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Preface

When you wish to instruct,
be brief.
– Cicero

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly today than I could in C++98. Furthermore, the resulting programs are better checked
by the compiler and run faster.

This book gives an overview of C++ as defined by C++17, the current ISO C++ standard, and
implemented by the major C++ suppliers. In addition, it mentions concepts and modules, as
defined in ISO Technical Specifications and in current use, but not scheduled for inclusion into the
standard until C++20.

Like other modern languages, C++ is large and there are a large number of libraries needed for
effective use. This thin book aims to give an experienced programmer an idea of what constitutes
modern C++. It covers most major language features and the major standard-library components.
This book can be read in just a few hours but, obviously, there is much more to writing good C++
than can be learned in a day. Howev er, the aim here is not mastery, but to give an overview, to giv e
key examples, and to help a programmer get started.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ (Second edition) [Strous-
trup,2014], before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here.

Think of a sightseeing tour of a city, such as Copenhagen or New York. In just a few hours, you
are given a quick peek at the major attractions, told a few background stories, and given some sug-
gestions about what to do next. You do not know the city after such a tour. You do not understand
all you have seen and heard. You do not know how to navigate the formal and informal rules that
govern life in the city. To really know a city, you have to liv e in it, often for years. However, with a
bit of luck, you will have gained a bit of an overview, a notion of what is special about the city, and
ideas of what might be of interest to you. After the tour, the real exploration can begin.



xii Preface

This tour presents the major C++ language features as they support programming styles, such as
object-oriented and generic programming. It does not attempt to provide a detailed, reference-man-
ual, feature-by-feature view of the language. In the best textbook tradition, I try to explain a feature
before I use it, but that is not always possible and not everybody reads the text strictly sequentially.
So, the reader is encouraged to use the cross references and the index.

Similarly, this tour presents the standard libraries in terms of examples, rather than exhaustively.
It does not describe libraries beyond those defined by the ISO standard. The reader can search out
supporting material as needed. [Stroustrup,2013] and [Stroustrup,2014] are examples of such
material, but there is an enormous amount of material (of varying quality) available on the Web,
e.g., [Cppreference]. For example, when I mention a standard-library function or class, its defini-
tion can easily be looked up, and by examining its documentation, many related facilities can be
found.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it
does not identify language features as present in C, part of C++98, or new in C++11, C++14, or
C++17. Such information can be found in Chapter 16 (History and Compatibility). I focus on fun-
damentals and try to be brief, but I have not completely resisted the temptation to overrepresent
novel features. This also seems to satisfy the curiosity of many readers who already know some
older version of C++.

A programming language reference manual or standard simply states what can be done, but pro-
grammers are often more interested in learning how to use the language well. This aspect is partly
addressed in the selection of topics covered, partly in the text, and specifically in the advice sec-
tions. More advice about what constitutes good modern C++ can be found in the C++ Core Guide-
lines [Stroustrup,2015]. The core guidelines can be a good source for further exploration of the
ideas presented in this book. You may note a remarkable similarity of the advice formulation and
ev en the numbering of advice between the Core Guidelines and this book. One reason is that the
first edition of A Tour of C++ was a major source of the initial Core Guidelines.
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1
The Basics

The first thing we do, let’s
kill all the language lawyers.

– Henry VI, Part II

• Introduction
• Programs

Hello, World!
• Functions
• Types, Variables, and Arithmetic

Arithmetic; Initialization
• Scope and Lifetime
• Constants
• Pointers, Arrays, and References

The Null Pointer
• Tests
• Mapping to Hardware

Assignment; Initialization
• Advice

1.1 Introduction
This chapter informally presents the notation of C++, C++’s model of memory and computation,
and the basic mechanisms for organizing code into a program. These are the language facilities
supporting the styles most often seen in C and sometimes called procedural programming.
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1.2 Programs
C++ is a compiled language. For a program to run, its source text has to be processed by a com-
piler, producing object files, which are combined by a linker yielding an executable program. A
C++ program typically consists of many source code files (usually simply called source files).

source file 1

source file 2

compile

compile

object file 1

object file 2
link executable file

An executable program is created for a specific hardware/system combination; it is not portable,
say, from a Mac to a Windows PC. When we talk about portability of C++ programs, we usually
mean portability of source code; that is, the source code can be successfully compiled and run on a
variety of systems.

The ISO C++ standard defines two kinds of entities:
• Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-state-

ments and while-statements)
• Standard-library components, such as containers (e.g., vector and map) and I/O operations

(e.g., << and getline())
The standard-library components are perfectly ordinary C++ code provided by every C++ imple-
mentation. That is, the C++ standard library can be implemented in C++ itself and is (with very
minor uses of machine code for things such as thread context switching). This implies that C++ is
sufficiently expressive and efficient for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name,
and expression) must be known to the compiler at its point of use. The type of an object determines
the set of operations applicable to it.

1.2.1 Hello, World!

The minimal C++ program is

int main() { } // the minimal C++ program

This defines a function called main, which takes no arguments and does nothing.
Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function

body. The double slash, //, begins a comment that extends to the end of the line. A comment is for
the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts
by executing that function. The int integer value returned by main(), if any, is the program’s return
value to ‘‘the system.’’ If no value is returned, the system will receive a value indicating successful
completion. A nonzero value from main() indicates failure. Not ev ery operating system and execu-
tion environment make use of that return value: Linux/Unix-based environments do, but Windows-
based environments rarely do.
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Typically, a program produces some output. Here is a program that writes Hello, World!:

#include <iostream>

int main()
{

std::cout << "Hello, World!\n";
}

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream I/O facilities as found in iostream. Without these declarations, the expression

std::cout << "Hello, World!\n"

would make no sense. The operator << (‘‘put to’’) writes its second argument onto its first. In this
case, the string literal "Hello, World!\n" is written onto the standard output stream std::cout. A string
literal is a sequence of characters surrounded by double quotes. In a string literal, the backslash
character \ followed by another character denotes a single ‘‘special character.’’ In this case, \n is the
newline character, so that the characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§3.4). I
usually leave out the std:: when discussing standard features; §3.4 shows how to make names from
a namespace visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from
main(). For example:

#include <iostream> // include (‘‘impor t’’) the declarations for the I/O stream librar y

using namespace std; // make names from std visible without std:: (§3.4)

double square(double x) // square a double precision floating-point number
{

return x∗x;
}

void print_square(double x)
{

cout << "the square of " << x << " is " << square(x) << "\n";
}

int main()
{

print_square(1.234); // pr int: the square of 1.234 is 1.52276
}

A ‘‘return type’’ void indicates that a function does not return a value.
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1.3 Functions
The main way of getting something done in a C++ program is to call a function to do it. Defining a
function is the way you specify how an operation is to be done. A function cannot be called unless
it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any),
and the number and types of the arguments that must be supplied in a call. For example:

Elem∗ next_elem(); // no argument; return a pointer to Elem (an Elem*)
void exit(int); // int argument; return nothing
double sqrt(double); // double argument; return a double

In a function declaration, the return type comes before the name of the function and the argument
types come after the name enclosed in parentheses.

The semantics of argument passing are identical to the semantics of initialization (§3.6.1). That
is, argument types are checked and implicit argument type conversion takes place when necessary
(§1.4). For example:

double s2 = sqrt(2); // call sqrt() with the argument double{2}
double s3 = sqrt("three"); // error : sqr t() requires an argument of type double

The value of such compile-time checking and type conversion should not be underestimated.
A function declaration may contain argument names. This can be a help to the reader of a pro-

gram, but unless the declaration is also a function definition, the compiler simply ignores such
names. For example:

double sqrt(double d); // retur n the square root of d
double square(double); // retur n the square of the argument

The type of a function consists of its return type and the sequence of its argument types. For exam-
ple:

double get(const vector<double>& vec, int index); // type: double(const vector<double>&,int)

A function can be a member of a class (§2.3, §4.2.1). For such a member function, the name of its
class is also part of the function type. For example:

char& String::operator[](int index); // type: char& String::(int)

We want our code to be comprehensible, because that is the first step on the way to maintainability.
The first step to comprehensibility is to break computational tasks into meaningful chunks (repre-
sented as functions and classes) and name those. Such functions then provide the basic vocabulary
of computation, just as the types (built-in and user-defined) provide the basic vocabulary of data.
The C++ standard algorithms (e.g., find, sor t, and iota) provide a good start (Chapter 12). Next, we
can compose functions representing common or specialized tasks into larger computations.

The number of errors in code correlates strongly with the amount of code and the complexity of
the code. Both problems can be addressed by using more and shorter functions. Using a function
to do a specific task often saves us from writing a specific piece of code in the middle of other code;
making it a function forces us to name the activity and document its dependencies.

If two functions are defined with the same name, but with different argument types, the com-
piler will choose the most appropriate function to invoke for each call. For example:
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void print(int); // takes an integer argument
void print(double); // takes a floating-point argument
void print(string); // takes a string argument

void user()
{

print(42); // calls print(int)
print(9.65); // calls print(double)
print("Barcelona"); // calls print(str ing)

}

If two alternative functions could be called, but neither is better than the other, the call is deemed
ambiguous and the compiler gives an error. For example:

void print(int,double);
void print(double ,int);

void user2()
{

print(0,0); // error : ambiguous
}

Defining multiple functions with the same name is known as function overloading and is one of the
essential parts of generic programming (§7.2). When a function is overloaded, each function of the
same name should implement the same semantics. The print() functions are an example of this;
each print() prints its argument.

1.4 Types, Variables, and Arithmetic
Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.
A declaration is a statement that introduces an entity into the program. It specifies a type for

the entity:
• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of some type.
• A value is a set of bits interpreted according to a type.
• A variable is a named object.

C++ offers a small zoo of fundamental types, but since I’m not a zoologist, I will not list them all.
You can find them all in reference sources, such as [Stroustrup,2013] or the [Cppreference] on the
Web. Examples are:
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bool // Boolean, possible values are true and false
char // character, for example, 'a', 'z', and '9'
int // integer, for example, -273, 42, and 1066
double // double-precision floating-point number, for example, -273.15, 3.14, and 6.626e-34
unsigned // non-negative integer, for example, 0, 1, and 999 (use for bitwise logical operations)

Each fundamental type corresponds directly to hardware facilities and has a fixed size that deter-
mines the range of values that can be stored in it:

bool:

char:

int:

double:

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit
byte), and the sizes of other types are multiples of the size of a char. The size of a type is imple-
mentation-defined (i.e., it can vary among different machines) and can be obtained by the siz eof

operator; for example, siz eof(char) equals 1 and siz eof(int) is often 4.
Numbers can be floating-point or integers.
• Floating-point numbers are recognized by a decimal point (e.g., 3.14) or by an exponent

(e.g., 3e−2).
• Integer literals are by default decimal (e.g., 42 means forty-two). A 0b prefix indicates a

binary (base 2) integer literal (e.g., 0b10101010). A 0x prefix indicates a hexadecimal (base
16) integer literal (e.g., 0xBAD1234). A 0 prefix indicates an octal (base 8) integer literal
(e.g., 0334).

To make long literals more readable for humans, we can use a single quote (') as a digit separator.
For example, π is about 3.14159'26535'89793'23846'26433'83279'50288 or if you prefer hexadecimal
0x3.243F'6A88'85A3'08D3.

1.4.1 Arithmetic

The arithmetic operators can be used for appropriate combinations of the fundamental types:

x+y // plus
+x // unar y plus
x−y // minus
−x // unar y minus
x∗y // multiply
x/y // divide
x%y // remainder (modulus) for integers

So can the comparison operators:
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x==y // equal
x!=y // not equal
x<y // less than
x>y // greater than
x<=y // less than or equal
x>=y // greater than or equal

Furthermore, logical operators are provided:

x&y // bitwise and
x|y // bitwise or
xˆy // bitwise exclusive or
˜x // bitwise complement
x&&y // logical and
x||y // logical or
!x // logical not (negation)

A bitwise logical operator yields a result of the operand type for which the operation has been per-
formed on each bit. The logical operators && and || simply return true or false depending on the
values of their operands.

In assignments and in arithmetic operations, C++ performs all meaningful conversions between
the basic types so that they can be mixed freely:

void some_function() // function that doesn’t return a value
{

double d = 2.2; // initialize floating-point number
int i = 7; // initialize integer
d = d+i; // assign sum to d
i = d∗i; // assign product to i; beware: truncating the double d*i to an int

}

The conversions used in expressions are called the usual arithmetic conversions and aim to ensure
that expressions are computed at the highest precision of its operands. For example, an addition of
a double and an int is calculated using double-precision floating-point arithmetic.

Note that = is the assignment operator and == tests equality.
In addition to the conventional arithmetic and logical operators, C++ offers more specific opera-

tions for modifying a variable:

x+=y // x = x+y
++x // increment: x = x+1
x−=y // x = x-y
−−x // decrement: x = x-1
x∗=y // scaling: x = x*y
x/=y // scaling: x = x/y
x%=y // x = x%y

These operators are concise, convenient, and very frequently used.
The order of evaluation of expressions is left to right, except for assignments, which are right-

to-left. The order of evaluation of function arguments is unfortunately unspecified.
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1.4.2 Initialization

Before an object can be used, it must be given a value. C++ offers a variety of notations for
expressing initialization, such as the = used above, and a universal form based on curly-brace-
delimited initializer lists:

double d1 = 2.3; // initialize d1 to 2.3
double d2 {2.3}; // initialize d2 to 2.3
double d3 = {2.3}; // initialize d3 to 2.3 (the = is optional with { ... })
complex<double> z = 1; // a complex number with double-precision floating-point scalars
complex<double> z2 {d1,d2};
complex<double> z3 = {d1,d2}; // the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; // a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form. If nothing
else, it saves you from conversions that lose information:

int i1 = 7.8; // i1 becomes 7 (surpr ise?)
int i2 {7.8}; // error : floating-point to integer conversion

Unfortunately, conversions that lose information, narrowing conversions, such as double to int and
int to char, are allowed and implicitly applied when you use = (but not when you use {}). The prob-
lems caused by implicit narrowing conversions are a price paid for C compatibility (§16.3).

A constant (§1.6) cannot be left uninitialized and a variable should only be left uninitialized in
extremely rare circumstances. Don’t introduce a name until you have a suitable value for it. User-
defined types (such as string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be
implicitly initialized (§4.2.1).

When defining a variable, you don’t need to state its type explicitly when it can be deduced
from the initializer:

auto b = true; // a bool
auto ch = 'x'; // a char
auto i = 123; // an int
auto d = 1.2; // a double
auto z = sqrt(y); // z has the type of whatever sqr t(y) retur ns
auto bb {true}; // bb is a bool

With auto, we tend to use the = because there is no potentially troublesome type conversion
involved, but if you prefer to use {} initialization consistently, you can do that instead.

We use auto where we don’t hav e a specific reason to mention the type explicitly. ‘‘Specific
reasons’’ include:

• The definition is in a large scope where we want to make the type clearly visible to readers
of our code.

• We want to be explicit about a variable’s range or precision (e.g., double rather than float).
Using auto, we avoid redundancy and writing long type names. This is especially important in
generic programming where the exact type of an object can be hard for the programmer to know
and the type names can be quite long (§12.2).
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1.5 Scope and Lifetime
A declaration introduces its name into a scope:

• Local scope: A name declared in a function (§1.3) or lambda (§6.3.2) is called a local name.
Its scope extends from its point of declaration to the end of the block in which its declara-
tion occurs. A block is delimited by a { } pair. Function argument names are considered
local names.

• Class scope: A name is called a member name (or a class member name) if it is defined in a
class (§2.2, §2.3, Chapter 4), outside any function (§1.3), lambda (§6.3.2), or enum class

(§2.5). Its scope extends from the opening { of its enclosing declaration to the end of that
declaration.

• Namespace scope: A name is called a namespace member name if it is defined in a name-
space (§3.4) outside any function, lambda (§6.3.2), class (§2.2, §2.3, Chapter 4), or enum

class (§2.5). Its scope extends from the point of declaration to the end of its namespace.
A name not declared inside any other construct is called a global name and is said to be in the
global namespace.

In addition, we can have objects without names, such as temporaries and objects created using
new (§4.2.2). For example:

vector<int> vec; // vec is global (a global vector of integers)

struct Record {
string name; // name is a member or Record (a string member)
// ...

};

void fct(int arg) // fct is global (a global function)
// arg is local (an integer argument)

{
string motto {"Who dares wins"}; // motto is local
auto p = new Record{"Hume"}; // p points to an unnamed Record (created by new)
// ...

}

An object must be constructed (initialized) before it is used and will be destroyed at the end of its
scope. For a namespace object the point of destruction is the end of the program. For a member,
the point of destruction is determined by the point of destruction of the object of which it is a mem-
ber. An object created by new ‘‘lives’’ until destroyed by delete (§4.2.2).

1.6 Constants
C++ supports two notions of immutability:

• const: meaning roughly ‘‘I promise not to change this value.’’ This is used primarily to
specify interfaces so that data can be passed to functions using pointers and references with-
out fear of it being modified. The compiler enforces the promise made by const. The value
of a const can be calculated at run time.
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• constexpr: meaning roughly ‘‘to be evaluated at compile time.’’ This is used primarily to
specify constants, to allow placement of data in read-only memory (where it is unlikely to
be corrupted), and for performance. The value of a constexpr must be calculated by the
compiler.

For example:

constexpr int dmv = 17; // dmv is a named constant
int var = 17; // var is not a constant
const double sqv = sqrt(var); // sqv is a named constant, possibly computed at run time

double sum(const vector<double>&); // sum will not modify its argument (§1.7)

vector<double> v {1.2, 3.4, 4.5}; // v is not a constant
const double s1 = sum(v); // OK: sum(v) is evaluated at run time
constexpr double s2 = sum(v); // error : sum(v) is not a constant expression

For a function to be usable in a constant expression, that is, in an expression that will be evaluated
by the compiler, it must be defined constexpr. For example:

constexpr double square(double x) { return x∗x; }

constexpr double max1 = 1.4∗square(17); // OK 1.4*square(17) is a constant expression
constexpr double max2 = 1.4∗square(var); // error : var is not a constant expression
const double max3 = 1.4∗square(var); // OK, may be evaluated at run time

A constexpr function can be used for non-constant arguments, but when that is done the result is not
a constant expression. We allow a constexpr function to be called with non-constant-expression
arguments in contexts that do not require constant expressions. That way, we don’t hav e to define
essentially the same function twice: once for constant expressions and once for variables.

To be constexpr, a function must be rather simple and cannot have side effects and can only use
information passed to it as arguments. In particular, it cannot modify non-local variables, but it can
have loops and use its own local variables. For example:

constexpr double nth(double x, int n) // assume 0<=n
{

double res = 1;
int i = 0;
while (i<n) { // while-loop: do while the condition is true (§1.7.1)

res∗=x;
++i;

}
return res;

}

In a few places, constant expressions are required by language rules (e.g., array bounds (§1.7), case
labels (§1.8), template value arguments (§6.2), and constants declared using constexpr). In other
cases, compile-time evaluation is important for performance. Independently of performance issues,
the notion of immutability (an object with an unchangeable state) is an important design concern.
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1.7 Pointers, Arrays, and References
The most fundamental collection of data is a contiguously allocated sequence of elements of the
same type, called an array. This is basically what the hardware offers. An array of elements of
type char can be declared like this:

char v[6]; // array of 6 characters

Similarly, a pointer can be declared like this:

char∗ p; // pointer to character

In declarations, [ ] means ‘‘array of’’ and ∗ means ‘‘pointer to.’’ All arrays have 0 as their lower
bound, so v has six elements, v[0] to v[5]. The size of an array must be a constant expression (§1.6).
A pointer variable can hold the address of an object of the appropriate type:

char∗ p = &v[3]; // p points to v’s four th element
char x = ∗p; // *p is the object that p points to

In an expression, prefix unary ∗ means ‘‘contents of’’ and prefix unary & means ‘‘address of.’’ We
can represent the result of that initialized definition graphically:

p:

v:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

void copy_fct()
{

int v1[10] = {0,1,2,3,4,5,6,7,8,9};
int v2[10]; // to become a copy of v1

for (auto i=0; i!=10; ++i) // copy elements
v2[i]=v1[i];

// ...
}

This for-statement can be read as ‘‘set i to zero; while i is not 10, copy the ith element and increment
i.’’ When applied to an integer or floating-point variable, the increment operator, ++, simply adds 1.
C++ also offers a simpler for-statement, called a range-for-statement, for loops that traverse a
sequence in the simplest way:
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void print()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto x : v) // for each x in v
cout << x << '\n';

for (auto x : {10,21,32,43,54,65})
cout << x << '\n';

// ...
}

The first range-for-statement can be read as ‘‘for every element of v, from the first to the last, place
a copy in x and print it.’’ Note that we don’t hav e to specify an array bound when we initialize it
with a list. The range-for-statement can be used for any sequence of elements (§12.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an
element, we could write:

void increment()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto& x : v) // add 1 to each x in v
++x;

// ...
}

In a declaration, the unary suffix & means ‘‘reference to.’’ A reference is similar to a pointer,
except that you don’t need to use a prefix ∗ to access the value referred to by the reference. Also, a
reference cannot be made to refer to a different object after its initialization.

References are particularly useful for specifying function arguments. For example:

void sort(vector<double>& v); // sor t v (v is a vector of doubles)

By using a reference, we ensure that for a call sor t(my_vec), we do not copy my_vec and that it
really is my_vec that is sorted and not a copy of it.

When we don’t want to modify an argument but still don’t want the cost of copying, we use a
const reference (§1.6). For example:

double sum(const vector<double>&)

Functions taking const references are very common.
When used in declarations, operators (such as &, ∗, and [ ]) are called declarator operators:

T a[n] // T[n]: a is an array of n Ts
T∗ p // T*: p is a pointer to T
T& r // T&: r is a reference to T
T f(A) // T(A): f is a function taking an argument of type A returning a result of type T
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1.7.1 The Null Pointer

We try to ensure that a pointer always points to an object so that dereferencing it is valid. When we
don’t hav e an object to point to or if we need to represent the notion of ‘‘no object available’’ (e.g.,
for an end of a list), we give the pointer the value nullptr (‘‘the null pointer’’). There is only one
nullptr shared by all pointer types:

double∗ pd = nullptr;
Link<Record>∗ lst = nullptr; // pointer to a Link to a Record
int x = nullptr; // error : nullptr is a pointer not an integer

It is often wise to check that a pointer argument actually points to something:

int count_x(const char∗ p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
if (p==nullptr)

return 0;
int count = 0;
for (; ∗p!=0; ++p)

if (∗p==x)
++count;

return count;
}

Note how we can advance a pointer to point to the next element of an array using ++ and that we
can leave out the initializer in a for-statement if we don’t need it.

The definition of count_x() assumes that the char∗ is a C-style string, that is, that the pointer
points to a zero-terminated array of char. The characters in a string literal are immutable, so to han-
dle count_x("Hello!"), I declared count_x() a const char∗ argument.

In older code, 0 or NULL is typically used instead of nullptr. Howev er, using nullptr eliminates
potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).

In the count_x() example, we are not using the initializer part of the for-statement, so we can use
the simpler while-statement:

int count_x(const char∗ p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
if (p==nullptr)

return 0;
int count = 0;
while (∗p) {

if (∗p==x)
++count;

++p;
}
return count;

}
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The while-statement executes until its condition becomes false.
A test of a numeric value (e.g., while (∗p) in count_x()) is equivalent to comparing the value to 0

(e.g., while (∗p!=0)). A test of a pointer value (e.g., if (p)) is equivalent to comparing the value to
nullptr (e.g., if (p!=nullptr)).

There is no ‘‘null reference.’’ A reference must refer to a valid object (and implementations
assume that it does). There are obscure and clever ways to violate that rule; don’t do that.

1.8 Tests
C++ provides a conventional set of statements for expressing selection and looping, such as if-
statements, switch-statements, while-loops, and for-loops. For example, here is a simple function
that prompts the user and returns a Boolean indicating the response:

bool accept()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question
char answer = 0; // initialize to a value that will not appear on input
cin >> answer; // read answer

if (answer == 'y')
return true;

return false;
}

To match the << output operator (‘‘put to’’), the >> operator (‘‘get from’’) is used for input; cin is
the standard input stream (Chapter 10). The type of the right-hand operand of >> determines what
input is accepted, and its right-hand operand is the target of the input operation. The \n character at
the end of the output string represents a newline (§1.2.1).

Note that the definition of answer appears where it is needed (and not before that). A declara-
tion can appear anywhere a statement can.

The example could be improved by taking an n (for ‘‘no’’) answer into account:

bool accept2()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question
char answer = 0; // initialize to a value that will not appear on input
cin >> answer; // read answer

switch (answer) {
case 'y':

return true;
case 'n':

return false;
default:

cout << "I'll take that for a no.\n";
return false;

}
}
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A switch-statement tests a value against a set of constants. Those constants, called case-labels,
must be distinct, and if the value tested does not match any of them, the default is chosen. If the
value doesn’t match any case-label and no default is provided, no action is taken .

We don’t hav e to exit a case by returning from the function that contains its switch-statement.
Often, we just want to continue execution with the statement following the switch-statement. We
can do that using a break statement. As an example, consider an overly clever, yet primitive, parser
for a trivial command video game:

void action()
{

while (true) {
cout << "enter action:\n"; // request action
string act;
cin >> act; // read characters into a string
Point delta {0,0}; // Point holds an {x,y} pair

for (char ch : act) {
switch (ch) {
case 'u': // up
case 'n': // nor th

++delta.y;
break;

case 'r': // right
case 'e': // east

++delta.x;
break;

// ... more actions ...
default:

cout << "I freeze!\n";
}
move(current+delta∗scale);
update_display();

}
}

}

Like a for-statement (§1.7), an if-statement can introduce a variable and test it. For example:

void do_something(vector<int>& v)
{

if (auto n = v.siz e(); n!=0) {
// ... we get here if n!=0 ...

}
// ...

}

Here, the integer n is defined for use within the if-statement , initialized with v.siz e(), and immedi-
ately tested by the n!=0 condition after the semicolon. A name declared in a condition is in scope
on both branches of the if-statement.
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As with the for-statement, the purpose of declaring a name in the condition of an if-statement is
to keep the scope of the variable limited to improve readability and minimize errors.

The most common case is testing a variable against 0 (or the nullptr). To do that, simply leave
out the explicit mention of the condition. For example:

void do_something(vector<int>& v)
{

if (auto n = v.siz e()) {
// ... we get here if n!=0 ...

}
// ...

}

Prefer to use this terser and simpler form when you can.

1.9 Mapping to Hardware
C++ offers a direct mapping to hardware. When you use one of the fundamental operations, the
implementation is what the hardware offers, typically a single machine operation. For example,
adding two ints, x+y executes an integer add machine instruction.

A C++ implementation sees a machine’s memory as a sequence of memory locations into which
it can place (typed) objects and address them using pointers:

p:

v:
0: 1: 2: 3: 4: 5:

A pointer is represented in memory as a machine address, so the numeric value of p in this figure
would be 3. If this looks much like an array (§1.7), that’s because an array is C++’s basic abstrac-
tion of ‘‘a contiguous sequence of objects in memory.’’

The simple mapping of fundamental language constructs to hardware is crucial for the raw low-
level performance for which C and C++ have been famous for decades. The basic machine model
of C and C++ is based on computer hardware, rather than some form of mathematics.

1.9.1 Assignment

An assignment of a built-in type is a simple machine copy operation. Consider:

int x = 2;
int y = 3;
x = y; // x becomes 3
// Note: x==y

This is obvious. We can graphically represent that like this:
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2 3 x = y; 3 3x: y: x: y:

Note that the two objects are independent. We can change the value of y without affecting the
value of x. For example x=99 will not change the value of y. Unlike Java, C#, and other languages,
but like C, that is true for all types, not just for ints.

If we want different objects to refer to the same (shared) value, we must say so. We could use
pointers:

int x = 2;
int y = 3;
int∗ p = &x;
int∗ q = &y; // now p!=q and *p!=*q
p = q; // p becomes &y; now p==q, so (obviously)*p == *q

We can represent that graphically like this:

88 92

2 3

p = q;

92 92

2 3x: y: x: y:

p: q: p: q:

I arbitrarily chose 88 and 92 as the addresses of the ints. Again, we can see that the assigned-to
object gets the value from the assigned object, yielding two independent objects (here, pointers),
with the same value. That is, p=q gives p==q. After p=q, both pointers point to y.

A reference and a pointer both refer/point to an object and both are represented in memory as a
machine address. However, the language rules for using them differ. Assignment to a reference
does not change what the reference refers to but assigns to the referenced object:

int x = 2;
int y = 3;
int& r = x; // r refers to x
int& r2 = y; // now r2 refers to y
r = r2; // read through r2, write through r: x becomes 3

We can represent that graphically like this:

88 92

2 3

r = r2;

88 92

3 3x: y: x: y:

r: r2: r: r2:

To access the value pointed to by a pointer, you use ∗; that is automatically (implicitly) done for a
reference.

After x=y, we hav e x==y for every built-in type and well-designed user-defined type (Chapter 2)
that offers = (assignment) and == (equality comparison).
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1.9.2 Initialization

Initialization differs from assignment. In general, for an assignment to work correctly, the
assigned-to object must have a value. On the other hand, the task of initialization is to make an
uninitialized piece of memory into a valid object. For almost all types, the effect of reading from or
writing to an uninitialized variable is undefined. For built-in types, that’s most obvious for refer-
ences:

int x = 7;
int& r {x}; // bind r to x (r refers to x)
r = 7; // assign to whatever r refers to

int& r2; // error : uninitialized reference
r2 = 99; // assign to whatever r2 refers to

Fortunately, we cannot have an uninitialized reference; if we could, then that r2=99 would assign 99

to some unspecified memory location; the result would eventually lead to bad results or a crash.
You can use = to initialize a reference but please don’t let that confuse you. For example:

int& r = x; // bind r to x (r refers to x)

This is still initialization and binds r to x, rather than any form of value copy.
The distinction between initialization and assignment is also crucial to many user-defined types,

such as string and vector, where an assigned-to object owns a resource that needs to eventually be
released (§5.3).

The basic semantics of argument passing and function value return are that of initialization
(§3.6). For example, that’s how we get pass-by-reference.

1.10 Advice
The advice here is a subset of the C++ Core Guidelines [Stroustrup,2015]. References to guide-
lines look like this [CG: ES.23], meaning the 23rd rule in the Expressions and Statement section.
Generally, a core guideline offers further rationale and examples.
[1] Don’t panic! All will become clear in time; §1.1; [CG: In.0].
[2] Don’t use the built-in features exclusively or on their own. On the contrary, the fundamental

(built-in) features are usually best used indirectly through libraries, such as the ISO C++
standard library (Chapters 8–15); [CG: P.10].

[3] You don’t hav e to know every detail of C++ to write good programs.
[4] Focus on programming techniques, not on language features.
[5] For the final word on language definition issues, see the ISO C++ standard; §16.1.3; [CG:

P.2].
[6] ‘‘Package’’ meaningful operations as carefully named functions; §1.3; [CG: F.1].
[7] A function should perform a single logical operation; §1.3 [CG: F.2].
[8] Keep functions short; §1.3; [CG: F.3].
[9] Use overloading when functions perform conceptually the same task on different types; §1.3.
[10] If a function may have to be evaluated at compile time, declare it constexpr; §1.6; [CG: F.4].
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[11] Understand how language primitives map to hardware; §1.4, §1.7, §1.9, §2.3, §4.2.2, §4.4.
[12] Use digit separators to make large literals readable; §1.4; [CG: NL.11].
[13] Avoid complicated expressions; [CG: ES.40].
[14] Avoid narrowing conversions; §1.4.2; [CG: ES.46].
[15] Minimize the scope of a variable; §1.5.
[16] Avoid ‘‘magic constants’’; use symbolic constants; §1.6; [CG: ES.45].
[17] Prefer immutable data; §1.6; [CG: P.10].
[18] Declare one name (only) per declaration; [CG: ES.10].
[19] Keep common and local names short, and keep uncommon and nonlocal names longer; [CG:

ES.7].
[20] Avoid similar-looking names; [CG: ES.8].
[21] Avoid ALL_CAPS names; [CG: ES.9].
[22] Prefer the {}-initializer syntax for declarations with a named type; §1.4; [CG: ES.23].
[23] Use auto to avoid repeating type names; §1.4.2; [CG: ES.11].
[24] Avoid uninitialized variables; §1.4; [CG: ES.20].
[25] Keep scopes small; §1.5; [CG: ES.5].
[26] When declaring a variable in the condition of an if-statement, prefer the version with the

implicit test against 0; §1.8.
[27] Use unsigned for bit manipulation only; §1.4; [CG: ES.101] [CG: ES.106].
[28] Keep use of pointers simple and straightforward; §1.7; [CG: ES.42].
[29] Use nullptr rather than 0 or NULL; §1.7; [CG: ES.47].
[30] Don’t declare a variable until you have a value to initialize it with; §1.7, §1.8; [CG: ES.21].
[31] Don’t say in comments what can be clearly stated in code; [CG: NL.1].
[32] State intent in comments; [CG: NL.2].
[33] Maintain a consistent indentation style; [CG: NL.4].
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2
User-Defined Types

Don’t Panic!
– Douglas Adams

• Introduction
• Structures
• Classes
• Unions
• Enumerations
• Advice

2.1 Introduction
We call the types that can be built from the fundamental types (§1.4), the const modifier (§1.6), and
the declarator operators (§1.7) built-in types. C++’s set of built-in types and operations is rich, but
deliberately low-level. They directly and efficiently reflect the capabilities of conventional com-
puter hardware. However, they don’t provide the programmer with high-level facilities to conve-
niently write advanced applications. Instead, C++ augments the built-in types and operations with
a sophisticated set of abstraction mechanisms out of which programmers can build such high-level
facilities.

The C++ abstraction mechanisms are primarily designed to let programmers design and imple-
ment their own types, with suitable representations and operations, and for programmers to simply
and elegantly use such types. Types built out of other types using C++’s abstraction mechanisms
are called user-defined types. They are referred to as classes and enumerations. User defined types
can be built out of both built-in types and other user-defined types. Most of this book is devoted to
the design, implementation, and use of user-defined types. User-defined types are often preferred
over built-in types because they are easier to use, less error-prone, and typically as efficient for
what they do as direct use of built-in types, or even faster.
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The rest of this chapter presents the simplest and most fundamental facilities for defining and
using types. Chapters 4–7 are a more complete description of the abstraction mechanisms and the
programming styles they support. Chapters 8–15 present an overview of the standard library, and
since the standard library mainly consists of user-defined types, they provide examples of what can
be built using the language facilities and programming techniques presented in Chapters 1–7.

2.2 Structures
The first step in building a new type is often to organize the elements it needs into a data structure,
a struct:

struct Vector {
int sz; // number of elements
double∗ elem; // pointer to elements

};

This first version of Vector consists of an int and a double∗.
A variable of type Vector can be defined like this:

Vector v;

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. For it
to be useful, we must give v some elements to point to. For example, we can construct a Vector like
this:

void vector_init(Vector& v, int s)
{

v.elem = new double[s]; // allocate an array of s doubles
v.sz = s;

}

That is, v’s elem member gets a pointer produced by the new operator and v’s sz member gets the
number of elements. The & in Vector& indicates that we pass v by non-const reference (§1.7); that
way, vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic
memory and heap). Objects allocated on the free store are independent of the scope from which
they are created and ‘‘live’’ until they are destroyed using the delete operator (§4.2.2).

A simple use of Vector looks like this:

double read_and_sum(int s)
// read s integers from cin and return their sum; s is assumed to be positive

{
Vector v;
vector_init(v,s); // allocate s elements for v

for (int i=0; i!=s; ++i)
cin>>v.elem[i]; // read into elements
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double sum = 0;
for (int i=0; i!=s; ++i)

sum+=v.elem[i]; // compute the sum of the elements
return sum;

}

There is a long way to go before our Vector is as elegant and flexible as the standard-library vector.
In particular, a user of Vector has to know every detail of Vector’s representation. The rest of this
chapter and the next two gradually improve Vector as an example of language features and tech-
niques. Chapter 11 presents the standard-library vector, which contains many nice improvements.

I use vector and other standard-library components as examples
• to illustrate language features and design techniques, and
• to help you learn and use the standard-library components.

Don’t reinvent standard-library components such as vector and string; use them.
We use . (dot) to access struct members through a name (and through a reference) and −> to

access struct members through a pointer. For example:

void f(Vector v, Vector& rv, Vector∗ pv)
{

int i1 = v.sz; // access through name
int i2 = rv.sz; // access through reference
int i3 = pv−>sz; // access through pointer

}

2.3 Classes
Having the data specified separately from the operations on it has advantages, such as the ability to
use the data in arbitrary ways. However, a tighter connection between the representation and the
operations is needed for a user-defined type to have all the properties expected of a ‘‘real type.’’ In
particular, we often want to keep the representation inaccessible to users so as to ease use, guaran-
tee consistent use of the data, and allow us to later improve the representation. To do that we have
to distinguish between the interface to a type (to be used by all) and its implementation (which has
access to the otherwise inaccessible data). The language mechanism for that is called a class. A
class has a set of members, which can be data, function, or type members. The interface is defined
by the public members of a class, and private members are accessible only through that interface.
For example:

class Vector {
public:

Vector(int s) :elem{new double[s]}, sz{s} { } // constr uct a Vector
double& operator[](int i) { return elem[i]; } // element access: subscripting
int size() { return sz; }

private:
double∗ elem; // pointer to the elements
int sz; // the number of elements

};
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Given that, we can define a variable of our new type Vector:

Vector v(6); // a Vector with 6 elements

We can illustrate a Vector object graphically:

6

Vector:

elem:

sz:
0: 1: 2: 3: 4: 5:

Basically, the Vector object is a ‘‘handle’’ containing a pointer to the elements (elem) and the num-
ber of elements (sz). The number of elements (6 in the example) can vary from Vector object to
Vector object, and a Vector object can have a different number of elements at different times
(§4.2.3). However, the Vector object itself is always the same size. This is the basic technique for
handling varying amounts of information in C++: a fixed-size handle referring to a variable amount
of data ‘‘elsewhere’’ (e.g., on the free store allocated by new; §4.2.2). How to design and use such
objects is the main topic of Chapter 4.

Here, the representation of a Vector (the members elem and sz) is accessible only through the
interface provided by the public members: Vector(), operator[](), and siz e(). The read_and_sum()

example from §2.2 simplifies to:

double read_and_sum(int s)
{

Vector v(s); // make a vector of s elements
for (int i=0; i!=v.siz e(); ++i)

cin>>v[i]; // read into elements

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=v[i]; // take the sum of the elements
return sum;

}

A member ‘‘function’’ with the same name as its class is called a constructor, that is, a function
used to construct objects of a class. So, the constructor, Vector(), replaces vector_init() from §2.2.
Unlike an ordinary function, a constructor is guaranteed to be used to initialize objects of its class.
Thus, defining a constructor eliminates the problem of uninitialized variables for a class.

Vector(int) defines how objects of type Vector are constructed. In particular, it states that it needs
an integer to do that. That integer is used as the number of elements. The constructor initializes
the Vector members using a member initializer list:

:elem{new double[s]}, sz{s}

That is, we first initialize elem with a pointer to s elements of type double obtained from the free
store. Then, we initialize sz to s.

Access to elements is provided by a subscript function, called operator[]. It returns a reference
to the appropriate element (a double& allowing both reading and writing).
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The siz e() function is supplied to give users the number of elements.
Obviously, error handling is completely missing, but we’ll return to that in §3.5. Similarly, we

did not provide a mechanism to ‘‘give back’’ the array of doubles acquired by new; §4.2.2 shows
how to use a destructor to elegantly do that.

There is no fundamental difference between a struct and a class; a struct is simply a class with
members public by default. For example, you can define constructors and other member functions
for a struct.

2.4 Unions
A union is a struct in which all members are allocated at the same address so that the union occu-
pies only as much space as its largest member. Naturally, a union can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value. The
value can either be a Node∗ or an int:

enum Type { ptr, num }; // a Type can hold values ptr and num (§2.5)

struct Entry {
string name; // str ing is a standard-librar y type
Type t;
Node∗ p; // use p if t==ptr
int i; // use i if t==num

};

void f(Entry∗ pe)
{

if (pe−>t == num)
cout << pe−>i;

// ...
}

The members p and i are never used at the same time, so space is wasted. It can be easily recovered
by specifying that both should be members of a union, like this:

union Value {
Node∗ p;
int i;

};

The language doesn’t keep track of which kind of value is held by a union, so the programmer must
do that:

struct Entry {
string name;
Type t;
Value v; // use v.p if t==ptr; use v.i if t==num

};
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void f(Entry∗ pe)
{

if (pe−>t == num)
cout << pe−>v.i;

// ...
}

Maintaining the correspondence between a type field (here, t) and the type held in a union is error-
prone. To avoid errors, we can enforce that correspondence by encapsulating the union and the
type field in a class and offer access only through member functions that use the union correctly.
At the application level, abstractions relying on such tagged unions are common and useful. The
use of ‘‘naked’’ unions is best minimized.

The standard library type, variant, can be used to eliminate most direct uses of unions. A variant

stores a value of one of a set of alternative types (§13.5.1). For example, a variant<Node∗,int> can
hold either a Node∗ or an int.

Using variant, the Entr y example could be written as:

struct Entry {
string name;
variant<Node∗,int> v;

};

void f(Entry∗ pe)
{

if (holds_alternative<int>(pe−>v)) // does *pe hold an int? (see §13.5.1)
cout << get<int>(pe−>v); // get the int

// ...
}

For many uses, a variant is simpler and safer to use than a union.

2.5 Enumerations
In addition to classes, C++ supports a simple form of user-defined type for which we can enumer-
ate the values:

enum class Color { red, blue , green };
enum class Traffic_light { green, yellow, red };

Color col = Color::red;
Traffic_light light = Traffic_light::red;

Note that enumerators (e.g., red) are in the scope of their enum class, so that they can be used
repeatedly in different enum classes without confusion. For example, Color::red is Color’s red

which is different from Traffic_light::red.
Enumerations are used to represent small sets of integer values. They are used to make code

more readable and less error-prone than it would have been had the symbolic (and mnemonic) enu-
merator names not been used.
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The class after the enum specifies that an enumeration is strongly typed and that its enumerators
are scoped. Being separate types, enum classes help prevent accidental misuses of constants. In
particular, we cannot mix Traffic_light and Color values:

Color x = red; // error : which red?
Color y = Traffic_light::red; // error : that red is not a Color
Color z = Color::red; // OK

Similarly, we cannot implicitly mix Color and integer values:

int i = Color::red; // error : Color ::red is not an int

Color c = 2; // initialization error: 2 is not a Color

Catching attempted conversions to an enum is a good defense against errors, but often we want to
initialize an enum with a value from its underlying type (by default, that’s int), so that’s allowed, as
is explicit conversion from the underlying type:

Color x = Color{5}; // OK, but verbose
Color y {6}; // also OK

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <; §1.4)
defined. However, an enumeration is a user-defined type, so we can define operators for it:

Traffic_light& operator++(Traffic_light& t) // prefix increment: ++
{

switch (t) {
case Traffic_light::green: return t=Traffic_light::yellow;
case Traffic_light::yellow: return t=Traffic_light::red;
case Traffic_light::red: return t=Traffic_light::green;
}

}

Traffic_light next = ++light; // next becomes Traffic_light::green

If you don’t want to explicitly qualify enumerator names and want enumerator values to be ints
(without the need for an explicit conversion), you can remove the class from enum class to get a
‘‘plain’’ enum. The enumerators from a ‘‘plain’’ enum are entered into the same scope as the name
of their enum and implicitly converts to their integer value. For example:

enum Color { red, green, blue };
int col = green;

Here col gets the value 1. By default, the integer values of enumerators start with 0 and increase by
one for each additional enumerator. The ‘‘plain’’ enums hav e been in C++ (and C) since the earliest
days, so even though they are less well behaved, they are common in current code.

2.6 Advice
[1] Prefer well-defined user-defined types over built-in types when the built-in types are too low-

level; §2.1.
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[2] Organize related data into structures (structs or classes); §2.2; [CG: C.1].
[3] Represent the distinction between an interface and an implementation using a class; §2.3;

[CG: C.3].
[4] A struct is simply a class with its members public by default; §2.3.
[5] Define constructors to guarantee and simplify initialization of classes; §2.3; [CG: C.2].
[6] Avoid ‘‘naked’’ unions; wrap them in a class together with a type field; §2.4; [CG: C.181].
[7] Use enumerations to represent sets of named constants; §2.5; [CG: Enum.2].
[8] Prefer class enums over ‘‘plain’’ enums to minimize surprises; §2.5; [CG: Enum.3].
[9] Define operations on enumerations for safe and simple use; §2.5; [CG: Enum.4].



3
Modularity

Don’t interrupt me while I’m interrupting.
– Winston S. Churchill

• Introduction
• Separate Compilation
• Modules
• Namespaces
• Error Handling

Exceptions; Invariants; Error-Handling Alternatives; Contracts; Static Assertions
• Function Arguments and Return Values

Argument Passing; Value Return; Structured Binding
• Advice

3.1 Introduction
A C++ program consists of many separately developed parts, such as functions (§1.2.1), user-
defined types (Chapter 2), class hierarchies (§4.5), and templates (Chapter 6). The key to managing
this is to clearly define the interactions among those parts. The first and most important step is to
distinguish between the interface to a part and its implementation. At the language level, C++ rep-
resents interfaces by declarations. A declaration specifies all that’s needed to use a function or a
type. For example:

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();
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private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’ For this
example, we might like for the representation of Vector to be ‘‘elsewhere’’ also, but we will deal
with that later (abstract types; §4.3). The definition of sqr t() will look like this:

double sqrt(double d) // definition of sqrt()
{

// ... algorithm as found in math textbook ...
}

For Vector, we need to define all three member functions:

Vector::Vector(int s) // definition of the constructor
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i) // definition of subscripting
{

return elem[i];
}

int Vector::siz e() // definition of size()
{

return sz;
}

We must define Vector’s functions, but not sqr t() because it is part of the standard library. Howev er,
that makes no real difference: a library is simply ‘‘some other code we happen to use’’ written with
the same language facilities we use.

There can be many declarations for an entity, such as a function, but only one definition.

3.2 Separate Compilation
C++ supports a notion of separate compilation where user code sees only declarations of the types
and functions used. The definitions of those types and functions are in separate source files and are
compiled separately. This can be used to organize a program into a set of semi-independent code
fragments. Such separation can be used to minimize compilation times and to strictly enforce sepa-
ration of logically distinct parts of a program (thus minimizing the chance of errors). A library is
often a collection of separately compiled code fragments (e.g., functions).

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. For example:
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// Vector.h:

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

This declaration would be placed in a file Vector.h. Users then include that file, called a header file,
to access that interface. For example:

// user.cpp:

#include "Vector.h" // get Vector’s interface
#include <cmath> // get the standard-librar y math function interface including sqrt()

double sqrt_sum(Vector& v)
{

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=std::sqr t(v[i]); // sum of square roots
return sum;

}

To help the compiler ensure consistency, the .cpp file providing the implementation of Vector will
also include the .h file providing its interface:

// Vector.cpp:

#include "Vector.h" // get Vector’s interface

Vector::Vector(int s)
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i)
{

return elem[i];
}

int Vector::siz e()
{

return sz;
}

The code in user.cpp and Vector.cpp shares the Vector interface information presented in Vector.h,
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but the two files are otherwise independent and can be separately compiled. Graphically, the pro-
gram fragments can be represented like this:

Vector interface

#include "Vector.h"

use Vector

#include "Vector.h"

define Vector

Vector.h:

user.cpp: Vector.cpp:

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how best to
take advantage of a particular language implementation. However, it is of great practical impor-
tance. The best approach to program organization is to think of the program as a set of modules
with well-defined dependencies, represent that modularity logically through language features, and
then exploit the modularity physically through files for effective separate compilation.

A .cpp file that is compiled by itself (including the h files it #includes) is called a translation
unit. A program can consist of many thousand translation units.

3.3 Modules (C++20)
The use of #includes is a very old, error-prone, and rather expensive way of composing programs
out of parts. If you #include header.h in 101 translation units, the text of header.h will be processed
by the compiler 101 times. If you #include header1.h before header2.h the declarations and macros
in header1.h might affect the meaning of the code in header2.h. If instead you #include header2.h

before header1.h, it is header2.h that might affect the code in header1.h. Obviously, this is not ideal,
and in fact it has been a major source of cost and bugs since 1972 when this mechanism was first
introduced into C.

We are finally about to get a better way of expressing physical modules in C++. The language
feature, called modules is not yet ISO C++, but it is an ISO Technical Specification [ModulesTS]
and will be part of C++20. Implementations are in use, so I risk recommending it here even though
details are likely to change and it may be years before everybody can use it in production code.
Old code, in this case code using #include, can ‘‘live’’ for a very long time because it can be costly
and time consuming to update.

Consider how to express the Vector and sqr t_sum() example from §3.2 using modules:

// file Vector.cpp:

module; // this compilation will define a module

// ... here we put stuff that Vector might need for its implementation ...



