
ptg7987094

in One Hour a Day

C++
SamsTeachYourself

Siddhartha Rao

ptg18655082

Sams Teach Yourself C++ in One Hour a Day,
Eighth Edition

Copyright © 2017 by Pearson Education, Inc.

ISBN-13: 978-0-7897-5774-6

ISBN-10: 0-7897-5774-5

Library of Congress Control Number: 2016958138

First Printing: December 2016

http://www.pearsoned.com/permissions/

ptg18655082

Contents

Introduction 1

PART I: The Basics

LESSON 1: Getting Started 5

A Brief History of C++ . 6

Connection to C . 6

Advantages of C++. 6

Evolution of the C++ Standard . 7

Who Uses Programs Written in C++? . 7

Programming a C++ Application . 7

Steps to Generating an Executable . 7

Analyzing Errors and “Debugging” . 8

Integrated Development Environments . 8

Programming Your First C++ Application . 9

Building and Executing Your First C++ Application . 10

Understanding Compiler Errors . 12

What’s New in C++? . 12

LESSON 2: The Anatomy of a C++ Program 17

Parts of the Hello World Program . 18

Preprocessor Directive #include . 18

The Body of Your Program main() . 19

Returning a Value . 20

The Concept of Namespaces . 21

Comments in C++ Code . 22

Functions in C++ . 23

Basic Input Using std::cin and Output Using std::cout . 26

LESSON 3: Using Variables, Declaring Constants 31

What Is a Variable? . 32

Memory and Addressing in Brief . 32

Declaring Variables to Access and Use Memory . 32

ptg18655082

Declaring and Initializing Multiple Variables of a Type . 34

Understanding the Scope of a Variable . 35

Global Variables. 37

Naming Conventions . 38

Common Compiler-Supported C++ Variable Types . 39

Using Type bool to Store Boolean Values . 40

Using Type char to Store Character Values . 41

The Concept of Signed and Unsigned Integers . 41

Signed Integer Types short, int, long, and long long . 42

Unsigned Integer Types unsigned short, unsigned int,

unsigned long, and unsigned long long . 42

Avoid Overflow Errors by Selecting Correct

Data Types . 43

Floating-Point Types float and double . 45

Determining the Size of a Variable Using sizeof . 46

Avoid Narrowing Conversion Errors by Using

List Initialization . 48

Automatic Type Inference Using auto . 48

Using typedef to Substitute a Variable’s Type . 50

What Is a Constant? . 50

Literal Constants . 51

Declaring Variables as Constants Using const . 52

Constant Expressions Using constexpr . 53

Enumerations . 55

Defining Constants Using #define . 57

Keywords You Cannot Use as Variable or Constant Names . 58

LESSON 4: Managing Arrays and Strings 63

What Is an Array? . 64

The Need for Arrays . 64

Declaring and Initializing Static Arrays . 65

How Data Is Stored in an Array . 66

Accessing Data Stored in an Array . 67

Modifying Data Stored in an Array . 69

Multidimensional Arrays . 71

Declaring and Initializing Multidimensional Arrays . 72

Accessing Elements in a Multidimensional Array . 73

ptg18655082

Dynamic Arrays . 74

C-style Character Strings . 76

C++ Strings: Using std::string . 79

LESSON 5: Working with Expressions, Statements, and Operators 85

Statements . 86

Compound Statements or Blocks . 87

Using Operators . 87

The Assignment Operator (=) . 87

Understanding L-values and R-values . 87

Operators to Add (+), Subtract (-), Multiply (*), Divide (/),

and Modulo Divide (%) . 88

Operators to Increment (++) and Decrement (--) . 89

To Postfix or to Prefix? . 90

Equality Operators (==) and (!=) . 92

Relational Operators . 92

Logical Operations NOT, AND, OR, and XOR . 95

Using C++ Logical Operators NOT (!), AND (&&), and OR (||) . 96

Bitwise NOT (~), AND (&), OR (|), and XOR (^) Operators . 100

Bitwise Right Shift (>>) and Left Shift (<<) Operators . 102

Compound Assignment Operators . 104

Using Operator sizeof to Determine the Memory Occupied by a Variable 106

Operator Precedence . 108

LESSON 6: Controlling Program Flow 113

Conditional Execution Using if … else . 114

Conditional Programming Using if … else . 115

Executing Multiple Statements Conditionally . 117

Nested if Statements . 118

Conditional Processing Using switch-case. 122

Conditional Execution Using Operator (?:). 126

Getting Code to Execute in Loops . 128

A Rudimentary Loop Using goto . 128

The while Loop . 130

The do…while Loop . 132

The for Loop . 133

The Range-Based for Loop . 137

ptg18655082

Modifying Loop Behavior Using continue and break . 139

Loops That Don’t End—That Is, Infinite Loops . 140

Controlling Infinite Loops . 141

Programming Nested Loops . 143

Using Nested Loops to Walk a Multidimensional Array . 145

Using Nested Loops to Calculate Fibonacci Numbers . 147

LESSON 7: Organizing Code with Functions 151

The Need for Functions . 152

What Is a Function Prototype? . 153

What Is a Function Definition? . 154

What Is a Function Call, and What Are Arguments? . 154

Programming a Function with Multiple Parameters . 155

Programming Functions with No Parameters or No Return Values . 156

Function Parameters with Default Values . 157

Recursion—Functions That Invoke Themselves . 159

Functions with Multiple Return Statements . 161

Using Functions to Work with Different Forms of Data . 162

Overloading Functions . 163

Passing an Array of Values to a Function . 165

Passing Arguments by Reference . 166

How Function Calls Are Handled by the Microprocessor . 168

Inline Functions . 169

Automatic Return Type Deduction . 171

Lambda Functions . 172

LESSON 8: Pointers and References Explained 177

What Is a Pointer? . 178

Declaring a Pointer . 178

Determining the Address of a Variable Using the Reference Operator (&) 179

Using Pointers to Store Addresses . 180

Access Pointed Data Using the Dereference Operator (*) . 183

What Is the sizeof() of a Pointer? . 185

Dynamic Memory Allocation . 187

Using Operators new and delete to Allocate

and Release Memory Dynamically . 187

Effect of Incrementing and Decrementing Operators

(++ and --) on Pointers . 191

ptg18655082

Using the const Keyword on Pointers . 193

Passing Pointers to Functions . 194

Similarities between Arrays and Pointers . 195

Common Programming Mistakes When Using Pointers . 198

Memory Leaks . 198

When Pointers Don’t Point to Valid Memory Locations . 199

Dangling Pointers (Also Called Stray or Wild Pointers) . 200

Checking Whether Allocation Request Using new Succeeded . 202

Pointer Programming Best-Practices . 204

What Is a Reference? . 205

What Makes References Useful? . 206

Using Keyword const on References . 208

Passing Arguments by Reference to Functions . 208

PART II: Fundamentals of Object-Oriented C++ Programming

LESSON 9: Classes and Objects 215

The Concept of Classes and Objects . 216

Declaring a Class . 216

An Object as an Instance of a Class . 217

Accessing Members Using the Dot Operator (.) . 218

Accessing Members Using the Pointer Operator (->) . 219

Keywords public and private . 220

Abstraction of Data via Keyword private . 222

Constructors . 224

Declaring and Implementing a Constructor . 224

When and How to Use Constructors . 225

Overloading Constructors . 227

Class Without a Default Constructor . 228

Constructor Parameters with Default Values . 230

Constructors with Initialization Lists. 231

Destructor . 233

Declaring and Implementing a Destructor . 234

When and How to Use a Destructor . 234

Copy Constructor . 237

Shallow Copying and Associated Problems . 237

Ensuring Deep Copy Using a Copy Constructor . 240

Move Constructors Help Improve Performance . 244

ptg18655082

Different Uses of Constructors and the Destructor . 246

Class That Does Not Permit Copying . 246

Singleton Class That Permits a Single Instance . 247

Class That Prohibits Instantiation on the Stack . 249

Using Constructors to Convert Types . 251

this Pointer . 254

sizeof() a Class . 255

How struct Differs from class . 257

Declaring a friend of a class . 258

union: A Special Data Storage Mechanism . 260

Declaring a Union . 260

Where Would You Use a union? . 261

Using Aggregate Initialization on Classes and Structs . 263

constexpr with Classes and Objects . 266

LESSON 10: Implementing Inheritance 271

Basics of Inheritance . 272

Inheritance and Derivation . 272

C++ Syntax of Derivation . 274

Access Specifier Keyword protected . 276

Base Class Initialization—Passing Parameters to the Base Class . 279

Derived Class Overriding Base Class’s Methods . 281

Invoking Overridden Methods of a Base Class . 283

Invoking Methods of a Base Class in a Derived Class . 284

Derived Class Hiding Base Class’s Methods . 286

Order of Construction . 288

Order of Destruction . 288

Private Inheritance . 291

Protected Inheritance . 293

The Problem of Slicing . 297

Multiple Inheritance . 297

Avoiding Inheritance Using final . 300

LESSON 11: Polymorphism 305

Basics of Polymorphism . 306

Need for Polymorphic Behavior . 306

Polymorphic Behavior Implemented Using Virtual Functions . 308

ptg18655082

Need for Virtual Destructors . 310

How Do virtual Functions Work? Understanding

the Virtual Function Table . 314

Abstract Base Classes and Pure Virtual Functions . 318

Using virtual Inheritance to Solve the Diamond Problem . 321

Specifier Override to Indicate Intention to Override . 326

Use final to Prevent Function Overriding . 327

Virtual Copy Constructors? . 328

LESSON 12: Operator Types and Operator Overloading 335

What Are Operators in C++? . 336

Unary Operators . 337

Types of Unary Operators . 337

Programming a Unary Increment/Decrement Operator . 338

Programming Conversion Operators . 341

Programming Dereference Operator (*) and Member

Selection Operator (->) . 344

Binary Operators. 346

Types of Binary Operators . 346

Programming Binary Addition (a+b) and Subtraction (a-b) Operators. 347

Implementing Addition Assignment (+=) and Subtraction

Assignment (-=) Operators . 350

Overloading Equality (==) and Inequality (!=) Operators . 352

Overloading <, >, <=, and >= Operators . 354

Overloading Copy Assignment Operator (=) . 357

Subscript Operator ([]) . 360

Function Operator () . 364

Move Constructor and Move Assignment Operator for High

Performance Programming . 365

The Problem of Unwanted Copy Steps . 365

Declaring a Move Constructor and Move Assignment Operator . 366

User Defined Literals . 371

Operators That Cannot Be Overloaded . 373

LESSON 13: Casting Operators 377

The Need for Casting . 378

Why C-Style Casts Are Not Popular with Some C++ Programmers . 379

ptg18655082

The C++ Casting Operators . 379

Using static_cast . 380

Using dynamic_cast and Runtime Type Identification . 381

Using reinterpret_cast . 384

Using const_cast . 385

Problems with the C++ Casting Operators . 386

LESSON 14: An Introduction to Macros and Templates 391

The Preprocessor and the Compiler . 392

Using Macro #define to Define Constants . 392

Using Macros for Protection against Multiple Inclusion . 395

Using #define to Write Macro Functions. 396

Why All the Parentheses? . 398

Using Macro assert to Validate Expressions . 399

Advantages and Disadvantages of Using Macro Functions . 400

An Introduction to Templates . 402

Template Declaration Syntax . 402

The Different Types of Template Declarations . 403

Template Functions . 403

Templates and Type Safety. 405

Template Classes . 406

Declaring Templates with Multiple Parameters . 407

Declaring Templates with Default Parameters . 408

Sample Template class<> HoldsPair . 408

Template Instantiation and Specialization . 410

Template Classes and static Members . 412

Variable Templates, Also Called Variadic Templates . 413

Using static_assert to Perform Compile-Time Checks . 417

Using Templates in Practical C++ Programming . 418

PART III: Learning the Standard Template Library (STL)

LESSON 15: An Introduction to the Standard Template Library 421

STL Containers . 422

Sequential Containers . 422

Associative Containers . 423

Container Adapters . 425

ptg18655082

STL Iterators . 425

STL Algorithms . 426

The Interaction between Containers and Algorithms Using Iterators . 427

Using Keyword auto to Let Compiler Define Type . 429

Choosing the Right Container . 429

STL String Classes . 432

LESSON 16: The STL String Class 435

The Need for String Manipulation Classes . 436

Working with the STL String Class . 437

Instantiating the STL String and Making Copies . 437

Accessing Character Contents of a std::string . 440

Concatenating One String to Another . 442

Finding a Character or Substring in a String . 444

Truncating an STL string . 445

String Reversal . 448

String Case Conversion . 449

Template-Based Implementation of an STL String . 450

C++14 operator “”s in std::string . 451

LESSON 17: STL Dynamic Array Classes 455

The Characteristics of std::vector . 456

Typical Vector Operations . 456

Instantiating a Vector . 456

Inserting Elements at the End Using push_back() . 458

List Initialization . 459

Inserting Elements at a Given Position Using insert() . 459

Accessing Elements in a Vector Using Array Semantics . 462

Accessing Elements in a Vector Using Pointer Semantics . 464

Removing Elements from a Vector . 465

Understanding the Concepts of Size and Capacity . 467

The STL deque Class . 469

LESSON 18: STL list and forward_list 475

The Characteristics of a std::list . 476

Basic list Operations . 476

Instantiating a std::list Object . 476

Inserting Elements at the Front or Back of the List . 478

ptg18655082

Inserting at the Middle of the List . 479

Erasing Elements from the List . 482

Reversing and Sorting Elements in a List . 483

Reversing Elements Using list::reverse() . 484

Sorting Elements . 485

Sorting and Removing Elements from a list That Contains

Instances of a class . 487

std::forward_list Introduced in C++11 . 490

LESSON 19: STL Set Classes 495

An Introduction to STL Set Classes . 496

Basic STL set and multiset Operations . 496

Instantiating a std::set Object . 497

Inserting Elements in a set or multiset . 499

Finding Elements in an STL set or multiset . 500

Erasing Elements in an STL set or multiset . 502

Pros and Cons of Using STL set and multiset . 507

STL Hash Set Implementation std::unordered_set and

std::unordered_multiset . 507

LESSON 20: STL Map Classes 513

An Introduction to STL Map Classes . 514

Basic std::map and std::multimap Operations . 515

Instantiating a std::map or std::multimap . 515

Inserting Elements in an STL map or multimap . 517

Finding Elements in an STL map . 519

Finding Elements in an STL multimap . 522

Erasing Elements from an STL map or multimap . 522

Supplying a Custom Sort Predicate . 525

STL’s Hash Table-Based Key-Value Container. 528

How Hash Tables Work . 529

Using unordered_map and unordered_multimap . 529

PART IV: More STL

LESSON 21: Understanding Function Objects 537

The Concept of Function Objects and Predicates. 538

Typical Applications of Function Objects . 538

ptg18655082

Unary Functions . 538

Unary Predicate . 543

Binary Functions . 545

Binary Predicate . 547

LESSON 22: Lambda Expressions 553

What Is a Lambda Expression? . 554

How to Define a Lambda Expression . 555

Lambda Expression for a Unary Function . 555

Lambda Expression for a Unary Predicate . 557

Lambda Expression with State via Capture Lists [...] . 559

The Generic Syntax of Lambda Expressions . 560

Lambda Expression for a Binary Function . 562

Lambda Expression for a Binary Predicate . 564

LESSON 23: STL Algorithms 569

What Are STL Algorithms? . 570

Classification of STL Algorithms . 570

Non-Mutating Algorithms . 570

Mutating Algorithms . 571

Usage of STL Algorithms . 573

Finding Elements Given a Value or a Condition . 573

Counting Elements Given a Value or a Condition . 576

Searching for an Element or a Range in a Collection . 577

Initializing Elements in a Container to a Specific Value . 580

Using std::generate() to Initialize Elements to a Value

Generated at Runtime . 582

Processing Elements in a Range Using for_each() . 583

Performing Transformations on a Range Using std::transform() 585

Copy and Remove Operations . 588

Replacing Values and Replacing Element

Given a Condition . 590

Sorting and Searching in a Sorted Collection and Erasing Duplicates 592

Partitioning a Range . 595

Inserting Elements in a Sorted Collection . 597

ptg18655082

LESSON 24: Adaptive Containers: Stack and Queue 603

The Behavioral Characteristics of Stacks and Queues . 604

Stacks . 604

Queues . 604

Using the STL stack Class . 605

Instantiating the Stack . 605

Stack Member Functions . 606

Insertion and Removal at Top Using push() and pop() . 607

Using the STL queue Class . 609

Instantiating the Queue . 609

Member Functions of a queue . 610

Insertion at End and Removal at the Beginning of queue

via push() and pop() . 611

Using the STL Priority Queue . 613

Instantiating the priority_queue Class . 613

Member Functions of priority_queue . 615

Insertion at the End and Removal at the Beginning of priority_queue

via push() and pop() . 616

LESSON 25: Working with Bit Flags Using STL 621

The bitset Class . 622

Instantiating the std::bitset . 622

Using std::bitset and Its Members . 623

Useful Operators Featured in std::bitset . 624

std::bitset Member Methods . 625

The vector<bool> . 627

Instantiating vector<bool> . 627

vector<bool> Functions and Operators . 628

PART V: Advanced C++ Concepts

LESSON 26: Understanding Smart Pointers 633

What Are Smart Pointers? . 634

The Problem with Using Conventional (Raw) Pointers . 634

How Do Smart Pointers Help? . 634

How Are Smart Pointers Implemented? . 635

Types of Smart Pointers . 636

Deep Copy . 637

Copy on Write Mechanism . 639

ptg18655082

Reference-Counted Smart Pointers . 639

Reference-Linked Smart Pointers . 640

Destructive Copy . 640

Using the std::unique_ptr . 643

Popular Smart Pointer Libraries . 645

LESSON 27: Using Streams for Input and Output 649

Concept of Streams . 650

Important C++ Stream Classes and Objects . 651

Using std::cout for Writing Formatted Data to Console . 652

Changing Display Number Formats Using std::cout . 653

Aligning Text and Setting Field Width Using std::cout . 655

Using std::cin for Input . 656

Using std::cin for Input into a Plain Old Data Type . 656

Using std::cin::get for Input into char* Buffer . 657

Using std::cin for Input into a std::string . 658

Using std::fstream for File Handling . 660

Opening and Closing a File Using open() and close() . 660

Creating and Writing a Text File Using open() and operator<< . 662

Reading a Text File Using open() and operator>> . 663

Writing to and Reading from a Binary File . 664

Using std::stringstream for String Conversions . 666

LESSON 28: Exception Handling 671

What Is an Exception? . 672

What Causes Exceptions? . 672

Implementing Exception Safety via try and catch . 673

Using catch(...) to Handle All Exceptions . 673

Catching Exception of a Type . 674

Throwing Exception of a Type Using throw . 676

How Exception Handling Works . 677

Class std::exception . 680

Your Custom Exception Class Derived from std::exception . 680

LESSON 29: Going Forward 687

What’s Different in Today’s Processors? . 688

How to Better Use Multiple Cores . 689

What Is a Thread? . 689

Why Program Multithreaded Applications? . 690

ptg18655082

How Can Threads Transact Data? . 691

Using Mutexes and Semaphores to Synchronize Threads . 692

Problems Caused by Multithreading . 692

Writing Great C++ Code . 693

C++17: Expected Features . 694

if and switch Support Initializers . 695

Copy Elision Guarantee . 696

std::string_view Avoids Allocation Overheads . 696

std::variant As a Typesafe Alternative to a union . 697

Conditional Code Compilation Using if constexpr. 697

Improved Lambda Expressions . 698

Automatic Type Deduction for Constructors . 698

template<auto> . 699

Learning C++ Doesn’t Stop Here! . 699

Online Documentation . 699

Communities for Guidance and Help . 699

PART VI: Appendixes

APPENDIX A: Working with Numbers: Binary and Hexadecimal 701

APPENDIX B: C++ Keywords 707

APPENDIX C: Operator Precedence 709

APPENDIX D: ASCII Codes 711

APPENDIX E: Answers 717

Index 763

ptg18655082

Introduction

2011 and 2014 were two special years for C++. While C++11 ushered in a dramatic

improvement to C++, introducing new keywords and constructs that increased your

programming efficiency, C++14 brought in incremental improvements that added

finishing touches to the features introduced by C++11.

This book helps you learn C++ in tiny steps. It has been thoughtfully divided into lessons

that teach you the fundamentals of this object-oriented programming language from a

practical point of view. Depending on your proficiency level, you will be able to master

C++ one hour at a time.

Learning C++ by doing is the best way—so try the rich variety of code samples in this

book hands-on and help yourself improve your programming proficiency. These code

snippets have been tested using the latest versions of the available compilers at the

time of writing, namely the Microsoft Visual C++ compiler for C++ and GNU’s C++

compiler, which both offer a rich coverage of C++14 features.

Who Should Read This Book?
The book starts with the very basics of C++. All that is needed is a desire to learn this

language and curiosity to understand how stuff works. An existing knowledge of C++

programming can be an advantage but is not a prerequisite. This is also a book you

might like to refer to if you already know C++ but want to learn additions that have been

made to the language. If you are a professional programmer, Part III, “Learning the

Standard Template Library (STL),” is bound to help you create better, more practical C++

applications.

Visit the publisher’s website and register this book at
informit.com/register for convenient access to any updates,
downloads, or errata that may be available for this book.

NOTE

ptg18655082

2 Sams Teach Yourself C++ in One Hour a Day

Organization of This Book
Depending on your current proficiency levels with C++, you can choose the section

you would like to start with. Concepts introduced by C++11 and C++14 are sprinkled

throughout the book, in the relevant lessons. This book has been organized into five

parts:

 ■ Part I, “The Basics,” gets you started with writing simple C++ applications. In

doing so, it introduces you to the keywords that you most frequently see in C++

code of a variable without compromising on type safety.

 ■ Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you the

concept of classes. You learn how C++ supports the important object-oriented pro-

gramming principles of encapsulation, abstraction, inheritance, and polymorphism.

Lesson 9, “Classes and Objects,” teaches you the concept of move constructor

followed by the move assignment operator in Lesson 12, “Operator Types and

Operator Overloading.” These performance features help reduce unwanted and

unnecessary copy steps, boosting the performance of your application. Lesson

14, “An Introduction to Macros and Templates,” is your stepping stone to writing

powerful generic C++ code.

 ■ Part III, “Learning the Standard Template Library (STL),” helps you write efficient

and practical C++ code using the STL string class and containers. You learn how

std::string makes simple string concatenation operations safe and easy and how

you don’t need to use C-style char* strings anymore. You will be able to use STL

dynamic arrays and linked lists instead of programming your own.

 ■ Part IV, “More STL,” focuses on algorithms. You learn to use sort on containers

such as vector via iterators. In this part, you find out how keyword auto intro-

duced by C++11 has made a significant reduction to the length of your iterator dec-

larations. Lesson 22, “Lambda Expressions,” presents a powerful new feature that

results in significant code reduction when you use STL algorithms.

 ■ Part V, “Advanced C++ Concepts,” explains language capabilities such as smart

pointers and exception handling, which are not a must in a C++ application but help

make a significant contribution toward increasing its stability and quality. This part

ends with a note on best practices in writing good C++ applications, and introduces

you to the new features expected to make it to the next version of the ISO standard

called C++17.

ptg18655082

Introduction 3

Conventions Used in This Book
Within the lessons, you find the following elements that provide additional information:

These boxes provide additional information related to material
you read.NOTE

These boxes alert your attention to problems or side effects that
can occur in special situations.CAUTION

These boxes give you best practices in writing your C++ pro-
grams.TIP

DO DON’T

DO use the “Do/Don’t” boxes to find
a quick summary of a fundamental
principle in a lesson.

DON’T overlook the useful information
offered in these boxes.

This book uses different typefaces to differentiate between code and plain English.

Throughout the lessons, code, commands, and programming-related terms appear in a

computer typeface.

Sample Code for This Book
The code samples in this book are available online for download from the publisher’s

website.

ptg18655082

LESSON 1
Getting Started

Welcome to Sams Teach Yourself C++ in One Hour a Day! You’re ready to
get started on becoming a proficient C++ programmer.

In this lesson, you find out

 ■ Why C++ is a standard in software development

 ■ How to enter, compile, and link your first working C++ program

 ■ What’s new in C++

ptg18655082

6 LESSON 1: Getting Started

A Brief History of C++
The purpose of a programming language is to make consumption of computational

resources easier. C++ is not a new language, yet one that is popularly adopted and continu-

ously evolving. As of the time of writing this book, the newest version of C++ ratified by

the International Organization for Standardization (ISO) is popularly called C++14, pub-

lished in December 2014.

Connection to C
Initially developed by Bjarne Stroustroup at Bell Labs in 1979, C++ was designed to be

a successor to C. In contrast to C, however, C++ was designed to be an object-oriented

language that implements concepts such as inheritance, abstraction, polymorphism, and

encapsulation. C++ features classes that are used to contain member data and member

methods. These member methods operate using member data. The effect of this

organization is that the programmer models data and actions he wants to perform

using the same. Many popular C++ compilers have continued to support

C programming too.

Knowledge or experience in C programming is not a prerequisite
for learning C++. If your ultimate goal is to learn an object-oriented
programming language like C++, then you don’t need to start
learning a procedural language like C.

NOTE

Advantages of C++
C++ is considered an intermediate-level programming language, which means that it

allows for high-level programming of applications as well as low-level programming

of libraries that work close to the hardware. For many programmers, C++ provides the

 optimal mix of being a high-level language that lets one develop complex applications

while supplying flexibility in allowing the developer to extract the best performance via

accurate control of resource consumption and availability.

In spite of the presence of newer programming languages such as Java and others based

on .NET, C++ has remained relevant and has also evolved. Newer languages provide

 certain features like memory management via garbage collection implemented in a run-

time component that endear them to some programmers. Yet, C++ remains the language

of choice for cases where accurate control over their application’s resource consumption

and performance is needed. A tiered architecture where a web server programmed in

C++ serves other components programmed in HTML, Java, or .NET is common.

ptg18655082

Programming a C++ Application 7

1

Evolution of the C++ Standard
Due to its popularity, years of evolution resulted in C++ being accepted and adopted on

many different platforms, most using their own C++ compilers. This evolution caused

compiler-specific deviations and, therefore, interoperability problems and porting issues.

Hence, there emerged a need to standardize the language and provide compiler manufac-

turers with a standard language specification to work with.

In 1998, the first standard version of C++ was ratified by the ISO Committee in

ISO/IEC 14882:1998. Since then the standard has undergone ambitious changes that have

improved the usability of the language, and have extended the support of the standard

library. As of the time of writing this book, the current ratified version of the standard is

ISO/IEC 14882:2014, informally termed C++14.

The current standard may not be immediately or completely
supported by all popular compilers. Therefore, while it may be good
to know of the newest additions to the standard from an academic
point of view, one must remember that these additions are not a
prerequisite to writing good, functioning C++ applications.

NOTE

Who Uses Programs Written in C++?
The list of applications, operating systems, web services, and database and enterprise

software programmed in C++ is a long one. No matter who you are or what you do with

a computer, chances are that you already are consuming software programmed in C++.

In addition to software engineers, C++ is often a language of choice for research work by

physicists and mathematicians.

Programming a C++ Application
When you start Notepad on Windows or the Terminal on Linux, you actually are telling

the processor to run an executable of that program. The executable is the finished prod-

uct that can be run and should do what the programmer intended to achieve.

Steps to Generating an Executable
Writing a C++ program is a first step towards creating an executable that can eventually run

on your operating system. The basic steps in creating applications in C++ are the following:

1. Writing (or programming) C++ code using a text editor

ptg18655082

8 LESSON 1: Getting Started

2. Compiling code using a C++ compiler that converts it to a machine language

 version contained in “object files”

3. Linking the output of the compiler using a linker to get an executable (.exe in

Windows, for example)

Compilation is the step where code in C++, contained typically in text files with the

extension .cpp, is converted into byte code that the processor can execute. The compiler

converts one code file at a time, generating an object file with a .o or .obj extension,

ignoring dependencies that this CPP file may have on code in another file. The linker

joins the dots and resolves these dependencies. In the event of successful linkage, it cre-

ates an executable for the programmer to execute and distribute. This entire process is

also called building an executable.

Analyzing Errors and “Debugging”
Most applications rarely compile and execute as intended at the first run. A huge or

complex application programmed in any language—C++ included—needs many runs as

part of a testing effort to identify errors in code, called bugs. After the bugs are fixed,

the executable is rebuilt, and the testing process continues. Thus, in addition to the three

steps—programming, compiling, and linking—software development also involves a step

called debugging in which the programmer analyzes errors in code and fixes them. Good

development environments supply tools and features that help in debugging.

Integrated Development Environments
Many programmers prefer using an Integrated Development Environment (IDE) in

which the programming, compiling, and linking steps are integrated within a unified

user interface that also supplies debugging features that make it easier to detect errors

and solve problems.

The fastest way to start writing, compiling, and executing C++
applications would be an online IDE that runs in your browser.
Visit one such tool at http://www.tutorialspoint.com/compile_
cpp_online.php.

In addition, install one of the many free C++ IDEs and compilers.
The popular ones are Microsoft Visual Studio Express for
Windows and the GNU C++ Compiler called g++ for Linux.
If you’re programming on Linux, you can install the free Eclipse
IDE to develop C++ applications using the g++ compiler.

TIP

http://www.tutorialspoint.com/compile_cpp_online.php
http://www.tutorialspoint.com/compile_cpp_online.php

ptg18655082

Programming a C++ Application 9

1

DO DON’T

DO save your files with the .cpp
 extension.

DO use a simple text editor or an
Integrated Development Environment
to write code.

DON’T use a .c extension for your
C++ file because some compilers
would compile these files as C
 programs instead of C++.

DON’T use rich text editors like word
processors to write code, because
they often add their own markup in
addition to the code you program.

Programming Your First C++ Application
Now that you know the tools and the steps involved, it is time to program your first

C++ application that follows tradition and displays a “Hello World!” on your screen.

If you are programming on Linux, use a simple text editor (I used gedit on Ubuntu) to

create a CPP file with contents as seen in Listing 1.1.

If you are on Windows and using Microsoft Visual Studio, you may follow these steps:

1. Invoke the New Project Wizard via the menu option File, New Project.

2. Under Visual C++, choose the type Win32 Console Application and name your

project Hello. Click OK.

3. Under Application Settings, uncheck the Precompiled Header option. Click Finish.

4. Replace the automatically generated contents in Hello.cpp with the code snippet

shown in Listing 1.1.

LISTING 1.1 Hello.cpp, the Hello World Program

 1: #include <iostream>
 2:
 3: int main()
 4: {
 5: std::cout << "Hello World!" << std::endl;
 6: return 0;
 7: }

This simple application does nothing more than display a line on the screen using

std::cout. std::endl instructs cout to end that line, and the application exits by

returning 0 to the operating system.

ptg18655082

10 LESSON 1: Getting Started

To read a program to yourself, it might help if you know how to
pronounce the special characters and keywords.

For instance, you can call #include hash-include. Other versions
are sharp-include or pound-include, depending on where you
come from.

Similarly, you can read std::cout as standard-c-out. endl is
end-line.

NOTE

The devil is in the details, meaning that you need to be typing your
code in exactly the same way as shown in the listings. Compilers
are strict, and if you mistakenly put a : at the end of a statement
where a ; is required, you may expect a compilation failure
 accompanied by a long error report!

CAUTION

Building and Executing Your First C++ Application
If you’re using Linux, open the terminal, navigate to the directory containing Hello.

cpp, and invoke the g++ compiler and linker using the command line:

g++ -o hello Hello.cpp

This command instructs g++ to create an executable named hello by compiling your

C++ file Hello.cpp.

If you’re using Microsoft Visual Studio on Windows, press Ctrl+F5 to run your program

directly via the IDE. This compiles, links, and executes your application. Alternatively,

perform the individual steps:

 1. Right-click the project and select Build to generate the executable Hello.exe.

 2. Navigate to the path of the executable using the command-prompt (typically under

the Debug directory of the project folder).

 3. Run it by typing the name of the executable.

Your program composed in Microsoft Visual Studio looks similar to that illustrated in

Figure 1.1.

ptg18655082

Programming a C++ Application 11

1

FIGURE 1.1

A simple “Hello
World” C++
program edited in
Microsoft Visual
Studio Express.

Executing ./hello on Linux or Hello.exe on Windows returns the following output:

Hello World!

Congratulations! You have started on your way to learning one of the most popular and

powerful programming languages of all times!

Significance of the C++ ISO Standard

As you can see, standard compliance helps the code snippet in Listing 1.1 to be
compiled and executed on multiple platforms or operating systems—the prerequi-
site being the availability of standard compliant C++ compilers. Thus, if you need
to create a product that needs to be run by Windows as well as Linux users, for
example, standard compliant programming practices (that don’t use a compiler or
platform-specific semantics) give you an inexpensive way to reach more users with-
out needing to program specifically for every environment you need to be supporting.
This, of course, works optimally for applications that don’t need much interaction at
an operating system level.

ptg18655082

12 LESSON 1: Getting Started

Understanding Compiler Errors
Compilers are painfully exact in their requirements, yet good ones make a decent

effort at telling you where you have made mistakes. If you face a problem in compiling

the application in Listing 1.1, you might get errors that look quite like the following

(introduced deliberately by omitting the semicolon in Line 5):

hello.cpp(6): error C2143: syntax error : missing ';' before 'return'

This error message from the Visual C++ Compiler is quite descriptive: It tells the name

of the file that contains the error, the line number (6, in this case) where you missed a

semicolon, and a description of the error itself accompanied by the error number (C2143,

in this case). Though the punctuation mark was deleted from the fifth line for this

example, the error reported is in the line after because the error became apparent to the

compiler only when it analyzed the return statement which indicated that the previous

statement ought to have been terminated before the return. You can try to add the semi-

colon at the start of the sixth line and the program compiles just fine!

Line-breaks don’t automatically terminate statements in C++ as
they do in some languages such as VBScript.

In C++, it is possible to have a statement spanning multiple
lines. It is also possible to have multiple statements in a line
with each statement terminated by a ;.

NOTE

What’s New in C++?
If you are an experienced C++ programmer, you might have noticed that the basic

C++ program in Listing 1.1 hasn’t changed one bit. While it’s true that C++ remains

backward compliant with previous versions of C++, a lot of work has been done recently

to make the language simpler to use and to program in.

The most recent major update in the language was released as a part of the ISO standard

ratified in 2011, popularly called C++11. C++14 released in 2014 features minor improve-

ments and corrections over C++11.

Features such as auto introduced first in C++11 allow you to define a variable whose

type is deduced automatically by the compiler, compacting wordy declarations without

compromising on type-safety. C++14 extends the same function to return types as well.

Lambda functions are functions without a name. They allow you to write compact

 function objects without long class definitions, significantly reducing lines of code.

ptg18655082

13

1

Q&A

C++ promises programmers the ability to write portable, multithreaded, and yet

 standard-compliant C++ applications. These applications, when correctly built, support

 concurrent execution paradigms and are well positioned to scale in performance when

the user boosts the capability of his hardware configuration by increasing the number

of CPU cores. These are some of the many improvements featured in C++ that are

 discussed throughout this book.

New languages features expected in the next major revision, called C++17, are introduced

at the end of the book in Lesson 29, “Going Forward.”

Summary
In this lesson you learned how to program, compile, link, and execute your first C++

program. This lesson also gave you a brief overview on the evolution of C++ and demon-

strated the effectiveness of a standard in showing that the same program can be compiled

using different compilers on different operating systems.

Q&A
 Q Can I ignore warning messages from my compiler?

 A In certain cases, compilers issue warning messages. Warnings are different from

errors in that the line in question is syntactically correct and compile-worthy.

However, there possibly is a better way to write it, and good compilers issue a

 warning with a recommendation for a fix.

The suggested correction can mean a more secure way of programming or one that

lets your application work with characters and symbols from non-Latin languages.

You should heed these warnings and improve your program accordingly. Don’t

mask the warning messages, unless you are sure that they’re false positives.

 Q How does an interpreted language differ from a compiled language?

 A Languages such as Windows Script are interpreted. There is no compilation step.

An interpreted language uses an interpreter that directly reads the script text file

(code) and performs the desired actions. Consequently, you need to have the inter-

preter installed on a machine where the script needs to be executed; consequently,

performance usually takes a hit as the interpreter works as a runtime translator

between the microprocessor and the code written.

ptg18655082

14 LESSON 1: Getting Started

 Q What are runtime errors, and how are they different from compile-time
errors?

 A Errors that happen when you execute your application are called runtime errors.

You might have experienced the infamous “Access Violation” on older versions of

Windows, which is a runtime error. Compile-time errors don’t reach the end-user

and are an indication of syntactical problems; they keep the programmer from

 generating an executable.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of

the material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before continuing to the next

lesson.

Quiz
1. What is the difference between an interpreter and a compiler?

2. What does the linker do?

3. What are the steps in the normal development cycle?

Exercises
1. Look at the following program and try to guess what it does without running it:

1: #include <iostream>
2: int main()
3: {

 4: int x = 8;
 5: int y = 6;
 6: std::cout << std::endl;
 7: std::cout << x - y << " " << x * y << " " << x + y;
 8: std::cout << std::endl;
 9: return 0;
10: }

2. Type in the program from Exercise 1 and then compile and link it. What does it do?

Does it do what you guessed?

ptg18655082

Workshop 15

1

3. What do you think is the error in this program:

1: include <iostream>
2: int main()
3: {
4: std::cout << "Hello Buggy World \n";
5: return 0;
6: }

4. Fix the error in the program in Exercise 3, compile, link, and run it. What

does it do?

ptg18655082

LESSON 2
The Anatomy of a
C++ Program

C++ programs are organized into classes comprising member functions
and member variables. Most of this book is devoted to explaining these
parts in depth, but to get a sense of how a program fits together, you
must see a complete working program.

In this lesson, you learn

 ■ The parts of a C++ program

 ■ How the parts work together

 ■ What a function is and what it does

 ■ Basic input and output operations

ptg18655082

18 LESSON 2: The Anatomy of a C++ Program

Parts of the Hello World Program
Your first C++ program in Lesson 1, “Getting Started,” did nothing more than write a

simple “Hello World” statement to the screen. Yet this program contains some of the

most important and basic building blocks of a C++ program. You use Listing 2.1 as a

starting point to analyze components all C++ programs contain.

LISTING 2.1 HelloWorldAnalysis.cpp: Analyze a Simple C++ Program

 1: // Preprocessor directive that includes header iostream
 2: #include <iostream>
 3:
 4: // Start of your program: function block main()
 5: int main()
 6: {
 7: /* Write to the screen */
 8: std::cout << "Hello World" << std::endl;
 9:
10: // Return a value to the OS
11: return 0;
12: }

This C++ program can be broadly classified into two parts: the preprocessor directives

that start with a # and the main body of the program that starts with int main().

Lines 1, 4, 7, and 10, which start with a // or with a /*,
are called comments and are ignored by the compiler. These
 comments are for humans to read.

Comments are discussed in greater detail in the next section.

NOTE

Preprocessor Directive #include
As the name suggests, a preprocessor is a tool that runs before the actual compilation

starts. Preprocessor directives are commands to the preprocessor and always start with

a pound sign #. In Line 2 of Listing 2.1, #include <filename> tells the preprocessor

to take the contents of the file (iostream, in this case) and include them at the line

where the directive is made. iostream is a standard header file that enables the usage

of std::cout used in Line 8 to display “Hello World” on the screen. In other words, the

compiler was able to compile Line 8 that contains std::cout because we instructed the

preprocessor to include the definition of std::cout in Line 2.

ptg18655082

19

2

The Body of Your Program main()

Professionally programmed C++ applications include standard
headers supplied by the development environment and those
created by the programmer. Complex applications are typically
programmed in multiple files wherein some need to include
others. So, if an artifact declared in FileA needs to be used in
FileB, you need to include the former in the latter. You usually do
that by inserting the following include statement in FileA:

#include "...relative path to FileB\FileB"

We use quotes in this case and not angle brackets in including
a self-programmed header. <> brackets are typically used when
including standard headers.

NOTE

The Body of Your Program main()
Following the preprocessor directive(s) is the body of the program characterized by the

function main(). The execution of a C++ program always starts here. It is a standardized

convention that function main() is declared with an int preceding it. int is the return

value type of the function main() and stands for integer.

In many C++ applications, you find a variant of the main()
 function that looks like this:

int main (int argc, char* argv[])

This is also standard compliant and acceptable as main returns
int. The contents of the parenthesis are “arguments” supplied
to the program. This program possibly allows the user to start it
with command-line arguments, such as

program.exe /DoSomethingSpecific

/DoSomethingSpecific is the argument for that program
passed by the OS as a parameter to it, to be handled within
main (int argc, char* argv[]).

NOTE

Let’s discuss Line 8 that fulfills the actual purpose of this program!

std::cout << "Hello World" << std::endl;

ptg18655082

20 LESSON 2: The Anatomy of a C++ Program

cout (“console-out”, also pronounced see-out) is the statement that writes “Hello World”

to the display console—that is, screen. cout is a stream defined in the standard std

namespace (hence, std::cout), and what you are doing in this line is putting the text

"Hello World" into this stream by using the stream insertion operator <<. std::endl

is used to end a line, and inserting it into a stream is akin to inserting a carriage return.

Note that the stream insertion operator << is used every time a new entity needs to be

inserted into the stream.

The good thing about streams in C++ is that different stream types support similar

stream semantics to perform a different operation with the same text. For example,

insertion into a file instead of a console would use the same insertion operator << on an

std::fstream instead of std::cout. Thus, working with streams gets intuitive, and

when you are used to one stream (such as cout, which writes text to the console), you

will find it easy to work with others (such as fstream, which helps save files to the disk).

Streams are discussed in greater detail in Lesson 27, “Using Streams for Input and Output.”

The actual text, including the quotes "Hello World", is called a
string literal.NOTE

Returning a Value
Functions in C++ need to return a value unless explicitly specified otherwise. main()

is a function, too, and always returns an integer. This integer value is returned to the

 operating system (OS) and, depending on the nature of your application, can be very

useful as most OSes provide for an ability to query on the return value of an application

that has terminated naturally. In many cases, one application is launched by another and

the parent application (that launches) wants to know if the child application (that was

launched) has completed its task successfully. The programmer can use the return value

of main() to convey a success or error state to the parent application.

Conventionally programmers return 0 in the event of success or
–1 in the event of error. However, the return value is an integer,
and the programmer has the flexibility to convey many different
states of success or failure using the available range of integer
return values.

NOTE

C++ is case-sensitive. So, expect compilation to fail if you write
Int instead of int and Std::Cout instead of std::cout.CAUTION

ptg18655082

The Concept of Namespaces 21

2

The Concept of Namespaces
The reason you used std::cout in the program and not only cout is that the artifact

(cout) that you want to invoke is in the standard (std) namespace.

So, what exactly are namespaces?

Assume that you didn’t use the namespace qualifier in invoking cout and assume that

cout existed in two locations known to the compiler—which one should the compiler

invoke? This causes a conflict and the compilation fails, of course. This is where

namespaces get useful. Namespaces are names given to parts of code that help in

 reducing the potential for a naming conflict. By invoking std::cout, you are telling the

compiler to use that one unique cout that is available in the std namespace.

You use the std (pronounced “standard”) namespace to invoke
functions, streams, and utilities that have been ratified by the
ISO Standards Committee.

NOTE

Many programmers find it tedious to repeatedly add the std namespace specifier to

their code when using cout and other such features contained in the same. The using

namespace declaration as demonstrated in Listing 2.2 helps you avoid this repetition.

LISTING 2.2 The using namespace Declaration

 1: // Preprocessor directive
 2: #include <iostream>
 3:
 4: // Start of your program
 5: int main()
 6: {
 7: // Tell the compiler what namespace to search in
 8: using namespace std;
 9:
10: /* Write to the screen using std::cout */
11: cout << "Hello World" << endl;
12:
13: // Return a value to the OS
14: return 0;
15: }

ptg18655082

22 LESSON 2: The Anatomy of a C++ Program

Analysis ▼

Note Line 8. By telling the compiler that you are using the namespace std, you

don’t need to explicitly mention the namespace on Line 11 when using std::cout or

std::endl.

A more restrictive variant of Listing 2.2 is shown in Listing 2.3 where you do not include

a namespace in its entirety. You only include those artifacts that you wish to use.

LISTING 2.3 Another Demonstration of the using Keyword

 1: // Preprocessor directive
 2: #include <iostream>
 3:
 4: // Start of your program
 5: int main()
 6: {
 7: using std::cout;
 8: using std::endl;
 9:
10: /* Write to the screen using std::cout */
11: cout << "Hello World" << endl;
12:
13: // Return a value to the OS
14: return 0;
15: }

Analysis ▼

Line 8 in Listing 2.2 has now been replaced by Lines 7 and 8 in Listing 2.3. The differ-

ence between using namespace std and using std::cout is that the former allows

all artifacts in the std namespace (cout, cin, etc.) to be used without explicit inclusion

of the namespace qualifier std::. With the latter, the convenience of not needing to dis-

ambiguate the namespace explicitly is restricted to only std::cout and std::endl.

Comments in C++ Code
Lines 1, 4, 10, and 13 in Listing 2.3 contain text in a spoken language (English, in this

case) yet do not interfere with the ability of the program to compile. They also do not

alter the output of the program. Such lines are called comments. Comments are ignored

by the compiler and are popularly used by programmers to explain their code—hence,

they are written in human-readable language.

ptg18655082

Functions in C++ 23

2

C++ supports comments in two styles:

 ■ // indicates the start of a comment, valid until the end of that line. For example:

// This is a comment – won’t be compiled

 ■ /* followed by */ indicates that the contained text is a comment, even if it spans

multiple lines:

/* This is a comment
and it spans two lines */

It might seem strange that a programmer needs to explain his
own code, but the bigger a program gets or the larger the num-
ber of programmers working on a particular module gets, the
more important it is to write code that can be easily understood.
Comments help a programmer document what is being done and
why it is being done in that particular manner.

NOTE

DO DON’T

DO add comments explaining the
working of complicated algorithms
and complex parts of your program.

DO compose comments in a style
that fellow programmers can
 understand.

DON’T use comments to explain or
repeat the obvious.

DON’T forget that adding comments
will not justify writing obscure code.

DON’T forget that when code is
modified, comments might need to
be updated, too.

Functions in C++
Functions enable you to divide the content of your application into functional units that

can be invoked in a sequence of your choosing. A function, when invoked, typically

returns a value to the invoking/calling function. The most famous function is, of

course, int main(). It is recognized by the compiler as the starting point of your

C++ application and has to return an int (i.e., an integer).

ptg18655082

24 LESSON 2: The Anatomy of a C++ Program

You as a programmer have the choice and usually the need to compose your own

 functions. Listing 2.4 is a simple application that uses a function to display statements on

the screen using std::cout with various parameters.

LISTING 2.4 Declaring, Defining, and Calling a Function That Demonstrates Capabilities
of std::cout

 1: #include <iostream>
 2: using namespace std;
 3:
 4: // Declare a function
 5: int DemoConsoleOutput();
 6:
 7: int main()
 8: {
 9: // Call i.e. invoke the function
10: DemoConsoleOutput();
11:
12: return 0;
13: }
14:
15: // Define i.e. implement the previously declared function
16: int DemoConsoleOutput()
17: {
18: cout << "This is a simple string literal" << endl;
19: cout << "Writing number five: " << 5 << endl;
20: cout << "Performing division 10 / 5 = " << 10 / 5 << endl;
21: cout << "Pi when approximated is 22 / 7 = " << 22 / 7 << endl;
22: cout << "Pi is 22 / 7 = " << 22.0 / 7 << endl;
23:
24: return 0;
25: }

Output ▼
This is a simple string literal
Writing number five: 5
Performing division 10 / 5 = 2
Pi when approximated is 22 / 7 = 3
Pi is 22 / 7 = 3.14286

Analysis ▼

Lines 5, 10, and 16 through 25 are those of interest. Line 5 is called a function
 declaration, which basically tells the compiler that you want to create a function called

DemoConsoleOutput() that returns an int (integer). This declaration enables the

ptg18655082

Functions in C++ 25

2

 compiler to compile Line 10 where DemoConsoleOutput() is called inside main(). The

compiler assumes that the definition (that is, the implementation of the function) is going

to come up, which it does later in Lines 16 through 25.

This function actually demonstrates the capabilities of cout. Note how it not only prints

text the same way as it displayed “Hello World” in previous examples, but also the result

of simple arithmetic computations. Lines 21 and 22 both attempt to display the result of

pi (22 / 7), but the latter is more accurate simply because by dividing 22.0 by 7, you tell

the compiler to treat the result as a real number (a float in C++ terms) and not as an

 integer.

Note that your function is required to return an integer, as declared in Line 5, and

returns 0. Similarly, main() returns 0, too. Given that main() has delegated all its

 activity to the function DemoConsoleOutput(), you would be wiser to use the return

value of the function in returning from main() as seen in Listing 2.5.

LISTING 2.5 Using the Return Value of a Function

 1: #include <iostream>
 2: using namespace std;
 3:
 4: // Function declaration and definition
 5: int DemoConsoleOutput()
 6: {
 7: cout << "This is a simple string literal" << endl;
 8: cout << "Writing number five: " << 5 << endl;
 9: cout << "Performing division 10 / 5 = " << 10 / 5 << endl;
10: cout << "Pi when approximated is 22 / 7 = " << 22 / 7 << endl;
11: cout << "Pi actually is 22 / 7 = " << 22.0 / 7 << endl;
12:
13: return 0;
14: }
15:
16: int main()
17: {
18: // Function call with return used to exit
19: return DemoConsoleOutput();
20: }

Analysis ▼

The output of this application is the same as the output of the previous listing. Yet,

there are slight changes in the way it is programmed. For one, as you have defined (i.e.,

 implemented) the function before main() at Line 5, you don’t need an extra declaration

of the same. Modern C++ compilers take it as a function declaration and definition in

ptg18655082

26 LESSON 2: The Anatomy of a C++ Program

one. main() is a bit shorter, too. Line 19 invokes the function DemoConsoleOutput()

and simultaneously returns the return value of the function from the application.

In cases such as this where a function is not required to make
a decision, or return success or failure status, you can declare a
function of return type void:

void DemoConsoleOutput()

This function cannot return a value.

NOTE

Functions can take parameters, can be recursive, can contain multiple return statements,

can be overloaded, can be expanded in-line by the compiler, and lots more. These

 concepts are introduced in greater detail in Lesson 7, “Organizing Code with Functions.”

Basic Input Using std::cin and Output
Using std::cout
Your computer enables you to interact with applications running on it in various forms

and allows these applications to interact with you in many forms, too. You can interact

with applications using the keyboard or the mouse. You can have information displayed

on the screen as text, displayed in the form of complex graphics, printed on paper using

a printer, or simply saved to the file system for later usage. This section discusses the

very simplest form of input and output in C++—using the console to write and read

 information.

You use std::cout (pronounced “standard see-out”) to write simple text data to the

console and use std::cin (“standard see-in”) to read text and numbers (entered using the

keyboard) from the console. In fact, in displaying “Hello World” on the screen, you have

already encountered cout, as seen in Listing 2.1:

8: std::cout << "Hello World" << std::endl;

The statement shows cout followed by the insertion operator << (that helps insert data

into the output stream), followed by the string literal “Hello World” to be inserted,

 followed by a newline in the form of std::endl (pronounced “standard end-line”).

The usage of cin is simple, too, and as cin is used for input, it is accompanied by the

variable you want to be storing the input data in:

std::cin >> Variable;

ptg18655082

27

2

Basic Input Using std::cin and Output Using std::cout

Thus, cin is followed by the extraction operator >> (extracts data from the input stream),

which is followed by the variable where the data needs to be stored. If the user input

needs to be stored in two variables, each containing data separated by a space, then you

can do so using one statement:

std::cin >> Variable1 >> Variable2;

Note that cin can be used for text as well as numeric inputs from the user, as shown in

Listing 2.6.

LISTING 2.6 Use cin and cout to Display Number and Text Input by User

 1: #include <iostream>
 2: #include <string>
 3: using namespace std;
 4:
 5: int main()
 6: {
 7: // Declare a variable to store an integer
 8: int inputNumber;
 9:
10: cout << "Enter an integer: ";
11:
12: // store integer given user input
13: cin >> inputNumber;
14:
15: // The same with text i.e. string data
16: cout << "Enter your name: ";
17: string inputName;
18: cin >> inputName;
19:
20: cout << inputName << " entered " << inputNumber << endl;
21:
22: return 0;
23: }

Output ▼
Enter an integer: 2017
Enter your name: Siddhartha
Siddhartha entered 2017

Analysis ▼

Line 8 shows how a variable of name inputNumber is declared to store data of type

int. The user is requested to enter a number using cout in Line 10, and the entered

number is stored in the integer variable using cin in Line 13. The same exercise is

ptg18655082

28 LESSON 2: The Anatomy of a C++ Program

repeated with storing the user’s name, which of course cannot be held in an integer but

in a different type called string as seen in Lines 17 and 18. The reason you included

<string> in Line 2 was to use type string later inside main(). Finally in Line 20, a

cout statement is used to display the entered name with the number and an intermediate

text to produce the output Siddhartha entered 2017.

This is a simple example of how basic input and output work in C++. Don’t worry if the

concept of variables is not clear to you as it is explained in good detail in the following

Lesson 3, “Using Variables, Declaring Constants.”

If I had entered a couple of words as my name (for example:
Siddhartha Rao) while executing Listing 2.6, cin would’ve still
stored only the first word, “Siddhartha,” in the string. To be able
to store entire lines, use the function getline(), discussed in
Lesson 4, “Managing Arrays and Strings,” in Listing 4.7.

NOTE

Summary
This lesson introduced the basic parts of a simple C++ program. You understood

what main() is, got an introduction to namespaces, and learned the basics of console

input and output. You are able to use a lot of these in every program you write.

Q&A
 Q What does #include do?

A This is a directive to the preprocessor that runs when you call your compiler. This

specific directive causes the contents of the file named in <> after #include to be

inserted at that line as if it were typed at that location in your source code.

Q What is the difference between // comments and /* comments?

A The double-slash comments (//) expire at the end of the line. Slash-star (/*)

 comments are in effect until there is a closing comment mark (*/). The double-

slash comments are also referred to as single-line comments, and the slash-star

comments are often referred to as multiline comments. Remember, not even the

end of the function terminates a slash-star comment; you must put in the closing

 comment mark or you will receive a compile-time error.

ptg18655082

Workshop 29

2

Q When do you need to program command-line arguments?

A To supply options that allow the user to alter the behavior of a program. For

 example, the command ls in Linux or dir in Windows enables you to see the

 contents within the current directory or folder. To view files in another directory,

you specify the path of the same using command-line arguments, as in ls / or

dir \.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before continuing to the next

 lesson.

Quiz
1. What is the problem in declaring Int main()?

 2. Can comments be longer than one line?

Exercises
1. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can

you fix it?

1: #include <iostream>
2: void main()
3: {
4: std::Cout << Is there a bug here?";
5: }

2. Fix the bug in Exercise 1 and recompile, link, and run it.

3. Modify Listing 2.4 to demonstrate subtraction (using –) and multiplication

(using *).

ptg18655082

LESSON 3
Using Variables,
Declaring Constants

Variables are tools that help the programmer temporarily store data for
a finite amount of time. Constants are tools that help the programmer
define artifacts that are not allowed to change or make changes.

In this lesson, you find out

 ■ How to declare and define variables and constants

 ■ How to assign values to variables and manipulate those values

 ■ How to write the value of a variable to the screen

 ■ How to use keywords auto and constexpr

ptg18655082

32 LESSON 3: Using Variables, Declaring Constants

What Is a Variable?
Before you actually explore the need and use of variables in a programming language,

take a step back and first see what a computer contains and how it works.

Memory and Addressing in Brief
All computers, smart phones, and other programmable devices contain a microprocessor

and a certain amount of memory for temporary storage called Random Access Memory

(RAM). In addition, many devices also allow for data to be persisted on a storage device

such as the hard disk. The microprocessor executes your application, and in doing so it

works with the RAM to fetch the application binary code to be executed as well as the

data associated with it, which includes that displayed on the screen and that entered by

the user.

The RAM itself can be considered to be a storage area akin to a row of lockers in

the dorms, each locker having a number—that is, an address. To access a location in

 memory, say location 578, the processor needs to be asked via an instruction to fetch a

value from there or write a value to it.

Declaring Variables to Access and Use Memory
The following examples will help you understand what variables are. Assume you are

writing a program to multiply two numbers supplied by the user. The user is asked to

feed the multiplicand and the multiplier into your program, one after the other, and you

need to store each of them so that you can use them later to multiply. Depending on what

you want to be doing with the result of the multiplication, you might even want to store it

for later use in your program. It would be slow and error-prone if you were to explicitly

specify memory addresses (such as 578) to store the numbers, as you would need to

worry about inadvertently overwriting existing data at the location or your data being

overwritten at a later stage.

When programming in languages like C++, you define variables to store those values.

Defining a variable is quite simple and follows this pattern:

VariableType VariableName;

or

VariableType VariableName = InitialValue;

The variable type attribute tells the compiler the nature of data the variable can store, and

the compiler reserves the necessary space for it. The name chosen by the programmer is

a friendly replacement for the address in the memory where the variable’s value is stored.

ptg18655082

What Is a Variable? 33

3

Unless the initial value is assigned, you cannot be sure of the contents of that memory

location, which can be bad for the program. Therefore, initialization is optional, but

it’s often a good programming practice. Listing 3.1 shows how variables are declared,

 initialized, and used in a program that multiplies two numbers supplied by the user.

LISTING 3.1 Using Variables to Store Numbers and the Result of Their Multiplication

 1: #include <iostream>
 2: using namespace std;
 3:
 4: int main ()
 5: {
 6: cout << "This program will help you multiply two numbers" << endl;
 7:
 8: cout << "Enter the first number: ";
 9: int firstNumber = 0;
10: cin >> firstNumber;
11:
12: cout << "Enter the second number: ";
13: int secondNumber = 0;
14: cin >> secondNumber;
15:
16: // Multiply two numbers, store result in a variable
17: int multiplicationResult = firstNumber * secondNumber;
18:
19: // Display result
20: cout << firstNumber << " x " << secondNumber;
21: cout << " = " << multiplicationResult << endl;
22:
23: return 0;
24: }

Output ▼
This program will help you multiply two numbers
Enter the first number: 51
Enter the second number: 24
51 x 24 = 1224

Analysis ▼

This application asks the user to enter two numbers, which the program multiplies and

displays the result. To use numbers entered by the user, it needs to store them in the

memory. Variables firstNumber and secondNumber declared in Lines 9 and 13 do the

job of temporarily storing integer values entered by the user. You use std::cin in Lines

10 and 14 to accept input from the user and to store them in the two integer variables.

The cout statement in Line 21 is used to display the result on the console.

ptg18655082

34 LESSON 3: Using Variables, Declaring Constants

Analyzing a variable declaration further:

9: int firstNumber = 0;

What this line declares is a variable of type int, which indicates an integer, with a name

called firstNumber. Zero is assigned to the variable as an initial value.

The compiler does the job of mapping this variable firstNumber to a location in

memory and takes care of the associated memory-address bookkeeping for you for all

the variables that you declare. The programmer thus works with human-friendly names,

while the compiler manages memory-addressing and creates the instructions for the

microprocessor to execute in working with the RAM.

 Naming variables appropriately is important for writing good,
understandable, and maintainable code.

Variable names in C++ can be alphanumeric, but they cannot
start with a number. They cannot contain spaces and cannot
 contain arithmetic operators (such as +, –, and so on) within
them. Variable names also cannot be reserved keywords. For
example, a variable named return will cause compilation failure.

Variable names can contain the underscore character_that often
is used in descriptive variable naming.

CAUTION

Declaring and Initializing Multiple
Variables of a Type
In Listing 3.1, firstNumber, secondNumber, and multiplicationResult are all of

the same type—integers—and are declared in three separate lines. If you wanted to, you

could condense the declaration of these three variables to one line of code that looks like

this:

int firstNumber = 0, secondNumber = 0, multiplicationResult = 0;

 As you can see, C++ makes it possible to declare multiple
 variables of a type at once and to declare variables at the
beginning of a function. Yet, declaring a variable when it is first
needed is often better as it makes the code readable—one
notices the type of the variable when the declaration is close to
its point of first use.

NOTE

ptg18655082

What Is a Variable? 35

3

Data stored in variables is data stored in RAM. This data is lost
when the application terminates unless the programmer explicitly
persists the data on a storage medium like a hard disk.

Storing to a file on disk is discussed in Lesson 27, “Using
Streams for Input and Output.”

CAUTION

Understanding the Scope of a Variable
Ordinary variables like the ones we have declared this far have a well-defined scope

within which they’re valid and can be used. When used outside their scope, the variable

names will not be recognized by the compiler and your program won’t compile. Beyond

its scope, a variable is an unidentified entity that the compiler knows nothing of.

To better understand the scope of a variable, reorganize the program in Listing 3.1 into

a function MultiplyNumbers() that multiplies the two numbers and returns the result.

See Listing 3.2.

LISTING 3.2 Demonstrating the Scope of the Variables

 1: #include <iostream>
 2: using namespace std;
 3:
 4: void MultiplyNumbers ()
 5: {
 6: cout << "Enter the first number: ";
 7: int firstNumber = 0;
 8: cin >> firstNumber;
 9:
10: cout << "Enter the second number: ";
11: int secondNumber = 0;
12: cin >> secondNumber;
13:
14: // Multiply two numbers, store result in a variable
15: int multiplicationResult = firstNumber * secondNumber;
16:
17: // Display result
18: cout << firstNumber << " x " << secondNumber;
19: cout << " = " << multiplicationResult << endl;
20: }
21: int main ()
22: {
23: cout << "This program will help you multiply two numbers" << endl;
24:
25: // Call the function that does all the work
26: MultiplyNumbers();

ptg18655082

36 LESSON 3: Using Variables, Declaring Constants

27:
28: // cout << firstNumber << " x " << secondNumber;
29: // cout << " = " << multiplicationResult << endl;
30:
31: return 0;
32: }

Output ▼
This program will help you multiply two numbers
Enter the first number: 51
Enter the second number: 24
51 x 24 = 1224

Analysis ▼

Listing 3.2 does exactly the same activity as Listing 3.1 and produces the same output.

The only difference is that the bulk of the work is delegated to a function called

MultiplyNumbers() invoked by main(). Note that variables firstNumber and

secondNumber cannot be used outside of MultiplyNumbers(). If you uncomment

Lines 28 or 29 in main(), you experience compile failure of type undeclared

identifier.

This is because the scope of the variables firstNumber and secondNumber is local,

hence limited to the function they’re declared in, in this case MultiplyNumbers().

A local variable can be used in a function after variable declaration till the end of the

function. The curly brace (}) that indicates the end of a function also limits the scope of

variables declared in the same. When a function ends, all local variables are destroyed

and the memory they occupied returned.

