
such as mapping a problem into an appropriate data structure, or presorting the
input, are more widely used than the methods in this chapter. However, although
they are specialized, the approaches in this chapter lead to huge efficiency gains
compared to naive algorithms. These techniques are not exhaustive. Inlater chapters
we will discuss algorithms that use randomization, parallelization, backtracking,
heuristic search, reduction, and approximation.

Divide and conquer

A divide and conquer algorithm works by repeatedly decomposing a problem into
two or more smaller independent subproblems of the same kind, until it gets to in-
stances that are simple enough to be solved directly. The solutions to the subproblems
are then combined to give a solution to the original problem.

Merge sort and quicksort are classical examples of divide and conquer. In merge
sort, the array A[0Q : n — 1] is sorted by sorting A[0 : |n/2]] and A[|n/2] +1 : n 1],
and merging them. In quicksort, A[0 : n — 1] is sorted by selecting a pivot element
Alr] and reordering the elements of A to make all elements appearing before A[r]
less than or equal to A[r] and all elements appearing after A[r] greater than or equal
to A[r]. The subarray consisting of elements before A[] and the subarray consisting
of elements after A[r] are sorted, and the resulting array is completely sorted.

Interestingly, the divide step in merge sort is trivial; the challenge is in combining
the results. With quicksort, the opposite is true. Problems 10.1 on Page 80 and 6.1 on
Page 52 illustrate the key computations in merge sort and quicksort.

A divide and conquer algorithm is not always optimum. A minimum spanning
tree (MST) is a minimum weight set of edges in a weighted undirected graph which
connect all vertices in the graph; refer to Problems 16.13 on Page 137 and 17.6 on
Page 141 for details. A natural divide and conquer algorithm for computing the MST

114

15.1. Drawing the skyline (@r) 115

is to partition the vertex set V into two subsets V; and Vs, compute MSTs for V; and
Vs, and then join these two MSTs with an edge of minimum weight between V; and
V,. Figure 15.1 shows how this algorithm can lead to suboptimal results.

(a) A weighted undirected graph. (b) An MST built from the MSTs on (c) An optimum MST.
{a,b,cland {d,e.f}.

Figure 15.1: Divide and conquer applied to the MST problem is suboptimum.

The term divide and conquer is also sometimes applied to algorithms that reduce
a problem to only one subproblem, e.g., binary search. Such algorithms can be imple-
mented more efficiently than general divide and conquer algorithms. In particular,
these algorithms use tail recursion, which can be replaced by a loop. Decrease and
conquer is a more appropriate term for such algorithms.

15.1 DRAWING THE SKYLINE (&)

A number of buildings are visible from a point. Each building is a rectangle, and
the bottom of each building lies on a fixed line. A building is specified using its left
and right coordinates, and its height. One building may partly obstruct another, as
shown in Figure 15.2(a). The skyline is the list of coordinates and corresponding
heights of what is visible.

For example, the skyline corresponding to the buildings in Figure 15.2(a) is given
in Figure 15.2(b). (The patterned rectangles illustrate the largest rectangle under the
skyline problem, which is described in Problem 15.8 on Page 120, and is not relevant
to the current problem.)

b
8
8
s \g N —
§
N

e LT _
(@ (®)

Figure 15.2: Buildings, their skyiine, and the largest contained rectari[e,

Problem 15.1: Design an efficient algorithm for computing the skyline. vg. 332

15.2 COUNTING INVERSIONS (&)

Let A be an array of n numbers. The pair of indices (i, j) is said to be inverted if i < j
and A[1] > A[j].

ElementsOfProgrammingInterviews.com

116 15.3. Nearest points in the plane ()

Problem 15.2: Design an efficient algorithm that takes an array A of n numbers and
returns the number of inverted pairs of indices. pg. 334

15.3 NEAREST POINTS IN THE PLANE (@F)

Suppose you were asked to design a collision warning system for a ship control
system. Specifically, your program receives coordinates for the different ships, and
has to compute the pair of ships that is at greatest risk of collision. Assuming that
the pair with the greatest risk is the pair that is closest, your problem then becomes
the following.

Problem 15.3: You are given alist of pairs of points in the two-dimensional Cartesian
plane. Each point has integer x and y coordinates. How would you find the two
closest points? pg. 335

154 TREE DIAMETER

Packets in Ethernet local area networks (LANs) are routed according to the unique
path in a tree whose nodes correspond to clients and edges correspond to physical
connections between the clients. In this problem, we want to design an algorithm
for finding the “worst-case” route, i.e., the two clients that are furthest apart. In the
abstract, we want to solve the following problem:

Figure 15.3: The diameter for the above tree is 31. The corresponding path is (4, B, C, D, E), which is
depicted by the dashed edges.

Let T'be a tree, where each edge is labeled with a nonnegative real-valued distance.
Define the diameter of T to be the length of a longest path in T. Figure 15.3 illustrates
the diameter concept.

Problem 15.4: Design an efficient algorithm to compute the diameter of a tree.
pg. 337

ElementsOfProgrammingInterviews.com

15.4. Tree diameter 117

Dynamic programming

DP is a general technique for solving complex optimization problems that can be
decomposed into overlapping subproblems. Like divide and conquer, we solve the
problem by combining the solutions of multiple smaller problems but what makes
DP different is that the subproblems may not be independent. A key to making
DP efficient is reusing the results of intermediate computations. (The word “pro-
gramming” in dynamic programming does not refer to computer programming—the
word was chosen by Richard Bellman to describe a program in the sense of a sched-
ule.) Problems which are naturally solved using DP are a popular choice for hard
interview questions. '

To illustrate the idea underlying DP, consider the problem of computing Fibonacci
numbers defined by F, = F,_1 +F,, Fy = 0and F; = 1. A function to compute F, that
recursively invokes itself to compute F,_; and F,_; would have a time complexity
that is exponential in n. However if we make the observation that recursion leads to
computing F; for i € [0, n~1] repeatedly, we can save the computation time by storing
these results and reusing them. This makes the time complexity linear in n, albeit at
the expense of O(n) storage. Note that the recursive implementation requires O(n)
storage too, though on the stack rather than the heap and that the function is not tail
recursive since the last operation performed is + and not a recursive call. -

The key to solving any DP problem efficiently is finding the right way to break
the problem into subproblems such that

~ the bigger problem can be solved relatively easily once solutions to all the

subproblems are available, and

— you need to solve as few subproblems as possible.

In some cases, this may require solving a slightly different optimization problem
than the original problem. For example, consider the following problem: given an
array of integers A of length #, find the interval indices 2 and b such that Y'2_, A[i]
is maximized. As a concrete example, the interval corresponding to the maximum
subarray sum for the array in Figure 15.4 is [0, 3].

904 40 523 12 | -335 | -385 | -124 | 481 | -31

Afo] Al A[2] A[B] A4 A[5] All A7) AlS]

Figure 15.4: An array with a maximum subarray sum of 1479.

The brute-force algorithm, which computes each subarray sum, has O(n®) time
complexity—there are @ subarrays, and each subarray sum can be computed in
O(n) time. The brute-force algorithm can be improved to O(#?) by first computing
sums S[i] for subarrays A[0 : i] for each i < n; the sum of subarray A[i : j] is
S[j]1 - S[i — 1], where S[-1] is taken to be Q.

Here is a natural divide and conquer algorithm. We solve the problem for the
subarrays L = A[0 : [$]] and R = A[| 5]+ 1: n—1]. In addition to the answers for
each, we also return the maximum subarray sum for any subarray ending at |L|-1 for

ElementsOfProgrammingInterviews.com

118 15.5. Maximum subarray sum in a circular array (&)

L (call this value [) and starting at 0 for R (call this value r). The maximum subarray
sum for A is the maximum of] + 7, the answer for L, and the answer for R. The time
complexity analysis is similar to that for quicksort, which leads to a O(n log).

- Now we will solve this problem by using DP. A natural thought is to assume we
have the solution for the subarray A[0 : n — 2]. However, even if we knew the largest
sum subarray for subarray A[0 : n — 2], it does not help us solve the problem for
Al0:n—1]. A better approach is to iterate through the array. For each index j, the
maximum subarray ending at j is equal to S[j] — min; S[{]. During the iteration,
we cache the minimum subarray sum we have visited and compute the maximum
subarray for each index. The time spent per index is constant, leading to an ®(n)
time and O(1) space solution. Following is the code in C++:

template <typename T>
pair<int, int> find_maximum_subarray(const vector<T> &n) {
// Alrange.first : range.second - 1] will be the maximum subarray
pair<int, int> range(8, 0);
int min_idx = -1;
T min_sum = @, sum = 0, max_sum = numeric_limits<T>::min();
for (int i = @; 1 < A.size(); ++i) {
sum += A[i];
if (sum < min_sum) {
min_sum = sum, min_idx = i;
1
if (sum - min_sum > max_sum) {
max_sum = sum - min_sum, range = {min_idx + 1, i + 1};
1
}
return range;

Here are two variants of the subarray maximization problem that can be solved
with ideas that are similar to the above approach: find indices 2 and b such that
Z?znA[z'] is—(1.) closest to 0 and (2.) closest to t. (Both entail some sorting, which
increases the time complexity to O(nlogn).) Another good variant is finding indices
2 and b such that J]2, A[i] is maximum when the array contains both positive and
negative integers.

A common mistake in solving DP problems is trying to think of the recursive case
by splitting the problem into two equal halves, a la quicksort, i.e., somehow solve the
subproblems for subarrays A[0: | §]] and A[|]+ 1: n] and combine the results.

A common mistake in solving DP problems is trying to think of the recursive case
by splitting the problem into two equal halves, 2 la quicksort, i.e., somehow solve
the subproblems for subarrays A[0 : [3]1and A[LF]+1: n] and combine the results.
However in most cases, these two subproblems are not sufficient to solve the original
problem.

15.5 MAXIMUM SUBARRAY SUM IN A CIRCULAR ARRAY (&)

Finding the maximum subarray sum in an array can be solved in linear time, as
described on the previous page. However, if the given array A is circular, which

ElementsOfProgrammingInterviews.com

15.6. Longest nondecreasing subsequence (&) 119

means the first and last elements of the array are to be treated as being adjacent to
each other, the algorithm yields suboptimum solutions. For example, if A is the array
in Figure 15.4 on Page 117, the maximum subarray sum starts at index 7 and ends
at index 3, but the algorithm described on the preceding page returns the subarray
from index 0 to index 3.

Problem 15.5: Given a circular array A, compute its maximum subarray sum in O(n)
time, where 7 is the length of A. Can you devise an algorithm that takes O(n) time
and O(1) space? pg. 339

15.6 LONGEST NONDECREASING SUBSEQUENCE (&)

The problem of finding the longest nondecreasing subsequence in a sequence of inte-
gers has implications to many disciplines, including string matching and analyzing
card games. As a concrete instance, the length of a longest nondecreasing subse-
quence for the array A in Figure 15.5 is 4. There are multiple longest nondecreasing
subsequences, e.g., (0,4,10,14) and (0, 2,6, 9).

0 8 4 12 2 10 6 14 1 9

Al0] Al A2l AlB] A4l AlS] Alel Al7] A8 A[9]

Figure 15.5: An array whose longest nondecreasing subsequences are of length 4.

Problem 15.6: Givenanarray A of nnumbers, find a longest subsequence {iy, ..., i-1)
such that i; < i; and A[i;] < Alij;1] for any j € [0,k - 2]. pg. 340

15.7 LONGEST SUBARRAY WHOSE sUM < k (@F)

Here we consider finding the longest subarray subject to a constraint on the subarray
sum. For example, for the array in Figure 15.6, the longest subarray whose subarray
sum is no more than 184 is A[3 : 6].

’431- -15 | 639 | 342 | -14 | 565 | -924 | 635 | 167 | -70

Alo] Af) AlZl A[B] A4l A[B] Ale) A[7] AIB] A[9]

Figure 15.6: An array for the longest subarray whose sum < _k problem.

Problem 15.7: Design an algorithm that takes as input an array A of n numbers and
a key k, and returns a longest subarray of A for which the subarray sum is less than
or equal to k. pg. 342

ElementsQfProgrammingInterviews.com

120 15.8. Largest rectangle under the skyline ()

15.8 LARGEST RECTANGLE UNDER THE SKYLINE (@F)

You are given a sequence of adjacent buildings. Each has unit width and an integer
height. These buildings form the skyline of a city. An architect wants to know the
area of a largest rectangle contained in this skyline. For example, for the skyline
in Figure 15.2(b) on Page 115, the largest rectangle is the brick-patterned one. Note
that it is not the contained rectangle with maximum height (which is denoted by
the vertical-patterning), or the maximum width (which is denoted by the slant-
patterning).

Problem 15.8: Let A be an array of n numbers encoding the heights of adjacent
buildings of unit width. Design an algorithm to compute the area of the largest
rectangle contained in this skyline, ie., compute maxi;((j — i + 1) X min]_ A[k]).

r8. 344

15.9 Maximum 2D suBarray (@F)
The following problem has applications to image processing.

Problem 15.9: Let A be an n X m Boolean 2D array. Design efficient algorithms for
the following two problems:

— What is the largest 2D subarray containing only 1s?

— What is the largest square 2D subarray containing only 1s?
What are the time and space complexities of your algorithms as a function of n and
m? 8. 345

15.10 SEARCHING FOR A SEQUENCE IN A 2D ARRAY

Let A be a 2D array of integers, and S a 1D array of integers. We say S occurs in
A if you can start from some entry in A and traverse adjacent entries in A in the
order prescribed by S till you get to the end of S. The entries adjacent to Ali][] are
Ali = 1][51, Ali + 1][71, ALil[j — 1], and A[#}[j + 1], assuming the indices are valid. It is
acceptable to visit an entry in A more than once.

For example, if '

1 2 3
A=1]3 4 5
5 6 7
and S; = (1,3,4,6), then 5; occurs in A-—consider the entries

{A[0][0], A[1][0], A[1][1], A[2][1]}. However S; = (1,2, 3,4) does not occur in A.

Problem 15.10: Design an algorithm that takes as arguments a 2D array A and a 1D
array S, and determines whether S appears in A. If S appears in A, print the sequence
of entries where it appears. pg. 348

15.11 LEVENSHTEIN DISTANCES

Spell checkers make suggestions for misspelled words. Given a misspelled string s,
a spell checker should return words in the dictionary which are close to s.

ElementsOfProgrammingInterviews. com

15.12. Word breaking 121

In 1965, Vladimir Levenshtein defined the distance between two words as the
minimum number of “edits” it would take to transform the misspelled word into a
correct word, where a single edit is the insertion, deletion, or substitution of a single
character.

Problem 15.11: Given two strings, represented as arrays of characters A and B,
compute the minimum number of edits needed to transform the first string into the
second string. pg. 349

15.12 WORD BREAKING

Suppose you are designing a search engine. Iri addition to getting keywords from
a page’s content, you would like to get keywords from Uniform Resource Locators
(URLs). For example, bedbathandbeyond.com should be associated with “bed bath
and beyond” (in this version of the problem we also allow “bed bat hand beyond”
to be associated with it).

Problem 15.12: Given a dictionary and a string s, design an efficient algorithm that
checks whether s is the concatenation of a sequence of dictionary words. If such a
concatenation exists, your algorithm should output it. rg. 351

15.13 PRETTY PRINTING

Consider the problem of laying out text using a fixed width font. Each line can hold
no more than L characters. Words on a line are to be separated by exactly one blank.
Therefore we may be left with white space at the end of a line (since the next word
will not it in the remaining space). This white space is visually unappealing.

Define the messiness of the end-of-line whitespace as follows. The messiness of a
line ending with b blank characters is 2°. The total messiness of a sequence of lines is
the sum of the messinesses of all the lines. A sequence of words can be split across
lines in different ways with different messiness, as illustrated in Figure 15.7.

I have inserted a large number of_.. I have inserted a large number. ...
new examples from the papers for the of new examples from the papers.coou
Mathematical Tripos during the last. for the Mathematical Tripos during..
twenty years, which should be useful the last twenty years, which should.
to Cambridge students. e be useful to Cambridge students..ooo

(a) Messiness =22 +20 421 +20 +- 214 = 16396. (b) Messiness =25 +2° + 22 + 2! + 2¢ = 118.

Figure 15.7: Two layouts for the same sequence of words; the line length L is 36.

Problem 15.13: Given text, i.e., a string of words separated by single blanks, decom-
pose the text into lines such that no word is split across lines and the messiness of
the decomposition is minimized. Each line can hold no more than L characters. How
would you change your algorithm if the messiness is the sum of the messinesses of
all but the last line? pg. 352

ElementsOfProgrammingInterviews.com

122 15.14. Computing the binomial coefficients

15.14 COMPUTING THE BINOMIAL COEFFICIENTS

The symbol (%) is short form for %L(::—i))—((%% It is the number of ways to choose a
k-element subset from an n-element set.

It is not obvious that the expression defining (7) always yields an integer. Further-
more, direct computation of (}) from this expression quickly results in the numerator
or denominator overflowing if integer types are used, even if the final result fits in a

32-bit integer. If floats are used, the expression may not yield a 32-bit integer.

Problem 15.14: Design an efficient algorithm for computing (7) which has the prop-
erty that it never overflows if () can be represented as a 32-bit integer; assume n and
k are integers. pg. 353

15.15 SCORE COMBINATIONS

In an American football game, a play can lead to 2 points (safety), 3 points (field
goal), or 7 points (touchdown). Given the final score of a game, we want to compute
how many different combinations of 2, 3, and 7 point plays could make up this score.

For example, if W = {2,3, 7}, four combinations of plays yield a score of 12:

— 6 safeties (2x 6 =12),

— 3 safeties and 2 field goals (2 X3 +3x2=12), _

— 1 safety, 1 field goal and 1 touchdown (2 X1 +3 X 1+7x1=12), and

— 4 field goals (3 x 4 = 12).

Problem 15.15: You have an aggregate score s and W which specifies the points that
canbe scored in an individual play. How would you find the number of combinations
of plays that result in an aggregate score of s? How would you compute the number
of distinct sequences of individual plays that result in a score of s7 - pg. 354

15.16 NUMBER OF WAYS

Suppose you start at the top-left corner of an 7 X m 2D array A and want to get to the
bottom-right corner. The only way you can move is by either going right or going
down. Three legal paths for a 5 % 5 2D array are given in Figure 15.8,

1
o

’T
s

Figure 15.8: Paths through a 2D array.

Problem 15.16: How many ways can you go from the top-left to the bottom-right
inan n x m 2D array? How would you count the number of ways in the presence
of obstacles, specified by an n X i Boolean 2D array B, where a true represents an
obstacle. psg. 356

ElementsOfProgrammingInterviews.com

15,17, Planning a fishing trip 123

15.17 PLANNING A FISHING TRIP

A fisherman is in a rectangular sea. The value of the fish at point (i, j) in the sea is
specified by an # x m 2D array A.

— [o
- B -] @ e e | & oo
f
[o ~ ~ | @ ~ ~ o= ~
i
@ | 4 | owe o~ o | | e o~ o | & | e -~
Y

Figure 15.9: Alternate paths for a fisherman. Different types of fish have different values, which are
known to the fisherman.

Problem 15.17: Write a program that computes the maximum value of fish a fisher-
man can catch on a path from the upper leftmost point to the lower rightmost point.
The fisherman can only move down or right, as illustrated in Figure 15.9. pg. 357

15.18 PICKING UP COINS, MAXIMUM GAIN

In the pick-up-coins game, an even number of coins are placed in a line, as in
Figure 4.6 on Page 44. Two players, F and S, take turns at choosing one coin each—
they can only choose from the two coins at the ends of the line. Player F goes first.
The game ends when all the coins have been picked up. The player whose coins
have the higher total value wins. A player cannot pass his turn.

Problem 15.18: Design an efficient algorithm for computing the maximum margin
of victory for the starting player in the pick-up-coins game. vg. 357

15.19 VOLTAGE SELECTION IN A LOGIC CIRCUIT (&)

A logic circuit is an ensemble of logic gates operating on a set of external inputs. The
gates implement basic Boolean operations such as AND, OR and NOT. Formally, a
logic circuit can be modeled as a directed acyclic graph (DAG)—the external inputs
are the sources of the DAG and gates are the remaining nodes.

In this problem we consider the special case where the DAG is a rooted tree. Each
node can use either a high voltage or a low voltage. A low voltage node consumes
less power, but has a weaker signal. It is a design constraint that a low voltage node
should never be input to another low voltage node. Let ¢, be the number of children.
The power used by a low voltage node is ¢, + 1; the power used by a high voltage
node is 2(c, + 1).

Figure 15.10 on the next page shows three voltage assignments for the same logic
circuit. All assignments satisfy the design constraint. Figure 15.10(a) on the following
page proceeds greedily in a bottom up fashion, assigning leaves to L. Figure 15.10(b)

ElementsOfProgrammingInterviews.com

124 15.20. Immage compression (Gr)

proceeds greedily in a top-down fashion, assigning the root to H, its children to L,
and continuing downwards. Figure 15.10(c) is the optimal assignment.

(a) Power = 142x3+1+2x3+41 = (b) Power=2x1+3+2X 14 (c) Power=1+2x3+1+3+2X1 =
15 2x3+1=14 13

Figure 15.10: The node labels L or H indicating a high or low voltage node, respectively.

Problem 15.19: Design an algorithm for minimizing power that takes as input a
rooted tree and assigns each node to a low or high voltage, subject to the design
constraint. pg. 359

15.20 Imace comrressioN (&)

Suppose a rectangular black-and-white image is formally represented by an m X n
Boolean 2D array P. Intuitively, if large contiguous regions of the image all have the
same color, the array representation is suboptimum from the perspective of memory
usage.

A two-dimensional tree is a data structure that can be used to represent a parti-
tion of a rectangle into subrectangles. Formally, a two-dimensional tree is either a ~
monochromatic rectangle, or consists of a root node r, the lower leftmost and upper
rightmost points (g, b) and (c, d) of the corresponding rectangle, a splitting point (s, £),
and an ordered list of four two-dimensional trees SW, NW, NE, and SE representing
2D subarrays Pla:s—-1,b:t-1],Pla:s—1,t:d],Pls:¢,f:d],and P[s: ¢,b: t — 1],
respectively.

Problem 15.20: Implement cutpoint selection to minimize the number of nodes in
the two-dimensional tree representing an image. pg. 359

The greedy method

As described on Page 32, the greedy method is an algorithm design pattern which
results in an algorithm that computes a solution in steps. At each step the algorithm
makes a decision that is locally optimum, and never changes that decision.

- The example on Page 32 illustrates how different greedy algorithms for the
same problem can differ in terms of optimality. As another example, consider
making change for 48 pence in the old British currency where the coins came in
30,24,12, 6,3, and 1 pence denominations. Suppose our goal is to make change us-
ing the smallest number of coins. The natural greedy algorithm iteratively chooses
the largest denomination coin that is less than or equal to the amount of change that

ElementsOfProgrammingInterviews.com

15.21. Minimize waiting time (&) 125

remains to be made. If we try this for 48 pence, we get three coins—30 + 12 + 6.
However the optimum answer would be two coins—24 + 24.

In its most general form, the coin changing problem is NP-hard (Chapter 17) but
for some coinages, the greedy algorithm is optimum—e.g., if the denominations are
of the form {1,7,#%,7*}. (An ad hoc argument can be applied to show that the greedy
algorithm is also optimum for US coinage.) The general problem can be solved in
pseudo-polynomial time using DP in a manner similar to Problem 17.2 on Page 139.

As another example of how greedy reasoning can fail, consider the following
problem: Four travelers need to cross a river as quickly as possible in a small boat.
Only two people can cross at one time. The speed to cross the river is dictated by
the slower person in the boat (if there is just one person, that is his speed). The
four travelers have times of 5, 10, 20, and 25 minutes. The greedy schedule would
entail having the two fastest travelers cross initially (10), with the fastest returning
(5), picking up the faster of the two remaining and crossing again (20), and with
the fastest returning for the slowest traveler (5 + 25). The total time taken would
be 10 + 5 + 20 + 5 + 25 = 65 minutes. However, a better approach would be for the
fastest two to cross (10), with the faster traveler returning (5), and then having the
two slowest travelers cross (25), with the second fastest returning (10) to pick up the
fastest traveler (10). The total time for this schedule is 10 + 5 + 25 + 10 + 10 = 60
minutes.

15.21 MINIMIZE WAITING TIME (&F)

A database has to respond to n simultaneous client SQL queries. The service time
required for Query i, where 1 < i < n, equals #; milliseconds and is known in advance.
The query lookups are processed by the database one at a time, but can be done in
any order. It is natural to minimize the total waiting time Y.1, T;, where T; is the time
at which processing for Query i begins. For example, if the lookups are done in order
of increasing i, then the waiting time for the i-th query is T; =):;;i t; milliseconds.

Problem 15.21: Given n queries, compute an order in which to process queries that
minimizes the total waiting time. pg. 362

15.22 ScHEDULING TUTORS

You are the coordinator of a tutoring service. Each day you receive requests for
lessons. Each lesson has a specified start time between 9:00 a.m. and 5:00 p.m. and
lasts exactly 30 minutes. You have access to an unlimited number of tutors. Tutors
can start work at any time, but must stop tutoring for the day at most two hours after
starting. A tutor can conduct only one lesson at a time.

Problem 15.22: Design analgorithm that computes the least number of tutors needed
to schedule a set of requests. pg. 362

ElementsOfProgrammingInterviews.com

176 15.23. Job assignment @

15.23 JoB assiGNMENT (@F)

We have m tasks and n servers. Task i consists of T[i] jobs, where a job is a unit of
work. There are no dependencies between jobs in a task. Server j can execute S[j]
units of work in a unit time. Each T[i] and SJ[j] is a positive integer. We want to
find an assignment of jobs to servers subject to the constraint that no server should
receive more than one job from a single task.

Problem 15.23: Design an algorithm that takes as input a pair of arrays specifying
jobs per task and server capacities, and returns an assignment of jobs to servers for
which all tasks complete within one unit time. No server may process more than one
job for a given task. If no such assignment exists, your algorithm should indicate
that. pg- 363

15.24 LoaDp BALANCING (@F)

Suppose you want to build a large distributed storage system on the web. Millions
of users will store terabytes of data on your servers. One way to design the system
would be to compute a hash code for each user’s login ID, partition the hash codes
across equal-sized buckets, and store the data for each bucket of users on one server.
For this scheme, mapping a user to his server entails evaluating a hash function.

However if a small number of users occupy a large fraction of the storage space,
this scheme will not achieve a balanced partition. One way to solve this problem is
to use a nonuniform partitioning.

Problem 15.24: You have n users with unique hash codes kg through #,.;, and m
servers. The hash codes are ordered by index, i.e., b < hyy fori € [0,n —2]. User i
requires b; bytes of storage. The values ko < ky < -+ < k. are used to assign users
to servers. Specifically, the user with hash code ¢ gets assigned to the server with the
lowest ID i such that ¢ < k;, or to server m — 1 if no such 7 exists. The load on a server
is the sum of the bytes of storage of all users assigned to that server. Compute values
for ko, k1, ..., k-1 that minimizes the load on the most heavily loaded server. pg. 365

15.25 Pacxing ror USPS prioriTY MaL (&)

The United States Postal Services (USPS) makes fixed-size mail shipping boxes—you
pay a fixed price for a given box and can ship anything you want that fits in the box.
Suppose you have a set of n items that you need to ship and have a large supply of
the 4 x 12 X 8 inch priority mail shipping boxes. Each item will fit in such a box but
all of them combined will take multiple boxes. Naturally, you want to minimize the
number of boxes you use.

The first-fit heuristic is a greedy algorithm for the packing problem—it maintains
a sequence of boxes, and processes items to pack in the sequence in which they are
given. Items are placed in the first box in which they fit.

Problem 15.25: Implement first-fit to run in O(n log n) time. pg. 366

ElementsOfProgrammingInterviews.com

15.26. Huffman coding (&) i 127

15.26 HurrmaN coDING (E57)

One way to compress a large text is by building a code book which maps each
character to a bit string, referred to as its code word. Compression consists of
concatenating the bit strings for each character to form a bit string for the entire text.

When decompressing the string, we read bits until we find a string that is in
the code book and then repeat this process until the entire text is decoded. For the
compression fo be reversible, it is sufficient that the code words have the property
that no code word is a prefix of another. For example, 011 is a prefix of 0110 but not
a prefix of 1100.

Since our objective is to compress the text, we would like to assign the shorter
strings to more common characters and the longer strings to less common charac-
ters. We will restrict our attention to individual characters. (We may achieve better
compression if we examine common sequences of characters, but this increases the
time complexity.)

The intuitive notion of commonness is formalized by the frequency of a character
which is a number between zero and one. The sum of the frequencies of all the
characters is 1. The average code length is defined to be the sum of the product of
the length of each character’s code word with that character’s frequency. Table 15.1

‘shows the large variation in the frequencies of letfers of the English alphabet.

Table 15.1: English characters and their frequencies, expressed as percentages, in everyday docu-
ments.

e

17 j 5 6.33
b 1.49 k 0.77 t 9.06
c 2,78 1 4.03 u 2.76
d 4.25 m 241 v 0.98
e 12.70 n 6.75 w 2.36
y f 2,23 0 7.51 X 0.15
' g 2.02 p 1.93 y 1.97
h 6.09 q 0.10 z 0.07
i 6.97 r 5.99

Problem 15.26: Given a set of symbols with corresponding frequencies, find a code
book that has the smallest average code length. pg. 368

15.27 NobpE REWEIGHING (&)

Let T be a rooted tree with 7 nodes. Each node # has a nonnegative weight w(u). The
weight of a path is the sum of the weights of the nodes on the path.

Problem 15.27: How would you efficiently assign to each node u a new weight
w'(u) such that (1.) each root-to-leaf path has the same weight W*, (2.) for all nodes
u, w'(u) = wu), and (3.) Lyenodes(ry @' (#) is minimum? See Figure 15.11 on the next
page for an example. pg. 372

ElementsOfProgrammingInterviews.com

128 15.28. Planning a party

(a) Initial weights. (b) Optimum weights, cost = 32. (c) Suboptimum weights, cost = 41.

Figure 15.11: An instance of the node reweighing problem, and two reweighings that satisfy the prob-
lem constraints. Each node is labeled with its weight.

15.28 PLANNING A PARTY

Leona is holding a party and is trying to select people to invite from her circle of
friends. She has n friends and knows for each pair of her friends if the first friend
already knows the second friend. Leona wants to invite as many friends as possible,
subject to the constraint that each invitee knows at least three other invitees and
does not know at least three other invitees. For example, each of the eight men in
Figure 15.12 knows three other men and does not know four other men, and this is
the largest set that can be invited.

AN
*/

Figure 15.12: A set of eleven people. An edge between two people indicates they know each other
{For this example, A knows B iff B knows A.}

==
e
8 —— =R ———— O

Problem 15.28: Devise an efficient algorithm that takes as input a set P of people
and a set F € P X P of pairs of people and returns a largest subset of P within which
each individual knows three or more other members of P and does not know three
or more other members of P. The “knows” relation is not necessarily symmetric or
transitive. rg. 372

15.29 ASSIGNING RADIO FREQUENCIES (&)

If two neighboring radio stations are transmitting at the same radio frequency, there
would be a region geographically between them where the signal from both stations
would be equally strong and the resulting interference would cause neither of the
signals to be usable. Hence neighboring radio stations try to pick different frequen-
cies. Consider the problem where we have just two frequencies available and we are
given the neighborhood graph of a set of radio stations. Ideally, we want to assign

ElementsOfProgrammingInterviews.com

15.29. Assigning radio frequencies (&) ' 129

the frequencies to the radio stations such that the interference is minimized. This is
a difficult problem. Suppose we are interested in a simpler problem where all we
want is that for any given radio station, the majority of its neighbors use a different
frequency from the given station. This can be modeled as a graph coloring problem.

Problem 15.29: Let G = (V,E) be an undirected graph. A two-coloring of G is a
function assigning each vertex of G to black or white. Call a two-coloring diverse if
each vertex has at least half its neighbors opposite in color to itself. Does every graph

have a diverse coloring? How would you compute a diverse coloring, if it exists?
pg. 373

ElementsOfProgrammingInterviews.com

Algorithms on Graphs

Concerning these bridges, it was asked whether anyone could arrangea
route in such a way that he would cross each bridge once and only once.

— “The solution of a problem relating to the geometry of position,”
L. EuvLzr, 1741

Informally, a graph is a set of vertices and connected by edges. Formally, a directed
graph is a tuple (V, E), where V is a set of vertices and E C V X V is the set of edges.
Given an edge e = (u,v), the vertex u is its source, and v is its sink. Graphs are often
decorated, e.g., by adding lengths to edges, weights to vertices, and a start vertex. A
directed graph can be depicted pictorially as in Figure 16.1.

A path in a directed graph from u to vertex v is a sequence of vertices
(Vo, U1, -+, Uy—1) Where vy = U, Upy = v, and (v, v4q) € E for i€{0,...,n—2). The
sequence may contain of a single vertex. The length of the path (v, vy,...,Up-1) is
n — 1. Intuitively, the length of a path is the number of edges it traverses. If there
exists a path from u to v, v is said to be reachable from u.

For example, the sequence (g, ¢, ¢,d, h) is a path in the graph represented in Fig-
ure 16.1.

Figure 16.1: A directed graph with weights on edges.

An undirected graph is also a tuple (V, E); however E is a set of unordered pairs of
V. Graphically, this is captured by drawing arrowless connections between vertices,
as in Figure 16.2 on the next page.

130

Chapter 16. Algorithms on Graphs 131

Figure 16.2: An undirected graph.

If G is an undirected graph, vertices u and v are said to be connected if G contains a
path from u to v; otherwise, # and v are said to be disconnected. A graph is said to be
connected if every pair of vertices in the graph is connected. A connected component
is a maximal set of vertices C such that each pair of vertices in C is connected in G.
Every vertex belongs to exactly one connected component.

A directed graph is called weakly connected if replacing all of its directed edges
with undirected edges produces a connected undirected graph. If is connected if it
contains a directed path from u to v.or a directed path from v to u for every pair of
vertices u and v. It is strongly connected if it contains a directed path from u to v and
a directed path from v to u for every pair of vertices 1 and v.

Graphs naturally arise when modeling geometric problems, such as determining
connected cities. However they are more general, and can be used to model many
kinds of relationships.

A graph can be implemented in two ways—using adjacency lists or an adjacency
matrix. In the adjacency list representation, each vertex v, has a list of vertices to
which it has an edge. The adjacency matrix representation uses a [V| X |V| Boolean-
valued matrix indexed by vertices, with a 1 indicating the presence of an edge. The
time and space complexities of a graph algorithm are usually expressed as a function
of the number of vertices and edges.

A tree (sometimes called a free tree) is a special sort of graph—it is an undlrected
graph that is connected but has no cycles. (Many equivalent definitions exist, e.g.,
a graph is a free tree iff there exists a unique path between every pair of vertices.)
There are a number of variants on the basic idea of a tree. A rooted tree is one where
a designated vertex is called the roof, which leads to a parent-child relationship on
the nodes. An ordered tree is a rooted tree in which each vertex has an ordering
on its children. Binary trees, which are the subject of Chapter 9, differ from ordered
trees since a node may have only one child in a binary tree, but that node may be a
left or a right child, whereas in an ordered tree no analogous notion exists for a node
with a single child. Specifically, in a binary tree, there is position as well as order
associated with the children of nodes.

As an example, the graph in Figure 16.3 on the following page is a tree. Note that
its edge set is a subset of the edge set of the undirected graph in Figure 16.2. Given
a graph G = (V, E), if the graph G’ = (V, E’) where E' C E, is a tree, then G’ is referred
to as a spanning tree of G.

ElementsOfProgrammingInterviews.com

132 16.1. Searching a maze

Figure 16.3: A tiree.

Graph search

Computing vertices which are reachable from other vertices is a fundamental oper-
ation which can be performed by depth-first search (DFS) and breadth-first search
(BFS). Both are linear time—O(|V| + |E|). They differ from each other in terms of the
additional information they provide, e.g., BFS can be used to compute distances from
the start vertex and DFS can be used to check for the presence of cycles. Key notions
in DFS include the concept of discovery time and finishing time for vertices.

16.1 ~ SEARCHING A MAZE

It is natural to apply graph models and algorithms to spatial problems. Consider a
black and white digitized image of a maze—white pixels represent open areas and
black spaces are walls. There are two special white pixels: one is designated the
entrance and the other is the exit. The goal in this problem is to find a way of getting
from the entrance to the exit, as illustrated in Figure 16.4.

E — ; PtE E
S S £ STt
(a) Amaze. (b) A path from entrance to exit. (c) A shortest path from entrance
to exit.

Figure 16.4: An instance of the maze search problem, with two solutions, where S and E denote the
entrance and exit, respectively.

Problem 16.1: Given a 2D array of black and white entries representing a maze with
designated entrance and exit points, find a path from the entrance to the exit, if one
exists. pg. 374

ElementsOfProgrammingInterviews.com

16.2. Transform one string to another (&%) 133

16.2 TRANSFORM ONE STRING TO ANOTHER (&F)

Let s and ¢ be strings and D a dictionary, i.e., a set of strings. Define s to produce t if
there exists a sequence of strings ¢ = (sq,51,...,55-1) such that s; = 5, s,-1 = ¢, for all
i,s; € D, and adjacent strings have the same length and differ in exactly one character.
The sequence o is called a production sequence.

Problem 16.2: Given a dictionary D and two strings s and f, write a function to
determine if s produces . Assume that all characters are lowercase alphabets. If
s does produce t, output the length of a shortest production sequence; otherwise,
. output -1. vg. 375

16.3 WIRING A PRINTED CIRCUIT BOARD

Consider a collection of electrical pins on a printed circuit board (PCB). For each pair
of pins, there may or may not be a wire joining them. This is shown in Figure 16.5,
where vertices correspond to pins, and edges indicate the presence of a wire between
pins. (The significance of the colors is explained later.)

Figure 16.5: A set of pins and wires between them.

Problem 16.3: Design an algorithm that takes a set of pins and a set of wires con-
necting pairs of pins, and determines if it is possible to place some pins on the left
half of a PCB, and the remainder on the right half, such that each wire is between left
and right halves. Return such a division, if one exists. For example, the light vertices
and dark vertices in Figure 16.5 are such division. pg. 376

16.4 DEGREES OF CONNECTEDNESS (&F)

A connected graph is one in which for any two vertices u and v there exists a path from
% to v. The notion of connectedness holds for both directed and undirected graphs—
for undirected graphs, we sometimes simply say there exists a path between u and
v.

Intuitively, some graphs are more connected than others—e.g., a clique (an undi-
rected graph in which every two vertices are connected by anedge) is more connected
than a tree. To be more quantitative, we could refer to a graph as being 2¥-connected
if it remains connected even if any single edge is removed. A graph is 23-connected
if there exists an edge that can be removed while still leaving the graph connected.

The undirected graph in Figure 16.2 on Page 131 is 2V-connected, since any single
edge can be removed, and there will still exist a path from any vertex to any other
vertex. However, if the edge (i, i) is removed, then the remaining graph, though

ElementsOfProgrammingInterviews.com

134 16.5. Extended contacts

connected, is not 2V-connected, since the subsequent removal of edge (f, i) results in
an unconnected graph. For example, there will be no path from a to m, since all paths
in the original graph pass through either (k, 1) or (f,).

The undirected graph in Figure 16.3 on Page 132 is not 23-connected. However
adding any edge to the graph makes it 23-connected.

One application of this idea is in fault tolerance for data networks. Suppose you
are given a set of data centers connected through a set of dedicated point-to-point
links. You want to reach from any data center to any other data center through
a combination of these dedicated links. Sometimes one of these links can become
temporarily out of service and you want to ensure that your network can sustain up
to one faulty link. How can you verify this?

Problem 16.4: Let G = (V,E) be a connected undirected graph. How would you
efficiently check if G is 23-connected? Can you make your algorithm run in O(|V])
time? How would you check if G is 2¥-connected? pg. 378

16.5 - EXTENDED CONTACTS

A social network consists of a set of individuals and, for each individual, a list of his
contacts. (The contact relationship may not be symmetric—A may be a contact of B
but B may not be a contact of A.) Define C to be an extended contact of A if he is
either a contact of A or a contact of an extended contact of A.

Problem 16.5: Devise an efficient algorithm which takes a social network and com-
putes for each individual his extended contacts. pg. 380

16.6 THEORY OF EQUALITY

Programs are usually checked using testing—a number of manually written or ran-
dom test cases are applied to the program and the program’s results are checked by
assertions or visual inspection.

Formal verification consists of examining a program and analytically determining
if there exists an input for which an assertion fails. Formal verification of programs
is undecidable. However there are significant subclasses of programs for which the
verification problem is decidable.

Consider the following problem. Given a set of variables x4, ..., x,, equality con-
straints of the form x; = x;, and inequality constraints of the form x; # xj, is it
possible to satisfy all the constraints simultaneously? For example, the constraints
X1 = Xz,% = X3,X3 = X4, and x; # x4 cannot be satisfied simultaneously. Such con-
straints arise in checking the equivalence of loop-free programs with uninterpreted
functions.

Problem 16.6: Design an efficient algorithm that takes as input a collection of equal-
ity and inequality constraints and decides whether the constraints can be satisfied
simultaneously. pg. 381

ElementsOfProgrammingInterviews.com

16.7. Team photo day—2 135

Advanced graph algorithms

Up to this point we looked at basic search and combinatorial properties of graphs.
The algorithms we considered were all linear time complexity and relatively
straightforward—the major challenge was in modeling the problem appropriately.

Four classes of problems on graphs can be solved efficiently, i.e., in polynomial
time. Most other problems on graphs are either variants of these or, very likely, not
solvable by polynomial time algorithms. These four classes are:

— Shortest paths—given a graph, directed or undirected, with costs on the edges,
find the minimum cost path from a given vertex to all vertices. Variants include
computing the shortest paths for all pairs of vertices, and the case where costs
are all nonnegative.