Section 3.3 Modules (C++20) 33

expor t module Vector; // defining the module called "Vector"

expor t class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

Vector::Vector(int s)
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i)
{

return elem[i];
}

int Vector::siz e()
{

return sz;
}

expor t int size(const Vector& v) { return v.siz e(); }

This defines a module called Vector, which exports the class Vector, all its member functions, and
the non-member function siz e().

The way we use this module is to impor t it where we need it. For example:

// file user.cpp:

impor t Vector; // get Vector’s interface
#include <cmath> // get the standard-librar y math function interface including sqrt()

double sqrt_sum(Vector& v)
{

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=std::sqr t(v[i]); // sum of square roots
return sum;

}

I could have impor ted the standard library mathematical functions also, but I used the old-fashioned
#include just to show that you can mix old and new. Such mixing is essential for gradually upgrad-
ing older code from using #include to impor t.
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The differences between headers and modules are not just syntactic.
• A module is compiled once only (rather than in each translation unit in which it is used).
• Two modules can be impor ted in either order without changing their meaning.
• If you import something into a module, users of your module do not implicitly gain access

to (and are not bothered by) what you imported: impor t is not transitive.
The effects on maintainability and compile-time performance can be spectacular.

3.4 Namespaces
In addition to functions (§1.3), classes (§2.3), and enumerations (§2.5), C++ offers namespaces as a
mechanism for expressing that some declarations belong together and that their names shouldn’t
clash with other names. For example, I might want to experiment with my own complex number
type (§4.2.1, §14.4):

namespace My_code {
class complex {

// ...
};

complex sqr t(complex);
// ...

int main();
}

int My_code::main()
{

complex z {1,2};
auto z2 = sqrt(z);
std::cout << '{' << z2.real() << ',' << z2.imag() << "}\n";
// ...

}

int main()
{

return My_code::main();
}

By putting my code into the namespace My_code, I make sure that my names do not conflict with
the standard-library names in namespace std (§3.4). That precaution is wise, because the standard
library does provide support for complex arithmetic (§4.2.1, §14.4).

The simplest way to access a name in another namespace is to qualify it with the namespace
name (e.g., std::cout and My_code::main). The ‘‘real main()’’ is defined in the global namespace,
that is, not local to a defined namespace, class, or function.

If repeatedly qualifying a name becomes tedious or distracting, we can bring the name into a
scope with a using-declaration:
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void my_code(vector<int>& x, vector<int>& y)
{

using std::swap; // use the standard-librar y sw ap
// ...
swap(x,y); // std::swap()
other::swap(x,y); // some other swap()
// ...

}

A using-declaration makes a name from a namespace usable as if it was declared in the scope in
which it appears. After using std::swap, it is exactly as if swap had been declared in my_code().

To gain access to all names in the standard-library namespace, we can use a using-directive:

using namespace std;

A using-directive makes unqualified names from the named namespace accessible from the scope
in which we placed the directive. So after the using-directive for std, we can simply write cout

rather than std::cout. By using a using-directive, we lose the ability to selectively use names from
that namespace, so this facility should be used carefully, usually for a library that’s pervasive in an
application (e.g., std) or during a transition for an application that didn’t use namespaces.

Namespaces are primarily used to organize larger program components, such as libraries. They
simplify the composition of a program out of separately developed parts.

3.5 Error Handling
Error handling is a large and complex topic with concerns and ramifications that go far beyond lan-
guage facilities into programming techniques and tools. However, C++ provides a few features to
help. The major tool is the type system itself. Instead of painstakingly building up our applications
from the built-in types (e.g., char, int, and double) and statements (e.g., if, while , and for), we build
types (e.g., string, map, and reg ex) and algorithms (e.g., sor t(), find_if(), and draw_all()) that are
appropriate for our applications. Such higher-level constructs simplify our programming, limit our
opportunities for mistakes (e.g., you are unlikely to try to apply a tree traversal to a dialog box), and
increase the compiler’s chances of catching errors. The majority of C++ language constructs are
dedicated to the design and implementation of elegant and efficient abstractions (e.g., user-defined
types and algorithms using them). One effect of such abstraction is that the point where a run-time
error can be detected is separated from the point where it can be handled. As programs grow, and
especially when libraries are used extensively, standards for handling errors become important. It
is a good idea to articulate a strategy for error handling early on in the development of a program.

3.5.1 Exceptions

Consider again the Vector example. What ought to be done when we try to access an element that
is out of range for the vector from §2.3?

• The writer of Vector doesn’t know what the user would like to hav e done in this case (the
writer of Vector typically doesn’t even know in which program the vector will be running).
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• The user of Vector cannot consistently detect the problem (if the user could, the out-of-range
access wouldn’t happen in the first place).

Assuming that out-of-range access is a kind of error that we want to recover from, the solution is
for the Vector implementer to detect the attempted out-of-range access and tell the user about it.
The user can then take appropriate action. For example, Vector::operator[]() can detect an attempted
out-of-range access and throw an out_of_rang e exception:

double& Vector::operator[](int i)
{

if (i<0 || size()<=i)
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

The throw transfers control to a handler for exceptions of type out_of_rang e in some function that
directly or indirectly called Vector::operator[](). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. That is, the exception han-
dling mechanism will exit scopes and functions as needed to get back to a caller that has expressed
interest in handling that kind of exception, invoking destructors (§4.2.2) along the way as needed.
For example:

void f(Vector& v)
{

// ...
tr y { // exceptions here are handled by the handler defined below

v[v.siz e()] = 7; // tr y to access beyond the end of v
}
catch (out_of_rang e& err) { // oops: out_of_range error

// ... handle range error ...
cerr << err.what() << '\n';

}
// ...

}

We put code for which we are interested in handling exceptions into a tr y-block. The attempted
assignment to v[v.siz e()] will fail. Therefore, the catch-clause providing a handler for exceptions of
type out_of_rang e will be entered. The out_of_rang e type is defined in the standard library (in
<stdexcept>) and is in fact used by some standard-library container access functions.

I caught the exception by reference to avoid copying and used the what() function to print the
error message put into it at the throw-point.

Use of the exception-handling mechanisms can make error handling simpler, more systematic,
and more readable. To achieve that, don’t overuse tr y-statements. The main technique for making
error handling simple and systematic (called Resource Acquisition Is Initialization; RAII) is
explained in §4.2.2. The basic idea behind RAII is for a constructor to acquire all resources neces-
sary for a class to operate and have the destructor release all resources, thus making resource
release guaranteed and implicit.
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A function that should never throw an exception can be declared noexcept. For example:

void user(int sz) noexcept
{

Vector v(sz);
iota(&v[0],&v[sz],1); // fill v with 1,2,3,4... (see §14.3)
// ...

}

If all good intent and planning fails, so that user() still throws, std::terminate() is called to immedi-
ately terminate the program.

3.5.2 Invariants

The use of exceptions to signal out-of-range access is an example of a function checking its argu-
ment and refusing to act because a basic assumption, a precondition, didn’t hold. Had we formally
specified Vector’s subscript operator, we would have said something like ‘‘the index must be in the
[0:siz e()) range,’’ and that was in fact what we tested in our operator[](). The [a:b) notation specifies
a half-open range, meaning that a is part of the range, but b is not. Whenever we define a function,
we should consider what its preconditions are and consider whether to test them (§3.5.3). For most
applications it is a good idea to test simple invariants; see also §3.5.4.

However, operator[]() operates on objects of type Vector and nothing it does makes any sense
unless the members of Vector have ‘‘reasonable’’ values. In particular, we did say ‘‘elem points to
an array of sz doubles’’ but we only said that in a comment. Such a statement of what is assumed
to be true for a class is called a class invariant, or simply an invariant. It is the job of a constructor
to establish the invariant for its class (so that the member functions can rely on it) and for the mem-
ber functions to make sure that the invariant holds when they exit. Unfortunately, our Vector con-
structor only partially did its job. It properly initialized the Vector members, but it failed to check
that the arguments passed to it made sense. Consider:

Vector v(−27);

This is likely to cause chaos.
Here is a more appropriate definition:

Vector::Vector(int s)
{

if (s<0)
throw length_error{"Vector constructor: negative size"};

elem = new double[s];
sz = s;

}

I use the standard-library exception length_error to report a non-positive number of elements
because some standard-library operations use that exception to report problems of this kind. If
operator new can’t find memory to allocate, it throws a std::bad_alloc. We can now write:
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void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error& err) {

// handle negative size
}
catch (std::bad_alloc& err) {

// handle memory exhaustion
}

}

You can define your own classes to be used as exceptions and have them carry arbitrary information
from a point where an error is detected to a point where it can be handled (§3.5.1).

Often, a function has no way of completing its assigned task after an exception is thrown.
Then, ‘‘handling’’ an exception means doing some minimal local cleanup and rethrowing the
exception. For example:

void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error&) { // do something and rethrow

cerr << "test failed: length error\n";
throw; // rethrow

}
catch (std::bad_alloc&) { // Ouch! this program is not designed to handle memory exhaustion

std::terminate(); // ter minate the program
}

}

In well-designed code tr y-blocks are rare. Av oid overuse by systematically using the RAII tech-
nique (§4.2.2, §5.3).

The notion of invariants is central to the design of classes, and preconditions serve a similar role
in the design of functions. Invariants

• help us to understand precisely what we want
• force us to be specific; that gives us a better chance of getting our code correct (after debug-

ging and testing).
The notion of invariants underlies C++’s notions of resource management supported by construc-
tors (Chapter 4) and destructors (§4.2.2, §13.2).

3.5.3 Error-Handling Alternatives

Error handling is a major issue in all real-world software, so naturally there are a variety of
approaches. If an error is detected and it cannot be handled locally in a function, the function must
somehow communicate the problem to some caller. Throwing an exception is C++’s most general
mechanism for that.
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There are languages where exceptions are designed simply to provide an alternate mechanism
for returning values. C++ is not such a language: exceptions are designed to be used to report fail-
ure to complete a given task. Exceptions are integrated with constructors and destructors to provide
a coherent framework for error handling and resource management (§4.2.2, §5.3). Compilers are
optimized to make returning a value much cheaper than throwing the same value as an exception.

Throwing an exception is not the only way of reporting an error that cannot be handled locally.
A function can indicate that it cannot perform its allotted task by:

• throwing an exception
• somehow return a value indicating failure
• terminating the program (by invoking a function like terminate(), exit(), or abor t()).

We return an error indicator (an ‘‘error code’’) when:
• A failure is normal and expected. For example, it is quite normal for a request to open a file

to fail (maybe there is no file of that name or maybe the file cannot be opened with the per-
missions requested).

• An immediate caller can reasonably be expected to handle the failure.
We throw an exception when:

• An error is so rare that a programmer is likely to forget to check for it. For example, when
did you last check the return value of printf()?

• An error cannot be handled by an immediate caller. Instead, the error has to percolate back
to an ultimate caller. For example, it is infeasible to have every function in an application
reliably handle every allocation failure or network outage.

• New kinds of errors can be added in lower-modules of an application so that higher-level
modules are not written to cope with such errors. For example, when a previously single-
threaded application is modified to use multiple threads or resources are placed remotely to
be accessed over a network.

• No suitable return path for errors codes are available. For example, a constructor does not
have a return value for a ‘‘caller’’ to check. In particular, constructors may be invoked for
several local variables or in a partially constructed complex object so that clean-up based on
error codes would be quite complicated.

• The return path of a function is made more complicated or expensive by a need to pass both
a value and an error indicator back (e.g., a pair; §13.4.3 ), possibly leading to the use of out-
parameters, non-local error-status indicators, or other workarounds.

• The error has to be transmitted up a call chain to an ‘‘ultimate caller.’’ Repeatedly checking
an error-code would be tedious, expensive, and error-prone.

• The recovery from errors depends on the results of several function calls, leading to the need
to maintain local state between calls and complicated control structures.

• The function that found the error was a callback (a function argument), so the immediate
caller may not even know what function was called.

• An error implies that some ‘‘undo action’’ is needed.
We terminate when

• An error is of a kind from which we cannot recover. For example, for many – but not all –
systems there is no reasonable way to recover from memory exhaustion.

• The system is one where error-handling is based on restarting a thread, process, or computer
whenever a non-trivial error is detected.
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One way to ensure termination is to add noexcept to a function so that a throw from anywhere in the
function’s implementation will turn into a terminate(). Note that there are applications that can’t
accept unconditional terminations, so alternatives must be used.

Unfortunately, these conditions are not always logically disjoint and easy to apply. The size and
complexity of a program matters. Sometimes the tradeoffs change as an application evolves.
Experience is required. When in doubt, prefer exceptions because their use scales better, and don’t
require external tools to check that all errors are handled.

Don’t believe that all error codes or all exceptions are bad; there are clear uses for both. Fur-
thermore, do not believe the myth that exception handling is slow; it is often faster than correct han-
dling of complex or rare error conditions, and of repeated tests of error codes.

RAII (§4.2.2, §5.3) is essential for simple and efficient error-handling using exceptions. Code
littered with tr y-blocks often simply reflects the worst aspects of error-handling strategies conceived
for error codes.

3.5.4 Contracts

There is currently no general and standard way of writing optional run-time tests of invariants, pre-
conditions, etc. A contract mechanism is proposed for C++20 [Garcia,2016] [Garcia,2018]. The
aim is to support users who want to rely on testing to get programs right – running with extensive
run-time checks – but then deploy code with minimal checks. This is popular in high-performance
applications in organizations that rely on systematic and extensive checking.

For now, we hav e to rely on ad hoc mechanisms. For example, we could use a command-line
macro to control a run-time check:

double& Vector::operator[](int i)
{

if (RANGE_CHECK && (i<0 || size()<=i))
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

The standard library offers the debug macro, asser t(), to assert that a condition must hold at run
time. For example:

void f(const char∗ p)
{

asser t(p!=nullptr); // p must not be the nullptr
// ...

}

If the condition of an asser t() fails in ‘‘debug mode,’’ the program terminates. If we are not in
debug mode, the asser t() is not checked. That’s pretty crude and inflexible, but often sufficient.

3.5.5 Static Assertions

Exceptions report errors found at run time. If an error can be found at compile time, it is usually
preferable to do so. That’s what much of the type system and the facilities for specifying the inter-
faces to user-defined types are for. Howev er, we can also perform simple checks on most
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properties that are known at compile time and report failures to meet our expectations as compiler
error messages. For example:

static_asser t(4<=sizeof(int), "integers are too small"); // check integer size

This will write integ ers are too small if 4<=siz eof(int) does not hold; that is, if an int on this system
does not have at least 4 bytes. We call such statements of expectations assertions.

The static_asser t mechanism can be used for anything that can be expressed in terms of constant
expressions (§1.6). For example:

constexpr double C = 299792.458; // km/s

void f(double speed)
{

constexpr double local_max = 160.0/(60∗60); // 160 km/h == 160.0/(60*60) km/s

static_asser t(speed<C,"can't go that fast"); // error : speed must be a constant
static_asser t(local_max<C,"can't go that fast"); // OK

// ...
}

In general, static_asser t(A,S) prints S as a compiler error message if A is not true. If you don’t want
a specific message printed, leave out the S and the compiler will supply a default message:

static_asser t(4<=sizeof(int)); // use default message

The default message is typically the source location of the static_asser t plus a character representa-
tion of the asserted predicate.

The most important uses of static_asser t come when we make assertions about types used as
parameters in generic programming (§7.2, §13.9).

3.6 Function Arguments and Return Values
The primary and recommended way of passing information from one part of a program to another
is through a function call. Information needed to perform a task is passed as arguments to a func-
tion and the results produced are passed back as return values. For example:

int sum(const vector<int>& v)
{

int s = 0;
for (const int i : v)

s += i;
return s;

}

vector fib = {1,2,3,5,8,13,21};

int x = sum(fib); // x becomes 53



42 Modularity Chapter 3

There are other paths through which information can be passed between functions, such as global
variables (§1.5), pointer and reference parameters (§3.6.1), and shared state in a class object (Chap-
ter 4). Global variables are strongly discouraged as a known source of errors, and state should typi-
cally be shared only between functions jointly implementing a well-defined abstraction (e.g., mem-
ber functions of a class; §2.3).

Given the importance of passing information to and from functions, it is not surprising that
there are a variety of ways of doing it. Ke y concerns are:

• Is an object copied or shared?
• If an object is shared, is it mutable?
• Is an object moved, leaving an ‘‘empty object’’ behind (§5.2.2)?

The default behavior for both argument passing and value return is ‘‘copy’’ (§1.9), but some copies
can implicitly be optimized to moves.

In the sum() example, the resulting int is copied out of sum() but it would be inefficient and
pointless to copy the potentially very large vector into sum(), so the argument is passed by reference
(indicated by the &; §1.7).

The sum() has no reason to modify its argument. This immutability is indicated by declaring the
vector argument const (§1.6), so the vector is passed by const-reference.

3.6.1 Argument Passing

First consider how to get values into a function. By default we copy (‘‘pass-by-value’’) and if we
want to refer to an object in the caller’s environment, we use a reference (‘‘pass-by-reference’’).
For example:

void test(vector<int> v, vector<int>& rv) // v is passed by value; rv is passed by reference
{

v[1] = 99; // modify v (a local var iable)
rv[2] = 66; // modify whatever rv refers to

}

int main()
{

vector fib = {1,2,3,5,8,13,21};
test(fib,fib);
cout << fib[1] << ' ' << fib[2] << '\n'; // pr ints 2 66

}

When we care about performance, we usually pass small values by-value and larger ones by-refer-
ence. Here ‘‘small’’ means ‘‘something that’s really cheap to copy.’’ Exactly what ‘‘small’’ means
depends on machine architecture, but ‘‘the size of two or three pointers or less’’ is a good rule of
thumb.

If we want to pass by reference for performance reasons but don’t need to modify the argument,
we pass-by-const-reference as in the sum() example. This is by far the most common case in ordi-
nary good code: it is fast and not error-prone.

It is not uncommon for a function argument to have a default value; that is, a value that is con-
sidered preferred or just the most common. We can specify such a default by a default function
argument. For example:
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void print(int value , int base =10); // pr int value in base "base"

print(x,16); // hexadecimal
print(x,60); // sexagesimal (Sumerian)
print(x); // use the dafault: decimal

This is a notationally simpler alternative to overloading:

void print(int value , int base); // pr int value in base "base"

void print(int value) // pr int value in base 10
{

print(value ,10);
}

3.6.2 Value Return

Once we have computed a result, we need to get it out of the function and back to the caller. Again,
the default for value return is to copy and for small objects that’s ideal. We return ‘‘by reference’’
only when we want to grant a caller access to something that is not local to the function. For exam-
ple:

class Vector {
public:

// ...
double& operator[](int i) { return elem[i]; } // retur n reference to ith element

private:
double∗ elem; // elem points to an array of sz
// ...

};

The ith element of a Vector exists independently of the call of the subscript operator, so we can
return a reference to it.

On the other hand, a local variable disappears when the function returns, so we should not
return a pointer or reference to it:

int& bad()
{

int x;
// ...
return x; // bad: return a reference to the local var iable x

}

Fortunately, all major C++ compilers will catch the obvious error in bad().
Returning a reference or a value of a ‘‘small’’ type is efficient, but how do we pass large

amounts of information out of a function? Consider:
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Matrix operator+(const Matrix& x, const Matrix& y)
{

Matrix res;
// ... for all res[i,j], res[i,j] = x[i,j]+y[i,j] ...
return res;

}

Matrix m1, m2;
// ...
Matrix m3 = m1+m2; // no copy

A Matrix may be very large and expensive to copy even on modern hardware. So we don’t copy, we
give Matrix a move constructor (§5.2.2) and very cheaply move the Matrix out of operator+(). We do
not need to regress to using manual memory management:

Matrix∗ add(const Matrix& x, const Matrix& y) // complicated and error-prone 20th century style
{

Matrix∗ p = new Matrix;
// ... for all *p[i,j], *p[i,j] = x[i,j]+y[i,j] ...
return p;

}

Matrix m1, m2;
// ...
Matrix∗ m3 = add(m1,m2); // just copy a pointer
// ...
delete m3; // easily forgotten

Unfortunately, returning large objects by returning a pointer to it is common in older code and a
major source of hard-to-find errors. Don’t write such code. Note that operator+() is as efficient as
add(), but far easier to define, easier to use, and less error-prone.

If a function cannot perform its required task, it can throw an exception (§3.5.1). This can help
avoid code from being littered with error-code tests for ‘‘exceptional problems.’’

The return type of a function can be deduced from its return value. For example:

auto mul(int i, double d) { return i∗d; } // here, "auto" means "deduce the return type"

This can be convenient, especially for generic functions (function templates; §6.3.1) and lambdas
(§6.3.3), but should be used carefully because a deduced type does not offer a stable interface: a
change to the implementation of the function (or lambda) can change the type.

3.6.3 Structured Binding

A function can return only a single value, but that value can be a class object with many members.
This allows us to efficiently return many values. For example:

struct Entry {
string name;
int value;

};
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Entr y read_entr y(istream& is) // naive read function (for a better version, see §10.5)
{

string s;
int i;
is >> s >> i;
return {s,i};

}

auto e = read_entry(cin);

cout << "{ " << e.name << " , " << e.value << " }\n";

Here, {s,i} is used to construct the Entr y return value. Similarly, we can ‘‘unpack’’ an
Entr y’s members into local variables:

auto [n,v] = read_entry(is);
cout << "{ " << n << " , " << v << " }\n";

The auto [n,v] declares two local variables n and v with their types deduced from
read_entr y()’s return type. This mechanism for giving local names to members of a class
object is called structured binding.

Consider another example:

map<string,int> m;
// ... fill m ...
for (const auto [key,value] : m)

cout << "{" << key "," << value << "}\n";

As usual, we can decorate auto with const and &. For example:

void incr(map<string,int>& m) // increment the value of each element of m
{

for (auto& [key,value] : m)
++value;

}

When structured binding is used for a class with no private data, it is easy to see how the binding is
done: there must be the same number of names defined for the binding as there are nonstatic data
members of the class, and each name introduced in the binding names the corresponding member.
There will not be any difference in the object code quality compared to explicitly using a composite
object; the use of structured binding is all about how best to express an idea.

It is also possible to handle classes where access is through member functions. For example:

complex<double> z = {1,2};
auto [re,im] = z+2; // re=3; im=2

A complex has two data members, but its interface consists of access functions, such as real() and
imag(). Mapping a complex<double> to two local variables, such as re and im is feasible and effi-
cient, but the technique for doing so is beyond the scope of this book.
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3.7 Advice
[1] Distinguish between declarations (used as interfaces) and definitions (used as implementa-

tions); §3.1.
[2] Use header files to represent interfaces and to emphasize logical structure; §3.2; [CG: SF.3].
[3] #include a header in the source file that implements its functions; §3.2; [CG: SF.5].
[4] Avoid non-inline function definitions in headers; §3.2; [CG: SF.2].
[5] Prefer modules over headers (where modules are supported); §3.3.
[6] Use namespaces to express logical structure; §3.4; [CG: SF.20].
[7] Use using-directives for transition, for foundational libraries (such as std), or within a local

scope; §3.4; [CG: SF.6] [CG: SF.7].
[8] Don’t put a using-directive in a header file; §3.4; [CG: SF.7].
[9] Throw an exception to indicate that you cannot perform an assigned task; §3.5; [CG: E.2].
[10] Use exceptions for error handling only; §3.5.3; [CG: E.3].
[11] Use error codes when an immediate caller is expected to handle the error; §3.5.3.
[12] Throw an exception if the error is expected to percolate up through many function calls;

§3.5.3.
[13] If in doubt whether to use an exception or an error code, prefer exceptions; §3.5.3.
[14] Develop an error-handling strategy early in a design; §3.5; [CG: E.12].
[15] Use purpose-designed user-defined types as exceptions (not built-in types); §3.5.1.
[16] Don’t try to catch every exception in every function; §3.5; [CG: E.7].
[17] Prefer RAII to explicit tr y-blocks; §3.5.1, §3.5.2; [CG: E.6].
[18] If your function may not throw, declare it noexcept; §3.5; [CG: E.12].
[19] Let a constructor establish an invariant, and throw if it cannot; §3.5.2; [CG: E.5].
[20] Design your error-handling strategy around invariants; §3.5.2; [CG: E.4].
[21] What can be checked at compile time is usually best checked at compile time; §3.5.5 [CG:

P.4] [CG: P.5].
[22] Pass ‘‘small’’ values by value and ‘‘large‘‘ values by references; §3.6.1; [CG: F.16].
[23] Prefer pass-by-const-reference over plain pass-by-reference; §3.6.1; [CG: F.17].
[24] Return values as function-return values (rather than by out-parameters); §3.6.2; [CG: F.20]

[CG: F.21].
[25] Don’t overuse return-type deduction; §3.6.2.
[26] Don’t overuse structured binding; using a named return type is often clearer documentation;

§3.6.3.
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Those types are not “abstract”;
they are as real as int and float.

– Doug McIlroy

• Introduction
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• Class Hierarchies

Benefits from Hierarchies; Hierarchy Navigation; Avoiding Resource Leaks
• Advice

4.1 Introduction
This chapter and the next three aim to give you an idea of C++’s support for abstraction and
resource management without going into a lot of detail:

• This chapter informally presents ways of defining and using new types (user-defined types).
In particular, it presents the basic properties, implementation techniques, and language facil-
ities used for concrete classes, abstract classes, and class hierarchies.

• Chapter 5 presents the operations that have defined meaning in C++, such as constructors,
destructors, and assignments. It outlines the rules for using those in combination to control
the life cycle of objects and to support simple, efficient, and complete resource management.

• Chapter 6 introduces templates as a mechanism for parameterizing types and algorithms
with (other) types and algorithms. Computations on user-defined and built-in types are rep-
resented as functions, sometimes generalized to template functions and function objects.

• Chapter 7 gives an overview of the concepts, techniques, and language features that underlie
generic programming. The focus is on the definition and use of concepts for precisely
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specifying interfaces to templates and guide design. Variadic templates are introduced for
specifying the most general and most flexible interfaces.

These are the language facilities supporting the programming styles known as object-oriented pro-
gramming and generic programming. Chapters 8–15 follow up by presenting examples of stan-
dard-library facilities and their use.

The central language feature of C++ is the class. A class is a user-defined type provided to rep-
resent a concept in the code of a program. Whenever our design for a program has a useful con-
cept, idea, entity, etc., we try to represent it as a class in the program so that the idea is there in the
code, rather than just in our heads, in a design document, or in some comments. A program built
out of a well-chosen set of classes is far easier to understand and get right than one that builds
ev erything directly in terms of the built-in types. In particular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and statements exist
to help define better classes or to use them more conveniently. By ‘‘better,’’ I mean more correct,
easier to maintain, more efficient, more elegant, easier to use, easier to read, and easier to reason
about. Most programming techniques rely on the design and implementation of specific kinds of
classes. The needs and tastes of programmers vary immensely. Consequently, the support for
classes is extensive. Here, we will just consider the basic support for three important kinds of
classes:

• Concrete classes (§4.2)
• Abstract classes (§4.3)
• Classes in class hierarchies (§4.5)

An astounding number of useful classes turn out to be of one of these three kinds. Even more
classes can be seen as simple variants of these kinds or are implemented using combinations of the
techniques used for these.

4.2 Concrete Types
The basic idea of concrete classes is that they behave ‘‘just like built-in types.’’ For example, a
complex number type and an infinite-precision integer are much like built-in int, except of course
that they hav e their own semantics and sets of operations. Similarly, a vector and a string are much
like built-in arrays, except that they are better behaved (§9.2, §10.3, §11.2).

The defining characteristic of a concrete type is that its representation is part of its definition. In
many important cases, such as a vector, that representation is only one or more pointers to data
stored elsewhere, but that representation is present in each object of a concrete class. That allows
implementations to be optimally efficient in time and space. In particular, it allows us to

• place objects of concrete types on the stack, in statically allocated memory, and in other
objects (§1.5);

• refer to objects directly (and not just through pointers or references);
• initialize objects immediately and completely (e.g., using constructors; §2.3); and
• copy and move objects (§5.2).

The representation can be private (as it is for Vector; §2.3) and accessible only through the member
functions, but it is present. Therefore, if the representation changes in any significant way, a user
must recompile. This is the price to pay for having concrete types behave exactly like built-in
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types. For types that don’t change often, and where local variables provide much-needed clarity
and efficiency, this is acceptable and often ideal. To increase flexibility, a concrete type can keep
major parts of its representation on the free store (dynamic memory, heap) and access them through
the part stored in the class object itself. That’s the way vector and string are implemented; they can
be considered resource handles with carefully crafted interfaces.

4.2.1 An Arithmetic Type

The ‘‘classical user-defined arithmetic type’’ is complex:

class complex {
double re, im; // representation: two doubles

public:
complex(double r, double i) :re{r}, im{i} {} // constr uct complex from two scalars
complex(double r) :re{r}, im{0} {} // constr uct complex from one scalar
complex() :re{0}, im{0} {} // default complex: {0,0}

double real() const { return re; }
void real(double d) { re=d; }
double imag() const { return im; }
void imag(double d) { im=d; }

complex& operator+=(complex z)
{

re+=z.re; // add to re and im
im+=z.im;
return ∗this; // and return the result

}

complex& operator−=(complex z)
{

re−=z.re;
im−=z.im;
return ∗this;

}

complex& operator∗=(complex); // defined out-of-class somewhere
complex& operator/=(complex); // defined out-of-class somewhere

};

This is a slightly simplified version of the standard-library complex (§14.4). The class definition
itself contains only the operations requiring access to the representation. The representation is sim-
ple and conventional. For practical reasons, it has to be compatible with what Fortran provided 60
years ago, and we need a conventional set of operators. In addition to the logical demands, complex

must be efficient or it will remain unused. This implies that simple operations must be inlined.
That is, simple operations (such as constructors, +=, and imag()) must be implemented without func-
tion calls in the generated machine code. Functions defined in a class are inlined by default. It is
possible to explicitly request inlining by preceding a function declaration with the keyword inline.
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An industrial-strength complex (like the standard-library one) is carefully implemented to do appro-
priate inlining.

A constructor that can be invoked without an argument is called a default constructor. Thus,
complex() is complex’s default constructor. By defining a default constructor you eliminate the pos-
sibility of uninitialized variables of that type.

The const specifiers on the functions returning the real and imaginary parts indicate that these
functions do not modify the object for which they are called. A const member function can be
invoked for both const and non-const objects, but a non-const member function can only be
invoked for non-const objects. For example:

complex z = {1,0};
const complex cz {1,3};
z = cz; // OK: assigning to a non-const var iable
cz = z; // error : complex::operator=() is a non-const member function
double x = z.real(); // OK: complex::real() is a const member function

Many useful operations do not require direct access to the representation of complex, so they can be
defined separately from the class definition:

complex operator+(complex a, complex b) { return a+=b; }
complex operator−(complex a, complex b) { return a−=b; }
complex operator−(complex a) { return {−a.real(), −a.imag()}; } // unar y minus
complex operator∗(complex a, complex b) { return a∗=b; }
complex operator/(complex a, complex b) { return a/=b; }

Here, I use the fact that an argument passed by value is copied so that I can modify an argument
without affecting the caller’s copy and use the result as the return value.

The definitions of == and != are straightforward:

bool operator==(complex a, complex b) // equal
{

return a.real()==b.real() && a.imag()==b.imag();
}

bool operator!=(complex a, complex b) // not equal
{

return !(a==b);
}

complex sqr t(complex); // the definition is elsewhere

// ...

Class complex can be used like this:

void f(complex z)
{

complex a {2.3}; // constr uct {2.3,0.0} from 2.3
complex b {1/a};
complex c {a+z∗complex{1,2.3}};
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// ...
if (c != b)

c = −(b/a)+2∗b;
}

The compiler converts operators involving complex numbers into appropriate function calls. For
example, c!=b means operator!=(c,b) and 1/a means operator/(complex{1},a).

User-defined operators (‘‘overloaded operators’’) should be used cautiously and conventionally.
The syntax is fixed by the language, so you can’t define a unary /. Also, it is not possible to change
the meaning of an operator for built-in types, so you can’t redefine + to subtract ints.

4.2.2 A Container

A container is an object holding a collection of elements. We call class Vector a container because
objects of type Vector are containers. As defined in §2.3, Vector isn’t an unreasonable container of
doubles: it is simple to understand, establishes a useful invariant (§3.5.2), provides range-checked
access (§3.5.1), and provides siz e() to allow us to iterate over its elements. However, it does have a
fatal flaw: it allocates elements using new but nev er deallocates them. That’s not a good idea
because although C++ defines an interface for a garbage collector (§5.3), it is not guaranteed that
one is available to make unused memory available for new objects. In some environments you
can’t use a collector, and often you prefer more precise control of destruction for logical or perfor-
mance reasons. We need a mechanism to ensure that the memory allocated by the constructor is
deallocated; that mechanism is a destructor:

class Vector {
public:

Vector(int s) :elem{new double[s]}, sz{s} // constr uctor: acquire resources
{

for (int i=0; i!=s; ++i) // initialize elements
elem[i]=0;

}

˜Vector() { delete[] elem; } // destr uctor: release resources

double& operator[](int i);
int size() const;

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

The name of a destructor is the complement operator, ˜, followed by the name of the class; it is the
complement of a constructor. Vector’s constructor allocates some memory on the free store (also
called the heap or dynamic store) using the new operator. The destructor cleans up by freeing that
memory using the delete[] operator. Plain delete deletes an individual object, delete[] deletes an
array.

This is all done without intervention by users of Vector. The users simply create and use Vectors
much as they would variables of built-in types. For example:
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void fct(int n)
{

Vector v(n);
// ... use v ...
{

Vector v2(2∗n);
// ... use v and v2 ...

} // v2 is destroyed here
// ... use v ..

} // v is destroyed here

Vector obeys the same rules for naming, scope, allocation, lifetime, etc. (§1.5), as does a built-in
type, such as int and char. This Vector has been simplified by leaving out error handling; see §3.5.

The constructor/destructor combination is the basis of many elegant techniques. In particular, it
is the basis for most C++ general resource management techniques (§5.3, §13.2). Consider a
graphical illustration of a Vector:

6

Vector:

elem:

sz: 0 0 0 0 0 0
0: 1: 2: 3: 4: 5:

The constructor allocates the elements and initializes the Vector members appropriately. The de-
structor deallocates the elements. This handle-to-data model is very commonly used to manage
data that can vary in size during the lifetime of an object. The technique of acquiring resources in a
constructor and releasing them in a destructor, known as Resource Acquisition Is Initialization or
RAII, allows us to eliminate ‘‘naked new operations,’’ that is, to avoid allocations in general code
and keep them buried inside the implementation of well-behaved abstractions. Similarly, ‘‘naked
delete operations’’ should be avoided. Avoiding naked new and naked delete makes code far less
error-prone and far easier to keep free of resource leaks (§13.2).

4.2.3 Initializing Containers

A container exists to hold elements, so obviously we need convenient ways of getting elements into
a container. We can create a Vector with an appropriate number of elements and then assign to
them, but typically other ways are more elegant. Here, I just mention two favorites:

• Initializer-list constructor: Initialize with a list of elements.
• push_back(): Add a new element at the end of (at the back of) the sequence.

These can be declared like this:

class Vector {
public:

Vector(std::initializ er_list<double>); // initialize with a list of doubles
// ...
void push_back(double); // add element at end, increasing the size by one
// ...

};
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The push_back() is useful for input of arbitrary numbers of elements. For example:

Vector read(istream& is)
{

Vector v;
for (double d; is>>d; ) // read floating-point values into d

v.push_back(d); // add d to v
return v;

}

The input loop is terminated by an end-of-file or a formatting error. Until that happens, each num-
ber read is added to the Vector so that at the end, v’s size is the number of elements read. I used a
for-statement rather than the more conventional while-statement to keep the scope of d limited to the
loop. The way to provide Vector with a move constructor, so that returning a potentially huge
amount of data from read() is cheap, is explained in §5.2.2:

Vector v = read(cin); // no copy of Vector elements here

The way that std::vector is represented to make push_back() and other operations that change a
vector's size efficient is presented in §11.2.

The std::initializ er_list used to define the initializer-list constructor is a standard-library type
known to the compiler: when we use a {}-list, such as {1,2,3,4}, the compiler will create an object of
type initializ er_list to give to the program. So, we can write:

Vector v1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = {1.23, 3.45, 6.7, 8}; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Vector::Vector(std::initializ er_list<double> lst) // initialize with a list
:elem{new double[lst.siz e()]}, sz{static_cast<int>(lst.siz e())}

{
copy(lst.begin(),lst.end(),elem); // copy from lst into elem (§12.6)

}

Unfortunately, the standard-library uses unsigned integers for sizes and subscripts, so I need to use
the ugly static_cast to explicitly convert the size of the initializer list to an int. This is pedantic
because the chance that the number of elements in a handwritten list is larger than the largest inte-
ger (32,767 for 16-bit integers and 2,147,483,647 for 32-bit integers) is rather low. Howev er, the
type system has no common sense. It knows about the possible values of variables, rather than
actual values, so it might complain where there is no actual violation. Such warnings can occasion-
ally save the programmer from a bad error.

A static_cast does not check the value it is converting; the programmer is trusted to use it cor-
rectly. This is not always a good assumption, so if in doubt, check the value. Explicit type conver-
sions (often called casts to remind you that they are used to prop up something broken) are best
avoided. Try to use unchecked casts only for the lowest level of a system. They are error-prone.

Other casts are reinterpret_cast for treating an object as simply a sequence of bytes and
const_cast for ‘‘casting away const.’’ Judicious use of the type system and well-designed libraries
allow us to eliminate unchecked casts in higher-level software.
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4.3 Abstract Types
Types such as complex and Vector are called concrete types because their representation is part of
their definition. In that, they resemble built-in types. In contrast, an abstract type is a type that
completely insulates a user from implementation details. To do that, we decouple the interface
from the representation and give up genuine local variables. Since we don’t know anything about
the representation of an abstract type (not even its size), we must allocate objects on the free store
(§4.2.2) and access them through references or pointers (§1.7, §13.2.1).

First, we define the interface of a class Container, which we will design as a more abstract ver-
sion of our Vector:

class Container {
public:

vir tual double& operator[](int) = 0; // pure virtual function
vir tual int size() const = 0; // const member function (§4.2.1)
vir tual ˜Container() {} // destr uctor (§4.2.2)

};

This class is a pure interface to specific containers defined later. The word vir tual means ‘‘may be
redefined later in a class derived from this one.’’ Unsurprisingly, a function declared vir tual is
called a virtual function. A class derived from Container provides an implementation for the Con-

tainer interface. The curious =0 syntax says the function is pure virtual; that is, some class derived
from Container must define the function. Thus, it is not possible to define an object that is just a
Container. For example:

Container c; // error : there can be no objects of an abstract class
Container∗ p = new Vector_container(10); // OK: Container is an interface

A Container can only serve as the interface to a class that implements its operator[]() and siz e() func-
tions. A class with a pure virtual function is called an abstract class.

This Container can be used like this:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i!=sz; ++i)
cout << c[i] << '\n';

}

Note how use() uses the Container interface in complete ignorance of implementation details. It
uses siz e() and [ ] without any idea of exactly which type provides their implementation. A class
that provides the interface to a variety of other classes is often called a polymorphic type.

As is common for abstract classes, Container does not have a constructor. After all, it does not
have any data to initialize. On the other hand, Container does have a destructor and that destructor
is vir tual, so that classes derived from Container can provide implementations. Again, that is com-
mon for abstract classes because they tend to be manipulated through references or pointers, and
someone destroying a Container through a pointer has no idea what resources are owned by its
implementation; see also §4.5.
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The abstract class Container defines only an interface and no implementation. For Container to
be useful, we have to implement a container that implements the functions required by its interface.
For that, we could use the concrete class Vector:

class Vector_container : public Container { // Vector_container implements Container
public:

Vector_container(int s) : v(s) { } // Vector of s elements
˜Vector_container() {}

double& operator[](int i) override { return v[i]; }
int size() const override { return v.siz e(); }

private:
Vector v;

};

The :public can be read as ‘‘is derived from’’ or ‘‘is a subtype of.’’ Class Vector_container is said to
be derived from class Container, and class Container is said to be a base of class Vector_container.
An alternative terminology calls Vector_container and Container subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to as inheritance.

The members operator[]() and siz e() are said to override the corresponding members in the base
class Container. I used the explicit override to make clear what’s intended. The use of override is
optional, but being explicit allows the compiler to catch mistakes, such as misspellings of function
names or slight differences between the type of a vir tual function and its intended overrider. The
explicit use of override is particularly useful in larger class hiearchies where it can otherwise be
hard to know what is supposed to override what.

The destructor (˜Vector_container()) overrides the base class destructor (˜Container()). Note that
the member destructor (˜Vector()) is implicitly invoked by its class’s destructor (˜Vector_container()).

For a  function like use(Container&) to use a Container in complete ignorance of implementation
details, some other function will have to make an object on which it can operate. For example:

void g()
{

Vector_container vc(10); // Vector of ten elements
// ... fill vc ...
use(vc);

}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it will
work just as well for a different implementation of a Container. For example:

class List_container : public Container { // List_container implements Container
public:

List_container() { } // empty List
List_container(initializ er_list<double> il) : ld{il} { }
˜List_container() {}
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double& operator[](int i) override;
int size() const override { return ld.size(); }

private:
std::list<double> ld; // (standard-librar y) list of doubles (§11.3)

};

double& List_container::operator[](int i)
{

for (auto& x : ld) {
if (i==0)

return x;
−−i;

}
throw out_of_rang e{"List container"};

}

Here, the representation is a standard-library list<double>. Usually, I would not implement a con-
tainer with a subscript operation using a list, because performance of list subscripting is atrocious
compared to vector subscripting. However, here I just wanted to show an implementation that is
radically different from the usual one.

A function can create a List_container and have use() use it:

void h()
{

List_container lc = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
use(lc);

}

The point is that use(Container&) has no idea if its argument is a Vector_container, a List_container,
or some other kind of container; it doesn’t need to know. It can use any kind of Container. It knows
only the interface defined by Container. Consequently, use(Container&) needn’t be recompiled if the
implementation of List_container changes or a brand-new class derived from Container is used.

The flip side of this flexibility is that objects must be manipulated through pointers or references
(§5.2, §13.2.1).

4.4 Virtual Functions
Consider again the use of Container:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i!=sz; ++i)
cout << c[i] << '\n';

}

How is the call c[i] in use() resolved to the right operator[]()? When h() calls use(), List_container’s
operator[]() must be called. When g() calls use(), Vector_container’s operator[]() must be called. To
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achieve this resolution, a Container object must contain information to allow it to select the right
function to call at run time. The usual implementation technique is for the compiler to convert the
name of a virtual function into an index into a table of pointers to functions. That table is usually
called the virtual function table or simply the vtbl. Each class with virtual functions has its own vtbl

identifying its virtual functions. This can be represented graphically like this:

v

Vector_container::operator[]()

Vector_container::siz e()

Vector_container::˜Vector_container()

vtbl:Vector_container:

ld

List_container::operator[]()

List_container::siz e()

List_container::˜List_container()

vtbl:List_container:

The functions in the vtbl allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. The implementation of the caller needs only to
know the location of the pointer to the vtbl in a Container and the index used for each virtual func-
tion. This virtual call mechanism can be made almost as efficient as the ‘‘normal function call’’
mechanism (within 25%). Its space overhead is one pointer in each object of a class with virtual
functions plus one vtbl for each such class.

4.5 Class Hierarchies
The Container example is a very simple example of a class hierarchy. A class hierarchy is a set of
classes ordered in a lattice created by derivation (e.g., : public). We use class hierarchies to repre-
sent concepts that have hierarchical relationships, such as ‘‘A fire engine is a kind of a truck which
is a kind of a vehicle’’ and ‘‘A smiley face is a kind of a circle which is a kind of a shape.’’ Huge
hierarchies, with hundreds of classes, that are both deep and wide are common. As a semi-realistic
classic example, let’s consider shapes on a screen:

Shape

Circle Triangle

Smiley

The arrows represent inheritance relationships. For example, class Circle is derived from class
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Shape. A class hierachy is conventionally drawn growing down from the most basic class, the root,
towards the (later defined) derived classes. To represent that simple diagram in code, we must first
specify a class that defines the general properties of all shapes:

class Shape {
public:

vir tual Point center() const =0; // pure virtual
vir tual void move(Point to) =0;

vir tual void draw() const = 0; // draw on current "Canvas"
vir tual void rotate(int angle) = 0;

vir tual ˜Shape() {} // destr uctor
// ...

};

Naturally, this interface is an abstract class: as far as representation is concerned, nothing (except
the location of the pointer to the vtbl) is common for every Shape. Giv en this definition, we can
write general functions manipulating vectors of pointers to shapes:

void rotate_all(vector<Shape∗>& v, int angle) // rotate v’s elements by angle degrees
{

for (auto p : v)
p−>rotate(angle);

}

To define a particular shape, we must say that it is a Shape and specify its particular properties
(including its virtual functions):

class Circle : public Shape {
public:

Circle(Point p, int rad); // constr uctor

Point center() const override
{

return x;
}
void move(Point to) override
{

x = to;
}

void draw() const override;
void rotate(int) override {} // nice simple algorithm

private:
Point x; // center
int r; // radius

};

So far, the Shape and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:
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class Smiley : public Circle {  // use the circle as the base for a face
public:

Smiley(Point p, int rad) : Circle{p,rad}, mouth{nullptr} { }

˜Smiley()
{

delete mouth;
for (auto p : eyes)

delete p;
}

void move(Point to) override;

void draw() const override;
void rotate(int) override;

void add_eye(Shape∗ s)
{

ey es.push_back(s);
}
void set_mouth(Shape∗ s);
vir tual void wink(int i); // wink eye number i

// ...

private:
vector<Shape∗> eyes; // usually two eyes
Shape∗ mouth;

};

The push_back() member of vector copies its argument into the vector (here, ey es) as the last ele-
ment, increasing that vector’s size by one.

We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:

void Smiley::draw() const
{

Circle::draw();
for (auto p : eyes)

p−>draw();
mouth−>draw();

}

Note the way that Smiley keeps its eyes in a standard-library vector and deletes them in its de-
structor. Shape’s destructor is vir tual and Smiley’s destructor overrides it. A virtual destructor is
essential for an abstract class because an object of a derived class is usually manipulated through
the interface provided by its abstract base class. In particular, it may be deleted through a pointer to
a base class. Then, the virtual function call mechanism ensures that the proper destructor is called.
That destructor then implicitly invokes the destructors of its bases and members.
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In this simplified example, it is the programmer’s task to place the eyes and mouth appropri-
ately within the circle representing the face.

We can add data members, operations, or both as we define a new class by derivation. This
gives great flexibility with corresponding opportunities for confusion and poor design.

4.5.1 Benefits from Hierarchies

A class hierarchy offers two kinds of benefits:
• Interface inheritance: An object of a derived class can be used wherever an object of a base

class is required. That is, the base class acts as an interface for the derived class. The Con-

tainer and Shape classes are examples. Such classes are often abstract classes.
• Implementation inheritance: A base class provides functions or data that simplifies the

implementation of derived classes. Smiley’s uses of Circle’s constructor and of Circle::draw()

are examples. Such base classes often have data members and constructors.
Concrete classes – especially classes with small representations – are much like built-in types: we
define them as local variables, access them using their names, copy them around, etc. Classes in
class hierarchies are different: we tend to allocate them on the free store using new, and we access
them through pointers or references. For example, consider a function that reads data describing
shapes from an input stream and constructs the appropriate Shape objects:

enum class Kind { circle, triangle , smiley };

Shape∗ read_shape(istream& is) // read shape descriptions from input stream is
{

// ... read shape header from is and find its Kind k ...

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
return new Circle{p,r};

case Kind::triangle:
// read triangle data {Point,Point,Point} into p1, p2, and p3
return new Triangle{p1,p2,p3};

case Kind::smiley:
// read smiley data {Point,int,Shape,Shape,Shape} into p, r, e1, e2, and m
Smiley∗ ps = new Smiley{p,r};
ps−>add_eye(e1);
ps−>add_eye(e2);
ps−>set_mouth(m);
return ps;

}
}

A program may use that shape reader like this:
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void user()
{

std::vector<Shape∗> v;
while (cin)

v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element
for (auto p : v) // remember to delete elements

delete p;
}

Obviously, the example is simplified – especially with respect to error handling – but it vividly
illustrates that user() has absolutely no idea of which kinds of shapes it manipulates. The user()

code can be compiled once and later used for new Shapes added to the program. Note that there are
no pointers to the shapes outside user(), so user() is responsible for deallocating them. This is done
with the delete operator and relies critically on Shape’s virtual destructor. Because that destructor is
virtual, delete invokes the destructor for the most derived class. This is crucial because a derived
class may have acquired all kinds of resources (such as file handles, locks, and output streams) that
need to be released. In this case, a Smiley deletes its ey es and mouth objects. Once it has done that,
it calls Circle’s destructor. Objects are constructed ‘‘bottom up’’ (base first) by constructors and
destroyed ‘‘top down’’ (derived first) by destructors.