When compiled, variables declared within MultiplyNumbers() perish when the

 function ends, and if they’re used in main(), compilation fails as the variables have not

been declared in there.

If you declare another set of variables with the same name in
main(), then don’t still expect them to carry a value that might
have been assigned in MultiplyNumbers().

The compiler treats the variables in main() as independent
 entities even if they share their names with a variable declared
in another function, as the two variables in question are limited
by their scope.

CAUTION

ptg18655082

What Is a Variable? 37

3

Global Variables
If the variables used in function MultiplyNumbers() in Listing 3.2 were declared

 outside the scope of the function MultiplyNumber() instead of within it, then they

would be usable in both main() and MultiplyNumbers(). Listing 3.3 demonstrates

global variables, which are the variables with the widest scope in a program.

LISTING 3.3 Using Global Variables

 1: #include <iostream>
 2: using namespace std;
 3:
 4: // three global integers
 5: int firstNumber = 0;
 6: int secondNumber = 0;
 7: int multiplicationResult = 0;
 8:
 9: void MultiplyNumbers ()
10: {
11: cout << "Enter the first number: ";
12: cin >> firstNumber;
13:
14: cout << "Enter the second number: ";
15: cin >> secondNumber;
16:
17: // Multiply two numbers, store result in a variable
18: multiplicationResult = firstNumber * secondNumber;
19:
20: // Display result
21: cout << "Displaying from MultiplyNumbers(): ";
22: cout << firstNumber << " x " << secondNumber;
23: cout << " = " << multiplicationResult << endl;
24: }
25: int main ()
26: {
27: cout << "This program will help you multiply two numbers" << endl;
28:
29: // Call the function that does all the work
30: MultiplyNumbers();
31:
32: cout << "Displaying from main(): ";
33:
34: // This line will now compile and work!
35: cout << firstNumber << " x " << secondNumber;
36: cout << " = " << multiplicationResult << endl;
37:
38: return 0;
39: }

ptg18655082

38 LESSON 3: Using Variables, Declaring Constants

Output ▼
This program will help you multiply two numbers
Enter the first number: 51
Enter the second number: 19
Displaying from MultiplyNumbers(): 51 x 19 = 969
Displaying from main(): 51 x 19 = 969

Analysis ▼

Listing 3.3 displays the result of multiplication in two functions, neither of which has

declared the variables firstNumber, secondNumber, and multiplicationResult.

These variables are global as they have been declared in Lines 5–7, outside the

scope of any function. Note Lines 23 and 36 that use these variables and display their

values. Pay special attention to how multiplicationResult is first assigned in

MultiplyNumbers() yet is effectively reused in main().

Indiscriminate use of global variables is considered poor pro-
gramming practice. This is because global variables can be
assigned values in any/every function and can contain an unpre-
dictable state, especially when functions that modify them run in
different threads or are programmed by different programmers in
a team.

An elegant way of programming Listing 3.3 without using global
variables would have the function MultiplyNumbers() return the
integer result of the multiplication to main().

CAUTION

Naming Conventions
In case you haven’t noticed, we named the function MultiplyNumbers() where every

word in the function name starts with a capital letter (called Pascal casing), while

variables firstNumber, secondNumber, and multiplicationResult were given

names where the first word starts with a lowercase letter (called camel casing). This book

follows a convention where variable names follow camel casing, while other artifacts

such as function names follow Pascal casing.

You may come across C++ code wherein a variable name is prefixed with characters

that explain the type of the variable. This convention is called the Hungarian notation

ptg18655082

Common Compiler-Supported C++ Variable Types 39

3

and is frequently used in the programming of Windows applications. So, firstNumber

in Hungarian notation would be iFirstNumber, where the prefix i stands for integer.

A global integer would be called g_iFirstNumber. Hungarian notation has lost

 popularity in recent years in part due to improvements in Integrated Development

Environments (IDEs) that display the type of a variable when required—on mouse hover,

for instance.

Examples of commonly found bad variable names follow:

int i = 0;
bool b = false;

The name of the variable should indicate its purpose, and the two can be better declared as

int totalCash = 0;
bool isLampOn = false;

 Naming conventions are used to make the code readable to
 programmers, not to compilers. So choose a convention that
suits wisely and use it consistently.

When working in a team, it is a good idea to align on the conven-
tion to be used before starting a new project. When working on
an existing project, adopt the used convention so that the new
code remains readable to others.

CAUTION

Common Compiler-Supported C++
Variable Types
In most of the examples thus far, you have defined variables of type int—that is,

 integers. However, C++ programmers can choose from a variety of fundamental

 variable types supported directly by the compiler. Choosing the right variable type is as

important as choosing the right tools for the job! A Phillips screwdriver won’t work well

with a regular screw head just like an unsigned integer can’t be used to store values that

are negative! Table 3.1 enlists the various variable types and the nature of data they can

contain.

ptg18655082

40 LESSON 3: Using Variables, Declaring Constants

TABLE 3.1 Variable Types

Type Values

bool true or false

char 256 character values

unsigned short int 0 to 65,535

short int –32,768 to 32,767

unsigned long int 0 to 4,294,967,295

long int –2,147,483,648 to 2,147,483,647

unsigned long long 0 to 18,446,744,073,709,551,615

long long –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

int (16 bit) –32,768 to 32,767

int (32 bit) –2,147,483,648 to 2,147,483,647

unsigned int (16 bit) 0 to 65,535

unsigned int (32 bit) 0 to 4,294,967,295

float 1.2e–38 to 3.4e38

double 2.2e–308 to 1.8e308

The following sections explain the important types in greater detail.

Using Type bool to Store Boolean Values
C++ provides a type that is specially created for containing Boolean values true or

false, both of which are reserved C++ keywords. This type is particularly useful in

storing settings and flags that can be ON or OFF, present or absent, available or unavail-

able, and the like.

A sample declaration of an initialized Boolean variable is

bool alwaysOnTop = false;

An expression that evaluates to a Boolean type is

bool deleteFile = (userSelection == "yes");
// evaluates to true if userSelection contains "yes", else to false

Conditional expressions are explained in Lesson 5, “Working with Expressions,

Statements, and Operators.”

ptg18655082

Common Compiler-Supported C++ Variable Types 41

3

Using Type char to Store Character Values
Use type char to store a single character. A sample declaration is

char userInput = 'Y'; // initialized char to 'Y'

Note that memory is comprised of bits and bytes. Bits can be either 0 or 1, and bytes

can contain numeric representation using these bits. So, working or assigning character

data as shown in the example, the compiler converts the character into a numeric

representation that can be placed into memory. The numeric representation of Latin

characters A–Z, a–z, numbers 0–9, some special keystrokes (for example, DEL), and

special characters (such as backspace) has been standardized by the American Standard

Code for Information Interchange, also called ASCII.

You can look up the table in Appendix D, “ASCII Codes,” to see that the character Y

assigned to variable userInput has the ASCII value 89 in decimal. Thus, what the

 compiler does is store 89 in the memory space allocated for userInput.

The Concept of Signed and Unsigned Integers
Sign implies positive or negative. All numbers you work with using a computer are stored

in the memory in the form of bits and bytes. A memory location that is 1 byte large con-

tains 8 bits. Each bit can either be a 0 or 1 (that is, carry one of these two values at best).

Thus, a memory location that is 1 byte large can contain a maximum of 2 to the power 8

values—that is, 256 unique values. Similarly, a memory location that is 16 bits large can

contain 2 to the power 16 values—that is, 65,536 unique values.

If these values were to be unsigned—assumed to be only positive—then one byte could

contain integer values ranging from 0 through 255 and two bytes would contain val-

ues ranging from 0 through 65,535, respectively. Look at Table 3.1 and note that the

unsigned short is the type that supports this range, as it is contained in 16 bits of

memory. Thus, it is quite easy to model positive values in bits and bytes (see Figure 3.1).

1 1 1 1 1 1 1 1 1 1 1 1 1 1

15.......................Bit 0

= 65535

16 bits carry value

FIGURE 3.1

Organization of bits
in a 16-bit unsigned
short integer.

How to model negative numbers in this space? One way is to “sacrifice” a bit as the

 sign-bit that would indicate if the values contained in the other bits are positive or

ptg18655082

42 LESSON 3: Using Variables, Declaring Constants

 negative (see Figure 3.2). The sign-bit needs to be the most-significant-bit (MSB) as

the least-significant-one would be required to model odd numbers. So, when the MSB

 contains sign-information, it is assumed that 0 would be positive and 1 would mean nega-

tive, and the other bytes contain the absolute value.

15.........................Bit 0

1 1 1 1 1 1 1 1 1 1 1 1 11

15 bits contain absolute value

Sign Bit
0: Indicates positive integer
1: Indicates negative integer

FIGURE 3.2

Organization of bits
in a 16-bit signed
short integer.

Thus, a signed number that occupies 8 bits can contain values ranging from –128 through

127, and one that occupies 16 bits can contain values ranging from –32,768 through

32,767. If you look at Table 3.1 again, note that the (signed) short is the type that

 supports positive and negative integer values in a 16-bit space.

Signed Integer Types short, int, long,
and long long
These types differ in their sizes and thereby differ in the range of values they can

 contain. int is possibly the most used type and is 32 bits wide on most compilers.

Use the right type depending on your projection of the maximum value that particular

variable would be expected to hold.

Declaring a variable of a signed type is simple:

short int gradesInMath = -5; // not your best score
int moneyInBank = -70000; // overdraft
long populationChange = -85000; // reducing population
long long countryGDPChange = -70000000000;

Unsigned Integer Types unsigned short, unsigned
int, unsigned long, and unsigned long long
Unlike their signed counterparts, unsigned integer variable types cannot contain sign

information, and hence they can actually support twice as many positive values.

ptg18655082

Common Compiler-Supported C++ Variable Types 43

3

Declaring a variable of an unsigned type is as simple as this:

unsigned short int numColorsInRainbow = 7;
unsigned int numEggsInBasket = 24; // will always be positive
unsigned long numCarsInNewYork = 700000;
unsigned long long countryMedicareExpense = 70000000000;

You would use an unsigned variable type when you expect only
positive values. So, if you’re counting the number of apples,
don’t use int; use unsigned int. The latter can hold twice as
many values in the positive range as the former can.

NOTE

So, an unsigned type might not be suited for a variable in a
banking application used to store the account balance as banks
do allow some customers an overdraft facility. To see an example
that demonstrates the differences between signed and unsigned
types, visit Listing 5.3 in Lesson 5.

CAUTION

Avoid Overflow Errors by Selecting Correct
Data Types
Data types such as short, int, long, unsigned short, unsigned int, unsigned

long, and the like have a finite capacity for containing numbers. When you exceed the

limit imposed by the type chosen in an arithmetic operation, you create an overflow.

Take unsigned short for an example. Data type short consumes 16 bits and can

hence contain values from 0 through 65,535. When you add 1 to 65,535 in an unsigned

short, the value overflows to 0. It’s like the odometer of a car that suffers a mechanical

overflow when it can support only five digits and the car has done 99,999 kilometers

(or miles).

In this case, unsigned short was never the right type for such a counter. The

 programmer was better off using unsigned int to support numbers higher than 65,535.

In the case of a signed short integer, which has a range of –32,768 through 32,767,

adding 1 to 32,767 may result in the signed integer taking the highest negative value.

This behavior is compiler dependent.

ptg18655082

44 LESSON 3: Using Variables, Declaring Constants

Listing 3.4 demonstrates the overflow errors that you can inadvertently introduce via

arithmetic operations.

LISTING 3.4 Demonstrating the Ill-Effects of Signed and Unsigned Integer
Overflow Errors

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: unsigned short uShortValue = 65535;
 6: cout << "Incrementing unsigned short " << uShortValue << " gives: ";
 7: cout << ++uShortValue << endl;
 8:
 9: short signedShort = 32767;
10: cout << "Incrementing signed short " << signedShort << " gives: ";
11: cout << ++signedShort << endl;
12:
13: return 0;
14: }

Output ▼
Incrementing unsigned short 65535 gives: 0
Incrementing signed short 32767 gives: -32768

Analysis ▼

The output indicates that unintentional overflow situations result in unpredictable and

unintuitive behavior for the application. Lines 7 and 11 increment an unsigned short

and a signed short that have previously been initialized to their maximum supported

values –65,535 and 32,767, respectively. The output demonstrates the value they hold

after the increment operation, namely an overflow of 65,535 to zero in the unsigned short

and an overflow of 32,767 to –32,768 in the signed short. One wouldn’t expect the result

of an increment operation to reduce the value in question, but that is exactly what hap-

pens when an integer type overflows. If you were using the values in question to allocate

memory, then with the unsigned short, you can reach a point where you request zero

bytes when your actual need is 65536 bytes.

ptg18655082

Common Compiler-Supported C++ Variable Types 45

3

The operations ++uShortValue and ++signedShort seen in
Listing 3.4 at lines 7 and 11 are prefix increment operations.
These are explained in detail in Lesson 5.

NOTE

Floating-Point Types float and double
Floating-point numbers are what you might have learned in school as real numbers.

These are numbers that can be positive or negative. They can contain decimal values.

So, if you want to store the value of pi (22 / 7 or 3.14) in a variable in C++, you would

use a floating-point type.

Declaring variables of these types follows exactly the same pattern as the int in

Listing 3.1. So, a float that allows you to store decimal values would be declared as the

following:

float pi = 3.14;

And a double precision float (called simply a double) is defined as

double morePrecisePi = 22.0 / 7;

C++14 adds support for chunking separators in the form of a
single quotation mark. This improves readability of code, as seen
in the following initializations:

int moneyInBank = -70'000; // -70000

long populationChange = -85'000; // -85000

long long countryGDPChange = -70'000'000'000; //
-70 billion

double pi = 3.141'592'653'59; // 3.14159265359

TIP

The data types mentioned thus far are often referred to as POD
(Plain Old Data). The category POD contains these as well as
aggregations (structs, enums, unions, or classes) thereof.

NOTE

ptg18655082

46 LESSON 3: Using Variables, Declaring Constants

Determining the Size of a Variable
Using sizeof
Size is the amount of memory that the compiler reserves when the programmer declares

a variable to hold the data assigned to it. The size of a variable depends on its type, and

C++ has a very convenient operator called sizeof that tells you the size in bytes of a

variable or a type.

The usage of sizeof is simple. To determine the size of an integer, you invoke sizeof

with parameter int (the type) as demonstrated by Listing 3.5.

cout << "Size of an int: " << sizeof (int);

LISTING 3.5 Finding the Size of Standard C++ Variable Types

 1: #include <iostream>
 2:
 3: int main()
 4: {
 5: using namespace std;
 6: cout << "Computing the size of some C++ inbuilt variable types" << endl;
 7:
 8: cout << "Size of bool: " << sizeof(bool) << endl;
 9: cout << "Size of char: " << sizeof(char) << endl;
10: cout << "Size of unsigned short int: " << sizeof(unsigned short) << endl;
11: cout << "Size of short int: " << sizeof(short) << endl;
12: cout << "Size of unsigned long int: " << sizeof(unsigned long) << endl;
13: cout << "Size of long: " << sizeof(long) << endl;
14: cout << "Size of int: " << sizeof(int) << endl;
15: cout << "Size of unsigned long long: "<< sizeof(unsigned long long)<<
endl;
16: cout << "Size of long long: " << sizeof(long long) << endl;
17: cout << "Size of unsigned int: " << sizeof(unsigned int) << endl;
18: cout << "Size of float: " << sizeof(float) << endl;
19: cout << "Size of double: " << sizeof(double) << endl;
20:
21: cout << "The output changes with compiler, hardware and OS" << endl;
22:
23: return 0;
24: }

ptg18655082

47

3

Determining the Size of a Variable Using sizeof

Output ▼
Computing the size of some C++ inbuilt variable types
Size of bool: 1
Size of char: 1
Size of unsigned short int: 2
Size of short int: 2
Size of unsigned long int: 4
Size of long: 4
Size of int: 4
Size of unsigned long long: 8
Size of long long: 8
Size of unsigned int: 4
Size of float: 4
Size of double: 8
The output changes with compiler, hardware and OS

Analysis ▼

The output of Listing 3.5 reveals sizes of various types in bytes and is specific to my

platform: compiler, OS, and hardware. This output in particular is a result of running the

program in 32-bit mode (compiled by a 32-bit compiler) on a 64-bit operating system.

Note that a 64-bit compiler probably creates different results, and the reason I chose a

32-bit compiler was to be able to run the application on 32-bit as well as 64-bit systems.

The output tells that the sizeof a variable doesn’t change between an unsigned or signed

type; the only difference in the two is the MSB that carries sign information in the former.

All sizes seen in the output are in bytes. The size of a type is an
important parameter to be considered, especially for types used
to hold numbers. A short int can hold a smaller range than a
long long. You therefore wouldn’t use a short int to hold the
population of a country, for example.

NOTE

C++11 introduced fixed-width integer types that allow you to
specify the exact width of the integer in bits. These are int8_t
or uint8_t for 8-bit signed and unsigned integers, respectively.
You may also use 16-bit (int16_t, uint16_t), 32-bit (int32_t,
uint32_t), and 64-bit (int64_t, uint64_t) integer types. To use
these types, remember to include header
<cstdint>.

TIP

ptg18655082

48 LESSON 3: Using Variables, Declaring Constants

Avoid Narrowing Conversion Errors by Using
List Initialization
When you initialize a variable of a smaller integer type (say, short) using another of

a larger type (say, an int), you are risking a narrowing conversion error, because the

 compiler has to fit data stored in a type that can potentially hold much larger numbers

into a type that doesn’t have the same capacity (that is, is narrower). Here's an example:

int largeNum = 5000000;
short smallNum = largeNum; // compiles OK, yet narrowing error

Narrowing isn’t restricted to conversions between integer types only. You may face

 narrowing errors if you initialize a float using a double, a float (or double) using

an int, or an int using a float. Some compilers may warn, but this warning will not

cause an error that stops compilation. In such cases, you may be confronted by bugs that

occur infrequently and at execution time.

To avoid this problem, C++11 recommends list initialization techniques that prevent

 narrowing. To use this feature, insert initialization values/variables within braces {…}.

The list initialization syntax is as follows:

int largeNum = 5000000;
short anotherNum{ largeNum }; // error! Amend types
int anotherNum{ largeNum }; // OK!
float someFloat{ largeNum }; // error! An int may be narrowed
float someFloat{ 5000000 }; // OK! 5000000 can be accomodated

It may not be immediately apparent, but this feature has the potential to spare bugs that

occur when data stored in a type undergoes a narrowing conversion at execution time—

these occur implicitly during an initialization and are tough to solve.

Automatic Type Inference Using auto
There are cases where the type of a variable is apparent given the initialization value

being assigned to it. For example, if a variable is being initialized with the value true,

the type of the variable can be best estimated as bool. Compilers supporting C++11 and

beyond give you the option of not having to explicitly specify the variable type when

using the keyword auto.

auto coinFlippedHeads = true;

ptg18655082

49

3

Automatic Type Inference Using auto

We have left the task of defining an exact type for variable coinFlippedHeads to the

compiler. The compiler checks the nature of the value the variable is being initialized

to and then decides on the best possible type that suits this variable. In this particular

case, it is clear that an initialization value of true best suits a variable that is of type

bool. The compiler thus determines bool as the type that suits variable coinFlipped-

Heads best and internally treats coinFlippedHeads as a bool, as also demonstrated

by Listing 3.6.

LISTING 3.6 Using the auto Keyword and Relying on the Compiler’s Type-Inference
Capabilities

 1: #include <iostream>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: auto coinFlippedHeads = true;
 7: auto largeNumber = 2500000000000;
 8:
 9: cout << "coinFlippedHeads = " << coinFlippedHeads;
10: cout << " , sizeof(coinFlippedHeads) = " << sizeof(coinFlippedHeads) <<
endl;
11: cout << "largeNumber = " << largeNumber;
12: cout << " , sizeof(largeNumber) = " << sizeof(largeNumber) << endl;
13:
14: return 0;
15: }

Output ▼
coinFlippedHeads = 1 , sizeof(coinFlippedHeads) = 1
largeNumber = 2500000000000 , sizeof(largeNumber) = 8

Analysis ▼

See how instead of deciding that coinFlippedHeads should be of type bool or that

largeNumber should be a long long, you have used the auto keyword in Lines 6

and 7 where the two variables have been declared. This delegates the decision on the

type of variable to the compiler, which uses the initialization value as a ballpark. You

have used sizeof to actually check whether the compiler created the types you sus-

pected it would, and you can check against the output produced by your code to verify

that it really did.

ptg18655082

50 LESSON 3: Using Variables, Declaring Constants

Using auto requires you to initialize the variable for the compiler
that uses this initial value in deciding what the variable type
can be.

When you don’t initialize a variable of type auto, you get a
 compile error.

NOTE

Even if auto seems to be a trivial feature at first sight, it makes programming a lot easier

in those cases where the type variable is a complex type. The role of auto in writing

simpler, yet type-safe code is revisited in Lesson 15, “An Introduction to the Standard

Template Library,” and beyond.

Using typedef to Substitute a Variable’s
Type
C++ allows you to substitute variable types to something that you might find convenient.

You use the keyword typedef for that. Here is an example where a programmer wants

to call an unsigned int a descriptive STRICTLY_POSITIVE_INTEGER.

typedef unsigned int STRICTLY_POSITIVE_INTEGER;
STRICTLY_POSITIVE_INTEGER numEggsInBasket = 4532;

When compiled, the first line tells the compiler that a STRICTLY_POSITIVE_INTEGER

is nothing but an unsigned int. At later stages when the compiler encounters the already

defined type STRICTLY_POSITIVE_INTEGER, it substitutes it for unsigned int and

 continues compilation.

typedef or type substitution is particularly convenient when
dealing with complex types that can have a cumbersome syntax,
for example, types that use templates. Templates are discussed
later in Lesson 14, “An Introduction to Macros and Templates.”

NOTE

What Is a Constant?
Imagine you are writing a program to calculate the area and the circumference of

a circle. The formulas are

Area = pi * Radius * Radius;
Circumference = 2 * pi * Radius

ptg18655082

What Is a Constant? 51

3

In this formula, pi is the constant of value 22 / 7. You don’t want the value of pi to

change anywhere in your program. You also want to avoid any accidental assignments of

possibly incorrect values to pi. C++ enables you to define pi as a constant that cannot

be changed after declaration. In other words, after it’s defined, the value of a constant

 cannot be altered. Assignments to a constant in C++ cause compilation errors.

Thus, constants are like variables in C++ except that these cannot be changed. Similar

to variables, constants also occupy space in the memory and have a name to identify the

address where the space is reserved. However, the content of this space cannot be over-

written. Constants in C++ can be

 ■ Literal constants

 ■ Declared constants using the const keyword

 ■ Constant expressions using the constexpr keyword (new since C++11)

 ■ Enumerated constants using the enum keyword

 ■ Defined constants that are not recommended and deprecated

Literal Constants
Literal constants can be of many types—integer, string, and so on. In your first C++

 program in Listing 1.1, you displayed “Hello World” using the following statement:

std::cout << "Hello World" << std::endl;

In here, “Hello World” is a string literal constant. You literally have been using literal

constants all the while! When you declare an integer someNumber, like this:

int someNumber = 10;

The integer variable someNumber is assigned an initial value of ten. Here decimal ten

is a part of the code, gets compiled into the application, is unchangeable, and is a literal

constant too. You may initialize the integer using a literal in octal notation, like this:

int someNumber = 012 // octal 12 evaluates to decimal 10

Starting in C++14, you may also use binary literals, like this:

int someNumber = 0b1010; // binary 1010 evaluates to decimal 10

ptg18655082

52 LESSON 3: Using Variables, Declaring Constants

C++ also allows you to define your own literals. For example,
temperature as 32.0_F (Fahrenheit) or 0.0_C (Centigrade),
distance as 16_m (Miles) or 10_km (Kilometers), and so on.

These suffixes _F, _C, _m, and _km are called user-defined literals
and are explained in Lesson 12, “Operator Types and Operator
Overloading,” after the prerequisite concepts are explained.

TIP

Declaring Variables as Constants Using const
The most important type of constants in C++ from a practical and programmatic point

of view are declared by using keyword const before the variable type. The generic

 declaration looks like the following:

const type-name constant-name = value;

Let’s see a simple application that displays the value of a constant called pi (see Listing 3.7).

LISTING 3.7 Declaring a Constant Called pi

 1: #include <iostream>
 2:
 3: int main()
 4: {
 5: using namespace std;
 6:
 7: const double pi = 22.0 / 7;
 8: cout << "The value of constant pi is: " << pi << endl;
 9:
10: // Uncomment next line to view compile failure
11: // pi = 345;
12:
13: return 0;
14: }

Output ▼
The value of constant pi is: 3.14286

Analysis ▼

Note the declaration of constant pi in Line 7. We use the const keyword to tell the

compiler that pi is a constant of type double. If you uncomment Line 11 where the

ptg18655082

What Is a Constant? 53

3

programmer tries to assign a value to a variable you have defined as a constant, you see

a compile failure that says something similar to, “You cannot assign to a variable that

is const.” Thus, constants are a powerful way to ensure that certain data cannot be

 modified.

It is good programming practice to define variables that are not
supposed to change their values as const. The usage of the
const keyword indicates that the programmer has thought about
ensuring the constantness of data where required and protects
his application from inadvertent changes to this constant.

This is particularly useful in a multiprogrammer environment.

NOTE

Constants are useful when declaring the length of static arrays, which are fixed at

 compile time. Listing 4.2 in Lesson 4, “Managing Arrays and Strings,” includes a sample

that demonstrates the use of a const int to define the length of an array.

Constant Expressions Using constexpr
Keyword constexpr allows function-like declaration of constants:

constexpr double GetPi() {return 22.0 / 7;}

One constexpr can use another:

constexpr double TwicePi() {return 2 * GetPi();}

constexpr may look like a function, however, allows for optimization possibilities from

the compiler’s and application’s point of view. So long as a compiler is capable of evaluat-

ing a constant expression to a constant, it can be used in statements and expressions at

places where a constant is expected. In the preceding example, TwicePi() is a constexpr

that uses a constant expression GetPi(). This will possibly trigger a compile-time optimi-

zation wherein every usage of TwicePi() is simply replaced by 6.28571 by the compiler,

and not the code that would calculate 2 x 22 / 7 when executed.

Listing 3.8 demonstrates the usage of constexpr.

LISTING 3.8 Using constexpr to Calculate Pi

 1: #include <iostream>
 2: constexpr double GetPi() { return 22.0 / 7; }
 3: constexpr double TwicePi() { return 2 * GetPi(); }
 4:
 5: int main()

ptg18655082

54 LESSON 3: Using Variables, Declaring Constants

 6: {
 7: using namespace std;
 8: const double pi = 22.0 / 7;
 9:
10: cout << "constant pi contains value " << pi << endl;
11: cout << "constexpr GetPi() returns value " << GetPi() << endl;
12: cout << "constexpr TwicePi() returns value " << TwicePi() << endl;

13: return 0;
14: }

Output ▼
constant pi contains value 3.14286
constexpr GetPi() returns value 3.14286
constexpr TwicePi() returns value 6.28571

Analysis ▼

The program demonstrates two methods of deriving the value of pi—one as a constant

variable pi as declared in Line 8 and another as a constant expression GetPi() declared

in Line 2. GetPi() and TwicePi() may look like functions, but they are not exactly.

Functions are invoked at program execution time. But, these are constant expressions and

the compiler had already substituted every usage of GetPi() by 3.14286 and every usage

of TwicePi() by 6.28571. Compile-time resolution of TwicePi() increases the speed of

program execution when compared to the same calculation being contained in a function.

Constant expressions need to contain simple implementations
that return simple types like integer, double, and so on. C++14
allows constexpr to contain decision-making constructs such as
if and switch statements. These conditional statements are dis-
cussed in detail in Lesson 6, “Controlling Program Flow.”

The usage of constexpr will not guarantee compile-time
 optimization—for example, if you use a constexpr expression to
double a user provided number. The outcome of such an expres-
sion cannot be calculated by the compiler, which may ignore the
usage of constexpr and compile as a regular function.

To see a demonstration of how a constant expression is used
in places where the compiler expects a constant, see the code
sample in Listing 4.2 in Lesson 4.

NOTE

ptg18655082

What Is a Constant? 55

3

In the previous code samples, we defined our own constant pi
as an exercise in learning the syntax of declaring constants and
constexpr. Yet, most popular C++ compilers already supply you
with a reasonably precise value of pi in the constant M_PI. You
may use this constant in your programs after including header
file <cmath>.

TIP

Enumerations
There are situations where a particular variable should be allowed to accept only a

 certain set of values. These are situations where you don’t want the colors in the rainbow

to contain Turquoise or the directions on a compass to contain Left. In both these cases,

you need a type of variable whose values are restricted to a certain set defined by you.

Enumerations are exactly the tool you need in this situation and are characterized by the

keyword enum. Enumerations comprise a set of constants called enumerators.

In the following example, the enumeration RainbowColors contains individual colors

such as Violet as enumerators:

enum RainbowColors
{
 Violet = 0,
 Indigo,
 Blue,
 Green,
 Yellow,
 Orange,
 Red
};

Here’s another enumeration for the cardinal directions:

enum CardinalDirections
{
 North,
 South,
 East,
 West
};

Enumerations are used as user-defined types. Variables of this type can be assigned a

range of values restricted to the enumerators contained in the enumeration. So, if defining

a variable that contains the colors of a rainbow, you declare the variable like this:

RainbowColors MyFavoriteColor = Blue; // Initial value

ptg18655082

56 LESSON 3: Using Variables, Declaring Constants

In the preceding line of code, you declared an enumerated constant MyFavoriteColor

of type RainbowColors. This enumerated constant variable is restricted to contain any

of the legal VIBGYOR colors and no other value.

The compiler converts the enumerator such as Violet and so on
into integers. Each enumerated value specified is one more than
the previous value. You have the choice of specifying a starting
value, and if this is not specified, the compiler takes it as 0. So,
North is evaluated as value 0.

If you want, you can also specify an explicit value against each of
the enumerated constants by initializing them.

NOTE

Listing 3.9 demonstrates how enumerated constants are used to hold the four cardinal

directions, with an initializing value supplied to the first one.

LISTING 3.9 Using Enumerated Values to Indicate Cardinal Wind Directions

 1: #include <iostream>
 2: using namespace std;
 3:
 4: enum CardinalDirections
 5: {
 6: North = 25,
 7: South,
 8: East,
 9: West
10: };
11:
12: int main()
13: {
14: cout << "Displaying directions and their symbolic values" << endl;
15: cout << "North: " << North << endl;
16: cout << "South: " << South << endl;
17: cout << "East: " << East << endl;
18: cout << "West: " << West << endl;
19:
20: CardinalDirections windDirection = South;
21: cout << "Variable windDirection = " << windDirection << endl;
22:
23: return 0;
24: }

ptg18655082

What Is a Constant? 57

3

Output ▼
Displaying directions and their symbolic values
North: 25
South: 26
East: 27
West: 28
Variable windDirection = 26

Analysis ▼

Note how we have enumerated the four cardinal directions but have given the first North

an initial value of 25 (see Line 6). This automatically ensures that the following constants

are assigned values 26, 27, and 28 by the compiler as demonstrated in the output. In Line

20 you create a variable of type CardinalDirections that is assigned an initial value

South. When displayed on the screen in Line 21, the compiler dispatches the integer

value associated with South, which is 26.

You may want to take a look at Listings 6.4 and 6.5 in
Lesson 6. They use enum to enumerate the days of the week and
 conditional processing to tell what the day of the user’s choosing
is named after.

TIP

Defining Constants Using #define
First and foremost, don’t use this if you are writing a program anew. The only reason

this book analyzes the definition of constants using #define is to help you understand

 certain legacy programs that do define constants such as pi using this syntax:

#define pi 3.14286

#define is a preprocessor macro, and what is done here is that all mentions of pi

henceforth are replaced by 3.14286 for the compiler to process. Note that this is a text

replacement (read: non-intelligent replacement) done by the preprocessor. The compiler

neither knows nor cares about the actual type of the constant in question.

Defining constants using the preprocessor via #define is depre-
cated and should not be used.CAUTION

ptg18655082

58 LESSON 3: Using Variables, Declaring Constants

Keywords You Cannot Use as Variable
or Constant Names
Some words are reserved by C++, and you cannot use them as variable names. These

keywords have special meaning to the C++ compiler. Keywords include if, while, for,

and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in

Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so

you should check its manual for a complete list.

TABLE 3.2 Major C++ Keywords

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

constexpr goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

In addition, the following words are reserved:

and bitor not_eq xor

and_eq compl or xor_eq

bitand not or_eq

ptg18655082

59

3

Q&A

DO DON’T

DO give variables descriptive names,
even if that makes them long.

DO initialize variables, and use list
initialization to avoid narrowing con-
version errors.

DO ensure that the name of the vari-
able explains its purpose.

DO put yourself into the shoes of
one who hasn’t seen your code yet
and think whether the name would
make sense to him or her.

DO check whether your team is
following certain naming conventions
and follow them.

DON’T give names that are too short
or contain just a character.

DON’T give names that use exotic
acronyms known only to you.

DON’T give names that are reserved
C++ keywords as these won’t
 compile.

Summary
In this lesson you learned about using memory to store values temporarily in variables

and constants. You learned that variables have a size determined by their type and

that the operator sizeof can be used to determine the size of one. You got to know of

different types of variables such as bool, int, and so on and that they are to be used

to contain different types of data. The right choice of a variable type is important in

effective programming, and the choice of a variable that’s too small for the purpose can

result in a wrapping error or an overflow situation. You learned about the keyword auto,

where you let the compiler decide the data-type for you on the basis of the initialization

value of the variable.

You also learned about the different types of constants and usage of the most important

ones among them using the keywords const, constexpr, and enum.

Q&A
 Q Why define constants at all if you can use regular variables instead of them?

A Constants, especially those declared using the keyword const, are your way of

telling the compiler that the value of a particular variable be fixed and not allowed

to change. Consequently, the compiler always ensures that the constant variable is

never assigned another value, not even if another programmer was to take up your

work and inadvertently try to overwrite the value. So, declaring constants where

ptg18655082

60 LESSON 3: Using Variables, Declaring Constants

you know the value of a variable should not change is a good programming practice

and increases the quality of your application.

 Q Why should I initialize the value of a variable?

 A If you don’t initialize, you don’t know what the variable contains for a starting

value. The starting value is just the contents of the location in the memory that are

reserved for the variable. Initialization such as that seen here:

int myFavoriteNumber = 0;

writes the initial value of your choosing, in this case 0, to the memory location

reserved for the variable myFavoriteNumber as soon as it is created. There are

situations where you do conditional processing depending on the value of a variable

(often checked against nonzero). Such logic does not work reliably without initial-

ization because an unassigned or initiated variable contains junk that is often

nonzero and random.

 Q Why does C++ give me the option of using short int and int and long
int? Why not just always use the integer that always allows for the highest
number to be stored within?

 A C++ is a programming language that is used to program for a variety of

 applications, many running on devices with little computing capacity or memory

resources. The simple old cell phone is one example where processing capacity

and available memory are both limited. In this case, the programmer can often save

memory or speed or both by choosing the right kind of variable if he doesn’t need

high values. If you are programming on a regular desktop or a high-end smart-

phone, chances are that the performance gained or memory saved in choosing one

integer type over another is going to be insignificant and in some cases even absent.

 Q Why should I not use global variables frequently? Isn’t it true that they’re
usable throughout my application and I can save some time otherwise lost
to passing values around functions?

 A Global variables can be read and assigned globally. The latter is the problem as they

can be changed globally. Assume you are working on a project with a few other

programmers in a team. You have declared your integers and other variables to be

global. If any programmer in your team changes the value of your integer inadver-

tently in his code—which even might be a different .CPP file than the one you are

using—the reliability of your code is affected. So, sparing a few seconds or minutes

should not be criteria, and you should not use global variables indiscriminately to

ensure the stability of your code.

ptg18655082

Workshop 61

3

 Q C++ is giving me the option of declaring unsigned integers that are supposed
to contain only positive integer values and zero. What happens if I decrement
a zero value contained in an unsigned int?

 A You see a wrapping effect. Decrementing an unsigned integer that contains 0 by

1 means that it wraps to the highest value it can hold! Check Table 3.1—you see

that an unsigned short can contain values from 0 to 65,535. So, declare an

unsigned short and decrement it to see the unexpected:

unsigned short myShortInt = 0; // Initial Value
myShortInt = myShortInt - 1; // Decrement by 1
std::cout << myShortInt << std::endl; // Output: 65535!

Note that this is not a problem with the unsigned short, rather with your usage

of the same. An unsigned integer (or short or long) is not to be used when nega-

tive values are within the specifications. If the contents of myShortInt are to be

used to dynamically allocate those many number of bytes, a little bug that allows

a zero value to be decremented would result in 64KB being allocated! Worse,

if myShortInt were to be used as an index in accessing a location of memory,

chances are high that your application would access an external location and

would crash!

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain that you understand the answers before continuing to the

next lesson.

Quiz
1. What is the difference between a signed and an unsigned integer?

2. Why should you not use #define to declare a constant?

3. Why would you initialize a variable?

 4. Consider the enum below. What is the value of Queen?

enum YourCards {Ace, Jack, Queen, King};

5. What is wrong with this variable name?

int Integer = 0;

ptg18655082

62 LESSON 3: Using Variables, Declaring Constants

Exercises
1. Modify enum YourCards in quiz question 4 to demonstrate that the value of

Queen can be 45.

2. Write a program that demonstrates that the size of an unsigned integer and a normal

integer are the same, and that both are smaller in size than a long integer.

 3. Write a program to calculate the area and circumference of a circle where the

radius is fed by the user.

4. In Exercise 3, if the area and circumference were to be stored in integers, how

would the output be any different?

5. BUGBUSTERS: What is wrong in the following initialization:

auto Integer;

ptg18655082

LESSON 4
Managing Arrays
and Strings

In previous lessons, you declared variables used to contain a single int,
char, or string to mention a few instances. However, you may want to
declare a collection of objects, such as 20 ints or a string of characters
to hold a name.

In this lesson, you learn

 ■ What arrays are and how to declare and use them

 ■ What strings are and how to use character arrays to make them

 ■ A brief introduction to std::string

ptg18655082

64 LESSON 4: Managing Arrays and Strings

What Is an Array?
The dictionary definition of an array gets really close to what we want to be understanding.

According to Merriam Webster, an array is “a group of elements forming a complete

unit, for example an array of solar panels.”

The following are characteristics of an array:

 ■ An array is a collection of elements.

 ■ All elements contained in an array are of the same kind.

 ■ This collection forms a complete set.

In C++, arrays enable you to store data elements of a type in the memory, in a sequential

and ordered fashion.

The Need for Arrays
Imagine that you are writing a program where the user can type in five integers and you

display them back to him. One way would be to have your program declare five distinct

and unique integer variables and use them to store and display values. The declarations

would look like this:

int firstNumber = 0;
int secondNumber = 0;
int thirdNumber = 0;
int fourthNumber = 0;
int fifthNumber = 0;

If your user wants this program to store and display 500 integers at a later stage, you

need to declare 500 such integers using the preceding system. This still is doable given

generous amounts of patience and time. However, imagine the user asks you to support

500,000 integers instead of 5—what would you do?

You would do it right and do it smart from the point go by declaring an array of five

 integers each initialized to zero, like this:

int myNumbers [5] = {0};

Thus, if you were asked to support 500,000 integers, your array would scale up quite

quickly, like this:

int manyNumbers [500000] = {0};

An array of five characters would be defined as

char myCharacters [5];

ptg18655082

What Is an Array? 65

4

Such arrays are called static arrays because the number of elements they contain as well

as the memory the array consumes is fixed at the time of compilation.

Declaring and Initializing Static Arrays
In the preceding lines of code, you declared an array called myNumbers that contains

five elements of type int—that is, integer—all initialized to a value 0. Thus, array

 declaration in C++ follows a simple syntax:

ElementType ArrayName [constant_number of elements] = {optional initial values};

You can even declare an array and initialize its contents on a per-element basis, like this

integer array where each of the five integers is initialized to five different integer values:

int myNumbers [5] = {34, 56, -21, 5002, 365};

You can have all elements in an array initialized to zero (the default supplied by the

 compiler to numerical types), like this:

int myNumbers [5] = {}; // initializes all integers to 0

You can also partially initialize elements in an array, like this:

int myNumbers [5] = {34, 56};
// initialize first two elements to 34 and 56 and the rest to 0

You can define the length of an array (that is, the number of elements in one) as a

 constant and use that constant in your array definition:

const int ARRAY_LENGTH = 5;
int myNumbers [ARRAY_LENGTH] = {34, 56, -21, 5002, 365};

This is particularly useful when you need to access and use the length of the array at

multiple places, such as when iterating elements in one, and then instead of having to

change the length at each of those places, you just correct the initialization value at the

const int declaration.

You can opt to leave out the number of elements in an array if you know the initial values

of the elements in the array:

int myNumbers [] = {2016, 2052, -525}; // array of 3 elements

The preceding code creates an array of three integers with the initial values 2016, 2052,

and –525.

ptg18655082

66 LESSON 4: Managing Arrays and Strings

Arrays declared thus far are called static arrays as the length
of the array is a constant and fixed by the programmer at
 compile-time. This array cannot take more data than what the
programmer has specified. It also does not consume any less
memory if left half-used or unused. Arrays where the length is
decided at execution-time are called dynamic arrays. Dynamic
arrays are briefly introduced later in this lesson and are
discussed in detail in Lesson 17, “STL Dynamic Array Classes.”

NOTE

How Data Is Stored in an Array
Think of books placed on a shelf, one next to the other. This is an example of a

 one-dimensional array, as it expands in only one dimension, that is the number of books

on it. Each book is an element in the array, and the rack is akin to the memory that has

been reserved to store this collection of books as shown in Figure 4.1.

Recipes
B

ook 0 Recipes
B

ook 1 Recipes

B
ook 2

Recipes

B
ook 3
B

ook 4
FIGURE 4.1

Books on a shelf:
a one-dimensional
array.

It is not an error that we started numbering the books with 0. As you later see, indexes

in C++ start at 0 and not at 1. Similar to the five books on a shelf, the array myNumbers

containing five integers looks similar to Figure 4.2.

ptg18655082

What Is an Array? 67

4

Recipes

34

Recipes

56

Recipes

–21

Recipes

5002
365

Memory reserved for myNumbers Memory

sizeof(int)
FIGURE 4.2

Organization of an
array of five integers,
myNumbers, in
memory.

Note that the memory space occupied by the array is comprised of five blocks, each of

equal size, that is defined by the type of data to be held in the array, in this case integer.

If you remember, you studied the size of an integer in Lesson 3, “Using Variables,

Declaring Constants.” The amount of memory reserved by the compiler for the array

myNumbers is hence sizeof(int) * 5. In general, the amount of memory reserved by

the compiler for an array in bytes is

Bytes consumed by an array = sizeof(element-type) * Number of Elements

Accessing Data Stored in an Array
Elements in an array can be accessed using their zero-based index. These indexes are

called zero-based because the first element in an array is at index 0. So, the first integer

value stored in the array myNumbers is myNumbers[0], the second is myNumbers[1],

and so on. The fifth is myNumbers[4]. In other words, the index of the last element in

an array is always (Length of Array – 1).

When asked to access element at index N, the compiler uses the memory address of the

first element (positioned at index zero) as the starting point and then skips N elements

by adding the offset computed as N*sizeof(element) to reach the address containing

the (N+1)th element. The C++ compiler does not check if the index is within the actual

defined bounds of the array. You can try fetching the element at index 1001 in an array of

only 10 elements, putting the security and stability of your program at risk. The onus of

ensuring that the array is not accessed beyond its bounds lies solely on the programmer.

ptg18655082

68 LESSON 4: Managing Arrays and Strings

Accessing an array beyond its bounds results in unpredictable
behavior. In many cases this causes your program to crash.
Accessing arrays beyond their bounds should be avoided at
all costs.

CAUTION

Listing 4.1 demonstrates how you declare an array of integers, initialize its elements to

integer values, and access them to display them on the screen.

LISTING 4.1 Declaring an Array of Integers and Accessing Its Elements

 0: #include <iostream>
 1:
 2: using namespace std;
 3:
 4: int main ()
 5: {
 6: int myNumbers [5] = {34, 56, -21, 5002, 365};
 7:
 8: cout << "First element at index 0: " << myNumbers [0] << endl;
 9: cout << "Second element at index 1: " << myNumbers [1] << endl;
10: cout << "Third element at index 2: " << myNumbers [2] << endl;
11: cout << "Fourth element at index 3: " << myNumbers [3] << endl;
12: cout << "Fifth element at index 4: " << myNumbers [4] << endl;
13:
14: return 0;
15: }

Output ▼
First element at index 0: 34
Second element at index 1: 56
Third element at index 2: -21
Fourth element at index 3: 5002
Fifth element at index 4: 365

Analysis ▼

Line 6 declares an array of five integers with initial values specified for each of them.

The subsequent lines simply display the integers using cout and using the array variable

myNumbers with an appropriate index.

ptg18655082

What Is an Array? 69

4

To familiarize you with the concept of zero-based indexes used
to access elements in arrays, we started numbering lines of
code in Listing 4.1 and beyond with the first line being numbered
as Line 0.

NOTE

Modifying Data Stored in an Array
In the previous code listing, you did not enter user-defined data into the array. The syntax

for assigning an integer to an element in that array is quite similar to assigning an integer

value to an integer variable.

For example, assigning a value 2016 to an integer is like the following:

int thisYear;
thisYear = 2016;

Assigning a value 2016 to the fourth element in your array is like this:

myNumbers [3] = 2016; // Assign 2016 to the fourth element

Listing 4.2 demonstrates the use of constants in declaring the length of an array and shows

how individual array elements can be assigned values during the execution of the program.

LISTING 4.2 Assigning Values to Elements in an Array

 0: #include <iostream>
 1: using namespace std;
 2: constexpr int Square(int number) { return number*number; }
 3:
 4: int main()
 5: {
 6: const int ARRAY_LENGTH = 5;
 7:
 8: // Array of 5 integers, initialized using a const
 9: int myNumbers [ARRAY_LENGTH] = {5, 10, 0, -101, 20};
10:
11: // Using a constexpr for array of 25 integers
12: int moreNumbers [Square(ARRAY_LENGTH)];
13:
14: cout << "Enter index of the element to be changed: ";
15: int elementIndex = 0;
16: cin >> elementIndex;
17:
18: cout << "Enter new value: ";
19: int newValue = 0;
20: cin >> newValue;
21:

ptg18655082

70 LESSON 4: Managing Arrays and Strings

22: myNumbers[elementIndex] = newValue;
23: moreNumbers[elementIndex] = newValue;
24:
25: cout << "Element " << elementIndex << " in array myNumbers is: ";
26: cout << myNumbers[elementIndex] << endl;
27:
28: cout << "Element " << elementIndex << " in array moreNumbers is: ";
29: cout << moreNumbers[elementIndex] << endl;
30:
31: return 0;
32: }

Output ▼
Enter index of the element to be changed: 3
Enter new value: 101
Element 3 in array myNumbers is: 101
Element 3 in array moreNumbers is: 101

Analysis ▼

Array length needs to be a constant integer. This can therefore also be specified in a

constant ARRAY_LENGTH used in Line 9 or a constant expression Square() used in Line

12. Thus, the array myNumbers is declared to be 5 elements in length, while the array

moreNumbers to be 25. Lines 14–20 ask the user to enter the index in the array of the

element he wants to modify and the new value to be stored at that index. Lines 22 and 23

demonstrate how to modify a specific element in an array given that index. Lines 26–29

demonstrate how to access elements in an array given an index. Note that modifying

the element at index 3 actually modifies the fourth element in the array, as indexes are

 zero-based entities. You have to get used to this.

Many novice C++ programmers assign the fifth value at index
five in an array of five integers. Note that this exceeds the bound
of the array as the compiled code tries accessing the sixth
element in the array which is beyond its defined bounds.

This kind of error is called a fence-post error. It’s named after the
fact that the number of posts needed to build a fence is always
one more than the number of sections in the fence.

NOTE

ptg18655082

Multidimensional Arrays 71

4

Something fundamental is missing in Listing 4.2: It does not
check whether the index entered by the user is within the bounds
of the array. The previous program should actually verify whether
elementIndex is within 0 and 4 for array myNumbers and within
0 and 24 for array moreNumbers and reject all other entries. This
missing check allows the user to potentially assign and access a
value beyond the bounds of the array. This can potentially cause
the application—and the system, in a worst-case scenario—to
crash.

Performing checks is explained in Lesson 6, “Controlling
Program Flow.”

CAUTION

Using Loops to Access Array Elements

When working with arrays and their elements in serial order, you should access them
(in other words, iterate) using loops. See Lesson 6, and Listing 6.10 in particular,
to quickly learn how elements in an array can be efficiently inserted or accessed
using a for loop.

DO DON’T

DO always initialize arrays, or else
they will contain junk values.

DO always ensure that your arrays are
used within their defined boundaries.

DON’T ever access the Nth element
using index N, in an array of N
 elements. Use index (N–1).

DON’T forget that the first element in
an array is accessed using index 0.

Multidimensional Arrays
The arrays that we have seen thus far have been akin to books on a shelf. There can be

more books on a longer shelf and fewer books on a shorter one. That is, the length of the

shelf is the only dimension defining the capacity of the shelf, hence it is one-dimensional.

Now, what if we were to use arrays to model an array of solar panels as shown in Figure 4.3?

Solar panels, unlike bookshelves, expand in two dimensions: in length and in breadth.

ptg18655082

72 LESSON 4: Managing Arrays and Strings

Row 0

Row 1

Column 0 Column 1 Column 2

Panel
0

Panel
1

Panel
2

Panel
3

Panel
4

Panel
5

FIGURE 4.3

Array of solar panels
on a roof.

As you see in Figure 4.3, six solar panels are placed in a two-dimensional arrangement

comprised of two rows and three columns. From one perspective, you can see this

arrangement as an array of two elements, each element itself being an array of three

 panels—in other words, an array of arrays. In C++, you can model two-dimensional

arrays, but you are not restricted to just two dimensions. Depending on your need and the

nature of the application, you can model multidimensional arrays in memory, too.

Declaring and Initializing Multidimensional Arrays
C++ enables you to declare multidimensional arrays by indicating the number of

 elements you want to reserve in each dimension. So, a two-dimensional array of integers

representing the solar panels in Figure 4.3 is

int solarPanels [2][3];

Note that in Figure 4.3, you have also assigned each panel an ID ranging from 0 through

5 for the six panels in the solar array. If you were to initialize the integer array in the

same order, it would look like the following:

int solarPanels [2][3] = {{0, 1, 2}, {3, 4, 5}};

As you see, the initialization syntax used is actually similar to one where we initialize

two one-dimensional arrays. An array comprising of three rows and three columns would

look like this:

int threeRowsThreeColumns [3][3] = {{-501, 206, 2016}, {989, 101, 206}, {303,
456, 596}};

ptg18655082

Multidimensional Arrays 73

4

Even though C++ enables us to model multidimensional arrays,
the memory where the array is contained is one-dimensional. So,
the compiler maps the multidimensional array into the memory
space, which expands only in one direction.

If you wanted to, you could also initialize the array called
solarPanels like the following, and it would still contain the
same values in the respective elements:

int solarPanels [2][3] = {0, 1, 2, 3, 4, 5};

However, the earlier method makes a better example because
it’s easier to imagine and understand a multidimensional array
as an array of arrays.

NOTE

Accessing Elements in a Multidimensional Array
Think of a multidimensional array as an array comprising elements that are arrays.

So, when dealing with a two-dimensional array comprising three rows and three

 columns, each containing integers, visualize it as handling an array comprising three

 elements, where each element is an array comprising three integers.

When you need to access an integer in this array, you would need to use a first subscript

to address the array where the integer is and the second subscript to address that integer

in this array. Consider this array:

int threeRowsThreeColumns [3][3] = {{-501, 205, 2016}, {989, 101, 206}, {303,
456, 596}};

It has been initialized in a way you can visualize three arrays, each containing three

 integers. Here, the integer element with value 205 is at position [0][1]. The element

with value 456 is at position [2][1]. Listing 4.3 explains how integer elements in this

array can be accessed.

LISTING 4.3 Accessing Elements in a Multidimensional Array

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int threeRowsThreeColumns [3][3] = \
 6: {{-501, 205, 2016}, {989, 101, 206}, {303, 456, 596}};
 7:
 8: cout << "Row 0: " << threeRowsThreeColumns [0][0] << " " \
 9: << threeRowsThreeColumns [0][1] << " " \

ptg18655082

74 LESSON 4: Managing Arrays and Strings

10: << threeRowsThreeColumns [0][2] << endl;
11:
12:
13: cout << "Row 1: " << threeRowsThreeColumns [1][0] << " " \
14: << threeRowsThreeColumns [1][1] << " " \
15: << threeRowsThreeColumns [1][2] << endl;
16:
17: cout << "Row 2: " << threeRowsThreeColumns [2][0] << " "\
18: << threeRowsThreeColumns [2][1] << " " \
19: << threeRowsThreeColumns [2][2] << endl;
20:
21: return 0;
22: }

Output ▼
Row 0: -501 205 2016
Row 1: 989 101 206
Row 2: 303 45 6 596

Analysis ▼

Note how you have accessed elements in the array row-wise, starting with the array that

is Row 0 (the first row, with index 0) and ending with the array that is Row 2 (third row,

with index 2). As each of the rows is an array, the syntax for addressing the third element

in the first row (row index 0, element index 2) is seen in Line 10.

In Listing 4.3 the length of the code increases dramatically with
the increase in the number of elements in the array or dimen-
sions thereof. This code is actually unsustainable in a profes-
sional development environment.

You can see a more efficient way to program accessing elements
in a multidimensional array in Listing 6.14 in Lesson 6, in which
you use a nested for loop to access all elements in such an
array. Using for loops is actually shorter and less error-prone,
and the length of the program is not affected by changing the
number of elements in the array.

NOTE

Dynamic Arrays
Consider an application that stores medical records for hospitals. There is no good

way for the programmer to know what the upper limits of the number of records his

 application might need to handle are. He can make an assumption that is way more

ptg18655082

Dynamic Arrays 75

4

than the reasonable limit for a small hospital to err on the safe side. In those cases, he is

reserving huge amounts of memory without reason and reducing the performance of the

system.

The key is to not use static arrays like the ones we have seen thus far, rather to choose

dynamic arrays that optimize memory consumption and scale up depending on the

demand for resources and memory at execution-time. C++ provides you with convenient

and easy-to-use dynamic arrays in the form of std::vector as shown in Listing 4.4.

LISTING 4.4 Creating a Dynamic Array of Integers and Inserting Values Dynamically

 0: #include <iostream>
 1: #include <vector>
 2:
 3: using namespace std;
 4:
 5: int main()
 6: {
 7: vector<int> dynArray (3); // dynamic array of int
 8:
 9: dynArray[0] = 365;
10: dynArray[1] = -421;
11: dynArray[2]= 789;
12:
13: cout << "Number of integers in array: " << dynArray.size() << endl;
14:
15: cout << "Enter another element to insert" << endl;
16: int newValue = 0;
17: cin >> newValue;
18: dynArray.push_back(newValue);
19:
20: cout << "Number of integers in array: " << dynArray.size() << endl;
21: cout << "Last element in array: ";
22: cout << dynArray[dynArray.size() - 1] << endl;
23: return 0;
24:
25: }

Output ▼
Number of integers in array: 3
Enter another element to insert
2017
Number of integers in array: 4
Last element in array: 2017

ptg18655082

76 LESSON 4: Managing Arrays and Strings

Analysis ▼

Don’t worry about the syntax in Listing 4.4 as vector and templates have not been

explained as yet. Try to observe the output and correlate it to the code. The initial size

of the array according to the output is 3, consistent with the declaration of the array

(std::vector) at Line 7. Knowing this, you still ask the user to enter a fourth number

at Line 15, and, interestingly enough, you are able to insert this number into the back

of the array using push_back() at Line 18. The vector dynamically resizes itself to

 accommodate more data. This can be then seen in the size of the array that increases to

4. Note the usage of the familiar static array syntax to access data in the vector. Line 22

accesses the last element (wherever that might be, given a position calculated at run-time)

using the zero-based index, where the last element is at index “size() – 1”. size()

being the function that returns the total number of elements (integers) contained in the

vector.

To use the dynamic array class std::vector, you need to
include header vector, which is also shown in Line 1 of Listing 4.4.

#include <vector>

Vectors are explained in greater detail in Lesson 17.

NOTE

C-style Character Strings
C-style strings are a special case of an array of characters. You have already seen some

examples of C-style strings in the form of string literals that you have been writing into

your code:

std::cout << "Hello World";

This is equivalent to using the array declaration:

char sayHello[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd',
'\0'};
std::cout << sayHello << std::endl;

Note that the last character in the array is a null character '\0'. This is also called the

string-terminating character because it tells the compiler that the string has ended. Such

C-style strings are a special case of character arrays in that the last character always pre-

cedes the null-terminator '\0'. When you embed a string literal in your code, the compiler

does the job of adding a '\0' after it.

ptg18655082

C-style Character Strings 77

4

If you inserted '\0' anywhere in the middle of the array, it would not change the size of

the array; it would only mean that string-processing using the array as input would stop

at that point. Listing 4.5 demonstrates this point.

'\0' might look like two characters to you, and it indeed is two
characters typed using the keyboard. Yet, the backslash is a spe-
cial escape code that the compiler understands and \0 means
null—that is, it asks the compiler to insert a null or zero in there.

You could not write '0' directly because that would be accepted
as character zero, which has the nonzero ASCII code 48.

Check the table in Appendix D, “ASCII Codes,” to see this and
other ASCII values.

NOTE

LISTING 4.5 Analyzing the Null-Terminator in a C-style String

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: char sayHello[] = {'H','e','l','l','o',' ','W','o','r','l','d','\0'};
 6: cout << sayHello << endl;
 7: cout << "Size of array: " << sizeof(sayHello) << endl;
 8:
 9: cout << "Replacing space with null" << endl;
10: sayHello[5] = '\0';
11: cout << sayHello << endl;
12: cout << "Size of array: " << sizeof(sayHello) << endl;
13:
14: return 0;
15: }

Output ▼
Hello World
Size of array: 12
Replacing space with null
Hello
Size of array: 12

ptg18655082

78 LESSON 4: Managing Arrays and Strings

Analysis ▼

Line 10 is where we replace the space in “Hello World” by the null-terminating charac-

ter. Note that the array now has two null-terminators, but it’s the first one that results in

the display of the string in Line 11 being truncated to just “Hello”. sizeof() at Lines 7

and 12 indicates that the size of the array has not changed, even if the displayed data

changed a lot.

If you forget to add the '\0' when declaring and initializing the
character array in Listing 4.5 at Line 5, then expect the output
to contain garbled characters after printing “Hello World”; this is
because std::cout does not stop with printing the array until it
reaches a null character, even if it means exceeding the bounds
of the array.

This mistake can cause your program to crash and, in some
cases, compromise the stability of the system.

CAUTION

C-style strings are fraught with danger. Listing 4.6 demonstrates the risks involved in

using one.

LISTING 4.6 A Risky Application Using C-style Strings and User Input

 0: #include<iostream>
 1: #include<string.h>
 2: using namespace std;
 3: int main()
 4: {
 5: cout << "Enter a word NOT longer than 20 characters:" << endl;
 6:
 7: char userInput [21] = {'\0'};
 8: cin >> userInput;
 9:
10: cout << "Length of your input was: " << strlen (userInput) << endl;
11:
12: return 0;
13: }

Output ▼
Enter a word NOT longer than 20 characters:
Don'tUseThisProgram
Length of your input was: 19

ptg18655082

79

4

C++ Strings: Using std::string

Analysis ▼

The danger is visible in the output. The program is begging the user to not enter data

 longer than 20 characters. The reason it does so is that the character buffer declared in

Line 7 meant to store user input has a fixed—static—length of 21 characters. As the last

character in the string needs to be a null-terminator '\0', the maximum length of text

stored by the buffer is limited to 20. Note the usage of strlen() in Line 10 to compute

the length of the string. Strlen() walks the character buffer and counts the number

of characters crossed until it reaches the null-terminator that indicates the end of the

string. This null-terminator has been inserted by cin at the end of the user’s input. This

 behavior of strlen makes it dangerous as it can easily walk past the bounds of

the character array if the user has supplied text longer than the mentioned limit. See

Listing 6.2 in Lesson 6 to learn how to implement a check that ensures an array is not

written beyond its bounds.

Applications programmed in C (or in C++ by programmers who
have a strong C background) often use string copy functions
such as strcpy(), concatenation functions such as strcat(),
and strlen() to determine the length of a string, in addition to
others of this kind.

These functions take C-style strings as input and are dangerous
as they seek the null-terminator and can exceed the boundaries
of the character array they’re using if the programmer has not
ensured the presence of the terminating null.

CAUTION

C++ Strings: Using std::string
C++ standard strings are an efficient and safer way to deal with text input—and to

 perform string manipulations like concatenations. std::string is not static in size

like a char array implementation of a C-style string is and can scale up when more

data needs to be stored in it. Using std::string to manipulate string data is shown in

Listing 4.7.

LISTING 4.7 Using std::string to Initialize, Store User Input, Copy, Concatenate,
and Determine the Length of a String

 0: #include <iostream>
 1: #include <string>
 2:
 3: using namespace std;
 4:

ptg18655082

80 LESSON 4: Managing Arrays and Strings

 5: int main()
 6: {
 7: string greetString ("Hello std::string!");
 8: cout << greetString << endl;
 9:
10: cout << "Enter a line of text: " << endl;
11: string firstLine;
12: getline(cin, firstLine);
13:
14: cout << "Enter another: " << endl;
15: string secondLine;
16: getline(cin, secondLine);
17:
18: cout << "Result of concatenation: " << endl;
19: string concatString = firstLine + " " + secondLine;
20: cout << concatString << endl;
21:
22: cout << "Copy of concatenated string: " << endl;
23: string aCopy;
24: aCopy = concatString;
25: cout << aCopy << endl;
26:
27: cout << "Length of concat string: " << concatString.length() << endl;
28:
29: return 0;
30: }

Output ▼
Hello std::string!
Enter a line of text:
I love
Enter another:
C++ strings
Result of concatenation:
I love C++ strings
Copy of concatenated string:
I love C++ strings
Length of concat string: 18

Analysis ▼

Try to understand the output and correlate it to the various elements in code. Don’t let

new syntax features bother you at this stage. The program starts with displaying a string

that has been initialized in Line 7 to “Hello std::string”. It then asks the user to

enter two lines of text, which are stored in variables firstLine and secondLine in

Lines 12 and 16. The actual concatenation is simple and looks like an arithmetic addition

in Line 19, where even a space has been added to the first line. The act of copying is

ptg18655082

81

4

Q&A

a simple act of assigning in Line 24. Determining the length of the string is done by

 invoking length() on it in Line 27.

To use a C++ string, you need to include the header string:

#include <string>

This is also visible in Line 1 in Listing 4.7.