— Minimum spanning tree—given a connected undirected graph G = (V, E) with
weights on each edge, find a subset E’ of the edges with minimum total weight
such that the subgraph G’ = (V, E’) is connected.

- Matching—given an undirected graph, find a maximum collection of edges
subject to the constraint that every vertex is incident to at most one edge. The
matching problem for bipartite graphs is especially common and the algorithm
for this problem is much simpler than for the general case. A common variant
is the maximum weighted matching problem in which edges have weights and
a maximum weight edge set is sought, subject to the matching constraint.

- Maximum flow—given a directed graph with a capacity for each edge, find the
maximum flow from a given source to a given sink, where a flow is a function
mapping edges to numbers satisfying conservation (flow into a vertex equals
the flow out of it) and the edge capacities. The minimum cost circulation
problem generalizes the maximum flow problem by adding lower bounds on
edge capacities, and for each edge, a cost per unit flow.

In this chapter we restrict our attention to shortest-path and minimum spanning
tree problems: these are subjects which anyone interviewing for a software position
should be familiar with. If you have specialized knowledge of optimization or graph
theory you may be asked a problem whose solution uses matching or maximum
flow. We have several representative examples in Chapter 21. Specifically, maximum
matching is illustrated by Problems 21.19 to 21.22 on Page 168; maximum flow is the
subject of Problems 21.23 and 21.24 on Page 169. For such problems, you will most
likely be asked to find the right embedding, rather than writing explicit code.

16.7 TEAM PHOTO DAY—2
Problem 16.7: How would you generalize your solution to Problem 13.6 on Page 100.

to determine the largest number of teams that can be photographed simultaneously
subject to the same constraints? pg. 382

ElementsOfProgrammingInterviews.com

136 16.8. Minimum delay schedule, unlimited resources

16.8 MINIMUM DELAY SCHEDULE, UNLIMITED RESOURCES

Let 7 = {To,T1,...,Tu1) be a set of tasks. Each task runs on a single generic
server. Task T; has a duration z;, and a set P; (possibly empty) of tasks that must be
completed before T; can be started. The set is feasible if there does not exist a sequence
of tasks (Ty, T, ..., Ty-q, To) starting and ending at the same task such that for each
consecutive pair of tasks in the sequence, the first task must be completed before the
second task can begin.

Problem 16.8: Given an instance of the task scheduling problem, compute the least
amount of time in which all the tasks can be performed, assuming an unlimited
number of servers. Explicitly check that the system is feasible. pg. 383

16.9 SHORTEST PATH WITH FEWEST EDGES

In the usual formulation of the shortest path problem, the number of edges in the
path is not a consideration. For example, considering the shortest path problem from
a to h in Figure 16.1 on Page 130, the sum of the edge costs on the path (g, c,e,d, h) is
22, which is the same as for path {a,b,k,1, j, f, g, h). Both are shortest paths, but the
latter has three more edges.)

Heuristically, if we did want to avoid paths with a large number of edges, we can
add a small amount to the cost of each edge. However depending on the structure
of the graph and the edge costs, this may not result in the shortest path.

Problem 16.9: Design an algorithm which takes as input a graph G = (V, E), directed
or undirected, a nonnegative cost function on E, and vertices s and ¢; your algorithm
should output a path with the fewest edges amongst all shortest paths from s to t.

' pg. 384

16.10 QUICKEST ROUTE

A flight is specified as a four-tuple: start-time, originating city, destination city, and
arrival-time (possibly on a later day). A time-table is a set of flights. Flights are
assumed to be daily.

Problem 16.10: Given a time-table, a starting city, a starting time, and a destination
city, how would you compute the soonest you could get to the destination city?
Assumie all flights start and end on time, and that you need 60 minutes between
flights. ' pg. 385

16.11 Roap NETWORK (F)

+ The Texas Department of Transportation is considering adding a new section of
highway to the Texas Highway System. Each highway section connects two cities.
City officials have submitted proposals for the new highway—each proposal includes
the pair of cities being connected and the length of the section.

Problem 16.11: Devise an efficient algorithm which takes the existing highway
network (specified as a set of highway sections between pairs of cities) and proposals

ElementsOfProgrammingInterviews.com

16.12. Arbitrage (&r) 137

for new highway sections, and returns a proposed highway section which minimizes
the shortest driving distance between El Paso and Corpus Christi. pg. 386

16.12 ARrBIiTRAGE (&F)

You are exploring the remote valleys of Papua New Guinea, one of the last uncharted
places in the world. You come across a tribe that does not have money—instead it
relies on the barter system. A total of n commodities are traded and the exchange
rates are specified by a 2D array. For example, three sheep can be exchanged for
seven goats and four goats can be exchanged for 200 pounds of wheat.

Transaction costs are zero, exchange rates do not fluctuate, fractional quantities of
items can be sold, and the exchange rate between each pair of commodities is finite.
Table 4.4 on Page 41 shows exchange rates for currency trades, which is similar in
spirit to the current problem.

Problem 16.12: Design an efficient algorithm to determine whether there exists an
arbitrage—a way to start with a single unit of some commodity C and convert it back
to more than one unit of C through a sequence of exchanges. pg. 387

16.13 UPDATING A MINIMUM SPANNING TREE

Problem 16.13: Let G = (V,E) be an undirected graph with edge weight function
w: E+ Z* Youare given T C E, an MST of G. Let e be an edge. Design efficient
algorithms for computing the MST when (1.) w(e) decreases , and (2.) w(e) increases.

vg. 389

ElementsOfProgrammingInterviews.com

CHAPTER

Intractability

All of the general methods presently known for computing the chromatic
number of a graph, deciding whether a graph has a Hamiltonian cycle,
or solving a system of linear inequalities in which the variables are con-
strained tobe O or 1, requirea combinatorial search for which the worst-case
time requil E grows exp tially with the length of the inpud.

— "Reducibility Among Combinatorial Problems,”
R. M. Karrp, 1972

In real-world settings you will sometimes encounter problems that can be directly
solved using efficient textbook algorithms such as binary search and shortest paths.
As we have seen in the earlier chapters, it is often difficult to identify such problems
because the core algorithmic problem is obscured by details. More generally, you
may encounter problems which can be transformed into equivalent problems that
have an efficient textbook algorithm, or problems that can be solved efficiently using
meta-algorithms such as DP.

Often the problem you are given is intractable—i.e., there may not exist an efficient
algorithm for the problem. Complexity theory addresses these problems. Some
have been proved to not have an efficient solution (such as checking the validity
of relationships involving 3, +, <,= on the integers) but the vast majority are only
conjectured to be intractable. The conjunctive normal form satisfiability (CNF-SAT)
problem (Problem 17.11 on Page 143) is an example of a problem that is conjectured
to be intractable. Specifically, the CNF-SAT problem belongs to the complexity class
NP—problems for which a candidate solution can be efficiently checked—and is
conjectured to be the hardest problem in this class.

When faced with a problem P that appears to be intractable, the first thing to do is
to prove intractability. This is usually done by taking a problem which is known to be
intractable and showing how it can be efficiently reduced to P. Often this reduction
gives insight into the cause of intractability.

Unless you are a complexity theorist, proving a problem to be intractable is a
starting point, not an end point. Remember something is a problem only if it has a
solution. There are a number of approaches to solving intractable problems:

— Brute-force solutions which are typically exponential but may be acceptable, if

the instances encountered are small. ' .

— Branch and bound technigues which prune much of the complexity of a brute-

force search.

— Approximation algorithms which return a solution that is provably close to

optimum.

138

17.1. Ties in a presidential election

139

BRUTE-FORCE, DvAMIC
SOLUTION: PROGRAMMING

oy ALGORTHMS:
0{n!)

0 (nzzn)

SELLNG ON EBAY

0(1)

STILL LIORKING
ON YOUR, ROVTE?

N
' :.

Figure 17.1: P = NP, by XKCD.

— Heuristics based on insight, common case analysis, and careful funing that

may solve the problem reasonably well.

— Parallel algorithms, wherein a large number of computers can work onsubparts

simultaneously.
Don't forget it may be possible to dramatically change the problem formulation while
still achieving the higher level goal, as illustrated in Figure 17.1.

17.1 TIES IN A PRESIDENTIAL ELECTION

The US President is elected by the members of the Electoral College. The number
of electors per state and Washington, D.C., are given in Table 17.1. All electors from
each state as well as Washington, D.C., cast their vote for the same candidate.

abama
Alaska
Arizona
Arkansas
ifornia
Colorado
Connecticut
Delaware
Florida
Georgla
Hawaii
Idaho
Tlinois
Indiana
Towa .
Kansas
Kentucky

Table 17.1: Electoral college votes.

3 Maine
11 | Maryland
6 | Massachusetts
55 | Michigan
9 | Minnesota
7 | Mississippi
3 | Missouri
29 Montana
16 | MNebraska
4 | Nevada
4 | New Hampshire
20 New Jersey
11 New Mexico
6 | New York
6 | North Carolina
8 | North Dakota

o.
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota

10 | Tennessee
3 | Texas)
5 | Utah
6 | Vermont
4 | Virginia
14| Washington
5.| West Virginia
29 | Wisconsin
15 | Wyoming
3 | Washington, D.C.

ha

UI s
LR = R = =T L

E.—l

=
wWwom

Problem 17.1: How would you programmatically determine if a tie is possible in a
presidential election with two candidates, R and D?

17.2 THE KNAPSACK PROBLEM

pg. 389

A thief breaks into a clock store. His knapsack will hold at most w ounces of clocks.
Clock i weighs w; ounces and retails for v; dollars. The thief must either take or leave

ElementsOfProgrammingInterviews.com

140 17.3. Dividing the spoils

a clock, and he canmnot take a fractional amount of an item. His intention is to take
clocks whose total value is maximum subject to the knapsack capacity constraint. His
problem is illustrated in Figure 17.2. If the knapsack can hold at most 130 ounces,
he cannot take all the clocks. If he greedily chooses clocks, in decreasing order of
value-to-weight ratio, he will choose P, H, O, B, I, and L in that order for a total value
of $669. However, {H,], O} is the optimum selection, yielding a total value of $695.

oy

ST
10 H
g 3.
8 4

Tgh "
A

B, $35, 8 oz. C, $245,600z. D,$195 55 0z E, $65, 40 oz F,5150,7002. G,$275,8502. M, 51355, 2502

e Pl
TR B TE T 2y ot
Nl D g g ‘u;"\l/'a’ Bt 'ni\
-, B u\/;u N Sl % o)
A binly Tres) B trent sy
Rl 1l 3 YT P Kot ==

I, §$120, a0 ez, 1. 8320, 65 oz. K, §75,75 oz L, $40, 10 cz. M, 5200,950z. N, $100,500z. O, 5220, 40 oz. P, 599,10 oz

Figure 17.2: A clock store.

Problem 17.2: Design an algorithm for the knapsack problem that selects a subset of
items that has maximum value and weighs at most w ounces. All items have integer
weights and values. pg. 390

17.3 DIVIDING THE SPOILS

Two thieves have successfully completed a burglary. They want to know how to
divide the stolen items into two groups such that the difference between the value
of these two groups is minimized. For example, they may have stolen the clocks in
Figure 17.2, and would like to divide the clocks between them so that the difference
of the dollar value of the two sets is minimized. For this instance, an optimum split
is {A, G, M, O, P} to one thief and the remaining to the other thief. The first set has
value $1179, and the second has value $1180. An equal split is impossible, since the
sum of the values of all the clocks is odd.

Problem 17.3: Let array A be an array of n positive integers. Entry A[i] is the
value of the i-th stolen item. Design an algorithm that computes a subset S ¢ Z,, =
{0,1,2,...,n~1} such that | ¥es Al{] = Ljez,\s Aljll is minimized. pg. 390

17.4 MEASURING WITH DEFECTIVE JUGS (&F)

You have three measuring jugs, A, B, and C. The measuring marks have worn out,
making it impossible to measure exact volumes. Specifically, each time you measure
with A, all you can be sure of is that you have a volume that is in the range [230, 240]
mL. (The next time you use A, you may get a different volume—all that you know
with certainty is that the quantity will be in [230, 240] mL.) Jugs B and C can be used
to measure a volume in [290,310] mL and in [500, 515] mL, respectively. Your recipe

‘ElementsOfProgrammingInterviews.com

17.5. Delay-constrained shortest-path () 141

for chocolate chip cookies calls for at least 2100 mL and no more than 2300 mL of
milk.

Problem 17.4: Write a program that determines a sequence of steps by which the
required amount of milk can be obtained using the worn-out jugs. The milk is
being added to a large mixing bowl, and hence cannot be removed from the bowl.
Furthermore, it is not possible to pour one jug’s contents into another. Your scheme
should always work, i.e., return between 2100 and 2300 mL of milk, independent
of how much is chosen in each individual step, as long as that quantity satisfies the
given constraints. : ps. 391

17.5 DELAY-CONSTRAINED SHORTEST-PATH (&F)

In the conventional form of the shortest-path problem, we seek the path with the
lowest cost. There exist natural situations where each edge has a cost and a delay.
For example, a shipping company may have a number of locations. Sending a
package along a given route incurs a cost and a delay that is the sum of the costs and
delays of the individual edges on the route. This motivates the following.

Problem 17.5: Given a graph G = (V,E), with cost function ¢ : E = Z*, delay
functiond : E — Z*, designated vertices s and f, and a delay constraint A € Z*, find
a path from s to £ with minimum cost, subject to the constraint that the delay of the
path is no more than A. Costs are additive—the cost of a path is the sum of the costs
of the individual edges; the same holds for delays. pg. 392

17.6 TRAVELING SALESMAN IN THE PLANE (@)

Suppose a salesman needs to visit a set of cities Ag, Ay, ..., Ay-1. For any ordered pair
of cities (A;, A;), the cost of fraveling from the first to the second city is c(A;, A;). We
need to design a low cost tour for the salesman.

A tour is a sequence of cities (By, By, ..., Bu-1, By). It can start at any city and the -
salesman can visit the cities in any order. All the cities must appear inthe subsequence
(Bo,B1,...,By-1). (Note that this implies that all the cities in this subsequence are
distinct.) The cost of the tour is the sum of the costs of the n successive pairs
{B,‘, Bit1 mod ﬂ), fori=0to n—1.

Determining the minimum cost tour is a classic NP-hard problem and the problem
remains hard even if we just ask for a tour whose cost is within a given multiple M
of the minimum cost tour. However there is a special case for which this problem
can be efficiently solved with a reasonable bound on the quality of the solution.

Problem 17.6: Suppose you are given a set of cities in the Cartesian plane, as shown
in Figure 4.3 on Page 36. The cost of traveling from one city to another is a constant
multiple of the distance between the cities. Give an efficient procedure for computing
a tour whose cost is no more than two times the cost of an optimum tour. pg. 393

ElementsOfProgrammingInterviews.com

142 17.7. The warehouse location problem (&)

17.7 THE WAREHOUSE LOCATION PROBLEM (@)

Let ¢g,c,. .., Cp1 be 1 cities. We want to choose k of these cities to build warehouses
in. We would like the remaining cities to be close to the warehouses. Let’s say the
cost of a warehouse assignment is defined to be the maximum distance of any city to
a warehouse. Finding an optimum warehouse assignment is known to be NP-hard.

For example, consider the cities specified in Figure 4.3 on Page 36. Assume the
coordinates for each city correspond to their positions in the Cartesian plane, and
distances are the standard Euclidean distance. Then if k = 3, the optimum cities to
place warehouses in are Los Angeles, Dakar, and Darwin. For k = 4, the optimum
cities are Mexico City, Accra, Irkutsk, and Melbourne.

Problem 17.7: Design a fast algorithm for selecting k warehouse locations that is
provably within a constant factor of the optimum solution. pg. 394

17.8 SUDOKU SOLVER

Sudoku is described in Problem 6.14 on Page 57. In this problem you are to write
a Sudoku solver. The decision version of the generalized Sudoku problem is NP-
complete; however this is restricted to the traditional 9 x 9 grid.

Problem 17.8: Implement a Sudoku solver. Your program should read an instance
of Sudoku from the command line. The command line argument is a sequence of
3-digit strings, each encoding a row, a column, and a digit at that location. pg. 395

179 EXPRESSION SYNTHESIS

Consider an expression of the form vy @y v; @1 V2 Oy-2 Up—y. Suppose the v;s are
constant integers and the ©s are operators. The expression takes different values
based on what operators we choose.

Determining an operator assignment such that the resulting expression satisfies a
constraint is, in general, a difficult problem. For example, suppose the operators are
+ and —, and we want to know whether we can select each @; such that the resulting
expression evaluates to 0. The problem of partitioning a set of integers into two
subsets which sum up to the same value, which is a famous NP-complete problem,
directly reduces to our problem.

Problem 17.9: Given an array of digits A and a nonnegative integer k, intersperse
multiplies (x) and adds (+) with the digits of A such that the resulting arithmetical
expression evaluates to k. For example, if A is (1,2,3,2,5,3,7,8,5,9) and k is 995,
then k can be realized by the expression “123 +2+5X3 X 7 +85x 9", pg. 398

17.10 CoMPUTING X"

A straight-line program for computing 1" is a finite sequence (x, x",x%, ..., 2"} where
each element after the first is either the square of some previous element or the

ElementsOfProgrammingInterviews.com

17.11. CNF-SAT 143

product of any two previous elements. For example, the term x'® can be computed
by the straight-line programs P1 and P2:

P1
P2

(x’xz’ le - (xZ)Z’XS - (xtL)Z!xl?. —- .‘(SI‘}, x14 = quz; 1’15 - x“x)

(x,2%,x° = X2, 2% = 227,20 = ()%, x1° = M%)

Il

The number of multiplications to evaluate x" is the number of terms in the shortest
such program sequence minus one. No efficient method is known for the problem
of determining the minimum number of multiplications needed to evaluate x"; the
problem for multiple exponents is known to be NP-complete.

Problem 17.10: Given a positive integer n, how would you determine the minimum
number of multiplications to evaluate x"? pg. 400

17.11 CNE-SAT

A Boolean logic expression using logical OR (+), AND (-) and complement is said to
be in conjunctive normal form (CNF) if complement is only applied to variables and
the operation + is applied to variables or their negation. For example, (a +b+¢') -
(@ +b)-(a+c +d)isinCNE The termsa+b+¢',a + b, and a + ¢’ + d are clauses.

A CNF expression is said fo be satisfiable if there exists an assignment of Boolean
values to the variables that sets each clause to true. The assignmenta = b = d = true,
¢ = false is a satisfying assignment for the example given above.

Problem 17.11: Design an algorithm for checking if a CNF expression is satisfiable.
' pg. 401

17.12 CueckiNG THE COLLATZ CONJECTURE

Lothar Collatz proposed this remarkable conjeéture in1937: “DefineC: {1,2,3,...}
{1,2,3,...}tobe & for evenn, and 3n+1, otherwise. Then for any choice of 1, Cin) =1,
for some i.” For example, if we start with the number 11 and iteratively compute
Ci(11), we get the sequenée (11,34,17,52,26,13,40,20,10,5,16,8,4,2,1).

Despite intense efforts, the Collatz conjecture has not been proved or disproved.
Suppose you were given the task of checking the Collatz conjecture for the first billion
integers. A direct approach would be to compute the convergence sequence for each
number in this set. :

Problem 17.12: How would you test the Collatz conjecture for the first n positive
integers? pg. 401

17.13 MINIMUM DELAY SCHEDULING, LIMITED RESOURCES (&F)

Problem 17.13: You need to schedule n lectures in m classrooms. Some of those
lectures are prerequisites for others. All lectures are one hour-long and start on the
hour. How would you choose when and where to hold lectures to finish all the
lectures as soon as possible? pg. 402

ElementsOfProgrammingInterviews.com

Parallel Computing

The activity of a computer must include the proper reacting to a
possibly great variety of messages that can be sent to it at un-
predictable moments, a situation which occurs in all information
systems in which a number of computers are coupled to each other.

— “Cooperating sequential processes,”
E. W. DijrsTra, 1965

Parallel computation has become increasingly common. For example, laptops and
desktops come with multiple processors which communicate through shared mem-
ory. High-end computation is often done using clusters consisting of individual
computers communicating through a network.
Parallelism provides a number of benefits:
High performance—more processors working on a task (usually) means it is
~ completed faster.

— Better use of resources—a program can execute while another waits on the disk
or network.

— PFairness—Iletting different users or programs share a machine rather than have
one program run at a time to completion.

— Convenience—it is often conceptually more straightforward to do a task using
aset of concurrent programs for the subtasks rather than have a single program
manage all the subtasks.

— Fault tolerance—if a machine fails in a cluster that is serving web pages, the
others can take over.

Concrete applications of parallel computing include graphical user interfaces
(GUI) (a dedicated thread handles Ul actions resulting in increased responsiveness),
Java virtual machines (a separate thread handles garbage collection which would
otherwise lead to blocking), web servers (a single logical thread handles a single
client request), scientific computing (a large matrix multiplication can be split across
a cluster), and web search (multiple machines crawl, index, and retrieve web pages).

The two primary models for parallel computation are the shared memory model,
in which each processor can access any location in memory, and the distributed
memory model, in which a processor must explicitly send a message to another
processor to access its memory. The former is more appropriate in the multicore
setting and the latter is more accurate for a cluster. The questions in this chapter are
mostly focused on the shared memory model. We cover a few problems related to

144

e I " T

18.1. Service with caching 145

the distributed memory model, such as leader election and sorting large data sets, at
the end of the chapter. '

Writing correct parallel programs is challenging because of the subtle interactions
between parallel components. One of the key challenges is races—two concurrent
instruction sequences access the same address in memory and at least one of them
writes to that address. Other challenges to correctness are

— starvation (a processor needs a resource but never gets it, e.g., Problem 18.5 on

the following page), \

~ deadlock (Thread A acquires Lock L1 and Thread B acquires Lock L2, following

which A fries to acquire L2 and B tries to acquire L1 as in Problem 18.10 on
Page 148), and

— livelock (a processor keeps retrying an operation that always fails).

Bugs caused by these issues are difficult to find using testing. Debugging them
is also difficult because they may not be reproducible since they are usually load
dependent. It is also often true that it is not possible to realize the performance
implied by parallelism—sometimes a critical task cannot be parallelized, making it
impossible to improve performance, regardless of the number of processors added.
Similarly, the overhead of communicating intermediate results between processors
can exceed the performance benefits.

18.1 SERVICE WITH CACHING

Problem 18.1: Design an online spell correction system. It should take as input a
string s and return an array of entries in its dictionary which are closest to the string
using the Levenshtein distance specified in Problem 15.11 on Page 120. Cache the
most recently computed result. pg. 403

18.2 TurREAD POOLS

The following class, SimpleWebServer, implements part of a simple HTTP server:

public class SimpleWebServer {
final static int PORT = B8080;
public static veoid main (String [] args) throws IOException {
ServerSocket serversock = new ServerSocket(PORT);
for (;;) {
Socket sock = serversock.accept();
ProcessReq(sock);
1
1
}

Problem 18.2: Suppose you find that the SimpleWebServer has poor performance
because processReq frequently blocks on I/O. What steps could you take to improve
SimpleWebServer’s performance? pg. 405

ElementsOfProgrammingInterviews.com

146 18.3. Asynchronous callbacks

18.3 ASYNCHRONOUS CALLBACKS

It is common in a distributed computing environment for the responses to not return
in the same order as the requests were made. One way to handle this is through an
“asynchronous callback”—a method to be invoked on response. This is formalized
by a Requester class.

A Requester class implements a Dispatch method which takes a Requester
object. The Requester objecf includes a request string, a ProcessResponse(string
response) method, and an Execute method that takes a string and returns a string.
Dispatch is to create a new thread which invokes Execute on request. When
Execute returns, Dispatch invokes the ProcessResponse method on the response.

Problem 18.3: Implement a Requester class. The Execute method may take an
indeterminate amount of time to return; it may never return. You need to have a
time-out mechanism for this. Assume Requester objects have an Error method that
you can invoke. pg. 406

18.4 TiMER

Consider a web-based calendar in which the server hosting the calendar has to
perform a task when the next calendar event takes place. (The task could be sending
an email or a Short Message Service (SMS).) Your job is to design a facility that
manages the execution of such tasks.

Problem 18.4: Develop a Timer class that manages the execution of deferred tasks.
The Timer constructor takes as its argument an object which includes a Run method
and a name field, which is a string. Timer must support—(1.) starting a thread,
identified by name, at a given time in the future; and (2.) canceling a thread, identified
by name (the cancel request is to be ignored if the thread has already started). pg. 407

18.5 READERS-WRITERS

Consider an object s which is read from and written to by many threads. - (For
example, s could be the cache from Problem 18.1 on the previous page.) You need
to ensure that no thread may access s for reading or writing while another thread is
writing to s. (Two or more readers may access s at the same time.)

One way to achieve this is by protecting s with a mutex that ensures that two
threads cannot access s at the same time. However this solution is suboptimal
because it is possible that a reader R1 has locked s and another reader R2 wants to
access s. Reader R2 does not have to wait until R1 is done reading; instead, R2 should
start reading right away.

This motivates the first readers-writers problem: protect s with the added con-
straint that no reader is to be kept waiting if s is currently opened for reading.

Problem 18.5: Implement a synchronization mechanism for the first readers-writers
problem. rg. 407

ElementsOfProgrammingInterviews.com

18.6. - Readers-writers with write preference 147

18.6 READERS-WRITERS WITH WRITE PREFERENCE

Suppose we have an object s as in Problem 18.5 on the facing page. In the solution
to Problem 18.5 on the preceding page, a reader R1 may have the lock; if a writer W
is waiting for the lock and then a reader R2 requests access, R2 will be given priority
over W. If this happens often enough, W will starve. Instead, suppose we want W
to start as soon as possible. '

This motivates the second readers-writers problem: protect s with “writer-
preference”, i.e., no writer, once added to the queue, is to be kept waiting longer
than absolutely necessary.

Problem 18.6: Implement a synchronization mechanism for the second readers-
writers problem. pg. 408

18.7 READERS-WRITERS WITH FAIRNESS

The specifications to both Problems 18.5 on the facing page and 18.6 can lead to
starvation—the first may starve writers and the second may starve readers. The
third readers-writers problem adds the constraint that neither readers nor writers
should starve.

Problem 18.7: Implement a synchronization mechanism for the third readers-writers
problem. pg. 409

18.8 PRODUCER-CONSUMER QUEUE

Two threads, the producer P and the consumer C, share a fixed length array of strings
A. The producer generates strings one at a time which it writes into A; the consumer
removes strings from A, one at a time.

Problem 18.8: Design a synchronization mechanism for A which ensures that P does
not try to add a string into the array if it is full and C does not try to remove data
from an empty buffer. pg. 409

18.9 BARBER sHOP

Consider a barber shop with a single barber B, one barber chair, and n chairs for
customers who are waiting for their turn for a haircut. The barber sleeps in his chair
when customers are not present. On entering, a customer either awakens the barber
or if the barber is cutting someone else’s hair, he sits down in one of the chairs for
waiting customers. If all of the waiting chairs are taken, the newly arrived customer
simply leaves. '

Problem 18.9: Model the barber shop using semaphores and mutexes to ensure
correct behavior. Each customer is a thread, as is the barber. pg. 409

ElementsOfProgrammingInterviews.com

148 18.10. Dining philosophers

18.10 DINING PHILOSOPHERS

In the dining philosophers problem # threads, numbered from 0 to # — 1, run con-
currently. Resources are numbered from 0 to n — 1. Thread i requires resources i and
i+ 1 mod n before it can invoke a method m. (The problem gets its name because it
models n philosophers sitting at a round table, alternating between thinking, eating,
and waiting. A single chopstick is present between each pair of philosophers. To
eat, a philosopher must hold two chopsticks—one placed immediately to his left and
one immediately to his right.)

Problem 18.10: Implement a synchronization mechanism for the dining philoso-
phers problem. pg. 410

18.11 Cuecking THE COLLATZ CONJECTURE IN PARALLEL

In Problem 17.12 on Page 143 and its solution we introduced the Collatz conjecture
and heuristics for checking it. In this problem, you are to build a parallel checker
for the Collatz conjecture. Specifically, assume your program will run on a multicore
machine, and threads in your program will be distributed across the cores. Your
program should check the Collatz conjecture for every integer in [1, U] where U is
an input to your program.

Problem 18.11: Design a multi-threaded program for checking the Collatz conjec-
ture. Make full use of the cores available to you. To keep your program from
overloading the system, you should not have more than n threads running at a time.

pg. 410

18.12 BROADCAST IN A ROOTED TREE (&F)

Consider a computer network organized as a rooted tree. A node cansend a message
to only one child at a time, and it takes one second for the child to receive the message.
The root periodically receives a message from an external source. It needs to send
this message to all the nodes in the tree. The root has complete knowledge of how
the network is organized. -

Problem 18.12: Design an algorithm that computes the sequence of transfers that
minimizes the time taken to transfer a message from the root to all the nodes in the
tree. ' prg. 412

18.13 LeaDER ELECTION (£F)

You are to devise a protocol by which a collection of hosts on the Internet can elect a
leader. Hosts can communicate with each other using Transmission Control Protocol
(TCP) connections. For host A to communicate with host B, it needs to know B’s IP
address. Each host starts off with a set of IP addresses and the protocol code that you
implement will run on all the hosts on a fixed port.

Problem 18.13: Devise a protocol by which hosts can elect a leader from the set .
of all hosts participating in the protocol. The protocol should be fast, in that it

ElementsOfProgrammingInterviews.com

18.14. TeraSort and PetaSort . 149

converges quickly; it should be efficient, in that it should use few connections and
small messages. ' ' pg. 412

18.14 TeraSort AND PETASORT

Modern datasets are huge. For example, it is estimated that a popular social net-
working website contains over two trillion distinct items.

Problem 18.14: How would you sort a billion 1000 byte strings? How about a trillion
1000 byte strings? pg. 414

18.15 DISTRIBUTED THROTTLING

You have n machines (“crawlers”) for downloading the entire web. The responsi-
bility for a given URL is assigned to the crawler whose ID is Hash(URL) mod 7.
Downloading a web page takes away bandwidth from the web server hosting it.

Problem 18.15: Implement crawling under the constraint that in any given minute
your crawlers do not request more than b bytes from any website. pg. 415

ElementsOfProgrammingInterviews.com

CHAPTER

Design Problems

We have described a simple but very powerful and flexible pro-
tocol which provides for variation in individual network packet
sizes, transmission failures, sequencing, flow control, and the
creation and destruction of process- to-process associations,

— "A Protocol for Packet Network Intercommunication,”
V. G. Cerr anp R, E. Kaun, 1974

This chapter is concerned with system design problems. These problems are fairly
open-ended, and many can be the starting point for a large software project or a
Ph.D. A comprehensive discussion on the solutions available for such problems is
outside the scope of this book. In an interview setting when someone asks such a
question, you should have a conversation in which you demonstrate an ability to
think creatively, understand design trade-offs, and attack unfamiliar problems. You
should sketch key data structures and algorithms, as well as the technology stack
(programming language, libraries, OS, hardware, and services) that you would use
to solve the problem. Some specific things to keep in mind are implementation time,
scalability, testability, security, and internationalization.

The answers in this chapter are presented in this context—they are meant to be
examples of good responses in an interview and are not definitive state-of-the-art
solutions.

19.1 CREATING PHOTOMOSAICS

A photomosaic is built from a collection of images called “tiles” and a target image.
The photomosaic is another image which approximates the target image and is
built by juxtaposing the tiles. The quality of approximation is defined by human
perception.

Problem 19.1: Design a program that produces high quality mosaics with minimal
compute time. pg. 415
19.2 SEARCH ENGINE

Keyword-based search engines maintain a collection of several billion documents.
One of the key computations performed by a search engine is to retrieve all the
documents that contain the keywords contained in a query. This is a nontrivial task
in part because it must be performed in a few tens of milliseconds.

150

I&S.Ibeﬂvanﬁfg (@) ' 151

Here we consider a smaller version of the problem where the collection of docu-
ments can fit within the RAM of a single computer.

Problem 19.2: Given a million documents with an average size of 10 kilobytes,
design a program that can efficiently return the subset of documents containing a
given set of words. : _ yg. 416

19.3 IP rorRwaARDING (&F)

In many applications instead of an exact match of strings, we are looking for a prefix
match, i.e., given a set of strings and a search string, we want to find longest string
from the set that is a prefix of the search string. One application is the IP route lookup
problem. When an IP packet arrives at a router, the router looks up the next hop
for the packet by searching the destination IP address of the packet in its routing
table. The routing table is specified as a set of prefixes of IP addresses and the router
has to identify the longest matching prefix. If this task is to be done only once, it
is impossible to do better than testing each prefix in the routing table. However an
Internet core router does millions of lookups on destination addresses over the set of
prefixes each second. Therefore it is advantageous to do some precomputation.

Problem 19.3: You are given a large set of strings S. Given a query string Q, how
would you design a system that can quickly identify the longest string p € S thatisa
prefix of ? . pg. 417

19.4 SPELL CHECKER

Designing a good spelling correction system can be challenging. We discussed
spelling correction in the context of edit distance (Problem 15.11 on Page 120). How-
ever in that problem, we only computed the Levenshtein distance between a pair of
strings. A spell checker must find a set of words that are closest to a given word
from the entire dictionary. Furthermore, the Levenshtein distance may not be the
right distance function when performing spelling correction—it does not take into
account the commonly misspelled words or the proximity of letters on a keyboard.

Problem 19.4: How would you build a spelling correction system? - pg. 417

19.5 STEMMING

When a user submits the query “computation” to a search engine, it is quite possible
he might be interested in documents containing the words “computers”, “compute”,
and “computing” also. If you have several keywords in a query, it becomes difficult
to search for all combinations of all variants of the words in the query.

Stemming is the process of reducing all variants of a given word to one common
root, both in the query string and in the documents. An example of stemming
would be mapping {computers, computer, compute} to compute. It is almost impossible
to succinctly capture all possible variants of all words in the English language but a

few simple rules can get us most cases.

Problem 19.5: Design a stemming algorithm that is fast and effective. vg. 418

ElementsOfProgrammingInterviews.com

152 19.6. TeX

196 TEX

The TgX system for typesetting beautiful documents was designed by Don Knuth.
Unlike GUI based document editing programs, TgX relies on a markup language,
which is compiled into a device independent intermediate representation. TgX for-
mats text, lists, tables, and embedded figures; supports a very rich set of fonts and
mathematical symbols; automates section numbering, cross-referencing, index gen-
eration; exports an API; and much more.

Problem 19.6: How would you implement TEX? pg. 418

19.7 UNIX tamw

The UNIX tail command displays the last part of a file. For this problem, assume
that tail takes two arguments—a filename, and the number of lines, starting from
the last line, that are to be printed.

Problem 19.7: Implement the UNIX tail command. pg. 419

19.8 COPYRIGHT INFRINGEMENT

YouTV.com is a successful online video sharing site. Hollywood studios complain
that much of the material uploaded to the site violates copyright.

Problem 19.8: Design a feature that allows a studio to enter a set V of videos that
belong to it, and to determine which videos in the YouTV.com database match videos
inV. pg. 420

19.9 ImpPLEMENT PAGERANK

The PageRank algorithm assigns a rank to a web page based on the number of
“important” pages that link to it. The algorithm essentially amounts to the following;
1. Build a matrix A based on the hyperlink structure of the web. Specifically,
Ajj = 31; if page i links to page j; here d; is the total number of unique outgoing

links from page i.

2. Solve for X satisfying X = e[1] + (1 — €)ATX. Here ¢ is a scalar constant (e.g., 3)
and [1] represents a column vector of 1s. The value X[i] is the rank of the i-th
page.

The most commonly used approach to solving the above equation is to start with

a value of X, where each component is 1 (where # is the number of pages) and then
perform the following iteration: X; = e[1] + (1 — €)ATX;_1.

Problem 19.9: Design a system that can compute the ranks of ten billion web pages
in a reasonable amount of time. pg. 421
19.10 SCALABLE PRIORITY SYSTEM

Maintaining a set of prioritized jobs in a distributed system can be tricky. Applica-
tions include a search engine crawling web pages in some prioritized order, as well

ElementsOfProgrammingInterviews.com

19.11. Latency reduction 153

as event-driven simulation in molecular dynamics. In both cases the number of jobs
is in the billions and each has its own priority.

Problem 19.10: Design a system for maintaining a set of prioritized jobs that imple-
ments the following APL
1. Insert a new job with a given priority.
2. Delete a job.
3. Find the highest priority job.
Each job has a unique ID. Assume the set cannot fit into a single machine’s memory.
pg. 421

19.11 LATENCY REDUCTION

The Pareto distribution is:

P > o - (=), ifx>x
[X>x] = 1, otherwise.

Here a and x,, are parameters of the distribution. It is one of the heavy-tailed
distributions that commonly occur in various workloads.

Imagine you are running a service on k servers and that any service request can
be processed by any of the servers. A given server can process only one request
at a time. A server takes t(r) time to process request 7, and #() follows a Pareto
distribution.

Clients of a service often care more about the 99-th or the 95-th percentile latency
for a request to be served than the average latency since they want most of the
requests to be serviced in a reasonable amount of time even if a request occasionally
takes a long time.

Problem 19.11: You have guaranteed your clients that 99% of their requests will
be serviced in less than one second. How would you design a system to meet this
requirement with minimal cost? pg. 422

19,12 ONLINE ADVERTISING SYSTEM

Problem 19.12: Jingle, a search engine startup, wants to monetize its search results
by displaying advertisements alongside search results. Design an online advertising
. system for Jingle. pg. 422

19.13 RECOMMENDATION SYSTEM

Jingle wants to generate more page views on its news site. A product manager has
the idea to add to each article a sidebar of clickable snippets from articles that are
likely to be of interest to someone reading the current article.

Problem 19.13: Design a system that aufométically generates a sidebar of related
articles. . pg. 423

ElementsOfProgrammingInterviews.com

154 19.14. Driving directions

19.14 DRIVING DIRECTIONS

As a part of its charter to collect all the information in the world and make it univer-
sally accessible, Jingle wants to develop a driving directions service. Users enter a
start and end address; the service returns directions.

Problem 19.14: Design a driving directions service with a web interface. pg. 424

19.15 DISTRIBUTING LARGE FILES

Jingle is developing a search feature for breaking news. New articles are collected
from a variety of online news sources such as newspapers, bulletin boards, and blogs,
by a single lab machine at Jingle. Every minute, roughly one thousand articles are
posted and each article is 100 kilobytes.

Jingle would like to serve these articles from a data center consisting of a 1000
servers. For performance reasons, each server should have its own copy of articles
that were recently added. The data center is far away from the lab machine.

Problem 19.15: Design an efficient way of copying one thousand files each 100 kilo-
bytes in size from a single lab server to each of 1000 servers in a distant data center.
pg. 425

19.16 ONLINE POKER

Clump Enterprises wants to create a website by which gamblers can play poker
online.

Problem 19.16: Design an online poker playing service for Clump Enterprises.
Describe both the system architecture and a set of classes. pg. 425

19.17 Desion THE WorLD Wine WEes

Problem 19.17: Design the World Wide Web. Specifically, describe what happens
when you enter a URL in a browser address bar, and press return. ps- 426

.ElementsOfProgrammingInterviews.com

CHAPTER

Probability

The theory of probability, as a mathematical disci-
pline, can and should be developed from axioms in
exactly the same way as Geometry and Algebra.

— "Foundations of the Theory of Pmbabifﬁy,”
A, N, KoLmocorov, 1933

Probability comes up often in computation, e.g.,, when modeling random events
(input data and arrival time), and designing efficient algorithms, quicksort and
selecting the k-th element being notable examples. It is a rich subject and is the
source of many interview questions.

To a first approximation, a probability measure is a function p from subsets of a
set E of events to [0, 1] that has the properties that p(E) = 1 and p(AU B) = p(A) + p(B)
when A and B are disjoint. Various properties and notations can be given around
these concepts. For example, it is easy to prove that p(A U B) = p(4) +p(B) = p(AN B)
for general A and B.

A random variable X is a function from E to (—co, 00); it can be characterized by a
cumulative distribution function Fx : R + [0,1], where Fx(t) = p(X~((~0, 7])). When
X takes a finite or countable set of values, we can talk about the probability of X
taking a particular value, i.e., p(X = 'r.) If X takes a continuous range of values and
Fy is differentiable, we talk of fx(7) = —3 as being the probability density function.

The expected value E[X] of a random variable X taking a finite set of values
T = {to,71,. .., Tu1} is simply Y, er Ti - p(X = T3), e, it is the average value of X,

weighted by probabilities. The notion of expectation generalizes to countable sets of
values. For a random variable taking a continuous set of values, the sum is replaced
with an integral and the weighting function is the probability density function. The
variance var(X) of a random variable X is the expected value of (X — E[X])?, and,
in some sense, measures how spread out the variable is. Some of the key results in
probability have to do with bounds on the probability of events, e.g., the Chebyshev
bound: Pr(|X — E[X]| = k+/var(X)) < & holds for arbitrary distributions.

The following random variables are frequently encountered. The Bernoulli ran-
dom variable takes only two values, 0 and 1; it is used, for example, in modeling coin
tosses. The uniform random variable takes values in an interval U; the probability
of I ¢ U is proportional to the length of I. The Poisson random variable takes non-
negative values—it models the number of events in a fixed period of time, e.g., the
number of HTTP requests in a minute. The Gaussian random variable takes all real
values. Let Xg, X3, Xz, ... be independent identically distributed random variables

155

156 20.1. Random permutations—1

each with mean y and variance ¢?>. Then ():;’:01 (Xi — W)/ v/n tends to a zero mean

Gaussian random variable with unit variance.

For the most part, probability is intuitive. However, there are notable exceptions.
For example, at first glance, it would seem impossible for there to exist three 6-sided
dice A, B, and C such that A is more likely to roll a higher number than B, B is more
likely to roll a higher number than C, and Cis more likely to roll a higher number than
A. However if A has sides 2,2,4,4,9, and 9, B has sides 1,1, 6,6,8, and 8, and die C
has sides 3,3,5,5,7, and 7, then the probability that A rolls a higher number than B
is %2, the probability that B rolls a higher number than C is 22, and the probability
that C rolls a higher number than A is L. The Monty Hall problem is another famous
example.