4.5.2 Hierarchy Navigation

The read_shape() function returns Shape∗ so that we can treat all Shapes alike. However, what can
we do if we want to use a member function that is only provided by a particular derived class, such
as Smiley’s wink()? We can ask ‘‘is this Shape a kind of Smiley?’’ using the dynamic_cast operator:

Shape∗ ps {read_shape(cin)};

if (Smiley∗ p = dynamic_cast<Smiley∗>(ps)) { // ... does ps point to a Smiley? ...
// ... a Smiley; use it

}
else {

// ... not a Smiley, try something else ...
}

If at run time the object pointed to by the argument of dynamic_cast (here, ps) is not of the expected
type (here, Smiley) or a class derived from the expected type, dynamic_cast returns nullptr.

We use dynamic_cast to a pointer type when a pointer to an object of a different derived class is
a valid argument. We then test whether the result is nullptr. This test can often conveniently be
placed in the initialization of a variable in a condition.

When a different type is unacceptable, we can simply dynamic_cast to a reference type. If the
object is not of the expected type, dynamic_cast throws a bad_cast exception:

Shape∗ ps {read_shape(cin)};
Smiley& r {dynamic_cast<Smiley&>(∗ps)}; // somewhere, catch std::bad_cast

Code is cleaner when dynamic_cast is used with restraint. If we can avoid using type information,
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we can write simpler and more efficient code, but occasionally type information is lost and must be
recovered. This typically happens when we pass an object to some system that accepts an interface
specified by a base class. When that system later passes the object back to us, we might have to
recover the original type. Operations similar to dynamic_cast are known as ‘‘is kind of’’ and ‘‘is
instance of’’ operations.

4.5.3 Avoiding Resource Leaks

Experienced programmers will have noticed that I left open three opportunities for mistakes:
• The implementer of Smiley may fail to delete the pointer to mouth.
• A user of read_shape() might fail to delete the pointer returned.
• The owner of a container of Shape pointers might fail to delete the objects pointed to.

In that sense, pointers to objects allocated on the free store is dangerous: a ‘‘plain old pointer’’
should not be used to represent ownership. For example:

void user(int x)
{

Shape∗ p = new Circle{Point{0,0},10};
// ...
if (x<0) throw Bad_x{}; // potential leak
if (x==0) return; // potential leak
// ...
delete p;

}

This will leak unless x is positive. Assigning the result of new to a ‘‘naked pointer’’ is asking for
trouble.

One simple solution to such problems is to use a standard-library unique_ptr (§13.2.1) rather
than a ‘‘naked pointer’’ when deletion is required:

class Smiley : public Circle {
// ...

private:
vector<unique_ptr<Shape>> eyes; // usually two eyes
unique_ptr<Shape> mouth;

};

This is an example of a simple, general, and efficient technique for resource management (§5.3).
As a pleasant side effect of this change, we no longer need to define a destructor for Smiley.

The compiler will implicitly generate one that does the required destruction of the unique_ptrs
(§5.3) in the vector. The code using unique_ptr will be exactly as efficient as code using the raw
pointers correctly.

Now consider users of read_shape():

unique_ptr<Shape> read_shape(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k
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switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
return unique_ptr<Shape>{new Circle{p,r}}; // §13.2.1

// ...
}

void user()
{

vector<unique_ptr<Shape>> v;
while (cin)

v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element

} // all Shapes implicitly destroyed

Now each object is owned by a unique_ptr that will delete the object when it is no longer needed,
that is, when its unique_ptr goes out of scope.

For the unique_ptr version of user() to work, we need versions of draw_all() and rotate_all() that
accept vector<unique_ptr<Shape>>s. Writing many such _all() functions could become tedious, so
§6.3.2 shows an alternative.

4.6 Advice
[1] Express ideas directly in code; §4.1; [CG: P.1].
[2] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over

more complicated classes and over plain data structures; §4.2; [CG: C.10].
[3] Use concrete classes to represent simple concepts; §4.2.
[4] Prefer concrete classes over class hierarchies for performance-critical components; §4.2.
[5] Define constructors to handle initialization of objects; §4.2.1, §5.1.1; [CG: C.40] [CG: C.41].
[6] Make a function a member only if it needs direct access to the representation of a class;

§4.2.1; [CG: C.4].
[7] Define operators primarily to mimic conventional usage; §4.2.1; [CG: C.160].
[8] Use nonmember functions for symmetric operators; §4.2.1; [CG: C.161].
[9] Declare a member function that does not modify the state of its object const; §4.2.1.
[10] If a constructor acquires a resource, its class needs a destructor to release the resource;

§4.2.2; [CG: C.20].
[11] Avoid ‘‘naked’’ new and delete operations; §4.2.2; [CG: R.11].
[12] Use resource handles and RAII to manage resources; §4.2.2; [CG: R.1].
[13] If a class is a container, giv e it an initializer-list constructor; §4.2.3; [CG: C.103].
[14] Use abstract classes as interfaces when complete separation of interface and implementation

is needed; §4.3; [CG: C.122].
[15] Access polymorphic objects through pointers and references; §4.3.
[16] An abstract class typically doesn’t need a constructor; §4.3; [CG: C.126].
[17] Use class hierarchies to represent concepts with inherent hierarchical structure; §4.5.
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[18] A class with a virtual function should have a virtual destructor; §4.5; [CG: C.127].
[19] Use override to make overriding explicit in large class hierarchies; §4.5.1; [CG: C.128].
[20] When designing a class hierarchy, distinguish between implementation inheritance and inter-

face inheritance; §4.5.1; [CG: C.129].
[21] Use dynamic_cast where class hierarchy navigation is unavoidable; §4.5.2; [CG: C.146].
[22] Use dynamic_cast to a reference type when failure to find the required class is considered a

failure; §4.5.2; [CG: C.147].
[23] Use dynamic_cast to a pointer type when failure to find the required class is considered a

valid alternative; §4.5.2; [CG: C.148].
[24] Use unique_ptr or shared_ptr to avoid forgetting to delete objects created using new; §4.5.3;

[CG: C.149].



5
Essential Operations

When someone says
I want a programming language in which

I need only say what I wish done,
give him a lollipop.

– Alan Perlis

• Introduction
Essential Operations; Conversions; Member Initializers

• Copy and Move
Copying Containers; Moving Containers

• Resource Management
• Conventional Operations

Comparisons; Container Operations; Input and Output Operators; User-Defined Literals;
swap(); hash<>

• Advice

5.1 Introduction
Some operations, such as initialization, assignment, copy, and move, are fundamental in the sense
that language rules make assumptions about them. Other operations, such as == and <<, hav e con-
ventional meanings that are perilous to ignore.

5.1.1 Essential Operations

Construction of objects plays a key role in many designs. This wide variety of uses is reflected in
the range and flexibility of the language features supporting initialization.

Constructors, destructors, and copy and move operations for a type are not logically separate.
We must define them as a matched set or suffer logical or performance problems. If a class X has a
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destructor that performs a nontrivial task, such as free-store deallocation or lock release, the class is
likely to need the full complement of functions:

class X {
public:

X(Sometype); // ‘‘ordinar y constr uctor’’: create an object
X(); // default constructor
X(const X&); // copy constr uctor
X(X&&); // move constr uctor
X& operator=(const X&); // copy assignment: clean up target and copy
X& operator=(X&&); // move assignment: clean up target and move
˜X(); // destr uctor: clean up
// ...

};

There are five situations in which an object can be copied or moved:
• As the source of an assignment
• As an object initializer
• As a function argument
• As a function return value
• As an exception

An assignment uses a copy or move assignment operator. In principle, the other cases use a copy or
move constructor. Howev er, a copy or move constructor invocation is often optimized away by
constructing the object used to initialize right in the target object. For example:

X make(Sometype);
X x = make(value);

Here, a compiler will typically construct the X from make() directly in x; thus eliminating (‘‘elid-
ing’’) a copy.

In addition to the initialization of named objects and of objects on the free store, constructors
are used to initialize temporary objects and to implement explicit type conversion.

Except for the ‘‘ordinary constructor,’’ these special member functions will be generated by the
compiler as needed. If you want to be explicit about generating default implementations, you can:

class Y {
public:

Y(Sometype);
Y(const Y&) = default; // I really do want the default copy constr uctor
Y(Y&&) = default; // and the default move constr uctor
// ...

};

If you are explicit about some defaults, other default definitions will not be generated.
When a class has a pointer member, it is usually a good idea to be explicit about copy and move

operations. The reason is that a pointer may point to something that the class needs to delete, in
which case the default memberwise copy would be wrong. Alternatively, it might point to some-
thing that the class must not delete. In either case, a reader of the code would like to know. For an
example, see §5.2.1.
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A good rule of thumb (sometimes called the rule of zero) is to either define all of the essential
operations or none (using the default for all). For example:

struct Z {
Vector v;
string s;

};

Z z1; // default initialize z1.v and z1.s
Z z2 = z1; // default copy z1.v and z1.s

Here, the compiler will synthesize memberwise default construction, copy, move, and destructor as
needed, and all with the correct semantics.
To complement =default, we hav e =delete to indicate that an operation is not to be generated. A
base class in a class hierarchy is the classical example where we don’t want to allow a memberwise
copy. For example:

class Shape {
public:

Shape(const Shape&) =delete; // no copy operations
Shape& operator=(const Shape&) =delete;
// ...

};

void copy(Shape& s1, const Shape& s2)
{

s1 = s2; // error : Shape copy is deleted
}

A =delete makes an attempted use of the deleted function a compile-time error; =delete can be used
to suppress any function, not just essential member functions.

5.1.2 Conversions

A constructor taking a single argument defines a conversion from its argument type. For example,
complex (§4.2.1) provides a constructor from a double:

complex z1 = 3.14; // z1 becomes {3.14,0.0}
complex z2 = z1∗2; // z2 becomes z1*{2.0,0} == {6.28,0.0}

This implicit conversion is sometimes ideal, but not always. For example, Vector (§4.2.2) provides
a constructor from an int:

Vector v1 = 7; // OK: v1 has 7 elements

This is typically considered unfortunate, and the standard-library vector does not allow this int-to-
vector ‘‘conversion.’’

The way to avoid this problem is to say that only explicit ‘‘conversion’’ is allowed; that is, we
can define the constructor like this:
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class Vector {
public:

explicit Vector(int s); // no implicit conversion from int to Vector
// ...

};

That gives us:

Vector v1(7); // OK: v1 has 7 elements
Vector v2 = 7; // error : no implicit conversion from int to Vector

When it comes to conversions, more types are like Vector than are like complex, so use explicit for
constructors that take a single argument unless there is a good reason not to.

5.1.3 Member Initializers

When a data member of a class is defined, we can supply a default initializer called a default mem-
ber initializer. Consider a revision of complex (§4.2.1):

class complex {
double re = 0;
double im = 0; // representation: two doubles with default value 0.0

public:
complex(double r, double i) :re{r}, im{i} {} // constr uct complex from two scalars: {r,i}
complex(double r) :re{r} {} // constr uct complex from one scalar: {r,0}
complex() {} // default complex: {0,0}
// ...

}

The default value is used whenever a constructor doesn’t provide a value. This simplifies code and
helps us to avoid accidentally leaving a member uninitialized.

5.2 Copy and Move
By default, objects can be copied. This is true for objects of user-defined types as well as for built-
in types. The default meaning of copy is memberwise copy: copy each member. For example,
using complex from §4.2.1:

void test(complex z1)
{

complex z2 {z1}; // copy initialization
complex z3;
z3 = z2; // copy assignment
// ...

}

Now z1, z2, and z3 have the same value because both the assignment and the initialization copied
both members.

When we design a class, we must always consider if and how an object might be copied. For
simple concrete types, memberwise copy is often exactly the right semantics for copy. For some
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sophisticated concrete types, such as Vector, memberwise copy is not the right semantics for copy;
for abstract types it almost never is.

5.2.1 Copying Containers

When a class is a resource handle – that is, when the class is responsible for an object accessed
through a pointer – the default memberwise copy is typically a disaster. Memberwise copy would
violate the resource handle’s inv ariant (§3.5.2). For example, the default copy would leave a copy
of a Vector referring to the same elements as the original:

void bad_copy(Vector v1)
{

Vector v2 = v1; // copy v1’s representation into v2
v1[0] = 2; // v2[0] is now also 2!
v2[1] = 3; // v1[1] is now also 3!

}

Assuming that v1 has four elements, the result can be represented graphically like this:

4

v1:

4

v2:

2 3

Fortunately, the fact that Vector has a destructor is a strong hint that the default (memberwise) copy
semantics is wrong and the compiler should at least warn against this example. We need to define
better copy semantics.

Copying of an object of a class is defined by two members: a copy constructor and a copy
assignment:

class Vector {
private:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s); // constr uctor: establish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

double& operator[](int i);
const double& operator[](int i) const;

int size() const;
};

A suitable definition of a copy constructor for Vector allocates the space for the required number of
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elements and then copies the elements into it so that after a copy each Vector has its own copy of
the elements:

Vector::Vector(const Vector& a) // copy constr uctor
:elem{new double[a.sz]}, // allocate space for elements
sz{a.sz}

{
for (int i=0; i!=sz; ++i) // copy elements

elem[i] = a.elem[i];
}

The result of the v2=v1 example can now be presented as:

4

v1:

4

v2:

22

Of course, we need a copy assignment in addition to the copy constructor:

Vector& Vector::operator=(const Vector& a) // copy assignment
{

double∗ p = new double[a.sz];
for (int i=0; i!=a.sz; ++i)

p[i] = a.elem[i];
delete[] elem; // delete old elements
elem = p;
sz = a.sz;
return ∗this;

}

The name this is predefined in a member function and points to the object for which the member
function is called.

5.2.2 Moving Containers

We can control copying by defining a copy constructor and a copy assignment, but copying can be
costly for large containers. We avoid the cost of copying when we pass objects to a function by
using references, but we can’t return a reference to a local object as the result (the local object
would be destroyed by the time the caller got a chance to look at it). Consider:

Vector operator+(const Vector& a, const Vector& b)
{

if (a.size()!=b.siz e())
throw Vector_siz e_mismatch{};

Vector res(a.size());
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for (int i=0; i!=a.size(); ++i)
res[i]=a[i]+b[i];

return res;
}

Returning from a + involves copying the result out of the local variable res and into some place
where the caller can access it. We might use this + like this:

void f(const Vector& x, const Vector& y, const Vector& z)
{

Vector r;
// ...
r = x+y+z;
// ...

}

That would be copying a Vector at least twice (one for each use of the + operator). If a Vector is
large, say, 10,000 doubles, that could be embarrassing. The most embarrassing part is that res in
operator+() is never used again after the copy. We didn’t really want a copy; we just wanted to get
the result out of a function: we wanted to move a Vector rather than copy it. Fortunately, we can
state that intent:

class Vector {
// ...

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

Vector(Vector&& a); // move constr uctor
Vector& operator=(Vector&& a); // move assignment

};

Given that definition, the compiler will choose the move constructor to implement the transfer of
the return value out of the function. This means that r=x+y+z will involve no copying of Vectors.
Instead, Vectors are just moved.

As is typical, Vector’s move constructor is trivial to define:

Vector::Vector(Vector&& a)
:elem{a.elem}, // "grab the elements" from a
sz{a.sz}

{
a.elem = nullptr; // now a has no elements
a.sz = 0;

}

The && means ‘‘rvalue reference’’ and is a reference to which we can bind an rvalue. The word
‘‘rvalue’’ is intended to complement ‘‘lvalue,’’ which roughly means ‘‘something that can appear on
the left-hand side of an assignment.’’ So an rvalue is – to a first approximation – a value that you
can’t assign to, such as an integer returned by a function call. Thus, an rvalue reference is a refer-
ence to something that nobody else can assign to, so we can safely ‘‘steal’’ its value. The res local
variable in operator+() for Vectors is an example.
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A move constructor does not take a const argument: after all, a move constructor is supposed to
remove the value from its argument. A move assignment is defined similarly.

A move operation is applied when an rvalue reference is used as an initializer or as the right-
hand side of an assignment.

After a move, a moved-from object should be in a state that allows a destructor to be run. Typi-
cally, we also allow assignment to a moved-from object. The standard-library algorithms (Chapter
12) assumes that. Our Vector does that.

Where the programmer knows that a value will not be used again, but the compiler can’t be
expected to be smart enough to figure that out, the programmer can be specific:

Vector f()
{

Vector x(1000);
Vector y(2000);
Vector z(3000);
z = x; // we get a copy (x might be used later in f())
y = std::move(x); // we get a move (move assignment)
// ... better not use x here ...
return z; // we get a move

}

The standard-library function move() doesn’t actually move anything. Instead, it returns a reference
to its argument from which we may move – an rvalue reference; it is a kind of cast (§4.2.3).

Just before the return we have:

nullptr 0

x:

1000

y:

1000

z:

1 2 ...1 2 ...

When we return from f(), z is destroyed after its elements has been moved out of f() by the return.
However, y’s destructor will delete[] its elements.

The compiler is obliged (by the C++ standard) to eliminate most copies associated with initial-
ization, so move constructors are not invoked as often as you might imagine. This copy elision
eliminates even the very minor overhead of a move. On the other hand, it is typically not possible
to implicitly eliminate copy or move operations from assignments, so move assignments can be
critical for performance.

5.3 Resource Management
By defining constructors, copy operations, move operations, and a destructor, a  programmer can
provide complete control of the lifetime of a contained resource (such as the elements of a con-
tainer). Furthermore, a move constructor allows an object to move simply and cheaply from one
scope to another. That way, objects that we cannot or would not want to copy out of a scope can be
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simply and cheaply moved out instead. Consider a standard-library thread representing a concur-
rent activity (§15.2) and a Vector of a million doubles. We can’t copy the former and don’t want to
copy the latter.

std::vector<thread> my_threads;

Vector init(int n)
{

thread t {heartbeat}; // run hear tbeat concurrently (in a separate thread)
my_threads.push_back(std::move(t)); // move t into my_threads (§13.2.2)
// ... more initialization ...

Vector vec(n);
for (int i=0; i!=vec.size(); ++i)

vec[i] = 777;
return vec; // move vec out of init()

}

auto v = init(1'000'000); // star t hear tbeat and initialize v

Resource handles, such as Vector and thread, are superior alternatives to direct use of built-in point-
ers in many cases. In fact, the standard-library ‘‘smart pointers,’’ such as unique_ptr, are themselves
resource handles (§13.2.1).

I used the standard-library vector to hold the threads because we don’t get to parameterize our
simple Vector with an element type until §6.2.

In very much the same way that new and delete disappear from application code, we can make
pointers disappear into resource handles. In both cases, the result is simpler and more maintainable
code, without added overhead. In particular, we can achieve strong resource safety; that is, we can
eliminate resource leaks for a general notion of a resource. Examples are vectors holding memory,
threads holding system threads, and fstreams holding file handles.

In many languages, resource management is primarily delegated to a garbage collector. C++
also offers a garbage collection interface so that you can plug in a garbage collector. Howev er, I
consider garbage collection the last choice after cleaner, more general, and better localized alterna-
tives to resource management have been exhausted. My ideal is not to create any garbage, thus
eliminating the need for a garbage collector: Do not litter!

Garbage collection is fundamentally a global memory management scheme. Clever implemen-
tations can compensate, but as systems are getting more distributed (think caches, multicores, and
clusters), locality is more important than ever.

Also, memory is not the only resource. A resource is anything that has to be acquired and
(explicitly or implicitly) released after use. Examples are memory, locks, sockets, file handles, and
thread handles. Unsurprisingly, a resource that is not just memory is called a non-memory
resource. A good resource management system handles all kinds of resources. Leaks must be
avoided in any long-running system, but excessive resource retention can be almost as bad as a
leak. For example, if a system holds on to memory, locks, files, etc. for twice as long, the system
needs to be provisioned with potentially twice as many resources.

Before resorting to garbage collection, systematically use resource handles: let each resource
have an owner in some scope and by default be released at the end of its owners scope. In C++,
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this is known as RAII (Resource Acquisition Is Initialization) and is integrated with error handling
in the form of exceptions. Resources can be moved from scope to scope using move semantics or
‘‘smart pointers,’’ and shared ownership can be represented by ‘‘shared pointers’’ (§13.2.1).

In the C++ standard library, RAII is pervasive: for example, memory (string, vector, map,
unordered_map, etc.), files (ifstream, ofstream, etc.), threads (thread), locks (lock_guard, unique_lock,
etc.), and general objects (through unique_ptr and shared_ptr). The result is implicit resource man-
agement that is invisible in common use and leads to low resource retention durations.

5.4 Conventional Operations
Some operations have conventional meanings when defined for a type. These conventional mean-
ings are often assumed by programmers and libraries (notably, the standard library), so it is wise to
conform to them when designing new types for which the operations make sense.

• Comparisons: ==, !=, <, <=, >, and >= (§5.4.1)
• Container operations: siz e(), begin(), and end() (§5.4.2)
• Input and output operations: >> and << (§5.4.3)
• User-defined literals (§5.4.4)
• swap() (§5.4.5)
• Hash functions: hash<> (§5.4.6)

5.4.1 Comparisons

The meaning of the equality comparisons (== and !=) is closely related to copying. After a copy,
the copies should compare equal:

X a = something;
X b = a;
asser t(a==b); // if a!=b here, something is ver y odd (§3.5.4).

When defining ==, also define != and make sure that a!=b means !(a==b).
Similarly, if you define <, also define <=, > , >=, and make sure that the usual equivalences hold:
• a<=b means (a<b)||(a==b) and !(b<a).
• a>b means b<a.
• a>=b means (a>b)||(a==b) and !(a<b).

To giv e identical treatment to both operands of a binary operator, such as ==, it is best defined as a
free-standing function in the namespace of its class. For example:

namespace NX {
class X {

// ...
};
bool operator==(const X&, const X&);
// ...

};
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5.4.2 Container Operations

Unless there is a really good reason not to, design containers in the style of the standard-library
containers (Chapter 11). In particular, make the container resource safe by implementing it as a
handle with appropriate essential operations (§5.1.1, §5.2).

The standard-library containers all know their number of elements and we can obtain it by call-
ing siz e(). For example:

for (siz e_t i = 0; i<c.siz e(); ++i) // size_t is the name of the type returned by a standard-librar y size()
c[i] = 0;

However, rather than traversing containers using indices from 0 to siz e(), the standard algorithms
(Chapter 12) rely on the notion of sequences delimited by pairs of iterators:

for (auto p = c.begin(); p!=c.end(); ++p)
∗p = 0;

Here, c.begin() is an iterator pointing to the first element of c and c.end() points one-beyond-the-last
element of c. Like pointers, iterators support ++ to move to the next element and ∗ to access the
value of the element pointed to. This iterator model (§12.3) allows for great generality and effi-
ciency. Iterators are used to pass sequences to standard-library algorithms. For example:

sor t(v.begin(),v.end());

For details and more container operations, see Chapter 11 and Chapter 12.
Another way of using the number of elements implicitly is a range-for loop:

for (auto& x : c)
x = 0;

This uses c.begin() and c.end() implicitly and is roughly equivalent to the more explicit loop.

5.4.3 Input and Output Operations

For pairs of integers, << means left-shift and >> means right-shift. However, for iostreams, they are
the output and input operator, respectively (§1.8, Chapter 10). For details and more I/O operations,
see Chapter 10.

5.4.4 User-Defined Literals

One purpose of classes was to enable the programmer to design and implement types to closely
mimic built-in types. Constructors provide initialization that equals or exceeds the flexibility and
efficiency of built-in type initialization, but for built-in types, we have literals:

• 123 is an int.
• 0xFF00u is an unsigned int.
• 123.456 is a double.
• "Surprise!" is a const char[10].

It can be useful to provide such literals for a user-defined type also. This is done by defining the
meaning of a suitable suffix to a literal, so we can get
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• "Surprise!"s is a std::string.
• 123s is seconds.
• 12.7i is imaginar y so that 12.7i+47 is a complex number (i.e., {47,12.7}).

In particular, we can get these examples from the standard library by using suitable headers and
namespaces:

Standard-Library Suffixes for Literals

<chrono> std::literals::chrono_literals h, min, s, ms, us, ns

<string> std::literals::string_literals s

<string_view> std::literals::string_literals sv

<complex> std::literals::complex_literals i, il, if

Unsurprisingly, literals with user-defined suffixes are called user-defined literals or UDLs. Such lit-
erals are defined using literal operators. A literal operator converts a literal of its argument type,
followed by a subscript, into its return type. For example, the i for imaginar y suffix might be imple-
mented like this:

constexpr complex<double> operator""i(long double arg) // imaginar y literal
{

return {0,arg};
}

Here
• The operator"" indicates that we are defining a literal operator.
• The i after the ‘‘literal indicator’’ "" is the suffix to which the operator gives a meaning.
• The argument type, long double, indicates that the suffix (i) is being defined for a floating-

point literal.
• The return type, complex<double>, specifies the type of the resulting literal.

Given that, we can write

complex<double> z = 2.7182818+6.283185i;

5.4.5 swap()

Many algorithms, most notably sor t(), use a swap() function that exchanges the values of two
objects. Such algorithms generally assume that swap() is very fast and doesn’t throw an exception.
The standard-library provides a std::swap(a,b) implemented as three move operations: (tmp=a, a=b,

b=tmp). If you design a type that is expensive to copy and could plausibly be swapped (e.g., by a
sort function), then give it move operations or a swap() or both. Note that the standard-library con-
tainers (Chapter 11) and string (§9.2.1) have fast move operations.

5.4.6 hash<>

The standard-library unordered_map<K,V> is a hash table with K as the key type and V as the value
type (§11.5). To use a type X as a key, we must define hash<X>. The standard library does that for
us for common types, such as std::string.
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5.5 Advice
[1] Control construction, copy, move, and destruction of objects; §5.1.1; [CG: R.1].
[2] Design constructors, assignments, and the destructor as a matched set of operations; §5.1.1;

[CG: C.22].
[3] Define all essential operations or none; §5.1.1; [CG: C.21].
[4] If a default constructor, assignment, or destructor is appropriate, let the compiler generate it

(don’t rewrite it yourself); §5.1.1; [CG: C.20].
[5] If a class has a pointer member, consider if it needs a user-defined or deleted destructor, copy

and move; §5.1.1; [CG: C.32] [CG: C.33].
[6] If a class has a user-defined destructor, it probably needs user-defined or deleted copy and

move; §5.2.1.
[7] By default, declare single-argument constructors explicit; §5.1.1; [CG: C.46].
[8] If a class member has a reasonable default value, provide it as a data member initializer;

§5.1.3; [CG: C.48].
[9] Redefine or prohibit copying if the default is not appropriate for a type; §5.2.1, §4.6.5; [CG:

C.61].
[10] Return containers by value (relying on move for efficiency); §5.2.2; [CG: F.20].
[11] For large operands, use const reference argument types; §5.2.2; [CG: F.16].
[12] Provide strong resource safety; that is, never leak anything that you think of as a resource;

§5.3; [CG: R.1].
[13] If a class is a resource handle, it needs a user-defined constructor, a destructor, and non-

default copy operations; §5.3; [CG: R.1].
[14] Overload operations to mimic conventional usage; §5.4; [CG: C.160].
[15] Follow the standard-library container design; §5.4.2; [CG: C.100].



This page intentionally left blank 



6
Templates

Your quote here.
– B. Stroustrup

• Introduction
• Parameterized Types

Constrained Template Arguments; Value Template Arguments; Template Argument
Deduction

• Parameterized Operations
Function Templates; Function Objects; Lambda Expressions

• Template Mechanisms
Variable Templates; Aliases; Compile-Time if

• Advice

6.1 Introduction
Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a general
concept, independent of the notion of a floating-point number. Consequently, the element type of a
vector ought to be represented independently. A template is a class or a function that we parame-
terize with a set of types or values. We use templates to represent ideas that are best understood as
something general from which we can generate specific types and functions by specifying argu-
ments, such as the vector’s element type double.

6.2 Parameterized Types
We can generalize our vector-of-doubles type to a vector-of-anything type by making it a template

and replacing the specific type double with a type parameter. For example:
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template<typename T>
class Vector {
private:

T∗ elem; // elem points to an array of sz elements of type T
int sz;

public:
explicit Vector(int s); // constr uctor: establish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

// ... copy and move operations ...

T& operator[](int i); // for non-const Vectors
const T& operator[](int i) const; // for const Vectors (§4.2.1)
int size() const { return sz; }

};

The template<typename T> prefix makes T a parameter of the declaration it prefixes. It is C++’s ver-
sion of the mathematical ‘‘for all T’’ or more precisely ‘‘for all types T.’’ If you want the mathe-
matical ‘‘for all T, such that P(T),’’ you need concepts (§6.2.1, §7.2). Using class to introduce a
type parameter is equivalent to using typename, and in older code we often see template<class T> as
the prefix.

The member functions might be defined similarly:

template<typename T>
Vector<T>::Vector(int s)
{

if (s<0)
throw Negative_siz e{};

elem = new T[s];
sz = s;

}

template<typename T>
const T& Vector<T>::operator[](int i) const
{

if (i<0 || size()<=i)
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

Given these definitions, we can define Vectors like this:

Vector<char> vc(200); // vector of 200 characters
Vector<string> vs(17); // vector of 17 strings
Vector<list<int>> vli(45); // vector of 45 lists of integers

The >> in Vector<list<int>> terminates the nested template arguments; it is not a misplaced input
operator.

We can use Vectors like this:
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void write(const Vector<string>& vs) // Vector of some strings
{

for (int i = 0; i!=vs.size(); ++i)
cout << vs[i] << '\n';

}

To support the range-for loop for our Vector, we must define suitable begin() and end() functions:

template<typename T>
T∗ begin(Vector<T>& x)
{

return x.size() ? &x[0] : nullptr; // pointer to first element or nullptr
}

template<typename T>
T∗ end(Vector<T>& x)
{

return x.size() ? &x[0]+x.size() : nullptr; // pointer to one-past-last element
}

Given those, we can write:

void f2(Vector<string>& vs) // Vector of some strings
{

for (auto& s : vs)
cout << s << '\n';

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), unordered maps (that is,
hash tables), etc., as templates (Chapter 11).

Templates are a compile-time mechanism, so their use incurs no run-time overhead compared to
hand-crafted code. In fact, the code generated for Vector<double> is identical to the code generated
for the version of Vector from Chapter 4. Furthermore, the code generated for the standard-library
vector<double> is likely to be better (because more effort has gone into its implementation).

A template plus a set of template arguments is called an instantiation or a specialization. Late
in the compilation process, at instantiation time, code is generated for each instantiation used in a
program (§7.5). The code generated is type checked so that the generated code is as type safe as
handwritten code. Unfortunately, that type check often occurs late in the compilation process, at
instantiation time.

6.2.1 Constrained Template Arguments (C++20)

Most often, a template will make sense only for template arguments that meet certain criteria. For
example, a Vector typically offers a copy operation, and if it does, it must require that its elements
must be copyable. That is, we must require that Vector’s template argument is not just a typename

but an Element where ‘‘Element’’ specifies the requirements of a type that can be an element:
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template<Element T>
class Vector {
private:

T∗ elem; // elem points to an array of sz elements of type T
int sz;
// ...

};

This template<Element T> prefix is C++’s version of mathematic’s ‘‘for all T such that Element(T)’’;
that is, Element is a predicate that checks whether T has all the properties that a Vector requires.
Such a predicate is called a concept (§7.2). A template argument for which a concept is specified is
called a constrained argument and a template for which an argument is constrained is called a con-
strained template.

It is a compile-time error to try to instantiate a template with a type that does not meet its
requirements. For example:

Vector<int> v1; // OK: we can copy an int
Vector<thread> v2; // error : we can’t copy a standard thread (§15.2)

Since C++ does not officially support concepts before C++20, older code uses unconstrained tem-
plate arguments and leaves requirements to documentation.

6.2.2 Value Template Arguments

In addition to type arguments, a template can take value arguments. For example:

template<typename T, int N>
struct Buffer {

using value_type = T;
constexpr int size() { return N; }
T[N];
// ...

};

The alias (value_type) and the constexpr function are provided to allow users (read-only) access to
the template arguments.

Value arguments are useful in many contexts. For example, Buffer allows us to create arbitrarily
sized buffers with no use of the free store (dynamic memory):

Buffer<char,1024> glob; // global buffer of characters (statically allocated)

void fct()
{

Buffer<int,10> buf; // local buffer of integers (on the stack)
// ...

}

A template value argument must be a constant expression.
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6.2.3 Template Argument Deduction

Consider using the standard-library template pair:

pair<int,double> p = {1,5.2};

Many hav e found the need to specify the template argument types tedious, so the standard library
offers a function, make_pair(), that deduces the template arguments of the pair it returns from its
function arguments:

auto p = make_pair(1,5.2); // p is a pair<int,double>

This leads to the obvious question ‘‘Why can’t we just deduce template parameters from construc-
tor arguments?’’ So, in C++17, we can. That is:

pair p = {1,5.2}; // p is a pair<int,double>

This is not just a problem with pair; make_ functions are very common. Consider a simple exam-
ple:

template<typename T>
class Vector {
public:

Vector(int);
Vector(initializ er_list<T>); // initializer-list constructor
// ...

};

Vector v1 {1,2,3}; // deduce v1’s element type from the initializer element type
Vector v2 = v1; // deduce v2’s element type from v1’s element type

auto p = new Vector{1,2,3}; // p points to a Vector<int>

Vector<int> v3(1); // here we need to be explicit about the element type (no element type is mentioned)

Clearly, this simplifies notation and can eliminate annoyances caused by mistyping redundant tem-
plate argument types. However, it is not a panacea. Deduction can cause surprises (both for make_

functions and constructors). Consider:

Vector<string> vs1 {"Hello", "World"}; // Vector<str ing>
Vector vs {"Hello", "World"}; // deduces to Vector<const char*> (Surpr ise?)
Vector vs2 {"Hello"s, "World"s}; // deduces to Vector<str ing>
Vector vs3 {"Hello"s, "World"}; // error : the initializer list is not homogenous

The type of a C-style string literal is const char∗ (§1.7.1). If that was not what was intended, use
the s suffix to make it a proper string (§9.2). If elements of an initializer list have differing types,
we cannot deduce a unique element type, so we get an error.

When a template argument cannot be deduced from the constructor arguments, we can help by
providing a deduction guide. Consider:
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template<typename T>
class Vector2 {
public:

using value_type = T;
// ...
Vector2(initializ er_list<T>); // initializer-list constructor

template<typename Iter>
Vector2(Iter b, Iter e); // [b:e) range constructor

// ...
};

Vector2 v1 {1,2,3,4,5}; // element type is int
Vector2 v2(v1.begin(),v1.begin()+2);

Obviously, v2 should be a Vector2<int>, but without help, the compiler cannot deduce that. The
code only states that there is a constructor from a pair of values of the same type. Without lan-
guage support for concepts (§7.2), the compiler cannot assume anything about that type. To allow
deduction, we can add a deduction guide after the declaration of Vector2:

template<typename Iter>
Vector2(Iter,Iter) −> Vector2<typename Iter::value_type>;

That is, if we see a Vector2 initialized by a pair of iterators, we should deduce Vector2::value_type to
be the iterator’s value type.

The effects of deduction guides are often subtle, so it is best to design class templates so that
deduction guides are not needed. However, the standard library is full of classes that don’t (yet) use
concepts (§7.2) and have such ambiguities, so it uses quite a few deduction guides.

6.3 Parameterized Operations
Templates have many more uses than simply parameterizing a container with an element type. In
particular, they are extensively used for parameterization of both types and algorithms in the stan-
dard library (§11.6, §12.6).

There are three ways of expressing an operation parameterized by types or values:
• A function template
• A function object: an object that can carry data and be called like a function
• A lambda expression: a shorthand notation for a function object

6.3.1 Function Templates

We can write a function that calculates the sum of the element values of any sequence that a range-
for can traverse (e.g., a container) like this:
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template<typename Sequence, typename Value>
Value sum(const Sequence& s, Value v)
{

for (auto x : s)
v+=x;

return v;
}

The Value template argument and the function argument v are there to allow the caller to specify the
type and initial value of the accumulator (the variable in which to accumulate the sum):

void user(Vector<int>& vi, list<double>& ld, vector<complex<double>>& vc)
{

int x = sum(vi,0); // the sum of a vector of ints (add ints)
double d = sum(vi,0.0); // the sum of a vector of ints (add doubles)
double dd = sum(ld,0.0); // the sum of a list of doubles
auto z = sum(vc,complex{0.0,0.0}); // the sum of a vector of complex<double>s

}

The point of adding ints in a double would be to gracefully handle a number larger than the largest
int. Note how the types of the template arguments for sum<Sequence ,Value> are deduced from the
function arguments. Fortunately, we do not need to explicitly specify those types.

This sum() is a simplified version of the standard-library accumulate() (§14.3).
A function template can be a member function, but not a vir tual member. The compiler would

not know all instantiations of such a template in a program, so it could not generate a vtbl (§4.4).

6.3.2 Function Objects

One particularly useful kind of template is the function object (sometimes called a functor), which
is used to define objects that can be called like functions. For example:

template<typename T>
class Less_than {

const T val; // value to compare against
public:

Less_than(const T& v) :val{v} { }
bool operator()(const T& x) const { return x<val; } // call operator

};

The function called operator() implements the ‘‘function call,’’ ‘‘call,’’ or ‘‘application’’ operator ().
We can define named variables of type Less_than for some argument type:

Less_than lti {42}; // lti(i) will compare i to 42 using < (i<42)
Less_than lts {"Backus"s}; // lts(s) will compare s to "Backus" using < (s<"Backus")
Less_than<string> lts2 {"Naur"}; // "Naur" is a C-style string, so we need <string> to get the right <

We can call such an object, just as we call a function:
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void fct(int n, const string& s)
{

bool b1 = lti(n); // tr ue if n<42
bool b2 = lts(s); // tr ue if s<"Backus"
// ...

}

Such function objects are widely used as arguments to algorithms. For example, we can count the
occurrences of values for which a predicate returns true:

template<typename C, typename P>
// requires Sequence<C> && Callable<P,Value_type<P>>

int count(const C& c, P pred)
{

int cnt = 0;
for (const auto& x : c)

if (pred(x))
++cnt;

return cnt;
}

A predicate is something that we can invoke to return true or false. For example:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x << ": " << count(vec,Less_than{x}) << '\n';
cout << "number of values less than " << s << ": " << count(lst,Less_than{s}) << '\n';

}

Here, Less_than{x} constructs an object of type Less_than<int>, for which the call operator com-
pares to the int called x; Less_than{s} constructs an object that compares to the string called s. The
beauty of these function objects is that they carry the value to be compared against with them. We
don’t hav e to write a separate function for each value (and each type), and we don’t hav e to intro-
duce nasty global variables to hold values. Also, for a simple function object like Less_than, inlin-
ing is simple, so a call of Less_than is far more efficient than an indirect function call. The ability
to carry data plus their efficiency makes function objects particularly useful as arguments to algo-
rithms.

Function objects used to specify the meaning of key operations of a general algorithm (such as
Less_than for count()) are often referred to as policy objects.

6.3.3 Lambda Expressions

In §6.3.2, we defined Less_than separately from its use. That can be inconvenient. Consequently,
there is a notation for implicitly generating function objects:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,[&](int a){ return a<x; })
<< '\n';
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cout << "number of values less than " << s
<< ": " << count(lst,[&](const string& a){ return a<s; })
<< '\n';

}

The notation [&](int a){ return a<x; } is called a lambda expression. It generates a function object
exactly like Less_than<int>{x}. The [&] is a capture list specifying that all local names used in the
lambda body (such as x) will be accessed through references. Had we wanted to ‘‘capture’’ only x,
we could have said so: [&x]. Had we wanted to give the generated object a copy of x, we could have
said so: [=x]. Capture nothing is [ ], capture all local names used by reference is [&], and capture all
local names used by value is [=].

Using lambdas can be convenient and terse, but also obscure. For nontrivial actions (say, more
than a simple expression), I prefer to name the operation so as to more clearly state its purpose and
to make it available for use in several places in a program.

In §4.5.3, we noted the annoyance of having to write many functions to perform operations on
elements of vectors of pointers and unique_ptrs, such as draw_all() and rotate_all(). Function objects
(in particular, lambdas) can help by allowing us to separate the traversal of the container from the
specification of what is to be done with each element.

First, we need a function that applies an operation to each object pointed to by the elements of a
container of pointers:

template<typename C, typename Oper>
void for_all(C& c, Oper op) // assume that C is a container of pointers

// requires Sequence<C> && Callable<Oper,Value_type<C>> (see §7.2.1)
{

for (auto& x : c)
op(x); // pass op() a reference to each element pointed to

}

Now, we can write a version of user() from §4.5 without writing a set of _all functions:

void user2()
{

vector<unique_ptr<Shape>> v;
while (cin)

v.push_back(read_shape(cin));
for_all(v,[](unique_ptr<Shape>& ps){ ps−>draw(); }); // draw_all()
for_all(v,[](unique_ptr<Shape>& ps){ ps−>rotate(45); }); // rotate_all(45)

}

I pass a unique_ptr<Shape>& to a lambda so that for_all() doesn’t hav e to care exactly how the
objects are stored. In particular, those for_all() calls do not affect the lifetime of the Shapes passed
and the bodies of the lambdas use the argument just as if they had been a plain-old pointers.

Like a function, a lambda can be generic. For example:

template<class S>
void rotate_and_draw(vector<S>& v, int r)
{

for_all(v,[](auto& s){ s−>rotate(r); s−>draw(); });
}
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Here, like in variable declarations, auto means that any type is accepted as an initializer (an argu-
ment is considered to initialize the formal parameter in a call). This makes a lambda with an auto

parameter a template, a generic lambda. For reasons lost in standards committee politics, this use
of auto is not currently allowed for function arguments.

We can call this generic rotate_and_draw() with any container of objects that you can draw() and
rotate(). For example:

void user4()
{

vector<unique_ptr<Shape>> v1;
vector<Shape∗> v2;
// ...
rotate_and_draw(v1,45);
rotate_and_draw(v2,90);

}

Using a lambda, we can turn any statement into an expression. This is mostly used to provide an
operation to compute a value as an argument value, but the ability is general. Consider a compli-
cated initialization:

enum class Init_mode { zero, seq, cpy, patrn }; // initializer alternatives

// messy code:

// int n, Init_mode m, vector<int>& arg, and iterators p and q are defined somewhere

vector<int> v;

switch (m) {
case zero:

v = vector<int>(n); // n elements initialized to 0
break;

case cpy:
v = arg;
break;

};

// ...

if (m == seq)
v.assign(p,q); // copy from sequence [p:q)

// ...

This is a stylized example, but unfortunately not atypical. We need to select among a set of alterna-
tives for initializing a data structure (here v) and we need to do different computations for different
alternatives. Such code is often messy, deemed essential ‘‘for efficiency,’’ and a source of bugs:

• The variable could be used before it gets its intended value.
• The ‘‘initialization code’’ could be mixed with other code, making it hard to comprehend.
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• When ‘‘initialization code’’ is mixed with other code it is easier to forget a case.
• This isn’t initialization, it’s assignment.

Instead, we could convert it to a lambda used as an initializer:

// int n, Init_mode m, vector<int>& arg, and iterators p and q are defined somewhere

vector<int> v = [&] {
switch (m) {
case zero:

return vector<int>(n); // n elements initialized to 0
case seq:

return vector<int>{p,q}; // copy from sequence [p:q)
case cpy:

return arg;
}

}();
// ...

I still ‘‘forgot’’ a case, but now that’s easily spotted.

6.4 Template Mechanisms
To define good templates, we need some supporting language facilities:

• Values dependent on a type: variable templates (§6.4.1).
• Aliases for types and templates: alias templates (§6.4.2).
• A compile-time selection mechanism: if constexpr (§6.4.3).
• A compile-time mechanism to inquire about properties of types and expressions: requires-

expressions (§7.2.3).
In addition, constexpr functions (§1.6) and static_asser ts (§3.5.5) often take part in template design
and use.

These basic mechanisms are primarily tools for building general, foundational abstractions.

6.4.1 Variable Templates

When we use a type, we often want constants and values of that type. This is of course also the
case when we use a class template: when we define a C<T>, we often want constants and variables
of type T and other types depending on T. Here is an example from a fluid dynamic simulation
[Garcia,2015]:

template <class T>
constexpr T viscosity = 0.4;

template <class T>
constexpr space_vector<T> external_acceleration = { T{}, T{−9.8}, T{} };

auto vis2 = 2∗viscosity<double>;
auto acc = external_acceleration<float>;

Here, space_vector is a three-dimensional vector.
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Naturally, we can use arbitrary expressions of suitable type as initializers. Consider:

template<typename T, typename T2>
constexpr bool Assignable = is_assignable<T&,T2>::value; // is_assignable is a type trait (§13.9.1)

template<typename T>
void testing()
{

static_asser t(Assignable<T&,double>, "can't assign a double");
static_asser t(Assignable<T&,string>, "can't assign a string");

}

After some significant mutations, this idea becomes the heart of concept definitions (§7.2).

6.4.2 Aliases

Surprisingly often, it is useful to introduce a synonym for a type or a template. For example, the
standard header <cstddef> contains a definition of the alias siz e_t, maybe:

using size_t = unsigned int;

The actual type named siz e_t is implementation-dependent, so in another implementation siz e_t

may be an unsigned long. Having the alias siz e_t allows the programmer to write portable code.
It is very common for a parameterized type to provide an alias for types related to their template

arguments. For example:

template<typename T>
class Vector {
public:

using value_type = T;
// ...

};

In fact, every standard-library container provides value_type as the name of its value type (Chapter
11). This allows us to write code that will work for every container that follows this convention.
For example:

template<typename C>
using Value_type = typename C::value_type; // the type of C’s elements

template<typename Container>
void algo(Container& c)
{

Vector<Value_type<Container>> vec; // keep results here
// ...

}

The aliasing mechanism can be used to define a new template by binding some or all template argu-
ments. For example:
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template<typename Key, typename Value>
class Map {

// ...
};

template<typename Value>
using String_map = Map<string,Value>;

String_map<int> m; // m is a Map<str ing,int>

6.4.3 Compile-Time if

Consider writing an operation that can use one of two operations slow_and_safe(T) or sim-

ple_and_fast(T). Such problems abound in foundational code where generality and optimal perfor-
mance are essential. The traditional solution is to write a pair of overloaded functions and select
the most appropriate based on a trait (§13.9.1), such as the standard-library is_pod. If a class hier-
archy is inv olved, a base class can provide the slow_and_safe general operation and a derived class
can override with a simple_and_fast implementation.

In C++17, we can use a compile-time if:

template<typename T>
void update(T& target)
{

// ...
if constexpr(is_pod<T>::value)

simple_and_fast(target); // for "plain old data"
else

slow_and_safe(target);
// ...

}

The is_pod<T> is a type trait (§13.9.1) that tells us whether a type can be trivially copied.
Only the selected branch of an if constexpr is instantiated. This solution offers optimal perfor-

mance and locality of the optimization.
Importantly, an if constexpr is not a text-manipulation mechanism and cannot be used to break

the usual rules of grammar, type, and scope. For example:

template<typename T>
void bad(T arg)
{

if constexpr(Something<T>::value)
tr y { // syntax error

g(arg);

if constexpr(Something<T>::value)
} catch(...) { /* ... */ } // syntax error

}
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Allowing such text manipulation could seriously compromise readability of code and create prob-
lems for tools relying on modern program representation techniques (such as ‘‘abstract syntax
trees’’).

6.5 Advice
[1] Use templates to express algorithms that apply to many argument types; §6.1; [CG: T.2].
[2] Use templates to express containers; §6.2; [CG: T.3].
[3] Use templates to raise the level of abstraction of code; §6.2; [CG: T.1].
[4] Templates are type safe, but checking happens too late; §6.2.
[5] Let constructors or function templates deduce class template argument types; §6.2.3.
[6] Use function objects as arguments to algorithms; §6.3.2; [CG: T.40].
[7] Use a lambda if you need a simple function object in one place only; §6.3.2.
[8] A virtual function member cannot be a template member function; §6.3.1.
[9] Use template aliases to simplify notation and hide implementation details; §6.4.2.
[10] To use a template, make sure its definition (not just its declaration) is in scope; §7.5.
[11] Templates offer compile-time ‘‘duck typing’’; §7.5.
[12] There is no separate compilation of templates: #include template definitions in every transla-

tion unit that uses them.
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7.1 Introduction
What are templates for? In other words, what programming techniques are effective when you use
templates? Templates offer:

• The ability to pass types (as well as values and templates) as arguments without loss of
information. This implies excellent opportunities for inlining, of which current implementa-
tions take great advantage.

• Opportunities to weave together information from different contexts at instantiation time.
This implies optimization opportunities.

• The ability to pass constant values as arguments. This implies the ability to do compile-time
computation.

In other words, templates provide a powerful mechanism for compile-time computation and type
manipulation that can lead to very compact and efficient code. Remember that types (classes) can
contain both code (§6.3.2) and values (§6.2.2).
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The first and most common use of templates is to support generic programming, that is, pro-
gramming focused on the design, implementation, and use of general algorithms. Here, ‘‘general’’
means that an algorithm can be designed to accept a wide variety of types as long as they meet the
algorithm’s requirements on its arguments. Together with concepts, the template is C++’s main
support for generic programming. Templates provide (compile-time) parametric polymorphism.

