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The first two editions of Effective C++ were embraced by hundreds of thousands of programmers worldwide. The reason is
clear: Scott Meyers' practical approach to C++ describes the rules of thumb used by the experts—the things they almost
always do or almost always avoid doing—to produce clear, correct, efficient code.The book is organized around 55 specific
guidelines, each of which describes a way to write better C++. Each is backed by concrete examples. For this third edition,
more than half the content is new, including added chapters on managing resources and using templates. Topics from the
second edition have been extensively revised to reflect modern design considerations, including exceptions, design patterns,
and multithreading.Important features of Effective C++ include: Expert guidance on the design of effective classes, functions,
templates, and inheritance hierarchies. Applications of new "TR1" standard library functionality, along with comparisons to
existing standard library components. Insights into differences between C++ and other languages (e.g., Java, C#, C) that help
developers from those languages assimilate "the C++ way" of doing things.
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Praise for Effective C++, Third Edition
"Scott Meyers' book, Effective C++ , Third Edition , is distilled programming experience — experience that you would otherwise have to
learn the hard way. This book is a great resource that I recommend to everybody who writes C++ professionally."

— Peter Dulimov, ME, ngineer, Ranges and Assessing Unit, NAVSYSCOM, Australia

"The third edition is still the best book on how to put all of the pieces of C++ together in an efficient, cohesive manner. If you claim to be a
C++ programmer, you must read this book."

— Eric Nagler, Consultant, Instructor, and author of  Learning C++

"The first edition of this book ranks among the small (very small) number of books that I credit with significantly elevating my skills as a
'professional' software devel-oper. Like the others, it was practical and easy to read, but loaded with important advice. Effective C++ , Third
Edition, continues that tradition. C++ is a very powerful programming language. If C gives you enough rope to hang yourself, C++ is a hard-
ware store with lots of helpful people ready to tie knots for you. Mastering the points discussed in this book will definitely increase your
ability to effectively use C++ and reduce your stress level."

— Jack W. Reeves, Chief Executive Officer, Bleading Edge Software Technologies

"Every new developer joining my team has one assignment — to read this book."

— Michael Lanzetta, Senior Software Engineer

"I read the first edition of Effective C++  about nine years ago, and it immediately became my favorite book on C++. In my opinion, Effective
C++, Third Edition , remains a must-read today for anyone who wishes to program effectively in C++. We would live in a better world if C++
programmers had to read this book before writing their first line of professional C++ code."

— Danny Rabbani, Software Development Engineer

"I encountered the first edition of Scott Meyers' Effective C++  as a struggling programmer in the trenches, trying to get better at what I was
doing. What a lifesaver! I found Meyers' advice was practical, useful, and effective, fulfilling the promise of the title 100 percent. The third
edition brings the practical realities of using C++ in serious development projects right up to date, adding chapters on the language's very
latest issues and features. I was delighted to still find myself learning something interesting and new from the latest edition of a book I
already thought I knew well."

— Michael Topic, Technical Program Manager

"From Scott Meyers, the guru of C++, this is the definitive guide for anyone who wants to use C++ safely and effectively, or is transitioning
from any other OO language to C++. This book has valuable information presented in a clear, concise, entertaining, and insightful manner."

— Siddhartha Karan Singh, Software Developer

"This should be the second book on C++ that any developer should read, after a general introductory text. It goes beyond the how and
what of C++ to address the why and wherefore. It helped me go from knowing the syntax to understanding the philosophy of C++
programming."

— Timothy Knox, Software Developer

"This is a fantastic update of a classic C++ text. Meyers covers a lot of new ground in this volume, and every serious C++ programmer
should have a copy of this new edition."

— Jeffrey Somers, Game Programmer

"Effective C++ , Third Edition , covers the things you should be doing when writing code and does a terrific job of explaining why those
things are important. Think of it as best practices for writing C++."

— Jeff Scherpelz, Software Development Engineer

"As C++ embraces change, Scott Meyers' Effective C++ , Third Edition , soars to remain in perfect lock-step with the language. There are
many fine introductory books on C++, but exactly one second book stands head and shoulders above the rest, and you're holding it. With
Scott guiding the way, prepare to do some soaring of your own!"

— Leor Zolman, C++ Trainer and Pundit, BD Software

"This book is a must-have for both C++ veterans and newbies. After you have finished reading it, it will not collect dust on your bookshelf —
you will refer to it all the time."

— Sam Lee, Software Developer

"Reading this book transforms ordinary C++ programmers into expert C++ programmers, step-by-step, using 55 easy-to-read items, each
describing one technique or tip."

— Jeffrey D. Oldham, Ph.D., Software Engineer, Google

"Scott Meyers' Effective C++  books have long been required reading for new and experienced C++ programmers alike. This new edition,
incorporating almost a decade's worth of C++ language development, is his most content-packed book yet. He does not merely describe
the problems inherent in the language, but instead he provides unambiguous and easy-to-follow advice on how to avoid the pitfalls and
write 'effective C++.' I expect every C++ programmer to have read it."

— Philipp K. Janert, Ph.D., Software Development Manager



"Each previous edition of Effective C++  has been the must-have book for developers who have used C++ for a few months or a few years,
long enough to stumble into the traps latent in this rich language. In this third edition, Scott Meyers extensively refreshes his sound advice
for the modern world of new language and library features and the programming styles that have evolved to use them. Scott's engaging
writing style makes it easy to assimilate his guidelines on your way to becoming an effective C++ developer."

— David Smallberg, Instructor, DevelopMentor; Lecturer, Computer Science, UCLA

"Effective C++  has been completely updated for twenty-first-century C++ practice and can continue to claim to be the first second book for
all C++ practitioners."

— Matthew Wilson, Ph.D., author of  Imperfect C++
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Preface
I wrote the original edition of Effective C++  in 1991. When the time came for a second edition in 1997, I updated the material in important ways, but,
because I didn't want to confuse readers familiar with the first edition, I did my best to retain the existing structure: 48 of the original 50 Item titles
remained essentially unchanged. If the book were a house, the second edition was the equivalent of freshening things up by replacing carpets, paint, and
light fixtures.

For the third edition, I tore the place down to the studs. (There were times I wished I'd gone all the way to the foundation.) The world of C++ has
undergone enormous change since 1991, and the goal of this book — to identify the most important C++ programming guidelines in a small, readable
package — was no longer served by the Items I'd established nearly 15 years earlier. In 1991, it was reasonable to assume that C++ programmers came
from a C background. Now, programmers moving to C++ are just as likely to come from Java or C#. In 1991, inheritance and object-oriented
programming were new to most programmers. Now they're well-established concepts, and exceptions, templates, and generic programming are the
areas where people need more guidance. In 1991, nobody had heard of design patterns. Now it's hard to discuss software systems without referring to
them. In 1991, work had just begun on a formal standard for C++. Now that standard is eight years old, and work has begun on the next version.

To address these changes, I wiped the slate as clean as I could and asked myself, "What are the most important pieces of advice for practicing C++
programmers in 2005?" The result is the set of Items in this new edition. The book has new chapters on resource management and on programming with
templates. In fact, template concerns are woven throughout the text, because they affect almost everything in C++. The book also includes new material
on programming in the presence of exceptions, on applying design patterns, and on using the new TR1 library facilities. (TR1 is described in Item 54.) It
acknowledges that techniques and approaches that work well in single-threaded systems may not be appropriate in multithreaded systems. Well over half
the material in the book is new. However, most of the fundamental information in the second edition continues to be important, so I found a way to retain
it in one form or another. (You'll find a mapping between the second and third edition Items in Appendix B.)

I've worked hard to make this book as good as I can, but I have no illusions that it's perfect. If you feel that some of the Items in this book are
inappropriate as general advice; that there is a better way to accomplish a task examined in the book; or that one or more of the technical discussions is
unclear, incomplete, or misleading, please tell me. If you find an error of any kind — technical, grammatical, typographical, whatever — please tell me
that, too. I'll gladly add to the acknowledgments in later printings the name of the first person to bring each problem to my attention.

Even with the number of Items expanded to 55, the set of guidelines in this book is far from exhaustive. But coming up with good rules — ones that apply
to almost all applications almost all the time — is harder than it might seem. If you have suggestions for additional guidelines, I would be delighted to
hear about them.

I maintain a list of changes to this book since its first printing, including bug fixes, clarifications, and technical updates. The list is available at the Effective
C++ Errata web page, http://aristeia.com/BookErrata/ec++3e-errata.html. If you'd like to be notified when I update the list, I encourage you to join my
mailing list. I use it to make announcements likely to interest people who follow my professional work. For details, consult http://aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS                          STAFFORD, OREGON
http://aristeia.com/                                APRIL 2005

 < Day Day Up > 

http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/MailingList/
http://aristeia.com/


 < Day Day Up > 

Acknowledgments
Effective C++  has existed for fifteen years, and I started learning C++ about five years before I wrote the book. The " Effective C++  project" has thus been
under development for two decades. During that time, I have benefited from the insights, suggestions, corrections, and, occasionally, dumbfounded
stares of hundreds (thousands?) of people. Each has helped improve Effective C++ . I am grateful to them all.

I've given up trying to keep track of where I learned what, but one general source of information has helped me as long as I can remember: the Usenet
C++ newsgroups, especially comp.lang.c++.moderated and comp.std.c++. Many of the Items in this book — perhaps most — have benefited from the
vetting of technical ideas at which the participants in these newsgroups excel.

Regarding new material in the third edition, Steve Dewhurst worked with me to come up with an initial set of candidate Items. In Item 11, the idea of
implementing operator= via copy-and-swap came from Herb Sutter's writings on the topic, e.g., Item 13 of his Exceptional C++ (Addison-Wesley, 2000).
RAII (see Item 13) is from Bjarne Stroustrup's The C++ Programming Language  (Addison-Wesley, 2000). The idea behind Item 17 came from the "Best
Practices" section of the Boost shared_ptr web page, http://boost.org/libs/smart_ptr/shared_ptr.htm#BestPractices and was refined by Item 21 of Herb
Sutter's More Exceptional C++  (Addison-Wesley, 2002). Item 29 was strongly influenced by Herb Sutter's extensive writings on the topic, e.g., Items 8-19
of Exceptional C++, Items 17–23 of More Exceptional C++ , and Items 11–13 of Exceptional C++ Style  (Addison-Wesley, 2005); David Abrahams helped
me better understand the three exception safety guarantees. The NVI idiom in Item 35 is from Herb Sutter's column, "Virtuality," in the September 2001
C/C++ Users Journal . In that same Item, the Template Method and Strategy design patterns are from Design Patterns (Addison-Wesley, 1995) by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The idea of using the NVI idiom in Item 37 came from Hendrik Schober. David Smallberg
contributed the motivation for writing a custom set implementation in Item 38. Item 39's observation that the EBO generally isn't available under multiple
inheritance is from David Vandevoorde's and Nicolai M. Josuttis' C++ Templates  (Addison-Wesley, 2003). In Item 42, my initial understanding about
typename came from Greg Comeau's C++ and C FAQ ( http://www.comeaucomputing.com/techtalk/#typename), and Leor Zolman helped me realize that
my understanding was incorrect. (My fault, not Greg's.) The essence of Item 46 is from Dan Saks' talk, "Making New Friends." The idea at the end of Item
52 that if you declare one version of operator new, you should declare them all, is from Item 22 of Herb Sutter's Exceptional C++ Style . My understanding
of the Boost review process (summarized in Item 55) was refined by David Abrahams.

Everything above corresponds to who or where I learned about something, not necessarily to who or where the thing was invented or first published.

My notes tell me that I also used information from Steve Clamage, Antoine Trux, Timothy Knox, and Mike Kaelbling, though, regrettably, the notes fail to
tell me how or where.

Drafts of the first edition were reviewed by Tom Cargill, Glenn Carroll, Tony Davis, Brian Kernighan, Jak Kirman, Doug Lea, Moises Lejter, Eugene
Santos, Jr., John Shewchuk, John Stasko, Bjarne Stroustrup, Barbara Tilly, and Nancy L. Urbano. I received suggestions for improvements that I was
able to incorporate in later printings from Nancy L. Urbano, Chris Treichel, David Corbin, Paul Gibson, Steve Vinoski, Tom Cargill, Neil Rhodes, David
Bern, Russ Williams, Robert Brazile, Doug Morgan, Uwe Steinmüller, Mark Somer, Doug Moore, David Smallberg, Seth Meltzer, Oleg Shteynbuk, David
Papurt, Tony Hansen, Peter McCluskey, Stefan Kuhlins, David Braunegg, Paul Chisholm, Adam Zell, Clovis Tondo, Mike Kaelbling, Natraj Kini, Lars
Nyman, Greg Lutz, Tim Johnson, John Lakos, Roger Scott, Scott Frohman, Alan Rooks, Robert Poor, Eric Nagler, Antoine Trux, Cade Roux, Chandrika
Gokul, Randy Mangoba, and Glenn Teitelbaum.

Drafts of the second edition were reviewed by Derek Bosch, Tim Johnson, Brian Kernighan, Junichi Kimura, Scott Lewandowski, Laura Michaels, David
Smallberg, Clovis Tondo, Chris Van Wyk, and Oleg Zabluda. Later printings benefited from comments from Daniel Steinberg, Arunprasad Marathe, Doug
Stapp, Robert Hall, Cheryl Ferguson, Gary Bartlett, Michael Tamm, Kendall Beaman, Eric Nagler, Max Hailperin, Joe Gottman, Richard Weeks, Valentin
Bonnard, Jun He, Tim King, Don Maier, Ted Hill, Mark Harrison, Michael Rubenstein, Mark Rodgers, David Goh, Brenton Cooper, Andy Thomas-Cramer,
Antoine Trux, John Wait, Brian Sharon, Liam Fitzpatrick, Bernd Mohr, Gary Yee, John O'Hanley, Brady Patterson, Christopher Peterson, Feliks Kluzniak,
Isi Dunietz, Christopher Creutzi, Ian Cooper, Carl Harris, Mark Stickel, Clay Budin, Panayotis Matsinopoulos, David Smallberg, Herb Sutter, Pajo
Misljencevic, Giulio Agostini, Fredrik Blomqvist, Jimmy Snyder, Byrial Jensen, Witold Kuzminski, Kazunobu Kuriyama, Michael Christensen, Jorge Yáñez
Teruel, Mark Davis, Marty Rabinowitz, Ares Lagae, and Alexander Medvedev.

An early partial draft of this edition was reviewed by Brian Kernighan, Angelika Langer, Jesse Laeuchli, Roger E. Pedersen, Chris Van Wyk, Nicholas
Stroustrup, and Hendrik Schober. Reviewers for a full draft were Leor Zolman, Mike Tsao, Eric Nagler, Gene Gutnik, David Abrahams, Gerhard Kreuzer,
Drosos Kourounis, Brian Kernighan, Andrew Kirmse, Balog Pal, Emily Jagdhar, Eugene Kalenkovich, Mike Roze, Enrico Carrara, Benjamin Berck, Jack
Reeves, Steve Schirripa, Martin Fallenstedt, Timothy Knox, Yun Bai, Michael Lanzetta, Philipp Janert, Guido Bartolucci, Michael Topic, Jeff Scherpelz,
Chris Nauroth, Nishant Mittal, Jeff Somers, Hal Moroff, Vincent Manis, Brandon Chang, Greg Li, Jim Meehan, Alan Geller, Siddhartha Singh, Sam Lee,
Sasan Dashtinezhad, Alex Marin, Steve Cai, Thomas Fruchterman, Cory Hicks, David Smallberg, Gunavardhan Kakulapati, Danny Rabbani, Jake
Cohen, Hendrik Schober, Paco Viciana, Glenn Kennedy, Jeffrey D. Oldham, Nicholas Stroustrup, Matthew Wilson, Andrei Alexandrescu, Tim Johnson,
Leon Matthews, Peter Dulimov, and Kevlin Henney. Drafts of some individual Items were reviewed by Herb Sutter and Attila F. Feher.

Reviewing an unpolished (possibly incomplete) manuscript is demanding work, and doing it under time pressure only makes it harder. I continue to be
grateful that so many people have been willing to undertake it for me.

Reviewing is harder still if you have no background in the material being discussed and are expected to catch every problem in the manuscript.
Astonishingly, some people still choose to be copy editors. Chrysta Meadowbrooke was the copy editor for this book, and her very thorough work
exposed many problems that eluded everyone else.

Leor Zolman checked all the code examples against multiple compilers in preparation for the full review, then did it again after I revised the manuscript. If
any errors remain, I'm responsible for them, not Leor.

Karl Wiegers and especially Tim Johnson offered rapid, helpful feedback on back cover copy.

John Wait, my editor for the first two editions of this book, foolishly signed up for another tour of duty in that capacity. His assistant, Denise Mickelsen,
adroitly handled my frequent pestering with a pleasant smile. (At least I think she's been smiling. I've never actually seen her.) Julie Nahil drew the short
straw and hence became my production manager. She handled the overnight loss of six weeks in the production schedule with remarkable equanimity.
John Fuller (her boss) and Marty Rabinowitz (his boss) helped out with production issues, too. Vanessa Moore's official job was to help with FrameMaker
issues and PDF preparation, but she also added the entries to Appendix B and formatted it for printing on the inside cover. Solveig Haugland helped with
index formatting. Sandra Schroeder and Chuti Prasertsith were responsible for cover design, though Chuti seems to have been the one who had to
rework the cover each time I said, "But what about this photo with a stripe of that color...?" Chanda Leary-Coutu got tapped for the heavy lifting in
marketing.

During the months I worked on the manuscript, the TV series Buffy the Vampire Slayer  often helped me "de-stress" at the end of the day. Only with great
restraint have I kept Buffyspeak out of the book.

http://boost.org/libs/smart_ptr/shared_ptr.htm#BestPractices
http://www.comeaucomputing.com/techtalk/#typename


Kathy Reed taught me programming in 1971, and I'm gratified that we remain friends to this day. Donald French hired me and Moises Lejter to create
C++ training materials in 1989 (an act that led to my really knowing C++), and in 1991 he engaged me to present them at Stratus Computer. The students
in that class encouraged me to write what ultimately became the first edition of this book. Don also introduced me to John Wait, who agreed to publish it.

My wife, Nancy L. Urbano, continues to encourage my writing, even after seven book projects, a CD adaptation, and a dissertation. She has unbelievable
forbearance. I couldn't do what I do without her.

From start to finish, our dog, Persephone, has been a companion without equal. Sadly, for much of this project, her companionship has taken the form of
an urn in the office. We really miss her.

 < Day Day Up > 



 < Day Day Up > 

Introduction
Learning the fundamentals of a programming language is one thing; learning how to design and implement effective programs in that language is
something else entirely. This is especially true of C++, a language boasting an uncommon range of power and expressiveness. Properly used, C++ can
be a joy to work with. An enormous variety of designs can be directly expressed and efficiently implemented. A judiciously chosen and carefully crafted
set of classes, functions, and templates can make application programming easy, intuitive, efficient, and nearly error-free. It isn't unduly difficult to write
effective C++ programs, if you know how to do it. Used without discipline, however, C++ can lead to code that is incomprehensible, unmaintainable,
inextensible, inefficient, and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I assume you already know C++ as a language and that you have some experience
in its use. What I provide here is a guide to using the language so that your software is comprehensible, maintainable, portable, extensible, efficient, and
likely to behave as you expect.

The advice I proffer falls into two broad categories: general design strategies, and the nuts and bolts of specific language features. The design
discussions concentrate on how to choose between different approaches to accomplishing something in C++. How do you choose between inheritance
and templates? Between public and private inheritance? Between private inheritance and composition? Between member and non-member functions?
Between pass-by-value and pass-by-reference? It's important to make these decisions correctly at the outset, because a poor choice may not become
apparent until much later in the development process, at which point rectifying it is often difficult, time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just right can be tricky. What's the proper return type for assignment operators? When
should a destructor be virtual? How should operator new behave when it can't find enough memory? It's crucial to sweat details like these, because
failure to do so almost always leads to unexpected, possibly mystifying program behavior. This book will help you avoid that.

This is not a comprehensive reference for C++. Rather, it's a collection of 55 specific suggestions (I call them Items) for how you can improve your
programs and designs. Each Item stands more or less on its own, but most also contain references to other Items. One way to read the book, then, is to
start with an Item of interest, then follow its references to see where they lead you.

The book isn't an introduction to C++, either. In Chapter 2, for example, I'm eager to tell you all about the proper implementations of constructors,
destructors, and assignment operators, but I assume you already know or can go elsewhere to find out what these functions do and how they are
declared. A number of C++ books contain information such as that.

The purpose of this book is to highlight those aspects of C++ programming that are often overlooked. Other books describe the different parts of the
language. This book tells you how to combine those parts so you end up with effective programs. Other books tell you how to get your programs to
compile. This book tells you how to avoid problems that compilers won't tell you about.

At the same time, this book limits itself to standard C++. Only features in the official language standard have been used here. Portability is a key concern
in this book, so if you're looking for platform-dependent hacks and kludges, this is not the place to find them.

Another thing you won't find in this book is the C++ Gospel, the One True Path to perfect C++ software. Each of the Items in this book provides guidance
on how to develop better designs, how to avoid common problems, or how to achieve greater efficiency, but none of the Items is universally applicable.
Software design and implementation is a complex task, one colored by the constraints of the hardware, the operating system, and the application, so the
best I can do is provide guidelines for creating better programs.

If you follow all the guidelines all the time, you are unlikely to fall into the most common traps surrounding C++, but guidelines, by their nature, have
exceptions. That's why each Item has an explanation. The explanations are the most important part of the book. Only by understanding the rationale
behind an Item can you determine whether it applies to the software you are developing and to the unique constraints under which you toil.

The best use of this book is to gain insight into how C++ behaves, why it behaves that way, and how to use its behavior to your advantage. Blind
application of the Items in this book is clearly inappropriate, but at the same time, you probably shouldn't violate any of the guidelines without a good
reason.
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Terminology

There is a small C++ vocabulary that every programmer should understand. The following terms are important enough that it is worth making sure we
agree on what they mean.

A declaration tells compilers about the name and type of something, but it omits certain details. These are declarations:

extern int x;                                  // object declaration

std::size_t numDigits(int number);             // function declaration

class Widget;                                  // class declaration

template<typename T>                           // template declaration

class GraphNode;                               // (see Item 42 for info on

                                               // the use of "typename")

Note that I refer to the integer x as an "object," even though it's of built-in type. Some people reserve the name "object" for variables of user-defined type,
but I'm not one of them. Also note that the function numDigits' return type is std::size_t, i.e., the type size_t in namespace std. That namespace is where
virtually everything in C++'s standard library is located. However, because C's standard library (the one from C89, to be precise) can also be used in
C++, symbols inherited from C (such as size_t) may exist at global scope, inside std, or both, depending on which headers have been #included. In this
book, I assume that C++ headers have been #included, and that's why I refer to std::size_t instead of just size_t. When referring to components of the
standard library in prose, I typically omit references to std, relying on you to recognize that things like size_t, vector, and cout are in std. In example code,
I always include std, because real code won't compile without it.

size_t, by the way, is just a typedef for some unsigned type that C++ uses when counting things (e.g., the number of characters in a char*-based string,
the number of elements in an STL container, etc.). It's also the type taken by the operator[] functions in vector, deque, and string, a convention we'll
follow when defining our own operator[] functions in Item 3.

Each function's declaration reveals its signature, i.e., its parameter and return types. A function's signature is the same as its type. In the case of
numDigits, the signature is std::size_t (int), i.e., "function taking an int and returning a std::size_t." The official C++ definition of "signature" excludes the
function's return type, but in this book, it's more useful to have the return type be considered part of the signature.

A definition provides compilers with the details a declaration omits. For an object, the definition is where compilers set aside memory for the object. For
a function or a function template, the definition provides the code body. For a class or a class template, the definition lists the members of the class or
template:

int x;                                           // object definition

std::size_t numDigits(int number)                // function definition.

{                                                // (This function returns

  std::size_t digitsSoFar = 1;                   // the number of digits

                                                 // in its parameter.)

  while ((number /= 10) != 0) ++digitsSoFar;

  return digitsSoFar;

}

class Widget {                                   // class definition

public:

  Widget();

  ~Widget();



  ...

};

template<typename T>                             // template definition

class GraphNode {            

public:

  GraphNode();

  ~GraphNode();

  ...

};

Initialization is the process of giving an object its first value. For objects of user-defined types, initialization is performed by constructors. A default
constructor is one that can be called without any arguments. Such a constructor either has no parameters or has a default value for every parameter:

class A {

public:

  A();                                     // default constructor

};

class B {

public:

  explicit B(int x = 0, bool b = true);    // default constructor; see below

};                                         // for info on "explicit"

class C {

public:

  explicit C(int x);                       // not a default constructor

};

The constructors for classes B and C are declared explicit here. That prevents them from being used to perform implicit type conversions, though they
may still be used for explicit type conversions:

void doSomething(B bObject);         // a function taking an object of

                                     // type B

B bObj1;                             // an object of type B

doSomething(bObj1);                  // fine, passes a B to doSomething

B bObj2(28);                         // fine, creates a B from the int 28

                                     // (the bool defaults to true)



doSomething(28);                     // error! doSomething takes a B,

                                     // not an int, and there is no

                                     // implicit conversion from int to B

doSomething(B(28));                  // fine, uses the B constructor to

                                     // explicitly convert (i.e., cast) the

                                     // int to a B for this call. (See

                                     // Item 27 for info on casting.)

Constructors declared explicit are usually preferable to non-explicit ones, because they prevent compilers from performing unexpected (often
unintended) type conversions. Unless I have a good reason for allowing a constructor to be used for implicit type conversions, I declare it explicit. I
encourage you to follow the same policy.

Please note how I've highlighted the cast in the example above. Throughout this book, I use such highlighting to call your attention to material that is
particularly noteworthy. (I also highlight chapter numbers, but that's just because I think it looks nice.)

The copy constructor is used to initialize an object with a different object of the same type, and the copy assignment operator is used to copy the
value from one object to another of the same type:

class Widget {

public:

  Widget();                                 // default constructor

  Widget(const Widget& rhs);                // copy constructor

  Widget& operator=(const Widget& rhs);     // copy assignment operator

  ...

};

Widget w1;                                  // invoke default constructor

Widget w2(w1);                              // invoke copy constructor

w1 = w2;                                    // invoke copy

                                            // assignment operator

Read carefully when you see what appears to be an assignment, because the " =" syntax can also be used to call the copy constructor:

Widget w3 = w2;                           // invoke copy constructor!

Fortunately, copy construction is easy to distinguish from copy assignment. If a new object is being defined (such as w3 in the statement above), a
constructor has to be called; it can't be an assignment. If no new object is being defined (such as in the "w1 = w2 " statement above), no constructor can
be involved, so it's an assignment.

The copy constructor is a particularly important function, because it defines how an object is passed by value. For example, consider this:

bool hasAcceptableQuality(Widget w);

...

Widget aWidget;

if (hasAcceptableQuality(aWidget)) ...



The parameter w is passed to hasAcceptableQuality by value, so in the call above, aWidget is copied into w. The copying is done by Widget's copy
constructor. Pass-by-value means "call the copy constructor." (However, it's generally a bad idea to pass user-defined types by value. Pass-by-
reference-to-const is typically a better choice. For details, see Item 20.)

The STL is the Standard Template Library, the part of C++'s standard library devoted to containers (e.g., vector, list, set, map, etc.), iterators (e.g.,
vector<int>::iterator, set<string>::iterator, etc.), algorithms (e.g., for_each, find, sort, etc.), and related functionality. Much of that related functionality has
to do with function objects: objects that act like functions. Such objects come from classes that overload operator(), the function call operator. If you're
unfamiliar with the STL, you'll want to have a decent reference available as you read this book, because the STL is too useful for me not to take
advantage of it. Once you've used it a little, you'll feel the same way.

Programmers coming to C++ from languages like Java or C# may be surprised at the notion of undefined behavior. For a variety of reasons, the
behavior of some constructs in C++ is literally not defined: you can't reliably predict what will happen at runtime. Here are two examples of code with
undefined behavior:

int *p = 0;                            // p is a null pointer

std::cout << *p;                       // dereferencing a null pointer

                                       // yields undefined behavior

char name[] = "Darla";                 // name is an array of size 6 (don't

                                       // forget the trailing null!)

char c = name[10];                     // referring to an invalid array index

                                       // yields undefined behavior

To emphasize that the results of undefined behavior are not predictable and may be very unpleasant, experienced C++ programmers often say that
programs with undefined behavior can erase your hard drive. It's true: a program with undefined behavior could erase your hard drive. But it's not
probable. More likely is that the program will behave erratically, sometimes running normally, other times crashing, still other times producing incorrect
results. Effective C++ programmers do their best to steer clear of undefined behavior. In this book, I point out a number of places where you need to be
on the lookout for it.

Another term that may confuse programmers coming to C++ from another language is interface. Java and the .NET languages offer Interfaces as a
language element, but there is no such thing in C++, though Item 31 discusses how to approximate them. When I use the term "interface," I'm generally
talking about a function's signature, about the accessible elements of a class (e.g., a class's "public interface," "protected interface," or "private
interface"), or about the expressions that must be valid for a template's type parameter (see Item 41). That is, I'm talking about interfaces as a fairly
general design idea.

A client is someone or something that uses the code (typically the interfaces) you write. A function's clients, for example, are its users: the parts of the
code that call the function (or take its address) as well as the humans who write and maintain such code. The clients of a class or a template are the parts
of the software that use the class or template, as well as the programmers who write and maintain that code. When discussing clients, I typically focus on
programmers, because programmers can be confused, misled, or annoyed by bad interfaces. The code they write can't be.

You may not be used to thinking about clients, but I'll spend a good deal of time trying to convince you to make their lives as easy as you can. After all,
you are a client of the software other people develop. Wouldn't you want those people to make things easy for you? Besides, at some point you'll almost
certainly find yourself in the position of being your own client (i.e., using code you wrote), and at that point, you'll be glad you kept client concerns in mind
when developing your interfaces.

In this book, I often gloss over the distinction between functions and function templates and between classes and class templates. That's because what's
true about one is often true about the other. In situations where this is not the case, I distinguish among classes, functions, and the templates that give
rise to classes and functions.

When referring to constructors and destructors in code comments, I sometimes use the abbreviations ctor and dtor.

Naming Conventions

I have tried to select meaningful names for objects, classes, functions, templates, etc., but the meanings behind some of my names may not be
immediately apparent. Two of my favorite parameter names, for example, are lhs and rhs. They stand for "left-hand side" and "right-hand side,"
respectively. I often use them as parameter names for functions implementing binary operators, e.g., operator== and operator*. For example, if a and b
are objects representing rational numbers, and if Rational objects can be multiplied via a non-member operator* function (as Item 24 explains is likely to
be the case), the expression

a * b

is equivalent to the function call



operator*(a,b)

In Item 24, I declare operator* like this:

const Rational operator*(const Rational& lhs, const Rational& rhs);

As you can see, the left-hand operand, a, is known as lhs inside the function, and the right-hand operand, b, is known as rhs.

For member functions, the left-hand argument is represented by the this pointer, so sometimes I use the parameter name rhs by itself. You may have
noticed this in the declarations for some Widget member functions on page 5. Which reminds me. I often use the Widget class in examples. "Widget"
doesn't mean anything. It's just a name I sometimes use when I need an example class name. It has nothing to do with widgets in GUI toolkits.

I often name pointers following the rule that a pointer to an object of type T is called pt, "pointer to T." Here are some examples:

Widget *pw;                           // pw = ptr to Widget

class Airplane;

Airplane *pa;                         // pa = ptr to Airplane

class GameCharacter;

GameCharacter *pgc;                   // pgc = ptr to GameCharacter

I use a similar convention for references: rw might be a reference to a Widget and ra a reference to an Airplane.

I occasionally use the name mf when I'm talking about member functions.

Threading Considerations

As a language, C++ has no notion of threads — no notion of concurrency of any kind, in fact. Ditto for C++'s standard library. As far as C++ is concerned,
multithreaded programs don't exist.

And yet they do. My focus in this book is on standard, portable C++, but I can't ignore the fact that thread safety is an issue many programmers confront.
My approach to dealing with this chasm between standard C++ and reality is to point out places where the C++ constructs I examine are likely to cause
problems in a threaded environment. That doesn't make this a book on multithreaded programming with C++. Far from it. Rather, it makes it a book on
C++ programming that, while largely limiting itself to single-threaded considerations, acknowledges the existence of multithreading and tries to point out
places where thread-aware programmers need to take particular care in evaluating the advice I offer.

If you're unfamiliar with multithreading or have no need to worry about it, you can ignore my threading-related remarks. If you are programming a
threaded application or library, however, remember that my comments are little more than a starting point for the issues you'll need to address when
using C++.

TR1 and Boost

You'll find references to TR1 and Boost throughout this book. Each has an Item that describes it in some detail ( Item 54 for TR1, Item 55 for Boost), but,
unfortunately, these Items are at the end of the book. (They're there because it works better that way. Really. I tried them in a number of other places.) If
you like, you can turn to those Items and read them now, but if you'd prefer to start the book at the beginning instead of the end, the following executive
summary will tide you over:

TR1 ("Technical Report 1") is a specification for new functionality being added to C++'s standard library. This functionality takes the form of new
class and function templates for things like hash tables, reference-counting smart pointers, regular expressions, and more. All TR1 components
are in the namespace tr1 that's nested inside the namespace std.

Boost is an organization and a web site ( http://boost.org) offering portable, peer-reviewed, open source C++ libraries. Most TR1 functionality is
based on work done at Boost, and until compiler vendors include TR1 in their C++ library distributions, the Boost web site is likely to remain the
first stop for developers looking for TR1 implementations. Boost offers more than is available in TR1, however, so it's worth knowing about in any
case.
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Chapter 1. Accustoming Yourself to C++
Regardless of your programming background, C++ is likely to take a little getting used to. It's a powerful language with an enormous range of features,
but before you can harness that power and make effective use of those features, you have to accustom yourself to C++'s way of doing things. This entire
book is about how to do that, but some things are more fundamental than others, and this chapter is about some of the most fundamental things of all.
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Item 1: View C++ as a federation of languages

In the beginning, C++ was just C with some object-oriented features tacked on. Even C++'s original name, "C with Classes," reflected this simple
heritage.

As the language matured, it grew bolder and more adventurous, adopting ideas, features, and programming strategies different from those of C with
Classes. Exceptions required different approaches to structuring functions (see Item 29). Templates gave rise to new ways of thinking about design (see
Item 41), and the STL defined an approach to extensibility unlike any most people had ever seen.

Today's C++ is a multiparadigm programming language , one supporting a combination of procedural, object-oriented, functional, generic, and
metaprogramming features. This power and flexibility make C++ a tool without equal, but can also cause some confusion. All the "proper usage" rules
seem to have exceptions. How are we to make sense of such a language?

The easiest way is to view C++ not as a single language but as a federation of related languages. Within a particular sublanguage, the rules tend to be
simple, straightforward, and easy to remember. When you move from one sublanguage to another, however, the rules may change. To make sense of
C++, you have to recognize its primary sublanguages. Fortunately, there are only four:

C. Way down deep, C++ is still based on C. Blocks, statements, the preprocessor, built-in data types, arrays, pointers, etc., all come from C. In
many cases, C++ offers approaches to problems that are superior to their C counterparts (e.g., see Items 2 (alternatives to the preprocessor) and
13 (using objects to manage resources)), but when you find yourself working with the C part of C++, the rules for effective programming reflect C's
more limited scope: no templates, no exceptions, no overloading, etc.

Object-Oriented C++. This part of C++ is what C with Classes was all about: classes (including constructors and destructors), encapsulation,
inheritance, polymorphism, virtual functions (dynamic binding), etc. This is the part of C++ to which the classic rules for object-oriented design
most directly apply.

Template C++. This is the generic programming part of C++, the one that most programmers have the least experience with. Template
considerations pervade C++, and it's not uncommon for rules of good programming to include special template-only clauses (e.g., see Item 46 on
facilitating type conversions in calls to template functions). In fact, templates are so powerful, they give rise to a completely new programming
paradigm, template metaprogramming (TMP). Item 48 provides an overview of TMP, but unless you're a hard-core template junkie, you need not
worry about it. The rules for TMP rarely interact with mainstream C++ programming.

The STL. The STL is a template library, of course, but it's a very special template library. Its conventions regarding containers, iterators,
algorithms, and function objects mesh beautifully, but templates and libraries can be built around other ideas, too. The STL has particular ways of
doing things, and when you're working with the STL, you need to be sure to follow its conventions.

Keep these four sublanguages in mind, and don't be surprised when you encounter situations where effective programming requires that you change
strategy when you switch from one sublanguage to another. For example, pass-by-value is generally more efficient than pass-by-reference for built-in
(i.e., C-like) types, but when you move from the C part of C++ to Object-Oriented C++, the existence of user-defined constructors and destructors means
that pass-by-reference-to-const is usually better. This is especially the case when working in Template C++, because there, you don't even know the
type of object you're dealing with. When you cross into the STL, however, you know that iterators and function objects are modeled on pointers in C, so
for iterators and function objects in the STL, the old C pass-by-value rule applies again. (For all the details on choosing among parameter-passing
options, see Item 20.)

C++, then, isn't a unified language with a single set of rules; it's a federation of four sublanguages, each with its own conventions. Keep these
sublanguages in mind, and you'll find that C++ is a lot easier to understand.

Things to Remember

Rules for effective C++ programming vary, depending on the part of C++ you are using.
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Item 2: Prefer consts, enums, and inlines to #defines

This Item might better be called "prefer the compiler to the preprocessor," because #define may be treated as if it's not part of the language per se.
That's one of its problems. When you do something like this,

#define ASPECT_RATIO 1.653

the symbolic name ASPECT_RATIO may never be seen by compilers; it may be removed by the preprocessor before the source code ever gets to a
compiler. As a result, the name ASPECT_RATIO may not get entered into the symbol table. This can be confusing if you get an error during compilation
involving the use of the constant, because the error message may refer to 1.653, not ASPECT_RATIO. If ASPECT_RATIO were defined in a header file
you didn't write, you'd have no idea where that 1.653 came from, and you'd waste time tracking it down. This problem can also crop up in a symbolic
debugger, because, again, the name you're programming with may not be in the symbol table.

The solution is to replace the macro with a constant:

const double AspectRatio = 1.653;   // uppercase names are usually for

                                    // macros, hence the name change

As a language constant, AspectRatio is definitely seen by compilers and is certainly entered into their symbol tables. In addition, in the case of a floating
point constant (such as in this example), use of the constant may yield smaller code than using a #define. That's because the preprocessor's blind
substitution of the macro name ASPECT_RATIO with 1.653 could result in multiple copies of 1.653 in your object code, while the use of the constant
AspectRatio should never result in more than one copy.

When replacing #defines with constants, two special cases are worth mentioning. The first is defining constant pointers. Because constant definitions are
typically put in header files (where many different source files will include them), it's important that the pointer be declared const, usually in addition to
what the pointer points to. To define a constant char*-based string in a header file, for example, you have to write const twice:

const char * const authorName = "Scott Meyers";

For a complete discussion of the meanings and uses of const, especially in conjunction with pointers, see Item 3. However, it's worth reminding you here
that string objects are generally preferable to their char*-based progenitors, so authorName is often better defined this way:

const std::string authorName("Scott Meyers");

The second special case concerns class-specific constants. To limit the scope of a constant to a class, you must make it a member, and to ensure there's
at most one copy of the constant, you must make it a static member:

class GamePlayer {

private:

  static const int NumTurns = 5;      // constant declaration

  int scores[NumTurns];               // use of constant

  ...

};

What you see above is a declaration for NumTurns, not a definition. Usually, C++ requires that you provide a definition for anything you use, but class-
specific constants that are static and of integral type (e.g., integers, chars, bools) are an exception. As long as you don't take their address, you can
declare them and use them without providing a definition. If you do take the address of a class constant, or if your compiler incorrectly insists on a
definition even if you don't take the address, you provide a separate definition like this:

const int GamePlayer::NumTurns;     // definition of NumTurns; see

                                    // below for why no value is given



You put this in an implementation file, not a header file. Because the initial value of class constants is provided where the constant is declared (e.g.,
NumTurns is initialized to 5 when it is declared), no initial value is permitted at the point of definition.

Note, by the way, that there's no way to create a class-specific constant using a #define, because #defines don't respect scope. Once a macro is
defined, it's in force for the rest of the compilation (unless it's #undefed somewhere along the line). Which means that not only can't #defines be used for
class-specific constants, they also can't be used to provide any kind of encapsulation, i.e., there is no such thing as a "private" #define. Of course, const
data members can be encapsulated; NumTurns is.

Older compilers may not accept the syntax above, because it used to be illegal to provide an initial value for a static class member at its point of
declaration. Furthermore, in-class initialization is allowed only for integral types and only for constants. In cases where the above syntax can't be used,
you put the initial value at the point of definition:

class CostEstimate {

private:

  static const double FudgeFactor;       // declaration of static class

  ...                                    // constant; goes in header file

};

const double                             // definition of static class

  CostEstimate::FudgeFactor = 1.35;      // constant; goes in impl. file

This is all you need almost all the time. The only exception is when you need the value of a class constant during compilation of the class, such as in the
declaration of the array GamePlayer::scores above (where compilers insist on knowing the size of the array during compilation). Then the accepted way
to compensate for compilers that (incorrectly) forbid the in-class specification of initial values for static integral class constants is to use what is
affectionately (and non-pejoratively) known as "the enum hack." This technique takes advantage of the fact that the values of an enumerated type can be
used where ints are expected, so GamePlayer could just as well be defined like this:

class GamePlayer {

private:

  enum { NumTurns = 5 };        // "the enum hack" — makes

                                // NumTurns a symbolic name for 5

  int scores[NumTurns];         // fine

  ...

};

The enum hack is worth knowing about for several reasons. First, the enum hack behaves in some ways more like a #define than a const does, and
sometimes that's what you want. For example, it's legal to take the address of a const, but it's not legal to take the address of an enum, and it's typically
not legal to take the address of a #define, either. If you don't want to let people get a pointer or reference to one of your integral constants, an enum is a
good way to enforce that constraint. (For more on enforcing design constraints through coding decisions, consult Item 18.) Also, though good compilers
won't set aside storage for const objects of integral types (unless you create a pointer or reference to the object), sloppy compilers may, and you may not
be willing to set aside memory for such objects. Like #defines, enums never result in that kind of unnecessary memory allocation.

A second reason to know about the enum hack is purely pragmatic. Lots of code employs it, so you need to recognize it when you see it. In fact, the
enum hack is a fundamental technique of template metaprogramming (see Item 48).

Getting back to the preprocessor, another common (mis)use of the #define directive is using it to implement macros that look like functions but that don't
incur the overhead of a function call. Here's a macro that calls some function f with the greater of the macro's arguments:

// call f with the maximum of a and b

#define CALL_WITH_MAX(a, b) f((a) > (b) ? (a) : (b))



Macros like this have so many drawbacks, just thinking about them is painful.

Whenever you write this kind of macro, you have to remember to parenthesize all the arguments in the macro body. Otherwise you can run into trouble
when somebody calls the macro with an expression. But even if you get that right, look at the weird things that can happen:

int a = 5, b = 0;

CALL_WITH_MAX(++a, b);          // a is incremented twice

CALL_WITH_MAX(++a, b+10);       // a is incremented once

Here, the number of times that a is incremented before calling f depends on what it is being compared with!

Fortunately, you don't need to put up with this nonsense. You can get all the efficiency of a macro plus all the predictable behavior and type safety of a
regular function by using a template for an inline function (see Item 30):

template<typename T>                               // because we don't

inline void callWithMax(const T& a, const T& b)    // know what T is, we

{                                                  // pass by reference-to-

  f(a > b ? a : b);                                // const — see Item 20

}

This template generates a whole family of functions, each of which takes two objects of the same type and calls f with the greater of the two objects.
There's no need to parenthesize parameters inside the function body, no need to worry about evaluating parameters multiple times, etc. Furthermore,
because callWithMax is a real function, it obeys scope and access rules. For example, it makes perfect sense to talk about an inline function that is
private to a class. In general, there's just no way to do that with a macro.

Given the availability of consts, enums, and inlines, your need for the preprocessor (especially #define) is reduced, but it's not eliminated. #include
remains essential, and #ifdef/#ifndef continue to play important roles in controlling compilation. It's not yet time to retire the preprocessor, but you should
definitely give it long and frequent vacations.

Things to Remember

For simple constants, prefer const objects or enums to #defines.

For function-like macros, prefer inline functions to #defines.
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Item 3: Use const whenever possible

The wonderful thing about const is that it allows you to specify a semantic constraint — a particular object should not be modified — and compilers will
enforce that constraint. It allows you to communicate to both compilers and other programmers that a value should remain invariant. Whenever that is
true, you should be sure to say so, because that way you enlist your compilers' aid in making sure the constraint isn't violated.

The const keyword is remarkably versatile. Outside of classes, you can use it for constants at global or namespace scope (see Item 2), as well as for
objects declared static at file, function, or block scope. Inside classes, you can use it for both static and non-static data members. For pointers, you can
specify whether the pointer itself is const, the data it points to is const, both, or neither:

char greeting[] = "Hello";

char *p = greeting;                    // non-const pointer,

                                       // non-const data

const char *p = greeting;              // non-const pointer,

                                       // const data

char * const p = greeting;             // const pointer,

                                       // non-const data

const char * const p = greeting;       // const pointer,

                                       // const data

This syntax isn't as capricious as it may seem. If the word const appears to the left of the asterisk, what's pointed to is constant; if the word const
appears to the right of the asterisk, the pointer itself is constant; if const appears on both sides, both are constant.

When what's pointed to is constant, some programmers list const before the type. Others list it after the type but before the asterisk. There is no
difference in meaning, so the following functions take the same parameter type:

void f1(const Widget *pw);         // f1 takes a pointer to a

                                   // constant Widget object

void f2(Widget const *pw);         // so does f2

Because both forms exist in real code, you should accustom yourself to both of them.

STL iterators are modeled on pointers, so an iterator acts much like a T* pointer. Declaring an iterator const is like declaring a pointer const (i.e.,
declaring a T* const pointer): the iterator isn't allowed to point to something different, but the thing it points to may be modified. If you want an iterator that
points to something that can't be modified (i.e., the STL analogue of a const T* pointer), you want a const_iterator:

std::vector<int> vec;

...

const std::vector<int>::iterator iter =     // iter acts like a T* const

  vec.begin();

*iter = 10;                                 // OK, changes what iter points to

++iter;                                    // error! iter is const



std::vector<int>::const_iterator cIter =   //cIter acts like a const T*

  vec.begin();

*cIter = 10;                               // error! *cIter is const

++cIter;                                  // fine, changes cIter

Some of the most powerful uses of const stem from its application to function declarations. Within a function declaration, const can refer to the function's
return value, to individual parameters, and, for member functions, to the function as a whole.

Having a function return a constant value often makes it possible to reduce the incidence of client errors without giving up safety or efficiency. For
example, consider the declaration of the operator* function for rational numbers that is explored in Item 24.

class Rational { ... };

const Rational operator*(const Rational& lhs, const Rational& rhs);

Many programmers squint when they first see this. Why should the result of operator* be a const object? Because if it weren't, clients would be able to
commit atrocities like this:

Rational a, b, c;

...

(a * b) = c;                           // invoke operator= on the

                                       // result of a*b!

I don't know why any programmer would want to make an assignment to the product of two numbers, but I do know that many programmers have tried to
do it without wanting to. All it takes is a simple typo (and a type that can be implicitly converted to bool):

if (a * b = c) ...                       // oops, meant to do a comparison!

Such code would be flat-out illegal if a and b were of a built-in type. One of the hallmarks of good user-defined types is that they avoid gratuitous
incompatibilities with the built-ins (see also Item 18), and allowing assignments to the product of two numbers seems pretty gratuitous to me. Declaring
operator*'s return value const prevents it, and that's why it's The Right Thing To Do.

There's nothing particularly new about const parameters — they act just like local const objects, and you should use both whenever you can. Unless you
need to be able to modify a parameter or local object, be sure to declare it const. It costs you only the effort to type six characters, and it can save you
from annoying errors such as the "I meant to type '==' but I accidently typed '='" mistake we just saw.

const Member Functions

The purpose of const on member functions is to identify which member functions may be invoked on const objects. Such member functions are important
for two reasons. First, they make the interface of a class easier to understand. It's important to know which functions may modify an object and which may
not. Second, they make it possible to work with const objects. That's a critical aspect of writing efficient code, because, as Item 20 explains, one of the
fundamental ways to improve a C++ program's performance is to pass objects by reference-to-const. That technique is viable only if there are const
member functions with which to manipulate the resulting const-qualified objects.

Many people overlook the fact that member functions differing only in their constness can be overloaded, but this is an important feature of C++.
Consider a class for representing a block of text:

class TextBlock {

public:

  ...



  const char& operator[](std::size_t position) const   // operator[] for

  { return text[position]; }                           // const objects

  char& operator[](std::size_t position)               // operator[] for

  { return text[position]; }                           // non-const objects

private:

   std::string text;

};

TextBlock's operator[]s can be used like this:

TextBlock tb("Hello");

std::cout << tb[0];                   // calls non-const

                                            // TextBlock::operator[]

const TextBlock ctb("World");

std::cout << ctb[0];                  // calls const TextBlock::operator[]

Incidentally, const objects most often arise in real programs as a result of being passed by pointer- or reference-to- const. The example of ctb above is
artificial. This is more realistic:

void print(const TextBlock& ctb)       // in this function, ctb is const

{

  std::cout << ctb[0];                 // calls const TextBlock::operator[]

  ...

}

By overloading operator[] and giving the different versions different return types, you can have const and non-const TextBlocks handled differently:

std::cout << tb[0];                   // fine — reading a

                                      // non-const TextBlock

tb[0] = 'x';                           // fine — writing a

                                      // non-const TextBlock

std::cout << ctb[0];                  // fine — reading a

                                      // const TextBlock

ctb[0] = 'x';                          // error! — writing a

                                      // const TextBlock



Note that the error here has only to do with the return type of the operator[] that is called; the calls to operator[] themselves are all fine. The error arises
out of an attempt to make an assignment to a const char&, because that's the return type from the const version of operator[].

Also note that the return type of the non- const operator[] is a reference to a char — a char itself would not do. If operator[] did return a simple char,
statements like this wouldn't compile:

tb[0] = 'x';

That's because it's never legal to modify the return value of a function that returns a built-in type. Even if it were legal, the fact that C++ returns objects by
value (see Item 20) would mean that a copy of tb.text[0] would be modified, not tb.text[0] itself, and that's not the behavior you want.

Let's take a brief time-out for philosophy. What does it mean for a member function to be const? There are two prevailing notions: bitwise constness (also
known as physical constness) and logical constness.

The bitwise const camp believes that a member function is const if and only if it doesn't modify any of the object's data members (excluding those that are
static), i.e., if it doesn't modify any of the bits inside the object. The nice thing about bitwise constness is that it's easy to detect violations: compilers just
look for assignments to data members. In fact, bitwise constness is C++'s definition of constness, and a const member function isn't allowed to modify
any of the non-static data members of the object on which it is invoked.

Unfortunately, many member functions that don't act very const pass the bitwise test. In particular, a member function that modifies what a pointer points
to frequently doesn't act const. But if only the pointer is in the object, the function is bitwise const, and compilers won't complain. That can lead to
counterintuitive behavior. For example, suppose we have a TextBlock-like class that stores its data as a char* instead of a string, because it needs to
communicate through a C API that doesn't understand string objects.

class CTextBlock {

public:

  ...

  char& operator[](std::size_t position) const   // inappropriate (but bitwise

  { return pText[position]; }                    // const) declaration of

                                                 // operator[]

private:

  char *pText;

};

This class (inappropriately) declares operator[] as a const member function, even though that function returns a reference to the object's internal data (a
topic treated in depth in Item 28). Set that aside and note that operator[]'s implementation doesn't modify pText in any way. As a result, compilers will
happily generate code for operator[]; it is, after all, bitwise const, and that's all compilers check for. But look what it allows to happen:

const CTextBlock cctb("Hello");        // declare constant object

char *pc = &cctb[0];                   // call the const operator[] to get a

                                       // pointer to cctb's data

*pc = 'J';                              // cctb now has the value "Jello"

Surely there is something wrong when you create a constant object with a particular value and you invoke only const member functions on it, yet you still
change its value!

This leads to the notion of logical constness. Adherents to this philosophy argue that a const member function might modify some of the bits in the object
on which it's invoked, but only in ways that clients cannot detect. For example, your CTextBlock class might want to cache the length of the textblock
whenever it's requested:

class CTextBlock {



public:

  ...

  std::size_t length() const;

private:

  char *pText;

  std::size_t textLength;            // last calculated length of textblock

  bool lengthIsValid;                // whether length is currently valid

};

std::size_t CTextBlock::length() const

{

  if (!lengthIsValid) {

    textLength = std::strlen(pText);  // error! can't assign to textLength

    lengthIsValid = true;             // and lengthIsValid in a const

  }                                   // member function

  return textLength;

}

This implementation of length is certainly not bitwise const — both textLength and lengthIsValid may be modified — yet it seems as though it should be
valid for const CTextBlock objects. Compilers disagree. They insist on bitwise constness. What to do?

The solution is simple: take advantage of C++'s const-related wiggle room known as mutable. mutable frees non-static data members from the
constraints of bitwise constness:

class CTextBlock {

public:

  ...

  std::size_t length() const;

private:

  char *pText;

  mutable std::size_t textLength;         // these data members may

  mutable bool lengthIsValid;             // always be modified, even in

};                                        // const member functions

std::size_t CTextBlock::length() const



{

  if (!lengthIsValid) {

    textLength = std::strlen(pText);      // now fine

    lengthIsValid = true;                 // also fine

  }

  return textLength;

}

Avoiding Duplication in const and Non-const Member Functions

mutable is a nice solution to the bitwise-constness-is-not-what-I-had-in-mind problem, but it doesn't solve all const-related difficulties. For example,
suppose that operator[] in TextBlock (and CTextBlock) not only returned a reference to the appropriate character, it also performed bounds checking,
logged access information, maybe even did data integrity validation. Putting all this in both the const and the non-const operator[] functions (and not
fretting that we now have implicitly inline functions of nontrivial length — see Item 30) yields this kind of monstrosity:

class TextBlock {

public:

  ...

  const char& operator[](std::size_t position) const

  {

    ...                                 // do bounds checking

    ...                                 // log access data

    ...                                 // verify data integrity

    return text[position];

  }

  char& operator[](std::size_t position)

  {

    ...                                 // do bounds checking

    ...                                 // log access data

    ...                                 // verify data integrity

    return text[position];

  }

private:

   std::string text;

};

Ouch! Can you say code duplication, along with its attendant compilation time, maintenance, and code-bloat headaches? Sure, it's possible to move all
the code for bounds checking, etc. into a separate member function (private, naturally) that both versions of operator[] call, but you've still got the
duplicated calls to that function and you've still got the duplicated return statement code.



What you really want to do is implement operator[] functionality once and use it twice. That is, you want to have one version of operator[] call the other
one. And that brings us to casting away constness.

As a general rule, casting is such a bad idea, I've devoted an entire Item to telling you not to do it ( Item 27), but code duplication is no picnic, either. In
this case, the const version of operator[] does exactly what the non-const version does, it just has a const-qualified return type. Casting away the const
on the return value is safe, in this case, because whoever called the non-const operator[] must have had a non- const object in the first place. Otherwise
they couldn't have called a non-const function. So having the non-const operator[] call the const version is a safe way to avoid code duplication, even
though it requires a cast. Here's the code, but it may be clearer after you read the explanation that follows:

class TextBlock {

public:

  ...

  const char& operator[](std::size_t position) const     // same as before

  {

    ...

    ...

    ...

    return text[position];

  }

  char& operator[](std::size_t position)         // now just calls const op[]

  {

    return

      const_cast<char&>(                         // cast away const on

                                                 // op[]'s return type;

        static_cast<const TextBlock&>(*this)     // add const to *this's type;

          [position]                            // call const version of op[]

      );

  }

...

};

As you can see, the code has two casts, not one. We want the non- const operator[] to call the const one, but if, inside the non- const operator[], we just
call operator[], we'll recursively call ourselves. That's only entertaining the first million or so times. To avoid infinite recursion, we have to specify that we
want to call the const operator[], but there's no direct way to do that. Instead, we cast *this from its native type of TextBlock& to const TextBlock&. Yes,
we use a cast to add const! So we have two casts: one to add const to *this (so that our call to operator[] will call the const version), the second to
remove the const from the const operator[]'s return value.

The cast that adds const is just forcing a safe conversion (from a non- const object to a const one), so we use a static_cast for that. The one that removes
const can be accomplished only via a const_cast, so we don't really have a choice there. (Technically, we do. A C-style cast would also work, but, as I
explain in Item 27, such casts are rarely the right choice. If you're unfamiliar with static_cast or const_cast, Item 27 contains an overview.)

On top of everything else, we're calling an operator in this example, so the syntax is a little strange. The result may not win any beauty contests, but it
has the desired effect of avoiding code duplication by implementing the non-const version of operator[] in terms of the const version. Whether achieving
that goal is worth the ungainly syntax is something only you can determine, but the technique of implementing a non-const member function in terms of
its const twin is definitely worth knowing.

Even more worth knowing is that trying to do things the other way around — avoiding duplication by having the const version call the non-const version
— is not something you want to do. Remember, a const member function promises never to change the logical state of its object, but a non- const



member function makes no such promise. If you were to call a non-const function from a const one, you'd run the risk that the object you'd promised not
to modify would be changed. That's why having a const member function call a non-const one is wrong: the object could be changed. In fact, to get the
code to compile, you'd have to use a const_cast to get rid of the const on *this, a clear sign of trouble. The reverse calling sequence — the one we used
above — is safe: the non-const member function can do whatever it wants with an object, so calling a const member function imposes no risk. That's why
a static_cast works on *this in that case: there's no const-related danger.

As I noted at the beginning of this Item, const is a wonderful thing. On pointers and iterators; on the objects referred to by pointers, iterators, and
references; on function parameters and return types; on local variables; and on member functions, const is a powerful ally. Use it whenever you can.
You'll be glad you did.

Things to Remember

Declaring something const helps compilers detect usage errors. const can be applied to objects at any scope, to function parameters
and return types, and to member functions as a whole.

Compilers enforce bitwise constness, but you should program using conceptual constness.

When const and non-const member functions have essentially identical implementations, code duplication can be avoided by having
the non-const version call the const version.

 < Day Day Up > 
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Item 4: Make sure that objects are initialized before they're used

C++ can seem rather fickle about initializing the values of objects. For example, if you say this,

int x;

in some contexts, x is guaranteed to be initialized (to zero), but in others, it's not. If you say this,

class Point {

  int x, y;

};

...

Point p;

p's data members are sometimes guaranteed to be initialized (to zero), but sometimes they're not. If you're coming from a language where uninitialized
objects can't exist, pay attention, because this is important.

Reading uninitialized values yields undefined behavior. On some platforms, the mere act of reading an uninitialized value can halt your program. More
typically, the result of the read will be semi-random bits, which will then pollute the object you read the bits into, eventually leading to inscrutable program
behavior and a lot of unpleasant debugging.

Now, there are rules that describe when object initialization is guaranteed to take place and when it isn't. Unfortunately, the rules are complicated — too
complicated to be worth memorizing, in my opinion. In general, if you're in the C part of C++ (see Item 1) and initialization would probably incur a runtime
cost, it's not guaranteed to take place. If you cross into the non-C parts of C++, things sometimes change. This explains why an array (from the C part of
C++) isn't necessarily guaranteed to have its contents initialized, but a vector (from the STL part of C++) is.

The best way to deal with this seemingly indeterminate state of affairs is to always initialize your objects before you use them. For non-member objects of
built-in types, you'll need to do this manually. For example:

int x = 0;                                // manual initialization of an int

const char * text = "A C-style string";   // manual initialization of a

                                          // pointer (see also Item 3)

double d;                                 // "initialization" by reading from

std::cin >> d;                            // an input stream

For almost everything else, the responsibility for initialization falls on constructors. The rule there is simple: make sure that all constructors initialize
everything in the object.

The rule is easy to follow, but it's important not to confuse assignment with initialization. Consider a constructor for a class representing entries in an
address book:

class PhoneNumber { ... };

class ABEntry {                       // ABEntry = "Address Book Entry"

public:

  ABEntry(const std::string& name, const std::string& address,

          const std::list<PhoneNumber>& phones);



private:

  std::string theName;

  std::string theAddress;

  std::list<PhoneNumber> thePhones;

  int num TimesConsulted;

};

ABEntry::ABEntry(const std::string& name, const std::string& address,

                 const std::list<PhoneNumber>& phones)

{

  theName = name;                       // these are all assignments,

  theAddress = address;                 // not initializations

  thePhones = phones

  numTimesConsulted = 0;

}

This will yield ABEntry objects with the values you expect, but it's still not the best approach. The rules of C++ stipulate that data members of an object
are initialized before the body of a constructor is entered. Inside the ABEntry constructor, theName, theAddress, and thePhones aren't being initialized,
they're being assigned. Initialization took place earlier — when their default constructors were automatically called prior to entering the body of the
ABEntry constructor. This isn't true for numTimesConsulted, because it's a built-in type. For it, there's no guarantee it was initialized at all prior to its
assignment.

A better way to write the ABEntry constructor is to use the member initialization list instead of assignments:

ABEntry::ABEntry(const std::string& name, const std::string& address,

                 const std::list<PhoneNumber>& phones)

: theName(name),

  theAddress(address),                  // these are now all initializations

  thePhones(phones),

  numTimesConsulted(0)

{}                                      // the ctor body is now empty

This constructor yields the same end result as the one above, but it will often be more efficient. The assignment-based version first called default
constructors to initialize theName, theAddress, and thePhones, then promptly assigned new values on top of the default-constructed ones. All the work
performed in those default constructions was therefore wasted. The member initialization list approach avoids that problem, because the arguments in
the initialization list are used as constructor arguments for the various data members. In this case, theName is copy-constructed from name, theAddress
is copy-constructed from address, and thePhones is copy-constructed from phones. For most types, a single call to a copy constructor is more efficient
— sometimes much more efficient — than a call to the default constructor followed by a call to the copy assignment operator.

For objects of built-in type like numTimesConsulted, there is no difference in cost between initialization and assignment, but for consistency, it's often
best to initialize everything via member initialization. Similarly, you can use the member initialization list even when you want to default-construct a data
member; just specify nothing as an initialization argument. For example, if ABEntry had a constructor taking no parameters, it could be implemented like
this:

ABEntry::ABEntry()

:theName(),                         // call theName's default ctor;

 theAddress(),                      // do the same for theAddress;

 thePhones(),                       // and for thePhones;

 numTimesConsulted(0)               // but explicitly initialize



{}                                  // numTimesConsulted to zero

Because compilers will automatically call default constructors for data members of user-defined types when those data members have no initializers on
the member initialization list, some programmers consider the above approach overkill. That's understandable, but having a policy of always listing every
data member on the initialization list avoids having to remember which data members may go uninitialized if they are omitted. Because
numTimesConsulted is of a built-in type, for example, leaving it off a member initialization list could open the door to undefined behavior.