20.1 RANDOM PERMUTATIONS—1

Consider estimating the probability of winning a game of Blackjack, assuming cards
are shuffled perfectly uniformly before dealing hands and everyone is playing ac-
cording to a known strategy. One way to do this would be to generate a few random
permutations of the cards and compute the chances of winning in each case. It is
important that the process used to generate a random permutation generates each
permutation with equal probability.

Problem 20.1: Does the following process yield a uniformly random permutation
of A? “Fori € {0,1,...,n—1}, swap A[i] with a randomly chosen element of A.” (The
randomly chosen element could be i itself.) pg. 427

20.2 OFFLINE SAMPLING

Problem 20.2: Let A be an array of n distinct elements. Design an algorithm that
returns a subset of k elements of A. All subsets should be equally likely. Use as few
calls to the random number generator as possible and use O(1) additional storage.
You can return the result in the same array as input. ps. 427

20.3 RaANDOM PERMUTATIONS—2

Problem 20.1 showed that generating random permutations is not as straightforward
as it seems.

Problem 20.3: Design an algorithm that creates unifdrmly random permutations of
{0,1,...,n = 1}. You are given a random number generator that returns integers in
theset {0, 1,...,n—1} with equal probability; use as few calls to it as possible. pg. 429

20.4 UNIFORM RANDOM NUMBER GENERATION

The next problem is motivated by the following scenario. Five friends have to select
a designated driver using a single unbiased coin. The process should be fair to
everyone.

ElementsOfProgrammingInterviews.com

20.5. Nonuniform random number generation 157

Problem 20.4: How would you implement a random number generator that gen-
erates a random integer i in [a, b], given a random number generator that produces
either zero or one with equal probability? All generated values should have equal
probability. What is the run time of your algorithm, assuming each call to the given
random number generator takes O(1) time? pg. 429

20.5 NONUNIFORM RANDOM NUMBER GENERATION

Suppose you need to write a load test for a server. You have studied the inter-arrival
time of requests to.the server over a period of one year and from this data have
computed a histogram of the distribution of the inter-arrival time of requests. In the
load test you would like to generate requests for the server such that the inter-arrival
times come from the same distribution that was observed in the historical data. The
following problem formalizes the generation of inter-arrival times.

Problem 20.5: You are given a set T of n nonnegative real numbers {ty, f1, ..., tz-1} and
probabilities py, py, . . ., Pu_1, where Y1) p; = 1. Assumethatfy < t; < -+ < f,_;. Given
arandom number generator that produces values in [0, 1] uniformly, how would you
generate a value X from T according to the specified probabilities? pg. 430

20.6 RESERVOIR SAMPLING

The following problem is motivated by the design of a packet sniffer that provides a
uniform sample of packets for a network session.

Problem 20.6: Design an algorithm that reads a sequence of packets and maintains
a uniform random subset of size k of the read packets when the n > k-th packet is
read. pg. 430

20.7 ONLINE SAMPLING

The set Z, = {0,1,2,...,n — 1} has exactly (}) subsets of size k. We seek to design an
algorithm that returns any one of these subsets with equal probability.

Problem 20.7: Design an algorithm that computes an array of size k consisting of
distinct integers in the set {0,1,...,n — 1}. All subsets should be equally likely and,
in addition, all permutations of elements of the array should be equally likely. Your
time should be O(k). Your algorithm should use O(k) space in addition to the k
element array holding the result. You may assume the existence of a subroutine that
returns integers in the set {0,1,...,n — 1} with uniform probability. pg. 431

20.8 House or REPRESENTATIVES MAJORITY

Suppose you want to place a bet on the outcome of the coming elections. Specifically,
you are betting if the US House of Representatives will have a Democratic or a
Republican majority. A polling company has computed the probability of winning
for each candidate in the 435 individual elections. You are interested in just one

ElementsOfProgrammingInterviews.com

158 20.9. Differentiating biased coins ()

number—what is the probability that the Republican party is going to have a majority
in the House?

Problem 20.8: Assuming elections are statistically independent and that the proba-
bility of a Republican winning Election i is p;, how would you compute the probability
of a Republican majority? pg. 432

20.9 DIFFERENTIATING BIASED COINS ()

Two coins that are identical in appearance are placed in a black cloth bag. One is
biased towards heads—it comes up heads with probability 0.6. The other is biased
towards tails—it comes up tails with probability 0.6. For both coins, the outcomes of
successive tosses are independent.

Problem 20.9: You select a coin at random from the bag and toss it five times. It
comes up heads three times. What is the probability that it was the coin that was
biased towards tails? How many times do you need to toss the coin that is biased
towards tails before it comes up with a majority of tails with probability greater than
22 ' pg. 434

20.10 Bawrrs AnND BINS (&)

Suppose n web servers interact with m clients such that each client picks a server
uniformly at random. A key benefit of this approach is that no centralized control is
needed. However, some servers may be idle while clients are waiting to be served.
This is often modeled by balls and bins.

Problem 20.10: If m balls are thrown into n bins uniformly randomly and indepen-
dently, what is the expected number of bins that do not have any balls? pg. 435

20.11 RANDOM PERMUTATIONS (&)

Problem 20.11: What is the expected number of fixed points of a uniformly random
permutation ¢ : {0,1,...,n =1} = {0,1,...,1n — 1}, ie., the expected cardinality of
{i| a(i) = i}? What is the expected length of the longest increasing sequence starting
at 0(0), i.e., if k is the first index such that o(k) < a(k — 1), what is the expected value
of k? ' pg. 436

20.12 EXPECTED NUMEBER OF DIE ROLLS

Problem 20.12: Gottfried repeatedly rolls an unbiased six-sided die. He stops when
he has rolled all the six numbers on the die. How many rolls will it take, on an
average, for Gottfried to see all the six numbers? pg. 436

ElementsOfProgrammingInterviews.com

20.13. Forming a triangle—1 (&) . _ 159

20.13 FORMING A TRIANGLE—] (&)

Two numbers ul and u2 are selected uniformly randomly and independently in the
interval [0, 1]. Three line segments are formed, of lengths min(u1, uz), max(ul, u2) —
min(#1,u2), and 1 — max(ul, u2).

Problem 20.13: What is the probability that these three segments can be assembled
into a triangle? pg. 437

20.14 FORMING A TRIANGLE—2 (&)

Problem 20.14: Solve Problem 20.13 when u1 is uniformly randomly in [0,1] and
u2 is subsequently chosen uniformly randomly in [u1, 1]. Can you determine which
of these two approaches is more likely to produce a triangle without computing the
exact probabilities? pg. 437

20.15 SELECTING THE BEST SECRETARY

Suppose you need to choose a secretary from a pool of n secretaries who you interview
in a random order. Given any two secretaries, you can tell who is better, and the “is
better” relationship is transitive. Once you interview a secretary s, you have to select
or reject s right away. If you select s, the selection procéss stops.

Problem 20.15: Design a strategy that selects the best secretary with a probability
greater than {}.25, regardless of n. pg. 438

20.16 THE ONCE-OR-TWICE GAME (@)

The Once-or-Twice game is played against a dealer. You pay $1 to play the game.
The dealer gets a random card from a full deck. You are shown a randomly selected
card from another full deck. You have the choice of taking the card or exchanging
it for another card which is also randomly selected from another full deck. You win
the game if and only if the face value of your card is greater than that of dealer. If
you win, you get w dollars. (The face value of an Ace is 1; the face values of Jack,
Queen, and King are 11,12, and 13, respectively.)

Problem 20.16: What is the value of w such that Once-or-Twice is a fair game, i.e.,
for a rational player, the expected gain is 0? pg. 438

20.17 THE MULTIBET CARD COLOR GAME (&)

In the multibet card color game, a deck of 52 playing cards is shuffled. and placed
face-down on a table You can bet on the color of the top card at even odds. After
you have placed your bet, the top card is revealed to you and discarded. Betting
continues till the deck is exhausted. You begin with $1. If you can bet arbitrary
fractions of your bankroll, there is a simple strategy which guarantees you will win,
regardless of the order in which the cards appear, $22/(3%) ~ 9.08132955. This is
the maximum amount that you can guarantee that you will win. (A proof of this is

ElementsOfProgrammingInterviews.com

160 20.18. The one red card game (&)

sketched at the end of the solution.) In this problem we want to find the maximum
amount you can guarantee that you will win when you can bet in penny increments.

Problem 20.17: Suppose you are playing the multibet card color game and are
restricted to bet in penny increments. Compute a tight lower bound on the amount
that you can guarantee to win under this restriction. ps. 439

20.18 THE ONE RED CARD GAME (&F)

In the one red card game, a deck of 52 playing cards is shuffled and placed face-down
on a table. To win, you must select a red card. You can either examine or select the
top card. If you choose examine, the top card is revealed and discarded. If you
choose select, the game ends—you win if it is a red card and lose otherwise. After
examining 51 cards, you must select the last card.

Problem 20.18: Design a strategy that maximizes the probability of winning at the
one red card game. pg. 441

20.19 OpTIMUM BIDDING

Problem 20.19: Consider an auction for an item in which the reserve price is a
random variable X uniformly distributed in [0,400]. You can bid B. If your bid is
greater than or equal to the reserve price, you win the auction and have to pay B.
You can then sell the item for an 80% markup over the reserve price. How much
should you offer for the item? _ pg. 442

20.20 Tue Kerry criTErRION (§20)

An roulette wheel has 37 pockets, numbered from 0 to 36 into which a ball is dropped.
Pocket 0 is colored green; the remaining pockets are colored red if the number is odd
and black if the number is even. You can bet on the ball falling into a red pocket at
50-50 odds, i.e., you get back double the amount you bet if the ball lands on a red
pocket and you lose otherwise. Ordinarily, the ball lands in a pocket uniformly at
random. Therefore, the probability of a bet on red paying off is 5.

Problem 20.20: Your friend at the Acme Casino has rigged their roulette wheel to
make the probability of the ball landing on red 2. You can bet on the same color
exactly 100 times; after that the casino management will be alerted. You start with
$1. On each round, you can bet any amount from 0 to your entire bankroll. What
should your strategy be? pg. 442

20.21 Tre comprexiTy oF AND-OR expressions ()

Suppose we are to evaluate an expression of the form ((A A B) V (C A D)), where A and
V are Boolean AND and OR respectively and A, B, C, and D are Boolean variables. It
is natural to use lazy evaluation, i.e., when evaluating A A B, if we begin with A, and
it evaluates to false, we skip B.

ElementsOfProgrammingInterviews.com

20.22. Option pricing—discrete case 161

We now define a restricted set of expressions. The Ly expressions are just Boolean
variables. An L,y expression is of the form ((¢o A 1) V (o A 1)), where ¢hg, ¢1, 1o,
and 1Py are L expressions. All Boolean variables appearing in an L; expression are
distinct.

We want to design an algorithm for evaluating Ly expressions and want to min-
imize the number of variables that it reads. We do not care how much time the
algorithm spends fraversing the expression.

Problem 20.21: Prove that an algorithm in which the choice of the next variable
to read in an Lg expression is a deterministic function of the values read up to that
point must, in the worst case, read all variables to evaluate the expression. Design a
randomized algorithm that reads fewer variables on an average, independent of the
values assigned fo the variables. _ pg. 443

Option pricing

A call option gives the owner the right to buy something—a share, a barrel of oil, an
ounce of gold—at a predetermined price at a predetermined time (the “expiration
date”) in the future. If the option is not priced fairly, an arbitrageur can either buy or
sell the option in conjunction with other transactions and come up with a scheme of
making money in a guaranteed fashion. A fair price for an option would be a price
such that no arbitrage scheme can be designed around it. Problems 20.22 to 20.24
on Pages 161-162 are related to determining the fair price for an option on a stock,
given the distribution of the stock price for a period of time.

20.22 OPTION PRICING—DISCRETE CASE

In the following problem, you begin with a portfolio of x; shares and x, options.
Since you are allowed to short shares and sell options x; and x, may be negative.
An arbitrage is a portfolio which has a negative initial value and, regardless of the
movement in the share price, has a positive future value.

Consider an option to buy a stock S that currently trades at $100. The option -
is to buy the stock at $100 in 100 days. Suppose we know only two outcomes are
possible—S will go to $120 or to $70.

If the option is priced at $26, we have an arbitrage: buy one share for $100 and
sell four options—the initial outlay on the portfolio is 100 + 4 x —26 = —$4. If the
stock goes up, the portfolio is worth 120 + 4 x ~20 = $40. If the stock goes down, the
portfolio is worth $70. In either case, we make money with no initial investment, i.e.,
the option price allows for an arbitrage.

Problem 20.22: For what option price is there no opportunity for arbitrage? pg. 444
20.23 OPTION PRICING WITH INTEREST

Problem 20.23: Consider the same problem as Problem 20.22, with the existence of
a third asset class, namely a bond. A $1bond pays $1.02 in 100 days. You canborrow

ElementsOfProgrammingInterviews.com

162 20.24. Option pricing—continuous case ()

money at this rate or lend it at this rate. Show there is a unique arbitrage-free price
for the option and compute this price. pg. 445

20.24 OPTION PRICING—CONTINUOUS CASE (&)

Problem 20.24: Suppose the price of Jingle stock 100 days in the future is a normal
random variable with mean $300 and standard deviation $20. What would be the
fair price of an option to buy a single share of Jingle at $300 in 100 days? (Ignore the
effect of interest rates.) ' pg. 445

ElementsOfProgrammingInterviews.com

CHAPTER

Discrete Mathematics

There is vequired, finally, the ratio between the fluxion of any
quantity x you will and the fluxion of its power x" . Let x flow till
it becomes x + o and resolve the power (x + o) into the infinite
series 2" +nox"V + L —notx" 2+ L(n® - 3n? + 2m)0®x" 3 .

— “On the Quadrature of Curves,”
I, Newron, 1693

Discrete mathematics is used in algorithm design in a variety of places. Examples
include combinatorial optimization, complexity analysis, and bounding probabili-
ties. Discrete mathematics is also the source of enjoyable puzzles and challenging
interview questions. Solutions can range from simple applications of the pigeon-hole
principle to complex inductive reasoning.

Some of the problems in this chapter fall into the category of brain teasers where
all that is needed an aha moment. These problems have fallen out of fashion because
it is difficult to judge a candidate’s ability based on whether he is able to make a
tricky observation in a short period of time. However they are asked often enough
that it is important to understand basic principles. -

21.1 500 poors

Five hundred closed doors along a corridor are numbered from 1 to 500. A person
walks through the corridor and opens each door. Another person walks through the
corridor and closes every alternate door. Continuing in this manner, the i-th person
comes and toggles the position of every i-th door starting from door i.

Problem 21.1: Which of the 500 doors are open after the 500-th person has walked
through? pg. 446

21.2 EPPICIENT TRIALS

You are the coach of a cycling team with 25 members and need to determine the
fastest, second-fastest, and third-fastest cyclists for selection to the Olympic team.
You will be evaluating the cyclists using a time-trial course on which only five
cyclists can race at a time. You can use the completion times from a time-trial to rank
the five cyclists amongst themselves—no ties are possible. Because conditions can
change over time, you cannot compare performances across different time-trials. The

163

164 21.3. Space-time intersections

relative speeds of cyclists does not change—if a beats b in one time-trial and b beats ¢
in another time-trial, then 2 is guaranteed to beat c if they are in the same time-trial.

Problem 21.2: What is the minimum number of five man time-trials needed to
determine the top three cyclists from a set of 25 cyclists? rg. 447

21.3 SPACE-TIME INTERSECTIONS

Albert starts climbing a mountain at 9:00 a.m. on Saturday. He reaches the summit at
5:00 p.m. He camps at the summit overnight and descends the mountain on Sunday.
He begins and ends at the same time and follows exactly the same route. His speeds
may vary and he may take breaks at different places.

Problem 21.3: Prove that there exists a place such that Albert is at that place at the
same time on Sunday as he was on Saturday. ' pg. 447

21.4 HERSHEY BAR

A Hershey bar is modeled as a rectangle of m X n rectangle-shaped pieces. You can
take a bar and break it along a horizontal or vertical axis into two bars.

Problem 21.4: How would you break a 4 x 4 bar into 16 pieces using as few breaks
as possible? vg. 447

21.5 PICKING UF COINS, DON'T LOSE

Sixteen coins are placed in a line, as in Figure 4.6 on Page 44. Two players, F and
S, take turns at choosing one coin each—they can only choose from the two coins at
the ends of the line. Player F goes first. The game ends when all the coins have been
picked up. The player whose coins have the higher fotal value wins. Each player
must select a coin when it is his turn, guaranteeing that the game ends in sixteen
turns.

Problem 21.5: . If you want to ensure you do not lose, would you rather be F or S?
p8. 447

21.6 7 X H CHOMP

The game called n X n chomp consists of an n X n rectangle in the upper right
quadrant in the Cartesian plane, with the lower leftmost point at (0,0). The block
(0,0) is poisoned. Two players take turns at taking a bite out of the rectangle. A bite
removes a square and all squares above and to the right. The first player to eat the
poisoned square loses.

Pioblem 21.6: Assuming the players have infinite computational resources at their
disposal, who will win n X n chomp? pg. 448

ElementsOfProgrammingInterviews.com

21.7. nx 2 chomp 165

21.7 nx2cHOMP

Problem 21.7: Solve Problem 21.6 on the facing page if the rectangle is n long along
the x-axis, and two long along the y-axis. ' pg. 449

21.8 nXm cHOMP

Problem 21.8: Solve Problem 21.6 on the preceding page if the rectangle is of di-
mension # X . pg. 449

21.9 MAILBOX PLACEMENT

A total of n apartment buildings are coming up on a new street. The postal service
wants to place a single mailbox on the street. Their objective is to minimize the total
" distance that residents have to walk to collect their mail each day.

Problem 21.9: Building i has r; residents, and is at distance d; from the beginning of
the street. Devise an algorithm that computes a distance m from the beginning of the
street for the mailbox that minimizes the total distance, that residents travel o get to
the mailbox, i.e., minimizes }:}:01 rild; — ml. pg. 449

21.10 THE GASUP PROBLEM

Figure 21.1: The length of the circular route is 7200 miles, and your vehicle gets 20 miles per gallon.
The distance between successive gas stations is proportional to the angle they subtend at the center.

In the gasup problem, # cities are arranged on a circular road. You need to visit all
the 7 cities and come back to the starting city. A certain amount of gas is available
at each city. The total amount of gas is equal to the amount of gas reqﬁired to go
around the road once. Your gas tank has unlimited capacity. Call a city ample if you
“can begin at it with an empty tank, travel through all the remaining cities, refilling at
each, and return to it. An instance of this problem is given in Figure 21.1.

ElementsOfProgrammingInterviews.com

166 ' 21.11. Closest palindrome (@)

Problem 21.10: Given an instance of the gasup problem, how would you efficiently
compute an ample city if one exists? pg. 450

21.11 CrLOSEST PALINDROME (@F)

A palindromic string is one which reads the same when it is reversed. For example,
the string “malayalam” is a palindrome. An integer can be represented as a string of
digits, so we can speak of palindromic integers. :

Problem 21.11: Write a function that takes a nonnegative integer x and returns, as
a string, the integer closest to x whose decimal representation is a palindrome. For
example, given 1224, you should return 1221. pg. 451

21.12 THE MAXIMUM PRODUCT OF (# — 1) NUMBERS (&)

You are given an array A of n elements, n > 2, and are asked to find the #n — 1 elements
in A which have the largest product.

One approach is to form the product P = "+ Ali], and then find the maximum
of the n terms P; = P/A[i]; this takes n — 1 multiplications and # divisions. Suppose
because of finite precision considerations we cannot use the division-based approach
described above; we can only use multiplications. The brute-force solution entails
computing all (,";) = n products of n — 1 elements; each such product takes n — 2
multiplications.

=1 4
Problem 21.12: Given an array A with n elements, compute max}:[} Eﬁ}.‘]ﬂ in O(n)

time without using division. Can you design an algorithm that runs in O(1) space
and O(n) time? Array entries may be positive, negative, or 0. pg. 452

21.13 HEIGHT DETERMINATION (&)

You need to test the design of a protective case. Specifically, the case can protect
the enclosed device from a fall from up to some number of floors, and you want to
determine what that number of floors is. You want to achieve this using no more
than ¢ cases. An additional constraint is that you can perform only d drops before
the building supervisor stops you.

You know that there exists a floor x such that the case will break if it is dropped
from any floor x or higher but will remain intact if dropped from a floor below x. The
ground floor is numbered zero, and it is given that the case will not break if dropped
from the ground floor.

Problem 21.13: Given ¢ cases and d drops, what is the maximum number of floors
that you can test in the worst-case? P8 454

21.14 SymmeTrRIC-WHACK-A-MOLE (&F

)

In the game of Symmetric-Whack-a-Mole, moles are in one of two states—up or
down. The player has a hammer which he can use to “whack” a mole on the head,
and thereby flip its state.

ElementsOfProgrammingInterviews.com

21.15. Celebrity identification (&) 167

Problem 21.14: Moles are numbered from 0 to n—1. Mole m has a set of neighboring
moles. Whacking m when it is up results in it and all of its neighbors flipping
state. Given a set of moles, the neighbors for each mole, and an initial assignment
of up/down states for each mole, compute a sequence of whacks (if one exists) that
results in each mole being in the down state. pg. 455

21.15 CELEBRITY IDENTIFICATION (&)

For any two distinct people a and b, 2 may or may not know b. However, the “knows”
relation is not symmetric, which means that 2 may know b, but b may not know a.
The knows relation is anti-reflexive, i.e., # does not know a. At a party, everyone
knows someone else. Now a celebrity joins the party—everyone knows him, but he
knows no one.

Problem 21.15: Let F be an nXn Boolean 2D array representing the “knows” relation
for n people; Fla][b] is true iffa knows b, and F[a][a] is always false. Design an O(n)
algorithm to find the celebrity. pg. 456

+21.16 Ramsey tHeEORY (&)

In 1930, Frank Ramsey wrote a paper titled “On a problem in formal logic” which
initiated an entirely new field of discrete mathematics called “Ramsey Theory” in his
honor. He proved what is now called Ramsey’s theorem as an intermediate lemma
in a bigger proof. The problem below illustrates Ramsey’s theorem.

Problem 21.16: Six guests attend a party. Any two guests either know each other or
do not know each other. Prove that there exists a subset of three guests who either
all know each other or all do not know each other. pg. 457

21.17 TourRNAMENTS AND HAMILTONIAN PATHS

A tournament is a directed graph obtained by assigning a direction for each edge in
an undirected complete graph in which every pair of distinct vertices is connected
by an edge.

Problem 21.17: Prove that every tournament has a Hamiltonian path, i.e., a path
that includes each vertex exactly once. pg. 457

21.18 STABLE ASSIGNMENT (@F)

Consider a department with #n new graduate students and n professors. Each student
has ordered all the professors based on how keen he is to work with them. Similarly,
each professor has an ordered list of all the students.

Problem 21.18: Design an algorithm which takes the preference lists of the students
and the professors and pairs students one-to-one with professors subject to the con-
straint that there do not exist student-professor pairings (s0, p0) and (s1, p1) such that
s0 prefers pl to p0 and pl prefers s0 to s1. (The preferences of p0 and sl are not
important.) pg. 459

ElemmentsOfProgrammingInterviews.com

168 21.19. Dancing with the stars (&)

21.19 DANCING WITH THE STARS (&r)

You are organizing a celebrity dance for charity. Specifically, a number of celebrities
have offered to be partners for a ballroom dance. The general public has been invited
to offer bids on how much they are willing to pay for a dance with each celebrity.

Problem 21.19: Design an algorithm for pairing bidders with celebrities to maximize
- the revenue from the dance. Each celebrity cannot dance more than once, and each
bidder cannot dance more than once. Assume that the set of celebrities is disjoint
from the set of bidders. How would you modify your approach if all bids were for
the same amount? What if celebrities and bidders are not disjoint? pg. 460

21.20 TILING A CHESSBOARD (&)

You are given a chessboard and 31 dominoes. The dominoes are rectangles, and each
domino is equal to two squares from the chessboard.

If we remove two diagonally opposite squares from the chessboard, we cannot
cover the chessboard with the 31 dominoes, since each domino will cover one white
and one black square, and the two removed squares must be of the same color.

In this problem we consider the converse.

Problem 21.20: Suppose two squares of opposite colors are removed from a chess-
board. Design an algorithm for finding a way to cover the remaining squares using
31 dominoes, if a covering exists. pg. 460

21.21 Tram rHOTO DAY—3 (&)

Problem 21.21: This problem is a continuation of Problems 13.6 on Page 100 and 16.7
on Page 135. Design an efficient algorithm for computing the minimum number of
subsets of teams so that (1.) the teams in each subset can be organized to appear in
a single photograph without violating the placement constraint, and (2.) each team
appears in exactly one subset. pg. 462

21.22 LARGEST COMMON ROOTED SUBTREE (£5¢)

Define rooted trees A and B to be isomorphic if
— both are null, or
— they have the same number of children, and there exists a one-to-one function f
from the children of A to the children of B such that for all u, f(u) is isomorphic
tou. _
Define a subtree of a rooted tree A to be a subset S of the nodes of A that form a
rooted tree when the parent-child relationship from A is applied to S.
Figure 21.2 on the next page shows two rooted trees, T1 and T2. The gray nodes
indicate a subtree of T'1 that is isomorphic to a subtree of T2. No larger subtree of T1
is isomorphic to a subtree of T2.

Problem 21.22: Let A and B be rooted trees. Design a polynomial time algorithm
for computing a largest common rooted subtree of A and B. pg. 463

ElementsOfProgrammingInterviews.com

21.23. Team elimination (§r) 169

[}

1
root(T1)

Figure 21.2: Largest common rooted subtree.

21.23 Team ELIMINATION (§¥)

Towards the end of a season, sportswriters describe Team a as being mathematically
- eliminated if, no matter what the outcomes of the remaining games are, some other
team will end up with more wins than a.

Problem 21.23: Consider a league in which teams are numbered from 0 ton — 1. At
a certain point in the season, Team i has won W; games, and has R;; games remaining
with Team j. Each game will end in a win for one team and a loss for the other team.
Show how the problem of determining whether Team 4 is mathematically eliminated
can be solved using maximum flow. ' ' pg. 464

)

Let A be an m X n matrix of nonnegative real numbers. Define a rounding of A to
be an m X nmatrix F4 such that for all i and j, Fali, j1 = LA, jll or [Alf, j]1, for all
i, X0 Fali, jl = Yo Ali,), and for all j, X1t Fali,] = Lot Ali, /).

For example, if

21.24 ROUNDING A MATRIX (&

14 21 35
A=1[40 58 6.2
76 81 93

then

—
o

is a rounding of A.

Problem 21.24: Design an efficient algorithm for computing a rounding of amatrix,
if one exists. pg. 466

ElementsOfProgrammingInterviews.com

170 21.25. Common b:owledge (&)

21.25 CoMMON KNOWLEDGE (&)

An explorer comes to the Isle of Logic, which contains 100 inhabitants, half of whom
have blue eyes. The remaining inhabitants have green eyes. The green eyes are
indicative of a disease that brings all the island inhabitants in danger. The inhabitants
have an understanding that whenever someone learns that they have green eyes, they
must leave the island; they never leave the island for any other reason. Inhabitants
are too polite to inform anyone of their eye color.

The inhabitants assemble each day at exactly 9:00 a.m., they see each other, and
then go back to their own houses. They never see anyone else for the rest of the day.
Furthermore, they are capable of instant logical reasoning.

The explorer visits one of their daily assemblies and says, “That’s interesting—
some of you have blue eyes and some of you have green eyes”.

Problem 21.25: What follows after the explorer visits the Isle of Logic? The explorer
seems to have added no new knowledge since each inhabitant already knows that
some inhabitants have blue eyes and some have green eyes. Why does his observation
change the equilibrium? pg. 466

21.26 COMPUTING AN OPTIMUM MIXED-STRATEGY (&5)

A payoff matrix A is an m X n 2D array of real numbers. Player 1 selects Row i with
probability p; and Player 2 selects Column j with probability g;. Player 1 receives
A[i][j] as his payoff, and Player 2 receives —A[7][]].

Problem 21.26: Given a payoff matrix, compute values py,pi,...,pu-1 for Player 1
that minimize the maximum payoff for Player 2. Assume Player 2 knows

Po,Pire - s Pm-1- pg. 467

ElementsOfProgrammingInterviews.com

Part 11l

Solutions

172 C++11 and C++ for Java developers

C++11

C++11 adds a number of features that make for elegant and efficient code. The
C++11 constructs used in the solution code are summarized below.

— The auto attribute assigns the type of a variable based on the initializer expres-
sion.

~ The enhanced range-based for-loop allows for easy iteration over a list of
elements.

— The emplace_front and emplace_back methods add new elements to the be-
ginning and end of the container. They are more efficient than push_front
and push_back, and are variadic, i.e., takes a variable number arguments. The
emplace method is similar and applicable to containers where there is only one
way to insert (e.g., a stack or a map) '

— The array type is similar to ordinary arrays, but supports .size() and bound-
ary checking. (It does not support automatic resizing.)

— The tuple type implements an ordered set.

— Anonymous functions (“lambdas”) can be written via the [] notation, as illus-
trated in Solution 13.2 on Page 292.

— An initializer list uses the {} notation to avoid having to make explicit calls to
constructors when building list-like objects.

— The function iota(ForwardIterator f, ForwardIterator 1, T v) fills the
range [£, 1) with sequentially increasing values, starting with v and repeti-
tively evaluating ++v.

C++ for Java developers

C++ is an order of magnitude more complex than Java. Here are some facts about
C++ that can help Java programmers better understand the solution code.

— Operators in C++ can be overloaded. For example, < can be applied to compar-
ing BigNumber objects. The array indexing operator ([]) is often overloaded
for unordered maps and tree maps, e.g., map[k] returns the value associated
with key k.

— Java’s HashMap and HashSet correspond to C++’'s unordered_map and
unordered_set, respectively. Java’s TreeSet and TreelMap correspond to C-++'s
set and map.

- For set, the comparator is the second argument to the template specification.
For map, the comparator is the third argument to the template specification. (If
< is overloaded, the comparator is optional in both cases.)

— For unordered_map the first argument is the key type, the second is the value
type, and the third (optional) is the hash function. For unordered_set the
first argument is the key type, the second (optional} is the hash function, the
third (optional) is the equals function. The class may simply overload ==, i.e.,
implement the method operator==. See Solution 12.10 on Page 282 for an
example.

— C++ uses streams for input-output. The overloaded operators « and » are used
to read and write primitive types and objects from and to streams.

ElementsOfProgrammingInterviews.com

Solution 5.1 173

— The :: notation is used to invoke a static member function or refer to a static
field.

— C++ has a built-in pair class used to represent arbitrary pairs.

~ A static_cast is used to cast primitive types, e.g., int to double, as well as
an object to a derived class. The latter is not checked at run time. The compiler
checks obvious incompatibilities at compile time. :

- Ashared_pointeris a pointer with a reference count which the runtime system
uses to implement automatic garbage collection.

Problem 5.1, pg.47: How would you go about computing the parity of a very large number
of 64-bit nonnegative integers? '
Solution 5.1: The fastest algorithm for manipulating bits can vary based on the

underlying hardware,
The time taken to directly compute the parity of a single number is proportional

to the number of bits:

short parityl(unsigned long x) {
short result = 0;
while (x) {
result A= (x & 1);
X >»= 1
}
return result;

}

e e T

A neat trick that erases the least significant bit of a number in a single operation
can be used to improve performance in the best and average cases:

1| short parity2(unsigned long x) {

2 short result = 0;

3 while (x) {

4 result *= 1;

5 x & (x - 1); // drops the LSB of x
6}

7 return result;

8

}

However, when you have to perform a large number of parity operations, and
more generally, any kind of bit fiddling operation, the best way to proceed is to
precompute the answer and store it in an array. Depending upon how much mem-
ory is at your disposal, and how much fits efficiently in cache, you can vary the
size of the lookup table. Below is an example implementation where you build a
lookup table “precomputed_parity” that stores the parity of any 16-bit number i as
precomputed_parity[i]. This array can either be constructed during static initial-
ization or dynamically—a flag bit can be used to indicate if the entry at a location is
uninitialized. Once you have this array, you can implement the parity function as
follows:

1| short parity3i(const unsigned long &x) {
2{ return precomputed_parity[x >> 48] 4

ElementsOfProgrammingInterviews.com

174 Solution 5.4

3% precomputed_parity[(x >> 32) & OxFFFF] #
i precomputed_parity[(x >> 16) & OxFFFF] 4
i precomputed_parity[x & OxFFFF];
L

We are assuming that the short type is 16 bits, and the unsigned long is 64
bits. The operation x » 48 returns the value of x right-shifted by 48 bits. Since x
is unsigned, the C++ language standard guarantees that bits vacated by the shift

"operation are zero-filled. (The result of a right-shift for signed quantities, is imple-
mentation dependent, e.g., either 0 or the sign bit may be propagated into the vacated
bit positions.)

Problem 5.2, pg.47: A 64-bit integer can be viewed as an array of 64 bits, with the bit at
index O corresponding to the least significant bit, and the bit at index 63 corresponding to the
most significant bit. Implement code that takes as input a 64-bit integer x and swaps the bits
at indices i and j.

Solution 5.2: First determine if the bits at indices 7 and j differ. The bit at index i
is identified by right shifting by i and ANDing with 1; the bit at index j is handled
similarly. Generally speaking, a right-shift of an integer may be signed (the most
significant bit is replicated) or unsigned (0s are inserted). However, it makes no
difference to our application, since the bits shifted in are ANDed with 0s. Here is the
code in C++:

1) long swap_bits(long x, const int &i, comnst int &j) {
2 if ((Cx >> 1) & 1) 1= ((x >> j) & 1)) {

3 x A= (1L << i) | (1L << j);

I } '

5 return x;

6}

Problem 5.3, pg. 48: Write a function that takes a 64-bit integer x and returns a 64-bit
integer consisting of the bits of x in reverse order.

Solution 5.3: Similar to computing parity (Problem 5.1 on Page 47), the fastest way
to reverse bits is to build a precomputed array precomputed_reverse such that for
every 16-bit number i, precomputed_reverse[i] holds the bit-reversed #:

1| long reverse_bits(const long &x) {

2 return precomputed_reverse[(x >> 48) & OxFFFF] |

3 precomputed_reverse[(x »> 32) & OxFFFF] << 16 |
4) precomputed_reverse[(x >> 16) & OxFFFF] << 32 |
5 precomputed_reverse[x & OxFFFF] << 48;

6

Problem 5.4, pg.48: Suppose x € S, and k is not 0 or 64. How would you compute
y € Sg \ {x} such that |y — x| is minimum?

ElementsOfProgrammingInterviews.com

R T I I

1

Solution 5.5 175

Solution 5.4: The number y can be computed by iterating through the bits of x,
from the least significant bit to the most significant bit and swapping the first two
consecutive bits that differ. Intuitively, this works because we want to change the
least significant bits possible. (Note that simply swapping the least significant bit
with next least significant bit that differs from the least significant bit does not work,
e.g., 1011100 provides a counterexample.)

unsigned long closest_int_same_bits(unsigned long x) {
for (int i = §; i < 63; ++i) {
1f ((Cx »> i) & 1) & ((x »> (1 + 1)) & 1)) {
x A= (IUL << i) | C1UL << (i + 1)); // swaps bit-i and bit-(i + 1)
return x;
}
¥

// Throw error if all bits of x are 0 or 1
throw invalid_argument("all bits are & or 1");

}

Problem 5.5, pg. 48: Implement a method that takes as input a set S of distinct elements,
and prints the power set of S. Print the subsets one per line, with elements separated by
commas.

Solution 5.5: The key to solving this problem is realizing that for a given ordering of
the elements of S, there exists a one-to-one correspondence between the 2 bit arrays
of length |S| and the set of all subsets of S—the 1s in the |S|-length bit array v indicate
the elements of S in the subset corresponding to v.

For example, if S = {g,/,¢} and the elements are ordered g <! < ¢, the bit array
(0,1,1) denotes the subset {I, e}.

If [S| is less than or equal to the number of bits used to represent an integer on
the architecture (or language) we are working on, we can enumerate bit arrays by
enumerating integers in [0,2° — 1] and examining the indices of bits set in these
integers. These indices are determined by first isolating the most significant bit by
computing y = x&!(x — 1) and then getting the index by computing lg y.

1! template <typename T>

2; void generate_power_set(const vector<T> &S) {
3 for (int i = 0; i < (1 << S.size()); ++i) {
4 int x = 1i;

5 while (x) {

& int tar = log2(x & ~(x - 1));

7 cout << S[tar];

8 if (x &= x - 1) {

El cout << ',

10 }

1 }

12 cout << endl;

1B}

1]}

ElementsOfProgrammingInterviews.com

176 Solution 5.6

In practice, it would likely be faster to iterate through all the bits in x, one at a time.

Alternately, we can use recursion. We make one call with the i-th element and one
call without the i-th element. The time complexity is O(|S|2l). The space complexity
is O(|S|) which comes from the maximum stack depth as well as the maximum size
of a subset.

template <typename T>
void generate_power_set_helper(const vector<T> &S, int idx, vector<T> &res) {
if (res.empty() == false) {
// Print the subset
copy(res.cbegin(), res.cend() - 1, ostream_iterator<T>(cout, ","));
cout << res.back(); '
}
cout << endl;
for (int i = idx; i < S.size(); ++i) {
res.emplace_back(S[i]);
generate_power_set_helper(s, i + 1, res);
res.pop_back();
}
1
template <typename T>
void generate_power_set{const vector<T> &S) {
vector<T> res;
generate_power_set_helper(S, 8, res);
1

Variant 5.5.1: Print all subsets of size kof {1,2,3,...,7n}.

Problem 5.6, pg.49: Implement stringfinteger inter-conversion functions. Use the follow-
ing function signatures: String intToString(int x) and int stringToInt(String
s).

Solution 5.6: For a positive integer x, we iteratively divide x by 10, and record the
remainder till we get to 0. This yields the result from the least significant digit, and
needs to be reversed. If x is negative, we record that, and negate x, adding a -/
afterward. If x is 0, our code breaks out of the iteration without writing any digits,
in which case we need to explicitly set a 0. In C++ code:

string intToString(int x) {
bool is_negative;
if (x < 0) {
X = -X, is_negative = true;
1 else {
is_negative = false;
i
string s;
while (x) {
s.push_back('0' + x % 10);

ElementsOfProgrammingInterviews.com

Solution 5.7 . 177

12 x /= 10;

1B}

14 if (s.empty()) {

15 return {"8"}; // x is @
16 1

18 if (is_negative) {

19 s.push_back('-');

0}

7n reverse(s.begin(), s.end());
22/ return s; -)

25 int stringToInt(const string &s) {
2% bool is_negative = s[8] == '-';
27 int x = @;

28

29 for (int i = is_negative; i < s.size(); ++1i) {
20 if (isdigit(s[i])) {

kS X =x * 10 + s[i] - '9';

32 } else {

33 throw invalid_argument("illegal input");
34 }

5 1

kT return is_negative 7 -x : x;

37}

‘Problem 5.7, pg.49: Write a function that performs base conversion. Specifically, the input
is an integer base by, a string s, representing an integer x in base by, and another integer base
by; the output is the string representing the integer x in base by. Assume 2 < by, by < 16.
Use “A” to represent 10, "B” for 11, ..., and “F” for 15.

Solution 5.7: We can use a reductionist approach to solve this problem. We have
seen how to convert integers to strings in Solution 5.6 on the preceding page; this
approach works for any base. Converting from strings is the reverse of this process.
‘We can therefore convert base b; stfing s to a base 10 integer x, and then convert x to
a base b, string ans. Following is the code in C++:

1| string convert_base(const string &s, comst int &bl, const int &b2) {
2| bool neg = s.front() == '-';

3 int x = 0;

4 for (int i = (neg == true 7 1 : 0); i < s.size(); ++i) {
5 x %= bl;

[% += isdigit(s[i]) ? s[i] - '®" : s{i] - 'A' + 10;

7i 1 .

B

9 string ans;

10 while (x) {

11 int r = x ¥ b2;

12 ans.push_back(r »>= 16 ? 'A’ + r - 18: '8’ + r);

13 x /= b2;

“ o} .

15

ElementsOfProgrammingInterviews.com

16
17
18
19

a

3 return ans;

178 Solution 5.9

if (ans.empty()) {
ans.push_back('8');

1

if (neg) {
ans . push_back(’-'};

}

reverse(ans.begin(), ans.end());

Problem 5.8, pg.49: Write a function that converts Excel column ids to the cor-
responding integer, with “A” corresponding to 1. The function signature is int
ssDecodeColID(string); you may ignore error conditions, such as col containing char-
acters outside of [A, Z]. How would you test your code?

Solution 5.8: This problem is similar to the problem of converting a string represent-
ing a base-26 number to the corresponding integer, except that “A” corresponds to 1
not 0.

int ssDecodeColID(const string &col) {
int ret = @;
for (const char &c : col) {
ret = ret * 26 + ¢ - A" + 1;
}
return ret;

}

R I

Good test cases are around boundaries, e.g., “A”, “B”, “Y”, “Z", "AA”, “AB”, “ZY",
“ZZ", and some random strings, e.g., “M”, “BZ”, “CCC".

Problem 5.9, pg.50: Let Abean array of n integers. Write an encode function that returns a
string representing the concatenation of the Elias gamma codes for (A[0], A[1], ..., Aln~1])
in that order, and a decode function that takes a string s assumed to be generated by the encode
function, and returns the array that was passed to the encode function.

Solution 5.9: The code follows in a straightforward way from the above specifica-
tions. Each encoded number starts with one fewer Os than bits in the number, which
allows us to uniquely determine the length of the result.