NOTE

To learn the various functions of std::string in detail, take a quick look at Lesson 16,

“The STL string Class.” Because you have not learned about classes and templates yet,

ignore sections that seem unfamiliar in that lesson and concentrate on understanding the

gist of the samples.

Summary
This lesson taught you about the basics of arrays, what they are, and where they can be

used. You learned how to declare them, initialize them, access elements in an array, and

write values to elements in an array. You learned how important it is to not exceed the

bounds of an array. That is called a buffer overflow, and ensuring that input is checked

before using to index elements helps ensure that the limits of an array are not crossed.

Dynamic arrays are those where the programmer doesn’t need to worry about fixing the

max length of an array at compile-time, and they allow for better memory management

in the event of usage that is lesser than the expected maximum.

You also learned that C-style strings are a special case of char arrays where the end of

the string is marked by a null-terminating character '\0'. More importantly, though,

you learned that C++ offers a far better option in the std::string, which provides

 convenient utility functions that enable you to determine the length, concatenate, and

perform similar actions.

Q&A
 Q Why take the trouble to initialize a static array’s elements?

A Unless initialized, the array, unlike a variable of any other type, contains junk and

unpredictable values as the memory at that location was left untouched after the last

operations. Initializing arrays ensures that the information therein has a distinct and

predictable initial state.

ptg18655082

82 LESSON 4: Managing Arrays and Strings

 Q Would you need to initialize the elements in a dynamic array for the same
 reasons as mentioned in the first question?

 A Actually, no. A dynamic array is quite a smart array. Elements in the array don’t

need to be initialized to a default value unless there is a specific reason related to

the application that needs you to have certain initial values in the array.

 Q Given a choice, would you use C-style strings that need a null-terminator?

 A Yes, but only if someone places a gun to your head. C++ std::string is a lot

safer and supplies features that should make any good programmer stay away from

using C-style strings.

 Q Does the length of the string include the null-terminator at the end of it?

 A No, it doesn’t. The length of string “Hello World” is 11, including the space and

excluding the null character at the end of it.

 Q Well, I still want to use C-style strings in char arrays defined by myself. What
should be the size of the array I am using?

A Here you go with one of the complications of using C-style strings. The size of the

array should be one greater than the size of the largest string it will ever contain.

This is essential so that it can accommodate for the null character at the end of the

largest string. If “Hello World” was to be the largest string your char array would

ever hold, then the length of the array needs to be 11 + 1 = 12 characters.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the material

covered and exercises to provide you with experience in using what you’ve learned. Try to

answer the quiz and exercise questions before checking the answers in Appendix E, and be

certain you understand the answers before continuing to the next lesson.

Quiz
1. Check the array myNumbers in Listing 4.1. What are the indexes of the first and

last elements in that array?

 2. If you need to allow the user to input strings, would you use C-style strings?

 3. How many characters are in '\0' as seen by the compiler?

ptg18655082

Workshop 83

4

4. You forget to end your C-style string with a null-terminator. What happens when

you use it?

 5. See the declaration of vector in Listing 4.4 and try composing a dynamic array that

contains elements of the type char.

Exercises
1. Declare an array that represents the squares on the chessboard; the type of the array

being an enum that defines the pieces that may possibly occupy the squares.

 HINT: The enum will contain enumerators (Rook, Bishop, and so on), thereby

limiting the range of possible values that the elements in the array can hold. Don’t

forget that a cell may also be empty!

 2. BUG BUSTERS: What is wrong with this code fragment?

int myNumbers[5] = {0};
myNumbers[5] = 450; // Setting the 5th element to value 450

3. BUG BUSTERS: What is wrong with this code fragment?

int myNumbers[5];
cout << myNumbers[3];

ptg18655082

LESSON 5
Working with
Expressions,
Statements, and
Operators

At its heart, a program is a set of commands executed in sequence.
These commands are programmed into expressions and statements and
use operators to perform specific calculations or actions.

In this lesson, you learn

 ■ What statements are

 ■ What blocks or compound statements are

 ■ What operators are

 ■ How to perform simple arithmetic and logical operations

ptg18655082

86 LESSON 5: Working with Expressions, Statements, and Operators

Statements
Languages—spoken or programmed—are composed of statements that are executed one

after another. Let’s analyze the first important statement you learned:

cout << "Hello World" << endl;

A statement using cout displays text using the console on the screen. All statements in

C++ end with a semicolon (;), which defines the boundary of a statement. This is similar

to the period (.) you add when ending a sentence in English. The next statement can start

immediately after the semicolon, but for convenience and readability you often program

successive statements on successive lines. In other words, this is actually a set of two

statements in a line:

cout << "Hello World" << endl; cout << "Another hello" << endl;

Whitespaces typically are not visible to the compiler. This
includes spaces, tabs, line feeds, carriage returns, and so on.
Whitespaces within string literals, though, make a difference to
the output.

NOTE

The following would be invalid:

cout << "Hello
 World" << endl; // new line in string literal not allowed

Such code typically results in an error indicating that the compiler is missing a closing

quote (") and a statement-terminating semicolon (;) in the first line. If you need to spread

a statement over two lines for some reason, you can do it by inserting a backslash (\) at

the end:

cout << "Hello \
 World" << endl; // split to two lines is OK

Another way of writing the preceding statement in two lines is to write two string literals

instead of just one:

cout << "Hello "
 "World" << endl; // two string literals is also OK

In the preceding example, the compiler notices two adjacent string literals and

 concatenates them for you.

ptg18655082

Using Operators 87

5

Splitting a statement into many lines can be useful when you
have long text elements or complex expressions comprised of many
variables that make a statement much longer than what most
displays can allow.

NOTE

Compound Statements or Blocks
When you group statements together within braces {...}, you create a compound

 statement or a block.

{
 int daysInYear = 365;
 cout << "Block contains an int and a cout statement" << endl;
}

A block typically groups many statements to indicate that they belong together. Blocks

are particularly useful when programming conditional if statements or loops, which are

explained in Lesson 6, “Controlling Program Flow.”

Using Operators
Operators are tools that C++ provides for you to be able to work with data, transform it,

process it, and possibly make decisions on the basis of it.

The Assignment Operator (=)
The assignment operator is one that you already have been using intuitively in this book:

int daysInYear = 365;

The preceding statement uses the assignment operator in initializing the integer to 365.

The assignment operator replaces the value contained by the operand to the left

(unimaginatively called l-value) by that on the right (called r-value).

Understanding L-values and R-values
L-values often refer to locations in memory. A variable such as daysInYear from the

preceding example is actually a handle to a memory location and is an l-value. R-values,

on the other hand, can be the very content of a memory location.

ptg18655082

88 LESSON 5: Working with Expressions, Statements, and Operators

So, all l-values can be r-values, but not all r-values can be l-values. To understand it

 better, look at the following example, which doesn’t make any sense and therefore won’t

compile:

365 = daysInYear;

Operators to Add (+), Subtract (-), Multiply (*),
Divide (/), and Modulo Divide (%)
You can perform an arithmetic operation between two operands by using + for addition,

– for subtraction, * for multiplication, / for division, and % for modulo operation:

int num1 = 22;
int num2 = 5;
int addNums = num1 + num2; // 27
int subtractNums = num1 – num2; // 17
int multiplyNums = num1 * num2; // 110
int divideNums = num1 / num2; // 4
int moduloNums = num1 % num2; // 2

Note that the division operator (/) returns the result of division between two operands.

In the case of integers, however, the result contains no decimals as integers by definition

cannot hold decimal data. The modulo operator (%) returns the remainder of a division

operator, and it is applicable only on integer values. Listing 5.1 is a simple program

that demonstrates an application to perform arithmetic functions on two numbers input

by the user.

LISTING 5.1 Demonstrate Arithmetic Operators on Integers Input by the User

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter two integers:" << endl;
 6: int num1 = 0, num2 = 0;
 7: cin >> num1;
 8: cin >> num2;
 9:
10: cout << num1 << " + " << num2 << " = " << num1 + num2 << endl;
11: cout << num1 << " - " << num2 << " = " << num1 - num2 << endl;
12: cout << num1 << " * " << num2 << " = " << num1 * num2 << endl;

ptg18655082

Using Operators 89

5

13: cout << num1 << " / " << num2 << " = " << num1 / num2 << endl;
14: cout << num1 << " % " << num2 << " = " << num1 % num2 << endl;
15:
16: return 0;
17: }

Output ▼
Enter two integers:
365
25
365 + 25 = 390
365 - 25 = 340
365 * 25 = 9125
365 / 25 = 14
365 % 25 = 15

Analysis ▼

Most of the program is self-explanatory. The line of most interest is possibly the one

that uses the % modulo operator. This returns the remainder that is the result of dividing

num1 (365) by num2 (25).

Operators to Increment (++) and Decrement (--)
Sometimes you need to count in increments of one. This is particularly required in

 variables that control loops where the value of the variable needs to be incremented or

decremented every time a loop has been executed.

C++ includes the ++ (increment) and -- (decrement) operators to help you with this task.

The syntax for using these is the following:

int num1 = 101;
int num2 = num1++; // Postfix increment operator
int num2 = ++num1; // Prefix increment operator
int num2 = num1--; // Postfix decrement operator
int num2 = --num1; // Prefix decrement operator

As the code sample indicates, there are two different ways of using the incrementing and

decrementing operators: before and after the operand. Operators that are placed before

the operand are called prefix increment or decrement operators, and those that are placed

after are called postfix increment or decrement operators.

ptg18655082

90 LESSON 5: Working with Expressions, Statements, and Operators

To Postfix or to Prefix?
It’s important to first understand the difference between prefix and postfix and then use

the one that works for you. The result of execution of the postfix operators is that the

l-value is first assigned the r-value and after that assignment the r-value is incremented

(or decremented). This means that in all cases where a postfix operator has been used,

the value of num2 is the old value of num1 (the value before the increment or decrement

operation).

Prefix operators have exactly the opposite in behavior. The r-value is first incremented

and then assigned to the l-value. In these cases, num2 and num1 carry the same value.

Listing 5.2 demonstrates the effect of prefix and postfix increment and decrement opera-

tors on a sample integer.

LISTING 5.2 Demonstrate the Difference Between Postfix and Prefix Operators

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int startValue = 101;
 6: cout << "Start value of integer being operated: " << startValue << endl;
 7:
 8: int postfixIncrement = startValue++;
 9: cout << "Result of Postfix Increment = " << postfixIncrement << endl;
10: cout << "After Postfix Increment, startValue = " << startValue << endl;
11:
12: startValue = 101; // Reset
13: int prefixIncrement = ++startValue;
14: cout << "Result of Prefix Increment = " << prefixIncrement << endl;
15: cout << "After Prefix Increment, startValue = " << startValue << endl;
16:
17: startValue = 101; // Reset
18: int postfixDecrement = startValue--;
19: cout << "Result of Postfix Decrement = " << postfixDecrement << endl;
20: cout << "After Postfix Decrement, startValue = " << startValue << endl;
21:
22: startValue = 101; // Reset
23: int prefixDecrement = --startValue;
24: cout << "Result of Prefix Decrement = " << prefixDecrement << endl;
25: cout << "After Prefix Decrement, startValue = " << startValue << endl;
26:
27: return 0;
28: }

ptg18655082

Using Operators 91

5

Output ▼
Start value of integer being operated: 101
Result of Postfix Increment = 101
After Postfix Increment, startValue = 102
Result of Prefix Increment = 102
After Prefix Increment, startValue = 102
Result of Postfix Decrement = 101
After Postfix Decrement, startValue = 100
Result of Prefix Decrement = 100
After Prefix Decrement, startValue = 100

Analysis ▼

The results show that the postfix operators were different from the prefix ones in that the

l-values being assigned in Lines 8 and 18 contain the original values of the integer before

the actual increment or decrement operations. The prefix operations in Lines 13 and 23,

on the other hand, result in the l-value being assigned the incremented or decremented

value. This is the most important difference that needs to be kept in perspective when

choosing the right operator type.

Note that in the following statements, the prefix or postfix operators make no difference

to the output of the program:

startValue++; // Is the same as…
++startValue;

This is because there is no assignment of an initial value, and the end result in both cases

is just that the integer startValue is incremented.

You often hear of cases where prefix increment or decrement
operators are preferred on grounds of better performance. That
is, ++startValue is preferred over startValue++.

This is true at least theoretically because with the postfix
 operators, the compiler needs to store the initial value
 temporarily in the event of it needing to be assigned. The effect
on performance in these cases is negligible with respect to
 integers, but in the case of certain classes there might be a
point in this argument. Smart compilers may optimize away the
differences.

NOTE

ptg18655082

92 LESSON 5: Working with Expressions, Statements, and Operators

Equality Operators (==) and (!=)
Often you need to check for a certain condition being fulfilled or not being fulfilled

before you proceed to take an action. Equality operators == (operands are equal)

and != (operands are unequal) help you with exactly that.

The result of an equality check is a bool—that is, true or false.

int personAge = 20;
bool checkEquality = (personAge == 20); // true
bool checkInequality = (personAge != 100); // true

bool checkEqualityAgain = (personAge == 200); // false
bool checkInequalityAgain = (personAge != 20); // false

Relational Operators
In addition to equality checks, you might want to check for inequality of a certain

variable against a value. To assist you with that, C++ includes relational operators (see

Table 5.1).

TABLE 5.1 Relational Operators

Operator Name Description

Less than (<) Evaluates to true if one operand is less than the
other (op1 < op2), else evaluates to false

Greater than (>) Evaluates to true if one operand is greater than
the other (op1 > op2), else evaluates to false

Less than or equal to (<=) Evaluates to true if one operand is less than or
equal to another, else evaluates to false

Greater than or equal to (>=) Evaluates to true if one operand is greater than or
equal to another, else evaluates to false

As Table 5.1 indicates, the result of a comparison operation is always true or false, in

other words a bool. The following sample code indicates how the relational operators

introduced in Table 5.1 can be put to use:

int personAge = 20;
bool checkLessThan = (personAge < 100); // true
bool checkGreaterThan = (personAge > 100); // false
bool checkLessThanEqualTo = (personAge <= 20); // true

ptg18655082

Using Operators 93

5

bool checkGreaterThanEqualTo = (personAge >= 20); // true
bool checkGreaterThanEqualToAgain = (personAge >= 100); // false

Listing 5.3 is a program that demonstrates the effect of using these operators by

 displaying the result on the screen.

LISTING 5.3 Demonstrating Equality and Relational Operators

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter two integers:" << endl;
 6: int num1 = 0, num2 = 0;
 7: cin >> num1;
 8: cin >> num2;
 9:
10: bool isEqual = (num1 == num2);
11: cout << "Result of equality test: " << isEqual << endl;
12:
13: bool isUnequal = (num1 != num2);
14: cout << "Result of inequality test: " << isUnequal << endl;
15:
16: bool isGreaterThan = (num1 > num2);
17: cout << "Result of " << num1 << " > " << num2;
18: cout << " test: " << isGreaterThan << endl;
19:
20: bool isLessThan = (num1 < num2);
21: cout << "Result of " << num1 << " < " << num2 << " test:
" << isLessThan << endl;
22:
23: bool isGreaterThanEquals = (num1 >= num2);
24: cout << "Result of " << num1 << " >= " << num2;
25: cout << " test: " << isGreaterThanEquals << endl;
26:
27: bool isLessThanEquals = (num1 <= num2);
28: cout << "Result of " << num1 << " <= " << num2;
29: cout << " test: " << isLessThanEquals << endl;
30:
31: return 0;
32: }

ptg18655082

94 LESSON 5: Working with Expressions, Statements, and Operators

Output ▼
Enter two integers:
365
-24
Result of equality test: 0
Result of inequality test: 1
Result of 365 > -24 test: 1
Result of 365 < -24 test: 0
Result of 365 >= -24 test: 1
Result of 365 <= -24 test: 0

Next run:

Enter two integers:
101
101
Result of equality test: 1
Result of inequality test: 0
Result of 101 > 101 test: 0
Result of 101 < 101 test: 0
Result of 101 >= 101 test: 1
Result of 101 <= 101 test: 1

Analysis ▼

The program displays the binary result of the various operations. Interesting is to note

the output in the event the two supplied integers are identical. The operators ==, >=,

and <= produce identical results too.

The fact that the output of equality and relational operators is binary makes these

 perfectly suited to using them in statements that help in decision-making and as loop

condition expressions that ensure a loop executes only so long as the condition evaluates

to true. You can learn more about conditional execution and loops in Lesson 6.

The output of Listing 5.3 displayed Boolean values containing
false as 0. Those containing true were displayed as 1. From
a compiler’s point of view, an expression evaluates false
when it evaluates to zero. A check against false is a check
against zero. An expression that evaluates to a non-zero value is
 evaluated as true.

NOTE

ptg18655082

Using Operators 95

5

Logical Operations NOT, AND, OR, and XOR
Logical NOT operation is supported by the operator ! and works on a single operand.

Table 5.2 is the truth table for a logical NOT operation, which, as expected, simply

inverses the supplied Boolean flag.

TABLE 5.2 Truth Table of Logical NOT Operation

Operand Result of NOT (Operand)

False True

True False

Other operators such as AND, OR, and XOR need two operands. Logical AND operation

evaluates to true only when each operand evaluates to true. Table 5.3 demonstrates the

functioning of a logical AND operation.

TABLE 5.3 Truth Table of Logical AND Operation

Operand 1 Operand 2 Result of Operand1 AND Operand2

False False False

True False False

False True False

True True True

Logical AND operation is supported by operator &&.

Logical OR evaluates to true when at least one of the operands evaluates to true,

as demonstrated by Table 5.4.

TABLE 5.4 Truth Table of Logical OR Operation

Operand 1 Operand 2 Result of Operand1 OR Operand2

False False False

True False True

False True True

True True True

ptg18655082

96 LESSON 5: Working with Expressions, Statements, and Operators

Logical OR operation is supported by operator ||.

The exclusive OR (abbreviated to XOR) operation is slightly different than the logical OR

for it evaluates to true when any one operand is true but not both, as demonstrated by

Table 5.5.

TABLE 5.5 Truth Table of Logical XOR Operation

Operand 1 Operand 2 Result of Operand1 OR Operand2

False False False

True False True

False True True

True True False

C++ provides a bitwise XOR in the form of operator .̂ This operator helps evaluate

a result that is generated via an XOR operation on the operand’s bits.

Using C++ Logical Operators NOT (!),
AND (&&), and OR (||)
Consider these statements:

 ■ “If it is raining AND if there are no buses, I cannot go to work.”

 ■ “If there is a deep discount OR if I am awarded a record bonus, I can buy that car.”

You need such logical constructs in programming where the result of two operations is

used in a logical context in deciding the future flow of your program. C++ provides logi-

cal AND and OR operators that you can use in conditional statements, hence condition-

ally changing the flow of your program.

Listing 5.4 demonstrates the workings of logical AND and logical OR operators.

LISTING 5.4 Analyzing C++ Logical Operators && and ||

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter true(1) or false(0) for two operands:" << endl;
 6: bool op1 = false, op2 = false;

ptg18655082

Using Operators 97

5

 7: cin >> op1;
 8: cin >> op2;
 9:
10: cout << op1 << " AND " << op2 << " = " << (op1 && op2) << endl;
11: cout << op1 << " OR " << op2 << " = " << (op1 || op2) << endl;
12:
13: return 0;
14: }

Output ▼
Enter true(1) or false(0) for two operands:
1
0
1 AND 0 = 0
1 OR 0 = 1

Next run:

Enter true(1) or false(0) for two operands:
1
1
1 AND 1 = 1
1 OR 1 = 1

Analysis ▼

The program actually indicates how the operators supply logical AND and OR functions

to you. What the program doesn’t do is show you how to use them in making decisions.

Listing 5.5 demonstrates a program that executes different lines of code depending on

the values contained in variables using conditional statement processing and logical

 operators.

LISTING 5.5 Using Logical NOT (!) and Logical AND (&&) Operators in if Statements
for Conditional Processing

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Use boolean values(0 / 1) to answer the questions" << endl;
 6: cout << "Is it raining? ";
 7: bool isRaining = false;
 8: cin >> isRaining;

ptg18655082

98 LESSON 5: Working with Expressions, Statements, and Operators

 9:
10: cout << "Do you have buses on the streets? ";
11: bool busesPly = false;
12: cin >> busesPly;
13:
14: // Conditional statement uses logical AND and NOT
15: if (isRaining && !busesPly)
16: cout << "You cannot go to work" << endl;
17: else
18: cout << "You can go to work" << endl;
19:
20: if (isRaining && busesPly)
21: cout << "Take an umbrella" << endl;
22:
23: if ((!isRaining) && busesPly)
24: cout << "Enjoy the sun and have a nice day" << endl;
25:
26: return 0;
27: }

Output ▼
Use boolean values(0 / 1) to answer the questions
Is it raining? 1
Do you have buses on the streets? 1
You can go to work
Take an umbrella

Next run:

Use boolean values(0 / 1) to answer the questions
Is it raining? 1
Do you have buses on the streets? 0
You cannot go to work

Last run:

Use boolean values(0 / 1) to answer the questions
Is it raining? 0
Do you have buses on the streets? 1
You can go to work
Enjoy the sun and have a nice day

ptg18655082

Using Operators 99

5

Analysis ▼

The program in Listing 5.5 uses conditional statements in the form of the if construct

that has not been introduced to you. Yet, try to understand the behavior of this

 construct by correlating it against the output. Line 15 contains the logical expression

 (isRaining && !busesPly) that can be read as “Raining AND NO buses.” This uses

the logical AND operator to connect the absence of buses (indicated by the logical NOT

on presence of buses) to the presence of rain.

If you want to read a little about the if construct that helps in
conditional execution, you can quickly visit Lesson 6.NOTE

Listing 5.6 uses logical NOT (!) and OR (||) operators in a demonstration of conditional

processing.

LISTING 5.6 Using Logical NOT and Logical OR Operators to Help You Decide If You Can
Buy That Dream Car

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Answer questions with 0 or 1" << endl;
 6: cout << "Is there a discount on your favorite car? ";
 7: bool onDiscount = false;
 8: cin >> onDiscount;
 9:
10: cout << "Did you get a fantastic bonus? ";
11: bool fantasticBonus = false;
12: cin >> fantasticBonus;
13:
14: if (onDiscount || fantasticBonus)
15: cout << "Congratulations, you can buy that car!" << endl;
16: else
17: cout << "Sorry, waiting a while is a good idea" << endl;
18:
19: if (!onDiscount)
20: cout << "Car not on discount" << endl;
21:
22: return 0;
23: }

ptg18655082

100 LESSON 5: Working with Expressions, Statements, and Operators

Output ▼
Answer questions with 0 or 1
Is there a discount on your favorite car? 0
Did you get a fantastic bonus? 1
Congratulations, you can buy that car!
Car not on discount

Next run:

Answer questions with 0 or 1
Is there a discount on your favorite car? 0
Did you get a fantastic bonus? 0
Sorry, waiting a while is a good idea
Car not on discount

Last run:

Answer questions with 0 or 1
Is there a discount on your favorite car? 1
Did you get a fantastic bonus? 1
Congratulations, you can buy that car!

Analysis ▼

The program recommends buying a car if you get a discount or if you got a fantastic

bonus (or both). If not, it recommends waiting. It also uses the logical not operation in

Line 19 to remind you that the car is not on discount. Line 14 uses the if construct fol-

lowed by an accompanying else in Line 16. The if construct executes the following

statement in Line 15 when the condition (onDiscount || fantasticBonus) evaluates

to true. This expression contains the logical OR operator and evaluates to true when

there is a discount on your favorite car or if you have received a fantastic bonus. When

the expression evaluates to false, the statement following else in Line 17 is executed.

Bitwise NOT (~), AND (&), OR (|), and XOR (^)
Operators
The difference between the logical and the bitwise operators is that bitwise operators

don’t return a boolean result. Instead, they supply a result in which individual bits are

governed by executing the operator on the operands’ bits. C++ allows you to perform

operations such as NOT, OR, AND, and exclusive OR (that is, XOR) operations on a bit-

wise mode where you can manipulate individual bits by negating them using ~, ORring

ptg18655082

Using Operators 101

5

them using |, ANDing them using &, and XORring them using .̂ The latter three are

performed against a number (typically a bit mask) of your choosing.

Some bitwise operations are useful in those situations where bits contained in an

 integer—for example, each specify the state of a certain flag. Thus, an integer with

32 bits can be used to carry 32 Boolean flags. Listing 5.7 demonstrates the use of bitwise

operators.

LISTING 5.7 Demonstrating the Use of Bitwise Operators to Perform NOT, AND, OR,
and XOR on Individual Bits in an Integer

 0: #include <iostream>
 1: #include <bitset>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Enter a number (0 - 255): ";
 7: unsigned short inputNum = 0;
 8: cin >> inputNum;
 9:
10: bitset<8> inputBits (inputNum);
11: cout << inputNum << " in binary is " << inputBits << endl;
12:
13: bitset<8> bitwiseNOT = (~inputNum);
14: cout << "Logical NOT ~" << endl;
15: cout << "~" << inputBits << " = " << bitwiseNOT << endl;
16:
17: cout << "Logical AND, & with 00001111" << endl;
18: bitset<8> bitwiseAND = (0x0F & inputNum);// 0x0F is hex for 0001111
19: cout << "0001111 & " << inputBits << " = " << bitwiseAND << endl;
20:
21: cout << "Logical OR, | with 00001111" << endl;
22: bitset<8> bitwiseOR = (0x0F | inputNum);
23: cout << "00001111 | " << inputBits << " = " << bitwiseOR << endl;
24:
25: cout << "Logical XOR, ^ with 00001111" << endl;
26: bitset<8> bitwiseXOR = (0x0F ^ inputNum);
27: cout << "00001111 ^ " << inputBits << " = " << bitwiseXOR << endl;
28:
29: return 0;
30: }

ptg18655082

102 LESSON 5: Working with Expressions, Statements, and Operators

Output ▼
Enter a number (0 - 255): 181
181 in binary is 10110101
Logical NOT ~
~10110101 = 01001010
Logical AND, & with 00001111
0001111 & 10110101 = 00000101
Logical OR, | with 00001111
00001111 | 10110101 = 10111111
Logical XOR, ^ with 00001111
00001111 ^ 10110101 = 10111010

Analysis ▼

This program uses bitset—a type you have not seen yet—to make displaying binary

data easier. The role of std::bitset here is purely to help with displaying and nothing

more. In Lines 10, 13, 18, and 22 you actually assign an integer to a bitset object, which

is used to display that same integer data in binary mode. The operations are done on

integers. For a start, focus on the output, which shows you the original integer 181 fed

by the user in binary and then proceeds to demonstrate the effect of the various bitwise

operators ~, &, |, and ^ on this integer. You see that the bitwise NOT used in Line 14

toggles the individual bits. The program also demonstrates how the operators &, |, and ^

work, performing the operations using each bit in the two operands to create the result.

Correlate this result with the truth tables introduced earlier, and the workings should

become clearer to you.

If you want to learn more about manipulating bit flags in C++,
take a look at Lesson 25, “Working with Bit Flags Using STL.” It
discusses the std::bitset in detail.

NOTE

Bitwise Right Shift (>>) and Left Shift (<<) Operators
Shift operators move the entire bit sequence to the right or to the left, and thus can help

with multiplication or division by multiples of two, apart from having other uses in an

application.

A sample use of a shift operator used to multiply by two is the following:

int doubledValue = num << 1; // shift bits one position left to double value

ptg18655082

Using Operators 103

5

A sample use of a shift operator used to halve is the following:

int halvedValue = num >> 1; // shift bits one position right to halve value

Listing 5.8 demonstrates how you can use shift operators to effectively multiply or divide

an integer value.

LISTING 5.8 Using Bitwise Right Shift Operator (>>) to Quarter and Half and Left Shift
(<<) to Double and Quadruple an Input Integer

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter a number: ";
 6: int inputNum = 0;
 7: cin >> inputNum;
 8:
 9: int halfNum = inputNum >> 1;
10: int quarterNum = inputNum >> 2;
11: int doubleNum = inputNum << 1;
12: int quadrupleNum = inputNum << 2;
13:
14: cout << "Quarter: " << quarterNum << endl;
15: cout << "Half: " << halfNum << endl;
16: cout << "Double: " << doubleNum << endl;
17: cout << "Quadruple: " << quadrupleNum << endl;
18:
19: return 0;
20: }

Output ▼
Enter a number: 16
Quarter: 4
Half: 8
Double: 32
Quadruple: 64

Analysis ▼

The input number is 16, which in binary terms is 1000. In Line 9, you move it one bit

right to change it to 0100, which is 8, effectively halving it. In Line 10, you move it two

bits right changing 1000 to 00100, which is 4. Similarly the effect of the left shift opera-

tors in Lines 11 and 12 are exactly the opposite. You move it one bit left to get 10000,

ptg18655082

104 LESSON 5: Working with Expressions, Statements, and Operators

which is 32 and two bits left to get 100000, which is 64, effectively doubling and quadru-

pling the number!

Bitwise shift operators don’t rotate values. Additionally, the
result of shifting signed numbers is implementation dependent.
On some compilers, most-significant-bit when shifted left is not
assigned to the least-significant-bit; rather the latter is zero.

NOTE

Compound Assignment Operators
Compound assignment operators are assignment operators where the operand to the left

is assigned the value resulting from the operation.

Consider the following code:

int num1 = 22;
int num2 = 5;
num1 += num2; // num1 contains 27 after the operation

This is similar to what’s expressed in the following line of code:

num1 = num1 + num2;

Thus, the effect of the += operator is that the sum of the two operands is calculated and

then assigned to the operand on the left (which is num1). Table 5.6 is a quick reference on

the many compound assignment operators and explains their working.

TABLE 5.6 Compound Assignment Operators

Operator Usage Equivalent

Addition Assignment num1 += num2; num1 = num1 + num2;

Subtraction Assignment num1 -= num2; num1 = num1 - num2;

Multiplication Assignment num1 *= num2; num1 = num1 * num2;

Division Assignment num1 /= num2; num1 = num1 / num2;

Modulo Assignment num1 %= num2; num1 = num1 % num2;

Bitwise Left-Shift Assignment num1 <<= num2; num1 = num1 << num2;

ptg18655082

Using Operators 105

5

Operator Usage Equivalent

Bitwise Right-Shift Assignment num1 >>= num2; num1 = num1 >> num2;

Bitwise AND Assignment num1 &= num2; num1 = num1 & num2;

Bitwise OR Assignment num1 |= num2; num1 = num1 | num2;

Bitwise XOR Assignment num1 ^= num2; num1 = num1 ^ num2;

Listing 5.9 demonstrates the effect of using these operators.

LISTING 5.9 Using Compound Assignment Operators to Add; Subtract; Divide; Perform
Modulus; Shift; and Perform Bitwise OR, AND, and XOR

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter a number: ";
 6: int value = 0;
 7: cin >> value;
 8:
 9: value += 8;
10: cout << "After += 8, value = " << value << endl;
11: value -= 2;
12: cout << "After -= 2, value = " << value << endl;
13: value /= 4;
14: cout << "After /= 4, value = " << value << endl;
15: value *= 4;
16: cout << "After *= 4, value = " << value << endl;
17: value %= 1000;
18: cout << "After %= 1000, value = " << value << endl;
19:
20: // Note: henceforth assignment happens within cout
21: cout << "After <<= 1, value = " << (value <<= 1) << endl;
22: cout << "After >>= 2, value = " << (value >>= 2) << endl;
23:
24: cout << "After |= 0x55, value = " << (value |= 0x55) << endl;
25: cout << "After ^= 0x55, value = " << (value ^= 0x55) << endl;
26: cout << "After &= 0x0F, value = " << (value &= 0x0F) << endl;
27:
28: return 0;
29: }

ptg18655082

106 LESSON 5: Working with Expressions, Statements, and Operators

Output ▼
Enter a number: 440
After += 8, value = 448
After -= 2, value = 446
After /= 4, value = 111
After *= 4, value = 444
After %= 1000, value = 444
After <<= 1, value = 888
After >>= 2, value = 222
After |= 0x55, value = 223
After ^= 0x55, value = 138
After &= 0x0F, value = 10

Analysis ▼

Note that value is continually modified throughout the program via the various assign-

ment operators. Each operation is performed using value, and the result of the operation

is assigned back to it. Hence, at Line 9, the user input 440 is added to 8, which results

in 448 and is assigned back to value. In the subsequent operation at Line 11, 2 is sub-

tracted from 448, resulting in 446, which is assigned back to value, and so on.

Using Operator sizeof to Determine the Memory
Occupied by a Variable
This operator tells you the amount of memory in bytes consumed by a particular type

or a variable. The usage of sizeof is the following:

sizeof (variable);

or

sizeof (type);

sizeof(...) might look like a function call, but it is not a func-
tion. sizeof is an operator. Interestingly, this operator cannot be
defined by the programmer and hence cannot be overloaded.

You learn more about defining your own operators in Lesson 12,
“Operator Types and Operator Overloading.”

NOTE

Listing 5.10 demonstrates the use of sizeof in determining memory space occupied

by an array. Additionally, you might want to revisit Listing 3.4 to analyze the usage of

sizeof in determining memory consumed by the most familiar variable types.

ptg18655082

Using Operators 107

5

LISTING 5.10 Using sizeof to Determine the Number of Bytes Occupied by an Array
of 100 Integers, and That by Each Element Therein

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Use sizeof to determine memory used by arrays" << endl;
 6: int myNumbers [100] = {0};
 7:
 8: cout << "Bytes used by an int: " << sizeof(int) << endl;
 9: cout << "Bytes used by myNumbers: " << sizeof(myNumbers) << endl;
10: cout << "Bytes used by an element: " << sizeof(myNumbers[0]) << endl;
11:
12: return 0;
13: }

Output ▼
Use sizeof to determine memory used by arrays
Bytes used by an int: 4
Bytes used by myNumbers: 400
Bytes used by an element: 4

Analysis ▼

The program demonstrates how sizeof is capable of returning the size of an array of

100 integers in bytes, which is 400 bytes. The program also demonstrates that the size of

each element is 4 bytes.

sizeof can be useful when you need to dynamically allocate memory for N objects,

especially of a type created by yourself. You would use the result of the sizeof opera-

tion in determining the amount of memory occupied by each object and then dynami-

cally allocate using the operator new.

Dynamic memory allocation is explained in detail in Lesson 8, “Pointers and References

Explained.”

ptg18655082

108 LESSON 5: Working with Expressions, Statements, and Operators

Operator Precedence
You possibly learned something in school on the order of arithmetic operations called

BODMAS (Brackets Orders Division Multiplication Addition Subtraction), indicating the

order in which a complex arithmetical expression should be evaluated.

In C++, you use operators and expressions such as the following:

int myNumber = 10 * 30 + 20 – 5 * 5 << 2;

The question is, what value would myNumber contain? This is not left to guesswork of

any kind. The order in which the various operators are invoked is very strictly specified

by the C++ standard. This order is what is meant by operator precedence. See Table 5.7.

TABLE 5.7 The Precedence of Operators

Rank Name Operator

1 Scope resolution ::

2 Member selection, subscripting, increment, and decrement . ->

()

++ --

3 sizeof, prefix increment and decrement, complement, and,
not, unary minus and plus, address-of and dereference, new,
new[], delete, delete[], casting, sizeof()

++ --

^ !

- +

& *

()

4 Member selection for pointer .* ->*

5 Multiply, divide, modulo * / %

6 Add, subtract + -

7 Shift (shift left, shift right) << >>

8 Inequality relational << = >>=

9 Equality, inequality == !=

10 Bitwise AND &

11 Bitwise exclusive OR ^

12 Bitwise OR |

ptg18655082

Using Operators 109

5

Rank Name Operator

13 Logical AND &&

14 Logical OR ||

15 Conditional ?:

16 Assignment operators = *= /= %=

+= -= <<=

>>=

&= |= ^=

17 Comma ,

Have another look at the complicated expression used as the earlier example:

int myNumber = 10 * 30 + 20 – 5 * 5 << 2;

In evaluating the result of this expression, you need to use the rules related to operator

precedence as shown in Table 5.7 to understand what value the compiler assigns it. As

multiply and divide have priority over add and subtract, which in turn have priority over

shift, you simplify it to the following:

int myNumber = 300 + 20 – 25 << 2;

As add and subtract have priority over shift, this gets simplified to:

int myNumber = 295 << 2;

Finally, you perform the shift operation. Knowing that one bit left shift doubles, and

hence two bits left shift quadruples, you can say that the expression evaluates to 295 * 4,

which is 1180.

Use parentheses to make reading code easy.

The expression used earlier is deliberately composed poorly for
explaining operator precedence. It is easy for the compiler to
understand, but you should write code that humans can under-
stand, too.

So, the same expression is much better written this way:

int myNumber = ((10 * 30) – (5 * 5) + 20) << 2; //
1180

CAUTION

ptg18655082

110 LESSON 5: Working with Expressions, Statements, and Operators

DO DON’T

DO use parentheses to make your
code and expressions readable.

DO use the right variable types
and ensure that it will never reach
 overflow situations.

DO understand that all l-values (for
example, variables) can be r-values,
but not all r-values (for example,
“Hello World”) can be l-values.

DON’T program complicated expres-
sions relying on the operator prece-
dence table; your code needs to be
human readable, too.

DON’T confuse ++Variable and
Variable++ thinking they’re the
same. They’re different when used in
an assignment.

Summary
In this lesson you learned what C++ statements, expressions, and operators are. You

learned how to perform basic arithmetic operations such as addition, subtraction, multi-

plication, and division in C++. You also had an overview on logical operations such as

NOT, AND, OR, and XOR. You learned of the C++ logical operators !, &&, and || that

help you in conditional statements and the bitwise operators such as ~, &, |, and ^ that

help you manipulate data, one bit at a time.

You learned about operator precedence and how important it is to use parenthesis to

write code that can also be understood by fellow programmers. You were given an over-

view on integer overflow and how important avoiding it actually is.

Q&A
 Q Why do some programs use unsigned int if unsigned short takes less

memory and compiles, too?

 A unsigned short typically has a limit of 65535, and if incremented, overflows to

zero. To avoid this behavior, well-programmed applications choose unsigned int

when it is not certain that the value will stay well below this limit.

 Q I need to calculate the double of a number after it’s divided by three. So, do
you see any problem in the following code:
int result = Number / 3 << 1;

ptg18655082

Workshop 111

5

 A Yes! Why didn’t you simply use parenthesis to make this line simpler to read to fel-

low programmers? Adding a comment or two won’t hurt either.

 Q My application divides two integer values 5 and 2:
int num1 = 5, num2 = 2;
int result = num1 / num2;

On execution, the result contains value 2. Isn’t this wrong?

 A Not at all. Integers are not meant to contain decimal data. The result of this opera-

tion is hence 2 and not 2.5. If 2.5 is the result you expect, change all data types to
float or double. These are meant to handle floating-point (decimal) operations.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain that you understand the answers before continuing to the

next lesson.

Quiz
 1. I am writing an application to divide numbers. What’s a better suited data type: int

or float?

 2. What is the value of 32 / 7?

 3. What is the value of 32.0/7?

 4. Is sizeof(...) a function?

 5. I need to compute the double of a number, add 5 to it, and then double it again. Is

this correct?

int result = number << 1 + 5 << 1;

 6. What is the result of XOR operation where the XOR operands both evaluate to

true?

Exercises
 1. Improve on the code in quiz question 5, using parenthesis to create clarity.

 2. What is the value of result stored by this expression:

int result = number << 1 + 5 << 1;

 3. Write a program that asks the user to input two Boolean values and demonstrates

the result of various bitwise operators on them.

ptg18655082

LESSON 6
Controlling Program
Flow

Most applications behave differently given a new situation or different
user input. To enable your application to react differently, you need to
program conditional statements that execute different code segments
in different situations.

In this lesson, you find out

 ■ How to make your program behave differently in certain conditions

 ■ How to execute a section of code repeatedly in a loop

 ■ How to better control the flow of execution in a loop

ptg18655082

114 LESSON 6: Controlling Program Flow

Conditional Execution Using if … else
Programs you have seen and composed thus far have a serial order of execution—from

top-down. Every line was executed and no line was ever ignored. But, serial execution of

all lines of code in a top-down fashion rarely happens in most applications.

Imagine you want a program that multiplies two numbers if the user presses m or adds

the numbers if he presses anything else.

As you can see in Figure 6.1, not all code paths are executed in every run. If the user

presses m, the code that multiplies the two numbers is executed. If he enters anything

other than m, the code that performs addition is executed. There is never a situation

where both are executed.

FIGURE 6.1

Example of condi-
tional processing
required on the
basis of user input.

ptg18655082

115

6

Conditional Execution Using if … else

Conditional Programming Using if … else
Conditional execution of code is implemented in C++ using the if … else construct

that looks like this:

if (conditional expression)
 Do something when expression evaluates true;
else // Optional
 Do something else when condition evaluates false;

So, an if ... else construct that lets a program multiply if the user enters m and adds

otherwise looks like this:

if (userSelection == 'm')
 result = num1 * num2; // multiply
else
 result = num1 + num2; // add

Note that evaluation of an expression to true in C++ essentially
means that the expression does not evaluate to false, false
being zero. So, an expression that evaluates to any non-zero
number—negative or positive—is essentially considered to be
evaluating to true when used in a conditional statement.

NOTE

Let’s analyze this construct in Listing 6.1, which enables the user to decide whether he

wants to either multiply or divide two numbers, hence using conditional processing to

generate the desired output.

LISTING 6.1 Multiplying or Adding Two Integers on the Basis of User Input

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter two integers: " << endl;
 6: int num1 = 0, num2 = 0;
 7: cin >> num1;
 8: cin >> num2;
 9:
10: cout << "Enter \'m\' to multiply, anything else to add: ";
11: char userSelection = '\0';
12: cin >> userSelection;
13:

ptg18655082

116 LESSON 6: Controlling Program Flow

14: int result = 0;
15: if (userSelection == 'm')
16: result = num1 * num2;
17: else
18: result = num1 + num2;
19:
20: cout << "result is: " << result << endl;
21:
22: return 0;
23: }

Output ▼
Enter two integers:
25
56
Enter 'm' to multiply, anything else to add: m
result is: 1400

Next run:

Enter two integers:
25
56
Enter 'm' to multiply, anything else to add: a
result is: 81

Analysis ▼

Note the use of if in Line 15 and else in Line 17. We are instructing the compiler to

execute multiplication in Line 15 when the expression (userSelection == 'm') that

follows if evaluates to true or to execute addition if the expression evaluates to false.

(userSelection == 'm') is an expression that evaluates to true when the user has

entered character m (case-sensitive), else it evaluates to false. Thus, this simple program

models the flowchart in Figure 6.1 and demonstrates how your application can behave

differently in different situations.

 The else part of the if … else construct is optional and
doesn’t need to be used in those situations where there is noth-
ing to be executed in event of failure.

NOTE

ptg18655082

117

6

Conditional Execution Using if … else

If in Listing 6.1, Line 15 is

15: if (userSelection == 'm');

then the if construct is meaningless as it has been terminated
in the same line by an empty statement (the semicolon). Be
careful and avoid this situation as you won’t get a compile error
in such cases.

Some good compilers may warn you of an “empty control state-
ment” in this situation.

CAUTION

Executing Multiple Statements Conditionally
If you want to execute multiple statements in event of a condition succeeding or failing,

you need to enclose them within statement blocks. These are essentially braces

{…} enclosing multiple statements to be executed as a block. For example:

if (condition)
{
 // condition success block
 Statement 1;
 Statement 2;
}
else
{
 // condition failure block
 Statement 3;
 Statement 4;
}

Such blocks are also called compound statements.

Listing 6.2 is a safer version of Listing 4.6 in Lesson 4, “Managing Array and Strings.”

It uses a compound statement that copies user input into a static character array if the

length of user input is within the bounds of the array.

LISTING 6.2 Check for Bounds Before Copying a String into a char Array

 0: #include <iostream>
 1: #include <string>
 2: #include <string.h>
 3: using namespace std;
 4: int main()
 5: {

ptg18655082

118 LESSON 6: Controlling Program Flow

 6: cout << "Enter a line of text: " << endl;
 7: string userInput;
 8: getline (cin, userInput);
 9:
10: char copyInput[20] = { '\0' };
11: if (userInput.length() < 20) // check bounds
12: {
13: strcpy(copyInput, userInput.c_str());
14: cout << "copyInput contains: " << copyInput << endl;
15: }
16: else
17: cout << "Bounds exceeded: won't copy!" << endl;
18:
19: return 0;
20: }

Output ▼
Enter a line of text:
This fits buffer!
copyInput contains: This fits buffer!

Next run:

Enter a line of text:
This doesn't fit the buffer!
Bounds exceeded: won't copy!

Analysis ▼

Note how the length of the string is checked against the length of the buffer in Line 11

before copying into it. What is also special about this if check is the presence of a state-

ment block in Lines 12 through 15 (also called compound statement) in the event of the

check evaluating to true.

Nested if Statements
Often you have situations where you need to validate against a host of different

 conditions, many of which are dependent on the evaluation of a previous condition. C++

allows you to nest if statements to handle such requirements.

Nested if statements are similar to this:

if (expression1)
{

ptg18655082

119

6

Conditional Execution Using if … else

 DoSomething1;
 if(expression2)

DoSomething2;
 else

DoSomethingElse2;
}
else
 DoSomethingElse1;

Consider an application similar to Listing 6.1, in which the user can instruct the applica-

tion to divide or multiply by pressing a command character d or m. Now, division should

be permitted only when the divisor is non-zero. So, in addition to checking the user input

for the intended command, it is also important to check if the divisor is non-zero when

the user instructs the program to divide. Listing 6.3 uses a nested if construct.

LISTING 6.3 Using Nested if Statements in Multiplying or Dividing a Number

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter two numbers: " << endl;
 6: float num1 = 0, num2 = 0;
 7: cin >> num1;
 8: cin >> num2;
 9:
10: cout << "Enter 'd' to divide, anything else to multiply: ";
11: char userSelection = '\0';
12: cin >> userSelection;
13:
14: if (userSelection == 'd')
15: {
16: cout << "You wish to divide!" << endl;
17: if (num2 != 0)
18: cout << num1 << " / " << num2 << " = " << num1 / num2 << endl;
19: else
20: cout << "Division by zero is not allowed" << endl;
21: }
22: else
23: {
24: cout << "You wish to multiply!" << endl;
25: cout << num1 << " x " << num2 << " = " << num1 * num2 << endl;
26: }
27:
28: return 0;
29: }

ptg18655082

120 LESSON 6: Controlling Program Flow

Output ▼
Enter two numbers:
45
9
Enter 'd' to divide, anything else to multiply: m
You wish to multiply!
45 x 9 = 405

Next run:

Enter two numbers:
22
7
Enter 'd' to divide, anything else to multiply: d
You wish to divide!
22 / 7 = 3.14286

Last run:

Enter two numbers:
365
0
Enter 'd' to divide, anything else to multiply: d
You wish to divide!
Division by zero is not allowed

Analysis ▼

The output is the result of running the program three times with three different sets of

input, and as you can see, the program has executed different code paths for each of these

three runs. This program has a few changes over Listing 6.1:

 ■ The numbers are accepted as floating-point variables, to better handle decimals,

which are important when dividing numbers.

 ■ The if condition is different than in Listing 6.1. You no longer check whether the user

has pressed m; rather, Line 14 contains an expression (userSelection == 'd')

that evaluates to true when the user enters character ‘d’. If so, you proceed with

division.

 ■ Given that this program divides two numbers and the divisor is entered by the user,

it is important to check if the divisor is non-zero. This is done using the nested if

in Line 17.

ptg18655082

121

6

Conditional Execution Using if … else

Thus, what this program demonstrates is how nested if constructs can be very useful in

performing different tasks depending on the evaluation of multiple parameters.

The nested tabs (white spaces) that you inserted in the code are
optional, but they make a significant contribution to the readabil-
ity of the nested if constructs. Many modern IDEs indent code
automatically.

TIP

Note that if...else constructs can also be grouped together. Listing 6.4 is a program

that asks the user for the day of the week and then tells what that day is named after

using grouped if...else constructs.

LISTING 6.4 Using a Grouped if…else Construct

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: enum DaysOfWeek
 6: {
 7: Sunday = 0,
 8: Monday,
 9: Tuesday,
10: Wednesday,
11: Thursday,
12: Friday,
13: Saturday
14: };
15:
16: cout << "Find what days of the week are named after!" << endl;
17: cout << "Enter a number for a day (Sunday = 0): ";
18:
19: int dayInput = Sunday; // Initialize to Sunday
20: cin >> dayInput;
21:
22: if (dayInput == Sunday)
23: cout << "Sunday was named after the Sun" << endl;
24: else if (dayInput == Monday)
25: cout << "Monday was named after the Moon" << endl;
26: else if (dayInput == Tuesday)
27: cout << "Tuesday was named after Mars" << endl;
28: else if (dayInput == Wednesday)
29: cout << "Wednesday was named after Mercury" << endl;
30: else if (dayInput == Thursday)
31: cout << "Thursday was named after Jupiter" << endl;

ptg18655082

122 LESSON 6: Controlling Program Flow

32: else if (dayInput == Friday)
33: cout << "Friday was named after Venus" << endl;
34: else if (dayInput == Saturday)
35: cout << "Saturday was named after Saturn" << endl;
36: else
37: cout << "Wrong input, execute again" << endl;
38:
39: return 0;
40: }

Output ▼
Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 5
Friday was named after Venus

Next run:

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 9
Wrong input, execute again

Analysis ▼

Note the if-else-if construct used in Lines 22 through 37 to check user input and pro-

duce the corresponding output. The output in the second run indicates that the program

is able to tell the user when he enters a number that is outside the expected range 0–6,

and hence does not correspond to any day of the week. The advantage of this construct

is that it is perfectly suited to validating conditions that are mutually exclusive, that is,

Monday can never be a Tuesday and an invalid input cannot be any day of the week.

Another interesting thing to note in this program is the use of the enumeration called

DaysOfWeek declared in Line 5 and used throughout the if statements. You could’ve

simply compared user input against integer values such as 0 for Sunday and so on.

However, the use of the enumerator Sunday makes the code more readable.

Conditional Processing Using switch-case
The objective of switch-case is to enable you to check a particular expression against a

host of possible constants and possibly perform a different action for each of those differ-

ent values. The new C++ keywords you would often find in such a construct are switch

case, default, and break.

ptg18655082

123

6

Conditional Execution Using if … else

The following is the syntax of a switch-case construct:

switch(expression)
{
case LabelA:
 DoSomething;
 break;

case LabelB:
 DoSomethingElse;
 break;

// And so on...
default:
 DoStuffWhenExpressionIsNotHandledAbove;
 break;
}

What happens is that the resulting code evaluates the expression and checks against

each of the case labels following it for equality. Each case label needs to be a constant.

It then executes the code following that label. When the expression does not evaluate

to LabelA, it checks against LabelB. If that check evaluates to true, it executes

DoSomethingElse. This check continues until it encounters a break. This is the first

time we are using the keyword break. break causes execution to exit the code block.

breaks are not compulsory; however, without a break the execution simply continues

checking against the next labels and so on, which is what you want to avoid in this case.

default is optional, too, and is the case that is executed when the expression does not

equate to any of the labels in the switch-case construct.

switch-case constructs are well-suited to being used with enu-
merators. The keyword enum was introduced in Lesson 3, “Using
Variables, Declaring Constants.”

TIP

Listing 6.5 is the switch-case equivalent of the program in Listing 6.4 that tells what

the days of the week are named after and also uses enumerated constants.

ptg18655082

124 LESSON 6: Controlling Program Flow

LISTING 6.5 Tell What Days of the Week Are Named After Using switch-case,

break, and default

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: enum DaysOfWeek
 6: {
 7: Sunday = 0,
 8: Monday,
 9: Tuesday,
10: Wednesday,
11: Thursday,
12: Friday,
13: Saturday
14: };
15:
16: cout << "Find what days of the week are named after!" << endl;
17: cout << "Enter a number for a day (Sunday = 0): ";
18:
19: int dayInput = Sunday; // Initialize to Sunday
20: cin >> dayInput;
21:
22: switch(dayInput)
23: {
24: case Sunday:
25: cout << "Sunday was named after the Sun" << endl;
26: break;
27:
28: case Monday:
29: cout << "Monday was named after the Moon" << endl;
30: break;
31:
32: case Tuesday:
33: cout << "Tuesday was named after Mars" << endl;
34: break;
35:
36: case Wednesday:
37: cout << "Wednesday was named after Mercury" << endl;
38: break;
39:
40: case Thursday:
41: cout << "Thursday was named after Jupiter" << endl;
42: break;
43:
44: case Friday:
45: cout << "Friday was named after Venus" << endl;
46: break;

ptg18655082

125

6

Conditional Execution Using if … else

47:
48: case Saturday:
49: cout << "Saturday was named after Saturn" << endl;
50: break;
51:
52: default:
53: cout << "Wrong input, execute again" << endl;
54: break;
55: }
56:
57: return 0;
58: }

Output ▼
Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 5
Friday was named after Venus

Next run:

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 9
Wrong input, execute again

Analysis ▼

Lines 22–55 contain the switch-case construct that produces different output depend-

ing on the integer contained in dayInput as entered by the user. When the user enters

the number 5, the application checks the switch expression dayInput that evaluates to

5 against the first four labels that are enumerators Sunday (value 0) through Thursday

(value 4), skipping the code below each of them as none of them are equal to 5. It reaches

label Friday where the expression evaluating to 5 equals enumerated constant Friday.

Thus, it executes the code under Friday until it reaches break in Line 46 and exits the

switch construct. In the second run, when an invalid value is entered, the execution

reaches default and runs the code under it, displaying the message asking the user to

execute again.

This program using switch-case produces exactly the same output as Listing 6.4 using

the if-else-if construct. Yet, the switch-case version looks a little more structured

and is possibly well-suited to situations where you want to be doing more than just writ-

ing a line to the screen (in which case you would also include code within a case within

braces, creating blocks).

ptg18655082

126 LESSON 6: Controlling Program Flow

Conditional Execution Using Operator (?:)
C++ has an interesting and powerful operator called the conditional operator that is

 similar to a compacted if-else construct.

The conditional operator is also called a ternary operator as it takes three operands:

(conditional expression evaluated to bool) ? expression1 if true : expression2
if false;

Such an operator can be used in compactly evaluating the greater of two given numbers,

as seen here:

int max = (num1 > num2)? num1 : num2; // max contains greater of num1 and num2

Listing 6.6 is a demonstration of conditional processing using operator (?:).

LISTING 6.6 Using the Conditional Operator (?:) to Find the Max of Two Numbers

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter two numbers" << endl;
 6: int num1 = 0, num2 = 0;
 7: cin >> num1;
 8: cin >> num2;
 9:
10: int max = (num1 > num2)? num1 : num2;
11: cout << "The greater of " << num1 << " and " \
12: << num2 << " is: " << max << endl;
13:
14: return 0;
15: }

Output ▼
Enter two numbers
365
-1
The greater of 365 and -1 is: 365

ptg18655082

127

6

Conditional Execution Using if … else

Analysis ▼

Line 10 is the code of interest. It contains a compact statement that makes a decision on

which of the two numbers input is larger. This line is another way to code the following

using if-else:

int max;
if (num1 > num2)
 max = num1;
else
 max = num2;

Thus, conditional operators saved a few lines! Saving lines of code, however, should

not be a priority. There are programmers who prefer conditional operators and those that

don’t. It is important to code conditional operators in a way that can be easily understood.

DO DON’T

DO use enumerators in switch
expressions to make code
 readable.

DO remember to handle
default, unless deemed totally
unnecessary.

DO check whether you
 inadvertently forgot to insert
break in each case statement.

DON’T add two cases with the same
label—it won’t make sense and won’t
compile.

DON’T complicate your case statements
by including cases without break and
relying on sequence. This will break
functionality in the future when you move
the case statements without paying
adequate attention to sequence.

DON’T use complicated conditions or
expressions when using conditional
operators (?:).

C++17 is expected to introduce conditional compilation using
if constexpr, and initializers within if and switch constructs.
Learn more about these features in Lesson 29, “Going Forward.”

TIP

ptg18655082

128 LESSON 6: Controlling Program Flow

Getting Code to Execute in Loops
So far you have seen how to make your program behave differently when certain vari-

ables contain different values—for example, in Listing 6.1 where you multiplied when

the user pressed m; otherwise, you added. However, what if the user doesn’t want the

program to just end? What if he wants to perform another add or multiply operation, or

maybe five more? This is when you need to repeat the execution of already existing code.

This is when you need to program a loop.

A Rudimentary Loop Using goto
As the name suggests, goto instructs execution to continue from a particular, labeled,

point in code. You can use it to go backward and re-execute certain statements.

The syntax for the goto statement is

SomeFunction()
{
Start: // Called a label
 CodeThatRepeats;

 goto Start;
}

You declare a label called Start and use goto to repeat execution from this point

on, as demonstrated in Listing 6.7. Unless you invoke goto given a condition that can

 evaluate to false under certain circumstances, or unless the code that repeats contains a

return statement executed under certain conditions, the piece of code between the goto

 command and label will repeat endlessly and keep the program from ending.

LISTING 6.7 Asking the User Whether He Wants to Repeat Calculations Using goto

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: Start:
 6: int num1 = 0, num2 = 0;
 7:
 8: cout << "Enter two integers: " << endl;
 9: cin >> num1;
10: cin >> num2;
11:

ptg18655082

Getting Code to Execute in Loops 129

6

12: cout << num1 << " x " << num2 << " = " << num1 * num2 << endl;
13: cout << num1 << " + " << num2 << " = " << num1 + num2 << endl;
14:
15: cout << "Do you wish to perform another operation (y/n)?" << endl;
16: char repeat = 'y';
17: cin >> repeat;
18:
19: if (repeat == 'y')
20: goto Start;
21:
22: cout << "Goodbye!" << endl;
23:
24: return 0;
25: }

Output ▼
Enter two integers:
56
25
56 x 25 = 1400
56 + 25 = 81
Do you wish to perform another operation (y/n)?
y
Enter two integers:
95
-47
95 x -47 = -4465
95 + -47 = 48
Do you wish to perform another operation (y/n)?
n
Goodbye!

Analysis ▼

Note that the primary difference between Listing 6.7 and Listing 6.1 is that 6.1 needs two

runs (two separate executions) to enable the user to enter a new set of numbers and see

the result of her addition and multiplication. Listing 6.7 does that in one execution cycle

by asking the user if she wishes to perform another operation. The code that actually

enables this repetition is in Line 20, where goto is invoked if the user enters character

‘y’ for yes. Execution of goto in Line 20 results in the program jumping to the label

Start declared in Line 5, which effectively restarts the program.

ptg18655082

130 LESSON 6: Controlling Program Flow

goto is not the recommended form of programming loops
because the prolific usage of goto can result in unpredictable
flow of code where execution can jump from one line to another
in no particular order or sequence, in some cases leaving vari-
ables in unpredictable states, too.

A bad case of programming using goto results in what is called
spaghetti code. You can avoid goto by using while, do...while,
and for loops that are explained in the following pages.

The only reason you were taught goto is so that you understand
code that uses one.

CAUTION

The while Loop
C++ keyword while can help do what goto did in Listing 6.7, but in a refined manner.

Its usage syntax is

while(expression)
{
 // Expression evaluates to true
 StatementBlock;
}

The statement block is executed repeatedly so long as the expression evaluates to

true. It is hence important to code in a way that there are situations where the expres-

sion would also evaluate to false, else the while loop would never end.

Listing 6.8 is an equivalent of Listing 6.7 but uses while instead of goto in allowing the

user to repeat a calculation cycle.

LISTING 6.8 Using a while Loop to Help the User Rerun Calculations

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: char userSelection = 'm'; // initial value
 6:
 7: while (userSelection != 'x')
 8: {
 9: cout << "Enter the two integers: " << endl;
10: int num1 = 0, num2 = 0;
11: cin >> num1;

ptg18655082

Getting Code to Execute in Loops 131

6

12: cin >> num2;
13:
14: cout << num1 << " x " << num2 << " = " << num1 * num2 << endl;
15: cout << num1 << " + " << num2 << " = " << num1 + num2 << endl;
16:
17: cout << "Press x to exit(x) or any other key to recalculate" << endl;
18: cin >> userSelection;
19: }
20:
21: cout << "Goodbye!" << endl;
22:
23: return 0;
24: }

Output ▼
Enter the two integers:
56
25
56 x 25 = 1400
56 + 25 = 81
Press x to exit(x) or any other key to recalculate
r
Enter the two integers:
365
-5
365 x -5 = -1825
365 + -5 = 360
Press x to exit(x) or any other key to recalculate
x
Goodbye!

Analysis ▼

The while loop in Lines 7–19 contains most of the logic in this program. Note how the

while checks the expression (userSelection != 'x'), proceeding only if this expres-

sion evaluates to true. To enable a first run, you initialized the char variable userSe-

lection to 'm' in Line 5. This needed to be any value that is not 'x' (else the condition

would fail at the very first loop and the application would exit without letting the user

do anything constructive). The first run is very simple, but the user is asked in Line 17

if he wishes to perform another set of calculations. Line 18 containing the user’s input

is where you modify the expression that while evaluates, giving the program a chance

to continue or to terminate. When the first loop is done, execution returns to evaluating

the expression in the while statement at Line 7 and repeats if the user has not pressed

x. When the user presses x at the end of a loop, the next evaluation of the expression at

ptg18655082

132 LESSON 6: Controlling Program Flow

Line 7 results in a false, and the execution exits the while loop, eventually ending the

 application after displaying a goodbye statement.

A loop is also called an iteration. Statements involving while,
do...while, and for are also called iterative statements.NOTE

The do…while Loop
There are cases (like the one in Listing 6.8) where you need to ensure that a certain seg-

ment of code repeats in a loop and that it executes at least once. This is where the do...

while loop is useful.

The syntax of the do…while loop is

do
{
 StatementBlock; // executed at least once
} while(condition); // ends loop if condition evaluates to false

Note how the line containing the while(expression) terminates with a semicolon.

This is different from the previous while loop in which a semicolon following while

would’ve effectively terminated the loop in the very line, resulting in an empty statement.

Listing 6.9 demonstrates how do...while loops can be implemented in executing state-

ments at least once.

LISTING 6.9 Using do…while to Repeat Execution of a Block of Code

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: char userSelection = 'x'; // initial value
 6: do
 7: {
 8: cout << "Enter the two integers: " << endl;
 9: int num1 = 0, num2 = 0;
10: cin >> num1;
11: cin >> num2;
12:
13: cout << num1 << " x " << num2 << " = " << num1 * num2 << endl;
14: cout << num1 << " + " << num2 << " = " << num1 + num2 << endl;
15:

ptg18655082

Getting Code to Execute in Loops 133

6

16: cout << "Press x to exit(x) or any other key to recalculate" << endl;
17: cin >> userSelection;
18: } while (userSelection != 'x');
19:
20: cout << "Goodbye!" << endl;
21:
22: return 0;
23: }

Output ▼
Enter the two integers:
654
-25
654 x -25 = -16350
654 + -25 = 629
Press x to exit(x) or any other key to recalculate
m
Enter the two integers:
909
101
909 x 101 = 91809
909 + 101 = 1010
Press x to exit(x) or any other key to recalculate
x
Goodbye!