7.2 Concepts (C++20)
Consider the sum() from §6.3.1:

template<typename Seq, typename Num>
Num sum(Seq s, Num v)
{

for (const auto& x : s)
v+=x;

return v;
}

It can be invoked for any data structure that supports begin() and end() so that the range-for will
work. Such structures include the standard-library vector, list, and map. Furthermore, the element
type of the data structure is limited only by its use: it must be a type that we can add to the Value

argument. Examples are ints, doubles, and Matrixes (for any reasonable definition of Matrix). We
could say that the sum() algorithm is generic in two dimensions: the type of the data structure used
to store elements (‘‘the sequence’’) and the type of elements.

So, sum() requires that its first template argument is some kind of sequence and its second tem-
plate argument is some kind of number. We call such requirements concepts.

Language support for concepts is not yet ISO C++, but it is an ISO Technical Specification
[ConceptsTS]. Implementations are in use, so I risk recommending it here even though details are
likely to change and it may be years before everybody can use it in production code.

7.2.1 Use of Concepts

Most template arguments must meet specific requirements for the template to compile properly and
for the generated code to work properly. That is, most templates must be constrained templates
(§6.2.1). The type-name introducer typename is the least constraining, requiring only that the argu-
ment be a type. Usually, we can do better than that. Consider that sum() again:

template<Sequence Seq, Number Num>
Num sum(Seq s, Num v)
{

for (const auto& x : s)
v+=x;

return v;
}

That’s much clearer. Once we have defined what the concepts Sequence and Number mean, the
compiler can reject bad calls by looking at sum()’s interface only, rather than looking at its imple-
mentation. This improves error reporting.
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However, the specification of sum()’s interface is not complete: I ‘‘forgot’’ to say that we should
be able to add elements of a Sequence to a Number. We can do that:

template<Sequence Seq, Number Num>
requires Arithmetic<Value_type<Seq>,Num>

Num sum(Seq s, Num n);

The Value_type of a sequence is the type of the elements in the sequence. Arithmetic<X,Y> is a con-
cept specifying that we can do arithmetic with numbers of types X and Y. This saves us from acci-
dentally trying to calculate the sum() of a vector<string> or a vector<int∗> while still accepting
vector<int> and vector<complex<double>>.

In this example, we needed only +=, but for simplicity and flexibility, we should not constrain
our template argument too tightly. In particular, we might someday want to express sum() in terms
of + and = rather than +=, and then we’d be happy that we used a general concept (here, Arithmetic)
rather than a narrow requirement to ‘‘have +=.’’

Partial specifications, as in the first sum() using concepts, can be very useful. Unless the specifi-
cation is complete, some errors will not be found until instantiation time. However, partial specifi-
cations can help a lot, express intent, and are essential for smooth incremental development where
we don’t initially recognize all the requirements we need. With mature libraries of concepts, initial
specifications will be close to perfect.

Unsurprisingly, requires Arithmetic<Value_type<Seq>,Num> is called a requirements-clause. The
template<Sequence Seq> notation is simply a shorthand for an explicit use of requires

Sequence<Seq>. If I liked verbosity, I could equivalently have written

template<typename Seq, typename Num>
requires Sequence<Seq> && Number<Num> && Arithmetic<Value_type<Seq>,Num>

Num sum(Seq s, Num n);

On the other hand, we could also use the equivalence between the two notations to write:

template<Sequence Seq, Arithmetic<Value_type<Seq>> Num>
Num sum(Seq s, Num n);

Where we cannot yet use concepts, we have to make do with naming conventions and comments,
such as:

template<typename Sequence, typename Number>
// requires Arithmetic<Value_type<Sequence>,Number>

Numer sum(Sequence s, Number n);

Whatever notation we chose, it is important to design a template with semantically meaningful con-
straints on its arguments (§7.2.4).

7.2.2 Concept-based Overloading

Once we have properly specified templates with their interfaces, we can overload based on their
properties, much as we do for functions. Consider a slightly simplified standard-library function
advance() that advances an iterator (§12.3):
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template<Forward_iterator Iter>
void advance(Iter p, int n) // move p n elements forward
{

while (n−−)
++p; // a forward iterator has ++, but not + or +=

}

template<Random_access_iterator Iter>
void advance(Iter p, int n) // move p n elements forward
{

p+=n; // a random-access iterator has +=
}

The compiler will select the template with the strongest requirements met by the arguments. In this
case, a list only supplies forward iterators, but a vector offers random-access iterators, so we get:

void user(vector<int>::iterator vip, list<string>::iterator lsp)
{

advance(vip,10); // use the fast advance()
advance(lsp,10); // use the slow advance()

}

Like other overloading, this is a compile-time mechanism implying no run-time cost, and where the
compiler does not find a best choice, it gives an ambiguity error. The rules for concept-based over-
loading are far simpler than the rules for general overloading (§1.3). Consider first a single argu-
ment for several alternative functions:

• If the argument doesn’t match the concept, that alternative cannot be chosen.
• If the argument matches the concept for just one alternative, that alternative is chosen.
• If arguments from two alternatives are equally good matches for a concept, we have an

ambiguity.
• If arguments from two alternatives match a concept and one is stricter than the other (match

all the requirements of the other and more), that alternative is chosen.
For an alternative to be chosen it has to be

• a match for all of its arguments, and
• at least an equally good match for all arguments as other alternatives, and
• a better match for at least one argument.

7.2.3 Valid Code

The question of whether a set of template arguments offers what a template requires of its template
parameters ultimately boils down to whether some expressions are valid.

Using a requires-expression, we can check if a set of expressions is valid. For example:

template<Forward_iterator Iter>
void advance(Iter p, int n) // move p n elements forward
{

while (n−−)
++p; // a forward iterator has ++, but not + or +=

}
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template<Forward_iterator Iter, int n>
requires requires(Iter p, int i) { p[i]; p+i; } // Iter has subscripting and addition

void advance(Iter p, int n) // move p n elements forward
{

p+=n; // a random-access iterator has +=
}

No, that requires requires is not a typo. The first requires starts the requirements-clause and the sec-
ond requires starts the requires−expression

requires(Iter p, int i) { p[i]; p+i; }

A requires−expression is a predicate that is true if the statements in it are valid code and false if they
are not.

I consider requires-expressions the assembly code of generic programming. Like ordinary
assembly code, requires-expressions are extremely flexible and impose no programming discipline.
In some form or other, they are at the bottom of most interesting generic code, just as assembly
code is at the bottom of most interesting ordinary code. Like assembly code, requires-expressions
should not be seen in ‘‘ordinary code.’’ If you see requires requires in your code, it is probably too
low lev el.

The use of requires requires in advance() is deliberately inelegant and hackish. Note that I ‘‘for-
got’’ to specify += and the required return types for the operations. You hav e been warned! Prefer
named concepts for which the name indicates its semantic meaning.

Prefer use of properly named concepts with well-specified semantics (§7.2.4) and use requires-
expressions in the definition of those.

7.2.4 Definition of Concepts

Eventually, we expect to find useful concepts, such as Sequence and Arithmetic in libraries, includ-
ing the standard library. The Ranges Technical Specification [RangesTS] already offers a set for
constraining standard-library algorithms (§12.7). However, simple concepts are not hard to define.

A concept is a compile-time predicate specifying how one or more types can be used. Consider
first one of the simplest examples:

template<typename T>
concept Equality_comparable =

requires (T a, T b) {
{ a == b } −> bool; // compare Ts with ==
{ a != b } −> bool; // compare Ts with !=

};

Equality_comparable is the concept we use to ensure that we can compare values of a type equal and
non-equal. We simply say that, given two values of the type, they must be comparable using == and
!= and the result of those operations must be convertible to bool. For example:

static_asser t(Equality_comparable<int>); // succeeds

struct S { int a; };
static_asser t(Equality_comparable<S>); // fails because structs don’t automatically get == and !=
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The definition of the concept Equality_comparable is exactly equivalent to the English description
and no longer. The value of a concept is always bool.

Defining Equality_comparable to handle nonhomogeneous comparisons is almost as easy:

template<typename T, typename T2 =T>
concept Equality_comparable =

requires (T a, T2 b) {
{ a == b } −> bool; // compare a T to a T2 with ==
{ a != b } −> bool; // compare a T to a T2 with !=
{ b == a } −> bool; // compare a T2 to a T with ==
{ b != a } −> bool; // compare a T2 to a T with !=

};

The typename T2 =T says that if we don’t specify a second template argument, T2 will be the same
as T; T is a default template argument.

We can test Equality_comparable like this:

static_asser t(Equality_comparable<int,double>); // succeeds
static_asser t(Equality_comparable<int>); // succeeds (T2 is defaulted to int)
static_asser t(Equality_comparable<int,string>); // fails

For a more complex example, consider a sequence:

template<typename S>
concept Sequence = requires(S a) {

typename Value_type<S>; // S must have a value type.
typename Iterator_type<S>; // S must have an iterator type.

{ begin(a) } −> Iterator_type<S>; // begin(a) must return an iterator
{ end(a) } −> Iterator_type<S>; // end(a) must return an iterator

requires Same_type<Value_type<S>,Value_type<Iterator_type<S>>>;
requires Input_iterator<Iterator_type<S>>;

};

For a type S to be a Sequence, it must provide a Value_type (the type of its elements) and an Itera-

tor_type (the type of its iterators; see §12.1). It must also ensure that there exist begin() and end()

functions that return iterators, as is idiomatic for standard-library containers (§11.3). Finally, the
Iterator_type really must be an input_iterator with elements of the same type as the elements of S.

The hardest concepts to define are the ones that represent fundamental language concepts. Con-
sequently, it is best to use a set from an established library. For a useful collection, see §12.7.

7.3 Generic Programming
The form of generic programming supported by C++ centers around the idea of abstracting from
concrete, efficient algorithms to obtain generic algorithms that can be combined with different data
representations to produce a wide variety of useful software [Stepanov,2009]. The abstractions rep-
resenting the fundamental operations and data structures are called concepts; they appear as
requirements for template parameters.
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7.3.1 Use of Concepts

Good, useful concepts are fundamental and are discovered more than they are designed. Examples
are integer and floating-point number (as defined even in Classic C), sequence, and more general
mathematical concepts, such as field and vector space. They represent the fundamental concepts of
a field of application. That is why they are called ‘‘concepts.’’ Identifying and formalizing con-
cepts to the degree necessary for effective generic programming can be a challenge.

For basic use, consider the concept Regular (§12.7). A type is regular when it behaves much
like an int or a vector. An object of a regular type

• can be default constructed.
• can be copied (with the usual semantics of copy, yielding two objects that are independent

and compare equal) using a constructor or an assignment.
• can be compared using == and !=.
• doesn’t suffer technical problems from overly clever programming tricks.

A string is another example of a regular type. Like int, string is also StrictTotallyOrdered (§12.7).
That is, two strings can be compared using <, <=, >, and >= with the appropriate semantics.

A concept is not just a syntactic notion, it is fundamentally about semantics. For example,
don’t define + to divide; that would not match the requirements for any reasonable number. Unfor-
tunately, we do not yet have any language support for expressing semantics, so we have to rely on
expert knowledge and common sense to get semantically meaningful concepts. Do not define
semantically meaningless concepts, such as Addable and Subtractable. Instead, rely on domain
knowledge to define concepts that match fundamental concepts in an application domain.

7.3.2 Abstraction Using Templates

Good abstractions are carefully grown from concrete examples. It is not a good idea to try to
‘‘abstract’’ by trying to prepare for every conceivable need and technique; in that direction lies inel-
eg ance and code bloat. Instead, start with one – and preferably more – concrete examples from real
use and try to eliminate inessential details. Consider:

double sum(const vector<int>& v)
{

double res = 0;
for (auto x : v)

res += x;
return res;

}

This is obviously one of many ways to compute the sum of a sequence of numbers.
Consider what makes this code less general than it needs to be:
• Why just ints?
• Why just vectors?
• Why accumulate in a double?
• Why start at 0?
• Why add?

Answering the first four questions by making the concrete types into template arguments, we get
the simplest form of the standard-library accumulate algorithm:
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template<typename Iter, typename Val>
Val accumulate(Iter first, Iter last, Val res)
{

for (auto p = first; p!=last; ++p)
res += ∗p;

return res;
}

Here, we have:
• The data structure to be traversed has been abstracted into a pair of iterators representing a

sequence (§12.1).
• The type of the accumulator has been made into a parameter.
• The initial value is now an input; the type of the accumulator is the type of this initial value.

A quick examination or – even better – measurement will show that the code generated for calls
with a variety of data structures is identical to what you get from the hand-coded original example.
For example:

void use(const vector<int>& vec, const list<double>& lst)
{

auto sum = accumulate(begin(vec),end(vec),0.0); // accumulate in a double
auto sum2 = accumulate(begin(lst),end(lst),sum);
//

}

The process of generalizing from a concrete piece of code (and preferably from several) while pre-
serving performance is called lifting. Conversely, the best way to develop a template is often to

• first, write a concrete version
• then, debug, test, and measure it
• finally, replace the concrete types with template arguments.

Naturally, the repetition of begin() and end() is tedious, so we can simplify the user interface a bit:

template<Rang e R, Number Val> // a Range is something with begin() and end()
Val accumulate(const R& r, Val res = 0)
{

for (auto p = begin(r); p!=end(r); ++p)
res += ∗p;

return res;
}

For full generality, we can abstract the += operation also; see §14.3.

7.4 Variadic Templates
A template can be defined to accept an arbitrary number of arguments of arbitrary types. Such a
template is called a variadic template. Consider a simple function to write out values of any type
that has a << operator:
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void user()
{

print("first: ", 1, 2.2, "hello\n"s); // first: 1 2.2 hello

print("\nsecond: ", 0.2, 'c', "yuck!"s, 0, 1, 2, '\n'); // second: 0.2 c yuck! 0 1 2
}

Traditionally, implementing a variadic template has been to separate the first argument from the rest
and then recursively call the variadic template for the tail of the arguments:

void print()
{

// what we do for no arguments: nothing
}

template<typename T, typename ... Tail>
void print(T head, Tail... tail)
{

// what we do for each argument, e.g.,
cout << head << ' ';
print(tail...);

}

The typename ... indicates that Tail is a sequence of types. The Tail... indicates that tail is a sequence
of values of the types in Tail. A parameter declared with a ... is called a parameter pack. Here, tail

is a (function argument) parameter pack where the elements are of the types found in the (template
argument) parameter pack Tail. So, print() can take any number of arguments of any types.

A call of print() separates the arguments into a head (the first) and a tail (the rest). The head is
printed and then print() is called for the tail. Eventually, of course, tail will become empty, so we
need the no-argument version of print() to deal with that. If we don’t want to allow the zero-argu-
ment case, we can eliminate that print() using a compile-time if:

template<typename T, typename ... Tail>
void print(T head, Tail... tail)
{

cout << head << ' ';
if constexpr(siz eof...(tail)> 0)

print(tail...);
}

I used a compile-time if (§6.4.3), rather than a plain run-time if to avoid a final, never called, call
print() from being generated.

The strength of variadic templates (sometimes just called variadics) is that they can accept any
arguments you care to give them. Weaknesses include

• The recursive implementations can be tricky to get right.
• The recursive implementations can be surprisingly expensive in compile time.
• The type checking of the interface is a possibly elaborate template program.

Because of their flexibility, variadic templates are widely used in the standard library, and occasion-
ally wildly overused.
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7.4.1 Fold Expressions

To simplify the implementation of simple variadic templates, C++17 offers a limited form of itera-
tion over elements of a parameter pack. For example:

template<Number... T>
int sum(T... v)
{

return (v + ... + 0); // add all elements of v starting with 0
}

Here, sum() can take any number of arguments of any types. Assuming that sum() really adds its
arguments, we get:

int x = sum(1, 2, 3, 4, 5); // x becomes 15
int y = sum('a', 2.4, x); // y becomes 114 (2.4 is truncated and the value of ’a’ is 97)

The body of sum uses a fold expression:

return (v + ... + 0); // add all elements of v to 0

Here, (v+...+0) means add all the elements of v starting with the initial value 0. The first element to
be added is the ‘‘rightmost’’ (the one with the highest index): (v[0]+(v[1]+(v[2]+(v[3]+(v[4]+0))))). That
is, starting from the right where the 0 is. It is called a right fold. Alternatively, we could have used
a left fold:

template<Number... T>
int sum2(T... v)
{

return (0 + ... + v); // add all elements of v to 0
}

Now, the first element to be added is the ‘‘leftmost’’ (the one with the lowest index):
(((((0+v[0])+v[1])+v[2])+v[3])+v[4]). That is, starting from the left where the 0 is.

Fold is a very powerful abstraction, clearly related to the standard-library accumulate(), with a
variety of names in different languages and communities. In C++, the fold expressions are cur-
rently restricted to simplify the implementation of variadic templates. A fold does not have to per-
form numeric computations. Consider a famous example:

template<typename ...T>
void print(T&&... args)
{

(std::cout << ... << args) << '\n'; // pr int all arguments
}

print("Hello!"s,' ',"World ",2017); // (((((std::cout << "Hello!"s) << ’ ’) << "Wor ld ") << 2017) << ’\n’);

Many use cases simply involve a set of values that can be converted to a common type. In such
cases, simply copying the arguments into a vector or the desired type often simplifies further use:
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template<typename Res, typename... Ts>
vector<Res> to_vector(Ts&&... ts)
{

vector<Res> res;
(res.push_back(ts) ...); // no initial value needed
return res;

}

We can use to_vector like this:

auto x = to_vector<double>(1,2,4.5,'a');

template<typename ... Ts>
int fct(Ts&&... ts)
{

auto args = to_vector<string>(ts...); // args[i] is the ith argument
// ... use args here ...

}

int y = fct("foo", "bar", s);

7.4.2 Forwarding Arguments

Passing arguments unchanged through an interface is an important use of variadic templates. Con-
sider a notion of a network input channel for which the actual method of moving values is a param-
eter. Different transport mechanisms have different sets of constructor parameters:

template<typename Transpor t>
requires concepts::InputTranspor t<Transpor t>

class InputChannel {
public:

// ...
InputChannel(Transpor tArgs&&... transportArgs)

: _transpor t(std::forward<Transpor tArgs>(transpor tArgs)...)
{}

// ...
Transpor t _transpor t;

};

The standard-library function forward() (§13.2.2) is used to move the arguments unchanged from
the InputChannel constructor to the Transpor t constructor.

The point here is that the writer of InputChannel can construct an object of type Transpor t with-
out having to know what arguments are required to construct a particular Transpor t. The imple-
menter of InputChannel needs only to know the common user interface for all Transpor t objects.

Forwarding is very common in foundational libraries where generality and low run-time over-
head are necessary and very general interfaces are common.
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7.5 Template Compilation Model
Assuming concepts (§7.2), the arguments for a template are checked against its concepts. Errors
found here will be reported and the programmer has to fix the problems. What cannot be checked
at this point, such as arguments for unconstrained template arguments, is postponed until code is
generated for the template and a set of template arguments: ‘‘at template instantiation time.’’ For
pre-concept code, this is where all type checking happens. When using concepts, we get here only
after concept checking succeeded.

An unfortunate side effect of instantiation-time (late) type checking is that a type error can be
found uncomfortably late and can result in spectacularly bad error messages because the compiler
found the problem only after combining information from several places in the program.

The instantiation-time type checking provided for templates checks the use of arguments in the
template definition. This provides a compile-time variant of what is often called duck typing (‘‘If it
walks like a duck and it quacks like a duck, it’s a duck’’). Or – using more technical terminology –
we operate on values, and the presence and meaning of an operation depend solely on its operand
values. This differs from the alternative view that objects have types, which determine the presence
and meaning of operations. Values ‘‘live’’ in objects. This is the way objects (e.g., variables) work
in C++, and only values that meet an object’s requirements can be put into it. What is done at com-
pile time using templates mostly does not involve objects, only values. The exception is local vari-
ables in a constexpr function (§1.6) that are used as objects inside the compiler.

To use an unconstrained template, its definition (not just its declaration) must be in scope at its
point of use. For example, the standard header <vector> holds the definition of vector. In practice,
this means that template definitions are typically found in header files, rather than .cpp files. This
changes when we start to use modules (§3.3). Using modules, the source code is organized in the
same way for ordinary functions and template functions. In both cases, definitions will be pro-
tected against the problems of textual inclusion.

7.6 Advice
[1] Templates provide a general mechanism for compile-time programming; §7.1.
[2] When designing a template, carefully consider the concepts (requirements) assumed for its

template arguments; §7.3.2.
[3] When designing a template, use a concrete version for initial implementation, debugging, and

measurement; §7.3.2.
[4] Use concepts as a design tool; §7.2.1.
[5] Specify concepts for all template arguments; §7.2; [CG: T.10].
[6] Whenever possible use standard concepts (e.g., the Ranges concepts); §7.2.4; [CG: T.11].
[7] Use a lambda if you need a simple function object in one place only; §6.3.2.
[8] There is no separate compilation of templates: #include template definitions in every transla-

tion unit that uses them.
[9] Use templates to express containers and ranges; §7.3.2; [CG: T.3].
[10] Avoid ‘‘concepts’’ without meaningful semantics; §7.2; [CG: T.20].
[11] Require a complete set of operations for a concept; §7.2; [CG: T.21].



Section 7.6 Advice 105

[12] Use variadic templates when you need a function that takes a variable number of arguments
of a variety of types; §7.4.

[13] Don’t use variadic templates for homogeneous argument lists (prefer initializer lists for that);
§7.4.

[14] To use a template, make sure its definition (not just its declaration) is in scope; §7.5.
[15] Templates offer compile-time ‘‘duck typing’’; §7.5.
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8
Library Overview

Why waste time learning
when ignorance is instantaneous?

– Hobbes

• Introduction
• Standard-Library Components
• Standard-Library Headers and Namespace
• Advice

8.1 Introduction
No significant program is written in just a bare programming language. First, a set of libraries is
developed. These then form the basis for further work. Most programs are tedious to write in the
bare language, whereas just about any task can be rendered simple by the use of good libraries.

Continuing from Chapters 1–7, Chapters 9–15 give a quick tour of key standard-library facili-
ties. I very briefly present useful standard-library types, such as string, ostream, variant, vector,
map, path, unique_ptr, thread, reg ex, and complex, as well as the most common ways of using them.

As in Chapters 1–7, you are strongly encouraged not to be distracted or discouraged by an
incomplete understanding of details. The purpose of this chapter is to convey a basic understanding
of the most useful library facilities.

The specification of the standard library is over two thirds of the ISO C++ standard. Explore it,
and prefer it to home-made alternatives. Much thought has gone into its design, more still into its
implementations, and much effort will go into its maintenance and extension.

The standard-library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard-library components, most implementations offer ‘‘graphical user
interface’’ systems (GUIs), Web interfaces, database interfaces, etc. Similarly, most application-
development environments provide ‘‘foundation libraries’’ for corporate or industrial ‘‘standard’’
development and/or execution environments. Here, I do not describe such systems and libraries.
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The intent is to provide a self-contained description of C++ as defined by the standard and to keep
the examples portable. Naturally, a programmer is encouraged to explore the more extensive facili-
ties available on most systems.

8.2 Standard-Library Components
The facilities provided by the standard library can be classified like this:

• Run-time language support (e.g., for allocation and run-time type information).
• The C standard library (with very minor modifications to minimize violations of the type

system).
• Strings (with support for international character sets, localization, and read-only views of

substrings); see §9.2.
• Support for regular expression matching; see §9.4.
• I/O streams is an extensible framework for input and output to which users can add their

own types, streams, buffering strategies, locales, and character sets (Chapter 10). There is
also a library for manipulating file systems in a portable manner (§10.10).

• A framework of containers (such as vector and map) and algorithms (such as find(), sor t(),
and merge()); see Chapter 11 and Chapter 12. This framework, conventionally called the
STL [Stepanov,1994], is extensible so users can add their own containers and algorithms.

• Support for numerical computation (such as standard mathematical functions, complex
numbers, vectors with arithmetic operations, and random number generators); see §4.2.1
and Chapter 14.

• Support for concurrent programming, including threads and locks; see Chapter 15. The con-
currency support is foundational so that users can add support for new models of concur-
rency as libraries.

• Parallel versions of most STL algorithms and some numerical algorithms (e.g., sor t() and
reduce()); see §12.9 and §14.3.1.

• Utilities to support template metaprogramming (e.g., type traits; §13.9), STL-style generic
programming (e.g., pair; §13.4.3), general programming (e.g., variant and optional; §13.5.1,
§13.5.2), and clock (§13.7).

• Support for efficient and safe management of general resources, plus an interface to optional
garbage collectors (§5.3).

• ‘‘Smart pointers’’ for resource management (e.g., unique_ptr and shared_ptr; §13.2.1).
• Special-purpose containers, such as array (§13.4.1), bitset (§13.4.2), and tuple (§13.4.3).
• Suffixes for popular units, such as ms for milliseconds and i for imaginary (§5.4.4).

The main criteria for including a class in the library were that:
• it could be helpful to almost every C++ programmer (both novices and experts),
• it could be provided in a general form that did not add significant overhead compared to a

simpler version of the same facility, and
• simple uses should be easy to learn (relative to the inherent complexity of their task).

Essentially, the C++ standard library provides the most common fundamental data structures
together with the fundamental algorithms used on them.
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8.3 Standard-Library Headers and Namespace
Every standard-library facility is provided through some standard header. For example:

#include<string>
#include<list>

This makes the standard string and list available.
The standard library is defined in a namespace (§3.4) called std. To use standard-library facili-

ties, the std:: prefix can be used:

std::string sheep {"Four legs Good; two legs Baaad!"};
std::list<std::string> slogans {"War is Peace", "Freedom is Slaver y", "Ignorance is Strength"};

For simplicity, I will rarely use the std:: prefix explicitly in examples. Neither will I always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must #include the appropriate headers and make the names they declare accessible. For example:

#include<string> // make the standard string facilities accessible
using namespace std; // make std names available without std:: prefix

string s {"C++ is a general−purpose programming language"}; // OK: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, in this book, I use the standard library exclusively and it is good to know what it offers.

Here is a selection of standard-library headers, all supplying declarations in namespace std:

Selected Standard Library Headers

<algorithm> copy(), find(), sor t() Chapter 12
<array> array §13.4.1
<chrono> duration, time_point §13.7
<cmath> sqrt(), pow() §14.2
<complex> complex, sqr t(), pow() §14.4
<filesystem> path §10.10
<forward_list> forward_list §11.6
<fstream> fstream, ifstream, ofstream §10.7
<future> future, promise §15.7
<ios> hex, dec, scientific, fixed, defaultfloat §10.6
<iostream> istream, ostream, cin, cout Chapter 10
<map> map, multimap §11.5
<memor y> unique_ptr, shared_ptr, allocator §13.2.1
<random> default_random_engine, normal_distribution §14.5
<reg ex> regex, smatch §9.4
<string> string, basic_string §9.2
<set> set, multiset §11.6
<sstream> istringstream, ostringstream §10.8
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Selected Standard Library Headers (Continued)

<stdexcept> length_error, out_of_rang e, runtime_error §3.5.1
<thread> thread §15.2
<unordered_map> unordered_map, unordered_multimap §11.5
<utility> move(), swap(), pair Chapter 13
<variant> variant §13.5.1
<vector> vector §11.2

This listing is far from complete.
Headers from the C standard library, such as <stdlib.h> are provided. For each such header there

is also a version with its name prefixed by c and the .h removed. This version, such as <cstdlib>

places its declarations in the std namespace.

8.4 Advice
[1] Don’t reinvent the wheel; use libraries; §8.1; [CG: SL.1.]
[2] When you have a choice, prefer the standard library over other libraries; §8.1; [CG: SL.2].
[3] Do not think that the standard library is ideal for everything; §8.1.
[4] Remember to #include the headers for the facilities you use; §8.3.
[5] Remember that standard-library facilities are defined in namespace std; §8.3; [CG: SL.3].
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Strings and Regular Expressions

Prefer the standard to the offbeat.
– Strunk & White

• Introduction
• Strings

string Implementation;
• String Views
• Regular Expressions

Searching; Regular Expression Notation; Iterators
• Advice

9.1 Introduction
Te xt manipulation is a major part of most programs. The C++ standard library offers a string type
to save most users from C-style manipulation of arrays of characters through pointers. A
string_view type allows us to manipulate sequences of characters however they may be stored (e.g.,
in a std::string or a char[]). In addition, regular expression matching is offered to help find patterns
in text. The regular expressions are provided in a form similar to what is common in most modern
languages. Both strings and reg ex objects can use a variety of character types (e.g., Unicode).

9.2 Strings
The standard library provides a string type to complement the string literals (§1.2.1); string is a Reg-

ular type (§7.2, §12.7) for owning and manipulating a sequence of characters of various character
types. The string type provides a variety of useful string operations, such as concatenation. For
example:
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string compose(const string& name, const string& domain)
{

return name + '@' + domain;
}

auto addr = compose("dmr","bell−labs.com");

Here, addr is initialized to the character sequence dmr@bell−labs.com. ‘‘Addition’’ of strings means
concatenation. You can concatenate a string, a string literal, a C-style string, or a character to a
string. The standard string has a move constructor, so returning even long strings by value is effi-
cient (§5.2.2).

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the += operation. For example:

void m2(string& s1, string& s2)
{

s1 = s1 + '\n'; // append newline
s2 += '\n'; // append newline

}

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more explicit about what it does, more concise, and possibly more efficient.

A string is mutable. In addition to = and +=, subscripting (using [ ]) and substring operations are
supported. For example:

string name = "Niels Stroustrup";

void m3()
{

string s = name.substr(6,10); // s = "Stroustr up"
name .replace(0,5,"nicholas"); // name becomes "nicholas Stroustrup"
name[0] = toupper(name[0]); // name becomes "Nicholas Stroustrup"

}

The substr() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second is the length of the desired
substring. Since indexing starts from 0, s gets the value Stroustrup.

The replace() operation replaces a substring with a value. In this case, the substring starting at 0

with length 5 is Niels; it is replaced by nicholas. Finally, I replace the initial character with its
uppercase equivalent. Thus, the final value of name is Nicholas Stroustrup. Note that the replace-
ment string need not be the same size as the substring that it is replacing.

Among the many useful string operations are assignment (using =), subscripting (using [ ] or at()

as for vector; §11.2.2), comparison (using == and !=), and lexicographical ordering (using <, <=, >,
and >=), iteration (using iterators as for vector; §12.2), input (§10.3), and streaming (§10.8).

Naturally, strings can be compared against each other, against C-style strings §1.7.1), and
against string literals. For example:
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string incantation;

void respond(const string& answer)
{

if (answer == incantation) {
// perfor m magic

}
else if (answer == "yes") {

// ...
}
// ...

}

If you need a C-style string (a zero-terminated array of char), string offers read-only access to its
contained characters. For example:

void print(const string& s)
{

printf("For people who like printf: %s\n",s.c_str()); // s.c_str() returns a pointer to s’ characters
cout << "For people who like streams: " << s << '\n';

}

A string literal is by definition a const char∗. To get a literal of type std::string use a s suffix. For
example:

auto s = "Cat"s; // a std::str ing
auto p = "Dog"; // a C-style string: a const char*

To use the s suffix, you need to use the namespace std::literals::string_literals (§5.4.4).

9.2.1 string Implementation

Implementing a string class is a popular and useful exercise. However, for general-purpose use, our
carefully crafted first attempts rarely match the standard string in convenience or performance.
These days, string is usually implemented using the short-string optimization. That is, short string
values are kept in the string object itself and only longer strings are placed on free store. Consider:

string s1 {"Annemarie"}; // shor t str ing
string s2 {"Annemarie Stroustrup"}; // long string

The memory layout will be something like this:

10

Annemarie\0

21

Annemarie Stroustrup\0

s1: s2:

When a string’s value changes from a short to a long string (and vice versa) its representation
adjusts appropriately. How many characters can a ‘‘short’’ string have? That’s implementation
defined, but ‘‘about 14 characters’’ isn’t a bad guess.
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The actual performance of strings can depend critically on the run-time environment. In partic-
ular, in multi-threaded implementations, memory allocation can be relatively costly. Also, when
lots of strings of differing lengths are used, memory fragmentation can result. These are the main
reasons that the short-string optimization has become ubiquitous.

To handle multiple character sets, string is really an alias for a general template basic_string

with the character type char:

template<typename Char>
class basic_string {

// ... string of Char ...
};

using string = basic_string<char>;

A user can define strings of arbitrary character types. For example, assuming we have a Japanese
character type Jchar, we can write:

using Jstring = basic_string<Jchar>;

Now we can do all the usual string operations on Jstring, a string of Japanese characters.

9.3 String Views
The most common use of a sequence of characters is to pass it to some function to read. This can
be achieved by passing a string by value, a reference to a string, or a C-style string. In many sys-
tems there are further alternatives, such as string types not offered by the standard. In all of these
cases, there are extra complexities when we want to pass a substring. To address this, the standard
library offers string_view; a string_view is basically a (pointer,length) pair denoting a sequence of
characters:

P i e t H e i ncharacters:

{ begin() , siz e() }string_view:

A string_view gives access to a contiguous sequence of characters. The characters can be stored in
many possible ways, including in a string and in a C-style string. A string_view is like a pointer or a
reference in that it does not own the characters it points to. In that, it resembles an STL pair of iter-
ators (§12.3).

Consider a simple function concatenating two strings:
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string cat(string_view sv1, string_view sv2)
{

string res(sv1.length()+sv2.length());
char∗ p = &res[0];
for (char c : sv1) // one way to copy

∗p++ = c;
copy(sv2.begin(),sv2.end(),p); // another way
return res;

}

We can call this cat():

string king = "Harold";
auto s1 = cat(king,"William"); // str ing and const char*
auto s2 = cat(king,king); // str ing and string
auto s3 = cat("Edward","Stephen"sv); // const char * and string_view
auto s4 = cat("Canute"sv,king);
auto s5 = cat({&king[0],2},"Henry"sv); // HaHenr y
auto s6 = cat({&king[0],2},{&king[2],4}); // Harold

This cat() has three advantages over the compose() that takes const string& arguments (§9.2):
• It can be used for character sequences managed in many different ways.
• No temporary string arguments are created for C-style string arguments.
• We can easily pass substrings.

Note the use of the sv (‘‘string view’’) suffix. To use that we need to

using namespace std::literals::string_view_literals; // §5.4.4

Why bother? The reason is that when we pass "Edward" we need to construct a string_view from a
const char∗ and that requires counting the characters. For "Stephen"sv the length is computed at
compile time.

When returning a string_view, remember that it is very much like a pointer; it needs to point to
something:

string_view bad()
{

string s = "Once upon a time";
return {&s[5],4}; // bad: returning a pointer to a local

}

We are returning a pointer to characters of a string that will be destroyed before we can use them.
One significant restriction of string_view is that it is a read-only view of its characters. For

example, you cannot use a string_view to pass characters to a function that modifies its argument to
lowercase. For that, you might consider using a gsl::span or gsl::string_span (§13.3).

The behavior of out-of-range access to a string_view is unspecified. If you want guaranteed
range checking, use at(), which throws out_of_rang e for attempted out-of-range access, use a
gsl::string_span (§13.3), or ‘‘just be careful.’’
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9.4 Regular Expressions
Regular expressions are a powerful tool for text processing. They provide a way to simply and
tersely describe patterns in text (e.g., a U.S. postal code such as TX 77845, or an ISO-style date,
such as 2009−06−07) and to efficiently find such patterns. In <reg ex>, the standard library provides
support for regular expressions in the form of the std::reg ex class and its supporting functions. To
give a taste of the style of the reg ex library, let us define and print a pattern:

reg ex pat {R"(\w{2}\s∗\d{5}(−\d{4})?)"}; // U.S. postal code pattern: XXddddd-dddd and var iants

People who have used regular expressions in just about any language will find \w{2}\s∗\d{5}(−\d{4})?

familiar. It specifies a pattern starting with two letters \w{2} optionally followed by some space \s∗
followed by five digits \d{5} and optionally followed by a dash and four digits −\d{4}. If you are not
familiar with regular expressions, this may be a good time to learn about them ([Stroustrup,2009],
[Maddock,2009], [Friedl,1997]).

To express the pattern, I use a raw string literal starting with R"( and terminated by )". This
allows backslashes and quotes to be used directly in the string. Raw strings are particularly suitable
for regular expressions because they tend to contain a lot of backslashes. Had I used a conventional
string, the pattern definition would have been:

reg ex pat {"\\w{2}\\s∗\\d{5}(−\\d{4})?"}; // U.S. postal code pattern

In <reg ex>, the standard library provides support for regular expressions:
• reg ex_match(): Match a regular expression against a string (of known size) (§9.4.2).
• reg ex_search(): Search for a string that matches a regular expression in an (arbitrarily long)

stream of data (§9.4.1).
• reg ex_replace(): Search for strings that match a regular expression in an (arbitrarily long)

stream of data and replace them.
• reg ex_iterator: Iterate over matches and submatches (§9.4.3).
• reg ex_token_iterator: Iterate over non-matches.

9.4.1 Searching

The simplest way of using a pattern is to search for it in a stream:

int lineno = 0;
for (string line; getline(cin,line); ) { // read into line buffer

++lineno;
smatch matches; // matched strings go here
if (regex_search(line ,matches,pat)) // search for pat in line

cout << lineno << ": " << matches[0] << '\n';
}

The reg ex_search(line ,matches,pat) searches the line for anything that matches the regular expression
stored in pat and if it finds any matches, it stores them in matches. If no match was found,
reg ex_search(line ,matches,pat) returns false. The matches variable is of type smatch. The ‘‘s’’
stands for ‘‘sub’’ or ‘‘string,’’ and an smatch is a vector of submatches of type string. The first ele-
ment, here matches[0], is the complete match. The result of a reg ex_search() is a collection of
matches, typically represented as an smatch:
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void use()
{

ifstream in("file.txt"); // input file
if (!in) // check that the file was opened

cerr << "no file\n";

reg ex pat {R"(\w{2}\s∗\d{5}(−\d{4})?)"}; // U.S. postal code pattern

int lineno = 0;
for (string line; getline(in,line); ) {

++lineno;
smatch matches; // matched strings go here
if (regex_search(line , matches, pat)) {

cout << lineno << ": " << matches[0] << '\n'; // the complete match
if (1<matches.siz e() && matches[1].matched) // if there is a sub-pattern

// and if it is matched
cout << "\t: " << matches[1] << '\n'; // submatch

}
}

}

This function reads a file looking for U.S. postal codes, such as TX77845 and DC 20500−0001. An
smatch type is a container of regex results. Here, matches[0] is the whole pattern and matches[1] is
the optional four-digit subpattern.

The newline character, \n, can be part of a pattern, so we can search for multiline patterns.
Obviously, we shouldn’t read one line at a time if we want to do that.

The regular expression syntax and semantics are designed so that regular expressions can be
compiled into state machines for efficient execution [Cox,2007]. The reg ex type performs this
compilation at run time.

9.4.2 Regular Expression Notation

The reg ex library can recognize several variants of the notation for regular expressions. Here, I use
the default notation, a variant of the ECMA standard used for ECMAScript (more commonly
known as JavaScript).

The syntax of regular expressions is based on characters with special meaning:

Regular Expression Special Characters

. Any single character (a ‘‘wildcard’’) \ Next character has a special meaning
[ Begin character class ∗ Zero or more (suffix operation)
] End character class + One or more (suffix operation)
{ Begin count ? Optional (zero or one) (suffix operation)
} End count | Alternative (or)
( Begin grouping ˆ Start of line; negation
) End grouping $ End of line

For example, we can specify a line starting with zero or more As followed by one or more Bs
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followed by an optional C like this:

ˆA∗B+C?$

Examples that match:

AAAAAAAAAAAABBBBBBBBBC
BC
B

Examples that do not match:

AAAAA // no B
AAAABC // initial space

AABBCC // too many Cs

A part of a pattern is considered a subpattern (which can be extracted separately from an smatch) if
it is enclosed in parentheses. For example:

\d+−\d+ // no subpatterns
\d+(−\d+) // one subpattern
(\d+)(−\d+) // two subpatter ns

A pattern can be optional or repeated (the default is exactly once) by adding a suffix:

Repetition

{ n } Exactly n times
{ n, }  n or more times
{n,m} At least n and at most m times
∗ Zero or more, that is, {0,}

+ One or more, that is, {1,}

? Optional (zero or one), that is {0,1}

For example:

A{3}B{2,4}C∗

Examples that match:

AAABBC
AAABBB

Examples that do not match:

AABBC // too few As
AAABC // too few Bs
AAABBBBBCCC // too many Bs

A suffix ? after any of the repetition notations (?, ∗, +, and { }) makes the pattern matcher ‘‘lazy’’ or
‘‘non-greedy.’’ That is, when looking for a pattern, it will look for the shortest match rather than
the longest. By default, the pattern matcher always looks for the longest match; this is known as
the Max Munch rule. Consider:

ababab
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The pattern (ab)+ matches all of ababab. Howev er, (ab)+? matches only the first ab.
The most common character classifications have names:

Character Classes

alnum Any alphanumeric character
alpha Any alphabetic character
blank Any whitespace character that is not a line separator
cntrl Any control character
d Any decimal digit
digit Any decimal digit
graph Any graphical character
lower Any lowercase character
print Any printable character
punct Any punctuation character
s Any whitespace character
space Any whitespace character
upper Any uppercase character
w Any word character (alphanumeric characters plus the underscore)
xdigit Any hexadecimal digit character

In a regular expression, a character class name must be bracketed by [: :]. For example, [:digit:]

matches a decimal digit. Furthermore, they must be used within a [ ] pair defining a character class.
Several character classes are supported by shorthand notation:

Character Class Abbreviations

\d A decimal digit [[:digit:]]

\s A space (space, tab, etc.) [[:space:]]

\w A letter (a-z) or digit (0-9) or underscore (_) [_[:alnum:]]

\D Not \d [ˆ[:digit:]]

\S Not \s [ˆ[:space:]]

\W Not \w [ˆ_[:alnum:]]

In addition, languages supporting regular expressions often provide:

Nonstandard (but Common) Character Class Abbreviations

\l A lowercase character [[:lower:]]

\u An uppercase character [[:upper:]]

\L Not \l [ˆ[:lower:]]

\U Not \u [ˆ[:upper:]]

For full portability, use the character class names rather than these abbreviations.
As an example, consider writing a pattern that describes C++ identifiers: an underscore or a let-

ter followed by a possibly empty sequence of letters, digits, or underscores. To illustrate the sub-
tleties involved, I include a few false attempts:
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[:alpha:][:alnum:]∗ // wrong: characters from the set ":alpha" followed by ...
[[:alpha:]][[:alnum:]]∗ // wrong: doesn’t accept underscore ('_' is not alpha)
([[:alpha:]]|_)[[:alnum:]]∗ // wrong: underscore is not part of alnum either

([[:alpha:]]|_)([[:alnum:]]|_)∗ // OK, but clumsy
[[:alpha:]_][[:alnum:]_]∗ // OK: include the underscore in the character classes
[_[:alpha:]][_[:alnum:]]∗ // also OK
[_[:alpha:]]\w∗ // \w is equivalent to [_[:alnum:]]

Finally, here is a function that uses the simplest version of reg ex_match() (§9.4.1) to test whether a
string is an identifier:

bool is_identifier(const string& s)
{

reg ex pat {"[_[:alpha:]]\\w∗"}; // underscore or letter
// followed by zero or more underscores, letters, or digits

return regex_match(s,pat);
}

Note the doubling of the backslash to include a backslash in an ordinary string literal. Use raw
string literals to alleviate problems with special characters. For example:

bool is_identifier(const string& s)
{

reg ex pat {R"([_[:alpha:]]\w∗)"};
return regex_match(s,pat);

}

Here are some examples of patterns:

Ax∗ // A, Ax, Axxxx
Ax+ // Ax, Axxx Not A
\d−?\d // 1-2, 12 Not 1--2
\w{2}−\d{4,5} // Ab-1234, XX-54321, 22-5432 Digits are in \w
(\d∗:)?(\d+) // 12:3, 1:23, 123, :123 Not 123:
(bs|BS) // bs, BS Not bS
[aeiouy] // a, o, u  An English vow el, not x
[ˆaeiouy] // x, k Not an English vow el, not e
[aˆeiouy] // a, ˆ, o, u  An English vow el or ˆ

A group (a subpattern) potentially to be represented by a sub_match is delimited by parentheses. If
you need parentheses that should not define a subpattern, use (?: rather than plain (. For example:

(\s|:|,)∗(\d∗) // optional spaces, colons, and/or commas followed by an optional number

Assuming that we were not interested in the characters before the number (presumably separators),
we could write:

(?:\s|:|,)∗(\d∗) // optional spaces, colons, and/or commas followed by an optional number

This would save the regular expression engine from having to store the first characters: the (?: vari-
ant has only one subpattern.
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Regular Expression Grouping Examples

\d∗\s\w+ No groups (subpatterns)
(\d∗)\s(\w+) Tw o groups
(\d∗)(\s(\w+))+ Tw o groups (groups do not nest)
(\s∗\w∗)+ One group; one or more subpatterns;

only the last subpattern is saved as a sub_match

<(.∗?)>(.∗?)</\1> Three groups; the \1 means ‘‘same as group 1’’

That last pattern is useful for parsing XML. It finds tag/end-of-tag markers. Note that I used a
non-greedy match (a lazy match), .∗?, for the subpattern between the tag and the end tag. Had I
used plain .∗, this input would have caused a problem:

Always look on the <b>bright</b> side of <b>life</b>.

A greedy match for the first subpattern would match the first < with the last >. That would be cor-
rect behavior, but unlikely what the programmer wanted.

For a more exhaustive presentation of regular expressions, see [Friedl,1997].

9.4.3 Iterators

We can define a reg ex_iterator for iterating over a sequence of characters finding matches for a pat-
tern. For example, we can use a sreg ex_iterator (a reg ex_iterator<string>) to output all whitespace-
separated words in a string:

void test()
{

string input = "aa as; asd ++eˆasdf asdfg";
reg ex pat {R"(\s+(\w+))"};
for (sreg ex_iterator p(input.begin(),input.end(),pat); p!=sregex_iterator{}; ++p)

cout << (∗p)[1] << '\n';
}

This outputs:

as
asd
asdfg

We missed the first word, aa, because it has no preceding whitespace. If we simplify the pattern to
R"((\w+))", we get

aa
as
asd
e
asdf
asdfg

A reg ex_iterator is a bidirectional iterator, so we cannot directly iterate over an istream (which
offers only an input iterator). Also, we cannot write through a reg ex_iterator, and the default
reg ex_iterator (reg ex_iterator{}) is the only possible end-of-sequence.
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9.5 Advice
[1] Use std::string to own character sequences; §9.2; [CG: SL.str.1].
[2] Prefer string operations to C-style string functions; §9.1.
[3] Use string to declare variables and members rather than as a base class; §9.2.
[4] Return strings by value (rely on move semantics); §9.2, §9.2.1.
[5] Directly or indirectly, use substr() to read substrings and replace() to write substrings; §9.2.
[6] A string can grow and shrink, as needed; §9.2.
[7] Use at() rather than iterators or [ ] when you want range checking; §9.2.
[8] Use iterators and [ ] rather than at() when you want to optimize speed; §9.2.
[9] string input doesn’t overflow; §9.2, §10.3.
[10] Use c_str() to produce a C-style string representation of a string (only) when you have to;

§9.2.
[11] Use a stringstream or a generic value extraction function (such as to<X>) for numeric conver-

sion of strings; §10.8.
[12] A basic_string can be used to make strings of characters on any type; §9.2.1.
[13] Use the s suffix for string literals meant to be standard-library strings; §9.3 [CG: SL.str.12].
[14] Use string_view as an argument of functions that needs to read character sequences stored in

various ways; §9.3 [CG: SL.str.2].
[15] Use gsl::string_span as an argument of functions that needs to write character sequences

stored in various ways; §9.3. [CG: SL.str.2] [CG: SL.str.11].
[16] Think of a string_view as a kind of pointer with a size attached; it does not own its characters;

§9.3.
[17] Use the sv suffix for string literals meant to be standard-library string_views; §9.3.
[18] Use reg ex for most conventional uses of regular expressions; §9.4.
[19] Prefer raw string literals for expressing all but the simplest patterns; §9.4.
[20] Use reg ex_match() to match a complete input; §9.4, §9.4.2.
[21] Use reg ex_search() to search for a pattern in an input stream; §9.4.1.
[22] The regular expression notation can be adjusted to match various standards; §9.4.2.
[23] The default regular expression notation is that of ECMAScript; §9.4.2.
[24] Be restrained; regular expressions can easily become a write-only language; §9.4.2.
[25] Note that \i allows you to express a subpattern in terms of a previous subpattern; §9.4.2.
[26] Use ? to make patterns ‘‘lazy’’; §9.4.2.
[27] Use reg ex_iterators for iterating over a stream looking for a pattern; §9.4.3.
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10.1 Introduction
The I/O stream library provides formatted and unformatted buffered I/O of text and numeric values.