1} string trans_int_to“binary(int decimal) {
2 string ret;

3 while (decimal) { _

4 ret.insert(®, 1, '®" + (decimal & 1));
5 decimal >>= 1;

6}

7 return ret;

8}

5 .

10! string encode(const vector<int> &A) {

11 string ret = "";

12 for (const int &a : A) {

ElementsOfProgrammingInterviews.com

Solution 5.10 179

13 string binary = trans_int_to_binary(a);

14 binary.insert(®, binary.size() - 1, '®'); // prepend 0s
15 ret += binary;

16 i

17 return ret;

8] }

2| int trans_binary_to_int(const string &binary) {

21 int ret = @;

2 for (const char &c : binary) {
3 ret = (ret << 1) + ¢ - '8°;
4| }

5 return ret;

26| }

7

28] vector<int> decode(const string &s) {
9 vector<int> ret;

a0 int idx = 0;

31 while (idx < s.size()) {

32 // Count the number of consecutive 0s

33 int zero_idx = idx;)

34 while (zero_idx < s.size() && s[zero_idx] == '6') {
35 ++zero_idx;

3 ¥

37

38 int len = zero_idx - idx + 1;

39 ret.emplace_back(trans_binary_to_int(s.substr(zero_idx, len)));
@ idx = zero_idx + len; i

al }

42 return ret;

43|}

Problem 5.10, pg. 50: Design an algorithm for computing the GCD of two numbers without
using multiplication, division or the modulus operators.

Solution 5.10: The idea is to use recursion, the base case being where one of the
arguments is 0. Otherwise, we check if none, one or both numbers are even. If both
are even, we compute the GCD of these numbers divided by 2, and return that result
times 2; if one is even, we half it, and return the GCD of the resulting pair; if both
are odd, we subtract the smaller from the larger and return the GCD of the resulting
pair. Multiplication by 2 is trivially implemented with a single left shift. Division by
2 is done with a single right shift.

Note that the last step leads to a recursive call with one even and one odd numbe:r
Consequently, in every two calls, we reduce the combined bit length of the two
numbers by at least one, meaning that the run time complexity is proportional to the
sum of the lengths of the arguments.

Languages such as Java and Python include libraries for manipulating integers of
arbitrary length, making them ideally suited for our application.

I

1; private static BigInteger TWO = new BigInteger("2");
i
2

ElementsOfProgrammingInterviews.com

180 Solution 5.11

private static boolean isOdd(BigInteger x) {
return x.testBit(0);

}

private static boolean isEven(BigInteger x) {
return !is0dd(x);

}

public static BiglInteger GCD(BigInteger x, BigInteger y) {
if (x.equals(BigInteger.ZER0O)) {
return y;
} else if (y.equals(BigInteger.ZER0O)) {
return x;
} else if (isEven(x) && isEven(y)) {
x = x.shiftRight(1);
y = y.shiftRight(1);
return TWO.multiply(GCD(x, ¥));
} else if (is0dd(x) && isEven(y)) {
return GCD(x, y.shiftRight(1));
} else if (is0dd(y) && isEven(x)) {
return GCD(y, X.shiftRight(1));
else if (x.compareTo(y) <= 8) {
return GCD(x, y.subtract(x)):
else {
return GCD(y, x.subtract(y));

[

et

Problem 5.11, pg.50: Write a function that takes a single positive integer argument n
(n = 2) and return all the primes between 1 and n.

Solution 5.11: We use a bit-vector is_prime of length n+1 to encode the set of primes.
Initialize each entry to 1. The entry is_prime[i] will eventually be set to 0 iff i is
not a prime. Set p to 2. Count in increments of p and “mark” (set the corresponding
entry in is_prime fo 0) each number greater than p in the count to be a non-prime
(since it is divisible by p). Update p to the next unmarked number, and iterate.

This approach can be improved somewhat by ignoring even numbers, and not
allocating entries for i less than 3. The count can also start from p? instead of p, since
all numbers kp, where k < p have already been marked. The code below reflects these
optimizations.

// Given n, return the primes from 1 to n
vector<int> generate_primes_from_1_to_n{const int &n) {
int size = floor(®#.5 * (n - 3)) + 1;
// is_prime[i] represents (2i + 3) is prime or not
vector<int> primes; // stores the primes from I to n
primes.emplace_back(2);
vector<bool> is_prime(size, true);
for (long i = ®; i < size; ++i) {
if (is_prime[i]) {
int p = (i << 1) + 3;
primes.emplace_back(p);

ElementsOfProgrammingInterviews.com

Solution 5.12 181

12 // Sieving from p*2, whose index is 2i42 + 61 + 3

13 for (long j = ((i * i) << 1) + 6 * 1 4+ 3; j < size; j += p) {
14 is_prime[j] = false;

15 }

16 ¥

17 }

18 return primes;

vl }

Problem 5.12, pg.50: Let R and S be xy-aligned rectangles in the Cartesian plane. Write a
function which tests if R and S have a nonempty intersection. If the intersection is nonempty,
return the rectangle formed by their intersection.

Solution 5.12: Let the given rectangles be R = ((RyRy),Ry,Ry) and S
((S4/Sy), 5, Sy). Observe that the rectangles definitely do not intersect if I,
[Re,R: + Ry] N [S4,S: + Sp] = 0; similarly, they definitely do not intersect if
I, = [Ry, Ry + RyIN[S,, Sy + 5] = 0.

Conversely, any point p = (¥, y) such that x € I; and y € I, lies in both R and S.
Suppose I; = [a,, b,] and I, = [ay, b,]; then the desired rectangle is ((2x, 4y), bx — ax, by —

ay).-

class Rectangle {
public:
int x, y, width, height;

};

bool is_intersect(const Rectangle &R, const Rectangle &S) {
return R.x <= S.x + S.width & R.x + R.width >= S.x &&
R.y <= S,y + S.height && R.y + R.height »>= S.y;
3

11| Rectangle intersect_rectangle(const Rectangle &R, const Rectangle &S) {
12 if (is_intersect(R, 5)) {

13 return {max(R.x, S.x), max(R.y, S.y),

14 min(R.x + R.width, S.x + S.width) - max(R.x, S.x),

15 min(R.y + R.height, S.y + S.height) - max(R.y, S$.¥)};
16 } else {

17 return {0, ®, -1, -1}; // no intersection

8}

191}

Variant 5.12.1: Given four points in the plane, how would you check if they are the
vertices of an xy-aligned rectangle?

Variant 5.12.2: How would you check if two rectangles, not necessarily xy-aligned,
intersect? ‘

Problem 5.13, pg.51: Write a function that multiplies two unsigned positive integers. The
only operators you are allowed to use are assignment and the bitwise operators, i.e., » « |, &

ElementsOfProgrammingInterviews.com

182 Solution 5.14

“, *. (In particular, you cannot use increment or decremenf_.) You may use loops, conditionals
and functions that you write yourself; other functions are allowed.

Solution 5.13: We mimic the grade school algorithm for multiplication. Suppose we
are to multiply ¥ and y. We initialize sum to 0 and iterate through the bits of x, adding
2y to sum if bit k of xis 1.

We implement addition itself by mimicking the grade school algorithm for addi-
tion. This consists computing the sum bit-by-bit, and “rippling” the carry along. We
use a bitmask that identifies the k-th bits; it also serves to tell us when all bits have
been read.

1 unsigned add_no_operator (const unsigned &a, const unsigned &b) {

2 unsigned sum = @, carryin = 0, k = 1;

3i while (k) {

4 unsigned ak = a & k, bk = b & k;

5 unsigned carryout = (ak & bk) | (ak & carryin) | (bk & carryin);
6 sum |= (ak * bk 4 carryin);

7 carryin = carryout << 1;

8 k <<= 1;

9 1}

10 return sum,

1nj}

13/ unsigned multiply_no_operator(const unsigned &x, const unsigned &y) {
14 unsigned sum = 0, k = 1, scaled_y = y;
15/, while (k) {

16 // Examine the k-th bit of x

17 if (x & k) {

18 sum = add_no_operator(sum, scaled_y);
19 }

0 k <<= 1;

2 scaled_y <<= 1;

22 }

2 return sum;

E

Problem 5.14, pg. 51: Given two positive integers x and y, how would you compute x/y if
the only operators you can use are addition, subtraction, and multiplication?

Solution 5.14: We can use the following recursion:

x| 0 ifx<y;
v 1+(x—;y-), otherwise.

This is not efficient by itself, but we can improve it by computing the Jargest k such
that 2y < x, in which case the recursive step is 2 + (i_yfﬂ.

1% unsigned divide_x_y(const unsigned &x, const unsigned &y) {
2p if (x <) {

3! return §;

4}

ElementsOfProgrammingInterviews.com

Solution 6.1 ' 183

5
& int power = @;

7 while ((1U << power) * y <= x) {

8 ++power;

9 1}

10 unsigned part = 1U << (power - 1);

11 return part + divide_x_y(x - part * y, y);
12}

Problem 6.1, pg.52: Write a function that takes an array A and an index i into A, and
rearranges the elements such that all elements less than Ali] appear first, followed by elements
equal to Ali), followed by elements greater than A[i]. Your algorithm should have O(1) space
complexity and O(|A)) time complexity.

Solution 6.1: This problem is conceptually straightforward: maintain four groups,
bottom (elements less than pivot), middle (elernents equal fo pivot), unclassified, and
top (elements greater than pivot). These groups are stored in contiguous order in
A. To make this partitioning run in O(1) space, we use smaller, equal, and larger
pointers to frack these groups in the following way:

— bottom: stored in subarray A[0 : smaller — 1].

— middle: stored in subarray A[smaller : equal — 1].

~ unclassified: stored in subarray Alequal : larger].

— top: stored in subarray A[larger +1: |A|~1].
We explore elements of unclassified in order, and classify the element into one of
bottom, middle, and top groups according to the relative order between the incoming
unclassified element and pivot. Each iteration decreases the size of unclassified
group by 1, and the time spent within each iteration is constant, implying the time
complexity is ©(|Al). '

Theimplementation is short but tricky, pay attention to the movements of pointers.

1; template <typename T>

2 void dutch_flag_partition{vector<T> &4, const int &pivot_index) {
3 T pivot = Alpivot_index];

4 /’HI‘#

5 * Keep the following invariants during partitioning:
6 * bottom group: A[® : smaller - 1]

H * middle group: Afsmaller : equal - 1J

8 * unclassified group: Afequal ; larger]

9 * top group: Aflarger + 1 : A.size() - 1]

10 */

1 int smaller = @, equal = @, larger = A.size() - 1;

12 // When there is any unclassified element

13 while (equal <= larger) {

u // Alequal] is the incoming unclassified element
15 if (A[equal] < pivot) {

16 swap(A[smaller++], Alequal++]);

17 } else if (Afequal] == pivot) {

18 ++equal;

19 } else { // Alequal] > pivot

20 swap(A[equal], A[larger--1);

ElementsOfProgrammingInterviews.com

184 ' Solution 6.2

21| }
nl }
B}

~ e-Variant6.1.1: Assuming that keys take one of three values, reorder the array so that
all objects of the same key appear in the same subarray. The order of the subarrays
is not important. For example, both Figures 6.1(b) and 6.1(c) on Page 53 are valid
answers for Figure 6.1(a) on Page 53. Use O(1) additional space and O(|A|) time.

e-Variant 6.1.2: Given an array A of objects with keys that takes one of four values,
reorder the array so that all objects that have the same key appear in the same
subarray. Use O(1) additional space and O(|A|) time.

e-Variant 6.1.3: Given an array A of objects with Boolean-valued keys, reorder the
array so that all objects that have the same key appear in the same subarray. Use
O(1) additional space and O(|A|) time.

Problem 6.2, pg.53: Design a deterministic scheme by which veads and writes to an
uninitialized array can be made in O(1) time. You may use O(n) additional storage; reads to
uninitialized entry should return false.

Solution 6.2: Create an (uninitialized) array P of n pointers. The array P will maintain
a pointer for each initialized entry of A to a back pointer on another array S, itself
an (uninitialized) array of n integers. An integer-valued variable f indicates the first
empty entry in S; initially, ¢ = 0. '

- Each time entry i from A is to be read, we can check if that entry has been written
to before by examining P[i]. If P[i] is outside [0, — 1], A[f] is uninitialized. However,
even if P[i] is uninitialized, it may lie in [0, £~ 1]. We look at the “back pointer” stored
in S[P[{]] and confirm that it is indeed i. o

The first time entry 7 is written in A, we set S[t] to i, P[i] to t and increment .
(We can check that the write is the first write to A[f] by first performing a read and
checking if the entry is uninitialized.)

The approach is illustrated in Figure 21.3 on the facing page. The first three
entries written are at indices 7, 2, and 1, in that order. Checking if the entry at index
6 is initialized entails examining P[6]. If the value in P[6] is not in [0,2], A[6] is
uninitialized. If it is a valid index, e.g., 1, we check if S[1] is 6. For this example,
P[6] =1 and S[P[6]] = 2 # 6, so A[6] is uninitialized.

template <typename ValueType, size_t N>
class Array {
private:
ValueType A[N];
int P[N], S[NI, t;

const bool isValid(const size_t &i) const {
return (@ <= P[i] && P[i] < t && S[P[i]] == i);

e - I

ElementsOfProgrammingInterviews.com

Solution 6.3 185

tzS
S 2 1 ? ? ? ? ? ? ? ? ?
P ? 2 1 ? ? ? ? 0 ? ? ? ?
A 7 e Ve ? ? ? ? v ? ? ? ?
0 1 2 3 4 5 6 7 8 9 10 1
Figure 21.3: |Initializing an array in O(1) time.

9 1

10

1t public:

12 Array(void) : t(0) {};

13

14 const bool read(const size_t &i, ValueType &v) const {

15 if (isvalid(i)) {

16 v = A[i];

17 return true;

18 }

19 return false;

20 } '

21

22 void write(const size_t &i, comst ValueType &v) {

3 if (lisValid(i)) {

24 S{t] = i;

25 P[i] = t+4+;

2% }

27 A[i] = v;

8 }

291 };

Problem 6.3, pg.53: Design an algorithm that takes a sequence of n three-dimensional
coordinates to be traversed, and returns the minimum battery capacity needed to complete
the journey. The robot begins with a fully charged battery.

Solution 6.3: Suppose the three-dimensions correspond to x, y, and z, with z being
the vertical dimension. Since energy usage depends on the change in height of the
robot, we can ignore the x and y coordinates. Suppose the points where the robot
goes in successive order have z coordinates zy,...,z,-;. Assume that the battery
capacity is such that with the fully charged battery, the robot can climb B meters.
The robot will run out of energy iff there exist integers i and j such that i < j and
zj—z; > B, i.e., to go from Point i to Point j, the robot has to climb more than B meters.
Therefore, we would like to pick B such that for any i < j, we have B = z; — z;.

We developed several algorithms for this problem in the introduction. Specifically,
on Page 2 we showed how to compute the minimum B in O(n) time by keeping the
running min as we do a sweep. In code:

1 template <typename HeightType>

ElementsOfProgrammingInterviews.com

186 Solution 64

- s -)

1
2
3
4
5

5

HeightType find_battery_capacity(const vector<HeightType>& h) {
HeightType min_height = numeric_limits<HeightType>::max(), capacity = 0;
for (const HeightType &height : h) {
capacity = max({capacity, height - min_height);
min_height = min(min_height, height);

}

return capacity;

}

Problem 6.4, pg.54: For each of the following, A is an integer array of length n.
(1.) Compute the maximum value of (A[fo] — Alio]) + (Alj1] ~ Ali1]), subject to iy < jo <
i < jl-
(2.) Compute the maximum value of },,2y(Alj] — Ali]), subject to iy < jo <t < j1 <
sor <ipoy < fre1. Here kis a fixed input parameter.
(3.) Repeat Problem (2.) when k can be chosen to be any value from 0 to [n/2].

k=1
=0

Solution 6.4: The brute-force algorithm for (1.) has complexity O(x*). The complexity
can be improved to O(n?) by applying the O(n) algorithm to A[0 : jland A[j+1 : n—1]
for each j € [1,n—2]. However, we can actually solve (1.) in O(n) time by performing
a forward iteration and storing the best solution for A[0 : j], j € [1, 17— 1]. We then do
areverse iteration, computing the best solution for A[f : n—1], j € [0, 77— 2], which we
combine with the result from the forward iteration. The additional space complexity
is O(n), which is the space used to store the best solutions for the subarrays.

Here is a straightforward algorithm for (2.). Iterate over j from 1 to k and iterate
through A, recording for each index i the best solution for A[0 : i] with j pairs. We
store these solutions in an auxiliary array of length n. The overall time complexity
will be O(kn?); by reusing the arrays, we can reduce the additional space complexity
to O(n).

We can improve the time complexity to O(kn), and the additional space complexity
to O(k) as follows. Define B‘: to be the most money you can have if you must make
j = 1buy-sell transactions prior to i and buy at i. Define S/ to be the maximum profit
achievable with j buys and sells with the j-th sell taking place ati. Then the following
mutual recurrence holds:

s! Ali] + max B}
if<i

j
B

I

max S} — Al

The key to achieving an O(kn) time bound is the observation that computing B
and S requires computing maxy B;’fl and maxy« S}, !, These two quantities can be
computed in constant time for each i and j with a conditional update. In code:

Etenplata <typename T>

T max_k_pairs_profits(const vector<T>& A, const int &k) {

I vector<T> k_sum(k << 1, numeric_limits<T>::min());

| for (int i = 0; i < A.size(); ++i) {

vector<T> pre_k_sum(k_sum);

for (int j = 0, sign = -1; j < k_sum.size() & j <= i; ++j, sign *= -1) {

ElementsOfProgrammingInterviews.com

Solution 6.6 i 187

75 T diff = sign * A[i] + (] =070 : pre_k_sum[j - 11);
8i k_sum[j] = max(diff, pre_k_sum{jl);

}
}

11! return k_sum.back(); // return the last selling profits as the answer

Note that the improved solution to (2.) on the preceding page specialized to k = 2

strictly subsumes the solution to (1.) on the facing page.
Surprisingly, (3.) on the preceding page can be solved trivially—since we can use
an unlimited number of pairs, we can select all pairs (7,7 + 1) such that A[i + 1] > A[i].

Problem 6.5, pg. 54: Design an efficient algorithm for the 0 mod n-sum subset problem.

Solution 6.5: Consider prefix_sum[j] = ;'=0 Alil mod n. Either each
prefix_sum[j] is distinct, in which case for some ¢ we have prefix_sum[c] = 0
(since prefix_sum takes values in {0,1,...,n — 1}), or for some a < b we have
prefix_sum[a] = prefix_sum[b].
In the first case, the subarray A[0 : ¢] serves as the result. In the second case, the
“sum Y_,; A[k] mod n = 0, so the subarray Ala + 1 : b] can be returned as the result.

vector<int> find_O_sum_subset(comnst vector<int> &A) {

1
2 vector<int> prefix_sum(A);

3 for (int i = §; i < prefix_sum.size(); ++i) {

4 prefix_sum[i] += i > & ? prefix_sum[i - 1] : ®;
5 prefix_sum[i] %= A.size(D;

6 }

7

8 vector<int> table(A.size(), -1);

9 for (int i = 0; i < A.size(); ++i) {

10 if (prefix_sum[i] == 0) {

1 vector<int> ans(i + 1);

12 iota(ans.begin(), ans.end(), 0);

13 return ans; '

14 } else if (table[prefix_sum[i]] != -1) {

15 vector<int> ans(i - table[prefix_sum[i]]);

16 iota(ans.begin(), ans.end(), table[prefix_sum[i]] + 1);
17 return ans;

18 }

19 table[prefix_sum[i]] = i;

0}

21 }

Problem 6.6, pg.55: Design and implement an algorithm that takes as input an array A of
n elements, and returns the beginning and ending indices of a longest increasing subarray of
A.

Solution 6.6: The brute-force algorithm is to compute for each 7 the length m; of the
longest increasing subarray ending at 7. This is m;; + 1if i # 0 and A[i — 1] < A[i],
and 1 otherwise. The brute-force algorithm has time complexity O(n), and the space
complexity can be reduced to O(1).

ElementsOfProgrammingInterviews.com

188 . Solution 6.7

We can heuristically improve upon the brute-force algorithm by observing that
if Ali — 1] £ Alf] (i.e., we are starting to look for a new subarray starting at i) and
the longest contiguous subarray seen up to index i has length L, we can move on to
index i + L and work backwards towards i; specifically, if for any j,i < j <i+ L we
have A[f] £ A[j + 1], we can skip the remaining indices.

This is a heuristic in that it does not improve the worst-case complexity—if the
array consists of alternating Os and 1s, we still examine each element—but the best
case complexity reduces to O(max(n/L,L)), where L is the length of the longest
increasing subarray.

The average case time complexity depends on the probability distribution func-
tion for the input, and in general is very difficult to compute. For example, if A is a
random permutation, or its entries are independent and uniform in [0, 1], it is known
that the expected value for L is x(logn/loglogn). If A’s entries are independent
identically distributed Bernoulli random variables, the longest contiguous nonde-
creasing subarray has length x(log n) in expectation. Both these facts are difficult to
prove, and their implications to the average case time complexity are even harder to
analyze.

il template <typename T>

2i pair<int, int> find_longest_increasing_subarray(const vector<T> &A) {
3 int max_len = 1;

4 pair<int, int> ans(®, ©);

5 int i = 0;

3 while (i < A.size()) {

7 // Check backwardly and skip if A[j] »>= A[j + 1]

8 bool is_skippable = false;

°

for (int j = i + max_len - 1; j >= i; --3) {
10 if CA[J] == A[F + 1120 {
1 i=1734+1;
12 is_skippable = true;
13 break;
14 b
15 1
16
17 // Check forwardly if it is not skippable
18 if (is_skippable == false) {
1% i += max_len - 1; -
0 while (i + 1 < A.size() && A[i] < A[i + 1]) {
2 ++i, ++max_len;
22 }
=] ans = {i - max_len + 1, i};
] } '
5}
26 return ans;
7|}

Problem 6.7, pg.55: How would you compute the weakest implied equivalence relation
given n, A, and B? You do not have access to any data structure libraries.

Solution 6.7: The basic idea is o start by mapping each element to itself. This

ElementsOfProgranmingInterviews.com

Solution 6.8 189

mapping is stored in an array F, and can be viewed as implementing a tree relation,
with F[i] being i’s parent. We iterate through A and B. Since A[7] and B[i] are
equivalent, we scan A[i]’s ancestors and B[i]'s ancestors and update A[i]’s (or B[i]'s)
ancestor to the ancestor which has the smaller index. After all entries in A and B
are processed, we make a last pass through F, compressing the ancestor tree, since
some parent relationship may have been updated as we iterated through A and B.

~ We return the result as array F; F[i] is the element with the smallest index in the
equivalence class of element 7. '

1 int backtrace(const vector<imt> &F, int idx) {

2; while (F[idx] != idx) {

3 idx = F[idx];

4 }

5 return idx;

6}

7

8/

9 A and B encode pairwise equivalences on a cardinality N set whose elements

are indexed by 0, 1, 2, ..., N-1.

For example A[i] = 6 and B[i] = 0 indicates that the 6 and @ are to be
grouped into the same equivalence class. '

We return the weakest equivalence relation implied by A4 and B in an array
F of length N; F[i] holds the smallest index of all the elements that
i is equivalent to.

-
@
% % % 5% % 5 5% =5

18] */
19! vector<int> compute_equival_classes(const int &n, const vector<int> &,
20 const vector<int> &B) {

21 // Each element maps to itself
2 vector<int> F(n);

231 dota(F.begin(), F.end(), ®);

2%

25 for (int i = ®; i < A.size(); ++i) {

26 int a = backtrace(F, A[i]), b = backtrace(F, B[i]);
27 a<b? F[b] =a: F[al = b;

%}

29

0 // Generate the weakest equivalence relation
3 for (int &f : F) {

32 while (f != F[f]) {

33 £ = F[£f];

M }

%}

3| return F;

a7l }

Problem 6.8, pg.55: Suppose you know the permutation o and the extract sequence
(ig, i1, -+, dw—y) in advance. How would you efficiently compute the order in which the
m elements are removed from S?

Solution 6.8: Our algorithm maintains a collection of subsets {Rg, Ry, .. ., Ry} that

ElementsOfProgrammingInterviews.com

190 ' Solution 6.9

partitions Z,. Specifically, Ry, for 1 < k < m — 1 consists of elements in o whose
indices are greater than i;-; and less than or equal to 7. Subset Ry is all elements in
¢ with indices less than or equal to 7. Subset R,, is all elements in ¢ with indices
greater than i,_;. It follows from the definition that i1 = ix implies Ry is empty.

We process each t € [0,n - 1] in ascending order. For each , we determine if it
is extracted, and, if it is extracted, when it is extracted. We do this by seeing which
Ry it belongs to. If k = m, i is never extracted. Otherwise i is removed in the k-th
extraction. Consequently, we remove Ry from the partition and add all its elements
to the first subset that exists in the partition such that Ry, k" > k.

The time complexity is dominated by forming the union of disjoint-sets, and
finding the set each of element belongs to. The disjoint-set data structure is ideally
suited for union-find and has a run time that is essentially linear.

1/ int find_set(vector<int> &set, const int &x) {

2 if (setlx] I= %) {

3 set[x] = find_set(set, set([x]); // path compression

4 1

5. return set[x];

61}

7

8l void union_set(vector<int> &set, const int &x, comst int &y) {
9 int x_root = find_set(set, x), y_root = find_set(set, y);

10 set[min(x_root, y_root)] = max(x_root, y_root};
1ni}

13! vector<int> offline_minimum(const vector<int> &A, const vector<int> &E) {
14; ‘'vector<int> R(A.size(), E.size());
15; int pre = 8;

17 // Initialize the collection of subsets
18 for (int i = ®; i < E.size(); ++i) {

19 for (int j = pre; j <= E[i]; ++j) {
20 R[ALj1] = i;

21 }

22 pre = E[i] + 1;

23{ }

4

25 vector<int> ret(E.size(), -1); // stores the answer

26 vector<int> set(E.size() + 1); // the disjoint-set

27 iota(set.begin(), set.end(), ®); // initializes the disjoint-set
28 for (int 1 = ®; i < A.size(); ++i) {

29 if (find_set(set, R[i]) != E.size() && ret[find_set(set, R[i])] == -1) {
30 ret[set[R[i]]] = i;

3 union_set(set, set[R[1]], set[R[i]] + 1J;

32 }

s}

34, return ret;

35| }

Problem 6.9, pg.55: Write a function that takes two strings representing integers, and
returns an integer representing their product.

ElementsOfProgrammingInterviews.com

Solution 6.9) 191

Solution 6.9: We mimic the grade school algorithm for multiplication, i.e., shift,
multiply by a digit, and add. The number of digits required for the product is either
1+ morn+m—1forn and m digit operands, so we allocate a string of size n +m
for the result; the computation determines whether the number of digits is n + m or
1 +m — 1. We do not store all the partial products, and then add them; rather we add
each partial product into the result.

class BigInt {
private:
int sign; J/ -1 or 1;
vector<char> digits;

1
2

3

4

5

& public:
7 BigInt(const int &capacity) : sign(l), digits(capacity) {}
8

9

10

BigInt (const string &s) : sign(s[8] == "-" 7 -1 : 1),
digits(s.size() - (s[8] == '-")) {
11 for (int i = s.size€) - 1, j = 0; i >= (s[0] == '-"); --1, ++j) {
12 if (isdigit(s[i])) {
13 digits[j] = s[i] - '0°;
14 1
15 }
16 1
17
18 BigInt operator*(const BigInt &n) const {
19 BigInt result(digits.size() + n.digits.size());
20 result.sign = sign * n.sign;
21 int i, j;
2 for (i = 0; i < n.digits.size(); ++i) {
2 if (n.digits[i]) { '
24 int carry = 0;
25 for (j = 0; j < digits.size() || carry; ++j) {
2 int n_digit = result.digits[i + j] +
7 (j < digits.size() ? n.digits[i] * digits[j] : @) +
2% carry;
29 result.digits[i + j] = n_digit % 19;
30 carry = n_digit / 10;
31 1
32 ¥
33 }
34
35 // If one number is 0, the result size should be 0
6 if ((digits.size() == 1 && digits.front() == 0) ||
a7 (n.digits.size() == 1 && n.digits.front() == 8)) {
38 result.digits.resize(l);
k] } else {
40 result.digits.resize(i + j - 1);
41 1
42 return result;
43 1
ik

e-Variant 6.9.1: Solve the same problem when numbers are represented as lists of

ElementsOfProgrammingInterviews.com

192 Selution 6.10

digits.

Problem 6.10, pg. 56: Given an array A of n elements and a permutation I'l, compute T1(A)
using only constant additional storage.

Solution 6.10: We can use the fact that every permutation can be expressed as a
composition of disjoint cycles, with the decomposition being unique up to ordering.

For example, the permutation (2,0, 1,3) can be represented as (0,2,1)(3), i.e., we
can achieve the permutation (2,0, 1, 3) by these two moves: 0+ 2,2+ 1,1+ 0,and
33 '

If the permutation is presented as a set of disjoint cycles, it can easily be applied
using a constant amount of additional storage since we just need to perform rotation
by one element. Therefore we want to identify the disjoint cycles that constitute the
permutation.

Itis straightforward to identify the set of cycles with anadditional n bits. Start from
any position and keep going forward (from i to A[f]) till the initial index is reached,
at which point one of the cycles has been found. Then go to another position that is-
not yet part of any cycle. Finding a position that is not already a part of a cycle is
trivial using one bit per array element.

One way to perform this without explicitly using additional O(n) storage is to use
the sign bit in the integers that constitute the permutation: Specifically, we subtract
1 from each entry in perm after it has been applied. We check if the element at index
i has already been moved by seeing if perm[i] is negative.

1} template <typename T>

2/ void apply_permutationl(vector<int> &perm, vector<T> &A) {
3 for (int i = 0; i < A.size(); ++i) {

4 if (perm[i]l >= @) {

5 int a = i;

6 T temp = A[i];

7 do {

8 int next_a = perm[a];

9 T next_temp = Al[next_al;

10 Alnext_al] = temp;

11 S/ Mark a as visited by using the sign bit
12 perm[a] -= perm.size();

13 a = next_a, temp = next_temp;

14 } while (a != i);

15 }

16}

18 // Restore perm back
19 size_t size = perm.size(); .
20, for_each(perm.begin(), perm.end(}, [sizel(T &x) { x += size; });

The code above will apply the permutation in O(n) time but implicitly uses ®(n)
additional storage, even if it is borrowed from the sign bit of the entries of the perm
array. We restore perm by adding # to each entry after the permutation has been
applied.

ElementsOfProgrammingInterviews.com

Solution 6.12 193

We can avoid using ©(n) additional storage by going from left-to-right and apply-
ing the cycle only if the current position is the leftmost position in the cycle. Testing
whether the current position is the leftmost position, entails traversing the cycle once
more, which increases the run time to O(n?). '

template <typename T>
void apply_permutation2 (vector<int> &perm, vector<T> &A) {
for (int i = ®; i < A.size(); ++i) {
// Traverse the cycle to see if i is the min element
bool is_min = true;
int j = perm[i];
while (j != i) {
if (5 < i) {
is_min = false;
break;
}
j = perm[j];
}

if (is_min) {
int a = i;
T temp = A[i];
do {
int next.a = perm[a];
T next_temp = A[next_a]l;
Alnext_al] = temp;
a = next_a, temp = next_temp;
} while (a != 1)
}
}

}

Problem 6.11, pg.56: Given an array A of integers representing a permutation I, update
A to represent TI™* using only constant additional storage.

Solution 6.11: The solution is similar to Solution 6.10 on the facing page. All that is
needed is to decompose the permutation into a set of cycles and invert each cycle one
step back. For example, the permutation (2,0,1,3) can be represented as (0,2, 1)(3).
Hence the inverse can be represented as (1, 2, 0)(3) which amounts to (1,2,0,3).

To save additional space, we can use exactly the same set of tricks as in Solu-
tion 6.10 on the preceding page.

Problem 6.12, pg.56: Given a permutation p represented as a vector, return the vector cor-
responding to the next permutation under lexicographic ordering. If p is the last permutation,
return empty vector. For example, if p = (1,0, 3,2), your function should return (1,2,0,3).

Solution 6.12: The key insight is that if p[k] < p[k + 1], and for all i > k, p[i] > p[i + 1],
then no permutation of the elements consequent to k will lead to a permutation
that is ahead of p in the lexicographic order. Therefore, we must increase p[k]. To

ElementsOfProgrammingInterviews.com

194 Solution 6.13

obtain the next permutation we find the largest index I such that p[I] > p[k] (such an
I must exist since p[k] < p[k + 11). Swapping p[l] and p{k] leaves the sequence after
position k in decreasing order. Reversing this sequence after position k produces
its lexicographically minimal permutation, and the lexicographic successor of the
original p.

To find the previous permutation, we apply the same idea with some modifica-
tions.

vector<int> next_permutation(vector<int> p) {
int k = p.size() - 2;
while (k >= 0 && p[k] >= plk + 1]) {

--k:
}
if (k == -1) {
return {}; // p is the last permutation
}
int 1;

for (dnt i = k + 1; i < p.size(); ++i) {
if (pli] > plkD) {
1= 1i;
} else {
break;
}
1
swap(plk], p[11);

// Produce the lexicographically minimal permutation
reverse(p.begin() + k + 1, p.end());
return p;

Variant 6.12.1: Compute the k-th permutation under lexicographic ordering, start-
ing from the identity permutation, which is the first permutation in lexicographic
ordering.

e-Variant 6.12.2: Given a permutation p represented as a vector, return the vector
corresponding to the previous permutation of p under lexicographic ordering.

Problem 6.13, pg. 56: Design a ©(n) algorithm for rotating an array A of n elements to the
right by i positions. You are allowed O(1) additional storage.

Solution 6.13: This is a special case of applying a permutation with constant addi-

tional storage (Problem 6.10 on Page 56) with the permutation corresponding to a

rotation. A rotation corresponds to a set of cycles of the form {c, (i + ¢) mod n, (2i +

¢) mod n, ..., (mi + ¢) mod n) for a number of different values of c. For example, for

the case where n = 6 and i = 2, the corresponding cycles are (0,2,4) and (1,3,5).

When n = 15 and i = 6, the cycles are (0,6,12,3,9), (1,7,13,4,10), and (2,8,14,5,11).
These examples lead us to conjecture the following;:

ElementsOfProgrammingInterviews.com

Solution 6.13 195

(1.) All cycles have the same length, and are a shifted version of the cycle (0,7 mod
n,2i mod n,...(I - 1)i mod n).

(2.) The number of cycles is the GCD of n and 1.
These conjectures can be justified on heuristic grounds, specifically from considering
the prime factorizations for i and . See on the next page for the formal proof.

Assuming these conjectures to be correct, we can apply the rotation one cy-

cle at a time, as follows. The first elements of the different cycles are at indices
0,1,2,...,GCD(n,i) — 1. For each cycle, we assign the index of first element to a
temporary variable j. We iteratively move the element atj to (j+i) mod n and update
jto (j +i) mod n, stopping after 1n/GCD(, i) moves. This takes O(1) space: a variable
to track which cycle we are processing, a variable to track how many elements we
have processed in the current cycle, as well as temporary variables for performing
the move.

template <typename T>
void rotate_array(vector<T> &A, int i) {
i %= A.size();
int cycles = GCD(A.size(), i); // number of cycles in this rotation
int hops = A.size() / cycles; // number of elements in a cycle
for (int ¢ = 0; ¢ < cycles; ++c) {
T temp = A[c];
for (int j = 1I; j < hops; ++j) {
swap(A[(ec + j * 1) % A.size()], temp);
}
Alc] = temp;
}
}

We now provide an alternative to the permutation approach. The new solution
works well in practice and is considerably simpler. Assume that A = (1,2,3,4,4,b),
and i = 2. Then in the rotated A there are two subarrays, (1,2,3,4) and (a,b)
that keep their original orders. Therefore, rotation can be seen as the exchanges
of the two subarrays of A. To achieve these exchanges using only O(1) space
we use a reverse function. Using A and i as an example, we first reverse A
to get A’ ((1,2,3,4,4,b) — (b,a,4,3,2,1)), then reverse the first i elements of A’
(b,a,4,3,2,1) ~ {(a,b,4,3,2,1)), and reverse the remaining elements starting from
the i-th element of A’ ((g,5,4,3,2,1) — {a, b,1,2,3,4)) which yields the rotated A.
Following is the code in C++:

template <typename T>

void rotate_array(vector<T> &4, int i) {
i %= A.size();
reverse(A.begin(), A.end());
reverse(A.begin(), A.begin() + i);
reverse(A.begin() + i, A.end());

}

We now prove Conjectures (1.) and (2.).

ElementsOfProgrammingInterviews.com

196 Solution 6.13

Proof:

First we prove that rotation does result in cycles. Take Iy to be the largest integer
such that the sequence gg = (0,i mod 7,2i mod n,3i mod n, ..., (I, — 1)i) mod n)
does not repeat. We claim that (Ip7) mod n = 0. Since [y was defined to be maximal,
it must be that (lpi) mod n is a value that is already in ¢y. For contradiction,
suppose it equals 05(7),0 <7 < (I = 1). Then '

((Io — r)i) mod n

((Io1) mod n — (ri) mod n) mod n

ao(lp —7) mod n

((lpi) mod n — go(r) mod n) mod n

0 mod n.

]

Hence the sequence repeats at dq(ly — 7), contradicting the maximality of lo.

Define [, to be the largest integer such that the sequence o, = {c,(i +
¢) mod n, (2i + ¢) mod #, (3i + ¢) mod #,...,((l. = 1)i + ¢) mod n) does not repeat.
Conjecture (1.) on the preceding page, namely that all cycles have the same
length, follows from the observation that the difference between (if) mod n and
(if + ¢) mod n always equals ¢ mod 7.

Now we prove Conjecture (2.) on the previous page, i.e., there exist exactly
GCD(n, i) cycles. Since we have just seen that all cycles have the same length, it
suffices to prove that the length of the cycle containing 0 is n/GCD(n, i).

Let g be the smallest integer greater than 0 that appears in the cycle which
contains 0. Because of the modulus operation, g is not necessarily the number that
follows 0, e.g., whenn = 15 and i = 6, g is 3, even though the cycle corresponding
to 0 is (0,6,12,3,9). The set Sy of numbers in the cycle that 0 belongs to is
{x | 3j x = ij mod n}. Equivalently, So = {x | Ja3b x = (ai + bn) mod n}. It is a basic
fact that the GCD of i and n is the smallest positive integer of the form ai + bn,
with 2 and b being arbitrary integers. Therefore g is the GCD of n and i.

We claim that Sy is exactly equal to the set of numbers in {0,1,...,7n — 1} that
are divisible by g. Conjecture (2.) follows from the fact that exactly n/GCD(n, 1)
numbers in {0,1,...,n — 1} are divisible by g.

First we prove that all numbers in Sy are divisible by g. If not, say e = if mod n
is not divisible by g. Then e = gg + r, where r € (0, g) is the remainder. Since
g = ai + bn for some 2 and b, we have r = (e — (ai + bn)) mod n = (e — ai) mod n.
Since e lies in Sy, all numbers of the form (e + Gi) mod »n, where G = 0, also lie in
So. In particular, let H be such that Hn —a = 0. Then (e + (Hn —a)i) mod n lies in S.
But (e + (Hn — a)i) mod n = (e — ai) mod n = r, which contradicts the minimality
of g.

Now we show that gl mod n € S, for all I. Since g = ai + bn, for some 2 and b,
we have gl mod n = (ail + bnl) mod n = ali mod n. Let | be such that (Jn+al) 2 0.
Then (Jn + al)imod n is in Sp. But (Jn + al)imod n = alimod n = gl mod n,
demonstrating that gl mod n € Sg.

ElementsOfProgrammingInterviews.com

Solution 6.14 ' 197

Problem 6.14, pg.57: Check whether a 9 X 9 2D array representing a partially completed
Sudoku is valid. Specifically, check that no row, column, and 3 X 3 2D subarray contains
duplicates. A O-value in the 2D array indicates that entry is blank; every other entry is in
[1,9].

Solution 6.14: We need to check nine row constraints, nine column constraints, and
nine sub-grid constraints. We use bit arrays to test for constraint violations, that is to
ensure no number in [1, 9] appears more than once.

1y // Check if a partially filled matrix has any conflicts
2/ bool is_valid_Sudoku(const vector<vector<int>> &A) {

3 /4 Check row constraints

4 for (int i = 0; i < A.size(); ++1) {

5 vector<bool> is_present(A.size() + 1, false);

6 for (int j = 0; j < A.size(}; ++3) {

7 if (A[i]1[j] !'= ® && is_present[A[i]1[j]] == true) {
8 return false;

9 } else {

10 is_present[A[il[j]1] = true;

1 }

12 }

13}

‘15i. // Check column constraints
6 for (imt i = ®; j < A.size(); ++j) {

17 vector<bool> is_present(A.size() + 1, false);

18 for (int i = 0; i < A.size(); ++i) {

19 if (A[i][j] != & && is_present[A[i][j]] == true) {
0 return false;

21 } else {

7] is_present[A[i][j]] = true;

=] }

% }

25 }.

27 // Check region constraints

28 int region_size = sqrt(A.size());

29 for (int I = 0; I < region_size; ++I) {

30 for (int J = @; J < region_size; ++1) {

31 vector<bool> is_present(A.size() + 1, false);

32 for (int i = ®; i < region_size; ++i} {

33 for (int j = 0; j < region_size; ++3j) {

34 if (A[region;size * I + i][region_size * J + j] != 0 &&

35 is_present[A[region_size * I + i][region_size * 3 + j11) {
£ return false;

a7 } else {

38 is_present[A[region_size * I + i][region_size * 1 + j]] = true;

44 return true;
451}

ElementsOfProgrammingInterviews.com

198 Solution 6.15

Solution 17.8 on Page 395 describes how to solve Sudoku instances using branch
and bound.