Analysis ▼

This program is similar in behavior and output to Listing 6.8. Indeed the only difference

is the do keyword at Line 6 and the usage of while later at Line 18. The execution of

code happens serially, one line after another until the while is reached at Line 18. This

is where while evaluates the expression (userSelection != 'x'). When the expres-

sion evaluates to true (that is, the user doesn’t press character ‘x’ to exit), execution of

the loop repeats. When the expression evaluates to false (that is, the user presses ‘x’),

execution quits the loop and continues with wishing goodbye and ending the application.

The for Loop
The for statement is a more sophisticated loop in that it allows for an initialization state-

ment executed once (typically used to initialize a counter), checking for an exit condition

(typically using this counter), and performing an action at the end of every loop (typically

incrementing or modifying this counter).

ptg18655082

134 LESSON 6: Controlling Program Flow

The syntax of the for loop is

for (initial expression executed only once;
 exit condition executed at the beginning of every loop;
 loop expression executed at the end of every loop)
{
 DoSomething;
}

The for loop is a feature that enables the programmer to define a counter variable with

an initial value, check the value against an exit condition at the beginning of every loop,

and change the value of the variable at the end of a loop.

Listing 6.10 demonstrates an effective way to access elements in an array using

a for loop.

LISTING 6.10 Using for Loops to Enter Elements in a Static Array and Displaying It

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: const int ARRAY_LENGTH = 5;
 6: int myNums[ARRAY_LENGTH] = {0};
 7:
 8: cout << "Populate array of " << ARRAY_LENGTH << " integers" << endl;
 9:
10: for (int counter = 0; counter < ARRAY_LENGTH; ++counter)
11: {
12: cout << "Enter an integer for element " << counter << ": ";
13: cin >> myNums[counter];
14: }
15:
16: cout << "Displaying contents of the array: " << endl;
17:
18: for (int counter = 0; counter < ARRAY_LENGTH; ++counter)
19: cout << "Element " << counter << " = " << myNums[counter] << endl;
20:
21: return 0;
22: }

ptg18655082

Getting Code to Execute in Loops 135

6

Output ▼
Populate array of 5 integers
Enter an integer for element 0: 365
Enter an integer for element 1: 31
Enter an integer for element 2: 24
Enter an integer for element 3: -59
Enter an integer for element 4: 65536
Displaying contents of the array:
Element 0 = 365
Element 1 = 31
Element 2 = 24
Element 3 = -59
Element 4 = 65536

Analysis ▼

There are two for loops in Listing 6.10—at Lines 10 and 18. The first helps enter

 elements into an array of integers and the other to display. Both for loops are identical

in syntax. Both declare an index variable counter to access elements the array. This

 variable is incremented at the end of every loop; therefore, it helps access the next

 element in the next run of the loop. The middle expression in the for loop is the exit

condition. It checks whether counter that is incremented at the end of every loop is still

within the bounds of the array by comparing it against ARRAY_LENGTH. This way, it is

also ensured that the for loop never exceeds the length of the array.

A variable such as counter from Listing 6.10 that helps access
elements in a collection such as an array is also called an
iterator.

The scope of this iterator declared within the for construct
is limited to the for loop. Thus, in the second for loop in
Listing 6.10, this variable that has been re-declared is effectively
a new variable.

NOTE

The usage of the initialization, conditional expression, and the expression to be

 evaluated at the end of every loop is optional. It is possible to have a for loop without

some or any of these, as shown in Listing 6.11.

ptg18655082

136 LESSON 6: Controlling Program Flow

LISTING 6.11 Using a for Loop, Omitting Loop Expression, to Repeat Calculations
on User Request

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: // without loop expression (third expression missing)
 6: for(char userSelection = 'm'; (userSelection != 'x');)
 7: {
 8: cout << "Enter the two integers: " << endl;
 9: int num1 = 0, num2 = 0;
10: cin >> num1;
11: cin >> num2;
12:
13: cout << num1 << " x " << num2 << " = " << num1 * num2 << endl;
14: cout << num1 << " + " << num2 << " = " << num1 + num2 << endl;
15:
16: cout << "Press x to exit or any other key to recalculate" << endl;
17: cin >> userSelection;
18: }
19:
20: cout << "Goodbye!" << endl;
21:
22: return 0;
23: }

Output ▼
Enter the two integers:
56
25
56 x 25 = 1400
56 + 25 = 81
Press x to exit or any other key to recalculate
m
Enter the two integers:
789
-36
789 x -36 = -28404
789 + -36 = 753
Press x to exit or any other key to recalculate
x
Goodbye!

ptg18655082

Getting Code to Execute in Loops 137

6

Analysis ▼

This program is identical to Listing 6.8 that used the while loop; the only difference

is that this one uses the for construct in Line 6. The interesting thing about this for

loop is that it contains only the initialization expression and the conditional expression,

ignoring the option to change a variable at the end of each loop.

You can initialize multiple variables in a for loop within the first
initialization expression that is executed once. A for loop in
Listing 6.11 with multiple initializations looks like the following:

for (int counter1 = 0, counter2 = 5; // initialize

counter1 < ARRAY_LENGTH; // check

++counter1, --counter2) // increment, decrement

Note the new addition called counter2 that is initialized to 5.

Interestingly, we also are able to decrement it in the loop expres-
sion, once per loop.

NOTE

The Range-Based for Loop
C++11 introduced a new variant of the for loop that makes operating over a range of

 values, such as those contained in an array, simpler to code and to read.

The syntax of the range-based for loop also uses the same keyword for:

for (VarType varName : sequence)
{
 // Use varName that contains an element from sequence
}

For example, given an array of integers someNums, you would use a range-based for

to read elements contained in the array, like this:

int someNums[] = { 1, 101, -1, 40, 2040 };

for (int aNum : someNums) // range based for
 cout << "The array elements are " << aNum << endl;

ptg18655082

138 LESSON 6: Controlling Program Flow

You may simplify this for statement further by using automatic
variable type deduction feature via keyword auto to compose a
generic for loop that will work for an array elements of any type:

for (auto anElement : elements) // range based for

 cout << "Array elements are " << anElement << endl;

Keyword auto and the automatic variable type inferencing feature
was introduced in Lesson 3.

TIP

Listing 6.12 demonstrates the range-based for on ranges of different types.

LISTING 6.12 Using Range-Based for Loop Over Arrays and a std::string

 0: #include<iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: int someNums[] = { 1, 101, -1, 40, 2040 };
 7:
 8: for (const int& aNum : someNums)
 9: cout << aNum << ' ';
10: cout << endl;
11:
12: for (auto anElement : { 5, 222, 110, -45, 2017 })
13: cout << anElement << ' ';
14: cout << endl;
15:
16: char charArray[] = { 'h', 'e', 'l', 'l', 'o' };
17: for (auto aChar : charArray)
18: cout << aChar << ' ';
19: cout << endl;
20:
21: double moreNums[] = { 3.14, -1.3, 22, 10101 };
22: for (auto anElement : moreNums)
23: cout << anElement << ' ';
24: cout << endl;
25:
26: string sayHello{ "Hello World!" };
27: for (auto anElement : sayHello)
28: cout << anElement << ' ';
29: cout << endl;
30:
31: return 0;
32: }

ptg18655082

139

6

Modifying Loop Behavior Using continue and break

Output ▼
1 101 -1 40 2040
5 222 110 -45 2017
h e l l o
3.14 -1.3 22 10101
H e l l o W o r l d !

Analysis ▼

The code sample contains multiple implementations of the range-based for, as seen in

Lines 8, 12, 17, 22, and 27, respectively. Each of these instances uses the loop to display

the contents of a range on the screen, one element at a time. What’s interesting is that,

while the nature of the range changes from being an array of integers someNums in

Line 8 to an unspecified range in Line 12 to an array of char charArray in Line 17,

and even a std::string in Line 27, the syntax of the range-based for loop remains

 consistent.

This simplicity of implementation makes the range-based for one of the more popular

features recently introduced by C++.

Modifying Loop Behavior Using continue
and break
There are a few cases—especially in complicated loops handling many parameters with

many conditions—where you are not able to program the loop condition efficiently and

need to modify program behavior even within the loop. This is where continue and

break can help you.

continue lets you resume execution from the top of the loop. The code following it

within the block is skipped. Thus, the effect of continue in a while, do...while, or

for loop is that it results in the loop condition being reevaluated and the loop block

being reentered if the condition evaluates to true.

In case of a continue within a for loop, the loop expression
(the third expression within the for statement typically used
to increment the counter) is evaluated before the condition is
reevaluated.

NOTE

ptg18655082

140 LESSON 6: Controlling Program Flow

On the other hand, break exits the loop’s block, thereby ending the loop when invoked.

Usually programmers expect all code in a loop to be executed
when the loop conditions are satisfied. continue and break
modify this behavior and can result in nonintuitive code.

Therefore, continue and break should be used sparingly.

CAUTION

Loops That Don’t End—That Is, Infinite Loops
Remember that while, do...while, and for loops have a condition expression that

results in the loop terminating when the condition evaluates to false. If you program a

condition that always evaluates to true, the loop never ends.

An infinite while loop looks like this:

while(true) // while expression fixed to true
{
 DoSomethingRepeatedly;
}

An infinite do...while loop would be

do
{
 DoSomethingRepeatedly;
} while(true); // do…while expression never evaluates to false

An infinite for loop can be programmed the following way:

for (;;) // no condition supplied = unending for
{
 DoSomethingRepeatedly;
}

Strange as it may seem, such loops do have a purpose. Imagine an operating system that

needs to continually check whether you have connected a device such as a USB stick to

the USB port. This is an activity that should not stop for so long as the OS is running.

Such cases warrant the use of loops that never end. Such loops are also called infinite

loops as they execute forever, to eternity.

ptg18655082

141

6

Modifying Loop Behavior Using continue and break

Controlling Infinite Loops
If you want to end an infinite loop (say the OS in the preceding example needs to

shut down), you do so by inserting a break (typically used within an if (condition)

block).

The following is an example of using break to exit an infinite while:

while(true) // while condition fixed to true
{
 DoSomethingRepeatedly;
 if(expression)

break; // exit loop when expression evaluates to true
}

Using break inside an infinite do...while:

do
{
 DoSomethingRepeatedly;
 if(expression)

break; // exit loop when expression evaluates to true
} while(true);

Using break inside an infinite for loop:

for (;;) // no condition supplied = unending for
{
 DoSomethingRepeatedly;
 if(expression)

break; // exit loop when expression evaluates to true
}

Listing 6.13 shows how to program infinite loops using continue and break to control

the exit criteria.

LISTING 6.13 Using continue to Restart and break to Exit an Infinite for Loop

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: for(;;) // an infinite loop
 6: {
 7: cout << "Enter two integers: " << endl;

ptg18655082

142 LESSON 6: Controlling Program Flow

 8: int num1 = 0, num2 = 0;
 9: cin >> num1;
10: cin >> num2;
11:
12: cout << "Do you wish to correct the numbers? (y/n): ";
13: char changeNumbers = '\0';
14: cin >> changeNumbers;
15:
16: if (changeNumbers == 'y')
17: continue; // restart the loop!
18:
19: cout << num1 << " x " << num2 << " = " << num1 * num2 << endl;
20: cout << num1 << " + " << num2 << " = " << num1 + num2 << endl;
21:
22: cout << "Press x to exit or any other key to recalculate" << endl;
23: char userSelection = '\0';
24: cin >> userSelection;
25:
26: if (userSelection == 'x')
27: break; // exit the infinite loop
28: }
29:
30: cout << "Goodbye!" << endl;
31:
32: return 0;
33: }

Output ▼
Enter two integers:
560
25
Do you wish to correct the numbers? (y/n): y
Enter two integers:
56
25
Do you wish to correct the numbers? (y/n): n
56 x 25 = 1400
56 + 25 = 81
Press x to exit or any other key to recalculate
r
Enter two integers:
95
-1
Do you wish to correct the numbers? (y/n): n
95 x -1 = -95
95 + -1 = 94
Press x to exit or any other key to recalculate
x
Goodbye!

ptg18655082

Programming Nested Loops 143

6

Analysis ▼

The for loop in Line 5 is different from the one in Listing 6.11 in that this is an infinite

for loop containing no condition expression that is evaluated on every iteration of the

loop. In other words, without the execution of a break statement, this loop (and hence

this application) never exits. Note the output, which is different from the other output you

have seen so far in that it allows the user to make a correction to his input before the pro-

gram proceeds to calculate the sum and multiplication. This logic is implemented using

a continue given the evaluation of a certain condition in Lines 16 and 17. When the

user presses character ‘y’ on being asked whether he wants to correct the numbers, the

condition in Line 16 evaluates to true, hence executing the following continue. When

continue is encountered, execution jumps to the top of the loop, asking the user again

whether he wants to enter two integers. Similarly, at the end of the loop when the user is

asked whether he wants to exit, his input is checked against 'x' in Line 26, and if so, the

following break is executed, ending the infinite loop.

Listing 6.13 uses an empty for(;;) statement to create an
infinite loop. You can replace that with while(true) or a do...
while(true); to generate the same output using a different
loop type.

NOTE

DO DON’T

DO use do…while when the logic
in the loop needs to be executed at
least once.

DO use while, do…while, or for
loops with well-defined condition
expressions.

DO indent code in a statement
block contained in a loop to improve
 readability.

DON’T use goto.

DON’T use continue and break
indiscriminately.

DON’T program infinite loops termi-
nated using break unless absolutely
necessary.

Programming Nested Loops
Just as you saw nested if statements in the beginning of this lesson, often you do need to

nest one loop under another. Imagine two arrays of integers. If you want to find the mul-

tiple of each number in array1 against each in array2, you use a nested loop to make

ptg18655082

144 LESSON 6: Controlling Program Flow

programming this easy. The first loop iterates array1, while the second iterates array2

under the first.

Listing 6.14 demonstrates the usage of nested loops.

LISTING 6.14 Using Nested Loops to Multiply Each Element in an Array by Each
in Another

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: const int ARRAY1_LEN = 3;
 6: const int ARRAY2_LEN = 2;
 7:
 8: int myNums1[ARRAY1_LEN] = {35, -3, 0};
 9: int myNums2[ARRAY2_LEN] = {20, -1};
10:
11: cout << "Multiplying each int in myNums1 by each in myNums2:" << endl;
12:
13: for(int index1 = 0; index1 < ARRAY1_LEN; ++index1)
14: for(int index2 = 0; index2 < ARRAY2_LEN; ++index2)
15: cout << myNums1[index1] << " x " << myNums2[index2] \
16: << " = " << myNums1[index1] * myNums2[index2] << endl;
17:
18: return 0;
19: }

Output ▼
Multiplying each int in myNums1 by each in myNums2:
35 x 20 = 700
35 x -1 = -35
-3 x 20 = -60
-3 x -1 = 3
0 x 20 = 0
0 x -1 = 0

Analysis ▼

The two nested for loops in question are in Lines 13 and 14. The first for loop iterates

the array myNums1, whereas the second for loop iterates the other array myNums2. The

first for loop executes the second for loop within each iteration. The second for loop

ptg18655082

Programming Nested Loops 145

6

iterates over all elements in myNums2 and in each iteration multiplies that element with

the element indexed via index1 from the first loop above it. So, for every element in

myNums1, the second loop iterates over all elements in myNums2, resulting in the first

element in myNums1 at offset 0 being multiplied with all elements in myNums2. Then the

second element in myNums1 is multiplied with all elements in myNums2. Finally, the third

element in myNums1 is multiplied with all elements in myNums2.

For convenience and for keeping focus on the loops, the con-
tents of the array in Listing 6.14 are initialized. You should feel
free to derive from previous examples, such as Listing 6.10, to
get the user to enter numbers into the integer array.

NOTE

Using Nested Loops to Walk a Multidimensional
Array
In Lesson 4, you learned of multidimensional arrays. Indeed in Listing 4.3 you access

elements in a two-dimensional array of three rows and three columns. What you did

there was to individually access each element in the array, one element per line. There

was no automation, and, if the array was to be made larger, you would need to code a

lot more, in addition to changing the array’s dimensions to access its elements. However,

using loops can change all that, as demonstrated by Listing 6.15.

LISTING 6.15 Using Nested Loops to Iterate Elements in a Two-dimensional Array
of Integers

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: const int NUM_ROWS = 3;
 6: const int NUM_COLUMNS = 4;
 7:
 8: // 2D array of integers
 9: int MyInts[NUM_ROWS][NUM_COLUMNS] = { {34, -1, 879, 22},
10: {24, 365, -101, -1},
 11: {-20, 40, 90, 97} };
 12:
 13: // iterate rows, each array of int

ptg18655082

146 LESSON 6: Controlling Program Flow

14: for (int row = 0; row < NUM_ROWS; ++row)
15: {
16: // iterate integers in each row (columns)
17: for (int column = 0; column < NUM_COLUMNS; ++column)
18: {
19: cout << "Integer[" << row << "][" << column \
20: << "] = " << MyInts[row][column] << endl;
21: }
22: }
23:
24: return 0;
25: }

Output ▼
Integer[0][0] = 34
Integer[0][1] = -1
Integer[0][2] = 879
Integer[0][3] = 22
Integer[1][0] = 24
Integer[1][1] = 365
Integer[1][2] = -101
Integer[1][3] = -1
Integer[2][0] = -20
Integer[2][1] = 40
Integer[2][2] = 90
Integer[2][3] = 97

Analysis ▼

Lines 14–22 contain two for loops that you need to access and iterate through a

 two-dimensional array of integers. A two-dimensional array is in effect an array of an

array of integers. Note how the first for loop accesses the rows (each being an array

of integers), whereas the second accesses each element in this array—that is, accesses

 columns therein.

Listing 6.15 uses braces to enclose the nested for only to
improve readability. This nested loop works just fine without the
braces, too, as the loop statement is just a single statement to
be executed (and not a compound statement that necessitates
the use of enclosing braces).

NOTE

ptg18655082

Programming Nested Loops 147

6

Using Nested Loops to Calculate Fibonacci Numbers
The famed Fibonacci series is a set of numbers starting with 0 and 1, where every

 following number in the series is the sum of the previous two. So, a Fibonacci series

starts with a sequence like this:

0, 1, 1, 2, 3, 5, 8, … and so on

Listing 6.16 demonstrates how to create a Fibonacci series comprised of as many num-

bers as you want (limited by the data-bearing capacity of the integer holding the final

number).

LISTING 6.16 Using Nested Loops to Calculate a Fibonacci Series

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: const int numsToCalculate = 5;
 6: cout << "This program will calculate " << numsToCalculate \
 7: << " Fibonacci Numbers at a time" << endl;
 8:
 9: int num1 = 0, num2 = 1;
10: char wantMore = '\0';
11: cout << num1 << " " << num2 << " ";
12:
13: do
14: {
15: for (int counter = 0; counter < numsToCalculate; ++counter)
16: {
17: cout << num1 + num2 << " ";
18:
19: int num2Temp = num2;
20: num2 = num1 + num2;
21: num1 = num2Temp;
22: }
23:
24: cout << endl << "Do you want more numbers (y/n)? ";
25: cin >> wantMore;
26: }while (wantMore == 'y');
27:
28: cout << "Goodbye!" << endl;
29:
30: return 0;
31: }

ptg18655082

148 LESSON 6: Controlling Program Flow

Output ▼
This program will calculate 5 Fibonacci Numbers at a time
0 1 1 2 3 5 8
Do you want more numbers (y/n)? y
13 21 34 55 89
Do you want more numbers (y/n)? y
144 233 377 610 987
Do you want more numbers (y/n)? y
1597 2584 4181 6765 10946
Do you want more numbers (y/n)? n
Goodbye!

Analysis ▼

The outer do...while at Line 13 is basically the query loop that repeats if the user wants

to see more numbers. The inner for loop at Line 15 does the job of calculating the next

Fibonacci number and displays five numbers at a time. In Line 19 you hold the value in

num2 in a temporary variable num2Temp to be able to reuse it at Line 21. Note that if

you hadn’t stored this temp value, you would be assigning the modified value in Line

20 directly to num1, which is not what you want. When the user presses ‘y’ to get more

numbers, the do…while loop executes once more, thereby executing the nested for loop

that generates five more Fibonacci numbers.

Summary
This lesson taught you how to code conditional statements that create alternative execu-

tion paths and make code blocks repeat in a loop. You learned the if…else construct

and using switch-case statements to handle different situations in the event of variables

containing different values.

In understanding loops, you were taught goto—but you were simultaneously warned

against using it due to its ability to create code that cannot be understood. You learned

programming loops in C++ using while, do…while, and for constructs. You learned

how to make the loops iterate endlessly to create infinite loops and to use continue and

break to better control them.

Q&A
 Q What happens if I omit a break in a switch-case statement?

 A The break statement enables program execution to exit the switch construct.

Without it, execution continues evaluating the following case statements.

ptg18655082

Workshop 149

6

 Q How do I exit an infinite loop?

 A Use break to exit any loop containing it. Using return exits the function

module, too.

 Q My while loop looks like while(Integer). Does the while loop execute
when Integer evaluates to -1?

 A Ideally a while expression should evaluate to a Boolean value true or false.

false is zero. A condition that does not evaluate to zero is considered to evaluate

to true. Because -1 is not zero, the while condition evaluates to true and the

loop is executed. If you want the loop to be executed only for positive numbers,

write an expression while(Integer>0). This rule is true for all conditional

 statements and loops.

 Q Is there an empty while loop equivalent of for(;;)?

 A No, while always needs an accompanying conditional expression.

 Q I changed a do…while(exp); to a while(exp); by copying and pasting.
Should I anticipate any problems?

 A Yes, big ones! while(exp); is already a valid yet empty while loop due to the

null statement (the semicolon) following the while, even if it is followed by a

statement block. The statement block in question is executed once, but outside of

the loop. Exercise caution when copying and pasting code.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered as well as exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before continuing to the next

 lesson.

Quiz
1. Why bother to indent code within statement blocks, nested ifs, and nested loops

when it compiles even without indentation?

2. You can implement a quick fix using goto. Why would you still avoid it?

3. Is it possible to write a for loop where the counter decrements? How would

it look?

ptg18655082

150 LESSON 6: Controlling Program Flow

4. What is the problem with the following loop?

for (int counter=0; counter==10; ++counter)
 cout << counter << " ";

Exercises
1. Write a for loop to access elements in an array in the reverse order.

2. Write a nested loop equivalent of Listing 6.14 that adds elements in two arrays, but

in reverse order.

3. Write a program that displays Fibonacci numbers similar to Listing 6.16 but asks

the user how many numbers she wants to compute.

4. Write a switch-case construct that tells if a color is in the rainbow or otherwise.

Use enumerated constants.

5. BUG BUSTERS: What is wrong with this code?

for (int counter=0; counter=10; ++counter)
 cout << counter << " ";

6. BUG BUSTERS: What is wrong with this code?

int loopCounter = 0;
while(loopCounter <5);
{
 cout << loopCounter << " ";
 loopCounter++;
}

7. BUG BUSTERS: What is wrong with this code?

cout << "Enter a number between 0 and 4" << endl;
int input = 0;
cin >> input;
switch (input)
{
case 0:
case 1:
case 2:
case 3:
case 4:
cout << "Valid input" << endl;
default:
 cout << "Invalid input" << endl;
}

ptg18655082

LESSON 7
Organizing Code with
Functions

So far in this book you have seen simple programs where all programming
effort is contained in main(). This works well for really small programs
and applications. The larger and more complex your program gets, the lon-
ger the contents of main() become, unless you choose to structure your
program using functions.

Functions give you a way to compartmentalize and organize your program’s
execution logic. They enable you to split the contents of your application
into logical blocks that are invoked sequentially.

A function is hence a subprogram that optionally takes parameters and
returns a value, and it needs to be invoked to perform its task. In this les-
son you learn

 ■ The need for programming functions

 ■ Function prototypes and function definition

 ■ Passing parameters to functions and returning values from them

 ■ Overloading functions

 ■ Recursive functions

 ■ C++11 lambda functions

ptg18655082

152 LESSON 7: Organizing Code with Functions

The Need for Functions
Think of an application that asks the user to enter the radius of a circle and then

 computes the circumference and area. One way to do this is to have it all inside main().

Another way is to break this application into logical blocks: in particular two that

 compute area and circumference given radius, respectively. See Listing 7.1.

LISTING 7.1 Two Functions That Compute the Area and Circumference of a Circle
Given Radius

 0: #include <iostream>
 1: using namespace std;
 2:
 3: const double Pi = 3.14159265;
 4:
 5: // Function Declarations (Prototypes)
 6: double Area(double radius);
 7: double Circumference(double radius);
 8:
 9: int main()
10: {
11: cout << "Enter radius: ";
12: double radius = 0;
13: cin >> radius;
14:
15: // Call function "Area"
16: cout << "Area is: " << Area(radius) << endl;
17:
18: // Call function "Circumference"
19: cout << "Circumference is: " << Circumference(radius) << endl;
20:
21: return 0;
22: }
23:
24: // Function definitions (implementations)
25: double Area(double radius)
26: {
27: return Pi * radius * radius;
28: }
29:
30: double Circumference(double radius)
31: {
32: return 2 * Pi * radius;
33: }

ptg18655082

The Need for Functions 153

7

Output ▼
Enter radius: 6.5
Area is: 132.732
Circumference is: 40.8407

Analysis ▼

main(), which is also a function, is compact and delegates activity to functions such as

Area() and Circumference() that are invoked in Lines 16 and 19, respectively.

The program demonstrates the following artifacts involved in programming using

 functions:

 ■ Function prototypes are declared in Lines 6 and 7, so the compiler knows what the

terms Area and Circumference are when used in main() mean.

 ■ Functions Area() and Circumference() are invoked in main() in Lines 16

and 19.

 ■ Function Area() is defined in Lines 25–28, Circumference() in Lines 30–33.

Compartmentalizing the computation of area and circumference into different functions

can potentially help reuse as the functions can be invoked repeatedly, as and when

required.

What Is a Function Prototype?
Let’s take a look at Listing 7.1 again—Lines 6 and 7 in particular:

double Area(double radius);
double Circumference(double radius);

Figure 7.1 shows what a function prototype is comprised of.

FIGURE 7.1

Parts of a
function prototype.

ptg18655082

154 LESSON 7: Organizing Code with Functions

The function prototype basically tells what a function is called (the name, Area), the list

of parameters the function accepts (one parameter, a double called radius), and the

return type of the function (a double).

Without the function prototype, on reaching Lines 16 and 19 in main() the compiler

wouldn’t know what the terms Area and Circumference are. The function prototypes

tell the compiler that Area and Circumference are functions; they take one parameter

of type double and return a value of type double. The compiler then recognizes these

statements as valid and the job of linking the function call to its implementation and

ensuring that the program execution actually triggers them is that of the linker.

A function can have multiple parameters separated by commas,
but it can have only one return type.

When programming a function that does not need to return any
value, specify the return type as void.

NOTE

What Is a Function Definition?
The actual meat and potatoes—the implementation of a function—is what is called the

definition. Analyze the definition of function Area():

25: double Area(double radius)
26: {
27: return Pi * radius * radius;
28: }

A function definition is always comprised of a statement block. A return statement is

necessary unless the function is declared with return type void. In this case, Area()

needs to return a value because the function has been declared as one that returns as

double. The statement block contains statements within open and closed braces ({…})

that are executed when the function is called. Area() uses the input parameter radius

that contains the radius as an argument sent by the caller to compute the area of the

circle.

What Is a Function Call, and What Are Arguments?
Calling a function is the same as invoking one. When a function declaration contains

parameters, the function call needs to send arguments. Arguments are values the func-

tion requests within its parameter list. Let’s analyze a call to Area() in Listing 7.1:

16: cout << "Area is: " << Area(radius) << endl;

ptg18655082

The Need for Functions 155

7

Here, Area(radius) is the function call, wherein radius is the argument sent to the

function Area(). When invoked, execution jumps to function Area() that uses the radius

sent to compute the area of the circle.

Programming a Function with Multiple Parameters
Assume you were writing a program that computes the surface area of a cylinder, as

shown in Figure 7.2.

Height

RadiusFIGURE 7.2

A cylinder.

The formula you use would be the following:

Area of Cylinder = Area of top circle + Area of bottom circle + Area of Side
 = Pi * radius^2 + Pi * radius ^2 + 2 * Pi * radius * height
 = 2 * Pi * radius^2 + 2 * Pi * radius * height

Thus, you need to work with two variables, the radius and the height, in computing the

area of the cylinder. In such cases, when writing a function that computes the surface

area of the cylinder, you specify at least two parameters in the parameter list, within the

function declaration. You do this by separating individual parameters by a comma as

shown in Listing 7.2.

LISTING 7.2 Function That Accepts Two Parameters to Compute the Surface Area
of a Cylinder

 0: #include <iostream>
 1: using namespace std;
 2:
 3: const double Pi = 3.14159265;
 4:
 5: // Declaration contains two parameters
 6: double SurfaceArea(double radius, double height);
 7:
 8: int main()
 9: {
10: cout << "Enter the radius of the cylinder: ";
11: double radius = 0;
12: cin >> radius;
13: cout << "Enter the height of the cylinder: ";

ptg18655082

156 LESSON 7: Organizing Code with Functions

14: double height = 0;
15: cin >> height;
16:
17: cout << "Surface area: " << SurfaceArea(radius, height) << endl;
18:
19: return 0;
20: }
21:
22: double SurfaceArea(double radius, double height)
23: {
24: double area = 2 * Pi * radius * radius + 2 * Pi * radius * height;
25: return area;
26: }

Output ▼
Enter the radius of the cylinder: 3
Enter the height of the cylinder: 6.5
Surface Area: 179.071

Analysis ▼

Line 6 contains the declaration of the function SurfaceArea() with two parameters:

radius and height, both of type double, separated by a comma. Lines 22–26 show

the definition—that is, the implementation of SurfaceArea(). As you can see, the input

parameters radius and height are used to compute the value stored in the local vari-

able area that is then returned to the caller.

Function parameters are like local variables. They are valid within
the scope of the function only. So in Listing 7.2, parameters
radius and height within function SurfaceArea() are copies of
variables with similar names within main().

NOTE

Programming Functions with No Parameters
or No Return Values
If you delegate the task of saying “Hello World” to a function that does only that and

nothing else, you could do it with one that doesn’t need any parameters (as it doesn’t need

to do anything apart from say “Hello”), and possibly one that doesn’t return any value

(because you don’t expect anything from such a function that would be useful elsewhere).

Listing 7.3 demonstrates one such function.

ptg18655082

The Need for Functions 157

7

LISTING 7.3 A Function with No Parameters and No Return Values

 0: #include <iostream>
 1: using namespace std;
 2:
 3: void SayHello();
 4:
 5: int main()
 6: {
 7: SayHello();
 8: return 0;
 9: }
10:
11: void SayHello()
12: {
13: cout << "Hello World" << endl;
14: }

Output ▼
Hello World

Analysis ▼

Note that the function prototype in Line 3 declares function SayHello() as one with

return value of type void—that is, SayHello() doesn’t return a value. Consequently, in

the function definition in Lines 11–14, there is no return statement. Some programmers

prefer to insert a symbolic empty return statement at the end:

void SayHello()
{
 cout << "Hello World" << endl;
 return; // an empty return
}

Function Parameters with Default Values
In samples thus far, you assumed the value of Pi, fixed it as a constant, and never gave

the user an opportunity to change it. However, the user may be interested in a less or

more accurate reading. How do you program a function that would use a default value of

Pi of your choosing unless another one is supplied?

One way of solving this problem is to supply an additional parameter in function Area()

for Pi and supply a value chosen by you as a default one. Such an adaptation of function

Area() from Listing 7.1 would look like the following:

double Area(double radius, double pi = 3.14);

ptg18655082

158 LESSON 7: Organizing Code with Functions

Note the second parameter pi is assigned a default value of 3.14. This second parameter

is therefore an optional parameter for the caller. The function Area() can be invoked as

if the second parameter didn’t exist:

Area(radius);

In this case, the second parameter defaults to the value of 3.14. However, when required,

the same function can be invoked using two arguments:

Area(radius, 3.14159); // more precise pi

Listing 7.4 demonstrates how you can program functions that contain default values for

parameters that can be overridden with a user-supplied value, if available and desired.

LISTING 7.4 Function That Computes the Area of a Circle, Using Pi as a Second
Parameter with Default Value 3.14

 0: #include <iostream>
 1: using namespace std;
 2:
 3: // Function Declarations (Prototypes)
 4: double Area(double radius, double pi = 3.14);
 5:
 6: int main()
 7: {
 8: cout << "Enter radius: ";
 9: double radius = 0;
10: cin >> radius;
11:
12: cout << "pi is 3.14, do you wish to change this (y / n)? ";
13: char changePi = 'n';
14: cin >> changePi;
15:
16: double circleArea = 0;
17: if (changePi == 'y')
18: {
19: cout << "Enter new pi: ";
20: double newPi = 3.14;
21: cin >> newPi;
22: circleArea = Area (radius, newPi);
23: }
24: else
25: circleArea = Area(radius); // Ignore 2nd param, use default value
26:
27: // Call function "Area"
28: cout << "Area is: " << circleArea << endl;
29:
30: return 0;
31: }

ptg18655082

The Need for Functions 159

7

32:
33: // Function definitions (implementations)
34: double Area(double radius, double pi)
35: {
36: return pi * radius * radius;
37: }

Output ▼
Enter radius: 1
Pi is 3.14, do you wish to change this (y / n)? n
Area is: 3.14

Next run:

Enter radius: 1
Pi is 3.14, do you wish to change this (y / n)? y
Enter new Pi: 3.1416
Area is: 3.1416

Analysis ▼

In the two runs, the radius entered by the user was the same—1. In the second run,

 however, the user opted for the choice to change the precision of Pi, and hence the area

computed is slightly different. Note that in both cases, as seen in Lines 22 and 25, you

invoke the same function. Line 25 invokes Area() without the second parameter pi.

In this case, the parameter pi in Area() contains value 3.14, supplied as default in the

 declaration in Line 4.

You can have multiple parameters with default values; however,
these should all be at the tail end of the parameter list.NOTE

Recursion—Functions That Invoke Themselves
In certain cases, you can actually have a function call itself. Such a function is called a

recursive function. Note that a recursive function should have a very clearly defined exit

condition where it returns without invoking itself again.

In the absence of an exit condition or in the event of a bug in
the same, your program execution gets stuck at the recursive
function that won’t stop invoking itself, and this eventually stops
when the “stack overflows,” causing an application crash.

CAUTION

ptg18655082

160 LESSON 7: Organizing Code with Functions

Recursive functions can be useful when determining a number in the Fibonacci series as

shown in Listing 7.5. This series starts with two numbers, 0 and 1:

F(0) = 0
F(1) = 1

And the value of a subsequent number in the series is the sum of the previous two

 numbers. So, the nth value (for n > 1) is determined by the (recursive) formula:

Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

As a result the Fibonacci series expands to

F(2) = 1
F(3) = 2
F(4) = 3
F(5) = 5
F(6) = 8, and so on.

LISTING 7.5 Using Recursive Functions to Calculate a Number in the Fibonacci Series

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int GetFibNumber(int fibIndex)
 4: {
 5: if (fibIndex < 2)
 6: return fibIndex;
 7: else // recursion if fibIndex >= 2
 8: return GetFibNumber(fibIndex - 1) + GetFibNumber(fibIndex - 2);
 9: }
10:
11: int main()
12: {
13: cout << "Enter 0-based index of desired Fibonacci Number: ";
14: int index = 0;
15: cin >> index;
16:
17: cout << "Fibonacci number is: " << GetFibNumber(index) << endl;
18: return 0;
19: }

Output ▼
Enter 0-based index of desired Fibonacci Number: 6
Fibonacci number is: 8

ptg18655082

The Need for Functions 161

7

Analysis ▼

The function GetFibNumber() defined in Lines 3–9 is recursive as it invokes itself at

Line 8. The exit condition programmed in Lines 5 and 6 ensures that the function will

return without recursion if fibIndex is less than two. Thus, GetFibNumber() invokes

itself recursively with ever reducing values of fibIndex. It ultimately reaches a state

where the exit condition is satisfied, the recursion ends, and a Fibonacci value is deter-

mined and returned to main().

Functions with Multiple Return Statements
You are not restricted to having only one return statement in your function definition.

You can return from any point in the function, and multiple times if you want, as shown

in Listing 7.6. Depending on the logic and the need of the application, this might or

might not be poor programming practice.

LISTING 7.6 Using Multiple Return Statements in One Function

 0: #include <iostream>
 1: using namespace std;
 2: const double Pi = 3.14159265;
 3:
 4: void QueryAndCalculate()
 5: {
 6: cout << "Enter radius: ";
 7: double radius = 0;
 8: cin >> radius;
 9:
10: cout << "Area: " << Pi * radius * radius << endl;
11:
12: cout << "Do you wish to calculate circumference (y/n)? ";
13: char calcCircum = 'n';
14: cin >> calcCircum;
15:
16: if (calcCircum == 'n')
17: return;
18:
19: cout << "Circumference: " << 2 * Pi * radius << endl;
20: return;
21: }
22:
23: int main()
24: {
25: QueryAndCalculate ();
26:
27: return 0;
28: }

ptg18655082

162 LESSON 7: Organizing Code with Functions

Output ▼
Enter radius: 1
Area: 3.14159
Do you wish to calculate circumference (y/n)? y
Circumference: 6.28319

Next run:

Enter radius: 1
Area: 3.14159
Do you wish to calculate circumference (y/n)? n

Analysis ▼

The function QueryAndCalculate() contains multiple return statements: one at Line

17 and the next one at Line 20. If the user presses 'n' for calculating circumference,

the program quits by using the return statement. For all other values, it continues with

 calculating the circumference and then returning.

Use multiple returns in a function with caution. It is a lot easier
to understand and follow a function that starts at the top and
returns at the bottom than one that returns at multiple points in-
between.

In Listing 7.6, use of multiple returns could’ve been avoided sim-
ply by changing the if condition to testing for 'y' or yes:

if (calcCircum == 'y')

 cout << "Circumference: " << 2*Pi*radius << endl;

CAUTION

Using Functions to Work with Different
Forms of Data
Functions don’t restrict you to passing values one at a time; you can pass an array of

 values to a function. You can create two functions with the same name and return value

but different parameters. You can program a function such that its parameters are not

created and destroyed within the function call; instead, you use references that are

valid even after the function has exited so as to allow you to manipulate more data or

 parameters in a function call. In this section you learn about passing arrays to functions,

function overloading, and passing arguments by reference to functions.

ptg18655082

Using Functions to Work with Different Forms of Data 163

7

Overloading Functions
Functions with the same name and return type but with different parameters or set of

parameters are said to be overloaded functions. Overloaded functions can be quite useful

in applications where a function with a particular name that produces a certain type

of output might need to be invoked with different sets of parameters. Say you need to

be writing an application that computes the area of a circle and the area of a cylinder.

The function that computes the area of a circle needs a parameter—the radius. The

other function that computes the area of the cylinder needs the height of the cylinder in

 addition to the radius of the cylinder. Both functions need to return the data of the same

type, containing the area. So, C++ enables you to define two overloaded functions, both

called Area, both returning double, but one that takes only the radius as input and

another that takes the height and the radius as input parameters as shown in Listing 7.7.

LISTING 7.7 Using an Overloaded Function to Calculate the Area of a Circle or a Cylinder

 0: #include <iostream>
 1: using namespace std;
 2:
 3: const double Pi = 3.14159265;
 4:
 5: double Area(double radius); // for circle
 6: double Area(double radius, double height); // for cylinder
 7:
 8: int main()
 9: {
10: cout << "Enter z for Cylinder, c for Circle: ";
11: char userSelection = 'z';
12: cin >> userSelection;
13:
14: cout << "Enter radius: ";
15: double radius = 0;
16: cin >> radius;
17:
18: if (userSelection == 'z')
19: {
20: cout << "Enter height: ";
21: double height = 0;
22: cin >> height;
23:
24: // Invoke overloaded variant of Area for Cyclinder
25: cout << "Area of cylinder is: " << Area (radius, height) << endl;
26: }
27: else
28: cout << "Area of cylinder is: " << Area (radius) << endl;
29:

ptg18655082

164 LESSON 7: Organizing Code with Functions

30: return 0;
31: }
32:
33: // for circle
34: double Area(double radius)
35: {
36: return Pi * radius * radius;
37: }
38:
39: // overloaded for cylinder
40: double Area(double radius, double height)
41: {
42: // reuse the area of circle
43: return 2 * Area (radius) + 2 * Pi * radius * height;
44: }

Output ▼
Enter z for Cylinder, c for Circle: z
Enter radius: 2
Enter height: 5
Area of cylinder is: 87.9646

Next run:

Enter z for Cylinder, c for Circle: c
Enter radius: 1
Area of cylinder is: 3.14159

Analysis ▼

Lines 5 and 6 declare the prototype for the overloaded forms of Area(): The first over-

loaded variant accepts a single parameter—radius of a circle. The next one accepts two

parameters—radius and height of a cylinder. The function is called overloaded because

there are two prototypes with the same name, Area(); same return types, double; and

different sets of parameters. The definitions of the overloaded functions are in Lines

34–44, where the two functions determine the area of a circle given the radius and the

area of a cylinder given the radius and height, respectively. Interestingly, as the area of a

cylinder is comprised of the area of the two circles it contains (one on top and the other

on the bottom) in addition to the area of the sides, the overloaded version for cylinder

was able to reuse Area() for the circle, as shown in Line 43.

ptg18655082

Using Functions to Work with Different Forms of Data 165

7

Passing an Array of Values to a Function
A function that displays an integer can be represented like this:

void DisplayInteger(int Number);

A function that can display an array of integers has a slightly different prototype:

void DisplayIntegers(int[] numbers, int Length);

The first parameter tells the function that the data being input is an array, whereas the

second parameter supplies the length of the array such that you can use the array without

crossing its boundaries. See Listing 7.8.

LISTING 7.8 Function That Takes an Array as a Parameter

 0: #include <iostream>
 1: using namespace std;
 2:
 3: void DisplayArray(int numbers[], int length)
 4: {
 5: for (int index = 0; index < length; ++index)
 6: cout << numbers[index] << " ";
 7:
 8: cout << endl;
 9: }
10:
11: void DisplayArray(char characters[], int length)
12: {
13: for (int index = 0; index < length; ++index)
14: cout << characters[index] << " ";
15:
16: cout << endl;
17: }
18:
19: int main()
20: {
21: int myNums[4] = {24, 58, -1, 245};
22: DisplayArray(myNums, 4);
23:
24: char myStatement[7] = {'H', 'e', 'l', 'l', 'o', '!', '\0'};
25: DisplayArray(myStatement, 7);
26:
27: return 0;
28: }

ptg18655082

166 LESSON 7: Organizing Code with Functions

Output ▼
24 58 -1 245
H e l l o !

Analysis ▼

There are two overloaded functions called DisplayArray() here: one that displays the

contents of elements in an array of integers and another that displays the contents of an

array of characters. In Lines 22 and 25, the two functions are invoked using an array

of integers and an array of characters, respectively, as input. Note that in declaring and

initializing the array of characters in Line 24, you have intentionally included the null

 character—as a best practice and a good habit—even though the array is not used as a

string in a cout statement or the like (cout << myStatement;) in this application.

Passing Arguments by Reference
Take another look at the function in Listing 7.1 that computed the area of a circle given

the radius:

24: // Function definitions (implementations)
25: double Area(double radius)
26: {
27: return Pi * radius * radius;
28: }

Here, the parameter radius contains a value that is copied into it when the function is

invoked in main():

15: // Call function "Area"
16: cout << "Area is: " << Area(radius) << endl;

This means that the variable radius in main() is unaffected by the function call, as

Area() works on a copy of the value radius contains, held in radius. There are cases

where you might need a function to work on a variable that modifies a value that is avail-

able outside the function, too, say in the calling function. This is when you declare a

parameter that takes an argument by reference. A form of the function Area() that com-

putes and returns the area as a parameter by reference looks like this:

// output parameter result by reference
void Area(double radius, double& result)
{
 result = Pi * radius * radius;
}

ptg18655082

Using Functions to Work with Different Forms of Data 167

7

Note how Area() in this form takes two parameters. Don’t miss the ampersand (&) next

to the second parameter result. This sign indicates to the compiler that the second

argument should NOT be copied to the function; instead, it is a reference to the variable

being passed. The return type has been changed to void as the function no longer sup-

plies the area computed as a return value, rather as an output parameter by reference.

Returning values by references is demonstrated in Listing 7.9, which computes the area

of a circle.

LISTING 7.9 Fetching the Area of a Circle as a Reference Parameter and Not
as a Return Value

 0: #include <iostream>
 1: using namespace std;
 2:
 3: const double Pi = 3.1416;
 4:
 5: // output parameter result by reference
 6: void Area(double radius, double& result)
 7: {
 8: result = Pi * radius * radius;
 9: }
10:
11: int main()
12: {
13: cout << "Enter radius: ";
14: double radius = 0;
15: cin >> radius;
16:
17: double areaFetched = 0;
18: Area(radius, areaFetched);
19:
20: cout << "The area is: " << areaFetched << endl;
21: return 0;
22: }

Output ▼
Enter radius: 2
The area is: 12.5664

ptg18655082

168 LESSON 7: Organizing Code with Functions

Analysis ▼

Note Lines 17 and 18 where the function Area() is invoked with two parameters; the

second is one that should contain the result. As Area() takes the second parameter by

reference, the variable result used in Line 8 within Area points to the same memory

location as the double areaFetched declared in Line 17 within the caller main().

Thus, the result computed in function Area() at Line 8 is available in main() and

 displayed on the screen in Line 20.

A function can return only one value using the return state-
ment. So, if your function needs to perform operations that
affect many values required at the caller, passing arguments
by reference is one way to get a function to supply those many
modifications back to the calling module.

NOTE

How Function Calls Are Handled
by the Microprocessor
Although it is not extremely important to know exactly how a function call is imple-

mented on a microprocessor level, you might find it interesting. Understanding this helps

you understand why C++ gives you the option of programming inline functions, which

are explained later in this section.

A function call essentially means that the microprocessor jumps to executing the next

instruction belonging to the called function at a nonsequential memory location. After it

is done with executing the instructions in the function, it returns to where it left off. To

implement this logic, the compiler converts your function call into a CALL instruction

for the microprocessor. This instruction is accompanied by the address in memory the

next instruction needs to be taken from—this address belongs to your function routine.

When the microprocessor encounters CALL, it saves the position of the instruction to be

executed after the function call on the stack and jumps to the memory location contained

in the CALL instruction.

ptg18655082

How Function Calls Are Handled by the Microprocessor 169

7

Understanding the Stack

The stack is a Last-In-First-Out memory structure, quite like a stack of plates where
you pick the plate on top, which was the last one to be placed on the stack. Putting
data onto the stack is called a push operation. Getting data out of the stack is
called a pop operation. As the stack grows upward, the stack pointer always incre-
ments as it grows and points to the top of the stack. See Figure 7.3.

FIGURE 7.3

A visual represen-
tation of a stack
containing three
integers.

The nature of the stack makes it optimal for handling function calls. When a function
is called, all local variables are instantiated on the stack—that is, pushed onto the
stack. When the function ends, they’re simply popped off it, and the stack pointer
returns to where it originally was.

This memory location contains instructions belonging to the function. The

 microprocessor executes them until it reaches the RET statement (the microprocessor’s

code for return programmed by you). The RET statement results in the microprocessor

popping that address from the stack stored during the CALL instruction. This address

contains the location in the calling function where the execution needs to continue from.

Thus, the microprocessor is back to the caller and continues where it left off.

Inline Functions
A regular function call is translated into a CALL instruction, which results in stack

 operations and microprocessor execution shift to the function and so on. This might

sound like a lot of stuff happening under the hood, but it happens quite quickly—for

most of the cases. However, what if your function is a very simple one like the following?

double GetPi()
{
 return 3.14159;
}

ptg18655082

170 LESSON 7: Organizing Code with Functions

The overhead of performing an actual function call on this might be quite high for the

amount of time spent actually executing GetPi(). This is why C++ compilers enable the

programmer to declare such functions as inline. Keyword inline is the programmers’

request that these functions be expanded inline where called.

inline double GetPi()
{
 return 3.14159;
}

Functions that perform simple operations like doubling a number are good candidates for

being inlined, too. Listing 7.10 demonstrates one such case.

LISTING 7.10 Using an Inline Function That Doubles an Integer

 0: #include <iostream>
 1: using namespace std;
 2:
 3: // define an inline function that doubles
 4: inline long DoubleNum (int inputNum)
 5: {
 6: return inputNum * 2;
 7: }
 8:
 9: int main()
10: {
11: cout << "Enter an integer: ";
12: int inputNum = 0;
13: cin >> inputNum;
14:
15: // Call inline function
16: cout << "Double is: " << DoubleNum(inputNum) << endl;
17:
18: return 0;
19: }

Output ▼
Enter an integer: 35
Double is: 70

Analysis ▼

The keyword in question is inline used in Line 4. Compilers typically see this keyword

as a request to place the contents of the function DoubleNum() directly where the func-

tion has been invoked—in Line 16—which increases the execution speed of the code.

ptg18655082

How Function Calls Are Handled by the Microprocessor 171

7

Classifying functions as inline can also result in a lot of code bloat, especially if the

function being inline does a lot of sophisticated processing. Using the inline keyword

should be kept to a minimum and reserved for only those functions that do very little and

need to do it with minimal overhead, as demonstrated earlier.

Most modern C++ compilers offer various performance
optimization options. Some, such as the Microsoft C++ Compiler,
offer you to optimize for size or speed. Optimizing for size may
help in developing software for devices and peripherals where
memory may be at a premium. When optimizing for size, the
compiler might often reject many inline requests as that might
bloat code.

When optimizing for speed, the compiler typically sees and uti-
lizes opportunities to inline code where it would make sense and
does it for you—sometimes even in those cases where you have
not explicitly requested it.

NOTE

Automatic Return Type Deduction
You learned about the keyword auto in Lesson 3, “Using Variables, Declaring

Constants.” It lets you leave variable type deduction to the compiler that does so on the

basis of the initialization value assigned to the variable. Starting with C++14, the same

applies also to functions. Instead of specifying the return type, you would use auto and

let the compiler deduce the return type for you on the basis of return values you program.

Listing 7.11 demonstrates the usage of auto in a function that computes the area of a

circle.

LISTING 7.11 Using auto as Return Type of Function Area()

 0: #include <iostream>
 1: using namespace std;
 2:
 3: const double Pi = 3.14159265;
 4:
 5: auto Area(double radius)
 6: {
 7: return Pi * radius * radius;
 8: }
 9:
10: int main()
11: {
12: cout << "Enter radius: ";
13: double radius = 0;

ptg18655082

172 LESSON 7: Organizing Code with Functions

14: cin >> radius;
15:
16: // Call function "Area"
17: cout << "Area is: " << Area(radius) << endl;
18:
19: return 0;
20: }

Output ▼
Enter radius: 2
Area is: 12.5664

Analysis ▼

The line of interest is Line 5, which uses auto as the return type of function Area(). The

compiler deduces the return type on the basis of the return expression that uses double.

Thus, in spite of using auto, Area() in Listing 7.11 compiles to no different code than

Area() in Listing 7.1 with return type double.

Functions that rely on automatic return type deduction need to
be defined (i.e., implemented) before they’re invoked. This is
because the compiler needs to know a function’s return type at
the point where it is used. If such a function has multiple return
statements, they need to all deduce to the same type. Recursive
calls need to follow at least one return statement.

NOTE

Lambda Functions
This section is just an introduction to a concept that’s not exactly easy for beginners. So,

skim through it and try to learn the concept without being disappointed if you don’t grasp

it all. Lambda functions are discussed in depth in Lesson 22, “Lambda Expressions.”

Lambda functions were introduced in C++11 and help in the usage of STL algorithms to

sort or process data. Typically, a sort function requires you to supply a binary predicate.

This is a function that compares two arguments and returns true if one is less than the

other, else false, thereby helping in deciding the order of elements in a sort operation.

Such predicates are typically implemented as operators in a class, leading to a tedious bit

of coding. Lambda functions can compact predicate definitions as shown in Listing 7.12.

ptg18655082

How Function Calls Are Handled by the Microprocessor 173

7

LISTING 7.12 Using Lambda Functions to Display Elements in an Array and to Sort Them

 0: #include <iostream>
 1: #include <algorithm>
 2: #include <vector>
 3: using namespace std;
 4:
 5: void DisplayNums(vector<int>& dynArray)
 6: {
 7: for_each (dynArray.begin(), dynArray.end(), \
 8: [](int Element) {cout << Element << " ";});
 9:
10: cout << endl;
11: }
12:
13: int main()
14: {
15: vector<int> myNums;
16: myNums.push_back(501);
17: myNums.push_back(-1);
18: myNums.push_back(25);
19: myNums.push_back(-35);
20:
21: DisplayNums(myNums);
22:
23: cout << "Sorting them in descending order" << endl;
24:
25: sort (myNums.begin(), myNums.end(), \
26: [](int Num1, int Num2) {return (Num2 < Num1); });
27:
28: DisplayNums(myNums);
29:
30: return 0;
31: }

Output ▼
501 -1 25 -35
Sorting them in descending order
501 25 -1 -35

Analysis ▼

The program contains integers pushed into a dynamic array provided by the C++

Standard Library in the form of a std::vector in Lines 15–19. The function

DisplayNums() uses the STL algorithm for_each to iterate through each ele-

ment in the array and display its value. In doing so, it uses a lambda function in Line

8. std::sort used in Line 25 also uses a binary predicate (Line 26) in the form of

ptg18655082

174 LESSON 7: Organizing Code with Functions

a lambda function that returns true if the second number is smaller than the first,

 effectively sorting the collection in an ascending order.

The syntax of a lambda function is the following:

[optional parameters](parameter list){ statements; }

Predicates and their use in algorithms such as sort are dis-
cussed at length in Lesson 23, “STL Algorithms.” Listing 23.6
in particular is a code sample that uses a lambda and a non-
lambda variant in an algorithm, thereby allowing you to compare
the programming efficiency introduced by lambda functions.

NOTE

Summary
In this lesson, you learned the basics of modular programming. You learned how

 functions can help you structure your code better and also help you reuse algorithms you

write. You learned that functions can take parameters and return values, parameters can

have default values that the caller can override, and parameters can also contain argu-

ments passed by reference. You learned how to pass arrays, and you also learned how

to program overloaded functions that have the same name and return type but different

parameter lists.

Last but not the least, you got a sneak preview into what lambda functions are.

Completely new as of C++11, lambda functions have the potential to change how C++

applications will be programmed henceforth, especially when using STL.

Q&A
 Q What happens if I program a recursive function that doesn’t end?

 A Program execution doesn’t end. That might not be bad, per se, for there are

while(true) and for(;;) loops that do the same; however, a recursive function

call consumes more and more stack space, which is finite and runs out, eventually

causing an application crash due to a stack overflow.

 Q Why not inline every function? It increases execution speed, right?

 A That really depends. However, inlining every function results in functions that

are used in multiple places to be placed at the point where they’re called, and this

results in code bloat. That apart, most modern compilers are better judges of what

ptg18655082

Workshop 175

7

calls can be inlined and do so for the programmer, depending on the compiler’s

 performance settings.

 Q Can I supply default parameter values to all parameters in a function?

 A Yes, that is definitely possible and recommended when that makes sense.

 Q I have two functions, both called Area. One takes a radius and the other takes
height. I want one to return float and the other to return double. Will this
work?

 A Function overloading needs both functions with the same name to also have the

same return types. In this case, your compiler shows an error as the name has been

used twice in what it expects to be two functions of different names.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain that you understand the answers before continuing to the

next lesson.

Quiz
1. What is the scope of variables declared in a function’s prototype?

2. What is the nature of the value passed to this function?

int Func(int &someNumber);

3. I have a function that invokes itself. What is such a function called?

4. I have declared two functions, both with the same name and return type but differ-

ent parameter lists. What are these called?

5. Does the stack pointer point to the top, middle, or bottom of the stack?

Exercises
1. Write overloaded functions that calculate the volume of a sphere and a cylinder.

The formulas are the following:

Volume of sphere = (4 * Pi * radius * radius * radius) / 3
Volume of a cylinder = Pi * radius * radius * height

ptg18655082

176 LESSON 7: Organizing Code with Functions

2. Write a function that accepts an array of double as input.

3. BUG BUSTERS: What is wrong with the following code?

#include <iostream>
using namespace std;
const double Pi = 3.1416;

void Area(double radius, double result)
{

result = Pi * radius * radius;
}

int main()
{
 cout << "Enter radius: ";
 double radius = 0;
 cin >> radius;

 double areaFetched = 0;
 Area(radius, areaFetched);

 cout << "The area is: " << areaFetched << endl;
 return 0;
}

4. BUG BUSTERS: What is wrong with the following function declaration?

double Area(double Pi = 3.14, double radius);

5. Write a function with return type void that still helps the caller calculate the area

and circumference of a circle when supplied the radius.

ptg18655082

LESSON 8
Pointers and
References Explained

One of the biggest advantages of C++ is that it enables you to write
high-level applications that are abstracted from the machine as well
as those that work close to the hardware. Indeed, C++ enables you to
tweak the performance of your application on a bytes and bits level.
Understanding how pointers and references work is one step toward being
able to write programs that are effective in their consumption of system
resources.

In this lesson, you find out

 ■ What pointers are

 ■ What the free store is

 ■ How to use operators new and delete to allocate and free memory

 ■ How to write stable applications using pointers and dynamic
 allocation

 ■ What references are

 ■ Differences between pointers and references

 ■ When to use a pointer and when to use references

ptg18655082

178 LESSON 8: Pointers and References Explained

What Is a Pointer?
A pointer is also a variable—one that stores an address in memory. Just the same way

as a variable of type int is used to contain an integer value, a pointer variable is used to

contain a memory address, as illustrated in Figure 8.1.

Pointer at address
0x101 contains value

0x558

Data in memory at
address 0x558

0x5580x101Memory
Addresses

FIGURE 8.1

Visualizing a pointer.

Thus, a pointer is a variable, and like all variables a pointer occupies space in memory

(in the case of Figure 8.1, at address 0x101). What’s special about pointers is that the

value contained in a pointer (in this case, 0x558) is interpreted as a memory address.

So, a pointer is a special variable that points to a location in memory.

Memory locations are typically addressed using hexadecimal
notation. This is a number system with base 16, that is,
one featuring 16 distinct symbols from 0–9 followed by A–F.
It is convention to prefix 0x when displaying hexadecimal
 numbers. Thus, 0xA is hexadecimal for 10 in decimal; 0xF is
 hexadecimal for 15; and 0x10 is hexadecimal for 16. For more
 information, see Appendix A, “Working with Numbers: Binary and
Hexadecimal.”

NOTE

Declaring a Pointer
A pointer being a variable needs to be declared, too. You normally declare a pointer

to point to a specific value type (for example, int). This would mean that the address

 contained in the pointer points to a location in the memory that holds an integer. You can

also specify a pointer to a block of memory (also called a void pointer).

A pointer being a variable needs to be declared like all variables do:

PointedType * PointerVariableName;

As is the case with most variables, unless you initialize a pointer it will contain a random

value. You don’t want a random memory address to be accessed so you initialize a

pointer to NULL. NULL is a value that can be checked against and one that cannot be a

memory address:

PointedType * PointerVariableName = NULL; // initializing value

ptg18655082

What Is a Pointer? 179

8

Thus, declaring a pointer to an integer would be

int *pointsToInt = NULL;

A pointer, like all data types you have learned, contains a junk
value unless it has been initialized. This junk value is particularly
dangerous in the case of a pointer because the value of the
pointer is expected to contain an address. Uninitialized pointers
can result in your program accessing invalid memory locations,
resulting in a crash.

CAUTION

Determining the Address of a Variable Using
the Reference Operator (&)
Variables are tools the language provides for you to work with data in memory. This

 concept is explained in detail in Lesson 3, “Using Variables, Declaring Constants.”

If varName is a variable, &varName gives the address in memory where its value is

placed.

So, if you have declared an integer, using the syntax that you’re well acquainted with,

such as

int age = 30;

&age would be the address in memory where the value (30) is placed. Listing 8.1

 demonstrates the concept of the memory address of an integer variable that is used to

hold the value it contains.

LISTING 8.1 Determining the Addresses of an int and a double

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int age = 30;
 6: const double Pi = 3.1416;
 7:
 8: // Use & to find the address in memory
 9: cout << "Integer age is located at: 0x" << &age << endl;
10: cout << "Double Pi is located at: 0x" << &Pi << endl;
11:
12: return 0;
13: }

ptg18655082

180 LESSON 8: Pointers and References Explained

Output ▼
Integer age is at: 0x0045FE00
Double Pi is located at: 0x0045FDF8

Analysis ▼

Note how referencing operator (&) has been used in Lines 9 and 10 to reveal the addresses

of variables age and constant Pi. The text 0x has been appended as a convention that is

used when displaying hexadecimal numbers.

You know that the amount of memory consumed by a variable is
dependent on its type. Listing 3.4 in Lesson 3 uses sizeof()
to demonstrate that the size of an integer is 4 bytes (on my
system, using my compiler). So, using the preceding output
that says that integer age is located at address 0x0045FE00
and using the knowledge that sizeof(int) is 4, you know that
the four bytes located in the range 0x0045FE00 to 0x0045FE04
belong to the integer age.

NOTE

 The referencing operator (&) is also called the address-of
 operator.NOTE

Using Pointers to Store Addresses
You have learned how to declare pointers and how to determine the address of a variable.

You also know that pointers are variables that are used to hold memory addresses. It’s

time to connect these dots and use pointers to store the addresses obtained using the

 referencing operator (&).

Assume a variable declaration of the types you already know:

// Declaring a variable
Type VariableName = InitialValue;

To store the address of this variable in a pointer, you would declare a pointer to the same

Type and initialize the pointer to the variable’s address using the referencing operator

(&):

// Declaring a pointer to Type and initializing to address
Type* Pointer = &Variable;

ptg18655082

What Is a Pointer? 181

8

Thus, if you have declared an integer, using the syntax that you’re well acquainted with,

such as

int age = 30;

You would declare a pointer to the type int to hold the actual address where age is

stored, like this:

int* pointsToInt = &age; // Pointer to integer age

In Listing 8.2 you see how a pointer can be used to store an address fetched using the

referencing operator (&).

LISTING 8.2 Demonstrating the Declaration and Initialization of a Pointer

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int age = 30;
 6: int* pointsToInt = &age; // pointer initialized to &age
 7:
 8: // Displaying the value of pointer
 9: cout << "Integer age is at: 0x" << hex << pointsToInt << endl;
10:
11: return 0;
12: }

Output ▼
Integer age is at: 0x0045FE00

Analysis ▼

Essentially, the output of this code snippet is the same as the previous one in Listing 8.1

because both the samples are displaying the same thing—the address in memory where

integer age is stored. The difference here is that the address is first assigned to a pointer

at Line 6, and the value of the pointer (now the address) is displayed using cout at Line 9.