An ostream converts typed objects to a stream of characters (bytes):

'c'

123

(123,45)

ostream

stream buffer

‘‘Somewhere’’

Typed values: Byte sequences:
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An istream converts a stream of characters (bytes) to typed objects:

'c'

123

(123,45)

istream

stream buffer

‘‘Somewhere’’

Typed values: Byte sequences:

The operations on istreams and ostreams are described in §10.2 and §10.3. The operations are type-
safe, type-sensitive, and extensible to handle user-defined types (§10.5).

Other forms of user interaction, such as graphical I/O, are handled through libraries that are not
part of the ISO standard and therefore not described here.

These streams can be used for binary I/O, be used for a variety of character types, be locale spe-
cific, and use advanced buffering strategies, but these topics are beyond the scope of this book.

The streams can be used for input into and output from std::strings (§10.3), for formatting into
string buffers (§10.8), and for file I/O (§10.10).

The I/O stream classes all have destructors that free all resources owned (such as buffers and
file handles). That is, they are examples of "Resource Acquisition Is Initialization" (RAII; §5.3).

10.2 Output
In <ostream>, the I/O stream library defines output for every built-in type. Further, it is easy to
define output of a user-defined type (§10.5). The operator << (‘‘put to’’) is used as an output opera-
tor on objects of type ostream; cout is the standard output stream and cerr is the standard stream for
reporting errors. By default, values written to cout are converted to a sequence of characters. For
example, to output the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
{

int x {10};
cout << x;

}

Output of different types can be combined in the obvious way:
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void h(int i)
{

cout << "the value of i is ";
cout << i;
cout << '\n';

}

For h(10), the output will be:

the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

void h2(int i)
{

cout << "the value of i is " << i << '\n';
}

This h2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is output as

a character rather than as a numerical value. For example:

void k()
{

int b = 'b'; // note: char implicitly converted to int
char c = 'c';
cout << 'a' << b << c;

}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation
that I used), so this will output a98c.

10.3 Input
In <istream>, the standard library offers istreams for input. Like ostreams, istreams deal with char-
acter string representations of built-in types and can easily be extended to cope with user-defined
types.

The operator >> (‘‘get from’’) is used as an input operator; cin is the standard input stream. The
type of the right-hand operand of >> determines what input is accepted and what is the target of the
input operation. For example:

void f()
{

int i;
cin >> i; // read an integer into i

double d;
cin >> d; // read a double-precision floating-point number into d

}
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This reads a number, such as 1234, from the standard input into the integer variable i and a floating-
point number, such as 12.34e5, into the double-precision floating-point variable d.

Like output operations, input operations can be chained, so I could equivalently have written:

void f()
{

int i;
double d;
cin >> i >> d; // read into i and d

}

In both cases, the read of the integer is terminated by any character that is not a digit. By default,
>> skips initial whitespace, so a suitable complete input sequence would be

1234
12.34e5

Often, we want to read a sequence of characters. A convenient way of doing that is to read into a
string. For example:

void hello()
{

cout << "Please enter your name\n";
string str;
cin >> str;
cout << "Hello, " << str << "!\n";

}

If you type in Eric the response is:

Hello, Eric!

By default, a whitespace character, such as a space or a newline, terminates the read, so if you enter
Eric Bloodaxe pretending to be the ill-fated king of York, the response is still:

Hello, Eric!

You can read a whole line using the getline() function. For example:

void hello_line()
{

cout << "Please enter your name\n";
string str;
getline(cin,str);
cout << "Hello, " << str << "!\n";

}

With this program, the input Eric Bloodaxe yields the desired output:

Hello, Eric Bloodaxe!

The newline that terminated the line is discarded, so cin is ready for the next input line.
Using the formatted I/O operations is usually less error-prone, more efficient, and less code than

manipulating characters one by one. In particular, istreams take care of memory management and
range checking. We can do formatting to and from memory using stringstreams (§10.8).
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The standard strings have the nice property of expanding to hold what you put in them; you
don’t hav e to pre-calculate a maximum size. So, if you enter a couple of megabytes of semicolons,
the program will echo pages of semicolons back at you.

10.4 I/O State
An iostream has a state that we can examine to determine whether an operation succeeded. The
most common use is to read a sequence of values:

vector<int> read_ints(istream& is)
{

vector<int> res;
for (int i; is>>i; )

res.push_back(i);
return res;

}

This reads from is until something that is not an integer is encountered. That something will typi-
cally be the end of input. What is happening here is that the operation is>>i returns a reference to
is, and testing an iostream yields true if the stream is ready for another operation.

In general, the I/O state holds all the information needed to read or write, such as formatting
information (§10.6), error state (e.g., has end-of-input been reached?), and what kind of buffering is
used. In particular, a user can set the state to reflect that an error has occurred (§10.5) and clear the
state if an error wasn’t serious. For example, we could imagine a version of read_ints() that
accepted a terminating string:

vector<int> read_ints(istream& is, const string& terminator)
{

vector<int> res;
for (int i; is >> i; )

res.push_back(i);

if (is.eof()) // fine: end of file
return res;

if (is.fail()) { // we failed to read an int; was it the terminator?
is.clear(); // reset the state to good()
is.ung et(); // put the non-digit back into the stream
string s;
if (cin>>s && s==terminator)

return res;
cin.setstate(ios_base::failbit); // add fail() to cin’s state

}

return res;
}

auto v = read_ints(cin,"stop");
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10.5 I/O of User-Defined Types
In addition to the I/O of built-in types and standard strings, the iostream library allows programmers
to define I/O for their own types. For example, consider a simple type Entr y that we might use to
represent entries in a telephone book:

struct Entry {
string name;
int number;

};

We can define a simple output operator to write an Entr y using a {"name",number} format similar to
the one we use for initialization in code:

ostream& operator<<(ostream& os, const Entry& e)
{

return os << "{\"" << e.name << "\", " << e.number << "}";
}

A user-defined output operator takes its output stream (by reference) as its first argument and
returns it as its result.

The corresponding input operator is more complicated because it has to check for correct for-
matting and deal with errors:

istream& operator>>(istream& is, Entry& e)
// read { "name" , number } pair. Note: for matted with { " " , and }

{
char c, c2;
if (is>>c && c=='{' && is>>c2 && c2=='"') { // star t with a { "

string name; // the default value of a string is the empty string: ""
while (is.get(c) && c!='"') // anything before a " is part of the name

name+=c;

if (is>>c && c==',') {
int number = 0;
if (is>>number>>c && c=='}') { // read the number and a }

e = {name ,number}; // assign to the entry
return is;

}
}

}
is.setstate(ios_base::failbit); // register the failure in the stream
return is;

}

An input operation returns a reference to its istream that can be used to test if the operation suc-
ceeded. For example, when used as a condition, is>>c means ‘‘Did we succeed at reading a char

from is into c?’’
The is>>c skips whitespace by default, but is.g et(c) does not, so this Entr y-input operator ignores

(skips) whitespace outside the name string, but not within it. For example:
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{ "John Marwood Cleese", 123456 }
{"Michael Edward Palin", 987654}

We can read such a pair of values from input into an Entr y like this:

for (Entr y ee; cin>>ee; ) // read from cin into ee
cout << ee << '\n'; // wr ite ee to cout

The output is:

{"John Marwood Cleese", 123456}
{"Michael Edward Palin", 987654}

See §9.4 for a more systematic technique for recognizing patterns in streams of characters (regular
expression matching).

10.6 Formatting
The iostream library provides a large set of operations for controlling the format of input and out-
put. The simplest formatting controls are called manipulators and are found in <ios>, <istream>,
<ostream>, and <iomanip> (for manipulators that take arguments). For example, we can output inte-
gers as decimal (the default), octal, or hexadecimal numbers:

cout << 1234 << ',' << hex << 1234 << ',' << oct << 1234 << '\n'; // pr int 1234,4d2,2322

We can explicitly set the output format for floating-point numbers:

constexpr double d = 123.456;

cout << d << "; " // use the default for mat for d
<< scientific << d << "; "  // use 1.123e2 style for mat for d
<< hexfloat << d << "; "  // use hexadecimal notation for d
<< fixed << d << "; " // use 123.456 style for mat for d
<< defaultfloat << d << '\n'; // use the default for mat for d

This produces:

123.456; 1.234560e+002; 0x1.edd2f2p+6; 123.456000; 123.456

Precision is an integer that determines the number of digits used to display a floating-point number:
• The general format (defaultfloat) lets the implementation choose a format that presents a

value in the style that best preserves the value in the space available. The precision specifies
the maximum number of digits.

• The scientific format (scientific) presents a value with one digit before a decimal point and
an exponent. The precision specifies the maximum number of digits after the decimal point.

• The fixed format (fixed) presents a value as an integer part followed by a decimal point and a
fractional part. The precision specifies the maximum number of digits after the decimal
point.

Floating-point values are rounded rather than just truncated, and precision() doesn’t affect integer
output. For example:
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cout.precision(8);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

cout.precision(4);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';
cout << 1234.56789 << '\n';

This produces:

1234.5679 1234.5679 123456
1235 1235 123456
1235

These floating-point manipulators are ‘‘sticky’’; that is, their effects persist for subsequent floating-
point operations.

10.7 File Streams
In <fstream>, the standard library provides streams to and from a file:

• ifstreams for reading from a file
• ofstreams for writing to a file
• fstreams for reading from and writing to a file

For example:

ofstream ofs {"target"}; // ‘‘o’’ for ‘‘output’’
if (!ofs)

error("couldn't open 'target' for writing");

Testing that a file stream has been properly opened is usually done by checking its state.

ifstream ifs {"source"}; // ‘‘i’’ for ‘‘input’’
if (!ifs)

error("couldn't open 'source' for reading");

Assuming that the tests succeeded, ofs can be used as an ordinary ostream (just like cout) and ifs

can be used as an ordinary istream (just like cin).
File positioning and more detailed control of the way a file is opened is possible, but beyond the

scope of this book.
For the composition of file names and file system manipulation, see §10.10.

10.8 String Streams
In <sstream>, the standard library provides streams to and from a string:

• istringstreams for reading from a string

• ostringstreams for writing to a string

• stringstreams for reading from and writing to a string.
For example:
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void test()
{

ostringstream oss;

oss << "{temperature," << scientific << 123.4567890 << "}";
cout << oss.str() << '\n';

}

The result from an ostringstream can be read using str(). One common use of an ostringstream is to
format before giving the resulting string to a GUI. Similarly, a string received from a GUI can be
read using formatted input operations (§10.3) by putting it into an istringstream.

A stringstream can be used for both reading and writing. For example, we can define an opera-
tion that can convert any type with a string representation into another that can also be represented
as a string:

template<typename Target =string, typename Source =string>
Targ et to(Source arg) // convert Source to Target
{

stringstream interpreter;
Targ et result;

if (!(interpreter << arg) // wr ite arg into stream
|| !(interpreter >> result) // read result from stream
|| !(interpreter >> std::ws).eof()) // stuff left in stream?
throw runtime_error{"to<>() failed"};

return result;
}

A function template argument needs to be explicitly mentioned only if it cannot be deduced or if
there is no default (§7.2.4), so we can write:

auto x1 = to<string,double>(1.2); // very explicit (and verbose)
auto x2 = to<string>(1.2); // Source is deduced to double
auto x3 = to<>(1.2); // Target is defaulted to string; Source is deduced to double
auto x4 = to(1.2); // the <> is redundant;

// Target is defaulted to string; Source is deduced to double

If all function template arguments are defaulted, the <> can be left out.
I consider this a good example of the generality and ease of use that can be achieved by a com-

bination of language features and standard-library facilities.

10.9 C-style I/O
The C++ standard library also supports the C standard-library I/O, including printf() and scanf().
Many uses of this library are unsafe from a type and security point-of-view, so I don’t recommend
its use. In particular, it can be difficult to use for safe and convenient input. It does not support
user-defined types. If you don’t use C-style I/O and care about I/O performance, call
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ios_base::sync_with_stdio(false); // avoid significant overhead

Without that call, iostreams can be significantly slowed down to be compatible with the C-style I/O.

10.10 File System
Most systems have a notion of a file system providing access to permanent information stored as
files. Unfortunately, the properties of file systems and the ways of manipulating them vary greatly.
To deal with that, the file system library in <filesystem> offers a uniform interface to most facilities
of most file systems. Using <filesystem>, we can portably

• express file system paths and navigate through a file system
• examine file types and the permissions associated with them

The filesystem library can handle unicode, but explaining how is beyond the scope of this book. I
recommend the cppreference [Cppreference] and the Boost filesystem documentation [Boost] for
detailed information.

Consider an example:

path f = "dir/hypothetical.cpp"; // naming a file

asser t(exists(f)); // f must exist

if (is_regular_file(f)) // is f an ordinary file?
cout << f << " is a file; its size is " << file_siz e(f) << '\n';

Note that a program manipulating a file system is usually running on a computer together with
other programs. Thus, the contents of a file system can change between two commands. For exam-
ple, even though we first of all carefully asserted that f existed, that may no longer be true when on
the next line, we ask if f is a regular file.

A path is quite a complicated class, capable of handling the native character sets and conven-
tions of many operating systems. In particular, it can handle file names from command lines as
presented by main(); for example:

int main(int argc, char∗ argv[])
{

if (argc < 2) {
cerr << "arguments expected\n";
return 1;

}

path p {argv[1]}; // create a path from the command line

cout << p << " " << exists(p) << '\n'; // note: a path can be printed like a str ing
// ...

}

A path is not checked for validity until it is used. Even then, its validity depends on the conven-
tions of the system on which the program runs.



Section 10.10 File System 133

Naturally, a path can be used to open a file

void use(path p)
{

ofstream f {p};
if (!f) error("bad file name: ", p);
f << "Hello, file!";

}

In addition to path, <filesystem> offers types for traversing directories and inquiring about the prop-
erties of the files found:

File System Types (partial)

path A directory path
filesystem_error A file system exception
director y_entr y A directory entry
director y_iterator For iterating over a directory
recursive_director y_iterator For iterating over a directory and its subdirectories

Consider a simple, but not completely unrealistic, example:

void print_directory(path p)
tr y
{

if (is_directory(p)) {
cout << p << ":\n";
for (const directory_entr y& x : director y_iterator{p})

cout << " " << x.path() << '\n';
}

}
catch (const filesystem_error& ex) {

cerr << ex.what() << '\n';
}

A string can be implicitly converted to a path so we can exercise print_director y like this:

void use()
{

print_director y("."); // current directory
print_director y(".."); // parent directory
print_director y("/"); // Unix root directory
print_director y("c:"); // Windows volume C

for (string s; cin>>s; )
print_director y(s);

}

Had I wanted to list subdirectories also, I would have said recursive_director y_iterator{p}. Had I
wanted to print entries in lexicographical order, I would have copied the paths into a vector and
sorted that before printing.
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Class path offers many common and useful operations:

Path Operations (partial)
p and p2 are paths

value_type Character type used by the native encoding of the filesystem:
char on POSIX, wchar_t on Windows

string_type std::basic_string<value_type>

const_iterator A const BidirectionalIterator with a value_type of path

iterator Alias for const_iterator

p=p2 Assign p2 to p

p/=p2 p and p2 concatenated using the file-name separator (by default /)
p+=p2 p and p2 concatenated (no separator)
p.native() The native format of p

p.string() p in the native format of p as a string

p.g eneric_string() p in the generic format as a string

p.filename() The filename part of p

p.stem() The stem part of p

p.extension() The file extension part of p

p.begin() The beginning of p’s element sequence
p.end() The end of p’s element sequence
p==p2, p!=p2 Equality and inequality for p and p2

p<p2, p<=p2, p>p2, p>=p2 Lexicographical comparisons
is>>p, os<<p Stream I/O to/from p

u8path(s) A path from a UTF-8 encoded source s

For example:

void test(path p)
{

if (is_directory(p)) {
cout << p << ":\n";
for (const directory_entr y& x : director y_iterator(p)) {

const path& f = x; // refer to the path part of a director y entr y
if (f.extension() == ".exe")

cout << f.stem() << " is a Windows executable\n";
else {

string n = f.extension().string();
if (n == ".cpp" || n == ".C" || n == ".cxx")

cout << f.stem() << " is a C++ source file\n";
}

}
}

}

We use a path as a string (e.g., f.extension) and we can extract strings of various types from a path

(e.g., f.extension().string()).
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Note that naming conventions, natural languages, and string encodings are rich in complexity.
The filesystem-library abstractions offer portability and great simplification.

File System Operations (partial)
p, p1, and p2 are paths; e is an error_code; b is a bool indicating success or failure

exists(p) Does p refer to an existing file system object?
copy(p1,p2) Copy files or directories from p1 to p2; report errors as exceptions
copy(p1,p2,e) Copy files or directories; report errors as error codes
b=copy_file(p1,p2) Copy file contents from p1 to p2; report errors as exceptions
b=create_director y(p) Create new directory named p; all intermediate directories on p must exist
b=create_directories(p) Create new directory named p; create all intermediate directories on p

p=current_path() p is the current working directory
current_path(p) Make p the current working directory
s=file_siz e(p) s is the number of bytes in p

b=remove(p) Remove p if it is a file or an empty directory

Many operations have overloads that take extra arguments, such as operating systems permissions.
The handling of such is far beyond the scope of this book, so look them up if you need them.

Like copy(), all operations come in two versions:
• The basic version as listed in the table, e.g., exists(p). The function will throw filesys-

tem_error if the operation failed.
• A version with an extra error_code argument, e.g., exists(p,e). Check e to see if the opera-

tions succeeded.
We use the error codes when operations are expected to fail frequently in normal use and the

throwing operations when an error is considered exceptional.
Often, using an inquiry function is the simplest and most straightforward approach to examin-

ing the properties of a file. The <filesystem> library knows about a few common kinds of files and
classifies the rest as ‘‘other’’:

File types
f Is a path or a file_status

is_block_file(f) Is f a block device?
is_character_file(f) Is f a character device?
is_director y(f) Is f a directory?
is_empty(f) Is f an empty file or directory?
is_fifo(f) Is f a named pipe?
is_other(f) Is f some other kind of file?
is_regular_file(f) Is f a regular (ordinary) file?
is_socket(f) Is f a named IPC socket?
is_symlink(f) Is f a symbolic link?
status_known(f) Is f’s file status known?
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10.11 Advice
[1] iostreams are type-safe, type-sensitive, and extensible; §10.1.
[2] Use character-level input only when you have to; §10.3; [CG: SL.io.1].
[3] When reading, always consider ill-formed input; §10.3; [CG: SL.io.2].
[4] Avoid endl (if you don’t know what endl is, you haven’t missed anything); [CG: SL.io.50].
[5] Define << and >> for user-defined types with values that have meaningful textual representa-

tions; §10.1, §10.2, §10.3.
[6] Use cout for normal output and cerr for errors; §10.1.
[7] There are iostreams for ordinary characters and wide characters, and you can define an

iostream for any kind of character; §10.1.
[8] Binary I/O is supported; §10.1.
[9] There are standard iostreams for standard I/O streams, files, and strings; §10.2, §10.3, §10.7,

§10.8.
[10] Chain << operations for a terser notation; §10.2.
[11] Chain >> operations for a terser notation; §10.3.
[12] Input into strings does not overflow; §10.3.
[13] By default >> skips initial whitespace; §10.3.
[14] Use the stream state fail to handle potentially recoverable I/O errors; §10.4.
[15] You can define << and >> operators for your own types; §10.5.
[16] You don’t need to modify istream or ostream to add new << and >> operators; §10.5.
[17] Use manipulators to control formatting; §10.6.
[18] precision() specifications apply to all following floating-point output operations; §10.6.
[19] Floating-point format specifications (e.g., scientific) apply to all following floating-point out-

put operations; §10.6.
[20] #include <ios> when using standard manipulators; §10.6.
[21] #include <iomanip> when using standard manipulators taking arguments; §10.6.
[22] Don’t try to copy a file stream.
[23] Remember to check that a file stream is attached to a file before using it; §10.7.
[24] Use stringstreams for in-memory formatting; §10.8.
[25] You can define conversions between any two types that both have string representation;

§10.8.
[26] C-style I/O is not type-safe; §10.9.
[27] Unless you use printf-family functions call ios_base::sync_with_stdio(false); §10.9; [CG:

SL.io.10].
[28] Prefer <filesystem> to direct use of a specific operating system interfaces; §10.10.
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Containers

It was new.
It was singular.

It was simple.
It must succeed!

– H. Nelson

• Introduction
• vector

Elements; Range Checking
• list

• map

• unordered_map

• Container Overview
• Advice

11.1 Introduction
Most computing involves creating collections of values and then manipulating such collections.
Reading characters into a string and printing out the string is a simple example. A class with the
main purpose of holding objects is commonly called a container. Providing suitable containers for
a giv en task and supporting them with useful fundamental operations are important steps in the
construction of any program.

To illustrate the standard-library containers, consider a simple program for keeping names and
telephone numbers. This is the kind of program for which different approaches appear ‘‘simple and
obvious’’ to people of different backgrounds. The Entr y class from §10.5 can be used to hold a
simple phone book entry. Here, we deliberately ignore many real-world complexities, such as the
fact that many phone numbers do not have a simple representation as a 32-bit int.
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11.2 vector

The most useful standard-library container is vector. A vector is a sequence of elements of a given
type. The elements are stored contiguously in memory. A typical implementation of vector

(§4.2.2, §5.2) will consist of a handle holding pointers to the first element, one-past-the-last ele-
ment, and one-past-the-last allocated space (§12.1) (or the equivalent information represented as a
pointer plus offsets):

elem

space

last

alloc

elements extra space

vector:

In addition, it holds an allocator (here, alloc), from which the vector can acquire memory for its ele-
ments. The default allocator uses new and delete to acquire and release memory (§13.6).

We can initialize a vector with a set of values of its element type:

vector<Entr y> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

Elements can be accessed through subscripting. So, assuming that we have defined << for Entr y, we
can write:

void print_book(const vector<Entry>& book)
{

for (int i = 0; i!=book.size(); ++i)
cout << book[i] << '\n';

}

As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector member
function siz e() gives the number of elements.

The elements of a vector constitute a range, so we can use a range-for loop (§1.7):

void print_book(const vector<Entry>& book)
{

for (const auto& x : book) // for "auto" see §1.4
cout << x << '\n';

}

When we define a vector, we giv e it an initial size (initial number of elements):

vector<int> v1 = {1, 2, 3, 4}; // size is 4
vector<string> v2; // size is 0
vector<Shape∗> v3(23); // size is 23; initial element value: nullptr
vector<double> v4(32,9.9); // size is 32; initial element value: 9.9
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An explicit size is enclosed in ordinary parentheses, for example, (23), and by default, the
elements are initialized to the element type’s default value (e.g., nullptr for pointers and 0
for numbers). If you don’t want the default value, you can specify one as a second argu-
ment (e.g., 9.9 for the 32 elements of v4).

The initial size can be changed. One of the most useful operations on a vector is push_back(),
which adds a new element at the end of a vector, increasing its size by one. For example, assuming
that we have defined >> for Entr y, we can write:

void input()
{

for (Entr y e; cin>>e; )
phone_book.push_back(e);

}

This reads Entr ys from the standard input into phone_book until either the end-of-input (e.g., the
end of a file) is reached or the input operation encounters a format error.

The standard-library vector is implemented so that growing a vector by repeated push_back()s is
efficient. To show how, consider an elaboration of the simple Vector from (Chapter 4 and Chapter
6) using the representation indicated in the diagram above:

template<typename T>
class Vector {

T∗ elem; // pointer to first element
T∗ space; // pointer to first unused (and uninitialized) slot
T∗ last; // pointer to last slot

public:
// ...
int size(); // number of elements (space-elem)
int capacity(); // number of slots available for elements (last-elem)
// ...
void reserve(int newsz); // increase capacity() to newsz
// ...
void push_back(const T& t); // copy t into Vector
void push_back(T&& t); // move t into Vector

};

The standard-library vector has members capacity(), reser ve(), and push_back(). The reser ve() is
used by users of vector and other vector members to make room for more elements. It may have to
allocate new memory and when it does, it moves the elements to the new allocation.

Given capacity() and reser ve(), implementing push_back() is trivial:

template<typename T>
void Vector<T>::push_back(const T& t)
{

if (capacity()<size()+1) // make sure we have space for t
reser ve(siz e()==0?8:2∗siz e()); // double the capacity

new(space) T{t}; // initialize *space to t
++space;

}
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Now allocation and relocation of elements happens only infrequently. I used to use reser ve() to try
to improve performance, but that turned out to be a waste of effort: the heuristic used by vector is
on average better than my guesses, so now I only explicitly use reser ve() to avoid reallocation of
elements when I want to use pointers to elements.

A vector can be copied in assignments and initializations. For example:

vector<Entr y> book2 = phone_book;

Copying and moving of vectors are implemented by constructors and assignment operators as
described in §5.2. Assigning a vector involves copying its elements. Thus, after the initialization
of book2, book2 and phone_book hold separate copies of every Entr y in the phone book. When a
vector holds many elements, such innocent-looking assignments and initializations can be expen-
sive. Where copying is undesirable, references or pointers (§1.7) or move operations (§5.2.2)
should be used.

The standard-library vector is very flexible and efficient. Use it as your default container; that
is, use it unless you have a solid reason to use some other container. If you avoid vector because of
concerns about ‘‘efficiency,’’ measure. Our intuition is most fallible in matters of the performance
of container uses.

11.2.1 Elements

Like all standard-library containers, vector is a container of elements of some type T, that is, a
vector<T>. Just about any type qualifies as an element type: built-in numeric types (such as char,
int, and double), user-defined types (such as string, Entr y, list<int>, and Matrix<double ,2>), and point-
ers (such as const char∗, Shape∗, and double∗). When you insert a new element, its value is copied
into the container. For example, when you put an integer with the value 7 into a container, the
resulting element really has the value 7. The element is not a reference or a pointer to some object
containing 7. This makes for nice, compact containers with fast access. For people who care about
memory sizes and run-time performance this is critical.

If you have a class hierarchy (§4.5) that relies on vir tual functions to get polymorphic behavior,
do not store objects directly in a container. Instead store a pointer (or a smart pointer; §13.2.1).
For example:

vector<Shape> vs; // No, don’t - there is no room for a Circle or a Smiley
vector<Shape∗> vps; // better, but see §4.5.3
vector<unique_ptr<Shape>> vups; // OK

11.2.2 Range Checking

The standard-library vector does not guarantee range checking. For example:

void silly(vector<Entr y>& book)
{

int i = book[book.size()].number; // book.size() is out of range
// ...

}
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That initialization is likely to place some random value in i rather than giving an error. This is
undesirable, and out-of-range errors are a common problem. Consequently, I often use a simple
range-checking adaptation of vector:

template<typename T>
class Vec : public std::vector<T> {
public:

using vector<T>::vector; // use the constructors from vector (under the name Vec)

T& operator[](int i) // range check
{ return vector<T>::at(i); }

const T& operator[](int i) const // range check const objects; §4.2.1
{ return vector<T>::at(i); }

};

Vec inherits everything from vector except for the subscript operations that it redefines to do range
checking. The at() operation is a vector subscript operation that throws an exception of type
out_of_rang e if its argument is out of the vector’s range (§3.5.1).

For Vec, an out-of-range access will throw an exception that the user can catch. For example:

void checked(Vec<Entr y>& book)
{

tr y {
book[book.siz e()] = {"Joe",999999}; // will throw an exception
// ...

}
catch (out_of_rang e&) {

cerr << "range error\n";
}

}

The exception will be thrown, and then caught (§3.5.1). If the user doesn’t catch an exception, the
program will terminate in a well-defined manner rather than proceeding or failing in an undefined
manner. One way to minimize surprises from uncaught exceptions is to use a main() with a tr y-
block as its body. For example:

int main()
tr y {

// your code
}
catch (out_of_rang e&) {

cerr << "range error\n";
}
catch (...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output stream cerr (§10.2).
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Why doesn’t the standard guarantee range checking? Many performance-critical applications
use vectors and checking all subscripting implies a cost on the order of 10%. Obviously, that cost
can vary dramatically depending on hardware, optimizers, and an application’s use of subscripting.
However, experience shows that such overhead can lead people to prefer the far more unsafe built-
in arrays. Even the mere fear of such overhead can lead to disuse. At least vector is easily range
checked at debug time and we can build checked versions on top of the unchecked default. Some
implementations save you the bother of defining Vec (or equivalent) by providing a range-checked
version of vector (e.g., as a compiler option).

A range-for avoids range errors at no cost by accessing elements through iterators in the range
[begin():end()). As long as their iterator arguments are valid, the standard-library algorithms do the
same to ensure the absence of range errors.

If you can use vector::at() directly in your code, you don’t need my Vec workaround. Further-
more, some standard libraries have range-checked vector implementations that offer more complete
checking than Vec.

11.3 list

The standard library offers a doubly-linked list called list:

4

list:

links links links links

We use a list for sequences where we want to insert and delete elements without moving other ele-
ments. Insertion and deletion of phone book entries could be common, so a list could be appropri-
ate for representing a simple phone book. For example:

list<Entr y> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

When we use a linked list, we tend not to access elements using subscripting the way we com-
monly do for vectors. Instead, we might search the list looking for an element with a given value.
To do this, we take advantage of the fact that a list is a sequence as described in Chapter 12:

int get_number(const string& s)
{

for (const auto& x : phone_book)
if (x.name==s)

return x.number;
return 0; // use 0 to represent "number not found"

}
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The search for s starts at the beginning of the list and proceeds until s is found or the end of
phone_book is reached.

Sometimes, we need to identify an element in a list. For example, we may want to delete an
element or insert a new element before it. To do that we use an iterator: a list iterator identifies an
element of a list and can be used to iterate through a list (hence its name). Every standard-library
container provides the functions begin() and end(), which return an iterator to the first and to one-
past-the-last element, respectively (Chapter 12). Using iterators explicitly, we can – less elegantly
– write the get_number() function like this:

int get_number(const string& s)
{

for (auto p = phone_book.begin(); p!=phone_book.end(); ++p)
if (p−>name==s)

return p−>number;
return 0; // use 0 to represent "number not found"

}

In fact, this is roughly the way the terser and less error-prone range-for loop is implemented by the
compiler. Giv en an iterator p, ∗p is the element to which it refers, ++p advances p to refer to the
next element, and when p refers to a class with a member m, then p−>m is equivalent to (∗p).m.

Adding elements to a list and removing elements from a list is easy:

void f(const Entry& ee, list<Entr y>::iterator p, list<Entry>::iterator q)
{

phone_book.inser t(p,ee); // add ee before the element referred to by p
phone_book.erase(q); // remove the element referred to by q

}

For a list, inser t(p,elem) inserts an element with a copy of the value elem before the element pointed
to by p. Here, p may be an iterator pointing one-beyond-the-end of the list. Conversely, erase(p)

removes the element pointed to by p and destroys it.
These list examples could be written identically using vector and (surprisingly, unless you

understand machine architecture) perform better with a small vector than with a small list. When
all we want is a sequence of elements, we have a choice between using a vector and a list. Unless
you have a reason not to, use a vector. A vector performs better for traversal (e.g., find() and
count()) and for sorting and searching (e.g., sor t() and equal_rang e(); §12.6, §13.4.3).

The standard library also offers a singly-linked list called forward_list:

forward_list:

link link link link

A forward_list differs from a list by only allowing forward iteration. The point of that is to save
space. There is no need to keep a predecessor pointer in each link and the size of an empty for-

ward_list is just one pointer. A forward_list doesn’t even keep its number of elements. If you need
the element count, count. If you can’t afford to count, you probably shouldn’t use a forward_list.
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11.4 map

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addition, a lin-
ear search is inefficient for all but the shortest lists. The standard library offers a balanced binary
search tree (usually, a red-black tree) called map:

4

map:

links

key:

value:

links

links

links

In other contexts, a map is known as an associative array or a dictionary. It is implemented as a bal-
anced binary tree.

The standard-library map is a container of pairs of values optimized for lookup. We can use the
same initializer as for vector and list (§11.2, §11.3):

map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

When indexed by a value of its first type (called the key), a map returns the corresponding value of
the second type (called the value or the mapped type). For example:

int get_number(const string& s)
{

return phone_book[s];
}

In other words, subscripting a map is essentially the lookup we called get_number(). If a key isn’t
found, it is entered into the map with a default value for its value. The default value for an integer
type is 0; the value I just happened to choose represents an invalid telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use find() and
inser t() instead of [ ].

11.5 unordered_map

The cost of a map lookup is O(log(n)) where n is the number of elements in the map. That’s pretty
good. For example, for a map with 1,000,000 elements, we perform only about 20 comparisons
and indirections to find an element. However, in many cases, we can do better by using a hashed
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lookup rather than a comparison using an ordering function, such as <. The standard-library hashed
containers are referred to as ‘‘unordered’’ because they don’t require an ordering function:

repunordered_map:

hash table:

For example, we can use an unordered_map from <unordered_map> for our phone book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

Like for a map, we can subscript an unordered_map:

int get_number(const string& s)
{

return phone_book[s];
}

The standard library provides a default hash function for strings as well as for other built-in and
standard-library types. If necessary, you can provide your own (§5.4.6). Possibly, the most com-
mon need for a ‘‘custom’’ hash function comes when we want an unordered container of one of our
own types. A hash function is often provided as a function object (§6.3.2). For example:

struct Record {
string name;
int product_code;
// ...

};

struct Rhash { // a hash function for Record
siz e_t operator()(const Record& r) const
{

return hash<string>()(r.name) ˆ hash<int>()(r.product_code);
}

};

unordered_set<Record,Rhash> my_set; // set of Records using Rhash for lookup

Designing good hash functions is an art and sometimes requires knowledge of the data to which it
will be applied. Creating a new hash function by combining existing hash functions using exclu-
sive-or (ˆ) is simple and often very effective.

We can avoid explicitly passing the hash operation by defining it as a specialization of the stan-
dard-library hash:
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namespace std { // make a hash function for Record

template<> struct hash<Record> {
using argument_type = Record;
using result_type = std::size_t;

siz e_t operator()(const Record& r) const
{

return hash<string>()(r.name) ˆ hash<int>()(r.product_code);
}

};
}

Note the differences between a map and an unordered_map:
• A map requires an ordering function (the default is <) and yields an ordered sequence.
• A unordered_map requires and an equality function (the default is ==); it does not maintain

an order among its elements.
Given a good hash function, an unordered_map is much faster than a map for large containers.
However, the worst-case behavior of an unordered_map with a poor hash function is far worse than
that of a map.

11.6 Container Overview
The standard library provides some of the most general and useful container types to allow the pro-
grammer to select a container that best serves the needs of an application:

Standard Container Summary

vector<T> A variable-size vector (§11.2)
list<T> A doubly-linked list (§11.3)
forward_list<T> A singly-linked list
deque<T> A double-ended queue
set<T> A set (a map with just a key and no value)
multiset<T> A set in which a value can occur many times
map<K,V> An associative array (§11.4)
multimap<K,V> A map in which a key can occur many times
unordered_map<K,V> A map using a hashed lookup (§11.5)
unordered_multimap<K,V> A multimap using a hashed lookup
unordered_set<T> A set using a hashed lookup
unordered_multiset<T> A multiset using a hashed lookup

The unordered containers are optimized for lookup with a key (often a string); in other words, they
are implemented using hash tables.

The containers are defined in namespace std and presented in headers <vector>, <list>, <map>,
etc. (§8.3). In addition, the standard library provides container adaptors queue<T>, stack<T>, and
priority_queue<T>. Look them up if you need them. The standard library also provides more
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specialized container-like types, such as array<T,N> (§13.4.1) and bitset<N> (§13.4.2).
The standard containers and their basic operations are designed to be similar from a notational

point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. Basic operations apply to every kind of container for which they make sense and can be effi-
ciently implemented:

Standard Container Operations (partial)

value_type The type of an element

p=c.begin() p points to first element of c; also cbegin() for an iterator to const

p=c.end() p points to one-past-the-last element of c; also cend() for an iterator to const

k=c.siz e() k is the number of elements in c

c.empty() Is c empty?
k=c.capacity() k is the number of elements that c can hold without a new allocation
c.reser ve(k) Make the capacity k

c.resiz e(k) Make the number of elements k; added elements has the value value_type{}

c[k] The kth element of c; no range checking
c.at(k) The kth element of c; if out of range, throw out_of_rang e

c.push_back(x) Add x at the end of c; increase the size of c by one
c.emplace_back(a) Add value_type{a} at the end of c; increase the size of c by one
q=c.inser t(p,x) Add x before p in c

q=c.erase(p) Remove element at p from c

c=c2 Assignment
b=(c==c2), also != Equality of all elements of c and c2; b==true if equal
x=(c<c2), also <=, >, >= Lexicographical order of c and c2:

x<0 if less than, x==0 if equal, and 0<x if greater than

This notational and semantic uniformity enables programmers to provide new container types that
can be used in a very similar manner to the standard ones. The range-checked vector, Vector

(§3.5.2, Chapter 4), is an example of that. The uniformity of container interfaces allows us to spec-
ify algorithms independently of individual container types. However, each has strengths and weak-
nesses. For example, subscripting and traversing a vector is cheap and easy. On the other hand,
vector elements are moved when we insert or remove elements; list has exactly the opposite proper-
ties. Please note that a vector is usually more efficient than a list for short sequences of small ele-
ments (even for inser t() and erase()). I recommend the standard-library vector as the default type for
sequences of elements: you need a reason to choose another.

Consider the singly-linked list, forward_list, a container optimized for the empty sequence
(§11.3). An empty forward_list occupies just one word, whereas an empty vector occupy three.
Empty sequences, and sequences with only an element or two, are surprisingly common and useful.

An emplace operation, such as emplace_back() takes arguments for an element’s constructor and
builds the object in a newly allocated space in the container, rather than copying an object into the
container. For example, for a vector<pair<int,string>> we could write:

v.push_back(pair{1,"copy or move")); // make a pair and move it into v
v.emplace_back(1,"build in place"); // buid a pair in v
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11.7 Advice
[1] An STL container defines a sequence; §11.2.
[2] STL containers are resource handles; §11.2, §11.3, §11.4, §11.5.
[3] Use vector as your default container; §11.2, §11.6; [CG: SL.con.2].
[4] For simple traversals of a container, use a range-for loop or a begin/end pair of iterators;

§11.2, §11.3.
[5] Use reser ve() to avoid invalidating pointers and iterators to elements; §11.2.
[6] Don’t assume performance benefits from reser ve() without measurement; §11.2.
[7] Use push_back() or resiz e() on a container rather than realloc() on an array; §11.2.
[8] Don’t use iterators into a resized vector; §11.2.
[9] Do not assume that [ ] range checks; §11.2.
[10] Use at() when you need guaranteed range checks; §11.2; [CG: SL.con.3].
[11] Use range-for and standard-library algorithms for cost-free avoidance of range errors;

§11.2.2.
[12] Elements are copied into a container; §11.2.1.
[13] To preserve polymorphic behavior of elements, store pointers; §11.2.1.
[14] Insertion operations, such as inser t() and push_back(), are often surprisingly efficient on a

vector; §11.3.
[15] Use forward_list for sequences that are usually empty; §11.6.
[16] When it comes to performance, don’t trust your intuition: measure; §11.2.
[17] A map is usually implemented as a red-black tree; §11.4.
[18] An unordered_map is a hash table; §11.5.
[19] Pass a container by reference and return a container by value; §11.2.
[20] For a container, use the ()-initializer syntax for sizes and the {}-initializer syntax for lists of

elements; §4.2.3, §11.2.
[21] Prefer compact and contiguous data structures; §11.3.
[22] A list is relatively expensive to traverse; §11.3.
[23] Use unordered containers if you need fast lookup for large amounts of data; §11.5.
[24] Use ordered associative containers (e.g., map and set) if you need to iterate over their ele-

ments in order; §11.4.
[25] Use unordered containers for element types with no natural order (e.g., no reasonable <);

§11.4.
[26] Experiment to check that you have an acceptable hash function; §11.5.
[27] A hash function obtained by combining standard hash functions for elements using the exclu-

sive-or operator (ˆ) is often good; §11.5.
[28] Know your standard-library containers and prefer them to handcrafted data structures; §11.6.
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12.1 Introduction
A data structure, such as a list or a vector, is not very useful on its own. To use one, we need opera-
tions for basic access such as adding and removing elements (as is provided for list and vector).
Furthermore, we rarely just store objects in a container. We sort them, print them, extract subsets,
remove elements, search for objects, etc. Consequently, the standard library provides the most
common algorithms for containers in addition to providing the most common container types. For
example, we can simply and efficiently sort a vector of Entr ys and place a copy of each unique
vector element on a list:

void f(vector<Entry>& vec, list<Entry>& lst)
{

sor t(vec.begin(),vec.end()); // use < for order
unique_copy(vec.begin(),vec.end(),lst.begin()); // don’t copy adjacent equal elements

}



150 Algorithms Chapter 12

For this to work, less than (<) and equal (==) must be defined for Entr ys. For example:

bool operator<(const Entry& x, const Entry& y) // less than
{

return x.name<y.name; // order Entries by their names
}

A standard algorithm is expressed in terms of (half-open) sequences of elements. A sequence is
represented by a pair of iterators specifying the first element and the one-beyond-the-last element:

elements:

begin() end()iterators:

In the example, sor t() sorts the sequence defined by the pair of iterators vec.begin() and vec.end(),
which just happens to be all the elements of a vector. For writing (output), you need only to specify
the first element to be written. If more than one element is written, the elements following that ini-
tial element will be overwritten. Thus, to avoid errors, lst must have at least as many elements as
there are unique values in vec.

If we wanted to place the unique elements in a new container, we could have written:

list<Entr y> f(vector<Entr y>& vec)
{

list<Entr y> res;
sor t(vec.begin(),vec.end());
unique_copy(vec.begin(),vec.end(),back_inser ter(res)); // append to res
return res;

}

The call back_inser ter(res) constructs an iterator for res that adds elements at the end of a container,
extending the container to make room for them. This saves us from first having to allocate a fixed
amount of space and then filling it. Thus, the standard containers plus back_inser ter()s eliminate the
need to use error-prone, explicit C-style memory management using realloc(). The standard-library
list has a move constructor (§5.2.2) that makes returning res by value efficient (even for lists of
thousands of elements).

If you find the pair-of-iterators style of code, such as sor t(vec.begin(),vec.end()), tedious, you can
define container versions of the algorithms and write sor t(vec) (§12.8).

12.2 Use of Iterators
For a container, a few iterators referring to useful elements can be obtained; begin() and end() are
the best examples of this. In addition, many algorithms return iterators. For example, the standard
algorithm find looks for a value in a sequence and returns an iterator to the element found:
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bool has_c(const string& s, char c) // does s contain the character c?
{

auto p = find(s.begin(),s.end(),c);
if (p!=s.end())

return true;
else

return false;
}

Like many standard-library search algorithms, find returns end() to indicate ‘‘not found.’’ An equiv-
alent, shorter, definition of has_c() is:

bool has_c(const string& s, char c) // does s contain the character c?
{

return find(s.begin(),s.end(),c)!=s.end();
}

A more interesting exercise would be to find the location of all occurrences of a character in a
string. We can return the set of occurrences as a vector of string iterators. Returning a vector is
efficient because vector provides move semantics (§5.2.1). Assuming that we would like to modify
the locations found, we pass a non-const string:

vector<string::iterator> find_all(string& s, char c) // find all occurrences of c in s
{

vector<string::iterator> res;
for (auto p = s.begin(); p!=s.end(); ++p)

if (∗p==c)
res.push_back(p);

return res;
}

We iterate through the string using a conventional loop, moving the iterator p forward one element
at a time using ++ and looking at the elements using the dereference operator ∗. We could test
find_all() like this:

void test()
{

string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a'))

if (∗p!='a')
cerr << "a bug!\n";

}

That call of find_all() could be graphically represented like this:

M a r y h a d a l i t t l e l a m bm:

find_all(m,'a'):
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Iterators and standard algorithms work equivalently on every standard container for which their use
makes sense. Consequently, we could generalize find_all():

template<typename C, typename V>
vector<typename C::iterator> find_all(C& c, V v) // find all occurrences of v in c
{

vector<typename C::iterator> res;
for (auto p = c.begin(); p!=c.end(); ++p)

if (∗p==v)
res.push_back(p);

return res;
}

The typename is needed to inform the compiler that C’s iterator is supposed to be a type and not a
value of some type, say, the integer 7. We can hide this implementation detail by introducing a type
alias (§6.4.2) for Iterator:

template<typename T>
using Iterator = typename T::iterator; // T’s iterator

template<typename C, typename V>
vector<Iterator<C>> find_all(C& c, V v) // find all occurrences of v in c
{

vector<Iterator<C>> res;
for (auto p = c.begin(); p!=c.end(); ++p)

if (∗p==v)
res.push_back(p);

return res;
}

We can now write:

void test()
{

string m {"Mary had a little lamb"};

for (auto p : find_all(m,'a')) // p is a str ing::iterator
if (∗p!='a')

cerr << "string bug!\n";

list<double> ld {1.1, 2.2, 3.3, 1.1};
for (auto p : find_all(ld,1.1)) // p is a list<double>::iterator

if (∗p!=1.1)
cerr << "list bug!\n";

vector<string> vs { "red", "blue", "green", "green", "orange", "green" };
for (auto p : find_all(vs,"red")) // p is a vector<str ing>::iterator

if (∗p!="red")
cerr << "vector bug!\n";
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for (auto p : find_all(vs,"green"))
∗p = "ver t";

}

Iterators are used to separate algorithms and containers. An algorithm operates on its data through
iterators and knows nothing about the container in which the elements are stored. Conversely, a
container knows nothing about the algorithms operating on its elements; all it does is to supply iter-
ators upon request (e.g., begin() and end()). This model of separation between data storage and
algorithm delivers very general and flexible software.

12.3 Iterator Types
What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types, because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, a vector’s iterator could be an ordinary pointer,
because a pointer is quite a reasonable way of referring to an element of a vector:

P i e t H e i nvector:

piterator:

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an index:

P i e t H e i nvector:

(start == p, position == 3)iterator:

Using such an iterator would allow range checking.
A list iterator must be something more complicated than a simple pointer to an element because

an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

link link link link ...list:

piterator:

P i e telements:

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying ++ to any iterator yields an iterator that refers to the next element. Similarly, ∗ yields
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the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator – Iterator is a concept (§7.2, §12.7). Furthermore, users rarely need to know the type
of a specific iterator; each container ‘‘knows’’ its iterator types and makes them available under the
conventional names iterator and const_iterator. For example, list<Entr y>::iterator is the general itera-
tor type for list<Entr y>. We rarely have to worry about the details of how that type is defined.

12.4 Stream Iterators
Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values, and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type of
objects written to it. For example:

ostream_iterator<string> oo {cout}; // wr ite str ings to cout

The effect of assigning to ∗oo is to write the assigned value to cout. For example:

int main()
{

∗oo = "Hello, "; // meaning cout<<"Hello, "
++oo;
∗oo = "world!\n"; // meaning cout<<"wor ld!\n"

}

This is yet another way of writing the canonical message to standard output. The ++oo is done to
mimic writing into an array through a pointer.

Similarly, an istream_iterator is something that allows us to treat an input stream as a read-only
container. Again, we must specify the stream to be used and the type of values expected:

istream_iterator<string> ii {cin};

Input iterators are used in pairs representing a sequence, so we must provide an istream_iterator to
indicate the end of input. This is the default istream_iterator:

istream_iterator<string> eos {};

Typically, istream_iterators and ostream_iterators are not used directly. Instead, they are provided as
arguments to algorithms. For example, we can write a simple program to read a file, sort the words
read, eliminate duplicates, and write the result to another file:

int main()
{

string from, to;
cin >> from >> to; // get source and target file names

ifstream is {from}; // input stream for file "from"
istream_iterator<string> ii {is}; // input iterator for stream
istream_iterator<string> eos {}; // input sentinel
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ofstream os {to}; // output stream for file "to"
ostream_iterator<string> oo {os,"\n"}; // output iterator for stream

vector<string> b {ii,eos}; // b is a vector initialized from input
sor t(b.begin(),b.end()); // sor t the buffer

unique_copy(b.begin(),b.end(),oo); // copy buffer to output, discard replicated values

return !is.eof() || !os; // retur n error state (§1.2.1, §10.4)
}

An ifstream is an istream that can be attached to a file, and an ofstream is an ostream that can be
attached to a file (§10.7). The ostream_iterator’s second argument is used to delimit output values.

Actually, this program is longer than it needs to be. We read the strings into a vector, then we
sor t() them, and then we write them out, eliminating duplicates. A more elegant solution is not to
store duplicates at all. This can be done by keeping the strings in a set, which does not keep dupli-
cates and keeps its elements in order (§11.4). That way, we could replace the two lines using a
vector with one using a set and replace unique_copy() with the simpler copy():

set<string> b {ii,eos}; // collect strings from input
copy(b.begin(),b.end(),oo); // copy buffer to output

We used the names ii, eos, and oo only once, so we could further reduce the size of the program:

int main()
{

string from, to;
cin >> from >> to; // get source and target file names

ifstream is {from}; // input stream for file "from"
ofstream os {to}; // output stream for file "to"

set<string> b {istream_iterator<string>{is},istream_iterator<string>{}}; // read input
copy(b.begin(),b.end(),ostream_iterator<string>{os,"\n"}); // copy to output

return !is.eof() || !os; // retur n error state (§1.2.1, §10.4)
}

It is a matter of taste and experience whether or not this last simplification improves readability.