Sometimes the initialization list must be used, even for built-in types. For example, data members that are const or are references must be initialized;
they can't be assigned (see also Item 5). To avoid having to memorize when data members must be initialized in the member initialization list and when
it's optional, the easiest choice is to always use the initialization list. It's sometimes required, and it's often more efficient than assignments.

Many classes have multiple constructors, and each constructor has its own member initialization list. If there are many data members and/or base
classes, the existence of multiple initialization lists introduces undesirable repetition (in the lists) and boredom (in the programmers). In such cases, it's
not unreasonable to omit entries in the lists for data members where assignment works as well as true initialization, moving the assignments to a single
(typically private) function that all the constructors call. This approach can be especially helpful if the true initial values for the data members are to be
read from a file or looked up in a database. In general, however, true member initialization (via an initialization list) is preferable to pseudo-initialization
via assignment.

One aspect of C++ that isn't fickle is the order in which an object's data is initialized. This order is always the same: base classes are initialized before
derived classes (see also Item 12), and within a class, data members are initialized in the order in which they are declared. In ABEntry, for example,
theName will always be initialized first, theAddress second, thePhones third, and numTimesConsulted last. This is true even if they are listed in a
different order on the member initialization list (something that's unfortunately legal). To avoid reader confusion, as well as the possibility of some truly
obscure behavioral bugs, always list members in the initialization list in the same order as they're declared in the class.

Once you've taken care of explicitly initializing non-member objects of built-in types and you've ensured that your constructors initialize their base classes
and data members using the member initialization list, there's only one more thing to worry about. That thing is — take a deep breath — the order of
initialization of non-local static objects defined in different translation units.

Let's pick that phrase apart bit by bit.

A static object is one that exists from the time it's constructed until the end of the program. Stack and heap-based objects are thus excluded. Included are
global objects, objects defined at namespace scope, objects declared static inside classes, objects declared static inside functions, and objects declared
static at file scope. Static objects inside functions are known as local static objects (because they're local to a function), and the other kinds of static
objects are known as non-local static objects. Static objects are automatically destroyed when the program exits, i.e., their destructors are automatically
called when main finishes executing.

A translation unit is the source code giving rise to a single object file. It's basically a single source file, plus all of its #include files.

The problem we're concerned with, then, involves at least two separately compiled source files, each of which contains at least one non-local static object
(i.e., an object that's global, at namespace scope, or static in a class or at file scope). And the actual problem is this: if initialization of a non-local static
object in one translation unit uses a non-local static object in a different translation unit, the object it uses could be uninitialized, because the relative
order of initialization of non-local static objects defined in different translation units is undefined.

An example will help. Suppose you have a FileSystem class that makes files on the Internet look like they're local. Since your class makes the world look
like a single file system, you might create a special object at global or namespace scope representing the single file system:

class FileSystem {                    // from your library

public:

  ...

  std::size_t numDisks() const;       // one of many member functions

  ...

};

extern FileSystem tfs;                // object for clients to use;

                                      // "tfs" = "the file system"

A FileSystem object is decidedly non-trivial, so use of theFileSystem object before it has been constructed would be disastrous.

Now suppose some client creates a class for directories in a file system. Naturally, their class uses theFileSystem object:

class Directory {                       // created by library client

public:

   Directory( params );

  ...



};

Directory::Directory( params )

{

  ...

  std::size_t disks = tfs.numDisks();   // use the tfs object

  ...

}

Further suppose this client decides to create a single Directory object for temporary files:

Directory tempDir( params );           // directory for temporary files

Now the importance of initialization order becomes apparent: unless tfs is initialized before tempDir, tempDir's constructor will attempt to use tfs before
it's been initialized. But tfs and tempDir were created by different people at different times in different source files — they're non-local static objects
defined in different translation units. How can you be sure that tfs will be initialized before tempDir?

You can't. Again, the relative order of initialization of non-local static objects defined in different translation units is undefined . There is a reason for this.
Determining the "proper" order in which to initialize non-local static objects is hard. Very hard. Unsolvably hard. In its most general form — with multiple
translation units and non-local static objects generated through implicit template instantiations (which may themselves arise via implicit template
instantiations) — it's not only impossible to determine the right order of initialization, it's typically not even worth looking for special cases where it is
possible to determine the right order.

Fortunately, a small design change eliminates the problem entirely. All that has to be done is to move each non-local static object into its own function,
where it's declared static. These functions return references to the objects they contain. Clients then call the functions instead of referring to the objects.
In other words, non-local static objects are replaced with local static objects. (Aficionados of design patterns will recognize this as a common
implementation of the Singleton pattern.)

This approach is founded on C++'s guarantee that local static objects are initialized when the object's definition is first encountered during a call to that
function. So if you replace direct accesses to non-local static objects with calls to functions that return references to local static objects, you're
guaranteed that the references you get back will refer to initialized objects. As a bonus, if you never call a function emulating a non-local static object,
you never incur the cost of constructing and destructing the object, something that can't be said for true non-local static objects.

Here's the technique applied to both tfs and tempDir:

class FileSystem { ... };           // as before

FileSystem& tfs()                   // this replaces the tfs object; it could be

{                                   // static in the FileSystem class

  static FileSystem fs;             // define and initialize a local static object

  return fs;                        // return a reference to it

}

class Directory { ... };            // as before

Directory::Directory( params )      // as before, except references to tfs are

{                                   // now to tfs()

  ...

  std::size_t disks = tfs().numDisks();

  ...



}

Directory& tempDir()                // this replaces the tempDir object; it

{                                   // could be static in the Directory class

  static Directory td;              // define/initialize local static object

  return td;                        // return reference to it

}

Clients of this modified system program exactly as they used to, except they now refer to tfs() and tempDir() instead of tfs and tempDir. That is, they use
functions returning references to objects instead of using the objects themselves.

The reference-returning functions dictated by this scheme are always simple: define and initialize a local static object on line 1, return it on line 2. This
simplicity makes them excellent candidates for inlining, especially if they're called frequently (see Item 30). On the other hand, the fact that these
functions contain static objects makes them problematic in multithreaded systems. Then again, any kind of non-const static object — local or non-local —
is trouble waiting to happen in the presence of multiple threads. One way to deal with such trouble is to manually invoke all the reference-returning
functions during the single-threaded startup portion of the program. This eliminates initialization-related race conditions.

Of course, the idea of using reference-returning functions to prevent initialization order problems is dependent on there being a reasonable initialization
order for your objects in the first place. If you have a system where object A must be initialized before object B, but A's initialization is dependent on B's
having already been initialized, you are going to have problems, and frankly, you deserve them. If you steer clear of such pathological scenarios,
however, the approach described here should serve you nicely, at least in single-threaded applications.

To avoid using objects before they're initialized, then, you need to do only three things. First, manually initialize non-member objects of built-in types.
Second, use member initialization lists to initialize all parts of an object. Finally, design around the initialization order uncertainty that afflicts non-local
static objects defined in separate translation units.

Things to Remember

Manually initialize objects of built-in type, because C++ only sometimes initializes them itself.

In a constructor, prefer use of the member initialization list to assignment inside the body of the constructor. List data members in the
initialization list in the same order they're declared in the class.

Avoid initialization order problems across translation units by replacing non-local static objects with local static objects.

 < Day Day Up > 



 < Day Day Up > 

Chapter 2. Constructors, Destructors, and Assignment Operators
Almost every class you write will have one or more constructors, a destructor, and a copy assignment operator. Little wonder. These are your bread-and-
butter functions, the ones that control the fundamental operations of bringing a new object into existence and making sure it's initialized, getting rid of an
object and making sure it's properly cleaned up, and giving an object a new value. Making mistakes in these functions will lead to far-reaching — and
unpleasant — repercussions throughout your classes, so it's vital that you get them right. In this chapter, I offer guidance on putting together the
functions that comprise the backbone of well-formed classes.
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Item 5: Know what functions C++ silently writes and calls

When is an empty class not an empty class? When C++ gets through with it. If you don't declare them yourself, compilers will declare their own versions
of a copy constructor, a copy assignment operator, and a destructor. Furthermore, if you declare no constructors at all, compilers will also declare a
default constructor for you. All these functions will be both public and inline (see Item 30). As a result, if you write

class Empty{};

it's essentially the same as if you'd written this:

class Empty {

public:

  Empty() { ... }                            // default constructor

  Empty(const Empty& rhs) { ... }            // copy constructor

  ~Empty() { ... }                           // destructor — see below

                                             // for whether it's virtual

  Empty& operator=(const Empty& rhs) { ... } // copy assignment operator

};

These functions are generated only if they are needed, but it doesn't take much to need them. The following code will cause each function to be
generated:

Empty e1;                               // default constructor;

                                        // destructor

Empty e2(e1);                           // copy constructor

e2 = e1;                                // copy assignment operator

Given that compilers are writing functions for you, what do the functions do? Well, the default constructor and the destructor primarily give compilers a
place to put "behind the scenes" code such as invocation of constructors and destructors of base classes and non-static data members. Note that the
generated destructor is non-virtual (see Item7) unless it's for a class inheriting from a base class that itself declares a virtual destructor (in which case the
function's virtualness comes from the base class).

As for the copy constructor and the copy assignment operator, the compiler-generated versions simply copy each non-static data member of the source
object over to the target object. For example, consider a NamedObject template that allows you to associate names with objects of type T:

template<typename T>

class NamedObject {

public:

  NamedObject(const char *name, const T& value);

  NamedObject(const std::string& name, const T& value);

  ...



private:

  std::string nameValue;

  T objectValue;

};

Because a constructor is declared in NamedObject, compilers won't generate a default constructor. This is important. It means that if you've carefully
engineered a class to require constructor arguments, you don't have to worry about compilers overriding your decision by blithely adding a constructor
that takes no arguments.

NamedObject declares neither copy constructor nor copy assignment operator, so compilers will generate those functions (if they are needed). Look,
then, at this use of the copy constructor:

NamedObject<int> no1("Smallest Prime Number", 2);

NamedObject<int> no2(no1);                 // calls copy constructor

The copy constructor generated by compilers must initialize no2.nameValue and no2.objectValue using no1.nameValue and no1.objectValue,
respectively. The type of nameValue is string, and the standard string type has a copy constructor, so no2.nameValue will be initialized by calling the
string copy constructor with no1.nameValue as its argument. On the other hand, the type of NamedObject<int>::objectValue is int (because T is int for
this template instantiation), and int is a built-in type, so no2.objectValue will be initialized by copying the bits in no1.objectValue.

The compiler-generated copy assignment operator for NamedObject<int> would behave essentially the same way, but in general, compiler-generated
copy assignment operators behave as I've described only when the resulting code is both legal and has a reasonable chance of making sense. If either of
these tests fails, compilers will refuse to generate an operator= for your class.

For example, suppose NamedObject were defined like this, where nameValue is a reference to a string and objectValue is a const T:

template<class T>

class NamedObject {

public:

  // this ctor no longer takes a const name, because nameValue

  // is now a reference-to-non-const string. The char* constructor

  // is gone, because we must have a string to refer to.

  NamedObject(std::string& name, const T& value);

  ...                               // as above, assume no

                                    // operator= is declared

private:

  std::string& nameValue;           // this is now a reference

  const T objectValue;              // this is now const

};

Now consider what should happen here:

std::string newDog("Persephone");

std::string oldDog("Satch");

NamedObject<int> p(newDog, 2);               // when I originally wrote this, our



                                             // dog Persephone was about to

                                             // have her second birthday

NamedObject<int> s(oldDog, 36);              // the family dog Satch (from my

                                             // childhood) would be 36 if she

                                             // were still alive

p = s;                                       // what should happen to

                                             // the data members in p?

Before the assignment, both p.nameValue and s.nameValue refer to string objects, though not the same ones. How should the assignment affect
p.nameValue? After the assignment, should p.nameValue refer to the string referred to by s.nameValue, i.e., should the reference itself be modified? If
so, that breaks new ground, because C++ doesn't provide a way to make a reference refer to a different object. Alternatively, should the string object to
which p.nameValue refers be modified, thus affecting other objects that hold pointers or references to that string, i.e., objects not directly involved in the
assignment? Is that what the compiler-generated copy assignment operator should do?

Faced with this conundrum, C++ refuses to compile the code. If you want to support assignment in a class containing a reference member, you must
define the copy assignment operator yourself. Compilers behave similarly for classes containing const members (such as objectValue in the modified
class above). It's not legal to modify const members, so compilers are unsure how to treat them during an implicitly generated assignment function.
Finally, compilers reject implicit copy assignment operators in derived classes that inherit from base classes declaring the copy assignment operator
private. After all, compiler-generated copy assignment operators for derived classes are supposed to handle base class parts, too (see Item 12), but in
doing so, they certainly can't invoke member functions the derived class has no right to call.

Things to Remember

Compilers may implicitly generate a class's default constructor, copy constructor, copy assignment operator, and destructor.
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Item 6: Explicitly disallow the use of compiler-generated functions you do not want

Real estate agents sell houses, and a software system supporting such agents would naturally have a class representing homes for sale:

class HomeForSale { ... };

As every real estate agent will be quick to point out, every property is unique — no two are exactly alike. That being the case, the idea of making a copy
of a HomeForSale object makes little sense. How can you copy something that's inherently unique? You'd thus like attempts to copy HomeForSale
objects to not compile:

HomeForSale h1;

HomeForSale h2;

HomeForSale h3(h1);               // attempt to copy h1 — should

                                  // not compile!

h1 = h2;                          // attempt to copy h2 — should

                                  // not compile!

Alas, preventing such compilation isn't completely straightforward. Usually, if you don't want a class to support a particular kind of functionality, you simply
don't declare the function that would provide it. This strategy doesn't work for the copy constructor and copy assignment operator, because, as Item 5
points out, if you don't declare them and somebody tries to call them, compilers declare them for you.

This puts you in a bind. If you don't declare a copy constructor or a copy assignment operator, compilers may generate them for you. Your class thus
supports copying. If, on the other hand, you do declare these functions, your class still supports copying. But the goal here is to prevent copying!

The key to the solution is that all the compiler generated functions are public. To prevent these functions from being generated, you must declare them
yourself, but there is nothing that requires that you declare them public. Instead, declare the copy constructor and the copy assignment operator private.
By declaring a member function explicitly, you prevent compilers from generating their own version, and by making the function private, you keep people
from calling it.

Mostly. The scheme isn't foolproof, because member and friend functions can still call your private functions. Unless, that is, you are clever enough not to
define them. Then if somebody inadvertently calls one, they'll get an error at link-time. This trick — declaring member functions private and deliberately
not implementing them — is so well established, it's used to prevent copying in several classes in C++'s iostreams library. Take a look, for example, at
the definitions of ios_base, basic_ios, and sentry in your standard library implementation. You'll find that in each case, both the copy constructor and the
copy assignment operator are declared private and are not defined.

Applying the trick to HomeForSale is easy:

class HomeForSale {

public:

  ...

private:

  ...

  HomeForSale(const HomeForSale&);            // declarations only

  HomeForSale& operator=(const HomeForSale&);

};

You'll note that I've omitted the names of the functions' parameters. This isn't required, it's just a common convention. After all, the functions will never be
implemented, much less used, so what's the point in specifying parameter names?

With the above class definition, compilers will thwart client attempts to copy HomeForSale objects, and if you inadvertently try to do it in a member or a
friend function, the linker will complain.



It's possible to move the link-time error up to compile time (always a good thing — earlier error detection is better than later) by declaring the copy
constructor and copy assignment operator private not in HomeForSale itself, but in a base class specifically designed to prevent copying. The base class
is simplicity itself:

class Uncopyable {

protected:                                   // allow construction

  Uncopyable() {}                            // and destruction of

  ~Uncopyable() {}                           // derived objects...

private:

  Uncopyable(const Uncopyable&);             // ...but prevent copying

  Uncopyable& operator=(const Uncopyable&);

};

To keep HomeForSale objects from being copied, all we have to do now is inherit from Uncopyable:

class HomeForSale: private Uncopyable {     // class no longer

  ...                                       // declares copy ctor or

};                                          // copy assign. operator

This works, because compilers will try to generate a copy constructor and a copy assignment operator if anybody — even a member or friend function —
tries to copy a HomeForSale object. As Item 12 explains, the compiler-generated versions of these functions will try to call their base class counterparts,
and those calls will be rejected, because the copying operations are private in the base class.

The implementation and use of Uncopyable include some subtleties, such as the fact that inheritance from Uncopyable needn't be public (see Items 32
and 39) and that Uncopyable's destructor need not be virtual (see Item 7). Because Uncopyable contains no data, it's eligible for the empty base class
optimization described in Item 39, but because it's a base class, use of this technique could lead to multiple inheritance (see Item 40). Multiple
inheritance, in turn, can sometimes disable the empty base class optimization (again, see Item 39). In general, you can ignore these subtleties and just
use Uncopyable as shown, because it works precisely as advertised. You can also use the version available at Boost (see Item 55). That class is named
noncopyable. It's a fine class, I just find the name a bit un-, er, nonnatural.

Things to Remember

To disallow functionality automatically provided by compilers, declare the corresponding member functions private and give no
implementations. Using a base class like Uncopyable is one way to do this.
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Item 7: Declare destructors virtual in polymorphic base classes

There are lots of ways to keep track of time, so it would be reasonable to create a TimeKeeper base class along with derived classes for different
approaches to timekeeping:

class TimeKeeper {

public:

  TimeKeeper();

  ~TimeKeeper();

  ...

};

class AtomicClock: public TimeKeeper { ... };

class WaterClock: public TimeKeeper { ... };

class WristWatch: public TimeKeeper { ... };

Many clients will want access to the time without worrying about the details of how it's calculated, so a factory function — a function that returns a base
class pointer to a newly-created derived class object — can be used to return a pointer to a timekeeping object:

TimeKeeper* getTimeKeeper();       // returns a pointer to a dynamic-

                                   // ally allocated object of a class

                                   // derived from TimeKeeper

In keeping with the conventions of factory functions, the objects returned by getTimeKeeper are on the heap, so to avoid leaking memory and other
resources, it's important that each returned object be properly deleted:

TimeKeeper *ptk = getTimeKeeper();  // get dynamically allocated object

                                    // from TimeKeeper hierarchy

...                                 // use it

delete ptk;                        // release it to avoid resource leak

Item 13 explains that relying on clients to perform the deletion is error-prone, and Item 18 explains how the interface to the factory function can be
modified to prevent common client errors, but such concerns are secondary here, because in this Item we address a more fundamental weakness of the
code above: even if clients do everything right, there is no way to know how the program will behave.

The problem is that getTimeKeeper returns a pointer to a derived class object (e.g., AtomicClock), that object is being deleted via a base class pointer
(i.e., a TimeKeeper* pointer), and the base class ( TimeKeeper) has a non-virtual destructor. This is a recipe for disaster, because C++ specifies that
when a derived class object is deleted through a pointer to a base class with a non-virtual destructor, results are undefined. What typically happens at
runtime is that the derived part of the object is never destroyed. If getTimeKeeper were to return a pointer to an AtomicClock object, the AtomicClock part
of the object (i.e., the data members declared in the AtomicClock class) would probably not be destroyed, nor would the AtomicClock destructor run.
However, the base class part (i.e., the TimeKeeper part) typically would be destroyed, thus leading to a curious "partially destroyed" object. This is an
excellent way to leak resources, corrupt data structures, and spend a lot of time with a debugger.

Eliminating the problem is simple: give the base class a virtual destructor. Then deleting a derived class object will do exactly what you want. It will
destroy the entire object, including all its derived class parts:



class TimeKeeper {

public:

  TimeKeeper();

  virtual ~TimeKeeper();

  ...

};

TimeKeeper *ptk = getTimeKeeper();

...

delete ptk;                         // now behaves correctly

Base classes like TimeKeeper generally contain virtual functions other than the destructor, because the purpose of virtual functions is to allow
customization of derived class implementations (see Item 34). For example, TimeKeeper might have a virtual function, getCurrentTime, which would be
implemented differently in the various derived classes. Any class with virtual functions should almost certainly have a virtual destructor.

If a class does not contain virtual functions, that often indicates it is not meant to be used as a base class. When a class is not intended to be a base
class, making the destructor virtual is usually a bad idea. Consider a class for representing points in two-dimensional space:

class Point {                           // a 2D point

public:

  Point(int xCoord, int yCoord);

  ~Point();

private:

  int x, y;

};

If an int occupies 32 bits, a Point object can typically fit into a 64-bit register. Furthermore, such a Point object can be passed as a 64-bit quantity to
functions written in other languages, such as C or FORTRAN. If Point's destructor is made virtual, however, the situation changes.

The implementation of virtual functions requires that objects carry information that can be used at runtime to determine which virtual functions should be
invoked on the object. This information typically takes the form of a pointer called a vptr ("virtual table pointer"). The vptr points to an array of function
pointers called a vtbl ("virtual table"); each class with virtual functions has an associated vtbl. When a virtual function is invoked on an object, the actual
function called is determined by following the object's vptr to a vtbl and then looking up the appropriate function pointer in the vtbl.

The details of how virtual functions are implemented are unimportant. What is important is that if the Point class contains a virtual function, objects of that
type will increase in size. On a 32-bit architecture, they'll go from 64 bits (for the two ints) to 96 bits (for the ints plus the vptr); on a 64-bit architecture,
they may go from 64 to 128 bits, because pointers on such architectures are 64 bits in size. Addition of a vptr to Point will thus increase its size by 50–
100%! No longer can Point objects fit in a 64-bit register. Furthermore, Point objects in C++ can no longer look like the same structure declared in
another language such as C, because their foreign language counterparts will lack the vptr. As a result, it is no longer possible to pass Points to and
from functions written in other languages unless you explicitly compensate for the vptr, which is itself an implementation detail and hence unportable.

The bottom line is that gratuitously declaring all destructors virtual is just as wrong as never declaring them virtual. In fact, many people summarize the
situation this way: declare a virtual destructor in a class if and only if that class contains at least one virtual function.

It is possible to get bitten by the non-virtual destructor problem even in the complete absence of virtual functions. For example, the standard string type
contains no virtual functions, but misguided programmers sometimes use it as a base class anyway:

class SpecialString: public std::string {   // bad idea! std::string has a

  ...                                       // non-virtual destructor

};



At first glance, this may look innocuous, but if anywhere in an application you somehow convert a pointer-to- SpecialString into a pointer-to- string and
you then use delete on the string pointer, you are instantly transported to the realm of undefined behavior:

SpecialString *pss =   new SpecialString("Impending Doom");

std::string *ps;

...

ps = pss;                               // SpecialString* std::string*

...

delete ps;                              // undefined! In practice,

                                        // *ps's SpecialString resources

                                        // will be leaked, because the

                                        // SpecialString destructor won't

                                        // be called.

The same analysis applies to any class lacking a virtual destructor, including all the STL container types (e.g., vector, list, set, tr1::unordered_map (see
Item 54), etc.). If you're ever tempted to inherit from a standard container or any other class with a non-virtual destructor, resist the temptation!
(Unfortunately, C++ offers no derivation-prevention mechanism akin to Java's final classes or C#'s sealed classes.)

Occasionally it can be convenient to give a class a pure virtual destructor. Recall that pure virtual functions result in abstract classes — classes that can't
be instantiated (i.e., you can't create objects of that type). Sometimes, however, you have a class that you'd like to be abstract, but you don't have any
pure virtual functions. What to do? Well, because an abstract class is intended to be used as a base class, and because a base class should have a
virtual destructor, and because a pure virtual function yields an abstract class, the solution is simple: declare a pure virtual destructor in the class you
want to be abstract. Here's an example:

class AWOV {                            // AWOV = "Abstract w/o Virtuals"

public:

  virtual ~AWOV() = 0;                  // declare pure virtual destructor

};

This class has a pure virtual function, so it's abstract, and it has a virtual destructor, so you won't have to worry about the destructor problem. There is
one twist, however: you must provide a definition for the pure virtual destructor:

AWOV::~AWOV() {}                     // definition of pure virtual    dtor

The way destructors work is that the most derived class's destructor is called first, then the destructor of each base class is called. Compilers will
generate a call to ~AWOV from its derived classes' destructors, so you have to be sure to provide a body for the function. If you don't, the linker will
complain.

The rule for giving base classes virtual destructors applies only to polymorphic base classes — to base classes designed to allow the manipulation of
derived class types through base class interfaces. TimeKeeper is a polymorphic base class, because we expect to be able to manipulate AtomicClock
and WaterClock objects, even if we have only TimeKeeper pointers to them.

Not all base classes are designed to be used polymorphically. Neither the standard string type, for example, nor the STL container types are designed to
be base classes at all, much less polymorphic ones. Some classes are designed to be used as base classes, yet are not designed to be used
polymorphically. Such classes — examples include Uncopyable from Item 6 and input_iterator_tag from the standard library (see Item 47) — are not
designed to allow the manipulation of derived class objects via base class interfaces. As a result, they don't need virtual destructors.

Things to Remember



Polymorphic base classes should declare virtual destructors. If a class has any virtual functions, it should have a virtual destructor.

Classes not designed to be base classes or not designed to be used polymorphically should not declare virtual destructors.
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Item 8: Prevent exceptions from leaving destructors

C++ doesn't prohibit destructors from emitting exceptions, but it certainly discourages the practice. With good reason. Consider:

class Widget {

public:

  ...

  ~Widget() { ... }            // assume this might emit an exception

};

void doSomething()

{

  std::vector<Widget> v;

  ...

}                                // v is automatically destroyed here

When the vector v is destroyed, it is responsible for destroying all the Widgets it contains. Suppose v has ten Widgets in it, and during destruction of the
first one, an exception is thrown. The other nine Widgets still have to be destroyed (otherwise any resources they hold would be leaked), so v should
invoke their destructors. But suppose that during those calls, a second Widget destructor throws an exception. Now there are two simultaneously active
exceptions, and that's one too many for C++. Depending on the precise conditions under which such pairs of simultaneously active exceptions arise,
program execution either terminates or yields undefined behavior. In this example, it yields undefined behavior. It would yield equally undefined behavior
using any other standard library container (e.g., list, set), any container in TR1 (see Item 54), or even an array. Not that containers or arrays are required
to get into trouble. Premature program termination or undefined behavior can result from destructors emitting exceptions even without using containers
and arrays. C++ does not like destructors that emit exceptions!

That's easy enough to understand, but what should you do if your destructor needs to perform an operation that may fail by throwing an exception? For
example, suppose you're working with a class for database connections:

class DBConnection {

public:

  ...

  static DBConnection create();        // function to return

                                       // DBConnection objects; params

                                       // omitted for simplicity

  void close();                        // close connection; throw an

};                                     // exception if closing fails

To ensure that clients don't forget to call close on DBConnection objects, a reasonable idea would be to create a resource-managing class for
DBConnection that calls close in its destructor. Such resource-managing classes are explored in detail in Chapter 3, but here, it's enough to consider
what the destructor for such a class would look like:

class DBConn {                          // class to manage DBConnection

public:                                 // objects

  ...

  ~DBConn()                            // make sure database connections

  {                                     // are always closed



   db.close();

   }

private:

  DBConnection db;

};

That allows clients to program like this:

{                                       // open a block

   DBConn dbc(DBConnection::create());  // create DBConnection object

                                        // and turn it over to a DBConn

                                        // object to manage

 ...                                    // use the DBConnection object

                                        // via the DBConn interface

}                                       // at end of block, the DBConn

                                        // object is destroyed, thus

                                        // automatically calling close on

                                        // the DBConnection object

This is fine as long as the call to close succeeds, but if the call yields an exception, DBConn's destructor will propagate that exception, i.e., allow it to
leave the destructor. That's a problem, because destructors that throw mean trouble.

There are two primary ways to avoid the trouble. DBConn's destructor could:

Terminate the program if close tHRows, typically by calling abort:

DBConn::~DBConn()

{

 try { db.close(); }

 catch (...) {

   make log entry that the call to close failed;

   std::abort();

 }

}

This is a reasonable option if the program cannot continue to run after an error is encountered during destruction. It has the advantage that if
allowing the exception to propagate from the destructor would lead to undefined behavior, this prevents that from happening. That is, calling abort
may forestall undefined behavior.

Swallow the exception arising from the call to close:

DBConn::~DBConn()



{

 try { db.close(); }

 catch (...) {

      make log entry that the call to close failed;

 }

}

In general, swallowing exceptions is a bad idea, because it suppresses important information — something failed! Sometimes, however,
swallowing exceptions is preferable to running the risk of premature program termination or undefined behavior. For this to be a viable option, the
program must be able to reliably continue execution even after an error has been encountered and ignored.

Neither of these approaches is especially appealing. The problem with both is that the program has no way to react to the condition that led to close
tHRowing an exception in the first place.

A better strategy is to design DBConn's interface so that its clients have an opportunity to react to problems that may arise. For example, DBConn could
offer a close function itself, thus giving clients a chance to handle exceptions arising from that operation. It could also keep track of whether its
DBConnection had been closed, closing it itself in the destructor if not. That would prevent a connection from leaking. If the call to close were to fail in the
DBConnection destructor, however, we'd be back to terminating or swallowing:

class DBConn {

public:

  ...

  void close()                                     // new function for

  {                                                // client use

    db.close();

    closed = true;

  }

  ~DBConn()

   {

   if (!closed) {

   try {                                            // close the connection

     db.close();                                    // if the client didn't

   }

   catch (...) {                                    // if closing fails,

     make log entry that call to close failed;   // note that and

     ...                                             // terminate or swallow

   }

  }

private:

  DBConnection db;

  bool closed;

};



Moving the responsibility for calling close from DBConn's destructor to DBConn's client (with DBConn's destructor containing a "backup" call) may strike
you as an unscrupulous shift of burden. You might even view it as a violation of Item 18's advice to make interfaces easy to use correctly. In fact, it's
neither. If an operation may fail by throwing an exception and there may be a need to handle that exception, the exception has to come from some non-
destructor function. That's because destructors that emit exceptions are dangerous, always running the risk of premature program termination or
undefined behavior. In this example, telling clients to call close themselves doesn't impose a burden on them; it gives them an opportunity to deal with
errors they would otherwise have no chance to react to. If they don't find that opportunity useful (perhaps because they believe that no error will really
occur), they can ignore it, relying on DBConn's destructor to call close for them. If an error occurs at that point — if close does throw — they're in no
position to complain if DBConn swallows the exception or terminates the program. After all, they had first crack at dealing with the problem, and they
chose not to use it.

Things to Remember

Destructors should never emit exceptions. If functions called in a destructor may throw, the destructor should catch any exceptions,
then swallow them or terminate the program.

If class clients need to be able to react to exceptions thrown during an operation, the class should provide a regular (i.e., non-
destructor) function that performs the operation.
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Item 9: Never call virtual functions during construction or destruction

I'll begin with the recap: you shouldn't call virtual functions during construction or destruction, because the calls won't do what you think, and if they did,
you'd still be unhappy. If you're a recovering Java or C# programmer, pay close attention to this Item, because this is a place where those languages zig,
while C++ zags.

Suppose you've got a class hierarchy for modeling stock transactions, e.g., buy orders, sell orders, etc. It's important that such transactions be auditable,
so each time a transaction object is created, an appropriate entry needs to be created in an audit log. This seems like a reasonable way to approach the
problem:

class Transaction {                               // base class for all

public:                                           // transactions

  Transaction();

  virtual void logTransaction() const = 0;       // make type-dependent

                                                 // log entry

  ...

};

Transaction::Transaction()                        // implementation of

{                                                 // base class ctor

  ...

  logTransaction();                               // as final action, log this

}                                                 // transaction

class BuyTransaction: public Transaction {        // derived class

public:

  virtual void logTransaction() const;          // how to log trans-

                                                // actions of this type

  ...

};

class SellTransaction: public Transaction {      // derived class

public:

 virtual void logTransaction() const;           // how to log trans-

                                                // actions of this type

  ...

};

Consider what happens when this code is executed:

BuyTransaction b;

Clearly a BuyTransaction constructor will be called, but first, a transaction constructor must be called; base class parts of derived class objects are
constructed before derived class parts are. The last line of the transaction constructor calls the virtual function logTransaction, but this is where the
surprise comes in. The version of logTransaction that's called is the one in transaction, not the one in BuyTransaction — even though the type of object
being created is BuyTransaction. During base class construction, virtual functions never go down into derived classes. Instead, the object behaves as if it
were of the base type. Informally speaking, during base class construction, virtual functions aren't.

There's a good reason for this seemingly counterintuitive behavior. Because base class constructors execute before derived class constructors, derived
class data members have not been initialized when base class constructors run. If virtual functions called during base class construction went down to



derived classes, the derived class functions would almost certainly refer to local data members, but those data members would not yet have been
initialized. That would be a non-stop ticket to undefined behavior and late-night debugging sessions. Calling down to parts of an object that have not yet
been initialized is inherently dangerous, so C++ gives you no way to do it.

It's actually more fundamental than that. During base class construction of a derived class object, the type of the object is that of the base class. Not only
do virtual functions resolve to the base class, but the parts of the language using runtime type information (e.g., dynamic_cast (see Item 27) and typeid)
treat the object as a base class type. In our example, while the transaction constructor is running to initialize the base class part of a BuyTransaction
object, the object is of type TRansaction. That's how every part of C++ will treat it, and the treatment makes sense: the BuyTransaction-specific parts of
the object haven't been initialized yet, so it's safest to treat them as if they didn't exist. An object doesn't become a derived class object until execution of a
derived class constructor begins.

The same reasoning applies during destruction. Once a derived class destructor has run, the object's derived class data members assume undefined
values, so C++ treats them as if they no longer exist. Upon entry to the base class destructor, the object becomes a base class object, and all parts of
C++ — virtual functions, dynamic_casts, etc., — treat it that way.

In the example code above, the TRansaction constructor made a direct call to a virtual function, a clear and easy-to-see violation of this Item's guidance.
The violation is so easy to see, some compilers issue a warning about it. (Others don't. See Item 53 for a discussion of warnings.) Even without such a
warning, the problem would almost certainly become apparent before runtime, because the logTransaction function is pure virtual in TRansaction.
Unless it had been defined (unlikely, but possible — see Item 34), the program wouldn't link: the linker would be unable to find the necessary
implementation of transaction::logTransaction.

It's not always so easy to detect calls to virtual functions during construction or destruction. If transaction had multiple constructors, each of which had to
perform some of the same work, it would be good software engineering to avoid code replication by putting the common initialization code, including the
call to logTransaction, into a private non-virtual initialization function, say, init:

class Transaction {

public:

  Transaction()

  { init(); }                                      // call to non-virtual...

  virtual void logTransaction() const = 0;

  ...

private:

  void init()

  {

    ...

    logTransaction();                              // ...that calls a virtual!

  }

};

This code is conceptually the same as the earlier version, but it's more insidious, because it will typically compile and link without complaint. In this case,
because logTransaction is pure virtual in TRansaction, most runtime systems will abort the program when the pure virtual is called (typically issuing a
message to that effect). However, if logTransaction were a "normal" virtual function (i.e., not pure virtual) with an implementation in TRansaction, that
version would be called, and the program would merrily trot along, leaving you to figure out why the wrong version of logTransaction was called when a
derived class object was created. The only way to avoid this problem is to make sure that none of your constructors or destructors call virtual functions on
the object being created or destroyed and that all the functions they call obey the same constraint.

But how do you ensure that the proper version of logTransaction is called each time an object in the TRansaction hierarchy is created? Clearly, calling a
virtual function on the object from the TRansaction constructor(s) is the wrong way to do it.

There are different ways to approach this problem. One is to turn logTransaction into a non-virtual function in transaction, then require that derived class
constructors pass the necessary log information to the TRansaction constructor. That function can then safely call the non-virtual logTransaction. Like
this:

class Transaction {

public:

  explicit Transaction(const std::string& logInfo);

  void logTransaction(const std::string& logInfo) const;   // now a non-



                                                           // virtual func

  ...

};

Transaction::Transaction(const std::string& logInfo)

{

  ...

  logTransaction(logInfo);                                // now a non-

}                                                         // virtual call

class BuyTransaction: public Transaction {

public:

 BuyTransaction( parameters )

 : Transaction(createLogString( parameters ))             // pass log info

  { ... }                                                 // to base class

   ...                                                    // constructor

private:

  static std::string createLogString( parameters );

};

In other words, since you can't use virtual functions to call down from base classes during construction, you can compensate by having derived classes
pass necessary construction information up to base class constructors instead.

In this example, note the use of the (private) static function createLogString in BuyTransaction. Using a helper function to create a value to pass to a
base class constructor is often more convenient (and more readable) that going through contortions in the member initialization list to give the base class
what it needs. By making the function static, there's no danger of accidentally referring to the nascent BuyTransaction object's as-yet-uninitialized data
members. That's important, because the fact that those data members will be in an undefined state is why calling virtual functions during base class
construction and destruction doesn't go down into derived classes in the first place.

Things to Remember

Don't call virtual functions during construction or destruction, because such calls will never go to a more derived class than that of the
currently executing constructor or destructor.
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Item 10: Have assignment operators return a reference to *this

One of the interesting things about assignments is that you can chain them together:

int x, y, z;

x = y = z = 15;                        // chain of assignments

Also interesting is that assignment is right-associative, so the above assignment chain is parsed like this:

x = (y = (z = 15));

Here, 15 is assigned to z, then the result of that assignment (the updated z) is assigned to y, then the result of that assignment (the updated y) is
assigned to x.

The way this is implemented is that assignment returns a reference to its left-hand argument, and that's the convention you should follow when you
implement assignment operators for your classes:

class Widget {

public:

  ...

Widget& operator=(const Widget& rhs)   // return type is a reference to

{                                      // the current class

  ...

  return *this;                        // return the left-hand object

  }

  ...

};

This convention applies to all assignment operators, not just the standard form shown above. Hence:

class Widget {

public:

  ...

  Widget& operator+=(const Widget& rhs   // the convention applies to

  {                                      // +=, -=, *=, etc.

   ...

   return *this;

  }

   Widget& operator=(int rhs)            // it applies even if the

   {                                     // operator's parameter type

      ...                                // is unconventional

      return *this;

   }



   ...

};

This is only a convention; code that doesn't follow it will compile. However, the convention is followed by all the built-in types as well as by all the types in
(or soon to be in — see Item54) the standard library (e.g., string, vector, complex, tr1::shared_ptr, etc.). Unless you have a good reason for doing things
differently, don't.

Things to Remember

Have assignment operators return a reference to *this.
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Item 11: Handle assignment to self in operator=

An assignment to self occurs when an object is assigned to itself:

class Widget { ... };

Widget w;

...

w = w;                                   // assignment to self

This looks silly, but it's legal, so rest assured that clients will do it. Besides, assignment isn't always so recognizable. For example,

a[i] = a[j];                                      // potential assignment to self

is an assignment to self if i and j have the same value, and

*px = *py;                                        // potential assignment to self

is an assignment to self if px and py happen to point to the same thing. These less obvious assignments to self are the result of aliasing: having more
than one way to refer to an object. In general, code that operates on references or pointers to multiple objects of the same type needs to consider that the
objects might be the same. In fact, the two objects need not even be declared to be of the same type if they're from the same hierarchy, because a base
class reference or pointer can refer or point to an object of a derived class type:

class Base { ... };

class Derived: public Base { ... };

void doSomething(const Base& rb,                   // rb and *pd might actually be

                 Derived* pd);                      // the same object

If you follow the advice of Items 13 and 14, you'll always use objects to manage resources, and you'll make sure that the resource-managing objects
behave well when copied. When that's the case, your assignment operators will probably be self-assignment-safe without your having to think about it. If
you try to manage resources yourself, however (which you'd certainly have to do if you were writing a resource-managing class), you can fall into the trap
of accidentally releasing a resource before you're done using it. For example, suppose you create a class that holds a raw pointer to a dynamically
allocated bitmap:

class Bitmap { ... };

class Widget {

  ...

private:

  Bitmap *pb;                                     // ptr to a heap-allocated object

};



Here's an implementation of operator= that looks reasonable on the surface but is unsafe in the presence of assignment to self. (It's also not exception-
safe, but we'll deal with that in a moment.)

Widget&

Widget::operator=(const Widget& rhs)              // unsafe impl. of operator=

{

  delete pb;                                      // stop using current bitmap

  pb = new Bitmap(*rhs.pb);                       // start using a copy of rhs's bitmap

  return *this;                                   // see Item 10

}

The self-assignment problem here is that inside operator=, *this (the target of the assignment) and rhs could be the same object. When they are, the
delete not only destroys the bitmap for the current object, it destroys the bitmap for rhs, too. At the end of the function, the Widget — which should not
have been changed by the assignment to self — finds itself holding a pointer to a deleted object!

The traditional way to prevent this error is to check for assignment to self via an identity test at the top of operator=:

Widget& Widget::operator=(const Widget& rhs)

{

  if (this == &rhs) return *this;   // identity test: if a self-assignment,

                                    // do nothing

  delete pb;

  pb = new Bitmap(*rhs.pb);

  return *this;

}

This works, but I mentioned above that the previous version of operator= wasn't just self-assignment-unsafe, it was also exception-unsafe, and this
version continues to have exception trouble. In particular, if the "new Bitmap" expression yields an exception (either because there is insufficient memory
for the allocation or because Bitmap's copy constructor throws one), the Widget will end up holding a pointer to a deleted Bitmap. Such pointers are toxic.
You can't safely delete them. You can't even safely read them. About the only safe thing you can do with them is spend lots of debugging energy figuring
out where they came from.

Happily, making operator= exception-safe typically renders it self-assignment-safe, too. As a result, it's increasingly common to deal with issues of self-
assignment by ignoring them, focusing instead on achieving exception safety. Item 29 explores exception safety in depth, but in this Item, it suffices to
observe that in many cases, a careful ordering of statements can yield exception-safe (and self-assignment-safe) code. Here, for example, we just have
to be careful not to delete pb until after we've copied what it points to:

Widget& Widget::operator=(const Widget& rhs)

{

  Bitmap *pOrig = pb;               // remember original pb

  pb = new Bitmap(*rhs.pb);         // make pb point to a copy of *pb

  delete pOrig;                     // delete the original pb

  return *this;

}



Now, if "new Bitmap" throws an exception, pb (and the Widget it's inside of) remains unchanged. Even without the identity test, this code handles
assignment to self, because we make a copy of the original bitmap, delete the original bitmap, then point to the copy we made. It may not be the most
efficient way to handle self-assignment, but it does work.

If you're concerned about efficiency, you could put the identity test back at the top of the function. Before doing that, however, ask yourself how often you
expect self-assignments to occur, because the test isn't free. It makes the code (both source and object) a bit bigger, and it introduces a branch into the
flow of control, both of which can decrease runtime speed. The effectiveness of instruction prefetching, caching, and pipelining can be reduced, for
example.

An alternative to manually ordering statements in operator= to make sure the implementation is both exception- and self-assignment-safe is to use the
technique known as "copy and swap." This technique is closely associated with exception safety, so it's described in Item 29. However, it's a common
enough way to write operator= that it's worth seeing what such an implementation often looks like:

class Widget {

  ...

  void swap(Widget& rhs);   // exchange *this's and rhs's data;

  ...                       // see Item 29 for details

};

Widget& Widget::operator=(const Widget& rhs)

{

  Widget temp(rhs);             // make a copy of rhs's data

  swap(temp);                   // swap *this's data with the copy's

  return *this;

}

A variation on this theme takes advantage of the facts that (1) a class's copy assignment operator may be declared to take its argument by value and (2)
passing something by value makes a copy of it (see Item 20):

Widget& Widget::operator=(Widget rhs)   // rhs is a copy of the object

{                                       // passed in — note pass by val

  swap(rhs);                            // swap *this's data with

                                        // the copy's

  return *this;

}

Personally, I worry that this approach sacrifices clarity at the altar of cleverness, but by moving the copying operation from the body of the function to
construction of the parameter, it's a fact that compilers can sometimes generate more efficient code.

Things to Remember

Make sure operator= is well-behaved when an object is assigned to itself. Techniques include comparing addresses of source and
target objects, careful statement ordering, and copy-and-swap.

Make sure that any function operating on more than one object behaves correctly if two or more of the objects are the same.
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Item 12: Copy all parts of an object

In well-designed object-oriented systems that encapsulate the internal parts of objects, only two functions copy objects: the aptly named copy constructor
and copy assignment operator. We'll call these the copying functions. Item 5 observes that compilers will generate the copying functions, if needed, and
it explains that the compiler-generated versions do precisely what you'd expect: they copy all the data of the object being copied.

When you declare your own copying functions, you are indicating to compilers that there is something about the default implementations you don't like.
Compilers seem to take offense at this, and they retaliate in a curious fashion: they don't tell you when your implementations are almost certainly wrong.

Consider a class representing customers, where the copying functions have been manually written so that calls to them are logged:

void logCall(const std::string& funcName);          // make a log entry

class Customer {

public:

  ...

  Customer(const Customer& rhs);

  Customer& operator=(const Customer& rhs);

  ...

private:

  std::string name;

};

Customer::Customer(const Customer& rhs)

: name(rhs.name)                                 // copy rhs's data

{

  logCall("Customer copy constructor");

}

Customer& Customer::operator=(const Customer& rhs)

{

  logCall("Customer copy assignment operator");

  name = rhs.name;                               // copy rhs's data

  return *this;                                  // see Item 10

}

Everything here looks fine, and in fact everything is fine — until another data member is added to Customer:

class Date { ... };       // for dates in time

class Customer {

public:

  ...                     // as before



private:

  std::string name;

  Date lastTransaction;

};

At this point, the existing copying functions are performing a partial copy: they're copying the customer's name, but not its lastTransaction. Yet most
compilers say nothing about this, not even at maximal warning level (see also Item 53). That's their revenge for your writing the copying functions
yourself. You reject the copying functions they'd write, so they don't tell you if your code is incomplete. The conclusion is obvious: if you add a data
member to a class, you need to make sure that you update the copying functions, too. (You'll also need to update all the constructors (see Items 4 and
45) as well as any non-standard forms of operator= in the class ( Item 10 gives an example). If you forget, compilers are unlikely to remind you.)

One of the most insidious ways this issue can arise is through inheritance. Consider:

class PriorityCustomer: public Customer {                  // a derived class

public:

   ...

   PriorityCustomer(const PriorityCustomer& rhs);

   PriorityCustomer& operator=(const PriorityCustomer& rhs);

   ...

private:

   int priority;

};

PriorityCustomer::PriorityCustomer(const PriorityCustomer& rhs)

: priority(rhs.priority)

{

  logCall("PriorityCustomer copy constructor");

}

PriorityCustomer&

PriorityCustomer::operator=(const PriorityCustomer& rhs)

{

  logCall("PriorityCustomer copy assignment operator");

  priority = rhs.priority;

  return *this;

}

PriorityCustomer's copying functions look like they're copying everything in PriorityCustomer, but look again. Yes, they copy the data member that
PriorityCustomer declares, but every PriorityCustomer also contains a copy of the data members it inherits from Customer, and those data members are
not being copied at all! PriorityCustomer's copy constructor specifies no arguments to be passed to its base class constructor (i.e., it makes no mention of
Customer on its member initialization list), so the Customer part of the PriorityCustomer object will be initialized by the Customer constructor taking no
arguments — by the default constructor. (Assuming it has one. If not, the code won't compile.) That constructor will perform a default initialization for
name and lastTransaction.



The situation is only slightly different for PriorityCustomer's copy assignment operator. It makes no attempt to modify its base class data members in any
way, so they'll remain unchanged.

Any time you take it upon yourself to write copying functions for a derived class, you must take care to also copy the base class parts. Those parts are
typically private, of course (see Item 22), so you can't access them directly. Instead, derived class copying functions must invoke their corresponding
base class functions:

PriorityCustomer::PriorityCustomer(const PriorityCustomer& rhs)

:    Customer(rhs),                   // invoke base class copy ctor

  priority(rhs.priority)

{

  logCall("PriorityCustomer copy constructor");

}

PriorityCustomer&

PriorityCustomer::operator=(const PriorityCustomer& rhs)

{

  logCall("PriorityCustomer copy assignment operator");

  Customer::operator=(rhs);           // assign base class parts

  priority = rhs.priority;

  return *this;

}

The meaning of "copy all parts" in this Item's title should now be clear. When you're writing a copying function, be sure to (1) copy all local data members
and (2) invoke the appropriate copying function in all base classes, too.

In practice, the two copying functions will often have similar bodies, and this may tempt you to try to avoid code duplication by having one function call
the other. Your desire to avoid code duplication is laudable, but having one copying function call the other is the wrong way to achieve it.

It makes no sense to have the copy assignment operator call the copy constructor, because you'd be trying to construct an object that already exists. This
is so nonsensical, there's not even a syntax for it. There are syntaxes that look like you're doing it, but you're not; and there are syntaxes that do do it in a
backwards kind of way, but they corrupt your object under some conditions. So I'm not going to show you any of those syntaxes. Simply accept that
having the copy assignment operator call the copy constructor is something you don't want to do.

Trying things the other way around — having the copy constructor call the copy assignment operator — is equally nonsensical. A constructor initializes
new objects, but an assignment operator applies only to objects that have already been initialized. Performing an assignment on an object under
construction would mean doing something to a not-yet-initialized object that makes sense only for an initialized object. Nonsense! Don't try it.

Instead, if you find that your copy constructor and copy assignment operator have similar code bodies, eliminate the duplication by creating a third
member function that both call. Such a function is typically private and is often named init. This strategy is a safe, proven way to eliminate code
duplication in copy constructors and copy assignment operators.

Things to Remember

Copying functions should be sure to copy all of an object's data members and all of its base class parts.

Don't try to implement one of the copying functions in terms of the other. Instead, put common functionality in a third function that both
call.
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Chapter 3. Resource Management
A resource is something that, once you're done using it, you need to return to the system. If you don't, bad things happen. In C++ programs, the most
commonly used resource is dynamically allocated memory (if you allocate memory and never deallocate it, you've got a memory leak), but memory is
only one of many resources you must manage. Other common resources include file descriptors, mutex locks, fonts and brushes in graphical user
interfaces (GUIs), database connections, and network sockets. Regardless of the resource, it's important that it be released when you're finished with it.

Trying to ensure this by hand is difficult under any conditions, but when you consider exceptions, functions with multiple return paths, and maintenance
programmers modifying software without fully comprehending the impact of their changes, it becomes clear that ad hoc ways of dealing with resource
management aren't sufficient.

This chapter begins with a straightforward object-based approach to resource management built on C++'s support for constructors, destructors, and
copying operations. Experience has shown that disciplined adherence to this approach can all but eliminate resource management problems. The
chapter then moves on to Items dedicated specifically to memory management. These latter Items complement the more general Items that come earlier,
because objects that manage memory have to know how to do it properly.
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Item 13: Use objects to manage resources.

Suppose we're working with a library for modeling investments (e.g., stocks, bonds, etc.), where the various investment types inherit from a root class
Investment:

class Investment { ... };            // root class of hierarchy of

                                     // investment types

Further suppose that the way the library provides us with specific Investment objects is through a factory function (see Item 7):

Investment* createInvestment();  // return ptr to dynamically allocated

                                 // object in the Investment hierarchy;

                                 // the caller must delete it

                                 // (parameters omitted for simplicity)

As the comment indicates, callers of createInvestment are responsible for deleting the object that function returns when they are done with it. Consider,
then, a function f written to fulfill this obligation:

void f()

{

  Investment *pInv = createInvestment();         // call factory function

  ...                                            // use pInv

  delete pInv;                                   // release object

}

This looks okay, but there are several ways f could fail to delete the investment object it gets from createInvestment. There might be a premature return
statement somewhere inside the "..." part of the function. If such a return were executed, control would never reach the delete statement. A similar
situation would arise if the uses of createInvestment and delete were in a loop, and the loop was prematurely exited by a continue or goto statement.
Finally, some statement inside the "..." might throw an exception. If so, control would again not get to the delete. Regardless of how the delete were
skipped, we'd leak not only the memory containing the investment object but also any resources held by that object.

Of course, careful programming could prevent these kinds of errors, but think about how the code might change over time. As the software gets
maintained, somebody might add a return or continue statement without fully grasping the repercussions on the rest of the function's resource
management strategy. Even worse, the "..." part of f might call a function that never used to throw an exception but suddenly starts doing so after it has
been "improved." Relying on f always getting to its delete statement simply isn't viable.

To make sure that the resource returned by createInvestment is always released, we need to put that resource inside an object whose destructor will
automatically release the resource when control leaves f. In fact, that's half the idea behind this Item: by putting resources inside objects, we can rely on
C++'s automatic destructor invocation to make sure that the resources are released. (We'll discuss the other half of the idea in a moment.)

Many resources are dynamically allocated on the heap, are used only within a single block or function, and should be released when control leaves that
block or function. The standard library's auto_ptr is tailor-made for this kind of situation. auto_ptr is a pointer-like object (a smart pointer) whose destructor
automatically calls delete on what it points to. Here's how to use auto_ptr to prevent f's potential resource leak:

void f()

{

  std::auto_ptr<Investment> pInv(createInvestment());  // call factory

                                                       // function



  ...                                                  // use pInv as

                                                       // before

}                                                      // automatically

                                                       // delete pInv via

                                                       // auto_ptr's dtor

This simple example demonstrates the two critical aspects of using objects to manage resources:

Resources are acquired and immediately turned over to resource-managing objects. Above, the resource returned by createInvestment is
used to initialize the auto_ptr that will manage it. In fact, the idea of using objects to manage resources is often called Resource Acquisition Is
Initialization (RAII), because it's so common to acquire a resource and initialize a resource-managing object in the same statement. Sometimes
acquired resources are assigned to resource-managing objects instead of initializing them, but either way, every resource is immediately turned
over to a resource-managing object at the time the resource is acquired.

Resource-managing objects use their destructors to ensure that resources are released . Because destructors are called automatically
when an object is destroyed (e.g., when an object goes out of scope), resources are correctly released, regardless of how control leaves a block.
Things can get tricky when the act of releasing resources can lead to exceptions being thrown, but that's a matter addressed by Item 8, so we'll
not worry about it here.

Because an auto_ptr automatically deletes what it points to when the auto_ptr is destroyed, it's important that there never be more than one auto_ptr
pointing to an object. If there were, the object would be deleted more than once, and that would put your program on the fast track to undefined behavior.
To prevent such problems, auto_ptrs have an unusual characteristic: copying them (via copy constructor or copy assignment operator) sets them to null,
and the copying pointer assumes sole ownership of the resource!

std::auto_ptr<Investment>                 // pInv1 points to the

  pInv1(createInvestment());              // object returned from

                                          // createInvestment

std::auto_ptr<Investment> pInv2(pInv1);   // pInv2 now points to the

                                          // object; pInv1 is now null

pInv1 = pInv2;                            // now pInv1 points to the

                                          // object, and pInv2 is null

This odd copying behavior, plus the underlying requirement that resources managed by auto_ptrs must never have more than one auto_ptr pointing to
them, means that auto_ptrs aren't the best way to manage all dynamically allocated resources. For example, STL containers require that their contents
exhibit "normal" copying behavior, so containers of auto_ptr aren't allowed.

An alternative to auto_ptr is a reference-counting smart pointer (RCSP). An RCSP is a smart pointer that keeps track of how many objects point to a
particular resource and automatically deletes the resource when nobody is pointing to it any longer. As such, RCSPs offer behavior that is similar to that
of garbage collection. Unlike garbage collection, however, RCSPs can't break cycles of references (e.g., two otherwise unused objects that point to one
another).

TR1's tr1::shared_ptr (see Item 54) is an RCSP, so you could write f this way:

void f()

{

  ...

  std::tr1::shared_ptr<Investment>

    pInv(createInvestment());             // call factory function

  ...                                     // use pInv as before



}                                         // automatically delete

                                          // pInv via shared_ptr's dtor

This code looks almost the same as that employing auto_ptr, but copying shared_ptrs behaves much more naturally:

void f()

{

  ...

  std::tr1::shared_ptr<Investment>          // pInv1 points to the

    pInv1(createInvestment());              // object returned from

                                            // createInvestment

  std::tr1::shared_ptr<Investment>          // both 

pInv1 and pInv2 now

    pInv2(pInv1);                           // point to the object

  pInv1 = pInv2;                            // ditto — nothing has

                                            // changed

  ...

}                                           // pInv1 and pInv2 are

                                            // destroyed, and the

                                            // object they point to is

                                            // automatically deleted

Because copying tr1::shared_ptrs works "as expected," they can be used in STL containers and other contexts where auto_ptr's unorthodox copying
behavior is inappropriate.

Don't be misled, though. This Item isn't about auto_ptr, tr1::shared_ptr, or any other kind of smart pointer. It's about the importance of using objects to
manage resources. auto_ptr and tr1::shared_ptr are just examples of objects that do that. (For more information on tr1:shared_ptr, consult Items 14, 18,
and 54.)

Both auto_ptr and tr1::shared_ptr use delete in their destructors, not delete []. (Item 16 describes the difference.) That means that using auto_ptr or
TR1::shared_ptr with dynamically allocated arrays is a bad idea, though, regrettably, one that will compile:

std::auto_ptr<std::string>                       // bad idea! the wrong

  aps(new std::string[10]);                      // delete form will be used

std::tr1::shared_ptr<int> spi(new int[1024]);    // same problem

You may be surprised to discover that there is nothing like auto_ptr or TR1::shared_ptr for dynamically allocated arrays in C++, not even in TR1. That's
because vector and string can almost always replace dynamically allocated arrays. If you still think it would be nice to have auto_ptr- and
TR1::shared_ptr-like classes for arrays, look to Boost (see Item 55). There you'll be pleased to find the boost::scoped_array and boost::shared_array
classes that offer the behavior you're looking for.

This Item's guidance to use objects to manage resources suggests that if you're releasing resources manually (e.g., using delete other than in a
resource-managing class), you're doing something wrong. Pre-canned resource-managing classes like auto_ptr and tr1::shared_ptr often make following



this Item's advice easy, but sometimes you're using a resource where these pre-fab classes don't do what you need. When that's the case, you'll need to
craft your own resource-managing classes. That's not terribly difficult to do, but it does involve some subtleties you'll need to consider. Those
considerations are the topic of Items 14 and 15.

As a final comment, I have to point out that createInvestment's raw pointer return type is an invitation to a resource leak, because it's so easy for callers
to forget to call delete on the pointer they get back. (Even if they use an auto_ptr or tr1::shared_ptr to perform the delete, they still have to remember to
store createInvestment's return value in a smart pointer object.) Combatting that problem calls for an interface modification to createInvestment, a topic I
address in Item 18.

Things to Remember

To prevent resource leaks, use RAII objects that acquire resources in their constructors and release them in their destructors.

Two commonly useful RAII classes are TR1::shared_ptr and auto_ptr. tr1::shared_ptr is usually the better choice, because its behavior
when copied is intuitive. Copying an auto_ptr sets it to null.
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Item 14: Think carefully about copying behavior in resource-managing classes.

Item 13 introduces the idea of Resource Acquisition Is Initialization  (RAII) as the backbone of resource-managing classes, and it describes how auto_ptr
and TR1::shared_ptr are manifestations of this idea for heap-based resources. Not all resources are heap-based, however, and for such resources,
smart pointers like auto_ptr and TR1::shared_ptr are generally inappropriate as resource handlers. That being the case, you're likely to find yourself
needing to create your own resource-managing classes from time to time.

For example, suppose you're using a C API to manipulate mutex objects of type Mutex offering functions lock and unlock:

void lock(Mutex *pm);               // lock mutex pointed to by pm

void unlock(Mutex *pm);             // unlock the mutex

To make sure that you never forget to unlock a Mutex you've locked, you'd like to create a class to manage locks. The basic structure of such a class is
dictated by the RAII principle that resources are acquired during construction and released during destruction:

class Lock {

public:

  explicit Lock(Mutex *pm)

  : mutexPtr(pm)

  { lock(mutexPtr); }                          // acquire resource

  ~Lock() { unlock(mutexPtr); }                // release resource

private:

  Mutex *mutexPtr;

};

Clients use Lock in the conventional RAII fashion:

Mutex m;                    // define the mutex you need to use

...

{                           // create block to define critical section

 Lock ml(&m);               // lock the mutex

 

...                         // perform critical section operations

}                           // automatically unlock mutex at end

                            // of block

This is fine, but what should happen if a Lock object is copied?

Lock ml1(&m);                      // lock m



Lock ml2(ml1);                     // copy ml1 to ml2—what should

                                   // happen here?

This is a specific example of a more general question, one that every RAII class author must confront: what should happen when an RAII object is
copied? Most of the time, you'll want to choose one of the following possibilities:

Prohibit copying. In many cases, it makes no sense to allow RAII objects to be copied. This is likely to be true for a class like Lock, because it
rarely makes sense to have "copies" of synchronization primitives. When copying makes no sense for an RAII class, you should prohibit it. Item 6
explains how to do that: declare the copying operations private. For Lock, that could look like this:

class Lock: private Uncopyable {            // prohibit copying — see

public:                                     // Item 6

 ...                                        // as before

};

Reference-count the underlying resource. Sometimes it's desirable to hold on to a resource until the last object using it has been destroyed.
When that's the case, copying an RAII object should increment the count of the number of objects referring to the resource. This is the meaning of
"copy" used by tr1::shared_ptr.

Often, RAII classes can implement reference-counting copying behavior by containing a TR1::shared_ptr data member. For example, if Lock
wanted to employ reference counting, it could change the type of mutexPtr from Mutex* to TR1::shared_ptr<Mutex>. Unfortunately,
tr1::shared_ptr's default behavior is to delete what it points to when the reference count goes to zero, and that's not what we want. When we're
done with a Mutex, we want to unlock it, not delete it.

Fortunately, tr1::shared_ptr allows specification of a "deleter" — a function or function object to be called when the reference count goes to zero.
(This functionality does not exist for auto_ptr, which always deletes its pointer.) The deleter is an optional second parameter to the tr1::shared_ptr
constructor, so the code would look like this:

class Lock {

public:

  explicit Lock(Mutex *pm)       // init shared_ptr with the Mutex

  : mutexPtr(pm, unlock)         // to point to and the unlock func

  {                              // as the deleter

    lock(mutexPtr.get());   // see Item 15 for info on "get"

  }

private:

  std::tr1::shared_ptr<Mutex> mutexPtr;    // use shared_ptr

};                                         // instead of raw pointer

In this example, notice how the Lock class no longer declares a destructor. That's because there's no need to. Item 5 explains that a class's
destructor (regardless of whether it is compiler-generated or user-defined) automatically invokes the destructors of the class's non-static data
members. In this example, that's mutexPtr. But mutexPtr's destructor will automatically call the tr1::shared_ptr's deleter — unlock, in this case —
when the mutex's reference count goes to zero. (People looking at the class's source code would probably appreciate a comment indicating that
you didn't forget about destruction, you're just relying on the default compiler-generated behavior.)

Copy the underlying resource. Sometimes you can have as many copies of a resource as you like, and the only reason you need a resource-
managing class is to make sure that each copy is released when you're done with it. In that case, copying the resource-managing object should
also copy the resource it wraps. That is, copying a resource-managing object performs a "deep copy."

Some implementations of the standard string type consist of pointers to heap memory, where the characters making up the string are stored.