Your output might differ in addresses from those you see in
these samples. In fact, the address of a variable might change
at every run of the application on the very same computer.

NOTE

ptg18655082

182 LESSON 8: Pointers and References Explained

Now that you know how to store an address in a pointer variable, it is easy to imagine

that the same pointer variable can be reassigned a different memory address and made to

point to a different value, as shown in Listing 8.3.

LISTING 8.3 Pointer Reassignment to Another Variable

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int age = 30;
 6:
 7: int* pointsToInt = &age;
 8: cout << "pointsToInt points to age now" << endl;
 9:
10: // Displaying the value of pointer
11: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
12:
13: int dogsAge = 9;
14: pointsToInt = &dogsAge;
15: cout << "pointsToInt points to dogsAge now" << endl;
16:
17: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
18:
19: return 0;
20: }

Output ▼
pointsToInt points to age now
pointsToInt = 0x002EFB34
pointsToInt points to dogsAge now
pointsToInt = 0x002EFB1C

Analysis ▼

This program demonstrates that one pointer to an integer, pointsToInt, can point to any

integer. In Line 7, it has been initialized to &age, hence containing the address of vari-

able age. In Line 14 the same pointer is assigned &dogsAge, pointing to another location

in the memory that contains dogsAge. Correspondingly, the output indicates that the

value of the pointer, that is the address being pointed to, changes as the two integers age

and dogsAge are, of course, stored in different locations in memory, 0x002EFB34 and

0x002EFB1C, respectively.

ptg18655082

What Is a Pointer? 183

8

Access Pointed Data Using the Dereference
Operator (*)
You have a pointer to data, containing a valid address. How do you access that

location—that is, get or set data at that location? The answer lies in using the

dereferencing operator (*). Essentially, if you have a valid pointer pData, use *pData

to access the value stored at the address contained in the pointer. Operator (*) is

demonstrated by Listing 8.4.

LISTING 8.4 Demonstrating the Use of the Dereference Operator (*) to Access
Integer Values

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int age = 30;
 6: int dogsAge = 9;
 7:
 8: cout << "Integer age = " << age << endl;
 9: cout << "Integer dogsAge = " << dogsAge << endl;
10:
11: int* pointsToInt = &age;
12: cout << "pointsToInt points to age" << endl;
13:
14: // Displaying the value of pointer
15: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
16:
17: // Displaying the value at the pointed location
18: cout << "*pointsToInt = " << dec << *pointsToInt << endl;
19:
20: pointsToInt = &dogsAge;
21: cout << "pointsToInt points to dogsAge now" << endl;
22:
23: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
24: cout << "*pointsToInt = " << dec << *pointsToInt << endl;
25:
26: return 0;
27: }

Output ▼
Integer age = 30
Integer dogsAge = 9
pointsToInt points to age
pointsToInt = 0x0025F788

ptg18655082

184 LESSON 8: Pointers and References Explained

*pointsToInt = 30
pointsToInt points to dogsAge now
pointsToInt = 0x0025F77C
*pointsToInt = 9

Analysis ▼

In addition to changing the address stored within a pointer as also in the previous sample

in Listing 8.3, this one also uses the dereference operator (*) with the same pointer

 variable pointsToInt to print the different values at these two addresses. Note Lines 18

and 24. In both these lines, the integer pointed to by pointsToInt is accessed using the

dereference operator (*). As the address contained in pointsToInt is changed at

Line 20, the same pointer after this assignment accesses the variable dogsAge,

 displaying 9.

When the dereference operator (*) is used, the application essentially uses the address

stored in the pointer as a starting point to fetch 4 bytes from the memory that belong to

an integer (as this is a pointer to integers and sizeof(int) is 4). Thus, the validity of

the address contained in the pointer is absolutely essential. By initializing the pointer to

&age in Line 11, you have ensured that the pointer contains a valid address. When you

don’t initialize the pointer, it can contain any random value (that existed in the memory

location where the pointer variable is located) and dereference of that pointer usually

results in an Access Violation—that is, accessing a memory location that your application

was not authorized to.

The dereferencing operator (*) is also called the indirection
operator.NOTE

You have used the pointer in the preceding sample to read (get) values from the pointed

memory location. Listing 8.5 shows what happens when *pointsToInt is used as an

l-value—that is, assigned to instead of just being accessed.

LISTING 8.5 Manipulating Data Using a Pointer and the Dereference Operator (*)

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: int dogsAge = 30;
 6: cout << "Initialized dogsAge = " << dogsAge << endl;
 7:

ptg18655082

What Is a Pointer? 185

8

 8: int* pointsToAnAge = &dogsAge;
 9: cout << "pointsToAnAge points to dogsAge" << endl;
10:
11: cout << "Enter an age for your dog: ";
12:
13: // store input at the memory pointed to by pointsToAnAge
14: cin >> *pointsToAnAge;
15:
16: // Displaying the address where age is stored
17: cout << "Input stored at 0x" << hex << pointsToAnAge << endl;
18:
19: cout << "Integer dogsAge = " << dec << dogsAge << endl;
20:
21: return 0;
22: }

Output ▼
Initialized dogsAge = 30
pointsToAnAge points to dogsAge
Enter an age for your dog: 10
Input stored at 0x0025FA18
Integer dogsAge = 10

Analysis ▼

The key step here is in Line 14 where the age input by the user is saved at the location

stored in the pointer pointsToAnAge. Line 19 that displays variable dogsAge shows the

value you stored using the pointer. This is because pointsToAnAge points to dogsAge,

as initialized in Line 8. Any change to that memory location where dogsAge is stored,

and where pointsToAnAge points to, made using one is going to be reflected in the

other.

What Is the sizeof() of a Pointer?
You have learned that the pointer is just another variable that contains a memory

address. Hence, irrespective of the type that is being pointed to, the content of a

pointer is an address—a number. The length of an address, that is the number of bytes

required to store it, is a constant for a given system. The sizeof() a pointer is hence

dependent on the compiler and the operating system the program has been compiled

for and is not dependent on the nature of the data being pointed to, as Listing 8.6

 demonstrates.

ptg18655082

186 LESSON 8: Pointers and References Explained

LISTING 8.6 Demonstrating That Pointers to Different Types Have the Same Sizes

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "sizeof fundamental types -" << endl;
 6: cout << "sizeof(char) = " << sizeof(char) << endl;
 7: cout << "sizeof(int) = " << sizeof(int) << endl;
 8: cout << "sizeof(double) = " << sizeof(double) << endl;
 9:
10: cout << "sizeof pointers to fundamental types -" << endl;
11: cout << "sizeof(char*) = " << sizeof(char*) << endl;
12: cout << "sizeof(int*) = " << sizeof(int*) << endl;
13: cout << "sizeof(double*) = " << sizeof(double*) << endl;
14:
15: return 0;
16: }

Output ▼
sizeof fundamental types -
sizeof(char) = 1
sizeof(int) = 4
sizeof(double) = 8
sizeof pointers to fundamental types -
sizeof(char*) = 4
sizeof(int*) = 4
sizeof(double*) = 4

Analysis ▼

The output clearly shows that even though a sizeof(char) is 1 byte and a

sizeof(double) is 8 bytes, the sizeof(char*) and sizeof(double*) are both 4

bytes. This is because the amount of memory consumed by a pointer that stores an

address is the same, irrespective of whether the memory at the address contains 1 byte or

8 bytes of data.

The output for Listing 8.6 that displays that the sizeof a pointer
is 4 bytes might be different than what you see on your system.
The output was generated when the code was compiled using a
32-bit compiler. If you use a 64-bit compiler and run the program
on a 64-bit system, you might see that the sizeof your pointer
variable is 64 bits—that is, 8 bytes.

NOTE

ptg18655082

Dynamic Memory Allocation 187

8

Dynamic Memory Allocation
When you write a program containing an array declaration such as

int myNums[100]; // a static array of 100 integers

your program has two problems:

1. You are actually limiting the capacity of your program as it cannot store more than

100 numbers.

2. You are reducing the performance of the system in cases where only 1 number

needs to be stored, yet space has been reserved for 100.

These problems exist because the memory allocation in an array as declared earlier is

static and fixed by the compiler.

To program an application that is able to optimally consume memory resources on the

basis of the needs of the user, you need to use dynamic memory allocation. This enables

you to allocate more when you need more memory and release memory that you have

in excess. C++ supplies you two operators, new and delete, to help you better manage

the memory consumption of your application. Pointers being variables that are used to

 contain memory addresses play a critical role in efficient dynamic memory allocation.

Using Operators new and delete to Allocate
and Release Memory Dynamically
You use new to allocate new memory blocks. The most frequently used form of new

returns a pointer to the requested memory if successful or else throws an exception.

When using new, you need to specify the data type for which the memory is being

 allocated:

Type* Pointer = new Type; // request memory for one element

You can also specify the number of elements you want to allocate that memory for

(when you need to allocate memory for more than one element):

Type* Pointer = new Type[numElements]; // request memory for numElements

Thus, if you need to allocate integers, you use the following syntax:

int* pointToAnInt = new int; // get a pointer to an integer
int* pointToNums = new int[10]; // pointer to a block of 10 integers

ptg18655082

188 LESSON 8: Pointers and References Explained

Note that new indicates a request for memory. There is no
guarantee that a call for allocation always succeeds because
this depends on the state of the system and the availability of
memory resources.

NOTE

Every allocation using new needs to be eventually released using an equal and opposite

de-allocation via delete:

Type* Pointer = new Type; // allocate memory
delete Pointer; // release memory allocated above

This rule also applies when you request memory for multiple elements:

Type* Pointer = new Type[numElements]; // allocate a block
delete[] Pointer; // release block allocated above

Note the usage of delete[] when you allocate a block using
new[...] and delete when you allocate just an element
using new.

NOTE

If you don’t release allocated memory after you stop using it, this memory remains

reserved and allocated for your application. This in turn reduces the amount of system

memory available for applications to consume and possibly even makes the execution of

your application slower. This is called a leak and should be avoided at all costs.

Listing 8.7 demonstrates memory dynamic allocation and deallocation.

LISTING 8.7 Accessing Memory Allocated Using new via Operator (*) and Releasing
It Using delete

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: // Request for memory space for an int
 6: int* pointsToAnAge = new int;
 7:
 8: // Use the allocated memory to store a number
 9: cout << "Enter your dog’s age: ";
10: cin >> *pointsToAnAge;

ptg18655082

Dynamic Memory Allocation 189

8

11:
12: // use indirection operator* to access value
13: cout << "Age " << *pointsToAnAge << " is stored at 0x" << hex <<
pointsToAnAge << endl;
14:
15: delete pointsToAnAge; // release memory
16:
17: return 0;
18: }

Output ▼
Enter your dog’s age: 9
Age 9 is stored at 0x00338120

Analysis ▼

Line 6 demonstrates the use of operator new to request space for an integer where you

plan to store the dog’s age as input by the user. Note that new returns a pointer, and that

is the reason it is assigned to one. The age entered by the user is stored in this newly

allocated memory using cin and the dereference operator (*) in Line 10. Line 13 displays

this stored value using the dereference operator (*) again and also displays the memory

address where the value is stored. Note that the address contained in pointsToAnAge in

Line 13 still is what was returned by new in Line 6 and hasn’t changed since.

Operator delete cannot be invoked on any address contained in
a pointer, rather only those that have been returned by new and
only those that have not already been released by a delete.

Thus, the pointers seen in Listing 8.6 contain valid addresses,
yet should not be released using delete because the addresses
were not returned by a call to new.

CAUTION

Note that when you allocate for a range of elements using new[…], you would de-allocate

using delete[] as demonstrated by Listing 8.8.

LISTING 8.8 Allocating Using new[…] and Releasing It Using delete[]

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:

ptg18655082

190 LESSON 8: Pointers and References Explained

 4: int main()
 5: {
 6: cout << "How many integers shall I reserve memory for?" << endl;
 7: int numEntries = 0;
 8: cin >> numEntries;
 9:
10: int* myNumbers = new int[numEntries];
11:
12: cout << "Memory allocated at: 0x" << myNumbers << hex << endl;
13:
14: // de-allocate before exiting
15: delete[] myNumbers;
16:
17: return 0;
18: }

Output ▼
How many integers shall I reserve memory for?
5001
Memory allocated at: 0x00C71578

Analysis ▼

The most important lines in question are the new[] and delete[] operators used in

Lines 10 and 15, respectively. What makes this sample different from Listing 8.7 is the

dynamic allocation of a block of memory that can accommodate as many integers as the

user requests. During this execution, we requested space for 5001 integers. In another

run, it may be 20 or 55000. This program will allocate a different amount of memory

required in every execution, depending on user input. Such allocations for an array of ele-

ments need to be matched by de-allocation using delete[] to free memory when done.

Operators new and delete allocate memory from the free store.
The free store is a memory abstraction in the form of a pool of
memory where your application can allocate (that is, reserve)
memory from and de-allocate (that is, release) memory to.

NOTE

ptg18655082

Dynamic Memory Allocation 191

8

Effect of Incrementing and Decrementing
Operators (++ and --) on Pointers
A pointer contains a memory address. For example, the pointer to an integer in

Listing 8.3 contains 0x002EFB34—the address where the integer is placed. The integer

itself is 4 bytes long and hence occupies four places in memory from 0x002EFB34 to

0x002EFB37. Incrementing this pointer using operator (++) would not result in the pointer

pointing to 0x002EFB35, for pointing to the middle of an integer would literally be

pointless.

An increment or decrement operation on a pointer is interpreted by the compiler as your

need to point to the next value in the block of memory, assuming it to be of the same

type, and not to the next byte (unless the value type is 1 byte large, like a char, for

instance).

So, incrementing a pointer such as pointsToInt seen in Listing 8.3 results in it being

incremented by 4 bytes, which is the sizeof an int. Using ++ on this pointer is telling

the compiler that you want it to point to the next consecutive integer. Hence, after

incrementing, the pointer would then point to 0x002EFB38. Similarly, adding 2 to this

pointer would result in it moving 2 integers ahead, that is 8 bytes ahead. Later you see a

correlation between this behavior displayed by pointers and indexes used in arrays.

Decrementing pointers using operator (--) demonstrates the same effect—the address value

contained in the pointer is reduced by the sizeof the data type it is being pointed to.

What Happens When You Increment or Decrement a Pointer?

The address contained in the pointer is incremented or decremented by the sizeof
the type being pointed to (and not necessarily a byte). This way, the compiler ensures
that the pointer never points to the middle or end of data placed in the memory; it
only points to the beginning.

If a pointer has been declared as

Type* pType = Address;

++pType would mean that pType contains (and hence points to) Address +
sizeof(Type).

See Listing 8.9 that explains the effect of incrementing pointers or adding offsets

to them.

ptg18655082

192 LESSON 8: Pointers and References Explained

LISTING 8.9 Using Offset Values and Operators to Increment and Decrement Pointers

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "How many integers you wish to enter? ";
 6: int numEntries = 0;
 7: cin >> numEntries;
 8:
 9: int* pointsToInts = new int [numEntries];
10:
11: cout << "Allocated for " << numEntries << " integers" << endl;
12: for(int counter = 0; counter < numEntries; ++counter)
13: {
14: cout << "Enter number "<< counter << ": ";
15: cin >> *(pointsToInts + counter);
16: }
17:
18: cout << "Displaying all numbers entered: " << endl;
19: for(int counter = 0; counter < numEntries; ++counter)
20: cout << *(pointsToInts++) << " ";
21:
22: cout << endl;
23:
24: // return pointer to initial position
25: pointsToInts -= numEntries;
26:
27: // done with using memory? release
28: delete[] pointsToInts;
29:
30: return 0;
31: }

Output ▼
How many integers you wish to enter? 2
Allocated for 2 integers
Enter number 0: 8774
Enter number 1: -5
Displaying all numbers entered:
8774 -5

Another run:

How many integers you wish to enter? 5
How many integers you wish to enter? 5
Allocated for 5 integers
Enter number 0: 543
Enter number 1: 756
Enter number 2: 2017

ptg18655082

Dynamic Memory Allocation 193

8

Enter number 3: -101
Enter number 4: 101010012
Displaying all numbers entered:
543 756 2017 -101 101010012

Analysis ▼

The program asks the user for the number of integers he wants to feed into the system

before allocating memory for the same in Line 9. The sample demonstrates two methods

of incrementing pointers. One uses an offset value as seen in Line 15, where we store

user input directly into the memory location using offset variable counter. The other

uses operator ++ as seen in Line 20 to increment the address contained in the pointer

variable to the next valid integer in the allocated memory. Operators were introduced in

Lesson 5, “Working with Expressions, Statements, and Operators.”

Lines 12–16 are a for loop where the user is asked to enter the numbers that are then

stored in consecutive positions in the memory using the expression in Line 15. It is here

that the zero-based offset value (counter) is added to the pointer, causing the compiler

to create instructions that insert the value fed by the user at the next appropriate location

for an integer without overwriting the previous value. The for loop in Lines 19 and 20 is

similarly used to display those values stored by the previous loop.

The original pointer address returned by new during allocation needs to be used in

the call to delete[] during de-allocation. As this value contained in pointsToInts

has been modified by operator ++ in Line 20, we bring the pointer back to the original

 position (address) using operator -= in Line 25 before invoking delete[] on that address

in Line 28.

Using the const Keyword on Pointers
In Lesson 3, you learned that declaring a variable as const effectively ensures that value

of the variable is fixed as the initialization value for the life of the variable. The value of

a const-variable cannot be changed, and therefore it cannot be used as an l-value.

Pointers are variables, too, and hence the const keyword that is relevant to variables

is relevant to pointers as well. However, pointers are a special kind of variable as they

contain a memory address and are used to modify memory at that address. Thus, when it

comes to pointers and constants, you have the following combinations:

 ■ The address contained in the pointer is constant and cannot be changed, yet the data

at that address can be changed:

int daysInMonth = 30;
int* const pDaysInMonth = &daysInMonth;
*pDaysInMonth = 31; // OK! Data pointed to can be changed
int daysInLunarMonth = 28;
pDaysInMonth = &daysInLunarMonth; // Not OK! Cannot change address!

ptg18655082

194 LESSON 8: Pointers and References Explained

 ■ Data pointed to is constant and cannot be changed, yet the address contained in the

pointer can be changed—that is, the pointer can also point elsewhere:

int hoursInDay = 24;
const int* pointsToInt = &hoursInDay;
int monthsInYear = 12;
pointsToInt = &monthsInYear; // OK!
*pointsToInt = 13; // Not OK! Cannot change data being pointed to
int* newPointer = pointsToInt; // Not OK! Cannot assign const to non-const

 ■ Both the address contained in the pointer and the value being pointed to are

 constant and cannot be changed (most restrictive variant):

int hoursInDay = 24;
const int* const pHoursInDay = &hoursInDay;
*pHoursInDay = 25; // Not OK! Cannot change data being pointed to
int daysInMonth = 30;
pHoursInDay = &daysInMonth; // Not OK! Cannot change address

These different forms of const are particularly useful when passing pointers to

functions. Function parameters need to be declared to support the highest possible

(restrictive) level of const-ness, to ensure that a function does not modify the pointed

value when it is not supposed to. This will keep programmers of your application from

making unwanted changes to pointer values or data.

Passing Pointers to Functions
Pointers are an effective way to pass memory space that contains relevant data for

functions to work on. The memory space shared can also return the result of an

operation. When using a pointer with functions, it becomes important to ensure that the

called function is only allowed to modify parameters that you want to let it modify, but

not others. For example, a function that calculates the area of a circle given radius sent as

a pointer should not be allowed to modify the radius. This is where you use the keyword

const to control what a function is allowed to modify and what it isn’t as demonstrated

by Listing 8.10.

LISTING 8.10 Use the const Keyword in Calculating the Area of a Circle

 0: #include <iostream>
 1: using namespace std;
 2:
 3: void CalcArea(const double* const ptrPi, // const pointer to const data
 4: const double* const ptrRadius, // i.e. no changes allowed
 5: double* const ptrArea) // can change data pointed to

ptg18655082

Dynamic Memory Allocation 195

8

 6: {
 7: // check pointers for validity before using!
 8: if (ptrPi && ptrRadius && ptrArea)
 9: *ptrArea = (*ptrPi) * (*ptrRadius) * (*ptrRadius);
10: }
11:
12: int main()
13: {
14: const double Pi = 3.1416;
15:
16: cout << "Enter radius of circle: ";
17: double radius = 0;
18: cin >> radius;
19:
20: double area = 0;
21: CalcArea (&Pi, &radius, &area);
22:
23: cout << "Area is = " << area << endl;
24:
25: return 0;
26: }

Output ▼
Enter radius of circle: 10.5
Area is = 346.361

Analysis ▼

Lines 3–5 demonstrate the two forms of const where both ptrRadius and ptrPi are

supplied as “const pointers to const data,” so that neither the pointer address nor the data

being pointed to can be modified. ptrArea is evidently the parameter meant to store the

output, for the value contained in the pointer (address) cannot be modified, but the data

being pointed to can be. Line 8 shows how pointer parameters to a function are checked

for validity before using them. You don’t want the function to calculate the area if the

caller inadvertently sends a NULL pointer as any of the three parameters, for that would

risk an access violation followed by an application crash.

Similarities between Arrays and Pointers
Don’t you think that the sample in Listing 8.9 where the pointer was incremented using

zero-based index to access the next integer in the memory has too many similarities to

the manner in which arrays are indexed? When you declare an array of integers:

int myNumbers[5];

ptg18655082

196 LESSON 8: Pointers and References Explained

You tell the compiler to allocate a fixed amount of memory to hold five integers

and give you a pointer to the first element in that array that is identified by the name

you assign the array variable. In other words, myNumbers is a pointer to the first element

myNumbers[0]. Listing 8.11 highlights this correlation.

LISTING 8.11 Demonstrate That the Array Variable Is a Pointer to the First Element

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: // Static array of 5 integers
 6: int myNumbers[5];
 7:
 8: // array assigned to pointer to int
 9: int* pointToNums = myNumbers;
10:
11: // Display address contained in pointer
12: cout << "pointToNums = 0x" << hex << pointToNums << endl;
13:
14: // Address of first element of array
15: cout << "&myNumbers[0] = 0x" << hex << &myNumbers[0] << endl;
16:
17: return 0;
18: }

Output ▼
pointToNums = 0x004BFE8C
&myNumbers[0] = 0x004BFE8C

Analysis ▼

This simple program demonstrates that an array variable can be assigned to a pointer

of the same type as seen in Line 9, essentially confirming that an array is akin to a

pointer. Lines 12 and 15 demonstrate that the address stored in the pointer is the same

as the address where the first element in the array (at index 0) is placed in memory. This

 program demonstrates that an array is a pointer to the first element in it.

Should you need to access the second element via the expression myNumbers[1], you can

also access the same using the pointer pointToNums with the syntax * (pointToNums

+ 1). The third element is accessed in the static array using myNumbers[2], whereas the

third element is accessed in the dynamic array using the syntax *(pointToNums + 2).

ptg18655082

Dynamic Memory Allocation 197

8

Because array variables are essentially pointers, it should be possible to use the

 de-reference operator (*) that you have used with pointers to work with arrays. Similarly,

it should be possible to use the array operator ([]) to work with pointers as demonstrated

by Listing 8.12.

LISTING 8.12 Accessing Elements in an Array Using the Dereference Operator (*) and
Using the Array Operator ([]) with a Pointer

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: const int ARRAY_LEN = 5;
 6:
 7: // Static array of 5 integers, initialized
 8: int myNumbers[ARRAY_LEN] = {24, -1, 365, -999, 2011};
 9:
10: // Pointer initialized to first element in array
11: int* pointToNums = myNumbers;
12:
13: cout << "Display array using pointer syntax, operator*" << endl;
14: for (int index = 0; index < ARRAY_LEN; ++index)
15: cout << "Element " << index << " = " << *(myNumbers + index) << endl;
16:
17: cout << "Display array using ptr with array syntax, operator[]" << endl;
18: for (int index = 0; index < ARRAY_LEN; ++index)
19: cout << "Element " << index << " = " << pointToNums[index] << endl;
20:
21: return 0;
22: }

Output ▼
Display array using pointer syntax, operator*
Element 0 = 24
Element 1 = -1
Element 2 = 365
Element 3 = -999
Element 4 = 2011
Display array using ptr with array syntax, operator[]
Element 0 = 24
Element 1 = -1
Element 2 = 365
Element 3 = -999
Element 4 = 2011

ptg18655082

198 LESSON 8: Pointers and References Explained

Analysis ▼

The application contains a static array of five integers initialized to five initial values

in Line 8. The application displays the contents of this array, using two alternative

routes—one using the array variable myNumbers with the indirection operator (*) in Line

15 and the other using the pointer variable with the array operator ([]) in Line 19.

Thus, what this program demonstrates is that both array myNumbers and pointer

 pointToNums actually exhibit pointer behavior. In other words, an array declaration is

similar to a pointer that will be created to operate within a fixed range of memory. Note

that one can assign an array to a pointer as in Line 11, but one cannot assign a pointer to

an array. This is because by its very nature, an array like myNumbers is static and cannot

be used as an l-value. myNumbers cannot be modified.

It is important to remember that pointers that are allocated
dynamically using operator new still need to be released using
operator delete, even if you accessed data using syntax com-
monly used with static arrays.

If you forget this, your application leaks memory, and that’s bad.

CAUTION

Common Programming Mistakes When
Using Pointers
C++ enables you to allocate memory dynamically so that you can optimize and control

the memory consumption of your application. Unlike newer languages such as C#

and Java that are based on a runtime environment, C++ does not feature an automatic

 garbage collector that cleans up the memory your program has allocated but can’t use.

This incredible control over managing memory resources using pointers is accompanied

by a host of opportunities to make mistakes.

Memory Leaks
This is probably one of the most frequent problems with C++ applications: The longer

they run, the larger the amount of memory they consume and the slower the system gets.

This typically happens when the programmer did not ensure that his application releases

memory allocated dynamically using new with a matching call to delete after the block

of memory is no longer required.

ptg18655082

Common Programming Mistakes When Using Pointers 199

8

It is up to you—the programmer—to ensure that all allocated memory is also released

by your application. Something like this should never be allowed to happen:

int* pointToNums = new int[5]; // initial allocation
// use pointToNums
...
// forget to release using delete[] pointToNums;
...
// make another allocation and overwrite
pointToNums = new int[10]; // leaks the previously allocated memory

When Pointers Don’t Point to Valid Memory
Locations
When you dereference a pointer using operator (*) to access the pointed value, you need

to be sure that the pointer contains a valid memory location, or else your program will

either crash or misbehave. Logical as this may seem, invalid pointers are quite a common

reason for application crashes. Pointers can be invalid for a range of reasons, primarily

due to poor programming and memory management. A typical case where a pointer

might be invalid is shown in Listing 8.13.

LISTING 8.13 Poor Pointer Hygiene in a Program That Stores a Boolean Value
Using Pointers

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: // uninitialized pointer (bad)
 6: bool* isSunny;
 7:
 8: cout << "Is it sunny (y/n)? ";
 9: char userInput = 'y';
10: cin >> userInput;
11:
12: if (userInput == 'y')
13: {
14: isSunny = new bool;
15: *isSunny = true;
16: }
17:
18: // isSunny contains invalid value if user entered 'n'
19: cout << "Boolean flag sunny says: " << *isSunny << endl;
20:
21: // delete being invoked also when new wasn't

ptg18655082

200 LESSON 8: Pointers and References Explained

22: delete isSunny;
23:
24: return 0;
25: }

Output ▼
Is it sunny (y/n)? y
Boolean flag sunny says: 1

Second run:

Is it sunny (y/n)? n
<CRASH!>

Analysis ▼

There are many problems in the program, some already commented in the code. Note

how memory is allocated and assigned to the pointer in Line 14, which is conditionally

executed when the user presses ‘y’ for yes. For all other inputs of the user, this if block

is not executed, and the pointer isSunny remains invalid. Thus, when the user presses

‘n’ in the second run, the application crashes because isSunny contains an invalid

memory address and dereferencing an invalid pointer in Line 19 causes problems.

Similarly, invoking delete on this pointer, which has not been allocated for using new

as seen in Line 22, is equally wrong. Note that if you have a copy of a pointer, you need

to be calling delete on only one of them (you also need to avoid having copies of a

pointer floating around).

A better (safer, more stable) version of this program would be one where pointers are ini-

tialized, used where their values are valid, and released only once but only when valid.

Dangling Pointers (Also Called Stray
or Wild Pointers)
Note that any valid pointer is invalid after it has been released using delete. In other

words, even a valid pointer isSunny in Listing 8.13 would be invalid after the call to

delete at Line 22, and should not be used after this point.

To avoid this problem, some programmers follow the convention of assigning NULL to a

pointer when initializing it or after it has been deleted. They also always check a pointer

for validity (by comparing against NULL) before dereferencing it using operator (*).

ptg18655082

Common Programming Mistakes When Using Pointers 201

8

Having learned some typical problems when using pointers, it’s time to correct the faulty

code in Listing 8.13 as seen in Listing 8.14.

LISTING 8.14 Safer Pointer Programming, a Correction of Listing 8.13

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Is it sunny (y/n)? ";
 6: char userInput = 'y';
 7: cin >> userInput;
 8:
 9: // declare pointer and initialize
10: bool* const isSunny = new bool;
11: *isSunny = true;
12:
13: if (userInput == 'n')
14: *isSunny = false;
15:
16: cout << "Boolean flag sunny says: " << *isSunny << endl;
17:
18: // release valid memory
19: delete isSunny;
20:
21: return 0;
22: }

Output ▼
Is it sunny (y/n)? y
Boolean flag sunny says: 1

Next run:

Is it sunny (y/n)? n
Boolean flag sunny says: 0

(Ends without crashing, irrespective of user input.)

Analysis ▼

Minor restructuring has made the code safer for all combinations of user input. Note how

the pointer is initialized to a valid memory address during declaration in Line 10. We

ptg18655082

202 LESSON 8: Pointers and References Explained

used const to ensure that while the data being pointed to can be modified, the pointer

value (address contained) remains fixed and unchangeable. We also initialized the

Boolean value being pointed to, to true in Line 11. This data initialization doesn’t add to

the stability of the program but to the reliability of the output. These steps ensure that the

pointer is valid for the rest of the program, and it is safely deleted in Line 19, for every

combination of user input.

Checking Whether Allocation Request
Using new Succeeded
In our code to this point, we have assumed that new will return a valid pointer to a block

of memory. Indeed, new usually succeeds unless the application asks for an unusually

large amount of memory or if the system is in such a critical state that it has no memory

to spare. There are applications that need to make requests for large chunks of memory

(for example, database applications). Additionally, it is good to not simply assume that

memory allocation requests will always be successful. C++ provides you with two

 possible methods to ensure that your pointer is valid before you use it. The default

method—one that we have been using thus far—uses exceptions wherein unsuccessful

allocations result in an exception of the type std::bad_alloc to be thrown. An excep-

tion results in the execution of your application being disrupted, and unless you have

programmed an exception handler, your application ends rather unelegantly with an

error message “unhandled exception.”

Exceptions are explained in detail in Lesson 28, “Exception Handling.” Listing 8.15 gives

you a sneak peek of how exception handling can be used to check for failed memory

allocation requests. Don’t be too worried if exception handling seems overwhelming at

this stage—it’s mentioned here only for the sake of completeness of the topic of memory

allocations. You may revisit this sample again, after covering Lesson 28.

LISTING 8.15 Handle Exceptions, Exit Gracefully When new Fails

 0: #include <iostream>
 1: using namespace std;
 2:
 3: // remove the try-catch block to see this application crash
 4: int main()
 5: {
 6: try
 7: {
 8: // Request a LOT of memory!
 9: int* pointsToManyNums = new int [0x1fffffff];
 10: // Use the allocated memory
 11:

ptg18655082

Common Programming Mistakes When Using Pointers 203

8

12: delete[] pointsToManyNums;
13: }
14: catch (bad_alloc)
15: {
16: cout << "Memory allocation failed. Ending program" << endl;
17: }
18: return 0;
19: }

Output ▼
Memory allocation failed. Ending program

Analysis ▼

This program might execute differently on your computer. My environment could not

successfully allocate the requested space for 536870911 integers! Had I not programmed

an exception handler (the catch block you see in Lines 14–17), the program would

have ended disgracefully. You may experiment with the behavior of the program in the

absence of the exception handler by commenting Lines 6, 7, and 13–17. When using

debug mode binaries built using Microsoft Visual Studio, program execution results in

output as shown in Figure 8.2.

FIGURE 8.2

Program crash in
absence of
exception handling
in Listing 8.15
(debug build using
MSVC compiler).

The exception handling try-catch construct thus helped the application in making a

controlled exit after informing the user that a problem in memory allocation hampers

normal execution.

ptg18655082

204 LESSON 8: Pointers and References Explained

For those who don’t want to rely on exceptions, there is a variant of new called

new(nothrow). This variant does not throw an exception when allocation requests

fail, rather it results in the operator new returning NULL. The pointer being assigned,

 therefore, can be checked for validity against NULL before it is used. See Listing 8.16.

LISTING 8.16 Using new(nothrow) That Returns NULL When Allocation Fails

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: // Request LOTS of memory space, use nothrow
 6: int* pointsToManyNums = new(nothrow) int [0x1fffffff];
 7:
 8: if (pointsToManyNums) // check pointsToManyNums != NULL
 9: {
10: // Use the allocated memory
11: delete[] pointsToManyNums;
12: }
13: else
14: cout << "Memory allocation failed. Ending program" << endl;
15:
16: return 0;
17: }

Output ▼
Memory allocation failed. Ending program

Analysis ▼

Listing 8.16 is the same function as Listing 8.15 with the exception that this uses

new(nothrow). As this variant of new returns NULL when memory allocation fails, we

check the pointer before using it as seen in Line 8. Both variants of new are good, and

the choice is for you to make.

Pointer Programming Best-Practices
There are some basic rules when it comes to using pointers in your application that will

make living with them easier.

ptg18655082

What Is a Reference? 205

8

DO DON’T

DO always initialize pointer variables,
or else they will contain junk values.
These junk values are interpreted as
address locations—ones your appli-
cation is not authorized to access.
If you cannot initialize a pointer to
a valid address returned by new
 during variable declaration, initialize
to NULL.

DO ensure that your application is
programmed in a way that point-
ers are used when their validity is
assured, or else your program might
encounter a crash.

DO remember to release memory
allocated using new by using
delete, or else your application will
leak memory and reduce system
 performance.

DON’T access a block of memory
or use a pointer after it has been
released using delete.

DON’T invoke delete on a memory
address more than once.

DON’T leak memory by forgetting to
invoke delete when done using an
allocated block of memory.

What Is a Reference?
A reference is an alias for a variable. When you declare a reference, you need to initialize

it to a variable. Thus, the reference variable is just a different way to access the data

stored in the variable being referenced.

You would declare a reference using the reference operator (&) as seen in the following

statement:

VarType original = Value;
VarType& ReferenceVariable = original;

To further understand how to declare references and use them, see Listing 8.17.

LISTING 8.17 Demonstrating That References Are Aliases for the Assigned Value

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()

ptg18655082

206 LESSON 8: Pointers and References Explained

 4: {
 5: int original = 30;
 6: cout << "original = " << original << endl;
 7: cout << "original is at address: " << hex << &original << endl;
 8:
 9: int& ref1 = original;
10: cout << "ref1 is at address: " << hex << &ref1 << endl;
11:
12: int& ref2 = ref1;
13: cout << "ref2 is at address: " << hex << &ref2 << endl;
14: cout << "Therefore, ref2 = " << dec << ref2 << endl;
15:
16: return 0;
17: }

Output ▼
original = 30
original is at address: 0099F764
ref1 is at address: 0099F764
ref2 is at address: 0099F764
Therefore, ref2 = 30

Analysis ▼

The output demonstrates that references, irrespective of whether they’re initialized to

the original variable as seen in Line 9 or to a reference as seen in Line 12, address the

same location in memory where the original is contained. Thus, references are true

aliases—that is, just another name for original. Displaying the value using ref2 in

Line 14 gets the same value as the original in Line 6 because ref2 aliases original

and is contained in the same location in memory.

What Makes References Useful?
References enable you to work with the memory location they are initialized to. This

makes references particularly useful when programming functions. As you learned in

Lesson 7, “Organizing Code with Functions,” a typical function is declared like this:

ReturnType DoSomething(Type parameter);

Function DoSomething() is invoked like this:

ReturnType Result = DoSomething(argument); // function call

ptg18655082

What Is a Reference? 207

8

The preceding code would result in the argument being copied into Parameter, which is

then used by the function DoSomething(). This copying step can be quite an overhead if

the argument in question consumes a lot of memory. Similarly, when DoSomething()

returns a value, it is copied again into Result. It would be ideal if we could avoid or

eliminate the copy steps, enabling the function to work directly on the data in the caller’s

stack. References enable you to do just that.

A version of the function without the copy step looks like this:

ReturnType DoSomething(Type& parameter); // note the reference&

This function would be invoked as the following:

ReturnType Result = DoSomething(argument);

As the argument is being passed by reference, Parameter is not a copy of argument

rather an alias of the latter, much like Ref in Listing 8.17. Additionally, a function

that accepts a parameter as a reference can optionally return values using reference

 parameters. See Listing 8.18 to understand how functions can use references instead of

return values.

LISTING 8.18 Function That Calculates Square Returned in a Parameter by Reference

 0: #include <iostream>
 1: using namespace std;
 2:
 3: void GetSquare(int& number)
 4: {
 5: number *= number;
 6: }
 7:
 8: int main()
 9: {
10: cout << "Enter a number you wish to square: ";
11: int number = 0;
12: cin >> number;
13:
14: GetSquare(number);
15: cout << "Square is: " << number << endl;
16:
17: return 0;
18: }

ptg18655082

208 LESSON 8: Pointers and References Explained

Output ▼
Enter a number you wish to square: 5
Square is: 25

Analysis ▼

The function that performs the operation of squaring is in Lines 3–6. Note how it accepts

the number to be squared as a parameter by reference and returns the result in the same.

Had you forgotten to mark the parameter number as a reference (&), the result would not

reach the calling function main() as GetSquare() would then perform its operations

on a local copy of number and that would be destroyed when the function exits. Using

 references, you ensure that GetSquare() is operating in the same address space where

number in main() is defined. Thus, the result of the operation is available in main()

even after the function GetSquare() has exited.

In this sample, the input parameter containing the number sent by the user has been

modified. If you need both values, the original and the square, you can have the function

accept two parameters: one that contains the input and the other that supplies the square.

Using Keyword const on References
You might need to have references that are not allowed to change the value of the

 original variable being aliased. Using const when declaring such references is the way

to achieve that:

int original = 30;
const int& constRef = original;
constRef = 40; // Not allowed: constRef can’t change value in original
int& ref2 = constRef; // Not allowed: ref2 is not const
const int& constRef2 = constRef; // OK

Passing Arguments by Reference to Functions
One of the major advantages of references is that they allow a called function to work on

parameters that have not been copied from the calling function, resulting in significant

performance improvements. However, as the called function works using parameters

directly on the stack of the calling function, it is often important to ensure that the called

function cannot change the value of the variable at the caller’s end. References that

are defined as const help you do just that, as demonstrated by Listing 8.19. A const

 reference parameter cannot be used as an l-value, so any attempt at assigning to it causes

a compilation failure.

ptg18655082

What Is a Reference? 209

8

LISTING 8.19 Using const Reference to Ensure That the Calling Function Cannot
Modify a Value Sent by Reference

 0: #include <iostream>
 1: using namespace std;
 2:
 3: void GetSquare(const int& number, int& result)
 4: {
 5: result = number*number;
 6: }
 7:
 8: int main()
 9: {
10: cout << "Enter a number you wish to square: ";
11: int number = 0;
12: cin >> number;
13:
14: int square = 0;
15: GetSquare(number, square);
16: cout << number << "^2 = " << square << endl;
17:
18: return 0;
19: }

Output ▼
Enter a number you wish to square: 27
27^2 = 729

Analysis ▼

In contrast to the program in Listing 8.18 where the variable that sent the number to be

squared also held the result, this one uses two variables—one to send the number to

be squared and the other to hold the result of the operation. To ensure that the number

being sent cannot be modified, it has been marked as a const reference using the const

 keyword, as shown in Line 3. This automatically makes parameter number an input

parameter—one whose value cannot be modified.

As an experiment, you may modify Line 5 to return the square using the same logic

shown in the Listing 8.18:

number *= number;

You are certain to face a compilation error that tells you that a const value cannot

be modified. Thus, const references indicate that a parameter is an input param-

eter and ensure that its value cannot be modified. It might seem trivial at first, but in

ptg18655082

210 LESSON 8: Pointers and References Explained

a multiprogrammer environment where the person writing the first version might be

 different from the one enhancing it, using const references will add to the quality of the

program.

Summary
In this lesson you learned about pointers and references. You learned how pointers can

be used to access and manipulate memory and how they’re a tool that assists in dynamic

memory allocation. You learned operators new and delete that can be used to allocate

memory for an element. You learned that their variants new…[] and delete[] help you

allocate memory for an array of data. You were introduced to traps in pointer program-

ming and dynamic allocation and found out that releasing dynamically allocated memory

is important to avoiding leaks. References are aliases and are a powerful alternative to

using pointers when passing arguments to functions in that references are guaranteed to

be valid. You learned of “const correctness” when using pointers and references, and will

hopefully henceforth declare functions with the most restrictive level of const-ness in

parameters as possible.

Q&A
 Q Why dynamically allocate when you can do with static arrays where you don’t

need to worry about deallocation?

 A Static arrays have a fixed size and will neither scale upward if your application

needs more memory nor will they optimize if your application needs less. This is

where dynamic memory allocation makes a difference.

 Q I have two pointers:
int* pointToAnInt = new int;
int* pCopy = pointToAnInt;

Am I not better off calling delete using both to ensure that the memory is gone?

 A That would be wrong. You are allowed to invoke delete only once on the address

returned by new. Also, you would ideally avoid having two pointers pointing to the

same address because performing delete on any one would invalidate the other.

Your program should also not be written in a way that you have any uncertainty

about the validity of pointers used.

 Q When should I use new(nothrow)?

 A If you don’t want to handle the exception std::bad_alloc, you use the nothrow

version of operator new that returns NULL if the requested allocation fails.

ptg18655082

Q&A 211

8

 Q I can call a function to calculate area using the following two methods:
void CalculateArea (const double* const ptrRadius, double* const
ptrArea);
void CalculateArea (const double& radius, double& area);

Which variant should I prefer?

 A Use the latter one using references, as references cannot be invalid, whereas

 pointers can be. Besides, it’s simpler, too.

 Q I have a pointer:
int number = 30;
const int* pointToAnInt = &number;

I understand that I cannot change the value of number using the pointer

 pointToAnInt due to the const declaration. Can I assign pointToAnInt to a
non-const pointer and then use it to manipulate the value contained in integer
number?

 A No, you cannot change the const-correctness of the pointer:

int* pAnother = pointToAnInt; // cannot assign pointer to const to a
non-const

 Q Why should I bother passing values to a function by reference?

 A You don’t need to so long as it doesn’t affect your program performance much.

However, if your function parameters accept objects that are quite heavy (large in

bytes), then passing by value would be quite an expensive operation. Your function

call would be a lot more efficient in using references. Remember to use const

generously, except where the function needs to store a result in a variable.

 Q What is the difference between these two declarations:
int myNumbers[100];
int* myArrays[100];

 A myNumbers is an array of integers—that is, myNumbers is a pointer to a memory

location that holds 100 integers, pointing to the first at index 0. It is the static

 alternative of the following:

int* myNumbers = new int [100]; // dynamically allocated array
// use myNumbers
delete[] myNumbers;

myArrays, on the other hand, is an array of 100 pointers, each pointer being

 capable of pointing to an integer or an array of integers.

ptg18655082

212 LESSON 8: Pointers and References Explained

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before continuing to the next

 lesson.

Quiz
1. Why can’t you assign a const reference to a non-const reference?

2. Are new and delete functions?

3. What is the nature of value contained in a pointer variable?

4. What operator would you use to access the data pointed by a pointer?

Exercises
1. What is the display when these statements are executed:

0: int number = 3;
1: int* pNum1 = &number;
2:_*pNum1 = 20;
3: int* pNum2 = pNum1;
4: number *= 2;
5: cout << *pNum2;

2. What are the similarities and differences between these three overloaded functions:

int DoSomething(int num1, int num2);
int DoSomething(int& num1, int& num2);
int DoSomething(int* pNum1, int* pNum2);

3. How would you change the declaration of pNum1 in Exercise 1 at Line 1 so as to

make the assignment at Line 3 invalid? (Hint: It has something to do with ensuring

that pNum1 cannot change the data pointed to.)

4. BUG BUSTERS: What is wrong with this code?

#include <iostream>
using namespace std;
int main()
{
 int *pointToAnInt = new int;
 pointToAnInt = 9;
 cout << "The value at pointToAnInt: " << *pointToAnInt;
 delete pointToAnInt;
 return 0;
}

ptg18655082

Workshop 213

8

5. BUG BUSTERS: What is wrong with this code?

#include <iostream>
using namespace std;
int main()
{
 int pointToAnInt = new int;
 int* pNumberCopy = pointToAnInt;

*pNumberCopy = 30;
cout << *pointToAnInt;
delete pNumberCopy;
delete pointToAnInt;
return 0;

}

6. What is the output of the above program when corrected?

ptg18655082

LESSON 9
Classes and Objects

So far you have explored simple programs that start execution at main(),
comprise local and global variables and constants, and feature execution
logic organized into function modules that take parameters and return val-
ues. Our programming style thus far has been procedural, and we haven’t
observed an object-oriented approach yet. In other words, you need to
now learn the basics of object-oriented programming using C++.

In this lesson, you learn

 ■ What classes and objects are

 ■ How classes help you consolidate data with functions that work on
them

 ■ About constructors, copy constructors, and the destructor

 ■ What the move constructor is

 ■ Object-oriented concepts of encapsulation and abstraction

 ■ What the this pointer is about

 ■ What a struct is and how it differs from class

ptg18655082

216 LESSON 9: Classes and Objects

The Concept of Classes and Objects
Imagine you are writing a program that models a human being, like yourself. This

human being needs to have an identity: a name, date of birth, place of birth, and

 gender—information that makes him or her unique. Additionally, the human can per-

form certain functions, such as talk and introduce him- or herself, among others. Thus, a

human being can also be modeled as illustrated by Figure 9.1.

Human Being

Data
• Gender
• Date of birth
• Place of birth
• Name

Methods
• IntroduceSelf()
• ...

FIGURE 9.1

A broad
representation of
a human.

To model a human in a program, what you now need is a construct that enables you to

group within it the attributes that define a human (data) and the activities a human can

perform (functions) using the available attributes. This construct is the class.

Declaring a Class
You declare a class using the keyword class followed by the name of the class, followed

by a statement block {…} that encloses a set of member attributes and member functions

within curly braces, and finally terminated by a semicolon ‘;’.

ptg18655082

The Concept of Classes and Objects 217

9

A declaration of a class tells the compiler about the class and its properties. Declaration

of a class alone does not make a difference to the execution of a program, as the class

needs to be used just the same way as a function would need to be invoked.

A class that models a human looks like the following (ignore syntactic short-comings for

the moment):

class Human
{
 // Member attributes:
 string name;
 string dateOfBirth;
 string placeOfBirth;
 string gender;

 // Member functions:
 void Talk(string textToTalk);
 void IntroduceSelf();
 ...
};

Needless to say, IntroduceSelf() uses Talk() and some of the data attributes that

are grouped within class Human. Thus, in keyword class, C++ has provided you

with a powerful way to create your own data type that allows you to encapsulate
 attributes and functions that work using those. All attributes of a class, in this case

name, dateOfBirth, placeOfBirth, and gender, and all functions declared within it,

namely Talk() and IntroduceSelf(), are called members of class Human.

Encapsulation, which is the ability to logically group data and functions that work using

it, is an important property of object-oriented programming.

You may often encounter the term method—these are essentially
functions that are members of a class.NOTE

An Object as an Instance of a Class
A class is like a blueprint, and declaring a class alone has no effect on the execution of a

program. The real-world avatar of a class at program execution time is an object. To use

the features of a class, you typically create an instance of that class, called an object. You

use that object to access its member methods and attributes.

ptg18655082

218 LESSON 9: Classes and Objects

Creating an object of type class Human is similar to creating an instance of another

type, say double:

double pi= 3.1415; // a variable of type double
Human firstMan; // firstMan: an object of class Human

Alternatively, you would dynamically create an instance of class Human using new as

you would for another type, say an int:

int* pointsToNum = new int; // an integer allocated dynamically
delete pointsToNum; // de-allocating memory when done using

Human* firstWoman = new Human(); // dynamically allocated Human
delete firstWoman; // de-allocating memory

Accessing Members Using the Dot Operator (.)
An example of a human would be Adam, male, born in 1970 in Alabama. Instance

firstMan is an object of class Human, an avatar of the class that exists in reality, that

is at runtime:

Human firstMan; // an instance i.e. object of Human

As the class declaration demonstrates, firstMan has attributes such as dateOfBirth

that can be accessed using the dot operator (.):

firstMan.dateOfBirth = "1970";

This is because attribute dateOfBirth belongs to class Human, being a part of

its blueprint as seen in the class declaration. This attribute exists in reality—that is, at

 runtime—only when an object has been instantiated. The dot operator (.) helps you

access attributes of an object.

Ditto for methods such as IntroduceSelf():

firstMan.IntroduceSelf();

If you have a pointer firstWoman to an instance of class Human, you can either use

the pointer operator (->) to access members, as explained in the next section, or use the

indirection operator (*) to reference the object following the dot operator.

Human* firstWoman = new Human();
(*firstWoman).IntroduceSelf();

ptg18655082

The Concept of Classes and Objects 219

9

Naming conventions continue to apply. A class name and
member functions are declared in Pascal case, for example,
IntroduceSelf(). Class member attributes are in camel case,
for example, dateOfBirth.

When we instantiate an object of a class, we declare a variable
with type as that class. We therefore use camel case, which
we have been using for variable names thus far, for example,
firstMan.

NOTE

Accessing Members Using the Pointer Operator (->)
If an object has been instantiated on the free store using new or if you have a pointer

to an object, then you use the pointer operator (->) to access the member attributes and

functions:

Human* firstWoman = new Human();
firstWoman->dateOfBirth = "1970";
firstWoman->IntroduceSelf();
delete firstWoman;

A compile-worthy form of class Human featuring a new keyword public is demon-

strated by Listing 9.1.

LISTING 9.1 A Compile-worthy Class Human

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: public:
 7: string name;
 8: int age;
 9:
10: void IntroduceSelf()
11: {
12: cout << "I am " + name << " and am ";
13: cout << age << " years old" << endl;
14: }
15: };
16:
17: int main()
18: {
19: // An object of class Human with attribute name as "Adam"
20: Human firstMan;

ptg18655082

220 LESSON 9: Classes and Objects

21: firstMan.name = "Adam";
22: firstMan.age = 30;
23:
24: // An object of class Human with attribute name as "Eve"
25: Human firstWoman;
26: firstWoman.name = "Eve";
27: firstWoman.age = 28;
28:
29: firstMan.IntroduceSelf();
30: firstWoman.IntroduceSelf();
31: }

Output ▼
I am Adam and am 30 years old
I am Eve and am 28 years old

Analysis ▼

Lines 4–15 demonstrate a basic C++ class Human. Note the structure of class Human

and how this class has been utilized in main().

This class contains two member variables, one of type string called name at Line 7 and

another of type int called age at Line 8. It also contains a function (also called method)

IntroduceSelf() at Lines 10–14. Lines 20 and 25 in main() instantiate two objects

of class Human, named firstMan and firstWoman, respectively. The lines following

this instantiation of objects set the member variables of the objects firstMan and

 firstWoman using operator, which has been explained shortly before. Note how Lines

29 and 30 invoke the same function IntroduceSelf() on the two objects to create two

distinct lines in the output. In a way this program demonstrates how objects firstMan

and firstWoman are unique and individually distinct real-world representatives of an

abstract type defined by a class Human.

Did you notice the keyword public in Listing 9.1? It’s time you learned features that

help you protect attributes your class should keep hidden from those using it.

Keywords public and private
Information can be classified into at least two categories: data that we don’t mind the

public knowing and data that is private. Gender, for most people, is an example of infor-

mation that we may not mind sharing. However, income may be a private matter.

C++ enables you to model class attributes and methods as public or private. Public class

members can be used by anyone in possession of an object of the class. Private class

ptg18655082

221

9

Keywords public and private

members can be used only within the class (or its “friends”). C++ keywords public and

private help you as the designer of a class decide what parts of a class can be invoked

from outside it, for instance, from main(), and what cannot.

What advantages does this ability to mark attributes or methods as private present you

as the programmer? Consider the declaration of class Human ignoring all but the member

attribute age:

class Human
{
private:
 // Private member data:
 int age;
 string name;

public:
 int GetAge()
 {

return age;
 }

 void SetAge(int humansAge)
 {

age = humansAge;
 }

// ...Other members and declarations
};

Assume an instance of a Human called Eve:

Human eve;

When the user of this instance tries to access member age:

cout << eve.age; // compile error

then this user would get a compile error akin to “Error: Human::age—cannot access

 private member declared in class Human.” The only permissible way to know the age

would be to ask for it via public method GetAge() supplied by class Human and

 implemented in a way the programmer of the class thought was an appropriate way to

expose the age:

cout << eve.GetAge(); // OK

If the programmer of class Human so desires, he could use GetAge() to show Eve as

younger than she is! In other words, this means C++ allows the class to control what

attributes it wants to expose and how it wants to expose the same. If there were no

ptg18655082

222 LESSON 9: Classes and Objects

GetAge() public member method implemented by class Human, the class would effec-

tively have ensured that the user cannot query age at all. This feature can be useful in

situations that are explained later in this lesson.

Similarly, Human::age cannot be assigned directly either:

eve.age = 22; // compile error

The only permissible way to set the age is via method SetAge():

eve.SetAge(22); // OK

This has many advantages. The current implementation of SetAge() does nothing but

directly set the member variable Human::age. However, you can use SetAge() to verify

the age being set is non-zero and not negative and thus validate external input:

class Human
{
private:
 int age;

public:
 void SetAge(int humansAge)
 {

if (humansAge > 0)
age = humansAge;

 }
};

Thus, C++ enables the designer of the class to control how data attributes of the class are

accessed and manipulated.

Abstraction of Data via Keyword private
While allowing you to design a class as a container that encapsulates data and methods

that operate on that data, C++ empowers you to decide what information remains

unreachable to the outside world (that is, unavailable outside the class) via keyword

private. At the same time, you have the possibility to allow controlled access to even

information declared private via methods that you have declared as public. Thus your

implementation of a class can abstract member information that classes and functions

outside this class don’t need to have access to.

Going back to the example related to Human::age being a private member, you know

that even in reality many people don’t like to reveal their true age. If class Human was

required to tell an age two years younger than the current age, it could do so easily via

a public function GetAge() that uses the Human::age parameter, reduces it by two, and

supplies the result as demonstrated by Listing 9.2.

ptg18655082

223

9

Keywords public and private

LISTING 9.2 A Model of Class Human Where the True age Is Abstracted from the User
and a Younger age Is Reported

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Human
 4: {
 5: private:
 6: // Private member data:
 7: int age;
 8:
 9: public:
10: void SetAge(int inputAge)
11: {
12: age = inputAge;
13: }
14:
15: // Human lies about his / her age (if over 30)
16: int GetAge()
17: {
18: if (age > 30)
19: return (age - 2);
20: else
21: return age;
22: }
23: };
24:
25: int main()
26: {
27: Human firstMan;
28: firstMan.SetAge(35);
29:
30: Human firstWoman;
31: firstWoman.SetAge(22);
32:
33: cout << "Age of firstMan " << firstMan.GetAge() << endl;
34: cout << "Age of firstWoman " << firstWoman.GetAge() << endl;
35:
36: return 0;
37: }

Output ▼
Age of firstMan 33
Age of firstWoman 22

ptg18655082

224 LESSON 9: Classes and Objects

Analysis ▼

Note the public method Human::GetAge() at Line 16. As the actual age contained in

private integer member Human::age is not directly accessible, the only resort external

users of this class have toward querying an object of class Human for attribute age is

via method GetAge(). Thus, the actual age held in Human::age is abstracted from the

outside world. Indeed, our Human lies about its age, and GetAge() returns a reduced

value for all humans that are older than 30, as seen in Lines 18–21!

Abstraction is an important concept in object-oriented languages. It empowers

 programmers to decide what attributes of a class need to remain known only to the

class and its members with nobody outside it (with the exception of those declared as its

“friends”) having access to it.

Constructors
A constructor is a special function (or method) invoked during the instantiation of a class

to construct an object. Just like functions, constructors can also be overloaded.

Declaring and Implementing a Constructor
A constructor is a special function that takes the name of the class and returns no value.

So, class Human would have a constructor that is declared like this:

class Human
{
public:
 Human(); // declaration of a constructor
};

This constructor can be implemented either inline within the class or externally outside

the class declaration. An implementation (also called definition) inside the class looks

like this:

class Human
{
public:
 Human()
 {

// constructor code here
 }
};

ptg18655082

Constructors 225

9

A variant enabling you to define the constructor outside the class’ declaration looks like

this:

class Human
{
public:
 Human(); // constructor declaration
};

// constructor implementation (definition)
Human::Human()
{
 // constructor code here
}

:: is called the scope resolution operator. For example,
Human::dateOfBirth is referring to variable dateOfBirth
declared within the scope of class Human. ::dateOfBirth, on
the other hand would refer to another variable dateOfBirth in a
global scope.

NOTE

When and How to Use Constructors
A constructor is always invoked during object creation, when an instance of a class is

constructed. This makes a constructor a perfect place for you to initialize class member

variables such as integers, pointers, and so on to values you choose. Take a look at

Listing 9.2 again. Note that if you had forgotten to SetAge(), the integer variable

Human::age may contain an unknown value as that variable has not been initialized

(try it by commenting out Lines 28 and 31). Listing 9.3 uses constructors to implement a

 better version of class Human, where variable age has been initialized.

LISTING 9.3 Using Constructors to Initialize Class Member Variables

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: private:
 7: string name;
 8: int age;
 9:

ptg18655082

226 LESSON 9: Classes and Objects

10: public:
11: Human() // constructor
12: {
13: age = 1; // initialization
14: cout << "Constructed an instance of class Human" << endl;
15: }
16:
17: void SetName (string humansName)
18: {
19: name = humansName;
20: }
21:
22: void SetAge(int humansAge)
23: {
24: age = humansAge;
25: }
26:
27: void IntroduceSelf()
28: {
29: cout << "I am " + name << " and am ";
30: cout << age << " years old" << endl;
31: }
32: };
33:
34: int main()
35: {
36: Human firstWoman;
37: firstWoman.SetName("Eve");
38: firstWoman.SetAge (28);
39:
40: firstWoman.IntroduceSelf();
41: }

Output ▼
Constructed an instance of class Human
I am Eve and am 28 years old

Analysis ▼

In the output you see a new line that indicates object construction. Now, take a look

at main() defined in Lines 34–41. You see that the first line in output was the result

of the creation (construction) of object firstWoman in Line 36. The constructor

Human::Human() in Lines 11–15 contains the cout statement that contributes to this

output. Note how the constructor initializes integer age to zero. Should you forget to

SetAge() on a newly constructed object, you can rest assured that the constructor would

have ensured that the value contained in variable age is not a random integer (that might

look valid) but instead a zero.

ptg18655082

Constructors 227

9

A constructor that is invoked without arguments is called the
default constructor. Programming a default constructor is
optional.

If you don’t program any constructor, as seen in Listing 9.1, the
compiler creates one for you (that constructs member attributes
but does not initialize Plain Old Data types such as int to any
specific non-zero value).

NOTE

Overloading Constructors
Constructors can be overloaded just like functions. We can therefore write a constructor

that requires Human to be instantiated with a name as a parameter, for example:

class Human
{
public:
 Human()
 {

// default constructor code here
 }

 Human(string humansName)
 {

// overloaded constructor code here
 }
};

The application of overloaded constructors is demonstrated by Listing 9.4 in creating an

object of class Human with a name supplied at the time of construction.

LISTING 9.4 A Class Human with Multiple Constructors

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: private:
 7: string name;
 8: int age;
 9:
10: public:
11: Human() // default constructor
12: {

ptg18655082

228 LESSON 9: Classes and Objects

13: age = 0; // initialized to ensure no junk value
14: cout << "Default constructor: name and age not set" << endl;
15: }
16:
17: Human(string humansName, int humansAge) // overloaded
18: {
19: name = humansName;
20: age = humansAge;
21: cout << "Overloaded constructor creates ";
22: cout << name << " of " << age << " years" << endl;
23: }
24: };
25:
26: int main()
27: {
28: Human firstMan; // use default constructor
29: Human firstWoman ("Eve", 20); // use overloaded constructor
30: }

Output ▼
Default constructor: name and age not set
Overloaded constructor creates Eve of 20 years

Analysis ▼

main() in Lines 26–30 is minimalistic and creates two instances of class Human.

firstMan uses the default constructor while firstWoman uses the overloaded

 constructor supplying name and age at instantiation. The output is the result of object

construction only! You may appreciate that if class Human had chosen to not support

the default constructor, main() would’ve had no option but to construct every object of

Human using the overloaded constructor that takes name and age as a prerequisite—

making it impossible to create a Human without supplying a name or age.

You can choose to not implement the default constructor to
enforce object instantiation with certain minimal parameters as
explained in the next section.

TIP

Class Without a Default Constructor
In Listing 9.5, see how class Human without the default constructor enforces the

 creator to supply a name and age as a prerequisite to creating an object.

ptg18655082

Constructors 229

9

LISTING 9.5 A Class with Overloaded Constructor(s) and No Default Constructor

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: private:
 7: string name;
 8: int age;
 9:
10: public:
11: Human(string humansName, int humansAge)
12: {
13: name = humansName;
14: age = humansAge;
15: cout << "Overloaded constructor creates " << name;
16: cout << " of age " << age << endl;
17: }
18:
19: void IntroduceSelf()
20: {
21: cout << "I am " + name << " and am ";
22: cout << age << " years old" << endl;
23: }
24: };
25:
26: int main()
27: {
28: Human firstMan("Adam", 25);
29: Human firstWoman("Eve", 28);
30:
31: firstMan.IntroduceSelf();
32: firstWoman.IntroduceSelf();
33: }

Output ▼
Overloaded constructor creates Adam of age 25
Overloaded constructor creates Eve of age 28
I am Adam and am 25 years old
I am Eve and am 28 years old

ptg18655082

230 LESSON 9: Classes and Objects

Analysis ▼

This version of class Human has only one constructor that takes a string and an int

as input parameters, as seen in Line 11. There is no default constructor available, and

given the presence of an overloaded constructor, the C++ compiler does not generate a

default constructor for you. This sample also demonstrates the ability to create an object

of class Human with name and age set at instantiation, and no possibility to change it

afterward. This is because the name attribute of the Human is stored as a private vari-

able. Human::name cannot be accessed or modified by main() or by any entity that is

not a member of class Human. In other words, the user of class Human is forced by

the overloaded constructor to specify a name (and age) for every object he creates and

is not allowed to change that name. This models a real-world scenario quite well, don’t

you think? You were named at birth; people are allowed to know your name, but nobody

(except you) has the authority to change it.