12.5 Predicates
In the examples so far, the algorithms have simply ‘‘built in’’ the action to be done for each element
of a sequence. However, we often want to make that action a parameter to the algorithm. For
example, the find algorithm (§12.2, §12.6) provides a convenient way of looking for a specific
value. A more general variant looks for an element that fulfills a specified requirement, a predicate.
For example, we might want to search a map for the first value larger than 42. A map allows us to
access its elements as a sequence of (key,value) pairs, so we can search a map<string,int>’s sequence
for a pair<const string,int> where the int is greater than 42:
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void f(map<string,int>& m)
{

auto p = find_if(m.begin(),m.end(),Greater_than{42});
// ...

}

Here, Greater_than is a function object (§6.3.2) holding the value (42) to be compared against:

struct Greater_than {
int val;
Greater_than(int v) : val{v} { }
bool operator()(const pair<string,int>& r) const { return r.second>val; }

};

Alternatively, we could use a lambda expression (§6.3.2):

auto p = find_if(m.begin(), m.end(), [](const auto& r) { return r.second>42; });

A predicate should not modify the elements to which it is applied.

12.6 Algorithm Overview
A general definition of an algorithm is ‘‘a finite set of rules which gives a sequence of operations
for solving a specific set of problems [and] has five important features: Finiteness ... Definiteness ...
Input ... Output ... Effectiveness’’ [Knuth,1968,§1.1]. In the context of the C++ standard library, an
algorithm is a function template operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
std and presented in the <algorithm> header. These standard-library algorithms all take sequences
as inputs. A half-open sequence from b to e is referred to as [b:e). Here are a few examples:

Selected Standard Algorithms <algorithm>

f=for_each(b,e ,f) For each element x in [b:e) do f(x)

p=find(b,e ,x) p is the first p in [b:e) so that ∗p==x

p=find_if(b,e ,f) p is the first p in [b:e) so that f(∗p)

n=count(b,e ,x) n is the number of elements ∗q in [b:e) so that ∗q==x

n=count_if(b,e ,f) n is the number of elements ∗q in [b:e) so that f(∗q)

replace(b,e ,v,v2) Replace elements ∗q in [b:e) so that ∗q==v with v2

replace_if(b,e ,f,v2) Replace elements ∗q in [b:e) so that f(∗q) with v2

p=copy(b,e ,out) Copy [b:e) to [out:p)
p=copy_if(b,e ,out,f) Copy elements ∗q from [b:e) so that f(∗q) to [out:p)
p=move(b,e ,out) Move [b:e) to [out:p)
p=unique_copy(b,e ,out) Copy [b:e) to [out:p); don’t copy adjacent duplicates
sor t(b,e) Sort elements of [b:e) using < as the sorting criterion
sor t(b,e,f) Sort elements of [b:e) using f as the sorting criterion
(p1,p2)=equal_rang e(b,e ,v) [p1:p2) is the subsequence of the sorted sequence [b:e)

with the value v; basically a binary search for v
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Selected Standard Algorithms <algorithm> (continued)

p=merge(b,e ,b2,e2,out) Merge two sorted sequences [b:e) and [b2:e2) into [out:p)
p=merge(b,e ,b2,e2,out,f) Merge two sorted sequences [b:e) and [b2:e2) into [out:p)

using f as the comparison

These algorithms, and many more (e.g., §14.3), can be applied to elements of containers, strings,
and built-in arrays.

Some algorithms, such as replace() and sor t(), modify element values, but no algorithm adds or
subtracts elements of a container. The reason is that a sequence does not identify the container that
holds the elements of the sequence. To add or delete elements, you need something that knows
about the container (e.g., a back_inser ter; §12.1) or directly refers to the container itself (e.g.,
push_back() or erase(); §11.2).

Lambdas are very common as operations passed as arguments. For example:

vector<int> v = {0,1,2,3,4,5};
for_each(v.begin(),v.end(),[](int& x){ x=x∗x; }); // v=={0,1,4,9,16,25}

The standard-library algorithms tend to be more carefully designed, specified, and implemented
than the average hand-crafted loop, so know them and use them in preference to code written in the
bare language.

12.7 Concepts (C++20)
In C++20, the standard-library algorithms will be specified using concepts (Chapter 7). The pre-
liminary work on this can be found in the Ranges Technical Specification [RangesTS]. Implemen-
tations can be found on the Web. For C++20, the ranges concepts are defined in <rang es>.

Rang e is a generalization of the C++98 sequences defined by begin()/end() pairs. Rang e is a con-
cept specifying what it takes to be a sequence of elements. It can be defined by

• A {begin,end} pair of iterators
• A {begin,n} pair, where begin is an iterator and n is the number of elements
• A {begin,pred} pair, where begin is an iterator and pred is a predicate; if pred(p) is true for the

iterator p, we hav e reached the end of the sequence. This allows us to have infinite
sequences and sequences that are generated ‘‘on the fly.’’

This Rang e concept is what allows us to say sor t(v) rather than sor t(v.begin(),v.end()) as we had to
using the STL since 1994. For example:

template<BoundedRang e R>
requires Sortable<R>

void sort(R& r)
{

return sort(begin(r),end(r));
}

The relation for Sor table is defaulted to less.
In general, where a standard-library algorithm requires a sequence defined by a pair of iterators,

C++20 will allow a Rang e as a notationally simpler alternative.
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In addition to Rang e, C++20 offers many useful concepts. These concepts are found in the
headers <rang es>, <iterator>, and <concepts>.

Core language concepts <concepts>

Same<T,U> T is the same type as U

DerivedFrom<T,U> T is derived from U

Conver tibleTo<T,U> A T can be converted to a U

CommonReference<T,U> T and U share a common reference type
Common<T,U> T and U share a common type
Integral<T> T is an integral type
SignedIntegral<T> T is a signed integral type
UnsignedIntegral<T> T is an unsigned integral type
Assignable<T,U> A U can be assigned to a T

SwappableWith<T,U> A T can be swapped with a U

Swappable<T> SwappableWith<T,T>

Common is important for specifying algorithms that should work with a variety of related types
while still being mathematically sound. Common<T,U> is a type C that we can use for comparing a
T with a U by first converting both to Cs. For example, we would like to compare a std::string with
a C-style string (a char∗) and an int with a double , but not a std::string with an int. To ensure that we
specialize common_type_t, used in the definition of Common, suitably:

using common_type_t<std::string,char∗> = std::string;
using common_type_t<double ,int> = double;

The definition of Common is a bit tricky but solves a hard fundamental problem. Fortunately,
we don’t need to define a common_type_t specialization unless we want to use operations on mixes
of types for which a library doesn’t (yet) have suitable definitions. Common or CommonReference is
used in the definitions of most concepts and algorithms that can compare values of different types.

The concepts related to comparison are strongly influenced by [Stepanov,2009].

Comparison concepts <concepts>

Boolean<T> A T can be used as a Boolean
WeaklyEqualityComparableWith<T,U> A T and a U can be compared for equality using == and !=

WeaklyEqualityComparable<T> WeaklyEqualityComparableWith<T,T>

EqualityComparableWith<T,U> A T and a U can be compared for equivalence using ==

EqualityComparable<T> EqualityComparableWith<T,T>

StrictTotallyOrderedWith<T,U> A T and a U can be compared using <, <=, >, and >=

yielding a total order
StrictTotallyOrdered<T> StrictTotallyOrderedWith<T,T>

The use of both WeaklyEqualityComparableWith and WeaklyEqualityComparable shows a (so far)
missed opportunity to overload.
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Object concepts <concepts>

Destructible<T> A T can be destroyed and have its address taken with unary &

Constructible<T,Args> A T can be constructed from an argument list of type Args

DefaultConstructible<T> A T can be default constructed
MoveConstructible<T> A T can be move constructed
CopyConstructible<T> A T can be copy constructed and move constructed
Movable<T> MoveConstructable<T>, Assignable<T&,T>, and Swapable<T>

Copyable<T> CopyConstructable<T>, Moveable<T>, and Assignable<T, const T&>

Semiregular<T> Copyable<T> and DefaultConstructable<T>

Regular<T> SemiRegular<T> and EqualityComparable<T>

Regular is the ideal for types. A Regular type works roughly like an int and simplifies much of our
thinking about how to use a type (§7.2). The lack of default == for classes means that most classes
start out as SemiRegular ev en though most could and should be Regular.

Callable concepts <concepts>

Invocable<F,Args> An F can be invoked with an argument list of type Args

InvocableRegular<F,Args> Invocable<F,Args> and is equality preserving
Predicate<F,Args> An F can be invoked with an argument list of type Args returning a bool

Relation<F,T,U> Predicate<F,T,U>

StrictWeakOrder<F,T,U> A Relation<F,T,U> that provides strict weak ordering

A function f() is equality preserving if x==y implies that f(x)==f(y).
Strict weak ordering is what the standard library usually assumes for comparisons, such as <;

look it up if you feel the need to know.
Relation and StrictWeakOrder differ only in semantics. We can’t (currently) represent that in

code so the names simply express our intent.

Iterator concepts <iterators>

Iterator<I> An I can be incremented (++) and dereferenced (∗)
Sentinel<S,I> An S is a sentinel for an Iterator type;

that is, S is a predicate on I’s value type
Siz edSentinel<S,I> A sentinel S where the − operator can be applied to I

InputIterator<I> An I is an input iterator; ∗ can be used for reading only
OutputIterator<I> An I is an output iterator; ∗ can be used for writing only
ForwardIterator<I> An I is a forward iterator, supporting multi-pass
BidirectionalIterator<I> An I is a ForwardIterator supporting −−

RandomAccessIterator<I> An I is a BidirectionalIterator supporting +, −, +=, −=, and []

Permutable<I> An I is a ForwardIterator<I> where I allows us to move and swap elements
Mergeable<I1,I2,R,O> Can merge sorted sequences defined by I1 and I2 into O

using Relation<R>

Sor table<I> Can sort sequences defined by I using less

Sor table<I,R> Can sort sequences defined by I using Relation<R>



160 Algorithms Chapter 12

The different kinds (categories) of iterators are used to select the best algorithm for a given algo-
rithm; see §7.2.2 and §13.9.1. For an example of an InputIterator, see §12.4.

The basic idea of a sentinel is that we can iterate over a range starting at an iterator until the
predicate becomes true for an element. That way, an iterator p and a sentinel s define a range
[p:s(∗p)). For example, we could define a predicate for a sentinel for traversing a C-style string
using a pointer as the iterator:

[](const char∗ p) {return ∗p==0; }

The summary of Mergeable and Sor table are simplified relative to their definition in C++20.

Range concepts <rang es>

Rang e<R> An R is a range with a begin iterator and a sentinel
Siz edRang e<R> An R is a range that knows its size in constant time
View<R> An R is a range with constant time copy, move, and assignment
BoundedRang e<R> An R is a range with identical iterator and sentinel types
InputRang e<R> An R is a range whose iterator type satisfies InputIterator
OutputRang e<R> An R is a range whose iterator type satisfies OutputIterator
ForwardRang e<R> An R is a range whose iterator type satisfies ForwardIterator
BidirectionalRang e<R> An R is a range whose iterator type satisfies BidirectionalIterator
RandomAccessRang e<R> An R is a range whose iterator type satisfies RandomAccessIterator

There are a few more concepts in <rang es>, but this set is a good start.

12.8 Container Algorithms
When we can’t wait for Ranges, we can define our own simple range algorithms. For example, we
can easily provide the shorthand to say just sor t(v) instead of sor t(v.begin(),v.end()):

namespace Estd {
using namespace std;

template<typename C>
void sort(C& c)
{

sor t(c.begin(),c.end());
}

template<typename C, typename Pred>
void sort(C& c, Pred p)
{

sor t(c.begin(),c.end(),p);
}

// ...
}

I put the container versions of sor t() (and other algorithms) into their own namespace Estd
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(‘‘extended std’’) to avoid interfering with other programmers’ uses of namespace std and also to
make it easier to replace this stopgap with Rang es.

12.9 Parallel Algorithms
When the same task is to be done to many data items, we can execute it in parallel on each data
item provided the computations on different data items are independent:

• parallel execution: tasks are done on multiple threads (often running on several processor
cores)

• vectorized execution: tasks are done on a single thread using vectorization, also known as
SIMD (‘‘Single Instruction, Multiple Data’’).

The standard library offers support for both and we can be specific about wanting sequential execu-
tion; in <execution>, we find:

• seq: sequential execution
• par: parallel execution (if feasible)
• par_unseq: parallel and/or unsequenced (vectorized) execution (if feasible).

Consider std::sor t():

sor t(v.begin(),v.end()); // sequential
sor t(seq,v.begin(),v.end()); // sequential (same as the default)
sor t(par,v.begin(),v.end()); // parallel
sor t(par_unseq,v.begin(),v.end()); // parallel and/or vector ized

Whether it is worthwhile to parallelize and/or vectorize depends on the algorithm, the number of
elements in the sequence, the hardware, and the utilization of that hardware by programs running
on it. Consequently, the execution policy indicators are just hints. A compiler and/or run-time
scheduler will decide how much concurrency to use. This is all nontrivial and the rule against mak-
ing statements about efficiency without measurement is very important here.

Most standard-library algorithms, including all in the table in §12.6 except equal_rang e, can be
requested to be parallelized and vectorized using par and par_unseq as for sor t(). Why not
equal_rang e()? Because so far nobody has come up with a worthwhile parallel algorithm for that.

Many parallel algorithms are used primarily for numeric data; see §14.3.1.
When requesting parallel execution, be sure to avoid data races (§15.2) and deadlock (§15.5).

12.10 Advice
[1] An STL algorithm operates on one or more sequences; §12.1.
[2] An input sequence is half-open and defined by a pair of iterators; §12.1.
[3] When searching, an algorithm usually returns the end of the input sequence to indicate ‘‘not

found’’; §12.2.
[4] Algorithms do not directly add or subtract elements from their argument sequences; §12.2,

§12.6.
[5] When writing a loop, consider whether it could be expressed as a general algorithm; §12.2.
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[6] Use predicates and other function objects to give standard algorithms a wider range of mean-
ings; §12.5, §12.6.

[7] A predicate must not modify its argument; §12.5.
[8] Know your standard-library algorithms and prefer them to hand-crafted loops; §12.6.
[9] When the pair-of-iterators style becomes tedious, introduce a container/range algorithm;

§12.8.
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Utilities

The time you enjoy wasting is not wasted time.
– Bertrand Russell

• Introduction
• Resource Management

unique_ptr and shared_ptr; move() and forward()

• Range Checking: span

• Specialized Containers
array; bitset; pair and tuple

• Alternatives
variant; optional; any

• Time
• Function Adaption

Lambdas as Adaptors; mem_fn(); function

• Allocators
• Type Functions

iterator_traits; Type Predicates; enable_if

• Advice

13.1 Introduction
Not all standard-library components come as part of obviously labeled facilities, such as ‘‘contain-
ers’’ or ‘‘I/O.’’ This section gives a few examples of small, widely useful components. Such com-
ponents (classes and templates) are often called vocabulary types because they are part of the com-
mon vocabulary we use to describe our designs and programs. Such library components often act
as building blocks for more powerful library facilities, including other components of the standard
library. A function or a type need not be complicated or closely tied to a mass of other functions
and types to be useful.
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13.2 Resource Management
One of the key tasks of any nontrivial program is to manage resources. A resource is something
that must be acquired and later (explicitly or implicitly) released. Examples are memory, locks,
sockets, thread handles, and file handles. For a long-running program, failing to release a resource
in a timely manner (‘‘a leak’’) can cause serious performance degradation and possibly even a mis-
erable crash. Even for short programs, a leak can become an embarrassment, say by a resource
shortage increasing the run time by orders of magnitude.

The standard library components are designed not to leak resources. To do this, they rely on the
basic language support for resource management using constructor/destructor pairs to ensure that a
resource doesn’t outlive an object responsible for it. The use of a constructor/destructor pair in
Vector to manage the lifetime of its elements is an example (§4.2.2) and all standard-library con-
tainers are implemented in similar ways. Importantly, this approach interacts correctly with error
handling using exceptions. For example, this technique is used for the standard-library lock
classes:

mutex m; // used to protect access to shared data
// ...
void f()
{

scoped_lock<mutex> lck {m}; // acquire the mutex m
// ... manipulate shared data ...

}

A thread will not proceed until lck’s constructor has acquired the mutex (§15.5). The corresponding
destructor releases the resources. So, in this example, scoped_lock’s destructor releases the mutex

when the thread of control leaves f() (through a return, by ‘‘falling off the end of the function,’’ or
through an exception throw).

This is an application of RAII (the ‘‘Resource Acquisition Is Initialization’’ technique; §4.2.2).
RAII is fundamental to the idiomatic handling of resources in C++. Containers (such as vector and
map, string, and iostream) manage their resources (such as file handles and buffers) similarly.

13.2.1 unique_ptr and shared_ptr

The examples so far take care of objects defined in a scope, releasing the resources they acquire at
the exit from the scope, but what about objects allocated on the free store? In <memor y>, the stan-
dard library provides two ‘‘smart pointers’’ to help manage objects on the free store:

[1] unique_ptr to represent unique ownership
[2] shared_ptr to represent shared ownership

The most basic use of these ‘‘smart pointers’’ is to prevent memory leaks caused by careless pro-
gramming. For example:

void f(int i, int j) // X* vs. unique_ptr<X>
{

X∗ p = new X; // allocate a new X
unique_ptr<X> sp {new X}; // allocate a new X and give its pointer to unique_ptr
// ...
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if (i<99) throw Z{}; // may throw an exception
if (j<77) return; // may retur n "ear ly"
// ... use p and sp ..
delete p; // destroy *p

}

Here, we ‘‘forgot’’ to delete p if i<99 or if j<77. On the other hand, unique_ptr ensures that its object
is properly destroyed whichever way we exit f() (by throwing an exception, by executing return, or
by ‘‘falling off the end’’). Ironically, we could have solved the problem simply by not using a
pointer and not using new:

void f(int i, int j) // use a local var iable
{

X x;
// ...

}

Unfortunately, overuse of new (and of pointers and references) seems to be an increasing problem.
However, when you really need the semantics of pointers, unique_ptr is a very lightweight

mechanism with no space or time overhead compared to correct use of a built-in pointer. Its further
uses include passing free-store allocated objects in and out of functions:

unique_ptr<X> make_X(int i)
// make an X and immediately give it to a unique_ptr

{
// ... check i, etc. ...
return unique_ptr<X>{new X{i}};

}

A unique_ptr is a handle to an individual object (or an array) in much the same way that a vector is
a handle to a sequence of objects. Both control the lifetime of other objects (using RAII) and both
rely on move semantics to make return simple and efficient.

The shared_ptr is similar to unique_ptr except that shared_ptrs are copied rather than moved.
The shared_ptrs for an object share ownership of an object; that object is destroyed when the last of
its shared_ptrs is destroyed. For example:

void f(shared_ptr<fstream>);
void g(shared_ptr<fstream>);

void user(const string& name, ios_base::openmode mode)
{

shared_ptr<fstream> fp {new fstream(name ,mode)};
if (!∗fp) // make sure the file was properly opened

throw No_file{};

f(fp);
g(fp);
// ...

}
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Now, the file opened by fp’s constructor will be closed by the last function to (explicitly or implic-
itly) destroy a copy of fp. Note that f() or g() may spawn a task holding a copy of fp or in some
other way store a copy that outlives user(). Thus, shared_ptr provides a form of garbage collection
that respects the destructor-based resource management of the memory-managed objects. This is
neither cost free nor exorbitantly expensive, but it does make the lifetime of the shared object hard
to predict. Use shared_ptr only if you actually need shared ownership.

Creating an object on the free store and then passing the pointer to it to a smart pointer is a bit
verbose. It also allows for mistakes, such as forgetting to pass a pointer to a unique_ptr or giving a
pointer to something that is not on the free store to a shared_ptr. To avoid such problems, the stan-
dard library (in <memor y>) provides functions for constructing an object and returning an appropri-
ate smart pointer, make_shared() and make_unique(). For example:

struct S {
int i;
string s;
double d;
// ...

};

auto p1 = make_shared<S>(1,"Ankh Morpork",4.65); // p1 is a shared_ptr<S>
auto p2 = make_unique<S>(2,"Oz",7.62); // p2 is a unique_ptr<S>

Now, p2 is a unique_ptr<S> pointing to a free-store-allocated object of type S with the value
{2,"Oz"s,7.62}.

Using make_shared() is not just more convenient than separately making an object using new

and then passing it to a shared_ptr, it is also notably more efficient because it does not need a sepa-
rate allocation for the use count that is essential in the implementation of a shared_ptr.

Given unique_ptr and shared_ptr, we can implement a complete ‘‘no naked new’’ policy (§4.2.2)
for many programs. However, these ‘‘smart pointers’’ are still conceptually pointers and therefore
only my second choice for resource management – after containers and other types that manage
their resources at a higher conceptual level. In particular, shared_ptrs do not in themselves provide
any rules for which of their owners can read and/or write the shared object. Data races (§15.7) and
other forms of confusion are not addressed simply by eliminating the resource management issues.

Where do we use ‘‘smart pointers’’ (such as unique_ptr) rather than resource handles with oper-
ations designed specifically for the resource (such as vector or thread)? Unsurprisingly, the answer
is ‘‘when we need pointer semantics.’’

• When we share an object, we need pointers (or references) to refer to the shared object, so a
shared_ptr becomes the obvious choice (unless there is an obvious single owner).

• When we refer to a polymorphic object in classical object-oriented code (§4.5), we need a
pointer (or a reference) because we don’t know the exact type of the object referred to (or
ev en its size), so a unique_ptr becomes the obvious choice.

• A shared polymorphic object typically requires shared_ptrs.
We do not need to use a pointer to return a collection of objects from a function; a container that is
a resource handle will do that simply and efficiently (§5.2.2).
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13.2.2 move() and forward()

The choice between moving and copying is mostly implicit (§3.6). A compiler will prefer to move
when an object is about to be destroyed (as in a return) because that’s assumed to be the simpler
and more efficient operation. However, sometimes we must be explicit. For example, a unique_ptr

is the sole owner of an object. Consequently, it cannot be copied:

void f1()
{

auto p = make_unique<int>(2);
auto q = p; // error : we can’t copy a unique_ptr
// ...

}

If you want a unique_ptr elsewhere, you must move it. For example:

void f1()
{

auto p = make_unique<int>(2);
auto q = move(p); // p now holds nullptr
// ...

}

Confusingly, std::move() doesn’t move anything. Instead, it casts its argument to an rvalue refer-
ence, thereby saying that its argument will not be used again and therefore may be moved (§5.2.2).
It should have been called something like rvalue_cast. Like other casts, it’s error-prone and best
avoided. It exists to serve a few essential cases. Consider a simple swap:

template <typename T>
void swap(T& a, T& b)
{

T tmp {move(a)}; // the T constructor sees an rvalue and moves
a = move(b); // the T assignment sees an rvalue and moves
b = move(tmp); // the T assignment sees an rvalue and moves

}

We don’t want to repeatedly copy potentially large objects, so we request moves using std::move().
Like for other casts, there are tempting, but dangerous, uses of std::move(). Consider:

string s1 = "Hello";
string s2 = "World";
vector<string> v;
v.push_back(s1); // use a "const string&" argument; push_back() will copy
v.push_back(move(s2)); // use a move constr uctor

Here s1 is copied (by push_back()) whereas s2 is moved. This sometimes (only sometimes) makes
the push_back() of s2 cheaper. The problem is that a moved-from object is left behind. If we use s2

again, we have a problem:

cout << s1[2]; // wr ite ’l’
cout << s2[2]; // crash?

I consider this use of std::move() to be too error-prone for widespread use. Don’t use it unless you
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can demonstrate significant and necessary performance improvement. Later maintenance may acci-
dentally lead to unanticipated use of the moved-from object.

The state of a moved-from object is in general unspecified, but all standard-library types leave a
moved-from object in a state where it can be destroyed and assigned to. It would be unwise not to
follow that lead. For a container (e.g., vector or string), the moved-from state will be ‘‘empty.’’ For
many types, the default value is a good empty state: meaningful and cheap to establish.

Forwarding arguments is an important use case that requires moves (§7.4.2). We sometimes
want to transmit a set of arguments on to another function without changing anything (to achieve
‘‘perfect forwarding’’):

template<typename T, typename ... Args>
unique_ptr<T> make_unique(Args&&... args)
{

return unique_ptr<T>{new T{std::forward<Args>(args)...}}; // forward each argument
}

The standard-library forward() differs from the simpler std::move() by correctly handling subtleties
to do with lvalue and rvalue (§5.2.2). Use std::forward() exclusively for forwarding and don’t for-

ward() something twice; once you have forwarded an object, it’s not yours to use anymore.

13.3 Range Checking: gsl::span

Traditionally, range errors have been a major source of serious errors in C and C++ programs. The
use of containers (Chapter 11), algorithms (Chapter 12), and range-for has significantly reduced this
problem, but more can be done. A key source of range errors is that people pass pointers (raw or
smart) and then rely on convention to know the number of elements pointed to. The best advice for
code outside resource handles is to assume that at most one object is pointed to [CG: F.22], but
without support that advice is unmanageable. The standard-library string_view (§9.3) can help, but
that is read-only and for characters only. Most programmers need more.

The Core Guidelines [Stroustrup,2015] offer guidelines and a small Guidelines Support Library
[GSL], including a span type for referring to a range of elements. This span is being proposed for
the standard, but for now it is just something you can download if needed.

A string_span is basically a (pointer,length) pair denoting a sequence of elements:

1 2 3 5 8 13 21 34 55integers:

{ begin() , siz e() }span<int>:

A span gives access to a contiguous sequence of elements. The elements can be stored in many
ways, including in vectors and built-in arrays. Like a pointer, a span does not own the characters it
points to. In that, it resembles a string_view (§9.3) and an STL pair of iterators (§12.3).
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Consider a common interface style:

void fpn(int∗ p, int n)
{

for (int i = 0; i<n; ++i)
p[i] = 0;

}

We assume that p points to n integers. Unfortunately, this assumption is simply a convention, so we
can’t use it to write a range-for loop and the compiler cannot implement cheap and effective range
checking. Also, our assumption can be wrong:

void use(int x)
{

int a[100];
fpn(a,100); // OK
fpn(a,1000); // oops, my finger slipped! (range error in fpn)
fpn(a+10,100); // range error in fpn
fpn(a,x); // suspect, but looks innocent

}

We can do better using a span:

void fs(span<int> p)
{

for (int& x : p)
x = 0;

}

We can use fs like this:

void use(int x)
{

int a[100];
fs(a); // implicitly creates a span<int>{a,100}
fs(a,1000); // error : span expected
fs({a+10,100}); // a range error in fs
fs({a,x}); // obviously suspect

}

That is, the common case, creating a span directly from an array, is now safe (the compiler com-
putes the element count) and notationally simple. For other cases, the probability of mistakes is
lowered because the programmer has to explicitly compose a span.

The common case where a span is passed along from function to function is simpler than for
(pointer,count) interfaces and obviously doesn’t require extra checking:

void f1(span<int> p);

void f2(span<int> p)
{

// ...
f1(p);

}
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When used for subscripting (e.g., r[i]), range checking is done and a gsl::fail_fast is thrown in case
of a range error. Range checks can be suppressed for performance critical code. When span makes
it into the standard, I expect that std::span will use contracts [Garcia,2016] [Garcia,2018] to control
responses to range violation.

Note that just a single range check is needed for the loop. Thus, for the common case where the
body of a function using a span is a loop over the span, range checking is almost free.

A span of characters is supported directly and called gsl::string_span.

13.4 Specialized Containers
The standard library provides several containers that don’t fit perfectly into the STL framework
(Chapter 11, Chapter 12). Examples are built-in arrays, array, and string. I sometimes refer to
those as ‘‘almost containers,’’ but that is not quite fair: they hold elements, so they are containers,
but each has restrictions or added facilities that make them awkward in the context of the STL.
Describing them separately also simplifies the description of the STL.

‘‘ Almost Containers’’

T[N] Built-in array: a fixed-size contiguously allocated sequence of N

elements of type T; implicitly converts to a T∗
array<T,N> A fixed-size contiguously allocated sequence of N elements

of type T; like the built-in array, but with most problems solved
bitset<N> A fixed-size sequence of N bits
vector<bool> A sequence of bits compactly stored in a specialization of vector

pair<T,U> Tw o elements of types T and U

tuple<T...> A sequence of an arbitrary number of elements of arbitrary types
basic_string<C> A sequence of characters of type C; provides string operations
valarray<T> An array of numeric values of type T; provides numeric operations

Why does the standard library provide so many containers? They serve common but different
(often overlapping) needs. If the standard library didn’t provide them, many people would have to
design and implement their own. For example:

• pair and tuple are heterogeneous; all other containers are homogeneous (all elements are of
the same type).

• array, vector, and tuple elements are contiguously allocated; forward_list and map are linked
structures.

• bitset and vector<bool> hold bits and access them through proxy objects; all other standard-
library containers can hold a variety of types and access elements directly.

• basic_string requires its elements to be some form of character and to provide string manip-
ulation, such as concatenation and locale-sensitive operations.

• valarray requires its elements to be numbers and to provide numerical operations.
All of these containers can be seen as providing specialized services needed by large communities
of programmers. No single container could serve all of these needs because some needs are contra-
dictory, for example, ‘‘ability to grow’’ vs. ‘‘guaranteed to be allocated in a fixed location,’’ and
‘‘elements do not move when elements are added’’ vs. ‘‘contiguously allocated.’’
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13.4.1 array

An array, defined in <array>, is a fixed-size sequence of elements of a given type where the number
of elements is specified at compile time. Thus, an array can be allocated with its elements on the
stack, in an object, or in static storage. The elements are allocated in the scope where the array is
defined. An array is best understood as a built-in array with its size firmly attached, without
implicit, potentially surprising conversions to pointer types, and with a few convenience functions
provided. There is no overhead (time or space) involved in using an array compared to using a
built-in array. An array does not follow the ‘‘handle to elements’’ model of STL containers.
Instead, an array directly contains its elements.

An array can be initialized by an initializer list:

array<int,3> a1 = {1,2,3};

The number of elements in the initializer must be equal to or less than the number of elements
specified for the array.

The element count is not optional:

array<int> ax = {1,2,3}; // error size not specified

The element count must be a constant expression:

void f(int n)
{

array<string,n> aa = {"John's", "Queens' "}; // error : size not a constant expression
//

}

If you need the element count to be a variable, use vector.
When necessary, an array can be explicitly passed to a C-style function that expects a pointer.

For example:

void f(int∗ p, int sz); // C-style interface

void g()
{

array<int,10> a;

f(a,a.siz e()); // error : no conversion
f(&a[0],a.siz e()); // C-style use
f(a.data(),a.siz e()); // C-style use

auto p = find(a.begin(),a.end(),777); // C++/STL-style use
// ...

}

Why would we use an array when vector is so much more flexible? An array is less flexible so it is
simpler. Occasionally, there is a significant performance advantage to be had by directly accessing
elements allocated on the stack rather than allocating elements on the free store, accessing them
indirectly through the vector (a handle), and then deallocating them. On the other hand, the stack is
a limited resource (especially on some embedded systems), and stack overflow is nasty.
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Why would we use an array when we could use a built-in array? An array knows its size, so it is
easy to use with standard-library algorithms, and it can be copied using =. Howev er, my main rea-
son to prefer array is that it saves me from surprising and nasty conversions to pointers. Consider:

void h()
{

Circle a1[10];
array<Circle,10> a2;
// ...
Shape∗ p1 = a1; // OK: disaster waiting to happen
Shape∗ p2 = a2; // error : no conversion of array<Circle,10> to Shape*
p1[3].draw(); // disaster

}

The ‘‘disaster’’ comment assumes that siz eof(Shape)<siz eof(Circle), so subscripting a Circle[] through
a Shape∗ gives a wrong offset. All standard containers provide this advantage over built-in arrays.

13.4.2 bitset

Aspects of a system, such as the state of an input stream, are often represented as a set of flags indi-
cating binary conditions such as good/bad, true/false, and on/off. C++ supports the notion of small
sets of flags efficiently through bitwise operations on integers (§1.4). Class bitset<N> generalizes
this notion by providing operations on a sequence of N bits [0:N), where N is known at compile
time. For sets of bits that don’t fit into a long long int, using a bitset is much more convenient than
using integers directly. For smaller sets, bitset is usually optimized. If you want to name the bits,
rather than numbering them, you can use a set (§11.4) or an enumeration (§2.5).

A bitset can be initialized with an integer or a string:

bitset<9> bs1 {"110001111"};
bitset<9> bs2 {0b1'1000'1111}; // binar y literal using digit separators (§1.4)

The usual bitwise operators (§1.4) and the left- and right-shift operators (<< and >>) can be applied:

bitset<9> bs3 = ˜bs1; // complement: bs3=="001110000"
bitset<9> bs4 = bs1&bs3; // all zeros
bitset<9> bs5 = bs1<<2; // shift left: bs5 = "000111100"

The shift operators (here, <<) ‘‘shift in’’ zeros.
The operations to_ullong() and to_string() provide the inverse operations to the constructors. For

example, we could write out the binary representation of an int:

void binary(int i)
{

bitset<8∗siz eof(int)> b = i; // assume 8-bit byte (see also §14.7)
cout << b.to_string() << '\n'; // wr ite out the bits of i

}

This prints the bits represented as 1s and 0s from left to right, with the most significant bit leftmost,
so that argument 123 would give the output

00000000000000000000000001111011
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For this example, it is simpler to directly use the bitset output operator:

void binary2(int i)
{

bitset<8∗siz eof(int)> b = i; // assume 8-bit byte (see also §14.7)
cout << b << '\n'; // wr ite out the bits of i

}

13.4.3 pair and tuple

Often, we need some data that is just data; that is, a collection of values, rather than an object of a
class with well-defined semantics and an invariant for its value (§3.5.2). In such cases, a simple
struct with an appropriate set of appropriately named members is often ideal. Alternatively, we
could let the standard library write the definition for us. For example, the standard-library algo-
rithm equal_rang e returns a pair of iterators specifying a subsequence meeting a predicate:

template<typename Forward_iterator, typename T, typename Compare>
pair<Forward_iterator,Forward_iterator>
equal_rang e(Forward_iterator first, Forward_iterator last, const T& val, Compare cmp);

Given a sorted sequence [first:last), equal_rang e() will return the pair representing the subsequence
that matches the predicate cmp. We can use that to search in a sorted sequence of Records:

auto less = [](const Record& r1, const Record& r2) { return r1.name<r2.name;}; // compare names

void f(const vector<Record>& v) // assume that v is sorted on its "name" field
{

auto er = equal_range(v.begin(),v.end(),Record{"Reg"},less);

for (auto p = er.first; p!=er.second; ++p) // pr int all equal records
cout << ∗p; // assume that << is defined for Record

}

The first member of a pair is called first and the second member is called second. This naming is
not particularly creative and may look a bit odd at first, but such consistent naming is a boon when
we want to write generic code. Where the names first and second are too generic, we can use struc-
tured binding (§3.6.3):

void f2(const vector<Record>& v) // assume that v is sorted on its "name" field
{

auto [first,last] = equal_range(v.begin(),v.end(),Record{"Reg"},less);

for (auto p = first; p!=last; ++p) // pr int all equal records
cout << ∗p; // assume that << is defined for Record

}

The standard-library pair (from <utility>) is quite frequently used in the standard library and else-
where. A pair provides operators, such as =, ==, and <, if its elements do. Type deduction makes it
easy to create a pair without explicitly mentioning its type. For example:
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void f(vector<string>& v)
{

pair p1 {v.begin(),2}; // one way
auto p2 = make_pair(v.begin(),2); // another way
// ...

}

Both p1 and p2 are of type pair<vector<string>::iterator,int>.
If you need more than two elements (or less), you can use tuple (from <utility>). A tuple is a het-

erogeneous sequence of elements; for example:

tuple<string,int,double> t1 {"Shark",123,3.14}; // the type is explicitly specified
auto t2 = make_tuple(string{"Herring"},10,1.23); // the type is deduced to tuple<string,int,double>
tuple t3 {"Cod"s,20,9.99}; // the type is deduced to tuple<string,int,double>

Older code tends to use make_tuple() because template argument type deduction from constructor
arguments is C++17.

Access to tuple members is through a get function template:

string s = get<0>(t1); // get the first element: "Shark"
int x = get<1>(t1); // get the second element: 123
double d = get<2>(t1); // get the third element: 3.14

The elements of a tuple are numbered (starting with zero) and the indices must be constants.
Accessing members of a tuple by their index is general, ugly, and somewhat error-prone. Fortu-

nately, an element of a tuple with a unique type in that tuple can be ‘‘named’’ by its type:

auto s = get<string>(t1); // get the string: "Shark"
auto x = get<int>(t1); // get the int: 123
auto d = get<double>(t1); // get the double: 3.14

We can use get<> for writing also:

get<string>(t1) = "Tuna"; // wr ite to the string
get<int>(t1) = 7; // wr ite to the int
get<double>(t1) = 312; // wr ite to the double

Like pairs, tuples can be assigned and compared if their elements can be. Like tuple elements, pair

elements can be accessed using get<>().
Like for pair, structured binding (§3.6.3) can be used for tuple. Howev er, when code doesn’t

need to be generic, a simple struct with named members often leads to more maintainable code.

13.5 Alternatives
The standard library offers three types to express alternatives:

• variant to represent one of a specified set of alternatives (in <variant>)
• optional to represent a value of a specified type or no value (in <optional>)
• any to represent one of an unbounded set of alternative types (in <any>)

These three types offer related functionality to the user. Unfortunately, they don’t offer a unified
interface.
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13.5.1 variant

A variant<A,B,C> is often a safer and more convenient alternative to explicitly using a union (§2.4).
Possibly the simplest example is to return either a value or an error code:

variant<string,int> compose_message(istream& s)
{

string mess;
// ... read from s and compose message ...
if (no_problems)

return mess; // retur n a str ing
else

return error_number; // retur n an int
}

When you assign or initialize a variant with a value, it remembers the type of that value. Later, we
can inquire what type the variant holds and extract the value. For example:

auto m = compose_message(cin));

if (holds_alternative<string>(m)) {
cout << m.get<string>();

}
else {

int err = m.get<int>();
// ... handle error ...

}

This style appeals to some people who dislike exceptions (see §3.5.3), but there are more interest-
ing uses. For example, a simple compiler may need to distinguish between different kind of nodes
with different representations:

using Node = variant<Expression,Statement,Declaration,Type>;

void check(Node∗ p)
{

if (holds_alternative<Expression>(∗p)) {
Expression& e = get<Expression>(∗p);
// ...

}
else if (holds_alternative<Statement>(∗p)) {

Statement& s = get<Statement>(∗p);
// ...

}
// ... Declaration and Type ...

}

This pattern of checking alternatives to decide on the appropriate action is so common and rela-
tively inefficient that it deserves direct support:
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void check(Node∗ p)
{

visit(overloaded {
[](Expression& e) { /* ... */ },
[](Statement& s) { /* ... */ },
// ... Declaration and Type ...

}, ∗p);
}

This is basically equivalent to a virtual function call, but potentially faster. As with all claims of
performance, this ‘‘potentially faster’’ should be verified by measurements when performance is
critical. For most uses, the difference in performance is insignificant.

Unfortunately, the overloaded is necessary and not standard. It’s a ‘‘piece of magic’’ that builds
an overload set from a set of arguments (usually lambdas):

template<class... Ts>
struct overloaded : Ts... {

using Ts::operator()...;
};

template<class... Ts>
overloaded(Ts...) −> overloaded<Ts...>; // deduction guide

The ‘‘visitor’’ visit then applies () to the overload, which selects the most appropriate lambda to call
according to the overload rules.

A deduction guide is a mechanism for resolving subtle ambiguities, primarily for constructors
of class templates in foundation libraries (§6.2.3).

If we try to access a variant holding a different type than the expected one, bad_variant_access is
thrown.

13.5.2 optional

An optional<A> can be seen as a special kind of variant (like a variant<A,nothing>) or as a generaliza-
tion of the idea of an A∗ either pointing to an object or being nullptr.

An optional can be useful for functions that may or may not return an object:

optional<string> compose_message(istream& s)
{

string mess;

// ... read from s and compose message ...

if (no_problems)
return mess;

return {}; // the empty optional
}

Given that, we can write
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if (auto m = compose_message(cin))
cout << ∗m; // note the dereference (*)

else {
// ... handle error ...

}

This appeals to some people who dislike exceptions (see §3.5.3). Note the curious use of ∗. An
optional is treated as a pointer to its object rather than the object itself.

The optional equivalent to nullptr is the empty object, {}. For example:

int cat(optional<int> a, optional<int> b)
{

int res = 0;
if (a) res+=∗a;
if (b) res+=∗b;
return res;

}

int x = cat(17,19);
int y = cat(17,{});
int z = cat({},{});

If we try to access an optional that does not hold a value, the result is undefined; an exception is not
thrown. Thus, optional is not guaranteed type safe.

13.5.3 any

An any can hold an arbitrary type and know which type (if any) it holds. It is basically an uncon-
strained version of variant:

any compose_message(istream& s)
{

string mess;

// ... read from s and compose message ...

if (no_problems)
return mess; // retur n a str ing

else
return error_number; // retur n an int

}

When you assign or initialize an any with a value, it remembers the type of that value. Later, we
can inquire what type the any holds and extract the value. For example:

auto m = compose_message(cin));
string& s = any_cast<string>(m);
cout << s;

If we try to access an any holding a different type than the expected one, bad_any_access is thrown.
There are also ways of accessing an any that do not rely on exceptions.
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13.6 Allocators
By default, standard-library containers allocate space using new. Operators new and delete provide
a general free store (also called dynamic memory or heap) that can hold objects of arbitrary size
and user-controlled lifetime. This implies time and space overheads that can be eliminated in many
special cases. Therefore, the standard-library containers offer the opportunity to install allocators
with specific semantics where needed. This has been used to address a wide variety of concerns
related to performance (e.g., pool allocators), security (allocators that clean-up memory as part of
deletion), per-thread allocation, and non-uniform memory architectures (allocating in specific
memories with pointer types to match). This is not the place to discuss these important, but very
specialized and often advanced techniques. However, I will give one example motivated by a real-
world problem for which a pool allocator was the solution.

An important, long-running system used an event queue (see §15.6) using vectors as events that
were passed as shared_ptrs. That way, the last user of an event implicitly deleted it:

struct Event {
vector<int> data = vector<int>(512);

};

list<shared_ptr<Event>> q;

void producer()
{

for (int n = 0; n!=LOTS; ++n) {
lock_guard lk {m}; // m is a mutex (§15.5)
q.push_back(make_shared<Event>());
cv.notify_one();

}
}

From a logical point of view this worked nicely. It is logically simple, so the code is robust and
maintainable. Unfortunately, this led to massive fragmentation. After 100,000 events had been
passed among 16 producers and 4 consumers, more than 6GB memory had been consumed.

The traditional solution to fragmentation problems is to rewrite the code to use a pool allocator.
A pool allocator is an allocator that manages objects of a single fixed size and allocates space for
many objects at a time, rather than using individual allocations. Fortunately, C++17 offers direct
support for that. The pool allocator is defined in the pmr (‘‘polymorphic memory resource’’) sub-
namespace of std:

pmr::synchroniz ed_pool_resource pool; // make a pool

struct Event {
vector<int> data = vector<int>{512,&pool}; // let Events use the pool

};

list<shared_ptr<Event>> q {&pool}; // let q use the pool
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void producer()
{

for (int n = 0; n!=LOTS; ++n) {
scoped_lock lk {m}; // m is a mutex (§15.5)
q.push_back(allocate_shared<Event,pmr::polymorphic_allocator<Event>>{&pool});
cv.notify_one();

}
}

Now, after 100,000 events had been passed among 16 producers and 4 consumers, less than 3MB
memory had been consumed. That’s about a 2000-fold improvement! Naturally, the amount of
memory actually in use (as opposed to memory wasted to fragmentation) is unchanged. After elim-
inating fragmentation, memory use was stable over time so the system could run for months.

Techniques like this have been applied with good effects from the earliest days of C++, but gen-
erally they required code to be rewritten to use specialized containers. Now, the standard contain-
ers optionally take allocator arguments. The default is for the containers to use new and delete.

13.7 Time
In <chrono>, the standard library provides facilities for dealing with time. For example, here is the
basic way of timing something:

using namespace std::chrono; // in sub-namespace std::chrono; see §3.4

auto t0 = high_resolution_clock::now();
do_work();
auto t1 = high_resolution_clock::now();
cout << duration_cast<milliseconds>(t1−t0).count() << "msec\n";

The clock returns a time_point (a point in time). Subtracting two time_points giv es a duration (a
period of time). Various clocks give their results in various units of time (the clock I used measures
nanoseconds), so it is usually a good idea to convert a duration into a known unit. That’s what dura-

tion_cast does.
Don’t make statements about ‘‘efficiency’’ of code without first doing time measurements.

Guesses about performance are most unreliable.
To simplify notation and minimize errors, <chrono> offers time-unit suffixes (§5.4.4). For

example:

this_thread::sleep(10ms+33us); // wait for 10 milliseconds and 33 microseconds

The chrono suffixes are defined in namespace std::chrono_literals.
An elegant and efficient extension to <chrono>, supporting longer time intervals (e.g., years and

months), calendars, and time zones, is being added to the standard for C++20. It is currently avail-
able and in wide production use [Hinnant,2018] [Hinnant,2018b]. You can say things like

auto spring_day = apr/7/2018;
cout << weekday(spring_day) << '\n'; // Saturday

It even handles leap seconds.
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13.8 Function Adaption
When passing a function as a function argument, the type of the argument must exactly match the
expectations expressed in the called function’s declaration. If the intended argument ‘‘almost
matches expectations,’’ we hav e three good alternatives:

• Use a lambda (§13.8.1).
• Use std::mem_fn() to make a function object from a member function (§13.8.2).
• Define the function to accept a std::function (§13.8.3).

There are many other ways, but usually one of these three ways works best.

13.8.1 Lambdas as Adaptors

Consider the classical ‘‘draw all shapes’’ example:

void draw_all(vector<Shape∗>& v)
{

for_each(v.begin(),v.end(),[](Shape∗ p) { p−>draw(); });
}

Like all standard-library algorithms, for_each() calls its argument using the traditional function call
syntax f(x), but Shape's draw() uses the conventional OO notation x−>f(). A lambda easily mediates
between the two notations.

13.8.2 mem_fn()

Given a member function, the function adaptor mem_fn(mf) produces a function object that can be
called as a nonmember function. For example:

void draw_all(vector<Shape∗>& v)
{

for_each(v.begin(),v.end(),mem_fn(&Shape::draw));
}

Before the introduction of lambdas in C++11, mem_fn() and equivalents were the main way to map
from the object-oriented calling style to the functional one.

13.8.3 function

The standard-library function is a type that can hold any object you can invoke using the call opera-
tor (). That is, an object of type function is a function object (§6.3.2). For example:

int f1(double);
function<int(double)> fct1 {f1}; // initialize to f1

int f2(string);
function fct2 {f2}; // fct2’s type is function<int(string)>

function fct3 = [](Shape∗ p) { p−>draw(); }; // fct3’s type is function<void(Shape*)>

For fct2, I let the type of the function be deduced from the initializer: int(string).
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Obviously, functions are useful for callbacks, for passing operations as arguments, for passing
function objects, etc. However, it may introduce some run-time overhead compared to direct calls,
and a function, being an object, does not participate in overloading. If you need to overload func-
tion objects (including lambdas), consider overloaded (§13.5.1).

13.9 Type Functions
A type function is a function that is evaluated at compile time given a type as its argument or
returning a type. The standard library provides a variety of type functions to help library imple-
menters (and programmers in general) to write code that takes advantage of aspects of the lan-
guage, the standard library, and code in general.

For numerical types, numeric_limits from <limits> presents a variety of useful information
(§14.7). For example:

constexpr float min = numeric_limits<float>::min(); // smallest positive float

Similarly, object sizes can be found by the built-in siz eof operator (§1.4). For example:

constexpr int szi = sizeof(int); // the number of bytes in an int

Such type functions are part of C++’s mechanisms for compile-time computation that allow tighter
type checking and better performance than would otherwise have been possible. Use of such fea-
tures is often called metaprogramming or (when templates are involved) template metaprogram-
ming. Here, I just present the use of two facilities provided by the standard library: iterator_traits

(§13.9.1) and type predicates (§13.9.2). Concepts (§7.2) make some of these techniques redundant
and simplify many of the rest, but concepts are still not standard or universally available, so the
techniques presented here are in wide use.

13.9.1 iterator_traits

The standard-library sor t() takes a pair of iterators supposed to define a sequence (Chapter 12).
Furthermore, those iterators must offer random access to that sequence, that is, they must be ran-
dom-access iterators. Some containers, such as forward_list, do not offer that. In particular, a for-

ward_list is a singly-linked list so subscripting would be expensive and there is no reasonable way
to refer back to a previous element. However, like most containers, forward_list offers forward iter-
ators that can be used to traverse the sequence by algorithms and for-statements (§6.2).