Objects of such strings contain a pointer to the heap memory. When a string object is copied, a copy is made of both the pointer and the memory
it points to. Such strings exhibit deep copying.

Transfer ownership of the underlying resource . On rare occasion, you may wish to make sure that only one RAII object refers to a raw
resource and that when the RAII object is copied, ownership of the resource is transferred from the copied object to the copying object. As
explained in Item 13, this is the meaning of "copy" used by auto_ptr.

The copying functions (copy constructor and copy assignment operator) may be generated by compilers, so unless the compiler-generated versions will
do what you want (Item 5 explains the default behavior), you'll need to write them yourself. In some cases, you'll also want to support generalized
versions of these functions. Such versions are described in Item 45.

Things to Remember

Copying an RAII object entails copying the resource it manages, so the copying behavior of the resource determines the copying
behavior of the RAII object.

Common RAII class copying behaviors are disallowing copying and performing reference counting, but other behaviors are possible.
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Item 15: Provide access to raw resources in resource-managing classes.

Resource-managing classes are wonderful. They're your bulwark against resource leaks, the absence of such leaks being a fundamental characteristic of
well-designed systems. In a perfect world, you'd rely on such classes for all your interactions with resources, never sullying your hands with direct access
to raw resources. But the world is not perfect. Many APIs refer to resources directly, so unless you plan to foreswear use of such APIs (something that's
rarely practical), you'll have to bypass resource-managing objects and deal with raw resources from time to time.

For example, Item 13 introduces the idea of using smart pointers like auto_ptr or TR1::shared_ptr to hold the result of a call to a factory function like
createInvestment:

std::tr1::shared_ptr<Investment> pInv(createInvestment());  // from Item 13

Suppose that a function you'd like to use when working with Investment objects is this:

int daysHeld(const Investment *pi);        // return number of days

                                           // investment has been held

You'd like to call it like this,

int days = daysHeld(pInv);                // error!

but the code won't compile: daysHeld wants a raw Investment* pointer, but you're passing an object of type TR1::shared_ptr<Investment>.

You need a way to convert an object of the RAII class (in this case, tr1::shared_ptr) into the raw resource it contains (e.g., the underlying Investment*).
There are two general ways to do it: explicit conversion and implicit conversion.

tr1::shared_ptr and auto_ptr both offer a get member function to perform an explicit conversion, i.e., to return (a copy of) the raw pointer inside the smart
pointer object:

int days = daysHeld(pInv.get());            // fine, passes the raw pointer

                                            // in pInv to daysHeld

Like virtually all smart pointer classes, TR1::shared_ptr and auto_ptr also overload the pointer dereferencing operators ( operator-> and operator*), and
this allows implicit conversion to the underlying raw pointers:

class Investment {                         // root class for a hierarchy

public:                                    // of investment types

  bool isTaxFree() const;

  ...

};

Investment* createInvestment();                    // factory function

std::tr1::shared_ptr<Investment>                   // have tr1::shared_ptr

  pi1(createInvestment());                         // manage a resource

bool taxable1 = !(pi1->isTaxFree());               // access resource

                                                   // via operator->

...

std::auto_ptr<Investment> pi2(createInvestment()); // have auto_ptr



                                                   // manage a

                                                   // resource

bool taxable2 = !((*pi2).isTaxFree());             // access resource

                                                   // via operator*

...

Because it is sometimes necessary to get at the raw resource inside an RAII object, some RAII class designers grease the skids by offering an implicit
conversion function. For example, consider this RAII class for fonts that are native to a C API:

FontHandle getFont();               // from C API—params omitted

                                    // for simplicity

void releaseFont(FontHandle fh);    // from the same C API

class Font {                           // RAII class

public:

  explicit Font(FontHandle fh)         // acquire resource;

  : f(fh)                              // use pass-by-value, because the

  {}                                   // C API does

  ~Font() { releaseFont(f); }          // release resource

private:

  FontHandle f;                        // the raw font resource

};

Assuming there's a large font-related C API that deals entirely with FontHandles, there will be a frequent need to convert from Font objects to
FontHandles. The Font class could offer an explicit conversion function such as get:

class Font {

public:

  ...

  FontHandle get() const { return f; }  // explicit conversion function

  ...

};

Unfortunately, this would require that clients call get every time they want to communicate with the API:

void changeFontSize(FontHandle f, int newSize);     // from the C API

Font f(getFont());

int newFontSize;



...

changeFontSize(f.get(), newFontSize);               // explicitly convert

                                                    // Font to FontHandle

Some programmers might find the need to explicitly request such conversions off-putting enough to avoid using the class. That, in turn, would increase
the chances of leaking fonts, the very thing the Font class is designed to prevent.

The alternative is to have Font offer an implicit conversion function to its FontHandle:

class Font {

public:

  ...

  operator FontHandle() const { return f; }        // implicit conversion function

  

  ...

};

That makes calling into the C API easy and natural:

Font f(getFont());

int newFontSize;

...

changeFontSize(f, newFontSize);     // implicitly convert Font

                                    // to FontHandle

The downside is that implicit conversions increase the chance of errors. For example, a client might accidently create a FontHandle when a Font was
intended:

Font f1(getFont());

...

FontHandle f2 = f1;                 // oops! meant to copy a Font

                                    // object, but instead implicitly

                                    // converted f1 into its underlying

                                    // FontHandle, then copied that

Now the program has a FontHandle being managed by the Font object f1, but the FontHandle is also available for direct use as f2. That's almost never
good. For example, when f1 is destroyed, the font will be released, and f2 will dangle.

The decision about whether to offer explicit conversion from an RAII class to its underlying resource (e.g., via a get member function) or whether to allow



implicit conversion is one that depends on the specific task the RAII class is designed to perform and the circumstances in which it is intended to be used.
The best design is likely to be the one that adheres to Item 18's advice to make interfaces easy to use correctly and hard to use incorrectly. Often, an
explicit conversion function like get is the preferable path, because it minimizes the chances of unintended type conversions. Sometime, however, the
naturalness of use arising from implicit type conversions will tip the scales in that direction.

It may have occurred to you that functions returning the raw resource inside an RAII class are contrary to encapsulation. That's true, but it's not the
design disaster it may at first appear. RAII classes don't exist to encapsulate something; they exist to ensure that a particular action—resource release—
takes place. If desired, encapsulation of the resource can be layered on top of this primary functionality, but it's not necessary. Furthermore, some RAII
classes combine true encapsulation of implementation with very loose encapsulation of the underlying resource. For example, tr1::shared_ptr
encapsulates all its reference-counting machinery, but it still offers easy access to the raw pointer it contains. Like most well-designed classes, it hides
what clients don't need to see, but it makes available those things that clients honestly need to access.

Things to Remember

APIs often require access to raw resources, so each RAII class should offer a way to get at the resource it manages.

Access may be via explicit conversion or implicit conversion. In general, explicit conversion is safer, but implicit conversion is more
convenient for clients.
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Item 16: Use the same form in corresponding uses of new and delete.

What's wrong with this picture?

std::string *stringArray = new std::string[100];

...

delete stringArray;

Everything appears to be in order. The new is matched with a delete. Still, something is quite wrong. The program's behavior is undefined. At the very
least, 99 of the 100 string objects pointed to by stringArray are unlikely to be properly destroyed, because their destructors will probably never be called.

When you employ a new expression (i.e., dynamic creation of an object via a use of new), two things happen. First, memory is allocated (via a function
named operator new—see Items 49 and 51). Second, one or more constructors are called for that memory. When you employ a delete expression (i.e.,
use delete), two other things happen: one or more destructors are called for the memory, then the memory is deallocated (via a function named operator
delete—see Item 51). The big question for delete is this: how many objects reside in the memory being deleted? The answer to that determines how
many destructors must be called.

Actually, the question is simpler: does the pointer being deleted point to a single object or to an array of objects? It's a critical question, because the
memory layout for single objects is generally different from the memory layout for arrays. In particular, the memory for an array usually includes the size
of the array, thus making it easy for delete to know how many destructors to call. The memory for a single object lacks this information. You can think of
the different layouts as looking like this, where n is the size of the array:

This is just an example, of course. Compilers aren't required to implement things this way, though many do.

When you use delete on a pointer, the only way for delete to know whether the array size information is there is for you to tell it. If you use brackets in
your use of delete, delete assumes an array is pointed to. Otherwise, it assumes that a single object is pointed to:

std::string *stringPtr1 = new std::string;

std::string *stringPtr2 = new std::string[100];

...

delete stringPtr1;                       // delete an object

delete [] stringPtr2;                    // delete an array of objects

What would happen if you used the " []" form on stringPtr1? The result is undefined, but it's unlikely to be pretty. Assuming the layout above, delete would
read some memory and interpret what it read as an array size, then start invoking that many destructors, oblivious to the fact that the memory it's working
on not only isn't in the array, it's also probably not holding objects of the type it's busy destructing.

What would happen if you didn't use the " []" form on stringPtr2? Well, that's undefined too, but you can see how it would lead to too few destructors
being called. Furthermore, it's undefined (and sometimes harmful) for built-in types like ints, too, even though such types lack destructors.

The rule is simple: if you use [] in a new expression, you must use [] in the corresponding delete expression. If you don't use [] in a new expression, don't
use [] in the matching delete expression.

This is a particularly important rule to bear in mind when you are writing a class containing a pointer to dynamically allocated memory and also offering
multiple constructors, because then you must be careful to use the same form of new in all the constructors to initialize the pointer member. If you don't,
how will you know what form of delete to use in your destructor?

This rule is also noteworthy for the typedef-inclined, because it means that a typedef's author must document which form of delete should be employed
when new is used to conjure up objects of the typedef type. For example, consider this typedef:

typedef std::string AddressLines[4];   // a person's address has 4 lines,



                                       // each of which is a string

Because AddressLines is an array, this use of new,

std::string *pal = new AddressLines;   // note that "new AddressLines"

                                       // returns a string*, just like

                                       // "new string[4]" would

must be matched with the array form of delete:

delete pal;                           // undefined!

delete [] pal;                        // fine

To avoid such confusion, abstain from typedefs for array types. That's easy, because the standard C++ library (see Item 54) includes string and vector,
and those templates reduce the need for dynamically allocated arrays to nearly zero. Here, for example, AddressLines could be defined to be a vector of
strings, i.e., the type vector<string>.

Things to Remember

If you use [] in a new expression, you must use [] in the corresponding delete expression. If you don't use [] in a new expression, you
mustn't use [] in the corresponding delete expression.
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Item 17: Store newed objects in smart pointers in standalone statements.

Suppose we have a function to reveal our processing priority and a second function to do some processing on a dynamically allocated Widget in accord
with a priority:

int priority();

void processWidget(std::tr1::shared_ptr<Widget> pw, int priority);

Mindful of the wisdom of using objects to manage resources (see Item 13), processWidget uses a smart pointer (here, a TR1::shared_ptr) for the
dynamically allocated Widget it processes.

Consider now a call to processWidget:

processWidget(new Widget, priority());

Wait, don't consider that call. It won't compile. tr1::shared_ptr's constructor taking a raw pointer is explicit, so there's no implicit conversion from the raw
pointer returned by the expression "new Widget" to the TR1::shared_ptr required by processWidget. The following code, however, will compile:

processWidget(std::tr1::shared_ptr<Widget>(new Widget), priority());

Surprisingly, although we're using object-managing resources everywhere here, this call may leak resources. It's illuminating to see how.

Before compilers can generate a call to processWidget, they have to evaluate the arguments being passed as its parameters. The second argument is
just a call to the function priority, but the first argument, (" std::tr1::shared_ptr<Widget>(new Widget)") consists of two parts:

Execution of the expression " new Widget".

A call to the TR1::shared_ptr constructor.

Before processWidget can be called, then, compilers must generate code to do these three things:

Call priority.

Execute "new Widget".

Call the tr1::shared_ptr constructor.

C++ compilers are granted considerable latitude in determining the order in which these things are to be done. (This is different from the way languages
like Java and C# work, where function parameters are always evaluated in a particular order.) The "new Widget" expression must be executed before the
tr1::shared_ptr constructor can be called, because the result of the expression is passed as an argument to the tr1::shared_ptr constructor, but the call to
priority can be performed first, second, or third. If compilers choose to perform it second (something that may allow them to generate more efficient code),
we end up with this sequence of operations:

1. Execute "new Widget".

2. Call priority.

3. Call the tr1::shared_ptr constructor.

But consider what will happen if the call to priority yields an exception. In that case, the pointer returned from " new Widget" will be lost, because it won't
have been stored in the TR1::shared_ptr we were expecting would guard against resource leaks. A leak in the call to processWidget can arise because
an exception can intervene between the time a resource is created (via "new Widget") and the time that resource is turned over to a resource-managing
object.

The way to avoid problems like this is simple: use a separate statement to create the Widget and store it in a smart pointer, then pass the smart pointer
to processWidget:

std::tr1::shared_ptr<Widget> pw(new Widget);  // store newed object

                                              // in a smart pointer in a

                                              // standalone statement

processWidget(pw, priority());                // this call won't leak



This works because compilers are given less leeway in reordering operations across statements than within them. In this revised code, the " new Widget"
expression and the call to the TR1::shared_ptr constructor are in a different statement from the one calling priority, so compilers are not allowed to move
the call to priority between them.

Things to Remember

Store newed objects in smart pointers in standalone statements. Failure to do this can lead to subtle resource leaks when exceptions
are thrown.
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Chapter 4. Designs and Declarations
Software designs — approaches to getting the software to do what you want it to do — typically begin as fairly general ideas, but they eventually become
detailed enough to allow for the development of specific interfaces. These interfaces must then be translated into C++ declarations. In this chapter, we
attack the problem of designing and declaring good C++ interfaces. We begin with perhaps the most important guideline about designing interfaces of
any kind: that they should be easy to use correctly and hard to use incorrectly. That sets the stage for a number of more specific guidelines addressing a
wide range of topics, including correctness, efficiency, encapsulation, maintainability, extensibility, and conformance to convention.

The material that follows isn't everything you need to know about good interface design, but it highlights some of the most important considerations,
warns about some of the most frequent errors, and provides solutions to problems often encountered by class, function, and template designers.
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Item 18: Make interfaces easy to use correctly and hard to use incorrectly

C++ is awash in interfaces. Function interfaces. Class interfaces. Template interfaces. Each interface is a means by which clients interact with your code.
Assuming you're dealing with reasonable people, those clients are trying to do a good job. They want to use your interfaces correctly. That being the
case, if they use one incorrectly, your interface is at least partially to blame. Ideally, if an attempted use of an interface won't do what the client expects,
the code won't compile; and if the code does compile, it will do what the client wants.

Developing interfaces that are easy to use correctly and hard to use incorrectly requires that you consider the kinds of mistakes that clients might make.
For example, suppose you're designing the constructor for a class representing dates in time:

class Date {

public:

  Date(int month, int day, int year);

  ...

};

At first glance, this interface may seem reasonable (at least in the USA), but there are at least two errors that clients might easily make. First, they might
pass parameters in the wrong order:

Date d(30, 3, 1995);              // Oops! Should be "3, 30" , not "30, 3"

Second, they might pass an invalid month or day number:

Date d(2, 20, 1995);              // Oops! Should be "3, 30" , not "2, 20"

(This last example may look silly, but remember that on a keyboard, 2 is next to 3. Such "off by one" typing errors are not uncommon.)

Many client errors can be prevented by the introduction of new types. Indeed, the type system is your primary ally in preventing undesirable code from
compiling. In this case, we can introduce simple wrapper types to distinguish days, months, and years, then use these types in the Date constructor:

struct Day {            struct Month {                struct Year {

  explicit Day(int d)     explicit Month(int m)         explicit Year(int y)

  :val(d) {}              :val(m) {}                    :val(y){}

  int val;                int val;                      int val;

};                      };                            };

class Date {

public:

 Date(const Month& m, const Day& d, const Year& y);

 ...

};

Date d(30, 3, 1995);                      // error! wrong types

Date d(Day(30), Month(3), Year(1995));    // error! wrong types

Date d(Month(3), Day(30), Year(1995));    // okay, types are correct



Making Day, Month, and Year full-fledged classes with encapsulated data would be better than the simple use of structs above (see Item 22), but even
structs suffice to demonstrate that the judicious introduction of new types can work wonders for the prevention of interface usage errors.

Once the right types are in place, it can sometimes be reasonable to restrict the values of those types. For example, there are only 12 valid month values,
so the Month type should reflect that. One way to do this would be to use an enum to represent the month, but enums are not as type-safe as we might
like. For example, enums can be used like ints (see Item 2). A safer solution is to predefine the set of all valid Months:

class Month {

public:

  static Month Jan() { return Month(1); }   // functions returning all valid

  static Month Feb() { return Month(2); }   // Month values; see below for

  ...                                       // why these are functions, not

  static Month Dec() { return Month(12); }  // objects

  

  ...                                       // other member functions

private:

  explicit Month(int m);                    // prevent creation of new

                                            // Month values

  ...                                       // month-specific data

};

Date d(Month::Mar(), Day(30), Year(1995));

If the idea of using functions instead of objects to represent specific months strikes you as odd, it may be because you have forgotten that reliable
initialization of non-local static objects can be problematic. Item 4 can refresh your memory.

Another way to prevent likely client errors is to restrict what can be done with a type. A common way to impose restrictions is to add const. For example,
Item 3 explains how const-qualifying the return type from operator* can prevent clients from making this error for user-defined types:

if (a * b = c) ...                    // oops, meant to do a comparison!

In fact, this is just a manifestation of another general guideline for making types easy to use correctly and hard to use incorrectly: unless there's a good
reason not to, have your types behave consistently with the built-in types. Clients already know how types like int behave, so you should strive to have
your types behave the same way whenever reasonable. For example, assignment to a*b isn't legal if a and b are ints, so unless there's a good reason to
diverge from this behavior, it should be illegal for your types, too. When in doubt, do as the ints do.

The real reason for avoiding gratuitous incompatibilities with the built-in types is to offer interfaces that behave consistently. Few characteristics lead to
interfaces that are easy to use correctly as much as consistency, and few characteristics lead to aggravating interfaces as much as inconsistency. The
interfaces to STL containers are largely (though not perfectly) consistent, and this helps make them fairly easy to use. For example, every STL container
has a member function named size that tells how many objects are in the container. Contrast this with Java, where you use the length property for
arrays, the length method for Strings, and the size method for Lists; and with .NET, where Arrays have a property named Length, while ArrayLists have
a property named Count. Some developers think that integrated development environments (IDEs) render such inconsistencies unimportant, but they are
mistaken. Inconsistency imposes mental friction into a developer's work that no IDE can fully remove.

Any interface that requires that clients remember to do something is prone to incorrect use, because clients can forget to do it. For example, Item 13
introduces a factory function that returns pointers to dynamically allocated objects in an Investment hierarchy:

Investment* createInvestment();   // from Item 13; parameters omitted

                                  // for simplicity

To avoid resource leaks, the pointers returned from createInvestment must eventually be deleted, but that creates an opportunity for at least two types of
client errors: failure to delete a pointer, and deletion of the same pointer more than once.



Item 13 shows how clients can store createInvestment's return value in a smart pointer like auto_ptr or tr1::shared_ptr, thus turning over to the smart
pointer the responsibility for using delete. But what if clients forget to use the smart pointer? In many cases, a better interface decision would be to
preempt the problem by having the factory function return a smart pointer in the first place:

std::tr1::shared_ptr<Investment> createInvestment();

This essentially forces clients to store the return value in a TR1::shared_ptr, all but eliminating the possibility of forgetting to delete the underlying
Investment object when it's no longer being used.

In fact, returning a TR1::shared_ptr makes it possible for an interface designer to prevent a host of other client errors regarding resource release,
because, as Item 14 explains, TR1::shared_ptr allows a resource-release function — a "deleter" — to be bound to the smart pointer when the smart
pointer is created. (auto_ptr has no such capability.)

Suppose clients who get an Investment* pointer from createInvestment are expected to pass that pointer to a function called geTRidOfInvestment instead
of using delete on it. Such an interface would open the door to a new kind of client error, one where clients use the wrong resource-destruction
mechanism (i.e., delete instead of getridOfInvestment). The implementer of createInvestment can forestall such problems by returning a TR1::shared_ptr
with geTRidOfInvestment bound to it as its deleter.

tr1::shared_ptr offers a constructor taking two arguments: the pointer to be managed and the deleter to be called when the reference count goes to zero.
This suggests that the way to create a null tr1::shared_ptr with getridOfInvestment as its deleter is this:

std::tr1::shared_ptr<Investment>      // attempt to create a null

  pInv(0, getRidOfInvestment);        // shared_ptr with a custom deleter;

                                      // this won't compile

Alas, this isn't valid C++. The TR1::shared_ptr constructor insists on its first parameter being a pointer, and 0 isn't a pointer, it's an int. Yes, it's
convertible to a pointer, but that's not good enough in this case; tr1::shared_ptr insists on an actual pointer. A cast solves the problem:

std::tr1::shared_ptr<Investment>      // create a null shared_ptr with

  pInv(static_cast<Investment*>(0),   // getRidOfInvestment as its

        getRidOfInvestment);          // deleter; see Item 27 for info on

                                      // static_cast

This means that the code for implementing createInvestment to return a tr1::shared_ptr with geTRidOfInvestment as its deleter would look something
like this:

std::tr1::shared_ptr<Investment> createInvestment()

{

  std::tr1::shared_ptr<Investment> retVal(static_cast<Investment*>(0),

                                          getRidOfInvestment);

  retVal = ... ;                         // make retVal point to the

                                         // correct object

  return retVal;

}

Of course, if the raw pointer to be managed by pInv could be determined prior to creating pInv, it would be better to pass the raw pointer to pInv's
constructor instead of initializing pInv to null and then making an assignment to it. For details on why, consult Item 26.

An especially nice feature of tr1::shared_ptr is that it automatically uses its per-pointer deleter to eliminate another potential client error, the "cross-DLL
problem." This problem crops up when an object is created using new in one dynamically linked library (DLL) but is deleted in a different DLL. On many
platforms, such cross-DLL new/delete pairs lead to runtime errors. tr1::shared_ptr avoids the problem, because its default deleter uses delete from the
same DLL where the tr1::shared_ptr is created. This means, for example, that if Stock is a class derived from Investment and createInvestment is



implemented like this,

std::tr1::shared_ptr<Investment> createInvestment()

{

  return std::tr1::shared_ptr<Investment>(new Stock);

}

the returned tr1::shared_ptr can be passed among DLLs without concern for the cross-DLL problem. The tr1::shared_ptrs pointing to the Stock keep
track of which DLL's delete should be used when the reference count for the Stock becomes zero.

This Item isn't about tr1::shared_ptr — it's about making interfaces easy to use correctly and hard to use incorrectly — but tr1::shared_ptr is such an
easy way to eliminate some client errors, it's worth an overview of the cost of using it. The most common implementation of tr1::shared_ptr comes from
Boost (see Item 55). Boost's shared_ptr is twice the size of a raw pointer, uses dynamically allocated memory for bookkeeping and deleter-specific data,
uses a virtual function call when invoking its deleter, and incurs thread synchronization overhead when modifying the reference count in an application it
believes is multithreaded. (You can disable multithreading support by defining a preprocessor symbol.) In short, it's bigger than a raw pointer, slower than
a raw pointer, and uses auxiliary dynamic memory. In many applications, these additional runtime costs will be unnoticeable, but the reduction in client
errors will be apparent to everyone.

Things to Remember

Good interfaces are easy to use correctly and hard to use incorrectly. Your should strive for these characteristics in all your interfaces.

Ways to facilitate correct use include consistency in interfaces and behavioral compatibility with built-in types.

Ways to prevent errors include creating new types, restricting operations on types, constraining object values, and eliminating client
resource management responsibilities.

TR1::shared_ptr supports custom deleters. This prevents the cross-DLL problem, can be used to automatically unlock mutexes (see
Item 14), etc.
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Item 19: Treat class design as type design

In C++, as in other object-oriented programming languages, defining a new class defines a new type. Much of your time as a C++ developer will thus be
spent augmenting your type system. This means you're not just a class designer, you're a type designer. Overloading functions and operators,
controlling memory allocation and deallocation, defining object initialization and finalization — it's all in your hands. You should therefore approach class
design with the same care that language designers lavish on the design of the language's built-in types.

Designing good classes is challenging because designing good types is challenging. Good types have a natural syntax, intuitive semantics, and one or
more efficient implementations. In C++, a poorly planned class definition can make it impossible to achieve any of these goals. Even the performance
characteristics of a class's member functions may be affected by how they are declared.

How, then, do you design effective classes? First, you must understand the issues you face. Virtually every class requires that you confront the following
questions, the answers to which often lead to constraints on your design:

How should objects of your new type be created and destroyed ? How this is done influences the design of your class's constructors and
destructor, as well as its memory allocation and deallocation functions (operator new, operator new[], operator delete, and operator delete[] — see
Chapter 8), if you write them.

How should object initialization differ from object assignment? The answer to this question determines the behavior of and the differences
between your constructors and your assignment operators. It's important not to confuse initialization with assignment, because they correspond to
different function calls (see Item 4).

What does it mean for objects of your new type to be passed by value ? Remember, the copy constructor defines how pass-by-value is
implemented for a type.

What are the restrictions on legal values for your new type ? Usually, only some combinations of values for a class's data members are valid.
Those combinations determine the invariants your class will have to maintain. The invariants determine the error checking you'll have to do inside
your member functions, especially your constructors, assignment operators, and "setter" functions. It may also affect the exceptions your functions
throw and, on the off chance you use them, your functions' exception specifications.

Does your new type fit into an inheritance graph ? If you inherit from existing classes, you are constrained by the design of those classes,
particularly by whether their functions are virtual or non-virtual (see Items 34 and 36). If you wish to allow other classes to inherit from your class,
that affects whether the functions you declare are virtual, especially your destructor (see Item 7).

What kind of type conversions are allowed for your new type ? Your type exists in a sea of other types, so should there be conversions
between your type and other types? If you wish to allow objects of type T1 to be implicitly converted into objects of type T2, you will want to write
either a type conversion function in class T1 (e.g., operator T2) or a non-explicit constructor in class T2 that can be called with a single argument.
If you wish to allow explicit conversions only, you'll want to write functions to perform the conversions, but you'll need to avoid making them type
conversion operators or non-explicit constructors that can be called with one argument. (For an example of both implicit and explicit conversion
functions, see Item 15.)

What operators and functions make sense for the new type ? The answer to this question determines which functions you'll declare for your
class. Some functions will be member functions, but some will not (see Items 23, 24, and 46).

What standard functions should be disallowed ? Those are the ones you'll need to declare private (see Item 6).

Who should have access to the members of your new type ? This question helps you determine which members are public, which are
protected, and which are private. It also helps you determine which classes and/or functions should be friends, as well as whether it makes sense
to nest one class inside another.

What is the "undeclared interface" of your new type ? What kind of guarantees does it offer with respect to performance, exception safety (see
Item 29), and resource usage (e.g., locks and dynamic memory)? The guarantees you offer in these areas will impose constraints on your class
implementation.

How general is your new type? Perhaps you're not really defining a new type. Perhaps you're defining a whole family of types. If so, you don't
want to define a new class, you want to define a new class template.

Is a new type really what you need ? If you're defining a new derived class only so you can add functionality to an existing class, perhaps you'd
better achieve your goals by simply defining one or more non-member functions or templates.

These questions are difficult to answer, so defining effective classes can be challenging. Done well, however, user-defined classes in C++ yield types
that are at least as good as the built-in types, and that makes all the effort worthwhile.

Things to Remember

Class design is type design. Before defining a new type, be sure to consider all the issues discussed in this Item.
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Item 20: Prefer pass-by-reference-to-const to pass-by-value

By default, C++ passes objects to and from functions by value (a characteristic it inherits from C). Unless you specify otherwise, function parameters are
initialized with copies of the actual arguments, and function callers get back a copy of the value returned by the function. These copies are produced by
the objects' copy constructors. This can make pass-by-value an expensive operation. For example, consider the following class hierarchy:

class Person {

public:

  Person();                          // parameters omitted for simplicity

  virtual ~Person();                 // see Item 7 for why this is virtual

  ...

private:

  std::string name;

  std::string address;

};

class Student: public Person {

public:

  Student();                         // parameters again omitted

  ~Student();

  ...

private:

  std::string schoolName;

  std::string schoolAddress;

};

Now consider the following code, in which we call a function, validateStudent, that takes a Student argument (by value) and returns whether it has been
validated:

bool validateStudent(Student s);           // function taking a Student

                                           // by value

Student plato;                             // Plato studied under Socrates

bool platoIsOK = validateStudent(plato);   // call the function

What happens when this function is called?

Clearly, the Student copy constructor is called to initialize the parameter s from plato. Equally clearly, s is destroyed when validateStudent returns. So
the parameter-passing cost of this function is one call to the Student copy constructor and one call to the Student destructor.

But that's not the whole story. A Student object has two string objects within it, so every time you construct a Student object you must also construct two
string objects. A Student object also inherits from a Person object, so every time you construct a Student object you must also construct a Person object.
A Person object has two additional string objects inside it, so each Person construction also entails two more string constructions. The end result is that
passing a Student object by value leads to one call to the Student copy constructor, one call to the Person copy constructor, and four calls to the string
copy constructor. When the copy of the Student object is destroyed, each constructor call is matched by a destructor call, so the overall cost of passing a
Student by value is six constructors and six destructors!



Now, this is correct and desirable behavior. After all, you want all your objects to be reliably initialized and destroyed. Still, it would be nice if there were a
way to bypass all those constructions and destructions. There is: pass by reference-to-const:

bool validateStudent(const Student& s);

This is much more efficient: no constructors or destructors are called, because no new objects are being created. The const in the revised parameter
declaration is important. The original version of validateStudent took a Student parameter by value, so callers knew that they were shielded from any
changes the function might make to the Student they passed in; validateStudent would be able to modify only a copy of it. Now that the Student is being
passed by reference, it's necessary to also declare it const, because otherwise callers would have to worry about validateStudent making changes to the
Student they passed in.

Passing parameters by reference also avoids the slicing problem. When a derived class object is passed (by value) as a base class object, the base
class copy constructor is called, and the specialized features that make the object behave like a derived class object are "sliced" off. You're left with a
simple base class object — little surprise, since a base class constructor created it. This is almost never what you want. For example, suppose you're
working on a set of classes for implementing a graphical window system:

class Window {

public:

  ...

  std::string name() const;           // return name of window

  virtual void display() const;       // draw window and contents

};

class WindowWithScrollBars: public Window {

public:

  ...

  virtual void display() const;

};

All Window objects have a name, which you can get at through the name function, and all windows can be displayed, which you can bring about by
invoking the display function. The fact that display is virtual tells you that the way in which simple base class Window objects are displayed is apt to differ
from the way in which the fancier WindowWithScrollBars objects are displayed (see Items 34 and 36).

Now suppose you'd like to write a function to print out a window's name and then display the window. Here's the wrong way to write such a function:

void printNameAndDisplay(Window w)         // incorrect! parameter

{                                          // may be sliced!

  std::cout << w.name();

  w.display();

}

Consider what happens when you call this function with a WindowWithScrollBars object:

WindowWithScrollBars wwsb;

printNameAndDisplay(wwsb);

The parameter w will be constructed — it's passed by value, remember? — as a Window object, and all the specialized information that made wwsb act
like a WindowWithScrollBars object will be sliced off. Inside printNameAndDisplay, w will always act like an object of class Window (because it is an
object of class Window), regardless of the type of object passed to the function. In particular, the call to display inside printNameAndDisplay will always



call Window::display, never WindowWithScrollBars::display.

The way around the slicing problem is to pass w by reference-to-const:

void printNameAndDisplay(const Window& w)   // fine, parameter won't

{                                           // be sliced

  std::cout << w.name();

  w.display();

}

Now w will act like whatever kind of window is actually passed in.

If you peek under the hood of a C++ compiler, you'll find that references are typically implemented as pointers, so passing something by reference usually
means really passing a pointer. As a result, if you have an object of a built-in type (e.g., an int), it's often more efficient to pass it by value than by
reference. For built-in types, then, when you have a choice between pass-by-value and pass-by-reference-to-const, it's not unreasonable to choose pass-
by-value. This same advice applies to iterators and function objects in the STL, because, by convention, they are designed to be passed by value.
Implementers of iterators and function objects are responsible for seeing to it that they are efficient to copy and are not subject to the slicing problem.
(This is an example of how the rules change, depending on the part of C++ you are using — see Item 1.)

Built-in types are small, so some people conclude that all small types are good candidates for pass-by-value, even if they're user-defined. This is shaky
reasoning. Just because an object is small doesn't mean that calling its copy constructor is inexpensive. Many objects — most STL containers among
them — contain little more than a pointer, but copying such objects entails copying everything they point to. That can be very expensive.

Even when small objects have inexpensive copy constructors, there can be performance issues. Some compilers treat built-in and user-defined types
differently, even if they have the same underlying representation. For example, some compilers refuse to put objects consisting of only a double into a
register, even though they happily place naked doubles there on a regular basis. When that kind of thing happens, you can be better off passing such
objects by reference, because compilers will certainly put pointers (the implementation of references) into registers.

Another reason why small user-defined types are not necessarily good pass-by-value candidates is that, being user-defined, their size is subject to
change. A type that's small now may be bigger in a future release, because its internal implementation may change. Things can even change when you
switch to a different C++ implementation. As I write this, for example, some implementations of the standard library's string type are seven times as big as
others.

In general, the only types for which you can reasonably assume that pass-by-value is inexpensive are built-in types and STL iterator and function object
types. For everything else, follow the advice of this Item and prefer pass-by-reference-to-const over pass-by-value.

Things to Remember

Prefer pass-by-reference-to-const over pass-by-value. It's typically more efficient and it avoids the slicing problem.

The rule doesn't apply to built-in types and STL iterator and function object types. For them, pass-by-value is usually appropriate.
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Item 21: Don't try to return a reference when you must return an object

Once programmers grasp the efficiency implications of pass-by-value for objects (see Item 20), many become crusaders, determined to root out the evil
of pass-by-value wherever it may hide. Unrelenting in their pursuit of pass-by-reference purity, they invariably make a fatal mistake: they start to pass
references to objects that don't exist. This is not a good thing.

Consider a class for representing rational numbers, including a function for multiplying two rationals together:

class Rational {

public:

  Rational(int numerator = 0,               // see Item 24 for why this

           int denominator = 1);            // ctor isn't declared explicit

  ...

private:

  int n, d;                                 // numerator and denominator

friend

   const Rational                           // see Item 3 for why the

     operator*(const Rational& lhs,         // return type is const

               const Rational& rhs);

};

This version of operator* is returning its result object by value, and you'd be shirking your professional duties if you failed to worry about the cost of that
object's construction and destruction. You don't want to pay for such an object if you don't have to. So the question is this: do you have to pay?

Well, you don't have to if you can return a reference instead. But remember that a reference is just a name, a name for some existing object. Whenever
you see the declaration for a reference, you should immediately ask yourself what it is another name for, because it must be another name for
something. In the case of operator*, if the function is to return a reference, it must return a reference to some Rational object that already exists and that
contains the product of the two objects that are to be multiplied together.

There is certainly no reason to expect that such an object exists prior to the call to operator*. That is, if you have

Rational a(1, 2);                        // a = 1/2

Rational b(3, 5);                        // b = 3/5

Rational c = a * b;                      // c should be 3/10

it seems unreasonable to expect that there already happens to exist a rational number with the value three-tenths. No, if operator* is to return a reference
to such a number, it must create that number object itself.

A function can create a new object in only two ways: on the stack or on the heap. Creation on the stack is accomplished by defining a local variable.
Using that strategy, you might try to write operator* this way:

const Rational& operator*(const Rational& lhs,   // warning! bad code!

                          const Rational& rhs)

{

  Rational result(lhs.n * rhs.n, lhs.d * rhs.d);

  return result;



}

You can reject this approach out of hand, because your goal was to avoid a constructor call, and result will have to be constructed just like any other
object. A more serious problem is that this function returns a reference to result, but result is a local object, and local objects are destroyed when the
function exits. This version of operator*, then, doesn't return a reference to a Rational — it returns a reference to an ex-Rational; a former Rational; the
empty, stinking, rotting carcass of what used to be a Rational but is no longer, because it has been destroyed. Any caller so much as glancing at this
function's return value would instantly enter the realm of undefined behavior. The fact is, any function returning a reference to a local object is broken.
(The same is true for any function returning a pointer to a local object.)

Let us consider, then, the possibility of constructing an object on the heap and returning a reference to it. Heap-based objects come into being through
the use of new, so you might write a heap-based operator* like this:

const Rational& operator*(const Rational& lhs,   // warning! more bad

                          const Rational& rhs)   // code!

{

  Rational *result = new Rational(lhs.n * rhs.n, lhs.d * rhs.d);

  return *result;

}

Well, you still have to pay for a constructor call, because the memory allocated by new is initialized by calling an appropriate constructor, but now you
have a different problem: who will apply delete to the object conjured up by your use of new?

Even if callers are conscientious and well intentioned, there's not much they can do to prevent leaks in reasonable usage scenarios like this:

Rational w, x, y, z;

w = x * y * z;                     // same as operator*(operator*(x, y), z)

Here, there are two calls to operator* in the same statement, hence two uses of new that need to be undone with uses of delete. Yet there is no
reasonable way for clients of operator* to make those calls, because there's no reasonable way for them to get at the pointers hidden behind the
references being returned from the calls to operator*. This is a guaranteed resource leak.

But perhaps you notice that both the on-the-stack and on-the-heap approaches suffer from having to call a constructor for each result returned from
operator*. Perhaps you recall that our initial goal was to avoid such constructor invocations. Perhaps you think you know a way to avoid all but one
constructor call. Perhaps the following implementation occurs to you, an implementation based on operator* returning a reference to a static Rational
object, one defined inside the function:

const Rational& operator*(const Rational& lhs,    // warning! yet more

                          const Rational& rhs)    // bad code!

{

  static Rational result;             // static object to which a

                                      // reference will be returned

  result = ... ;                      // multiply lhs by rhs and put the

                                      // product inside result

  return result;

}

Like all designs employing the use of static objects, this one immediately raises our thread-safety hackles, but that's its more obvious weakness. To see
its deeper flaw, consider this perfectly reasonable client code:



bool operator==(const Rational& lhs,            // an operator==

                const Rational& rhs);           // for Rationals

Rational a, b, c, d;

...

if ((a * b) == (c * d))  {

    do whatever's appropriate when the products are equal;

} else    {

   do whatever's appropriate when they're not;

}

Guess what? The expression ((a*b) == (c*d)) will always evaluate to true, regardless of the values of a, b, c, and d!

This revelation is easiest to understand when the code is rewritten in its equivalent functional form:

if (operator==(operator*(a, b), operator*(c, d)))

Notice that when operator== is called, there will already be two active calls to operator*, each of which will return a reference to the static Rational object
inside operator*. Thus, operator== will be asked to compare the value of the static Rational object inside operator* with the value of the static Rational
object inside operator*. It would be surprising indeed if they did not compare equal. Always.

This should be enough to convince you that returning a reference from a function like operator* is a waste of time, but some of you are now thinking,
"Well, if one static isn't enough, maybe a static array will do the trick...."

I can't bring myself to dignify this design with example code, but I can sketch why the notion should cause you to blush in shame. First, you must choose
n, the size of the array. If n is too small, you may run out of places to store function return values, in which case you'll have gained nothing over the
single-static design we just discredited. But if n is too big, you'll decrease the performance of your program, because every object in the array will be
constructed the first time the function is called. That will cost you n constructors and n destructors, even if the function in question is called only once. If
"optimization" is the process of improving software performance, this kind of thing should be called "pessimization." Finally, think about how you'd put the
values you need into the array's objects and what it would cost you to do it. The most direct way to move a value between objects is via assignment, but
what is the cost of an assignment? For many types, it's about the same as a call to a destructor (to destroy the old value) plus a call to a constructor (to
copy over the new value). But your goal is to avoid the costs of construction and destruction! Face it: this approach just isn't going to pan out. (No, using
a vector instead of an array won't improve matters much.)

The right way to write a function that must return a new object is to have that function return a new object. For Rational's operator*, that means either the
following code or something essentially equivalent:

inline const Rational operator*(const Rational& lhs, const Rational& rhs)

{

  return Rational(lhs.n * rhs.n, lhs.d * rhs.d);

}

Sure, you may incur the cost of constructing and destructing operator*'s return value, but in the long run, that's a small price to pay for correct behavior.
Besides, the bill that so terrifies you may never arrive. Like all programming languages, C++ allows compiler implementers to apply optimizations to
improve the performance of the generated code without changing its observable behavior, and it turns out that in some cases, construction and
destruction of operator*'s return value can be safely eliminated. When compilers take advantage of that fact (and compilers often do), your program
continues to behave the way it's supposed to, just faster than you expected.

It all boils down to this: when deciding between returning a reference and returning an object, your job is to make the choice that offers correct behavior.
Let your compiler vendors wrestle with figuring out how to make that choice as inexpensive as possible.

Things to Remember

Never return a pointer or reference to a local stack object, a reference to a heap-allocated object, or a pointer or reference to a local
static object if there is a chance that more than one such object will be needed. (Item 4 provides an example of a design where
returning a reference to a local static is reasonable, at least in single-threaded environments.)
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Item 22: Declare data members private

Okay, here's the plan. First, we're going to see why data members shouldn't be public. Then we'll see that all the arguments against public data members
apply equally to protected ones. That will lead to the conclusion that data members should be private, and at that point, we'll be done.

So, public data members. Why not?

Let's begin with syntactic consistency (see also Item 18). If data members aren't public, the only way for clients to access an object is via member
functions. If everything in the public interface is a function, clients won't have to scratch their heads trying to remember whether to use parentheses when
they want to access a member of the class. They'll just do it, because everything is a function. Over the course of a lifetime, that can save a lot of head
scratching.

But maybe you don't find the consistency argument compelling. How about the fact that using functions gives you much more precise control over the
accessibility of data members? If you make a data member public, everybody has read-write access to it, but if you use functions to get or set its value,
you can implement no access, read-only access, and read-write access. Heck, you can even implement write-only access if you want to:

class AccessLevels {

public:

  ...

  int getReadOnly() const        { return readOnly; }

  void setReadWrite(int value)   { readWrite = value; }

  int getReadWrite() const       { return readWrite; }

  void setWriteOnly(int value)   { writeOnly = value; }

private:

  int noAccess;                         // no access to this int

  int readOnly;                         // read-only access to this int

  int readWrite;                        // read-write access to this int

  int writeOnly;                        // write-only access to this int

};

Such fine-grained access control is important, because many data members should be hidden. Rarely does every data member need a getter and setter.

Still not convinced? Then it's time to bring out the big gun: encapsulation. If you implement access to a data member through a function, you can later
replace the data member with a computation, and nobody using your class will be any the wiser.

For example, suppose you are writing an application in which automated equipment is monitoring the speed of passing cars. As each car passes, its
speed is computed and the value added to a collection of all the speed data collected so far:

class SpeedDataCollection {

  ...

public:

  void addValue(int speed);          // add a new data value

  double averageSoFar() const;       // return average speed



  ...

};

Now consider the implementation of the member function averageSoFar. One way to implement it is to have a data member in the class that is a running
average of all the speed data so far collected. Whenever averageSoFar is called, it just returns the value of that data member. A different approach is to
have averageSoFar compute its value anew each time it's called, something it could do by examining each data value in the collection.

The first approach (keeping a running average) makes each SpeedDataCollection object bigger, because you have to allocate space for the data
members holding the running average, the accumulated total, and the number of data points. However, averageSoFar can be implemented very
efficiently; it's just an inline function (see Item 30) that returns the value of the running average. Conversely, computing the average whenever it's
requested will make averageSoFar run slower, but each SpeedDataCollection object will be smaller.

Who's to say which is best? On a machine where memory is tight (e.g., an embedded roadside device), and in an application where averages are
needed only infrequently, computing the average each time is probably a better solution. In an application where averages are needed frequently, speed
is of the essence, and memory is not an issue, keeping a running average will typically be preferable. The important point is that by accessing the
average through a member function (i.e., by encapsulating it), you can interchange these different implementations (as well as any others you might think
of), and clients will, at most, only have to recompile. (You can eliminate even that inconvenience by following the techniques described in Item 31.)

Hiding data members behind functional interfaces can offer all kinds of implementation flexibility. For example, it makes it easy to notify other objects
when data members are read or written, to verify class invariants and function pre-and postconditions, to perform synchronization in threaded
environments, etc. Programmers coming to C++ from languages like Delphi and C# will recognize such capabilities as the equivalent of "properties" in
these other languages, albeit with the need to type an extra set of parentheses.

The point about encapsulation is more important than it might initially appear. If you hide your data members from your clients (i.e., encapsulate them),
you can ensure that class invariants are always maintained, because only member functions can affect them. Furthermore, you reserve the right to
change your implementation decisions later. If you don't hide such decisions, you'll soon find that even if you own the source code to a class, your ability
to change anything public is extremely restricted, because too much client code will be broken. Public means unencapsulated, and practically speaking,
unencapsulated means unchangeable, especially for classes that are widely used. Yet widely used classes are most in need of encapsulation, because
they are the ones that can most benefit from the ability to replace one implementation with a better one.

The argument against protected data members is similar. In fact, it's identical, though it may not seem that way at first. The reasoning about syntactic
consistency and fine-grained access control is clearly as applicable to protected data as to public, but what about encapsulation? Aren't protected data
members more encapsulated than public ones? Practically speaking, the surprising answer is that they are not.

Item 23 explains that something's encapsulation is inversely proportional to the amount of code that might be broken if that something changes. The
encapsulatedness of a data member, then, is inversely proportional to the amount of code that might be broken if that data member changes, e.g., if it's
removed from the class (possibly in favor of a computation, as in averageSoFar, above).

Suppose we have a public data member, and we eliminate it. How much code might be broken? All the client code that uses it, which is generally an
unknowably large amount. Public data members are thus completely unencapsulated. But suppose we have a protected data member, and we eliminate
it. How much code might be broken now? All the derived classes that use it, which is, again, typically an unknowably large amount of code. Protected
data members are thus as unencapsulated as public ones, because in both cases, if the data members are changed, an unknowably large amount of
client code is broken. This is unintuitive, but as experienced library implementers will tell you, it's still true. Once you've declared a data member public or
protected and clients have started using it, it's very hard to change anything about that data member. Too much code has to be rewritten, retested,
redocumented, or recompiled. From an encapsulation point of view, there are really only two access levels: private (which offers encapsulation) and
everything else (which doesn't).

Things to Remember

Declare data members private. It gives clients syntactically uniform access to data, affords fine-grained access control, allows
invariants to be enforced, and offers class authors implementation flexibility.

protected is no more encapsulated than public.
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Item 23: Prefer non-member non-friend functions to member functions

Imagine a class for representing web browsers. Among the many functions such a class might offer are those to clear the cache of downloaded
elements, clear the history of visited URLs, and remove all cookies from the system:

class WebBrowser {

public:

  ...

  void clearCache();

  void clearHistory();

  void removeCookies();

  ...

};

Many users will want to perform all these actions together, so WebBrowser might also offer a function to do just that:

class WebBrowser {

public:

  ...

  void clearEverything();               // calls clearCache, clearHistory,

                                        // and removeCookies

  ...

};

Of course, this functionality could also be provided by a non-member function that calls the appropriate member functions:

void clearBrowser(WebBrowser& wb)

{

  wb.clearCache();

  wb.clearHistory();

  wb.removeCookies();

}

So which is better, the member function clearEverything or the non-member function clearBrowser?

Object-oriented principles dictate that data and the functions that operate on them should be bundled together, and that suggests that the member
function is the better choice. Unfortunately, this suggestion is incorrect. It's based on a misunderstanding of what being object-oriented means. Object-
oriented principles dictate that data should be as encapsulated as possible. Counterintuitively, the member function clearEverything actually yields less
encapsulation than the non-member clearBrowser. Furthermore, offering the non-member function allows for greater packaging flexibility for
WebBrowser-related functionality, and that, in turn, yields fewer compilation dependencies and an increase in WebBrowser extensibility. The non-
member approach is thus better than a member function in many ways. It's important to understand why.

We'll begin with encapsulation. If something is encapsulated, it's hidden from view. The more something is encapsulated, the fewer things can see it. The
fewer things can see it, the greater flexibility we have to change it, because our changes directly affect only those things that can see what we change.
The greater something is encapsulated, then, the greater our ability to change it. That's the reason we value encapsulation in the first place: it affords us
the flexibility to change things in a way that affects only a limited number of clients.

Consider the data associated with an object. The less code that can see the data (i.e., access it), the more the data is encapsulated, and the more freely
we can change characteristics of an object's data, such as the number of data members, their types, etc. As a coarse-grained measure of how much
code can see a piece of data, we can count the number of functions that can access that data: the more functions that can access it, the less



encapsulated the data.

Item 22 explains that data members should be private, because if they're not, an unlimited number of functions can access them. They have no
encapsulation at all. For data members that are private, the number of functions that can access them is the number of member functions of the class
plus the number of friend functions, because only members and friends have access to private members. Given a choice between a member function
(which can access not only the private data of a class, but also private functions, enums, typedefs, etc.) and a non-member non-friend function (which
can access none of these things) providing the same functionality, the choice yielding greater encapsulation is the non-member non-friend function,
because it doesn't increase the number of functions that can access the private parts of the class. This explains why clearBrowser (the non-member
non-friend function) is preferable to clearEverything (the member function): it yields greater encapsulation in the WebBrowser class.

At this point, two things are worth noting. First, this reasoning applies only to non-member non-friend functions. Friends have the same access to a
class's private members that member functions have, hence the same impact on encapsulation. From an encapsulation point of view, the choice isn't
between member and non-member functions, it's between member functions and non-member non-friend functions. (Encapsulation isn't the only point of
view, of course. Item 24 explains that when it comes to implicit type conversions, the choice is between member and non-member functions.)

The second thing to note is that just because concerns about encapsulation dictate that a function be a non-member of one class doesn't mean it can't be
a member of another class. This may prove a mild salve to programmers accustomed to languages where all functions must be in classes (e.g., Eiffel,
Java, C#, etc.). For example, we could make clearBrowser a static member function of some utility class. As long as it's not part of (or a friend of)
WebBrowser, it doesn't affect the encapsulation of WebBrowser's private members.

In C++, a more natural approach would be to make clearBrowser a non-member function in the same namespace as WebBrowser:

namespace WebBrowserStuff {

 class WebBrowser { ... };

 void clearBrowser(WebBrowser& wb);

  ...

}

This has more going for it than naturalness, however, because namespaces, unlike classes, can be spread across multiple source files. That's important,
because functions like clearBrowser are convenience functions. Being neither members nor friends, they have no special access to WebBrowser, so they
can't offer any functionality a WebBrowser client couldn't already get in some other way. For example, if clearBrowser didn't exist, clients could just call
clearCache, clearHistory, and removeCookies themselves.

A class like WebBrowser might have a large number of convenience functions, some related to bookmarks, others related to printing, still others related to
cookie management, etc. As a general rule, most clients will be interested in only some of these sets of convenience functions. There's no reason for a
client interested only in bookmark-related convenience functions to be compilation dependent on, e.g., cookie-related convenience functions. The
straightforward way to separate them is to declare bookmark-related convenience functions in one header file, cookie-related convenience functions in a
different header file, printing-related convenience functions in a third, etc.:

// header "webbrowser.h" — header for class WebBrowser itself

// as well as "core" WebBrowser-related functionality

namespace WebBrowserStuff {

   class WebBrowser { ... };

     ...                                // "core" related functionality, e.g.

                                        // non-member functions almost

                                        // all clients need

}

// header "webbrowserbookmarks.h"

namespace WebBrowserStuff {

  ...                                   // bookmark-related convenience

}                                       // functions

// header "webbrowsercookies.h"



namespace WebBrowserStuff {

  ...                                   // cookie-related convenience

}                                       // functions

...

Note that this is exactly how the standard C++ library is organized. Rather than having a single monolithic <C++StandardLibrary> header containing
everything in the std namespace, there are dozens of headers (e.g., <vector>, <algorithm>, <memory>, etc.), each declaring some of the functionality in
std. Clients who use only vector-related functionality aren't required to #include <memory>; clients who don't use list don't have to #include <list>. This
allows clients to be compilation dependent only on the parts of the system they actually use. (See Item 31 for a discussion of other ways to reduce
compilation dependencies.) Partitioning functionality in this way is not possible when it comes from a class's member functions, because a class must be
defined in its entirety; it can't be split into pieces.

Putting all convenience functions in multiple header files — but one namespace — also means that clients can easily extend the set of convenience
functions. All they have to do is add more non-member non-friend functions to the namespace. For example, if a WebBrowser client decides to write
convenience functions related to downloading images, he or she just needs to create a new header file containing the declarations of those functions in
the WebBrowserStuff namespace. The new functions are now as available and as integrated as all other convenience functions. This is another feature
classes can't offer, because class definitions are closed to extension by clients. Sure, clients can derive new classes, but derived classes have no access
to encapsulated (i.e., private) members in the base class, so such "extended functionality" has second-class status. Besides, as Item 7 explains, not all
classes are designed to be base classes.

Things to Remember

Prefer non-member non-friend functions to member functions. Doing so increases encapsulation, packaging flexibility, and functional
extensibility.

 < Day Day Up > 



 < Day Day Up > 

Item 24: Declare non-member functions when type conversions should apply to all parameters

I noted in the Introduction to this book that having classes support implicit type conversions is generally a bad idea. Of course, there are exceptions to
this rule, and one of the most common is when creating numerical types. For example, if you're designing a class to represent rational numbers, allowing
implicit conversions from integers to rationals doesn't seem unreasonable. It's certainly no less reasonable than C++'s built-in conversion from int to
double (and it's a lot more reasonable than C++'s built-in conversion from double to int). That being the case, you might start your Rational class this
way:

class Rational {

public:

  Rational(int numerator = 0,        // ctor is deliberately not explicit;

           int denominator = 1);     // allows implicit int-to-Rational

                                     // conversions

  int numerator() const;             // accessors for numerator and

  int denominator() const;           // denominator — see Item 22

private:

  ...

};

You know you'd like to support arithmetic operations like addition, multiplication, etc., but you're unsure whether you should implement them via member
functions, non-member functions, or, possibly, non-member functions that are friends. Your instincts tell you that when you're in doubt, you should be
object-oriented. You know that, say, multiplication of rational numbers is related to the Rational class, so it seems natural to implement operator* for
rational numbers inside the Rational class. Counterintuitively, Item 23 argues that the idea of putting functions inside the class they are associated with is
sometimes contrary to object-oriented principles, but let's set that aside and investigate the idea of making operator* a member function of Rational:

class Rational {

public:

 ...

 const Rational operator*(const Rational& rhs) const;

};

(If you're unsure why this function is declared the way it is — returning a const by-value result, but taking a reference-to-const as its argument — consult
Items 3, 20, and 21.)

This design lets you multiply rationals with the greatest of ease:

Rational oneEighth(1, 8);

Rational oneHalf(1, 2);

Rational result = oneHalf * oneEighth;            // fine

result = result * oneEighth;                      // fine

But you're not satisfied. You'd also like to support mixed-mode operations, where Rationals can be multiplied with, for example, ints. After all, few things



are as natural as multiplying two numbers together, even if they happen to be different types of numbers.

When you try to do mixed-mode arithmetic, however, you find that it works only half the time:

result = oneHalf * 2;                             // fine

result = 2 * oneHalf;                             // error!

This is a bad omen. Multiplication is supposed to be commutative, remember?

The source of the problem becomes apparent when you rewrite the last two examples in their equivalent functional form:

result = oneHalf.operator*(2);                    // fine

result = 2.operator*(oneHalf);                    // error!

The object oneHalf is an instance of a class that contains an operator*, so compilers call that function. However, the integer 2 has no associated class,
hence no operator* member function. Compilers will also look for non-member operator*s (i.e., ones at namespace or global scope) that can be called
like this:

result = operator*(2, oneHalf);                   // error!

But in this example, there is no non-member operator* taking an int and a Rational, so the search fails.

Look again at the call that succeeds. You'll see that its second parameter is the integer 2, yet Rational::operator* takes a Rational object as its argument.
What's going on here? Why does 2 work in one position and not in the other?

What's going on is implicit type conversion. Compilers know you're passing an int and that the function requires a Rational, but they also know they can
conjure up a suitable Rational by calling the Rational constructor with the int you provided, so that's what they do. That is, they treat the call as if it had
been written more or less like this:

const Rational temp(2);              // create a temporary

                                     // Rational object from 2

result = oneHalf * temp;             // same as oneHalf.operator*(temp);

Of course, compilers do this only because a non- explicit constructor is involved. If Rational's constructor were explicit, neither of these statements would
compile:

result = oneHalf * 2;                // error! (with explicit ctor);

                                     // can't convert 2 to Rational

result = 2 * oneHalf;                // same error, same problem

That would fail to support mixed-mode arithmetic, but at least the behavior of the two statements would be consistent.

Your goal, however, is both consistency and support for mixed-mode arithmetic, i.e., a design where both of the above statements will compile. That
brings us back to these two statements and why, even when Rational's constructor is not explicit, one compiles and one does not:

result = oneHalf * 2;                // fine (with non-explicit ctor)



result = 2 * oneHalf;                // error! (even with non-explicit ctor)

It turns out that parameters are eligible for implicit type conversion only if they are listed in the parameter list . The implicit parameter corresponding to the
object on which the member function is invoked — the one this points to — is never eligible for implicit conversions. That's why the first call compiles and
the second one does not. The first case involves a parameter listed in the parameter list, but the second one doesn't.

You'd still like to support mixed-mode arithmetic, however, and the way to do it is by now perhaps clear: make operator* a non-member function, thus
allowing compilers to perform implicit type conversions on all arguments:

class Rational {

  ...                                             // contains no operator*

};

const Rational operator*(const Rational& lhs,     // now a non-member

                         const Rational& rhs)     // function

{

  return Rational(lhs.numerator() * rhs.numerator(),

                  lhs.denominator() * rhs.denominator());

}

Rational oneFourth(1, 4);

Rational result;

result = oneFourth * 2;                           // fine

result = 2 * oneFourth;                           // hooray, it works!

This is certainly a happy ending to the tale, but there is a nagging worry. Should operator* be made a friend of the Rational class?

In this case, the answer is no, because operator* can be implemented entirely in terms of Rational's public interface. The code above shows one way to
do it. That leads to an important observation: the opposite of a member function is a non-member function, not a friend function. Too many C++
programmers assume that if a function is related to a class and should not be a member (due, for example, to a need for type conversions on all
arguments), it should be a friend. This example demonstrates that such reasoning is flawed. Whenever you can avoid friend functions, you should,
because, much as in real life, friends are often more trouble than they're worth. Sometimes friendship is warranted, of course, but the fact remains that
just because a function shouldn't be a member doesn't automatically mean it should be a friend.

This Item contains the truth and nothing but the truth, but it's not the whole truth. When you cross the line from Object-Oriented C++ into Template C++
(see Item 1) and make Rational a class template instead of a class, there are new issues to consider, new ways to resolve them, and some surprising
design implications. Such issues, resolutions, and implications are the topic of Item 46.

Things to Remember

If you need type conversions on all parameters to a function (including the one pointed to by the this pointer), the function must be a
non-member.
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Item 25: Consider support for a non-throwing swap

swap is an interesting function. Originally introduced as part of the STL, it's since become a mainstay of exception-safe programming (see Item 29) and a
common mechanism for coping with the possibility of assignment to self (see Item 11). Because swap is so useful, it's important to implement it properly,
but along with its singular importance comes a set of singular complications. In this Item, we explore what they are and how to deal with them.

To swap the values of two objects is to give each the other's value. By default, swapping is accomplished via the standard swap algorithm. Its typical
implementation is exactly what you'd expect:

namespace std {

  template<typename T>          // typical implementation of std::swap;

  void swap(T& a, T& b)         // swaps a's and b's values

  {

    T temp(a);

    a = b;

    b = temp;

  }

}

As long as your types support copying (via copy constructor and copy assignment operator), the default swap implementation will let objects of your
types be swapped without your having to do any special work to support it.

However, the default swap implementation may not thrill you. It involves copying three objects: a to temp, b to a, and temp to b. For some types, none of
these copies are really necessary. For such types, the default swap puts you on the fast track to the slow lane.

Foremost among such types are those consisting primarily of a pointer to another type that contains the real data. A common manifestation of this design
approach is the "pimpl idiom" ("pointer to implementation" — see Item 31). A Widget class employing such a design might look like this:

class WidgetImpl {                          // class for Widget data;

public:                                     // details are unimportant

  ...

private:

  int a, b, c;                              // possibly lots of data —

  std::vector<double> v;                    // expensive to copy!

  ...

};

class Widget {                              // class using the pimpl idiom

public:

  Widget(const Widget& rhs);

  Widget& operator=(const Widget& rhs)      // to copy a Widget, copy its

  {                                         // WidgetImpl object. For

   ...                                      // details on implementing

   *pImpl = *(rhs.pImpl);                    // operator= in general,

   ...                                       // see Items 10, 11, and 12.

  }



  ...

private:

  WidgetImpl *pImpl;                         // ptr to object with this

};                                           // Widget's data

To swap the value of two Widget objects, all we really need to do is swap their pImpl pointers, but the default swap algorithm has no way to know that.
Instead, it would copy not only three Widgets, but also three WidgetImpl objects. Very inefficient. Not a thrill.

What we'd like to do is tell std::swap that when Widgets are being swapped, the way to perform the swap is to swap their internal pImpl pointers. There is
a way to say exactly that: specialize std::swap for Widget. Here's the basic idea, though it won't compile in this form:

namespace std {

  template<>                            // this is a specialized version

  void swap<Widget>(Widget& a,          // of std::swap for when T is

                    Widget& b)          // Widget; this won't compile

  {

    swap(a.pImpl, b.pImpl);             // to swap Widgets, just swap

  }                                     // their pImpl pointers

}

The "template<>" at the beginning of this function says that this is a total template specialization  for std::swap, and the " <Widget>" after the name of the
function says that the specialization is for when T is Widget. In other words, when the general swap template is applied to Widgets, this is the
implementation that should be used. In general, we're not permitted to alter the contents of the std namespace, but we are allowed to totally specialize
standard templates (like swap) for types of our own creation (such as Widget). That's what we're doing here.

As I said, though, this function won't compile. That's because it's trying to access the pImpl pointers inside a and b, and they're private. We could declare
our specialization a friend, but the convention is different: it's to have Widget declare a public member function called swap that does the actual
swapping, then specialize std::swap to call the member function:

class Widget {                     // same as above, except for the

public:                            // addition of the swap mem func

  ...

  void swap(Widget& other)

  {

    using std::swap;               // the need for this declaration

                                   // is explained later in this Item

    swap(pImpl, other.pImpl);      // to swap Widgets, swap their

  }                                // pImpl pointers

  ...

};

namespace std {



  template<>                       // revised specialization of

  void swap<Widget>(Widget& a,     // std::swap

                    Widget& b)

  {

    a.swap(b);                     // to swap Widgets, call their

  }                                // swap member function

}

Not only does this compile, it's also consistent with the STL containers, all of which provide both public swap member functions and specializations of
std::swap that call these member functions.