Constructor Parameters with Default Values
Just the same way as functions can have parameters with default values specified, so can

constructors. What you see in the following code is a slightly modified version of the

constructor from Listing 9.5 at Line 11 where the age parameter has a default

value of 25:

class Human
{
private:
 string name;
 int age;

public:
 // overloaded constructor (no default constructor)
 Human(string humansName, int humansAge = 25)
 {

name = humansName;
age = humansAge;
cout << "Overloaded constructor creates " << name;
cout << " of age " << age << endl;

 }

 // ... other members
};

Such a class can be instantiated with the syntax:

Human adam("Adam"); // adam.age is assigned a default value 25
Human eve("Eve, 18); // eve.age is assigned 18 as specified

ptg18655082

Constructors 231

9

Note that a default constructor is one that can be instantiated
without arguments, and not necessarily one that doesn’t take
parameters. So, this constructor with two parameters, both with
default values, is a default constructor:

class Human

{

private:

 string name;

 int age;

public:

 // default values for both parameters

 Human(string humansName = "Adam", int humansAge
= 25)

 {

name = humansName;

age = humansAge;

cout << "Overloaded constructor creates ";

cout << name << " of age " << age;

 }

};

The reason is that class Human can still be instantiated without
arguments:

Human adam; // Human takes default name "Adam",
age 25

NOTE

Constructors with Initialization Lists
You have seen how useful constructors are in initializing member variables. Another

way to initialize members is by using initialization lists. A variant of the constructor in

Listing 9.5 using initialization lists would look like this:

class Human
{
private:
 string name;
 int age;

ptg18655082

232 LESSON 9: Classes and Objects

public:
 // two parameters to initialize members age and name
 Human(string humansName, int humansAge)

:name(humansName), age(humansAge)
 {

cout << "Constructed a human called " << name;
cout << ", " << age << " years old" << endl;

 }
// ... other class members
};

Thus, the initialization list is characterized by a colon (:) following the parameter

 declaration contained in parentheses (…), followed by an individual member variable

and the value it is initialized to. This initialization value can be a parameter such as

 humansName or can even be a fixed value. Initialization lists can also be useful in

 invoking base class constructors with specific arguments. These are discussed again in

Lesson 10, “Implementing Inheritance.”

You can see a version of class Human that features a default constructor with

 parameters, default values, and an initialization list in Listing 9.6.

LISTING 9.6 Default Constructor That Accepts Parameters with Default Values to Set
Members Using Initialization Lists

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: private:
 7: int age;
 8: string name;
 9:
10: public:
11: Human(string humansName = "Adam", int humansAge = 25)
12: :name(humansName), age(humansAge)
13: {
14: cout << "Constructed a human called " << name;
15: cout << ", " << age << " years old" << endl;
16: }
17: };
18:

ptg18655082

Destructor 233

9

19: int main()
20: {
21: Human adam;
22: Human eve("Eve", 18);
23:
24: return 0;
25: }

Output ▼
Constructed a human called Adam, 25 years old
Constructed a human called Eve, 18 years old

Analysis ▼

The constructor with initialization lists is seen in Lines 11–16, where you can also see

that the parameters have been given default values "Adam" for name and 25 for age.

Hence, when an instance of class Human called adam is created in Line 21, without

arguments, its members are automatically assigned the default values. eve, on the other

hand, has been supplied with arguments as shown in Line 22—these arguments become

values that are assigned to Human::name and Human::age during construction.

It is possible to define a constructor as a constant expression
too, using keyword constexpr. In special cases where such a
construct would be useful from a performance point of view, you
would use it at the constructor declaration.

class Sample

{

const char* someString;

public:

 constexpr Sample(const char* input)

 :someString(input)

 { // constructor code }

};

NOTE

Destructor
A destructor, like a constructor, is a special function, too. A constructor is invoked

at object instantiation, and a destructor is automatically invoked when an object is

destroyed.

ptg18655082

234 LESSON 9: Classes and Objects

Declaring and Implementing a Destructor
The destructor looks like a function that takes the name of the class, yet has a tilde (~)

preceding it. So, class Human would have a destructor that is declared like this:

class Human
{
 ~Human(); // declaration of a destructor
};

This destructor can either be implemented inline in the class or externally outside the

class declaration. An implementation or definition inside the class looks like this:

class Human
{
public:
 ~Human()
 {

// destructor code here
 }
};

A variant enabling you to define the destructor outside the class’s declaration looks like

this:

class Human
{
public:
 ~Human(); // destructor declaration
};

// destructor definition (implementation)
Human::~Human()
{
 // destructor code here
}

As you can see, the declaration of the destructor differs from that of the constructor

slightly in that this contains a tilde (~). The role of the destructor is, however,

 diametrically opposite to that of the constructor.

When and How to Use a Destructor
A destructor is always invoked when an object of a class is destroyed when it goes out of

scope or is deleted via delete. This property makes a destructor the ideal place to reset

variables and release dynamically allocated memory and other resources.

ptg18655082

Destructor 235

9

This book has recommended the usage of std::string over a char* buffer, so that you

don’t need to worry about managing memory allocation and timely deallocation yourself.

std::string and other such utilities are nothing but classes themselves that make use

of constructors and the destructor (in addition to operators, which you study in Lesson

12, “Operator Types and Operator Overloading”) in taking away the work of allocation,

deallocation, and memory management from you. Analyze a sample class MyString as

shown in Listing 9.7 that allocates memory for a character string in the constructor and

releases it in the destructor.

LISTING 9.7 A Simple Class That Encapsulates a Character Buffer to Ensure
Deallocation via the Destructor

 0: #include <iostream>
 1: #include <string.h>
 2: using namespace std;
 3: class MyString
 4: {
 5: private:
 6: char* buffer;
 7:
 8: public:
 9: MyString(const char* initString) // constructor
10: {
11: if(initString != NULL)
12: {
13: buffer = new char [strlen(initString) + 1];
14: strcpy(buffer, initString);
15: }
16: else
17: buffer = NULL;
18: }
19:
20: ~MyString()
21: {
22: cout << "Invoking destructor, clearing up" << endl;
23: if (buffer != NULL)
24: delete [] buffer;
25: }
26:
27: int GetLength()
28: {
29: return strlen(buffer);
30: }
31:
32: const char* GetString()
33: {
34: return buffer;
35: }

ptg18655082

236 LESSON 9: Classes and Objects

36: };
37:
38: int main()
39: {
40: MyString sayHello("Hello from String Class");
41: cout << "String buffer in sayHello is " << sayHello.GetLength();
42: cout << " characters long" << endl;
43:
44: cout << "Buffer contains: " << sayHello.GetString() << endl;
45: }

Output ▼
String buffer in sayHello is 23 characters long
Buffer contains: Hello from String Class
Invoking destructor, clearing up

Analysis ▼

This class basically encapsulates a C-style string in MyString::buffer and relieves

you of the task of allocating memory; it deallocates the same every time you need

to use a string. The lines of utmost interest to us are the constructor MyString() in

Lines 9–18, and the destructor ~MyString() in Lines 20–25. The constructor enforces

 construction with an input string via a compulsory input parameter and then copies it to

the character buffer after allocating memory for it using new and strlen in Line 13.

strlen is a function supplied by the standard library that helps determine the length

of the input string. strcpy is the standard library function used in Line 14 for copying

from source initString into this newly allocated memory pointed by buffer. In case

the user of the class has supplied a NULL as initString, MyString::buffer is ini-

tialized to NULL as well (to keep this pointer from containing a random value that can

be dangerous when used to access a memory location). The destructor code does the job

of ensuring that the memory allocated in the constructor is automatically returned to

the system. It checks whether MyString::buffer is not NULL, and, if so, it performs

a delete[] on it that complements the new in the constructor. Note that nowhere in

main() has the programmer ever done a new or a delete. In addition to abstracting the

implementation of memory management from the user, class MyString also ensured

technical correctness in releasing allocated memory. The destructor ~MyString() is

automatically invoked when main ends, and this is demonstrated in the output that

 executes the cout statements in the destructor.

ptg18655082

Copy Constructor 237

9

Classes that handle strings better are one of the many applicable uses of a destructor.

Lesson 26, “Understanding Smart Pointers,” demonstrates how the destructor play a criti-

cal role in working with pointers in a smarter way.

A destructor cannot be overloaded. A class can have only one
destructor. If you forget to implement a destructor, the compiler
creates and invokes a dummy destructor, that is, an empty one
(that does no cleanup of dynamically allocated memory).

NOTE

Copy Constructor
In Lesson 7, “Organizing Code with Functions,” you learned that arguments passed to a

function like Area() (shown in Listing 7.1) are copied:

double Area(double radius);

So, the argument sent as parameter radius is copied when Area() is invoked. This rule

applies to objects, that is, instances of classes as well.

Shallow Copying and Associated Problems
Classes such as MyString, shown in Listing 9.7, contain a pointer member buffer that

points to dynamically allocated memory, allocated in the constructor using new and

deallocated in the destructor using delete[]. When an object of this class is copied, the

pointer member is copied, but not the pointed memory, resulting in two objects pointing

to the same dynamically allocated buffer in memory. When an object is destructed,

delete[] deallocates the memory, thereby invalidating the pointer copy held by the

other object. Such copies are shallow and are a threat to the stability of the program, as

Listing 9.8 demonstrates.

LISTING 9.8 The Problem in Passing Objects of a Class Such as MyString by Value

 0: #include <iostream>
 1: #include <string.h>
 2: using namespace std;
 3: class MyString
 4: {
 5: private:
 6: char* buffer;
 7:
 8: public:

ptg18655082

238 LESSON 9: Classes and Objects

 9: MyString(const char* initString) // Constructor
10: {
11: buffer = NULL;
12: if(initString != NULL)
13: {
14: buffer = new char [strlen(initString) + 1];
15: strcpy(buffer, initString);
16: }
17: }
18:
19: ~MyString() // Destructor
20: {
21: cout << "Invoking destructor, clearing up" << endl;
22: delete [] buffer;
23: }
24:
25: int GetLength()
26: { return strlen(buffer); }
27:
28: const char* GetString()
29: { return buffer; }
30: };
31:
32: void UseMyString(MyString str)
33: {
34: cout << "String buffer in MyString is " << str.GetLength();
35: cout << " characters long" << endl;
36:
37: cout << "buffer contains: " << str.GetString() << endl;
38: return;
39: }
40:
41: int main()
42: {
43: MyString sayHello("Hello from String Class");
44: UseMyString(sayHello);
45:
46: return 0;
47: }

Output ▼
String buffer in MyString is 23 characters long
buffer contains: Hello from String Class
Invoking destructor, clearing up
Invoking destructor, clearing up
<crash as seen in Figure 9.2>

ptg18655082

Copy Constructor 239

9

FIGURE 9.2

Screenshot of
crash caused
by executing
Listing 9.8
(in MS Visual
Studio debug
mode).

Analysis ▼

Why does class MyString that worked just fine in Listing 9.6 cause a crash in Listing

9.7? The only difference between Listing 9.6 and 9.7 is that the job of using the object

sayHello of class MyString created in main() has been delegated to function

UseMyString(), invoked in Line 44. Delegating work to this function has resulted in

object sayHello in main() to be copied into parameter str used in UseMyString().

This is a copy generated by the compiler as the function has been declared to take str as

a parameter by value and not by reference. The compiler performs a binary copy of Plain

Old Data such as integers, characters, and pointers to the same. So the pointer value con-

tained in sayHello.buffer has simply been copied to str—that is, sayHello.buffer

points to the same memory location as str.buffer. This is illustrated in Figure 9.3.

FIGURE 9.3

Shallow copy of
sayHello into
str when
UseMyString()
is invoked.

ptg18655082

240 LESSON 9: Classes and Objects

The binary copy did not perform a deep copy of the pointed memory location, and you

now have two objects of class MyString pointing to the same location in memory.

Thus, when the function UseMyString() ends, variable str goes out of scope and is

destroyed. In doing so, the destructor of class MyString is invoked, and the destructor

code in Line 22 in Listing 9.8 releases the memory allocated to buffer via delete[].

Note that this call to delete[] invalidates the memory being pointed to in copy say-

Hello contained in main(). When main() ends, sayHello goes out of scope and is

destroyed. This time, however, Line 22 repeats a call to delete on a memory address

that is no longer valid (released and invalidated via the previous destruction of str). This

double delete is what results in a crash.

Ensuring Deep Copy Using a Copy Constructor
The copy constructor is an overloaded constructor that you supply. It is invoked by the

compiler every time an object of the class is copied.

The declaration syntax of a copy constructor for class MyString is the following:

class MyString
{
 MyString(const MyString& copySource); // copy constructor
};

MyString::MyString(const MyString& copySource)
{
 // Copy constructor implementation code
}

Thus, a copy constructor takes an object of the same class by reference as a parameter.

This parameter is an alias of the source object and is the handle you have in writing your

custom copy code. You would use the copy constructor to ensure a deep copy of all buf-

fers in the source, as Listing 9.9 demonstrates.

LISTING 9.9 Define a Copy Constructor to Ensure Deep Copy of Dynamically Allocated
Buffers

 0: #include <iostream>
 1: #include <string.h>
 2: using namespace std;
 3: class MyString
 4: {
 5: private:
 6: char* buffer;
 7:
 8: public:
 9: MyString(const char* initString) // constructor
10: {

ptg18655082

Copy Constructor 241

9

11: buffer = NULL;
12: cout << "Default constructor: creating new MyString" << endl;
13: if(initString != NULL)
14: {
15: buffer = new char [strlen(initString) + 1];
16: strcpy(buffer, initString);
17:
18: cout << "buffer points to: 0x" << hex;
19: cout << (unsigned int*)buffer << endl;
20: }
21: }
22:
23: MyString(const MyString& copySource) // Copy constructor
24: {
25: buffer = NULL;
26: cout << "Copy constructor: copying from MyString" << endl;
27: if(copySource.buffer != NULL)
28: {
29: // allocate own buffer
30: buffer = new char [strlen(copySource.buffer) + 1];
31:
32: // deep copy from the source into local buffer
33: strcpy(buffer, copySource.buffer);
34:
35: cout << "buffer points to: 0x" << hex;
36: cout << (unsigned int*)buffer << endl;
37: }
38: }
39:
40: // Destructor
41: ~MyString()
42: {
43: cout << "Invoking destructor, clearing up" << endl;
44: delete [] buffer;
45: }
46:
47: int GetLength()
48: { return strlen(buffer); }
49:
50: const char* GetString()
51: { return buffer; }
52: };
53:
54: void UseMyString(MyString str)
55: {
56: cout << "String buffer in MyString is " << str.GetLength();
57: cout << " characters long" << endl;
58:
59: cout << "buffer contains: " << str.GetString() << endl;
60: return;
61: }
 62:

ptg18655082

242 LESSON 9: Classes and Objects

63: int main()
64: {
65: MyString sayHello("Hello from String Class");
66: UseMyString(sayHello);
67:
68: return 0;

Output ▼
Default constructor: creating new MyString
buffer points to: 0x01232D90
Copy constructor: copying from MyString
buffer points to: 0x01232DD8
String buffer in MyString is 17 characters long
buffer contains: Hello from String Class
Invoking destructor, clearing up
Invoking destructor, clearing up

Analysis ▼

Most of the code is similar to Listing 9.8 save a new copy constructor in Lines 23–38. To

start with, let’s focus on main() that (as before) creates an object sayHello in Line 65.

Creating sayHello results in the first line of output that comes from the constructor of

MyString, at Line 12. For sake of convenience, the constructor also displays the memory

address that buffer points to. main() then passes sayHello by value to function

UseMyString() in Line 66, which automatically results in the copy constructor being

invoked as shown in the output. The code in the copy constructor is similar to that in

the constructor. The basic idea is the same, check the length of C-style string buffer

 contained in the copy source at Line 30, allocate proportional memory in one’s own

instance of buffer, and then use strcpy to copy from source to destination at Line 33.

This is not a shallow copy of pointer values. This is a deep copy where the content being

pointed to is copied to a newly allocated buffer that belongs to this object, as illustrated

in Figure 9.4.

FIGURE 9.4

Illustration of a
deep copy
of argument
sayHello into
parameter str
when function
UseMyString() is
invoked.

ptg18655082

Copy Constructor 243

9

The output in Listing 9.9 indicates that the memory address being pointed to by buffer

is different in the copy—that is, two objects don’t point to the same dynamically

 allocated memory address. As a result, when function UseMyString() returns and

parameter str is destroyed, the destructor code does a delete[] on the memory address

that was allocated in the copy constructor and belongs to this object. In doing so, it does

not touch memory that is being pointed to by sayHello in main(). So, both functions

end and their respective objects are destroyed successfully and peacefully without the

application crashing.

The copy constructor has ensured deep copy in cases such as
function calls:

MyString sayHello("Hello from String Class");

UseMyString(sayHello);

However, what if you tried copying via assignment:

MyString overwrite("who cares? ");

overwrite = sayHello;

This would still be a shallow copy because you still haven’t yet
supplied a copy assignment operator=. In the absence of one,
the compiler has supplied a default for you that does a shallow
copy.

The copy assignment operator is discussed in length in Lesson
12. Listing 12.8 is an improved MyString that implements the
same:

MyString::operator= (const MyString& copySource)

{

 //... copy assignment operator code

}

NOTE

Using const in the copy constructor declaration ensures that
the copy constructor does not modify the source object being
referred to.

Additionally, the parameter in the copy constructor is passed by
reference as a necessity. If this weren’t a reference, the copy
constructor would itself invoke a copy, thus invoking itself again
and so on till the system runs out of memory.

CAUTION

ptg18655082

244 LESSON 9: Classes and Objects

DO DON’T

DO always program a copy constructor
and copy assignment operator when your
class contains raw pointer members
(char* and the like).

DO always program the copy constructor
with a const reference source parameter.

DO evaluate avoiding implicit conversions
by using keyword explicit in declaring
constructors.

DO use string classes such as
std::string and smart pointer classes
as members instead of raw pointers as
they implement copy constructors and
save you the effort.

DON’T use raw pointers as class
members unless absolutely
unavoidable.

The class MyString with a raw pointer member, char* buffer
is used as an example to explain the need for copy constructors.

If you were to program a class that needs to contain string data
for storing names and so on, you use std::string instead of
char* and might not even need a copy constructor given the
absence of raw pointers. This is because the default copy con-
structor inserted by the compiler would ensure the invocation
of all available copy constructors of member objects such as
std::string.

NOTE

Move Constructors Help Improve Performance
There are cases where objects are subjected to copy steps automatically, due to the nature

of the language and its needs. Consider the following:

class MyString
{
 // pick implementation from Listing 9.9
};
MyString Copy(MyString& source) // function
{
 MyString copyForReturn(source.GetString()); // create copy
 return copyForReturn; // return by value invokes copy constructor
}

ptg18655082

Copy Constructor 245

9

int main()
{
 MyString sayHello ("Hello World of C++");
 MyString sayHelloAgain(Copy(sayHello)); // invokes 2x copy constructor

 return 0;
}

As the comment indicates, in the instantiation of sayHelloAgain, the copy constructor

was invoked twice, thus a deep copy was performed twice because of our call to function

Copy(sayHello) that returns a MyString by value. However, this value returned is very

temporary and is not available outside this expression. So, the copy constructor invoked

in good faith by the C++ compiler is a burden on performance. This impact becomes sig-

nificant if our class were to contain objects of great size.

To avoid this performance bottleneck, versions of C++ starting with C++11 feature a

move constructor in addition to a copy constructor. The syntax of a move constructor is

// move constructor
MyString(MyString&& moveSource)
{
 if(moveSource.buffer != NULL)
 {

buffer = moveSource.buffer; // take ownership i.e. 'move'
moveSource.buffer = NULL; // set the move source to NULL

 }
}

When a move constructor is programmed, the compiler automatically opts for the same

for “moving” the temporary resource and hence avoiding a deep-copy step. With the

move constructor implemented, the comment should be appropriately changed to the fol-

lowing:

MyString sayHelloAgain(Copy(sayHello)); // invokes 1x copy, 1x move constructors

The move constructor is usually implemented with the move assignment operator, which

is discussed in greater detail in Lesson 12. Listing 12.11 is a better version of class

MyString that implements the move constructor and the move assignment operator.

ptg18655082

246 LESSON 9: Classes and Objects

Different Uses of Constructors
and the Destructor
You have learned a few important and basic concepts in this lesson, such as the concepts

of constructors, destructor, and the abstraction of data and methods via keywords such as

public and private. These concepts enable you to create classes that can control how

they’re created, copied, destroyed, or expose data.

Let’s look at a few interesting patterns that help you solve many important design prob-

lems.

Class That Does Not Permit Copying
You are asked to model the constitution of your country. Your constitution permits one

president. Your class President risks the following:

President ourPresident;
DoSomething(ourPresident); // duplicate created in passing by value
President clone;
clone = ourPresident; // duplicate via assignment

Clearly, you need to avoid this situation. Beyond modeling a certain constitution, you

might be programming an operating system and need to model one local area network,

one processor, and so on. You need to ensure that certain resources cannot be copied or

duplicated. If you don’t declare a copy constructor, the C++ compiler inserts a default

public copy constructor for you. This ruins your design and threatens your implementa-

tion. Yet, the language gives you a solution to this design paradigm.

You would ensure that your class cannot be copied by declaring a private copy con-

structor. This ensures that the function call DoSomething(ourPresident) will cause a

compile failure. To avoid assignment, you declare a private assignment operator.

Thus, the solution is the following:

class President
{
private:
 President(const President&); // private copy constructor
 President& operator= (const President&); // private copy assignment operator

 // … other attributes
};

There is no need for implementation of the private copy constructor or assignment

 operator. Just declaring them as private is adequate and sufficient toward fulfilling your

goal of ensuring non-copyable objects of class President.

ptg18655082

Different Uses of Constructors and the Destructor 247

9

Singleton Class That Permits a Single Instance
class President discussed earlier is good, but it has a shortcoming: It cannot help

creation of multiple presidents via instantiation of multiple objects:

President One, Two, Three;

Individually they are non-copyable thanks to the private copy constructors, but

what you ideally need is a class President that has one, and only one, real-world

 manifestation—that is, there is only one object and creation of additional ones is

 prohibited. Welcome to the concept of singleton that uses private constructors, a private

 assignment operator, and a static instance member to create this (controversially)

 powerful pattern.

When the keyword static is used on a class’s data member, it
ensures that the member is shared across all instances.

When static is used on a local variable declared within the
scope of a function, it ensures that the variable retains its value
between function calls.

When static is used on a member function—a method—the
method is shared across all instances of the class.

TIP

Keyword static is an essential ingredient in creating a singleton class as demonstrated

by Listing 9.10.

LISTING 9.10 Singleton class President That Prohibits Copying, Assignment, and
Multiple Instance Creation

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class President
 5: {
 6: private:
 7: President() {}; // private default constructor
 8: President(const President&); // private copy constructor
 9: const President& operator=(const President&); // assignment operator
10:
11: string name;
12:
13: public:
14: static President& GetInstance()

ptg18655082

248 LESSON 9: Classes and Objects

15: {
16: // static objects are constructed only once
17: static President onlyInstance;
18: return onlyInstance;
19: }
20:
21: string GetName()
22: { return name; }
23:
24: void SetName(string InputName)
25: { name = InputName; }
26: };
27:
28: int main()
29: {
30: President& onlyPresident = President::GetInstance();
31: onlyPresident.SetName("Abraham Lincoln");
32:
33: // uncomment lines to see how compile failures prohibit duplicates
34: // President second; // cannot access constructor
35: // President* third= new President(); // cannot access constructor
36: // President fourth = onlyPresident; // cannot access copy constructor
37: // onlyPresident = President::GetInstance(); // cannot access operator=
38:
39: cout << "The name of the President is: ";
40: cout << President::GetInstance().GetName() << endl;
41:
42: return 0;
43: }

Output ▼
The name of the President is: Abraham Lincoln

Analysis ▼

Take a quick look at main() in Lines 28–43 that has a host of commented lines that

show all the combinations in creating new instances or copies of a class President

that won’t compile. Let’s analyze them one by one:

34: // President second; // cannot access constructor
35: // President* third= new President(); // cannot access constructor

Lines 34 and 35 try object creation on the stack and free store, respectively, using the

default constructor, which is unavailable because it’s private, as declared in Line 7.

36: // President fourth = onlyPresident; // cannot access copy constructor

ptg18655082

Different Uses of Constructors and the Destructor 249

9

Line 36 is an attempt at creating a copy of an existing object via the copy constructor

(assignment at creation time invokes copy constructor), which is unavailable in main()

because it is declared private in Line 8:

37: // OnlyPresident = President::GetInstance(); // cannot access operator=

Line 37 is an attempt at creating a copy via assignment, which does not work as the

assignment operator is declared private in Line 9. Therefore, main() can never cre-

ate an instance of class President, and the only option left is seen in Line 30, where

it uses the static function GetInstance() to get an instance of class President.

Because GetInstance() is a static member, it is like a global function that can be

invoked without having an object as a handle. GetInstance(), implemented in Lines

14–19, uses a static variable onlyInstance to ensure that there is one and only one

instance of class President created. To understand that better, imagine that Line

17 is executed only once (static initialization) and hence GetInstance() returns

the only one available instance of class President, irrespective of how often

President::GetInstance() is invoked.

Use the singleton pattern only where absolutely necessary,
keeping future growth of the application and its features in per-
spective. Note that the very feature that it restricts creation of
multiple instances can become an architectural bottleneck when
a use case comes up that needs multiple instances of the class.

For example, if our project were to change from modeling a nation
to modeling the United Nations, which is currently represented
by 193 member nations, each with its own president, clearly we
would have an architectural problem given a singleton class
President that would permit the existence of only one instance.

CAUTION

Class That Prohibits Instantiation on the Stack
Space on the stack is often limited. If you are writing a database that may contain tera-

bytes of data in its internal structures, you might want to ensure that a client of this class

cannot instantiate it on the stack; instead it is forced to create instances only on the free

store. The key to ensuring this is declaring the destructor private:

class MonsterDB
{
private:
 ~MonsterDB(); // private destructor

 //... members that consume a huge amount of data
};

ptg18655082

250 LESSON 9: Classes and Objects

Declaring a private destructor ensures that one is not allowed to create an instance like

this:

int main()
{
 MonsterDB myDatabase; // compile error
 // … more code
 return 0;
}

This instance, if successfully constructed, would be on the stack. All objects on the stack

get popped when the stack is unwound and therefore the compiler would need to compile

and invoke the destructor ~MonsterDB() at the end of main(). However, this destructor

is private and therefore inaccessible, resulting in a compile failure.

A private destructor would not stop you from instantiating on the heap:

int main()
{
 MonsterDB* myDatabase = new MonsterDB(); // no error
 // … more code
 return 0;
}

If you see a memory leak there, you are not mistaken. As the destructor is not accessible

from main, you cannot do a delete, either. What class MonsterDB needs to support is a

public static member function that would destroy the instance (a class member would

have access to the private destructor). See Listing 9.11.

LISTING 9.11 A Database class MonsterDB That Allows Object Creation Only on the
Free Store (Using new)

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class MonsterDB
 4: {
 5: private:
 6: ~MonsterDB() {}; // private destructor prevents instances on stack
 7:
 8: public:
 9: static void DestroyInstance(MonsterDB* pInstance)
10: {
11: delete pInstance; // member can invoke private destructor
12: }
13:
14: void DoSomething() {} // sample empty member method

ptg18655082

Different Uses of Constructors and the Destructor 251

9

15: };
16:
17: int main()
18: {
19: MonsterDB* myDB = new MonsterDB(); // on heap
20: myDB->DoSomething();
 21:
 22: // uncomment next line to see compile failure
 23: // delete myDB; // private destructor cannot be invoked
 24:
 25: // use static member to release memory
 26: MonsterDB::DestroyInstance(myDB);
 27:
 28: return 0;
 29: }

Output ▼

The code snippet produces no output.

Analysis ▼

The purpose of the code is just to demonstrate the programming of a class that prohibits

instance creation on the stack. A private destructor, as shown in Line 6, is key. Static

function DestroyInstance() in Lines 9–12 is required for memory deallocation,

because main() cannot invoke delete on myDB. You may test this by uncommenting

Line 23.

Using Constructors to Convert Types
Earlier in this lesson, you learned that constructors can be overloaded, that is, they may

take one or more parameters. This feature is often used to convert one type to another.

Let’s consider a class Human that features an overloaded constructor that accepts an

integer.

class Human
{
 int age;
public:
 Human(int humansAge): age(humansAge) {}
};

// Function that takes a Human as a parameter
void DoSomething(Human person)
{
 cout << "Human sent did something" << endl;
 return;
}

ptg18655082

252 LESSON 9: Classes and Objects

This constructor allows a conversion:

 Human kid(10); // convert integer in to a Human
 DoSomething(kid);

Such converting constructors allow implicit conversions:

Human anotherKid = 11; // int converted to Human

DoSomething(10); // 10 converted to Human!

We declared DoSomething(Human person) as a function that
accepts a parameter of type Human and does not accept an
int! So, why did that line work? The compiler knows that class
Human supports a constructor that accepts an integer and per-
formed an implicit conversion for you—it created an object of
type Human using the integer you supplied and sent it as an argu-
ment to the function.

To avoid implicit conversions, use keyword explicit at the time
of declaring the constructor:

class Human

{

 int age;

public:

 explicit Human(int humansAge): age(humansAge) {}

};

Using explicit is not a prerequisite but in many cases a good
programming practice. The following sample in Listing 9.12 dem-
onstrates a version of class Human that does not permit implicit
conversions.

CAUTION

LISTING 9.12 Use Keyword explicit to Block Unintentional Implicit Conversions

 0: #include<iostream>
 1: using namespace std;
 2:
 3: class Human
 4: {
 5: int age;
 6: public:
 7: // explicit constructor blocks implicit conversions

ptg18655082

Different Uses of Constructors and the Destructor 253

9

 8: explicit Human(int humansAge) : age(humansAge) {}
 9: };
10:
11: void DoSomething(Human person)
12: {
13: cout << "Human sent did something" << endl;
14: return;
15: }
16:
17: int main()
18: {
19: Human kid(10); // explicit conversion is OK
20: Human anotherKid = Human(11); // explicit, OK
21: DoSomething(kid); // OK
22:
23: // Human anotherKid2 = 11; // failure: implicit conversion not OK
24: // DoSomething(10); // implicit conversion
25:
26: return 0;
27: }

Output ▼
Human sent did something

Analysis ▼

The lines of code that don’t contribute to the output are at least as significant as those

that do. main() in Lines 17–27 features variants of object instantiation of class Human

that has been declared with an explicit constructor at Line 8. The lines that compile

are attempts at explicit conversion where an int has been used to instantiate a Human.

Lines 23 and 24 are variants that involve implicit conversion. These lines that are

 commented out will compile when we remove keyword explicit at Line 8. Thus, this

sample demonstrates how keyword explicit protects against implicit conversions.

The problem of implicit conversions and avoiding them using
keyword explicit applies to operators too. Remember to note
the usage of explicit when programming conversion operators
introduced to you in Lesson 12.

TIP

ptg18655082

254 LESSON 9: Classes and Objects

this Pointer
An important concept in C++, this is a reserved keyword applicable within the scope

of a class and contains the address of the object. In other words, the value of this is

&object. Within a class member method, when you invoke another member method, the

compiler sends this pointer as an implicit, invisible parameter in the function call:

class Human
{
private:
 void Talk (string Statement)
 {

cout << Statement;
 }

public:
 void IntroduceSelf()
 {

Talk("Bla bla"); // same as Talk(this, "Bla Bla")
 }
};

What you see here is the method IntroduceSelf() using private member Talk()

to print a statement on the screen. In reality, the compiler embeds the this pointer in

 calling Talk, that is invoked as Talk(this, "Bla bla").

From a programming perspective, this does not have too many applications, except

those where it is usually optional. For instance, the code to access age within SetAge(),

as shown in Listing 9.2, can have a variant:

void SetAge(int humansAge)
{
 this->age = humansAge; // same as age = humansAge
}

Note that the this pointer is not sent to class methods declared
as static as static functions are not connected to an instance
of the class. Instead they are shared by all instances.

To use an instance variable in a static function, you would explic-
itly declare a parameter and send this pointer as an argument.

NOTE

ptg18655082

255

9

sizeof() a Class

sizeof() a Class
You have learned the fundamentals of defining your own type using keyword class

that enables you to encapsulate data attributes and methods that operate on that data.

Operator sizeof(), covered in Lesson 3, “Using Variables, Declaring Constants,” is

used to determine the memory requirement of a specific type, in bytes. This operator

is valid for classes, too, and basically reports the sum of bytes consumed by each data

attribute contained within the class declaration. Depending on the compiler you use,

sizeof() might or might not include padding for certain attributes on word boundaries.

Note that member functions and their local variables do not play a role in defining the

sizeof() a class. See Listing 9.13.

LISTING 9.13 The Result of Using sizeof on Classes and Their Instances

 0: #include <iostream>
 1: #include <string.h>
 2: using namespace std;
 3: class MyString
 4: {
 5: private:
 6: char* buffer;
 7:
 8: public:
 9: MyString(const char* initString) // default constructor
10: {
11: buffer = NULL;
12: if(initString != NULL)
13: {
14: buffer = new char [strlen(initString) + 1];
15: strcpy(buffer, initString);
16: }
17: }
18:
19: MyString(const MyString& copySource) // copy constructor
20: {
21: buffer = NULL;
22: if(copySource.buffer != NULL)
23: {
24: buffer = new char [strlen(copySource.buffer) + 1];
25: strcpy(buffer, copySource.buffer);
26: }
27: }
28:
29: ~MyString()
30: {
31: delete [] buffer;
32: }

ptg18655082

256 LESSON 9: Classes and Objects

33:
34: int GetLength()
35: { return strlen(buffer); }
36:
37: const char* GetString()
38: { return buffer; }
39: };
40:
41: class Human
42: {
43: private:
44: int age;
45: bool gender;
46: MyString name;
47:
48: public:
49: Human(const MyString& InputName, int InputAge, bool gender)
50: : name(InputName), age (InputAge), gender(gender) {}
51:
52: int GetAge ()
53: { return age; }
54: };
55:
56: int main()
57: {
58: MyString mansName("Adam");
59: MyString womansName("Eve");
60:
61: cout << "sizeof(MyString) = " << sizeof(MyString) << endl;
62: cout << "sizeof(mansName) = " << sizeof(mansName) << endl;
63: cout << "sizeof(womansName) = " << sizeof(womansName) << endl;
64:
65: Human firstMan(mansName, 25, true);
66: Human firstWoman(womansName, 18, false);
67:
68: cout << "sizeof(Human) = " << sizeof(Human) << endl;
69: cout << "sizeof(firstMan) = " << sizeof(firstMan) << endl;
70: cout << "sizeof(firstWoman) = " << sizeof(firstWoman) << endl;
71:
72: return 0;
73: }

Output Using 32-Bit Compiler ▼
sizeof(MyString) = 4
sizeof(mansName) = 4
sizeof(womansName) = 4
sizeof(Human) = 12
sizeof(firstMan) = 12
sizeof(firstWoman) = 12

ptg18655082

257

9

How struct Differs from class

Output Using 64-Bit Compiler ▼
sizeof(MyString) = 8
sizeof(mansName) = 8
sizeof(womansName) = 8
sizeof(Human) = 16
sizeof(firstMan) = 16
sizeof(firstWoman) = 16

Analysis ▼

The sample is admittedly long as it contains class MyString and a variant of class

Human that uses type MyString to store name. Human also has an added parameter

bool for gender.

Let’s start with analyzing the output. What you see is that the result of sizeof() on a

class is the same as that of an object of the class. Hence, sizeof(MyString) is the same

as sizeof(mansName), because essentially the number of bytes consumed by a class

is fixed at compile-time. Don’t be surprised that mansName and womansName have the

same size in bytes in spite of one containing “Adam” and the other “Eve” because these

are stored by MyString::buffer that is a char*, a pointer whose size is fixed at 4 bytes

(on my 32-bit system) and is independent of the volume of data being pointed to.

Try calculating the sizeof() a Human manually that is reported as 12. Lines 44, 45, and

46 tell that a Human contains an int, a bool, and a MyString. Referring to Listing 3.4

for a quick refresh on bytes consumed by inbuilt types, you know that an int consumes

4 bytes, a bool 1 byte, and MyString 4 bytes on the system I used for the examples,

which do not sum up to 12 as reported by the output. This is because of word padding

and other factors that influence the result of sizeof().

How struct Differs from class
struct is a keyword from the days of C, and for all practical purposes it is treated by a

C++ compiler similarly to a class. The exceptions are applicable to the access specifiers

(public and private) when the programmer has not specified any. Unless specified,

members in a struct are public by default (private for a class), and unless speci-

fied, a struct features public inheritance from a base struct (private for a class).

Inheritance is discussed in detail in Lesson 10.

A struct variant of class Human from Listing 9.13 would be the following:

struct Human
{
 // constructor, public by default (as no access specified is mentioned)
 Human(const MyString& humansName, int humansAge, bool humansGender)

: name(humansName), age (humansAge), Gender(humansGender) {}

ptg18655082

258 LESSON 9: Classes and Objects

 int GetAge ()
 {

return age;
 }

private:
 int age;
 bool gender;
 MyString name;
};

As you can see, a struct Human is similar to class Human, and instantiation of an

object of type struct would be similar to type class as well:

Human firstMan("Adam", 25, true); // an instance of struct Human

Declaring a friend of a class
A class does not permit external access to its data members and methods that are

declared private. This rule is waived for classes and functions that are disclosed as

friend classes or functions, using keyword friend as seen in Listing 9.14.

LISTING 9.14 Using the friend Keyword to Allow an External Function DisplayAge()
Access to Private Data Members

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: private:
 7: friend void DisplayAge(const Human& person);
 8: string name;
 9: int age;
 10:
 11: public:
 12: Human(string humansName, int humansAge)
 13: {
 14: name = humansName;
 15: age = humansAge;
 16: }
 17: };
 18:
 19: void DisplayAge(const Human& person)
 20: {
 21: cout << person.age << endl;
 22: }

ptg18655082

259

9

Declaring a friend of a class

23:
24: int main()
25: {
26: Human firstMan("Adam", 25);
27: cout << "Accessing private member age via friend function: ";
28: DisplayAge(firstMan);
29:
30: return 0;
31: }

Output ▼
Accessing private member age via friend function: 25

Analysis ▼

Line 7 contains the declaration that indicates to the compiler that function

DisplayAge() in global scope is a friend and therefore is permitted special access to

the private members of class Human. You can comment out Line 7 to see a compile

failure at Line 22.

Like functions, external classes can also be designated as a trusted friend, as Listing 9.15

demonstrates.

LISTING 9.15 Using the friend Keyword to Allow an External Class Utility Access to
Private Data Members

 0: #include <iostream>
 1: #include <string>
 2: using namespace std;
 3:
 4: class Human
 5: {
 6: private:
 7: friend class Utility;
 8: string name;
 9: int age;
10:
11: public:
12: Human(string humansName, int humansAge)
13: {
14: name = humansName;
15: age = humansAge;
16: }
17: };
18:
19: class Utility

ptg18655082

260 LESSON 9: Classes and Objects

20: {
21: public:
22: static void DisplayAge(const Human& person)
23: {
24: cout << person.age << endl;
25: }
26: };
27:
28: int main()
29: {
30: Human firstMan("Adam", 25);
31: cout << "Accessing private member age via friend class: ";
32: Utility::DisplayAge(firstMan);
33:
34: return 0;
35: }

Output ▼
Accessing private member age via friend class: 25

Analysis ▼

Line 7 indicates class Utility is a friend of class Human. This friend declaration

allows all methods in class Utility access even to the private data members and

methods in class Human.

union: A Special Data Storage
Mechanism
A union is a special class type where only one of the non-static data members is active

at a time. Thus, a union can accommodate multiple data members, just like a class can,

with the exception that only one of them can actually be used.

Declaring a Union
A union is declared using keyword union, followed by the name of the union and its

data members within braces:

union UnionName
{
 Type1 member1;
 Type2 member2;
…
 TypeN memberN;
};

ptg18655082

261

9

union: A Special Data Storage Mechanism

You would instantiate and use a union like this:

UnionName unionObject;
unionObject.member2 = value; // choose member2 as the active member

Similar to the struct, the members of a union are public by
default. Unlike a struct, however, unions cannot be used in
inheritance hierarchies.

Additionally, the sizeof() a union is always fixed as the size of
the largest member contained in the union—even if that mem-
ber were inactive in an instance of the union.

NOTE

Where Would You Use a union?
Often a union is used as a member of a struct to model a complex data type. In some

implementations, the ability of a union to interpret the fixed memory space as another

type is used for type conversions or memory reinterpretation—a practice that is contro-

versial and not necessary given alternatives.

Listing 9.16 demonstrates the declaration and usage of unions.

LISTING 9.16 Declaration, Instantiation, and sizeof() Union

 0: #include <iostream>
 1: using namespace std;
 2:
 3: union SimpleUnion
 4: {
 5: int num;
 6: char alphabet;
 7: };
 8:
 9: struct ComplexType
10: {
11: enum DataType
12: {
13: Int,
14: Char
15: } Type;
16:
17: union Value
18: {
19: int num;
20: char alphabet;
21:
22: Value() {}

ptg18655082

262 LESSON 9: Classes and Objects

23: ~Value() {}
24: }value;
25: };
26:
27: void DisplayComplexType(const ComplexType& obj)
28: {
29: switch (obj.Type)
30: {
31: case ComplexType::Int:
32: cout << "Union contains number: " << obj.value.num << endl;
33: break;
34:
35: case ComplexType::Char:
36: cout << "Union contains character: " << obj.value.alphabet << endl;
37: break;
38: }
39: }
40:
41: int main()
42: {
43: SimpleUnion u1, u2;
44: u1.num = 2100;
45: u2.alphabet = 'C';
46: cout << "sizeof(u1) containing integer: " << sizeof(u1) << endl;
47: cout << "sizeof(u2) containing character: " << sizeof(u2) << endl;
48:
49: ComplexType myData1, myData2;
50: myData1.Type = ComplexType::Int;
51: myData1.value.num = 2017;
52:
53: myData2.Type = ComplexType::Char;
54: myData2.value.alphabet = 'X';
55:
56: DisplayComplexType(myData1);
57: DisplayComplexType(myData2);
58:
59: return 0;
60: }

Output ▼
sizeof(u1) containing integer: 4
sizeof(u2) containing character: 4
Union contains number: 2017
Union contains character: X

ptg18655082

Using Aggregate Initialization on Classes and Structs 263

9

Analysis ▼

The sample demonstrates that sizeof() the union objects u1 and u2 returns the same

amount of memory reserved for both objects, notwithstanding the fact that u1 is used

to hold an integer and u2 a char, char being smaller than an int. This is because the

compiler reserves the amount of memory for a union that is consumed by the largest

object it contains. Struct ComplexType defined in Lines 9–25, actually contains an enu-

meration DataType that is used to indicate the nature of the object stored in the union,

in addition to the data member, which is a union called Value. This combination of a

struct comprising an enumeration used to hold type information and a union used to

hold value is a popular application of the union. For example, the structure VARIANT

popularly used in Windows application programming follows a similar approach. This

combination is used by function DisplayComplexType() defined in Lines 27–39 that

uses the enumeration in executing the right case in the supplied switch-case construct.

For an example, we have included a constructor and destructor in this union—these are

optional in Listing 9.16 given that the union contains Plain-Old-Data types, but may be

required if the union comprises another user-defined type such as a class or a struct.

C++17 is expected to introduce a typesafe alternative to a
union. To learn about the std::variant, visit Lesson 29,
“Going Forward.”

TIP

Using Aggregate Initialization on Classes
and Structs
The following initialization syntax is called an aggregate initialization syntax:

Type objectName = {argument1, …, argumentN};

Alternatively, since C++11:

Type objectName {argument1, …, argumentN};

Aggregate initialization can be applied to an aggregate, and therefore it is important to

understand what data types fall under this category.

You already saw examples of aggregate initialization in the initialization of arrays in

Lesson 4, “Managing Arrays and Strings.”

int myNums[] = { 9, 5, -1 }; // myNums is int[3]
char hello[6] = { 'h', 'e', 'l', 'l', 'o', ' \0' };

ptg18655082

264 LESSON 9: Classes and Objects

The term aggregate, however, is not limited to arrays of simple types like integers or

characters, but extends also to classes (and therefore structs and unions) too. There are

restrictions imposed by the standard on the specification of a struct or a class that

can be called an aggregate. These restrictions get nuanced depending on the version of

C++ standard that you refer to. Yet, it can be safely said that classes/structs that com-

prise public and non-static data members, contain no private or protected data members,

contain no virtual member functions, feature none or only public inheritance (that is, no

private, protected, or virtual inheritance), and no user-defined constructors are aggregates

too and can be initialized as one.

Inheritance is explained in detail in Lesson 10, “Implementing
Inheritance” and in Lesson 11, “Polymorphism.”TIP

Thus, the following struct fulfills the prerequisites of being an aggregate and hence,

can be initialized as one:

struct Aggregate1
{
 int num;
 double pi;
};

Initialization:

Aggregate1 a1{ 2017, 3.14 };

Another example:

struct Aggregate2
{
 int num;
 char hello[6];
 int impYears[5];
};

Initialization:

Aggregate2 a2 {42, {'h', 'e', 'l', 'l', 'o'}, {1998, 2003, 2011, 2014, 2017}};

Listing 9.17 is a sample demonstrating aggregate initialization applied to classes and

structs.

ptg18655082

Using Aggregate Initialization on Classes and Structs 265

9

LISTING 9.17 Aggregate Initialization on Class Type

 0: #include <iostream>
 1: #include<string>
 2: using namespace std;
 3:
 4: class Aggregate1
 5: {
 6: public:
 7: int num;
 8: double pi;
 9: };
10:
11: struct Aggregate2
12: {
13: char hello[6];
14: int impYears[3];
15: string world;
16: };
17:
18: int main()
19: {
20: int myNums[] = { 9, 5, -1 }; // myNums is int[3]
21: Aggregate1 a1{ 2017, 3.14 };
22: cout << "Pi is approximately: " << a1.pi << endl;
23:
24: Aggregate2 a2{ {'h', 'e', 'l', 'l', 'o'}, {2011, 2014, 2017}, "world"};
25:
26: // Alternatively
27: Aggregate2 a2_2{'h', 'e', 'l', 'l', 'o', '\0', 2011, 2014, 2017, "world"};
28:
29: cout << a2.hello << ' ' << a2.world << endl;
30: cout << "C++ standard update scheduled in: " << a2.impYears[2] << endl;
31:
32: return 0;
33: }

Output ▼
Pi is approximately: 3.14
hello world
C++ standard update scheduled in: 2017

ptg18655082

266 LESSON 9: Classes and Objects

Analysis ▼

The sample demonstrates how you can use aggregate initialization in instantiating classes

(or structs). Aggregate1 defined in Lines 4–9 is a class with public data members, and

Aggregate2 defined in Lines 11–16 is a struct. Lines 21, 24, and 27 are the ones that

demonstrate aggregate initialization on the class and struct, respectively. We access

the members of the class/struct in demonstrating how the compiler placed the initializa-

tion values into the respective data members. Note how some members are an array, and

how a std::string member contained in Aggregate2 has been initialized using this

construct in Line 24.

 Aggregate initialization will initialize only the first non-static
 member of a union. The aggregate initialization of the unions
declared in Listing 9.16 would be

43: SimpleUnion u1{ 2100 }, u2{ 'C' };

// In u2, member num (int) is initialized to ‘C’
(ASCII 67)

// Although, you wished to initialize member alphabet
(char)

Therefore, for sake of clarity, it may be a good idea to not use
aggregate initialization syntax on union, but the one used in
Listing 9.16.

CAUTION

constexpr with Classes and Objects
We were introduced to constexpr in Lesson 3, where we learned that it offers a power-

ful way to improve the performance of your C++ application. By marking functions that

operate on constants or const-expressions as constexpr, we are instructing the com-

piler to evaluate those functions and insert their result instead of inserting instructions

that compute the result when the application is executed. This keyword can also be used

with classes and objects that evaluate as constants as demonstrated by Listing 9.18. Note

that the compiler would ignore constexpr when the function or class is used with enti-

ties that are not constant.

LISTING 9.18 Using constexpr with class Human

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Human
 4: {
 5: int age;

ptg18655082

Summary 267

9

 6: public:
 7: constexpr Human(int humansAge) :age(humansAge) {}
 8: constexpr int GetAge() const { return age; }
 9: };
10:
11: int main()
12: {
13: constexpr Human somePerson(15);
14: const int hisAge = somePerson.GetAge();
15:
16: Human anotherPerson(45); // not constant expression
17:
18: return 0;
19: }

Output ▼
<This sample produces no output>

Analysis ▼

Note the slight modification in class Human in Lines 3–9. It now uses constexpr in

the declaration of its constructor and member function GetAge(). This little addition

tells the compiler to evaluate the creation and usage of instances of class Human as a

constant expression, where possible. somePerson in Line 13 is declared as a constant

instance and used as one in Line 14. Therefore, this instance is likely to be evaluated by

the compiler and the code is optimized for performance at execution. Instance another-

Person in Line 16 is not declared to be a constant and therefore its instantiation or usage

may not be treated by the compiler as a constant expression.

Summary
This lesson taught you one of the most fundamental keywords and concepts in C++, that

of a class. You learned how a class encapsulates member data and member functions that

operate using the same. You saw how access specifiers such as public and private

help you abstract data and functionality that entities external to the class don’t need to

see. You learned the concept of copy constructors, and move constructors introduced by

C++11 that help reduce unwanted copy steps. You saw some special cases where all these

elements come together to help you implement design patterns such as the singleton.

ptg18655082

268 LESSON 9: Classes and Objects

Q&A
 Q What is the difference between the instance of a class and an object of that

class?

 A Essentially none. When you instantiate a class, you get an instance that can also be

called an object.

 Q What is a better way to access members: using the dot operator (.) or using
the pointer operator (->)?

 A If you have a pointer to an object, the pointer operator would be best suited. If you

have instantiated an object as a local variable on the stack, then the dot operator is

best suited.

 Q Should I always program a copy constructor?

 A If your class’ data members are well-programmed smart pointers, string classes, or

STL containers such as std::vector, then the default copy constructor inserted

by the compiler ensures that their respective copy constructors are invoked.

However, if your class has raw pointer members (such as int* for a dynamic array

instead of std::vector<int>), you need to supply a correctly programmed copy

 constructor that ensures a deep copy of an array during function calls where an

object of the class is passed by value.

 Q My class has only one constructor that has been defined with a parameter with
a default value. Is this still a default constructor?

 A Yes. If an instance of a class can be created without arguments, then the class is

said to have a default constructor. A class can have only one default constructor.

 Q Why do some samples in this lesson use functions such as SetAge() to set
 integer Human::age? Why not make age public and assign it as needed?

 A From a technical viewpoint, making Human::age a public member would work

as well. However, from a design point of view, keeping member data private is a

good idea. Accessor functions such as GetAge() or SetAge() are a refined and

scalable way to access this private data, allowing you to perform error checks for

instance before the value of Human::age is set or reset.

ptg18655082

Workshop 269

9

 Q Why is the parameter of a copy constructor one that takes the copy source by
reference?

 A For one, the copy constructor is expected by the compiler to be that way. The rea-

son behind it is that a copy constructor would invoke itself if it accepted the copy

source by value, resulting in an endless copy loop.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before continuing to the

next lesson.

Quiz
1. When I create an instance of a class using new, where is the class created?

2. My class has a raw pointer int* that contains a dynamically allocated array of

integers. Does sizeof report different sizes depending on the number of integers

in the dynamic array?

3. All my class members are private, and my class does not contain any declared

friend class or function. Who can access these members?

4. Can one class member method invoke another?

5. What is a constructor good for?

6. What is a destructor good for?

Exercises
1. BUG BUSTERS: What is wrong in the following class declaration?

Class Human
{
 int age;
 string name;

public:
 Human() {}
}

ptg18655082

270 LESSON 9: Classes and Objects

2. How would the user of the class in Exercise 1 access member Human::age?

3. Write a better version of the class seen in Exercise 1 that initializes all parameters

using an initialization list in the constructor.

4. Write a class Circle that computes the area and circumference given a radius

that is supplied to the class as a parameter at the time of instantiation. Pi should be

contained in a constant private member that cannot be accessed from outside the

circle.

ptg18655082

LESSON 10
Implementing
Inheritance

Object-oriented programming is based on four important aspects:
encapsulation, abstraction, inheritance, and polymorphism. Inheritance
is a powerful way to reuse attributes and is a stepping stone towards
polymorphism.

In this lesson, you find out about

 ■ Inheritance in the context of programming

 ■ The C++ syntax of inheritance

 ■ public, private, and protected inheritance

 ■ Multiple inheritance

 ■ Problems caused by hiding base class methods and slicing

ptg18655082

272 LESSON 10: Implementing Inheritance

Basics of Inheritance
What Tom Smith inherits from his forefathers is first and foremost his family name that

makes him a Smith. In addition, he inherits certain values that his parents have taught

him and a skill at sculpting wood that has been the Smith family occupation for many

generations. These attributes collectively identify Tom as an offspring of the Smith

 family tree.

In programming parlance, you are often faced with situations where components being

managed have similar attributes, differing minutely in details or in behavior. One way to

solve this problem is to make each component a class where each class implements all

attributes and re-implements the common ones. Another solution is using inheritance to

allow classes that are similar to derive from a base class that contains common attributes

and implements common functionality, overriding this base functionality to implement

behavior that makes each class unique. The latter is often the preferred way. Welcome to

inheritance in our world of object-oriented programming, as illustrated by Figure 10.1.

class Base

(also called Super Class)

class Derived1

(Inherits from Base, hence also
called subclass of Base)

class Derived2

(Inherits from Base, hence also
called subclass of Base)

FIGURE 10.1

Inheritance between
classes.

Inheritance and Derivation
Figure 10.1 shows a diagrammatic relationship between a base class and its derived

classes. It might not be easy right now to visualize what a base class or a derived class

could be. Try to understand that a derived class inherits from the base class and in that

sense is a base class (just like Tom is a Smith).

The is-a relationship between a derived class and its base is
applicable only to public inheritance. This lesson starts with
public inheritance to understand the concept of inheritance
and the most frequent form of inheritance before moving on to
 private or protected inheritance.

NOTE

ptg18655082

Basics of Inheritance 273

10

To make understanding this concept easy, think of a base class Bird. Classes are

derived from Bird are class Crow, class Parrot, or class Kiwi. A class Bird

would define the most basic attributes of a bird, such as “is feathered,” “has wings,” “lays

eggs,” “can fly,” and so on. Derived classes such as Crow, Parrot, or Kiwi inherit these

attributes and customize them (for example, a class Kiwi that represents a flightless-

bird would contain no implementation of Fly()). Table 10.1 demonstrates a few more

examples of inheritance.

TABLE 10.1 Examples of Public Inheritance Taken from Daily Life

Base Class Example Derived Classes

Fish Goldfish, Carp, Tuna (Tuna “is a” Fish)

Mammal Human, Elephant, Lion, Platypus (Platypus “is a” Mammal)

Bird Crow, Parrot, Ostrich, Kiwi, Platypus (Platypus “is a” Bird, too!)

Shape Circle, Polygon (Polygon “is a” Shape)

Polygon Triangle, Octagon (Octagon “is a” Polygon, which in turn “is a” Shape)

What these examples show is that when you put on your object-oriented programming

glasses, you see examples of inheritance in many objects around yourself. Fish is a base

class for a Tuna because a Tuna, like a Carp, is a Fish and presents all fish-like char-

acteristics such as being cold-blooded. However, Tuna differs from a Carp in the way it

looks, swims, and in the fact that it is a saltwater fish. Thus, Tuna and Carp inherit com-

mon characteristics from a common base class Fish, yet specialize the base class attri-

butes to distinguish themselves from each other. This is illustrated in Figure 10.2.

class Fish

• Can swim, lays eggs
• Seawater or freshwater

class Tuna

• Can swim fast, lays eggs
• Seawater (marine) fish

class Carp

• Swims slowly, lays eggs

• Freshwater fish

FIGURE 10.2

Hierarchical
 relationship
between Tuna,
Carp, and Fish.

ptg18655082

274 LESSON 10: Implementing Inheritance

A platypus can swim, yet is a special animal with mammalian characteristics such as

feeding its young with milk, avian (bird-like) characteristics as it lays eggs, and rep-

tilian characteristics as it is venomous. Thus, one can imagine a class Platypus

inheriting from two base classes, class Mammal and class Bird, to inherit mam-

malian and avian features. This form of inheritance is called multiple inheritance,

which is discussed later in this lesson.

C++ Syntax of Derivation
How would you inherit class Carp from class Fish, or in general a

class Derived from class Base? C++ syntax for doing this would be the following:

class Base
{
 // ... base class members
};

class Derived: access-specifier Base
{
 // ... derived class members
};

The access-specifier can be one of public (most frequently used) where a “derived

class is a base class” relationship; private or protected for a “derived class has a base

class” relationship.

An inheritance hierarchical representation for a class Carp that derives from class

Fish would be

class Fish // base class
{
 // ... Fish's members
};

class Carp:public Fish // derived class
{
 // ... Carp's members
};

A compile-worthy declaration of a class Carp and class Tuna that derive from

class Fish is demonstrated by Listing 10.1.

ptg18655082

Basics of Inheritance 275

10

A Note About Terminology

When reading about inheritance, you will come across terms such as inherits from or
derives from, which essentially mean the same.

Similarly, the base class is also called the super class. The class that derives from
the base, also known as the derived class, can be called the subclass.

LISTING 10.1 A Simple Inheritance Hierarchy Demonstrated by the Piscean World

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: bool isFreshWaterFish;
 7:
 8: void Swim()
 9: {
10: if (isFreshWaterFish)
11: cout << "Swims in lake" << endl;
12: else
13: cout << "Swims in sea" << endl;
14: }
15: };
16:
17: class Tuna: public Fish
18: {
19: public:
20: Tuna()
21: {
22: isFreshWaterFish = false;
23: }
24: };
25:
26: class Carp: public Fish
27: {
28: public:
29: Carp()
30: {
31: isFreshWaterFish = true;
32: }
33: };
34:
35: int main()
36: {
37: Carp myLunch;

ptg18655082

276 LESSON 10: Implementing Inheritance

38: Tuna myDinner;
39:
40: cout << "About my food:" << endl;
41:
42: cout << "Lunch: ";
43: myLunch.Swim();
44:
45: cout << "Dinner: ";
46: myDinner.Swim();
47:
48: return 0;
49: }

Output ▼
About my food:
Lunch: Swims in lake
Dinner: Swims in sea

Analysis ▼

Note Lines 37 and 38 in main() that create an instance of classes Carp and Tuna,

respectively, called myLunch and myDinner. Lines 43 and 46 are where I ask my lunch

and dinner to swim by invoking method Swim(). Now, look at the class definitions of

Tuna in Lines 17–24 and Carp in Lines 26–33. As you can see, these classes are com-

pact with their constructors setting the Boolean flag Fish::isFreshWaterFish to the

appropriate values. This flag is later used in function Fish::Swim(). Neither of the two

derived classes seems to define a method Swim() that you have managed to successfully

invoke in main(). This is because Swim() is a public member of base class Fish that

they inherit from, defined in Lines 3–15. This public inheritance in Lines 17 and 26 auto-

matically exposes the base class’s public members, including method Swim(), through

instances of the derived classes Carp and Tuna, which we invoke in main().

Access Specifier Keyword protected
Listing 10.1 is one where class Fish has a public attribute isFreshWaterFish that is

set by the derived classes Tuna and Carp so as to customize (also called specialize) the

behavior of Fish and adapt it to saltwater and freshwater, respectively. However, Listing

10.1 exhibits a serious flaw: If you want, even main() could tamper with isFreshWater-

Fish, which is public and hence open for manipulation from outside class Fish:

myDinner.isFreshWaterFish = true; // but Tuna isn't a fresh water fish!

ptg18655082

Basics of Inheritance 277

10

Apparently, you need a mechanism that allows derived class members to modify chosen

attributes of the base class, while denying access to the same from everyone else. This

means that you want Boolean flag isFreshWaterFish in class Fish to be accessible

to class Tuna and class Carp, but not accessible to main() that instantiates classes

Tuna or Carp. This is where keyword protected helps you.

protected, like public and private, is also an access speci-
fier. When you declare a class attribute or function as pro-
tected, you are effectively making it accessible to classes that
derive (and friends), yet simultaneously making it inaccessible to
everyone else outside the class, including main().

NOTE

protected is the access specifier you should use if you want a certain attribute in

a base class to be accessible to classes that derive from this base, as demonstrated in

Listing 10.2.

LISTING 10.2 A Better class Fish Using the protected Keyword to Expose Its Member
Attribute Only to the Derived Classes

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: protected:
 6: bool isFreshWaterFish; // accessible only to derived classes
 7:
 8: public:
 9: void Swim()
10: {
11: if (isFreshWaterFish)
12: cout << "Swims in lake" << endl;
13: else
14: cout << "Swims in sea" << endl;
15: }
16: };
17:
18: class Tuna: public Fish
19: {
20: public:
21: Tuna()
22: {
23: isFreshWaterFish = false; // set protected member in base
24: }
25: };

ptg18655082

278 LESSON 10: Implementing Inheritance

26:
27: class Carp: public Fish
28: {
29: public:
30: Carp()
31: {
32: isFreshWaterFish = false;
33: }
34: };
35:
36: int main()
37: {
38: Carp myLunch;
39: Tuna myDinner;
40:
41: cout << "About my food" << endl;
42:
43: cout << "Lunch: ";
44: myLunch.Swim();
45:
46: cout << "Dinner: ";
47: myDinner.Swim();
48:
49: // uncomment line below to see that protected members
50: // are not accessible from outside the class hierarchy
51: // myLunch.isFreshWaterFish = false;
52:
53: return 0;
54: }

Output ▼
About my food
Lunch: Swims in lake
Dinner: Swims in sea

Analysis ▼

In spite of the fact that the output of Listing 10.2 is the same as Listing 10.1, there are

a good number of fundamental changes to class Fish as defined in Lines 3–16. The

first and most evident change is that the Boolean member Fish::isFreshWaterFish is

now a protected attribute, and hence, not accessible via main() as shown in Line 51

(uncomment it to see a compiler error). All the same, this member of Fish with access

specifier protected is accessible from the derived classes Tuna and Carp as shown in

Lines 23 and 32, respectively. What this little program effectively demonstrates is the use

of keyword protected in ensuring that base class attributes that need to be inherited are

protected from being accessed outside the class hierarchy.

ptg18655082

Basics of Inheritance 279

10

This is an important aspect of object-oriented programming, combining data abstraction

and inheritance, in ensuring that derived classes can safely inherit base class attributes

that cannot be tampered with by anyone outside this hierarchical system.