Problem 6.15, pg.57: Implement a function which takes a 2D array A and prints A in
spiral order.

Solution 6.15: The outermost elements of an n X n 2D array can be written in spiral
order using four iterations: elements (0,0) to (0,7 — 2), then elements (0,n — 1) to
(n — 2,n — 1), followed by elements (n ~ 1,n — 1) to (n —1,1), and finally elements
(n~1,0) to (1,0). After this, we are left with the problem of printing the elements of
an (n — 2) X (n — 2) 2D array in spiral order. This leads to an iterative algorithm that
prints the outermost elements of nxn, (n —2) X (n—2), (n —4) X (n — 4),... 2D arrays.

1] void print_matrix_clockwise(const vector<vector<int>> &A, const int &offset) {
2 if (offset == A.size() - offset - 1) { // for matrix with odd size
3 cout << Aloffset]{offset];

4}

5

6 for (int j = offset; j < A.size() - offset - 1; ++j) {

7 cout << Afoffset][j] << ' ';

8 1

9 for (int i = offset; i < A.size() - offset - 1; ++i) {

10 cout << A[i][A.size() - offset - 1] << ' '3

11 }

12 for (int j = A.size() - offset - 1; j > offset; --3j) {

13 cout << A[A.size() - offset - 1J[j] << ' ';

u| 3

15 for (int i = A.size() - offset - 1; i > offset; --i) {

16 cout << A[i][offset] << ' ;

17 1

181}

19

20! void print_matrix_in_spiral_order(const vector<vector<int>> &Ai) {
21 for (int offset = 0; offset < ceil(0.5 * A.size()); ++offset) {
22 print_matrix_clockwise(A, offset);

23 }

%)}

An alternate solution in C++ writes 0 into array entries to indicate they have been
processed, and a shift 2D array to compress the four iterations above into a single
iterations parametrized by shift:

void print_matrix_spiral(vector<vector<int>> A) {
const array<array<int, 2>, 4> shift = {0, 1, 1, &, 0, -1, -1, 0};
int dir = 0, x = 6, vy = 0;

1
2
3
4
5 for (int i = 0; i < A.size() * A.size(); ++i) {
& cout << A[x][y] << ' '3

7

8

9

Alx]Ly] = 8

int nx = x + shift[dir][0], ny = vy + shift[dir][1];

if (nx < 0 || nx >= A.size() || ny < 0 || ny >= A.size() ||
10 Alnx][ny] == 8) {

1 dir = (dir + 1) & 3;

ElementsOfProgrammingInterviews.com

Solution 6.16 . 199

lz! nx = x + shift[dir][®], ny = v + shift[dir][1];
13} }

u! X =nx, y=ny;

wi }

ml}

e-Variant 6.15.1: Given a dimension d, write a program to generate a d X 4 2D array
which when printed in spiral order outputs the sequence (1,2, 3, ... ,4%). For example,
if d = 3, the result should be

1 2 3
A=(8 9 4f.
7 6 5

e-Variant 6.15.2: Given a sequence of integers o, compute a 2D array A which when
printed in spiral order yields 0. (Assume |o| = n? for some integer n.)

e-Variant 6.15.3: Write a program to enumerate the first pairs of integers (a,b) in
spiral order, starting from (0, 0) followed by (1, 0). For example, ifn = 10, your output
should be (0,0), (1,0), (1,-1),(0, 1), (-1,-1),(-1,0),(-1,1),(0,1),(1,1), (2, 1).

Problem 6.16, pg.58: Implement a routine that takes @ D x D Boolean array A together
with an entry (x, y) and flips the color of the region associated with (x,y). See Figure 6.5 on
Page 58 for an example of flipping.
Solution 6.16: Conceptually, we solve this problem by maintaining a queue q of
entries to process, and a 2D Boolean array processed indicating whether an entry has
been processed. Initially, all entries in processed are marked false and g contains
(x,). The queue is popped iteratively, and the neighbors of the popped element are
examined. Any neighbor which is unprocessed and whose color needs to be changed
is added to q. After its neighbors have been examined, the processed status of the
element just popped is set to true and its color is flipped. The computation ends
when g is empty.

In practice, we do not require the processed array, since there dare only two colors.
We only need to record the color of the initial entry, and compare new entries with
that color.

void flip_coler(vector<vector<bool>> &A, const int &x, const int &y) {
const array<array<int, 2», 4» dir = {-1, ®, 1, @, ®&, -1, ®, 1};
const bool color = A[x][y];

q.emplace(x, ¥);
while (q.empty() == false) {

pair<int, int> curr(q.front(});

Afcurr.first][curr.second] = |A[curr.first][curr.second]; // flip color
10 for (auto &d : dir) {

1
2
3
4
5. queue<pair<int, int>> q;
5
7
8
g

ElementsOfProgrammingInterviews.com

200 Solution 6.17

1
2
-
4
5
L]
7
8
9

pair<int, int> next(curr.first + d[8], curr.second + d[1]);
if (next.first »>= ® && next.first < A.size() &&
next.second >= ® && next.second < Alnext.first].size() &&
Alnext. first] [next.second] == color) {
g.emplace(next);
}
}
q.pop();
}
}

We also provide a recursive solution which does not need a queue but implic-
itly uses a stack. This solution does not require a processed array; instead, we
temporarily flip the color of the entry being processed.

void flip_color(vector<vector<bool>> &A, const int &x, const int &y) {
const array<array<int, 2>, 4> dir = {-1, @, 1, &, @, -1, ®, 1};
const bool coler = A[x][y];
A[x]1[y] = !Alx][y]l; // flip the color

for (auto &d : dir) {
const int nx = x + d[8], ny = y + d[1];
if (nx >= 0 &% nx < A.size() && ny »>= 0 &% ny < Alnx].size() &&
Alnx][ny] == color) {
flip_color(a, nx, ny);
}
}
1

e-Variant 6.16.1: Design an algorithm for computing the black region that contains
the most points.

e-Variant 6.16.2: Design an algorithm that takes a point (g,b), sets A(a, b) to black,
and returns the size of the black region that contains the most points. Assume this
algorithm will be called multiple times, and you want to keep the aggregate run time
as low as possible.

Problem 6.17, pg.58: Design an algorithm that rotates a n X n 2D array by 90 degrees
clockwise. Assume that n = 2 for some positive integer k. What is the time complexity of
your algorithm?

Solution 6.17: It is natural to use recursion: decompose the 2D array into four equal-
sized subarrays, A[0: § =1][0: 5 =1], A[0: § ~1][§ : n—1], A[§ : n~1][0: § =1], and
A% : n—1][§ : n—1], and recursively rotate each of these. Consequently, make a copy
Cof A[0: 5 —1][0: § ~1],and copy A[0: § - 1][§ : n—1]into A[0: § —1][0: § - 1],
Al :n=1][§ : n=1] into A[0 : § = 1][§ : n—1], A[§ : n=1][0 : § - 1] into
Al% :n-1][4 : n—1] and Cinto A[} : n = 1][0: § — 1]. The run time satisfies the
recurrence T(n) = 4T(%) + O(n), which solves to O(n log 1), where n = 2%.

ElementsOfProgrammingInterviews.com

Solution 6,18 201

1! template <typename T>

2i void copy_matrix(vector<vector<T>> &A, comnst int &A_x_s, const int &A_x_e’

3 const int &A_y_s, const int &A_y_e,

4 const vector<vector<T>> &S,

5 const int &S_x, const int &S_y) {

6 for (int i = 8; i < A _x_e - A_x_s; ++1i) {

7 copy(S[S_x + i].cbegin() + S_y, S[S_x + i].cbegin() + S.y + A_y_e - A_y_.s,
8 AlTA_x_s + i].begin() + A_y_s); ’

9

12| template <typename T>
13| void rotate_matrix_helper(vector<vector<T>> &A, const int &=x_s,

14 const int &x_e, const int &y_s, const int &y_e) {
15 if (x_e > x_s + 1) {

16 int mid_x = x_s + ((x_e - x_s) >> 1), mid_y = y_s + ((y_e - y_s) >> 1);
17 // Move submatrices

18 vector<vector<T>> C(mid_x - x_s, vector<T>(mid_y - y.s));

19 copy_matrix(C, @, C.size(), ®, C.size(), A, X_s, y_5);

0 copy_matrix(A, x_s, mid_x, y_s, mid_y, &, mid_x, y_s);

21 copy_matrix(A, mid_x, x_e, y_.s, mid_y, A, mid_x, mid_yJ;

2 copy_matrix(A, mid_x, x_e, mid_y, y_e, A, x_.s, mid_y);

3 copy_matrix(A, x_s, mid_x, mid_y, y_e, C, &, 8);

4

25 // Recursively rotate submatrices

% rotate_matrix_helper(A, x_s, mid_x, y._s; mid_y);

27 rotate_matrix_helper(A, x_s, mid_x, mid_y, y_e);

28 rotate_matrix_helper(A, mid_x, x_e, mid_y, y_e);

29 rotate_matrix_helper(A, mid_x, x_e, y.s, mid_y);

30 ¥ .

i}

33| template <typename T>
3¢ void rotate_matrix(vector<vector<T>> &A) {
35 rotate_matrix_helper(aA, 0, A.size(), 0, A.size());

Alternately, we could perform the rotation using O(1) additional memory in O(n)
time by iterating through any one of the four subarrays, and rotating elements in sets
of four.

Variant 6.17.1: Suppose the underlying hardware has support for fast two-
dimensional block copies. Specifically, you can copy an m X m 2D array in O(m)
time. How can you exploit the hardware to reduce the time complexity?

Problem 6.18, pg.59: Implement run-length encoding and decoding functions. Assume
the string to be encoded consists of letters of the alphabet, with no digits, and the string to be
decoded is a valid encoding.

Solution 6.18: The decoding function entails converting a number represented in
decimal to its integer equivalent; the encoding function entails the reverse. Both of
these are covered in Solution 5.6 on Page 176. The remainder of the code consists of

ElementsOfProgrammingInterviews.com

202 Solution 6,19

iterating through the input string and appending to the result string.

1{ string decoding(const string &s) {
2 int count = §;

3 string ret;

4 for (const char &c : s) {

E if (isdigit(e)) {

6 count = count * 18& + c - '8°";
7 } else { [/ isalpha

) ret.append(count, c);

[count = O;

10 }

11 }

12 return ret;

13}

15| string encoding(const string &s) {

16 int count = 1;

17 stringstream ss;

18 for (int 1 = 1; 1 < s.size(); ++i) {
19 if (s[i] == s[i - 1D {

20 ++Count;
21 } else {
22 ss << count << s[i - 1];
23 count = 1;
3

}

24
25
26 ss << count << s.back();
27, return ss,.str();

28

Problem 6.19, pg.59: Implement a function for reversing the words in a string. Your
function should use O(1) space.

Solution 6.19: The code for computing the position for each character in a single pass
is fairly complex. However, a two stage iteration is easy. In the first step, reverse the
entire string and in the second step, reverse each word. For example, “ram is costly”
transforms to “yltsoc si mar”, which transforms to “costly is ram”. Here is code in
Ct++:

1) void reverse_words(string &input) {

2 // Reverse the whole string first

3 reverse(input.begin(), input.end());

i

5 size_t start = @, end;

& while ((end = input.find(" ", start)) != string::npos) {
7 // Reverse each word in the string

8 reverse(input.begin() + start, input.begin() + end);
) start = end + 1; ' '

0] }

11 // Reverse the last word

12 reverse(input.begin() + start, input.end(});

1l }

ElementsOfProgrammingInterviews.com

Solution 6.20 : 203

i

Problem 6.20, pg.59: Given two strings s (the “search stving”) and t (the “text”), find the
first occurrence of s in t.

Solution 6.20: Knuth-Morris-Pratt, Boyer-Moore, and Rabin-Karp. are widely taught
algorithms for substring search that run in linear time. In practice Boyer-Moore is the
fastest string search algorithm, because for many applications, it runs in sub-linear
time. .

The Boyer-Moore algorithm works by trying to match characters of s in ¢ at a
certain offset in the reverse order (last character of s matched first). If we can match
all the characters in s, then we have found a match; otherwise, we stop at the first
mismatch. The key idea behind the Boyer-Moore algorithm is to skip as many offsets
as possible when we are done matching characters at a given offset. We do this by
building two tables—the good sulffix shift table and the bad character shift table.

For a given character, the bad character shift table gives us the distance of the last
occurrence of that character in s to the rightmost string. If the character does not
occur in s, then the entry in the table is |s|. Hence when we find a character in ¢ that
does not match for the current offset, we know how much we must move forward
so that this character can match for the first time.

The good suffix shift table is a little more complex. Conceptually, for a given suffix
x of s, it tells us what is the shortest suffix y of s that is longer than x and has x as
suffix. In practice what we store is how far can we move safely, given that we have
matched up to |x| characters but did not match the next character.

The Rabin-Karp algorithm is based on the idea of “fingerprinting”. It compute
hash codes of each substring #[i : i+[s|—1] for i = 0 to [|—[s|—these are the fingerprints.
I h(t[i : i+]s|—1]) # h(s), the |s| length substring beginning at i cannot equal s. A good
hash function is one where the probability of collisions is low and R(t[i:i+[s|—1])
can be incrementally computed, that is the time to compute h(t[i : i + Is| — 1]), given
W(t[i—1: i+]s|-2]),is O(1). (Such a hash function is sometimes referred to as a rolling
hash.) The Rabin-Karp algorithm is very simple to implement, and generalizes more
easily, e.g., to two dimension pattern matching, than the Knuth-Morris-Pratt and
Boyer-Moore algorithms. The expected time complexity is O(ls| + [£])-

const int base = 26, mod = 997;

1
2

3; int rabin_karp(const string &t, const string &s) {
47 if (s.size() > t.size()) {

5 return -1; // s is not a substring of t

6 1

7

8 int t_hash = 0, s_hash = @;

9. for (int i = 0; i < s.size(); ++1i) {

10 t_hash = (t_hash * base + t[i]) % mod;

1 s_hash = (s_hash * base + s[i]) % mod;

12 }

14 for(int i = s.size(); i < t.size(); ++i) {
15 // In case of hash collision, check the two substrings are actually equal
16 if (t_hash == s_hash &% t.compare(i - s.size(), s.size(), s) == @) {

ElementsOfProgrammingInterviews.com

204 Solution 6.21

return i - s.size(): // find match
}
t_hash -= (t[i - s.size()] * static_cast<int>(pow(base, s.size() - 1)))
% mod;
if (t_hash < @) {
t_hash += mod;
}
t_hash = (t_hash * base + t[i]) % mod;

}

if (t_hash == s_hash && t.compare(t.size() - s.size(), s.size(), s) == @) {
return t.size() - s.size();

1

return -1; // s is not a substring of t

3

Problem 6.21, pg. 60: Write a function which takes as input a string s, and removes each
“b” and replaces each “a” by “dd”. Use O(1) additional storage—assume s is stored in an
array that has enough space for the final result.

Solution 6.21: We start by making a first pass through s in which we delete each “b”
by maintaining a write index, write_idx and a current index, cur_idx—we achieve
the effect of deleting “b” by skipping over “b”. We also count the number of “a”s.
We then make a second pass working backwards from the end of the current string,
copying characters to the end of the resulting string (whose size we know from the
number of “a”s). For each “a”, we write “dd”.

string replace_and_remove(string s) {
// Remove "b" and count the number of "a"
int write_idx = 0, a_count = @;
for (const char &c : s) {
- Af (c 1= 'B") {
s[write_idx++] = c;
}
if (¢ == 'a") {
++a_count;
}

}

// Allocate space according to the number of "a"
s.resize(write_idx + a_count);

// Replace "a" with "dd";

int cur_idx = write_idx - 1;

write_idx = s.size() - 1;

while (cur_idx >= 8) {

if (s[cur_idx] == 'a') {
s[write_idx--] = s[write_idx--] = 'd’;
} else {
s[write_idx--] = s{cur_idx];
}
--cur_idx;
}
return s;

ElementsOfProgrammingInterviews.com

Solution 6.22 205

né}

We can prove that the second step correctly replaces each “a” by “dd” by induction

on the length of the string n.
Proof:

For the base case, i.e.,, length 1 string, there are two possibilities—the string is
“a” or x, where x is one of {“b”, “c”, “d”}. For both possibilities, induction goes
through. Assume by induction that the construction is correct for all strings of
length n > 1. Consider a string s of length 7 + 1. Let’s say the length of the final
resultis k. If s ends in “c” or “d”, we copy s[n — 1] over to s[k—1]. By the induction
hypothesis, our construction correctly copies the substring s"~* consisting of the
first — 1 characters of s to the remaining k — 1 locations. If s ends in “a”, we write
“d” into locations k—2 and k— 1. Now we have to process s"~, which will require
k — 2 locations. By the induction hypothesis, the construction correctly writes the

result into these locations, and induction goes through.

e-Variant 6.21.1: You have an array C of characters. The characters may be letters,
digits, blanks, and punctuation. The telex-encoding of the array C is an array T
of characters in which letters, digits, and blanks appear as before, but punctuation
marks are spelled out. For example, telex-encoding entails replacing the character
“" by the string “DOT”, the character “,” by “COMMA”, the character “?” by
“QUESTION MARK?”, and the character ”!” by “EXCLAMATION MARK". Design
an algorithm to perform telex-encoding with O(1) space.

Variant 6.21.2: Write a function which merges two sorted arrays of integers, A
and B. Specifically, the final result should be a sorted array of length |A| + |B|. Use
O(1) additional storage—assume the result is stored in A, which has sufficient space.
These arrays are C-style arrays, i.e., contiguous preallocated blocks of memory.

Problem 6.22, pg.60: Given a cell phone keypad (specified by a mapping M that takes
individual digits and returns the corresponding set of characters) and a number sequence,
return all possible character sequences (not just legal words) that correspond to the number
sequernce.

Solution 6.22: Recursion is natural. Let P be an n-digit number sequence. Assume
these digits are indexed starting at 0, i.e., P[0] is the first digit. Let S be a character
sequence corresponding to the first k digits of P. We can generate all length n character
sequences corresponding to P that have S as their prefix as follows. If k = n, there is
nothing to do. Otherwise, we recurse on each length-k + 1 sequence of the form Sx,
for each x € M(P[k]).

1§const array<string, 16> M = {"®§", "1", "ABC", "DEF", "GHI", "JKL", "MNO",
2 "PQRS", “TUV", “WXYZ"};

3

4/ void phone_mnemonic_helper(const string &num, const int &d, string &ans) {
5% if (d == num.size()) { '

ElementsOfProgrammingInterviews.com

206 i Solution 6.23

6 cout << ans << endl;

7 } else {

8 for (const char &c : M[num[d] - '0'1) {

9 - ans[d] = c; '
10 phone_mnemonic_helper({num, d + 1, ans);
1 }

12 I

13 }

15{ void phone_mnemonic(const string &num) {
16 string ans(num.size(), 8);

17 phone_mnemonic_helper(num, @, ans);

18 }

Problem 6.23, pg. 60: Design an algorithm that takes a string s and a string v, assumed to
be a well-formed ESRE, and checks if v matches s.

Solution 6.23: The key to solving this problem is using recursion effectively.

If r starts with /, then the remainder of #, i.e., #*, must strictly match a prefix of s.
1f » ends with a §, some suffix of s must be strictly matched by » without the trailing
$. Otherwise, ¥ must strictly match some substring of s.

Call the function that checks whether 7 strictly matches a prefix of string s
is_match. This function has to check several cases:

(1.) Length-0 ESREs which match everything.

(2.) An ESRE starting with # or ending with §.

(3.) An ESRE starting with an alphanumeric character or dot.
(4.) An ESRE starting with a #+ match, e.g., a*wXY or .»Wa.

Case (1.) is a base case. Case (2.) involvesa check possibly followed by a recursive
call to is_match_here. Case (3.) requires a single call to is_match_here. Case (4.) is
handled by a walk down the string s, checking that the prefix of s thus far matches
the alphanumeric character or dot until some suffix of s is matched by the remainder
of the ESRE, i.e., 2.

bool is_match_here(comst string &r, comst string &s) {
// Case (1.)

if (r.empty()) {

return true;

1
2

3

Il

5 }
o
7| // Case (2) : ends with ’'§’

s if (r.front() == '$' && r.size() == 1) {
9 return s.empty();

0}

1

12 // Case (4.)

13 if (r.size() »= 2 && r[1] == '*') {

14 for (int i = §; i < s.size() && (r.front() == '.’ || r.front() == s[i]);
15 ++1) {

16 if (is_match_here(r.substr(2), s.subst.r(:i, + 1))) {

17 return true;

18 }

ElementsOfProgrammingInterviews.com

1
2
3
4
5
6
7
8
9

10
1

Solution 7.1 207

}
return is_match_here(r.substr(2), s);
1
// Case (3.)
return !s.empty() && (r.front() == .’ [|] r.front() == s.front()) &&
is_match_here(r.substr(1l), s.substr(1));
}
bool is_match({const string &r, comst string &s) {
// Case (2.) : starts with '+’
if (r,.front() == "4') {
return is_match_here(r.substr(l), s);
}
for (int i = 0; i <= s,size(); ++i) {
if (is_match_here(r, s.substr(i))) {
return true;
}
}
return false;
}

e-Variant 6.23.1: Solve the same problem for regular expressions without the ~ and
$ operators.

Problem 7.1, pg.63: Write a function that takes L and F, and returns the merge of L
and F. Your code should use O(1) additional storage—it should reuse the nodes from the
lists provided as input. Your function should use O(1) additional storage, as illustrated in
Figure 7.3 on Page 63. The only field you can change in a node is next.

Solution 7.1: We traverse thelists, using one pointer per list, each initialized to the list
head. We compare the contents of the pointer—the pointer with the lesser contents
is to be added to the end of the result and advanced. If either pointer is null, we add
the sublist pointed to by the other to the end of the result. The add can be performed
by a single pointer update—it does not entail traversing the sublist. The worst case
time complexity corresponds to the case when the lists are of comparable length. In
the best case, one list is much shorter than the other and all its entries appear at the
beginning of the merged list.

template <typename T>
void append_node(shared_ptr<node_t<T>> &head, shared_ptr<node_t<T>> &tail,
shared_ptr<node_t<T>> &n) {
head ? tail-»next = n : head = n;)
tail = n; // reset tail to the last node
' .
template <typename T>
void append_node_and_advance(shared_ptr<node_t<T>> &head,
shared_ptr<node_t<T>> &tail,
shared_ptr<node_t<T>> &n) {

ElementsOfProgrammingInterviews.com

208 Solution 7.2

12 append_node Chead, tail, n);
13 n = n-»next; // advance n
141}

16| template <typename T>

17| shared_ptr<node_t<T>> merge_sorted_linked_lists(shared_ptr<node_t<T>> F,
18 shared_ptr<node_t<T>> L) {
19 shared_ptr<node_t<T>> sorted_head = nullptr, tail = nullptr;

21 while (F && L) {

2 append_node_and_advance (sorted_head, tail, F->data < L->data ? F : L);
sl) '

24

25 /7 Append the remaining nodes of F
2% if (F) {

27 append_node (sorted_head, tail, F);
28 }

29 // Append the remaining nodes of L
a, if (L) {

al append_node (sorted_head, tail, L);
32 }

33 return sorted_head;

4}

e-Variant 7.1.1: Solve the same problem when the lists are doubly linked.

Problem 7.2, pg.63: Given a reference to the head of a singly linked list L, how would
you determine whether L ends in a null or reaches a cycle of nodes? Write a function that
returns null if there does not exist a cycle, and the reference to the start of the cycle if a cycle
is present. (You do not know the length of the list in advance.)

Solution 7.2: This problem has several solutions. If space is not an issue, the simplest
approach is to explore nodes via the next field starting from the head and storing
visited nodes in a hash table—a cycle exists iff we visit a node already in the hash
table. If no cycle exists, the search ends at the tail (often represented by having the
next field set to null). This solution requires @(n) space, where # is the number of
nodes in the list.

In some languages, e.g., C, the next field is a pointer. Typically, for performance
reasons related to the memory subsystem on a processor, memory is allocated on
word boundaries, and (at least) two of the least significant bits in the next pointer are
0. Bit fiddling can be used to set the least significant bit on the next pointer to mark
whether a node as been visited. This approach has the disadvantage of changing the
data structure—these updates can be undone later.

Another approach is to reverse the linked list, in the manner of Solution 7.9 on
Page 215. If the head is encountered during the reversal, it means there is a cycle;
otherwise we will get to the tail. Although this approach requires no additional
storage, and runs in O(n) time, it does modify the list.

A naive approach that does not use additional storage and does not modify the

ElementsOfProgrammingInterviews.con

Solution 7.2 209

list is to walk the list in two loops—the outer loop visits the nodes one-by-one, and
the inner loop starts from the head, and visits m nodes, where m is the number of
nodes visited in the outer loop. If the node being visited by the outer loop is visited
twice, a loop has been detected. (If the outer loop encounters the end of the list, no
cycle exists.) This approach has O(n?) time complexity.

This idea can be made to work in linear time—use a slow pointer, slow, and a fast
pointer, fast, to visit the list. In each iteration, advance slow by one and fast by
two. The list has a cycle iff the two pointers meet.

This is proved as follows.

Proof:

Number the nodes in the cycle by assigning first node encountered the index 0.
Let C be the total number of nodes in the cycle. If the fast pointer reaches the first
node at iteration F, at iteration i > F, it will be at node 2(i — F) mod C. If the slow
pointer reaches the first node at iteration S, at iteration i > S, it will be at node
(i 5) mod C. The difference between the pointer locations after the slow pointer
reaches the first node in the cycle is 2(i — F) — (i — §) mod C = i — (2F = §) mod C.
As i increases by one in each iteration, the equation (i — (2F — S)) mod C = O has a
solution.

Now, assuming that we have detected a cycle using the above method, we find
the start of the cycle, by first calculating the cycle length. We do this by freezing the
fast pointer, and counting the number of times we have to advance the slow pointer
to come back to the fast pointer. Consequently, we set both slow and fast pointers
to the head. Then we advance fast by the length of the cycle, then move both slow
and fast one at a time. The start of the cycle is located at the node where these two
pointers meet again.

The code to do this traversal is quite simple in C++:

template <typename T>
shared_ptr<node_t<T>> has_cycle(const shared ptr<node_t<T>> &head) {
shared_ptr<node_t<T>> fast = head, slow = head;

while (slow &% slow->next &% fast &% fast->next &% fast->next->next) {
slow = slow->next, fast = fast->next->next;
// Found cycle
if (slow == fast) {
// Calculate the cycle length
int cycle_len = 0;
do {
++cycle_len;
fast = fast->next;
} while (slow != fast);

/7 Try to find the start of the cycle
slow = head, fast = head;
// Fast pointer advances cycle_len first
while (cycle_len--) {

fast = fast->next;
}

// Both pointers advance at the same time

ElementsOfProgrammingInterviews.com

210 Solution 7.3

BB OE B

8B B Y

while (slow |= fast) {
slow = slow-»next, fast = fast->next;
¥
return slow; // the start of cycle
}
}
return nullptr; // no cycle

}

1
2
3
4
5
6
7
B
@

10
11
12
13
14

e T

e-Variant 7.2.1: The following program purports to compute the beginning of the
cycle without determining the length of the cycle; it has the benefit of being more
succinct than the code listed above. Is the program correct? '

template <typename T>
shared_ptr<node_t<T>> has_cycle(const shared_ptr<node_t<T>> &head) {
shared_ptr<node_t<T>> fast = head, slow = head;

while (slow && slow->next && fast && fast-»>next && fast->next->next) {
slow = slow->next, fast = fast->next->next;
// Found cycle
if (slow == fast) {
// Try to find the start of the cycle
slow = head;
/¢ Both pointers advance at the same time
while (slow != fast) {
slow = slow->next, fast = fast->next;
}
return slow; // slow is the start of cycle
}
}
return nullptr; // means no cycle

}

Problem 7.3, pg.63: Write a function that takes a sorted circular singly linked list and a
pointer to an arbitrary node in this linked list, and returns the median of the linked list.

Solution 7.3: We can solve this in stages. First we find #, the number of nodes. Then
we identify the first node f with the minimum element. Finally, we return the | £ J-th
element if n is odd, with f being the 0-th element, and the average of the Z-th and
(% + 1)-th elements if n is even. One corner case to watch out for is all entries being
equal, which we check for in the first stage since we cannot find the first node with
the minimum element.

template <typename T>
double find_median_sorted_circular_linked_list(
const shared_ptr<node_t<T>> &r_node) {
if (ir_node) {
return 6.8; // no noede in this linked list
}

// Check all nodes are identical or not and identify the start of list

ElementsOfProgrammingInterviews, com

Solution 7.4) 211

E shared_ptr<node_t<T»>> curr = r_node, start = r_node;
10 int count = §;
11 bool is_identical = true;

12; do {

13 if (curr->data != curr->next->data) {

14 is_identical = false;

15 }

16 ++Count, curr = curr->next;

17

18 // start will point to the largest element in the list
19 if (start->data <= start->next->data) {

0 start = start->next;

2 }

2 } while (curr = r_node);

2 // If all values are identical, median = curr->data
24 if (is_identical == true) {

25 return'curr-bdata;

%0}

8 // Since start point to the largest element, its next is the start of list
9 start = start->next;

2

31 // Traverse to the middle of the list and return the median
for (int i = 0; i < (count - 1) >> 1; ++i) {
start = start->next;

1
return count & 1 7 start->data : 0.5 * (start->data + start->next->data);

v R E B S

Problem 7.4, pg. 64: Let hl and h2 be the heads of lists L1 and L2, vespectively. Assume that
L1 and L2 are well-formed, that is each consists of a finite sequence of nodes. (In particular,
neither list has a cycle.) How would you determine if there exists a node v reachable from
both hl and h2 by following the next fields? If such a node exists, find the node that appears
earliest when traversing the lists. You are constrained to use no more than constant additional
storage.

Solution 7.4: The lists overlap iff both have the same tail node: since each node has
a single next field, once the lists converge at a node, they cannot diverge at a later
node. Let |L| denote the number of nodes in list L. Checking overlap amounts to
finding the tail nodes for each, which is easily performed in O(|L1| + |L2[) time and
O(1) space. To find the first node, we proceed as above, and in addition we compute
[L1] and |L2|. The first node is determined by first advancing through the longer list
by |[L1] = |L2| nodes, and then advancing through both lists in lock-step, stopping at
the first common node.

1[;7 Count the list length till end
z|tenplate <typename T>

3%int count_len(shared_ptr<node_t<T>> L) {
4 int len = 0;

5, while (L) {

EE ++len, L = L->next;

ElementsOfProgrammingInterviews.com

212 ' Solution 7.5

}

return len;

@

9 }

11| template <typename T>

12} void advance_list_by_k(shared_ptr<node_t<T>> &L, int k) {
13 while (k--) {

14 L = L->next;

15, }

16] }

12| template <typename T>

19| shared_ptr<node_t<T>> o\«'erlapping_no_cycle_lists(shared_gtr<node_t<'r>> L1,
20 shared_ptr<node_t<T>> L2) {
2 // Count the lengths of L1 and L2

22 int Lil_len = count_len<T»>(L1), L2Z2_len = count_len<T>(LZ);

24 /¢ Advance the longer list -
25 advance_list_by_k(Ll_len > L2_len ? L1 : L2, abs(Ll_len - L2_len));

7 while (L1 && L2 && L1 |= L2) {

28 L1 = Li-»>next, L2 = L2->next;

2}

20 return L1; // nullptr means no overlap between L1 and L2

Figure 21.4 shows an example of lists which overlap and have cycles. For this
example, both A and B are acceptable answers.

Figure 21.4: Overlapping lists.

Problem 7.5, pg.64: Solve Problem 7.4 on Page 64 for the case where L1 and L2 may each
or both have a cycle. If such a node exists, return a node that appears first when traversing
the lists. This node may not be unique—if L1 has a cycle (no, n1, . . ., ny—1,ng), where ny is the
first node encountered when traversing L1, then L2 may have the same cycle but a different
first node.

Solution 7.5: Suppose that one, or both, of the lists may have a cycle. Using the
approach in Solution 7.2 on Page 208, we can determine in linear time and O(1) space
whether the lists have a cycle. If neither is cyclic, the lists are well-formed, and we
can check overlap using the technique in Solution 7.4 on the preceding page. If one
is cyclic, and the other is not, they cannot overlap.

ElementsOfProgrammingInterviews. com

Solution 7.6 213

If both are cyclic, and overlap, the cycles must be identical. Use the technique in
Solution 7.2 on Page 208 to obtain nodes a1 and 42 on the cycle of L1 and L2, Visit
the cycle from a1, stopping when al reappears. If 22 appears during this visit, the
cycles are identical; otherwise, they are disjoint—the lists have no overlap. If there is
an overlap, the problem specification allows us to return either a1 or 42. It is readily
verified that the entire computation runs in O(|L1| + [L2]) time and uses O(1) space.

1! template <typename T>

2| shared_ptr<node_t<T>> overlapping_lists(shared_ptr<node_t<T>> L1,

3 shared_ptr<node_t<T>> L2Z) {

4 // Store the start of cycle if any

5 shared_ptr<node._t<T>> sl = has_cycle<T>(L1), s2 = has_cycle<T>(L2);
6

7

8

a9

if (Isl && !s2) {
return overlapping_no_cycle_lists(Ll, L2);
} else if (sl && s2) { // both lists have cycles

10 shared_ptr<node_t<T>> temp = s2;

11 do {

12 temp = temp->next;

13 } while (temp != sl && temp != s2);
14 return temp == sl 7 sl : nullptr;
15 }

16 return nullptr; // one list has cycle, one list has no cycle

Problem 7.6, pg. 64: Write a function that takes a singly linked list L, and reorders the
elements of L so that the new list represents even-odd(L). Your function should use O(1)
additional storage, as illustrated in Figure 7.6 on Page 65. The only field you can change in
a node is next.

Solution 7.6: We maintain two pointers, one iterates through the even elements, the
other iterates through odd elements. We update the next field of the even pointer to
the next of the odd pointer, and vice versa. Finally we update the next field of the
last of the even elements to the head of the odd list. Care has to be taken to handle
odd/even length lists uniformly, and to correctly process extreme cases (first and last
nodes).

1 template <typename T>

2| shared_ptr<node_t<T>> even_odd_merge(const shared_ptr<node_t<T>> &L) {
3 shared_ptr<node_t<T>> odd = L ? L->next : nullptr;

4 shared_ptr<node_t<T>> odd_curr = odd;

5 shared_ptr<node_t<T>> pre_even_curr = nullptr, even_curr = L;

6

7

8

9

while (even_curr && odd_curr) {
even_curr->next = odd_curr->next;
pre_even_curr = even_curr;

10 eVen_curr = even_curr->next;
1 if (even_curr) {

2 odd_curr->next = even_curr->next;
13 odd_curr = odd_curr->next;

14 }

ElementsOfProgrammingInterviews.com

L

214 Solution 7.8

}

// 0dd number of nodes

if (even_curr) {
pre_even_curr = eVEN.Curr;

} .

// Prevent empty list

if (pre_even_curr) {
pre_even_curr->next = odd;

}

return L;

Problem 7.7, pg. 65: Let v be a node in a singly linked list L. Node v is not the tail; delete
it in O(1) time.

Solution 7.7: This is more of a trick question than a conceptual one. Given the
pointer to a node, it is impossible to delete it from the list without modifying its
predecessor’s next pointer and the only way to get to the predecessor is to traverse
the list from head. However it is easy to delete the next node since it just requires
modifying the next pointer of the current node. Now if we copy the value part of the
next node to the current node, this would be equivalent to deleting the current node.

In practice this approach would not be acceptable, since it corrupts pointer-valued
variables that point to ©’s successor.

template <typename T>

void deletion_from_list(const shared_ptr<node_t<T>> &v) {
v->data = v->next->data;
v->next = v->next->next;

}

Problem 7.8, pg. 65: Given a singly linked list L and a number k, write a function to remove
the k-th last element from L. Your algorithm cannot use more than a few words of storage,
regardless of the length of the list. In particular, you cannot assume that it is possible to
record the length of the list.

Solution 7.8: We use two pointers, curr and ahead. First, the ahead pointer is
advanced by k steps, and then curr and ahead advance in step. When ahead reaches
null, curr points to the k-th last node in L, and we can remove it. Following is the
code in C++:

template <typename T>
void remove_kth_last(shared_ptr<node_t<T>> &L, const int &k) {
// Advance k steps first
shared_ptr<node_t<T>> ahead = L;
int num = k;
while (ahead && num--) {
ghead = ahead->next;
} .

ElementsOfProgrammingInterviews.com

Solution 7.9 215

if (num) {
throw length_error("not enough nodes in the list");

}

shared_ptr<node_t<T>> pre = nullptr, curr = L;
/4 Find the k-th last node
while (ahead) {

pre = curr;

curr = curr->next, ahead = ahead->next;

1
if (pre) {
pre->next = curr->next;
} else {
L = curr->next; // special case: delete L
}

Problem 7.9, pg. 65: Givea linear time non-recursive function that reverses a singly linked
list. The function should use no more than constant storage beyond that needed for the list
itself. The desired transformation is illustrated in Figure 7.7 on Page 65.

Solution 7.9: The natural way of implementing the reversal is through recursion.
However, this approach implicitly uses &(n) space on the stack. The function is not
tail recursive, which precludes compilers from automatically converting the function
to an iterative one.

Reversal can be performed iteratively—walk the list with two pointers, and update
the trailing pointer’s next field. It uses O(1) additional storage, and has ©(n) time
complexity.

Recursive implementation, uses ®(n) storage on the function call stack:

template <typename T>
shared_ptr<node_t<T>> reverse_linked_list(const shared_ptr<node_t<T>> &head) {
if (thead || !'head->next) {
return head;
}

shared_ptr<node_t<T>> new_head = reverse_linked_list(head->next);
head->next->next = head;

head->next = nullptr;

return new_head;

Iterative implementation:

template <typename T>
shared_ptr<node_t<T>> reverse_linked_list(const shared_ptr<node_t<T>> &head) {
shared_ptr<node_t<T>> prev = nullptr, curr = head;
while (curr) { .
shared_ptr<node_t<T>> temp = curr->next;
curr-snext = prev;
prev = curr;

curr = temp;

ElementsOfProgrammingInterviews.com

216 Solution 7.11

o}
| return prev;
n|}

Problem 7.10, pg. 66: Write a function that determines whether a sequence represented by
a singly linked list L is a palindrome. Assume L can be changed and does not have to be
restored it to its original state.

Solution 7.10: Checking if two lists represent the same sequence is straightforward.
Therefore one way to check if a linked list is a palindrome is to reverse the second half
of the list and compare it with the first half. The middle element can be determined
by using a slow pointer and a fast pointer technique (Solution 7.2 on Page 208), and
reversing a singly linked list can be performed using Solution 7.9 on the previous
page.

This approach changes the list passed in, but the reversed sublist can be reversed
again to restore the original list.

1| template <typename T>

2! bool is_linkéd_list_a_palindrome(shared_ptrqnode_t<T}> L {
3 /4 Find the middle point of L

4| shared_ptr<node_t<T>> slow = L, fast = L;

5{ while (fast) {

6 fast = fast->next;

7 if (fast) {

8 fast = fast->next, slow = slow->next;

9 }

10 1

12 // Compare the first half and reversed second half lists
13 shared_ptr<node_t<T>> reverse = reverse_linked list<T>(slow);
14 while (reverse &% L) {

15 if (reverse->data != L->data) {

16 return false;

17 }

18 reverse = reverse->next, L = L->next;
19 }

20 return true;

2t}

Variant 7.10.1: Solve the same problem when the list is doubly linked and you have
pointers to the head and the tail.

Problem 7.11, pg.66: Write a function that takes a singly linked list L, and reorders the
elements of L to form a new list representing zip(L). Your function should use O(1) additional
storage, as illustrated in Figure 4.1 on Page 25. The only field you can change in a node is
next.

Solution 7.11: The problem can be solved in a straightforward manner—find the
middle of the list, reverse the second half, and then interleave the first and second

ElementsOfProgrammingInterviews.com

Solution 7.12 217

halves. The middle element can be determined by using a slow pointer and a fast
pointer (Solution 7.2 on Page 208), and reversing a singly linked list can be done
using Solution 7.9 on Page 215. Interleaving is performed by walking the two lists
and updating next field from the first list to the corresponding element in the second
list, and vice versa. :

Though this algorithm is conceptually simple, corner cases abound: the empty
list, lists of length 1, and even/odd lengths lists.

1; template <typename T>

2! void connect_a_next_to_b_advance_a(shared_ptr<node_t<T>> &a,

3 ' const shared_ptr<node_t<T>> &b) {
4 shared_ptr<node_t<T>> temp = a->next;

5 a->next = b;

[a = temp;

7
8
9

template <typename T>
10! shared_ptr<node_t<T>> zipping_linked_list(const shared _ptr<node_t<T>> &L) {
1 shared_ptr<node_t<T>> slow = L, fast = L, pre_slow = nullptr;

13 // Find the middle point of L
14 while (fast) {

15 fast = fast->next;

16 if (fast) {

17 pre_slow = slow;

18 fast = fast-»next, slow = slow->next;
i9 }

awf }

22 if (lpre_slow) { .

23 return L; // only contains one node in the list

2|}

25 pre_slow->next = nullptr; // split the list into two lists

26 shared_ptr<node_t<T>> reverse = reverse_linked_list<T>(slow), curr = L;
” :

28

// Zipping the list
while (curr && reverse) {

B

30 // connect curr->next to reverse, and advance curr

31 connect_a_next_to_b_advance_a(curr, reverse);

32 if (curr) {

33 // connect reverse->next to curr, and advance reverse
T connect_a_next_to_b_advance_a(reverse, curr);

35 }

6 }

37 return L;

&
-

Problem 7.12, pg. 66: Implement a function which takes as input a pointer to the head of a
postings list L, and returns a copy of the postings list, Your function should take O(n) time,
where n is the length of the postings list and should use O(1) storage beyond that required
for the n nodes in the copy. You can modify the original list, but must restore it to its initial
state before returning.