Suppose, however, that Widget and WidgetImpl were class templates instead of classes, possibly so we could parameterize the type of the data stored in
WidgetImpl:

template<typename T>

class WidgetImpl { ... };

template<typename T>

class Widget { ... };

Putting a swap member function in Widget (and, if we need to, in WidgetImpl) is as easy as before, but we run into trouble with the specialization for
std::swap. This is what we want to write:

namespace std {

  template<typename T>

  void swap<Widget<T> >(Widget<T>& a,      // error! illegal code!

                        Widget<T>& b)

  { a.swap(b); }

}

This looks perfectly reasonable, but it's not legal. We're trying to partially specialize a function template ( std::swap), but though C++ allows partial
specialization of class templates, it doesn't allow it for function templates. This code should not compile (though some compilers erroneously accept it).

When you want to "partially specialize" a function template, the usual approach is to simply add an overload. That would look like this:

namespace std {

  template<typename T>             // an overloading of std::swap

  void swap(Widget<T>& a,          // (note the lack of "<...>" after

            Widget<T>& b)          // "swap"), but see below for

  { a.swap(b); }                   // why this isn't valid code

}

In general, overloading function templates is fine, but std is a special namespace, and the rules governing it are special, too. It's okay to totally specialize
templates in std, but it's not okay to add new templates (or classes or functions or anything else) to std. The contents of std are determined solely by the
C++ standardization committee, and we're prohibited from augmenting what they've decided should go there. Alas, the form of the prohibition may
dismay you. Programs that cross this line will almost certainly compile and run, but their behavior is undefined. If you want your software to have



predictable behavior, you'll not add new things to std.

So what to do? We still need a way to let other people call swap and get our more efficient template-specific version. The answer is simple. We still
declare a non-member swap that calls the member swap, we just don't declare the non-member to be a specialization or overloading of std::swap. For
example, if all our Widget-related functionality is in the namespace WidgetStuff, it would look like this:

namespace WidgetStuff {

  ...                                     // templatized WidgetImpl, etc.

  template<typename T>                    // as before, including the swap

  class Widget { ... };                   // member function

  ...

  template<typename T>                    // non-member swap function;

  void swap(Widget<T>& a,                 // not part of the std namespace

            Widget<T>& b)                                         

  {

    a.swap(b);

  }

}

Now, if any code anywhere calls swap on two Widget objects, the name lookup rules in C++ (specifically the rules known as argument-dependent lookup
or Koenig lookup) will find the Widget-specific version in WidgetStuff. Which is exactly what we want.

This approach works as well for classes as for class templates, so it seems like we should use it all the time. Unfortunately, there is a reason for
specializing std::swap for classes (I'll describe it shortly), so if you want to have your class-specific version of swap called in as many contexts as
possible (and you do), you need to write both a non-member version in the same namespace as your class and a specialization of std::swap.

By the way, if you're not using namespaces, everything above continues to apply (i.e., you still need a non-member swap that calls the member swap),
but why are you clogging the global namespace with all your class, template, function, enum, enumerant, and typedef names? Have you no sense of
propriety?

Everything I've written so far pertains to authors of swap, but it's worth looking at one situation from a client's point of view. Suppose you're writing a
function template where you need to swap the values of two objects:

template<typename T>

void doSomething(T& obj1, T& obj2)

{

  ...

  swap(obj1, obj2);

  ...

}

Which swap should this call? The general one in std, which you know exists; a specialization of the general one in std, which may or may not exist; or a
T-specific one, which may or may not exist and which may or may not be in a namespace (but should certainly not be in std)? What you desire is to call a
T-specific version if there is one, but to fall back on the general version in std if there's not. Here's how you fulfill your desire:

template<typename T>

void doSomething(T& obj1, T& obj2)

{



  using std::swap;           // make std::swap available in this function

  ...

  swap(obj1, obj2);          // call the best swap for objects of type T

  ...

}

When compilers see the call to swap, they search for the right swap to invoke. C++'s name lookup rules ensure that this will find any T-specific swap at
global scope or in the same namespace as the type T. (For example, if T is Widget in the namespace WidgetStuff, compilers will use argument-
dependent lookup to find swap in WidgetStuff.) If no T-specific swap exists, compilers will use swap in std, thanks to the using declaration that makes
std::swap visible in this function. Even then, however, compilers will prefer a T-specific specialization of std::swap over the general template, so if
std::swap has been specialized for T, the specialized version will be used.

Getting the right swap called is therefore easy. The one thing you want to be careful of is to not qualify the call, because that will affect how C++
determines the function to invoke. For example, if you were to write the call to swap this way,

std::swap(obj1, obj2);         // the wrong way to call swap

you'd force compilers to consider only the swap in std (including any template specializations), thus eliminating the possibility of getting a more
appropriate T-specific version defined elsewhere. Alas, some misguided programmers do qualify calls to swap in this way, and that's why it's important to
totally specialize std::swap for your classes: it makes type-specific swap implementations available to code written in this misguided fashion. (Such code
is present in some standard library implementations, so it's in your interest to help such code work as efficiently as possible.)

At this point, we've discussed the default swap, member swaps, non-member swaps, specializations of std::swap, and calls to swap, so let's summarize
the situation.

First, if the default implementation of swap offers acceptable efficiency for your class or class template, you don't need to do anything. Anybody trying to
swap objects of your type will get the default version, and that will work fine.

Second, if the default implementation of swap isn't efficient enough (which almost always means that your class or template is using some variation of the
pimpl idiom), do the following:

1. Offer a public swap member function that efficiently swaps the value of two objects of your type. For reasons I'll explain in a moment, this function
should never throw an exception.

2. Offer a non-member swap in the same namespace as your class or template. Have it call your swap member function.

3. If you're writing a class (not a class template), specialize std::swap for your class. Have it also call your swap member function.

Finally, if you're calling swap, be sure to include a using declaration to make std::swap visible in your function, then call swap without any namespace
qualification.

The only loose end is my admonition to have the member version of swap never throw exceptions. That's because one of the most useful applications of
swap is to help classes (and class templates) offer the strong exception-safety guarantee. Item 29 provides all the details, but the technique is
predicated on the assumption that the member version of swap never throws. This constraint applies only to the member version! It can't apply to the
non-member version, because the default version of swap is based on copy construction and copy assignment, and, in general, both of those functions
are allowed to throw exceptions. When you write a custom version of swap, then, you are typically offering more than just an efficient way to swap values;
you're also offering one that doesn't throw exceptions. As a general rule, these two swap characteristics go hand in hand, because highly efficient swaps
are almost always based on operations on built-in types (such as the pointers underlying the pimpl idiom), and operations on built-in types never throw
exceptions.

Things to Remember

Provide a swap member function when std::swap would be inefficient for your type. Make sure your swap doesn't throw exceptions.

If you offer a member swap, also offer a non-member swap that calls the member. For classes (not templates), specialize std::swap,
too.

When calling swap, employ a using declaration for std::swap, then call swap without namespace qualification.

It's fine to totally specialize std templates for user-defined types, but never try to add something completely new to std.
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Chapter 5. Implementations
For the most part, coming up with appropriate definitions for your classes (and class templates) and appropriate declarations for your functions (and
function templates) is the lion's share of the battle. Once you've got those right, the corresponding implementations are largely straightforward. Still, there
are things to watch out for. Defining variables too soon can cause a drag on performance. Overuse of casts can lead to code that's slow, hard to
maintain, and infected with subtle bugs. Returning handles to an object's internals can defeat encapsulation and leave clients with dangling handles.
Failure to consider the impact of exceptions can lead to leaked resources and corrupted data structures. Overzealous inlining can cause code bloat.
Excessive coupling can result in unacceptably long build times.

All of these problems can be avoided. This chapter explains how.
 < Day Day Up > 
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Item 26: Postpone variable definitions as long as possible.

Whenever you define a variable of a type with a constructor or destructor, you incur the cost of construction when control reaches the variable's
definition, and you incur the cost of destruction when the variable goes out of scope. There's a cost associated with unused variables, so you want to
avoid them whenever you can.

You're probably thinking that you never define unused variables, but you may need to think again. Consider the following function, which returns an
encrypted version of a password, provided the password is long enough. If the password is too short, the function throws an exception of type logic_error,
which is defined in the standard C++ library (see Item 54):

// this function defines the variable "encrypted" too soon

std::string encryptPassword(const std::string& password)

{

  using namespace std;

  string encrypted;

  if (password.length() < MinimumPasswordLength) {

      throw logic_error("Password is too short");

  }

  ...                        // do whatever is necessary to place an

                             // encrypted version of password in encrypted

  return encrypted;

}

The object encrypted isn't completely unused in this function, but it's unused if an exception is thrown. That is, you'll pay for the construction and
destruction of encrypted even if encryptPassword throws an exception. As a result, you're better off postponing encrypted's definition until you know
you'll need it:

// this function postpones encrypted's definition until it's truly necessary

std::string encryptPassword(const std::string& password)

{

  using namespace std;

  if (password.length() < MinimumPasswordLength) {

     throw logic_error("Password is too short");

  }

  string encrypted;

  ...                      // do whatever is necessary to place an

                           // encrypted version of password in encrypted

  return encrypted;

}



This code still isn't as tight as it might be, because encrypted is defined without any initialization arguments. That means its default constructor will be
used. In many cases, the first thing you'll do to an object is give it some value, often via an assignment. Item 4 explains why default-constructing an object
and then assigning to it is less efficient than initializing it with the value you really want it to have. That analysis applies here, too. For example, suppose
the hard part of encryptPassword is performed in this function:

void encrypt(std::string& s);             // encrypts s in place

Then encryptPassword could be implemented like this, though it wouldn't be the best way to do it:

// this function postpones encrypted's definition until

// it's necessary, but it's still needlessly inefficient

std::string encryptPassword(const std::string& password)

{

  ...                                   // check length as above

  std::string encrypted;                // default-construct encrypted

  encrypted = password;                 // assign to encrypted

  encrypt(encrypted);

  return encrypted;

}

A preferable approach is to initialize encrypted with password, thus skipping the pointless and potentially expensive default construction:

// finally, the best way to define and initialize encrypted

std::string encryptPassword(const std::string& password)

{

  ...                                     // check length 

  std::string encrypted(password);        // define and initialize

                                          // via copy constructor

  encrypt(encrypted);

  return encrypted;

}

This suggests the real meaning of "as long as possible" in this Item's title. Not only should you postpone a variable's definition until right before you have
to use the variable, you should also try to postpone the definition until you have initialization arguments for it. By doing so, you avoid constructing and
destructing unneeded objects, and you avoid unnecessary default constructions. Further, you help document the purpose of variables by initializing them
in contexts in which their meaning is clear.

"But what about loops?" you may wonder. If a variable is used only inside a loop, is it better to define it outside the loop and make an assignment to it on
each loop iteration, or is it be better to define the variable inside the loop? That is, which of these general structures is better?

// Approach A: define outside loop   // Approach B: define inside loop

Widget w;



for (int i = 0; i < n; ++i){         for (int i = 0; i < n; ++i) {

  w = some value dependent on i;       Widget w(some value dependent on i);

  ...                                  ...

}                                    }

Here I've switched from an object of type string to an object of type Widget to avoid any preconceptions about the cost of performing a construction,
destruction, or assignment for the object.

In terms of Widget operations, the costs of these two approaches are as follows:

Approach A: 1 constructor + 1 destructor + n assignments.

Approach B: n constructors + n destructors.

For classes where an assignment costs less than a constructor-destructor pair, Approach A is generally more efficient. This is especially the case as n
gets large. Otherwise, Approach B is probably better. Furthermore, Approach A makes the name w visible in a larger scope (the one containing the loop)
than Approach B, something that's contrary to program comprehensibility and maintainability. As a result, unless you know that (1) assignment is less
expensive than a constructor-destructor pair and (2) you're dealing with a performance-sensitive part of your code, you should default to using Approach
B.

Things to Remember

Postpone variable definitions as long as possible. It increases program clarity and improves program efficiency.
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Item 27: Minimize casting.

The rules of C++ are designed to guarantee that type errors are impossible. In theory, if your program compiles cleanly, it's not trying to perform any
unsafe or nonsensical operations on any objects. This is a valuable guarantee. You don't want to forgo it lightly.

Unfortunately, casts subvert the type system. That can lead to all kinds of trouble, some easy to recognize, some extraordinarily subtle. If you're coming
to C++ from C, Java, or C#, take note, because casting in those languages is more necessary and less dangerous than in C++. But C++ is not C. It's not
Java. It's not C#. In this language, casting is a feature you want to approach with great respect.

Let's begin with a review of casting syntax, because there are usually three different ways to write the same cast. C-style casts look like this:

(T) expression                      // cast expression to be of type T

Function-style casts use this syntax:

T(expression)                       // cast expression to be of type T

There is no difference in meaning between these forms; it's purely a matter of where you put the parentheses. I call these two forms old-style casts.

C++ also offers four new cast forms (often called new-style or C++-style casts):

const_cast<T>(expression)

dynamic_cast<T>(expression)

reinterpret_cast<T>(expression)

static_cast<T>(expression)

Each serves a distinct purpose:

const_cast is typically used to cast away the constness of objects. It is the only C++-style cast that can do this.

dynamic_cast is primarily used to perform "safe downcasting," i.e., to determine whether an object is of a particular type in an inheritance
hierarchy. It is the only cast that cannot be performed using the old-style syntax. It is also the only cast that may have a significant runtime cost.
(I'll provide details on this a bit later.)

reinterpret_cast is intended for low-level casts that yield implementation-dependent (i.e., unportable) results, e.g., casting a pointer to an int. Such
casts should be rare outside low-level code. I use it only once in this book, and that's only when discussing how you might write a debugging
allocator for raw memory (see Item 50).

static_cast can be used to force implicit conversions (e.g., non- const object to const object (as in Item 3), int to double, etc.). It can also be used to
perform the reverse of many such conversions (e.g., void* pointers to typed pointers, pointer-to-base to pointer-to-derived), though it cannot cast
from const to non-const objects. (Only const_cast can do that.)

The old-style casts continue to be legal, but the new forms are preferable. First, they're much easier to identify in code (both for humans and for tools like
grep), thus simplifying the process of finding places in the code where the type system is being subverted. Second, the more narrowly specified purpose
of each cast makes it possible for compilers to diagnose usage errors. For example, if you try to cast away constness using a new-style cast other than
const_cast, your code won't compile.

About the only time I use an old-style cast is when I want to call an explicit constructor to pass an object to a function. For example:

class Widget {

public:

  explicit Widget(int size);

  ...

};

void doSomeWork(const Widget& w);



doSomeWork(Widget(15));                    // create Widget from int

                                           // with function-style cast

doSomeWork(static_cast<Widget>(15));       // create Widget from int

                                           // with C++-style cast

Somehow, deliberate object creation doesn't "feel" like a cast, so I'd probably use the function-style cast instead of the static_cast in this case. Then
again, code that leads to a core dump usually feels pretty reasonable when you write it, so perhaps you'd best ignore feelings and use new-style casts all
the time.

Many programmers believe that casts do nothing but tell compilers to treat one type as another, but this is mistaken. Type conversions of any kind (either
explicit via casts or implicit by compilers) often lead to code that is executed at runtime. For example, in this code fragment,

int x, y;

...

double d = static_cast<double>(x)/y;           // divide x by y, but use

                                               // floating point division

the cast of the int x to a double almost certainly generates code, because on most architectures, the underlying representation for an int is different from
that for a double. That's perhaps not so surprising, but this example may widen your eyes a bit:

class Base { ... };

class Derived: public Base { ... };

Derived d;

Base *pb = &d;                         // implicitly convert Derived*  Base*

Here we're just creating a base class pointer to a derived class object, but sometimes, the two pointer values will not be the same. When that's the case,
an offset is applied at runtime to the Derived* pointer to get the correct Base* pointer value.

This last example demonstrates that a single object (e.g., an object of type Derived) might have more than one address (e.g., its address when pointed to
by a Base* pointer and its address when pointed to by a Derived* pointer). That can't happen in C. It can't happen in Java. It can't happen in C#. It does
happen in C++. In fact, when multiple inheritance is in use, it happens virtually all the time, but it can happen under single inheritance, too. Among other
things, that means you should generally avoid making assumptions about how things are laid out in C++, and you should certainly not perform casts
based on such assumptions. For example, casting object addresses to char* pointers and then using pointer arithmetic on them almost always yields
undefined behavior.

But note that I said that an offset is "sometimes" required. The way objects are laid out and the way their addresses are calculated varies from compiler
to compiler. That means that just because your "I know how things are laid out" casts work on one platform doesn't mean they'll work on others. The
world is filled with woeful programmers who've learned this lesson the hard way.

An interesting thing about casts is that it's easy to write something that looks right (and might be right in other languages) but is wrong. Many application
frameworks, for example, require that virtual member function implementations in derived classes call their base class counterparts first. Suppose we
have a Window base class and a SpecialWindow derived class, both of which define the virtual function onResize. Further suppose that
SpecialWindow's onResize is expected to invoke Window's onResize first. Here's a way to implement this that looks like it does the right thing, but
doesn't:

class Window {                                // base class

public:

  virtual void onResize() { ... }             // base onResize impl

  ...



};

class SpecialWindow: public Window {          // derived class

public:

  virtual void onResize() {                   // derived onResize impl;

    static_cast<Window>(*this).onResize();    // cast *this to Window,

                                              // then call its onResize;

                                              // this doesn't work!

    ...                                       // do SpecialWindow-

  }                                           // specific stuff

  ...

};

I've highlighted the cast in the code. (It's a new-style cast, but using an old-style cast wouldn't change anything.) As you would expect, the code casts
*this to a Window. The resulting call to onResize therefore invokes Window::onResize. What you might not expect is that it does not invoke that function
on the current object! Instead, the cast creates a new, temporary copy of the base class part of *this, then invokes onResize on the copy! The above
code doesn't call Window::onResize on the current object and then perform the SpecialWindow-specific actions on that object — it calls
Window::onResize on a copy of the base class part  of the current object before performing SpecialWindow-specific actions on the current object. If
Window::onResize modifies the current object (hardly a remote possibility, since onResize is a non-const member function), the current object won't be
modified. Instead, a copy of that object will be modified. If SpecialWindow::onResize modifies the current object, however, the current object will be
modified, leading to the prospect that the code will leave the current object in an invalid state, one where base class modifications have not been made,
but derived class ones have been.

The solution is to eliminate the cast, replacing it with what you really want to say. You don't want to trick compilers into treating *this as a base class
object; you want to call the base class version of onResize on the current object. So say that:

class SpecialWindow: public Window {

public:

  virtual void onResize() {

    Window::onResize();                    // call Window::onResize

    ...                                    // on *this

  }

  ...

};

This example also demonstrates that if you find yourself wanting to cast, it's a sign that you could be approaching things the wrong way. This is especially
the case if your want is for dynamic_cast.

Before delving into the design implications of dynamic_cast, it's worth observing that many implementations of dynamic_cast can be quite slow. For
example, at least one common implementation is based in part on string comparisons of class names. If you're performing a dynamic_cast on an object
in a single-inheritance hierarchy four levels deep, each dynamic_cast under such an implementation could cost you up to four calls to strcmp to compare
class names. A deeper hierarchy or one using multiple inheritance would be more expensive. There are reasons that some implementations work this
way (they have to do with support for dynamic linking). Nonetheless, in addition to being leery of casts in general, you should be especially leery of
dynamic_casts in performance-sensitive code.

The need for dynamic_cast generally arises because you want to perform derived class operations on what you believe to be a derived class object, but
you have only a pointer- or reference-to-base through which to manipulate the object. There are two general ways to avoid this problem.

First, use containers that store pointers (often smart pointers — see Item 13) to derived class objects directly, thus eliminating the need to manipulate
such objects through base class interfaces. For example, if, in our Window/SpecialWindow hierarchy, only SpecialWindows support blinking, instead of



doing this:

class Window { ... };

class SpecialWindow: public Window {

public:

  void blink();

  ...

};

typedef                                            // see Item 13 for info

  std::vector<std::tr1::shared_ptr<Window> > VPW;  // on tr1::shared_ptr

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin();         // undesirable code:

     iter != winPtrs.end();                        // uses dynamic_cast

     ++iter) {

  if (SpecialWindow *psw = dynamic_cast<SpecialWindow*>(iter->get()))

     psw->blink();

}

try to do this instead:

typedef std::vector<std::tr1::shared_ptr<SpecialWindow> > VPSW;

VPSW winPtrs;

...

for (VPSW::iterator iter = winPtrs.begin();        // better code: uses

     iter != winPtrs.end();                        // no dynamic_cast

     ++iter)

  (*iter)->blink();

Of course, this approach won't allow you to store pointers to all possible Window derivatives in the same container. To work with different window types,
you might need multiple type-safe containers.

An alternative that will let you manipulate all possible Window derivatives through a base class interface is to provide virtual functions in the base class
that let you do what you need. For example, though only SpecialWindows can blink, maybe it makes sense to declare the function in the base class,
offering a default implementation that does nothing:

class Window {

public:



  virtual void blink() {}                       // default impl is no-op;

  ...                                           // see Item 34 for why

};                                              // a default impl may be

                                                // a bad idea

class SpecialWindow: public Window {

public:

  virtual void blink() { ... };                 // in this class, blink

  ...                                           // does something

};

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs;                                    // container holds

                                                // (ptrs to) all possible

...                                             // Window types

for (VPW::iterator iter = winPtrs.begin();

     iter != winPtrs.end();

     ++iter)                                    // note lack of

  (*iter)->blink();                             // dynamic_cast

Neither of these approaches — using type-safe containers or moving virtual functions up the hierarchy — is universally applicable, but in many cases,
they provide a viable alternative to dynamic_casting. When they do, you should embrace them.

One thing you definitely want to avoid is designs that involve cascading dynamic_casts, i.e., anything that looks like this:

class Window { ... };

...                                     // derived classes are defined here

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); iter != winPtrs.end(); ++iter)

{

  if (SpecialWindow1 *psw1 =

       dynamic_cast<SpecialWindow1*>(iter->get())) { ... }



  else if (SpecialWindow2 *psw2 =

            dynamic_cast<SpecialWindow2*>(iter->get())) { ... }

  else if (SpecialWindow3 *psw3 =

            dynamic_cast<SpecialWindow3*>(iter->get())) { ... }

  ...

}

Such C++ generates code that's big and slow, plus it's brittle, because every time the Window class hierarchy changes, all such code has to be examined
to see if it needs to be updated. (For example, if a new derived class gets added, a new conditional branch probably needs to be added to the above
cascade.) Code that looks like this should almost always be replaced with something based on virtual function calls.

Good C++ uses very few casts, but it's generally not practical to get rid of all of them. The cast from int to double on page 118, for example, is a
reasonable use of a cast, though it's not strictly necessary. (The code could be rewritten to declare a new variable of type double that's initialized with x's
value.) Like most suspicious constructs, casts should be isolated as much as possible, typically hidden inside functions whose interfaces shield callers
from the grubby work being done inside.

Things to Remember

Avoid casts whenever practical, especially dynamic_casts in performance-sensitive code. If a design requires casting, try to develop a
cast-free alternative.

When casting is necessary, try to hide it inside a function. Clients can then call the function instead of putting casts in their own code.

Prefer C++-style casts to old-style casts. They are easier to see, and they are more specific about what they do.
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Item 28: Avoid returning "handles" to object internals.

Suppose you're working on an application involving rectangles. Each rectangle can be represented by its upper left corner and its lower right corner. To
keep a Rectangle object small, you might decide that the points defining its extent shouldn't be stored in the Rectangle itself, but rather in an auxiliary
struct that the Rectangle points to:

class Point {                      // class for representing points

public:

  Point(int x, int y);

  ...

  void setX(int newVal);

  void setY(int newVal);

  ...

};

struct RectData {                    // Point data for a Rectangle

  Point ulhc;                        // ulhc = " upper left-hand corner"

  Point lrhc;                        // lrhc = " lower right-hand corner"

};

class Rectangle {

  ...

private:

  std::tr1::shared_ptr<RectData> pData;          // see Item 13 for info on

};                                               // tr1::shared_ptr

Because Rectangle clients will need to be able to determine the extent of a Rectangle, the class provides the upperLeft and lowerRight functions.
However, Point is a user-defined type, so, mindful of Item 20's observation that passing user-defined types by reference is typically more efficient than
passing them by value, these functions return references to the underlying Point objects:

class Rectangle {

public:

  ...

  Point& upperLeft() const { return pData->ulhc; }

  Point& lowerRight() const { return pData->lrhc; }

  ...

};

This design will compile, but it's wrong. In fact, it's self-contradictory. On the one hand, upperLeft and lowerRight are declared to be const member
functions, because they are designed only to offer clients a way to learn what the Rectangle's points are, not to let clients modify the Rectangle (see Item
3). On the other hand, both functions return references to private internal data — references that callers can use to modify that internal data! For
example:

Point coord1(0, 0);



Point coord2(100, 100);

const Rectangle rec(coord1, coord2);     // rec is a const rectangle from

                                         // (0, 0) to (100, 100)

rec.upperLeft().setX(50);                // now rec goes from

                                         // (50, 0) to (100, 100)!

Here, notice how the caller of upperLeft is able to use the returned reference to one of rec's internal Point data members to modify that member. But rec
is supposed to be const!

This immediately leads to two lessons. First, a data member is only as encapsulated as the most accessible function returning a reference to it. In this
case, though ulhc and lrhc are declared private, they're effectively public, because the public functions upperLeft and lowerRight return references to
them. Second, if a const member function returns a reference to data associated with an object that is stored outside the object itself, the caller of the
function can modify that data, (This is just a fallout of the limitations of bitwise constness — see Item 3.)

Everything we've done has involved member functions returning references, but if they returned pointers or iterators, the same problems would exist for
the same reasons. References, pointers, and iterators are all handles (ways to get at other objects), and returning a handle to an object's internals always
runs the risk of compromising an object's encapsulation. As we've seen, it can also lead to const member functions that allow an object's state to be
modified.

We generally think of an object's "internals" as its data members, but member functions not accessible to the general public (i.e., that are protected or
private) are part of an object's internals, too. As such, it's important not to return handles to them. This means you should never have a member function
return a pointer to a less accessible member function. If you do, the effective access level will be that of the more accessible function, because clients will
be able to get a pointer to the less accessible function, then call that function through the pointer.

Functions that return pointers to member functions are uncommon, however, so let's turn our attention back to the Rectangle class and its upperLeft and
lowerRight member functions. Both of the problems we've identified for those functions can be eliminated by simply applying const to their return types:

class Rectangle {

public:

  ...

  const Point& upperLeft() const { return pData->ulhc; }

  const Point& lowerRight() const { return pData->lrhc; }

  ...

};

With this altered design, clients can read the Points defining a rectangle, but they can't write them. This means that declaring upperLeft and upperRight
as const is no longer a lie, because they no longer allow callers to modify the state of the object. As for the encapsulation problem, we always intended to
let clients see the Points making up a Rectangle, so this is a deliberate relaxation of encapsulation. More importantly, it's a limited relaxation: only read
access is being granted by these functions. Write access is still prohibited.

Even so, upperLeft and lowerRight are still returning handles to an object's internals, and that can be problematic in other ways. In particular, it can lead
to dangling handles: handles that refer to parts of objects that don't exist any longer. The most common source of such disappearing objects are function
return values. For example, consider a function that returns the bounding box for a GUI object in the form of a rectangle:

class GUIObject { ... };

const Rectangle                             // returns a rectangle by

  boundingBox(const GUIObject& obj);        // value; see Item 3 for why

                                            // return type is const

Now consider how a client might use this function:

GUIObject *pgo;                             // make pgo point to



...                                         // some GUIObject

const Point *pUpperLeft =                   // get a ptr to the upper

  &(boundingBox(*pgo).upperLeft());         // left point of its

                                            // bounding box

The call to boundingBox will return a new, temporary Rectangle object. That object doesn't have a name, so let's call it temp. upperLeft will then be
called on temp, and that call will return a reference to an internal part of temp, in particular, to one of the Points making it up. pUpperLeft will then point to
that Point object. So far, so good, but we're not done yet, because at the end of the statement, boundingBox's return value — temp — will be destroyed,
and that will indirectly lead to the destruction of temp's Points. That, in turn, will leave pUpperLeft pointing to an object that no longer exists; pUpperLeft
will dangle by the end of the statement that created it!

This is why any function that returns a handle to an internal part of the object is dangerous. It doesn't matter whether the handle is a pointer, a reference,
or an iterator. It doesn't matter whether it's qualified with const. It doesn't matter whether the member function returning the handle is itself const. All that
matters is that a handle is being returned, because once that's being done, you run the risk that the handle will outlive the object it refers to.

This doesn't mean that you should never have a member function that returns a handle. Sometimes you have to. For example, operator[] allows you to
pluck individual elements out of strings and vectors, and these operator[]s work by returning references to the data in the containers (see Item 3) — data
that is destroyed when the containers themselves are. Still, such functions are the exception, not the rule.

Things to Remember

Avoid returning handles (references, pointers, or iterators) to object internals. It increases encapsulation, helps const member functions
act const, and minimizes the creation of dangling handles.
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Item29: Strive for exception-safe code.

Exception safety is sort of like pregnancy...but hold that thought for a moment. We can't really talk reproduction until we've worked our way through
courtship.

Suppose we have a class for representing GUI menus with background images. The class is designed to be used in a threaded environment, so it has a
mutex for concurrency control:

class PrettyMenu {

public:

  ...

  void changeBackground(std::istream& imgSrc);           // change background

  ...                                                    // image

private:

  Mutex mutex;                    // mutex for this object 

  Image *bgImage;                 // current background image

  int imageChanges;               // # of times image has been changed

};

Consider this possible implementation of PrettyMenu's changeBackground function:

void PrettyMenu::changeBackground(std::istream& imgSrc)

{

  lock(&mutex);                      // acquire mutex (as in Item 14)

  delete bgImage;                    // get rid of old background

  ++imageChanges;                    // update image change count

  bgImage = new Image(imgSrc);       // install new background

  unlock(&mutex);                    // release mutex

}

From the perspective of exception safety, this function is about as bad as it gets. There are two requirements for exception safety, and this satisfies
neither.

When an exception is thrown, exception-safe functions:

Leak no resources . The code above fails this test, because if the "new Image(imgSrc)" expression yields an exception, the call to unlock never
gets executed, and the mutex is held forever.

Don't allow data structures to become corrupted . If "new Image(imgSrc)" throws, bgImage is left pointing to a deleted object. In addition,
imageChanges has been incremented, even though it's not true that a new image has been installed. (On the other hand, the old image has
definitely been eliminated, so I suppose you could argue that the image has been "changed.")

Addressing the resource leak issue is easy, because Item 13 explains how to use objects to manage resources, and Item 14 introduces the Lock class as
a way to ensure that mutexes are released in a timely fashion:



void PrettyMenu::changeBackground(std::istream& imgSrc)

{

  Lock ml(&mutex);                 // from Item 14: acquire mutex and

                                   // ensure its later release

  delete bgImage;

  ++imageChanges;

  bgImage = new Image(imgSrc);

}

One of the best things about resource management classes like Lock is that they usually make functions shorter. See how the call to unlock is no longer
needed? As a general rule, less code is better code, because there's less to go wrong and less to misunderstand when making changes.

With the resource leak behind us, we can turn our attention to the issue of data structure corruption. Here we have a choice, but before we can choose,
we have to confront the terminology that defines our choices.

Exception-safe functions offer one of three guarantees:

Functions offering the basic guarantee promise that if an exception is thrown, everything in the program remains in a valid state. No objects or
data structures become corrupted, and all objects are in an internally consistent state (e.g., all class invariants are satisfied). However, the exact
state of the program may not be predictable. For example, we could write changeBackground so that if an exception were thrown, the PrettyMenu
object might continue to have the old background image, or it might have some default background image, but clients wouldn't be able to predict
which. (To find out, they'd presumably have to call some member function that would tell them what the current background image was.)

Functions offering the strong guarantee promise that if an exception is thrown, the state of the program is unchanged. Calls to such functions are
atomic in the sense that if they succeed, they succeed completely, and if they fail, the program state is as if they'd never been called.

Working with functions offering the strong guarantee is easier than working with functions offering only the basic guarantee, because after calling
a function offering the strong guarantee, there are only two possible program states: as expected following successful execution of the function, or
the state that existed at the time the function was called. In contrast, if a call to a function offering only the basic guarantee yields an exception, the
program could be in any valid state.

Functions offering the nothrow guarantee promise never to throw exceptions, because they always do what they promise to do. All operations on
built-in types (e.g., ints, pointers, etc.) are nothrow (i.e., offer the nothrow guarantee). This is a critical building block of exception-safe code.

It might seem reasonable to assume that functions with an empty exception specification are nothrow, but this isn't necessarily true. For example,
consider this function:

int doSomething() throw();          // note empty exception spec.

This doesn't say that doSomething will never throw an exception; it says that if doSomething tHRows an exception, it's a serious error, and the
unexpected function should be called. [1] In fact, doSomething may not offer any exception guarantee at all. The declaration of a function (including
its exception specification, if it has one) doesn't tell you whether a function is correct or portable or efficient, and it doesn't tell you which, if any,
exception safety guarantee it offers, either. All those characteristics are determined by the function's implementation, not its declaration.

[1] For information on the unexpected function, consult your favorite search engine or comprehensive C++ text. (You'll probably have better luck searching for
set_unexpected, the function that specifies the unexpected function.)

Exception-safe code must offer one of the three guarantees above. If it doesn't, it's not exception-safe. The choice, then, is to determine which guarantee
to offer for each of the functions you write. Other than when dealing with exception-unsafe legacy code (which we'll discuss later in this Item), offering no
exception safety guarantee should be an option only if your crack team of requirements analysts has identified a need for your application to leak
resources and run with corrupt data structures.

As a general rule, you want to offer the strongest guarantee that's practical. From an exception safety point of view, nothrow functions are wonderful, but
it's hard to climb out of the C part of C++ without calling functions that might throw. Anything using dynamically allocated memory (e.g., all STL
containers) typically throws a bad_alloc exception if it can't find enough memory to satisfy a request (see Item 49). Offer the nothrow guarantee when
you can, but for most functions, the choice is between the basic and strong guarantees.

In the case of changeBackground, almost offering the strong guarantee is not difficult. First, we change the type of PrettyMenu's bgImage data member
from a built-in Image* pointer to one of the smart resource-managing pointers described in Item 13. Frankly, this is a good idea purely on the basis of
preventing resource leaks. The fact that it helps us offer the strong exception safety guarantee simply reinforces Item 13's argument that using objects
(such as smart pointers) to manage resources is fundamental to good design. In the code below, I show use of TR1::shared_ptr, because its more
intuitive behavior when copied generally makes it preferable to auto_ptr.

Second, we reorder the statements in changeBackground so that we don't increment imageChanges until the image has been changed. As a general
rule, it's a good policy not to change the status of an object to indicate that something has happened until something actually has.

Here's the resulting code:

class PrettyMenu {



  ...

  std::tr1::shared_ptr<Image> bgImage;

  ...

};

void PrettyMenu::changeBackground(std::istream& imgSrc)

{

  Lock ml(&mutex);

  bgImage.reset(new Image(imgSrc));  // replace bgImage's internal

                                     // pointer with the result of the

                                     // "new Image" expression

  ++imageChanges;

}

Note that there's no longer a need to manually delete the old image, because that's handled internally by the smart pointer. Furthermore, the deletion
takes place only if the new image is successfully created. More precisely, the tr1::shared_ptr::reset function will be called only if its parameter (the result
of "new Image(imgSrc)") is successfully created. delete is used only inside the call to reset, so if the function is never entered, delete is never used. Note
also that the use of an object (the TR1::shared_ptr) to manage a resource (the dynamically allocated Image) has again pared the length of
changeBackground.

As I said, those two changes almost suffice to allow changeBackground to offer the strong exception safety guarantee. What's the fly in the ointment?
The parameter imgSrc. If the Image constructor throws an exception, it's possible that the read marker for the input stream has been moved, and such
movement would be a change in state visible to the rest of the program. Until changeBackground addresses that issue, it offers only the basic exception
safety guarantee.

Let's set that aside, however, and pretend that changeBackground does offer the strong guarantee. (I'm confident you could come up with a way for it to
do so, perhaps by changing its parameter type from an istream to the name of the file containing the image data.) There is a general design strategy that
typically leads to the strong guarantee, and it's important to be familiar with it. The strategy is known as "copy and swap." In principle, it's very simple.
Make a copy of the object you want to modify, then make all needed changes to the copy. If any of the modifying operations throws an exception, the
original object remains unchanged. After all the changes have been successfully completed, swap the modified object with the original in a non-throwing
operation.

This is usually implemented by putting all the per-object data from the "real" object into a separate implementation object, then giving the real object a
pointer to its implementation object. This is often known as the "pimpl idiom," and Item 31 describes it in some detail. For PrettyMenu, it would typically
look something like this:

struct PMImpl {                               // PMImpl = "PrettyMenu

  std::tr1::shared_ptr<Image> bgImage;        // Impl."; see below for

  int imageChanges;                           // why it's a struct

};

class PrettyMenu {

  ...

private:

  Mutex mutex;

  std::tr1::shared_ptr<PMImpl> pImpl;

};

void PrettyMenu::changeBackground(std::istream& imgSrc)



{

  using std::swap;                            // see Item 25

  Lock ml(&mutex);                            // acquire the mutex

  std::tr1::shared_ptr<PMImpl>                // copy obj. data

    pNew(new PMImpl(*pImpl));

  pNew->bgImage.reset(new Image(imgSrc));     // modify the copy

  ++pNew->imageChanges;

  swap(pImpl, pNew);                          // swap the new

                                              // data into place

}                                             // release the mutex

In this example, I've chosen to make PMImpl a struct instead of a class, because the encapsulation of PrettyMenu data is assured by pImpl being private.
Making PMImpl a class would be at least as good, though somewhat less convenient. (It would also keep the object-oriented purists at bay.) If desired,
PMImpl could be nested inside PrettyMenu, but packaging issues such as that are independent of writing exception-safe code, which is our concern here.

The copy-and-swap strategy is an excellent way to make all-or-nothing changes to an object's state, but, in general, it doesn't guarantee that the overall
function is strongly exception-safe. To see why, consider an abstraction of changeBackground, someFunc, that uses copy-and-swap, but that includes
calls to two other functions, f1 and f2:

void someFunc()

{

  ...                                     // make copy of local state

  f1();

  f2();

  ...                                     // swap modified state into place

}

It should be clear that if f1 or f2 is less than strongly exception-safe, it will be hard for someFunc to be strongly exception-safe. For example, suppose
that f1 offers only the basic guarantee. For someFunc to offer the strong guarantee, it would have to write code to determine the state of the entire
program prior to calling f1, catch all exceptions from f1, then restore the original state.

Things aren't really any better if both f1 and f2 are strongly exception safe. After all, if f1 runs to completion, the state of the program may have changed
in arbitrary ways, so if f2 then throws an exception, the state of the program is not the same as it was when someFunc was called, even though f2 didn't
change anything.

The problem is side effects. As long as functions operate only on local state (e.g., someFunc affects only the state of the object on which it's invoked), it's
relatively easy to offer the strong guarantee. When functions have side effects on non-local data, it's much harder. If a side effect of calling f1, for
example, is that a database is modified, it will be hard to make someFunc strongly exception-safe. There is, in general, no way to undo a database
modification that has already been committed; other database clients may have already seen the new state of the database.

Issues such as these can prevent you from offering the strong guarantee for a function, even though you'd like to. Another issue is efficiency. The crux of
copy-and-swap is the idea of modifying a copy of an object's data, then swapping the modified data for the original in a non-throwing operation. This
requires making a copy of each object to be modified, which takes time and space you may be unable or unwilling to make available. The strong
guarantee is highly desirable, and you should offer it when it's practical, but it's not practical 100% of the time.

When it's not, you'll have to offer the basic guarantee. In practice, you'll probably find that you can offer the strong guarantee for some functions, but the
cost in efficiency or complexity will make it untenable for many others. As long as you've made a reasonable effort to offer the strong guarantee
whenever it's practical, no one should be in a position to criticize you when you offer only the basic guarantee. For many functions, the basic guarantee is
a perfectly reasonable choice.



Things are different if you write a function offering no exception-safety guarantee at all, because in this respect it's reasonable to assume that you're
guilty until proven innocent. You should be writing exception-safe code. But you may have a compelling defense. Consider again the implementation of
someFunc that calls the functions f1 and f2. Suppose f2 offers no exception safety guarantee at all, not even the basic guarantee. That means that if f2
emits an exception, the program may have leaked resources inside f2. It means that f2 may have corrupted data structures, e.g., sorted arrays might not
be sorted any longer, objects being transferred from one data structure to another might have been lost, etc. There's no way that someFunc can
compensate for those problems. If the functions someFunc calls offer no exception-safety guarantees, someFunc itself can't offer any guarantees.

Which brings me back to pregnancy. A female is either pregnant or she's not. It's not possible to be partially pregnant. Similarly, a software system is
either exception-safe or it's not. There's no such thing as a partially exception-safe system. If a system has even a single function that's not exception-
safe, the system as a whole is not exception-safe, because calls to that one function could lead to leaked resources and corrupted data structures.
Unfortunately, much C++ legacy code was written without exception safety in mind, so many systems today are not exception-safe. They incorporate
code that was written in an exception-unsafe manner.

There's no reason to perpetuate this state of affairs. When writing new code or modifying existing code, think carefully about how to make it exception-
safe. Begin by using objects to manage resources. (Again, see Item 13.) That will prevent resource leaks. Follow that by determining which of the three
exception safety guarantees is the strongest you can practically offer for each function you write, settling for no guarantee only if calls to legacy code
leave you no choice. Document your decisions, both for clients of your functions and for future maintainers. A function's exception-safety guarantee is a
visible part of its interface, so you should choose it as deliberately as you choose all other aspects of a function's interface.

Forty years ago, goto-laden code was considered perfectly good practice. Now we strive to write structured control flows. Twenty years ago, globally
accessible data was considered perfectly good practice. Now we strive to encapsulate data. Ten years ago, writing functions without thinking about the
impact of exceptions was considered perfectly good practice. Now we strive to write exception-safe code.

Time goes on. We live. We learn.

Things to Remember

Exception-safe functions leak no resources and allow no data structures to become corrupted, even when exceptions are thrown. Such
functions offer the basic, strong, or nothrow guarantees.

The strong guarantee can often be implemented via copy-and- swap, but the strong guarantee is not practical for all functions.

A function can usually offer a guarantee no stronger than the weakest guarantee of the functions it calls.

 < Day Day Up > 
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Item 30: Understand the ins and outs of inlining.

Inline functions — what a wonderful idea! They look like functions, they act like functions, they're ever so much better than macros (see Item 2), and you
can call them without having to incur the overhead of a function call. What more could you ask for?

You actually get more than you might think, because avoiding the cost of a function call is only part of the story. Compiler optimizations are typically
designed for stretches of code that lack function calls, so when you inline a function, you may enable compilers to perform context-specific optimizations
on the body of the function. Most compilers never perform such optimizations on "outlined" function calls.

In programming, however, as in life, there is no free lunch, and inline functions are no exception. The idea behind an inline function is to replace each call
of that function with its code body, and it doesn't take a Ph.D. in statistics to see that this is likely to increase the size of your object code. On machines
with limited memory, overzealous inlining can give rise to programs that are too big for the available space. Even with virtual memory, inline-induced code
bloat can lead to additional paging, a reduced instruction cache hit rate, and the performance penalties that accompany these things.

On the other hand, if an inline function body is very short, the code generated for the function body may be smaller than the code generated for a
function call. If that is the case, inlining the function may actually lead to smaller object code and a higher instruction cache hit rate!

Bear in mind that inline is a request to compilers, not a command. The request can be given implicitly or explicitly. The implicit way is to define a function
inside a class definition:

class Person {

public:

  ...

  int age() const { return theAge; }    // an implicit inline request: age is

  ...                                   // defined in a class definition

private:

  int theAge;

};

Such functions are usually member functions, but Item 46 explains that friend functions can also be defined inside classes. When they are, they're also
implicitly declared inline.

The explicit way to declare an inline function is to precede its definition with the inline keyword. For example, this is how the standard max template (from
<algorithm>) is often implemented:

template<typename T>                               // an explicit inline

inline const T& std::max(const T& a, const T& b)   // request: std::max is

{ return a < b ? b : a; }                          // preceded by "inline"

The fact that max is a template brings up the observation that both inline functions and templates are typically defined in header files. This leads some
programmers to conclude that function templates must be inline. This conclusion is both invalid and potentially harmful, so it's worth looking into it a bit.

Inline functions must typically be in header files, because most build environments do inlining during compilation. In order to replace a function call with
the body of the called function, compilers must know what the function looks like. (Some build environments can inline during linking, and a few — e.g.,
managed environments based on the .NET Common Language Infrastructure (CLI) — can actually inline at runtime. Such environments are the
exception, however, not the rule. Inlining in most C++ programs is a compile-time activity.)

Templates are typically in header files, because compilers need to know what a template looks like in order to instantiate it when it's used. (Again, this is
not universal. Some build environments perform template instantiation during linking. However, compile-time instantiation is more common.)

Template instantiation is independent of inlining. If you're writing a template and you believe that all the functions instantiated from the template should
be inlined, declare the template inline; that's what's done with the std::max implementation above. But if you're writing a template for functions that you
have no reason to want inlined, avoid declaring the template inline (either explicitly or implicitly). Inlining has costs, and you don't want to incur them
without forethought. We've already mentioned how inlining can cause code bloat (a particularly important consideration for template authors — see Item
44), but there are other costs, too, which we'll discuss in a moment.

Before we do that, let's finish the observation that inline is a request that compilers may ignore. Most compilers refuse to inline functions they deem too
complicated (e.g., those that contain loops or are recursive), and all but the most trivial calls to virtual functions defy inlining. This latter observation
shouldn't be a surprise. virtual means "wait until runtime to figure out which function to call," and inline means "before execution, replace the call site with
the called function." If compilers don't know which function will be called, you can hardly blame them for refusing to inline the function's body.

It all adds up to this: whether a given inline function is actually inlined depends on the build environment you're using — primarily on the compiler.



Fortunately, most compilers have a diagnostic level that will result in a warning (see Item 53) if they fail to inline a function you've asked them to.

Sometimes compilers generate a function body for an inline function even when they are perfectly willing to inline the function. For example, if your
program takes the address of an inline function, compilers must typically generate an outlined function body for it. How can they come up with a pointer
to a function that doesn't exist? Coupled with the fact that compilers typically don't perform inlining across calls through function pointers, this means that
calls to an inline function may or may not be inlined, depending on how the calls are made:

inline void f() {...}      // assume compilers are willing to inline calls to f

void (*pf)() = f;          // pf points to f

...

f();                      // this call will be inlined, because it's a "normal" call

pf();                     // this call probably won't be, because it's through

                          // a function pointer

The specter of un-inlined inline functions can haunt you even if you never use function pointers, because programmers aren't necessarily the only ones
asking for pointers to functions. Sometimes compilers generate out-of-line copies of constructors and destructors so that they can get pointers to those
functions for use during construction and destruction of objects in arrays.

In fact, constructors and destructors are often worse candidates for inlining than a casual examination would indicate. For example, consider the
constructor for class Derived below:

class Base {

public:

 ...

private:

   std::string bm1, bm2;               // base members 1 and 2

};

class Derived: public Base {

public:

  Derived() {}                         // Derived's ctor is empty — or is it?

  ...

private:

  std::string dm1, dm2, dm3;           // derived members 1–3

};

This constructor looks like an excellent candidate for inlining, since it contains no code. But looks can be deceiving.

C++ makes various guarantees about things that happen when objects are created and destroyed. When you use new, for example, your dynamically
created objects are automatically initialized by their constructors, and when you use delete, the corresponding destructors are invoked. When you create
an object, each base class of and each data member in that object is automatically constructed, and the reverse process regarding destruction
automatically occurs when an object is destroyed. If an exception is thrown during construction of an object, any parts of the object that have already
been fully constructed are automatically destroyed. In all these scenarios, C++ says what must happen, but it doesn't say how. That's up to compiler
implementers, but it should be clear that those things don't happen by themselves. There has to be some code in your program to make those things
happen, and that code — the code written by compilers and inserted into your program during compilation — has to go somewhere. Sometimes it ends
up in constructors and destructors, so we can imagine implementations generating code equivalent to the following for the allegedly empty Derived
constructor above:



Derived::Derived()                       // conceptual implementation of

{                                        // "empty" Derived ctor

 Base::Base();                           // initialize Base part

 try { dm1.std::string::string(); }      // try to construct dm1

 catch (...) {                           // if it throws,

   Base::~Base();                        // destroy base class part and

   throw;                                // propagate the exception

 }

 try { dm2.std::string::string(); }      // try to construct dm2

 catch(...) {                            // if it throws,

   dm1.std::string::~string();           // destroy dm1,

   Base::~Base();                        // destroy base class part, and

   throw;                                // propagate the exception

 }

 try { dm3.std::string::string(); }      // construct dm3

 catch(...) {                            // if it throws,

   dm2.std::string::~string();           // destroy dm2,

   dm1.std::string::~string();           // destroy dm1,

   Base::~Base();                        // destroy base class part, and

   throw;                                // propagate the exception

 }

}

This code is unrepresentative of what real compilers emit, because real compilers deal with exceptions in more sophisticated ways. Still, this accurately
reflects the behavior that Derived's "empty" constructor must offer. No matter how sophisticated a compiler's exception implementation, Derived's
constructor must at least call constructors for its data members and base class, and those calls (which might themselves be inlined) could affect its
attractiveness for inlining.

The same reasoning applies to the Base constructor, so if it's inlined, all the code inserted into it is also inserted into the Derived constructor (via the
Derived constructor's call to the Base constructor). And if the string constructor also happens to be inlined, the Derived constructor will gain five copies of
that function's code, one for each of the five strings in a Derived object (the two it inherits plus the three it declares itself). Perhaps now it's clear why it's
not a no-brain decision whether to inline Derived's constructor. Similar considerations apply to Derived's destructor, which, one way or another, must see
to it that all the objects initialized by Derived's constructor are properly destroyed.

Library designers must evaluate the impact of declaring functions inline, because it's impossible to provide binary upgrades to the client visible inline
functions in a library. In other words, if f is an inline function in a library, clients of the library compile the body of f into their applications. If a library
implementer later decides to change f, all clients who've used f must recompile. This is often undesirable. On the other hand, if f is a non-inline function,
a modification to f requires only that clients relink. This is a substantially less onerous burden than recompiling and, if the library containing the function is
dynamically linked, one that may be absorbed in a way that's completely transparent to clients.

For purposes of program development, it is important to keep all these considerations in mind, but from a practical point of view during coding, one fact
dominates all others: most debuggers have trouble with inline functions. This should be no great revelation. How do you set a breakpoint in a function
that isn't there? Although some build environments manage to support debugging of inlined functions, many environments simply disable inlining for
debug builds.

This leads to a logical strategy for determining which functions should be declared inline and which should not. Initially, don't inline anything, or at least
limit your inlining to those functions that must be inline (see Item 46) or are truly trivial (such as Person::age on page 135). By employing inlines
cautiously, you facilitate your use of a debugger, but you also put inlining in its proper place: as a hand-applied optimization. Don't forget the empirically
determined rule of 80-20, which states that a typical program spends 80% of its time executing only 20% of its code. It's an important rule, because it



reminds you that your goal as a software developer is to identify the 20% of your code that can increase your program's overall performance. You can
inline and otherwise tweak your functions until the cows come home, but it's wasted effort unless you're focusing on the right functions.

Things to Remember

Limit most inlining to small, frequently called functions. This facilitates debugging and binary upgradability, minimizes potential code
bloat, and maximizes the chances of greater program speed.

Don't declare function templates inline just because they appear in header files.
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Item31: Minimize compilation dependencies between files.

So you go into your C++ program and make a minor change to the implementation of a class. Not the class interface, mind you, just the implementation;
only the private stuff. Then you rebuild the program, figuring that the exercise should take only a few seconds. After all, only one class has been
modified. You click on Build or type make (or some equivalent), and you are astonished, then mortified, as you realize that the whole world is being
recompiled and relinked! Don't you just hate it when that happens?

The problem is that C++ doesn't do a very good job of separating interfaces from implementations. A class definition specifies not only a class interface
but also a fair number of implementation details. For example:

class Person {

public:

  Person(const std::string& name, const Date& birthday,

         const Address& addr);

  std::string name() const;

  std::string birthDate() const;

  std::string address() const;

  ...

private:

      std::string theName;        // implementation detail

      Date theBirthDate;          // implementation detail

      Address theAddress;         // implementation detail

};

Here, class Person can't be compiled without access to definitions for the classes the Person implementation uses, namely, string, Date, and Address.
Such definitions are typically provided through #include directives, so in the file defining the Person class, you are likely to find something like this:

#include <string>

#include "date.h"

#include "address.h"

Unfortunately, this sets up a compilation dependency between the file defining Person and these header files. If any of these header files is changed, or if
any of the header files they depend on changes, the file containing the Person class must be recompiled, as must any files that use Person. Such
cascading compilation dependencies have caused many a project untold grief.

You might wonder why C++ insists on putting the implementation details of a class in the class definition. For example, why can't you define Person this
way, specifying the implementation details of the class separately?

namespace std {

     class string;             // forward declaration (an incorrect

}                              // one — see below)

class Date;                    // forward declaration

class Address;                 // forward declaration

class Person {

public:



      Person(const std::string& name, const Date& birthday,

                 const Address& addr);

      std::string name() const;

      std::string birthDate() const;

      std::string address() const;

    ...

};

If that were possible, clients of Person would have to recompile only if the interface to the class changed.

There are two problems with this idea. First, string is not a class, it's a typedef (for basic_string<char>). As a result, the forward declaration for string is
incorrect. The proper forward declaration is substantially more complex, because it involves additional templates. That doesn't matter, however, because
you shouldn't try to manually declare parts of the standard library. Instead, simply use the proper #includes and be done with it. Standard headers are
unlikely to be a compilation bottleneck, especially if your build environment allows you to take advantage of precompiled headers. If parsing standard
headers really is a problem, you may need to change your interface design to avoid using the parts of the standard library that give rise to the undesirable
#includes.

The second (and more significant) difficulty with forward-declaring everything has to do with the need for compilers to know the size of objects during
compilation. Consider:

int main()

{

 int x;                // define an int

 Person p( params );   // define a Person

   ...

}

When compilers see the definition for x, they know they must allocate enough space (typically on the stack) to hold an int. No problem. Each compiler
knows how big an int is. When compilers see the definition for p, they know they have to allocate enough space for a Person, but how are they supposed
to know how big a Person object is? The only way they can get that information is to consult the class definition, but if it were legal for a class definition to
omit the implementation details, how would compilers know how much space to allocate?

This question fails to arise in languages like Smalltalk and Java, because, when an object is defined in such languages, compilers allocate only enough
space for a pointer to an object. That is, they handle the code above as if it had been written like this:

int main()

{

  int x;               // define an int

  Person *p;           // define a pointer to a Person

  ...

}

This, of course, is legal C++, so you can play the "hide the object implementation behind a pointer" game yourself. One way to do that for Person is to
separate it into two classes, one offering only an interface, the other implementing that interface. If the implementation class is named PersonImpl,
Person would be defined like this:

#include <string>                      // standard library components

                                       // shouldn't be forward-declared



#include <memory>                      // for tr1::shared_ptr; see below

class PersonImpl;                      // forward decl of Person impl. class

class Date;                            // forward decls of classes used in

class Address;                         // Person interface

class Person {

public:

 Person(const std::string& name, const Date& birthday,

        const Address& addr);

 std::string name() const;

 std::string birthDate() const;

 std::string address() const;

 ...

private:                                   // ptr to implementation;

  std::tr1::shared_ptr<PersonImpl> pImpl;  // see Item 13 for info on

};                                         // std::tr1::shared_ptr

Here, the main class (Person) contains as a data member nothing but a pointer (here, a tr1::shared_ptr — see Item 13) to its implementation class
(PersonImpl). Such a design is often said to be using the pimpl idiom ("pointer to implementation"). Within such classes, the name of the pointer is often
pImpl, as it is above.

With this design, clients of Person are divorced from the details of dates, addresses, and persons. The implementations of those classes can be modified
at will, but Person clients need not recompile. In addition, because they're unable to see the details of Person's implementation, clients are unlikely to
write code that somehow depends on those details. This is a true separation of interface and implementation.

The key to this separation is replacement of dependencies on definitions with dependencies on declarations. That's the essence of minimizing
compilation dependencies: make your header files self-sufficient whenever it's practical, and when it's not, depend on declarations in other files, not
definitions. Everything else flows from this simple design strategy. Hence:

Avoid using objects when object references and pointers will do . You may define references and pointers to a type with only a declaration for
the type. Defining objects of a type necessitates the presence of the type's definition.

Depend on class declarations instead of class definitions whenever you can . Note that you never need a class definition to declare a
function using that class, not even if the function passes or returns the class type by value:

class Date;                        // class declaration

Date today();                      // fine — no definition

void clearAppointments(Date d);    // of Date is needed

Of course, pass-by-value is generally a bad idea (see Item 20), but if you find yourself using it for some reason, there's still no justification for
introducing unnecessary compilation dependencies.

The ability to declare today and clearAppointments without defining Date may surprise you, but it's not as curious as it seems. If anybody calls
those functions, Date's definition must have been seen prior to the call. Why bother to declare functions that nobody calls, you wonder? Simple.
It's not that nobody calls them, it's that not everybody calls them. If you have a library containing dozens of function declarations, it's unlikely that
every client calls every function. By moving the onus of providing class definitions from your header file of function declarations to clients' files
containing function calls, you eliminate artificial client dependencies on type definitions they don't really need.

Provide separate header files for declarations and definitions . In order to facilitate adherence to the above guidelines, header files need to
come in pairs: one for declarations, the other for definitions. These files must be kept consistent, of course. If a declaration is changed in one



place, it must be changed in both. As a result, library clients should always #include a declaration file instead of forward-declaring something
themselves, and library authors should provide both header files. For example, the Date client wishing to declare today and clearAppointments
shouldn't manually forward-declare Date as shown above. Rather, it should #include the appropriate header of declarations:

#include "datefwd.h"            // header file declaring (but not

                                // defining) class Date

Date today();                   // as before

void clearAppointments(Date d);

The name of the declaration-only header file " datefwd.h" is based on the header <iosfwd> from the standard C++ library (see Item 54). <iosfwd>
contains declarations of iostream components whose corresponding definitions are in several different headers, including <sstream>,
<streambuf>, <fstream>, and <iostream>.

<iosfwd> is instructive for another reason, and that's to make clear that the advice in this Item applies as well to templates as to non-templates.
Although Item 30 explains that in many build environments, template definitions are typically found in header files, some build environments allow
template definitions to be in non-header files, so it still makes sense to provide declaration-only headers for templates. <iosfwd> is one such
header.

C++ also offers the export keyword to allow the separation of template declarations from template definitions. Unfortunately, compiler support for
export is scanty, and real-world experience with export is scantier still. As a result, it's too early to say what role export will play in effective C++
programming.

Classes like Person that employ the pimpl idiom are often called Handle classes. Lest you wonder how such classes actually do anything, one way is to
forward all their function calls to the corresponding implementation classes and have those classes do the real work. For example, here's how two of
Person's member functions could be implemented:

   #include "Person.h"       // we're implementing the Person class,

                             // so we must #include its class definition

#include "PersonImpl.h"      // we must also #include PersonImpl's class

                             // definition, otherwise we couldn't call

                             // its member functions; note that 

                             // PersonImpl has exactly the same

                             // member functions as Person — their

                             // interfaces are identical

Person::Person(const std::string& name, const Date& birthday,

               const Address& addr)

: pImpl(new PersonImpl(name, birthday, addr))

{}

std::string Person::name() const

{

  return pImpl->name();

}

Note how the Person constructor calls the PersonImpl constructor (by using new — see Item 16) and how Person::name calls PersonImpl::name. This is
important. Making Person a Handle class doesn't change what Person does, it just changes the way it does it.

An alternative to the Handle class approach is to make Person a special kind of abstract base class called an Interface class . The purpose of such a
class is to specify an interface for derived classes (see Item 34). As a result, it typically has no data members, no constructors, a virtual destructor (see
Item 7), and a set of pure virtual functions that specify the interface.



Interface classes are akin to Java's and .NET's Interfaces, but C++ doesn't impose the restrictions on Interface classes that Java and .NET impose on
Interfaces. Neither Java nor .NET allow data members or function implementations in Interfaces, for example, but C++ forbids neither of these things.
C++'s greater flexibility can be useful. As Item 36 explains, the implementation of non-virtual functions should be the same for all classes in a hierarchy,
so it makes sense to implement such functions as part of the Interface class that declares them.

An Interface class for Person could look like this:

class Person {

public:

  virtual ~Person();

  virtual std::string name() const = 0;

  virtual std::string birthDate() const = 0;

  virtual std::string address() const = 0;

  ...

};

Clients of this class must program in terms of Person pointers and references, because it's not possible to instantiate classes containing pure virtual
functions. (It is, however, possible to instantiate classes derived from Person — see below.) Like clients of Handle classes, clients of Interface classes
need not recompile unless the Interface class's interface is modified.

Clients of an Interface class must have a way to create new objects. They typically do it by calling a function that plays the role of the constructor for the
derived classes that are actually instantiated. Such functions are typically called factory functions (see Item 13) or virtual constructors. They return
pointers (preferably smart pointers — see Item 18) to dynamically allocated objects that support the Interface class's interface. Such functions are often
declared static inside the Interface class:

class Person {

public:

 ...

 static std::tr1::shared_ptr<Person>    // return a tr1::shared_ptr to a new

   create(const std::string& name,      // Person initialized with the

          const Date& birthday,         // given params; see Item 18 for

          const Address& addr);         // why a tr1::shared_ptr is returned

 ...

};

Clients use them like this:

std::string name;

Date dateOfBirth;

Address address;

...

// create an object supporting the Person interface

std::tr1::shared_ptr<Person> pp(Person::create(name, dateOfBirth, address));

...



std::cout << pp->name()                 // use the object via the

          << " was born on "            // Person interface

     << pp->birthDate()

          << " and now lives at "

          << pp->address();

...                                     // the object is automatically

                                        // deleted when pp goes out of

                                        // scope — see Item 13

At some point, of course, concrete classes supporting the Interface class's interface must be defined and real constructors must be called. That all
happens behind the scenes inside the files containing the implementations of the virtual constructors. For example, the Interface class Person might
have a concrete derived class RealPerson that provides implementations for the virtual functions it inherits:

class RealPerson: public Person {

public:

  RealPerson(const std::string& name, const Date& birthday,

             const Address& addr)

  : theName(name), theBirthDate(birthday), theAddress(addr)

  {}

  virtual ~RealPerson() {}

  std::string name() const;        // implementations of these 

  std::string birthDate() const;   // functions are not shown, but

  std::string address() const;     // they are easy to imagine

private:

  std::string theName;

  Date theBirthDate;

  Address theAddress;

};

Given RealPerson, it is truly trivial to write Person::create:

std::tr1::shared_ptr<Person> Person::create(const std::string& name,

                                            const Date& birthday,

                                            const Address& addr)

{

  return std::tr1::shared_ptr<Person>(new RealPerson(name, birthday,addr));

}



A more realistic implementation of Person::create would create different types of derived class objects, depending on e.g., the values of additional
function parameters, data read from a file or database, environment variables, etc.