Base Class Initialization—Passing Parameters
to the Base Class
What if a base class were to contain an overloaded constructor that requires arguments at

the time of instantiation? How would such a base class be instantiated when the derived

class is being constructed? The clue lies in using initialization lists and in invoking the

appropriate base class constructor via the constructor of the derived class as shown in the

following code:

class Base
{
public:
 Base(int someNumber) // overloaded constructor
 {

// Use someNumber
 }
};
Class Derived: public Base
{
public:
 Derived(): Base(25) // instantiate Base with argument 25
 {

// derived class constructor code
 }
};

This mechanism can be quite useful in class Fish wherein, by supplying a Boolean

input parameter to the constructor of Fish that initializes Fish::isFreshWaterFish,

this base class Fish can ensure that every derived class is forced to mention whether

the Fish is a freshwater one or a saltwater one as shown in Listing 10.3.

LISTING 10.3 Derived Class Constructor with Initialization Lists

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: protected:
 6: bool isFreshWaterFish; // accessible only to derived classes
 7:
 8: public:

ptg18655082

280 LESSON 10: Implementing Inheritance

 9: // Fish constructor
10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater){}
11:
12: void Swim()
13: {
14: if (isFreshWaterFish)
15: cout << "Swims in lake" << endl;
16: else
17: cout << "Swims in sea" << endl;
18: }
19: };
20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna(): Fish(false) {} // constructor initializes base
25: };
26:
27: class Carp: public Fish
28: {
29: public:
30: Carp(): Fish(true) {}
31: };
32:
33: int main()
34: {
35: Carp myLunch;
36: Tuna myDinner;
37:
38: cout << "About my food" << endl;
39:
40: cout << "Lunch: ";
41: myLunch.Swim();
42:
43: cout << "Dinner: ";
44: myDinner.Swim();
45:
46: return 0;
47: }

Output ▼
About my food
Lunch: Swims in lake
Dinner: Swims in sea

ptg18655082

Basics of Inheritance 281

10

Analysis ▼

Fish now has a constructor that takes a default parameter initializing Fish::is

FreshWaterFish. Thus, the only possibility to create an object of Fish is via provid-

ing it a parameter that initialized the protected member. This way class Fish ensures

that the protected member doesn’t contain a random value, especially if a derived class

forgets to set it. Derived classes Tuna and Carp are now forced to define a constructor

that instantiates the base class instance of Fish with the right parameter (true or false,

indicating freshwater or otherwise), as shown in Lines 24 and 30, respectively.

In Listing 10.3 you see that boolean member variable
Fish::isFreshWaterFish was never accessed directly by a
derived class in spite of it being a protected member, as this
variable was set via the constructor of Fish.

To ensure maximum security, if the derived classes don’t need to
access a base class attribute, remember to mark the attribute
private. Therefore, a superior version of Listing 10.3 would fea-
ture Fish::isFreshWaterFish as private, for it is consumed
only by base class Fish. See Listing 10.4.

NOTE

Derived Class Overriding Base Class’s Methods
If a class Derived implements the same functions with the same return values and

signatures as in a class Base it inherits from, it effectively overrides that method

in class Base as shown in the following code:

class Base
{
public:
 void DoSomething()
 {

// implementation code… Does something
 }
};
class Derived:public Base
{
public:
 void DoSomething()
 {

// implementation code… Does something else
 }
};

Thus, if method DoSomething() were to be invoked using an instance of Derived, then

it would not invoke the functionality in class Base.

ptg18655082

282 LESSON 10: Implementing Inheritance

If classes Tuna and Carp were to implement their own Swim() method that also exists in

the base class as Fish::Swim(), then a call to Swim as shown in main() from the follow-

ing excerpt of Listing 10.3

36: Tuna myDinner;
// ...other lines
44: myDinner.Swim();

would result in the local implementation of Tuna::Swim() being invoked, which essentially

overrides the base class’s Fish::Swim() method. This is demonstrated by Listing 10.4.

LISTING 10.4 Derived Classes Tuna and Carp Overriding Method Swim() in Base
Class Fish

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: private:
 6: bool isFreshWaterFish;
 7:
 8: public:
 9: // Fish constructor
10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater){}
11:
12: void Swim()
13: {
14: if (isFreshWaterFish)
15: cout << "Swims in lake" << endl;
16: else
17: cout << "Swims in sea" << endl;
18: }
19: };
20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna(): Fish(false) {}
25:
26: void Swim()
27: {
28: cout << "Tuna swims real fast" << endl;
29: }
30: };
31:
32: class Carp: public Fish
33: {
34: public:

ptg18655082

Basics of Inheritance 283

10

35: Carp(): Fish(true) {}
36:
37: void Swim()
38: {
39: cout << "Carp swims real slow" << endl;
40: }
41: };
42:
43: int main()
44: {
45: Carp myLunch;
46: Tuna myDinner;
47:
48: cout << "About my food" << endl;
49:
50: cout << "Lunch: ";
51: myLunch.Swim();
52:
53: cout << "Dinner: ";
54: myDinner.Swim();
55:
56: return 0;
57: }

Output ▼
About my food
Lunch: Carp swims real slow
Dinner: Tuna swims real fast

Analysis ▼

The output demonstrates that myLunch.Swim() in Line 51 invokes Carp::Swim()

defined in Lines 37–40. Similarly, myDinner.Swim() from Line 54 invokes

Tuna::Swim() defined in Lines 26–29. In other words, the implementation of

Fish::Swim() in the base class Fish, as shown in Lines 12–18, is overridden by the

identical function Swim() defined by the classes Tuna and Carp that derive from Fish.

The only way to invoke Fish::Swim() is by having main() use the scope resolution
operator (::) in explicitly invoking Fish::Swim(), as shown later in this lesson.

Invoking Overridden Methods of a Base Class
In Listing 10.4, you saw an example of derived class Tuna overriding the Swim()

 function in Fish by implementing its version of the same. Essentially:

Tuna myDinner;
myDinner.Swim(); // will invoke Tuna::Swim()

ptg18655082

284 LESSON 10: Implementing Inheritance

If you want to be invoke Fish::Swim() in Listing 10.4 via main(), you need to use the

scope resolution operator (::) in the following syntax:

myDinner.Fish::Swim(); // invokes Fish::Swim() using instance of Tuna

Listing 10.5 that follows shortly demonstrates invoking a base class member using an

instance of the derived class.

Invoking Methods of a Base Class in a Derived Class
Typically, Fish::Swim() would contain a generic implementation of swimming appli-

cable to all fishes, tunas, and carps included. If your specialized implementations in

Tuna:Swim() and Carp::Swim() need to reuse the base class’s generic implementation

of Fish::Swim(), you use the scope resolution operator (::) as shown in the following

code:

class Carp: public Fish
{
public:
 Carp(): Fish(true) {}

 void Swim()
 {

cout << "Carp swims real slow" << endl;
Fish::Swim(); // invoke base class function using operator::

 }
};

This is demonstrated in Listing 10.5.

LISTING 10.5 Using Scope Resolution Operator (::) to Invoke Base Class Functions
from Derived Class and main()

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: private:
 6: bool isFreshWaterFish;
 7:
 8: public:
 9: // Fish constructor
10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater){}
11:
12: void Swim()
13: {

ptg18655082

Basics of Inheritance 285

10

14: if (isFreshWaterFish)
15: cout << "Swims in lake" << endl;
16: else
17: cout << "Swims in sea" << endl;
18: }
19: };
20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna(): Fish(false) {}
25:
26: void Swim()
27: {
28: cout << "Tuna swims real fast" << endl;
29: }
30: };
31:
32: class Carp: public Fish
33: {
34: public:
35: Carp(): Fish(true) {}
36:
37: void Swim()
38: {
39: cout << "Carp swims real slow" << endl;
40: Fish::Swim();
41: }
42: };
43:
44: int main()
45: {
46: Carp myLunch;
47: Tuna myDinner;
48:
49: cout << "About my food" << endl;
50:
51: cout << "Lunch: ";
52: myLunch.Swim();
53:
54: cout << "Dinner: ";
55: myDinner.Fish::Swim();
56:
57: return 0;
58: }

Output ▼
About my food
Lunch: Carp swims real slow
Swims in lake
Dinner: Swims in sea

ptg18655082

286 LESSON 10: Implementing Inheritance

Analysis ▼

Carp::Swim() in Lines 37–41 demonstrates calling the base class function

Fish::Swim() using the scope resolution operator (::). Line 55, on the other hand,

shows how you would use the scope resolution operator (::) to invoke base class method

Fish::Swim() from main() given an instance of derived class Tuna.

Derived Class Hiding Base Class’s Methods
Overriding can take an extreme form where Tuna::Swim() can potentially hide all over-

loaded versions of Fish::Swim() available, even causing compilation failure when the

overloaded ones are used (hence, called hidden), as demonstrated by Listing 10.6.

LISTING 10.6 Tuna::Swim() Hides Overloaded Method Fish::Swim(bool)

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: void Swim()
 7: {
 8: cout << "Fish swims... !" << endl;
 9: }
10:
11: void Swim(bool isFreshWaterFish) // overloaded version
12: {
13: if (isFreshWaterFish)
14: cout << "Swims in lake" << endl;
15: else
16: cout << "Swims in sea" << endl;
17: }
18: };
19:
20: class Tuna: public Fish
21: {
22: public:
23: void Swim()
24: {
25: cout << "Tuna swims real fast" << endl;
26: }
27: };
28:
29: int main()
30: {
31: Tuna myDinner;
32:

ptg18655082

Basics of Inheritance 287

10

33: cout << "About my food" << endl;
34:
35: // myDinner.Swim(false);//failure: Tuna::Swim() hides Fish::Swim(bool)
36: myDinner.Swim();
37:
38: return 0;
39: }

Output ▼
About my food
Tuna swims real fast

Analysis ▼

This version of class Fish is a bit different from those that you have seen so far. Apart

from being a minimalized version to explain the problem at hand, this version of Fish

contains two overloaded methods for Swim(), one that takes no parameters, as shown in

Lines 6–9, and another that takes a bool parameter, as shown in Lines 11–17. As Tuna

inherits public from Fish as shown in Line 20, one would not be wrong to expect that

both versions of method Fish::Swim() would be available via an instance of class

Tuna. The fact is, however, that Tuna implementing its own Tuna::Swim(), as shown

in Lines 23–26, results in the hiding of Fish::Swim(bool) from the compiler. If you

uncomment Line 35, you see a compilation failure.

So, if you want to invoke the Fish::Swim(bool) function via an instance of Tuna, you

have the following solutions:

 ■ Solution 1: Use the scope resolution operator in main():

myDinner.Fish::Swim();

 ■ Solution 2: Use keyword using in class Tuna to unhide Swim() in class

Fish:

class Tuna: public Fish
{
public:
 using Fish::Swim; // unhide all Swim() methods in class Fish

 void Swim()
 {

cout << "Tuna swims real fast" << endl;
 }
};

ptg18655082

288 LESSON 10: Implementing Inheritance

 ■ Solution 3: Override all overloaded variants of Swim() in class Tuna (invoke

 methods of Fish::Swim(...) via Tuna::Fish(...) if you want):

class Tuna: public Fish
{
public:
 void Swim(bool isFreshWaterFish)
 {

Fish::Swim(isFreshWaterFish);
 }

 void Swim()
 {

cout << "Tuna swims real fast" << endl;
 }
};

Order of Construction
So, when you create an object of class Tuna that derives from class Fish, was the

constructor of Tuna invoked before or after the constructor of class Fish? Additionally,

within the instantiation of objects in the class hierarchy, what respective order do mem-

ber attributes such as Fish::isFreshWaterFish have? Thankfully, the instantiation

sequence is standardized. Base class objects are instantiated before the derived class.

So, the Fish part of Tuna is constructed first, so that member attributes—especially the

protected and public ones contained in class Fish—are ready for consumption when

class Tuna is instantiated. Within the instantiation of class Fish and class Tuna,

the member attributes (such as Fish::isFreshWaterFish) are instantiated before the

constructor Fish::Fish() is invoked, ensuring that member attributes are ready before

the constructor works with them. The same applies to Tuna::Tuna().

Order of Destruction
When an instance of Tuna goes out of scope, the sequence of destruction is the opposite

to that of construction. Listing 10.7 is a simple example that demonstrates the sequence

of construction and destruction.

LISTING 10.7 The Order of Construction and Destruction of the Base Class, Derived
Class, and Members Thereof

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class FishDummyMember

ptg18655082

Basics of Inheritance 289

10

 4: {
 5: public:
 6: FishDummyMember()
 7: {
 8: cout << "FishDummyMember constructor" << endl;
 9: }
10:
11: ~FishDummyMember()
12: {
13: cout << "FishDummyMember destructor" << endl;
14: }
15: };
16:
17: class Fish
18: {
19: protected:
20: FishDummyMember dummy;
21:
22: public:
23: // Fish constructor
24: Fish()
25: {
26: cout << "Fish constructor” << endl;
27: }
28:
29: ~Fish()
30: {
31: cout << "Fish destructor" << endl;
32: }
33: };
34:
35: class TunaDummyMember
36: {
37: public:
38: TunaDummyMember()
39: {
40: cout << "TunaDummyMember constructor" << endl;
41: }
42:
43: ~TunaDummyMember()
44: {
45: cout << "TunaDummyMember destructor" << endl;
46: }
47: };
48:
49:
50: class Tuna: public Fish
51: {
52: private:
53: TunaDummyMember dummy;
54:

ptg18655082

290 LESSON 10: Implementing Inheritance

55: public:
56: Tuna()
57: {
58: cout << "Tuna constructor" << endl;
59: }
60: ~Tuna()
61: {
62: cout << "Tuna destructor" << endl;
63: }
64:
65: };
66:
67: int main()
68: {
69: Tuna myDinner;
70: }

Output ▼
FishDummyMember constructor
Fish constructor
TunaDummyMember constructor
Tuna constructor
Tuna destructor
TunaDummyMember destructor
Fish destructor
FishDummyMember destructor

Analysis ▼

main() as shown in Lines 67–70 is pretty short for the volume of output it generates.

Instantiation of a Tuna is enough to generate these lines of output because of the cout

statements that you have inserted into the constructors and destructors of all objects

involved. For the sake of understanding how member variables are instantiated and

destroyed, you defined two dummy classes, FishDummyMember, and TunaDummyMember

with cout in their constructors and destructors. class Fish and class Tuna contain a

member of each of these dummy classes as shown in Lines 20 and 53. The output indicates

that when an object of class Tuna is instantiated, instantiation actually starts at the top of

the hierarchy. So, the base class Fish part of class Tuna is instantiated first, and in

doing so, the members of the Fish—that is, Fish::dummy—are instantiated first. This is

then followed by the constructor of the Fish, which is rightfully executed after the member

attributes such as dummy have been constructed. After the base class has been constructed,

the instantiation of Tuna continues first with instantiation of member Tuna::dummy,

finally followed by the execution of the constructor code in Tuna::Tuna(). The output

demonstrates that the sequence of destruction is exactly the opposite.

ptg18655082

Private Inheritance 291

10

Private Inheritance
Private inheritance differs from public inheritance (which is what you have seen up to

now) in that the keyword private is used in the line where the derived class declares its

inheritance from a base class:

class Base
{
 // ... base class members and methods
};

class Derived: private Base // private inheritance
{
 // ... derived class members and methods
};

Private inheritance of the base class means that all public members and attributes of the

base class are private (that is, inaccessible) to anyone with an instance of the derived

class. In other words, even public members and methods of class Base can only be

consumed by class Derived, but not by anyone else in possession of an instance of

Derived.

This is in sharp contrast to the examples with Tuna and base Fish that you have been

following since Listing 10.1. main() in Listing 10.1 could invoke function Fish::Swim()

on an instance of Tuna because Fish::Swim() is a public method and because class

Tuna derives from class Fish using public inheritance.

Thus, for the world outside the inheritance hierarchy, private inheritance essentially

does not imply an "is-a" relationship (imagine a tuna that can’t swim!). As private inheri-

tance allows base class attributes and methods to be consumed only by the subclass that

derives from it, this relationship is also called a “has-a” relationship. There are a few

examples of private inheritance in some things you see around you in daily life (see

Table 10.2).

TABLE 10.2 Examples of Private Inheritance Taken from Daily Life

Base Class Example Derived Class

Motor Car (Car “has a” Motor)

Heart Mammal (Mammal “has a” Heart)

Nib Pen (Pen “has a” Nib)

ptg18655082

292 LESSON 10: Implementing Inheritance

Let’s visualize private inheritance in a car’s relationship to its motor. See Listing 10.8.

LISTING 10.8 A class Car Related to class Motor via private Inheritance

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Motor
 4: {
 5: public:
 6: void SwitchIgnition()
 7: {
 8: cout << "Ignition ON" << endl;
 9: }
10: void PumpFuel()
11: {
12: cout << "Fuel in cylinders" << endl;
13: }
14: void FireCylinders()
15: {
16: cout << "Vroooom" << endl;
17: }
18: };
19:
20: class Car:private Motor // private inheritance
21: {
22: public:
23: void Move()
24: {
25: SwitchIgnition();
26: PumpFuel();
27: FireCylinders();
28: }
29: };
30:
31: int main()
32: {
33: Car myDreamCar;
34: myDreamCar.Move();
35:
36: return 0;
37: }

Output ▼
Ignition ON
Fuel in cylinders
Vroooom

ptg18655082

Protected Inheritance 293

10

Analysis ▼

class Motor defined in Lines 3–18 is simple with three public member functions

that switch ignition, pump fuel, and fire the cylinders. class Car as Line 20 demon-

strates inherits from Motor, using keyword private. Thus, public function Car::Move()

invokes members from the base class Motor. If you try inserting the following in main():

myDreamCar.PumpFuel(); // cannot access base's public member

it fails compilation with an error similar to error C2247: Motor::PumpFuel not

accessible because 'Car' uses 'private' to inherit from 'Motor.'

 If another class RaceCar had to inherit from Car, then irre-
spective of the nature of inheritance between RaceCar and
Car, RaceCar would not have access to any public member or
function of base class Motor. This is because the relationship
between Car and Motor is one of private inheritance, meaning
that all entities other than Car have private access (that is,
no access) to public and protected members of Base when
using an instance of Car.

In other words, the most restrictive access specifier takes domi-
nance in the compiler’s calculation of whether one class should
have access to a base class’s public or protected members.

NOTE

Protected Inheritance
Protected inheritance differs from public inheritance in that the keyword protected is

used in the line where the derived class declares its inheritance from a base class:

class Base
{
 // ... base class members and methods
};

class Derived: protected Base // protected inheritance
{
 // ... derived class members and methods
};

ptg18655082

294 LESSON 10: Implementing Inheritance

Protected inheritance is similar to private inheritance in the following ways:

 ■ It also signifies a has-a relationship.

 ■ It also lets the derived class access all public and protected members of Base.

 ■ Those outside the inheritance hierarchy with an instance of Derived cannot access

public members of Base.

Yet, protected inheritance is a bit different when it comes to the derived class being

inherited from:

class Derived2: protected Derived
{
 // can access public & protected members of Base
};

Protected inheritance hierarchy allows the subclass of the subclass (that is, Derived2)

access to public and protected members of the Base as shown in Listing 10.9. This

would not be possible if the inheritance between Derived and Base were private.

LISTING 10.9 class RaceCar That Derives from class Car That Derives from class
Motor Using protected Inheritance

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Motor
 4: {
 5: public:
 6: void SwitchIgnition()
 7: {
 8: cout << "Ignition ON" << endl;
 9: }
10: void PumpFuel()
11: {
12: cout << "Fuel in cylinders" << endl;
13: }
14: void FireCylinders()
15: {
16: cout << "Vroooom" << endl;
17: }
18: };
19:
20: class Car:protected Motor
21: {
22: public:
23: void Move()
24: {

ptg18655082

Protected Inheritance 295

10

25: SwitchIgnition();
26: PumpFuel();
27: FireCylinders();
28: }
29: };
30:
31: class RaceCar:protected Car
32: {
33: public:
34: void Move()
35: {
36: SwitchIgnition(); // RaceCar has access to members of
37: PumpFuel(); // base Motor due to "protected" inheritance
38: FireCylinders(); // between RaceCar & Car, Car & Motor
39: FireCylinders();
40: FireCylinders();
41: }
42: };
43:
44: int main()
45: {
46: RaceCar myDreamCar;
47: myDreamCar.Move();
48:
49: return 0;
50: }

Output ▼
Ignition ON
Fuel in cylinders
Vroooom
Vroooom
Vroooom

Analysis ▼

class Car inherits using protected from Motor as shown in Line 20. class

RaceCar inherits using protected from class Car using protected as shown in

Line 31. As you can see, the implementation of RaceCar::Move() uses public methods

defined in base class Motor. This access to the ultimate base class Motor via inter-

mediate base class Car is governed by the relationship between Car and Motor. If this

were private instead of protected, SuperClass would have no access to the public

members of Motor as the compiler would choose the most restrictive of the relevant

access specifiers. Note that the nature of the relationship between the classes Car and

RaceCar plays no role in access to base Motor, while the relationship between Car and

ptg18655082

296 LESSON 10: Implementing Inheritance

Motor does. So, even if you change protected in Line 31 to public or to private,

the fate of compilation of this program remains unchanged.

Use private or protected inheritance only when you have to.
In most cases where private inheritance is used, such as that of
the Car and the Motor, the base class could have as well been
a member attribute of the class Car instead of being a super-
class. By inheriting from class Motor, you have essentially
restricted your Car to having only one motor, for no significant
gain over having an instance of class Motor as a private
member.

Cars have evolved, and hybrid cars, for instance, have a gas
motor in addition to an electric one. Our inheritance hierarchy for
class Car would prove to be a bottleneck in being compatible
to such developments.

CAUTION

Having an instance of Motor as a private member instead of
inheriting from it is called composition or aggregation. Such a
class Car looks like this:

class Car

{

private:

 Motor heartOfCar;

public:

 void Move()

 {

heartOfCar.SwitchIgnition();

heartOfCar.PumpFuel();

heartOfCar.FireCylinders();

 }

};

This can be good design as it enables you to easily add more
motors as member attributes to an existing Car class without
changing its inheritance hierarchy or its design with respect to its
clients.

NOTE

ptg18655082

Multiple Inheritance 297

10

The Problem of Slicing
What happens when a programmer does the following?

Derived objDerived;
Base objectBase = objDerived;

Or, alternatively, what if a programmer does this?

void UseBase(Base input);
...
Derived objDerived;
UseBase(objDerived); // copy of objDerived will be sliced and sent

In both cases, an object of type Derived is being copied into another of type Base,

either explicitly via assignment or by passing as an argument. What happens in these

cases is that the compiler copies only the Base part of objDerived—that is, not the

complete object. The information contained by the data members belonging to Derived

is lost in the process. This is not anticipated, and this unwanted reduction of that part of

data that makes the Derived a specialization of Base is called slicing.

To avoid slicing problems, don’t pass parameters by value. Pass
them as pointers to the base class or as a (optionally const)
reference to the same.

CAUTION

Multiple Inheritance
Earlier in this lesson I mentioned that in some certain cases multiple inheritance might

be relevant, such as with the platypus. The platypus is part mammal, part bird, and part

reptile. For such cases, C++ allows a class to derive from two or more base classes:

class Derived: access-specifier Base1, access-specifier Base2
{
 // class members
};

The class diagram for a platypus, as illustrated by Figure 10.3, looks different from the

previous ones for Tuna and Carp (refer to Figure 10.2).

ptg18655082

298 LESSON 10: Implementing Inheritance

 Thus, the C++ representation of class Platypus is the following:

class Platypus: public Mammal, public Reptile, public Bird
{
 // ... platypus members
};

A manifestation of Platypus that demonstrates multiple inheritance is demonstrated by

Listing 10.10.

LISTING 10.10 Using Multiple Inheritance to Model a Platypus That Is Part Mammal,
Part Bird, and Part Reptile

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Mammal
 4: {
 5: public:
 6: void FeedBabyMilk()
 7: {
 8: cout << "Mammal: Baby says glug!" << endl;
 9: }
10: };
11:
12: class Reptile
13: {

class Mammal

• Feeds young milk
• Covered with hair/fur

class Bird

• Lays eggs
• Has a beak/bill

class Platypus

• Can swim

Inherited Attributes
• Feeds young milk
• Covered with hair/fur
• Lays eggs
• Has a beak/bill
• Webbed feet
• Venomous

class Reptile

• Webbed feet
• Venomous

FIGURE 10.3

Relationship of a
class Platypus,
to classes
Mammal, Reptile,
and Bird.

ptg18655082

Multiple Inheritance 299

10

14: public:
15: void SpitVenom()
16: {
17: cout << "Reptile: Shoo enemy! Spits venom!" << endl;
18: }
19: };
20:
21: class Bird
22: {
23: public:
24: void LayEggs()
25: {
26: cout << "Bird: Laid my eggs, am lighter now!" << endl;
27: }
28: };
29:
30: class Platypus: public Mammal, public Bird, public Reptile
31: {
32: public:
33: void Swim()
34: {
35: cout << "Platypus: Voila, I can swim!" << endl;
36: }
37: };
38:
39: int main()
40: {
41: Platypus realFreak;
42: realFreak.LayEggs();
43: realFreak.FeedBabyMilk();
44: realFreak.SpitVenom();
45: realFreak.Swim();
46:
47: return 0;
48: }

Output ▼
Bird: Laid my eggs, am lighter now!
Mammal: Baby says glug!
Reptile: Shoo enemy! Spits venom!
Platypus: Voila, I can swim!

Analysis ▼

class Platypus features a really compact definition in Lines 30–37. It essentially does

nothing more than inherit from the three classes Mammal, Reptile, and Bird. main()

ptg18655082

300 LESSON 10: Implementing Inheritance

in Lines 41–44 is able to invoke these three characteristics of the individual base classes

using an object of the derived class Platypus that is named realFreak. In addition

to invoking the functions inherited from classes Mammal, Bird, and Reptile, main() in

Line 45 invokes Platypus::Swim(). This program demonstrates the syntax of multiple

inheritance and also how a derived class exposes all the public attributes (in this case

public member functions) of its many base classes.

Avoiding Inheritance Using final
Starting with C++11, compilers support specifier final. It is used to ensure that a class

declared as final cannot be used as a base class. In Listing 10.10 for instance, class

Platypus represents a well-evolved species. You may therefore want to ensure that this

class is final, thereby blocking every possibility to inherit from it. A version of class

Platypus taken from Listing 10.10 and declared as final would look like this:

class Platypus final: public Mammal, public Bird, public Reptile
{
public:
 void Swim()
 {

cout << "Platypus: Voila, I can swim!" << endl;
 }
};

In addition to classes, final can also be used on member functions in controlling

 polymorphic behavior. This is discussed in Lesson 11, “Polymorphism.”

Platypus can swim, but it’s not a fish. Hence, in Listing 10.10,
you did not inherit Platypus from Fish just for the convenience
of reusing an existing Fish::Swim() function. When making
design decisions, don’t forget that public inheritance also should
signify an “is-a” relationship. It should not be used indiscrimi-
nately with the purpose of fulfilling goals related to code reuse.
Those goals can still be achieved differently.

NOTE

ptg18655082

301

10

Summary

DO DON’T

DO create a public inheritance
hierarchy to establish an is-a
 relationship.

DO create a private or protected
inheritance hierarchy to establish a
has-a relationship.

DO remember that public inheritance
means that classes deriving from
the derived class have access to the
public and protected members
of the base class. An object of the
derived class can be used to access
public members of the base.

DO remember that private inheri-
tance means that even classes deriv-
ing from the derived class have no
access to any member of the base
class.

DO remember that protected inheri-
tance means that classes deriving
from the derived class have access
to the public and protected meth-
ods of the base class. Yet, an object
of the derived class cannot be used
to access public members of the
base.

DO remember that irrespective of the
nature of inheritance relationship,
private members in the base class
cannot be accessed by any derived
class.

DON’T create an inheritance hierar-
chy just to reuse a trivial function.

DON’T use private or public inheri-
tance indiscriminately as they can
end up being architectural bottle-
necks towards the future scalability
of your application.

DON’T program derived class func-
tions that hide those in the base
class by having the same name but a
different set of input parameters.

Summary
In this lesson, you learned the basics of inheritance in C++. You learned that public

inheritance is an is-a relationship between the derived class and base class, whereas

private and protected inheritances create has-a relationships. You saw the application

of access specifier protected in exposing attributes of a base class only to the derived

class, but keeping them hidden from classes outside the inheritance hierarchy. You

ptg18655082

302 LESSON 10: Implementing Inheritance

learned that protected inheritance differs from private in that the derived classes of

the derived class can access public and protected members of the base class, which

is not possible in private inheritance. You learned the basics of overriding methods and

hiding them and how to avoid unwanted method hiding via the using keyword.

You are now ready to answer some questions and then continue to learning the next

major pillar of object-oriented programming, polymorphism.

Q&A
 Q I have been asked to model class Mammal along with a few mammals such as

the Human, Lion, and Whale. Should I use an inheritance hierarchy, and if so
which one?

 A As Human, Lion, and Whale are all mammals and essentially fulfill an is-a rela-

tionship, you should use public inheritance where class Mammal is the base class,

and others such as class Human, Lion, and Whale inherit from it.

 Q What is the difference between the terms derived class and subclass?

 A Essentially none. These are both used to imply a class that derives—that is,

 specializes—a base class.

 Q A derived class uses public inheritance in relating to its base class. Can it
access the base class’s private members?

 A No. The compiler always ensures that the most restrictive of the applicable access

specifiers is in force. Irrespective of the nature of inheritance, private members

of a class are never accessible outside the class. An exception to this rule applies to

classes and functions that have been declared as a friend.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material that was covered and exercises to provide you with experience in using what

you’ve learned. Try to answer the quiz and exercise questions before checking the

answers in Appendix E, and be certain you understand the answers before continuing to

the next lesson.

Quiz
1. I want some base class members to be accessible to the derived class but not out-

side the class hierarchy. What access specifier do I use?

ptg18655082

Workshop 303

10

2. If I pass an object of the derived class as an argument to a function that takes a

parameter of the base class by value, what happens?

3. Which one should I favor? Private inheritance or composition?

4. How does the using keyword help me in an inheritance hierarchy?

5. A class Derived inherits private from class Base. Another class

SubDerived inherits public from class Derived. Can SubDerived access

public members of class Base?

Exercises
 1. In what order are the constructors invoked for class Platypus as shown in

Listing 10.10?

2. Show how a class Polygon, class Triangle, and class Shape are related

to each other.

 3. class D2 inherits from class D1, which inherits from class Base. To keep D2

from accessing the public members in Base, what access specifier would you use

and where would you use it?

 4. What is the nature of inheritance with this code snippet?

class Derived: Base
{
 // ... Derived members
};

 5. BUG BUSTERS: What is the problem in this code:

class Derived: public Base
{
 // ... Derived members
};
void SomeFunc (Base value)
{
 // …
}

ptg18655082

LESSON 11
Polymorphism

Having learned the basics of inheritance, creating an inheritance hierarchy,
and understanding that public inheritance essentially models an is-a
 relationship, it’s time to move on to consuming this knowledge in learning
the holy grail of object-oriented programming: polymorphism.

In this lesson, you find out

 ■ What polymorphism actually means

 ■ What virtual functions do and how to use them

 ■ What abstract base classes are and how to declare them

 ■ What virtual inheritance means and where you need it

ptg18655082

306 LESSON 11: Polymorphism

Basics of Polymorphism
“Poly” is Greek for many, and “morph” means form. Polymorphism is that feature of

object-oriented languages that allows objects of different types to be treated similarly.

This lesson focuses on polymorphic behavior that can be implemented in C++ via the

inheritance hierarchy, also known as subtype polymorphism.

Need for Polymorphic Behavior
In Lesson 10, “Implementing Inheritance,” you found out how Tuna and Carp inherit

public method Swim() from Fish as shown in Listing 10.1. It is, however, possible that

both Tuna and Carp provide their own Tuna::Swim() and Carp::Swim() methods

to make Tuna and Carp different swimmers. Yet, as each of them is also a Fish, if a

user with an instance of Tuna uses the base class type to invoke Fish::Swim(), he ends

up executing only the generic part Fish::Swim() and not Tuna::Swim(), even though

that base class instance Fish is a part of a Tuna. This problem is demonstrated in

Listing 11.1.

All the code samples in this lesson have been stripped to the
bare essentials required to explain the topic in question and
to keep the number of lines of code to a minimum to improve
readability.

When you are programming, you should program your classes
correctly and create inheritance hierarchies that make
sense, keeping the design and purpose of the application in
perspective.

NOTE

LISTING 11.1 Invoking Methods Using an Instance of the Base Class Fish That Belongs
to a Tuna

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: void Swim()
 7: {
 8: cout << "Fish swims! " << endl;
 9: }
10: };
11:

ptg18655082

Basics of Polymorphism 307

11

12: class Tuna:public Fish
13: {
14: public:
15: // override Fish::Swim
16: void Swim()
17: {
18: cout << "Tuna swims!" << endl;
19: }
20: };
21:
22: void MakeFishSwim(Fish& inputFish)
23: {
24: // calling Fish::Swim
25: inputFish.Swim();
26: }
27:
28: int main()
29: {
30: Tuna myDinner;
31:
32: // calling Tuna::Swim
33: myDinner.Swim();
34:
35: // sending Tuna as Fish
36: MakeFishSwim(myDinner);
37:
38: return 0;
39: }

Output ▼
Tuna swims!
Fish swims!

Analysis ▼

class Tuna specializes class Fish via public inheritance as shown in Line 12. It

also overrides Fish::Swim(). main() makes a direct call to Tuna::Swim() in Line 33

and passes myDinner (of type Tuna) as a parameter to MakeFishSwim() that inter-

prets it as a reference Fish&, as shown in the declaration at Line 22. In other words,

MakeFishSwim(Fish&) doesn’t care if the object sent was a Tuna, handles it as a Fish,

and invokes Fish::Swim(). So, the second line of output indicates that the same object

Tuna produced the output of a Fish not indicating any specialization thereof (this could

as well be a Carp).

ptg18655082

308 LESSON 11: Polymorphism

What the user would ideally expect is that an object of type Tuna behaves like a tuna

even if the method invoked is Fish::Swim(). In other words, when inputFish.Swim()

is invoked in Line 25, he expects it to execute Tuna::Swim(). Such polymorphic behavior

where an object of known type class Fish can behave as its actual type; namely,

derived class Tuna, can be implemented by making Fish::Swim() a virtual function.

Polymorphic Behavior Implemented Using Virtual
Functions
You have access to an object of type Fish, via pointer Fish* or reference Fish&. This

object could have been instantiated solely as a Fish, or be part of a Tuna or Carp

that inherits from Fish. You don’t know (and don’t care). You invoke method Swim()

using this pointer or reference, like this:

pFish->Swim();
myFish.Swim();

What you expect is that the object Fish swims as a Tuna if it is part of a Tuna, as a

Carp if it is part of a Carp, or an anonymous Fish if it wasn’t instantiated as part of

a specialized class such as Tuna or Carp. You can ensure this by declaring function

Swim() in the base class Fish as a virtual function:

class Base
{
 virtual ReturnType FunctionName (Parameter List);
};
class Derived
{
 ReturnType FunctionName (Parameter List);
};

Use of keyword virtual means that the compiler ensures that any overriding variant

of the requested base class method is invoked. Thus, if Swim() is declared virtual,

invoking myFish.Swim() (myFish being of type Fish&) results in Tuna::Swim() being

executed as demonstrated by Listing 11.2.

LISTING 11.2 The Effect of Declaring Fish::Swim() as a virtual Method

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:

ptg18655082

Basics of Polymorphism 309

11

 6: virtual void Swim()
 7: {
 8: cout << "Fish swims!" << endl;
 9: }
10: };
11:
12: class Tuna:public Fish
13: {
14: public:
15: // override Fish::Swim
16: void Swim()
17: {
18: cout << "Tuna swims!" << endl;
19: }
20: };
21:
22: class Carp:public Fish
23: {
24: public:
25: // override Fish::Swim
26: void Swim()
27: {
28: cout << "Carp swims!" << endl;
29: }
30: };
31:
32: void MakeFishSwim(Fish& inputFish)
33: {
34: // calling virtual method Swim()
35: inputFish.Swim();
36: }
37:
38: int main()
39: {
40: Tuna myDinner;
41: Carp myLunch;
42:
43: // sending Tuna as Fish
44: MakeFishSwim(myDinner);
45:
46: // sending Carp as Fish
47: MakeFishSwim(myLunch);
48:
49: return 0;
50: }

Output ▼
Tuna swims!
Carp swims!

ptg18655082

310 LESSON 11: Polymorphism

Analysis ▼

The implementation of function MakeFishSwim(Fish&) has not changed one bit since

Listing 11.1. Yet, the output it produces is dramatically different. For one, Fish::Swim()

has not been invoked at all because of the presence of overriding variants Tuna::Swim()

and Carp::Swim() that have taken priority over Fish::Swim() because the latter has

been declared as a virtual function. This is a very important development. It implies

that even without knowing the exact type of Fish being handled, the implementation

MakeFishSwim() could result in different implementations of Swim() defined in differ-

ent derived classes being invoked, given only a base class instance.

This is polymorphism: treating different fishes as a common type Fish, yet ensuring that

the right implementation of Swim() supplied by the derived types is executed.

Need for Virtual Destructors
There is a more sinister side to the feature demonstrated by Listing 11.1—unintentionally

invoking base class functionality of an instance of type derived, when a specialization is

available. What happens when a function calls operator delete using a pointer of type

Base* that actually points to an instance of type Derived?

Which destructor would be invoked? See Listing 11.3.

LISTING 11.3 A Function That Invokes Operator delete on Base*

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: Fish()
 7: {
 8: cout << "Constructed Fish" << endl;
 9: }
10: ~Fish()
11: {
12: cout << "Destroyed Fish" << endl;
13: }
14: };
15:
16: class Tuna:public Fish
17: {
18: public:
19: Tuna()
20: {
21: cout << "Constructed Tuna" << endl;
22: }

ptg18655082

Basics of Polymorphism 311

11

23: ~Tuna()
24: {
25: cout << "Destroyed Tuna" << endl;
26: }
27: };
28:
29: void DeleteFishMemory(Fish* pFish)
30: {
31: delete pFish;
32: }
33:
34: int main()
35: {
36: cout << "Allocating a Tuna on the free store:" << endl;
37: Tuna* pTuna = new Tuna;
38: cout << "Deleting the Tuna: " << endl;
39: DeleteFishMemory(pTuna);
40:
41: cout << "Instantiating a Tuna on the stack:" << endl;
42: Tuna myDinner;
43: cout << "Automatic destruction as it goes out of scope: " << endl;
44:
45: return 0;
46: }

Output ▼
Allocating a Tuna on the free store:
Constructed Fish
Constructed Tuna
Deleting the Tuna:
Destroyed Fish
Instantiating a Tuna on the stack:
Constructed Fish
Constructed Tuna
Automatic destruction as it goes out of scope:
Destroyed Tuna
Destroyed Fish

Analysis ▼

main() creates an instance of Tuna on the free store using new at Line 37 and

then releases the allocated memory immediately after using service function

DeleteFishMemory() at Line 39. For the sake of comparison, another instance of

Tuna is created as a local variable myDinner on the stack at Line 42 and goes out of

scope when main() ends. The output is created by the cout statements in the construc-

tors and destructors of classes Fish and Tuna. Note that while Tuna and Fish were

ptg18655082

312 LESSON 11: Polymorphism

both constructed on the free store due to new, the destructor of Tuna was not invoked

 during delete, rather only that of the Fish. This is in stark contrast to the construction

and destruction of local member myDinner where all constructors and destructors are

invoked. Lesson 10 demonstrated in Listing 10.7 the correct order of construction and

destruction of classes in an inheritance hierarchy, showing that all destructors need to be

invoked, including ~Tuna(). Clearly, something is amiss.

This flaw means that the destructor of a deriving class that has been instantiated on the

free store using new would not be invoked if delete is called using a pointer of type

Base*. This can result in resources not being released, memory leaks, and so on and is a

problem that is not to be taken lightly.

To avoid this problem, you use virtual destructors as seen in Listing 11.4.

LISTING 11.4 Using virtual Destructors to Ensure That Destructors in Derived Classes
Are Invoked When Deleting a Pointer of Type Base*

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: Fish()
 7: {
 8: cout << "Constructed Fish" << endl;
 9: }
10: virtual ~Fish() // virtual destructor!
11: {
12: cout << "Destroyed Fish" << endl;
13: }
14: };
15:
16: class Tuna:public Fish
17: {
18: public:
19: Tuna()
20: {
21: cout << "Constructed Tuna” << endl;
22: }
23: ~Tuna()
24: {
25: cout << "Destroyed Tuna" << endl;
26: }
27: };
28:

ptg18655082

Basics of Polymorphism 313

11

29: void DeleteFishMemory(Fish* pFish)
30: {
31: delete pFish;
32: }
33:
34: int main()
35: {
36: cout << "Allocating a Tuna on the free store:" << endl;
37: Tuna* pTuna = new Tuna;
38: cout << "Deleting the Tuna: " << endl;
39: DeleteFishMemory(pTuna);
40:
41: cout << "Instantiating a Tuna on the stack:" << endl;
42: Tuna myDinner;
43: cout << "Automatic destruction as it goes out of scope: " << endl;
44:
45: return 0;
46: }

Output ▼
Allocating a Tuna on the free store:
Constructed Fish
Constructed Tuna
Deleting the Tuna:
Destroyed Tuna
Destroyed Fish
Instantiating a Tuna on the stack:
Constructed Fish
Constructed Tuna
Automatic destruction as it goes out of scope:
Destroyed Tuna
Destroyed Fish

Analysis ▼

The only improvement in Listing 11.4 over Listing 11.3 is the addition of keyword

virtual at Line 10 where the destructor of base class Fish has been declared. Note

that this small change resulted in the compiler essentially executing Tuna::~Tuna() in

addition to Fish::~Fish() when operator delete is invoked on Fish* that actually

points to a Tuna, as shown in Line 31. Now, this output also demonstrates that the

sequence and the invocation of constructors and destructors are the same irrespective of

whether the object of type Tuna is instantiated on the free store using new, as shown in

Line 37, or as a local variable on the stack, as shown in Line 42.

ptg18655082

314 LESSON 11: Polymorphism

Always declare the base class destructor as virtual:

class Base

{

public:

 virtual ~Base() {}; // virtual destructor

};

This ensures that one with a pointer Base* cannot invoke
delete in a way that instances of the deriving classes are not
correctly destroyed.

NOTE

How Do virtual Functions Work? Understanding the
Virtual Function Table

This section is optional toward learning to use polymorphism.
Feel free to skip it or read it to feed your curiosity.NOTE

Function MakeFishSwim(Fish&) in Listing11.2 ends up invoking Carp::Swim() or

Tuna::Swim() methods in spite of the programmer calling Fish::Swim()within it.

Clearly, at compile time, the compiler knows nothing about the nature of objects that

such a function will encounter to be able to ensure that the same function ends up execut-

ing different Swim() methods at different points in time. The Swim() method that needs

to be invoked is evidently a decision made at runtime, using a logic that implements

 polymorphism, which is supplied by the compiler at compile-time.

Consider a class Base that declared N virtual functions:

class Base
{
public:
 virtual void Func1()
 {

// Func1 implementation
 }
 virtual void Func2()
 {

// Func2 implementation
 }

ptg18655082

Basics of Polymorphism 315

11

 // .. so on and so forth
 virtual void FuncN()
 {

// FuncN implementation
 }
};

class Derived that inherits from Base overrides Base::Func2(), exposing the other

virtual functions directly from class Base:

class Derived: public Base
{
public:
 virtual void Func1()
 {

// Func2 overrides Base::Func2()
 }

 // no implementation for Func2()

 virtual void FuncN()
 {

// FuncN implementation
 }
};

The compiler sees an inheritance hierarchy and understands that the Base defines certain

virtual functions that have been overridden in Derived. What the compiler now does is

to create a table called the Virtual Function Table (VFT) for every class that implements

a virtual function or derived class that overrides it. In other words, classes Base and

Derived get an instance of their own Virtual Function Table. When an object of these

classes is instantiated, a hidden pointer (let’s call it VFT*) is initialized to the respective

VFT. The Virtual Function Table can be visualized as a static array containing function

pointers, each pointing to the virtual function (or override) of interest, as illustrated in

Figure 11.1.

ptg18655082

316 LESSON 11: Polymorphism

VFT for Base Base::Func1()
{
 // ... base implementation
}

Base::Func2()
{
 // ... base implementation
}

Base::FuncN()
{
 // ... base implementation
}

Instance Base

VFT Pointer

Other members

...

virtual Func1()

virtual Func2()

virtual FuncN()

.

.

.

Derived::Func1()
{
 // overrides Base::Func1()
}

Derived::FuncN()
{
 // Overrides Base::FuncN()
}

Instance Derived

VFT Pointer

Other members

...

virtual Func1()

virtual Func2()

virtual FuncN()

.

.

.

VFT for Derived

FIGURE 11.1

Visualization of a
Virtual Function
Table for classes
Derived and
Base.

Thus, each table is comprised of function pointers, each pointing to the available imple-

mentation of a virtual function. In the case of class Derived, all except one function

pointer in its VFT point to local implementations of the virtual method in Derived.

Derived has not overridden Base::Func2(), and hence that function pointer points to

the implementation in class Base.

This means that when a user of class Derived calls

CDerived objDerived;
objDerived.Func2();

the compiler ensures a lookup in the VFT of class Derived and ensures that the

implementation Base::Func2() is invoked. This also applies to calls that use methods

that have been virtually overridden:

void DoSomething(Base& objBase)
{
 objBase.Func1(); // invoke Derived::Func1
}
int main()
{
 Derived objDerived;
 DoSomething(objDerived);
};

ptg18655082

Basics of Polymorphism 317

11

In this case, even though objDerived is being interpreted via objBase as an instance

of class Base, the VFT pointer in this instance is still pointing to the same table

created for class Derived. Thus, Func1() executed via this VFT is certainly

Derived::Func1().

This is how Virtual Function Tables help the implementation of (subtype) polymorphism

in C++.

The proof of existence of a hidden Virtual Function Table pointer is demonstrated by

Listing 11.5, which compares the sizeof two identical classes—one that has virtual

functions and another that doesn’t.

LISTING 11.5 Demonstrating the Presence of a Hidden VFT Pointer in Comparing
Two Classes Identical but for a Function Declared Virtual

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class SimpleClass
 4: {
 5: int a, b;
 6:
 7: public:
 8: void DoSomething() {}
 9: };
 10:
 11: class Base
 12: {
 13: int a, b;
 14:
 15: public:
 16: virtual void DoSomething() {}
 17: };
 18:
 19: int main()
 20: {
 21: cout << "sizeof(SimpleClass) = " << sizeof(SimpleClass) << endl;
 22: cout << "sizeof(Base) = " << sizeof(Base) << endl;
 23:
 24: return 0;
 25: }

Output Using 32-Bit Compiler ▼
sizeof(SimpleClass) = 8
sizeof(Base) = 12

ptg18655082

318 LESSON 11: Polymorphism

Output Using 64-Bit Compiler ▼
sizeof(SimpleClass) = 8
sizeof(Base) = 16

Analysis ▼

This is a sample that has been stripped to the bare minimum. You see two classes,

SimpleClass and Base, that are identical in the types and number of members,

yet Base has the function DoSomething() declared as virtual (nonvirtual in

SimpleClass). The difference in adding this virtual keyword is that the compiler

generates a virtual function table for class Base and a reserved place for a pointer to the

same in Base as a hidden member. This pointer consumes the 4 extra bytes in my 32-bit

system and is the proof of the pudding.

C++ also allows you to query a pointer Base* if it is of type
Derived* using casting operator dynamic_cast and then per-
form conditional execution on the basis of the result of the
query.

This is called runtime type identification (RTTI) and should ideally
be avoided even though it is supported by most C++ compilers.
This is because needing to know the type of derived class object
behind a base class pointer is commonly considered poor pro-
gramming practice.

RTTI and dynamic_cast are discussed in Lesson 13, “Casting
Operators.”

NOTE

Abstract Base Classes and Pure Virtual Functions
A base class that cannot be instantiated is called an abstract base class. Such a base

class fulfills only one purpose, that of being derived from. C++ allows you to create an

abstract base class using pure virtual functions.

A virtual method is said to be pure virtual when it has a declaration as shown in the

 following:

class AbstractBase
{
public:
 virtual void DoSomething() = 0; // pure virtual method
};

ptg18655082

Basics of Polymorphism 319

11

This declaration essentially tells the compiler that DoSomething() needs to be imple-

mented and by the class that derives from AbstractBase:

class Derived: public AbstractBase
{
public:
 void DoSomething() // pure virtual fn. must be implemented
 {

cout << "Implemented virtual function" << endl;
 }
};

Thus, what class AbstractBase has done is that it has enforced class Derived to supply

an implementation for virtual method DoSomething(). This functionality where a base

class can enforce support of methods with a specified name and signature in classes that

derive from it is that of an interface. Think of a Fish again. Imagine a Tuna that cannot

swim fast because Tuna did not override Fish::Swim(). This is a failed implementation

and a flaw. Making class Fish an abstract base class with Swim as a pure virtual func-

tion ensures that Tuna that derives from Fish implements Tuna::Swim() and swims

like a Tuna and not like just any Fish. See Listing 11.6.

LISTING 11.6 class Fish as an Abstract Base Class for Tuna and Carp

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: // define a pure virtual function Swim
 7: virtual void Swim() = 0;
 8: };
 9:
10: class Tuna:public Fish
11: {
12: public:
13: void Swim()
14: {
15: cout << "Tuna swims fast in the sea! " << endl;
16: }
17: };
18:
19: class Carp:public Fish
20: {
21: void Swim()
22: {
23: cout << "Carp swims slow in the lake!" << endl;

ptg18655082

320 LESSON 11: Polymorphism

24: }
25: };
26:
27: void MakeFishSwim(Fish& inputFish)
28: {
29: inputFish.Swim();
30: }
31:
32: int main()
33: {
34: // Fish myFish; // Fails, cannot instantiate an ABC
35: Carp myLunch;
36: Tuna myDinner;
37:
38: MakeFishSwim(myLunch);
39: MakeFishSwim(myDinner);
40:
41: return 0;
42: }

Output ▼
Carp swims slow in the lake!
Tuna swims fast in the sea!

Analysis ▼

The first line in main() at Line 34 (commented out) is significant. It demonstrates that

the compiler does not allow you to create an instance of an abstract base class (‘ABC’)

Fish. It expects something concrete, such as a specialization of Fish—for example,

Tuna—which makes sense even in the real-world arrangement of things. Thanks to the

pure virtual function Fish::Swim() declared in Line 7, both Tuna and Carp are forced

into implementing Tuna::Swim() and Carp::Swim(). Lines 27–30 that implement

MakeFishSwim(Fish&) demonstrate that even if an abstract base class cannot be instan-

tiated, you can use it as a reference or a pointer. Abstract base classes are thus a very

good mechanism to declare functions that you expect derived classes to implement and

fulfill. If a class Trout that derived from Fish forgets to implement Trout::Swim(), the

compilation also fails.

Abstract Base Classes are often simply called ABCs.
NOTE

ABCs help enforce certain design constraints on your program.

ptg18655082

321

11

Using virtual Inheritance to Solve the Diamond Problem

Using virtual Inheritance to Solve
the Diamond Problem
In Lesson 10 you saw the curious case of a duck-billed platypus that is part mammal,

part bird, and part reptile. This is an example where a class Platypus needs to inherits

from class Mammal, class Bird, and class Reptile. However, each of these in turn

inherits from a more generic class Animal, as illustrated in Figure 11.2.

So, what happens when you instantiate a Platypus? How many instances of class

Animal are instantiated for one instance of Platypus? Listing 11.7 helps answer this

question.

 class Animal

• Can move

 class Mammal

• Feeds young milk

• Covered with hair/fur

Inherited Attributes

• Can move

 class Bird

• Lays eggs

• Has a beak/bill

Inherited Attributes

• Can move

 class Platypus

• Can swim

Inherited Attributes

• Can move

• Feeds young milk

• Covered with hair/fur

• Lays eggs

• Has a beak/bill

• Webbed feet

• Venomous

 class Reptile

• Webbed feet

• Venomous

Inherited Attributes

• Can move

FIGURE 11.2

The class diagram
of a platypus dem-
onstrating multiple
inheritance.

ptg18655082

322 LESSON 11: Polymorphism

LISTING 11.7 Checking for the Number of Base Class Animal Instances for One
Instance of Platypus

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Animal
 4: {
 5: public:
 6: Animal()
 7: {
 8: cout << "Animal constructor" << endl;
 9: }
10:
11: // sample member
12: int age;
13: };
14:
15: class Mammal:public Animal
16: {
17: };
18:
19: class Bird:public Animal
20: {
21: };
22:
23: class Reptile:public Animal
24: {
25: };
26:
27: class Platypus:public Mammal, public Bird, public Reptile
28: {
29: public:
30: Platypus()
31: {
32: cout << "Platypus constructor" << endl;
33: }
34: };
35:
36: int main()
37: {
38: Platypus duckBilledP;
39:
40: // uncomment next line to see compile failure
41: // age is ambiguous as there are three instances of base Animal
42: // duckBilledP.age = 25;
43:
44: return 0;
45: }

ptg18655082

323

11

Using virtual Inheritance to Solve the Diamond Problem

Output ▼
Animal constructor
Animal constructor
Animal constructor
Platypus constructor

Analysis ▼

As the output demonstrates, due to multiple inheritance and all three base classes

of Platypus inheriting in turn from class Animal, you have three instances of

Animal created automatically for every instance of a Platypus, as shown in Line 38.

This is ridiculous as Platypus is still one animal that has inherited certain attributes

from Mammal, Bird, and Reptile. The problem in the number of instances of base

Animal is not limited to memory consumption alone. Animal has an integer member

Animal::age (that has been kept public for explanation purposes). When you want

to access Animal::age via an instance of Platypus, as shown in Line 42, you get a

compilation error simply because the compiler doesn’t know whether you want to set

Mammal::Animal::age or Bird::Animal::age or Reptile::Animal::age. It can get

even more ridiculous—if you so wanted you could set all three:

duckBilledP.Mammal::Animal::age = 25;
duckBilledP.Bird::Animal::age = 25;
duckBilledP.Reptile::Animal::age = 25;

Clearly, one duck-billed platypus should have only one age. Yet, you want class

Platypus to be a Mammal, Bird, and Reptile. The solution is in virtual inheritance. If

you expect a derived class to be used as a base class, it possibly is a good idea to define

its relationship to the base using the keyword virtual:

class Derived1: public virtual Base
{
 // ... members and functions
};
class Derived2: public virtual Base
{
 // ... members and functions
};

ptg18655082

324 LESSON 11: Polymorphism

A better class Platypus (actually a better class Mammal, class Bird, and class Reptile)

is in Listing 11.8.

LISTING 11.8 Demonstrating How virtual Keyword in Inheritance Hierarchy Helps
Restrict the Number of Instances of Base Class Animal to One

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Animal
 4: {
 5: public:
 6: Animal()
 7: {
 8: cout << "Animal constructor" << endl;
 9: }
10:
11: // sample member
12: int age;
13: };
14:
15: class Mammal:public virtual Animal
16: {
17: };
18:
19: class Bird:public virtual Animal
20: {
21: };
22:
23: class Reptile:public virtual Animal
24: {
25: };
26:
27: class Platypus final:public Mammal, public Bird, public Reptile
28: {
29: public:
30: Platypus()
31: {
32: cout << "Platypus constructor" << endl;
33: }
34: };
35:
36: int main()
37: {
38: Platypus duckBilledP;
39:
40: // no compile error as there is only one Animal::age
41: duckBilledP.age = 25;
42:
43: return 0;
44: }

ptg18655082

325

11

Using virtual Inheritance to Solve the Diamond Problem

Output ▼
Animal constructor
Platypus constructor

Analysis ▼

Do a quick comparison against the output of the previous Listing 11.7, and you see

that the number of instances of class Animal constructed has fallen to one, which

is finally reflective of the fact that only one Platypus has been constructed as well.

This is because of the keyword virtual used in the relationship between classes

Mammal, Bird, and Reptile ensures that when these classes are grouped together under

Platypus the common base Animal exists only in a single instance. This solves a lot

of problems; one among them is Line 41 that now compiles without ambiguity resolution

as shown in Listing 11.7. Also note the usage of keyword final in Line 27 to ensure that

class Platypus cannot be used as a base class.

Problems caused in an inheritance hierarchy containing two or
more base classes that inherit from a common base, which
results in the need for ambiguity resolution in the absence of
virtual inheritance, is called the Diamond Problem.

The name “Diamond” is possibly inspired by the shape the
class diagram takes (visualize Figure 11.2 with straight and
slanted lines relating Platypus to Animal via Mammal, Bird, and
Reptile to see a diamond).

NOTE

The virtual keyword in C++ often is used in different contexts
for different purposes. (My best guess is that someone wanted
to save time on inventing an apt keyword.) Here is a summary:

A function declared virtual means that an existing overriding
 function in a derived class is invoked.

An inheritance relationship declared using keyword virtual
between classes Derived1 and Derived2 that inherits from
class Base means that another class Derived3 that inherits
from Derived1 and Derived2 still results in the creation of only
one instance of Base during instantiation of type Derived3.

Thus the same keyword virtual is used to implement two
 different concepts.

NOTE

ptg18655082

326 LESSON 11: Polymorphism

Specifier Override to Indicate Intention
to Override
Our versions of base class Fish have featured a virtual function called Swim() as seen in

the following code:

class Fish
{
public:
 virtual void Swim()
 {

cout << "Fish swims!" << endl;
 }
};

Assume that derived class Tuna were to define a function Swim() but with a slightly

 different signature—one using const inserted unintentionally by a programmer who

wants to override Fish::Swim():

class Tuna:public Fish
{
public:
 void Swim() const
 {

cout << "Tuna swims!" << endl;
 }
};

This function Tuna::Swim() actually does not override Fish::Swim(). The signatures

are different thanks to the presence of const in Tuna::Swim(). Compilation succeeds,

however, and the programmer may falsely believe that he has successfully overridden the

function Swim() in class Tuna. C++11 and beyond give the programmer a specifier

override that is used to verify whether the function being overridden has been declared

as virtual by the base class:

class Tuna:public Fish
{
public:
 void Swim() const override // Error: no virtual fn with this sig in Fish
 {

cout << "Tuna swims!" << endl;
 }
};

ptg18655082

327

11

Use final to Prevent Function Overriding

Thus, override supplies a powerful way of expressing the explicit intention to override

a base class virtual function, thereby getting the compiler to check whether

 ■ The base class function is virtual.

 ■ The signature of the base class virtual function exactly matches the signature of the

derived class function declared to override.

Use final to Prevent Function
Overriding
Specifier final, introduced in C++11, was first presented to you in Lesson 10. A class

declared as final cannot be used as a base class. Similarly, a virtual function

declared as final cannot be overridden in a derived class.

Thus, a version of class Tuna that doesn’t allow any further specialization of virtual

function Swim() would look like this:

class Tuna:public Fish
{
public:
 // override Fish::Swim and make this final
 void Swim() override final
 {

cout << "Tuna swims!" << endl;
 }
};

This version of Tuna can be inherited from, but Swim() cannot be overridden any

 further:

class BluefinTuna final:public Tuna
{
public:
 void Swim() // Error: Swim() was final in Tuna, cannot override
 {
 }
};

A demonstration of specifiers override and final is available in Listing 11.9.

ptg18655082

328 LESSON 11: Polymorphism

We used final in the declaration of class BluefinTuna as
well. This ensures that class BluefinTuna cannot be used as
a base class. Therefore, the following would result in error:

class FailedDerivation:public BluefinTuna

{

};

NOTE

Virtual Copy Constructors?
Well, the question mark at the end of the section title is justified. It is technically

 impossible in C++ to have virtual copy constructors. Yet, such a feature would help

you create a collection (for example, a static array) of type Base*, each element being a

 specialization of that type:

// Tuna, Carp and Trout are classes that inherit public from base class Fish
Fish* pFishes[3];
Fishes[0] = new Tuna();
Fishes[1] = new Carp();
Fishes[2] = new Trout();

Then assigning it into another array of the same type, where the virtual copy constructor

ensures a deep copy of the derived class objects as well, ensures that Tuna, Carp,

and Trout are copied as Tuna, Carp, and Trout even though the copy constructor is

 operating on type Fish*.

Well, that’s a nice dream.

Virtual copy constructors are not possible because the virtual keyword in context of

base class methods being overridden by implementations available in the derived class

are about polymorphic behavior generated at runtime. Constructors, on the other hand,

are not polymorphic in nature as they can construct only a fixed type, and hence C++

does not allow usage of the virtual copy constructors.

Having said that, there is a nice workaround in the form of defining your own clone

function that allows you to do just that:

class Fish
{
public:
 virtual Fish* Clone() const = 0; // pure virtual function
};

class Tuna:public Fish
{

ptg18655082

Virtual Copy Constructors? 329

11

// ... other members
public:
 Tuna * Clone() const // virtual clone function
 {

return new Tuna(*this); // return new Tuna that is a copy of this
 }
};

Thus, virtual function Clone is a simulated virtual copy constructor that needs to be

explicitly invoked, as shown in Listing 11.9.