ElementsOfProgrammingInterviews.com

218 Solution 7.12

Solution 7.12: We do the copy in following three stages:

(1.) First we copy a node ¢, per node x in the original list, and when we do the
allocation, we set ¢,’s next pointer to x's next pointer, then update x's next
pointer to ¢,. (Note that this does not preclude us from traversing the nodes of
the original list.))

(2.) Then we update the jump field for each copied node c;; specifically, if y is x’s
jump field, we set ¢,’s jump field to c,, which is the copied node of y. (We can
do this by traversing the nodes in the original list; note that ¢, is just y's next
field.)

(3.) Now we set the next field for each x to its original value (which we get from
c,’s next field), and the next field for each ¢, to ¢y, Whete n(x) is x's original
next node. '

These three stages are illustrated in Figures 21.5(b) to 21.5(d) on the current page.

GRS S,

(a) Initial list.

(c) After Stage (2.). (d) After Stage (3.).

Figure 21.5: Duplicating a postings list.

Code implementing the copy is given below:

1! template <typename T> .

2i shared_ptr<node_t<T>> copy_postings_list(const shared_ptr<node_t<T>> &L) {
3l // Return empty list if L is nullptr

4 if (L) {

5 return nullptr;

6}

7

8| // 1st stage: copy the nodes from L

9 shared_ptr<node_t<T>> p = L;

10 while (p) {

11 auto temp =

12 shared_ptr<node_t<T>>(new node_t<T>{p->data, p->next, nullptr});
13 p->next = temp;

14 P = temp->next;

15 }

16
17 // 2nd stage: update the jump field

ElementsOfProgrammingInterviews.com

Solution 8.1) 219

p =L
while (p) {
if (p->jump) {
p->next->jump = p->jump->next;
}
P = p->next->next;

}

// 3rd stage: restore the next field
p=L; ’
shared_ptr<node_t<T>> copied = p->next;
while (p->next) {
shared_ptr<node_t<T>> temp = p->next;
p=->next = temp->next;
p = temp;
}

return copied;

Problem 8.1, pg.67: Design a stack that sﬁpports a max operation, which returns the
maximum value stored in the stack, and throws an exception if the stack is empty. Assume
elements are comparable. All operations must be O(1) time. You can use O(n) additional
space, beyond what is required for the elements themselves.

Solution 8.1: A conceptually straightforward approach to tracking the maximum is
store pairs in a stack. The first component is the key being pushed; the second is the
largest value in the stack after the push is completed.” When we push a value, the
maximum value stored at or below any of the entries below the entry just pushed
does not change. The pushed entry’s maximum value is simply the larger of the
value just pushed and the maximum prior to the push, which can be determined by
inspecting the maximum field of the element below. Since popping does not change
the values below, there is nothing special to be done for pop. Of course appropriate
checks have to be made to ensure the stack is not empty.

This approach has O(1) time complexity for the the specified methods. The addi-
tional space complexity is @(n), regardless of the stored keys.

template <typename T>
class Stack {
private:
stack<pair<T, T>> s;

public:
const bool empty(void) const {
return s.empty();
}

const T &max(void) const {
if (empty() == false) {
return s.top().second;

}
throw length_error("empty stack");

ElementsOfProgrammingInterviews.com

220 . Solution 8.1

}

T pop(void) {
if (empty() == false) {
T ret = s.top().first;
s.pop();
return ret;
}
throw length_error("empty stack");

3

void push(const T &x) {
s,emplace(x, std::max(x, empty() ? x : s.top().second));
}
};

Heuristically, the additional space required can be reduced by maintaining two
stacks, the primary stack, which holds the keys being pushed, and an auxiliary stack,
whose operation we now describe.

The top of the auxiliary stack holds a pair. The first component of the pair is the
maximum key in the primary stack. The second component is the number of times
that key appears in the primary stack.

Let m be the maximum key currently in the primary stack. There are three cases
to consider when a key k is pushed. '

1. kis smaller than m. The auxiliary stack is not updated.

2. kis equal to m. We increment the second component of the pair stored at the

top of the auxiliary stack.

3. kis greater than m. The pair (k, 1) is pushed onto the auxiliary stack.

There are two cases to consider when the primary stack is popped. Let k be the
popped key. .
1. kisless than m. The auxiliary stack is not updated.
2. kisequal to 7. We decrement the second component of the top of the auxiliary
stack. If its value becomes 0, we pop the auxiliary stack.
These operations are illustrated in Figure 21.6 on Page 222.

template <typename T>
class Stack {
private:
stack<T> s;
stack<pair<T, int>> aux;

public: .
const bool empty(void) comst {
return s.empty();
}

const T &max(void) comst {
if (empty() == false) {
return aux.top().first;
1
throw length_error("empty stack");

ElementsOfProgrammingInterviews.com

Solution 8.2 . 221

E 8 8 Y8 H R

17 }
18
19 T pop(void) {
20 if (empty() == false) { '
2 T ret = s.top();
2 s.pop();
2 if (ret == aux.top().first) {
24 --aux.top().second;
25 if (aux.top().second == 0) {
2 . aux.pop();
27 }
23 ¥
2 return ret;
30 }
al throw length_error("empty stack");
22 }
3
void push(const T &x) {
s.emplace(x);
if Caux.empty() == false) {
if (x == aux.top().first) {
++aux.top().second;
} else if (x > aux.top().first) {

aux.emplace(x, 1);
o }
] } else {
4 aux.emplace(x, 1);
44 }
45 }
46 };

The worst-case additional space complexity is @(1), which occurs when each key
pushed is greater than all keys in the primary stack. However, when the number
of distinct keys is small, or the maximum changes infrequently, the additional space
complexity is less, O(1) in the best case. The time complexity for each specified
method is still O(1).

Problem 8.2, pg.68: Write a function that takes an arithmetical expression in RPN and
returns the number that the expression evaluates to. '

Solution 8.2: Conceptually, the algorithm for evaluating an RPN expression iterates
through the string from left-to-right. It tokenizes the input into numbers and op-
erators. Numbers are pushed onto a stack. When an operator is read, if it takes k
arguments, and there are fewer than k numbers on the stack, a parse error exception
is thrown. Otherwise, the expression is evaluated by popping the top k elements of
the stack and the operator; the result is pushed back on the stack, When no tokens
are left, the only one value left on the stack is the result; otherwise a parse error is
declared.

i

1| int eval(const string &s) {
2{ stack<int> eval_stack;
3. stringstream ss(s);

ElementsOfProgrammingInterviews.com

222 Solution 8.2

4

1 1 51 52|
2| 2 2| |41 4,1 41
e o Llzd gl 2| [22] 2| |22] 2] [22 2 2
anx aux anx aux aux anx qux

4 0

52 52 51 1 a 1
41 4,1 41 2| a1 2 2 31

2 2 2,2 2 2] |22 2| |z2]

anx anx aux aux arx aux aux

Figure 21.6: The primary and auxiliary stacks for the following operations: push(2), push(2),
push(1), push(4), push(5), push(5), push(3), pop(), pop(), popQ, popQ,
push(®), push(3). Both stacks are initially empty, and their progression is shown from laft-to-
right, then top-to-bottom. The top of the auxiliary stack holds the maximum element in the stack, and
the number of times that element occurs in the stack. The auxiliary stack is denoted by aux.

string symbol;

while (getline(ss, symbol, ',')) {
if (symbol == "+" || symbol == "-" || symbol == "*" || symbol == "/") {
int y = eval_stack.top(};
eval_stack.pop();
int x = eval_stack.top();
eval_stack.pop();
switch (symbol.front()) {
case '+':
eval_stack.emplace(x + ¥);
break;
case. '-':
eval_stack.emplace(x - y);
break;
case "*':
eval_stack.emplace(x * y);
break;
case '/':
eval_stack.emplace(x / y);
break;
}
} else { // number
eval_stack.emplace(stoi(symbol));
1
}
return eval_stack.top();
1

e-Variant8.2.1: Solve the same problem for expressions in Polish notation, i.e., when

ElementsOfProgrammingInterviews.com

Solution 8.4 223

A, B, o is replaced by o, A, B in Rule (2.) on Page 68.

Problem 8.3, pg. 68: Given a BST node n, print all the keys at n.and its descendants. The
nodes should be printed in sorted order, and you cannot use recursion. For example, for
Node I in the binary search tree in Figure 14.1 on Page 105 you should print the sequence
(23,29,31,37,41,43,47,53).

Solution 8.3: The recursive solution is trivial—first print the left subtree, then print
the root, and finally print the right subtree. This algorithm can be converted into a
iterative algorithm by using an explicit stack. Several implementations are possible;
the one below is noteworthy in that it pushes the current node, and not its right child,
and it does not use a visited field.

template <typename T>

void print_BST_in_sorted_order(const shared_ptr<BinarySearchTree<T>> &n) {
stack<shared_ptr<BinarySearchTree<T>>> s;
shared_ptr<BinarySearchTree<T>> curr = n;

while (!s.empty() || curr) {
if (ecurr) {
s.push(curr);
curr = curr->left;
} else {
curr = s.top();
s.pop();
cout << curr->data << endl;
curr = curr->right;

Problem 8.4, pg.68: Write recursive and iterative routines that take a postings list, and
computes the jump-first order. Assume each node has an order field, which is an integer
that is initialized to —1 for each node.

Solution 8.4: Recursion is natural—if the current node is unvisited, update the
current node’s order, visit the jump node, then visit the next node. The iterative
solution mimics the recursive algorithm using a stack to push nodes that need to be
visited. Because of a stack’s last-in, first-out semantics, the next node is pushed first,
since it is to be visited after the jump node. Recursive implementation:

template <typename T>
void search_postings_list_helper(const shared_ptr<node_t<T>> &L,
int &order) {
if (L && L-»order == -1} {
L->order = order++;
search_postings_list_helper<T>(L->jump, order);
search_postings_list_helper<T>(L->next, order);
}
1

ElementsOfProgrammingInterviews.com

224 Solution 8.5

11| template <typename T>

12| void search_postings_list(const shared_ptr<nede_t<T>> &L) {
13 int order = §; .

14 search_postings_list_helper<T>(L, order);

5] }

Iterative implementation:

1| template <typename T>

2 void search_postings_list(const shared_ptr<node_t<T>> &L) {
3 stack<shared_ptr<node_t<T>>> s;

4 int order = 0;

5 s.emplace(L);

s while (ls.empty(Q)) {

7 shared_ptr<node_t<T>> curr = s.top();

8
9

s.pop();
if (curr && curr->order == -1) {
10 curr-»order = order++;
1 s.emplace(curr->next);
12 s.emplace(curr->jump) ;
13 }
i }
15}

Problem 8.5, pg. 69: Exactly n rings on P1 need to be transferred to P2, possibly using P3
as an intermediate, subject to the stacking constraint. Write a function that prints a sequence
of operations that transfers all the rings from P1 to P2.

Solution 8.5: Number the n rings from 1 to #n. Transfer these n rings from P1 to P2 as
follows.

1. Recursively transfer n — 1 rings from P1 to P3 using P2.

2. Move the ring numbered n — 1 from P1 to P2.

3. Recursively transfer the n — 1 rings on P3 to P2, using P1.
This is illustrated in Figure 21.7 on the next page. Code implementing this idea is
given below.

1! void transfer(const int &n, array<stack<int>, 3> &pegs,

2 const int &from, const int &to, const int &use) {
3 if (n > 0) {

4 transfer(n - 1, pegs, from, use, to);

5 peas[to].push(pegs[from]l.top());

[pegs[from] .pep();

7 cout << "Move from peg " << from << " to peg
8 transfer(n - 1, pegs, use, to, from);

9

<< to << endl;

12| void move_tower_hanoi(const int &n) {
1 array<stack<int>, 3> pegs;

14 // Initialize pegs

15 for (imt i = n; i »>= 1; --i) {

16 pegs[®].push(i);

ElementsOfProgrammingInterviews.com

Solution 8.6 225

P1 P2 P3 Pl P2
(a) Move all but the lowest disc from P1 to P3. (b) Move the lowest disc from P1to P2.

1
P1 P2 P3 Pl P3
(c) Move P3 to P2 using P1. (d) Solved!

Figure 21.7: A recursive solution to the Towers of Hanoi for 2 = 6.

7 }

18}

1] transfer(n, pegs, @, 1, 2);
20} }

e-Variant 8.5.1: Find the minimum number of operations subject to the constraint
that each operation must involve P3.

e-Variant 8.5.2: Find the minimum number of operations subject to the constraint
that each transfer must be from P1 to P2, P2 to P3, or P3 to P1.

e-Variant 8.5.3: Find the minimum number of operations subject to the constraint
that a ring can never be transferred directly from P1 to P2 (transfers from P2 to P1
are allowed). '

e-Variant 8.5.4: Find the minimum number of operations when the stacking con-
straint is relaxed to the following—the largest ring on a peg must be the lowest ring
on the peg. (The remaining rings on the peg can be in any order, e.g., it is fine to have
the second-largest ring above the third-largest ring.)

Variant 8.5.5: Find the minimum number of operations if you have a fourth peg, P4.

- Problem 8.6, pg.69: Design an algorithm that processes buildings as they are presented
to it and tracks the buildings that have a view of the sunset. The number of buildings is
not known in advance. Buildings are given in east-to-west order and are specified by their
heights. The amount of memory your algorithm uses should depend solely on the number of
buildings that have a view; in particular it should not depend on the number of buildings

ElementsOfProgrammingInterviews.com

226 ’ Solution 8.7

processed.

Solution 8.6: We use a stack to record buildings that have a view. Each time a
building b is processed, if it is taller than the building at the top of the stack, we plop
the stack until the top of the stack is taller than b—all the buildings thus removed lie
to the east of a taller building.

Although some individual steps may require many pops, each building is pushed
and popped at most once. Therefore the run time to process n buildings is O(n), and
the stack always holds precisely the buildings which currently have a view.

template <typename T>

vector<pair<int, T>> examine_buildings_with_sunset(istringstream &sin) {

int idx = 0; // building’'s index
T height;
S/ Stores (building_idx, building height) pair with sunset views
vector<pair<int, T>> buildings_with_sunset;
while (sin >> height) {

while (buildings_with_sunset.empty() == false &&

height >= buildings.with_sunset.back().second) {
buildings_with_sunset.pop_back();
}
buildings_with_sunset.emplace_back({idx++, height);

}

// Returns buildings with its index and height.
return buildings_with_sunset;

€-Variant 8.6.1: Solve the problem subject to the same constraints when buildings
are presented in west-to-east order.

Problem 8.7, pg. 69: Design an algorithm to sort a stack S of numbers in descending order.
The only operations allowed are push, pop, top (which returns the top of the stack without
a pop), and empty. You cannot explicitly allocate memory outside of a few words.

Solution 8.7: We use recursion—pop the stack and store the result in e, sort the
popped stack, then insert the popped element in the right place. The insertion is also
done using recursion—if e is smaller than top, then push e and return, else do a pop
and store the result in f, insert e in the popped stack, then push f. For both the sort
and the insert functions the empty stack is the base case. This implementation uses
©(n) storage on the function call stack:

template <typename T>
void insert(stack<T> &S5, const T &e) {
if (S.empty() || S.top() <= e) {
S.push(e);
1 else {
T f=5.top();
S.popQ);
insert(S, e);
S.push(f);

ElementsOfProgrammingInterviews.com

Solution 8.8 227

10 }
1}

13| template <typename T>
14| void sort(stack<T> &S) {
15, if (!S.empty()) {

16 T e = S.topQ);
17 S.pop();

18 sort(S);

19 insert(s, e);
20 }

2]}

Problem 8.8, pg.69: Write a function which takes a path name, and returns the shortest
equivalent path name. Assume individual directories and files have names that use only
alphanumeric characters. Subdirectory names may be combined using forward slashes (/),
the current directory (.), and parent directory (..). The formal grammar is specified as
follows:

name = [A-Za-2z0-9]+
spdir = .| .
pathname = name | spdir | [spdir | name | pathname]?/+ pathname?

Here + denotes one or more repetitions or the preceding token, and ? denotes 0 or 1 occurrences
of the preceding token. You should throw an exception on invalid path names.

Solution 8.8: The solution uses a stack which will hold the path. The candidate string
is parsed from left to right, splitting on /. A leading / is pushed on the stack—this
must be an absolute path name. Consequent names are pushed on the stack. Any . .
causes a pop of a nonempty stack; if the stack is empty, .. is pushed onto the stack.
Any . is skipped.

The error conditions are trying to pop a stack which begins with /, and a substring
which is not a name, the empty string, ., or . ., separated by /.

The final state of the stack directly corresponds to the shortest equivalent directory
path. The argument is based on representing the directory hierarchy as a tree rooted
at the root. The directory we compute is a shortest path in the tree. If the bottom of
the stack is /, the path is absolute, otherwise it is relative.

string normalized_path_names(const string &path) {
vector<string> s; // Use vector as a stack
// Special case: starts with "/", which is an absolute path
if (path.front() == '/') {
s.emplace_back("/");
1

stringstream ss(path);

string token;

0. while (getline(ss, token, '/’)) {
1 if (token == "..") {

s T

ElementsOfProgrammingInterviews.com

228 -) Solution 8.9

12 if (s.empty () |] s.back() == "..") {

13 s.emplace_back(token);

14 } else { '

15 if (s.back() == "/") {

15 throw invalid_argument("Path error");

17 }

18 s.pop_back();

19 }

0 } else if (token I= "." && token != "") { // name
2 for (const char &c : token) {

2 if (¢ 1= '.' && isalnum(c) == false) {

2 throw invalid_argument("Invalid directory name”);
2% 1

25 }

26 s.emplace_back(token) ;

7 }

S }

2

0 string normalized_path("");

w
=2

if (s.empty() == false) {

32 auto it = s.cbegin();

33 normalized_path += ¥it++;
T while (it != s.cend()) {

3 if (*(it - 1) 1= "/") { // previous one is not an absolute path
36 normalized_path += "/";
37 }

38 normalized_path += *it++;
> }

wi 1

4 return normalized_path;

4|}

Problem 8.9, pg.70: Given the root node r of a binary tree, print all the keys and levels at
r and its descendants. The nodes should be printed in ovder of their level. You cannot use
recursion. You may use a single queue, and constant additional storage. For example, you
should print the sequence (314, 6,6,271,561,2,271,28,0,3,1,28,17, 401,257, 641) for the
binary tree in Figure 9.1 on Page 73.

Solution 8.9: We maintain a queue of nodes to process. Specifically the queue
contains nodes at level [followed by nodes at level [+ 1. After all nodes from level
I are processed, the head of the queue is a node at level [+ 1; processing this node
introduces nodes from level I + 2 to the end of the queue. We use a count variable
that records the number of nodes at the level of the head of the queue that remain to
be processed. When all nodes at level ! are processed, the queue consists of exactly
the set of nodes at level [+ 1, and count is updated to the size of the queue.

1! template <typename T>

2§vaid print_binary_tree_level_order(const shared_ptr<BinaryTree<T>> &n) {
3 // Prevent empty tree

4 if () {

5 return;

6 }

ElementsOfProgrammingInterviews.com

Solution 8.10 229

10
1
12

14

16
7
18
19

queue<shared_ptr<BinaryTree<T>>> q;
gq.emplace(n);
while (lg.empty()) {
cout << q.front(}->data << ' ';
if (q.front()->left) {
q.emplace(qg. front () ->left);
1
if (q.front()->right) {
q.emplace(q. front () ->right);
}
q.pop();
1

‘Problem 8.10, pg. 71: Implement a queue API using an array for storing elements. Your

API should include a constructor function, which takes as argument the capacity of the queue,
enqueue and dequeue functions, a size function, which returns the number of elements
stored, and implement dynamic resizing.

Solution 8.10: We use an array of length n to store up to 7 elements. We resize the
array by a factor of 2 each time we run out of space. The queue has a head field that
indexes the least recently inserted element, and a tail field, which is the index that
the next inserted element will be written to. We record the number of elements in
the queue with a count variable. Initially, head and tail are 0. When count = n and
a enqueue is attempted we resize. When count = 0 and a dequeue is attempted we
throw an exception.

1| template <typename T>

21 class Queue {

3 private:

4 size_t head, tail, count;

5 vector<T> data ;'

[

7 public: .

8 Queue(const size_t &cap = 8) : head(®), tail(®), count(®), data({cap}) {}
9

10 void enqueue(const T &x) {

1 // Dynamically resize due to data.size() limit
12 if (count == data.size()) {

13 data.resize(data.size() << 1);

14 ¥

15 // Perform enqueue

16 datal[tail] = x;

17 tail = (tail + 1) % data.size(), ++count;
18 }

19

20 T degueue(void) {

2 if (count) {

2 --count;

23 T ret = datal[head];

24 head = (head + 1) % data.size();

ElementsOfProgrammingInterviews.com

230 Solution 8.11

25 return ret;

26 }

27 throw length_error("empty queue");
3 }

29

0 const size_t &size(void) const {

31 return count;

2 }

3|}

Alternative implementations are possible, e.g., we can avoid using count, and
instead use the difference between head and tail to determine the number of ele-
ments. In such an implementation we cannot store more than n — 1 elements, since
otherwise there is no way to differentiate a full queue from an empty one.

Problem 8.11, pg. 71: Implement a queue using two unsigned integer-valued varipbles.
Assume that the only elements pushed into the queue are integers in [0,9]. Your program
should work correctly when Os are the only elements in the queue. What is the maximum
number of elements that can be stored in the queue for it to operate correctly?

Solution 8.11: The queue state can be viewed as a sequence of digits, with the
newest element corresponding to the rightmost digit. A sequence of digits uniquely
represents an integer in base-10. Pushing an element corresponds to multiplying
that integer by 10 and adding the new element to the result. Popping an element
corresponds to identifying the most significant digit. The index i of the most signif-
icant digit d is the number of digits in the number, which is computed using log,;
the number encoding the new queue is simply the number encoding the old queue
minus d x 10°. The maximum number of elements we can store is dictated by the size
of the integer. For k-bit integers the queue is limited to size [log,, 2¢].

class Queue {
private:
unsigned val, size;

Queue() : val(®), size(®) {}

void enqueue(const unsigned &x) {

1
2
3
4
5 public:
6
7
8
9 val = val * 18 + x;

10 ++size;

1 }

12

13 unsigned dequeue(void) {

14 if (size) {

15 unsigned ret = 8, d = floor(logl®(val));
16 if (d + 1 == size) {

17 ret = val / pow(10.0, d);
18 val -= pow(10.0, d) * ret;
19 }

20 ~=-size;

21 return ret;

] }

ElementsOfProgrammingInterviews.com

b3

b
o

Solution 8.12 231

throw length_error("empty queue”);

|
4 i }

e-Variant 8.11.1: Implement a queue with a single integer-valued variable by reserv-
ing the most significant digit for the size.

Problem 8.12, pg.71: How would you implement a queue given two stacks and O(1)
additional storage? Your implementation should be efficient—the time to do a sequence of m
combined enqueues and dequeues should be O(m).

Solution 8.12: Call the two stacks A and B. A straightforward implementation of the
queue is to enqueue by pushing the element to be enqueued onto A. The element
to be dequeued is then the element at the bottom of A, which can be achieved by
first popping all the elements of A and pushing them to B, then popping the top
of B (which was the bottom-most element of A), and finally popping the remaining
elements from B and pushing them to A.

The primary problem with this approach is that every dequeue takes two pushes
and two pops of each element. (Enqueue takes O(1) time.)

The statement of the problem has a hint—it says that every sequence of m com-
bined enqueues and dequeues should take O(m) time. If we could implement en-
queue and dequeue each on O(1), this bound would be trivially met. However,
the bound can also be achieved even if individual enqueues and dequeues have
high time complexity, as long as there exist enough fast enqueues and dequeues to
compensate.

We can implement enqueues by always pushing onto A. Dequeues are handled
as follows,

— If B is empty, e.g., we have not done any dequeues so far or all elements in B
have been popped, we transfer the contents of A over to B, using pops on A
and pushes onto B. Now the top of B contains the element that was enqueued
earliest. We simply pop and return that. We do not transfer back from B to A.

— If Bisnonempty, e.g., we had just done a dequeue as above, we doby dequeuing
from the top of B.

This approach takes O(m) time for m operations, which can be seen from the fact that
each element is pushed no more than twice (first on enqueuing onto A and then onto
B) and popped no more than twice (first from A and then on dequeuing from B). This
style of complexity analysis is known as amortized analysis. _

Another minor observation about the implementation is that it can always hold
at least elements (since A is of size 1), and in some cases, it may hold up to 2n -1
elements before overflowing, e.g., if we do n enqueues, a dequeue, followed by n
enqueues. However, we cannot guarantee supporting more than n elements, e.g., if
we do 7 + 1 consecutive enqueues, we will be forced to use stack B, and not be able
to access the element enqueued earliest for a dequeue.

1| template <typename T>

ElementsOfProgrammingInterviews.com

232 Solution 8.13

-3

class Queue {
private:
stack<T> A, B;

public:
void enqueue(const T &x) {
A.emplace(x);
}

T degqueue(void) {
if (B.empty()) {
while (!A.empty()) {
B.emplace(A.top());
A.pop():
}
}
if (B.empty() == false) {
T ret = B.top();
B.pop();
return ret;
}
throw length_error("empty queue");

H

Problem 8.13, pg. 72: How would you implement a queue so that any series of m combined
enqueue, dequeue, and max operations can be done in O(m) time?

Solution 8.13: This problem can be solved by a combination of Solutions 8.1 on
Page 219 and 8.12 on the preceding page. Build the queue by using two stacks,
each of which supports the maximum operation. This queue will be able to achieve
enqueue, dequeue, and max in amortized O(1) time.

template <typename T>
class Queue {
private:
Stack<T> A, B;

public:
void enqueue(const T &x) {
A.push(x);
}

T dequeue(void) {
if (B.empty()) {
while (A.empty() == false) {
B.push(4.pop());
}
}
if (B.empty() == false) {
return B.pop();
}
throw length_error("empty queue”);

ElementsOfProgrammingInterviews.com

Solution 8.13 233

21 }

2

23 const T &mai(void) const {

4 if (A.empty() == false) {

25 return B,empty() 7 A.max()} : std::max(4a.max(), B.max());
26 } else { // A.empty() == true

27 if (B.empty() == false) {

28 return B.max();

29 }

30 throw length_error(“"empty queue");
a1 }

32 1

3]}

The solution above is fairly indirect. A more straightforward approach is based
on using a deque. Suppose the queue Q consists of elements (g, ey, .. .,€,-1), where
ey is the element at the head. Call an element ¢; in Q dominated if there is another
element e; such that j > i and ¢ < ¢;. A dominated element can never become the
maximum element in Q, regardless of the sequence of enqueues and dequeues. This
is because ¢; will be dequeued before e;, and ¢; > ¢;. Call ¢; a candidate if it is not
dominated.

- We maintain the set of candidates in a deque D. Elements in D are ordered by their
position in Q, with the candidate closest to the head of Q appearing first. Observe
that each candidate in D is greater than or equal to its successors. Consequently the
largest element in Q appears at the head of D. '

When Q is dequeued, if the element just dequeued is at the head of D, we pop
D from its head, otherwise D remains unchanged. If K is enqueued into Q, we
iteratively eject D from ifs tail till the element at D’s tail is greater than or equal to K.
Then we inject K onto the tail of D. These operations are illustrated in Figure 21.8 on
the next page, and implemented in the following code.

E'tenﬂplﬂte <typename T>

1

2! class Queue {

3 private:

4 queue<T> Q;

5 deque<T> D;

3

7 public:

8 void enqueue(const T &x) {
9 Q.emplace(x);

10 while (D.empty() == false && D.back() < x) {
1 D.pop_back();

12 }

13 D.emplace_back(x};

14 }

15

16 T dequeue(void) {

7 if (Q.empty() == false) {
18 T ret = Q.front();

19 if (ret == D.front()) {
20 D.pop_front();

21 }

ElementsOfProgrammingInterviews.com

234 Solstion 8.14

2 Q.pop(3;

23 return ret;

24 }

25 throw length_error("empty gueue");
26 }

27

28 const T &max(void) const {

2 if (D.empty() == false) {

20 return D.front();

3 3

32 throw length_error("empty queue");
3 }

#| };

Q |3:1 3;2:0 Q |3:1 3 2:0 1 Q |1:3 2:0:1 Q13,2,0,1
D|3:3 2:l] D|332:1 DIB 2:1 n{s 2:1

Q|320:1:2 Q|320:1 2:4 Q|2 0:1 2.4 QI3:2:0 1:2:44
o322 o[o [T p[aa

Figure 21.8: The queue with max for the following operations: enqueue(l), dequeue(),
dequeue(), enqueue(2), enqueue(4), dequeue(), enqueue(4). The queue initially contains
3,1,3,2, and 0 in that order. The deque D corresponding to queue Q is immediately below Q. The
progression is shown from left-to-right, then top-to-bottom. The head of each queue and deque is on
the left. Observe how the head of the deque holds the maximum element in the queus.

Each dequeue operation has time O(1) complexity. A single enqueue operation
may entail many ejections from D. However, the amortized time complexity of m
enqueues and dequeues is O(m), since an element can be added and removed from
D no more than once. The max operation is O(1) since it consists of returning the
element at the head of D.

Problem 8.14, pg. 72: Let A be an array of length n, and w the window size, Entry Ali] is a
pair (;, v;), where t; is the timestamp and v; the traffic volume at that time. Assume A is sorted
by increasing timestamp. Design an algorithm to compute v; = max{v; | (t — ;) < w,j < 1},
for0<i<n-1

Solution 8.14: The brute-force entails finding the maximum in the subatray con-
sisting of elements whose timestamps line in [A[i] — w, A[i]]. It has time complexity
O(nAy), where A, is the maximum number of array elements whose timestamps are
contained in any length w interval.

BSTs, which are the subject of Chapter 14, can reduce the complexity to
O(nlog Ay)—one BST holds volumes in the current window, another BST imple-
ments a mapping from timestamps to corresponding nodes in the first BST.

We now describe how to use the queue with maximum data structure developed
in Solution 8.13 on Page 232 to achieve an O(n) time complexity, independent of w.

ElementsOfProgrammingInterviews.com

Solution 9.1 235

Initialize Q to an empty queue with maximum. Iteratively enqueue (v;, t;) in order
of increasing i. For each i, iteratively dequeue Q until the difference of the timestamp
at Q’s head and ¢; is less than or equal to w. The sequence of maximum values in the
queue for each i is the desired result.

class TrafficElement {
public:
int time, wvolume;
const bool operator<(const TrafficElement &that) comst {
return time < that.time;
1
const bool operator==(const TrafficElement &that) const {
return time == that.time &% volume == that.volume;
1
IH

void TrafficVolumes(const vector<TrafficElement> &A, const int &w) {
Queue<TrafficElement> Q;
for (int i = 8; i < A.size(); ++1i) {
Q.enqueus(A[i]);
while (A[i].time - Q.front().time > w) {
Q.dequeue();
}

cout << "Max after inserting " << i << " is " << Q.max().volume << endl;

}

I

Each element is enqueued once. Each element is dequeued at most once. Since
the queue with maximum data structure has an O(1) amortized time complexity per
operation, the overall time complexity is O(n).. The additional space complexity is
O(Ay).

Problem 9.1, pg.75: Write a function that takes as input the root of a binary tree and
returns true or false depending on whether the tree is balanced. Use O(h) additional
storage, where h is the height of the tree.

Solution 9.1: Without the O(h) constraint the problem is trivial—we can compute
the height for the tree rooted at each node x recursively. The basic computation
is x.height = max(x.left.height, x.right.height) + 1, and in each step we check if the
difference in heights of the left and right children is greater than one. We can store
the heights in a hash table, or in a new field in the nodes. This entails O(n) storage, -
where 1 is the number of nodes of the tree. .

We will solve this problem using O(f) storage by implementing a get_height
function which takes a node x as an argument and returns an integer. The function
get_height returns —2 if the node is unbalanced; otherwise it returns the height of
the subtree rooted at that node. The implementation of get_height is as follows. If x
isnull, return —1. Otherwise run get_height on the left child. If the returned value

ElementsOfProgrammingInterviews.com

236 Solution 9.2

! is =2, node x is not balanced; return ~2. Call get_height on x's right child; let the
returned value be 7. If r is =2 or |l — #| > 1 return —2, otherwise return max(/,) + 1.

The function get_height implements a postorder walk with some calls being
eliminated because of early detection of unbalance. The function call stack corre-
sponds to a sequence of calls from the root through the unique path to the current
node, and the stack height is therefore bounded by the height of the tree, leading to
an O(h) space bound.

template <typename T>

int get_height(const shared_ptr<BinaryTree<T>> &n) {
if (in) {

return -1; // base case

int 1_height = get_height(n->left);
if (1_height == -2) {

1
2
3
i
5| 1
6
7
8
] return -2; // left subtree is not balanced

10 ¥

11 int r_height = get_height(n->right);

12 if (r_height == -2) {

13 return -2; // right subtree is not balanced
14 }

16, if (abs(l_height - r_height) > 1) {

17 return -2; // current node n is not balanced

18 1

12 return max(l_height, r_height) + 1; // return the height
0!}

22/ template <typename T>

23/ bool is_balanced_binary_tree(const shared_ptr<BinaryTree<T>> &n) {
24 return get_height(n) != -2

25}

We can improve the space complexity if we know the number of nodes # in the
tree in advance. Specifically, the space complexity can be improved to O(logn) by
keeping a global variable that records the maximum height m; of the stack. Donald
Knuth (“The Art of Computer Programming, Volume 3: Sorting and Searching”, Page 460)
proves that the height of a balanced tree on 7 nodes is no more than f,, = 1.44051g(% +
3) - 0.3277. The stack height is a lower bound on the height of the tree, and therefore
if the stack height ever exceeds h,, we return -2.

Variant 9.1.1: Write a function that returns the size of the largest subtree that is
complete.

Problem 9.2, pg.75: Design an algorithm that takes as input a binary tree and positive
integer k, and returns a node u in the binary tree such that u is not k-balanced, but all of u’s
descendants are k-balanced. If no such node exists, return null. For example, when applied
to the binary tree in Figure 9.1 on Page 73, your algorithm should return Node | ifk = 3.

ElementsOfProgrammingInterviews. com

Solution 9.3 237

Solution 9.2: It is straightforward to compute the number of nodes in each subtree
of a binary tree by a postorder traversal: for each node #, count the number of nodes
in its left and the right subtrees, and add one to the sum of those counts to get the
count for u.

We can extend this computation by keeping a global pointer-valued variable g
that is used to record the result. Initially, g is null. We do the postorder traversal to
compute the number of nodes'in subtrees as before, as long as g is not null. The first
time our traversal finds a node which is not k-balanced, we set g to . In the traversal,
if g is not null, we return. The global g holds the final result.

Since it is poor programming practice to use global variables, our implementation
below uses a pointer-integer pair for the return value. The pointer plays the role of g
as described above. Since each node is processed only after its descendants, we are
guaranteed that the result is set correctly. The time complexity is O(n), where n is the
number of nodes.

1 template <typename T>

2! pair<shared_ptr<BinaryTree<T>>, int> find_non_k_balanced_node_helper(
3 const shared_ptr<BinaryTree<T>> &n, const int &k) {

4 // Empty tree

5 if ('n) {

6 return {nullptr, 0};

71}

8
9

/4 Early return if left subtree is not k-balanced

10 auto L = find_non_k_balanced_node_helper<T>(n->left, k);
1 if (L.first) {

12 return L;

13 }

14 // Early return if right subtree is not k-balanced

15 auto R = find_non_k_balanced_node_helper<T>(n->right, k);
16 if (R.first) {

17 return R;

18 }

20 int node_num = L.second + R.second + 1; // #nodes in n
21 if (abs(L.second - R.second) > k) {

22 return {n, node_num};

23 }

24 return {nullptr, node_num};
25 }

27| template <typename T>
28! shared_ptr<BinaryTree<T>> find_non_k_balanced_node(

20 const shared_ptr<BinaryTree<T>> &n, const int &k) {
3! return find_non_k_balanced_node_helper<T>(n, k).first;
3|}

Problem 9.3, pg.76: Write a function that takes as input the root of a binary tree and
returns true or false depending on whether the tree is symmetric.

ElementsOfProgrammingInterviews.com

238 ' Solution 9.4

Solution 9.3: We present a recursive algorithm that follows directly from the defini-
tion of symmetry.

template <typename T>
bool is_symmetric_helper(const shared_ptr<BinaryTree<T>> &1,
const shared_ptr<BinaryTree<T>> &r) {
if (11 && Ir) {
return true;
} else if (1 && r) { .
return l->data == r->data &% is_symmetric_helper<T>(l->left, r->right) &&
is_syumetric_helper<T>(l-»right, r-»left);
} oelse { // (1 && !r) || (11 && r)
return false;

B T

—
=]

3

127 }

14| template <typename T>

15! bool is_symmetric(const shared_ptr<BinaryTree<T>> &n) {

16 return (!n || is_symmetric_helper<T>(n->left, n->right));
17l }

Prablem 9.4, pg. 76: For a certain application, processes need to lock nodes in a binary tree.
Implement a library for locking nodes in a binary tree, subject to the constraint that a node
cannot be locked if any of its descendants or ancestors are locked. Specifically, write functions
isLock(), lock(), and unLock (), with time complexities O(1), O(h), and O(h). Here h is
the height of the binary tree. Assume that each node has a parent field.

Solution 9.4: Bach node has a bool-valued locked field, indicating whether it holds a
lock—this makes the isLock () function trivial. In addition, we use an integer-valued
numChildrenLocks field for each node n which tracks the number of children in the
subtrees rooted at n that are locked. The lock () function proceeds only if the number
of locked children is 0; if so it checks the state of all the ancestors leading up to the
root. If the node is lockable, the function increments the numChildrenLocks fields
for each of the ancestors. The unLock() function simply sets locked to false, and
decreases the numChildrenLocks field for each ancestor all the way to the root. The
time complexity for lock() and unLock() is bounded by the distance of the node
from the root, i.e., the height of the tree.

template <typename T>

1
2i class BinaryTree {

3 private:

4 bool locked;

5 int numChildrenLocks;

61 .

7 public:

8 shared_ptr<BinaryTree<T>> left, right, parent;
9

10 const bool &islock(void) const {

1 return locked;

12 }

ElementsOfProgrammingInterviews.com

Solution 9.5 . 239

in void lock(void) {
15 if (numChildrenlocks == 0 && locked == false) {
16 // Make sure all parents do not lock
17 shared_ptr<BinaryTree<T>> n = parent;
18 while (n) {
it if (n->locked == true) {
20 return;
2 }
- n = n->parent;
2 }
24
25 // Lock itself and update its parents
2% locked = true;
7 n = parent;
% while (n) {
29 ++n->numChildrenlLocks;
0 n = n->parent;
31 3
a2 }
33 1
34
35 void unLock(void) {
36 if (locked) {
a7 // Unlock itself and update its parents
3B locked = false;
39 shared_ptr<BinaryTree<T>> n = parent;
4ni - while (n) {
41 --n->numChildrenLocks;
42 n = n->parent;
43 }
4 }
45 1
46| };

Problem 9.5, pg.76: Let T be the root of a binary tree in which nodes have an explicit
parent field. Design an iterative algorithm that enumerates the nodes inorder and uses O(1)
additional space. Your algorithm cannot modify the tree.

Solution 9.5: The standard idiom for an inorder walk is visit-left, visit-root, visit-
right. Accessing the left child is straightforward. Returning from a left child ! to its
parent entails examining I's parent field; returning from a right child r to its parent
is similar. :

To make this scheme work, we need to know when we take a parent pointer to
node r if the child we completed visiting was r’s left child (in which case we need
to visit r and then r’s right child) or a right child (in which case we have completed
visiting r). We achieve this by storing the child in a prev variable before we move to
the parent, r. We then compare prev with r’s left child and the right child.

1.; template <typename T>

2§void inorder_traversal (const shared_ptr<BinaryTree<T>> &r) {
3i // Empty tree

4 if (lr) {

ElementsOfProgrammingInterviews.com

240 Solution 9.6

return;
}
shared_ptr<BinaryTree<T>> prev = nullptr, curr = r, next;
while (curr) {
if (lprev || prev->left == curr || prev->right == curr) {
if (curr->left) {
next = curr->left;
} else {
cout << curr->data << endl;
next = (curr->right ? curr-»right : curr->parent);
} .
1 else if (curr->left == prev) {
cout << curr->data << endl;
next = (curr->right ? curr-»right : curr-»parent);
} else { // curr->right == prev
next = curr->parent;
}
prev = curr;
curr = next;
}
}

e-Variant 9.5.1: How would you perform preorder and postorder walks iteratively
using O(1) additional space? Your algorithm cannot modify the tree. Nodes have an
explicit parent field.

Problem 9.6, pg. 76: Design a function that efficiently computes the k-th node appearing
in an inorder traversal. Specifically, your function should take as input a binary tree T and
an integer k. Each node has a size field, which is the number of nodes in the subtree rooted
at that node. What is the time complexity of your function?

Solution 9.6: If the left child has k — 1 children, then the root is the k-th node; if the
left child has k or more children, then the k-th node is the k-th node of the left subtree;
and if the left child has I < k— 1 children, the k-th node is the k — (I + 1)-th node of the
right subtree. '

template <typename T>
shared_ptr<BinaryTree<T>> find_kth_node_binary_tree(
shared_ptr<BinaryTree<T>> r, int k) {
while (k && r) {
int left_size = r->left ? r->left->size : 0;
if (left_size < k - 1) {
k -= (left_size + 1);
r = r-»right;
1 else if (left_size == k - 1) {
return r;
} else { // left_size >k - 1
r = r->left;
1

3

ElementsOfProgrammingInterviews.com

Solution 9.7 241

15 throw length_error("no k-th node in binary tree");

1si}

Since we descend the free in each iteration, the time complexity is O(h), where h is
the height of the tree.