RealPerson demonstrates one of the two most common mechanisms for implementing an Interface class: it inherits its interface specification from the
Interface class (Person), then it implements the functions in the interface. A second way to implement an Interface class involves multiple inheritance, a
topic explored in Item 40.

Handle classes and Interface classes decouple interfaces from implementations, thereby reducing compilation dependencies between files. Cynic that
you are, I know you're waiting for the fine print. "What does all this hocus-pocus cost me?" you mutter. The answer is the usual one in computer science:
it costs you some speed at runtime, plus some additional memory per object.

In the case of Handle classes, member functions have to go through the implementation pointer to get to the object's data. That adds one level of
indirection per access. And you must add the size of this implementation pointer to the amount of memory required to store each object. Finally, the
implementation pointer has to be initialized (in the Handle class's constructors) to point to a dynamically allocated implementation object, so you incur the
overhead inherent in dynamic memory allocation (and subsequent deallocation) and the possibility of encountering bad_alloc (out-of-memory)
exceptions.

For Interface classes, every function call is virtual, so you pay the cost of an indirect jump each time you make a function call (see Item 7). Also, objects
derived from the Interface class must contain a virtual table pointer (again, see Item 7). This pointer may increase the amount of memory needed to store
an object, depending on whether the Interface class is the exclusive source of virtual functions for the object.

Finally, neither Handle classes nor Interface classes can get much use out of inline functions. Item 30 explains why function bodies must typically be in
header files in order to be inlined, but Handle and Interface classes are specifically designed to hide implementation details like function bodies.

It would be a serious mistake, however, to dismiss Handle classes and Interface classes simply because they have a cost associated with them. So do
virtual functions, and you wouldn't want to forgo those, would you? (If so, you're reading the wrong book.) Instead, consider using these techniques in an
evolutionary manner. Use Handle classes and Interface classes during development to minimize the impact on clients when implementations change.
Replace Handle classes and Interface classes with concrete classes for production use when it can be shown that the difference in speed and/or size is
significant enough to justify the increased coupling between classes.

Things to Remember

The general idea behind minimizing compilation dependencies is to depend on declarations instead of definitions. Two approaches
based on this idea are Handle classes and Interface classes.

Library header files should exist in full and declaration-only forms. This applies regardless of whether templates are involved.
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Chapter 6. Inheritance and Object-Oriented Design
Object-oriented programming (OOP) has been the rage for almost two decades, so it's likely that you have some experience with the ideas of
inheritance, derivation, and virtual functions. Even if you've been programming only in C, you've surely not escaped the OOP hoopla.

Still, OOP in C++ is probably a bit different from what you're used to. Inheritance can be single or multiple, and each inheritance link can be public,
protected, or private. Each link can also be virtual or non-virtual. Then there are the member function options. Virtual? Non-virtual? Pure virtual? And the
interactions with other language features. How do default parameter values interact with virtual functions? How does inheritance affect C++'s name
lookup rules? And what about design options? If a class's behavior needs to be modifiable, is a virtual function the best way to do that?

This chapter sorts it all out. Furthermore, I explain what the different features in C++ really mean — what you are really expressing when you use a
particular construct. For example, public inheritance means "is-a," and if you try to make it mean anything else, you'll run into trouble. Similarly, a virtual
function means "interface must be inherited," while a non-virtual function means "both interface and implementation must be inherited." Failing to
distinguish between these meanings has caused C++ programmers considerable grief.

If you understand the meanings of C++'s various features, you'll find that your outlook on OOP changes. Instead of it being an exercise in differentiating
between language features, it will become a matter of determining what you want to say about your software system. And once you know what you want
to say, the translation into C++ is not terribly demanding.
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Item 32: Make sure public inheritance models "is-a."

In his book, Some Must Watch While Some Must Sleep  (W. H. Freeman and Company, 1974), William Dement relates the story of his attempt to fix in
the minds of his students the most important lessons of his course. It is claimed, he told his class, that the average British schoolchild remembers little
more history than that the Battle of Hastings was in 1066. If a child remembers little else, Dement emphasized, he or she remembers the date 1066. For
the students in his course, Dement went on, there were only a few central messages, including, interestingly enough, the fact that sleeping pills cause
insomnia. He implored his students to remember these few critical facts even if they forgot everything else discussed in the course, and he returned to
these fundamental precepts repeatedly during the term.

At the end of the course, the last question on the final exam was, "Write one thing from the course that you will surely remember for the rest of your life."
When Dement graded the exams, he was stunned. Nearly everyone had written "1066."

It is thus with great trepidation that I proclaim to you now that the single most important rule in object-oriented programming with C++ is this: public
inheritance means "is-a." Commit this rule to memory.

If you write that class D ("Derived") publicly inherits from class B ("Base"), you are telling C++ compilers (as well as human readers of your code) that
every object of type D is also an object of type B, but not vice versa. You are saying that B represents a more general concept than D, that D represents
a more specialized concept than B. You are asserting that anywhere an object of type B can be used, an object of type D can be used just as well,
because every object of type D is an object of type B. On the other hand, if you need an object of type D, an object of type B will not do: every D is-a B,
but not vice versa.

C++ enforces this interpretation of public inheritance. Consider this example:

class Person {...};

class Student: public Person {...};

We know from everyday experience that every student is a person, but not every person is a student. That is exactly what this hierarchy asserts. We
expect that anything that is true of a person — for example, that he or she has a date of birth — is also true of a student. We do not expect that
everything that is true of a student — that he or she is enrolled in a particular school, for instance — is true of people in general. The notion of a person is
more general than is that of a student; a student is a specialized type of person.

Within the realm of C++, any function that expects an argument of type Person (or pointer-to-Person or reference-to-Person) will also take a Student
object (or pointer-to-Student or reference-to-Student):

void eat(const Person& p);            // anyone can eat

void study(const Student& s);         // only students study

Person p;                             // p is a Person

Student s;                            // s is a Student

eat(p);                               // fine, p is a Person

eat(s);                               // fine, s is a Student,

                                      // and a Student is-a Person

study(s);                             // fine

study(p);                             // error! p isn't a Student

This is true only for public inheritance. C++ will behave as I've described only if Student is publicly derived from Person. Private inheritance means
something entirely different (see Item 39), and protected inheritance is something whose meaning eludes me to this day.

The equivalence of public inheritance and is-a sounds simple, but sometimes your intuition can mislead you. For example, it is a fact that a penguin is a
bird, and it is a fact that birds can fly. If we naively try to express this in C++, our effort yields:



class Bird {

public:

  virtual void fly();                  // birds can fly

  ...

};

class Penguin:public Bird {            // penguins are birds

  ...

};

Suddenly we are in trouble, because this hierarchy says that penguins can fly, which we know is not true. What happened?

In this case, we are the victims of an imprecise language: English. When we say that birds can fly, we don't mean that all types of birds can fly, only that,
in general, birds have the ability to fly. If we were more precise, we'd recognize that there are several types of non-flying birds, and we would come up
with the following hierarchy, which models reality much better:

class Bird {

  ...                                       // no fly function is declared

};

class FlyingBird: public Bird {

public:

  virtual void fly();

  ...

};

class Penguin: public Bird {

  ...                                       // no fly function is declared

};

This hierarchy is much more faithful to what we really know than was the original design.

Yet we're not finished with these fowl matters, because for some software systems, there may be no need to distinguish between flying and non-flying
birds. If your application has much to do with beaks and wings and nothing to do with flying, the original two-class hierarchy might be quite satisfactory.
That's a simple reflection of the fact that there is no one ideal design for all software. The best design depends on what the system is expected to do,
both now and in the future. If your application has no knowledge of flying and isn't expected to ever have any, failing to distinguish between flying and
non-flying birds may be a perfectly valid design decision. In fact, it may be preferable to a design that does distinguish between them, because such a
distinction would be absent from the world you are trying to model.

There is another school of thought on how to handle what I call the "All birds can fly, penguins are birds, penguins can't fly, uh oh" problem. That is to
redefine the fly function for penguins so that it generates a runtime error:

void error(const std::string& msg);       // defined elsewhere

class Penguin: public Bird {



public:

  virtual void fly() { error("Attempt to make a penguin fly!");}

  ...

};

It's important to recognize that this says something different from what you might think. This does not say, "Penguins can't fly." This says, "Penguins can
fly, but it's an error for them to actually try to do it."

How can you tell the difference? From the time at which the error is detected. The injunction, "Penguins can't fly," can be enforced by compilers, but
violations of the rule, "It's an error for penguins to actually try to fly," can be detected only at runtime.

To express the constraint, "Penguins can't fly — period," you make sure that no such function is defined for Penguin objects:

class Bird {

  ...                                // no fly function is declared

};

class Penguin: public Bird {

  ...                                // no fly function is declared

};

If you now try to make a penguin fly, compilers will reprimand you for your transgression:

Penguin p;

p.fly();                     // error!

This is very different from the behavior you get if you adopt the approach that generates runtime errors. With that methodology, compilers won't say a
word about the call to p.fly. Item 18 explains that good interfaces prevent invalid code from compiling, so you should prefer the design that rejects
penguin flight attempts during compilation to the one that detects them only at runtime.

Perhaps you'll concede that your ornithological intuition may be lacking, but you can rely on your mastery of elementary geometry, right? I mean, how
complicated can rectangles and squares be?

Well, answer this simple question: should class Square publicly inherit from class Rectangle?

"Duh!" you say, "Of course it should! Everybody knows that a square is a rectangle, but generally not vice versa." True enough, at least in school. But I
don't think we're in school anymore.

Consider this code:

class Rectangle {



public:

  virtual void setHeight(int newHeight);

  virtual void setWidth(int newWidth);

  virtual int height() const;               // return current values

  virtual int width() const;

  ...

};

void makeBigger(Rectangle& r)               // function to increase r's area

{

  int oldHeight = r.height();

  r.setWidth(r.width() + 10);               // add 10 to r's width

  assert(r.height() == oldHeight);          // assert that r's

}                                           // height is unchanged

Clearly, the assertion should never fail. makeBigger only changes r's width. Its height is never modified.

Now consider this code, which uses public inheritance to allow squares to be treated like rectangles:

class Square: public Rectangle {...};

Square s;

...

assert(s.width() == s.height());           // this must be true for all squares

makeBigger(s);                             // by inheritance, s is-a Rectangle,

                                           // so we can increase its area

assert(s.width() == s.height());           // this must still be true

                                           // for all squares

It's just as clear that this second assertion should also never fail. By definition, the width of a square is the same as its height.

But now we have a problem. How can we reconcile the following assertions?

Before calling makeBigger, s's height is the same as its width;

Inside makeBigger, s's width is changed, but its height is not;



After returning from makeBigger, s's height is again the same as its width. (Note that s is passed to makeBigger by reference, so makeBigger
modifies s itself, not a copy of s.)

Well?

Welcome to the wonderful world of public inheritance, where the instincts you've developed in other fields of study — including mathematics — may not
serve you as well as you expect. The fundamental difficulty in this case is that something applicable to a rectangle (its width may be modified
independently of its height) is not applicable to a square (its width and height must be the same). But public inheritance asserts that everything that
applies to base class objects — everything! — also applies to derived class objects. In the case of rectangles and squares (as well as an example
involving sets and lists in Item 38), that assertion fails to hold, so using public inheritance to model their relationship is simply incorrect. Compilers will let
you do it, but as we've just seen, that's no guarantee the code will behave properly. As every programmer must learn (some more often than others), just
because the code compiles doesn't mean it will work.

Don't fret that the software intuition you've developed over the years will fail you as you approach object-oriented design. That knowledge is still valuable,
but now that you've added inheritance to your arsenal of design alternatives, you'll have to augment your intuition with new insights to guide you in
inheritance's proper application. In time, the notion of having Penguin inherit from Bird or Square inherit from Rectangle will give you the same funny
feeling you probably get now when somebody shows you a function several pages long. It's possibly the right way to approach things, it's just not very
likely.

The is-a relationship is not the only one that can exist between classes. Two other common inter-class relationships are "has-a" and "is-implemented-in-
terms-of." These relationships are considered in Items 38 and 39. It's not uncommon for C++ designs to go awry because one of these other important
relationships was incorrectly modeled as is-a, so you should make sure that you understand the differences among these relationships and that you know
how each is best modeled in C++.

Things to Remember

Public inheritance means "is-a." Everything that applies to base classes must also apply to derived classes, because every derived
class object is a base class object.
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Item 33: Avoid hiding inherited names

Shakespeare had a thing about names. "What's in a name?" he asked, "A rose by any other name would smell as sweet." The Bard also wrote, "he that
filches from me my good name ... makes me poor indeed." Right. Which brings us to inherited names in C++.

The matter actually has nothing to do with inheritance. It has to do with scopes. We all know that in code like this,

int x;                        // global variable

void someFunc()

{

  double x;                   // local variable

  std::cin >> x;              // read a new value for local x

}

the statement reading into x refers to the local variable x instead of the global variable x, because names in inner scopes hide ("shadow") names in outer
scopes. We can visualize the scope situation this way:

When compilers are in someFunc's scope and they encounter the name x, they look in the local scope to see if there is something with that name.
Because there is, they never examine any other scope. In this case, someFunc's x is of type double and the global x is of type int, but that doesn't
matter. C++'s name-hiding rules do just that: hide names. Whether the names correspond to the same or different types is immaterial. In this case, a
double named x hides an int named x.

Enter inheritance. We know that when we're inside a derived class member function and we refer to something in a base class (e.g., a member function,
a typedef, or a data member), compilers can find what we're referring to because derived classes inherit the things declared in base classes. The way
that actually works is that the scope of a derived class is nested inside its base class's scope. For example:

class Base {

private:

  int x;

public:

  virtual void mf1() = 0;

  virtual void mf2();

  void mf3();

  ...

};

class Derived: public Base {

public:

  virtual void mf1();

  void mf4();



  ...

};

This example includes a mix of public and private names as well as names of both data members and member functions. The member functions are pure
virtual, simple (impure) virtual, and non-virtual. That's to emphasize that we're talking about names. The example could also have included names of
types, e.g., enums, nested classes, and typedefs. The only thing that matters in this discussion is that they're names. What they're names of is irrelevant.
The example uses single inheritance, but once you understand what's happening under single inheritance, C++'s behavior under multiple inheritance is
easy to anticipate.

Suppose mf4 in the derived class is implemented, in part, like this:

void Derived::mf4()

{

  ...

  mf2();

  ...

}

When compilers see the use of the name mf2 here, they have to figure out what it refers to. They do that by searching scopes for a declaration of
something named mf2. First they look in the local scope (that of mf4), but they find no declaration for anything called mf2. They then search the
containing scope, that of the class Derived. They still find nothing named mf2, so they move on to the next containing scope, that of the base class.
There they find something named mf2, so the search stops. If there were no mf2 in Base, the search would continue, first to the namespace(s)
containing Base, if any, and finally to the global scope.

The process I just described is accurate, but it's not a comprehensive description of how names are found in C++. Our goal isn't to know enough about
name lookup to write a compiler, however. It's to know enough to avoid unpleasant surprises, and for that task, we already have plenty of information.

Consider the previous example again, except this time let's overload mf1 and mf3, and let's add a version of mf3 to Derived. (As Item 36 explains,
Derived's overloading of mf3 — an inherited non-virtual function — makes this design instantly suspicious, but in the interest of understanding name
visibility under inheritance, we'll overlook that.)

class Base {

private:

  int x;

public:

  virtual void mf1() = 0;

  virtual void mf1(int);

  virtual void mf2();



  void mf3();

  void mf3(double);

  ...

};

class Derived: public Base {

public:

  virtual void mf1();

  void mf3();

  void mf4();

  ...

};

This code leads to behavior that surprises every C++ programmer the first time they encounter it. The scope-based name hiding rule hasn't changed, so
all functions named mf1 and mf3 in the base class are hidden by the functions named mf1 and mf3 in the derived class. From the perspective of name
lookup, Base::mf1 and Base::mf3 are no longer inherited by Derived!

Derived d;

int x;

...

d.mf1();                   // fine, calls Derived::mf1

d.mf1(x);                  // error! Derived::mf1 hides Base::mf1

d.mf2();                   // fine, calls Base::mf2

d.mf3();                   // fine, calls Derived::mf3

d.mf3(x);                  // error! Derived::mf3 hides Base::mf3

As you can see, this applies even though the functions in the base and derived classes take different parameter types, and it also applies regardless of
whether the functions are virtual or non-virtual. In the same way that, at the beginning of this Item, the double x in the function someFunc hides the int x
at global scope, here the function mf3 in Derived hides a Base function named mf3 that has a different type.

The rationale behind this behavior is that it prevents you from accidentally inheriting overloads from distant base classes when you create a new derived
class in a library or application framework. Unfortunately, you typically want to inherit the overloads. In fact, if you're using public inheritance and you
don't inherit the overloads, you're violating the is-a relationship between base and derived classes that Item 32 explains is fundamental to public
inheritance. That being the case, you'll almost always want to override C++'s default hiding of inherited names.



You do it with using declarations:

class Base {

private:

  int x;

public:

  virtual void mf1() = 0;

  virtual void mf1(int);

  virtual void mf2();

  void mf3();

  void mf3(double);

  ...

};

class Derived: public Base {

public:

  using Base::mf1;       // make all things in Base named mf1 and mf3

  using Base::mf3;       // visible (and public) in Derived's scope

  virtual void mf1();

  void mf3();

  void mf4();

  ...

};

Now inheritance will work as expected:

Derived d;

int x;

...



d.mf1();                 // still fine, still calls Derived::mf1

d.mf1(x);                // now okay, calls Base::mf1

d.mf2();                 // still fine, still calls Base::mf2

d.mf3();                 // fine, calls Derived::mf3

d.mf3(x);                // now okay, calls Base::mf3

This means that if you inherit from a base class with overloaded functions and you want to redefine or override only some of them, you need to include a
using declaration for each name you'd otherwise be hiding. If you don't, some of the names you'd like to inherit will be hidden.

It's conceivable that you sometimes won't want to inherit all the functions from your base classes. Under public inheritance, this should never be the
case, because, again, it violates public inheritance's is-a relationship between base and derived classes. (That's why the using declarations above are in
the public part of the derived class: names that are public in a base class should also be public in a publicly derived class.) Under private inheritance
(see Item 39), however, it can make sense. For example, suppose Derived privately inherits from Base, and the only version of mf1 that Derived wants to
inherit is the one taking no parameters. A using declaration won't do the trick here, because a using declaration makes all inherited functions with a given
name visible in the derived class. No, this is a case for a different technique, namely, a simple forwarding function:

class Base {

public:

  virtual void mf1() = 0;

  virtual void mf1(int);

  ...                                    // as before

};

class Derived: private Base {

public:

  virtual void mf1()                   // forwarding function; implicitly

  { Base::mf1(); }                     // inline (see Item

30)

  ...

};

...

Derived d;

int x;

d.mf1();                               // fine, calls Derived::mf1

d.mf1(x);                              // error! Base::mf1() is hidden

Another use for inline forwarding functions is to work around ancient compilers that (incorrectly) don't support using declarations to import inherited
names into the scope of a derived class.

That's the whole story on inheritance and name hiding, but when inheritance is combined with templates, an entirely different form of the "inherited



names are hidden" issue arises. For all the angle-bracket-demarcated details, see Item 43.

Things to Remember

Names in derived classes hide names in base classes. Under public inheritance, this is never desirable.

To make hidden names visible again, employ using declarations or forwarding functions.
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Item 34: Differentiate between inheritance of interface and inheritance of implementation

The seemingly straightforward notion of (public) inheritance turns out, upon closer examination, to be composed of two separable parts: inheritance of
function interfaces and inheritance of function implementations. The difference between these two kinds of inheritance corresponds exactly to the
difference between function declarations and function definitions discussed in the Introduction to this book.

As a class designer, you sometimes want derived classes to inherit only the interface (declaration) of a member function. Sometimes you want derived
classes to inherit both a function's interface and implementation, but you want to allow them to override the implementation they inherit. And sometimes
you want derived classes to inherit a function's interface and implementation without allowing them to override anything.

To get a better feel for the differences among these options, consider a class hierarchy for representing geometric shapes in a graphics application:

class Shape {

public:

  virtual void draw() const = 0;

  virtual void error(const std::string& msg);

  int objectID() const;

  ...

};

class Rectangle: public Shape { ... };

class Ellipse: public Shape { ... };

Shape is an abstract class; its pure virtual function draw marks it as such. As a result, clients cannot create instances of the Shape class, only of classes
derived from it. Nonetheless, Shape exerts a strong influence on all classes that (publicly) inherit from it, because

Member function interfaces are always inherited . As explained in Item 32, public inheritance means is-a, so anything that is true of a base class
must also be true of its derived classes. Hence, if a function applies to a class, it must also apply to its derived classes.

Three functions are declared in the Shape class. The first, draw, draws the current object on an implicit display. The second, error, is called by member
functions if they need to report an error. The third, objectID, returns a unique integer identifier for the current object. Each function is declared in a
different way: draw is a pure virtual function; error is a simple (impure?) virtual function; and objectID is a non-virtual function. What are the implications
of these different declarations?

Consider first the pure virtual function draw:

class Shape {

public:

  virtual void draw() const = 0;

  ...

};

The two most salient features of pure virtual functions are that they must be redeclared by any concrete class that inherits them, and they typically have
no definition in abstract classes. Put these two characteristics together, and you realize that

The purpose of declaring a pure virtual function is to have derived classes inherit a function interface only.

This makes perfect sense for the Shape::draw function, because it is a reasonable demand that all Shape objects must be drawable, but the Shape
class can provide no reasonable default implementation for that function. The algorithm for drawing an ellipse is very different from the algorithm for
drawing a rectangle, for example. The declaration of Shape::draw says to designers of concrete derived classes, "You must provide a draw function, but I



have no idea how you're going to implement it."

Incidentally, it is possible to provide a definition for a pure virtual function. That is, you could provide an implementation for Shape::draw, and C++
wouldn't complain, but the only way to call it would be to qualify the call with the class name:

Shape *ps = new Shape;              // error! Shape is abstract

Shape *ps1 = new Rectangle;         // fine

ps1->draw();                     // calls Rectangle::draw

Shape *ps2 = new Ellipse;           // fine

ps2->draw();                     // calls Ellipse::draw

ps1->Shape::draw();                 // calls Shape::draw

ps2->Shape::draw();                 // calls Shape::draw

Aside from helping you impress fellow programmers at cocktail parties, knowledge of this feature is generally of limited utility. As you'll see below,
however, it can be employed as a mechanism for providing a safer-than-usual default implementation for simple (impure) virtual functions.

The story behind simple virtual functions is a bit different from that behind pure virtuals. As usual, derived classes inherit the interface of the function, but
simple virtual functions provide an implementation that derived classes may override. If you think about this for a minute, you'll realize that

The purpose of declaring a simple virtual function is to have derived classes inherit a function interface as well as a default implementation.

Consider the case of Shape::error:

class Shape {

public:

  virtual void error(const std::string& msg);

  ...

};

The interface says that every class must support a function to be called when an error is encountered, but each class is free to handle errors in whatever
way it sees fit. If a class doesn't want to do anything special, it can just fall back on the default error handling provided in the Shape class. That is, the
declaration of Shape::error says to designers of derived classes, "You've got to support an error function, but if you don't want to write your own, you can
fall back on the default version in the Shape class."

It turns out that it can be dangerous to allow simple virtual functions to specify both a function interface and a default implementation. To see why,
consider a hierarchy of airplanes for XYZ Airlines. XYZ has only two kinds of planes, the Model A and the Model B, and both are flown in exactly the
same way. Hence, XYZ designs the following hierarchy:

class Airport { ... };                     // represents airports

class Airplane {

public:

  virtual void fly(const Airport& destination);

  ...

};



void Airplane::fly(const Airport& destination)

{

  default code for flying an airplane to the given destination

}

class ModelA: public Airplane { ... };

class ModelB: public Airplane { ... };

To express that all planes have to support a fly function, and in recognition of the fact that different models of plane could, in principle, require different
implementations for fly, Airplane::fly is declared virtual. However, in order to avoid writing identical code in the ModelA and ModelB classes, the default
flying behavior is provided as the body of Airplane::fly, which both ModelA and ModelB inherit.

This is a classic object-oriented design. Two classes share a common feature (the way they implement fly), so the common feature is moved into a base
class, and the feature is inherited by the two classes. This design makes common features explicit, avoids code duplication, facilitates future
enhancements, and eases long-term maintenance — all the things for which object-oriented technology is so highly touted. XYZ Airlines should be proud.

Now suppose that XYZ, its fortunes on the rise, decides to acquire a new type of airplane, the Model C. The Model C differs in some ways from the
Model A and the Model B. In particular, it is flown differently.

XYZ's programmers add the class for Model C to the hierarchy, but in their haste to get the new model into service, they forget to redefine the fly
function:

class ModelC: public Airplane {

  ...                                   // no fly function is declared

};

In their code, then, they have something akin to the following:

Airport PDX(...);                       // PDX is the airport near my home

Airplane *pa = new ModelC;

...

pa->fly(PDX);                          // calls Airplane::fly!

This is a disaster: an attempt is being made to fly a ModelC object as if it were a ModelA or a ModelB. That's not the kind of behavior that inspires
confidence in the traveling public.

The problem here is not that Airplane::fly has default behavior, but that ModelC was allowed to inherit that behavior without explicitly saying that it
wanted to. Fortunately, it's easy to offer default behavior to derived classes but not give it to them unless they ask for it. The trick is to sever the
connection between the interface of the virtual function and its default implementation. Here's one way to do it:

class Airplane {

public:

  virtual void fly(const Airport& destination) = 0;



  ...

protected:

  void defaultFly(const Airport& destination);

};

void Airplane::defaultFly(const Airport& destination)

{

  default code for flying an airplane to the given destination

}

Notice how Airplane::fly has been turned into a pure virtual function. That provides the interface for flying. The default implementation is also present in
the Airplane class, but now it's in the form of an independent function, defaultFly. Classes like ModelA and ModelB that want to use the default behavior
simply make an inline call to defaultFly inside their body of fly (but see Item 30 for information on the interaction of inlining and virtual functions):

class ModelA: public Airplane {

public:

  virtual void fly(const Airport& destination)

  { defaultFly(destination); }

  ...

};

class ModelB: public Airplane {

public:

  virtual void fly(const Airport& destination)

  { defaultFly(destination); }

  ...

};

For the ModelC class, there is no possibility of accidentally inheriting the incorrect implementation of fly, because the pure virtual in Airplane forces
ModelC to provide its own version of fly.

class ModelC: public Airplane {

public:

  virtual void fly(const Airport& destination);

  ...

};

void ModelC::fly(const Airport& destination)

{



  code for flying a ModelC airplane to the given destination

}

This scheme isn't foolproof (programmers can still copy-and-paste themselves into trouble), but it's more reliable than the original design. As for
Airplane::defaultFly, it's protected because it's truly an implementation detail of Airplane and its derived classes. Clients using airplanes should care only
that they can be flown, not how the flying is implemented.

It's also important that Airplane::defaultFly is a non-virtual function. This is because no derived class should redefine this function, a truth to which Item
36 is devoted. If defaultFly were virtual, you'd have a circular problem: what if some derived class forgets to redefine defaultFly when it's supposed to?

Some people object to the idea of having separate functions for providing interface and default implementation, such as fly and defaultFly above. For one
thing, they note, it pollutes the class namespace with a proliferation of closely related function names. Yet they still agree that interface and default
implementation should be separated. How do they resolve this seeming contradiction? By taking advantage of the fact that pure virtual functions must be
redeclared in concrete derived classes, but they may also have implementations of their own. Here's how the Airplane hierarchy could take advantage of
the ability to define a pure virtual function:

class Airplane {

public:

  virtual void fly(const Airport& destination) = 0;

  ...

};

void Airplane::fly(const Airport& destination)     // an implementation of

{                                                  // a pure virtual function

  default code for flying an airplane to

  the given destination

}

class ModelA: public Airplane {

public:

  virtual void fly(const Airport& destination)

  { Airplane::fly(destination); }

  ...

};

class ModelB: public Airplane {

public:

  virtual void fly(const Airport& destination)

  { Airplane::fly(destination); }

  ...

};



class ModelC: public Airplane {

public:

  virtual void fly(const Airport& destination);

  ...

};

void ModelC::fly(const Airport& destination)

{

  code for flying a ModelC airplane to the given destination

}

This is almost exactly the same design as before, except that the body of the pure virtual function Airplane::fly takes the place of the independent
function Airplane::defaultFly. In essence, fly has been broken into its two fundamental components. Its declaration specifies its interface (which derived
classes must use), while its definition specifies its default behavior (which derived classes may use, but only if they explicitly request it). In merging fly
and defaultFly, however, you've lost the ability to give the two functions different protection levels: the code that used to be protected (by being in
defaultFly) is now public (because it's in fly).

Finally, we come to Shape's non-virtual function, objectID:

class Shape {

public:

  int objectID() const;

  ...

};

When a member function is non-virtual, it's not supposed to behave differently in derived classes. In fact, a non-virtual member function specifies an
invariant over specialization, because it identifies behavior that is not supposed to change, no matter how specialized a derived class becomes. As such,

The purpose of declaring a non-virtual function is to have derived classes inherit a function interface as well as a mandatory implementation .

You can think of the declaration for Shape::objectID as saying, "Every Shape object has a function that yields an object identifier, and that object identifier
is always computed the same way. That way is determined by the definition of Shape::objectID, and no derived class should try to change how it's done."
Because a non-virtual function identifies an invariant over specialization, it should never be redefined in a derived class, a point that is discussed in detail
in Item 36.

The differences in declarations for pure virtual, simple virtual, and non-virtual functions allow you to specify with precision what you want derived classes
to inherit: interface only, interface and a default implementation, or interface and a mandatory implementation, respectively. Because these different types
of declarations mean fundamentally different things, you must choose carefully among them when you declare your member functions. If you do, you
should avoid the two most common mistakes made by inexperienced class designers.

The first mistake is to declare all functions non-virtual. That leaves no room for specialization in derived classes; non-virtual destructors are particularly
problematic (see Item 7). Of course, it's perfectly reasonable to design a class that is not intended to be used as a base class. In that case, a set of
exclusively non-virtual member functions is appropriate. Too often, however, such classes are declared either out of ignorance of the differences
between virtual and non-virtual functions or as a result of an unsubstantiated concern over the performance cost of virtual functions. The fact of the
matter is that almost any class that's to be used as a base class will have virtual functions (again, see Item 7).

If you're concerned about the cost of virtual functions, allow me to bring up the empirically-based rule of 80-20 (see also Item 30), which states that in a
typical program, 80% of the runtime will be spent executing just 20% of the code. This rule is important, because it means that, on average, 80% of your
function calls can be virtual without having the slightest detectable impact on your program's overall performance. Before you go gray worrying about
whether you can afford the cost of a virtual function, take the simple precaution of making sure that you're focusing on the 20% of your program where
the decision might really make a difference.

The other common problem is to declare all member functions virtual. Sometimes this is the right thing to do — witness Item 31's Interface classes.
However, it can also be a sign of a class designer who lacks the backbone to take a stand. Some functions should not be redefinable in derived classes,
and whenever that's the case, you've got to say so by making those functions non-virtual. It serves no one to pretend that your class can be all things to
all people if they'll just take the time to redefine all your functions. If you have an invariant over specialization, don't be afraid to say so!



Things to Remember

Inheritance of interface is different from inheritance of implementation. Under public inheritance, derived classes always inherit base
class interfaces.

Pure virtual functions specify inheritance of interface only.

Simple (impure) virtual functions specify inheritance of interface plus inheritance of a default implementation.

Non-virtual functions specify inheritance of interface plus inheritance of a mandatory implementation.
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Item 35: Consider alternatives to virtual functions

So you're working on a video game, and you're designing a hierarchy for characters in the game. Your game being of the slash-and-burn variety, it's not
uncommon for characters to be injured or otherwise in a reduced state of health. You therefore decide to offer a member function, healthValue, that
returns an integer indicating how healthy the character is. Because different characters may calculate their health in different ways, declaring healthValue
virtual seems the obvious way to design things:

class GameCharacter {

public:

  virtual int healthValue() const;        // return character's health rating;

  ...                                     // derived classes may redefine this

};

The fact that healthValue isn't declared pure virtual suggests that there is a default algorithm for calculating health (see Item 34).

This is, indeed, the obvious way to design things, and in some sense, that's its weakness. Because this design is so obvious, you may not give adequate
consideration to its alternatives. In the interest of helping you escape the ruts in the road of object-oriented design, let's consider some other ways to
approach this problem.

The Template Method Pattern via the Non-Virtual Interface Idiom

We'll begin with an interesting school of thought that argues that virtual functions should almost always be private. Adherents to this school would
suggest that a better design would retain healthValue as a public member function but make it non-virtual and have it call a private virtual function to do
the real work, say, doHealthValue:

class GameCharacter {

public:

  int healthValue() const               // derived classes do not redefine

  {                                     // this — see Item 36

    ...                                 // do "before" stuff — see below

    int retVal = doHealthValue();       // do the real work

    ...                                 // do "after" stuff — see below

    return retVal;

  }

  ...

private:

  virtual int doHealthValue() const     // derived classes may redefine this

  {

    ...                                 // default algorithm for calculating

  }                                     // character's health

};



In this code (and for the rest of this Item), I'm showing the bodies of member functions in class definitions. As Item 30 explains, that implicitly declares
them inline. I'm showing the code this way only to make it easier to see what is going on. The designs I'm describing are independent of inlining
decisions, so don't think it's meaningful that the member functions are defined inside classes. It's not.

This basic design — having clients call private virtual functions indirectly through public non-virtual member functions — is known as the non-virtual
interface (NVI) idiom. It's a particular manifestation of the more general design pattern called Template Method (a pattern that, unfortunately, has nothing
to do with C++ templates). I call the non-virtual function (e.g., healthValue) the virtual function's wrapper.

An advantage of the NVI idiom is suggested by the "do 'before' stuff" and "do 'after' stuff" comments in the code. Those comments identify code
segments guaranteed to be called before and after the virtual function that does the real work. This means that the wrapper ensures that before a virtual
function is called, the proper context is set up, and after the call is over, the context is cleaned up. For example, the "before" stuff could include locking a
mutex, making a log entry, verifying that class invariants and function preconditions are satisfied, etc. The "after" stuff could include unlocking a mutex,
verifying function postconditions, reverifying class invariants, etc. There's not really any good way to do that if you let clients call virtual functions directly.

It may have crossed your mind that the NVI idiom involves derived classes redefining private virtual functions — redefining functions they can't call!
There's no design contradiction here. Redefining a virtual function specifies how something is to be done. Calling a virtual function specifies when it will
be done. These concerns are independent. The NVI idiom allows derived classes to redefine a virtual function, thus giving them control over how
functionality is implemented, but the base class reserves for itself the right to say when the function will be called. It may seem odd at first, but C++'s rule
that derived classes may redefine private inherited virtual functions is perfectly sensible.

Under the NVI idiom, it's not strictly necessary that the virtual functions be private. In some class hierarchies, derived class implementations of a virtual
function are expected to invoke their base class counterparts (e.g., the example on page 120), and for such calls to be legal, the virtuals must be
protected, not private. Sometimes a virtual function even has to be public (e.g., destructors in polymorphic base classes — see Item 7), but then the NVI
idiom can't really be applied.

The Strategy Pattern via Function Pointers

The NVI idiom is an interesting alternative to public virtual functions, but from a design point of view, it's little more than window dressing. After all, we're
still using virtual functions to calculate each character's health. A more dramatic design assertion would be to say that calculating a character's health is
independent of the character's type — that such calculations need not be part of the character at all. For example, we could require that each character's
constructor be passed a pointer to a health calculation function, and we could call that function to do the actual calculation:

class GameCharacter;                               // forward declaration

// function for the default health calculation algorithm

int defaultHealthCalc(const GameCharacter& gc);

class GameCharacter {

public:

  typedef int (*HealthCalcFunc)(const GameCharacter&);

  explicit GameCharacter(HealthCalcFunc hcf = defaultHealthCalc)

  : healthFunc(hcf)

  {}

  int healthValue() const

  { return healthFunc(*this); }

  ...

private:

  HealthCalcFunc healthFunc;

};

This approach is a simple application of another common design pattern, Strategy. Compared to approaches based on virtual functions in the
GameCharacter hierarchy, it offers some interesting flexibility:



Different instances of the same character type can have different health calculation functions. For example:

class EvilBadGuy: public GameCharacter {

public:

  explicit EvilBadGuy(HealthCalcFunc hcf = defaultHealthCalc)

  : GameCharacter(hcf)

  { ... }

  ...

};

int loseHealthQuickly(const GameCharacter&);    // health calculation

int loseHealthSlowly(const GameCharacter&);     // funcs with different

                                                // behavior

EvilBadGuy ebg1(loseHealthQuickly);             // same-type charac-

EvilBadGuy ebg2(loseHealthSlowly);              // ters with different

                                                // health-related

                                                // behavior

Health calculation functions for a particular character may be changed at runtime. For example, GameCharacter might offer a member function,
setHealthCalculator, that allowed replacement of the current health calculation function.

On the other hand, the fact that the health calculation function is no longer a member function of the GameCharacter hierarchy means that it has no
special access to the internal parts of the object whose health it's calculating. For example, defaultHealthCalc has no access to the non-public parts of
EvilBadGuy. If a character's health can be calculated based purely on information available through the character's public interface, this is not a problem,
but if accurate health calculation requires non-public information, it is. In fact, it's a potential issue anytime you replace functionality inside a class (e.g.,
via a member function) with equivalent functionality outside the class (e.g., via a non-member non-friend function or via a non-friend member function of
another class). This issue will persist for the remainder of this Item, because all the other design alternatives we're going to consider involve the use of
functions outside the GameCharacter hierarchy.

As a general rule, the only way to resolve the need for non-member functions to have access to non-public parts of a class is to weaken the class's
encapsulation. For example, the class might declare the non-member functions to be friends, or it might offer public accessor functions for parts of its
implementation it would otherwise prefer to keep hidden. Whether the advantages of using a function pointer instead of a virtual function (e.g., the ability
to have per-object health calculation functions and the ability to change such functions at runtime) offset the possible need to decrease GameCharacter's
encapsulation is something you must decide on a design-by-design basis.

The Strategy Pattern via tr1::function

Once you accustom yourself to templates and their use of implicit interfaces (see Item 41), the function-pointer-based approach looks rather rigid. Why
must the health calculator be a function instead of simply something that acts like a function (e.g., a function object)? If it must be a function, why can't it
be a member function? And why must it return an int instead of any type convertible to an int?

These constraints evaporate if we replace the use of a function pointer (such as healthFunc) with an object of type TR1::function. As Item 54 explains,
such objects may hold any callable entity (i.e., function pointer, function object, or member function pointer) whose signature is compatible with what is
expected. Here's the design we just saw, this time using tr1::function:

class GameCharacter;                                 // as before

int defaultHealthCalc(const GameCharacter& gc);      // as before

class GameCharacter {

public:

   // HealthCalcFunc is any callable entity that can be called with

   // anything compatible with a GameCharacter and that returns anything



   // compatible with an int; see below for details

   typedef std::tr1::function<int (const GameCharacter&)> HealthCalcFunc;

   explicit GameCharacter(HealthCalcFunc hcf = defaultHealthCalc)

   : healthFunc(hcf)

   {}

   int healthValue() const

   { return healthFunc(*this);   }

   ...

private:

  HealthCalcFunc healthFunc;

};

As you can see, HealthCalcFunc is a typedef for a TR1::function instantiation. That means it acts like a generalized function pointer type. Look closely at
what HealthCalcFunc is a typedef for:

std::tr1::function<int (const GameCharacter&)>

Here I've highlighted the "target signature" of this tr1::function instantiation. That target signature is "function taking a reference to a const
GameCharacter and returning an int." An object of this tr1::function type (i.e., of type HealthCalcFunc) may hold any callable entity compatible with the
target signature. To be compatible means that the entity's parameter can be implicitly converted to a const GameCharacter& and its return type can be
implicitly converted to an int.

Compared to the last design we saw (where GameCharacter held a pointer to a function), this design is almost the same. The only difference is that
GameCharacter now holds a tr1::function object — a generalized pointer to a function. This change is so small, I'd call it inconsequential, except that a
consequence is that clients now have staggeringly more flexibility in specifying health calculation functions:

short calcHealth(const GameCharacter&);          // health calculation

                                                 // function; note

                                                 // non-int return type

struct HealthCalculator {                        // class for health

  int operator()(const GameCharacter&) const     // calculation function

  { ... }                                        // objects

};

class GameLevel {

public:

  float health(const GameCharacter&) const;      // health calculation

  ...                                            // mem function; note

};                                               // non-int return type



class EvilBadGuy: public GameCharacter {         // as before

  ...

};

class EyeCandyCharacter:   public GameCharacter {  // another character

  ...                                              // type; assume same

};                                                 // constructor as

                                                   // EvilBadGuy

EvilBadGuy ebg1(calcHealth);                       // character using a

                                                   // health calculation

                                                   // function

EyeCandyCharacter ecc1(HealthCalculator());        // character using a

                                                   // health calculation

                                                   // function object

GameLevel currentLevel;

...

EvilBadGuy ebg2(                                   // character using a

  std::tr1::bind(&GameLevel::health,               // health calculation

          currentLevel,                            // member function;

          _1)                                      // see below for details

);

Personally, I find what tr1::function lets you do so amazing, it makes me tingle all over. If you're not tingling, it may be because you're staring at the
definition of ebg2 and wondering what's going on with the call to tr1::bind. Kindly allow me to explain.

We want to say that to calculate ebg2's health rating, the health member function in the GameLevel class should be used. Now, GameLevel::health is a
function that is declared to take one parameter (a reference to a GameCharacter), but it really takes two, because it also gets an implicit GameLevel
parameter — the one this points to. Health calculation functions for GameCharacters, however, take a single parameter: the GameCharacter whose
health is to be calculated. If we're to use GameLevel::health for ebg2's health calculation, we have to somehow "adapt" it so that instead of taking two
parameters (a GameCharacter and a GameLevel), it takes only one (a GameCharacter). In this example, we always want to use currentLevel as the
GameLevel object for ebg2's health calculation, so we "bind" currentLevel as the GameLevel object to be used each time GameLevel::health is called to
calculate ebg2's health. That's what the tr1::bind call does: it specifies that ebg2's health calculation function should always use currentLevel as the
GameLevel object.

I'm skipping over a host of details, such as why " _1" means "use currentLevel as the GameLevel object when calling GameLevel::health for ebg2." Such
details wouldn't be terribly illuminating, and they'd distract from the fundamental point I want to make: by using tr1::function instead of a function pointer,
we're allowing clients to use any compatible callable entity  when calculating a character's health. Is that cool or what?

The "Classic" Strategy Pattern

If you're more into design patterns than C++ coolness, a more conventional approach to Strategy would be to make the health-calculation function a
virtual member function of a separate health-calculation hierarchy. The resulting hierarchy design would look like this:



If you're not up on your UML notation, this just says that GameCharacter is the root of an inheritance hierarchy where EvilBadGuy and
EyeCandyCharacter are derived classes; HealthCalcFunc is the root of an inheritance hierarchy with derived classes SlowHealthLoser and
FastHealthLoser; and each object of type GameCharacter contains a pointer to an object from the HealthCalcFunc hierarchy.

Here's the corresponding code skeleton:

class GameCharacter;                            // forward declaration

class HealthCalcFunc {

public:

  ...

  virtual int calc(const GameCharacter& gc) const

  { ... }

  ...

};

HealthCalcFunc defaultHealthCalc;

class GameCharacter {

public:

  explicit GameCharacter(HealthCalcFunc *phcf = &defaultHealthCalc)

  : pHealthCalc(phcf)

  {}

  int healthValue() const

  { return pHealthCalc->calc(*this);}

  ...

private:

  HealthCalcFunc *pHealthCalc;

};

This approach has the appeal of being quickly recognizable to people familiar with the "standard" Strategy pattern implementation, plus it offers the
possibility that an existing health calculation algorithm can be tweaked by adding a derived class to the HealthCalcFunc hierarchy.

Summary



The fundamental advice of this Item is to consider alternatives to virtual functions when searching for a design for the problem you're trying to solve.
Here's a quick recap the alternatives we examined:

Use the non-virtual interface idiom (NVI idiom), a form of the Template Method design pattern that wraps public non-virtual member functions
around less accessible virtual functions.

Replace virtual functions with function pointer data members , a stripped-down manifestation of the Strategy design pattern.

Replace virtual functions with tr1::function data members, thus allowing use of any callable entity with a signature compatible with what you
need. This, too, is a form of the Strategy design pattern.

Replace virtual functions in one hierarchy with virtual functions in another hierarchy . This is the conventional implementation of the Strategy
design pattern.

This isn't an exhaustive list of design alternatives to virtual functions, but it should be enough to convince you that there are alternatives. Furthermore,
their comparative advantages and disadvantages should make clear that you should consider them.

To avoid getting stuck in the ruts of the road of object-oriented design, give the wheel a good jerk from time to time. There are lots of other roads. It's
worth taking the time to investigate them.

Things to Remember

Alternatives to virtual functions include the NVI idiom and various forms of the Strategy design pattern. The NVI idiom is itself an
example of the Template Method design pattern.

A disadvantage of moving functionality from a member function to a function outside the class is that the non-member function lacks
access to the class's non-public members.

tr1::function objects act like generalized function pointers. Such objects support all callable entities compatible with a given target
signature.

 < Day Day Up > 
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Item 36: Never redefine an inherited non-virtual function

Suppose I tell you that a class D is publicly derived from a class B and that there is a public member function mf defined in class B. The parameters and
return type of mf are unimportant, so let's just assume they're both void. In other words, I say this:

class B {

public:

  void mf();

  ...

};

class D: public B { ... };

Even without knowing anything about B, D, or mf, given an object x of type D,

D x;                              // x is an object of type D

you would probably be quite surprised if this,

B *pB = &x;                       // get pointer to x

pB->mf();                         // call mf through pointer

behaved differently from this:

D *pD = &x;                       // get pointer to x

pD->mf();                         // call mf through pointer

That's because in both cases you're invoking the member function mf on the object x. Because it's the same function and the same object in both cases,
it should behave the same way, right?

Right, it should. But it might not. In particular, it won't if mf is non-virtual and D has defined its own version of mf:

class D: public B {

public:

  void mf();                      // hides B::mf; see Item33

  ...

};

pB->mf();                         // calls B::mf

pD->mf();                         // calls D::mf

The reason for this two-faced behavior is that non-virtual functions like B::mf and D::mf are statically bound (see Item 37). That means that because pB is



declared to be of type pointer-to-B, non-virtual functions invoked through pB will always be those defined for class B, even if pB points to an object of a
class derived from B, as it does in this example.

Virtual functions, on the other hand, are dynamically bound (again, see Item 37), so they don't suffer from this problem. If mf were a virtual function, a call
to mf through either pB or pD would result in an invocation of D::mf, because what pB and pD really point to is an object of type D.

If you are writing class D and you redefine a non-virtual function mf that you inherit from class B, D objects will likely exhibit inconsistent behavior. In
particular, any given D object may act like either a B or a D when mf is called, and the determining factor will have nothing to do with the object itself, but
with the declared type of the pointer that points to it. References exhibit the same baffling behavior as do pointers.

But that's just a pragmatic argument. What you really want, I know, is some kind of theoretical justification for not redefining inherited non-virtual
functions. I am pleased to oblige.

Item 32 explains that public inheritance means is-a, and Item 34 describes why declaring a non-virtual function in a class establishes an invariant over
specialization for that class. If you apply these observations to the classes B and D and to the non-virtual member function B::mf, then

Everything that applies to B objects also applies to D objects, because every D object is-a B object;

Classes derived from B must inherit both the interface and the implementation of mf, because mf is non-virtual in B.

Now, if D redefines mf, there is a contradiction in your design. If D really needs to implement mf differently from B, and if every B object — no matter how
specialized — really has to use the B implementation for mf, then it's simply not true that every D is-a B. In that case, D shouldn't publicly inherit from B.
On the other hand, if D really has to publicly inherit from B, and if D really needs to implement mf differently from B, then it's just not true that mf reflects
an invariant over specialization for B. In that case, mf should be virtual. Finally, if every D really is-a B, and if mf really corresponds to an invariant over
specialization for B, then D can't honestly need to redefine mf, and it shouldn't try to.

Regardless of which argument applies, something has to give, and under no conditions is it the prohibition on redefining an inherited non-virtual function.

If reading this Item gives you a sense of déjà vu , it's probably because you've already read Item 7, which explains why destructors in polymorphic base
classes should be virtual. If you violate that guideline (i.e., if you declare a non-virtual destructor in a polymorphic base class), you'll also be violating this
guideline, because derived classes would invariably redefine an inherited non-virtual function: the base class's destructor. This would be true even for
derived classes that declare no destructor, because, as Item 5 explains, the destructor is one of the member functions that compilers generate for you if
you don't declare one yourself. In essence, Item 7 is nothing more than a special case of this Item, though it's important enough to merit calling out on its
own.

Things to Remember

Never redefine an inherited non-virtual function.
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Item 37: Never redefine a function's inherited default parameter value

Let's simplify this discussion right from the start. There are only two kinds of functions you can inherit: virtual and non-virtual. However, it's always a
mistake to redefine an inherited non-virtual function (seeItem 36), so we can safely limit our discussion here to the situation in which you inherit a virtual
function with a default parameter value.

That being the case, the justification for this Item becomes quite straightforward: virtual functions are dynamically bound, but default parameter values
are statically bound.

What's that? You say the difference between static and dynamic binding has slipped your already overburdened mind? (For the record, static binding is
also known as early binding, and dynamic binding is also known as late binding.) Let's review, then.

An object's static type is the type you declare it to have in the program text. Consider this class hierarchy:

// a class for geometric shapes

class Shape {

public:

  enum ShapeColor { Red, Green, Blue };

  // all shapes must offer a function to draw themselves

  virtual void draw(ShapeColor color = Red) const = 0;

  ...

};

class Rectangle: public Shape {

public:

  // notice the different default parameter value — bad!

  virtual void draw(ShapeColor color = Green) const;

  ...

};

class Circle: public Shape {

public:

  virtual void draw(ShapeColor color) const;

  ...

};

Graphically, it looks like this:

Now consider these pointers:

Shape *ps;                       // static type = Shape*

Shape *pc = new Circle;          // static type = Shape*

Shape *pr = new Rectangle;       // static type = Shape*



In this example, ps, pc, and pr are all declared to be of type pointer-to- Shape, so they all have that as their static type. Notice that it makes absolutely no
difference what they're really pointing to — their static type is Shape* regardless.

An object's dynamic type is determined by the type of the object to which it currently refers. That is, its dynamic type indicates how it will behave. In the
example above, pc's dynamic type is Circle*, and pr's dynamic type is Rectangle*. As for ps, it doesn't really have a dynamic type, because it doesn't
refer to any object (yet).

Dynamic types, as their name suggests, can change as a program runs, typically through assignments:

ps = pc;                       // ps's dynamic type is

                               // now Circle*

ps = pr;                       // ps's dynamic type is

                               // now Rectangle*

Virtual functions are dynamically bound, meaning that the particular function called is determined by the dynamic type of the object through which it's
invoked:

pc->draw(Shape::Red);             // calls Circle::draw(Shape::Red)

pr->draw(Shape::Red);             // calls Rectangle::draw(Shape::Red)

This is all old hat, I know; you surely understand virtual functions. The twist comes in when you consider virtual functions with default parameter values,
because, as I said above, virtual functions are dynamically bound, but default parameters are statically bound. That means you may end up invoking a
virtual function defined in a derived class  but using a default parameter value from a base class:

pr->draw();                       // calls Rectangle::draw(Shape::Red)!

In this case, pr's dynamic type is Rectangle*, so the Rectangle virtual function is called, just as you would expect. In Rectangle::draw, the default
parameter value is Green. Because pr's static type is Shape*, however, the default parameter value for this function call is taken from the Shape class,
not the Rectangle class! The result is a call consisting of a strange and almost certainly unanticipated combination of the declarations for draw in both the
Shape and Rectangle classes.

The fact that ps, pc, and pr are pointers is of no consequence in this matter. Were they references, the problem would persist. The only important things
are that draw is a virtual function, and one of its default parameter values is redefined in a derived class.

Why does C++ insist on acting in this perverse manner? The answer has to do with runtime efficiency. If default parameter values were dynamically
bound, compilers would have to come up with a way to determine the appropriate default value(s) for parameters of virtual functions at runtime, which
would be slower and more complicated than the current mechanism of determining them during compilation. The decision was made to err on the side of
speed and simplicity of implementation, and the result is that you now enjoy execution behavior that is efficient, but, if you fail to heed the advice of this
Item, confusing.

That's all well and good, but look what happens if you try to follow this rule and also offer default parameter values to users of both base and derived
classes:

class Shape {

public:

  enum ShapeColor { Red, Green, Blue };

  virtual void draw(ShapeColor color = Red) const = 0;

  ...

};

class Rectangle: public Shape {

public:



  virtual void draw(ShapeColor color = Red) const;

  ...

};

Uh oh, code duplication. Worse yet, code duplication with dependencies: if the default parameter value is changed in Shape, all derived classes that
repeat it must also be changed. Otherwise they'll end up redefining an inherited default parameter value. What to do?

When you're having trouble making a virtual function behave the way you'd like, it's wise to consider alternative designs, and Item 35 is filled with
alternatives to virtual functions. One of the alternatives is the non-virtual interface idiom  (NVI idiom): having a public non-virtual function in a base class
call a private virtual function that derived classes may redefine. Here, we have the non-virtual function specify the default parameter, while the virtual
function does the actual work:

class Shape {

public:

  enum ShapeColor { Red, Green, Blue };

  void draw(ShapeColor color = Red) const           // now non-virtual

  {

    doDraw(color);                                  // calls a virtual

  }

  ...

private:

  virtual void doDraw(ShapeColor color) const = 0;  // the actual work is

};                                                  // done in this func

class Rectangle: public Shape {

public:

  ...

private:

  virtual void doDraw(ShapeColor color) const;       // note lack of a

  ...                                                // default param val.

};

Because non-virtual functions should never be overridden by derived classes (see Item 36), this design makes clear that the default value for draw's
color parameter should always be Red.

Things to Remember

Never redefine an inherited default parameter value, because default parameter values are statically bound, while virtual functions —
the only functions you should be overriding — are dynamically bound.
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Item 38: Model "has-a" or "is-implemented-in-terms-of" through composition

Composition is the relationship between types that arises when objects of one type contain objects of another type. For example:

class Address { ... };             // where someone lives

class PhoneNumber { ... };

class Person {

public:

  ...

private:

  std::string name;               // composed object

  Address address;                // ditto

  PhoneNumber voiceNumber;        // ditto

  PhoneNumber faxNumber;          // ditto

};

In this example, Person objects are composed of string, Address, and PhoneNumber objects. Among programmers, the term composition has lots of
synonyms. It's also known as layering, containment, aggregation, and embedding.

Item 32 explains that public inheritance means "is-a." Composition has a meaning, too. Actually, it has two meanings. Composition means either "has-a"
or "is-implemented-in-terms-of." That's because you are dealing with two different domains in your software. Some objects in your programs correspond
to things in the world you are modeling, e.g., people, vehicles, video frames, etc. Such objects are part of the application domain. Other objects are
purely implementation artifacts, e.g., buffers, mutexes, search trees, etc. These kinds of objects correspond to your software's implementation domain.
When composition occurs between objects in the application domain, it expresses a has-a relationship. When it occurs in the implementation domain, it
expresses an is-implemented-in-terms-of relationship.

The Person class above demonstrates the has-a relationship. A Person object has a name, an address, and voice and fax telephone numbers. You
wouldn't say that a person is a name or that a person is an address. You would say that a person has a name and has an address. Most people have
little difficulty with this distinction, so confusion between the roles of is-a and has-a is relatively rare.

Somewhat more troublesome is the difference between is-a and is-implemented-in-terms-of. For example, suppose you need a template for classes
representing fairly small sets of objects, i.e., collections without duplicates. Because reuse is a wonderful thing, your first instinct is to employ the
standard library's set template. Why write a new template when you can use one that's already been written?

Unfortunately, set implementations typically incur an overhead of three pointers per element. This is because sets are usually implemented as balanced
search trees, something that allows them to guarantee logarithmic-time lookups, insertions, and erasures. When speed is more important than space,
this is a reasonable design, but it turns out that for your application, space is more important than speed. The standard library's set thus offers the wrong
trade-off for you. It seems you'll need to write your own template after all.

Still, reuse is a wonderful thing. Being the data structure maven you are, you know that of the many choices for implementing sets, one is to use linked
lists. You also know that the standard C++ library has a list template, so you decide to (re)use it.

In particular, you decide to have your nascent Set template inherit from list. That is, Set<T> will inherit from list<T>. After all, in your implementation, a
Set object will in fact be a list object. You thus declare your Set template like this:

template<typename T>                       // the wrong way to use list for Set

class Set: public std::list<T> { ... };

Everything may seem fine at this point, but in fact there is something quite wrong. As Item 32 explains, if D is-a B, everything true of B is also true of D.
However, a list object may contain duplicates, so if the value 3051 is inserted into a list<int> twice, that list will contain two copies of 3051. In contrast, a
Set may not contain duplicates, so if the value 3051 is inserted into a Set<int> twice, the set contains only one copy of the value. It is thus untrue that a
Set is-a list, because some of the things that are true for list objects are not true for Set objects.

Because the relationship between these two classes isn't is-a, public inheritance is the wrong way to model that relationship. The right way is to realize
that a Set object can be implemented in terms of a list object:



template<class T>                   // the right way to use list for Set

class Set {

public:

  bool member(const T& item) const;

  void insert(const T& item);

  void remove(const T& item);

  std::size_t size() const;

private:

  std::list<T> rep;                 // representation for Set data

};

Set's member functions can lean heavily on functionality already offered by list and other parts of the standard library, so the implementation is
straightforward, as long as you're familiar with the basics of programming with the STL:

template<typename T>

bool Set<T>::member(const T& item) const

{

  return std::find(rep.begin(), rep.end(), item) != rep.end();

}

template<typename T>

void Set<T>::insert(const T& item)

{

  if (!member(item)) rep.push_back(item);

}

template<typename T>

void Set<T>::remove(const T& item)

{

  typename std::list<T>::iterator it =               // see Item 42 for info on

    std::find(rep.begin(), rep.end(), item);         // "typename" here

  if (it != rep.end()) rep.erase(it);

}

template<typename T>

std::size_t Set<T>::size() const

{

  return rep.size();

}

These functions are simple enough that they make reasonable candidates for inlining, though I know you'd want to review the discussion in Item 30



before making any firm inlining decisions.

One can argue that Set's interface would be more in accord with Item 18's admonition to design interfaces that are easy to use correctly and hard to use
incorrectly if it followed the STL container conventions, but following those conventions here would require adding a lot of stuff to Set that would obscure
the relationship between it and list. Since that relationship is the point of this Item, we'll trade STL compatibility for pedagogical clarity. Besides, nits about
Set's interface shouldn't overshadow what's indisputably right about Set: the relationship between it and list. That relationship is not is-a (though it initially
looked like it might be), it's is-implemented-in-terms-of.

Things to Remember

Composition has meanings completely different from that of public inheritance.

In the application domain, composition means has-a. In the implementation domain, it means is-implemented-in-terms-of.
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Item 39: Use private inheritance judiciously

Item 32 demonstrates that C++ treats public inheritance as an is-a relationship. It does this by showing that compilers, when given a hierarchy in which a
class Student publicly inherits from a class Person, implicitly convert Students to Persons when that is necessary for a function call to succeed. It's worth
repeating a portion of that example using private inheritance instead of public inheritance:

class Person { ... };

class Student: private Person { ... };     // inheritance is now private

void eat(const Person& p);                 // anyone can eat

void study(const Student& s);              // only students study

Person p;                                  // p is a Person

Student s;                                 // s is a Student

eat(p);                                    // fine, p is a Person

eat(s);                                    // error! a Student isn't a Person

Clearly, private inheritance doesn't mean is-a. What does it mean then?

"Whoa!" you say. "Before we get to the meaning, let's cover the behavior. How does private inheritance behave?" Well, the first rule governing private
inheritance you've just seen in action: in contrast to public inheritance, compilers will generally not convert a derived class object (such as Student) into a
base class object (such as Person) if the inheritance relationship between the classes is private. That's why the call to eat fails for the object s. The
second rule is that members inherited from a private base class become private members of the derived class, even if they were protected or public in
the base class.

So much for behavior. That brings us to meaning. Private inheritance means is-implemented-in-terms-of. If you make a class D privately inherit from a
class B, you do so because you are interested in taking advantage of some of the features available in class B, not because there is any conceptual
relationship between objects of types B and D. As such, private inheritance is purely an implementation technique. (That's why everything you inherit
from a private base class becomes private in your class: it's all just implementation detail.) Using the terms introduced in Item 34, private inheritance
means that implementation only should be inherited; interface should be ignored. If D privately inherits from B, it means that D objects are implemented
in terms of B objects, nothing more. Private inheritance means nothing during software design, only during software implementation.

The fact that private inheritance means is-implemented-in-terms-of is a little disturbing, because Item 38 points out that composition can mean the same
thing. How are you supposed to choose between them? The answer is simple: use composition whenever you can, and use private inheritance
whenever you must. When must you? Primarily when protected members and/or virtual functions enter the picture, though there's also an edge case
where space concerns can tip the scales toward private inheritance. We'll worry about the edge case later. After all, it's an edge case.

Suppose we're working on an application involving Widgets, and we decide we need to better understand how Widgets are being used. For example, not
only do we want to know things like how often Widget member functions are called, we also want to know how the call ratios change over time. Programs
with distinct phases of execution can have different behavioral profiles during the different phases. For example, the functions used during the parsing
phase of a compiler are largely different from the functions used during optimization and code generation.

We decide to modify the Widget class to keep track of how many times each member function is called. At runtime, we'll periodically examine that
information, possibly along with the values of each Widget and whatever other data we deem useful. To make this work, we'll need to set up a timer of
some kind so that we'll know when it's time to collect the usage statistics.

Preferring to reuse existing code over writing new code, we rummage around in our utility toolkit and are pleased to find the following class:

class Timer {

public:

  explicit Timer(int tickFrequency);

   virtual void onTick() const;          // automatically called for each tick

  ...

};



This is just what we're looking for. A Timer object can be configured to tick with whatever frequency we need, and on each tick, it calls a virtual function.
We can redefine that virtual function so that it examines the current state of the Widget world. Perfect!