The standard library provides a mechanism, iterator_traits, that allows us to check which kind of
iterator is provided. Given that, we can improve the range sor t() from §12.8 to accept either a
vector or a forward_list. For example:

void test(vector<string>& v, forward_list<int>& lst)
{

sor t(v); // sor t the vector
sor t(lst); // sor t the singly-linked list

}

The techniques needed to make that work are generally useful.
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First, I write two helper functions that take an extra argument indicating whether they are to be
used for random-access iterators or forward iterators. The version taking random-access iterator
arguments is trivial:

template<typename Ran> // for random-access iterators
void sort_helper(Ran beg, Ran end, random_access_iterator_tag) // we can subscript into [beg:end)
{

sor t(beg,end); // just sort it
}

The version for forward iterators simply copies the list into a vector, sorts, and copies back:

template<typename For> // for forward iterators
void sort_helper(For beg, For end, forward_iterator_tag) // we can traverse [beg:end)
{

vector<Value_type<For>> v {beg,end}; // initialize a vector from [beg:end)
sor t(v.begin(),v.end()); // use the random access sort
copy(v.begin(),v.end(),beg); // copy the elements back

}

Value_type<For> is the type of For’s elements, called it’s value type. Every standard-library iterator
has a member value_type. I get the Value_type<For> notation by defining a type alias (§6.4.2):

template<typename C>
using Value_type = typename C::value_type; // C’s value type

Thus, for a vector<X>, Value_type<X> is X.
The real ‘‘type magic’’ is in the selection of helper functions:

template<typename C>
void sort(C& c)
{

using Iter = Iterator_type<C>;
sor t_helper(c.begin(),c.end(),Iterator_category<Iter>{});

}

Here, I use two type functions: Iterator_type<C> returns the iterator type of C (that is, C::iterator) and
then Iterator_categor y<Iter>{} constructs a ‘‘tag’’ value indicating the kind of iterator provided:

• std::random_access_iterator_tag if C’s iterator supports random access
• std::forward_iterator_tag if C’s iterator supports forward iteration

Given that, we can select between the two sorting algorithms at compile time. This technique,
called tag dispatch, is one of several used in the standard library and elsewhere to improve flexibil-
ity and performance.

We could define Iterator_type like this:

template<typename C>
using Iterator_type = typename C::iterator; // C’s iterator type

However, to extend this idea to types without member types, such as pointers, the standard-library
support for tag dispatch comes in the form of a class template iterator_traits from <iterator>. The
specialization for pointers looks like this:
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template<class T>
struct iterator_traits<T∗> {

using difference_type = ptrdiff_t;
using value_type = T;
using pointer = T∗;
using reference = T&;
using iterator_category = random_access_iterator_tag;

};

We can now write:

template<typename Iter>
using Iterator_category = typename std::iterator_traits<Iter>::iterator_category; // Iter’s categor y

Now an int∗ can be used as a random-access iterator despite not having a member type; Iterator_cat-

egor y<int∗> is random_access_iterator_tag.
Many traits and traits-based techniques will be made redundant by concepts (§7.2). Consider

the concepts version of the sor t() example:

template<RandomAccessIterator Iter>
void sort(Iter p, Iter q); // use for std::vector and other types supporting random access

template<ForwardIterator Iter>
void sort(Iter p, Iter q)

// use for std::list and other types supporting just forward traversal
{

vector<Value_type<Iter>> v {p,q};
sor t(v); // use the random-access sort
copy(v.begin(),v.end(),p);

}

template<Rang e R>
void sort(R& r)
{

sor t(r.begin(),r.end()); // use the appropriate sort
}

Progress happens.

13.9.2 Type Predicates

In <type_traits>, the standard library offers simple type functions, called type predicates that
answers a fundamental question about types. For example:

bool b1 = std::is_arithmetic<int>(); // yes, int is an arithmetic type
bool b2 = std::is_arithmetic<string>(); // no, std::str ing is not an arithmetic type

Other examples are is_class, is_pod, is_literal_type, has_vir tual_destructor, and is_base_of. They are
most useful when we write templates. For example:
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template<typename Scalar>
class complex {

Scalar re, im;
public:

static_asser t(is_arithmetic<Scalar>(), "Sorr y, I only suppor t complex of arithmetic types");
// ...

};

To improve readability, the standard library defines template aliases. For example:

template<typename T>
constexpr bool is_arithmetic_v = std::is_arithmetic<T>();

I’m no great fan of the _v suffix notation, but the technique for defining aliases is immensely useful.
For example, the standard library defines the concept Regular (§12.7) like this:

template<class T>
concept Regular = Semiregular<T> && EqualityComparable<T>;

13.9.3 enable_if

Obvious ways of using type predicates includes conditions for static_asser ts, compile-time ifs, and
enable_ifs. The standard-library enable_if is a widely used mechanism for conditonally introducing
definitions. Consider defining a ‘‘smart pointer’’:

template<typename T>
class Smart_pointer {

// ...
T& operator∗();
T& operator−>(); // -> should wor k if and only if T is a class

};

The −> should be defined if and only if T is a class type. For example, Smar t_pointer<vector<T>>

should have −>, but Smar t_pointer<int> should not.
We cannot use a compile-time if because we are not inside a function. Instead, we write

template<typename T>
class Smart_pointer {

// ...
T& operator∗();
std::enable_if<is_class<T>(),T&> operator−>(); // -> is defined if and only if T is a class

};

If is_class<T>() is true, the return type of operator−>() is T&; otherwise, the definition of operator−>()

is ignored.
The syntax of enable_if is odd, awkward to use, and will in many cases be rendered redundant

by concepts (§7.2). However, enable_if is the basis for much current template metaprogramming
and for many standard-library components. It relies on a subtle language feature called SFINAE
(‘‘Substitution Failure Is Not An Error’’).
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13.10 Advice
[1] A library doesn’t hav e to be large or complicated to be useful; §13.1.
[2] A resource is anything that has to be acquired and (explicitly or implicitly) released; §13.2.
[3] Use resource handles to manage resources (RAII); §13.2; [CG: R.1].
[4] Use unique_ptr to refer to objects of polymorphic type; §13.2.1; [CG: R.20].
[5] Use shared_ptr to refer to shared objects (only); §13.2.1; [CG: R.20].
[6] Prefer resource handles with specific semantics to smart pointers; §13.2.1.
[7] Prefer unique_ptr to shared_ptr; §5.3, §13.2.1.
[8] Use make_unique() to construct unique_ptrs; §13.2.1; [CG: R.22].
[9] Use make_shared() to construct shared_ptrs; §13.2.1; [CG: R.23].
[10] Prefer smart pointers to garbage collection; §5.3, §13.2.1.
[11] Don’t use std::move(); §13.2.2; [CG: ES.56].
[12] Use std::forward() exclusively for forwarding; §13.2.2.
[13] Never read from an object after std::move()ing or std::forward()ing it; §13.2.2.
[14] Prefer spans to pointer-plus-count interfaces; §13.3; [CG: F.24].
[15] Use array where you need a sequence with a constexpr size; §13.4.1.
[16] Prefer array over built-in arrays; §13.4.1; [CG: SL.con.2].
[17] Use bitset if you need N bits and N is not necessarily the number of bits in a built-in integer

type; §13.4.2.
[18] Don’t overuse pair and tuple; named structs often lead to more readable code; §13.4.3.
[19] When using pair, use template argument deduction or make_pair() to avoid redundant type

specification; §13.4.3.
[20] When using tuple, use template argument deduction and make_tuple() to avoid redundant type

specification; §13.4.3; [CG: T.44].
[21] Prefer variant to explicit use of unions; §13.5.1; [CG: C.181].
[22] Use allocators to prevent memory fragmentation; §13.6.
[23] Time your programs before making claims about efficiency; §13.7.
[24] Use duration_cast to report time measurements with proper units; §13.7.
[25] When specifying a duration, use proper units; §13.7.
[26] Use mem_fn() or a lambda to create function objects that can invoke a member function when

called using the traditional function call notation; §13.8.2.
[27] Use function when you need to store something that can be called; §13.8.3.
[28] You can write code to explicitly depend on properties of types; §13.9.
[29] Prefer concepts over traits and enable_if whenever you can; §13.9.
[30] Use aliases and type predicates to simplify notation; §13.9.1, §13.9.2.
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14
Numerics

The purpose of computing is insight, not numbers.
– R. W. Hamming

... but for the student,
numbers are often the best road to insight.

– A. Ralston

• Introduction
• Mathematical Functions
• Numerical Algorithms

Parallel Numerical Algorithms
• Complex Numbers
• Random Numbers
• Vector Arithmetic
• Numeric Limits
• Advice

14.1 Introduction
C++ was not designed primarily with numeric computation in mind. However, numeric computa-
tion typically occurs in the context of other work – such as database access, networking, instrument
control, graphics, simulation, and financial analysis – so C++ becomes an attractive vehicle for
computations that are part of a larger system. Furthermore, numeric methods have come a long
way from being simple loops over vectors of floating-point numbers. Where more complex data
structures are needed as part of a computation, C++’s strengths become relevant. The net effect is
that C++ is widely used for scientific, engineering, financial, and other computation involving
sophisticated numerics. Consequently, facilities and techniques supporting such computation have
emerged. This chapter describes the parts of the standard library that support numerics.
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14.2 Mathematical Functions
In <cmath>, we find the standard mathematical functions, such as sqr t(), log(), and sin() for argu-
ments of type float, double, and long double:

Standard Mathematical Functions

abs(x) Absolute value
ceil(x) Smallest integer >= x

floor(x) Largest integer <= x

sqr t(x) Square root; x must be non-negative
cos(x) Cosine
sin(x) Sine
tan(x) Tangent
acos(x) Arccosine; the result is non-negative
asin(x) Arcsine; the result nearest to 0 is returned
atan(x) Arctangent
sinh(x) Hyperbolic sine
cosh(x) Hyperbolic cosine
tanh(x) Hyperbolic tangent
exp(x) Base e exponential
log(x) Natural logarithm, base e; x must be positive
log10(x) Base 10 logarithm

The versions for complex (§14.4) are found in <complex>. For each function, the return type is the
same as the argument type.

Errors are reported by setting errno from <cerrno> to EDOM for a domain error and to ERANGE

for a range error. For example:

void f()
{

errno = 0; // clear old error state
sqr t(−1);
if (errno==EDOM)

cerr << "sqrt() not defined for negative argument";

errno = 0; // clear old error state
pow(numeric_limits<double>::max(),2);
if (errno == ERANGE)

cerr << "result of pow() too large to represent as a double";
}

A few more mathematical functions are found in <cstdlib> and the so-called special mathematical
functions, such as beta(), rieman_z eta(), and sph_bessel(), are also in <cmath>.



Section 14.3 Numerical Algorithms 189

14.3 Numerical Algorithms
In <numeric>, we find a small set of generalized numerical algorithms, such as accumulate().

Numerical Algorithms

x=accumulate(b,e ,i) x is the sum of i and the elements of [b:e)
x=accumulate(b,e ,i,f) accumulate using f instead of +

x=inner_product(b,e ,b2,i) x is the inner product of [b:e) and [b2:b2+(e−b)),
that is, the sum of i and (∗p1)∗(∗p2) for each p1 in [b:e)
and the corresponding p2 in [b2:b2+(e−b))

x=inner_product(b,e ,b2,i,f,f2) inner_product using f and f2 instead of + and ∗
p=par tial_sum(b,e,out) Element i of [out:p) is the sum of elements [b:b+i]
p=par tial_sum(b,e,out,f) partial_sum using f instead of +

p=adjacent_difference(b,e ,out) Element i of [out:p) is ∗(b+i)−∗(b+i−1) for i>0;
if e−b>0, then ∗out is ∗b

p=adjacent_difference(b,e ,out,f) adjacent_difference using f instead of −

iota(b,e ,v) For each element in [b:e) assign ++v;
thus the sequence becomes v+1, v+2, ...

x=gcd(n,m) x is the greatest common denominator of integers n and m

x=lcm(n,m) x is the least common multiple of integers n and m

These algorithms generalize common operations such as computing a sum by letting them apply to
all kinds of sequences. They also make the operation applied to elements of those sequences a
parameter. For each algorithm, the general version is supplemented by a version applying the most
common operator for that algorithm. For example:

list<double> lst {1, 2, 3, 4, 5, 9999.99999};
auto s = accumulate(lst.begin(),lst.end(),0.0); // calculate the sum: 10014.9999

These algorithms work for every standard-library sequence and can have operations supplied as
arguments (§14.3).

14.3.1 Parallel Algorithms

In <numeric>, the numerical algorithms have parallel versions (§12.9) that are slightly different:

Parallel Numerical Algorithms

x=reduce(b,e ,v) x=accumulate(b,e ,v), except out of order
x=reduce(b,e) x=reduce(b,e,V{}), where V is b’s value type
x=reduce(pol,b,e ,v) x=reduce(b,e ,v) with execution policy pol

x=reduce(pol,b,e) x=reduce(pol,b,e,V{}), where V is b’s value type
p=exclusive_scan(pol,b,e ,out) p=par tial_sum(b,e,out) according to pol,

excludes the ith input element from the ith sum
p=inclusive_scan(pol,b,e ,out) p=par tial_sum(b,e,out) according to pol

includes the ith input element in the ith sum
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Parallel Numerical Algorithms (continued)

p=transform_reduce(pol,b,e ,f,v) f(x) for each x in [b:e), then reduce

p=transform_exclusive_scan(pol,b,e ,out,f,v) f(x) for each x in [b:e), then exclusive_scan

p=transform_inclusive_scan(pol,b,e ,out,f,v) f(x) for each x in [b:e), then inclusive_scan

For simplicity, I left out the versions of these algorithms that take functor arguments, rather than
just using + and =. Except for reduce(), I also left out the versions with default policy (sequential)
and default value.

Just as for the parallel algorithms in <algorithm> (§12.9), we can specify an execution policy:

vector<double> v {1, 2, 3, 4, 5, 9999.99999};
auto s = reduce(v.begin(),v.end()); // calculate the sum using a double as the accumulator

vector<double> large;
// ... fill large with lots of values ...
auto s2 = reduce(par_unseq,large .begin(),large .end()); // calculate the sum using available parallelism

The parallel algorithms (e.g., reduce()) differ from the sequentional ones (e.g., accumulate()) by
allowing operations on elements in unspecified order.

14.4 Complex Numbers
The standard library supports a family of complex number types along the lines of the complex

class described in §4.2.1. To support complex numbers where the scalars are single-precision float-
ing-point numbers (floats), double-precision floating-point numbers (doubles), etc., the standard
library complex is a template:

template<typename Scalar>
class complex {
public:

complex(const Scalar& re ={}, const Scalar& im ={}); // default function arguments; see §3.6.1
// ...

};

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

void f(complex<float> fl, complex<double> db)
{

complex<long double> ld {fl+sqrt(db)};
db += fl∗3;
fl = pow(1/fl,2);
// ...

}

The sqr t() and pow() (exponentiation) functions are among the usual mathematical functions defined
in <complex> (§14.2).
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14.5 Random Numbers
Random numbers are useful in many contexts, such as testing, games, simulation, and security.
The diversity of application areas is reflected in the wide selection of random number generators
provided by the standard library in <random>. A random number generator consists of two parts:

[1] An engine that produces a sequence of random or pseudo-random values
[2] A distribution that maps those values into a mathematical distribution in a range

Examples of distributions are uniform_int_distribution (where all integers produced are equally
likely), normal_distribution (‘‘the bell curve’’), and exponential_distribution (exponential growth);
each for some specified range. For example:

using my_engine = default_random_engine; // type of engine
using my_distribution = uniform_int_distribution<>; // type of distribution

my_engine re {}; // the default engine
my_distribution one_to_six {1,6}; // distr ibution that maps to the ints 1..6
auto die = [](){ return one_to_six(re); } // make a generator

int x = die(); // roll the die: x becomes a value in [1:6]

Thanks to its uncompromising attention to generality and performance, one expert has deemed the
standard-library random number component ‘‘what every random number library wants to be when
it grows up.’’ Howev er, it can hardly be deemed ‘‘novice friendly.’’ The using statements and the
lambda make what is being done a bit more obvious.

For novices (of any background) the fully general interface to the random number library can be
a serious obstacle. A simple uniform random number generator is often sufficient to get started.
For example:

Rand_int rnd {1,10}; // make a random number generator for [1:10]
int x = rnd(); // x is a number in [1:10]

So, how could we get that? We hav e to get something that, like die(), combines an engine with a
distribution inside a class Rand_int:

class Rand_int {
public:

Rand_int(int low, int high) :dist{low,high} { }
int operator()() { return dist(re); } // draw an int
void seed(int s) { re.seed(s); } // choose new random engine seed

private:
default_random_engine re;
uniform_int_distribution<> dist;

};

That definition is still ‘‘expert level,’’ but the use of Rand_int() is manageable in the first week of a
C++ course for novices. For example:
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int main()
{

constexpr int max = 9;
Rand_int rnd {0,max}; // make a unifor m random number generator

vector<int> histogram(max+1); // make a vector of appropriate size
for (int i=0; i!=200; ++i)

++histogram[rnd()]; // fill histogram with the frequencies of numbers [0:max]

for (int i = 0; i!=histogram.size(); ++i) { // wr ite out a bar graph
cout << i << '\t';
for (int j=0; j!=histogram[i]; ++j) cout << '∗';
cout << endl;

}
}

The output is a (reassuringly boring) uniform distribution (with reasonable statistical variation):

0 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 ∗∗∗∗∗∗∗∗∗∗∗
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

There is no standard graphics library for C++, so I use ‘‘ASCII graphics.’’ Obviously, there are lots
of open source and commercial graphics and GUI libraries for C++, but in this book I restrict
myself to ISO standard facilities.

14.6 Vector Arithmetic
The vector described in §11.2 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does not
support mathematical vector operations. Adding such operations to vector would be easy, but its
generality and flexibility preclude optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides (in <valarray>) a vector-like template,
called valarray, that is less general and more amenable to optimization for numerical computation:

template<typename T>
class valarray {

// ...
};

The usual arithmetic operations and the most common mathematical functions are supported for
valarrays. For example:
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void f(valarray<double>& a1, valarray<double>& a2)
{

valarray<double> a = a1∗3.14+a2/a1; // numer ic array operators *, +, /, and =
a2 += a1∗3.14;
a = abs(a);
double d = a2[7];
// ...

}

In addition to arithmetic operations, valarray offers stride access to help implement multidimen-
sional computations.

14.7 Numeric Limits
In <limits>, the standard library provides classes that describe the properties of built-in types – such
as the maximum exponent of a float or the number of bytes in an int. For example, we can assert
that a char is signed:

static_asser t(numeric_limits<char>::is_signed,"unsigned characters!");
static_asser t(100000<numeric_limits<int>::max(),"small ints!");

Note that the second assert (only) works because numeric_limits<int>::max() is a constexpr function
(§1.6).

14.8 Advice
[1] Numerical problems are often subtle. If you are not 100% certain about the mathematical

aspects of a numerical problem, either take expert advice, experiment, or do both; §14.1.
[2] Don’t try to do serious numeric computation using only the bare language; use libraries;

§14.1.
[3] Consider accumulate(), inner_product(), par tial_sum(), and adjacent_difference() before you

write a loop to compute a value from a sequence; §14.3.
[4] Use std::complex for complex arithmetic; §14.4.
[5] Bind an engine to a distribution to get a random number generator; §14.5.
[6] Be careful that your random numbers are sufficiently random; §14.5.
[7] Don’t use the C standard-library rand(); it isn’t insufficiently random for real uses; §14.5.
[8] Use valarray for numeric computation when run-time efficiency is more important than flexi-

bility with respect to operations and element types; §14.6.
[9] Properties of numeric types are accessible through numeric_limits; §14.7.
[10] Use numeric_limits to check that the numeric types are adequate for their use; §14.7.
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15
Concurrency

Keep it simple:
as simple as possible,

but no simpler.
– A. Einstein

• Introduction
• Tasks and threads
• Passing Arguments
• Returning Results
• Sharing Data
• Waiting for Events
• Communicating Tasks

future and promise; packaged_task; async()

• Advice

15.1 Introduction
Concurrency – the execution of several tasks simultaneously – is widely used to improve through-
put (by using several processors for a single computation) or to improve responsiveness (by allow-
ing one part of a program to progress while another is waiting for a response). All modern pro-
gramming languages provide support for this. The support provided by the C++ standard library is
a portable and type-safe variant of what has been used in C++ for more than 20 years and is almost
universally supported by modern hardware. The standard-library support is primarily aimed at sup-
porting systems-level concurrency rather than directly providing sophisticated higher-level concur-
rency models; those can be supplied as libraries built using the standard-library facilities.

The standard library directly supports concurrent execution of multiple threads in a single
address space. To allow that, C++ provides a suitable memory model and a set of atomic opera-
tions. The atomic operations allow lock-free programming [Dechev,2010]. The memory model
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ensures that as long as a programmer avoids data races (uncontrolled concurrent access to mutable
data), everything works as one would naively expect. However, most users will see concurrency
only in terms of the standard library and libraries built on top of that. This section briefly gives
examples of the main standard-library concurrency support facilities: threads, mutexes, lock() opera-
tions, packaged_tasks, and futures. These features are built directly upon what operating systems
offer and do not incur performance penalties compared with those. Neither do they guarantee sig-
nificant performance improvements compared to what the operating system offers.

Do not consider concurrency a panacea. If a task can be done sequentially, it is often simpler
and faster to do so.

As an alternative to using explicit concurrency features, we can often use a parallel algorithm to
exploit multiple execution engines for better performance (§12.9, §14.3.1).

15.2 Tasks and threads
We call a computation that can potentially be executed concurrently with other computations a task.
A thread is the system-level representation of a task in a program. A task to be executed concur-
rently with other tasks is launched by constructing a std::thread (found in <thread>) with the task as
its argument. A task is a function or a function object:

void f(); // function

struct F { // function object
void operator()(); // F’s call operator (§6.3.2)

};

void user()
{

thread t1 {f}; // f() executes in separate thread
thread t2 {F()}; // F()() executes in separate thread

t1.join(); // wait for t1
t2.join(); // wait for t2

}

The join()s ensure that we don’t exit user() until the threads have completed. To ‘‘join’’ a thread

means to ‘‘wait for the thread to terminate.’’
Threads of a program share a single address space. In this, threads differ from processes, which

generally do not directly share data. Since threads share an address space, they can communicate
through shared objects (§15.5). Such communication is typically controlled by locks or other
mechanisms to prevent data races (uncontrolled concurrent access to a variable).

Programming concurrent tasks can be very tricky. Consider possible implementations of the
tasks f (a function) and F (a function object):

void f()
{

cout << "Hello ";
}
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struct F {
void operator()() { cout << "Parallel World!\n"; }

};

This is an example of a bad error: here, f and F() each use the object cout without any form of syn-
chronization. The resulting output would be unpredictable and could vary between different execu-
tions of the program because the order of execution of the individual operations in the two tasks is
not defined. The program may produce ‘‘odd’’ output, such as

PaHerallllel o World!

Only a specific guarantee in the standard saves us from a data race within the definition of ostream

that could lead to a crash.
When defining tasks of a concurrent program, our aim is to keep tasks completely separate

except where they communicate in simple and obvious ways. The simplest way of thinking of a
concurrent task is as a function that happens to run concurrently with its caller. For that to work,
we just have to pass arguments, get a result back, and make sure that there is no use of shared data
in between (no data races).

15.3 Passing Arguments
Typically, a task needs data to work upon. We can easily pass data (or pointers or references to the
data) as arguments. Consider:

void f(vector<double>& v); // function: do something with v

struct F { // function object: do something with v
vector<double>& v;
F(vector<double>& vv) :v{vv} { }
void operator()(); // application operator ; §6.3.2

};

int main()
{

vector<double> some_vec {1,2,3,4,5,6,7,8,9};
vector<double> vec2 {10,11,12,13,14};

thread t1 {f,ref(some_vec)}; // f(some_vec) executes in a separate thread
thread t2 {F{vec2}}; // F(vec2)() executes in a separate thread

t1.join();
t2.join();

}

Obviously, F{vec2} saves a reference to the argument vector in F. F can now use that vector and
hopefully no other task accesses vec2 while F is executing. Passing vec2 by value would eliminate
that risk.

The initialization with {f,ref(some_vec)} uses a thread variadic template constructor that can
accept an arbitrary sequence of arguments (§7.4). The ref() is a type function from <functional> that
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unfortunately is needed to tell the variadic template to treat some_vec as a reference, rather than as
an object. Without that ref(), some_vec would be passed by value. The compiler checks that the
first argument can be invoked giv en the following arguments and builds the necessary function
object to pass to the thread. Thus, if F::operator()() and f() perform the same algorithm, the handling
of the two tasks are roughly equivalent: in both cases, a function object is constructed for the thread

to execute.

15.4 Returning Results
In the example in §15.3, I pass the arguments by non-const reference. I only do that if I expect the
task to modify the value of the data referred to (§1.7). That’s a  somewhat sneaky, but not uncom-
mon, way of returning a result. A less obscure technique is to pass the input data by const refer-
ence and to pass the location of a place to deposit the result as a separate argument:

void f(const vector<double>& v, double∗ res); // take input from v; place result in *res

class F {
public:

F(const vector<double>& vv, double∗ p) :v{vv}, res{p} { }
void operator()(); // place result in *res

private:
const vector<double>& v; // source of input
double∗ res; // target for output

};

double g(const vector<double>&); // use return value

void user(vector<double>& vec1, vector<double> vec2, vector<double> vec3)
{

double res1;
double res2;
double res3;

thread t1 {f,cref(vec1),&res1}; // f(vec1,&res1) executes in a separate thread
thread t2 {F{vec2,&res2}}; // F{vec2,&res2}() executes in a separate thread
thread t3 { [&](){ res3 = g(vec3); } }; // capture local var iables by reference

t1.join();
t2.join();
t3.join();

cout << res1 << ' ' << res2 << ' ' << res3 << '\n';
}

This works and the technique is very common, but I don’t consider returning results through refer-
ences particularly elegant, so I return to this topic in §15.7.1.
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15.5 Sharing Data
Sometimes tasks need to share data. In that case, the access has to be synchronized so that at most
one task at a time has access. Experienced programmers will recognize this as a simplification
(e.g., there is no problem with many tasks simultaneously reading immutable data), but consider
how to ensure that at most one task at a time has access to a given set of objects.

The fundamental element of the solution is a mutex, a ‘‘mutual exclusion object.’’ A thread

acquires a mutex using a lock() operation:

mutex m; // controlling mutex
int sh; // shared data

void f()
{

scoped_lock lck {m}; // acquire mutex
sh += 7; // manipulate shared data

} // release mutex implicitly

The type of lck is deduced to be scoped_lock<mutex> (§6.2.3). The scoped_lock’s constructor
acquires the mutex (through a call m.lock()). If another thread has already acquired the mutex, the
thread waits (‘‘blocks’’) until the other thread completes its access. Once a thread has completed
its access to the shared data, the scoped_lock releases the mutex (with a call m.unlock()). When a
mutex is released, threads waiting for it resume executing (‘‘are woken up’’). The mutual exclusion
and locking facilities are found in <mutex>.

Note the use of RAII (§5.3). Use of resource handles, such as scoped_lock and unique_lock

(§15.6), is simpler and far safer than explicitly locking and unlocking mutexes.
The correspondence between the shared data and a mutex is conventional: the programmer sim-

ply has to know which mutex is supposed to correspond to which data. Obviously, this is error-
prone, and equally obviously we try to make the correspondence clear through various language
means. For example:

class Record {
public:

mutex rm;
// ...

};

It doesn’t take a genius to guess that for a Record called rec, you are supposed to acquire rec.rm

before accessing the rest of rec, though a comment or a better name might have helped the reader.
It is not uncommon to need to simultaneously access several resources to perform some action.

This can lead to deadlock. For example, if thread1 acquires mutex1 and then tries to acquire mutex2

while thread2 acquires mutex2 and then tries to acquire mutex1, then neither task will ever proceed
further. The scoped_lock helps by enabling us to acquire several locks simultaneously:

void f()
{

scoped_lock lck {mutex1,mutex2,mutex3}; // acquire all three locks
// ... manipulate shared data ...

} // implicitly release all mutexes
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This scoped_lock will proceed only after acquiring all its mutexes arguments and will never block
(‘‘go to sleep’’) while holding a mutex. The destructor for scoped_lock ensures that the mutexes are
released when a thread leaves the scope.

Communicating through shared data is pretty low lev el. In particular, the programmer has to
devise ways of knowing what work has and has not been done by various tasks. In that regard, use
of shared data is inferior to the notion of call and return. On the other hand, some people are con-
vinced that sharing must be more efficient than copying arguments and returns. That can indeed be
so when large amounts of data are involved, but locking and unlocking are relatively expensive
operations. On the other hand, modern machines are very good at copying data, especially compact
data, such as vector elements. So don’t choose shared data for communication because of ‘‘effi-
ciency’’ without thought and preferably not without measurement.

The basic mutex allows one thread at a time to access data. One of the most common ways of
sharing data is among many readers and a single writer. This ‘‘reader-writer lock’’ idiom is sup-
ported be shared_mutex. A reader will acquire the mutex ‘‘shared’’ so that other readers can still
gain access, whereas a writer will demand exclusive access. For example:

shared_mutex mx; // a mutex that can be shared

void reader()
{

shared_lock lck {mx}; // willing to share access with other readers
// ... read ...

}

void writer()
{

unique_lock lck {mx}; // needs exclusive (unique) access
// ... write ...

}

15.6 Waiting for Events
Sometimes, a thread needs to wait for some kind of external event, such as another thread complet-
ing a task or a certain amount of time having passed. The simplest ‘‘event’’ is simply time passing.
Using the time facilities found in <chrono> I can write:

using namespace std::chrono; // see §13.7

auto t0 = high_resolution_clock::now();
this_thread::sleep_for(milliseconds{20});
auto t1 = high_resolution_clock::now();

cout << duration_cast<nanoseconds>(t1−t0).count() << " nanoseconds passed\n";

Note that I didn’t even hav e to launch a thread; by default, this_thread refers to the one and only
thread.
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I used duration_cast to adjust the clock’s units to the nanoseconds I wanted.
The basic support for communicating using external events is provided by condition_variables

found in <condition_variable>. A condition_variable is a mechanism allowing one thread to wait for
another. In particular, it allows a thread to wait for some condition (often called an event) to occur
as the result of work done by other threads.

Using condition_variables supports many forms of elegant and efficient sharing but can be rather
tricky. Consider the classical example of two threads communicating by passing messages through
a queue. For simplicity, I declare the queue and the mechanism for avoiding race conditions on that
queue global to the producer and consumer:

class Message { // object to be communicated
// ...

};

queue<Message> mqueue; // the queue of messages
condition_variable mcond; // the var iable communicating events
mutex mmutex; // for synchronizing access to mcond

The types queue, condition_variable, and mutex are provided by the standard library.
The consumer() reads and processes Messages:

void consumer()
{

while(true) {
unique_lock lck {mmutex}; // acquire mmutex
mcond.wait(lck,[] { return !mqueue.empty(); }); // release lck and wait;

// re-acquire lck upon wakeup
// don’t wake up unless mqueue is non-empty

auto m = mqueue.front(); // get the message
mqueue .pop();
lck.unlock(); // release lck
// ... process m ...

}
}

Here, I explicitly protect the operations on the queue and on the condition_variable with a
unique_lock on the mutex. Waiting on condition_variable releases its lock argument until the wait is
over (so that the queue is non-empty) and then reacquires it. The explicit check of the condition,
here !mqueue .empty(), protects against waking up just to find that some other task has ‘‘gotten there
first’’ so that the condition no longer holds.

I used a unique_lock rather than a scoped_lock for two reasons:
• We need to pass the lock to the condition_variable’s wait(). A scoped_lock cannot be copied,

but a unique_lock can be.
• We want to unlock the mutex protecting the condition variable before processing the mes-

sage. A unique_lock offers operations, such as lock() and unlock(), for low-level control of
synchronization.

On the other hand, unique_lock can only handle a single mutex.
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The corresponding producer looks like this:

void producer()
{

while(true) {
Message m;
// ... fill the message ...
scoped_lock lck {mmutex}; // protect operations
mqueue .push(m);
mcond.notify_one(); // notify

} // release lock (at end of scope)
}

15.7 Communicating Tasks
The standard library provides a few facilities to allow programmers to operate at the conceptual
level of tasks (work to potentially be done concurrently) rather than directly at the lower level of
threads and locks:

• future and promise for returning a value from a task spawned on a separate thread
• packaged_task to help launch tasks and connect up the mechanisms for returning a result
• async() for launching of a task in a manner very similar to calling a function

These facilities are found in <future>.

15.7.1 future and promise

The important point about future and promise is that they enable a transfer of a value between two
tasks without explicit use of a lock; ‘‘the system’’ implements the transfer efficiently. The basic
idea is simple: when a task wants to pass a value to another, it puts the value into a promise. Some-
how, the implementation makes that value appear in the corresponding future, from which it can be
read (typically by the launcher of the task). We can represent this graphically:

future promise

value

task1: task2:

get()
set_value()

set_exception()

If we have a future<X> called fx, we can get() a value of type X from it:

X v = fx.g et(); // if necessary, wait for the value to get computed

If the value isn’t there yet, our thread is blocked until it arrives. If the value couldn’t be computed,
get() might throw an exception (from the system or transmitted from the task from which we were
trying to get() the value).
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The main purpose of a promise is to provide simple ‘‘put’’ operations (called set_value() and
set_exception()) to match future’s get(). The names ‘‘future’’ and ‘‘promise’’ are historical; please
don’t blame or credit me. They are yet another fertile source of puns.

If you have a promise and need to send a result of type X to a future, you can do one of two
things: pass a value or pass an exception. For example:

void f(promise<X>& px) // a task: place the result in px
{

// ...
tr y {

X res;
// ... compute a value for res ...
px.set_value(res);

}
catch (...) { // oops: couldn’t compute res

px.set_exception(current_exception()); // pass the exception to the future’s thread
}

}

The current_exception() refers to the caught exception.
To deal with an exception transmitted through a future, the caller of get() must be prepared to

catch it somewhere. For example:

void g(future<X>& fx) // a task: get the result from fx
{

// ...
tr y {

X v = fx.g et(); // if necessary, wait for the value to get computed
// ... use v ...

}
catch (...) { // oops: someone couldn’t compute v

// ... handle error ...
}

}

If the error doesn’t need to be handled by g() itself, the code reduces to the minimal:

void g(future<X>& fx) // a task: get the result from fx
{

// ...
X v = fx.g et(); // if necessary, wait for the value to get computed
// ... use v ...

}

15.7.2 packaged_task

How do we get a future into the task that needs a result and the corresponding promise into the
thread that should produce that result? The packaged_task type is provided to simplify setting up
tasks connected with futures and promises to be run on threads. A packaged_task provides wrapper
code to put the return value or exception from the task into a promise (like the code shown in



204 Concurrency Chapter 15

§15.7.1). If you ask it by calling get_future, a packaged_task will give you the future corresponding
to its promise. For example, we can set up two tasks to each add half of the elements of a
vector<double> using the standard-library accumulate() (§14.3):

double accum(double∗ beg, double∗ end, double init)
// compute the sum of [beg:end) starting with the initial value init

{
return accumulate(beg,end,init);

}

double comp2(vector<double>& v)
{

using Task_type = double(double∗,double∗,double); // type of task

packaged_task<Task_type> pt0 {accum}; // package the task (i.e., accum)
packaged_task<Task_type> pt1 {accum};

future<double> f0 {pt0.get_future()}; // get hold of pt0’s future
future<double> f1 {pt1.get_future()}; // get hold of pt1’s future

double∗ first = &v[0];
thread t1 {move(pt0),first,first+v.siz e()/2,0}; // star t a thread for pt0
thread t2 {move(pt1),first+v.siz e()/2,first+v.siz e(),0}; // star t a thread for pt1

// ...

return f0.get()+f1.g et(); // get the results
}

The packaged_task template takes the type of the task as its template argument (here Task_type, an
alias for double(double∗,double∗,double)) and the task as its constructor argument (here, accum).
The move() operations are needed because a packaged_task cannot be copied. The reason that a
packaged_task cannot be copied is that it is a resource handle: it owns its promise and is (indirectly)
responsible for whatever resources its task may own.

Please note the absence of explicit mention of locks in this code: we are able to concentrate on
tasks to be done, rather than on the mechanisms used to manage their communication. The two
tasks will be run on separate threads and thus potentially in parallel.

15.7.3 async()

The line of thinking I have pursued in this chapter is the one I believe to be the simplest yet still
among the most powerful: treat a task as a function that may happen to run concurrently with other
tasks. It is far from the only model supported by the C++ standard library, but it serves well for a
wide range of needs. More subtle and tricky models (e.g., styles of programming relying on shared
memory), can be used as needed.

To launch tasks to potentially run asynchronously, we can use async():
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double comp4(vector<double>& v)
// spawn many tasks if v is large enough

{
if (v.siz e()<10000) // is it wor th using concurrency?

return accum(v.begin(),v.end(),0.0);

auto v0 = &v[0];
auto sz = v.siz e();

auto f0 = async(accum,v0,v0+sz/4,0.0); // first quarter
auto f1 = async(accum,v0+sz/4,v0+sz/2,0.0); // second quarter
auto f2 = async(accum,v0+sz/2,v0+sz∗3/4,0.0); // third quarter
auto f3 = async(accum,v0+sz∗3/4,v0+sz,0.0); // four th quar ter

return f0.get()+f1.g et()+f2.g et()+f3.g et(); // collect and combine the results
}

Basically, async() separates the ‘‘call part’’ of a function call from the ‘‘get the result part’’ and sep-
arates both from the actual execution of the task. Using async(), you don’t hav e to think about
threads and locks. Instead, you think just in terms of tasks that potentially compute their results
asynchronously. There is an obvious limitation: don’t even think of using async() for tasks that
share resources needing locking. With async() you don’t even know how many threads will be used
because that’s up to async() to decide based on what it knows about the system resources available
at the time of a call. For example, async() may check whether any idle cores (processors) are avail-
able before deciding how many threads to use.

Using a guess about the cost of computation relative to the cost of launching a thread, such as
v.siz e()<10000, is very primitive and prone to gross mistakes about performance. However, this is
not the place for a proper discussion about how to manage threads. Don’t take this estimate as
more than a simple and probably poor guess.

It is rarely necessary to manually parallelize a standard-library algorithm, such as accumulate(),
because the parallel algorithms, such as reduce(par_unseq,/∗...∗/), usually do a better job at that
(§14.3.1). However, the technique is general.

Please note that async() is not just a mechanism specialized for parallel computation for
increased performance. For example, it can also be used to spawn a task for getting information
from a user, leaving the ‘‘main program’’ active with something else (§15.7.3).

15.8 Advice
[1] Use concurrency to improve responsiveness or to improve throughput; §15.1.
[2] Work at the highest level of abstraction that you can afford; §15.1.
[3] Consider processes as an alternative to threads; §15.1.
[4] The standard-library concurrency facilities are type safe; §15.1.
[5] The memory model exists to save most programmers from having to think about the machine

architecture level of computers; §15.1.
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[6] The memory model makes memory appear roughly as naively expected; §15.1.
[7] Atomics allow for lock-free programming; §15.1.
[8] Leave lock-free programming to experts; §15.1.
[9] Sometimes, a sequential solution is simpler and faster than a concurrent solution; §15.1.
[10] Avoid data races; §15.1, §15.2.
[11] Prefer parallel algorithms to direct use of concurrency; §15.1, §15.7.3.
[12] A thread is a type-safe interface to a system thread; §15.2.
[13] Use join() to wait for a thread to complete; §15.2.
[14] Avoid explicitly shared data whenever you can; §15.2.
[15] Prefer RAII to explicit lock/unlock; §15.5; [CG: CP.20].
[16] Use scoped_lock to manage mutexes; §15.5.
[17] Use scoped_lock to acquire multiple locks; §15.5; [CG: CP.21].
[18] Use shared_lock to implement reader-write locks; §15.5;
[19] Define a mutex together with the data it protects; §15.5; [CG: CP.50].
[20] Use condition_variables to manage communication among threads; §15.6.
[21] Use unique_lock (rather than scoped_lock) when you need to copy a lock or need lower-level

manipulation of synchronization; §15.6.
[22] Use unique_lock (rather than scoped_lock) with condition_variables; §15.6.
[23] Don’t wait without a condition; §15.6; [CG: CP.42].
[24] Minimize time spent in a critical section; §15.6 [CG: CP.43].
[25] Think in terms of tasks that can be executed concurrently, rather than directly in terms of

threads; §15.7.
[26] Value simplicity; §15.7.
[27] Prefer packaged_task and futures over direct use of threads and mutexes; §15.7.
[28] Return a result using a promise and get a result from a future; §15.7.1; [CG: CP.60].
[29] Use packaged_tasks to handle exceptions thrown by tasks and to arrange for value return;

§15.7.2.
[30] Use a packaged_task and a future to express a request to an external service and wait for its

response; §15.7.2.
[31] Use async() to launch simple tasks; §15.7.3; [CG: CP.61].



16
History and Compatibility

Hurry Slowly
(festina lente).

– Octavius, Caesar Augustus

• History
Timeline; The Early Years; The ISO C++ Standards; Standards and Programming Style
C++ Use

• C++ Feature Evolution
C++11 Language Features; C++14 Language Features; C++17 Language Features;
C++11 Standard-Library Components; C++14 Standard-Library Components; C++17
Standard-Library Components; Removed and Deprecated Features

• C/C++ Compatibility
C and C++ Are Siblings; Compatibility Problems

• Bibliography
• Advice

16.1 History
I inv ented C++, wrote its early definitions, and produced its first implementation. I chose and for-
mulated the design criteria for C++, designed its major language features, developed or helped to
develop many of the early libraries, and for 25 years was responsible for the processing of exten-
sion proposals in the C++ standards committee.

C++ was designed to provide Simula’s facilities for program organization [Dahl,1970] together
with C’s efficiency and flexibility for systems programming [Kernighan,1978]. Simula was the ini-
tial source of C++’s abstraction mechanisms. The class concept (with derived classes and virtual
functions) was borrowed from it. However, templates and exceptions came to C++ later with dif-
ferent sources of inspiration.
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The evolution of C++ was always in the context of its use. I spent a lot of time listening to
users and seeking out the opinions of experienced programmers. In particular, my colleagues at
AT&T Bell Laboratories were essential for the growth of C++ during its first decade.

This section is a brief overview; it does not try to mention every language feature and library
component. Furthermore, it does not go into details. For more information, and in particular for
more names of people who contributed, see my two papers from the ACM History of Programming
Languages conferences [Stroustrup,1993] [Stroustrup,2007] and my Design and Evolution of C++
book (known as ‘‘D&E’’) [Stroustrup,1994]. They describe the design and evolution of C++ in
detail and document influences from other programming languages.

Most of the documents produced as part of the ISO C++ standards effort are available online
[WG21]. In my FAQ, I try to maintain a connection between the standard facilities and the people
who proposed and refined those facilities [Stroustrup,2010]. C++ is not the work of a faceless,
anonymous committee or of a supposedly omnipotent ‘‘dictator for life’’; it is the work of many
dedicated, experienced, hard-working individuals.

16.1.1 Timeline

The work that led to C++ started in the fall of 1979 under the name ‘‘C with Classes.’’ Here is a
simplified timeline:

1979 Work on ‘‘C with Classes’’ started. The initial feature set included classes and derived
classes, public/private access control, constructors and destructors, and function declara-
tions with argument checking. The first library supported non-preemptive concurrent
tasks and random number generators.

1984 ‘‘C with Classes’’ was renamed to C++. By then, C++ had acquired virtual functions,
function and operator overloading, references, and the I/O stream and complex number
libraries.

1985 First commercial release of C++ (October 14). The library included I/O streams, com-
plex numbers, and tasks (non-preemptive scheduling).

1985 The C++ Programming Language (‘‘TC++PL,’’ October 14) [Stroustrup,1986].
1989 The Annotated C++ Reference Manual (‘‘the ARM’’) [Ellis,1989].
1991 The C++ Programming Language, Second Edition [Stroustrup,1991], presenting generic

programming using templates and error handling based on exceptions, including the
‘‘Resource Acquisition Is Initialization’’ (RAII) general resource-management idiom.

1997 The C++ Programming Language, Third Edition [Stroustrup,1997] introduced ISO C++,
including namespaces, dynamic_cast, and many refinements of templates. The standard
library added the STL framework of generic containers and algorithms.

1998 ISO C++ standard [C++,1998].
2002 Work on a revised standard, colloquially named C++0x, started.
2003 A ‘‘bug fix’’ revision of the ISO C++ standard was issued. A C++ Technical Report

introduced new standard-library components, such as regular expressions, unordered con-
tainers (hash tables), and resource management pointers, which later became part of
C++11.

2006 An ISO C++ Technical Report on Performance addressed questions of cost, predictability,
and techniques, mostly related to embedded systems programming [C++,2004].
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2011 ISO C++11 standard [C++,2011]. It provided uniform initialization, move semantics,
types deduced from initializers (auto), range-for, variadic template arguments, lambda
expressions, type aliases, a memory model suitable for concurrency, and much more. The
standard library added several components, including threads, locks, and most of the
components from the 2003 Technical Report.

2013 The first complete C++11 implementations emerged.
2013 The C++ Programming Language, Fourth Edition introduced C++11.
2014 ISO C++14 standard [C++,2014] completing C++11 with variable templates, digit sepa-

rators, generic lambdas, and a few standard-library improvements. The first C++14
implementations were completed.

2015 The C++ Core Guidelines projects started [Stroustrup,2015].
2015 The concepts TS was approved.
2017 ISO C++17 standard [C++,2017] offering a diverse set of new features, including order of

evaluation guarantees, structured bindings, fold expressions, a file system library, parallel
algorithms, and variant and optional types. The first C++17 implementations were com-
pleted.

2017 The modules TS and the Ranges TS were approved.
2020 ISO C++20 standard (scheduled).

During development, C++11 was known as C++0x. As is not uncommon in large projects, we
were overly optimistic about the completion date. To wards the end, we joked that the ’x’ in C++0x
was hexadecimal so that C++0x became C++0B. On the other hand, the committee shipped C++14
and C++17 on time, as did the major compiler providers.

16.1.2 The Early Years

I originally designed and implemented the language because I wanted to distribute the services of a
UNIX kernel across multiprocessors and local-area networks (what are now known as multicores
and clusters). For that, I needed to precisely specify parts of a system and how they communicated.
Simula [Dahl,1970] would have been ideal for that, except for performance considerations. I also
needed to deal directly with hardware and provide high-performance concurrent programming
mechanisms for which C would have been ideal, except for its weak support for modularity and
type checking. The result of adding Simula-style classes to C (Classic C; §16.3.1), ‘‘C with
Classes,’’ was used for major projects in which its facilities for writing programs that use minimal
time and space were severely tested. It lacked operator overloading, references, virtual functions,
templates, exceptions, and many, many details [Stroustrup,1982]. The first use of C++ outside a
research organization started in July 1983.

The name C++ (pronounced ‘‘see plus plus’’) was coined by Rick Mascitti in the summer of
1983 and chosen as the replacement for ‘‘C with Classes’’ by me. The name signifies the evolu-
tionary nature of the changes from C; ‘‘++’’ is the C increment operator. The slightly shorter name
‘‘C+’’ is a syntax error; it had also been used as the name of an unrelated language. Connoisseurs
of C semantics find C++ inferior to ++C. The language was not called D, because it was an exten-
sion of C, because it did not attempt to remedy problems by removing features, and because there
already existed several would-be C successors named D. For yet another interpretation of the name
C++, see the appendix of [Orwell,1949].
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C++ was designed primarily so that my friends and I would not have to program in assembler,
C, or various then-fashionable high-level languages. Its main purpose was to make writing good
programs easier and more pleasant for the individual programmer. In the early years, there was no
C++ paper design; design, documentation, and implementation went on simultaneously. There was
no ‘‘C++ project’’ either, or a ‘‘C++ design committee.’’ Throughout, C++ evolved to cope with
problems encountered by users and as a result of discussions among my friends, my colleagues,
and me.

The very first design of C++ (then called ‘‘C with Classes’’) included function declarations with
argument type checking and implicit conversions, classes with the public/private distinction between
the interface and the implementation, derived classes, and constructors and destructors. I used
macros to provide primitive parameterization [Stroustrup,1982]. This was in non-experimental use
by mid-1980. Late that year, I was able to present a set of language facilities supporting a coherent
set of programming styles. In retrospect, I consider the introduction of constructors and destructors
most significant. In the terminology of the time [Stroustrup,1979]:

A ‘‘new function’’ creates the execution environment for the member functions and the ‘‘delete
function’’ reverses that.

Soon after, ‘‘new function’ and ‘‘delete function’ were renamed ‘‘constructor’’ and ‘‘destructor.’’
Here is the root of C++’s strategies for resource management (causing a demand for exceptions)
and the key to many techniques for making user code short and clear. If there were other languages
at the time that supported multiple constructors capable of executing general code, I didn’t (and
don’t) know of them. Destructors were new in C++.