Problem 9.7, pg. 77: Given an inorder traversal order, and one of a preorder or a postorder
traversal order of a binary tree, write a function to reconstruct the tree. '

Solution 9.7: Suppose we are given the inorder and preorder traversal sequences.
The preorder sequence gives us the key of the root node—it is the first node in
the sequence. This in turn allows us to split the inorder sequence into an inorder
sequence for the left subtree, followed by the root, followed by the right subtree. The
left subtree inorder sequence allows us to compute the preorder sequence for the left
subtree from the preorder sequence: the nodes in the left subtree appear before all
the nodes in the right subtree in the preorder sequence.

For example, if the inorder sequence is (B, A, D, C, E) and the preorder sequence is
{A,B,C,D,E), we know the root has key A and the left subtree consists of the single
node with key B. Therefore, in an inorder visit the right subtree nodes appear as
(D, C,E), and in a preorder visit the right subtree nodes appear as (C, D, E}. Therefore
the root of the right subtree is a node whose key is C and its left and right subtrees
are the single nodes with keys D and E, respectively.

If the keys are unique, we can use the above algorithm to uniquely reconstruct a
binary tree yielding the given inorder and preorder sequences, but this is not always
true if duplicate keys are present. As an extreme example, if all keys are the same,
all binary trees on n nodes with that key yield identical sequences.

1| template <typename T>

2| shared_ptr<BinaryTree<T>> reconstruct_pre_in_orders_helper(

3 const vector<T> &pre, const int &pre_s, const int &pre_e,

4 const vector<T> &in, const int &in_s, const int &in_e) {

5 if (pre_e > pre_s &% in_e > in_s) {

6 auto it = find(in.cbegin() + in_s, in.cbegin() + in_e, pre[pre_sl};
7 int left_tree_size = it - (in.cbegin() + in_s);

8
@

return shared_ptr<BinaryTree<T>>(new BinaryTree<T>{

10 pre[pre_s],

11 // Recursively build the left subtree

12 reconstruct_pre_in,,orders_helperf;‘l‘:v(

13 pre, pre_s + 1, pre_s + 1 + left_tree_size,
14 in, in_s, it - in.cbegin(}),

15 // Recursively build the right subtree

16 reconstruct_pre_in_orders_helper<T>(

17 pre; pre_s + 1 + left_tree_size, pre_e,
18 in, it - in.cbegin() + 1, in_.e)

19 I

20}

21 return nullptr;

2}

23

ElementsOfProgrammingInterviews.com

242 Solution 9.8

24| template <typename T>
25| shared._ptr<BinaryTree<T>> reconstruct_pre_in_orders(const vector<T> &pre,

26 const vector<T> &in) {
7 return reconstruct_pre_in_orders_helper(pre, ®, pre.size(),

® in, ®, in.size());

9]}

We recover the tree from postorder and inorder traversal sequences similarly:

1) template <typename T>

2; shared_ptr<BinaryTree<T>> reconstruct_post_in_orders_helper(

3 const vector<T> &post, const int &post_s, comst int &post_e,

4 const vector<T> &in, comst int &in_s, const int &in_e) {

5 if (post_e > post_s && in_e > in_s) {

& auto it = find(in.cbegin() + in_s, in.cbegin() + in_e, post[post_e - 1]);
7 int left_tree_size = it - (in.cbegin() + in_s);

8
9

return shared_ptr<BinaryTree<T>>(new BinaryTree<T>{

10 post[post_e - 1],

11 // Recursively build the left subtree

12 reconstruct_post_in_orders_helper<T>(

13 post, post.s, post_s + left_tree_size,
14 in, in_s, it - in.cbegin(}),

15 // Recursively build the right subtree
16 reconstruct_post_in_orders_helper<T>(

17 post, post_s + left_tree_size, post_e - 1,
18 in, it - in.cbegin() + 1, in_e)

19 1)

i}

2 return nullptr;

2}

23

24| template <typename T>
25! shared_ptr<BinaryTree<T>> reconstruct_post_in_orders(const vector<T> &post,

6 const vector<T> &in) {
27{ return reconstruct_post_in_orders_helper(post, @, post.size(),

28 in, 8, in.size());

2|}

Variant 9.7.1: Let A be an array of n distinct integers. Let the index of the maximum
element of A be m. Define the max-tree on A to be the binary tree on the entries of A
in which the root contains the maximum element of A, the left child is the max-tree
on A[0 : m ~ 1] and the right child is the max-tree on A[m + 1 : 1 — 1]. Design an O(n)
algorithm for building the max-tree of A.

Problem 9.8, pg. 77: Design an O(n) time algorithm for reconstructing a binary tree from
a preorder visit sequence that uses null to mark empty children. How would you modify
your reconstruction algorithm if the sequence corresponded to a postorder or inorder walk?

Solution 9.8: We traverse the sequence from right-to-left. We push nodes and nulls
on to a stack; every time we encountered a non-null node x, we pop the stack twice—
call the first node popped 1 and the second r. Set x's left and right children to 1 and

ElementsOfProgrammingInterviews,com

Solution 9.9 . 243

1, respectively, and push x. When the sequence is exhausted, there will be a single
node on the stack, which will be the root.

1; template <typename T>

2 shared_ptréBinarvTrae<T>> reconstruct_preorder (

3 const vector<shared_ptr<T>> &preorder) {

4 stack<shared_ptr<BinaryTree<T>>> s;

5 for (aute it = preorder.crbegin(); it |= preorder.crend(); ++it) {
6 if (1 (%it)) {

7 s,emplace(nullptr);

8 } else { // non-nullptr

9 shared_ptr<BinaryTree<T>> 1 = s.top();

10 s.pop();

1 shared_ptr<BinaryTree<T>> r = s.top();

12 s.pop();

13 s.emplace(new BinaryTree<T>{*(*it), 1, r});
14 }

15 1}

16 return s.top();

17) }

Reconstructing from a postorder traversal is similar—we traverse from the begin-
ning of the sequence, and when popping, the top of the stack is the right child, and
the node below it is the left child. '

Reconstructing from an inorder traversal is impossible, even with the null mark-
ers. This is because every binary tree that yields (vo, v1,...,vs-1) on an inorder walk
has a modified sequence of {(null,vg,null, v, null, vs,...,null, v, q,null). Anin-
order traversal order is not enough to uniquely reconstruct a binary tree, so the
inorder sequence with markers will also be insufficient. If all we want is a binary
tree that yields the given sequence, we can simply return a completely right-skewed
tree, i.e., its root is vy, left child is empty, and right child is reconstructed recursively
from (vy, 0, ..., V1),

Problem 9.9, pg. 78: Given a binary tree, write a function which forms a linked list from
the leaves of the binary tree. The leaves should appear in left-to-right order. For example,
when applied to the binary tree in Figure 9.1 on Page 73, your function should return
(D,E,H,M,N,P).

Solution 9.9: We use recursion, passing in the list L of leaves. If the node is a leaf,
which we determine by checking if both children are null, we append it to the list
L and return. Otherwise, we recurse on the left and right children, which causes the
leaves on the left subtree to appear before the leaves on the right subtree. The time
complexity is O(n), where 7 is the number of nodes.

template <typename T>
void connect_leaves_helper(const shared_ptr<BinaryTree<T>> &n,
list<shared_ptr<BinaryTree<T>>> &L) {

if (In->left && I[n->right) {
L.push_back(n);
} else {

1
2
3
4f Af (n) {
5
6
7

ElementsOfProgrammingInterviews.com

244 Solution 9.10

connect_leaves_helper(n->left, L);
connect_leaves_helper(n-»right, L);
1
¥
}

template <typename T>
list<shared_ptr<BinaryTree<T>>> connect_leaves(
const shared_ptr<BinaryTree<T>> &n) {
list<shared_ptr<BinaryTree<T>>> L;
connect_leaves_helper(n, L);
return L;

-}

Problem 9.10, pg. 78: Write a function that prints the nodes on the exterior of a binary tree
in anti-clockwise order, ie., print the nodes on the path from the root to the leftmost leaf in
that order, then the leaves from left-to-right, then the nodes from the rightmost leaf up to the
root. For example, when applied to the binary tree in Figure 9.1 on Page 73, your function
should return (A, B,C,D,E, H,M,N, P, 0, I. (By leftmost (rightmost) leaf, we mean the leaf
that appears first (last) in an inorder walk.)

Solution 9.10: One approach is to print all the nodes leading to the leftmost leaf
first, using a recursive search from the root that favors a left child when available,
followed by the leaves (which can be performed using the technique in Solution 9.9
on the preceding page) followed by printing all nodes from the rightmost leaf to
the root, which is performed using a recursive search from the root that favors the
right. The first and last functions print in preorder and postorder to ensure the right
ordering of nodes.

Alternately, we can print the root, followed by all the required nodes (leftmost
and leaves) from the left subtree followed by all the required nodes (leaves and
rightmost) from the right subtree. The left subtree and right subtree are processed
by symmetric functions. Details are given below.

template <typename T>
void left_boundary_b_tree(const shared_ptr<BinaryTree<T>> &n,
const bool &is_boundary) {
if (n) {
if (is_boundary || (In->left && In-»right)) {
cout << n->data << ' 7
}
left_boundary_b_tree(n->left, is_boundary);
left_boundary_b_tree(n->right, is_boundary && !n->left);
} :
}

template <typename T>
void right_boundary_b_tree(const shared_ptr<BinaryTree<T>> &n,
const bool &is_boundary) {
if (m) {
right_boundary_b_tree(n->left, is_boundary && !n->right);
right_boundary_b_tree(n->right, is_boundaryl;

ElementsOfProgrammingInterviews.com

Solution 9.12 245

19 if (is_boundary || (In->left &% !n->right)) {
20 cout << n->data << ' ';

21 }

22 }

2}

25| template <typename T>
26} void exterior_binary_tree(const shared_ptr<BinaryTree<T>> &root) {
27 if (root) {

28 cout << root->»data << ' ';

-] left_boundary_b_tree(root->left, true);
k] right_boundary_b_tree(root->right, true);
a1 }

a2) }

Problem 9.11, pg. 78: Design an efficient algorithm for computing the LCA of nodes a and
b in a binary tree in which nodes do not have a parent pointer.

Solution 9.11: Let a and b be the nodes whose LCA we wish to compute. Observe
that if the root is one of g or b, then it is the LCA. Otherwise, let L and R be the trees
rooted at the left child and the right child of the root. If both nodes lie in L (or R),
their LCA is in L (or R). Otherwise, their LCA is the root itself. This is the basis for
the algorithm presented below. Its time complexity is O(n), where n is the number of
nodes.

1} template <typename T>

2| shared_ptr<BinaryTree<T>> LCA(const shared_ptr<BinaryTree<T>> &n,

3 const shared_ptr<BinaryTree<T>> &a,

4 const shared_ptr<BinaryTree<T>> &b) {
5 if (In) { // empty subtree

6 return nullptr;

71} else if (n == a || n == b) {

8 return n;

s 1}

10

11 auto l_res = LCA(n->left, a, b), r_res = LCA(n->right, a, b);
12 if (l_res && r_res) {

13 return n; // found a and b in different subtrees
C 14 } else {

15 return l_res ? l_res : r_res;

16 1

17| }

Problem 9.12, pg. 78: Given twonodes in a binary tree T, design an algorithm that computes
their LCA. Assume that each node has a parent pointer. The tree has n nodes and height h.
Your algorithm should run in O(1) space and O(h) time.

Solution 9.12: Suppose we know the depths d, and d;, of nodes a and b. Without loss
of generality, assume d, > d,. Follow d, — d; parent pointers starting from a. Let c be
the resulting node. The LCA of a and b is the same as the LCA of b and c. We can

ElementsOfProgrammingInterviews.com

246 Solution 9.13

now compute the LCA of ¢ and b by iteratively moving up the tree, from ¢ and from
b till we reach a common node /, which is the desired LCA.

The depth of a node can be computed by following its parent pointers until the
root is reached. This computation has a time complexity O(#), and space complexity
O(1). Therefore the LCA of 2 and b can be computed in O(h) time and O(1) space.

template <typename T>
int get_depth(shared_ptr<BinaryTree<T>> n) {
int d = @;
while (n) {
++d, n = n->parent;
}
return d;

}

template <typename T>
shared_ptr<BinaryTree<T>> LCA(shared_ptr<BinaryTree<T>> a,
shared_ptr<BinaryTree<T>> b) {
int depth_a = get_depth(a), depth_b = get_depth(b);
if (depth_b > depth_a) {
swap(a, b);
}

// Advance deeper node first
int depth_diff = depth_a - depth_b;
while (depth_diff--) {

a = a->»parent;

}

// Both pointers advance until they found a common ancestor

while (a != b) {

a = a->parent, b = b->parent;
}
return a;

Problem 9.13, pg. 78: Design an algorithm for computing the LCA of a and b that has time
complexity O(max(d, — di, dy — d))). What is the worst-case time and space complexity of
your algorithm?

Solution 9.13: Let the sequences of nodes as we traverse parent pointers from 2 and
b to the root be {a,a3,8,...) and (b, by, b,,...) respectively. The LCA of a and b is
the first node in either sequence that is common to the two sequences. This leads
to an algorithm for computing the LCA in O(max(d, — d;, d, — d;)) time: interleave -
traversing parent pointers from 4 and from b, storing visited nodes in a hash table.
Each time we visit a node we check to see if it has been visited before. We will
revisit a node after exactly 2(max(d,, d,) — d;) pointers have been traversed, yielding
the desired time complexity.

Note that we are trading space for time. The algorithm for Solution 9.12 on the
previous page used O(1) space and O(h) time, whereas the algorithm presented above

ElementsOfProgrammingInterviews.com

Solution 9.14 247

uses O(max(d,, dp) — d;) space and time. In the worst case, 2 and b are leaves whose
LCA is the root, and we use O(h) space and time.

1| template <typename T>

2| shared_ptr<BinaryTree<T>> LCA(shared_ptr<BinaryTree<T>> a,

3 shared_ptr<BinaryTree<T>> b) {
4 uncrdered_set<shared_ptr<BinaryTree<T>>> hash;

5{ while (a |] b) {

6 if (a) {

7 if (hash.emplace(a).second == false) {

8 return a; // adds a failed because a exists in hash
9 1

10 a = a->parent;

1 }

12 if (b)) {

13 if (hash.emplace(b).second == false) {

14 return b; // adds b failed because b exists in hash
1 1

16 b = b->parent;

17 }

B, }

19 // Throw error if a and b are not in the same tree

20 throw invalid_argument("a and b are not in the same tree");
21|}

Problem 9.14, pg.79: Given a string s and a set of strings D, find the shortest prefix of s
which is not a prefix of any string in D.

Solution 9.14: A trie is a data structure for storing a set of strings based on positidnal
trees. To be concrete, suppose the strings are over the alphabet {“a”, “b”, ...,
“z"}. Each node has a hash table mapping each character in the alphabet to the
corresponding child pointer. Some or all of the children may be null. A path of
length I starting from the root naturally corresponds to a string of I characters. Each
node has a Boolean field indicating whether the string corresponding to the path
from the root is a string in the set. _

Finding a shortest prefix of s that is not a prefix of any string in the represented
set is simply a matter of finding the first node m on the search path from the root that
does not have a child corresponding to the next character in s.

1 class Trie {

2 private:

3 class TrieNode {

4 public:

5 bool isString;

& unordered_map<char, shared_ptr<TrieNode>> 1;
7 };

B

9 shared_ptr<TrieNode> root;

10

1 public:

12 Trie() : root(shared_ptr<TrieNode>(new TrieNode{falsel})) {}
13

ElementsOfProgrammingInterviews.com

248 Solution 10.1

bool insert(const string &s) {
shared_ptr<TrieNode> p = root;
for (const char &c : s) {
if (p->1.find(c) == p->l.cend()) {
p->1[c] = shared_ptr<TrieNode>(new TrieNode{false});

}
p = p->1[cl;
}

// s already existed in this trie

if (p->isString == true) {
return false;

} else { // p->isString == false
p->isString = true; // inserts s inte this trie
return true;

string getShortestUniquePrefix{const string &s) {
shared_ptr<TrieNode> p = root;
string prefix;
for (const char &c : s) {
prefix += ¢;
if (p-»>1.find(c) == p->1l.cend()) {
return prefix;

1
p = p->1[ecl;
}
return {};
}
h

string find_shortest_prefix(const string &s, const unordered_set<string> &D) {
// Build a trie according to given dictionary D
Trie T;

for (const string &word : D) {
T.insert(word);
}

return T,getShortestUniquePrefix(s);

e-Variant 9.14.1: How would you find the shortest string that is not a prefix of any
string in D?

Problem 10.1, pg.80: Design an algorithm that takes a set of files containing stock trade
information in sorted order, and writes a single file containing the lines appearing in the
individual files sorted in sorted order. The algorithm should use very little RAM, ideally of
the order of a few kilobytes.

Solution 10.1: In the abstract, we are trying to merge k sorted files. One way to
do this is to repeatedly pick the smallest element amongst the smallest remaining
elements from each file. A min-heap is ideal for maintaining a set of elements when

ElementsOfProgrammingInterviews.com

Solution 10.2 249

we repeatedly insert and query for the smallest element (both extract-min and insert
take O(log k) time). Hence we can do the merge in O(n log k) time, where 7 is the total
number of elements in the input. Here is the code for this:

template <typename >
class Compare {
public:
const bool operator()(comst pair<T, int> &lhs,
const pair<T, int> &rhs) const {
return lhs.first > rhs.first;
}
i

I I - = I I

template <typename T>

vector<T> merge_arrays{const vector<vector<T>> &S) {
priority_queue<pair<T, int>, vector<pair<T, int>>, Compare<T>> min_héap;
vector<int> S_idx(S.size(), ®);

=
=W R e 2

// Every array in S puts its smallest element in heap
for (int i = 0; i < S.size(); ++1i) {
if (S[i).size() > ®) {
min_heap.emplace(S[il[0], i);
S_idx[i] = 1;
}

R~ S
A

21 }

23 vector<T> ret;
24 while §!min_heap.empty()) {

25 pair<T, int> p = min_heap.top();

26 ret.emplace_back(p. first); .

27 // Add the smallest element into heap if possible

28 if (S_idx[p.second] < S[p.second].size()) {

29 min_heap.emplace(S[p.second][S_idx[p.second]++], p.second);
30 1

31 min_heap.pop();

2}

33 return ret;

2| }

Alternately, we could recursively merge the k files, two at a time using the merge
step from merge sort.

Problem 10.2, pg. 81: Design an efficient algorithm for sorting a k-increasing-decreasing
array. You are given another array of the same size that the result should be written to, and
you can use O(k) additional storage.

Solution 10.2: The first thing to note is that any array can be decomposed into a
sequence of increasing and decreasing subarrays. If k is comparable to 7, then the
problem is equivalent to the general sorting problem.

If kis substantially smaller than n, we could first reverse the order of the decreasing
subarrays. Now we can use the techniques in Solution 10.1 on the facing page to sort
the array in time O(nlog k) time with O(k) space.

ElementsOfProgrammingInterviews.com

250 Solution 10.3

template <typename T>
vector<T> sort_k_increasing_decreasing_array(const vector<T> &A) {
// Decompose A Into a set of sorted arrays
vector<vector<T>> §;
bool is_increasing = true; // the trend we are looking for
int start_idx = 8;
for (int i = 1; i < A.size(); ++1i) {
if (CA[L -~ 1] < A[i] && !is_increasing) ||
(A[i - 1] >= A[i] && is_increasing)) {
if (is_increasing) {
S.emplace_back(A.cbegin() + start_idx, A.cbegin() + i);
} else {
S.emplace_back(A.crbegin() + A.size() - 1,
A.crbegin() + A.size() - start_idx);
}
start_idx = i;
is_increasing = !is_increasing; // inverse the trend we are looking for
}
}
if (start_idx < A.size()) {
if (is_increasing) {
S.emplace_back(A.cbegin() + start_idx, A.cend());
} else {

24 S.emplace_back(A.crbegin(), A.crbegin() + A.size() - start_idx);

}
}

return merge_arrays(s);

Problem 10.3, pg. 81: How would you implement a stack API using a heap and a queue
APl using a heap?

Solution 10.3: The basic idea is to use an integer-valued variable order that keeps
track of the order in which elements were added.

We mimic a stack S with a max-heap H by storing y = (order, x)in H each time x is
pushed in S, and incrementing order. Heap entries are compared by order. Popping
is simply a matter of extracting the max element. '

We mimic a queue analogously, except that we decrement order on inserts, thereby
favoring the element that was inserted first when we do extract-max. It is straight-
forward to support queue inserts and deletes. Supporting a back function, which
returns the element at the queue tail, is more involved. It can be performed with an
additional min-heap.

template <typename T>
class Compare {
public:
bool operator()(const pair<int, T> &lhs, const pair<int, T> &rhs) const {
return lhs.first < rhs. first;

}

};

ElementsOfProgrammingInterviews.com

Solution 104 251

template <typename T>

class Stack : // inherits empty(), pop(), and size() methods
public priority_queue<pair<int, T>, vector<pair<int, T>>, Compare<T>> {
private:
int order;

typedef priority_queue<pair<int, T>, vector<pair<int, T»>>, Compare<T>> PQ;

public:
Stack() : order(®) {}

const T &top() comst {
return PQ::top().second;
1

void push(const T &x) {
PQ::emplace(order++, x);
}
IH

template <typename T>
class Queue : // inherits empty(), pop(), and size() methods

public priority_gqueue<pair<int, T>, vector<pair<int, T>>, Compare<T>> {
private:
int order;
typedef priority_queue<pair<int, T>, vector<pair<int, T»>>, Compare<T>> PQ;
public:
Queue() : order(®) {}
const T &front() const {
return PQ::top().second;
}
void push(comst T &x) {
PQ::emplace(order--, x);
})
L

Problem 10.4, pg. 81: How would you compute the k stars which are closest to the Earth?
You have only a few megabytes of RAM.

Solution 10.4: If RAM was not a limitation, we could read the data into an array, and
apply the selection algorithm from Solution 11.13 on Page 270.

It is not difficult to come up with an algorithm based on processing through
the file, selecting all stars within a distance d, and sorting the result. Selecting d
appropriately is difficult, and will require multiple passes with different choices of d.

A better approach is to use a max-heap H of k elements. We start by adding the
first k stars to H. As we process the stars, each time we encounter a star s that is
closer to the Earth than the star m in H that is furthest from the Earth (which is the
star at the root of H), we delete m from H, and add s to H. '

ElementsOfProgrammingInterviews.com

252

Solution 10.4

The heap-based algorithm has O(n log k) time complexity to find the k closest stars
out of n candidates, independent of the orde_r in which stars are processed and their
locations. Its space complexity is O(k).

-
o

5

BB

BB EYREER

g =

E 88 Y8 B e

class Star {
public:
int ID;
double x, vy, z;
// The distance between this star to the Earth
const double distance() comst {
return sqri(x * x +y * y + z * z);
1
const bool operator<(const Star &s) const {
return distance()} < s.distance();
}
I H

vector<Star> find_closest_k_stars(istringstream &sin, const int &k)
// Use max_heap to find the closest k stars
priority_queue<Star, vector<Star>> max_heap;
string line;

// Record the first k stars
while (getline(sin, line)) {
stringstream line_stream(line);
string buf;
getline(line_stream, buf, ',');
int ID = stoi(buf);
array<double, 3> data; [/ stores x, y, and z
for (int i = 0; i < 3; ++i) {
‘getline(line_stream, buf, ',');
datali] = sted(buf);
¥
Star s{ID, data[®], data[1], data[2]};

if (max_heap.size() == k) {
// Compare the top of heap with the incoming star
Star far_star = max_heap.top();
if (s < far_star) {
max_heap.pop();
max_heap.emplace(s);
}
} else {
max_heap.emplace(s);
1

// Store the closest k stars

vector<Star> closest_stars;

while (!max_heap.empty()) {
closest_stars.emplace_back(max_heap.top());
max_heap.pop();

}

{

ElementsOfProgrammingInterviews.com

Solution 10.6 253

sz! return closest_stars;
saj }

Problem 10.5, pg.81: Design an O(nlogk) time algorithm that reads a sequence of n
elements and for each element, starting from the k-th element, prints the k-th largest element
read up to that point. The length of the sequence is not known in advance. Your algorithm
cannot use more than O(k) additional storage.

Solution 10.5: We use a min-heap of size k. When the first k elements have been read
in, the root holds the k-th largest element. Each successive element s is compared
with the minimum element r in the heap. If s is less than or equal to m, do nothing.
Otherwise, we remove n1, and add s. The new root (which may or may not be s)
is the k-th largest element. For the first k iterations, we simply add elements to the
min-heap; the root holds the smallest value.

The time complexity per element processed is dominated by the time to delete the
root, i.e., O(log k). The worst-case input is one in which elements appear in increasing
order; the best case input is one in which elements appear in decreasing order.

1| template <typename T>

2i void find_k_th_largest_stream(istringstream &sin, const int &k) {
3 priority_queue<T, vector<T>, greater<T>> min_heap;

4 // The first k elements, output the minimum element

5 T x;

6 for (int i = 0; i < k &% sin »>> x; ++1) {

7 min_heap.emplace(x);)

8 cout << min_heap.top() << endl;

i}

10
1 // After the first k elements, output the k-th largest one
12 while (sin >> x) {

13 if (min_heap.top() < x) {

14 min_heap.pop();

15 min_heap.emplace(x);

16 }

17 cout << min_heap.top() << endl;
18 }

19) }

Problem 10.6, pg. 82: The input consists of a very long sequence of numbers. Each number
is at most k positions away from its correctly sorted position. Design an algorithm that
outputs the numbers in the correct order and uses O(k) storage, independent of the number
of elements processed.

Solution 10.6: The easiest way of looking at this problem is that we need to store
the numbers in memory till all the numbers smaller than this number have arrived.
Once those numbers have arrived and have been written to the output file, we can
go ahead and write this number. Since we do not know precisely what order the
numbers appear in, it is not possible to say when all the numbers smaller than a
given number have arrived and have been written to the output. However since

ElementsOfProgrammingInterviews.com

254 Solution 10.7

we are told that no number is off by more than k positions from its correctly sorted
position, if more than k numbers greater than a given number have arrived and all
the numbers smaller than the given number that arrived have been written, we can
be sure that there are no more other smaller numbers that are going to arrive. Hence
it is safe to write the given numbers.

This essentially gives us the strategy to always keep k + 1 numbers in a min-heap.
As soon as we read a new number, we extract the min from the heap and write the
output and then insert the new number.

template <typename T>
void approximate_sort{istringstream &sin, comst int &k) {
priority_queue<T, vector<T>, greater<T>> min_heap;
// Firstly push k elements into min_heap
T x;
for (int i = 0; i < k &% sin >> x; ++i) {
min_heap.push(x);
1
// Extract the minimum one for every incoming element
while (sin >> x) {
min_heap.push(x);
cout << min_heap.top() << endl;
min_heap.pop(};
}
// Extract the remaining elements in min_heap
while (min_heap.size()) {
cout << min_heap.top() << endl;
min_heap.pop();
}
}

Problem 10.7, pg. 82: Design an O(n) time algorithm to compute the k elements closest to
the median of an array A.

Solution 10.7: There exists two standard algorithms for computing the median in
O(n) time—one uses randomized partitioning of the array; the other uses divide and
congquer, specifically, it computes the median of the medians of [1/5] subarrays.

Assuming that we have computed the median y in O(n) time, we can compute
the k elements closest to u by maintaining a max-heap H of elements of the array.
The value associated with the i-th element A[i] is its distance to the median, i.e.,
| — Ali]l. We start by adding the first k elements of the array to H. Now we process
the remaining elements. For j = kton — 1, if |u — A[J]| is larger than the maximum
value stored in the heap, we ignore it; otherwise, we remove the maximum element
of H, and insert A[j] in its place. When all elements are processed, the heap contains
the k elements closest to the median.

Another approach, which does not require the O(k) additional storage entailed by
the max-heap, and runs in O(n) time instead of O(n log k) time is to first compute the
median y, and then use a selection algorithm.

ElementsOfProgrammingInterviews.com

Solution 10.8 255

A selection algorithm takes as inputs a set A of n numbers, and an integer i € [1, n]
and returns the i-th smallest element of A. There exists a practical selection algorithm,
similar to quicksort, which runs in O(n) expected time.

1f we take |A[]] - p| as the value of A[j], and run the selection algorithm with = k,
we will get an element p. Let S be the elements strictly less than p. Suppose |S| = k-1.
Then {p} U § is the result. If |S| < k = 1, at least k — |S| duplicates of p are present, in
which case the union of any k — |S| elements whose value is p with S is the result.

Note that both approaches start by computing the median, which changes the
original array.

1} // Promote to double to prevent precision error

2/ template <typename T>

3| double find_median(vector<T> &A) {

4 int half = A.size() >> 1; .
] nth_element(A.begin(), A.begin() + half, A.end());
6 if (A.size(): & 1) { // A has odd number elements
7 return A[half];
8 } else { // A has even number elements
9 T x = A[half];

10 nth_element (A.begin(), A.begin() + half - 1, A.end(});
1 return 0.5 * (x + A[balf - 11);

12 }

13 }

15| template <typename T>
16| class Comp {
17, private:

18 double m_;

19

20 public:

n Comp (const double &m) : m_(m) {};

n '

23 const bool operator()(const T &a, const T &b) const {
2% return fabs(a - m.) < fabs(b - m_);

25 }

26 };

28] template <typename T>

29 vector<T> find_k_closest_to_median(vector<T> A, const int &k) {

0 // Find the element i where [A[i] - median/ is k-th smallest

31 nth_element(A.begin(), A.begin(} + k - 1, A.end(), Comp<T>{find_medianCA)});
32 return {A.cbegin(}, A.cbegin() + k};

3l }

Problem 10.8, pg. 82: Design an algorithm for computing the running median of a sequence.
The time complexity should be O(log n) per element read in, where n is the number of values
vead in up to that element. ' -

Solution 10.8: We use two heaps, L, a max-heap, and H, a min-heap. The invariant
here is that for every incoming element from the stream, we want to let L store the
smaller half of the stream data so far, and let H store the bigger half. By keeping this

ElementsOfProgrammingInterviews.com

256 Solution 10.9

invariant, we can output the median easily according to the number of elements we
have seen so far. Following is the implementation in C++:

1| template <typename T>

2! void online_median(istringstream &sin) {

3 // Min-heap stores the bigger part of the stream
4 priority_queue<T, vector<T>, greater<T>> H;

5 /4 Max-heap stores the smaller part of the stream
6 priority_queue<T, vector<T>, less<T>> L;

) ;

8 T x;

9 while (sin >»> x) {

10 if (L.empty() == false && x > L.top(}) {

11 H.emplace(x);

12 } else {

13 L.emplace(x);

14 } '

15 if (H.size() > L.size(d) + 1) {

16 L.emplace(H.top(});

17 H.pop();

18 } else if (L.size() > H.size() + 1) {

19 H.emplace(L.top());

20 L.pop();

2 }

2

2 if (H.size() == L.size()) {

24 cout << 0.5 * (H.top() + L.top()) << endl;

25 } else {

2 cout << (H.size() > L.size() ? H.top() : L.top(}) << endl;
27 }

28 }

29| }

Problem 10.9, pg.82: Design an algorithm for efficiently computing the k smallest real
numbers of the form a + b V2 for nonnegative integers a and b.

Solution 10.9: We can solve this problem using a min-heap H and a set § as follows.
We initialize H to contain 0+0v?2 = 0, and initialize S to the empty set. (A simple list
will suffice to represent S). We now iteratively do the following, stopping when S
has k elements. When we perform an extract-min from H to obtain a numbera +bv?2,
we add it to H, and compute ¢; = (g + 1) +bV2and ¢, = a+ (b + 1) V2 which we add
to H.

Suppose for the sake of contradiction that S is not the desired set. Since |S| =k,
there has to be at least one number in the desired set that is not in S. Let the smallest
such number be m = p + 4 V2. Note that p and g cannot both be 0. Similarly, there
must be a number I that is in § and is greater than all numbers in S. If p > 0, consider
the number 7 = (p — 1) + ¢ V2. It is less than m, and greater than 0, so it must be in
S, since S contains all numbers in the desired set that are smaller than m. But then
when we processed 7 to put it in 5, we would have added n to H. This contrachcts
our adding [to S—the heap would always return n before 1.

ElementsOfProgrammingInterviews.com

Solution 10.9 ' : 257

It is possible for a number to be inserted twice into the heap. For example, both
1+2V2and 2+ V2 produce 2 + 2 V2. No number can be inserted more than twice:
the irrationality of V2 implies thata + bV2 = ¢ +dV2 iffa = band ¢ = d. We can
check for duplicates when we perform extract-min.

class Num {
public:
int a_, b_;
double val_;

Num(const int &a, const int &b) : a_Ca), b_(b), val_(a + b * sqrt(2)) {}

const bool operator<(const Num &n) const {
return val_ > n.val_;

}

// Egqual function for hash
const bool operator==(const Num &n) const {
return a_ == n.a_ &% b_ == n.b_;

}i

// Hash function for Num
class HashNum {
public:
const size_t operator()(const Num &n) const {
return hash<int>()(n.a_) * hash<int>()(n.b_);

LH

vector<Num> generate_first_k(comst int &k) {
priority_queue<Num, vector<Num>> min_heap;
vector<Num> smallest;
unordered_set<Num, HashNum> hash;

// Initial for 0 + @ * sqrt(2)
min_heap.emplace(®, §);
hash.emplace(®, 8);

while (smallest.size() < k) {
Num s(min_heap.top());
smallest.emplace_back(s);
hash.erase(s);
min_heap.pop();

// Add the next two numbers derived from s

Num cl(s.a_ + 1, s.b_), c2(s.a_, s.b_ + 1);

if Chash.emplace(cl).second) {
min_heap.emplace(cl);

}

if (hash.emplace(c2).second) {
min_heap.emplace(c2);

}

ElementsOfProgrammingInterviews.com

258 Solution 10.10

50 return smallest;
51 }

Problem 10.10, pg.83: Design an O(k) time algorithm for determining whether the k-th
largest element in a max-heap is smaller than, equal to, or larger than a given x. The max-heap
is represented using an array. Your algorithm'’s time complexity should be independent of the
number of elements in the max-heap, and may use O(k) additional storage. It cannot make
any changes to the max-heap, and should handle the possibility of duplicate entries.

Solution 10.10: We count the number of elements that are greater than or equal to x.
The key to achieving an O(k) time complexity is visiting max-heap nodes in best-first
order, and stopping the computation as soon as we have found more than k nodes
greater than x.

We use two integer variables, equal and larger, which are initialized to 0 and
passed by reference to recursive calls of the check function. If the element # at the
root is smaller than x, we know there are no elements in the max-heap larger than x,
so we return right away. Otherwise, if ¥ = x we increment the equal count by 1; if
r > x we increment the larger count by 1. We then recurse on the left child and the
right child. At any stage, if we determine there are more than k keys greater than x
or more than k keys equal to x we return. Within each call we do constant work, and
for each recursive call, either we increment equal or larger, or we came from a call
that performed such an increment, implying the number of recursive calls is O(k).

template <typename T>

void compare_k_th_largest_heap_helper(const vector<T> &max_heap, const int &k,
const T &x, const int &idx, int &larger,
int &equal) {

1

2

3

4 }

5 if (idx < max_heap.size()) {
6 if (max_heap[idx] < x) {

7

8

5

return;
} else if (max_heap[idx] == x) {

++equal; '
10 } else { // max_heap[idx] > x
1 ++larger;
12 }
13
14 if (equal < k && larger < k) {
15 compare_k_th_largest_heap_helper(max_heap, k, x, (idx << 1) + 1, larger,
16 equal);
17 compare_k_th_largest_heap_helper(max_heap, k, x, (idx << 1) + 2, larger;
i8 equal);
19 I
wi }
2t}

! // -1 means smaller, 0 means equal, and 1 means larger

24| template <typename T>

25/ int compare_k_th_largest_heap(const vector<T> &max_heap, const int &k,
26 const T &x) {

7 int larger = 0, equal = 0;

ElementsOfProgrammingInterviews.com

Solution 11.2 259

compare_k_th_largest_heap_helper(max_heap, k, x, ®, larger, equal);
return larger »>= k ? 1 : (larger + equal >= k 7 8 : -1);
}

% i

i

i
29
|
|
i

Problem 11.1, pg. 86: Write a method that takes a sorted array A and a key k and refurns the
index of the first occurrence of k in A. Return -1 ifk does not appear in A. For example, when

“applied to the array in Figure 11.1 on Page 86 your algorithm should return 3 if k = 108; if
k = 285, your algorithm should return 6.

Solution 11.1: The key idea is to search for k. However, even if we find k, after
recording this we continue the search on the left subarray. The complexity bound
is still O(log n)—this is because each iteration reduces the size of the subarray being
searched by half. In C++ code:

1] template <typename T>

21 int search_first(const vector<T> &A, const T &k) {
3 int 1 = &, r = A.size() - 1, res = -1;

4 while (1 <= r) {

5 intm=1+ ({r - 1) >> 1);

6 if (A[m] > k) {

7 r=m- 1;

] t else if (A[m] == k) {

E // Record the solution and keep searching the left part
10 res =m, r =nm - 1;

1 } else { // A[m] < k

12 l=m+ 1;

13 }

14 }

15 return res;

16} }

e-Variant 11.1.1: Let A be an unsorted array of n integers, with A[0] = A[1] and
Aln —2] < A[n - 1]. Call an index i a local minimum if A[i] is less than or equal to its
neighbors. How would you efficiently find a local minimum, if one exists?

e-Variant 11.1.2: A sequence is said to be ascending if each element is greater than
or equal to its predecessor; a descending sequence is one in which each element is
less than or equal to its predecessor. A sequence is strictly ascending if each element
is greater than its predecessor. Suppose it is known that an array A consists of an
ascending sequence followed by a descending sequence. Design an algorithm for
finding the maximum element in A. Solve the same problem when A consists of a
strictly ascending sequence, followed by a descending sequence.

Problem 11.2, pg. 86: Design an efficient algorithm that takes a sorted array A and a key k,
and finds the index of the first occurrence an element larger than k; return —1 if every element
is less than or equal to k. For example, when applied to the array in Figure 11.1 on Page 86
your algorithm should return —1 if k = 500; if k = 101, your algorithm should return 3.

ElementsOfProgrammingInterviews.com

260 Solution 11.3

e I

=

Solution 11.2: The naive approach is to look for k via a binary search and then,
if k is found, walk the array forward until either the first element larger than k is
encountered or the end of the array is reached. If k is not found, binary search will
end up pointing to either the first value greater than k in the array, in which case
no further action is required or the last value smaller than k in which case the next
element, if it exists, is the value that we are looking for. The worst-case run time of
this algorithm is ®(n)—an array all of whose values equal k, except for the last one
(which is greater than k), is the worst-case.

A better approach is to use binary search to eliminate half the candidates at each
iteration: if we encounter an element larger than k, we record that element, .and
continue the search in the candidates on the left; otherwise, we continue searching
in the candidates on the right. This algorithm has an O(log n) time complexity.

template <typename T>
int search_first_larger_k(const wvector<T> &A, const T &k) {
int 1 = 8, r = A.size() - 1, res = -1;
while (1 <= r) {
int m =1 + ({(r - 1) > 1);
if (A[m] > k) {
// Record the solution and keep searching the left part
res =m, r=m- 1;
} else { // Alm] <=k
l=m+ 1;
}
1
return res;

1

Remark: Aswith Problem 11.1 on Page 86, the same problem can be posed for BSTs,
and again, the solution is analogous to the one given above.

Problem 11.3, pg. 86: Design an efficient algorithm that takes a sorted array A of distinct
integers, and returns an index i such that A[i] = i or indicate that no such index exists by
returning —1. For example, when the input is the array shown in in Figure 11.1 on Page 86,
your algorithm should return 2.

Solution 11.3: Since the array contains distinct integers and is sorted, for any i > 0,
Ali] = A[i—1]+1. Therefore B[i] = A[{]-iis sorted. It follows that we can do a binary
search for 0 in B to find an index such that A[{] = i. (We do not need to actually create
B, we can simply use A[i] — i wherever B[i] is referenced.)

int search_index_value_equal(const vector<int> &A) {

int 1 = @, r = A.size() - 1;
while (1 <= r) {
int m =1+ ((r - 1) > 1);
int val = A[m] - m;
if (val == 0) {
return m;
} else if (val > 0) {
r=m- 1;

} else { // val < 0

ElementsOfProgrammingInterviews.com

Solution 11.4 261

ui l =m+ 1;
12| }

Bl O}

laf return -1;

155}
L

Variant 11.3.1: Solve the same problem when A is sorted but may contain duplicates.

Problem 11.4, pg. 87: Design an algorithm that takes an abs-sorted array A and a number
k, and returns a pair of indices of elements in A that sum up to k. For example, if the input
to your algorithm is the array in Figure 11.2 on Page 87 and k = 167, your algorithm should
output (3,7). Output (-1, 1) if there is no such pair.

Solution 11.4: First consider the case where the array is sorted in the conventional
sense. In this case we can start with the pair consisting of the first element and the
last element: (A[0], A[n ~ 1]). Lets = A[0] + A[n —1]. If s = k, we are done. Ifs <k,
we increase the sum by moving to pair (A[1], A[n — 1]). We need never consider A[0];
since the array is sorted, for all , A[0] + A[{] < A[0] + A[n~1] =k <s. If s > k, we can
decrease the sum by considering the pair (4[0], A[n—21); by analogous reasoning, we
need never consider A[n — 1] again. We iteratively continue this process till we have
found a pair that sums up to k or the indices meet, in which case the search ends.
This solution works in O(r) time and O(1) space in addition to the space needed to
store A.

This approach will not work when the array entries are sorted by absolute value.