In order for Widget to redefine a virtual function in Timer, Widget must inherit from Timer. But public inheritance is inappropriate in this case. It's not true
that a Widget is-a Timer. Widget clients shouldn't be able to call onTick on a Widget, because that's not part of the conceptual Widget interface. Allowing
such a function call would make it easy for clients to use the Widget interface incorrectly, a clear violation of Item 18's advice to make interfaces easy to
use correctly and hard to use incorrectly. Public inheritance is not a valid option here.

We thus inherit privately:

class Widget: private Timer {

private:

  virtual void onTick() const;           // look at Widget usage data, etc.

  ...

};

By virtue of private inheritance, Timer's public onTick function becomes private in Widget, and we keep it there when we redeclare it. Again, putting
onTick in the public interface would mislead clients into thinking they could call it, and that would violate Item 18.

This is a nice design, but it's worth noting that private inheritance isn't strictly necessary. If we were determined to use composition instead, we could.
We'd just declare a private nested class inside Widget that would publicly inherit from Timer, redefine onTick there, and put an object of that type inside
Widget. Here's a sketch of the approach:

class Widget {

private:

  class WidgetTimer: public Timer {

  public:

    virtual void onTick() const;

    ...

  };

   WidgetTimer timer;

  ...

};

This design is more complicated than the one using only private inheritance, because it involves both (public) inheritance and composition, as well as the
introduction of a new class (WidgetTimer). To be honest, I show it primarily to remind you that there is more than one way to approach a design problem,
and it's worth training yourself to consider multiple approaches (see also Item 35). Nevertheless, I can think of two reasons why you might prefer public
inheritance plus composition over private inheritance.

First, you might want to design Widget to allow for derived classes, but you might also want to prevent derived classes from redefining onTick. If Widget
inherits from Timer, that's not possible, not even if the inheritance is private. (Recall from Item 35 that derived classes may redefine virtual functions even
if they are not permitted to call them.) But if WidgetTimer is private in Widget and inherits from Timer, Widget's derived classes have no access to
WidgetTimer, hence can't inherit from it or redefine its virtual functions. If you've programmed in Java or C# and miss the ability to prevent derived
classes from redefining virtual functions (i.e., Java's final methods and C#'s sealed ones), now you have an idea how to approximate that behavior in
C++.

Second, you might want to minimize Widget's compilation dependencies. If Widget inherits from Timer, Timer's definition must be available when Widget
is compiled, so the file defining Widget probably has to #include Timer.h. On the other hand, if WidgetTimer is moved out of Widget and Widget contains
only a pointer to a WidgetTimer, Widget can get by with a simple declaration for the WidgetTimer class; it need not #include anything to do with Timer.
For large systems, such decouplings can be important. (For details on minimizing compilation dependencies, consult Item 31.)

I remarked earlier that private inheritance is useful primarily when a would-be derived class wants access to the protected parts of a would-be base class



or would like to redefine one or more of its virtual functions, but the conceptual relationship between the classes is is-implemented-in-terms-of instead of
is-a. However, I also said that there was an edge case involving space optimization that could nudge you to prefer private inheritance over composition.

The edge case is edgy indeed: it applies only when you're dealing with a class that has no data in it. Such classes have no non-static data members; no
virtual functions (because the existence of such functions adds a vptr to each object — see Item 7); and no virtual base classes (because such base
classes also incur a size overhead — see Item 40). Conceptually, objects of such empty classes should use no space, because there is no per-object
data to be stored. However, there are technical reasons for C++ decreeing that freestanding objects must have non-zero size, so if you do this,

class Empty {};                      // has no data, so objects should

                                     // use no memory

class HoldsAnInt {                   // should need only space for an int

private:

  int x;

  Empty e;                           // should require no memory

};

you'll find that sizeof(HoldsAnInt) > sizeof(int); an Empty data member requires memory. With most compilers, sizeof(Empty) is 1, because C++'s edict
against zero-size freestanding objects is typically satisfied by the silent insertion of a char into "empty" objects. However, alignment requirements (see
Item 50) may cause compilers to add padding to classes like HoldsAnInt, so it's likely that HoldsAnInt objects wouldn't gain just the size of a char, they
would actually enlarge enough to hold a second int. (On all the compilers I tested, that's exactly what happened.)

But perhaps you've noticed that I've been careful to say that "freestanding" objects mustn't have zero size. This constraint doesn't apply to base class
parts of derived class objects, because they're not freestanding. If you inherit from Empty instead of containing an object of that type,

class HoldsAnInt: private Empty {

private:

  int x;

};

you're almost sure to find that sizeof(HoldsAnInt) == sizeof(int). This is known as the empty base optimization (EBO), and it's implemented by all the
compilers I tested. If you're a library developer whose clients care about space, the EBO is worth knowing about. Also worth knowing is that the EBO is
generally viable only under single inheritance. The rules governing C++ object layout generally mean that the EBO can't be applied to derived classes
that have more than one base.

In practice, "empty" classes aren't truly empty. Though they never have non-static data members, they often contain typedefs, enums, static data
members, or non-virtual functions. The STL has many technically empty classes that contain useful members (usually typedefs), including the base
classes unary_function and binary_function, from which classes for user-defined function objects typically inherit. Thanks to widespread implementation
of the EBO, such inheritance rarely increases the size of the inheriting classes.

Still, let's get back to basics. Most classes aren't empty, so the EBO is rarely a legitimate justification for private inheritance. Furthermore, most
inheritance corresponds to is-a, and that's a job for public inheritance, not private. Both composition and private inheritance mean is-implemented-in-
terms-of, but composition is easier to understand, so you should use it whenever you can.

Private inheritance is most likely to be a legitimate design strategy when you're dealing with two classes not related by is-a where one either needs
access to the protected members of another or needs to redefine one or more of its virtual functions. Even in that case, we've seen that a mixture of
public inheritance and containment can often yield the behavior you want, albeit with greater design complexity. Using private inheritance judiciously
means employing it when, having considered all the alternatives, it's the best way to express the relationship between two classes in your software.

Things to Remember

Private inheritance means is-implemented-in-terms of. It's usually inferior to composition, but it makes sense when a derived class
needs access to protected base class members or needs to redefine inherited virtual functions.

Unlike composition, private inheritance can enable the empty base optimization. This can be important for library developers who strive
to minimize object sizes.
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Item 40: Use multiple inheritance judiciously

When it comes to multiple inheritance (MI), the C++ community largely breaks into two basic camps. One camp believes that if single inheritance (SI) is
good, multiple inheritance must be better. The other camp argues that single inheritance is good, but multiple inheritance isn't worth the trouble. In this
Item, our primary goal is to understand both perspectives on the MI question.

One of the first things to recognize is that when MI enters the designscape, it becomes possible to inherit the same name (e.g., function, typedef, etc.)
from more than one base class. That leads to new opportunities for ambiguity. For example:

class BorrowableItem {             // something a library lets you borrow

public:

  void checkOut();                 // check the item out from the library

  ...

};

class ElectronicGadget {

private:

  bool checkOut() const;           // perform self-test, return whether

  ...                              // test succeeds

};

class MP3Player:                   // note MI here

  public BorrowableItem,           // (some libraries loan MP3 players)

  public ElectronicGadget

{ ... };                           // class definition is unimportant

MP3Player mp;

mp.checkOut();                     // ambiguous! which checkOut?

Note that in this example, the call to checkOut is ambiguous, even though only one of the two functions is accessible. ( checkOut is public in
BorrowableItem but private in ElectronicGadget.) That's in accord with the C++ rules for resolving calls to overloaded functions: before seeing whether a
function is accessible, C++ first identifies the function that's the best match for the call. It checks accessibility only after finding the best-match function. In
this case, both checkOuts are equally good matches, so there's no best match. The accessibility of ElectronicGadget::checkOut is therefore never
examined.

To resolve the ambiguity, you must specify which base class's function to call:

mp.BorrowableItem::checkOut();              // ah, that checkOut...

You could try to explicitly call ElectronicGadget::checkOut, too, of course, but then the ambiguity error would be replaced with a "you're trying to call a
private member function" error.

Multiple inheritance just means inheriting from more than one base class, but it is not uncommon for MI to be found in hierarchies that have higher-level
base classes, too. That can lead to what is sometimes known as the "deadly MI diamond"

class File { ... };

class InputFile: public File { ... };



class OutputFile: public File { ... };

class IOFile: public InputFile,

              public OutputFile

{ ... };

Any time you have an inheritance hierarchy with more than one path between a base class and a derived class (such as between File and IOFile above,
which has paths through both InputFile and OutputFile), you must confront the question of whether you want the data members in the base class to be
replicated for each of the paths. For example, suppose that the File class has a data member, fileName. How many copies of this field should IOFile
have? On the one hand, it inherits a copy from each of its base classes, so that suggests that IOFile should have two fileName data members. On the
other hand, simple logic says that an IOFile object has only one file name, so the fileName field it inherits through its two base classes should not be
replicated.

C++ takes no position on this debate. It happily supports both options, though its default is to perform the replication. If that's not what you want, you
must make the class with the data (i.e., File) a virtual base class . To do that, you have all classes that immediately inherit from it use virtual inheritance :

class File { ... };

class InputFile: virtual public File { ... };

class OutputFile: virtual public File { ... };

class IOFile: public InputFile,

              public OutputFile

{ ... };

The standard C++ library contains an MI hierarchy just like this one, except the classes are class templates, and the names are basic_ios, basic_istream,
basic_ostream, and basic_iostream instead of File, InputFile, OutputFile, and IOFile.

From the viewpoint of correct behavior, public inheritance should always be virtual. If that were the only point of view, the rule would be simple: anytime
you use public inheritance, use virtual public inheritance. Alas, correctness is not the only perspective. Avoiding the replication of inherited fields requires
some behind-the-scenes legerdemain on the part of compilers, and the result is that objects created from classes using virtual inheritance are generally
larger than they would be without virtual inheritance. Access to data members in virtual base classes is also slower than to those in non-virtual base
classes. The details vary from compiler to compiler, but the basic thrust is clear: virtual inheritance costs.

It costs in other ways, too. The rules governing the initialization of virtual base classes are more complicated and less intuitive than are those for non-
virtual bases. The responsibility for initializing a virtual base is borne by the most derived class  in the hierarchy. Implications of this rule include (1)
classes derived from virtual bases that require initialization must be aware of their virtual bases, no matter how far distant the bases are, and (2) when a
new derived class is added to the hierarchy, it must assume initialization responsibilities for its virtual bases (both direct and indirect).

My advice on virtual base classes (i.e., on virtual inheritance) is simple. First, don't use virtual bases unless you need to. By default, use non-virtual
inheritance. Second, if you must use virtual base classes, try to avoid putting data in them. That way you won't have to worry about oddities in the
initialization (and, as it turns out, assignment) rules for such classes. It's worth noting that Interfaces in Java and .NET, which are in many ways
comparable to virtual base classes in C++, are not allowed to contain any data.

Let us now turn to the following C++ Interface class (see Item31) for modeling persons:

class IPerson {

public:

  virtual ~IPerson();



  virtual std::string name() const = 0;

  virtual std::string birthDate() const = 0;

};

IPerson clients must program in terms of IPerson pointers and references, because abstract classes cannot be instantiated. To create objects that can
be manipulated as IPerson objects, clients of IPerson use factory functions (again, see Item 31) to instantiate concrete classes derived from IPerson:

// factory function to create a Person object from a unique database ID;

// see Item 18 for why the return type isn't a raw pointer

std::tr1::shared_ptr<IPerson> makePerson(DatabaseID personIdentifier);

// function to get a database ID from the user

DatabaseID askUserForDatabaseID();

DatabaseID id(askUserForDatabaseID());

std::tr1::shared_ptr<IPerson> pp(makePerson(id));    // create an object

                                                     // supporting the

                                                     // IPerson interface

...                                                  // manipulate *pp via

                                                     // IPerson's member

                                                     // functions

But how does makePerson create the objects to which it returns pointers? Clearly, there must be some concrete class derived from IPerson that
makePerson can instantiate.

Suppose this class is called CPerson. As a concrete class, CPerson must provide implementations for the pure virtual functions it inherits from IPerson.
It could write these from scratch, but it would be better to take advantage of existing components that do most or all of what's necessary. For example,
suppose an old database-specific class PersonInfo offers the essence of what CPerson needs:

class PersonInfo {

public:

  explicit PersonInfo(DatabaseID pid);

  virtual ~PersonInfo();

  virtual const char * theName() const;

  virtual const char * theBirthDate() const;

  ...

private:

  virtual const char * valueDelimOpen() const;      // see

  virtual const char * valueDelimClose() const;     // below



  ...

};

You can tell this is an old class, because the member functions return const char*s instead of string objects. Still, if the shoe fits, why not wear it? The
names of this class's member functions suggest that the result is likely to be pretty comfortable.

You come to discover that PersonInfo was designed to facilitate printing database fields in various formats, with the beginning and end of each field value
delimited by special strings. By default, the opening and closing delimiters for field values are square brackets, so the field value "Ring-tailed Lemur"
would be formatted this way:

[Ring-tailed Lemur]

In recognition of the fact that square brackets are not universally desired by clients of PersonInfo, the virtual functions valueDelimOpen and
valueDelimClose allow derived classes to specify their own opening and closing delimiter strings. The implementations of PersonInfo's member functions
call these virtual functions to add the appropriate delimiters to the values they return. Using PersonInfo::theName as an example, the code looks like this:

const char * PersonInfo::valueDelimOpen() const

{

  return "[";                       // default opening delimiter

}

const char * PersonInfo::valueDelimClose() const

{

  return "]";                       // default closing delimiter

}

const char * PersonInfo::theName() const

{

  // reserve buffer for return value; because this is

  // static, it's automatically initialized to all zeros

  static char value[Max_Formatted_Field_Value_Length];

  // write opening delimiter

  std::strcpy(value, valueDelimOpen());

  append to the string in value this object's   name field (being careful

  to avoid buffer overruns!)

  // write closing delimiter

  std::strcat(value, valueDelimClose());

  return value;

}

One might question the antiquated design of PersonInfo::theName (especially the use of a fixed-size static buffer, something that's rife for both overrun



and threading problems — see also Item21), but set such questions aside and focus instead on this: theName calls valueDelimOpen to generate the
opening delimiter of the string it will return, then it generates the name value itself, then it calls valueDelimClose.

Because valueDelimOpen and valueDelimClose are virtual functions, the result returned by theName is dependent not only on PersonInfo but also on the
classes derived from PersonInfo.

As the implementer of CPerson, that's good news, because while perusing the fine print in the IPerson documentation, you discover that name and
birthDate are required to return unadorned values, i.e., no delimiters are allowed. That is, if a person is named Homer, a call to that person's name
function should return "Homer", not "[Homer]".

The relationship between CPerson and PersonInfo is that PersonInfo happens to have some functions that would make CPerson easier to implement.
That's all. Their relationship is thus is-implemented-in-terms-of, and we know that can be represented in two ways: via composition (see Item 38) and via
private inheritance (see Item 39). Item 39 points out that composition is the generally preferred approach, but inheritance is necessary if virtual functions
are to be redefined. In this case, CPerson needs to redefine valueDelimOpen and valueDelimClose, so simple composition won't do. The most
straightforward solution is to have CPerson privately inherit from PersonInfo, though Item 39 explains that with a bit more work, CPerson could also use
a combination of composition and inheritance to effectively redefine PersonInfo's virtuals. Here, we'll use private inheritance.

But CPerson must also implement the IPerson interface, and that calls for public inheritance. This leads to one reasonable application of multiple
inheritance: combine public inheritance of an interface with private inheritance of an implementation:

class IPerson {                            // this class specifies the

public:                                    // interface to be implemented

  virtual ~IPerson();

  virtual std::string name() const = 0;

  virtual std::string birthDate() const = 0;

};

class DatabaseID { ... };                  // used below; details are

                                           // unimportant

class PersonInfo {                         // this class has functions

public:                                    // useful in implementing

  explicit PersonInfo(DatabaseID pid);     // the IPerson interface

  virtual ~PersonInfo();

  virtual const char * theName() const;

  virtual const char * theBirthDate() const;

  virtual const char * valueDelimOpen() const;

  virtual const char * valueDelimClose() const;

  ...

};

class CPerson: public IPerson, private PersonInfo {     // note use of MI

public:

  explicit CPerson(    DatabaseID pid): PersonInfo(pid) {}

  virtual std::string name() const                      // implementations

  { return PersonInfo::theName(); }                     // of the required

                                                        // IPerson member

  virtual std::string birthDate() const                 // functions

  { return PersonInfo::theBirthDate(); }



private:                                                // redefinitions of

  const char * valueDelimOpen() const { return ""; }    // inherited virtual

  const char * valueDelimClose() const { return ""; }   // delimiter

};                                                      // functions

In UML, the design looks like this:

This example demonstrates that MI can be both useful and comprehensible.

At the end of the day, multiple inheritance is just another tool in the object-oriented toolbox. Compared to single inheritance, it's typically more
complicated to use and more complicated to understand, so if you've got an SI design that's more or less equivalent to an MI design, the SI design is
almost certainly preferable. If the only design you can come up with involves MI, you should think a little harder — there's almost certainly some way to
make SI work. At the same time, MI is sometimes the clearest, most maintainable, most reasonable way to get the job done. When that's the case, don't
be afraid to use it. Just be sure to use it judiciously.

Things to Remember

Multiple inheritance is more complex than single inheritance. It can lead to new ambiguity issues and to the need for virtual inheritance.

Virtual inheritance imposes costs in size, speed, and complexity of initialization and assignment. It's most practical when virtual base
classes have no data.

Multiple inheritance does have legitimate uses. One scenario involves combining public inheritance from an Interface class with private
inheritance from a class that helps with implementation.
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Chapter 7. Templates and Generic Programming
The initial motivation for C++ templates was straightforward: to make it possible to create type-safe containers like vector, list, and map. The more people
worked with templates, however, the wider the variety of things they found they could do with them. Containers were good, but generic programming —
the ability to write code that is independent of the types of objects being manipulated — was even better. STL algorithms like for_each, find, and merge
are examples of such programming. Ultimately, it was discovered that the C++ template mechanism is itself Turing-complete: it can be used to compute
any computable value. That led to template metaprogramming: the creation of programs that execute inside C++ compilers and that stop running when
compilation is complete. These days, containers are but a small part of the C++ template pie. Despite the breadth of template applications, however, a
set of core ideas underlie all template-based programming. Those ideas are the focus of this chapter.

This chapter won't make you an expert template programmer, but it will make you a better one. It will also give you information you need to expand your
template-programming boundaries as far as you desire.
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Item 41: Understand implicit interfaces and compile-time polymorphism

The world of object-oriented programming revolves around explicit interfaces and runtime polymorphism. For example, given this (meaningless) class,

class Widget {

public:

  Widget();

  virtual ~Widget();

  virtual std::size_t size() const;

  virtual void normalize();

  void swap(Widget& other);                 // see Item 25

  ...

};

and this (equally meaningless) function,

void doProcessing(Widget& w)

{

  if (w.size() > 10 && w != someNastyWidget) {

      Widget temp(w);

      temp.normalize();

      temp.swap(w);

  }

}

we can say this about w in doProcessing:

Because w is declared to be of type Widget, w must support the Widget interface. We can look up this interface in the source code (e.g., the .h file
for Widget) to see exactly what it looks like, so I call this an explicit interface — one explicitly visible in the source code.

Because some of Widget's member functions are virtual, w's calls to those functions will exhibit runtime polymorphism: the specific function to call
will be determined at runtime based on w's dynamic type (see Item 37).

The world of templates and generic programming is fundamentally different. In that world, explicit interfaces and runtime polymorphism continue to exist,
but they're less important. Instead, implicit interfaces and compile-time polymorphism move to the fore. To see how this is the case, look what happens
when we turn doProcessing from a function into a function template:

template<typename T>

void doProcessing(T& w)

{

  if (w.size() > 10 && w != someNastyWidget) {

     T temp(w);

     temp.normalize();

     temp.swap(w);

  }



}

Now what can we say about w in doProcessing?

The interface that w must support is determined by the operations performed on w in the template. In this example, it appears that w's type (T)
must support the size, normalize, and swap member functions; copy construction (to create temp); and comparison for inequality (for comparison
with someNastyWidget). We'll soon see that this isn't quite accurate, but it's true enough for now. What's important is that the set of expressions
that must be valid in order for the template to compile is the implicit interface that T must support.

The calls to functions involving w such as operator> and operator!= may involve instantiating templates to make these calls succeed. Such
instantiation occurs during compilation. Because instantiating function templates with different template parameters leads to different functions
being called, this is known as compile-time polymorphism.

Even if you've never used templates, you should be familiar with the difference between runtime and compile-time polymorphism, because it's similar to
the difference between the process of determining which of a set of overloaded functions should be called (which takes place during compilation) and
dynamic binding of virtual function calls (which takes place at runtime). The difference between explicit and implicit interfaces is new to templates,
however, and it bears closer examination.

An explicit interface typically consists of function signatures, i.e., function names, parameter types, return types, etc. The Widget class public interface,
for example,

class Widget {

public:

  Widget();

  virtual ~Widget();

  virtual std::size_t size() const;

  virtual void normalize();

  void swap(Widget& other);

};

consists of a constructor, a destructor, and the functions size, normalize, and swap, along with the parameter types, return types, and constnesses of
these functions. (It also includes the compiler-generated copy constructor and copy assignment operator — see Item 5.) It could also include typedefs
and, if you were so bold as to violate Item 22's advice to make data members private, data members, though in this case, it does not.

An implicit interface is quite different. It is not based on function signatures. Rather, it consists of valid expressions. Look again at the conditional at the
beginning of the doProcessing template:

template<typename T>

void doProcessing(T& w)

{

  if (w.size() > 10 && w != someNastyWidget) {

  ...

The implicit interface for T (w's type) appears to have these constraints:

It must offer a member function named size that returns an integral value.

It must support an operator!= function that compares two objects of type T. (Here, we assume that someNastyWidget is of type T.)

Thanks to the possibility of operator overloading, neither of these constraints need be satisfied. Yes, T must support a size member function, though it's
worth mentioning that the function might be inherited from a base class. But this member function need not return an integral type. It need not even
return a numeric type. For that matter, it need not even return a type for which operator> is defined! All it needs to do is return an object of some type X
such that there is an operator> that can be called with an object of type X and an int (because 10 is of type int). The operator> need not take a parameter
of type X, because it could take a parameter of type Y, and that would be okay as long as there were an implicit conversion from objects of type X to
objects of type Y!

Similarly, there is no requirement that T support operator!=, because it would be just as acceptable for operator!= to take one object of type X and one
object of type Y. As long as T can be converted to X and someNastyWidget's type can be converted to Y, the call to operator!= would be valid.



(As an aside, this analysis doesn't take into account the possibility that operator&& could be overloaded, thus changing the meaning of the above
expression from a conjunction to something potentially quite different.)

Most people's heads hurt when they first start thinking about implicit interfaces this way, but there's really no need for aspirin. Implicit interfaces are
simply made up of a set of valid expressions. The expressions themselves may look complicated, but the constraints they impose are generally
straightforward. For example, given the conditional,

if (w.size() > 10 && w != someNastyWidget) ...

it's hard to say much about the constraints on the functions size, operator>, operator&&, or operator!=, but it's easy to identify the constraint on the
expression as a whole. The conditional part of an if statement must be a boolean expression, so regardless of the exact types involved, whatever
"w.size() > 10 && w != someNastyWidget" yields, it must be compatible with bool. This is part of the implicit interface the template doProcessing imposes
on its type parameter T. The rest of the interface required by doProcessing is that calls to the copy constructor, to normalize, and to swap must be valid
for objects of type T.

The implicit interfaces imposed on a template's parameters are just as real as the explicit interfaces imposed on a class's objects, and both are checked
during compilation. Just as you can't use an object in a way contradictory to the explicit interface its class offers (the code won't compile), you can't try to
use an object in a template unless that object supports the implicit interface the template requires (again, the code won't compile).

Things to Remember

Both classes and templates support interfaces and polymorphism.

For classes, interfaces are explicit and centered on function signatures. Polymorphism occurs at runtime through virtual functions.

For template parameters, interfaces are implicit and based on valid expressions. Polymorphism occurs during compilation through
template instantiation and function overloading resolution.
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Item 42: Understand the two meanings of typename

Question: what is the difference between class and typename in the following template declarations?

template<class T> class Widget;                 // uses "class"

template<typename T> class Widget;              // uses "typename"

Answer: nothing. When declaring a template type parameter, class and typename mean exactly the same thing. Some programmers prefer class all the
time, because it's easier to type. Others (including me) prefer typename, because it suggests that the parameter need not be a class type. A few
developers employ typename when any type is allowed and reserve class for when only user-defined types are acceptable. But from C++'s point of view,
class and typename mean exactly the same thing when declaring a template parameter.

C++ doesn't always view class and typename as equivalent, however. Sometimes you must use typename. To understand when, we have to talk about
two kinds of names you can refer to in a template.

Suppose we have a template for a function that takes an STL-compatible container holding objects that can be assigned to ints. Further suppose that this
function simply prints the value of its second element. It's a silly function implemented in a silly way, and as I've written it below, it shouldn't even compile,
but please overlook those things — there's a method to my madness:

template<typename C>                            // print 2nd element in

void print2nd(const C& container)               // container;

{                                               // this is not valid C++!

  if (container.size() >= 2) {

     C::const_iterator iter(container.begin()); // get iterator to 1st element

     ++iter;                                    // move iter to 2nd element

     int value = *iter;                         // copy that element to an int

     std::cout << value;                        // print the int

  }

}

I've highlighted the two local variables in this function, iter and value. The type of iter is C::const_iterator, a type that depends on the template parameter
C. Names in a template that are dependent on a template parameter are called dependent names. When a dependent name is nested inside a class, I
call it a nested dependent name. C::const_iterator is a nested dependent name. In fact, it's a nested dependent type name, i.e., a nested dependent
name that refers to a type.

The other local variable in print2nd, value, has type int. int is a name that does not depend on any template parameter. Such names are known as non-
dependent names, (I have no idea why they're not called independent names. If, like me, you find the term "non-dependent" an abomination, you have
my sympathies, but "non-dependent" is the term for these kinds of names, so, like me, roll your eyes and resign yourself to it.)

Nested dependent names can lead to parsing difficulties. For example, suppose we made print2nd even sillier by starting it this way:

template<typename C>

void print2nd(const C& container)

{

  C::const_iterator * x;

  ...

}

This looks like we're declaring x as a local variable that's a pointer to a C::const_iterator. But it looks that way only because we "know" that
C::const_iterator is a type. But what if C::const_iterator weren't a type? What if C had a static data member that happened to be named const_iterator,
and what if x happened to be the name of a global variable? In that case, the code above wouldn't declare a local variable, it would be a multiplication of



C::const_iterator by x! Sure, that sounds crazy, but it's possible, and people who write C++ parsers have to worry about all possible inputs, even the
crazy ones.

Until C is known, there's no way to know whether C::const_iterator is a type or isn't, and when the template print2nd is parsed, C isn't known. C++ has a
rule to resolve this ambiguity: if the parser encounters a nested dependent name in a template, it assumes that the name is not a type unless you tell it
otherwise. By default, nested dependent names are not types. (There is an exception to this rule that I'll get to in a moment.)

With that in mind, look again at the beginning of print2nd:

template<typename C>

void print2nd(const C& container)

{

  if (container.size() >= 2) {

     C::const_iterator iter(container.begin());   // this name is assumed to

     ...                                          // not be a type

Now it should be clear why this isn't valid C++. The declaration of iter makes sense only if C::const_iterator is a type, but we haven't told C++ that it is,
and C++ assumes that it's not. To rectify the situation, we have to tell C++ that C::const_iterator is a type. We do that by putting typename immediately in
front of it:

template<typename C>                           // this is valid C++

void print2nd(const C& container)

{

  if (container.size() >= 2) {

    typename C::const_iterator iter(container.begin());

    ...

  }

}

The general rule is simple: anytime you refer to a nested dependent type name in a template, you must immediately precede it by the word typename.
(Again, I'll describe an exception shortly.)

typename should be used to identify only nested dependent type names; other names shouldn't have it. For example, here's a function template that
takes both a container and an iterator into that container:

template<typename C>                   // typename allowed (as is "class")

void f(const C& container,             // typename not allowed

     typename C::iterator iter);       // typename required

C is not a nested dependent type name (it's not nested inside anything dependent on a template parameter), so it must not be preceded by typename
when declaring container, but C::iterator is a nested dependent type name, so it's required to be preceded by typename.

The exception to the " typename must precede nested dependent type names" rule is that typename must not precede nested dependent type names in
a list of base classes or as a base class identifier in a member initialization list. For example:

template<typename T>

class Derived: public Base<T>::Nested { // base class list: typename not

public:                                 // allowed

  explicit Derived(int x)

  : Base<T>::Nested(x)                  // base class identifier in mem

  {                                     // init. list: typename not allowed



    typename Base<T>::Nested temp;      // use of nested dependent type

    ...                                 // name not in a base class list or

  }                                     // as a base class identifier in a

  ...                                   // mem. init. list: typename required

};

Such inconsistency is irksome, but once you have a bit of experience under your belt, you'll barely notice it.

Let's look at one last typename example, because it's representative of something you're going to see in real code. Suppose we're writing a function
template that takes an iterator, and we want to make a local copy, temp, of the object the iterator points to. We can do it like this:

template<typename IterT>

void workWithIterator(IterT iter)

{

  typename std::iterator_traits<IterT>::value_type temp(*iter);

  ...

}

Don't let the std::iterator_traits<IterT>::value_type startle you. That's just a use of a standard traits class (see Item 47), the C++ way of saying "the type of
thing pointed to by objects of type IterT." The statement declares a local variable ( temp) of the same type as what IterT objects point to, and it initializes
temp with the object that iter points to. If IterT is vector<int>::iterator, temp is of type int. If IterT is list<string>::iterator, temp is of type string. Because
std::iterator_traits<IterT>::value_type is a nested dependent type name (value_type is nested inside iterator_traits<IterT>, and IterT is a template
parameter), we must precede it by typename.

If you think reading std::iterator_traits<IterT>::value_type is unpleasant, imagine what it's like to type it. If you're like most programmers, the thought of
typing it more than once is ghastly, so you'll want to create a typedef. For traits member names like value_type (again, see Item 47for information on
traits), a common convention is for the typedef name to be the same as the traits member name, so such a local typedef is often defined like this:

template<typename IterT>

void workWithIterator(IterT iter)

{

  typedef typename std::iterator_traits<IterT>::value_type value_type;

  value_type temp(*iter);

  ...

}

Many programmers find the " typedef typename" juxtaposition initially jarring, but it's a logical fallout from the rules for referring to nested dependent type
names. You'll get used to it fairly quickly. After all, you have strong motivation. How many times do you want to type typename
std::iterator_traits<IterT>::value_type?

As a closing note, I should mention that enforcement of the rules surrounding typename vary from compiler to compiler. Some compilers accept code
where typename is required but missing; some accept code where typename is present but not allowed; and a few (usually older ones) reject typename
where it's present and required. This means that the interaction of typename and nested dependent type names can lead to some mild portability
headaches.

Things to Remember

When declaring template parameters, class and typename are interchangeable.

Use typename to identify nested dependent type names, except in base class lists or as a base class identifier in a member
initialization list.
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Item 43: Know how to access names in templatized base classes

Suppose we need to write an application that can send messages to several different companies. Messages can be sent in either encrypted or cleartext
(unencrypted) form. If we have enough information during compilation to determine which messages will go to which companies, we can employ a
template-based solution:

class CompanyA {

public:

  ...

  void sendCleartext(const std::string& msg);

  void sendEncrypted(const std::string& msg);

  ...

};

class CompanyB {

public:

  ...

  void sendCleartext(const std::string& msg);

  void sendEncrypted(const std::string& msg);

  ...

};

...                                     // classes for other companies

class MsgInfo { ... };                  // class for holding information

                                        // used to create a message

template<typename Company>

class MsgSender {

public:

  ...                                   // ctors, dtor, etc.

  void sendClear(const MsgInfo& info)

  {

    std::string msg;

    create msg from info;

    Company c;

    c.sendCleartext(msg);

  }

  void sendSecret(const MsgInfo& info)   // similar to sendClear, except

  { ... }                                // calls c.sendEncrypted

};



This will work fine, but suppose we sometimes want to log some information each time we send a message. A derived class can easily add that
capability, and this seems like a reasonable way to do it:

template<typename Company>

class LoggingMsgSender: public MsgSender<Company> {

public:

  ...                                    // ctors, dtor, etc.

  void sendClearMsg(const MsgInfo& info)

  {

    write "before sending" info to the log;

    sendClear(info);                     // call base class function;

                                         // this code will not compile!

    write "after sending" info to the log;

  }

  ...

};

Note how the message-sending function in the derived class has a different name ( sendClearMsg) from the one in its base class (there, it's called
sendClear). That's good design, because it side-steps the issue of hiding inherited names (see Item 33) as well as the problems inherent in redefining an
inherited non-virtual function (see Item 36). But the code above won't compile, at least not with conformant compilers. Such compilers will complain that
sendClear doesn't exist. We can see that sendClear is in the base class, but compilers won't look for it there. We need to understand why.

The problem is that when compilers encounter the definition for the class template LoggingMsgSender, they don't know what class it inherits from. Sure,
it's MsgSender<Company>, but Company is a template parameter, one that won't be known until later (when LoggingMsgSender is instantiated). Without
knowing what Company is, there's no way to know what the class MsgSender<Company> looks like. In particular, there's no way to know if it has a
sendClear function.

To make the problem concrete, suppose we have a class CompanyZ that insists on encrypted communications:

class CompanyZ {                             // this class offers no

public:                                      // sendCleartext function

  ...

  void sendEncrypted(const std::string& msg);

  ...

};

The general MsgSender template is inappropriate for CompanyZ, because that template offers a sendClear function that makes no sense for CompanyZ
objects. To rectify that problem, we can create a specialized version of MsgSender for CompanyZ:

template<>                                 // a total specialization of

class MsgSender<CompanyZ> {                // MsgSender; the same as the

public:                                    // general template, except

  ...                                      // sendCleartext is omitted

  void sendSecret(const MsgInfo& info)

  { ... }



};

Note the "template <>" syntax at the beginning of this class definition. It signifies that this is neither a template nor a standalone class. Rather, it's a
specialized version of the MsgSender template to be used when the template argument is CompanyZ. This is known as a total template specialization :
the template MsgSender is specialized for the type CompanyZ, and the specialization is total — once the type parameter has been defined to be
CompanyZ, no other aspect of the template's parameters can vary.

Given that MsgSender has been specialized for CompanyZ, consider again the derived class LoggingMsgSender:

template<typename Company>

class LoggingMsgSender: public MsgSender<Company> {

public:

  ...

  void sendClearMsg(const MsgInfo& info)

  {

    write "before sending" info to the log;

    sendClear(info);                          // if Company == CompanyZ,

                                              // this function doesn't exist!

    write "after sending" info to the log;

  }

  ...

};

As the comment notes, this code makes no sense when the base class is MsgSender<CompanyZ>, because that class offers no sendClear function.
That's why C++ rejects the call: it recognizes that base class templates may be specialized and that such specializations may not offer the same interface
as the general template. As a result, it generally refuses to look in templatized base classes for inherited names. In some sense, when we cross from
Object-oriented C++ to Template C++ (see Item 1), inheritance stops working.

To restart it, we have to somehow disable C++'s "don't look in templatized base classes" behavior. There are three ways to do this. First, you can preface
calls to base class functions with "this->":

template<typename Company>

class LoggingMsgSender: public MsgSender<Company> {

public:

  ...

  void sendClearMsg(const MsgInfo& info)

  {

    write "before sending" info to the log;

    this->sendClear(info);                // okay, assumes that

                                          // sendClear will be inherited

    write "after sending" info to the log;

  }



  ...

};

Second, you can employ a using declaration, a solution that should strike you as familiar if you've read Item 33. That Item explains how using
declarations bring hidden base class names into a derived class's scope. We can therefore write sendClearMsg like this:

template<typename Company>

class LoggingMsgSender: public MsgSender<Company> {

public:

  using MsgSender<Company>::sendClear;   // tell compilers to assume

  ...                                    // that sendClear is in the

                                         // base class

  void sendClearMsg(const MsgInfo& info)

  {

    ...

    sendClear(info);                   // okay, assumes that

    ...                                // sendClear will be inherited

  }

  ...

};

(Although a using declaration will work both here and in Item 33, the problems being solved are different. Here, the situation isn't that base class names
are hidden by derived class names, it's that compilers don't search base class scopes unless we tell them to.)

A final way to get your code to compile is to explicitly specify that the function being called is in the base class:

template<typename Company>

class LoggingMsgSender: public MsgSender<Company> {

public:

  ...

  void sendClearMsg(const MsgInfo& info)

  {

    ...

    MsgSender<Company>::sendClear(info);      // okay, assumes that

    ...                                       // sendClear will be

  }                                           //inherited

  ...

};



This is generally the least desirable way to solve the problem, because if the function being called is virtual, explicit qualification turns off the virtual
binding behavior.

From a name visibility point of view, each of these approaches does the same thing: it promises compilers that any subsequent specializations of the
base class template will support the interface offered by the general template. Such a promise is all compilers need when they parse a derived class
template like LoggingMsgSender, but if the promise turns out to be unfounded, the truth will emerge during subsequent compilation. For example, if the
source code later contains this,

LoggingMsgSender<CompanyZ> zMsgSender;

MsgInfo msgData;

...                                          // put info in msgData

zMsgSender.sendClearMsg(msgData);            // error! won't compile

the call to sendClearMsg won't compile, because at this point, compilers know that the base class is the template specialization
MsgSender<CompanyZ>, and they know that class doesn't offer the sendClear function that sendClearMsg is trying to call.

Fundamentally, the issue is whether compilers will diagnose invalid references to base class members sooner (when derived class template definitions
are parsed) or later (when those templates are instantiated with specific template arguments). C++'s policy is to prefer early diagnoses, and that's why it
assumes it knows nothing about the contents of base classes when those classes are instantiated from templates.

Things to Remember

In derived class templates, refer to names in base class templates via a " this->" prefix, via using declarations, or via an explicit base
class qualification.
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Item 44: Factor parameter-independent code out of templates

Templates are a wonderful way to save time and avoid code replication. Instead of typing 20 similar classes, each with 15 member functions, you type
one class template, and you let compilers instantiate the 20 specific classes and 300 functions you need. (Member functions of class templates are
implicitly instantiated only when used, so you should get the full 300 member functions only if each is actually used.) Function templates are similarly
appealing. Instead of writing many functions, you write one function template and let the compilers do the rest. Ain't technology grand?

Yes, well...sometimes. If you're not careful, using templates can lead to code bloat: binaries with replicated (or almost replicated) code, data, or both. The
result can be source code that looks fit and trim, yet object code that's fat and flabby. Fat and flabby is rarely fashionable, so you need to know how to
avoid such binary bombast.

Your primary tool has the imposing name commonality and variability analysis , but there's nothing imposing about the idea. Even if you've never written
a template in your life, you do such analysis all the time.

When you're writing a function and you realize that some part of the function's implementation is essentially the same as another function's
implementation, do you just replicate the code? Of course not. You factor the common code out of the two functions, put it into a third function, and have
both of the other functions call the new one. That is, you analyze the two functions to find the parts that are common and those that vary, you move the
common parts into a new function, and you keep the varying parts in the original functions. Similarly, if you're writing a class and you realize that some
parts of the class are the same as parts of another class, you don't replicate the common parts. Instead, you move the common parts to a new class, then
you use inheritance or composition (see Items 32, 38, and 39) to give the original classes access to the common features. The parts of the original
classes that differ — the varying parts — remain in their original locations.

When writing templates, you do the same analysis, and you avoid replication in the same ways, but there's a twist. In non-template code, replication is
explicit: you can see that there's duplication between two functions or two classes. In template code, replication is implicit: there's only one copy of the
template source code, so you have to train yourself to sense the replication that may take place when a template is instantiated multiple times.

For example, suppose you'd like to write a template for fixed-size square matrices that, among other things, support matrix inversion.

template<typename T,           // template for n x n matrices of

         std::size_t n>        // objects of type T; see below for info

class SquareMatrix {           // on the size_t parameter

public:

  ...

  void invert();              // invert the matrix in place

};

This template takes a type parameter, T, but it also takes a parameter of type size_t — a non-type parameter. Non-type parameters are less common
than type parameters, but they're completely legal, and, as in this example, they can be quite natural.

Now consider this code:

SquareMatrix<double, 5> sm1;

...

sm1.invert();                  // call SquareMatrix<double, 5>::invert

SquareMatrix<double, 10> sm2;

...

sm2.invert();                  // call SquareMatrix<double, 10>::invert

Two copies of invert will be instantiated here. The functions won't be identical, because one will work on 5x5 matrices and one will work on 10 x 10
matrices, but other than the constants 5 and 10, the two functions will be the same. This is a classic way for template-induced code bloat to arise.

What would you do if you saw two functions that were character-for-character identical except for the use of 5 in one version and 10 in the other? Your
instinct would be to create a version of the function that took a value as a parameter, then call the parameterized function with 5 or 10 instead of
replicating the code. Your instinct serves you well! Here's a first pass at doing that for SquareMatrix:

template<typename T>                   // size-independent base class for

class SquareMatrixBase {               // square matrices



protected:

  ...

  void invert(std::size_t matrixSize); // invert matrix of the given size

  ...

};

template<          typename T, std::size_t n>

class SquareMatrix: private SquareMatrixBase<T> {

private:

  using SquareMatrixBase<T>::invert;   // avoid hiding base version of

                                       // invert; see Item 33

public:

  ...

  void invert() { this->invert(n); }   // make inline call to base class

};                                     // version of invert; see below

                                       // for why "this->" is here

As you can see, the parameterized version of invert is in a base class, SquareMatrixBase. Like SquareMatrix, SquareMatrixBase is a template, but
unlike SquareMatrix, it's templatized only on the type of objects in the matrix, not on the size of the matrix. Hence, all matrices holding a given type of
object will share a single SquareMatrixBase class. They will thus share a single copy of that class's version of invert.

SquareMatrixBase::invert is intended only to be a way for derived classes to avoid code replication, so it's protected instead of being public. The
additional cost of calling it should be zero, because derived classes' inverts call the base class version using inline functions. (The inline is implicit — see
Item 30.) These functions use the " this->" notation, because otherwise, as Item 43 explains, function names in templatized base classes (such as
SquareMatrixBase<T>) are hidden from derived classes. Notice also that the inheritance between SquareMatrix and SquareMatrixBase is private. This
accurately reflects the fact that the reason for the base class is only to facilitate the derived classes' implementations, not to express a conceptual is-a
relationship between SquareMatrix and SquareMatrixBase. (For information on private inheritance, see Item 39.)

So far, so good, but there's a sticky issue we haven't addressed yet. How does SquareMatrixBase::invert know what data to operate on? It knows the
size of the matrix from its parameter, but how does it know where the data for a particular matrix is? Presumably only the derived class knows that. How
does the derived class communicate that to the base class so that the base class can do the inversion?

One possibility would be to add another parameter to SquareMatrixBase::invert, perhaps a pointer to the beginning of a chunk of memory with the
matrix's data in it. That would work, but in all likelihood, invert is not the only function in SquareMatrix that can be written in a size-independent manner
and moved into SquareMatrixBase. If there are several such functions, all will need a way to find the memory holding the values in the matrix. We could
add an extra parameter to all of them, but we'd be telling SquareMatrixBase the same information repeatedly. That seems wrong.

An alternative is to have SquareMatrixBase store a pointer to the memory for the matrix values. And as long as it's storing that, it might as well store the
matrix size, too. The resulting design looks like this:

template<typename T>

class SquareMatrixBase {

protected:

  SquareMatrixBase(std::size_t n, T *pMem)     // store matrix size and a

  : size(n), pData(pMem) {}                    // ptr to matrix values

  void setDataPtr(T *ptr) { pData = ptr; }     // reassign pData

  ...

private:

  std::size_t size;                            // size of matrix



  T *pData;                                    // pointer to matrix values

};

This lets derived classes decide how to allocate the memory. Some implementations might decide to store the matrix data right inside the SquareMatrix
object:

template<typename T, std::size_t n>

class SquareMatrix: private SquareMatrixBase<T> {

public:

  SquareMatrix()                             // send matrix size and

  : SquareMatrixBase<T>(n, data) {}          // data ptr to base class

  ...

private:

  T data[n*n];

};

Objects of such types have no need for dynamic memory allocation, but the objects themselves could be very large. An alternative would be to put the
data for each matrix on the heap:

template<typename T, std::size_t n>

class SquareMatrix: private SquareMatrixBase<T> {

public:

  SquareMatrix()                          // set base class data ptr to null,

  : SquareMatrixBase<T>(n, 0),            // allocate memory for matrix

    pData(new T[n*n])                     // values, save a ptr to the

  { this->setDataPtr(pData.get()); }      // memory, and give a copy of it

  ...                                     // to the base class

private:

  boost::scoped_array<T> pData;           // see Item 13 for info on

};                                        // boost::scoped_array

Regardless of where the data is stored, the key result from a bloat point of view is that now many — maybe all — of SquareMatrix's member functions
can be simple inline calls to base class versions that are shared with all other matrices holding the same type of data, regardless of their size. At the same
time, SquareMatrix objects of different sizes are distinct types, so even though, e.g., SquareMatrix<double, 5> and SquareMatrix<double, 10> objects
use the same member functions in SquareMatrixBase<double>, there's no chance of passing a SquareMatrix<double, 5> object to a function expecting a
SquareMatrix<double, 10>. Nice, no?

Nice, yes, but not free. The versions of invert with the matrix sizes hardwired into them are likely to generate better code than the shared version where
the size is passed as a function parameter or is stored in the object. For example, in the size-specific versions, the sizes would be compile-time
constants, hence eligible for such optimizations as constant propagation, including their being folded into the generated instructions as immediate
operands. That can't be done in the size-independent version.

On the other hand, having only one version of invert for multiple matrix sizes decreases the size of the executable, and that could reduce the program's
working set size and improve locality of reference in the instruction cache. Those things could make the program run faster, more than compensating for
any lost optimizations in size-specific versions of invert. Which effect would dominate? The only way to know is to try it both ways and observe the
behavior on your particular platform and on representative data sets.

Another efficiency consideration concerns the sizes of objects. If you're not careful, moving size-independent versions of functions up into a base class
can increase the overall size of each object. For example, in the code I just showed, each SquareMatrix object has a pointer to its data in the



SquareMatrixBase class, even though each derived class already has a way to get to the data. This increases the size of each SquareMatrix object by at
least the size of a pointer. It's possible to modify the design so that these pointers are unnecessary, but, again, there are trade-offs. For example, having
the base class store a protected pointer to the matrix data leads to the loss of encapsulation described in Item 22. It can also lead to resource
management complications: if the base class stores a pointer to the matrix data, but that data may have been either dynamically allocated or physically
stored inside the derived class object (as we saw), how will it be determined whether the pointer should be deleted? Such questions have answers, but
the more sophisticated you try to be about them, the more complicated things become. At some point, a little code replication begins to look like a mercy.

This Item has discussed only bloat due to non-type template parameters, but type parameters can lead to bloat, too. For example, on many platforms, int
and long have the same binary representation, so the member functions for, say, vector<int> and vector<long> would likely be identical — the very
definition of bloat. Some linkers will merge identical function implementations, but some will not, and that means that some templates instantiated on both
int and long could cause code bloat in some environments. Similarly, on most platforms, all pointer types have the same binary representation, so
templates holding pointer types (e.g., list<int*>, list<const int*>, list<SquareMatrix<long, 3>*>, etc.) should often be able to use a single underlying
implementation for each member function. Typically, this means implementing member functions that work with strongly typed pointers (i.e., T* pointers)
by having them call functions that work with untyped pointers (i.e., void* pointers). Some implementations of the standard C++ library do this for
templates like vector, deque, and list. If you're concerned about code bloat arising in your templates, you'll probably want to develop templates that do
the same thing.

Things to Remember

Templates generate multiple classes and multiple functions, so any template code not dependent on a template parameter causes
bloat.

Bloat due to non-type template parameters can often be eliminated by replacing template parameters with function parameters or class
data members.

Bloat due to type parameters can be reduced by sharing implementations for instantiation types with identical binary representations.
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Item 45: Use member function templates to accept "all compatible types."

Smart pointers are objects that act much like pointers but add functionality pointers don't provide. For example, Item 13 explains how the standard
auto_ptr and tr1::shared_ptr can be used to automatically delete heap-based resources at the right time. Iterators into STL containers are almost always
smart pointers; certainly you couldn't expect to move a built-in pointer from one node in a linked list to the next by using "++," yet that works for
list::iterators.

One of the things that real pointers do well is support implicit conversions. Derived class pointers implicitly convert into base class pointers, pointers to
non-const objects convert into pointers to const objects, etc. For example, consider some conversions that can occur in a three-level hierarchy:

class Top { ... };

class Middle: public Top { ... };

class Bottom: public Middle { ... };

Top *pt1 = new Middle;                   // convert Middle* Top*

Top *pt2 = new Bottom;                   // convert Bottom* Top*

const Top *pct2 = pt1;                   // convert Top*  const Top*

Emulating such conversions in user-defined smart pointer classes is tricky. We'd need the following code to compile:

template<typename T>

class SmartPtr {

public:                             // smart pointers are typically

  explicit SmartPtr(T *realPtr);    // initialized by built-in pointers

  ...

};

SmartPtr<Top> pt1 =                 // convert SmartPtr<Middle> 

  SmartPtr<Middle>(new Middle);     //   SmartPtr<Top>

SmartPtr<Top> pt2 =                 // convert SmartPtr<Bottom> 

  SmartPtr<Bottom>(new Bottom);     //   SmartPtr<Top>

SmartPtr<const Top> pct2 = pt1;     // convert SmartPtr<Top> 

                                    //  SmartPtr<const Top>

There is no inherent relationship among different instantiations of the same template, so compilers view SmartPtr<Middle> and SmartPtr<Top> as
completely different classes, no more closely related than, say, vector<float> and Widget. To get the conversions among SmartPtr classes that we want,
we have to program them explicitly.

In the smart pointer sample code above, each statement creates a new smart pointer object, so for now we'll focus on how to write smart pointer
constructors that behave the way we want. A key observation is that there is no way to write out all the constructors we need. In the hierarchy above, we
can construct a SmartPtr<Top> from a SmartPtr<Middle> or a SmartPtr<Bottom>, but if the hierarchy is extended in the future, SmartPtr<Top> objects
will have to be constructible from other smart pointer types. For example, if we later add

class BelowBottom: public Bottom { ... };

we'll need to support the creation of SmartPtr<Top> objects from SmartPtr<BelowBottom> objects, and we certainly won't want to have to modify the
SmartPtr template to do it.



In principle, the number of constructors we need is unlimited. Since a template can be instantiated to generate an unlimited number of functions, it seems
that we don't need a constructor function for SmartPtr, we need a constructor template. Such templates are examples of member function templates
(often just known as member templates) — templates that generate member functions of a class:

template<typename T>

class SmartPtr {

public:

  template<typename U>                       // member template

  SmartPtr(const SmartPtr<U>& other);        // for a "generalized

  ...                                        // copy constructor"

};

This says that for every type T and every type U, a SmartPtr<T> can be created from a SmartPtr<U>, because SmartPtr<T> has a constructor that takes
a SmartPtr<U> parameter. Constructors like this — ones that create one object from another object whose type is a different instantiation of the same
template (e.g., create a SmartPtr<T> from a SmartPtr<U>) — are sometimes known as generalized copy constructors.

The generalized copy constructor above is not declared explicit. That's deliberate. Type conversions among built-in pointer types (e.g., from derived to
base class pointers) are implicit and require no cast, so it's reasonable for smart pointers to emulate that behavior. Omitting explicit on the templatized
constructor does just that.

As declared, the generalized copy constructor for SmartPtr offers more than we want. Yes, we want to be able to create a SmartPtr<Top> from a
SmartPtr<Bottom>, but we don't want to be able to create a SmartPtr<Bottom> from a SmartPtr<Top>, as that's contrary to the meaning of public
inheritance (see Item 32). We also don't want to be able to create a SmartPtr<int> from a SmartPtr<double>, because there is no corresponding implicit
conversion from int* to double*. Somehow, we have to cull the herd of member functions that this member template will generate.

Assuming that SmartPtr follows the lead of auto_ptr and TR1::shared_ptr by offering a get member function that returns a copy of the built-in pointer held
by the smart pointer object (see Item 15), we can use the implementation of the constructor template to restrict the conversions to those we want:

template<typename T>

class SmartPtr {

public:

  template<typename U>

  SmartPtr(const SmartPtr<U>& other)         // initialize this held ptr

  : heldPtr(other.get()) { ... }             // with other's held ptr

  T* get() const { return heldPtr; }

  ...

private:                                     // built-in pointer held

  T *heldPtr;                                // by the SmartPtr

};

We use the member initialization list to initialize SmartPtr<T>'s data member of type T* with the pointer of type U* held by the SmartPtr<U>. This will
compile only if there is an implicit conversion from a U* pointer to a T* pointer, and that's precisely what we want. The net effect is that SmartPtr<T> now
has a generalized copy constructor that will compile only if passed a parameter of a compatible type.

The utility of member function templates isn't limited to constructors. Another common role for them is in support for assignment. For example, TR1's
shared_ptr (again, see Item 13) supports construction from all compatible built-in pointers, tr1::shared_ptrs, auto_ptrs, and tr1::weak_ptrs (see Item 54),
as well as assignment from all of those except tr1::weak_ptrs. Here's an excerpt from TR1's specification for TR1::shared_ptr, including its penchant for
using class instead of typename

when declaring template parameters. (As Item 42 explains, they mean exactly the same thing in this context.)

template<class T> class shared_ptr {

public:



  template<class Y>                                     // construct from

    explicit shared_ptr(Y * p);                         // any compatible

  template<class Y>                                     // built-in pointer,

    shared_ptr(shared_ptr<Y> const& r);                 // shared_ptr,

  template<class Y>                                     // weak_ptr, or

    explicit shared_ptr(weak_ptr<Y> const& r);          // auto_ptr

  template<class Y>

    explicit shared_ptr(auto_ptr<Y>& r);

  template<class Y>                                     // assign from

    shared_ptr& operator=(shared_ptr<Y> const& r);      // any compatible

  template<class Y>                                     // shared_ptr or

    shared_ptr& operator=(auto_ptr<Y>& r);              // auto_ptr

  ...

};

All these constructors are explicit, except the generalized copy constructor. That means that implicit conversion from one type of shared_ptr to another is
allowed, but implicit conversion from a built-in pointer or other smart pointer type is not permitted. ( Explicit conversion — e.g., via a cast — is okay.) Also
interesting is how the auto_ptrs passed to TR1::shared_ptr constructors and assignment operators aren't declared const, in contrast to how the
TR1::shared_ptrs and tr1::weak_ptrs are passed. That's a consequence of the fact that auto_ptrs stand alone in being modified when they're copied (see
Item 13).

Member function templates are wonderful things, but they don't alter the basic rules of the language. Item 5 explains that two of the four member
functions that compilers may generate are the copy constructor and the copy assignment operator. tr1::shared_ptr declares a generalized copy
constructor, and it's clear that when the types T and Y are the same, the generalized copy constructor could be instantiated to create the "normal" copy
constructor. So will compilers generate a copy constructor for TR1::shared_ptr, or will they instantiate the generalized copy constructor template when
one TR1::shared_ptr object is constructed from another tr1::shared_ptr object of the same type?

As I said, member templates don't change the rules of the language, and the rules state that if a copy constructor is needed and you don't declare one,
one will be generated for you automatically. Declaring a generalized copy constructor (a member template) in a class doesn't keep compilers from
generating their own copy constructor (a non-template), so if you want to control all aspects of copy construction, you must declare both a generalized
copy constructor as well as the "normal" copy constructor. The same applies to assignment. Here's an excerpt from tr1::shared_ptr's definition that
exemplifies this:

template<class T> class shared_ptr {

public:

  shared_ptr(shared_ptr const& r);                 // copy constructor

  template<class Y>                                // generalized

    shared_ptr(shared_ptr<Y> const& r);            // copy constructor

  shared_ptr& operator=(shared_ptr const& r);      // copy assignment

  template<class Y>                                // generalized

    shared_ptr& operator=(shared_ptr<Y> const& r); // copy assignment

  ...

};

Things to Remember



Use member function templates to generate functions that accept all compatible types.

If you declare member templates for generalized copy construction or generalized assignment, you'll still need to declare the normal
copy constructor and copy assignment operator, too.
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Item 46: Define non-member functions inside templates when type conversions are desired

Item 24 explains why only non-member functions are eligible for implicit type conversions on all arguments, and it uses as an example the operator*
function for a Rational class. I recommend you familiarize yourself with that example before continuing, because this Item extends the discussion with a
seemingly innocuous modification to Item 24's example: it templatizes both Rational and operator*:

template<typename T>

class Rational {

public:

  Rational(const T& numerator = 0,     // see Item 20 for why params

           const T& denominator = 1);  // are now passed by reference

  const T numerator() const;           // see Item 28 for why return

  const T denominator() const;         // values are still passed by value,

  ...                                  // Item 3 for why they're const

};

template<typename T>

const Rational<T> operator*(const Rational<T>& lhs,

                            const Rational<T>& rhs)

{ ... }

As in Item 24, we want to support mixed-mode arithmetic, so we want the code below to compile. We expect that it will, because we're using the same
code that works in Item 24. The only difference is that Rational and operator* are now templates:

Rational<int> oneHalf(1, 2);          // this example is from Item 24,

                                      // except Rational is now a template

Rational<int> result = oneHalf * 2;   // error! won't compile

The fact that this fails to compile suggests that there's something about the templatized Rational that's different from the non-template version, and
indeed there is. In Item 24, compilers know what function we're trying to call ( operator* taking two Rationals), but here, compilers do not know which
function we want to call. Instead, they're trying to figure out what function to instantiate (i.e., create) from the template named operator*. They know that
they're supposed to instantiate some function named operator* taking two parameters of type Rational<T>, but in order to do the instantiation, they have
to figure out what T is. The problem is, they can't.

In attempting to deduce T, they look at the types of the arguments being passed in the call to operator*. In this case, those types are Rational<int> (the
type of oneHalf) and int (the type of 2). Each parameter is considered separately.

The deduction using oneHalf is easy. operator*'s first parameter is declared to be of type Rational<T>, and the first argument passed to operator*
(oneHalf) is of type Rational<int>, so T must be int. Unfortunately, the deduction for the other parameter is not so simple. operator*'s second parameter is
declared to be of type Rational<T>, but the second argument passed to operator* (2) is of type int. How are compilers to figure out what T is in this case?
You might expect them to use Rational<int>'s non-explicit constructor to convert 2 into a Rational<int>, thus allowing them to deduce that T is int, but they
don't do that. They don't, because implicit type conversion functions are never considered during template argument deduction. Never. Such conversions
are used during function calls, yes, but before you can call a function, you have to know which functions exist. In order to know that, you have to deduce
parameter types for the relevant function templates (so that you can instantiate the appropriate functions). But implicit type conversion via constructor
calls is not considered during template argument deduction. Item 24 involves no templates, so template argument deduction is not an issue. Now that
we're in the template part of C++ (see Item 1), it's the primary issue.

We can relieve compilers of the challenge of template argument deduction by taking advantage of the fact that a friend declaration in a template class can
refer to a specific function. That means the class Rational<T> can declare operator* for Rational<T> as a friend function. Class templates don't depend
on template argument deduction (that process applies only to function templates), so T is always known at the time the class Rational<T> is instantiated.
That makes it easy for the Rational<T> class to declare the appropriate operator* function as a friend:



template<typename T>

class Rational {

public:

  ...

friend                                              // declare operator*

  const Rational operator*(const Rational& lhs,     // function (see

                           const Rational& rhs);    // below for details)

};

template<typename T>                                // define operator*

const Rational<T> operator*(const Rational<T>& lhs, // functions

                            const Rational<T>& rhs)

{ ... }

Now our mixed-mode calls to operator* will compile, because when the object oneHalf is declared to be of type Rational<int>, the class Rational<int> is
instantiated, and as part of that process, the friend function operator* that takes Rational<int> parameters is automatically declared. As a declared
function (not a function template), compilers can use implicit conversion functions (such as Rational's non-explicit constructor) when calling it, and that's
how they make the mixed-mode call succeed.

Alas, "succeed" is a funny word in this context, because although the code will compile, it won't link. We'll deal with that in a moment, but first I want to
remark on the syntax used to declare operator* inside Rational.

Inside a class template, the name of the template can be used as shorthand for the template and its parameters, so inside Rational<T>, we can just write
Rational instead of Rational<T>. That saves us only a few characters in this example, but when there are multiple parameters or longer parameter
names, it can both save typing and make the resulting code clearer. I bring this up, because operator* is declared taking and returning Rationals instead
of Rational<T>s. It would have been just as valid to declare operator* like this:

template<typename T>

class Rational {

public:

  ...

friend

   const Rational<T> operator*(const Rational<T>& lhs,

                               const Rational<T>& rhs);

  ...

};

However, it's easier (and more common) to use the shorthand form.

Now back to the linking problem. The mixed-mode code compiles, because compilers know that we want to call a specific function ( operator* taking a
Rational<int> and a Rational<int>), but that function is only declared inside Rational, not defined there. Our intent is to have the operator* template
outside the class provide that definition, but things don't work that way. If we declare a function ourselves (which is what we're doing inside the Rational
template), we're also responsible for defining that function. In this case, we never provide a definition, and that's why linkers can't find one.

The simplest thing that could possibly work is to merge the body of operator* into its declaration:

template<typename T>

class Rational {

public:

  ...



friend const Rational operator*(const Rational& lhs, const Rational& rhs)

{

  return Rational(lhs.numerator() * rhs.numerator(),       // same impl

                  lhs.denominator() * rhs.denominator());  // as in

}                                                          // Item 24

};

Indeed, this works as intended: mixed-mode calls to operator* now compile, link, and run. Hooray!

An interesting observation about this technique is that the use of friendship has nothing to do with a need to access non-public parts of the class. In order
to make type conversions possible on all arguments, we need a non-member function (Item 24 still applies); and in order to have the proper function
automatically instantiated, we need to declare the function inside the class. The only way to declare a non-member function inside a class is to make it a
friend. So that's what we do. Unconventional? Yes. Effective? Without a doubt.

As Item 30 explains, functions defined inside a class are implicitly declared inline, and that includes friend functions like operator*. You can minimize the
impact of such inline declarations by having operator* do nothing but call a helper function defined outside of the class. In the example in this Item, there's
not much point in doing that, because operator* is already implemented as a one-line function, but for more complex function bodies, it may be desirable.
It's worth taking a look at the "have the friend call a helper" approach.

The fact that Rational is a template means that the helper function will usually also be a template, so the code in the header file defining Rational will
typically look something like this:

template<typename T> class Rational;                 // declare

                                                     // Rational

                                                     // template

template<typename T>                                    // declare

const Rational<T> doMultiply(const Rational<T>& lhs,    // helper

                             const Rational<T>& rhs);   // template

template<typename T>

class Rational {

public:

  ...

friend

  const Rational<T> operator*(const Rational<T>& lhs,

                              const Rational<T>& rhs)   // Have friend

  { return doMultiply(lhs, rhs); }                      // call helper

  ...