C++ was released commercially in October 1985. By then, I had added inlining (§1.3, §4.2.1),
consts (§1.6), function overloading (§1.3), references (§1.7), operator overloading (§4.2.1), and vir-
tual functions (§4.4). Of these features, support for run-time polymorphism in the form of virtual
functions was by far the most controversial. I knew its worth from Simula but found it impossible
to convince most people in the systems programming world of its value. Systems programmers
tended to view indirect function calls with suspicion, and people acquainted with other languages
supporting object-oriented programming had a hard time believing that vir tual functions could be
fast enough to be useful in systems code. Conversely, many programmers with an object-oriented
background had (and many still have) a hard time getting used to the idea that you use virtual func-
tion calls only to express a choice that must be made at run time. The resistance to virtual func-
tions may be related to a resistance to the idea that you can get better systems through more regular
structure of code supported by a programming language. Many C programmers seem convinced
that what really matters is complete flexibility and careful individual crafting of every detail of a
program. My view was (and is) that we need every bit of help we can get from languages and
tools: the inherent complexity of the systems we are trying to build is always at the edge of what
we can express.

Early documents (e.g., [Stroustrup,1985] and [Stroustrup,1994]) described C++ like this:
C++ is a general-purpose programming language that

• is a better C
• supports data abstraction
• supports object-oriented programming

Note not ‘‘C++ is an object-oriented programming language.’’ Here, ‘‘supports data abstraction’’
refers to information hiding, classes that are not part of class hierarchies, and generic programming.
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Initially, generic programming was poorly supported through the use of macros [Stroustrup,1982].
Templates and concepts came much later.

Much of the design of C++ was done on the blackboards of my colleagues. In the early years,
the feedback from Stu Feldman, Alexander Fraser, Steve Johnson, Brian Kernighan, Doug McIlroy,
and Dennis Ritchie was invaluable.

In the second half of the 1980s, I continued to add language features in response to user com-
ments. The most important of those were templates [Stroustrup,1988] and exception handling
[Koenig,1990], which were considered experimental at the time the standards effort started. In the
design of templates, I was forced to decide among flexibility, efficiency, and early type checking.
At the time, nobody knew how to simultaneously get all three. To compete with C-style code for
demanding systems applications, I felt that I had to choose the first two properties. In retrospect, I
think the choice was the correct one, and the search for better type checking of templates continues
[DosReis,2006] [Gregor,2006] [Sutton,2011] [Stroustrup,2012a]. The design of exceptions focused
on multilevel propagation of exceptions, the passing of arbitrary information to an error handler,
and the integration between exceptions and resource management by using local objects with
destructors to represent and release resources. I clumsily named that critical technique Resource
Acquisition Is Initialization and others soon reduced that to the acronym RAII (§4.2.2).

I generalized C++’s inheritance mechanisms to support multiple base classes [Stroustrup,1987].
This was called multiple inheritance and was considered difficult and controversial. I considered it
far less important than templates or exceptions. Multiple inheritance of abstract classes (often
called interfaces) is now universal in languages supporting static type checking and object-oriented
programming.

The C++ language evolved hand-in-hand with some of the key library facilities. For example, I
designed the complex [Stroustrup,1984], vector, stack, and (I/O) stream classes [Stroustrup,1985]
together with the operator overloading mechanisms. The first string and list classes were developed
by Jonathan Shopiro and me as part of the same effort. Jonathan’s string and list classes were the
first to see extensive use as part of a library. The string class from the standard C++ library has its
roots in these early efforts. The task library described in [Stroustrup,1987b] was part of the first ‘‘C
with Classes’’ program ever written in 1980. It provided coroutines and a scheduler. I wrote it and
its associated classes to support Simula-style simulations. Unfortunately, we had to wait until 2011
(30 years!) to get concurrency support standardized and universally available (Chapter 15). Corou-
tines are likely to be part of C++20 [CoroutinesTS]. The development of the template facility was
influenced by a variety of vector, map, list, and sor t templates devised by Andrew Koenig, Alex
Stepanov, me, and others.

The most important innovation in the 1998 standard library was the STL, a framework of algo-
rithms and containers (Chapter 11, Chapter 12). It was the work of Alex Stepanov (with Dave
Musser, Meng Lee, and others) based on more than a decade’s work on generic programming. The
STL has been massively influential within the C++ community and beyond.

C++ grew up in an environment with a multitude of established and experimental programming
languages (e.g., Ada [Ichbiah,1979], Algol 68 [Woodward,1974], and ML [Paulson,1996]). At the
time, I was comfortable in about 25 languages, and their influences on C++ are documented in
[Stroustrup,1994] and [Stroustrup,2007]. However, the determining influences always came from
the applications I encountered. It was a deliberate policy to hav e the development of C++ ‘‘prob-
lem driven’’ rather than imitative.
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16.1.3 The ISO C++ Standards

The explosive growth of C++ use caused some changes. Sometime during 1987, it became clear
that formal standardization of C++ was inevitable and that we needed to start preparing the ground
for a standardization effort [Stroustrup,1994]. The result was a conscious effort to maintain contact
between implementers of C++ compilers and their major users. This was done through paper and
electronic mail and through face-to-face meetings at C++ conferences and elsewhere.

AT&T Bell Labs made a major contribution to C++ and its wider community by allowing me to
share drafts of revised versions of the C++ reference manual with implementers and users.
Because many of those people worked for companies that could be seen as competing with AT&T,
the significance of this contribution should not be underestimated. A less enlightened company
could have caused major problems of language fragmentation simply by doing nothing. As it hap-
pened, about a hundred individuals from dozens of organizations read and commented on what
became the generally accepted reference manual and the base document for the ANSI C++ stan-
dardization effort. Their names can be found in The Annotated C++ Reference Manual (‘‘the
ARM’’) [Ellis,1989]. The X3J16 committee of ANSI was convened in December 1989 at the ini-
tiative of Hewlett-Packard. In June 1991, this ANSI (American national) standardization of C++
became part of an ISO (international) standardization effort for C++. The ISO C++ committee is
called WG21. From 1990, these joint C++ standards committees have been the main forum for the
ev olution of C++ and the refinement of its definition. I served on these committees throughout. In
particular, as the chairman of the working group for extensions (later called the evolution group)
from 1990 to 2014, I was directly responsible for handling proposals for major changes to C++ and
the addition of new language features. An initial draft standard for public review was produced in
April 1995. The first ISO C++ standard (ISO/IEC 14882-1998) [C++,1998] was ratified by a 22-0
national vote in 1998. A ‘‘bug fix release’’ of this standard was issued in 2003, so you sometimes
hear people refer to C++03, but that is essentially the same language as C++98.

C++11, known for years as C++0x, is the work of the members of WG21. The committee
worked under increasingly onerous self-imposed processes and procedures. These processes prob-
ably led to a better (and more rigorous) specification, but they also limited innovation [Strous-
trup,2007]. An initial draft standard for public review was produced in 2009. The second ISO C++
standard (ISO/IEC 14882-2011) [C++,2011] was ratified by a 21-0 national vote in August 2011.

One reason for the long gap between the two standards is that most members of the committee
(including me) were under the mistaken impression that the ISO rules required a ‘‘waiting period’’
after a standard was issued before starting work on new features. Consequently, serious work on
new language features did not start until 2002. Other reasons included the increased size of modern
languages and their foundation libraries. In terms of pages of standards text, the language grew by
about 30% and the standard library by about 100%. Much of the increase was due to more detailed
specification, rather than new functionality. Also, the work on a new C++ standard obviously had
to take great care not to compromise older code through incompatible changes. There are billions
of lines of C++ code in use that the committee must not break. Stability over decades is an essen-
tial ‘‘feature.’’

C++11 added massively to the standard library and pushed to complete the feature set needed
for a programming style that is a synthesis of the ‘‘paradigms’’ and idioms that had proven success-
ful with C++98.
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The overall aims for the C++11 effort were:
• Make C++ a better language for systems programming and library building.
• Make C++ easier to teach and learn.

The aims are documented and detailed in [Stroustrup,2007].
A major effort was made to make concurrent systems programming type-safe and portable.

This involved a memory model (§15.1) and support for lock-free programming, This was the work
of Hans Boehm, Brian McKnight, and others in the concurrency working group. On top of that, we
added the threads library.

After C++11, there was wide agreement that 13 years between standards were far too many.
Herb Sutter proposed that the committee adopt a policy of shipping on time at fixed intervals, the
‘‘train model.’’ I argued strongly for a short interval between standards to minimize the chance of
delays because someone insisted on extra time to allow inclusion of ‘‘just one more essential fea-
ture.’’ We agreed on an ambitious 3-year schedule with the idea that we should alternate between
minor and major releases.

C++14 was deliberately a minor release aiming at ‘‘completing C++11.’’ This reflects the real-
ity that with a fixed release date, there will be features that we know we want, but can’t deliver on
time. Also, once in widespread use, gaps in the feature set will inevitably be discovered.

To allow work to progress faster, to allow parallel development of independent features, and to
better utilize the enthusiasm and skills of the many volunteers, the committee makes use of the ISO
mechanisms of developing and publishing ‘‘Technical Specifications’’ (TSs). That seems to work
well for standard-library components, though it can lead to more stages in the development process,
and thus delays. For language features, TSs seems to work less well. Possibly the reason is that
few significant language features are truly independent, because the work of crafting standards
wording isn’t all that different between a standard and a TS, and because fewer people can experi-
ment with compiler implementations.

C++17 was meant to be a major release. By ‘‘major,’’ I mean containing features that will
change the way we think about design and structure our software. By this definition, C++17 was at
best a medium release. It included a lot of minor extensions, but the features that would have made
dramatic changes (e.g., concepts, modules, and coroutines) were either not ready or became mired
in controversy and lack of design direction. As a result, C++17 includes a little bit for everyone,
but nothing that will significantly change the life of a C++ programmer who has already absorbed
the lessons of C++11 and C++14. I hope that C++20 will be the promised and much-needed major
revision, and that the major new features will become widely available well before 2020. The dan-
gers are ‘‘Design by committee,’’ feature bloat, lack of consistent style, and short-sighted decisions.
In a committee with well over 100 members present at each meeting and more participating on-
line, such undesirable phenomena are almost unavoidable. Making progress toward a simpler-to-
use and more coherent language is very hard.

16.1.4 Standards and Style

A standard says what will work, and how. It does not say what constitutes good and effective use.
There are significant differences between understanding the technical details of programming lan-
guage features and using them effectively in combination with other features, libraries, and tools to
produce better software. By ‘‘better’’ I mean ‘‘more maintainable, less error-prone, and faster.’’
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We need to develop, popularize, and support coherent programming styles. Further, we must sup-
port the evolution of older code to these more modern, effective, and coherent styles.

With the growth of the language and its standard library, the problem of popularizing effective
programming styles became critical. It is extremely difficult to make large groups of programmers
depart from something that works for something better. There are still people who see C++ as a
few minor additions to C and people who consider 1980s Object-Oriented programming styles
based on massive class hierarchies the pinnacle of development. Many are struggling to use C++11
well in environments with lots of old C++ code. On the other hand, there are also many who enthu-
siastically overuse novel facilities. For example, some programmers are convinced that only code
using massive amounts of template metaprogramming is true C++.

What is Modern C++? In 2015, I set out to answer this question by developing a set of coding
guidelines supported by articulated rationales. I soon found that I was not alone in grappling with
that problem and together with people from many parts of the world, notably from Microsoft, Red
Hat, and Facebook, we started the ‘‘C++ Core Guidelines’’ project [Stroustrup,2015]. This is an
ambitious project aiming at complete type-safety and complete resource-safety as a base for sim-
pler, faster, and more maintainable code [Stroustrup,2015b]. In addition to specific coding rules
with rationales, we back up the guidelines with static analysis tools and a tiny support library. I see
something like that as necessary for moving the C++ community at large forward to benefit from
the improvements in language features, libraries, and supporting tools.

16.1.5 C++ Use

C++ is now a very widely used programming language. Its user populations grew quickly from one
in 1979 to about 400,000 in 1991; that is, the number of users doubled about every 7.5 months for
more than a decade. Naturally, the growth rate slowed since that initial growth spurt, but my best
estimate is that there are about 4.5 million C++ programmers in 2018 [Kazakova,2015]. Much of
that growth happened after 2005 when the exponential explosion of processor speed stopped so that
language performance grew in importance. This growth was achieved without formal marketing or
an organized user community.

C++ is primarily an industrial language; that is, it is more prominent in industry than in educa-
tion or programming language research. It grew up in Bell Labs inspired by the varied and strin-
gent needs of telecommunications and of systems programming (including device drivers, network-
ing, and embedded systems). From there, C++ use has spread into essentially every industry:
microelectronics, Web applications and infrastructure, operating systems, financial, medical, auto-
mobile, aerospace, high-energy physics, biology, energy production, machine learning, video
games, graphics, animation, virtual reality, and much more. It is primarily used where problems
require C++’s combination of the ability to use hardware effectively and to manage complexity.
This seems to be a continuously expanding set of applications [Stroustrup,1993] [Stroustrup,2014].

16.2 C++ Feature Evolution
Here, I list the language features and standard-library components that have been added to C++ for
the C++11, C++14, and C++17 standards.
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16.2.1 C++11 Language Features

Looking at a list of language features can be quite bewildering. Remember that a language feature
is not meant to be used in isolation. In particular, most features that are new in C++11 make no
sense in isolation from the framework provided by older features.

[1] Uniform and general initialization using {}-lists (§1.4, §4.2.3)
[2] Type deduction from initializer: auto (§1.4)
[3] Prevention of narrowing (§1.4)
[4] Generalized and guaranteed constant expressions: constexpr (§1.6)
[5] Range-for-statement (§1.7)
[6] Null pointer keyword: nullptr (§1.7)
[7] Scoped and strongly typed enums: enum class (§2.5)
[8] Compile-time assertions: static_asser t (§3.5.5)
[9] Language mapping of {}-list to std::initializ er_list (§4.2.3)
[10] Rvalue references, enabling move semantics (§5.2.2)
[11] Nested template arguments ending with >> (no space between the >s)
[12] Lambdas (§6.3.2)
[13] Variadic templates (§7.4)
[14] Type and template aliases (§6.4.2)
[15] Unicode characters
[16] long long integer type
[17] Alignment controls: alignas and alignof

[18] The ability to use the type of an expression as a type in a declaration: decltype

[19] Raw string literals (§9.4)
[20] Generalized POD (‘‘Plain Old Data’’)
[21] Generalized unions
[22] Local classes as template arguments
[23] Suffix return type syntax
[24] A syntax for attributes and two standard attributes: [[carries_dependency]] and [[noreturn]]

[25] Preventing exception propagation: the noexcept specifier (§3.5.1)
[26] Testing for the possibility of a throw in an expression: the noexcept operator.
[27] C99 features: extended integral types (i.e., rules for optional longer integer types); con-

catenation of narrow/wide strings; __STDC_HOSTED__; _Pragma(X); vararg macros and
empty macro arguments

[28] __func__ as the name of a string holding the name of the current function
[29] inline namespaces
[30] Delegating constructors
[31] In-class member initializers (§5.1.3)
[32] Control of defaults: default and delete (§5.1.1)
[33] Explicit conversion operators
[34] User-defined literals (§5.4.4)
[35] More explicit control of template instantiation: extern templates
[36] Default template arguments for function templates
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[37] Inheriting constructors
[38] Override controls: override and final (§4.5.1)
[39] A simpler and more general SFINAE (Substitution Failure Is Not An Error) rule
[40] Memory model (§15.1)
[41] Thread-local storage: thread_local

For a more complete description of the changes to C++98 in C++11, see [Stroustrup,2013].

16.2.2 C++14 Language Features

[1] Function return-type deduction; §3.6.2
[2] Improved constexpr functions, e.g., for-loops allowed (§1.6)
[3] Variable templates (§6.4.1)
[4] Binary literals (§1.4)
[5] Digit separators (§1.4)
[6] Generic lambdas (§6.3.3)
[7] More general lambda capture
[8] [[deprecated]] attribute
[9] A few more minor extensions

16.2.3 C++17 Language Features

[1] Guaranteed copy elision (§5.2.2)
[2] Dynamic allocation of over-aligned types
[3] Stricter order of evaluation (§1.4)
[4] UTF-8 literals (u8)
[5] Hexadecimal floating-point literals
[6] Fold expressions (§7.4.1)
[7] Generic value template arguments (auto template parameters)
[8] Class template argument type deduction (§6.2.3)
[9] Compile-time if (§6.4.3)
[10] Selection statements with initializers (§1.8)
[11] constexpr lambdas
[12] inline variables
[13] Structured bindings (§3.6.3)
[14] New standard attributes: [[fallthrough]], [[nodiscard]], and [[maybe_unused]]

[15] std::byte type
[16] Initialization of an enum by a value of its underlying type (§2.5)
[17] A few more minor extensions

16.2.4 C++11 Standard-Library Components

The C++11 additions to the standard library come in two forms: new components (such as the regu-
lar expression matching library) and improvements to C++98 components (such as move construc-
tors for containers).
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[1] initializ er_list constructors for containers (§4.2.3)
[2] Move semantics for containers (§5.2.2, §11.2)
[3] A singly-linked list: forward_list (§11.6)
[4] Hash containers: unordered_map, unordered_multimap, unordered_set, and unordered_mul-

tiset (§11.6, §11.5)
[5] Resource management pointers: unique_ptr, shared_ptr, and weak_ptr (§13.2.1)
[6] Concurrency support: thread (§15.2), mutexes (§15.5), locks (§15.5), and condition vari-

ables (§15.6)
[7] Higher-level concurrency support: packaged_thread, future, promise, and async() (§15.7)
[8] tuples (§13.4.3)
[9] Regular expressions: reg ex (§9.4)
[10] Random numbers: distributions and engines (§14.5)
[11] Integer type names, such as int16_t, uint32_t, and int_fast64_t

[12] A fixed-sized contiguous sequence container: array (§13.4.1)
[13] Copying and rethrowing exceptions (§15.7.1)
[14] Error reporting using error codes: system_error

[15] emplace() operations for containers (§11.6)
[16] Wide use of constexpr functions
[17] Systematic use of noexcept functions
[18] Improved function adaptors: function and bind() (§13.8)
[19] string to numeric value conversions
[20] Scoped allocators
[21] Type traits, such as is_integral and is_base_of (§13.9.2)
[22] Time utilities: duration and time_point (§13.7)
[23] Compile-time rational arithmetic: ratio

[24] Abandoning a process: quick_exit

[25] More algorithms, such as move(), copy_if(), and is_sor ted() (Chapter 12)
[26] Garbage collection API (§5.3)
[27] Low-level concurrency support: atomics

16.2.5 C++14 Standard-Library Components

[1] shared_mutex (§15.5)
[2] User-defined literals (§5.4.4)
[3] Tuple addressing by type (§13.4.3)
[4] Associative container heterogenous lookup
[5] A few more minor features

16.2.6 C++17 Standard-Library Components

[1] File system (§10.10)
[2] Parallel algorithms (§12.9, §14.3.1)
[3] Mathematical special functions (§14.2)
[4] string_view (§9.3)
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[5] any (§13.5.3)
[6] variant (§13.5.1)
[7] optional (§13.5.2)
[8] invoke()

[9] Elementary string conversions: to_chars and from_chars

[10] Polymorphic allocator (§13.6)
[11] A few more minor extensions

16.2.7 Removed and Deprecated Features

There are billions of lines of C++ ‘‘out there’’ and nobody knows exactly what features are in criti-
cal use. Consequently, the ISO committee removes older features only reluctantly and after years
of warning. However, sometimes troublesome features are removed:

• C++17 finally removed exceptions specifications:

void f() throw(X,Y); // C++98; now an error

The support facilities for exception specifications, unexcepted_handler, set_unexpected(),
get_unexpected(), and unexpected(), are similarly removed. Instead, use noexcept

(§3.5.1).
• Trigraphs are no longer supported.
• The auto_ptr is deprecated. Instead, use unique_ptr (§13.2.1).
• The use of the storage specifier register is removed.
• The use of ++ on a bool is removed.
• The C++98 expor t feature was removed because it was complex and not shipped by the

major vendors. Instead, expor t is used as a keyword for modules (§3.3).
• Generation of copy operations is deprecated for a class with a destructor (§5.1.1).
• Assignment of a string literal to a char∗ is removed. Instead use const char∗ or auto.
• Some C++ standard-library function objects and associated functions are deprecated. Most

relate to argument binding. Instead use lambdas and function (§13.8).
By deprecating a feature, the standards committee expresses the wish that the feature will go away.
However, the committee does not have a mandate to immediately remove a heavily used feature –
however redundant or dangerous it may be. Thus, a deprecation is a strong hint to avoid the fea-
ture. It may disappear in the future. Compilers are likely to issue warnings for uses of deprecated
features. However, deprecated features are part of the standard and history shows that they tend to
remain supported ‘‘forever’’ for reasons of compatibility.

16.3 C/C++ Compatibility
With minor exceptions, C++ is a superset of C (meaning C11; [C,2011]). Most differences stem
from C++’s greater emphasis on type checking. Well-written C programs tend to be C++ programs
as well. A compiler can diagnose every difference between C++ and C. The C99/C++11 incom-
patibilities are listed in Appendix C of the standard.
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16.3.1 C and C++ Are Siblings

Classic C has two main descendants: ISO C and ISO C++. Over the years, these languages have
ev olved at different paces and in different directions. One result of this is that each language pro-
vides support for traditional C-style programming in slightly different ways. The resulting incom-
patibilities can make life miserable for people who use both C and C++, for people who write in
one language using libraries implemented in the other, and for implementers of libraries and tools
for C and C++.

How can I call C and C++ siblings? Look at a simplified family tree:

BCPLSimula

B

K&R C

Classic C

C with Classes

Early C++

ARM C++

C++98

C++11

C++14

C++17

C89

C99

C11

1967

1978

1980

1985

1989

1998

2011

2014

2017

A solid line means a massive inheritance of features, a dashed line a borrowing of major features,
and a dotted line a borrowing of minor features. From this, ISO C and ISO C++ emerge as the two
major descendants of K&R C [Kernighan,1978], and as siblings. Each carries with it the key
aspects of Classic C, and neither is 100% compatible with Classic C. I picked the term ‘‘Classic
C’’ from a sticker that used to be affixed to Dennis Ritchie’s terminal. It is K&R C plus enumera-
tions and struct assignment. BCPL is defined by [Richards,1980] and C89 by [C1990].
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Note that differences between C and C++ are not necessarily the result of changes to C made in
C++. In several cases, the incompatibilities arise from features adopted incompatibly into C long
after they were common in C++. Examples are the ability to assign a T∗ to a void∗ and the linkage
of global consts [Stroustrup,2002]. Sometimes, a feature was even incompatibly adopted into C
after it was part of the ISO C++ standard, such as details of the meaning of inline.

16.3.2 Compatibility Problems

There are many minor incompatibilities between C and C++. All can cause problems for a pro-
grammer, but all can be coped with in the context of C++. If nothing else, C code fragments can be
compiled as C and linked to using the extern "C" mechanism.

The major problems for converting a C program to C++ are likely to be:
• Suboptimal design and programming style.
• A void∗ implicitly converted to a T∗ (that is, converted without a cast).
• C++ keywords, such as class and private, used as identifiers in C code.
• Incompatible linkage of code fragments compiled as C and fragments compiled as C++.

16.3.2.1 Style Problems

Naturally, a C program is written in a C style, such as the style used in K&R [Kernighan,1988].
This implies widespread use of pointers and arrays, and probably many macros. These facilities are
hard to use reliably in a large program. Resource management and error handling are often ad hoc,
documented (rather than language and tool supported), and often incompletely documented and
adhered to. A simple line-for-line conversion of a C program into a C++ program yields a program
that is often a bit better checked. In fact, I have nev er converted a C program into C++ without
finding some bug. However, the fundamental structure is unchanged, and so are the fundamental
sources of errors. If you had incomplete error handling, resource leaks, or buffer overflows in the
original C program, they will still be there in the C++ version. To obtain major benefits, you must
make changes to the fundamental structure of the code:

[1] Don’t think of C++ as C with a few features added. C++ can be used that way, but only
suboptimally. To get really major advantages from C++ as compared to C, you need to
apply different design and implementation styles.

[2] Use the C++ standard library as a teacher of new techniques and programming styles.
Note the difference from the C standard library (e.g., = rather than strcpy() for copying
and == rather than strcmp() for comparing).

[3] Macro substitution is almost never necessary in C++. Use const (§1.6), constexpr (§1.6),
enum or enum class (§2.5) to define manifest constants, inline (§4.2.1) to avoid function-
calling overhead, templates (Chapter 6) to specify families of functions and types, and
namespaces (§3.4) to avoid name clashes.

[4] Don’t declare a variable before you need it and initialize it immediately. A declaration
can occur anywhere a statement can (§1.8), in for-statement initializers (§1.7), and in con-
ditions (§4.5.2).

[5] Don’t use malloc(). The new operator (§4.2.2) does the same job better, and instead of
realloc(), try a vector (§4.2.3, §12.1). Don’t just replace malloc() and free() with ‘‘naked’’
new and delete (§4.2.2).
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[6] Avoid void∗, unions, and casts, except deep within the implementation of some function
or class. Their use limits the support you can get from the type system and can harm per-
formance. In most cases, a cast is an indication of a design error.

[7] If you must use an explicit type conversion, use an appropriate named cast (e.g.,
static_cast; §16.2.7) for a more precise statement of what you are trying to do.

[8] Minimize the use of arrays and C-style strings. C++ standard-library strings (§9.2), arrays
(§13.4.1), and vectors (§11.2) can often be used to write simpler and more maintainable
code compared to the traditional C style. In general, try not to build yourself what has
already been provided by the standard library.

[9] Avoid pointer arithmetic except in very specialized code (such as a memory manager) and
for simple array traversal (e.g., ++p).

[10] Do not assume that something laboriously written in C style (avoiding C++ features such
as classes, templates, and exceptions) is more efficient than a shorter alternative (e.g.,
using standard-library facilities). Often (but of course not always), the opposite is true.

16.3.2.2 void∗

In C, a void∗ may be used as the right-hand operand of an assignment to or initialization of a vari-
able of any pointer type; in C++ it may not. For example:

void f(int n)
{

int∗ p = malloc(n∗siz eof(int)); /* not C++; in C++, allocate using ‘‘new’’ */
// ...

}

This is probably the single most difficult incompatibility to deal with. Note that the implicit con-
version of a void∗ to a different pointer type is not in general harmless:

char ch;
void∗ pv = &ch;
int∗ pi = pv; // not C++
∗pi = 666; // overwr ite ch and other bytes near ch

In both languages, cast the result of malloc() to the right type. If you use only C++, avoid malloc().

16.3.2.3 Linkage

C and C++ can (and often are) implemented to use different linkage conventions. The most basic
reason for that is C++’s greater emphasis on type checking. A practical reason is that C++ supports
overloading, so there can be two global functions called open(). This has to be reflected in the way
the linker works.

To giv e a C++ function C linkage (so that it can be called from a C program fragment) or to
allow a C function to be called from a C++ program fragment, declare it extern "C". For example:

extern "C" double sqrt(double);

Now sqr t(double) can be called from a C or a C++ code fragment. The definition of sqr t(double)

can also be compiled as a C function or as a C++ function.
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Only one function of a given name in a scope can have C linkage (because C doesn’t allow
function overloading). A linkage specification does not affect type checking, so the C++ rules for
function calls and argument checking still apply to a function declared extern "C".
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16.5 Advice
[1] The ISO C++ standard [C++,2017] defines C++.
[2] When chosing a style for a new project or when modernizing a code base, rely on the C++

Core Guidelines; §16.1.4.
[3] When learning C++, don’t focus on language features in isolation; §16.2.1.
[4] Don’t get stuck with decades-old language-feature sets and design techniques; §16.1.4.
[5] Before using a new feature in production code, try it out by writing small programs to test the

standards conformance and performance of the implementations you plan to use.
[6] For learning C++, use the most up-to-date and complete implementation of Standard C++

that you can get access to.
[7] The common subset of C and C++ is not the best initial subset of C++ to learn; §16.3.2.1.
[8] Prefer named casts, such as static_cast over C-style casts; §16.2.7.
[9] When converting a C program to C++, first make sure that function declarations (prototypes)

and standard headers are used consistently; §16.3.2.
[10] When converting a C program to C++, rename variables that are C++ keywords; §16.3.2.
[11] For portability and type safety, if you must use C, write in the common subset of C and C++;

§16.3.2.1.
[12] When converting a C program to C++, cast the result of malloc() to the proper type or change

all uses of malloc() to uses of new; §16.3.2.2.
[13] When converting from malloc() and free() to new and delete, consider using vector,

push_back(), and reser ve() instead of realloc(); §16.3.2.1.

http://www.stroustrup.com/applications.html
http://www.stroustrup.com/applications.html
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuide-lines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuide-lines.md
http://resource-safety.Isocpp.org
http://www.stroustrup.com/resource-model.pdf
http://www.open-std.org/jtc1/sc22/wg21
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[14] In C++, there are no implicit conversions from ints to enumerations; use explicit type conver-
sion where necessary.

[15] For each standard C header <X.h> that places names in the global namespace, the header <cX>

places the names in namespace std.
[16] Use extern "C" when declaring C functions; §16.3.2.3.
[17] Prefer string over C-style strings (direct manipulation of zero-terminated arrays of char).
[18] Prefer iostreams over stdio.
[19] Prefer containers (e.g., vector) over built-in arrays.
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standard library 156

<algor ithm> 109, 156
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template 184
using 90
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ANSI C++ 212
any 177
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default function 42
default template 98
function 41
passing, function 66
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conversions, usual 7
operator 6
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ARM 212
array

array vs. 172
of [] 11
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initialize 171
size() 171
vs. array 172
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<array> 109
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assertion static_asser t 40
Assignable, concept 158
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=, str ing 112
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initialization and 18
move 66, 72
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base and derived class 55
basic_str ing 114
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beginner, book for 1
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bibliography 222
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bit-field, bitset and 172
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and bit-field 172
and enum 172
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as function body, tr y 141
tr y 36

body, function 2
book for beginner 1
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Boolean, concept 158
BoundedRange, concept 160
break 15

C
C 209

and C++ compatibility 218
Classic 219
difference from 218
K&R 219
void ∗ assignment, difference from 221
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with Classes language features 210
with Classes standard library 211
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Core Guidelines 214
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meaning 209
modern 214
pronunciation 209
standard, ISO 2
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C++11
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C++0x 209, 212
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C++14 213
language features 216
library components 217

C++17 1, 213
language features 216
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C++98 212
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C11 218
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call operator () 85
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carr ies_dependency 215
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catch
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ev ery exception 141

catch(...) 141
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compile-time 40
run-time 40

checking, cost of range 142
chrono, namespace 179
<chrono> 109, 179, 200
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base and derived 55
concrete 48
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Classic C 219
C-library header 110
clock timing 200
<cmath> 109, 188
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code complexity, function and 4
comment, // 2
Common, concept 158
CommonReference, concept 158
common_type_t 158
communication, task 202
comparison 74

operator 6, 74
compatibility, C and C++ 218
compilation

model, template 104
separate 30

compiler 2
compile-time

check 40
computation 181
evaluation 10

complete encapsulation 66
complex 49, 190
<complex> 109, 188, 190
complexity, function and code 4
components

C++11 library 216
C++14 library 217
C++17 library 217

computation, compile-time 181
concatenation +, str ing 111
concept 81, 94

Assignable 158
based overloading 95
BidirectionalIterator 159
BidirectionalRange 160
Boolean 158
BoundedRange 160
Common 158
CommonReference 158
Constr uctible 158
ConvertibleTo 158
Copyable 158
CopyConstr uctible 158
DefaultConstr uctible 158
Der ivedFrom 158
Destr uctible 158
EqualityComparable 158
ForwardIterator 159
ForwardRange 160
InputIterator 159
InputRange 160
Integral 158

Invocable 159
InvocableRegular 159
Iterator 159
Mergeable 159
Movable 158
MoveConstr uctible 158
OutputIterator 159
OutputRange 160
Permutable 159
Predicate 159
RandomAccessIterator 159
RandomAccessRange 160
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Range 160
Regular 158
Relation 159
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Semiregular 158
Sentinel 159
SignedIntegral 158
SizedRange 160
SizedSentinel 159
Sor table 159
Str ictTotallyOrdered 158
Str ictWeakOrder 159
support 94
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SwappableWith 158
UnsignedIntegral 158
use 94
View 160
WeaklyEqualityComparable 158

concepts
C++20 94
definition of 97
in <concepts> 158
in <iterator> 158
in <ranges> 158

<concepts>, concepts in 158
concrete
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type 48

concurrency 195
condition, declaration in 61
condition_var iable 201

notify_one() 202
wait() 201

<condition_var iable> 201
const

immutability 9
member function 50

constant expression 10
const_cast 53
constexpr

function 10
immutability 9
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const_iterator 154
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argument 81
template 82
template argument 82

Constr uctible, concept 158
constructor

and destructor 210
copy 66, 69
default 50
delegating 215
explicit 67
inheriting 216
initializer-list 52
invariant and 37
move 66, 71

container 51, 79, 137
>= 147
> 147
= 147
== 147
< 147
<= 147
!= 147
algorithm 150, 160
allocator new 178
almost 170
object in 140
overview 146
retur n 151
sor t() 181
specialized 170
standard library 146

contents-of operator ∗ 11
contract 40
contracts, C++20 40
conversion 67

explicit type 53
narrowing 8

conversions, usual arithmetic 7
ConvertibleTo, concept 158
copy 68

assignment 66, 69
constructor 66, 69
cost of 70
elision 72
elision 66
memberwise 66

copy() 156
Copyable, concept 158
CopyConstr uctible, concept 158
copy_if() 156
Core Guidelines, C++ 214
core language, C++ 2
coroutine 211
cos() 188

cosh() 188
cost

of copy 70
of range checking 142

count() 156
count_if() 155–156
cout, output 3
<cstdlib> 110
C-style

error handling 188
string 13

D
\D, regex 119
\d, regex 119
d, regex 119
data race 196
data(), array 171
D&E 208
deadlock 199
deallocation 51
debugging template 100
declaration 5

function 4
in condition 61
interface 29

-declaration, using 34
declarator operator 12
decltype 215
decrement operator -- 7
deduction

guide 83, 176
retur n-type 44

default
constructor 50
function argument 42
member initializer 68
operations 66
template argument 98

=default 66
DefaultConstr uctible, concept 158
definition

implementation 30
of concepts 97

delegating constructor 215
=delete 67
delete

naked 52
operator 51

deprecated
auto_ptr 218
feature 218

deque 146
derived class, base and 55
Der ivedFrom, concept 158
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Destr uctible, concept 158
destructor 51, 66

˜ 51
constructor and 210
vir tual 59

dictionary – see map
difference

from C 218
from C void ∗ assignment 221

digit, [[:digit:]] 119
digit, regex 119
[[:digit:]] digit 119
-directive, using 35
dispatch, tag 181
distribution, random 191
divide operator / 6
domain error 188
double 5
duck typing 104
duration 179
duration_cast 179
dynamic store 51
dynamic_cast 61

is instance of 62
is kind of 62

E
EDOM 188
element requirements 140
elision, copy 66
emplace_back() 147
empty() 147
enable_if 184
encapsulation, complete 66
end() 75, 143, 147, 150
engine, random 191
enum, bitset and 172
equal operator == 6
equality preserving 159
EqualityComparable, concept 158
equal_range() 156, 173
ERANGE 188
erase() 143, 147
err no 188
error

domain 188
handling 35
handling, C-style 188
range 188
recovery 38
run-time 35

error-code, exception vs 38
essential operations 66
evaluation

compile-time 10

order of 7
example

find_all() 151
Hello, Wor ld! 2
Rand_int 191
Vec 141

exception 35
and main() 141
catch ev ery 141
specification, removed 218
vs error-code 38

exclusive_scan() 189
execution policy 161
explicit type conversion 53
explicit constructor 67
exponential_distr ibution 191
expor t removed 218
expr() 188
expression

constant 10
lambda 87
requires] 96

exter n template 215

F
fabs() 188
facilities, standard library 108
fail_fast 170
feature, deprecated 218
features

C with Classes language 210
C++11 language 215
C++14 language 216
C++17 language 216

file, header 31
final 216
find() 150, 156
find_all() example 151
find_if() 155–156
first, pair member 173
floor() 188
fmod() 188
for

statement 11
statement, range 11

forward() 167
forwarding, perfect 168
ForwardIterator, concept 159
forward_list 146

singly-linked list 143
<forward_list> 109
ForwardRange, concept 160
free store 51
frexp() 188
<fstream> 109
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function 2

and code complexity 4
argument 41
argument, default 42
argument passing 66
body 2
body, tr y block as 141
const member 50
constexpr 10
declaration 4
implementation of vir tual 56
mathematical 188
object 85
overloading 4
return value 41
template 84
type 181
value return 66

function 180
and nullptr 180

fundamental type 5
future

and promise 202
member get() 202

<future> 109, 202

G
garbage collection 73
generic programming 93, 210
get<>()

by index 174
by type 174

get(), future member 202
graph, regex 119
greater-than operator > 6
greater-than-or-equal operator >= 6
greedy match 118, 121
grouping, {} 2
gsl

namespace 168
span 168

Guidelines, C++ Core 214

H
half-open sequence 156
handle 52

resource 69, 165
hardware, mapping to 16
hash table 144
hash<>, unordered_map 76
header

C-library 110

file 31
standard library 109

heap 51
Hello, Wor ld! example 2
hierarchy

class 57
navigation 61

history, C++ 207
HOPL 208

I
if statement 14
immutability

const 9
constexpr 9

implementation
definition 30
inheritance 60
iterator 153
of vir tual function 56
str ing 113

in-class member initialization 215
#include 31
inclusive_scan() 189
increment operator ++ 7
index, get<>() by 174
inheritance 55

implementation 60
interface 60
multiple 211

inheriting constructor 216
initialization

and assignment 18
in-class member 215

initialize 52
array 171

initializer
= 7
{} 8
default member 68
narrowing, = 8

initializer-list constructor 52
initializer_list 52
inline 49

namespace 215
inlining 49
inner_product() 189
InputIterator, concept 159
InputRange, concept 160
inser t() 143, 147
instantiation 81
instruction, machine 16
int 5

output bits of 172
Integral, concept 158
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interface
declaration 29
inheritance 60

invariant 37
and constructor 37

Invocable, concept 159
InvocableRegular, concept 159
I/O, iterator and 154
<ios> 109
<iostream> 3, 109
iota() 189
is

instance of, dynamic_cast 62
kind of, dynamic_cast 62

ISO
C++ 212
C++ standard 2

ISO-14882 212
istream_iterator 154
iterator 75, 150

and I/O 154
implementation 153

Iterator, concept 159
iterator 143, 154
<iterator> 182

concepts in 158
iterator_categor y 182
iterator_traits 181–182
iterator_type 182

J
join(), thread 196

K
key and value 144
K&R C 219

L
\L, regex 119
\l, regex 119
lambda

as adaptor 180
expression 87

language
and library 107
features, C with Classes 210
features, C++11 215
features, C++14 216
features, C++17 216

launch, async() 204
lazy

+? 118

?? 118
{}? 118
∗? 118
match 118, 121

ldexp() 188
leak, resource 62, 72, 164
less-than operator < 6
less-than-or-equal operator <= 6
letter, [[:alpha:]] 119
library

algorithm, standard 156
C with Classes standard 211
C++98 standard 211
components, C++11 216
components, C++14 217
components, C++17 217
container, standard 146
facilities, standard 108
language and 107
non-standard 107
standard 107

lifetime, scope and 9
lifting algorithm 100
<limits> 181, 193
linker 2
list

capture 87
forward_list singly-linked 143

list 142, 146
literal

", string 3
raw string 116
suffix, s 113
suffix, sv 115
type of string 113
user-defined 75, 215

literals
str ing_literals 113
str ing_view_literals 115

local scope 9
lock, reader-writer 200
log() 188
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long long 215
lower, regex 119

M
machine instruction 16
main() 2

exception and 141
make_pair() 173
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make_unique() 166
management, resource 72, 164
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meaning, C++ 209
member

function, const 50
initialization, in-class 215
initializer, default 68

memberwise copy 66
mem_fn() 180
memory 73

address 16
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Mergeable, concept 159
minus operator - 6
model, template compilation 104
modern C++ 214
modf() 188
modularity 29
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modules, C++20 32
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Movable, concept 158
move 71

assignment 66, 72
constructor 66, 71

move() 72, 156, 167
MoveConstr uctible, concept 158
moved-from

object 72
state 168

move-only type 167
multi-line pattern 117
multimap 146
multiple
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multiply operator ∗ 6
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mutex 199
<mutex> 199

N
\n, newline 3
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new 52

namespace scope 9
namespace 34
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gsl 168
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narrowing
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new
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noexcept 37
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non-memory resource 73
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function 85
in container 140
moved-from 72
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%, modulus 6
∗, multiply 6
!=, not-equal 6
<<, output 3
+, plus 6
%, remainder 6
/=, scaling 7
∗=, scaling 7
arithmetic 6
comparison 6, 74
declarator 12
delete 51
new 51
overloaded 51
user-defined 51

optimization, short-string 113
optional 176
order of evaluation 7
ostream_iterator 154
out_of_range 141
output

bits of int 172
cout 3
operator << 3

OutputIterator, concept 159
OutputRange, concept 160
overloaded operator 51
overloading

concept based 95
function 4

overr ide 55
overview, container 146
ownership 164

P
packaged_task thread 203
pair 173

and structured binding 174
member first 173
member second 173

par 161
parallel algorithm 161
parameterized type 79
par tial_sum() 189
par_unseq 161
passing data to task 197

pattern 116
(?: 120
multi-line 117

perfect forwarding 168
Permutable, concept 159
phone_book example 138
plus operator + 6
pmr, namespace 178
pointer 17

smart 164
to ∗ 11

policy, execution 161
polymorphic type 54
pow() 188
precondition 37
predicate 86, 155

type 183
Predicate, concept 159
pr int, regex 119
procedural programming 2
program 2
programming

generic 93, 210
object-oriented 57, 210
procedural 2

promise
future and 202
member set_exception() 202
member set_value() 202

pronunciation, C++ 209
punct, regex 119
pure vir tual 54
purpose, template 93
push_back() 52, 139, 143, 147
push_front() 143

R
R" 116
race, data 196
RAII

and resource management 36
and tr y-block 40
and tr y-statement 36
resource acquisition 164
scoped_lock and 199–200

RAII 52
Rand_int example 191
random number 191
random

distribution 191
engine 191

<random> 109, 191
RandomAccessIterator, concept 159
RandomAccessRange, concept 160
range
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checking, cost of 142
checking Vec 140
error 188
for statement 11

Range
concept 157
concept 160

<ranges> 157
<ranges>, concepts in 158
raw string literal 116
reader-writer lock 200
recovery, error 38
reduce() 189
reference 17

&&, rvalue 71
rvalue 72
to & 12

regex
∗ 117
} 117
{ 117
) 117
| 117
] 117
[ 117
ˆ 117
? 117
. 117
$ 117
+ 117
( 117
alnum 119
alpha 119
blank 119
cntr l 119
d 119
\d 119
\D 119
digit 119
graph 119
\l 119
\L 119
lower 119
pr int 119
punct 119
regular expression 116
repetition 118
s 119
\S 119
\s 119
space 119
\U 119
\u 119
upper 119
w 119
\W 119

\w 119
xdigit 119

<regex> 109, 116
regular expression 116

regex_iterator 121
regex_search 116
regular

expression notation 117
expression regex 116
expression <regex> 116

Regular, concept 158
reinter pret_cast 53
Relation, concept 159
remainder operator % 6
removed

exception specification 218
expor t 218

repetition, regex 118
replace() 156

str ing 112
replace_if() 156
requirement, template 94
requirements, element 140
requires] expression 96
reser ve() 139, 147
resize() 147
resource

acquisition RAII 164
handle 69, 165
leak 62, 72, 164
management 72, 164
management, RAII and 36
non-memory 73
retention 73
safety 72

rethrow 38
return

function value 66
type, suffix 215
value, function 41

retur n
container 151
type, void 3

returning results from task 198
retur n-type deduction 44
return-values, multiple 44
riemanzeta() 188
rule

Max Munch 118
of zero 67

run-time
check 40
error 35

rvalue
reference 72
reference && 71
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S
s literal suffix 113
\s, regex 119
s, regex 119
\S, regex 119
safety, resource 72
Same, concept 158
scaling

operator /= 7
operator ∗= 7

scope
and lifetime 9
class 9
local 9
namespace 9

scoped_lock 164
and RAII 199–200
unique_lock and 201

scoped_lock() 199
search, binary 156
second, pair member 173
Semiregular, concept 158
Sentinel, concept 159
separate compilation 30
sequence 150

half-open 156
set 146
<set> 109
set_exception(), promise member 202
set_value(), promise member 202
shared_lock 200
shared_mutex 200
shared_ptr 164
sharing data task 199
short-string optimization 113
SignedIntegral, concept 158
SIMD 161
Simula 207
sin() 188
singly-linked list, forward_list 143
sinh() 188
size of type 6
size() 75, 147

array 171
SizedRange, concept 160
SizedSentinel, concept 159
sizeof 6
sizeof() 181
size_t 90
smart pointer 164
smatch 116
sor t() 149, 156

container 181
Sor table, concept 159
space, regex 119
span

gsl 168
str ing_view and 168

special mathematical functions 188
specialized container 170
sphbessel() 188
sqr t() 188
<sstream> 109
standard

ISO C++ 2
library 107
library algorithm 156
library, C++ 2
library, C with Classes 211
library, C++98 211
library container 146
library facilities 108
library header 109
library std 109
mathematical functions 188

standardization, C++ 212
state, moved-from 168
statement

for 11
if 14
range for 11
switch 14
while 14

static_asser t 193
assertion 40

static_cast 53
std

namespace 3, 35, 109
standard library 109

<stdexcept> 109
STL 211
store

dynamic 51
free 51

Str ictTotallyOrdered, concept 158
Str ictWeakOrder, concept 159
string

C-style 13
literal " 3
literal, raw 116
literal, type of 113
Unicode 114

str ing 111
[] 112
== 112
append += 112
assignment = 112
concatenation + 111
implementation 113
replace() 112
substr() 112

<str ing> 109, 111
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str ing_literals, literals 113
str ing_span 170
str ing_view 114

and span 168
str ing_view_literals, literals 115
structured

binding 45
binding, pair and 174
binding, tuple and 174

subclass, superclass and 55
[]subscripting 147
substr(), str ing 112
suffix 75

return type 215
s literal 113
sv literal 115

superclass and subclass 55
suport, module 32
support, concept 94
sv literal suffix 115
sw ap() 76
Swappable, concept 158
SwappableWith, concept 158
switch statement 14
synchronized_pool_resource 178

T
table, hash 144
tag dispatch 181
tanh() 188
task

and thread 196
communication 202
passing data to 197
returning results from 198
sharing data 199

TC++PL 208
template 79

alias 184
argument, constrained 82
argument, default 98
arguments, >> 215
class 79
compilation model 104
constrained 82
debugging 100
exter n 215
function 84
purpose 93
requirement 94
variadic 100

this 70
thread

join() 196
packaged_task 203

task and 196
<thread> 109, 196
thread_local 216
time 179
timeline, C++ 208
time_point 179
timing, clock 200
to hardware, mapping 16
transfor m_reduce() 189
translation unit 32
tr y

block 36
block as function body 141

tr y-block, RAII and 40
tr y-statement, RAII and 36
tuple 174

and structured binding 174
type 5

abstract 54
argument 82
concrete 48
conversion, explicit 53
function 181
fundamental 5
get<>() by 174
move-only 167
of string literal 113
parameterized 79
polymorphic 54
predicate 183
size of 6

typename 79, 152
<type_traits> 183
typing, duck 104

U
\U, regex 119
\u, regex 119
udl 75
Unicode string 114
unifor m_int_distribution 191
uninitialized 8
unique_copy() 149, 156
unique_lock 200–201

and scoped_lock 201
unique_ptr 62, 164
unordered_map 144, 146

hash<> 76
map and 146

<unordered_map> 109
unordered_multimap 146
unordered_multiset 146
unordered_set 146
unsigned 5
UnsignedIntegral, concept 158
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upper, regex 119
use, concept 94
user-defined

literal 75, 215
operator 51

using
alias 90
-declaration 34
-directive 35

usual arithmetic conversions 7
<utility> 109, 173–174

V
valarray 192
<valarray> 192
value 5

argument 82
key and 144
mapped type 144
return, function 66

valuetype 147
value_type 90
variable 5
variadic template 100
variant 175
Vec

example 141
range checking 140

vector arithmetic 192
vector 138, 146

array vs. 171
<vector> 109
vector<bool> 170
vectorized 161
View, concept 160
vir tual 54

destructor 59
function, implementation of 56
function table vtbl 56
pure 54

void
∗ 221
∗ assignment, difference from C 221
retur n type 3

vtbl, vir tual function table 56

W
w, regex 119
\w, regex 119
\W, regex 119
wait(), condition_var iable 201
WeaklyEqualityComparable, concept 158
WG21 208

while statement 14

X
X3J16 212
xdigit, regex 119

Z
zero, rule of 67
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