In this instance, we need to consider three cases:
(1.) Both the numbers in the pair are negative.
(2.) Both the numbers in the pair are positive.
(3.) One is negative and the other is positive.

For Cases (1.) and (2.), we can run the above algorithm separately by just limiting
ourselves to either positive or negative numbers. For Case (3.), we can use the same
approach where we have one index for positive numbers, one index for negative
numbers, and they both start from the highest possible index and then go down.

1| template <typename T, typename Comp>

2{ pair<int, int> find_pair_using_comp(const vector<T> &A, const T &k,
3 Comp comp) {

4 pair<int, int> ret(®, A.size() - 1):

5 while (ret.first < ret.second && comp(Al[ret.first], 0)) {
6 ++ret. first;

70}

8/ while (ret,first < ret.second && comp(A[ret.second]l, ®)) {
g --ret,second;

0w }

u

12 while (ret.first < ret.second) {

13 if (A[ret.first] + Alret.second] == k) {

14 return ret;

15 } else if (comp(A[ret.first] + Alret.second], k)) {

ElementsOfProgrammingInterviews.com

g e2sae

5B 8 8858y

B2 Es s Es s s

262 . ! Solution 11.4

do {
++ret. first;
} while (ret.first < ret.second &% comp(A[ret.first], 8));
} else {
do {
~--ret.second;
} while (ret.first < ret.second &% comp(A(ret.second], 8));

i

return {-1, -1}; // no answer

template <typename T>
pair<int, int> find_pos_neg_pair(const vector<T> &A, const T &k) {
// ret.first for positive, and ret.second for negative
pair<int, int> ret(A.size() - 1, A.size() - 1);
// Find the last positive or zero
while (ret.first »>= 0 && A[ret.first] < &) {
--ret. first;

// Find the last negative
while (ret.second >= ® && A[ret.second] >= 0) {
--ret.second;

while (ret.first >= 0 &% ret.second >= 0) {
if (A[ret.first] + A[ret.second] == k) {
return ret;
} else if (A[ret.first] + A[ret.second] > k) {
do {
--ret.first;
} while (ret.first >= 0 &% A[ret,first] < ®);
} else { // Afret.first] + A[ret.second] < k
do { .
--ret.second;
} while (ret.second »>= @ && A[ret.second] >= 0);

}

return {-1, -1}; // no answer

template <typename T>
pair<int, int> find_pair_sum_k(const vector<T> &A, const T &k) {
pair<int, int> ret = find_pos_neg_pair(A, k);
if (ret.first == -1 && ret.second == -1) {
return k >= @ 7 find_pair_using_comp(a, k, less<T>())
find._.pair_using_comp(A, k, greater_equal<T>());
}

return ret;

A simpler solution is based on a hash table (Chapter 12) to store all the numbers
and then for each number x in the array, look up k — x in the hash table. If the

ElementsOfProgrammingInterviews.com

Solution 11.5 263

hash function does a good job of spreading the keys, the time complexity for this
approach is O(n). However, it requires O(n) additional storage. If the array is sorted
on elements (and not absolute values), for each-A[i] we can use binary search to find
k—Al[i]. This approach uses O(1) additional space and has time complexity O(n log n).
However, it is strictly inferior to the two pointer technique described at the beginning
of the solution.

Variant 11.4.1: Design an algorithm that takes as input an array of integers A, and
an integer k, and returns a pair of indices i and j such that A[j] = A[i] = k, if such a
pair exists.

Problem 11.5, pg. 87: Design an O(log n) algorithm for finding the position of the smallest
element in a cyclically sorted array. Assume all elements are distinct. For example, for the
array in Figure 11.3 on Page 87, your algorithm should return 4.

Solution 11.5: We make use of the decrease and conquer principle. Specifically, we
maintain an interval of candidate indices, and iteratively eliminate a constant fraction
of the indices in this interval, Let I = [I;, ;] be the set of indices being considered, and
m; be the midpoint of I, i.e., [; + Lﬂ;lj‘ If Alm;] > Alr] then [I;, m;] cannot contain the
index of the minimum element. Therefore we can restrict the search to [m; + 1, 7). If
Alm;] < A[r] we restrict our attention to [I;, m;]. We start with I = [0,# — 1], and end
when the interval has one element.

1| template <typename T> .
2l int search_smallest(const vector<T> &A) {
2 int 1 = @&, r = A.size() - 1;

4| while (1 < 1) {

5 intm =1+ (Cr - 1) > 1);

6 if (A[m] > A[r]) {

7 1=m+ 1;

8 } else { // A[m] <= A[r]

9 r =m;

0] }

1 }

12 return 1;

13| }

Note that this problem cannot be solved in less than linear time when elements
may be repeated. For example, if A consists of n—1 1s and a single 0, that 0 cannot be
detected in the worst case without inspecting every element. Following is the C++

code for the scenario when elements may be repeated:

1i template <typename T>

2| int search_smallest_helper(const vector<T> &A, comst int &1, comst int &r) {
il if (1 == 1) {

4 return 1;

st}

6

7 int m =1 + ({r - 1) >> 1);

s if (Alm] > A[r]) {

ElementsOfProgrammingInterviews.com

I T

264 Solution 11.6

return search_smallest_helper(A, m + 1, r);
} else if (Alm] < A[r]) {
return search_smallest_helper(A, 1, m);
else { // Alm] == A[r]
// Smallest element must exist in either left or right side
int 1_res = search_smallest_helper(a, 1, m);
int r_res = search_smallest_helper(4d, m + 1, 1);
* return A[r_res] < A[l_res] ? r_res : l_res;
}
}

e

template <typename T>
int search_smallest{const vector<T> &A) {

return search_smallest_helper(A, @, A.size() - 1);
}

Variant 11.5.1: Design an O(log n) algorithm for finding the position of an element
k in a cyclically sorted array.

Problem 11.6, pg.87: Let A be a sorted array. The length of A is not known in advance;
accessing Alil for i beyond the end of the array throws an exception. Design an algorithm
that takes A and a key k and returns an index i such that A[i] = k; return —1 if k does not
appear in A. '

Solution 11.6: The key idea here is to simultaneously do a binary search for the end
of the array as well as the key. We examine A[2P — 1] in the p-th step till we hit an
exception or an eniry greater than or equal to k. Then we do a conventional binary
search for k in the range [27~! + 1,27 — 2]. The run time of the search algorithm is
O(log 1), where n is the length of A. In code:

template <typename T>
int binary_search_unknown_len(const vector<T> &A, const T &k) {
// Find the possible range where k exists
int p = 0;
while (true) {
try {
T val = A.at((l << p) - 1);
if (val == k) {
return (1 << p) - 1;
} else if (val > k) {
break;
}
}
catch (exception& e) {
break;
}
+4+p;

}

// Binary search between indices 24(p ~ 1) + 1 and 2+p - 2
int 1 = (1 << (p - 1)) + 1, v = (1 << p) - 2;
while (1 <= r) {

ElementsOfProgrammingInterviews.com

I I - I

1o
.11

Solution 11.7) 265

intm=1+ ((r -1) >> 1);
try {
T val = A.at(m);
if (val == k) {
return m;
} else if (val > k) {
r=m- 1;
} else { // Alm] < k
l=m+ 1;
1
}
catch (exception& e) {
r=m-1; // search the left part if out of boundary
}
}
return ~1; // nothing matched k
}

Problem 11.7, pg. 88: Let A be an array of n nonnegative real numbers and S’ be a
nonnegative real number less than Y.\ A[i]. Design an efficient algorithm for computing o
such that ¥ min(A[i], 0) = &', if such a o exists.

Solution 11.7: Define F(o) = Y% min(A[i], o). We are looking for a value of ¢ such
that F(o) = §'. Clearly, F is a continuous function of 6. Since0 < §’ < f;ol Ali], by the
intermediate value theorem of calculus, there must exist a value of o in [0, max]—} A[#]]
such that F(o) = S’. Furthermore, since F monotonically increases with o, we can
perform binary search on the interval [0, max;’;o1 Ali]] to find the correct value of o.

- Assume that A is already sorted, ie., for all i, A[i] < A[i +1]. Compute the
prefix sum z; = Y Alil. Now, suppose Afk — 1] < ¢ < A[k]. Consequently,
F(o) = (n—k)o + z.

Using the above expression, we can search for the value of k such that F(A[k]) <
S’ < F(A[k + 1]) by performing binary search for k. (Since we sort A, the run time
of our solution is already O(nlogn), implying we could do a linear search without
changing the time complexity.) Once we have found the right value of k, we can
compute the value of o by simply solving the equation for F(g) above.

The most expensive operation for this entire solution is sorting A, hence the run
time is O(nlogn). If we are given A sorted in advance and its prefix sums, then for
each value of S’, the search would have time complexity O(log n).

double completion_search(vector<double> &A, const double &budget) {
sort(A.begin(), A.end());
/4 Calculate the prefix sum for A
vector<double> prefix_sum;
partial_sum{A.cbegin(), A.cend(), back_inserter(prefix_sum));
// costs[i] represents the total payroll if the cap is A[i]
vector<double> costs;
for (int i = ®; i < prefix_sum.size(}; ++1i) {

costs.emplace_back(prefix_sum[i] + (A.size() - i - 1) * A[i]);

1

ElementsOfProgrammingInterviews.com

266 Solution 11.8

1z
13
14
15
16

19

il
a2

-
=1

o

B o @ u oot ewm o e

auto lower = lower_bound(costs.cbegin(}, costs.cend(); budget);
if (lower == costs.cend()) {

return -1.0; // no solution since budget is too large
}

if (lower == costs.cbegin()) {
return budget / A.size();
}
int idx = lower - costs.chbegin() - 1;
return A[idx] + (budget - costs[idx]) / (A.size() - idx - 1);

e-Variant 11.7.1: Solve the same problem using only O(1) space.

Problem 11.8, pg.88: You are given two sorted arrays A and B of lengths m and n,
respectively, and a positive integer k € [1,m + n). Design an algorithm that runs in O(log k)
time for computing the k-th smallest element in array formed by merging A and B. Array
elements may be duplicated within and between A and B.

Solution 11.8: Suppose the first k elements of the union of A and B consist of the first
x elements of A and the first k — x elements of B. We'll use binary search to determine
X

Specifically, we will maintain an interval [/, 1] that contains x, and use binary
search to iteratively half the size of the interval. At each iteration we try x = | 2. If
I = u, we simply return the larger of A[x—1] and Blk—x—1]. (If A[x-1] = Blk-1-x],
we arbitrarily return either.) If I # u but A[x — 1] = B[k — 1 - x], we return Afx - 1],
since the first x elements of A and the first k — x elements of B when sorted end in
Alx —1] or Bk ~ 1 = x], which are equal.

Otherwise, if A[x] < B[k — x — 1], then A[x] must be in the first k elements of the
union, so we can update ! to x + 1. Conversely, if Blk — x] < A[x — 1] then A[x — 1]
cannot be in the first k elements, so we can update u to x — 1. _

The initial values for [and 1 need to be chosen carefully. Naively settingl = 0,u = k
does not work, since this choice may lead to x lying outside the range of valid indices
for B, i.e., outside [0, — 1]. Setting [= max(0,k — n) and u = min(m, k) resolves this
problem.

template <typename T>
T find_ kth_in_two_sorted_arrays(const vector<T> &A, const vector<T> &B,
const int &k) {
// Lower bound of elements we will choose in A
int 1 = max(0®, static_cast<int>(k - B.size()));
// Upper bound of elements we will choose in A
int u = min(static_cast<int>(A.size()), k);

while (1 < u) {
int x = 1 + ((u - 1) >> 1);
T A x_1 = (x <= 0 ? numeric_limits<T>::min() : A[x - 1]);

12 T Ax = (x >= A.size() 7 numeric_limits<T>::max() : A[x]);

T B k x1=1(k-x <=0 7 numeric_limits<T>::min() : B[k - x - 11};

ElementsOfProgrammingInterviews.com

Solution 11.9 267

T B_k_%x = (k - x >= B.size() 7 numeric_limits<T>::max() : B[k - x1);
if (A_x < B .k x_1) {
l=x4+1;
} else if (A_x_1 > B_k_x) {
u=x - 1;
} else {
// B[k - x - 1] <= A[x] && A[x - 1] < Bfk - x]J
return max(A_x_1, B_k_x_1};
}
}
T A_1_1 =1 <= 6 7 numeric_limits<T>::min() : A[l - 1];
TBk11=k-1-1<%<8& 7 numeric_limits<T>::min{) : B[k - 1 - 1];
return max(A_1_1, B_k_1_1);
}

Problem 11.9, pg. 88: Implement a function which takes as input a floating point variable
x and returns Vx.

Solution 11.9: One of the fastest ways to invert a fast-growing monotone function
(such as the square function) is to do a binary search. Given x, we start with a lower
bound I and an upper bound u on +/x. We iteratively check if the square of midpoint
m of [l,u] is smaller than, greater than, or equal to x. In the first case, we update the
lower bound to m; in the second case, we update the upper bound to m; in the third
case, we refurn m.

When checking for equality, we use a notion of tolerance, eps, since floating point
arithmetic is not exact. This tolerance is user-specified.

Trivial choices for the initial lower bound and upper bound are 0 and the largest
floating point number that is representable. If x > 1.0, we can tighten the lower and
upper bounds to 1.0 and x, since x > 1.0 = x* > x. If x < 1.0 = 22 < x, the previous
choice of I and u is incorrect; instead, we can use x and 1.0. The time complexity is
O(log) since the number of iterations is affected by the choice of eps. Care has to

eps
be taken to ensure the compare function is resilient to finite precision effects.

// 0 means equal, -1 means smaller, 1 means larger
int compare(const double &a, const double &b) {
// Use normalization for precision problem
double diff = (a - b) / b;
return diff < -numeric_limits<double>::epsilon(} ?
-1 : diff > numeric_limits<double>::epsilon();
1

double square_root(const double &x) {
// Decide the search range according to x
double 1, r;
if (compare(x, 1.8) < 8) { // x < 1.0
1=x,r=1.0;
} else { // x >= 1.0

1=1.6,r x;

1

ElementsOfProgrammingInterviews.com

268 Solution 11.10

// Keep searching if 1 < r
while (compare(l, r) == -1) {
double m = 1 + .5 * (r - 1);

double square.m =m * m;
if (compare(square_m, x) == @) {
return m;
} else if (compare(square_m, x) == 1) {
r=m;
} else {
1 =m;
}
}
return 1;

1

5 w o m N o m s e e

Variant 11.9.1: Given two positive floating point numbers x and y, how would you
compute § to within a specified tolerance ¢ if the division operator cannot be used?
You cannot use any library functions, such as log and exp; addition and multiplication
are acceptable.

Problem 11.10, pg.88: Let A be an n X n 2D array where rows and columns are sorted
in increasing sorted order. Design an efficient algorithm that decides whether a number x
appears in A. How many entries of A does your algorithm inspect in the worst-case? Can
you prove a tight lower bound that any such algorithm has to consider in the worst-case? -

Solution 11.10: One approach is to start by comparing x to A[0][n —1]. If x =
A[0][n — 1], stop. Otherwise: .

~ x> A[0][n - 1], in which case x is greater than all elements in Row 0.

— x < A[0][n — 1], in which case x is less than all elements in Column n — 1.
In either case, we have a 2D array with n fewer elements to search. In each iteration,
we remove a row or a column, which means we inspect at most 21 — 1 elements.

template <typename T>
bool matrix_search(const vector<vector<T>> &A, const T &x) {
int r = 0, ¢ = A[0].size() - 1;
while (r < A.size() && ¢ »>= & {
if (A[r][e] == x) {
return true; .
} else if (A[rllc] < x) {
4T
} else { s/ A[r][c] > x
-—C}
}
}
return false;
1

ElementsOfProgrammingInterviews.com

Solution 11.11 . 269

For a tight lower bound, let x be any input. Define A to be

x—1]
x+1

x-1
x=1 x+1
x—-1 x+1
x+1

where entries not shown are chosen so that the matrix is sorted by rows and by
columns. We claim that any algorithm that solves the 2D array search problem will
have to compare x with each of the 21 — 1 elements shown (i.e., the diagonal elements

and the elements immediately below them). Call these elements the A elements.
Proof:

Comparing x with other elements does not eliminate any of the A elements.
Suppose an algorithm did not compare x with one of the A elements. Then we
could make that element x (instead of x — 1 or x + 1) and the algorithm would
behave exactly as before and hence return the wrong result. Therefore at least
2n — 1 compares are necessary which means that the algorithm we designed is

optimum.

Problem 11.11, pg. 89: How would you organize a tournament with 128 players to minimize
the number of matches needed to find the best player? How many matches do you need to
find the best and the second best player?

Solution 11.11: First, we consider the problem of finding the best player. Each game
eliminates one player and there are 128 players; so, 127 matches are necessary and
also sufficient.

To find the second best, we note that the only candidates are the players who are
beaten by the player who is eventually determined to be the best—everyone else lost
to someone who is not the best.

To find the best player, the order in which we organize the matches is
inconsequential—wre just pick pairs from the set of candidates and whoever loses is
removed from the pool of candidates. However if we proceed in an arbitrary order,
we might start with the best player, who defeats 127 other players and then the
players who lost need to play 126 matches amongst themselves to find the second
best.

To find the second best player, we can do much better by organizing the matches
as a complete binary tree. Specifically, we pair off all the players arbitrarily to form 64
matches. After these matches, we are left with 64 candidates; we pair them off again
arbitrarily and they play 32 matches. Proceeding in this fashion, we organize the 127
matches needed to find the best player and the winner will have played 7 matches.
Therefore we can find the second best player by organizing 6 matches between the 7

ElementsOfProgrammingInterviews.com

270 Solution 11,13

players who lost to the best player, for a total of 127 + (7 — 1) = 133 matches.

Problem 11.12, pg. 89: Find the min and max elements from an array of n elements using
no wmore than [3n/2] — 2 comparisons.

Solution 11.12: If n = 1, no comparisons are needed. Suppose n > 1. Find the
min m and the max M of the first two numbers; this requires a single comparison.
Now process the remaining elements two at a time. Let (x, y) be such a pair. If
min(x, y) < m, update m; if max(x, y) > M, update M. This entails three comparisons
for each pair. If nis odd, the last update entails two comparisons, namely comparing
the last element with n and M.

// Return (min, max) pair of elements in A

1

2} template <typename T>

3) pair<T, T> find_min_max(const vector<T> &A) {

4 if (A.size() <= 1) {

5 return {A.front(), A.front()};

6 1

7

8 /4 Initialize the min and max pair

9 pair<T, T> min_max_pair = minmax(A[0], A[1]);

10 for (int i = 2; i + 1 < A.size(); i += 2) {

11 pair<T, T> local_pair = minmax(A[i], A[i + 11);

12 min_max_pair = {min(min_max_pair.first, local_pair.first),
13 max(min_max_pair.second, leocal_pair.second)};
14 }

15 /7 Special case: if there is odd number of elements in the array, we still
16 // need to compare the last element with the existing answer.
17 if C(A.size() & 1) {

18 min_max_pair = {min(min_max_pair.first, A.back()),
19 max(min_max_pair.second, A.back())};
20 1

2 return min_max_pair;

2|}

Variant 11.12.1: What is the least number of comparisons required to find the min
and the max in the worst case?

Problem 11.13, pg. 89: Design an algorithm for computing the k-th largest element in an
array A that runs in O(n) expected time. '

Solution 11.13: The basic idea is to use decrease and conquer. We pick a random
index r in the array A. Let A[#] = x. Reorder the elements in A in such a way that all
elements that appear before index p are greater than x, and all elements that appear
after p are less than or equal to x. Call the reordered array A’.

If p = k-1, we are done—A’[p] is the k-th largest element. Otherwise ifp > k-1,
the element we are looking for is the k-th largest element of the subarrayA’[0 : p—1].
Finally, if p < k — 1, the element we seek is the (k — (p + 1))-th largest element of the
subarray A’[p + 1 : n— 1]. Each of the two latter cases can be solved recursively.

ElementsOfProgrammingInterviews.com

]

Solution 11.14 271

Since we expect to split the array into roughly equal halves on average, intuitively,
the expected time complexity T(n) should satisfy T(r) = O(n) + T(n/2). This solves to
T(n) = O(n). A more formal analysis requires the use of indicator random variables
X;, for 0 <i <k~ 1, one per choice of t, and leads to the same conclusion.

1! // Partition A according pivot, return its index after partition
2! template <typename T> .

3] int partition(vector<T> &A, comst int &1, comst int &r, const int &pivot) {
4 T pivot_value = A[pivot];

5 int larger_index = 1;'
6
7
8
E

swap(Alpivot], A[rl);
for (int i = 1; 1 < r: ++1) {
if (A[i] > pivot_value) {
10 swap(A[i], A[larger_index++]);
11 ' }
12 }
13| swap(A[r], Allarger_index]);
14 return larger_index;
15} }

17| template <typename T>
18] T find_k_th_largest(vector<T> A, const int &k) {
19 dint 1 =@, r = A.size() - 1;

20
21 while (1 <= r) {
2 default_random_engine gen((random_device(})());
23 uniform_int_distribution<int> dis(l, r); . // generate random int in [1, r]
24 int p = partition(a, 1, r, dis(gen));
2 if (p ==k - 1) {
26 return Alpl;
7 } else if (p > k - 1) {
28 r=p - 1;
2 } else { // p <k -1
30 1=p+1;
}
a2 1
3}

e-Variant 11.13.1: Design an algorithm for finding the k-th largest element of A in
the presence of duplicates. The k-th largest element is defined to be Afk — 1] after A
has been sorted in a stable manner, i.e., if A[i] = A[j] and i < j then A[i] must appear
before A[j] after stable sorting.

Problem 11.14, pg.89: Design an algorithm for computing the k-th largest element in a
sequence of elements. If should run in O(n) expected time where n is the length of the sequence,
which is not known in advance. The value k is known in advance. Your algorithm should
print the k-th Iargeéf element after the sequence has ended. It should use O(k) additional
storage. '

Solution 11.14: The natural approach is to use a min-heap containing the k largest

ElementsOfProgramuingInterviews.com

272 Solution 11.15

elements seen thus far. As each new element e is read, it is compared with the value
of the smallest element m in the min-heap: if e < m, we continue; otherwise we
delete m and insert e. This approach has time complexity O(n log k), since inserts and
deletes take O(log k) time, and when elements are presented in ascending order, each
new element requires an insert and a delete.

A better approach is to keep the k largest elements in an array M of length 2k — 1.
We add elements to M, and each time M is full, we find the k largest elements using
the selection algorithm in Solution 11.13 on Page 270. The smaller elements are
discarded, and we continue. The selection algorithm takes O(k) time and is run every
k elements, implying an O(n) time complexity. ‘

1| template <typename T>

2/ T find_k_th_largest_unknown_length(istringstream &sin, const int &k) {
3| wvector<T> M;

4 T x;

5; while (sin »>> x) {
6 M.emplace_back(x);

7 if (M.size() == (k << 1) - 1) {

8 // Keep the k largest elements and discard the small ones

9 nth_elément(n;begin(), M.begin{) + k - 1, M.end(), greater<T>());
10 M.resize(k);

1 1

12 }

13. nth_element(M.begin(), M.begin() + k - 1, M.end(), greater<T>());

12 return M{k - 1]; // return the k-th largest one

Problem 11.15, pg.90: Suppose you were given a file containing roughly one billion
Internet Protocol (IP) addresses, each of which is a 32-bit unsigned integer. How would you
programmatically find an IP address that is not in the file? Assume you have unlimited drive
space but only two megabytes of RAM at your disposal.

Solution 11.15: In the first step, we build an array of 216 32-bit unsigned integers that
is initialized to 0 and for every IP address in the file, we take its 16 most significant
bits to index into this array and increment the count of that number. Since the file
contains fewer than 2% numbers, there must be one entry in the array that is less than
216, This tells us that there is at least one IP address which has those upper bits and
is not in the file. In the second pass, we can focus only on the addresses that match
this criterion and use a bit array of size 216 to identify one of the missing numbers.

int find_missing_element(ifstream &ifs) {
vector<size_t> counter(l << 16, @);
unsigned int x;
while (ifs >»> x) {
++counter[x >> 16];
}

for (int i = 8; i < counter.size(); ++i) {
// Find one bucket contains less than (1 << 16) elements
10 if (counter[i] < (1 << 16)) {

e T

ElementsOfProgrammingInterviews.com

B 4 EBRESE

|] o N B W@ R e

Solution 11.16 273

bitset<(l << 16)> bit_vec;
ifs.clear(};
ifs.seekg(®, ios::beg);
while (ifs »>> x) {
if (i == (x >> 16)) { |
bit_vec.set(((1 << 16) - 1) & x); // gets the lower 16 bits of x

}
}
ifs.close();
for (int j = 0; j < (1 << 16); ++j) {
if (bit_vec.test(j) == 0) {
return (i << 16) | j;
}
}

Problem 11.16, pg. 90: Let A be an array of n integers in Z,, with exactly one element t
appearing twice. This implies exactly one element m € Z,, is missing from A. How would
you compute t and m in O(n) time and O(1) space?

Solution 11.16: Let Sum(Z,) be the sum of the elements in Z,, and Sqr(Z,) be
the sum of the squares of the elements in Z,. The sum of the elements in A is
exactly Sum(Z,) + t — m, and the sum of the squares of the elements in A is exactly
8qr(Zy) + t2 —m?. Tt is straightforward to compute m — #: initialize sum to 0, and add
(i— A[]) to sum for each index i. A similar computation yields m? -2 (i.e., square_sum
in code). Factoring and canceling the expression ’”szia yields m + ¢, to which we add
m — t to obtain 2 and subtract m — ¢ to obtain 2¢. Details are given below:

// Return pair<int, int>(duplicate, missing)
pair<int, int> find_duplicate_missing(const vector<int> &a) {
int sum = 6, square_sum = §;
for (int i = 0; i < A.size(); ++i) {
sum += i - A[i], square_sum += i * i - A[i] * A[i];
H
return {(square_sum / sum - sum) >> 1, (square_sum / sum + sum) >> 1};

3

The problem with the approach above is that it can lead to overflow. A substan-
tially better approach is to compute the XOR of all the elements in Z, and A—this
yields m @ t. Since m # t, there must be some bit in m & ¢ that is set to 1, ie., m
and t differ in that bit. We then compute the XOR of all the elements in Z, and in
A in which that bit is 1. Let this XOR be h. By the logic described in the problem
statement, i must be one of #1 or t. We can scan through A to determine if / is the
duplicate or the missing element. This approach is simpler and, since it requires no
arithmetic, it cannot result in an overflow. A disadvantage is that it requires three
passes through A.

ElementsOfProgrammingInterviews.com

274 Solution 11.17

L N NS

// Return pair<int, int>(duplicate, missing)
pair<int, int> find_duplicate_missing(const vector<int> &A) {
int miss_XOR_dup = 0;
for (int i = 0; i < A.size(); ++i) {
miss_XOR_dup *= i # A[il;
1
int differ_bit = miss_XOR_dup & (~(miss_XOR_dup - 1)), miss_or_dup = 9;
for (int i = 0; i < A.size(); ++i) {
if (i & differ_bit) {
miss_or_dup 4= i;
}
if (A[Li] & differ_bit) {
miss_or_dup A= A[i];
}
}
for (const int &A_1i : A) {
if (A_i == miss_or_dup) { // find duplicate
return {miss_or_dup, miss_or_dup * miss_XOR_dup}l;
1
}
/7 miss_or_dup is missing element
return {miss_or_dup * miss_XOR_dup, miss_or_dup};
}

Problem 11.17, pg. 90: Given an array A, in which each element of A appears three times
except for one element e that appears once, find e in O(1) space and O(n) time.

Solution 11.17: One way to view Solution 11.16 on the preceding page is that it
counts modulo 2 for each bit-position the number of entries in which the bit in that
position is 1. Specifically, the XOR of elements at indices [0, — 1], determines exactly
which bit-positions have been 1 an odd number of times in elements of A whose
indices are in [0,i —1]. ,

The analogous approach for the current problem is to count modulo 3 for each
bit-position the number of times the bit in that position has been 1. The effect of
counting modulo 3 is to eliminate the elements that appear three times, and so the
bit-positions which have a count of 1 are precisely those bit-positions in e which are
set to 1. : _

Representing a number modulo 3 requires two bits. We use two integer-valued
variables, ones and twos, to do the counting. The variable ones denotes whether a
bit-position has been set once (modulo 3) so far; the variable twos denotes whether
a bit-position has been set twice (modulo 3) so far. When a bit-position has a count
of 2 (modulo 3) and another 1 is observed, we reset the ones and twos variables.

Suppose ones and twos have been set appropriately after reading in the firsti — 1
elements. After reading A;_;, bit-position j has a count of 1 modulo 3 iff it had a
count of 1 modulo 3 and the j-th bit in A; is a zero or the count was 0 modulo 3 and
the j-th bitin A; is a one. This gives us the update equation for ones.

ElementsOfProgrammingInterviews.com

I T

10

Solution 11.19 275

After reading A;, bit-position j has a count of 2 modulo 3 iff it had a count of 2
modulo 3 and the j-th bit in A;_; is a zero or the count was 1 modulo 3 and the j-th
bit in i is a one. This gives us the update equation for twos. -

The code below implements the update equations; for the reasons described
above, the final result is ones. '

int find_element_appears_once(const vector<int> &A) {
int ones = 0§, twos = 0;
int next_ones, next_twos;
for (const int &i : A) {
next_ones = (~i & ones) | (i & ~ones & ~twos);
next_twos = (~i & twos) | (i & ones);
~ones = next_ones, twes = next_twos;
}
return ones;
}

Problem 11.18, pg. 91: Design an efficient algorithm that takes a close array A, and a key
k and searches for any index j such that A[j] = k. Return —1 if no such index exists, For
example, for the array in Figure 11.4 on Page 91, if k = 2, your algorithm should return an
index in {4,5,7}.

Solution 11.18: The close property allows us to skip indices: if |A[i] — k| = I, then for
no index i’ € (i — I,i + I) can A[i'] = k. We use this test to speedup the basic iterative
search through an array in the code given below. '

int close_search(const vector<int> &A, const int &k) {
int idx = 0;)
while (idx < A.size() && A[idx] != k) {
idx += absCA[idx] - k);
}
return idx < A.size() ? idx : -1; // -1 means no result

}

A worst-case input is one where all elements have value k — 1, in which case the
algorithm is forced to inspect all elements. Hence its time complexity is O(n), where
n is the length of the close array. (Recall time complexity measures performance on
worst-case inputs.) In the best case, our algorithm inspects 1/k-th of the array, e.g., if
all elements are 0.

Problem 11,19, pg. 91: You are reading a sequence of words from a very long stream. You
know a priori that more than half the words are repetitions of a single word w (the “majority
element”) but the positions where w occurs are unknown. Design an algorithm that makes a
single pass over the stream and uses only a constant amount of memory to identify w.

Solution 11.19: The following observation leads to an elegant solution. If you take
any two distinct elements from the stream and discard them away, the majority ele-
ment remains the majority of the remaining elements. (This hinges on the assumption
that there exists a majority element to begin with). The reasoning is follows.

ElementsOfProgrammingInterviews.com

276 Solution 12.1

Proof: _
Let’s say the majority element occurred m times out of # elements in the stream
suchthat 2 > 1. The two distinct elements that are discarded can have at most one
of the majority elements. Hence after discarding them, the ratio of the previously
majority element to the total number of elements is either 2 or "D Ttis simple

(?’I'—Z)
‘fy sem o 1 m =1 1
to veri ﬂ'\atlf n > 3 then '—"'() > !(_2)1 = 3

Now, as we read the stream from beginning to the end, as soon as we encounter
more than one distinct element, we can discard one instance of each element and
what we are left with in the end must be the majority element.

1} string majority_search(istringstream &sin) {
2 string candidate, buf;

3 int count = @;

4 while (sin >> buf) {

5 if (count == 8) {

6 candidate = buf;

7 count = 1;

8 } else if (candidate == buf) {

9

++count ;
10 } else {
11 ==count;
12 }
13 }
14 return candidate;
151 }

The code above assumes a majority word exists in the sequence. If no word has a
strict majority, it still returns a word from the stream, albeit without any meaningful
guarantees on how common that word is. We could check with a second pass whether
the returned word was a majority. Similar ideas can be used to identify words that
appear more than n/k times in the sequence, as discussed in Problem 12.11 on Page 96.

Problem 12.1, pg. 92: Design a hash function that is suitable for words in a dictionary.

Solution 12.1: First, the hash function should examine all the characters in each
word. (If this seem obvious, the string hash function in the original distribution of
Java examined at most 16 characters, in an attempt to gain speed, but often resulted
in very poor performance because of collisions.) It should give a large range of
values, and should not let one character dominate (e.g., if we simply cast characters
to integers and multiplied them, a single 0 would result in a hash code of 0). We
would also like a rolling hash function, one in which if a character is deleted from
the front of the string, and another added to the end, the new hash code can be
computed in O(1) time (see Solution 12.13 on Page 286). The following function has
these properties:

1] int string_hash(const string &str, const int &modulus) {
2 const int MULT = 997;

3 int val = 0;

4 for (const char &c : str) {

ElementsOfProgrammingInterviews.com

Solution 12.3) 277

51 val = (val * MULT + ¢) % modulus;
s}

7i return val;

ai}

Problem 12.2, pg. 93: Design a hash function for chess game states. Your function should
take a state and the hash code for that state, and a move, and efficiently compute the hash code
for the updated state.

Solution 12.2: A straightforward hash function is to treat the 4 x64 bits that constitute
the board as a sequence of 64 digits in base 13, and use the hash function T8 ar,
where ¢; is the digit in location 7, and p is a prime (see Solution 12.1 on the facing
page).

This hash function does have ability to be updated incrementally—if, for example,
a black knight on one square is replaced by a white bishop, the hash code update
simply requires subtracting cfp"l and c}'p”?, and adding ¢'p" and cop®?, where i; and
i, are the initial locations of the knight and the bishop, respectively, and cf, c}', g are
the codes for black knight, white bishop, and empty space, respectively.

A more efficient hash function is based on creating a random 64-bit integer code
for each of the 4 x 64 assignments of pieces to squares. The hash code for the state
of the chessboard is the XOR of the code for each piece. Updates are frivial—for the
example above, we XOR the code for black knight on #;, white bishop on iz, white
bishop on 7}, and blank on 7.

Problem 12.3, pg. 93: Let s be an array of strings. Writea function which finds a closest pair

of equal entries. For example, if s = ["All”, “work”, “and”, “no”, “play”, “makes”, “for”,
rroods

“no”, “work”, “no”, “fun”, “and”, “no”, “results”], then the second and third occurrences
of “no” is the closest pair.

Solution 12.3: We make a scan through the array. For each i, we determine the
index j of the most recent occurrence of s[i]. If i — j is less than the difference of the
closest duplicate pair seen so far, we update that difference to i — j. The most recent
occurrence of s[i] is computed through a hash table lookup. The time complexity is
O(n), since we perform a constant amount of work per entry. The space complexity
is O(d), where d is the number of distinct strings in the array.

1lint find_nearest_repetition(const vector<string> &s) {
2 unordered_map<string, int> string_to_location;

3 int closest_dis = numeric_limits<int>::max();

4 for (int i = ®; i < s.size(); +4i) {

5 auto it = string_to_location.find(s[i]);

6 if (it != string_to_location.end()) {

7 closest_dis = min(closest_dis, i - it-»second);
8 }

9 string_to_location[s[i]] = i;

0] 1}

1 return closest_dis;

12| }

ElementsOfProgrammingInterviews.com

278 . Solution 12.4

Problem 12.4, pg.94: Given a set of binary trees Ay, ..., A, how would you compute a
new set of binary trees By, ..., B, such that for each i, 1 < i < n, A; and B; are isomorphic,
and no pair of isomorphic nodes exists in the set of nodes defined by By, ...,B,. (This is
sometimes referred to as the canonical form.) Assume nodes are not shared in Ay, ..., Ay
See Figure 12.2 on Page 94 for an example.

Solution 12.4: We will refer to By, ..., B, as the canonical form for Ay, ..., A,. We can
greatly accelerate the computation of the canonical form by caching. Specifically, we
will cache the hash code for canonical nodes. Also, to compute the canonical node
for a node n in some A;, we will first compute the canonical nodes for n’s children.

We need to define a hash function and an equality function for nodes. The hash
function must have the property that isomorphic nodes are mapped to identical hash
codes. The equality function should implement the isomorphism check.

The equality function can be implemented directly from the definition of isomor-
phism. The hash function can also be implemented fairly easily, e.g., h(null) = 1 and
h(x) = 3h(x.key) + Sh(x.left) + 7h(x.right).

static class BinaryTreeNode {

1
2 int key;

3] BinaryTreeNode left, right;

4 Integer cachedHash;

5

6 public BinaryTreellode(int k, BinaryTreeNode 1, BinaryTreeNode r) {
7 this.key = k;

8 this.left = 1;

9 this.right = r;

10 this.cachedHash = null;

11 1

13 @0verride
14 public int hashCode() {

15 if (this.cachedHash != null) {

16 return this.cachedHash;

17 H

18

19 int x = 3 * key;

20 int y = this,left == null ? 5 : 5 * this.left.hashCode();
21 int z = this.right == null 7 7 : 7 * this.right.hashCode();
2 this.cachedHash = x + ¥y + z;

return this.cachedHash;
}

public boolean equals{Object o) {
if (o == this) {

23
24
25
26 @0verride
27
28
29 return true;

k)]

a1 if (1(o instanceof BinaryTreeNode)) {
a2 return false; .

3 1

34 BinaryTreeNode n = (BinaryTreeNode)o;
35

ElementsOfProgrammingInterviews.com

Solution 12.6 279

36 if (n == null || key != n.key) {

a7 return false;

38 }

39 // Assuming that equals is called on nodes

50 // where children are already in canonical form
4l return (left == n.left &% right == n.right);
@}

@}

45| static Map<BinaryTreeNode, BinaryTreeNode> nodeToCanonicallNode =
46 new HashMap<BinaryTreeNode, BinaryTreeNode>();

48| static BinaryTreeNode getCanonical(BinaryTreeNode n) {

49 BinaryTreelode lc = (n.left == null) ? null : getCanonical(n.left);
50 BinaryTreeNode rc = (n.right == null) ? null : getCanonical{n.right);
51 EinaryTreeNode nc = new BinaryTreeNode(n.key, lec, re);

53 if (nodeToCanonicalNode.containsKey(nc)) {

54 return nodeToCanonicallode.get(nc);
55 }

56 nodeToCanonicalNede.put(nc, nc);

57| return nc;

58| }

Incidentally, the implementation above illustrates what is known as the flyweight
vattern.

e-Variant 12.4.1: Design an efficient algorithm that computes the largest subtree
common to two binary trees.

Problem 12.5, pg. 94: You are given a sequence of users where each user has a unigue 32-bit
integer key and a set of attributes specified as strings. When you read a user, you should
pair that user with another previously read user with identical attributes who is currently
unpaired, if such a user exists. If the user cannot be paired, you should keep him in the
unpaired set. How would you implement this matching process efficiently?

Solution 12.5: Each user is associated with a set of attributes and we need tfo find
users associated with a given set of attributes quickly. A hash table would be a perfect
solution here but we need a hash function over the set of attributes. If the number of
attributes is small, we can represent a subset of attributes as a bit array, where each
bit represents a specific attribute. Once we have a canonical representation for sets,
then we can use any hash function for bit arrays.

If the set of possible attributes is large, a better way fo canonically represent a
subset of attributes is to sort the attributes. (Any arbitrary ordering of attributes will
work.) We can represent the sorted sequence of attributes as a string by concatenating
the individual elements, and use a hash function for strings.

Problem 12.6, pg.95: Solve Problem 12.5 on Page 94 when users are grouped based on
having similar attributes. The similarity between two sets of attributes A and B is [302].

ElementsOfProgrammingInterviews.com

280 : Solution 12.8

Solution 12.6: Grouping users based on similarity makes the problem significantly
more difficult. Min-hashing is a common approach. Essentially, we construct a set of
k independent hash functions, hy,hy, ..., l. Then for the set of attributes S of each
user, we define

Mi(S) = 1:,151 T (@)

If two sets of attributes S; and S, are similar, then the probability of My(S;) = My(Sz)
is high, specifically it is |S; N S2|/|S1 N S2f. We map each set of attributes S to the
sequence (M;(S), Ma(S), ..., M(S)). We can use one of two criterion for identifying
similar users. The first is that users who have the same sequences are potentially
similar. The second is that users who have any hash code in common are candidates
for being similar. The first criterion will have a higher false negative rate, whereas
the second will have a higher false positive rate. In either case the problem has
been reduced to hashing. The parameter k can be varied to increase or decrease the
likelihood of false negatives. '

Problem 12.7, pg. 95: Write a function that takes as input a dictionary of English words,
and returns a partition of the dictionary into subsets of words that are all anagrams of each

other.

Solution 12.7: Given a string s, let sort(s) be the string consisting of the characters in s
rearranged so that they appear in sorted order. Observe that x and y are anagrams iff
sort(x) = sort(y). For example, sort(“logarithmic”) and sort(“algorithmic”) are both
“acghiilmort”. Therefore anagrams can be identified by adding sort(s) for each string
s in the dictionary to a hash table.

void find_anagrams(const vector<string> &dictionary) {

// Get the sorted string and then insert into hash table

unordered_map<string, vector<string>> hash;

for (const string &s : dictionary) {
string sorted_str(s);
// Use sorted string as the hash code
sort(sorted_str.begin(), sorted_str.end());
hash[sorted_str].emplace_back(s);

1

for (const pair<string, vector<strings>> &p : hash) {
// Multiple strings with the same hash code => anagrams
if (p.second.size() »= 2) {
// Output all strings
copy(p.second.begin(), p.second.end(),
ostream_iterator<string>(cout, " "J);
cout << endl;
}
1
1

Problem 12.8, pg. 95: Write a program to test whether the letters forming a string s can be
permuted to form a palindrome. Forexample, “edified” c