};

Many compilers essentially force you to put all template definitions in header files, so you may need to define doMultiply in your header as well. (As Item
30 explains, such templates need not be inline.) That could look like this:

template<typename T>                                      // define

const Rational<T> doMultiply(const Rational<T>& lhs,      // helper

                             const Rational<T>& rhs)      // template in

{                                                         // header file,

  return Rational<T>(lhs.numerator() * rhs.numerator(),   // if necessary



                     lhs.denominator() * rhs.denominator());

}

As a template, of course, doMultiply won't support mixed-mode multiplication, but it doesn't need to. It will only be called by operator*, and operator* does
support mixed-mode operations! In essence, the function operator* supports whatever type conversions are necessary to ensure that two Rational objects
are being multiplied, then it passes these two objects to an appropriate instantiation of the doMultiply template to do the actual multiplication. Synergy in
action, no?

Things to Remember

When writing a class template that offers functions related to the template that support implicit type conversions on all parameters,
define those functions as friends inside the class template.
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Item 47: Use traits classes for information about types

The STL is primarily made up of templates for containers, iterators, and algorithms, but it also has a few utility templates. One of these is called advance.
advance moves a specified iterator a specified distance:

template<typename IterT, typename DistT>       // move iter d units

void advance(IterT& iter, DistT d);            // forward; if d < 0,

                                               // move iter backward

Conceptually, advance just does iter += d, but advance can't be implemented that way, because only random access iterators support the += operation.
Less powerful iterator types have to implement advance by iteratively applying ++ or -- d times.

Um, you don't remember your STL iterator categories? No problem, we'll do a mini-review. There are five categories of iterators, corresponding to the
operations they support. Input iterators can move only forward, can move only one step at a time, can only read what they point to, and can read what
they're pointing to only once. They're modeled on the read pointer into an input file; the C++ library's istream_iterators are representative of this category.
Output iterators are analogous, but for output: they move only forward, move only one step at a time, can only write what they point to, and can write it
only once. They're modeled on the write pointer into an output file; ostream_iterators epitomize this category. These are the two least powerful iterator
categories. Because input and output iterators can move only forward and can read or write what they point to at most once, they are suitable only for
one-pass algorithms.

A more powerful iterator category consists of forward iterators. Such iterators can do everything input and output iterators can do, plus they can read or
write what they point to more than once. This makes them viable for multi-pass algorithms. The STL offers no singly linked list, but some libraries offer
one (usually called slist), and iterators into such containers are forward iterators. Iterators into TR1's hashed containers (see Item 54) may also be in the
forward category.

Bidirectional iterators add to forward iterators the ability to move backward as well as forward. Iterators for the STL's list are in this category, as are
iterators for set, multiset, map, and multimap.

The most powerful iterator category is that of random access iterators. These kinds of iterators add to bidirectional iterators the ability to perform "iterator
arithmetic," i.e., to jump forward or backward an arbitrary distance in constant time. Such arithmetic is analogous to pointer arithmetic, which is not
surprising, because random access iterators are modeled on built-in pointers, and built-in pointers can act as random access iterators. Iterators for
vector, deque, and string are random access iterators.

For each of the five iterator categories, C++ has a "tag struct" in the standard library that serves to identify it:

struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

The inheritance relationships among these structs are valid is-a relationships (see Item 32): it's true that all forward iterators are also input iterators, etc.
We'll see the utility of this inheritance shortly.

But back to advance. Given the different iterator capabilities, one way to implement advance would be to use the lowest-common-denominator strategy
of a loop that iteratively increments or decrements the iterator. However, that approach would take linear time. Random access iterators support
constant-time iterator arithmetic, and we'd like to take advantage of that ability when it's present.

What we really want to do is implement advance essentially like this:

template<typename IterT, typename DistT>

void advance(IterT& iter, DistT d)

{

  if (iter is a random access iterator) {



     iter += d;                                      // use iterator arithmetic

  }                                                  // for random access iters

  else {

    if (d >= 0) { while (d--) ++iter; }              // use iterative calls to

    else { while (d++) --iter; }                     // ++ or -- for other

  }                                                  // iterator categories

}

This requires being able to determine whether iter is a random access iterator, which in turn requires knowing whether its type, IterT, is a random access
iterator type. In other words, we need to get some information about a type. That's what traits let you do: they allow you to get information about a type
during compilation.

Traits aren't a keyword or a predefined construct in C++; they're a technique and a convention followed by C++ programmers. One of the demands made
on the technique is that it has to work as well for built-in types as it does for user-defined types. For example, if advance is called with a pointer (like a
const char*) and an int, advance has to work, but that means that the traits technique must apply to built-in types like pointers.

The fact that traits must work with built-in types means that things like nesting information inside types won't do, because there's no way to nest
information inside pointers. The traits information for a type, then, must be external to the type. The standard technique is to put it into a template and
one or more specializations of that template. For iterators, the template in the standard library is named iterator_traits:

template<typename IterT>          // template for information about

struct iterator_traits;           // iterator types

As you can see, iterator_traits is a struct. By convention, traits are always implemented as structs. Another convention is that the structs used to
implement traits are known as — I am not making this up — traits classes.

The way iterator_traits works is that for each type IterT, a typedef named iterator_category is declared in the struct iterator_traits<IterT>. This typedef
identifies the iterator category of IterT.

iterator_traits implements this in two parts. First, it imposes the requirement that any user-defined iterator type must contain a nested typedef named
iterator_category that identifies the appropriate tag struct. deque's iterators are random access, for example, so a class for deque iterators would look
something like this:

template < ... >                    // template params elided

class deque {

public:

  class iterator {

  public:

    typedef random_access_iterator_tag iterator_category;

    ...

  }:

  ...

};

list's iterators are bidirectional, however, so they'd do things this way:

template < ... >

class list {

public:

  class iterator {

  public:



    typedef bidirectional_iterator_tag iterator_category;

    ...

  }:

  ...

};

iterator_traits just parrots back the iterator class's nested typedef:

// the iterator_category for type IterT is whatever IterT says it is;

// see Item 42 for info on the use of "typedef typename"

template<typename IterT>

struct iterator_traits {

  typedef typename IterT::iterator_category iterator_category;

  ...

};

This works well for user-defined types, but it doesn't work at all for iterators that are pointers, because there's no such thing as a pointer with a nested
typedef. The second part of the iterator_traits implementation handles iterators that are pointers.

To support such iterators, iterator_traits offers a partial template specialization for pointer types. Pointers act as random access iterators, so that's the
category iterator_traits specifies for them:

template<typename IterT>               // partial template specialization

struct iterator_traits<IterT*>         // for built-in pointer types

{

  typedef random_access_iterator_tag iterator_category;

  ...

};

At this point, you know how to design and implement a traits class:

Identify some information about types you'd like to make available (e.g., for iterators, their iterator category).

Choose a name to identify that information (e.g., iterator_category).

Provide a template and set of specializations (e.g., iterator_traits) that contain the information for the types you want to support.

Given iterator_traits — actually std::iterator_traits, since it's part of C++'s standard library — we can refine our pseudocode for advance:

template<typename IterT, typename DistT>

void advance(IterT& iter, DistT d)

{

  if (typeid(typename std::iterator_traits<IterT>::iterator_category) ==

     typeid(std::random_access_iterator_tag))

  ...

}



Although this looks promising, it's not what we want. For one thing, it will lead to compilation problems, but we'll explore that in Item 48; right now, there's
a more fundamental issue to consider. IterT's type is known during compilation, so iterator_traits<IterT>::iterator_category can also be determined during
compilation. Yet the if statement is evaluated at runtime. Why do something at runtime that we can do during compilation? It wastes time (literally), and it
bloats our executable.

What we really want is a conditional construct (i.e., an if...else statement) for types that is evaluated during compilation. As it happens, C++ already has a
way to get that behavior. It's called overloading.

When you overload some function f, you specify different parameter types for the different overloads. When you call f, compilers pick the best overload,
based on the arguments you're passing. Compilers essentially say, "If this overload is the best match for what's being passed, call this f; if this other
overload is the best match, call it; if this third one is best, call it," etc. See? A compile-time conditional construct for types. To get advance to behave the
way we want, all we have to do is create two versions of an overloaded function containing the "guts" of advance, declaring each to take a different type
of iterator_category object. I use the name doAdvance for these functions:

template<typename IterT, typename DistT>              // use this impl for

void doAdvance(IterT& iter, DistT d,                  // random access

               std::random_access_iterator_tag)       // iterators

{

  iter += d;

}

template<typename IterT, typename DistT>              // use this impl for

void doAdvance(IterT& iter, DistT d,                  // bidirectional

               std::bidirectional_iterator_tag)       // iterators

{

  if (d >= 0) { while (d--) ++iter; }

  else { while (d++) --iter;         }

}

template<typename IterT, typename DistT>              // use this impl for

void doAdvance(IterT& iter, DistT d,                  // input iterators

               std::input_iterator_tag)

{

  if (d < 0 ) {

     throw std::out_of_range("Negative distance");    // see below

  }

  while (d--) ++iter;

}

Because forward_iterator_tag inherits from input_iterator_tag, the version of doAdvance for input_iterator_tag will also handle forward iterators. That's
the motivation for inheritance among the various iterator_tag structs. (In fact, it's part of the motivation for all public inheritance: to be able to write code
for base class types that also works for derived class types.)

The specification for advance allows both positive and negative distances for random access and bidirectional iterators, but behavior is undefined if you
try to move a forward or input iterator a negative distance. The implementations I checked simply assumed that d was non-negative, thus entering a very
long loop counting "down" to zero if a negative distance was passed in. In the code above, I've shown an exception being thrown instead. Both
implementations are valid. That's the curse of undefined behavior: you can't predict what will happen.

Given the various overloads for doAdvance, all advance needs to do is call them, passing an extra object of the appropriate iterator category type so that
the compiler will use overloading resolution to call the proper implementation:



template<typename IterT, typename DistT>

void advance(IterT& iter, DistT d)

{

  doAdvance(                                              // call the version

    iter, d,                                              // of doAdvance

    typename                                              // that is

      std::iterator_traits<IterT>::iterator_category()    // appropriate for

  );                                                      // iter's iterator

}                                                         // category

We can now summarize how to use a traits class:

Create a set of overloaded "worker" functions or function templates (e.g., doAdvance) that differ in a traits parameter. Implement each function in
accord with the traits information passed.

Create a "master" function or function template (e.g., advance) that calls the workers, passing information provided by a traits class.

Traits are widely used in the standard library. There's iterator_traits, of course, which, in addition to iterator_category, offers four other pieces of
information about iterators (the most useful of which is value_type — Item 42 shows an example of its use). There's also char_traits, which holds
information about character types, and numeric_limits, which serves up information about numeric types, e.g., their minimum and maximum
representable values, etc. (The name numeric_limits is a bit of a surprise, because the more common convention is for traits classes to end with "traits,"
but numeric_limits is what it's called, so numeric_limits is the name we use.)

TR1 (see Item 54) introduces a slew of new traits classes that give information about types, including is_fundamental<T> (whether T is a built-in type),
is_array<T> (whether T is an array type), and is_base_of<T1, T2> (whether T1 is the same as or is a base class of T2). All told, TR1 adds over 50 traits
classes to standard C++.

Things to Remember

Traits classes make information about types available during compilation. They're implemented using templates and template
specializations.

In conjunction with overloading, traits classes make it possible to perform compile-time if...else tests on types.
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Item 48: Be aware of template metaprogramming

Template metaprogramming (TMP) is the process of writing template-based C++ programs that execute during compilation. Think about that for a minute:
a template metaprogram is a program written in C++ that executes inside the C++ compiler . When a TMP program finishes running, its output — pieces
of C++ source code instantiated from templates — is then compiled as usual.

If this doesn't strike you as just plain bizarre, you're not thinking about it hard enough.

C++ was not designed for template metaprogramming, but since TMP was discovered in the early 1990s, it has proven to be so useful, extensions are
likely to be added to both the language and its standard library to make TMP easier. Yes, TMP was discovered, not invented. The features underlying
TMP were introduced when templates were added to C++. All that was needed was for somebody to notice how they could be used in clever and
unexpected ways.

TMP has two great strengths. First, it makes some things easy that would otherwise be hard or impossible. Second, because template metaprograms
execute during C++ compilation, they can shift work from runtime to compile-time. One consequence is that some kinds of errors that are usually detected
at runtime can be found during compilation. Another is that C++ programs making use of TMP can be more efficient in just about every way: smaller
executables, shorter runtimes, lesser memory requirements. (However, a consequence of shifting work from runtime to compile-time is that compilation
takes longer. Programs using TMP may take much longer to compile than their non-TMP counterparts.)

Consider the pseudocode for STL's advance introduced on page 228. (That's in Item 47. You may want to read that Item now, because in this Item, I'll
assume you are familiar with the material in that one.) As on page 228, I've highlighted the pseudo part of the code:

template<typename IterT, typename DistT>

void advance(IterT& iter, DistT d)

{

  if (iter is a random access iterator) {

    iter += d;                                     // use iterator arithmetic

  }                                                // for random access iters

  else {

    if (d >= 0) { while (d--) ++iter; }            // use iterative calls to

    else { while (d++) --iter; }                   // ++ or -- for other

  }                                                // iterator categories

}

We can use typeid to make the pseudocode real. That yields a "normal" C++ approach to this problem — one that does all its work at runtime:

template<typename IterT, typename DistT>

void advance(IterT& iter, DistT d)

{

  if (typeid(typename std::iterator_traits<IterT>::iterator_category) ==

      typeid(std::random_access_iterator_tag)) {

     iter += d;                                     // use iterator arithmetic

  }                                                 // for random access iters

  else {

    if (d >= 0) { while (d--) ++iter; }             // use iterative calls to

    else { while (d++) --iter; }                    // ++ or -- for other

  }                                                 // iterator categories

}



Item 47 notes that this typeid-based approach is less efficient than the one using traits, because with this approach, (1) the type testing occurs at runtime
instead of during compilation, and (2) the code to do the runtime type testing must be present in the executable. In fact, this example shows how TMP
can be more efficient than a "normal" C++ program, because the traits approach is TMP. Remember, traits enable compile-time if...else computations on
types.

I remarked earlier that some things are easier in TMP than in "normal" C++, and advance offers an example of that, too. Item 47 mentions that the typeid-
based implementation of advance can lead to compilation problems, and here's an example where it does:

std::list<int>::iterator iter;

...

advance(iter, 10);                          // move iter 10 elements forward;

                                            // won't compile with above impl.

Consider the version of advance that will be generated for the above call. After substituting iter's and 10's types for the template parameters IterT and
DistT, we get this:

void advance(std::list<int>::iterator& iter, int d)

{

  if (typeid(std::iterator_traits<std::list<int>::iterator>::iterator_category) ==

      typeid(std::random_access_iterator_tag)) {

    iter += d;                                        // error!

  }

  else {

    if (d >= 0) { while (d--) ++iter; }

    else { while (d++) --iter; }

  }

}

The problem is the highlighted line, the one using +=. In this case, we're trying to use += on a list<int>::iterator, but list<int>::iterator is a bidirectional
iterator (see Item 47), so it doesn't support +=. Only random access iterators support +=. Now, we know we'll never try to execute the += line, because
the typeid test will always fail for list<int>::iterators, but compilers are obliged to make sure that all source code is valid, even if it's not executed, and " iter
+= d" isn't valid when iter isn't a random access iterator. Contrast this with the traits-based TMP solution, where code for different types is split into
separate functions, each of which uses only operations applicable to the types for which it is written.

TMP has been shown to be Turing-complete, which means that it is powerful enough to compute anything. Using TMP, you can declare variables,
perform loops, write and call functions, etc. But such constructs look very different from their "normal" C++ counterparts. For example, Item 47 shows how
if...else conditionals in TMP are expressed via templates and template specializations. But that's assembly-level TMP. Libraries for TMP (e.g., Boost's
MPL — see Item 55) offer a higher-level syntax, though still not something you'd mistake for "normal" C++.

For another glimpse into how things work in TMP, let's look at loops. TMP has no real looping construct, so the effect of loops is accomplished via
recursion. (If you're not comfortable with recursion, you'll need to address that before venturing into TMP. It's largely a functional language, and recursion
is to functional languages as TV is to American pop culture: inseparable.) Even the recursion isn't the normal kind, however, because TMP loops don't
involve recursive function calls, they involve recursive template instantiations.

The "hello world" program of TMP is computing a factorial during compilation. It's not a very exciting program, but then again, neither is "hello world," yet
both are helpful as language introductions. TMP factorial computation demonstrates looping through recursive template instantiation. It also demonstrates
one way in which variables are created and used in TMP. Look:

template<unsigned n>                 // general case: the value of

struct Factorial {                   // Factorial<n> is n times the value

                                     // of Factorial<n-1>



  enum { value = n * Factorial<n-1>::value };

};

template<>                           // special case: the value of

struct Factorial<0> {                // Factorial<0> is 1

  enum { value = 1 };

};

Given this template metaprogram (really just the single template metafunction Factorial), you get the value of factorial(n) by referring to
Factorial<n>::value.

The looping part of the code occurs where the template instantiation Factorial<n> references the template instantiation Factorial<n-1>. Like all good
recursion, there's a special case that causes the recursion to terminate. Here, it's the template specialization Factorial<0>.

Each instantiation of the Factorial template is a struct, and each struct uses the enum hack (see Item 2) to declare a TMP variable named value. value is
what holds the current value of the factorial computation. If TMP had a real looping construct, value would be updated each time around the loop. Since
TMP uses recursive template instantiation in place of loops, each instantiation gets its own copy of value, and each copy has the proper value for its
place in the "loop."

You could use Factorial like this:

int main()

{

  std::cout << Factorial<5>::value;            // prints 120

  std::cout << Factorial<10>::value;           // prints 3628800

}

If you think this is cooler than ice cream, you've got the makings of a template metaprogrammer. If the templates and specializations and recursive
instantiations and enum hacks and the need to type things like Factorial<n-1>::value make your skin crawl, well, you're a pretty normal C++ programmer.

Of course, Factorial demonstrates the utility of TMP about as well as "hello world" demonstrates the utility of any conventional programming language. To
grasp why TMP is worth knowing about, it's important to have a better understanding of what it can accomplish. Here are three examples:

Ensuring dimensional unit correctness . In scientific and engineering applications, it's essential that dimensional units (e.g., mass, distance,
time, etc.) be combined correctly. Assigning a variable representing mass to a variable representing velocity, for example, is an error, but dividing
a distance variable by a time variable and assigning the result to a velocity variable is fine. Using TMP, it's possible to ensure (during compilation)
that all dimensional unit combinations in a program are correct, no matter how complex the calculations. (This is an example of how TMP can be
used for early error detection.) One interesting aspect of this use of TMP is that fractional dimensional exponents can be supported. This requires
that such fractions be reduced during compilation so that compilers can confirm, for example, that the unit time1/2 is the same as time4/8.

Optimizing matrix operations. Item 21 explains that some functions, including operator*, must return new objects, and Item 44 introduces the
SquareMatrix class, so consider the following code:

typedef SquareMatrix<double, 10000> BigMatrix;

BigMatrix m1, m2, m3, m4, m5;               // create matrices and

...                                         // give them values

BigMatrix result = m1 * m2 * m3 * m4 * m5;    // compute their product

Calculating result in the "normal" way calls for the creation of four temporary matrices, one for the result of each call to operator*. Furthermore, the
independent multiplications generate a sequence of four loops over the matrix elements. Using an advanced template technology related to TMP
called expression templates, it's possible to eliminate the temporaries and merge the loops, all without changing the syntax of the client code
above. The resulting software uses less memory and runs dramatically faster.



Generating custom design pattern implementations . Design patterns like Strategy (see Item 35), Observer, Visitor, etc. can be implemented in
many ways. Using a TMP-based technology called policy-based design, it's possible to create templates representing independent design choices
("policies") that can be combined in arbitrary ways to yield pattern implementations with custom behavior. For example, this technique has been
used to allow a few templates implementing smart pointer behavioral policies to generate (during compilation) any of hundreds of different smart
pointer types. Generalized beyond the domain of programming artifacts like design patterns and smart pointers, this technology is a basis for
what's known as generative programming .

TMP is not for everybody. The syntax is unintuitive, and tool support is weak. (Debuggers for template metaprograms? Ha!) Being an "accidental"
language that was only relatively recently discovered, TMP programming conventions are still somewhat experimental. Nevertheless, the efficiency
improvements afforded by shifting work from runtime to compile-time can be impressive, and the ability to express behavior that is difficult or impossible
to implement at runtime is attractive, too.

TMP support is on the rise. It's likely that the next version of C++ will provide explicit support for it, and TR1 already does (see Item 54). Books are
beginning to come out on the subject, and TMP information on the web just keeps getting richer. TMP will probably never be mainstream, but for some
programmers — especially library developers — it's almost certain to be a staple.

Things to Remember

Template metaprogramming can shift work from runtime to compile-time, thus enabling earlier error detection and higher runtime
performance.

TMP can be used to generate custom code based on combinations of policy choices, and it can also be used to avoid generating code
inappropriate for particular types.
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Chapter 8. Customizing new and delete
In these days of computing environments boasting built-in support for garbage collection (e.g., Java and .NET), the manual C++ approach to memory
management can look rather old-fashioned. Yet many developers working on demanding systems applications choose C++ because it lets them manage
memory manually. Such developers study the memory usage characteristics of their software, and they tailor their allocation and deallocation routines to
offer the best possible performance (in both time and space) for the systems they build.

Doing that requires an understanding of how C++'s memory management routines behave, and that's the focus of this chapter. The two primary players
in the game are the allocation and deallocation routines (operator new and operator delete), with a supporting role played by the new-handler — the
function called when operator new can't satisfy a request for memory.

Memory management in a multithreaded environment poses challenges not present in a single-threaded system, because the heap is a modifiable global
resource, thus rife with opportunities for the race conditions that bedevil access to all such resources in threaded systems. Many Items in this chapter
mention the use of modifiable static data, always something to put thread-aware programmers on high alert. Without proper synchronization, the use of
lock-free algorithms, or careful design to prevent concurrent access, calls to memory routines can easily lead to corrupted heap management data
structures. Rather than repeatedly remind you of this danger, I'll mention it here and assume that you keep it in mind for the rest of the chapter.

Something else to keep in mind is that operator new and operator delete apply only to allocations for single objects. Memory for arrays is allocated by
operator new[] and deallocated by operator delete[]. (In both cases, note the " []" part of the function names.) Unless indicated otherwise, everything I
write about operator new and operator delete also applies to operator new[] and operator delete[].

Finally, note that heap memory for STL containers is managed by the containers' allocator objects, not by new and delete directly. That being the case,
this chapter has nothing to say about STL allocators.
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Item 49: Understand the behavior of the new-handler

When operator new can't satisfy a memory allocation request, it throws an exception. Long ago, it returned a null pointer, and some older compilers still
do that. You can still get the old behavior (sort of), but I'll defer that discussion until the end of this Item.

Before operator new throws an exception in response to an unsatisfiable request for memory, it calls a client-specifiable error-handling function called a
new-handler. (This is not quite true. What operator new really does is a bit more complicated. Details are provided in Item 51.) To specify the out-of-
memory-handling function, clients call set_new_handler, a standard library function declared in <new>:

namespace std {

  typedef void (*new_handler)();

  new_handler set_new_handler(new_handler p) throw();

}

As you can see, new_handler is a typedef for a pointer to a function that takes and returns nothing, and set_new_handler is a function that takes and
returns a new_handler. (The " throw()" at the end of set_new_handler's declaration is an exception specification. It essentially says that this function won't
throw any exceptions, though the truth is a bit more interesting. For details, see Item 29.)

set_new_handler's parameter is a pointer to the function operator new should call if it can't allocate the requested memory. The return value of
set_new_handler is a pointer to the function in effect for that purpose before set_new_handler was called.

You use set_new_handler like this:

// function to call if operator new can't allocate enough memory

void outOfMem()

{

  std::cerr << "Unable to satisfy request for memory\n";

  std::abort();

}

int main()

{

  std::set_new_handler(outOfMem);

  int *pBigDataArray = new int[100000000L];

  ...

}

If operator new is unable to allocate space for 100,000,000 integers, outOfMem will be called, and the program will abort after issuing an error message.
(By the way, consider what happens if memory must be dynamically allocated during the course of writing the error message to cerr....)

When operator new is unable to fulfill a memory request, it calls the new-handler function repeatedly until it can find enough memory. The code giving
rise to these repeated calls is shown in Item 51, but this high-level description is enough to conclude that a well-designed new-handler function must do
one of the following:

Make more memory available . This may allow the next memory allocation attempt inside operator new to succeed. One way to implement this
strategy is to allocate a large block of memory at program start-up, then release it for use in the program the first time the new-handler is invoked.

Install a different new-handler . If the current new-handler can't make any more memory available, perhaps it knows of a different new-handler
that can. If so, the current new-handler can install the other new-handler in its place (by calling set_new_handler). The next time operator new
calls the new-handler function, it will get the one most recently installed. (A variation on this theme is for a new-handler to modify its own
behavior, so the next time it's invoked, it does something different. One way to achieve this is to have the new-handler modify static, namespace-
specific, or global data that affects the new-handler's behavior.)

Deinstall the new-handler, i.e., pass the null pointer to set_new_handler. With no new-handler installed, operator new will throw an exception
when memory allocation is unsuccessful.

Throw an exception  of type bad_alloc or some type derived from bad_alloc. Such exceptions will not be caught by operator new, so they will



propagate to the site originating the request for memory.

Not return , typically by calling abort or exit.

These choices give you considerable flexibility in implementing new-handler functions.

Sometimes you'd like to handle memory allocation failures in different ways, depending on the class of the object being allocated:

class X {

public:

  static void outOfMemory();

  ...

};

class Y {

public:

  static void outOfMemory();

  ...

};

X* p1 = new X;                        // if allocation is unsuccessful,

                                      // call X::outOfMemory

Y* p2 = new Y;                        // if allocation is unsuccessful,

                                      // call Y::outOfMemory

C++ has no support for class-specific new-handlers, but it doesn't need any. You can implement this behavior yourself. You just have each class provide
its own versions of set_new_handler and operator new. The class's set_new_handler allows clients to specify the new-handler for the class (exactly like
the standard set_new_handler allows clients to specify the global new-handler). The class's operator new ensures that the class-specific new-handler is
used in place of the global new-handler when memory for class objects is allocated.

Suppose you want to handle memory allocation failures for the Widget class. You'll have to keep track of the function to call when operator new can't
allocate enough memory for a Widget object, so you'll declare a static member of type new_handler to point to the new-handler function for the class.
Widget will look something like this:

class Widget {

public:

  static std::new_handler set_new_handler(std::new_handler p) throw();

  static void * operator new(std::size_t size) throw(std::bad_alloc);

private:

  static std::new_handler currentHandler;

};

Static class members must be defined outside the class definition (unless they're const and integral—see Item 2), so:

std::new_handler Widget::currentHandler = 0;    // init to null in the class

                                                // impl. file

The set_new_handler function in Widget will save whatever pointer is passed to it, and it will return whatever pointer had been saved prior to the call. This
is what the standard version of set_new_handler does:



std::new_handler Widget::set_new_handler(std::new_handler p) throw()

{

  std::new_handler oldHandler = currentHandler;

  currentHandler = p;

  return oldHandler;

}

Finally, Widget's operator new will do the following:

1. Call the standard set_new_handler with Widget's error-handling function. This installs Widget's new-handler as the global new-handler.

2. Call the global operator new to perform the actual memory allocation. If allocation fails, the global operator new invokes Widget's new-handler,
because that function was just installed as the global new-handler. If the global operator new is ultimately unable to allocate the memory, it throws
a bad_alloc exception. In that case, Widget's operator new must restore the original global new-handler, then propagate the exception. To ensure
that the original new-handler is always reinstated, Widget treats the global new-handler as a resource and follows the advice of Item 13 to use
resource-managing objects to prevent resource leaks.

3. If the global operator new was able to allocate enough memory for a Widget object, Widget's operator new returns a pointer to the allocated
memory. The destructor for the object managing the global new-handler automatically restores the global new-handler to what it was prior to the
call to Widget's operator new.

Here's how you say all that in C++. We'll begin with the resource-handling class, which consists of nothing more than the fundamental RAII operations of
acquiring a resource during construction and releasing it during destruction (see Item 13):

class NewHandlerHolder {

public:

  explicit NewHandlerHolder(std::new_handler nh)    // acquire current

  :handler(nh) {}                                   // new-handler

  ~NewHandlerHolder()                               // release it

  { std::set_new_handler(handler); }

private:

  std::new_handler handler;                         // remember it

  NewHandlerHolder(const NewHandlerHolder&);        // prevent copying

  NewHandlerHolder&                                 // (see Item 14)

   operator=(const NewHandlerHolder&);

};

This makes implementation of Widget's operator new quite simple:

void * Widget::operator new(std::size_t size) throw(std::bad_alloc)

{

  NewHandlerHolder                              // install Widget's

   h(std::set_new_handler(currentHandler));     // new-handler

  return ::operator new(size);                  // allocate memory

                                                // or throw



}                                               // restore global

                                                // new-handler

Clients of Widget use its new-handling capabilities like this:

void outOfMem();                   // decl. of func. to call if mem. alloc.

                                   // for Widget objects fails

Widget::set_new_handler(outOfMem); // set outOfMem as Widget's

                                   // new-handling function

Widget *pw1 = new Widget;          // if memory allocation

                                   // fails, call outOfMem

std::string *ps = new std::string; // if memory allocation fails,

                                   // call the global new-handling

                                   // function (if there is one)

Widget::set_new_handler(0);        // set the Widget-specific

                                   // new-handling function to

                                   // nothing (i.e., null)

Widget *pw2 = new Widget;          // if mem. alloc. fails, throw an

                                   // exception immediately. (There is

                                   // no new- handling function for

                                   // class Widget.)

The code for implementing this scheme is the same regardless of the class, so a reasonable goal would be to reuse it in other places. An easy way to
make that possible is to create a "mixin-style" base class, i.e., a base class that's designed to allow derived classes to inherit a single specific capability
— in this case, the ability to set a class-specific new-handler. Then turn the base class into a template, so that you get a different copy of the class data
for each inheriting class.

The base class part of this design lets derived classes inherit the set_new_handler and operator new functions they all need, while the template part of
the design ensures that each inheriting class gets a different currentHandler data member. That may sound a bit complicated, but the code looks
reassuringly familiar. In fact, the only real difference is that it's now available to any class that wants it:

template<typename T>              // "mixin-style" base class for

class NewHandlerSupport{          // class-specific set_new_handler

public:                           // support

  static std::new_handler set_new_handler(std::new_handler p) throw();

  static void * operator new(std::size_t size) throw(std::bad_alloc);

  ...                             // other versions of op. new —

                                  // see Item 52



private:

  static std::new_handler currentHandler;

};

template<typename T>

std::new_handler

NewHandlerSupport<T>::set_new_handler(std::new_handler p) throw()

{

 std::new_handler oldHandler = currentHandler;

 currentHandler = p;

 return oldHandler;

}

template<typename T>

void* NewHandlerSupport<T>::operator new(std::size_t size)

  throw(std::bad_alloc)

{

  NewHandlerHolder h(std::set_new_handler(currentHandler));

  return ::operator new(size);

}

// this initializes each currentHandler to null

template<typename T>

std::new_handler NewHandlerSupport<T>::currentHandler = 0;

With this class template, adding set_new_handler support to Widget is easy: Widget just inherits from NewHandlerSupport<Widget>. (That may look
peculiar, but I'll explain in more detail below exactly what's going on.)

class Widget: public NewHandlerSupport<Widget> {

  ...                          // as before, but without declarations for

};                             // set_new_handler or operator new

That's all Widget needs to do to offer a class-specific set_new_handler.

But maybe you're still fretting over Widget inheriting from NewHandlerSupport<Widget>. If so, your fretting may intensify when you note that the
NewHandlerSupport template never uses its type parameter T. It doesn't need to. All we need is a different copy of NewHandlerSupport — in particular,
its static data member currentHandler — for each class that inherits from NewHandlerSupport. The template parameter T just distinguishes one
inheriting class from another. The template mechanism itself automatically generates a copy of currentHandler for each T with which NewHandlerSupport
is instantiated.

As for Widget inheriting from a templatized base class that takes Widget as a type parameter, don't feel bad if the notion makes you a little woozy. It
initially has that effect on everybody. However, it turns out to be such a useful technique, it has a name, albeit one that reflects the fact that it looks
natural to no one the first time they see it. It's called the curiously recurring template pattern (CRTP). Honest.

At one point, I published an article suggesting that a better name would be "Do It For Me," because when Widget inherits from
NewHandlerSupport<Widget>, it's really saying, "I'm Widget, and I want to inherit from the NewHandlerSupport class for Widget." Nobody uses my
proposed name (not even me), but thinking about CRTP as a way of saying "do it for me" may help you understand what the templatized inheritance is
doing.

Templates like NewHandlerSupport make it easy to add a class-specific new-handler to any class that wants one. Mixin-style inheritance, however,
invariably leads to the topic of multiple inheritance, and before starting down that path, you'll want to read Item 40.



Until 1993, C++ required that operator new return null when it was unable to allocate the requested memory. operator new is now specified to throw a
bad_alloc exception, but a lot of C++ was written before compilers began supporting the revised specification. The C++ standardization committee didn't
want to abandon the test-for-null code base, so they provided alternative forms of operator new that offer the traditional failure-yields-null behavior. These
forms are called "nothrow" forms, in part because they employ nothrow objects (defined in the header <new>) at the point where new is used:

class Widget { ... };

Widget *pw1 = new Widget;                 // throws bad_alloc if

                                          // allocation fails

if (pw1 == 0) ...                         // this test must fail

Widget *pw2 =new (std::nothrow) Widget;   // returns 0 if allocation for

                                          // the Widget fails

if (pw2 == 0) ...                         // this test may succeed

Nothrow new offers a less compelling guarantee about exceptions than is initially apparent. In the expression " new (std::nothrow) Widget," two things
happen. First, the nothrow version of operator new is called to allocate enough memory for a Widget object. If that allocation fails, operator new returns
the null pointer, just as advertised. If it succeeds, however, the Widget constructor is called, and at that point, all bets are off. The Widget constructor can
do whatever it likes. It might itself new up some memory, and if it does, it's not constrained to use nothrow new. Although the operator new call in "new
(std::nothrow) Widget" won't throw, then, the Widget constructor might. If it does, the exception will be propagated as usual. Conclusion? Using nothrow
new guarantees only that operator new won't throw, not that an expression like " new (std::nothrow) Widget" will never yield an exception. In all likelihood,
you will never have a need for nothrow new.

Regardless of whether you use "normal" (i.e., exception-throwing) new or its somewhat stunted nothrow cousin, it's important that you understand the
behavior of the new-handler, because it's used with both forms.

Things to Remember

set_new_handler allows you to specify a function to be called when memory allocation requests cannot be satisfied.

Nothrow new is of limited utility, because it applies only to memory allocation; subsequent constructor calls may still throw exceptions.

 < Day Day Up > 



 < Day Day Up > 

Item 50: Understand when it makes sense to replace new and delete

Let's return to fundamentals for a moment. Why would anybody want to replace the compiler-provided versions of operator new or operator delete in the
first place? These are three of the most common reasons:

To detect usage errors . Failure to delete memory conjured up by new leads to memory leaks. Using more than one delete on newed memory
yields undefined behavior. If operator new keeps a list of allocated addresses and operator delete removes addresses from the list, it's easy to
detect such usage errors. Similarly, a variety of programming mistakes can lead to data overruns (writing beyond the end of an allocated block)
and underruns (writing prior to the beginning of an allocated block). Custom operator news can overallocate blocks so there's room to put known
byte patterns ("signatures") before and after the memory made available to clients. operator deletes can check to see if the signatures are still
intact. If they're not, an overrun or underrun occurred sometime during the life of the allocated block, and operator delete can log that fact, along
with the value of the offending pointer.

To improve efficiency . The versions of operator new and operator delete that ship with compilers are designed for general-purpose use. They
have to be acceptable for long-running programs (e.g., web servers), but they also have to be acceptable for programs that execute for less than a
second. They have to handle series of requests for large blocks of memory, small blocks, and mixtures of the two. They have to accommodate
allocation patterns ranging from the dynamic allocation of a few blocks that exist for the duration of the program to constant allocation and
deallocation of a large number of short-lived objects. They have to worry about heap fragmentation, a process that, if unchecked, eventually leads
to the inability to satisfy requests for large blocks of memory, even when ample free memory is distributed across many small blocks.

Given the demands made on memory managers, it's no surprise that the operator news and operator deletes that ship with compilers take a
middle-of-the-road strategy. They work reasonably well for everybody, but optimally for nobody. If you have a good understanding of your
program's dynamic memory usage patterns, you can often find that custom versions of operator new and operator delete outperform the default
ones. By "outperform," I mean they run faster — sometimes orders of magnitude faster — and they require less memory — up to 50% less. For
some (though by no means all) applications, replacing the stock new and delete with custom versions is an easy way to pick up significant
performance improvements.

To collect usage statistics . Before heading down the path of writing custom news and deletes, it's prudent to gather information about how your
software uses its dynamic memory. What is the distribution of allocated block sizes? What is the distribution of their lifetimes? Do they tend to be
allocated and deallocated in FIFO ("first in, first out") order, LIFO ("last in, first out") order, or something closer to random order? Do the usage
patterns change over time, e.g., does your software have different allocation/deallocation patterns in different stages of execution? What is the
maximum amount of dynamically allocated memory in use at any one time (i.e., its "high water mark")? Custom versions of operator new and
operator delete make it easy to collect this kind of information.

In concept, writing a custom operator new is pretty easy. For example, here's a quick first pass at a global operator new that facilitates the detection of
under- and overruns. There are a lot of little things wrong with it, but we'll worry about those in a moment.

static const int signature = 0xDEADBEEF;

typedef unsigned char Byte;

// this code has several flaws—see below

void* operator new(std::size_t size) throw(std::bad_alloc)

{

  using namespace std;

  size_t realSize = size + 2 * sizeof(int);    // increase size of request so2

                                               // signatures will also fit inside

  void *pMem = malloc(realSize);               // call malloc to get theactual

  if (!pMem) throw bad_alloc();                // memory

  // write signature into first and last parts of the memory

  *(static_cast<int*>(pMem)) = signature;

  *(reinterpret_cast<int*>(static_cast<Byte*>(pMem)+realSize-sizeof(int))) =

  signature;

  // return a pointer to the memory just past the first signature

  return static_cast<Byte*>(pMem) + sizeof(int);



}

Most of the shortcomings of this operator new have to do with its failure to adhere to the C++ conventions for functions of that name. For example, Item
51 explains that all operator news should contain a loop calling a new-handling function, but this one doesn't. However, Item 51 is devoted to such
conventions, so I'll ignore them here. I want to focus on a more subtle issue now: alignment.

Many computer architectures require that data of particular types be placed in memory at particular kinds of addresses. For example, an architecture
might require that pointers occur at addresses that are a multiple of four (i.e., be four-byte aligned ) or that doubles must occur at addresses that are a
multiple of eight (i.e., be eight-byte aligned). Failure to follow such constraints could lead to hardware exceptions at runtime. Other architectures are more
forgiving, though they may offer better performance if alignment preferences are satisfied. For example, doubles may be aligned on any byte boundary
on the Intel x86 architecture, but access to them is a lot faster if they are eight-byte aligned.

Alignment is relevant here, because C++ requires that all operator news return pointers that are suitably aligned for any data type. malloc labors under
the same requirement, so having operator new return a pointer it gets from malloc is safe. However, in operator new above, we're not returning a pointer
we got from malloc, we're returning a pointer we got from malloc offset by the size of an int. There is no guarantee that this is safe! If the client called
operator new to get enough memory for a double (or, if we were writing operator new[], an array of doubles) and we were running on a machine where
ints were four bytes in size but doubles were required to be eight-byte aligned, we'd probably return a pointer with improper alignment. That might cause
the program to crash. Or it might just cause it to run more slowly. Either way, it's probably not what we had in mind.

Details like alignment are the kinds of things that distinguish professional-quality memory managers from ones thrown together by programmers
distracted by the need to get on to other tasks. Writing a custom memory manager that almost works is pretty easy. Writing one that works well is a lot
harder. As a general rule, I suggest you not attempt it unless you have to.

In many cases, you don't have to. Some compilers have switches that enable debugging and logging functionality in their memory management
functions. A quick glance through your compilers' documentation may eliminate your need to consider writing new and delete. On many platforms,
commercial products can replace the memory management functions that ship with compilers. To avail yourself of their enhanced functionality and
(presumably) improved performance, all you need do is relink. (Well, you also have to buy them.)

Another option is open source memory managers. They're available for many platforms, so you can download and try those. One such open source
allocator is the Pool library from Boost (see Item 55). The Pool library offers allocators tuned for one of the most common situations in which custom
memory management is helpful: allocation of a large number of small objects. Many C++ books, including earlier editions of this one, show the code for a
high-performance small-object allocator, but they usually omit such pesky details as portability and alignment considerations, thread safety, etc. Real
libraries tend to have code that's a lot more robust. Even if you decide to write your own news and deletes, looking at open source versions is likely to
give you insights into the easy-to-overlook details that separate almost working from really working. (Given that alignment is one such detail, it's worth
noting that TR1 (see Item 54) includes support for discovering type-specific alignment requirements.)

The topic of this Item is knowing when it can make sense to replace the default versions of new and delete, either globally or on a per-class basis. We're
now in a position to summarize when in more detail than we did before.

To detect usage errors  (as above).

To collect statistics about the use of dynamically allocated memory  (also as above).

To increase the speed of allocation and deallocation . General-purpose allocators are often (though not always) a lot slower than custom
versions, especially if the custom versions are designed for objects of a particular type. Class-specific allocators are an example application of
fixed-size allocators such as those offered by Boost's Pool library. If your application is single-threaded, but your compilers' default memory
management routines are thread-safe, you may be able to win measurable speed improvements by writing thread-unsafe allocators. Of course,
before jumping to the conclusion that operator new and operator delete are worth speeding up, be sure to profile your program to confirm that
these functions are truly a bottleneck.

To reduce the space overhead of default memory management . General-purpose memory managers are often (though not always) not just
slower than custom versions, they often use more memory, too. That's because they often incur some overhead for each allocated block.
Allocators tuned for small objects (such as those in Boost's Pool library) essentially eliminate such overhead.

To compensate for suboptimal alignment in the default allocator . As I mentioned earlier, it's fastest to access doubles on the x86 architecture
when they are eight-byte aligned. Alas, the operator news that ship with some compilers don't guarantee eight-byte alignment for dynamic
allocations of doubles. In such cases, replacing the default operator new with one that guarantees eight-byte alignment could yield big increases in
program performance.

To cluster related objects near one another . If you know that particular data structures are generally used together and you'd like to minimize
the frequency of page faults when working on the data, it can make sense to create a separate heap for the data structures so they are clustered
together on as few pages as possible. Placement versions of new and delete (see Item 52) can make it possible to achieve such clustering.

To obtain unconventional behavior . Sometimes you want operators new and delete to do something that the compiler-provided versions don't
offer. For example, you might want to allocate and deallocate blocks in shared memory, but have only a C API through which to manage that
memory. Writing custom versions of new and delete (probably placement versions — again, see Item 52) would allow you to drape the C API in
C++ clothing. As another example, you might write a custom operator delete that overwrites deallocated memory with zeros in order to increase
the security of application data.

Things to Remember

There are many valid reasons for writing custom versions of new and delete, including improving performance, debugging heap usage
errors, and collecting heap usage information.
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Item 51: Adhere to convention when writing new and delete

Item 50 explains when you might want to write your own versions of operator new and operator delete, but it doesn't explain the conventions you must
follow when you do it. The rules aren't hard to follow, but some of them are unintuitive, so it's important to know what they are.

We'll begin with operator new. Implementing a conformant operator new requires having the right return value, calling the new-handling function when
insufficient memory is available (see Item 49), and being prepared to cope with requests for no memory. You'll also want to avoid inadvertently hiding the
"normal" form of new, though that's more a class interface issue than an implementation requirement; it's addressed in Item 52.

The return value part of operator new is easy. If you can supply the requested memory, you return a pointer to it. If you can't, you follow the rule
described in Item 49 and throw an exception of type bad_alloc.

It's not quite that simple, however, because operator new actually tries to allocate memory more than once, calling the new-handling function after each
failure. The assumption here is that the new-handling function might be able to do something to free up some memory. Only when the pointer to the new-
handling function is null does operator new throw an exception.

Curiously, C++ requires that operator new return a legitimate pointer even when zero bytes are requested. (Requiring this odd-sounding behavior
simplifies things elsewhere in the language.) That being the case, pseudocode for a non-member operator new looks like this:

void * operator new(std::size_t size) throw(std::bad_alloc)

{                                      // your operator new might

  using namespace std;                 // take additional params

  if (size == 0) {                     // handle 0-byte requests

    size = 1;                          // by treating them as

  }                                    // 1-byte requests

  while (true) {

   attempt to allocate size bytes;

    if (the allocation was successful)

       return (a pointer to the memory);

    // allocation was unsuccessful; find out what the

    // current new-handling function is (see below)

    new_handler globalHandler = set_new_handler(0);

    set_new_handler(globalHandler);

    if (globalHandler) (*globalHandler)();

    else throw std::bad_alloc();

  }

}

The trick of treating requests for zero bytes as if they were really requests for one byte looks slimy, but it's simple, it's legal, it works, and how often do
you expect to be asked for zero bytes, anyway?

You may also look askance at the place in the pseudocode where the new-handling function pointer is set to null, then promptly reset to what it was
originally. Unfortunately, there is no way to get at the new-handling function pointer directly, so you have to call set_new_handler to find out what it is.
Crude, yes, but also effective, at least for single-threaded code. In a multithreaded environment, you'll probably need some kind of lock to safely
manipulate the (global) data structures behind the new-handling function.

Item 49 remarks that operator new contains an infinite loop, and the code above shows that loop explicitly; " while (true)" is about as infinite as it gets. The
only way out of the loop is for memory to be successfully allocated or for the new-handling function to do one of the things described in Item 49: make
more memory available, install a different new-handler, deinstall the new-handler, throw an exception of or derived from bad_alloc, or fail to return. It
should now be clear why the new-handler must do one of those things. If it doesn't, the loop inside operator new will never terminate.



Many people don't realize that operator new member functions are inherited by derived classes. That can lead to some interesting complications. In the
pseudocode for operator new above, notice that the function tries to allocate size bytes (unless size is zero). That makes perfect sense, because that's
the argument that was passed to the function. However, as Item 50 explains, one of the most common reasons for writing a custom memory manager is
to optimize allocation for objects of a specific class, not for a class or any of its derived classes. That is, given an operator new for a class X, the
behavior of that function is typically tuned for objects of size sizeof(X)—nothing larger and nothing smaller. Because of inheritance, however, it is possible
that the operator new in a base class will be called to allocate memory for an object of a derived class:

class Base {

public:

  static void * operator new(std::size_t size) throw(std::bad_alloc);

  ...

};

class Derived: public Base                // Derived doesn't declare

{ ... };                                  // operator new

Derived *p = new Derived;                 // calls Base::operator new!

If Base's class-specific operator new wasn't designed to cope with this — and chances are that it wasn't — the best way for it to handle the situation is to
slough off calls requesting the "wrong" amount of memory to the standard operator new, like this:

void * Base::operator new(std::size_t size) throw(std::bad_alloc)

{

  if (size != sizeof(Base))               // if size is "wrong,"

     return ::operator new(size);         // have standard operator

                                          // new handle the request

  ...                                     // otherwise handle

                                          // the request here

}

"Hold on!" I hear you cry, "You forgot to check for the pathological-but-nevertheless-possible case where size is zero!" Actually, I didn't, and please stop
using hyphens when you cry out. The test is still there, it's just been incorporated into the test of size against sizeof(Base). C++ works in some
mysterious ways, and one of those ways is to decree that all freestanding objects have non-zero size (see Item 39). By definition, sizeof(Base) can never
be zero, so if size is zero, the request will be forwarded to ::operator new, and it will become that function's responsibility to treat the request in a
reasonable fashion.

If you'd like to control memory allocation for arrays on a per-class basis, you need to implement operator new's array-specific cousin, operator new[].
(This function is usually called "array new," because it's hard to figure out how to pronounce "operator new[]".) If you decide to write operator new[],
remember that all you're doing is allocating a chunk of raw memory — you can't do anything to the as-yet-nonexistent objects in the array. In fact, you
can't even figure out how many objects will be in the array. First, you don't know how big each object is. After all, a base class's operator new[] might,
through inheritance, be called to allocate memory for an array of derived class objects, and derived class objects are usually bigger than base class
objects.

Hence, you can't assume inside Base::operator new[] that the size of each object going into the array is sizeof(Base), and that means you can't assume
that the number of objects in the array is (bytes requested)/sizeof(Base). Second, the size_t parameter passed to operator new[] may be for more
memory than will be filled with objects, because, as Item 16 explains, dynamically allocated arrays may include extra space to store the number of array
elements.

So much for the conventions you need to follow when writing operator new. For operator delete, things are simpler. About all you need to remember is
that C++ guarantees it's always safe to delete the null pointer, so you need to honor that guarantee. Here's pseudocode for a non-member operator
delete:

void operator delete(void *rawMemory) throw()

{



  if (rawMemory == 0) return;            // do nothing if the null

                                         // pointer is being deleted

  deallocate the memory pointed to by rawMemory;

}

The member version of this function is simple, too, except you've got to be sure to check the size of what's being deleted. Assuming your class-specific
operator new forwards requests of the "wrong" size to ::operator new, you've got to forward "wrongly sized" deletion requests to ::operator delete:

class Base {                            // same as before, but now

public:                                 // operator delete is declared

  static void * operator new(std::size_t size) throw(std::bad_alloc);

  static void operator delete(void *rawMemory, std::size_t size) throw();

  ...

};

void Base::operator delete(void *rawMemory, std::size_t size) throw()

{

  if (rawMemory == 0) return;           // check for null pointer

  if (size != sizeof(Base)) {           // if size is "wrong,"

     ::operator delete(rawMemory);      // have standard operator

     return;                            // delete handle the request

  }

  deallocate the memory pointed to by rawMemory;

  return;

}

Interestingly, the size_t value C++ passes to operator delete may be incorrect if the object being deleted was derived from a base class lacking a virtual
destructor. This is reason enough for making sure your base classes have virtual destructors, but Item 7 describes a second, arguably better reason. For
now, simply note that if you omit virtual destructors in base classes, operator delete functions may not work correctly.

Things to Remember

operator new should contain an infinite loop trying to allocate memory, should call the new-handler if it can't satisfy a memory request,
and should handle requests for zero bytes. Class-specific versions should handle requests for larger blocks than expected.

operator delete should do nothing if passed a pointer that is null. Class-specific versions should handle blocks that are larger than
expected.
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Item 52: Write placement delete if you write placement new

Placement new and placement delete aren't the most commonly encountered beasts in the C++ menagerie, so don't worry if you're not familiar with
them. Instead, recall from Items 16 and 17 that when you write a new expression such as this,

Widget *pw = new Widget;

two functions are called: one to operator new to allocate memory, a second to Widget's default constructor.

Suppose that the first call succeeds, but the second call results in an exception being thrown. In that case, the memory allocation performed in step 1
must be undone. Otherwise we'll have a memory leak. Client code can't deallocate the memory, because if the Widget constructor throws an exception,
pw is never assigned. There'd be no way for clients to get at the pointer to the memory that should be deallocated. The responsibility for undoing step 1
must therefore fall on the C++ runtime system.

The runtime system is happy to call the operator delete that corresponds to the version of operator new it called in step 1, but it can do that only if it knows
which operator delete — there may be many — is the proper one to call. This isn't an issue if you're dealing with the versions of new and delete that have
the normal signatures, because the normal operator new,

void* operator new(std::size_t) throw(std::bad_alloc);

corresponds to the normal operator delete:

void operator delete(void *rawMemory) throw();  // normal signature

                                                // at global scope

void operator delete(void *rawMemory,           // typical normal

                     std::size_t size) throw(); // signature at class

                                                // scope

When you're using only the normal forms of new and delete, then, the runtime system has no trouble finding the delete that knows how to undo what new
did. The which-delete-goes-with-this-new issue does arise, however, when you start declaring non-normal forms of operator new — forms that take
additional parameters.

For example, suppose you write a class-specific operator new that requires specification of an ostream to which allocation information should be logged,
and you also write a normal class-specific operator delete:

class Widget {

public:

  ...

  static void* operator new(std::size_t size,              // non-normal

                            std::ostream& logStream)       // form of new

    throw(std::bad_alloc);

  static void operator delete(void *pMemory                // normal class-

                              std::size_t size) throw();   // specific form

                                                           // of delete

  ...

};



This design is problematic, but before we see why, we need to make a brief terminological detour.

When an operator new function takes extra parameters (other than the mandatory size_t argument), that function is known as a placement version of
new. The operator new above is thus a placement version. A particularly useful placement new is the one that takes a pointer specifying where an object
should be constructed. That operator new looks like this:

void* operator new(std::size_t, void *pMemory) throw();   // "placement

                                                          // new"

This version of new is part of C++'s standard library, and you have access to it whenever you #include <new>. Among other things, this new is used
inside vector to create objects in the vector's unused capacity. It's also the original placement new. In fact, that's how this function is known: as
placement new. Which means that the term "placement new" is overloaded. Most of the time when people talk about placement new, they're talking
about this specific function, the operator new taking a single extra argument of type void*. Less commonly, they're talking about any version of operator
new that takes extra arguments. Context generally clears up any ambiguity, but it's important to understand that the general term "placement new"
means any version of new taking extra arguments, because the phrase "placement delete" (which we'll encounter in a moment) derives directly from it.

But let's get back to the declaration of the Widget class, the one whose design I said was problematic. The difficulty is that this class will give rise to subtle
memory leaks. Consider this client code, which logs allocation information to cerr when dynamically creating a Widget:

Widget *pw = new (std::cerr) Widget; // call operator new, passing cerr as

                                     // the ostream; this leaks memory

                                     // if the Widget constructor throws

Once again, if memory allocation succeeds and the Widget constructor throws an exception, the runtime system is responsible for undoing the allocation
that operator new performed. However, the runtime system can't really understand how the called version of operator new works, so it can't undo the
allocation itself. Instead, the runtime system looks for a version of operator delete that takes the same number and types of extra arguments  as operator
new, and, if it finds it, that's the one it calls. In this case, operator new takes an extra argument of type ostream&, so the corresponding operator delete
would have this signature:

void operator delete(void *, std::ostream&) throw();

By analogy with placement versions of new, versions of operator delete that take extra parameters are known as placement deletes. In this case, Widget
declares no placement version of operator delete, so the runtime system doesn't know how to undo what the call to placement new does. As a result, it
does nothing. In this example, no operator delete is called if the Widget constructor throws an exception!

The rule is simple: if an operator new with extra parameters isn't matched by an operator delete with the same extra parameters, no operator delete will
be called if a memory allocation by the new needs to be undone. To eliminate the memory leak in the code above, Widget needs to declare a placement
delete that corresponds to the logging placement new:

class Widget {

public:

  ...

  static void* operator new(std::size_t size, std::ostream& logStream)

    throw(std::bad_alloc);

  static void operator delete(void *pMemory) throw();

  static void operator delete(void *pMemory, std::ostream& logStream)

    throw();

  ...

};

With this change, if an exception is thrown from the Widget constructor in this statement,

Widget *pw = new (std::cerr) Widget;   // as before, but no leak this time



the corresponding placement delete is automatically invoked, and that allows Widget to ensure that no memory is leaked.

However, consider what happens if no exception is thrown (which will usually be the case) and we get to a delete in client code:

delete pw;                            // invokes the normal

                                      // operator delete

As the comment indicates, this calls the normal operator delete, not the placement version. Placement delete is called only if an exception arises from a
constructor call that's coupled to a call to a placement new. Applying delete to a pointer (such as pw above) never yields a call to a placement version of
delete. Never.

This means that to forestall all memory leaks associated with placement versions of new, you must provide both the normal operator delete (for when no
exception is thrown during construction) and a placement version that takes the same extra arguments as operator new does (for when one is). Do that,
and you'll never lose sleep over subtle memory leaks again. Well, at least not these subtle memory leaks.

Incidentally, because member function names hide functions with the same names in outer scopes (see Item 33), you need to be careful to avoid having
class-specific news hide other news (including the normal versions) that your clients expect. For example, if you have a base class that declares only a
placement version of operator new, clients will find that the normal form of new is unavailable to them:

class Base {

public:

  ...

  static void* operator new(std::size_t size,           // this new hides

                            std::ostream& logStream)    // the normal

    throw(std::bad_alloc);                              // global forms

  ...

};

Base *pb = new Base;                        // error! the normal form of

                                            // operator new is hidden

Base *pb = new (std::cerr) Base;            // fine, calls Base's

                                            // placement new

Similarly, operator news in derived classes hide both global and inherited versions of operator new:

class Derived: public Base {                   // inherits from Base above

public:

  ...

  static void* operator new(std::size_t size)  // redeclares the normal

      throw(std::bad_alloc);                   // form of new

  ...

};

Derived *pd = new (std::clog) Derived;         // error! Base's placement

                                               // new is hidden



Derived *pd = new Derived;                     // fine, calls Derived's

                                               // operator new

Item 33 discusses this kind of name hiding in considerable detail, but for purposes of writing memory allocation functions, what you need to remember is
that by default, C++ offers the following forms of operator new at global scope:

void* operator new(std::size_t) throw(std::bad_alloc);      // normal new

void* operator new(std::size_t, void*) throw();             // placement new

void* operator new(std::size_t,                             // nothrow new —

                   const std::nothrow_t&) throw();          // see Item 49

If you declare any operator news in a class, you'll hide all these standard forms. Unless you mean to prevent class clients from using these forms, be
sure to make them available in addition to any custom operator new forms you create. For each operator new you make available, of course, be sure to
offer the corresponding operator delete, too. If you want these functions to behave in the usual way, just have your class-specific versions call the global
versions.

An easy way to do this is to create a base class containing all the normal forms of new and delete:

class StandardNewDeleteForms {

public:

  // normal new/delete

  static void* operator new(std::size_t size) throw(std::bad_alloc)

  { return ::operator new(size); }

  static void operator delete(void *pMemory) throw()

  { ::operator delete(pMemory); }

  // placement new/delete

  static void* operator new(std::size_t size, void *ptr) throw()

  { return ::operator new(size, ptr); }

  static void operator delete(void *pMemory, void *ptr) throw()

  { return ::operator delete(pMemory, ptr); }

  // nothrow new/delete

  static void* operator new(std::size_t size, const std::nothrow_t& nt) throw()

  { return ::operator new(size, nt); }

  static void operator delete(void *pMemory, const std::nothrow_t&) throw()

  { ::operator delete(pMemory); }

};

Clients who want to augment the standard forms with custom forms can then just use inheritance and using declarations (see Item 33) to get the
standard forms:



class Widget: public StandardNewDeleteForms {           // inherit std forms

public:

   using StandardNewDeleteForms::operator new;          // make those

   using StandardNewDeleteForms::operator delete;       // forms visible

   static void* operator new(std::size_t size,          // add a custom

                             std::ostream& logStream)   // placement new

     throw(std::bad_alloc);

   static void operator delete(void *pMemory,           // add the corres-

                               std::ostream& logStream) // ponding place-

    throw();                                            // ment delete

  ...

};

Things to Remember

When you write a placement version of operator new, be sure to write the corresponding placement version of operator delete. If you
don't, your program may experience subtle, intermittent memory leaks.

When you declare placement versions of new and delete, be sure not to unintentionally hide the normal versions of those functions.

 < Day Day Up > 



 < Day Day Up > 

Chapter 9. Miscellany
Welcome to the catch-all "Miscellany" chapter. There are only three Items here, but don't let their diminutive number or unglamorous setting fool you.
They're important.

The first Item emphasizes that compiler warnings are not to be trifled with, at least not if you want your software to behave properly. The second offers an
overview of the contents of the standard C++ library, including the significant new functionality being introduced in TR1. Finally, the last Item provides an
overview of Boost, arguably the most important general-purpose C++-related web site. Trying to write effective C++ software without the information in
these Items is, at best, an uphill battle.
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Item 53: Pay attention to compiler warnings.

Many programmers routinely ignore compiler warnings. After all, if the problem were serious, it would be an error, right? This thinking may be relatively
harmless in other languages, but in C++, it's a good bet compiler writers have a better grasp of what's going on than you do. For example, here's an error
everybody makes at one time or another:

class B {

public:

 virtual void f() const;

};

class D: public B {

public:

 virtual void f();

};

The idea is for D::f to redefine the virtual function B::f, but there's a mistake: in B, f is a const member function, but in D it's not declared const. One
compiler I know says this about that:

warning: D::f() hides virtual B::f()

Too many inexperienced programmers respond to this message by saying to themselves, "Of course D::f hides B::f — that's what it's supposed to do!"
Wrong. This compiler is trying to tell you that the f declared in B has not been redeclared in D; instead, it's been hidden entirely (see Item 33 for a
description of why this is so). Ignoring this compiler warning will almost certainly lead to erroneous program behavior, followed by a lot of debugging to
discover something this compiler detected in the first place.

After you gain experience with the warning messages from a particular compiler, you'll learn to understand what the different messages mean (which is
often very different from what they seem to mean, alas). Once you have that experience, you may choose to ignore a whole range of warnings, though
it's generally considered better practice to write code that compiles warning-free, even at the highest warning level. Regardless, it's important to make
sure that before you dismiss a warning, you understand exactly what it's trying to tell you.

As long as we're on the topic of warnings, recall that warnings are inherently implementation-dependent, so it's not a good idea to get sloppy in your
programming, relying on compilers to spot your mistakes for you. The function-hiding code above, for instance, goes through a different (but widely used)
compiler with nary a squawk.

Things to Remember

Take compiler warnings seriously, and strive to compile warning-free at the maximum warning level supported by your compilers.

Don't become dependent on compiler warnings, because different compilers warn about different things. Porting to a new compiler
may eliminate warning messages you've come to rely on.
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Item 54: Familiarize yourself with the standard library, including TR1

The standard for C++ — the document defining the language and its library — was ratified in 1998. In 2003, a minor "bug-fix" update was issued. The
standardization committee continues its work, however, and a "Version 2.0" C++ standard is expected around 2008 or so. The uncertainty regarding that
date explains why people usually refer to the next version of C++ as "C++0x" — the 200x version of C++.

C++0x will probably include some interesting new language features, but most new C++ functionality will come in the form of additions to the standard
library. We already know what some of the new library functionality will be, because it's been specified in a document known as TR1 ("Technical Report
1" from the C++ Library Working Group). The standardization committee reserves the right to modify TR1 functionality before it's officially enshrined in
C++0x, but significant changes are unlikely. For all intents and purposes, TR1 heralds the beginning of a new release of C++ — what we might call
standard C++ 1.1. You can't be an effective C++ programmer without being familiar with TR1 functionality, because that functionality is a boon to virtually
every kind of library and application.

Before surveying what's in TR1, it's worth reviewing the major parts of the standard C++ library specified by C++98:

The Standard Template Library (STL), including containers (vector, string, map, etc.); iterators; algorithms ( find, sort, TRansform, etc.); function
objects (less, greater, etc.); and various container and function object adapters ( stack, priority_queue, mem_fun, not1, etc.).

Iostreams, including support for user-defined buffering, internationalized IO, and the predefined objects cin, cout, cerr, and clog.

Support for internationalization, including the ability to have multiple active locales. Types like wchar_t (usually 16 bits/char) and wstring
(strings of wchar_ts) facilitate working with Unicode.

Support for numeric processing , including templates for complex numbers ( complex) and arrays of pure values ( valarray).

An exception hierarchy, including the base class exception, its derived classes logic_error and runtime_error, and various classes that inherit
from those.

C89's standard library . Everything in the 1989 C standard library is also in C++.

If any of the above is unfamiliar to you, I suggest you schedule some quality time with your favorite C++ reference to rectify the situation.

TR1 specifies 14 new components (i.e., pieces of library functionality). All are in the std namespace, more precisely, in the nested namespace tr1. The
full name of the TR1 component shared_ptr (see below) is thus std::tr1::shared_ptr. In this book, I customarily omit the std:: when discussing
components of the standard library, but I always prefix TR1 components with tr1::.

This book shows examples of the following TR1 components:

The smart pointers TR1::shared_ptr and tr1::weak_ptr. TR1::shared_ptrs act like built-in pointers, but they keep track of how many
tr1::shared_ptrs point to an object. This is known as reference counting. When the last such pointer is destroyed (i.e., when the reference count
for an object becomes zero), the object is automatically deleted. This works well in preventing resource leaks in acyclic data structures, but if two
or more objects contain tr1::shared_ptrs such that a cycle is formed, the cycle may keep each object's reference count above zero, even when all
external pointers to the cycle have been destroyed (i.e., when the group of objects as a whole is unreachable). That's where TR1::weak_ptrs
come in. TR1::weak_ptrs are designed to act as cycle-inducing pointers in otherwise acyclic tr1::shared_ptr-based data structures. tr1::weak_ptrs
don't participate in reference counting. When the last tr1::shared_ptr to an object is destroyed, the object is deleted, even if tr1::weak_ptrs
continue to point there. Such tr1::weak_ptrs are automatically marked as invalid, however.

tr1::shared_ptr may be the most widely useful component in TR1. I use it many times in this book, including in Item 13, where I explain why it's so
important. (The book contains no uses of tr1::weak_ptr, sorry.)

tr1::function, which makes it possible to represent any callable entity (i.e., any function or function object) whose signature is consistent with a
target signature. If we wanted to make it possible to register callback functions that take an int and return a string, we could do this:

void registerCallback(std::string func(int));    // param type is a function

                                                 // taking an int and

                                                 // returning a string

The parameter name func is optional, so registerCallback could be declared this way, instead:

void registerCallback(std::string (int));       // same as above; param

                                                // name is omitted

Note here that "std::string (int)" is a function signature.

tr1::function makes it possible to make registerCallback much more flexible, accepting as its argument any callable entity that takes an int or
anything convertible to an int and that returns a string or anything convertible to a string. TR1::function takes as a template parameter its target
function signature:



void registerCallback(std::tr1::function<std::string (int)> func);

                                                 // the param "func" will

                                                 // take any callable entity

                                                 // with a sig consistent

                                                 // with "std::string (int)"

This kind of flexibility is astonishingly useful, something I do my best to demonstrate in Item 35.

tr1::bind, which does everything the STL binders bind1st and bind2nd do, plus much more. Unlike the pre-TR1 binders, tr1::bind works with both
const and non-const member functions. Unlike the pre-TR1 binders, TR1::bind works with by-reference parameters. Unlike the pre-TR1 binders,
TR1::bind handles function pointers without help, so there's no need to mess with ptr_fun, mem_fun, or mem_fun_ref before calling TR1::bind.
Simply put, TR1::bind is a second-generation binding facility that is significantly better than its predecessor. I show an example of its use in Item
35.

I divide the remaining TR1 components into two sets. The first group offers fairly discrete standalone functionality:

Hash tables  used to implement sets, multisets, maps, and multimaps. Each new container has an interface modeled on that of its pre-TR1
counterpart. The most surprising thing about TR1's hash tables are their names: TR1::unordered_set, tr1::unordered_multiset,
tr1::unordered_map, and tr1::unordered_multimap. These names emphasize that, unlike the contents of a set, multiset, map, or multimap, the
elements in a TR1 hash-based container are not in any predictable order.

Regular expressions, including the ability to do regular expression-based search and replace operations on strings, to iterate through strings
from match to match, etc.

Tuples, a nifty generalization of the pair template that's already in the standard library. Whereas pair objects can hold only two objects, however,
tr1::tuple objects can hold an arbitrary number. Expat Python and Eiffel programmers, rejoice! A little piece of your former homeland is now part of
C++.

tr1::array, essentially an "STLified" array, i.e., an array supporting member functions like begin and end. The size of a tr1::array is fixed during
compilation; the object uses no dynamic memory.

tr1::mem_fn, a syntactically uniform way of adapting member function pointers. Just as tr1::bind subsumes and extends the capabilities of
C++98's bind1st and bind2nd, tr1::mem_fn subsumes and extends the capabilities of C++98's mem_fun and mem_fun_ref.

tr1::reference_wrapper, a facility to make references act a bit more like objects. Among other things, this makes it possible to create containers
that act as if they hold references. (In reality, containers can hold only objects or pointers.)

Random number generation facilities that are vastly superior to the rand function that C++ inherited from C's standard library.

Mathematical special functions, including Laguerre polynomials, Bessel functions, complete elliptic integrals, and many more.

C99 compatibility extensions, a collection of functions and templates designed to bring many new C99 library features to C++.

The second set of TR1 components consists of support technology for more sophisticated template programming techniques, including template
metaprogramming (seeItem 48):

Type traits, a set of traits classes (see Item 47) to provide compile-time information about types. Given a type T, TR1's type traits can reveal
whether T is a built-in type, offers a virtual destructor, is an empty class (see Item 39), is implicitly convertible to some other type U, and much
more. TR1's type traits can also reveal the proper alignment for a type, a crucial piece of information for programmers writing custom memory
allocation functions (see Item 50).

tr1::result_of, a template to deduce the return types of function calls. When writing templates, it's often important to be able to refer to the type of
object returned from a call to a function (template), but the return type can depend on the function's parameter types in complex ways.
TR1::result_of makes referring to function return types easy. TR1::result_of is used in several places in TR1 itself.

Although the capabilities of some pieces of TR1 (notably TR1::bind and TR1::mem_fn) subsume those of some pre-TR1 components, TR1 is a pure
addition to the standard library. No TR1 component replaces an existing component, so legacy code written with pre-TR1 constructs continues to be
valid.

TR1 itself is just a document. [] To take advantage of the functionality it specifies, you need access to code that implements it. Eventually, that code will
come bundled with compilers, but as I write this in 2005, there is a good chance that if you look for TR1 components in your standard library
implementations, at least some will be missing. Fortunately, there is someplace else to look: 10 of the 14 components in TR1 are based on libraries freely
available from Boost (see Item 55), so that's an excellent resource for TR1-like functionality. I say "TR1-like," because, though much TR1 functionality is
based on Boost libraries, there are places where Boost functionality is currently not an exact match for the TR1 specification. It's possible that by the time
you read this, Boost not only will have TR1-conformant implementations for the TR1 components that evolved from Boost libraries, it will also offer
implementations of the four TR1 components that were not based on Boost work.

[] As I write this in early 2005, the document has not been finalized, and its URL is subject to change. I therefore suggest you consult the Effective C++ TR1 Information Page,
http://aristeia.com/EC3E/TR1_info.html. That URL will remain stable.

If you'd like to use Boost's TR1-like libraries as a stopgap until compilers ship with their own TR1 implementations, you may want to avail yourself of a
namespace trick. All Boost components are in the namespace boost, but TR1 components are supposed to be in std::tr1. You can tell your compilers to
treat references to std::tr1 the same as references to boost. This is how:

http://aristeia.com/EC3E/TR1_info.html


namespace std {

 namespace tr1 = ::boost;           // namespace std::tr1 is an alias

}                                   // for namespace boost

Technically, this puts you in the realm of undefined behavior, because, as Item 25 explains, you're not allowed to add anything to the std namespace. In
practice, you're unlikely to run into any trouble. When your compilers provide their own TR1 implementations, all you'll need to do is eliminate the above
namespace alias; code referring to std::tr1 will continue to be valid.

Probably the most important part of TR1 not based on Boost libraries is hash tables, but hash tables have been available for many years from several
sources under the names hash_set, hash_multiset, hash_map, and hash_multimap. There is a good chance that the libraries shipping with your
compilers already contain these templates. If not, fire up your favorite search engine and search for these names (as well as their TR1 appellations),
because you're sure to find several sources for them, both commercial and freeware.

Things to Remember

The primary standard C++ library functionality consists of the STL, iostreams, and locales. The C99 standard library is also included.

TR1 adds support for smart pointers (e.g., tr1::shared_ptr), generalized function pointers (tr1::function), hash-based containers, regular
expressions, and 10 other components.

TR1 itself is only a specification. To take advantage of TR1, you need an implementation. One source for implementations of TR1
components is Boost.
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Item.55: Familiarize yourself with Boost.

Searching for a collection of high-quality, open source, platform- and compiler-independent libraries? Look to Boost. Interested in joining a community of
ambitious, talented C++ developers working on state-of-the-art library design and implementation? Look to Boost. Want a glimpse of what C++ might look
like in the future? Look to Boost.

Boost is both a community of C++ developers and a collection of freely downloadable C++ libraries. Its web site is http://boost.org. You should bookmark
it now.

There are many C++ organizations and web sites, of course, but Boost has two things going for it that no other organization can match. First, it has a
uniquely close and influential relationship with the C++ standardization committee. Boost was founded by committee members, and there continues to be
strong overlap between the Boost and committee memberships. In addition, Boost has always had as one of its goals to act as a testing ground for
capabilities that could be added to Standard C++. One result of this relationship is that of the 14 new libraries introduced into C++ by TR1 (see Item 54),
more than two-thirds are based on work done at Boost.

The second special characteristic of Boost is its process for accepting libraries. It's based on public peer review. If you'd like to contribute a library to
Boost, you start by posting to the Boost developers mailing list to gauge interest in the library and initiate the process of preliminary examination of your
work. Thus begins a cycle that the web site summarizes as "Discuss, refine, resubmit. Repeat until satisfied."

Eventually, you decide that your library is ready for formal submission. A review manager confirms that your library meets Boost's minimal requirements.
For example, it must compile under at least two compilers (to demonstrate nominal portability), and you have to attest that the library can be made
available under an acceptable license (e.g., the library must allow free commercial and non-commercial use). Then your submission is made available to
the Boost community for official review. During the review period, volunteers go over your library materials (e.g., source code, design documents, user
documentation, etc.) and consider questions such as these:

How good are the design and implementation?

Is the code portable across compilers and operating systems?

Is the library likely to be of use to its target audience, i.e., people working in the domain the library addresses?

Is the documentation clear, complete, and accurate?

These comments are posted to a Boost mailing list, so reviewers and others can see and respond to one another's remarks. At the end of the review
period, the review manager decides whether your library is accepted, conditionally accepted, or rejected.

Peer reviews do a good job of keeping poorly written libraries out of Boost, but they also help educate library authors in the considerations that go into the
design, implementation, and documentation of industrial-strength cross-platform libraries. Many libraries require more than one official review before
being declared worthy of acceptance.

Boost contains dozens of libraries, and more are added on a continuing basis. From time to time, some libraries are also removed, typically because their
functionality has been superseded by a newer library that offers greater functionality or a better design (e.g., one that is more flexible or more efficient).

The libraries vary widely in size and scope. At one extreme are libraries that conceptually require only a few lines of code (but are typically much longer
after support for error handling and portability is added). One such library is Conversion, which provides safer or more convenient cast operators. Its
numeric_cast function, for example, throws an exception if converting a numeric value from one type to another leads to overflow or underflow or a
similar problem, and lexical_cast makes it possible to cast any type supporting operator<< into a string — very useful for diagnostics, logging, etc. At the
other extreme are libraries offering such extensive capabilities, entire books have been written about them. These include the Boost Graph Library (for
programming with arbitrary graph structures) and the Boost MPL Library ("metaprogramming library").

Boost's bevy of libraries addresses a cornucopia of topics, grouped into over a dozen general categories. Those categories include:

String and text processing , including libraries for type-safe printf-like formatting, regular expressions (the basis for similar functionality in TR1 —
see Item 54), and tokenizing and parsing.

Containers, including libraries for fixed-size arrays with an STL-like interface (see Item 54), variable-sized bitsets, and multidimensional arrays.

Function objects and higher-order programming , including several libraries that were used as the basis for functionality in TR1. One
interesting library is the Lambda library, which makes it so easy to create function objects on the fly, you're unlikely to realize that's what you're
doing:

using namespace boost::lambda;                    // make boost::lambda

                                                  // functionality visible

std::vector<int> v;

...

std::for_each(v.begin(), v.end(),                 // for each element x in

              std::cout << _1 * 2 + 10  << "\n");  // v, print x*2+10;

http://boost.org


                                                  // "_1" is the Lambda

                                                  // library's placeholder

                                                  // for the current element

Generic programming, including an extensive set of traits classes. (See Item 47 for information on traits).

Template metaprogramming (TMP — see Item 48), including a library for compile-time assertions, as well as the Boost MPL Library. Among the
nifty things in MPL is support for STL-like data structures of compile-time entities like types, e.g.,

// create a list-like compile-time container of three types (float,

// double, and long double) and call the container "floats"

typedef boost::mpl::list<float, double, long double> floats;

// create a new compile-time list of types consisting of the types in

// "floats" plus "int" inserted at the front; call the new container "types"

typedef boost::mpl::push_front<floats, int>::type types;

Such containers of types (often known as typelists, though they can also be based on an mpl::vector as well as an mpl::list) open the door to a
wide range of powerful and important TMP applications.

Math and numerics, including libraries for rational numbers; octonions and quaternions; greatest common divisor and least common multiple
computations; and random numbers (yet another library that influenced related functionality in TR1).

Correctness and testing , including libraries for formalizing implicit template interfaces (see Item 41) and for facilitating test-first programming.

Data structures, including libraries for type-safe unions (i.e., storing variant "any" types) and the tuple library that led to the corresponding TR1
functionality.

Inter-language support, including a library to allow seamless interoperability between C++ and Python.

Memory, including the Pool library for high-performance fixed-size allocators (see Item 50); and a variety of smart pointers (see Item 13),
including (but not limited to) the smart pointers in TR1. One such non-TR1 smart pointer is scoped_array, an auto_ptr-like smart pointer for
dynamically allocated arrays; Item 44 shows an example use.

Miscellaneous, including libraries for CRC checking, date and time manipulations, and traversing file systems.

Remember, that's just a sampling of the libraries you'll find at Boost. It's not an exhaustive list.

Boost offers libraries that do many things, but it doesn't cover the entire programming landscape. For example, there is no library for GUI development,
nor is there one for communicating with databases. At least there's not now — not as I write this. By the time you read it, however, there might be. The
only way to know for sure is to check. I suggest you do it right now: http://boost.org. Even if you don't find exactly what you're looking for, you're certain to
find something interesting there.

Things to Remember

Boost is a community and web site for the development of free, open source, peer-reviewed C++ libraries. Boost plays an influential
role in C++ standardization.

Boost offers implementations of many TR1 components, but it also offers many other libraries, too.
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Appendix A. Beyond Effective C++
Effective C++  covers what I consider to be the most important general guidelines for practicing C++ programmers, but if you're interested in more ways to
improve your effectiveness, I encourage you to examine my other C++ books, More Effective C++  and Effective STL.

More Effective C++  covers additional programming guidelines and includes extensive treatments of topics such as efficiency and programming with
exceptions. It also describes important C++ programming techniques like smart pointers, reference counting, and proxy objects.

Effective STL is a guideline-oriented book like Effective C++ , but it focuses exclusively on making effective use of the Standard Template Library.

Tables of contents for both books are summarized below.

Contents of More Effective C++

Basics

Item 1: Distinguish between pointers and references

Item 2: Prefer C++-style casts

Item 3: Never treat arrays polymorphically

Item 4: Avoid gratuitous default constructors

Operators

Item 5: Be wary of user-defined conversion functions

Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators

Item 7: Never overload &&, ||, or ,

Item 8: Understand the different meanings of new and delete

Exceptions

Item 9: Use destructors to prevent resource leaks

Item 10: Prevent resource leaks in constructors

Item 11: Prevent exceptions from leaving destructors

Item 12: Understand how throwing an exception differs from passing a
parameter or calling a virtual function

Item 13: Catch exceptions by reference

Item 14: Use exception specifications judiciously

Item 15: Understand the costs of exception handling

Efficiency

Item 16: Remember the 80-20 rule

Item 17: Consider using lazy evaluation

Item 18: Amortize the cost of expected computations

Item 19: Understand the origin of temporary objects

Item 20: Facilitate the return value optimization

Item 21: Overload to avoid implicit type conversions

Item 22: Consider using op= instead of stand-alone op

Item 23: Consider alternative libraries

Item 24: Understand the costs of virtual functions, multiple inheritance, virtual
base classes, and RTTI

Techniques



Item 25: Virtualizing constructors and non-member functions

Item 26: Limiting the number of objects of a class

Item 27: Requiring or prohibiting heap-based objects

Item 28: Smart pointers

Item 29: Reference counting

Item 30: Proxy classes

Item 31: Making functions virtual with respect to more than one object

Miscellany

Item 32: Program in the future tense

Item 33: Make non-leaf classes abstract

Item 34: Understand how to combine C++ and C in the same program

Item 35: Familiarize yourself with the language standard

Contents of Effective STL

Chapter 1: Containers

Item 1: Choose your containers with care.

Item 2: Beware the illusion of container-independent code.

Item 3: Make copying cheap and correct for objects in containers.

Item 4: Call empty instead of checking size() against zero.

Item 5: Prefer range member functions to their single-element counterparts.

Item 6: Be alert for C++'s most vexing parse.

Item 7: When using containers of newed pointers, remember to delete the
pointers before the container is destroyed.

Item 8: Never create containers of auto_ptrs.

Item 9: Choose carefully among erasing options.

Item 10: Be aware of allocator conventions and restrictions.

Item 11: Understand the legitimate uses of custom allocators.

Item 12: Have realistic expectations about the thread safety of STL containers.

Chapter 2: vector and string

Item 13: Prefer vector and string to dynamically allocated arrays.

Item 14: Use reserve to avoid unnecessary reallocations.

Item 15: Be aware of variations in string implementations.

Item 16: Know how to pass vector and string data to legacy APIs.

Item 17: Use "the swap TRick" to trim excess capacity.

Item 18: Avoid using vector<bool>.

Chapter 3: Associative Containers

Item 19: Understand the difference between equality and equivalence.

Item 20: Specify comparison types for associative containers of pointers.

Item 21: Always have comparison functions return false for equal values.

Item 22: Avoid in-place key modification in set and multiset.

Item 23: Consider replacing associative containers with sorted vectors.

Item 24: Choose carefully between map::operator[] and map::insert when
efficiency is important.



Item 25: Familiarize yourself with the nonstandard hashed containers.

Chapter 4: Iterators

Item 26: Prefer iterator to const_iterator, reverse_iterator, and
const_reverse_iterator.

Item 27: Use distance and advance to convert a container's const_iterators to
iterators.

Item 28: Understand how to use a reverse_iterator's base iterator.

Item 29: Consider istreambuf_iterators for character-by-character input.

Chapter 5: Algorithms

Item 30: Make sure destination ranges are big enough.

Item 31: Know your sorting options.

Item 32: Follow remove-like algorithms by erase if you really want to remove
something.

Item 33: Be wary of remove-like algorithms on containers of pointers.

Item 34: Note which algorithms expect sorted ranges.

Item 35: Implement simple case-insensitive string comparisons via mismatch
or lexicographical_compare.

Item 36: Understand the proper implementation of copy_if.

Item 37: Use accumulate or for_each to summarize ranges.

Chapter 6: Functors, Functor Classes, Functions, etc.

Item 38: Design functor classes for pass-by-value.

Item 39: Make predicates pure functions.

Item 40: Make functor classes adaptable.

Item 41: Understand the reasons for ptr_fun, mem_fun, and mem_fun_ref.

Item 42: Make sure less<T> means operator<.

Chapter 7: Programming with the STL

Item 43: Prefer algorithm calls to hand-written loops.

Item 44: Prefer member functions to algorithms with the same names.

Item 45: Distinguish among count, find, binary_search, lower_bound,
upper_bound, and equal_range.

Item 46: Consider function objects instead of functions as algorithm
parameters.

Item 47: Avoid producing write-only code.

Item 48: Always #include the proper headers.

Item 49: Learn to decipher STL-related compiler diagnostics.

Item 50: Familiarize yourself with STL-related web sites.
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Appendix B. Item Mappings Between Second and Third Editions
This third edition of Effective C++  differs from the second edition in many ways, most significantly in that it includes lots of new information. However,
most of the second edition's content remains in the third edition, albeit often in a modified form and location. In the tables on the pages that follow, I show
where information in second edition Items may be found in the third edition and vice versa.

The tables show a mapping of information, not text. For example, the ideas in Item 39 of the second edition ("Avoid casts down the inheritance
hierarchy") are now found in Item 27 of the current edition ("Minimize casting"), even though the third edition text and examples for that Item are entirely
new. A more extreme example involves the second edition's Item 18 ("Strive for class interfaces that are complete and minimal"). One of the primary
conclusions of that Item was that prospective member functions that need no special access to the non-public parts of the class should generally be non-
members. In the third edition, that same result is reached via different (stronger) reasoning, so Item 18 in the second edition maps to Item 23 in the third
edition ("Prefer non-member non-friend functions to member functions"), even though about the only thing the two Items have in common is their
conclusion.

Second Edition to Third Edition
2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed.

1 2 18 23 35 32

2 — 19 24 36 34

3 — 20 22 37 36

4 — 21 3 38 37

5 16 22 20 39 27

6 13 23 21 40 38

7 49 24 — 41 41

8 51 25 — 42 39,44

9 52 26 — 43 40

10 50 27 6 44 —

11 14 28 — 45 5

12 4 29 28 46 18

13 4 30 28 47 4

14 7 31 21 48 53

15 10 32 26 49 54

16 12 33 30 50 —

17 11 34 31   

Third Edition to Second Edition
3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed.

1 — 20 22 39 42

2 1 21 23,31 40 43

3 21 22 20 41 41

4 12,13,47 23 18 42 —

5 45 24 19 43 —

6 27 25 — 44 42

7 14 26 32 45 —

8 — 27 39 46 —

9 — 28 29,30 47 —

10 15 29 — 48 —

11 17 30 33 49 7

12 16 31 34 50 10

13 6 32 35 51 8

14 11 33 9 52 9

15 — 34 36 53 48

16 5 35 — 54 49

17 — 36 37 55 —

18 46 37 38   



19 pp.77–79 38 40   

3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed. 3rd Ed. 2nd Ed.
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#define
    debuggers and[define
         debuggers and]
    disadvantages of[define
         disadvantages of] 2nd
    vs. const[define
         vs. const] 2nd
    vs. inline functions[define
         vs. inline functions] 2nd
#ifdef[ifdef]
#ifndef[ifndef]
#include directives
    compilation dependencies and[include directives
         compilation dependencies and]
#include directives[include directives
     ]
.NET 2nd 3rd 4th 5th 6th [See also C#]
2nd edition of this book [See also inside back cover]
     compared to 3rd edition 2nd 3rd 4th
3rd edition of this book [See also inside back cover]
     compared to 2nd edition 2nd 3rd 4th
80-20 rule 2nd
<$nopage>web sites
    aaa] [See URLs[web sites]
<c>operator<d> <c>new<d>
     member, and "wrongly sized" requests
<iosfwd>[iosfwd]
=, in initialization vs. assignment
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Abrahams, David 2nd 3rd
abstract classes
accessibility
     control over data members
     name, multiple inheritance and
accessing names, in templatized bases 2nd
addresses
     inline functions
     objects
advance pseudocode
aggregation [See composition]
Alexandrescu, Andrei
aliasing
alignment 2nd
allocators, in the STL
alternatives to virtual functions 2nd
ambiguity
     multiple inheritance and
     nested dependent names and types
Arbiter, Petronius
argument-dependent lookup
arithmetic, mixed-mode 2nd 3rd
array layout, vs. object layout
array new 2nd
array, invalid index and
ASPECT_RATIO 2nd
assignment
     aaa] [See also operator=[assignment]
     chaining assignments
     copy-and-swap and
     generalized
     to self, operator= and 2nd
     vs. initialization 2nd 3rd 4th
assignment operator, copy
auto_ptr [See std::auto_ptr]
automatically generated functions 2nd
     copy constructor and copy assignment operator
     disallowing 2nd
avoiding code duplication 2nd
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Bai, Yun
Barry, Dave, allusion to
Bartolucci, Guido
base classes
     copying
     duplication of data in
     lookup in, this-> and 2nd
     names hidden in derived classes
     polymorphic
     polymorphic, destructors and 2nd
     templatized 2nd
     virtual
basic guarantee, the
Battle of Hastings
Berck, Benjamin
bidirectional iterators
bidirectional_iterator_tag
binary upgradeability, inlining and
binding
    dynamic [See dynamic binding]
    static [See default parameters;static binding]
birds and penguins 2nd
bitwise const member functions 2nd
books
     C++ Programming Language, The
     C++ Templates
     Design Patterns
     Effective STL 2nd 3rd
     Exceptional C++ 2nd
     Exceptional C++ Style 2nd
     More Effective C++ 2nd 3rd
     More Exceptional C++ 2nd
     Satyricon
     Some Must Watch While Some Must Sleep
Boost 2nd
     containers
     Conversion library
     correctness and testing support
     data structures
     function objects and higher-order programming utilities
     functionality not provided
     generic programming support
     Graph library
     inter-language support
     Lambda library
     math and numerics utilities
     memory management utilities
     MPL library 2nd
     noncopyable base class
     Pool library 2nd
     scoped_array 2nd 3rd
     shared_array
     shared_ptr implementation, costs
     smart pointers 2nd 3rd
         web page
     string and text utilities
     template metaprogramming support
     TR1 and 2nd 3rd 4th
     typelist support
     web site 2nd 3rd
boost, as synonym for std::tr1
Bosch, Derek
breakpoints, and inlining
Buffy the Vampire Slayer
bugs, reporting
built-in types 2nd
     efficiency and passing
     incompatibilities with
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C standard library and C++ standard library
C# 2nd 3rd 4th 5th 6th 7th 8th [See also .NET]
C++ Programming Language, The
C++ standard library 2nd
     <iosfwd> and
     array replacements and
     C standard library and
     C89 standard library and
     header organization of
     list template
     logic_error and
     set template
     vector template
C++ Templates
C++, as language federation 2nd
C++-style casts
C++0x
C-style casts
C99 standard library, TR1 and
caching
     const and
     mutable and
Cai, Steve
calling swap
calls to base classes, casting and
Cargill, Tom
Carrara, Enrico
Carroll, Glenn
cast of int to double
casting 2nd
     aaa] [See also const_cast, static_cast, dynamic_cast, and reinterpret_cast[casting]
     base class calls and
     constness away 2nd
     encapsulation and
     grep and
     syntactic forms 2nd
     type systems and
     undefined behavior and
chaining assignments
Chang, Brandon
Clamage, Steve
class definitions
     artificial client dependencies, eliminating
     class declarations vs
     object sizes and
class design [See type design]
class names, explicitly specifying
class, vs. typename
classes
     aaa] [See also class definitions, interfaces[classes]
     abstract 2nd
     base [See also base classes[classes:base:aaa]]
         duplication of data in
         polymorphic
         templatized 2nd
         virtual
     defining
     derived [See also inheritance]
         virtual base initialization of
     Handle 2nd
     Interface 2nd
     meaning of no virtual functions
    RAII [See RAII]
    specification [See interfaces]
     traits 2nd
client
code
     bloat 2nd 3rd
         avoiding, in templates 2nd
     copy assignment operator
    duplication [See duplication]
     exception-safe 2nd



     factoring out of templates 2nd
     incorrect, efficiency and
     reuse
    sharing [See duplication, duplication;avoiding]
Cohen, Jake
Comeau, Greg 2nd
     URL for his C/C++ FAQ
common features and inheritance
commonality and variability analysis
compatibility, vptrs and
compatible types, accepting 2nd
compilation dependencies
     minimizing 2nd 3rd
     pointers, references, and objects and
compile-time polymorphism
compiler warnings 2nd
     calls to virtuals and
     inlining and
     partial copies and
compiler-generated functions 2nd
     disallowing 2nd
     functions compilers may generate
compilers
     parsing nested dependent names
    programs executing within [See template metaprogramming]
     register usage and
     reordering operations
     typename and
     when errors are diagnosed
composition 2nd
     meanings of
     replacing private inheritance with
     synonyms for
     vs. private inheritance
conceptual constness [See const, const;logical]
consistency with the built-in types 2nd
const 2nd 3rd
     bitwise 2nd
     caching and
     casting away 2nd
     function declarations and
     logical 2nd
     member functions 2nd
         duplication and 2nd
     members, initialization of
     overloading on 2nd
     pass by reference and 2nd
     passing std::auto_ptr and
     pointers
     return value
     uses
     vs. #define 2nd
const_cast 2nd
     aaa] [See also casting[const_cast]
const_iterator, vs. iterators
constants
    aaa] [See const[constants]
constraints on interfaces, from inheritance
constructors
     copy
     default
     empty, illusion of
     explicit 2nd 3rd
     implicitly generated
     inlining and 2nd
     operator new and
     possible implementation in derived classes
     relationship to new
     static functions and
     virtual 2nd
     virtual functions and 2nd
     with vs. without arguments
containers, in Boost
containment [See composition]
continue, delete and
control over data members accessibility
convenience functions
Conversion library, in Boost
conversions, type [See type conversions]
copies, partial
copy assignment operator



     code in copy constructor and
     derived classes and
copy constructors
     default definition
     derived classes and
     generalized
     how used
     implicitly generated
     pass-by-value and
copy-and-swap
     assignment and
     exception-safe code and
copying
     base class parts
     behavior, resource management and 2nd
     functions, the
     objects
correctness
     designing interfaces for 2nd
     testing and, Boost support
corresponding forms of new and delete 2nd
corrupt data structures, exception-safe code and
cows, coming home
crimes against English 2nd
cross-DLL problem
CRTP
ctor
curiously recurring template pattern
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dangling handles
Dashtinezhad, Sasan
data members
     adding, copying functions and
     control over accessibility
     protected
     static, initialization of
     why private 2nd
data structures
     exception-safe code and
     in Boost
Davis, Tony
deadly MI diamond
debuggers
     #define and
     inline functions and
declarations
     inline functions
     replacing definitions
     static const integral members
default constructors
     construction with arguments vs
     implicitly generated
default implementations
     for virtual functions, danger of 2nd
     of copy constructor
     of operator=
default initialization, unintended
default parameters 2nd
     impact if changed
     static binding of
definitions
     classes
     deliberate omission of
     functions
     implicitly generated functions 2nd
     objects
     pure virtual functions 2nd 3rd
     replacing with declarations
     static class members
     static const integral members
     templates
     variable, postponing 2nd
delete
     aaa] [See also operator delete[delete]
     forms of 2nd
     operator delete and
     relationship to destructors
     usage problem scenarios
delete [i], std::auto_ptr and tr1::shared_ptr and
deleters
     std::auto_ptr and
     tr1::shared_ptr and 2nd 3rd
Delphi
Dement, William
dependencies, compilation 2nd
dependent names 2nd
dereferencing a null pointer, undefined behavior of
derived classes
     copy assignment operators and
     copy constructors and
     hiding names in base classes
     implementing constructors in
     virtual base initialization and
Derived virtual calling base virtual
design
     contradiction in
     of interfaces 2nd
     of types 2nd
Design Patterns
design patterns
     curiously recurring template (CRTP)



     encapsulation and
     generating from templates
     Singleton
     Strategy 2nd
     Template Method
     TMP and
destructors
     exceptions and 2nd
     inlining and 2nd
     pure virtual
     relationship to delete
     resource managing objects and
     static functions and
    virtual
         operator delete and
         polymorphic base classes and 2nd
     virtual functions and 2nd
Dewhurst, Steve
dimensional unit correctness, TMP and
DLLs, delete and
dtor
Dulimov, Peter
duplication
     avoiding 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     base class data and
     init function and
dynamic binding
     definition of
     of virtual functions
dynamic type, definition of
dynamic_cast 2nd 3rd 4th
     aaa] [See also casting[dynamic_cast]
     efficiency of
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early binding
easy to use correctly and hard to use incorrectly 2nd
EBO [See empty base optimization]
Effective C++, compared to More Effective C++ and Effective STL
Effective STL 2nd 3rd
     compared to Effective C++
     contents of 2nd
efficiency
     assignment vs. construction and destruction 2nd
     default parameter binding
     dynamic_cast
     Handle classes
     incorrect code and 2nd
     init. with vs. without args
     Interface classes
     macros vs. inline functions
     member init. vs. assignment
     minimizing compilation dependencies
     operator new/operator delete and
     pass-by-reference and
     pass-by-value and 2nd
     passing built-in types and
     runtime vs. compile-time tests
     template metaprogramming and
     template vs. function parameters
     unused objects
     virtual functions
Eiffel
embedding [See composition]
empty base optimization (EBO) 2nd
encapsulation 2nd
     casts and
     design patterns and
     handles and
     measuring
     protected members and
     RAII classes and
enum hack 2nd 3rd
errata list, for this book
errors
     detected during linking 2nd
     runtime
evaluation order, of parameters
example classes/templates
     A
     ABEntry
     AccessLevels
     Address
     Airplane 2nd 3rd
     Airport
     AtomicClock
     AWOV
     B 2nd 3rd
     Base 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     BelowBottom
     bidirectional_iterator_tag
     Bird 2nd 3rd
     Bitmap
     BorrowableItem
     Bottom
     BuyTransaction 2nd
     C
     Circle
     CompanyA
     CompanyB
     CompanyZ
     CostEstimate
     CPerson
     CTextBlock 2nd 3rd
     Customer 2nd
     D 2nd 3rd
     DatabaseID



     Date 2nd 3rd
     Day
     DBConn 2nd
     DBConnection
     deque
     deque::iterator
     Derived 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     Directory
     ElectronicGadget
     Ellipse
     Empty 2nd 3rd
     EvilBadGuy 2nd
     EyeCandyCharacter
     Factorial
     Factorial<0>
     File 2nd
     FileSystem
     FlyingBird
     Font 2nd 3rd
     forward_iterator_tag
     GameCharacter 2nd 3rd 4th 5th
     GameLevel
     GamePlayer 2nd
     GraphNode
     GUIObject
     HealthCalcFunc
     HealthCalculator
     HoldsAnInt 2nd
     HomeForSale 2nd 3rd
     input_iterator_tag
     input_iterator_tag<Iter*>
     InputFile 2nd
     Investment 2nd
     IOFile 2nd
     IPerson 2nd
     iterator_traits 2nd [See also std::iterator_traits]
     list
     list::iterator
     Lock 2nd 3rd
     LoggingMsgSender 2nd 3rd 4th 5th
     Middle
     ModelA 2nd 3rd
     ModelB 2nd 3rd
     ModelC 2nd 3rd
     Month 2nd
     MP3Player
     MsgInfo
     MsgSender
     MsgSender<CompanyZ>
     NamedObject 2nd
     NewHandlerHolder
     NewHandlerSupport
     output_iterator_tag
     OutputFile 2nd
     Penguin 2nd 3rd 4th
     Person 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     PersonInfo 2nd
     PhoneNumber 2nd
     PMImpl
     Point 2nd 3rd
     PrettyMenu 2nd 3rd
     PriorityCustomer
     random_access_iterator_tag
     Rational 2nd 3rd 4th 5th 6th 7th 8th 9th
     RealPerson
     Rectangle 2nd 3rd 4th 5th 6th 7th 8th
     RectData
     SellTransaction
     Set 2nd
     Shape 2nd 3rd 4th 5th 6th 7th
     SmartPtr 2nd 3rd
     SpecialString
     SpecialWindow 2nd 3rd 4th
     SpeedDataCollection
     Square
     SquareMatrix 2nd 3rd 4th
     SquareMatrixBase 2nd
     StandardNewDeleteForms
     Student 2nd 3rd
     TextBlock 2nd 3rd
     TimeKeeper 2nd



     Timer
     Top
     Transaction 2nd 3rd
     Uncopyable
     WaterClock
     WebBrowser 2nd 3rd 4th
     Widget 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd
     Widget::WidgetTimer
     WidgetImpl 2nd
     Window 2nd 3rd 4th 5th
     WindowWithScrollBars
     WristWatch
     X
     Y
     Year
example functions/templates
     ABEntry::ABEntry 2nd 3rd
     AccessLevels::getReadOnly
     AccessLevels::getReadWrite
     AccessLevels::setReadOnly
     AccessLevels::setWriteOnly
     advance 2nd 3rd 4th 5th 6th
     Airplane::defaultFly
     Airplane::fly 2nd 3rd 4th
     askUserForDatabaseID
     AWOV::AWOV
     B::mf
     Base::operator delete
     Base::operator new
     Bird::fly
     BorrowableItem::checkOut
     boundingBox
     BuyTransaction::BuyTransaction
     BuyTransaction::createLogString
     calcHealth
     callWithMax
     changeFontSize
     Circle::draw
     clearAppointments 2nd
     clearBrowser
     CPerson::birthDate
     CPerson::CPerson
     CPerson::name
     CPerson::valueDelimClose
     CPerson::valueDelimOpen
     createInvestment 2nd 3rd 4th 5th 6th
     CTextBlock::length 2nd
     CTextBlock::operator[i]
     Customer::Customer
     Customer::operator=
     D::mf
     Date::Date 2nd
     Day::Day
     daysHeld
     DBConn::close
     DBConn::~DBConn 2nd 3rd 4th
     defaultHealthCalc 2nd
     Derived::Derived 2nd
     Derived::mf1
     Derived::mf4
     Directory::Directory 2nd
     doAdvance 2nd 3rd
     doMultiply
     doProcessing 2nd 3rd
     doSomething 2nd 3rd 4th 5th
     doSomeWork
     eat 2nd
     ElectronicGadget::checkOut
     Empty::Empty 2nd
     Empty::operator=
     Empty::~Empty
     encryptPassword 2nd 3rd 4th
     error
     EvilBadGuy::EvilBadGuy
     f 2nd 3rd 4th
     FlyingBird::fly
     Font::Font
     Font::get
     Font::operator FontHandle
     Font::~Font
     GameCharacter::doHealthValue
     GameCharacter::GameCharacter 2nd 3rd



     GameCharacter::healthValue 2nd 3rd 4th 5th
     GameLevel::health
     getFont
     hasAcceptableQuality
     HealthCalcFunc::calc
     HealthCalculator::operator(_)
     lock
     Lock::Lock 2nd
     Lock::~Lock
     logCall
     LoggingMsgSender::sendClear 2nd
     LogginMsgSender::sendClear 2nd 3rd
     loseHealthQuickly
     loseHealthSlowly
     main 2nd 3rd 4th
     makeBigger
     makePerson
     max
     ModelA::fly 2nd
     ModelB::fly 2nd
     ModelC::fly 2nd
     Month::Dec
     Month::Feb
     Month::Jan
     Month::Month 2nd
     MsgSender::sendClear
     MsgSender::sendSecret
     MsgSender<CompanyZ>::sendSecret
     NewHandlerHolder::NewHandlerHolder
     NewHandlerHolder::~NewHandlerHolder
     NewHandlerSupport::operator new
     NewHandlerSupport::set_new_handler
     numDigits
     operator delete
     operator new 2nd
     operator* 2nd 3rd 4th 5th 6th 7th 8th 9th
     operator==
     outOfMem
     Penguin::fly
     Person::age
     Person::create 2nd
     Person::name
     Person::Person
     PersonInfo::theName
     PersonInfo::valueDelimClose
     PersonInfo::valueDelimOpen
     PrettyMenu::changeBackground 2nd 3rd 4th
     print
     print2nd 2nd 3rd 4th
     printNameAndDisplay 2nd
     priority
     PriorityCustomer::operator= 2nd
     PriorityCustomer::PriorityCustomer 2nd
     processWidget
     RealPerson::RealPerson
     RealPerson::~RealPerson
     Rectangle::doDraw
     Rectangle::draw 2nd
     Rectangle::lowerRight 2nd
     Rectangle::upperLeft 2nd
     releaseFont
     Set::insert
     Set::member
     Set::remove
     Set::size
     Shape::doDraw
     Shape::draw 2nd 3rd 4th 5th
     Shape::error 2nd
     Shape::objectID 2nd
     SmartPtr::get
     SmartPtr::SmartPtr
     someFunc 2nd
     SpecialWindow::blink
     SpecialWindow::onResize
     SquareMatrix::invert
     SquareMatrix::setDataPtr
     SquareMatrix::SquareMatrix 2nd 3rd
     StandardNewDeleteForms::operator delete 2nd 3rd
     StandardNewDeleteForms::operator new 2nd 3rd
     std::swap
     std::swap<Widget> 2nd



     study 2nd
     swap 2nd
     tempDir
     TextBlock::operator[i] 2nd 3rd 4th 5th 6th
     tfs
     Timer::onTick
     Transaction::init
     Transaction::Transaction 2nd 3rd
     Uncopyable::operator=
     Uncopyable::Uncopyable
     unlock
     validateStudent 2nd
     Widget::onTick 2nd
     Widget::operator new
     Widget::operator+=
     Widget::operator= 2nd 3rd 4th 5th 6th 7th 8th
     Widget::set_new_handler
     Widget::swap
     Window::blink
     Window::onResize
     workWithIterator 2nd
     Year::Year
exception specifications
exception-safe code 2nd
     copy-and-swap and
     legacy code and
     pimpl idiom and
     side effects and
exception-safety guarantees 2nd
Exceptional C++ 2nd
Exceptional C++ Style 2nd
exceptions
     delete and
     destructors and 2nd
     member swap and
     standard hierarchy for
     swallowing
     unused objects and
explicit calls to base class functions
explicit constructors 2nd 3rd
     generalized copy construction and
explicit inline request
explicit specification, of class names
explicit type conversions vs. implicit 2nd
expression templates
expressions, implicit interfaces and
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factoring code, out of templates 2nd
factory function 2nd 3rd 4th 5th 6th
Fallenstedt, Martin
federation, of languages, C++ as 2nd
Feher, Attila F
final classes, in Java
final methods, in Java
fixed-size static buffers, problems of
forms of new and delete 2nd
FORTRAN
forward iterators
forward_iterator_tag
forwarding functions 2nd
French, Donald
friend functions 2nd 3rd 4th 5th 6th 7th
     vs. member functions 2nd
friendship
     in real life
     without needing special access rights
Fruchterman, Thomas
FUDGE_FACTOR
Fuller, John
function declarations, const in
function objects
     definition of
     higher-order programming utilities and, in Boost
function-style casts
functions
     convenience
     copying
     defining
     deliberately not defining
    factory [See factory function]
     forwarding 2nd
     implicitly generated 2nd 3rd
         disallowing 2nd
     inline, declaring
    member
         templatized 2nd
         vs. non-member 2nd
    non-member
         templates and 2nd
         type conversions and 2nd 3rd 4th
     non-member non-friend, vs member 2nd
     non-virtual, meaning
     return values, modifying
     signatures, explicit interfaces and
    static
         ctors and dtors and
    virtual [See virtual functions]

 < Day Day Up >  



 < Day Day Up >  

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z] 

Gamma, Erich
Geller, Alan
generalized assignment
generalized copy constructors
generative programming
generic programming support, in Boost
get, smart pointers and
goddess [See Urbano, Nancy L.]
goto, delete and
Graph library, in Boost
grep, casts and
guarantees, exception safety 2nd
Gutnik, Gene
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Handle classes 2nd
handles
     dangling
     encapsulation and
     operator[i] and
     returning 2nd
has-a relationship
hash tables, in TR1
Hastings, Battle of
Haugland, Solveig
head scratching, avoiding
header files [See headers]
headers
     for declarations vs. for definitions
     inline functions and
     namespaces and
     of C++ standard library
     templates and
     usage, in this book
hello world, template metaprogramming and
Helm, Richard
Henney, Kevlin
Hicks, Cory
hiding names [See name hiding]
higher-order programming and function object utilities, in Boost
highlighting, in this book
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identity test
if...else for types
implementation-dependent behavior, warnings and
implementations
     decoupling from interfaces
     default, danger of 2nd
     inheritance of 2nd
     of derived class constructors and destructors
     of Interface classes
     references
     std::max
     std::swap
implicit inline request
implicit interfaces 2nd
implicit type conversions vs. explicit 2nd
implicitly generated functions 2nd 3rd
     disallowing 2nd
incompatibilities, with built-in types
incorrect code and efficiency
infinite loop, in operator new
inheritance
     accidental 2nd
     combining with templates
     common features and
     intuition and 2nd
     mathematics and
     mixin-style
     name hiding and 2nd
     of implementation 2nd
     of interface 2nd
     of interface vs. implementation 2nd
     operator new and 2nd
     penguins and birds and 2nd
     private 2nd
     protected
     public 2nd
     rectangles and squares and 2nd
     redefining non-virtual functions and 2nd
     scopes and
     sharing features and
inheritance, multiple 2nd
     ambiguity and
     combining public and private
     deadly diamond
inheritance, private
     combining with public
     eliminating
     for redefining virtual functions
     meaning
     vs. composition
inheritance, public
     combining with private
     is-a relationship and 2nd
     meaning of
     name hiding and
     virtual inheritance and
inheritance, virtual 2nd
init function
initialization 2nd 3rd
     assignment vs
     built-in types 2nd
     const members
     const static members
     default, unintended
     in-class, of static const integral members
     local static objects
     non-local static objects
     objects 2nd
     reference members
     static members
     virtual base classes and
     vs. assignment 2nd 3rd



     with vs. without arguments
initialization order
     class members
     importance of
     non-local statics 2nd
inline functions
     aaa] [See also inlining[inline functions]
     address of
     as request to compiler
     debuggers and
     declaring
     headers and
     optimizing compilers and
     recursion and
     vs. #define 2nd
     vs. macros, efficiency and
inlining 2nd
     constructors/destructors and 2nd
     dynamic linking and
     Handle classes and
     inheritance and 2nd
     Interface classes and
     library design and
     recompiling and
     relinking and
     suggested strategy for
     templates and
     time of
     virtual functions and
input iterators
input_iterator_tag
input_iterator_tag<Iter*>
insomnia
instructions, reordering by compilers
integral types
inter-language support, in Boost
Interface classes 2nd
interfaces
     decoupling from implementations
     definition of
     design considerations 2nd
     explicit, signatures and
     implicit 2nd
         expressions and
     inheritance of 2nd
     new types and 2nd
     separating from implementations
     template parameters and 2nd
     undeclared
internationalization, library support for
invalid array index, undefined behavior and
invariants
     NVI and
     over specialization
is-a relationship 2nd
is-implemented-in-terms-of 2nd 3rd
istream_iterators
iterator categories 2nd
iterator_category
iterators as handles
iterators, vs. const_iterators
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Jagdhar, Emily
Janert, Philipp
Java 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Johnson, Ralph
Johnson, Tim 2nd 3rd
Josuttis, Nicolai M
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Kaelbling, Mike
Kakulapati, Gunavardhan
Kalenkovich, Eugene
Kennedy, Glenn
Kernighan, Brian 2nd 3rd 4th
Kimura, Junichi
Kirman, Jak
Kirmse, Andrew
Knox, Timothy 2nd
Koenig lookup
Kourounis, Drosos
Kreuzer, Gerhard
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Laeuchli, Jesse
Lambda library, in Boost
Langer, Angelika
languages, other, compatibility with
Lanzetta, Michael
late binding
layering [See composition]
layouts, objects vs. arrays
Lea, Doug
leaks, exception-safe code and
Leary-Coutu, Chanda
Lee, Sam
legacy code, exception-safety and
Lejter, Moises 2nd
lemur, ring-tailed
Lewandowski, Scott
lhs, as parameter name
Li, Greg
link-time errors 2nd
link-time inlining
list
local static objects
     definition of
     initialization of
locales
locks, RAII and 2nd
logic_error class
logically const member functions 2nd
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mailing list for Scott Meyers
maintenance
     common base classes and
     delete and
managing resources [See resource management]
Manis, Vincent
Marin, Alex
math and numerics utilities, in Boost 2nd
mathematical functions, in TR1
mathematics, inheritance and
matrix operations, optimizing
Matthews, Leon
max, std, implementation of
Meadowbrooke, Chrysta
meaning
     of classes without virtual functions
     of composition
     of non-virtual functions
     of pass-by-value
     of private inheritance
     of public inheritance
     of pure virtual functions
     of references
     of simple virtual functions
measuring encapsulation
Meehan, Jim
member data [See data members]
member function templates 2nd
member functions
     bitwise const 2nd
     common design errors 2nd
     const 2nd
     duplication and 2nd
     encapsulation and
     implicitly generated 2nd 3rd
         disallowing 2nd
     logically const 2nd
     private
     protected
     vs. non-member functions 2nd
     vs. non-member non-friends 2nd
member initialization
     for const static integral members
     lists 2nd
         vs. assignment 2nd
     order
memory allocation
     arrays and 2nd
     error handling for 2nd
memory leaks, new expressions and
memory management
     functions, replacing 2nd
     multithreading and 2nd
     utilities, in Boost
metaprogramming [See template metaprogramming]
Meyers, Scott
     mailing list for
     web site for
mf, as identifier
Michaels, Laura
Mickelsen, Denise
minimizing compilation dependencies 2nd 3rd
Mittal, Nishant
mixed-mode arithmetic 2nd 3rd 4th
mixin-style inheritance
modeling is-implemented-in-terms-of 2nd
modifying function return values
Monty Python, allusion to
Moore, Vanessa
More Effective C++ 2nd 3rd
     compared to Effective C++
     contents of 2nd



More Exceptional C++ 2nd
Moroff, Hal
MPL library, in Boost 2nd
multiparadigm programming language, C++ as
multiple inheritance [See inheritance]
multithreading
     memory management routines and 2nd
     non-const static objects and
     treatment in this book
mutable 2nd
mutexes, RAII and 2nd
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Nagler, Eric
Nahil, Julie
name hiding
     inheritance and 2nd
     operators new/delete and 2nd
     using declarations and
name lookup
     this-> and 2nd
     using declarations and
name shadowing [See name hiding]
names
     accessing in templatized bases 2nd
     available in both C and C++
     dependent
     hidden by derived classes
     nested, dependent
     non-dependent
namespaces
     headers and
     namespace pollution in a class
Nancy [See Urbano, Nancy L.]
Nauroth, Chris
nested dependent names
nested dependent type names, typename and
new
     aaa] [See also operator new[new]
     expressions, memory leaks and
     forms of 2nd
     operator new and
     relationship to constructors
     smart pointers and 2nd
new types, interface design and 2nd
new-handler 2nd
     definition of
     deinstalling
     identifying
new-handling functions, behavior of
new-style casts
non-dependent names
non-local static objects, initialization of
non-member functions
     member functions vs 2nd
     templates and 2nd
     type conversions and 2nd 3rd 4th
non-member non-friend functions 2nd
non-type parameters
non-virtual
     functions 2nd
         static binding of
    interface idiom [See NVI]
noncopyable base class, in Boost
nothrow guarantee, the
nothrow new
null pointer
     deleting
     dereferencing
     set_new_handler and
NVI 2nd 3rd
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object-oriented principles, encapsulation and
objects
     21 returning, vs. references
     alignment of 2nd
     compilation dependencies and
     copying all parts
     defining
     definitions, postponing 2nd
     handles to internals of 2nd
     initialization, with vs. without arguments
     layout vs. array layout
     multiple addresses for
     partial copies of
     placing in shared memory
     resource management and 2nd
     returning, vs. references
     size, pass-by-value and
     sizes, determining
     vs. variables
old-style casts
Oldham, Jeffrey D
operations, reordering by compilers
operator delete
     aaa] [See also delete[operator delete]
     behavior of 2nd
     efficiency of
     name hiding and 2nd
     non-member, pseudocode for
     placement
     replacing 2nd
     standard forms of
     virtual destructors and
operator delete[i] 2nd 3rd
operator new
     aaa] [See also new[operator new]
     arrays and 2nd
     bad_alloc and 2nd
     behavior of 2nd
     efficiency of
     infinite loop within
     inheritance and 2nd
     name hiding and 2nd
     new-handling functions and
     non-member, pseudocode for
     out-of-memory conditions and 2nd 3rd 4th
     placement
     replacing 2nd
     returning 0 and 2nd
     standard forms of
     std::bad_alloc and 2nd
operator new[i] 2nd 3rd
operator(_) (function call operator)
operator* for Rationals
operator=
     const members and 2nd
     default implementation
     implicit generation
     reference members and 2nd
     return value of 2nd
     self-assignment and 2nd
     when not implicitly generated 2nd
operator[i]
     overloading on const 2nd
     return type of
optimization
     by compilers
     during compilation
         inline functions and
order
     initialization of non-local statics 2nd
     member initialization
ostream_iterators



other languages, compatibility with
output iterators
output_iterator_tag
overloading
     as if...else for types
     on const 2nd
     std::swap
overrides of virtuals, preventing
ownership transfer
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Pal, Balog
parameters
     aaa] [See also pass-by-value, pass-by-reference, passing small objects[parameters]
     default 2nd
     evaluation order
     non-type, for templates
    type conversions and [See type conversions]
Pareto Principle [See 80-20 rule]
parsing problems, nested dependent names and
partial copies
partial specialization
     function templates
     std::swap
parts, of objects, copying all
pass-by-reference, efficiency and
pass-by-reference-to-const, vs pass-by-value 2nd
pass-by-value
     copy constructor and
     efficiency of 2nd
     meaning of
     object size and
     vs. pass-by-reference-to-const 2nd
patterns [See design patterns]
Pedersen, Roger E
penguins and birds 2nd
performance [See efficiency]
Persephone 2nd 3rd 4th 5th 6th
Person::age
pessimization
physical constness [See const, const;bitwise]
pimpl idiom
     definition of
     exception-safe code and
placement delete [See operator delete]
placement new [See operator new]
Plato
pointer arithmetic and undefined behavior
pointers
     aaa] [See also smart pointers[pointers]
     as handles
     bitwise const member functions and
     compilation dependencies and
     const
         in headers
     null, dereferencing
     template parameters and
     to single vs. multiple objects, and delete
polymorphic base classes, destructors and 2nd
polymorphism 2nd
     compile-time
     runtime
Pool library, in Boost 2nd
postponing variable definitions 2nd
Prasertsith, Chuti
preconditions, NVI and
pregnancy, exception-safe code and
private data members, why 2nd
private inheritance [See inheritance]
private member functions
private virtual functions
properties
protected
     data members
    inheritance [See inheritance]
     member functions
     members, encapsulation of
public inheritance [See inheritance]
pun, really bad
pure virtual destructors
     defining
     implementing
pure virtual functions



     defining 2nd 3rd
     meaning
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Rabbani, Danny
Rabinowitz, Marty
RAII 2nd 3rd 4th
     classes
     copying behavior and 2nd
     encapsulation and
     mutexes and 2nd
random access iterators
random number generation, in TR1
random_access_iterator_tag
Rational::operator* implementation
RCSP [See smart pointers]
reading uninitialized values
rectangles and squares 2nd
recursive functions, inlining and
redefining inherited non-virtual functions 2nd
Reed, Kathy
Reeves, Jack
references
     as handles
     compilation dependencies and
     functions returning
     implementation
     meaning
     members, initialization of
     returning 2nd
     to static object, as function return value 2nd
register usage, objects and
regular expressions, in TR1
reinterpret_cast 2nd
     aaa] [See also casting[reinterpret_cast]
relationships
     has-a
     is-a 2nd
     is-implemented-in-terms-of 2nd 3rd
reordering operations, by compilers
replacing definitions with declarations
replacing new/delete 2nd
replication [See duplication]
reporting, bugs in this book
Resource Acquisition Is Initialization [See RAII]
resource leaks, exception-safe code and
resource management
     aaa] [See also RAII[resource management]
     copying behavior and 2nd
     objects and 2nd
     raw resource access and 2nd
resources, managing objects and 2nd
return by reference 2nd
return types
     const
     objects vs. references 2nd
     of operator[i]
return value of operator= 2nd
returning handles 2nd
reuse [See code reuse]
revenge, compilers taking
rhs, as parameter name
Roze, Mike
rule of 80-20 2nd
runtime
     errors
     inlining
     polymorphism
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Saks, Dan
Santos, Eugene, Jr
Satch
Satyricon
Scherpelz, Jeff
Schirripa, Steve
Schober, Hendrik 2nd 3rd
Schroeder, Sandra
scoped_array 2nd 3rd
scopes, inheritance and
sealed classes, in C#
sealed methods, in C#
second edition [See 2nd edition]
self-assignment, operator= and 2nd
set
set_new_handler
     class-specific, implementing
     using 2nd
set_unexpected function
shadowing, names [See name shadowing]
Shakespeare, William
shared memory, placing objects in
shared_array
shared_ptr implementation in Boost, costs
sharing code [See duplication, duplication;avoiding]
sharing common features
Shewchuk, John
side effects, exception safety and
signatures
     definition of
     explicit interfaces and
simple virtual functions, meaning of
Singh, Siddhartha
Singleton pattern
size_t
sizeof 2nd
     empty classes and
     freestanding classes and
sizes
     of freestanding classes
     of objects
sleeping pills
slist
Smallberg, David 2nd 3rd
Smalltalk
smart pointers 2nd 3rd 4th 5th 6th 7th
     aaa] [See also std::auto_ptr and tr1::shared_ptr[smart pointers]
     get and
     in Boost 2nd 3rd
         web page for
     in TR1
     newed objects and 2nd
     type conversions and 2nd
Socrates
Some Must Watch While Some Must Sleep
Somers, Jeff
specialization
     invariants over
     partial, of std::swap
     total, of std::swap 2nd
specification [See interfaces]
SquareMatrix name hiding example
squares and rectangles 2nd
standard exception hierarchy
standard forms of operator new/delete
standard library [See C++ standard library, C standard library]
standard template library [See STL]
Stasko, John
statements using new, smart pointers and 2nd
static
    binding
         of default parameters



         of non-virtual functions
     objects, returning references to 2nd
     type, definition of
static functions, ctors and dtors and
static members
     const member functions and
     definition
     initialization
static objects
     definition of
     multithreading and
static_cast 2nd 3rd 4th 5th 6th
     aaa] [See also casting[static_cast]
std namespace, specializing templates in
std::auto_ptr 2nd 3rd
     conversion to tr1::shared_ptr and
     delete [i] and
     pass by const and
std::auto_ptr, deleter support and
std::char_traits
std::iterator_traits, pointers and
std::list
std::max, implementation of
std::numeric_limits
std::set 2nd
std::size_t
std::swap
     aaa] [See also swap[std::swap]
     implementation of
     overloading
     partial specialization of
     total specialization of 2nd
std::tr1 [See TR1]
stepping through functions, inlining and
STL
     allocators
     as sublanguage of C++
     containers, swap and
     definition of
     iterator categories in 2nd
Strategy pattern 2nd
string and text utilities, in Boost
strong guarantee, the
Stroustrup, Bjarne 2nd
Stroustrup, Nicholas 2nd
Sutter, Herb 2nd 3rd 4th 5th 6th
swallowing exceptions
swap
     aaa] [See also std::swap[swap]
     calling
     exceptions and
     STL containers and
     when to write
symbols, available in both C and C++
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template metaprogramming
     efficiency and
     hello world in
     pattern implementations and
     support in Boost
     support in TR1
Template Method pattern
templates
     code bloat, avoiding in 2nd
     combining with inheritance
     defining
     errors, when detected
     expression
     headers and
     in std, specializing
     inlining and
     instantiation of
     member functions 2nd
     names in base classes and 2nd
     non-type parameters
     parameters, omitting
     pointer type parameters and
     shorthand for
     specializations 2nd
         partial 2nd
         total 2nd 3rd
     type conversions and 2nd
     type deduction for 2nd
temporary objects, eliminated by compilers
terminology, used in this book 2nd
testing and correctness, Boost support for
text and string utilities, in Boost
third edition [See 3rd edition]
this->, to force base class lookup 2nd
threading [See multithreading]
Tilly, Barbara
TMP [See template metaprogramming]
Tondo, Clovis
Topic, Michael
total class template specialization
total specialization of std::swap 2nd
total template specializations
TR1 2nd 3rd
     array component
     bind component
     Boost and 2nd 3rd 4th
     boost as synonym for std::tr1
     C99 compatibility component
     function component
     hash tables component
     math functions component
     mem_fn component
     random numbers component
     reference_wrapper component
     regular expression component
     result_of component
     smart pointers component
     support for TMP
     tuples component
     type traits component
tr1::array
tr1::bind 2nd
tr1::function 2nd 3rd
tr1::mem_fn
tr1::reference_wrapper
tr1::result_of
tr1::shared_ptr 2nd 3rd 4th 5th
     construction from other smart pointers and
     cross-DLL problem and
     delete [i] and
     deleter support in  2nd 3rd
     member template ctors in 2nd



tr1::tuple
tr1::unordered_map 2nd
tr1::unordered_multimap
tr1::unordered_multiset
tr1::unordered_set
tr1::weak_ptr
traits classes 2nd
transfer, ownership
translation unit, definition of
Trux, Antoine
Tsao, Mike
tuples, in TR1
type conversions 2nd
     explicit ctors and
     implicit
     implicit vs. explicit 2nd
     non-member functions and 2nd 3rd 4th
     private inheritance and
     smart pointers and 2nd
     templates and 2nd
type deduction, for templates 2nd
type design 2nd
type traits, in TR1
typedef, typename and 2nd
typedefs, new/delete and
typeid 2nd 3rd 4th
typelists
typename 2nd
     compiler variations and
     typedef and 2nd
     vs. class
types
     built-in, initialization 2nd
     compatible, accepting all 2nd
     if...else for
     integral, definition of
     traits classes and 2nd
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undeclared interface
undefined behavior
     advance and
     array deletion and
     augmenting the std namespace
     casting + pointer arithmetic and
     definition of
     destroyed objects and
     exceptions and
     initialization order and
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     null pointers and
     object deletion and 2nd 3rd
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     cost of
     exceptions and
Urbano, Nancy L 2nd 3rd 4th [See also goddess]
URLs
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value, pass by [See pass-by-value]
Van Wyk, Chris 2nd
Vandevoorde, David
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virtual constructors 2nd
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     implementation 2nd
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     preventing overrides
     private
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     simple, meaning of
     uninitialized data members and
virtual inheritance [See inheritance]
virtual table
virtual table pointer
Vlissides, John
vptr
vtbl
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Widget class, as used in this book
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Wiegers, Karl
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XP, allusion to
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