LISTING 11.9 Tuna and Carp That Support a Clone Function as a Simulated Virtual
Copy Constructor

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: virtual Fish* Clone() = 0;
 7: virtual void Swim() = 0;
 8: virtual ~Fish() {};
 9: };
10:
11: class Tuna: public Fish
12: {
13: public:
14: Fish* Clone() override
15: {
16: return new Tuna (*this);
17: }
18:
19: void Swim() override final
20: {
21: cout << "Tuna swims fast in the sea" << endl;
22: }
23: };
24:
25: class BluefinTuna final:public Tuna
26: {
27: public:
28: Fish* Clone() override
29: {
30: return new BluefinTuna(*this);
31: }
32:
33: // Cannot override Tuna::Swim as it is "final" in Tuna
34: };
35:
36: class Carp final: public Fish

ptg18655082

330 LESSON 11: Polymorphism

37: {
38: Fish* Clone() override
39: {
40: return new Carp(*this);
41: }
42: void Swim() override final
43: {
44: cout << "Carp swims slow in the lake" << endl;
45: }
46: };
47:
48: int main()
49: {
50: const int ARRAY_SIZE = 4;
51:
52: Fish* myFishes[ARRAY_SIZE] = {NULL};
53: myFishes[0] = new Tuna();
54: myFishes[1] = new Carp();
55: myFishes[2] = new BluefinTuna();
56: myFishes[3] = new Carp();
57:
58: Fish* myNewFishes[ARRAY_SIZE];
59: for (int index = 0; index < ARRAY_SIZE; ++index)
60: myNewFishes[index] = myFishes[index]->Clone();
 61:
 62: // invoke a virtual method to check
 63: for (int index = 0; index < ARRAY_SIZE; ++index)
 64: myNewFishes[index]->Swim();
 65:
 66: // memory cleanup
 67: for (int index = 0; index < ARRAY_SIZE; ++index)
 68: {
 69: delete myFishes[index];
 70: delete myNewFishes[index];
 71: }
 72:
 73: return 0;
 74: }

Output ▼
Tuna swims fast in the sea
Carp swims slow in the lake
Tuna swims fast in the sea
Carp swims slow in the lake

Analysis ▼

In addition to demonstrating virtual copy constructors via virtual function

Fish::Clone(), Listing 11.9 also demonstrates the usage of keywords override and

ptg18655082

Summary 331

11

final—the latter being applied to virtual functions and classes alike. It also features a

virtual destructor for class Fish in Line 8. Lines 52–56 in main() demonstrate how

a static array of pointers to base class Fish* has been declared and individual elements

assigned to newly created objects of type Tuna, Carp, Tuna, and Carp, respectively.

Note how this array myFishes is able to collect seemingly different types that are all

related by a common base type Fish. This is already cool, if you compare it against

previous arrays in this book that have mostly been of a simple monotonous type int. If

that wasn’t cool enough, you were able to copy into a new array of type Fish* called

myNewFishes using the virtual function Fish::Clone() within a loop, as shown in Line

60. Note that your array is quite small at only four elements. It could’ve been a lot longer

but wouldn’t have made much of a difference to the copy logic that would only need to

adjust the loop-ending condition parameter. Line 64 is the actual check where you invoke

virtual function Fish::Swim() on each stored element in the new array to verify whether

Clone() copied a Tuna as a Tuna and not just a Fish(). The output demonstrates that it

genuinely did copy the Tunas and the Carps just as expected. Also note that the output

of Swim() used on instance of BluefinTuna was the same as that for a Tuna, because

Tuna::Swim() was declared as final. Thus, BluefinTuna was not permitted to over-

ride Swim(), and the compiler executed Tuna::Swim() for it.

DO DON’T

DO remember to mark base class
functions that need to be overridden
by the derived class as virtual.

DO remember that pure virtual
 functions make your class an
Abstract Base Class, and these
 functions must be implemented by a
deriving class.

Do mark functions in derived
classes that are intended to override
base functionality using keyword
 override.

DO use virtual inheritance to solve
the Diamond Problem.

DON’T forget to supply your base
class with a virtual destructor.

DON’T forget that the compiler does
not allow you to create a standalone
instance of an Abstract Base Class.

DON’T forget that virtual inheritance
is about ensuring that the common
base in a diamond hierarchy has only
one instance.

DON’T confuse the function of
 keyword virtual when used in
 creating an inheritance hierarchy with
the same when used in declaring
base class functions.

Summary
In this lesson you learned to tap the power of creating inheritance hierarchies in your

C++ code, by using polymorphism. You learned how to declare and program virtual

functions—how they ensure that the derived class implementation overrides that in the

ptg18655082

332 LESSON 11: Polymorphism

base class even if an instance of the base class is used to invoke the virtual method. You

saw how pure virtual functions were a special type of virtual functions that ensure that

the base class alone cannot be instantiated, making it a perfect place to define interfaces

that derived classes must fulfill. Finally, you saw the Diamond Problem created by mul-

tiple inheritance and how virtual inheritance helps you solve it.

Q&A
 Q Why use the virtual keyword with a base class function when code compiles

without it?

 A Without the virtual keyword, you are not able to ensure that someone calling

objBase.Function() will be redirected to Derived::Function(). Besides,

compilation of code is not the only measure of its quality.

 Q Why did the compiler create the Virtual Function Table?

 A To store function pointers that ensure that the right version of a virtual function is

invoked.

 Q Should a base class always have a virtual destructor?

 A Ideally yes. Only then can you ensure that when someone does a

Base* pBase = new Derived();
delete pBase;

delete on a pointer of type Base* results in the destructor ~Derived() being

invoked. This occurs when destructor ~Base() is declared virtual.

 Q What is an Abstract Base Class good for when I can’t even instantiate it
standalone?

 A The ABC is not meant to be instantiated as a standalone object; rather it is always

meant to be derived from. It contains pure virtual functions that define the minimal

blueprint of functions that deriving classes need to implement, thus taking the role

of an interface.

 Q Given an inheritance hierarchy, do I need to use the keyword virtual on all
declarations of a virtual function or just in the base class?

 A It is enough to declare a function as virtual once, but that declaration has to be in

the base class.

ptg18655082

Workshop 333

11

 Q Can I define member functions and have member attributes in an ABC?

 A Sure you can. Remember that you still cannot instantiate an ABC as it has at least

one pure virtual function that needs to be implemented by a deriving class.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before continuing to the next

 lesson.

Quiz
1. You are modeling shapes—circle and triangle—and want every shape to

 compulsorily implement functions Area() and Print(). How would you do it?

2. Does a compiler create a Virtual Function Table for all classes?

3. My class Fish has two public methods, one pure virtual function, and some

member attributes. Is it still an abstract base class?

Exercises
1. Demonstrate an inheritance hierarchy that implements the question in Quiz 1 for

Circle and Triangle.

2. BUG BUSTERS: What is the problem in the following code:

class Vehicle
{
public:
 Vehicle() {}
 ~Vehicle(){}
};
class Car: public Vehicle
{
public:
 Car() {}
 ~Car() {}
};

3. In the (uncorrected) code in Exercise 2, what is the order of execution of construc-

tors and destructors if an instance of car is created and destroyed like this:

Vehicle* pMyRacer = new Car;
delete pMyRacer;

ptg18655082

LESSON 12
Operator Types and
Operator Overloading

In addition to encapsulating data and methods, classes can also
encapsulate operators that make it easy to operate on instances of
this class. You can use these operators to perform operations such as
 assignment or addition on class objects similar to those on integers
that you saw in Lesson 5, “Working with Expressions, Statements, and
Operators.” Just like functions, operators can also be overloaded.

In this lesson, you learn:

 ■ Using the keyword operator

 ■ Unary and binary operators

 ■ Conversion operators

 ■ The move assignment operator

 ■ Operators that cannot be redefined

ptg18655082

336 LESSON 12: Operator Types and Operator Overloading

What Are Operators in C++?
On a syntactical level, there is very little that differentiates an operator from a function,

save for the use of the keyword operator. An operator declaration looks quite like a

function declaration:

return_type operator operator_symbol (...parameter list...);

The operator_symbol in this case could be any of the several operator types that the

programmer can define. It could be + (addition) or && (logical AND) and so on. The

operands help the compiler distinguish one operator from another. So, why does C++

provide operators when functions are also supported?

Consider a utility class Date that encapsulates the day, month, and year:

Date holiday (12, 25, 2016); // initialized to Dec 25, 2016

Assuming that you want to add a day and get the instance to contain the next

day—Dec 26, 2016—which of the following two options would be more intuitive?

 ■ Option 1 (using the increment operator):

++ holiday;

 ■ Option 2 (using a member function Increment()):

holiday.Increment(); // Dec 26, 2016

Clearly, Option 1 scores over method Increment(). The operator-based mechanism

facilitates consumption by supplying ease of use and intuitiveness. Implementing operator

(<) in class Date would help you compare two instances of class Date like this:

if(date1 < date2)
{
 // Do something
}
else
{
 // Do something else
}

Operators can be used in more situations than just classes that manage dates. An addition

operator (+) in a string utility class such as MyString introduced to you in Listing 9.9 in

Lesson 9, “Classes and Objects,” would facilitate easy concatenation:

MyString sayHello ("Hello ");
MyString sayWorld (" world");
MyString sumThem (sayHello + sayWorld); // if operator+ were supported by
MyString

ptg18655082

Unary Operators 337

12

The effort in implementing relevant operators will be rewarded by
the ease of consumption of the class.NOTE

On a broad level, operators in C++ can be classified into two types: unary operators and

binary operators.

Unary Operators
As the name suggests, operators that function on a single operand are called unary
operators. A unary operator that is implemented in the global namespace or as a static

member function of a class uses the following structure:

return_type operator operator_type (parameter_type)
{
 // ... implementation
}

A unary operator that is a (non-static) member of a class has a similar structure but is

lacking in parameters, because the single parameter that it works upon is the instance of

the class itself (*this):

return_type operator operator_type ()
{
 // ... implementation
}

Types of Unary Operators
The unary operators that can be overloaded (or redefined) are shown in Table 12.1.

TABLE 12.1 Unary Operators

Operator Name

++ Increment

-- Decrement

* Pointer dereference

-> Member selection

! Logical NOT

& Address-of

ptg18655082

338 LESSON 12: Operator Types and Operator Overloading

Operator Name

~ One’s complement

+ Unary plus

- Unary negation

Conversion operators Conversion into other types

Programming a Unary Increment/Decrement
Operator
A unary prefix increment operator (++) can be programmed using the following syntax

within the class declaration:

// Unary increment operator (prefix)
Date& operator ++ ()
{
 // operator implementation code
 return *this;
}

The postfix increment operator (++), on the other hand, has a different return type and an

input parameter (that is not always used):

Date operator ++ (int)
{
 // Store a copy of the current state of the object, before incrementing day
 Date copy (*this);

 // increment implementation code

 // Return state before increment (because, postfix)
 return copy;
}

The prefix and postfix decrement operators have a similar syntax as the increment

 operators, just that the declaration would contain a -- where you see a ++. Listing 12.1

shows a simple class Date that allows incrementing days using operator (++).

ptg18655082

Unary Operators 339

12

LISTING 12.1 A Calendar Class That Handles Day, Month, and Year, and Allows
Incrementing and Decrementing Days

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Date
 4: {
 5: private:
 6: int day, month, year;
 7:
 8: public:
 9: Date (int inMonth, int inDay, int inYear)
10: : month (inMonth), day(inDay), year (inYear) {};
11:
12: Date& operator ++ () // prefix increment
13: {
14: ++day;
15: return *this;
16: }
17:
18: Date& operator -- () // prefix decrement
19: {
20: --day;
21: return *this;
22: }
23:
24: void DisplayDate()
25: {
26: cout << month << " / " << day << " / " << year << endl;
27: }
28: };
29:
30: int main ()
31: {
32: Date holiday (12, 25, 2016); // Dec 25, 2016
33:
34: cout << "The date object is initialized to: ";
35: holiday.DisplayDate ();
36:
37: ++holiday; // move date ahead by a day
38: cout << "Date after prefix-increment is: ";
39: holiday.DisplayDate ();
40:
41: --holiday; // move date backwards by a day
42: cout << "Date after a prefix-decrement is: ";
43: holiday.DisplayDate ();
44:
45: return 0;
46: }

ptg18655082

340 LESSON 12: Operator Types and Operator Overloading

Output ▼
The date object is initialized to: 12 / 25 / 2016
Date after prefix-increment is: 12 / 26 / 2016
Date after a prefix-decrement is: 12 / 25 / 2016

Analysis ▼

The operators of interest defined in Lines 12 to 22, help in adding or subtracting a day

at a time from instances of class Day, as shown in Lines 37 and 41 in main(). Prefix

increment operators as demonstrated in this sample need to return a reference to the

instance after completing the increment operation.

This version of a date class has a bare minimum implementa-
tion to reduce lines and to explain how prefix operator (++) and
operator (--) are to be implemented. A professional version of
the same would implement rollover functionalities for month and
year and take leap years into consideration as well.

NOTE

To support postfix increment or decrement, you simply add the following code to class

Date:

// postfix differs from prefix operator in return-type and parameters
Date operator ++ (int) // postfix increment
{
 Date copy(month, day, year);
 ++day;
 return copy; // copy of instance before increment returned
}

Date operator -- (int) // postfix decrement
{
 Date copy(month, day, year);
 --day;
 return copy; // copy of instance before decrement returned
}

When your version of class Date supports both prefix and postfix increment

and decrement operators, you will be able to use objects of the class using the following

 syntax:

Date holiday (12, 25, 2016); // instantiate
++ holiday; // using prefix increment operator++
holiday ++; // using postfix increment operator++
-- holiday; // using prefix decrement operator --
holiday --; // using postfix decrement operator --

ptg18655082

Unary Operators 341

12

As the implementation of the postfix operators demonstrates, a
copy containing the existing state of the object is created before
the increment or decrement operation to be returned thereafter.

In other words, if you had the choice between using ++ object;
and object ++; to essentially only increment, you should
choose the former to avoid the creation of a temporary copy that
will not be used.

NOTE

Programming Conversion Operators
If you use Listing 12.1 and insert the following line in main():

cout << holiday; // error in absence of conversion operator

The code would result in the following compile failure: error: binary '<<' : no

operator found which takes a right-hand operand of type 'Date'

(or there is no acceptable conversion). This error essentially indicates that

cout doesn’t know how to interpret an instance of Date as class Date does not sup-

port the operators that convert its contents into a type that cout would accept.

We know that cout can work well with a const char*:

std::cout << "Hello world"; // const char* works!

So, getting cout to work with an instance of type Date might be as simple as adding an

operator that returns a const char* version:

operator const char*()
{
 // operator implementation that returns a char*
}

Listing 12.2 is a simple implementation of this conversion operator.

LISTING 12.2 Implementing Conversion operator const char* for class Date

 0: #include <iostream>
 1: #include <sstream> // new include for ostringstream
 2: #include <string>
 3: using namespace std;
 4:
 5: class Date
 6: {

ptg18655082

342 LESSON 12: Operator Types and Operator Overloading

 7: private:
 8: int day, month, year;
 9: string dateInString;
10:
11: public:
12: Date(int inMonth, int inDay, int inYear)
13: : month(inMonth), day(inDay), year(inYear) {};
14:
15: operator const char*()
16: {
17: ostringstream formattedDate; // assists string construction
18: formattedDate << month << " / " << day << " / " << year;
19:
20: dateInString = formattedDate.str();
21: return dateInString.c_str();
22: }
23: };
24:
25: int main ()
26: {
27: Date Holiday (12, 25, 2016);
28:
29: cout << "Holiday is on: " << Holiday << endl;
30:
31: // string strHoliday (Holiday); // OK!
32: // strHoliday = Date(11, 11, 2016); // also OK!
33:
34: return 0;
35: }

Output ▼
Holiday is on: 12 / 25 / 2016

Analysis ▼

The benefit of implementing operator const char* as shown in Lines 15 to 23 is

 visible in Line 29 in main(). Now, an instance of class Date can directly be used in

a cout statement, taking advantage of the fact that cout understands const char*.

The compiler automatically uses the output of the appropriate (and in this case, the only

available) operator in feeding it to cout that displays the date on the screen. In your

implementation of operator const char*, you use std::ostringstream to convert

the member integers into a std::string object as shown in Line 18. You could’ve

directly returned formattedDate.str(), yet you store a copy in private member

Date::dateInString in Line 20 because formattedDate being a local variable is

destroyed when the operator returns. So, the pointer got via str() would be invalidated

on function return.

ptg18655082

Unary Operators 343

12

This operator opens up new possibilities toward consuming class Date. It allows you

to even assign an instance of a Date directly to a string:

string strHoliday (holiday);
strHoliday = Date(11, 11, 2016);

Note that such assignments cause implicit conversions, that is,
the compiler has used the available conversion operator (in this
case const char*) thereby permitting unintended assignments
that get compiled without error. To avoid implicit conversions, use
keyword explicit at the beginning of an operator declaration,
as follows:

explicit operator const char*()

{

 // conversion code here

}

Using explicit would force the programmer to assert his
 intention to convert using a cast:

string strHoliday(static_cast<const char*>(Holiday));

strHoliday=static_cast<const char*>(Date(11,11,2016));

Casting, including static_cast, is discussed in detail in
Lesson 13, “Casting Operators.”

CAUTION

Program as many operators as you think your class would be
used with. If your application needs an integer representation of
a Date, then you may program it as follows:

explicit operator int()

{

 return day + month + year;

}

This would allow an instance of Date to be used or transacted
as an integer:

FuncTakesInt(static_cast<int>(Date(12, 25, 2016)));

Listing 12.8 later in this lesson also demonstrates conversion
operators used with a string class.

NOTE

ptg18655082

344 LESSON 12: Operator Types and Operator Overloading

Programming Dereference Operator (*) and Member
Selection Operator (->)
The dereference operator (*) and member selection operator (->) are most frequently used

in the programming of smart pointer classes. Smart pointers are utility classes that wrap

regular pointers and simplify memory management by resolving ownership and copy

issues using operators. In some cases, they can even help improve the performance of the

application. Smart pointers are discussed in detail in Lesson 26, “Understanding Smart

Pointers.” This lesson takes a brief look at how overloading operators helps in making

smart pointers work.

Analyze the use of the std::unique_ptr in Listing 12.3 and understand how it uses

operator (*) and operator (->) to help you use the smart pointer class like any normal

pointer.

LISTING 12.3 Using Smart Pointer unique_ptr to Manage a Dynamically Allocated
Instance of class Date

 0: #include <iostream>
 1: #include <memory> // new include to use unique_ptr
 2: using namespace std;
 3:
 4: class Date
 5: {
 6: private:
 7: int day, month, year;
 8: string dateInString;
 9:
10: public:
11: Date(int inMonth, int inDay, int inYear)
12: : month(inMonth), day(inDay), year(inYear) {};
13:
14: void DisplayDate()
15: {
16: cout << month << " / " << day << " / " << year << endl;
17: }
18: };
19:
20: int main()
21: {
22: unique_ptr<int> smartIntPtr(new int);
23: *smartIntPtr = 42;
24:
25: // Use smart pointer type like an int*
26: cout << "Integer value is: " << *smartIntPtr << endl;
27:

ptg18655082

Unary Operators 345

12

28: unique_ptr<Date> smartHoliday (new Date(12, 25, 2016));
29: cout << "The new instance of date contains: ";
30:
31: // use smartHoliday just as you would a Date*
32: smartHoliday->DisplayDate();
33:
34: return 0;
35: }

Output ▼
Integer value is: 42
The new instance of date contains: 12 / 25 / 2016

Analysis ▼

Line 22 is where you declare a smart pointer to type int. This line shows template

initialization syntax for smart pointer class unique_ptr. Similarly, Line 28 declares a

smart pointer to an instance of class Date. Focus on the pattern, and ignore the details

for the moment.

Don’t worry if this template syntax looks awkward because
templates are introduced later in Lesson 14, “An Introduction
to Macros and Templates.”

NOTE

This example demonstrates how a smart pointer allows you to use normal pointer syntax

as shown in Lines 23 and 32. In Line 23, you are able to display the value of the int

using *smartIntPtr, whereas in Line 32 you use smartHoliday->DisplayData()

as if these two variables were an int* and Date*, respectively. The secret lies in the

pointer class std::unique_ptr that is smart because it implements operator (*) and

operator (->).

Smart pointer classes can do a lot more than just parade around
as normal pointers, or de-allocate memory when they go out of
scope. Find out more about this topic in Lesson 26.

To see an implementation of a basic smart pointer class that has
overloaded these operators, you may briefly visit Listing 26.1.

NOTE

ptg18655082

346 LESSON 12: Operator Types and Operator Overloading

Binary Operators
Operators that function on two operands are called binary operators. The definition of

a binary operator implemented as a global function or a static member function is the

 following:

return_type operator_type (parameter1, parameter2);

The definition of a binary operator implemented as a class member is

return_type operator_type (parameter);

The reason the class member version of a binary operator accepts only one parameter is

that the second parameter is usually derived from the attributes of the class itself.

Types of Binary Operators
Table 12.2 contains binary operators that can be overloaded or redefined in your C++

application.

TABLE 12.2 Overloadable Binary Operators

Operator Name

, Comma

!= Inequality

% Modulus

%= Modulus/assignment

& Bitwise AND

&& Logical AND

&= Bitwise AND/assignment

* Multiplication

*= Multiplication/assignment

+ Addition

+= Addition/assignment

- Subtraction

-= Subtraction/assignment

ptg18655082

Binary Operators 347

12

Operator Name

->* Pointer-to-member selection

/ Division

/= Division/assignment

< Less than

<< Left shift

<<= Left shift/assignment

<= Less than or equal to

= Assignment, Copy Assignment and Move
Assignment

== Equality

> Greater than

>= Greater than or equal to

>> Right shift

>>= Right shift/assignment

^ Exclusive OR

^= Exclusive OR/assignment

| Bitwise inclusive OR

|= Bitwise inclusive OR/assignment

|| Logical OR

[] Subscript operator

Programming Binary Addition (a+b) and Subtraction
(a-b) Operators
Similar to the increment/decrement operators, the binary plus and minus, when defined,

enable you to add or subtract the value of a supported data type from an object of the

class that implements these operators. Take a look at your calendar class Date again.

Although you have already implemented the capability to increment Date so that it

moves the calendar one day forward, you still do not support the capability to move it,

say, five days ahead. To do this, you need to implement binary operator (+), as the code

in Listing 12.4 demonstrates.

ptg18655082

348 LESSON 12: Operator Types and Operator Overloading

LISTING 12.4 Calendar Class Featuring the Binary Addition Operator

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Date
 4: {
 5: private:
 6: int day, month, year;
 7: string dateInString;
 8:
 9: public:
10: Date(int inMonth, int inDay, int inYear)
11: : month(inMonth), day(inDay), year(inYear) {};
12:
13: Date operator + (int daysToAdd) // binary addition
14: {
15: Date newDate (month, day + daysToAdd, year);
16: return newDate;
17: }
18:
19: Date operator - (int daysToSub) // binary subtraction
20: {
21: return Date(month, day - daysToSub, year);
22: }
23:
24: void DisplayDate()
25: {
26: cout << month << " / " << day << " / " << year << endl;
27: }
28: };
29:
30: int main()
31: {
32: Date Holiday (12, 25, 2016);
33: cout << "Holiday on: ";
34: Holiday.DisplayDate ();
35:
36: Date PreviousHoliday (Holiday - 19);
37: cout << "Previous holiday on: ";
38: PreviousHoliday.DisplayDate();
39:
40: Date NextHoliday(Holiday + 6);
41: cout << "Next holiday on: ";
42: NextHoliday.DisplayDate ();
43:
44: return 0;
45: }

ptg18655082

Binary Operators 349

12

Output ▼
Holiday on: 12 / 25 / 2016
Previous holiday on: 12 / 6 / 2016
Next holiday on: 12 / 31 / 2016

Analysis ▼

Lines 13 to 22 contain the implementations of the binary operator (+) and operator (-)

that permit the use of simple addition and subtraction syntax as seen in main() in Lines

40 and 36, respectively.

The binary addition operator would also be useful in a string class. In Lesson 9,

you analyze a simple string wrapper class MyString that encapsulates memory

 management, copying, and the like, as shown in Listing 9.9. This class MyString

doesn’t support the concatenation of two strings using a simple syntax:

MyString Hello("Hello ");
MyString World(" World");
MyString HelloWorld(Hello + World); // error: operator+ not defined

Defining this operator (+) makes using MyString extremely easy and is hence worth the

effort:

MyString operator+ (const MyString& addThis)
{
 MyString newString;

 if (addThis.buffer != NULL)
 {

newString.buffer = new char[GetLength() + strlen(addThis.buffer) + 1];
strcpy(newString.buffer, buffer);
strcat(newString.buffer, addThis.buffer);

 }

 return newString;
}

Add the preceding code to Listing 9.9 with a private default constructor MyString()

with empty implementation to be able to use the addition syntax. You can see a version

of class MyString with operator (+) among others in Listing 12.11 later in this lesson.

ptg18655082

350 LESSON 12: Operator Types and Operator Overloading

Implementing Addition Assignment (+=)
and Subtraction Assignment (-=) Operators
The addition assignment operators allow syntax such as “a += b;” that allows the

 programmer to increment the value of an object a by an amount b. In doing this, the

utility of the addition assignment operator is that it can be overloaded to accept different

types of parameter b. Listing 12.5 that follows allows you to add an integer value to a

Date object.

LISTING 12.5 Defining Operator (+=) and Operator (-=) to Add or Subtract Days
in the Calendar Given an Integer Input

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Date
 4: {
 5: private:
 6: int day, month, year;
 7:
 8: public:
 9: Date(int inMonth, int inDay, int inYear)
10: : month(inMonth), day(inDay), year(inYear) {}
11:
12: void operator+= (int daysToAdd) // addition assignment
13: {
14: day += daysToAdd;
15: }
16:
17: void operator-= (int daysToSub) // subtraction assignment
18: {
19: day -= daysToSub;
20: }
21:
22: void DisplayDate()
23: {
24: cout << month << " / " << day << " / " << year << endl;
25: }
26: };
27:

ptg18655082

Binary Operators 351

12

28: int main()
29: {
30: Date holiday (12, 25, 2016);
31: cout << "holiday is on: ";
32: holiday.DisplayDate ();
33:
34: cout << "holiday -= 19 gives: ";
35: holiday -= 19;
36: holiday.DisplayDate();
37:
38: cout << "holiday += 25 gives: ";
39: holiday += 25;
40: holiday.DisplayDate ();
41:
42: return 0;
43: }

Output ▼
holiday is on: 12 / 25 / 2016
holiday -= 19 gives: 12 / 6 / 2016
holiday += 25 gives: 12 / 31 / 2016

Analysis ▼

The addition and subtraction assignment operators of interest are in Lines 12 to 20. These

allow adding and subtracting an integer value for days, as seen in main(), for instance:

35: holiday -= 19;
39: holiday += 25;

Your class Date now allows users to add or remove days from it as if they are dealing

with integers using addition or subtraction assignment operators that take an int as a

parameter. You can even provide overloaded versions of the addition assignment operator

(+=) that work with an instance of a fictitious class Days:

// operator that adds a Days to an existing Date
void operator += (const Days& daysToAdd)
{
 day += daysToAdd.GetDays();
}

ptg18655082

352 LESSON 12: Operator Types and Operator Overloading

The multiplication assignment *=, division assignment /=,
modulus assignment %=, subtraction assignment -=, left-shift
assignment <<=, right-shift assignment >>=, XOR assignment ^=,
bitwise inclusive OR assignment |=, and bitwise AND assignment
&= operators have a syntax similar to the addition assignment
operator shown in Listing 12.5.

Although the ultimate objective of overloading operators is mak-
ing the class easy and intuitive to use, there are many situa-
tions where implementing an operator might not make sense.
For example, our calendar class Date has absolutely no use for
a bitwise AND assignment &= operator. No user of this class
should ever expect (or even think of) getting useful results from
an operation such as greatDay &= 20;.

NOTE

Overloading Equality (==) and Inequality (!=)
Operators
What do you expect when the user of class Date compares one instance to another:

if (date1 == date2)
{
 // Do something
}
else
{
 // Do something else
}

In the absence of an equality operator ==, the compiler simply performs a binary com-

parison of the two objects and returns true when they are exactly identical. This binary

comparison will work for instances of classes containing simple data types (like the Date

class as of now), but it will not work if the class in question has a non-static string mem-

ber (char*), such as MyString in Listing 9.9. When two instances of class MyString

are compared, a binary comparison of the member attributes would actually compare

the member string pointer values (MyString::buffer). These would not be equal

even when the strings are identical in content. Comparisons involving two instances of

MyString would return false consistently. You solve this problem by defining compari-

son operators. A generic expression of the equality operator is the following:

bool operator== (const ClassType& compareTo)
{
 // comparison code here, return true if equal else false
}

ptg18655082

Binary Operators 353

12

The inequality operator can reuse the equality operator:

bool operator!= (const ClassType& compareTo)
{
 // comparison code here, return true if inequal else false
}

The inequality operator can be the inverse (logical NOT) of the result of the equality

operator. Listing 12.6 demonstrates comparison operators defined by our calendar

class Date.

LISTING 12.6 Demonstrates Operators == and !=

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Date
 4: {
 5: private:
 6: int day, month, year;
 7:
 8: public:
 9: Date(int inMonth, int inDay, int inYear)
10: : month(inMonth), day(inDay), year(inYear) {}
11:
12: bool operator== (const Date& compareTo)
13: {
14: return ((day == compareTo.day)
15: && (month == compareTo.month)
16: && (year == compareTo.year));
17: }
18:
19: bool operator!= (const Date& compareTo)
20: {
21: return !(this->operator==(compareTo));
22: }
23:
24: void DisplayDate()
25: {
26: cout << month << " / " << day << " / " << year << endl;
27: }
28: };
29:
30: int main()
31: {
32: Date holiday1 (12, 25, 2016);
33: Date holiday2 (12, 31, 2016);
34:
35: cout << "holiday 1 is: ";

ptg18655082

354 LESSON 12: Operator Types and Operator Overloading

36: holiday1.DisplayDate();
37: cout << "holiday 2 is: ";
38: holiday2.DisplayDate();
39:
40: if (holiday1 == holiday2)
41: cout << "Equality operator: The two are on the same day" << endl;
42: else
43: cout << "Equality operator: The two are on different days" << endl;
44:
45: if (holiday1 != holiday2)
46: cout << "Inequality operator: The two are on different days" << endl;
47: else
48: cout << "Inequality operator: The two are on the same day" << endl;
49:
50: return 0;
51: }

Output ▼
holiday 1 is: 12 / 25 / 2016
holiday 2 is: 12 / 31 / 2016
Equality operator: The two are on different days
Inequality operator: The two are on different days

Analysis ▼

The equality operator (==) is a simple implementation that returns true if the day,

month, and year are all equal, as shown in Lines 12 to 17. The inequality operator (!=)

simply reuses the equality operator code as seen in Line 21. The presence of these

 operators helps compare two Date objects, holiday1 and holiday2, in main() in

Lines 40 and 45.

Overloading <, >, <=, and >= Operators
The code in Listing 12.6 made the Date class intelligent enough to be able to tell

whether two Date objects are equal or unequal. You need to program the less-than (<),

greater-than (>), less-than-equals (<=), and greater-than-equals (>=) operators to enable

conditional checking akin to the following:

if (date1 < date2) {// do something}

or

if (date1 <= date2) {// do something}

ptg18655082

Binary Operators 355

12

or

if (date1 > date2) {// do something}

or

if (date1 >= date2) {// do something}

These operators are demonstrated by the code shown in Listing 12.7.

LISTING 12.7 Demonstrates Implementing <, <=, >, and >= Operators

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Date
 4: {
 5: private:
 6: int day, month, year;
 7:
 8: public:
 9: Date(int inMonth, int inDay, int inYear)
10: : month(inMonth), day(inDay), year(inYear) {}
11:
12: bool operator< (const Date& compareTo)
13: {
14: if (year < compareTo.year)
15: return true;
16: else if (month < compareTo.month)
17: return true;
18: else if (day < compareTo.day)
19: return true;
20: else
21: return false;
22: }
23:
24: bool operator<= (const Date& compareTo)
25: {
26: if (this->operator== (compareTo))
27: return true;
28: else
29: return this->operator< (compareTo);
30: }
31:
32: bool operator > (const Date& compareTo)
33: {
34: return !(this->operator<= (compareTo));
35: }
36:

ptg18655082

356 LESSON 12: Operator Types and Operator Overloading

37: bool operator== (const Date& compareTo)
38: {
39: return ((day == compareTo.day)
40: && (month == compareTo.month)
41: && (year == compareTo.year));
42: }
43:
44: bool operator>= (const Date& compareTo)
45: {
46: if(this->operator== (compareTo))
47: return true;
48: else
49: return this->operator> (compareTo);
50: }
51:
52: void DisplayDate()
53: {
54: cout << month << " / " << day << " / " << year << endl;
55: }
56: };
57:
58: int main()
59: {
60: Date holiday1 (12, 25, 2016);
61: Date holiday2 (12, 31, 2016);
62:
63: cout << "holiday 1 is: ";
64: holiday1.DisplayDate();
65: cout << "holiday 2 is: ";
66: holiday2.DisplayDate();
67:
68: if (holiday1 < holiday2)
69: cout << "operator<: holiday1 happens first" << endl;
70:
71: if (holiday2 > holiday1)
72: cout << "operator>: holiday2 happens later" << endl;
73:
74: if (holiday1 <= holiday2)
75: cout << "operator<=: holiday1 happens on or before holiday2" << endl;
76:
77: if (holiday2 >= holiday1)
78: cout << "operator>=: holiday2 happens on or after holiday1" << endl;
79:
80: return 0;
81: }

ptg18655082

Binary Operators 357

12

Output ▼
holiday 1 is: 12 / 25 / 2016
holiday 2 is: 12 / 31 / 2016
operator<: holiday1 happens first
operator>: holiday2 happens later
operator<=: holiday1 happens on or before holiday2
operator>=: holiday2 happens on or after holiday1

Analysis ▼

The operators of interest are implemented in Lines 12 to 50 and partially reuse operator

(==) that you saw in Listing 12.6. The implementation of operators ==, <, and > has been

consumed by the rest.

The operators have been consumed inside main() between Lines 68 and 78, which

 indicate how easy it now is to compare two different dates.

Overloading Copy Assignment Operator (=)
There are times when you want to assign the contents of an instance of a class to another,

like this:

Date holiday(12, 25, 2016);
Date anotherHoliday(1, 1, 2017);
anotherHoliday = holiday; // uses copy assignment operator

This assignment invokes the default copy assignment operator that the compiler has

built in to your class when you have not supplied one. Depending on the nature of your

class, the default copy assignment operator might be inadequate, especially if your class

is managing a resource that will not be copied. This problem with the default copy

assignment operator is similar to the one with the default copy constructor discussed in

Lesson 9. To ensure deep copies, as with the copy constructor, you need to specify an

accompanying copy assignment operator:

ClassType& operator= (const ClassType& copySource)
{
 if(this != ©Source) // protection against copy into self
 {

// copy assignment operator implementation
 }
 return *this;
}

ptg18655082

358 LESSON 12: Operator Types and Operator Overloading

Deep copies are important if your class encapsulates a raw pointer, such as class

MyString shown in Listing 9.9. To ensure deep copy during assignments, define a copy

assignment operator as shown in Listing 12.8.

LISTING 12.8 A Better class MyString from Listing 9.9 with a Copy Assignment
Operator =

 0: #include <iostream>
 1: using namespace std;
 2: #include <string.h>
 3: class MyString
 4: {
 5: private:
 6: char* buffer;
 7:
 8: public:
 9: MyString(const char* initialInput)
10: {
11: if(initialInput != NULL)
12: {
13: buffer = new char [strlen(initialInput) + 1];
14: strcpy(buffer, initialInput);
15: }
16: else
17: buffer = NULL;
18: }
19:
20: // Copy assignment operator
21: MyString& operator= (const MyString& copySource)
22: {
23: if ((this != ©Source) && (copySource.buffer != NULL))
24: {
25: if (buffer != NULL)
26: delete[] buffer;
27:
28: // ensure deep copy by first allocating own buffer
29: buffer = new char [strlen(copySource.buffer) + 1];
30:
31: // copy from the source into local buffer
32: strcpy(buffer, copySource.buffer);
33: }
34:
35: return *this;
36: }
37:

ptg18655082

Binary Operators 359

12

38: operator const char*()
39: {
40: return buffer;
41: }
42:
43: ~MyString()
44: {
45: delete[] buffer;
46: }
47: };
48:
49: int main()
50: {
51: MyString string1("Hello ");
52: MyString string2(" World");
53:
54: cout << "Before assignment: " << endl;
55: cout << string1 << string2 << endl;
56: string2 = string1;
57: cout << "After assignment string2 = string1: " << endl;
58: cout << string1 << string2 << endl;
59:
60: return 0;
61: }

Output ▼
Before assignment:
Hello World
After assignment string2 = string1:
Hello Hello

Analysis ▼

I have purposely omitted the copy constructor in this sample to reduce lines of code (but

you should be inserting it when programming such a class; refer Listing 9.9 as a refer-

ence). The copy assignment operator is implemented in Lines 21 to 36. It is similar in

function to a copy constructor and performs a starting check to ensure that the same

object is not both the copy source and destination. After the checks return true, the

copy assignment operator for MyString first deallocates its internal buffer before

reallocating space for the text from the copy source and then uses strcpy() to copy, as

shown in Line 14.

ptg18655082

360 LESSON 12: Operator Types and Operator Overloading

Another subtle change in Listing 12.8 over Listing 9.9 is that you
have replaced function GetString() by operator const char*
as shown in Lines 38 to 41. This operator makes it even easier
to use class MyString, as shown in Line 55, where one cout
statement is used to display two instances of MyString.

NOTE

When implementing a class that manages a dynamically allo-
cated resource such as an array allocated using new, always
ensure that you have implemented (or evaluated the implementa-
tion of) the copy constructor and the copy assignment operator
in addition to the constructor and the destructor.

Unless you address the issue of resource ownership when an
object of your class is copied, your class is incomplete and
endangers the stability of the application when used.

CAUTION

To create a class that cannot be copied, declare the copy con-
structor and copy assignment operator as private. Declaration
as private without implementation is sufficient for the compiler
to throw error on all attempts at copying this class via passing to
a function by value or assigning one instance into another.

TIP

Subscript Operator ([])
The operator that allow array-style [] access to a class is called subscript operator.
The typical syntax of a subscript operator is:

return_type& operator [] (subscript_type& subscript);

So, when creating a class such as MyString that encapsulates a dynamic array class of

characters in a char* buffer, a subscript operator makes it really easy to randomly

access individual characters in the buffer:

class MyString
{
 // ... other class members
public:
 /*const*/ char& operator [] (int index) /*const*/
 {

ptg18655082

Binary Operators 361

12

// return the char at position index in buffer
 }
};

The sample in Listing 12.9 demonstrates how the subscript operator ([]) helps the user in

iterating through the characters contained in an instance of MyString using normal

array semantics.

LISTING 12.9 Implementing Subscript Operator [] in class MyString to Allow Random
Access to Characters Contained in MyString::buffer

 0: #include <iostream>
 1: #include <string>
 2: #include <string.h>
 3: using namespace std;
 4: class MyString
 5: {
 6: private:
 7: char* buffer;
 8:
 9: // private default constructor
10: MyString() {}
11:
12: public:
13: // constructor
14: MyString(const char* initialInput)
15: {
16: if(initialInput != NULL)
17: {
18: buffer = new char [strlen(initialInput) + 1];
19: strcpy(buffer, initialInput);
20: }
21: else
22: buffer = NULL;
23: }
24:
25: // Copy constructor: insert from Listing 9.9 here
26: MyString(const MyString& copySource);
27:
28: // Copy assignment operator: insert from Listing 12.8 here
29: MyString& operator= (const MyString& copySource);
30:
31: const char& operator[] (int index) const
32: {
33: if (index < GetLength())
34: return buffer[index];
35: }
36:

ptg18655082

362 LESSON 12: Operator Types and Operator Overloading

37: // Destructor
38: ~MyString()
39: {
40: if (buffer != NULL)
41: delete [] buffer;
42: }
43:
44: int GetLength() const
45: {
46: return strlen(buffer);
47: }
48:
49: operator const char*()
50: {
51: return buffer;
52: }
53: };
54:
55: int main()
56: {
57: cout << "Type a statement: ";
58: string strInput;
59: getline(cin, strInput);
60:
61: MyString youSaid(strInput.c_str());
62:
63: cout << "Using operator[] for displaying your input: " << endl;
64: for(int index = 0; index < youSaid.GetLength(); ++index)
65: cout << youSaid[index] << " ";
66: cout << endl;
67:
68: cout << "Enter index 0 - " << youSaid.GetLength() - 1 << ": ";
69: int index = 0;
70: cin >> index;
71: cout << "Input character at zero-based position: " << index;
72: cout << " is: "<< youSaid[index] << endl;
73:
74: return 0;
75: }

Output ▼
Type a statement: Hey subscript operators[] are fabulous
Using operator[] for displaying your input:
H e y s u b s c r i p t o p e r a t o r s [] a r e f a b u l o u s
Enter index 0 - 37: 2
Input character at zero-based position: 2 is: y

ptg18655082

Binary Operators 363

12

Analysis ▼

This is just a fun program that takes a sentence you input, constructs a MyString

using it, as shown in Line 61, and then uses a for loop to print the string character by

character with the help of the subscript operator ([]) using an array-like syntax, as shown

in Lines 64 and 65. The operator ([]) itself is defined in Lines 31 to 35 and supplies

direct access to the character at the specified position after ensuring that the requested

position is not beyond the end of the char* buffer.

Using keyword const is important even when programming
 operators. Note how Listing 12.9 has restricted the return value
of subscript operator [] to const char&. The program works
and compiles even without the const keywords, yet the reason
you have it there is to avoid this code:

MyString sayHello("Hello World");

sayHello[2] = 'k'; //error: operator[] is const

By using const you are protecting internal member
MyString::buffer from direct modifications from the outside
via operator []. In addition to classifying the return value
as const, you even have restricted the operator function type
to const to ensure that it cannot modify the class’s member
attributes.

In general, use the maximum possible const restriction to avoid
unintentional data modifications and increase protection of the
class’s member attributes.

CAUTION

When implementing subscript operators, you can improve on the version shown in

Listing 12.9. That one is an implementation of a single subscript operator that works for

both reading from and writing to the slots in the dynamic array.

You can, however, implement two subscript operators—one as a const function and the

other as a non-const one:

char& operator [] (int index); // use to write / change buffer at index
char& operator [] (int index) const; // used only for accessing char at index

The compiler will invoke the const function for read operations and the non-const

 version for operations that write into the MyString object. Thus, you can (if you want

to) have separate functionalities in the two subscript operations. There are other binary

operators (listed in Table 12.2) that can be redefined or overloaded, but that are not

ptg18655082

364 LESSON 12: Operator Types and Operator Overloading

 discussed further in this lesson. Their implementation, however, is similar to those that

have already been discussed.

Other operators, such as the logical operators and the bitwise operators, need to be

 programmed if the purpose of the class would be enhanced by having them. Clearly, a

calendar class such as Date does not necessarily need to implement logical operators,

whereas a class that performs string and numeric functions might need them frequently.

Keep the objective of your class and its use in perspective when overloading operators or

writing new ones.

Function Operator ()
The operator () that make objects behave like a function is called a function operator.

They find application in the standard template library (STL) and are typically used

in STL algorithms. Their usage can include making decisions; such function objects

are typically called unary or binary predicates, depending on the number of operands

they work on. Listing 12.10 analyzes a really simple function object so you can first

 understand what gives them such an intriguing name!

LISTING 12.10 A Function Object Created Using Operator ()

 1: #include <iostream>
 2: #include <string>
 3: using namespace std;
 4:
 5: class Display
 6: {
 7: public:
 8: void operator () (string input) const
 9: {
10: cout << input << endl;
11: }
12: };
13:
14: int main ()
15: {
16: Display displayFuncObj;
17:
18: // equivalent to displayFuncObj.operator () ("Display this string! ");
19: displayFuncObj ("Display this string! ");
20:
21: return 0;
22: }

ptg18655082

365

12

Move Constructor and Move Assignment Operator

Output ▼
Display this string!

Analysis ▼

Lines 8 to 11 implement operator() that is then used inside the function main()

at Line 19. Note how the compiler allows the use of object displayFuncObj as a

 function in Line 19 by implicitly converting what looks like a function call to a call to

operator().

Hence, this operator is also called the function operator (), and the object of Display is

also called a function object or functor. This topic is discussed exhaustively in Lesson 21,

“Understanding Function Objects.”

Move Constructor and Move Assignment
Operator for High Performance
Programming
The move constructor and the move assignment operators are performance optimization

features that have become a part of the standard in C++11, ensuring that temporary

values (rvalues that don’t exist beyond the statement) are not wastefully copied. This is

particularly useful when handling a class that manages a dynamically allocated resource,

such as a dynamic array class or a string class.

The Problem of Unwanted Copy Steps
Take a look at the addition operator+ as implemented in Listing 12.4. Notice that it

actually creates a copy and returns it. If class MyString as demonstrated in Listing

12.9 supported the addition operator+, the following lines of code would be valid

examples of easy string concatenation:

MyString Hello("Hello ");
MyString World("World");
MyString CPP(" of C++");
MyString sayHello(Hello + World + CPP); // operator+, copy constructor
MyString sayHelloAgain ("overwrite this");
sayHelloAgain = Hello + World + CPP; // operator+, copy constructor, copy
assignment operator=

ptg18655082

366 LESSON 12: Operator Types and Operator Overloading

This simple construct that makes concatenating three strings easy, uses the binary

 addition operator+:

MyString operator+ (const MyString& addThis)
{
 MyString newStr;

 if (addThis.buffer != NULL)
 {

// copy into newStr
 }
 return newStr; // return copy by value, invoke copy constructor
}

While making it easy to concatenate the strings, the addition operator+ can cause

performance problems. The creation of sayHello requires the execution of the addition

operator twice. Each execution of operator+ results in the creation of a temporary copy

as a MyString is returned by value, thus causing the execution of the copy constructor.

The copy constructor executes a deep copy—to a temporary value that does not exist

after the expression. Thus, this expression results in temporary copies (rvalues, for

the purists) that are not ever required after the statement and hence are a performance

 bottleneck forced by C++. Well, until recently at least.

This problem has now finally been resolved in C++11 in which the compiler specifically

recognizes temporaries and uses move constructors and move assignment operators,

where supplied by the programmer.

Declaring a Move Constructor and Move
Assignment Operator
The syntax of the move constructor is as follows:

class Sample
{
private:
 Type* ptrResource;

public:
 Sample(Sample&& moveSource) // Move constructor, note &&
 {

ptrResource = moveSource.ptrResource; // take ownership, start move
moveSource.ptrResource = NULL;

 }

 Sample& operator= (Sample&& moveSource)//move assignment operator, note &&
 {

ptg18655082

367

12

Move Constructor and Move Assignment Operator

if(this != &moveSource)
{

delete [] ptrResource; // free own resource
ptrResource = moveSource.ptrResource; // take ownership, start move
moveSource.ptrResource = NULL; // free move source of ownership

}
 }

 Sample(); // default constructor
 Sample(const Sample& copySource); // copy constructor
 Sample& operator= (const Sample& copySource); // copy assignment
};

Thus, the declaration of the move constructor and assignment operator are different from

the regular copy constructor and copy assignment operator in that the input parameter is

of type Sample&&. Additionally, as the input parameter is the move-source, it cannot be

a const parameter as it is modified. Return values remain the same, as these are over-

loaded versions of the constructor and the assignment operator, respectively.

C++11 compliant compilers ensure that for rvalue temporaries the move constructor

is used instead of the copy constructor and the move assignment operator is invoked

instead of the copy assignment operator. In your implementation of these two, you ensure

that instead of copying, you are simply moving the resource from the source to the

destination. Listing 12.11 demonstrates the effectiveness of these two recent additions in

optimizing class MyString.

LISTING 12.11 class MyString with Move Constructor and Move Assignment
Operator in Addition to Copy Constructor and Copy Assignment Operator

 0: #include <iostream>
 1: #include <string.h>
 2: using namespace std;
 3: class MyString
 4: {
 5: private:
 6: char* buffer;
 7:
 8: MyString(): buffer(NULL) // private default constructor
 9: {
10: cout << "Default constructor called" << endl;
11: }
12:
13: public:
14: MyString(const char* initialInput) // constructor
15: {
16: cout << "Constructor called for: " << initialInput << endl;

ptg18655082

368 LESSON 12: Operator Types and Operator Overloading

17: if(initialInput != NULL)
18: {
19: buffer = new char [strlen(initialInput) + 1];
20: strcpy(buffer, initialInput);
21: }
22: else
23: buffer = NULL;
24: }
25:
26: MyString(MyString&& moveSrc) // move constructor
27: {
28: cout << "Move constructor moves: " << moveSrc.buffer << endl;
29: if(moveSrc.buffer != NULL)
30: {
31: buffer = moveSrc.buffer; // take ownership i.e. 'move'
32: moveSrc.buffer = NULL; // free move source
33: }
34: }
35:
36: MyString& operator= (MyString&& moveSrc) // move assignment op.
37: {
38: cout << "Move assignment op. moves: " << moveSrc.buffer << endl;
39: if((moveSrc.buffer != NULL) && (this != &moveSrc))
40: {
41: delete[] buffer; // release own buffer
42:
43: buffer = moveSrc.buffer; // take ownership i.e. 'move'
44: moveSrc.buffer = NULL; // free move source
45: }
46:
47: return *this;
48: }
49:
50: MyString(const MyString& copySrc) // copy constructor
51: {
52: cout << "Copy constructor copies: " << copySrc.buffer << endl;
53: if (copySrc.buffer != NULL)
54: {
55: buffer = new char[strlen(copySrc.buffer) + 1];
56: strcpy(buffer, copySrc.buffer);
57: }
58: else
59: buffer = NULL;
60: }
61:
62: MyString& operator= (const MyString& copySrc) // Copy assignment op.
63: {
64: cout << "Copy assignment op. copies: " << copySrc.buffer << endl;
65: if ((this != ©Src) && (copySrc.buffer != NULL))
66: {
67: if (buffer != NULL)

ptg18655082

369

12

Move Constructor and Move Assignment Operator

 68: delete[] buffer;
 69:
 70: buffer = new char[strlen(copySrc.buffer) + 1];
 71: strcpy(buffer, copySrc.buffer);
 72: }
 73:
 74: return *this;
 75: }
 76:
 77: ~MyString() // destructor
 78: {
 79: if (buffer != NULL)
 80: delete[] buffer;
 81: }
 82:
 83: int GetLength()
 84: {
 85: return strlen(buffer);
 86: }
 87:
 88: operator const char*()
 89: {
 90: return buffer;
 91: }
 92:
 93: MyString operator+ (const MyString& addThis)
 94: {
 95: cout << "operator+ called: " << endl;
 96: MyString newStr;
 97:
 98: if (addThis.buffer != NULL)
 99: {
100: newStr.buffer = new char[GetLength()+strlen(addThis.buffer)+1];
101: strcpy(newStr.buffer, buffer);
102: strcat(newStr.buffer, addThis.buffer);
103: }
104:
105: return newStr;
106: }
107: };
108:
109: int main()
110: {
111: MyString Hello("Hello ");
112: MyString World("World");
113: MyString CPP(" of C++");
114:
115: MyString sayHelloAgain ("overwrite this");
116: sayHelloAgain = Hello + World + CPP;
117:
118: return 0;
119: }

ptg18655082

370 LESSON 12: Operator Types and Operator Overloading

Output ▼

Output without the move constructor and move assignment operator (by commenting out

Lines 26 to 48):

Constructor called for: Hello
Constructor called for: World
Constructor called for: of C++
Constructor called for: overwrite this
operator+ called:
Default constructor called
Copy constructor copies: Hello World
operator+ called:
Default constructor called
Copy constructor copies: Hello World of C++
Copy assignment op. copies: Hello World of C++

Output with the move constructor and move assignment operator enabled:

Constructor called for: Hello
Constructor called for: World
Constructor called for: of C++
Constructor called for: overwrite this
operator+ called:
Default constructor called
Move constructor moves: Hello World
operator+ called:
Default constructor called
Move constructor moves: Hello World of C++
Move assignment op. moves: Hello World of C++

Analysis ▼

This might be a really long code sample, but most of it has already been demonstrated in

previous examples and lessons. The most important part of this listing is in Lines 26 to

48 that implement the move constructor and the move assignment operator, respectively.

Parts of the output that have been influenced by this new addition to C++11 has been

marked in bold. Note how the output changes drastically when compared against the

same class without these two entities. If you look at the implementation of the move

constructor and the move assignment operator again, you see that the move semantic

is essentially implemented by taking ownership of the resources from the move source

moveSrc as shown in Line 31 in the move constructor and Line 43 in the move assign-

ment operator. This is immediately followed by assigning NULL to the move source

pointer as shown in Lines 32 and 44. This assignment to NULL ensures that the destruc-

tor of the instance that is the move source essentially does no memory deallocation via

ptg18655082

User Defined Literals 371

12

delete in Line 80 as the ownership has been moved to the destination object. Note that in

the absence of the move constructor, the copy constructor is called that does a deep copy

of the pointed string. Thus, the move constructor has saved a good amount of processing

time in reducing unwanted memory allocations and copy steps.

Programming the move constructor and the move assignment operator is completely

optional. Unlike the copy constructor and the copy assignment operator, the compiler

does not add a default implementation for you.

Use this feature to optimize the functioning of classes that point to dynamically allocated

resources that would otherwise be deep copied even in scenarios where they’re only

required temporarily.

User Defined Literals
Literal constants were introduced in Lesson 3, “Using Variables, Declaring Constants.”

Here are some examples of a few:

int bankBalance = 10000;
double pi = 3.14;
char firstAlphabet = ‘a’;
const char* sayHello = "Hello!";

In the preceding code, 10000, 3.14, ‘a’, and "Hello!" are all literal constants!

C++11 extended the standard’s support of literals by allowing you to define your own

literals. For instance, if you were working on a scientific application that deals with

thermodynamics, you may want all your temperatures to be stored and operated using a

scale called Kelvin. You may now declare all your temperatures using a syntax similar to

the following:

Temperature k1 = 32.15_F;
Temperature k2 = 0.0_C;

Using literals _F and _C that you have defined, you have made your application a lot sim-

pler to read and therefore maintain.

To define your own literal, you define operator "" like this:

ReturnType operator "" YourLiteral(ValueType value)
{
 // conversion code here
}

ptg18655082

372 LESSON 12: Operator Types and Operator Overloading

Depending on the nature of the user defined literal, the
ValueType parameter would be restricted to one of the following:

unsigned long long int for integral literal

long double for floating point literal

char, wchar_t, char16_t, and char32_t for character literal

const char* for raw string literal

const char* together with size_t for string literal

const wchar_t* together with size_t for string literal

const char16_t* together with size_t for string literal

const char32_t* together with size_t for string literal

NOTE

Listing 12.12 demonstrates a user defined literal that converts types.

LISTING 12.12 Conversion from Fahrenheit and Centigrade to the Kelvin Scale

 0: #include <iostream>
 1: using namespace std;
 2:
 3: struct Temperature
 4: {
 5: double Kelvin;
 6: Temperature(long double kelvin) : Kelvin(kelvin) {}
 7: };
 8:
 9: Temperature operator"" _C(long double celcius)
10: {
11: return Temperature(celcius + 273);
12: }
13:
14: Temperature operator "" _F(long double fahrenheit)
15: {
16: return Temperature((fahrenheit + 459.67) * 5 / 9);
17: }
18:
19: int main()
20: {
21: Temperature k1 = 31.73_F;
22: Temperature k2 = 0.0_C;
23:

ptg18655082

Operators That Cannot Be Overloaded 373

12

24: cout << "k1 is " << k1.Kelvin << " Kelvin" << endl;
25: cout << "k2 is " << k2.Kelvin << " Kelvin" << endl;
26:
27: return 0;
28: }

Output ▼
k1 is 273 Kelvin
k2 is 273 Kelvin

Analysis ▼

Lines 21 and 22 in the sample above initialize two instances of Temperature, one using

a user defined literal _F to declare an initial value in Fahrenheit and the other using a

user defined literal to declare an initial value in Celcius (also called Centigrade). The two

literals are defined in Lines 9–17, and do the work of converting the respective units

into Kelvin and returning an instance of Temperature. Note that k2 has intentionally

been initialized to 0.0_C and not to 0_C, because the literal _C has been defined (and is

required) to take a long double as input value and 0 would’ve interpreted as an integer.

Operators That Cannot Be Overloaded
With all the flexibility that C++ gives you in customizing the behavior of the operators

and making your classes easy to use, it still keeps some cards to itself by not allowing

you to change or alter the behavior of some operators that are expected to perform

 consistently. The operators that cannot be redefined are shown in Table 12.3.

TABLE 12.3 Operators That CANNOT Be Overloaded or Redefined

Operator Name

. Member selection

.* Pointer-to-member selection

:: Scope resolution

? : Conditional ternary operator

sizeof Gets the size of an object/class type

ptg18655082

374 LESSON 12: Operator Types and Operator Overloading

DO DON’T

DO program as many operators as
would help making using your class
easy, but not more.

DO mark conversion operators
as explicit to avoid implicit
 conversions.

DO always program a copy assign-
ment operator (with a copy construc-
tor and destructor) for a class that
contains raw pointer members.

DO always program a move
 assignment operator (and move con-
structor) for classes that manage
dynamically allocated resources,
such as an array of data, when using
a C++11-compliant compiler.

DON’T forget that the compiler
 provides a default copy assignment
operator and copy constructor if
you don’t supply these, and they
won’t ensure deep copies of any raw
 pointers contained within the class.

DON’T forget that if you don’t supply
a move assignment operator or move
constructor, the compiler does not
create these for you, but instead falls
back on the regular copy assignment
operator and copy constructor.

Summary
You learned how programming operators can make a significant difference to the ease

with which your class can be consumed. When programming a class that manages a

resource, for example a dynamic array or a string, you need to supply a copy constructor

and copy assignment operator for a minimum, in addition to a destructor. A utility class

that manages a dynamic array can do very well with a move constructor and a move

assignment operator that ensures that the contained resource is not deep-copied for

temporary objects. Last but not least, you learned that operators such as ., .*, ::, ?:,

and sizeof cannot be redefined.

Q&A
 Q My class encapsulates a dynamic array of integers. What functions and

 operators should I implement for a minimum?

 A When programming such a class, you need to clearly define the behavior in the

scenario where an instance is being copied directly into another via assignment or

copied indirectly by being passed to a function by value. You typically implement

the copy constructor, copy assignment operator, and the destructor. You also

implement the move constructor and move assignment operator if you want to

ptg18655082

Workshop 375

12

tweak the performance of this class in certain cases. To enable an array-like access

to elements stored inside an instance of the class, you would want to overload the

subscript operator[].

 Q I have an instance object of a class. I want to support this syntax: cout
<< object;. What operator do I need to implement?

 A You need to implement a conversion operator that allows your class to be

 interpreted as a type that std::cout can handle upfront. One way is to define

operator char*() as you also did in Listing 12.2.

 Q I want to create my own smart pointer class. What functions and operators do
I need to implement for a minimum?

 A A smart pointer needs to supply the ability of being used as a normal pointer as in

pSmartPtr or pSmartPtr->Func(). To enable this you implement operator ()

and operator (->). In addition, for it to be smart, you also take care of automatic

resource release/returns by programming the destructor accordingly, and you would

clearly define how copy or assignment works by implementing the copy constructor

and copy assignment operator or by prohibiting it by declaring these two as

private.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can my subscript operator [] return const and non-const variants of return

types?

const Type& operator[](int index);
Type& operator[](int index); // is this OK?

2. Would you ever declare the copy constructor or copy assignment operator as

 private?

3. Would it make sense to define a move constructor and move assignment operator

for your class Date?

ptg18655082

376 LESSON 12: Operator Types and Operator Overloading

Exercises
1. Program a conversion operator for class Date that converts the date it holds into a

unique integer.

2. Program a move constructor and move assignment operator for class

DynIntegers that encapsulates a dynamically allocated array in the form of

 private member int*.

ptg18655082

LESSON 13
Casting Operators

Casting is a mechanism by which the programmer can temporarily or
permanently change the interpretation of an object by the compiler.
Note that this does not imply that the programmer changes the object
itself—he simply changes the interpretation thereof. Operators that
change the interpretation of an object are called casting operators.

In this lesson, you learn

 ■ The need for casting operators

 ■ Why C-style casts are not popular with some C++ programmers

 ■ The four C++ casting operators

 ■ The concepts of upcasting and downcasting

 ■ Why C++ casting operators are not all-time favorites either

ptg18655082

378 LESSON 13: Casting Operators

The Need for Casting
In a perfectly type-safe and type-strong world comprising well-written C++ applications,

there should be no need for casting and for casting operators. However, we live in a real

world where modules programmed by a lot of different people and vendors often using

different environments have to work together. To make this happen, compilers very

often need to be instructed to interpret data in ways that make them compile and the

 application function correctly.

Let’s take a real-world example: Although most C++ compilers might support bool as a

native type, a lot of libraries are still in use that were programmed years back and in C.

These libraries made for C compilers had to rely on the use of an integral type to hold

Boolean data. So, a bool on these compilers is something akin to

typedef unsigned short BOOL;

A function that returns Boolean data would be declared as

BOOL IsX ();

Now, if such a library is to be used with a new application programmed in the latest

 version of the C++ compiler, the programmer has to find a way to make the bool data

type as understood by his C++ compiler function with the BOOL data type as understood

by the library. The way to make this happen is by using casts:

bool Result = (bool)IsX (); // C-Style cast

The evolution of C++ saw the emergence of new C++ casting operators and that created

a split in the C++ programming community: a group that continued using C-style casts

in their C++ applications, and another that religiously converted to casting keywords

introduced by C++ compilers. The argument of the former group is that the C++ casts

are cumbersome to use, and sometimes differ in functionality to such a small extent that

they are of only theoretical value. The latter group, which evidently is comprised of C++

syntax purists, points out at the flaws in the C-style casts to make their case.

Because the real world contains both kinds of code in operation, it would be good to

 simply read through this lesson, know the advantages and disadvantages of each style,

and formulate your own opinion.

ptg18655082

The C++ Casting Operators 379

13

Why C-Style Casts Are Not Popular
with Some C++ Programmers
Type safety is one of the mantras that C++ programmers swear by when singing praises

to the qualities of this programming language. In fact, most C++ compilers won’t even let

you get away with this:

char* staticStr = "Hello World!";
int* intArray = staticStr; // error: cannot convert char* to int*

… and rightfully so!

Now, C++ compilers still do see the need to be backward compliant to keep old and

legacy code building, and therefore automatically allow syntax such as:

int* intArray = (int*)staticStr; // Cast one problem away, create another

This C-style cast actually forces the compiler to interpret the destination as a type that

is conveniently of the programmer’s choice—a programmer who, in this case, did not

bother thinking that the compiler reported an error in the first place for good reason

and simply muzzled the compiler and forced it to obey. This, of course, does not go well

down the throats of C++ programmers who see their type safety being compromised by

casts that force anything through.

The C++ Casting Operators
Despite the disadvantages of casting, the concept of casting itself cannot be discarded. In

many situations, casts are legitimate requirements to solve important compatibility issues.

C++ additionally supplies a new casting operator specific to inheritance-based scenarios

that did not exist with C programming.

The four C++ casting operators are

 ■ static_cast

 ■ dynamic_cast

 ■ reinterpret_cast

 ■ const_cast

The usage syntax of the casting operators is consistent:

destination_type result = cast_operator<destination_type> (object_to_cast);

ptg18655082

380 LESSON 13: Casting Operators

Using static_cast
static_cast is a mechanism that can be used to convert pointers between related

types, and perform explicit type conversions for standard data types that would otherwise

happen automatically or implicitly. As far as pointers go, static_cast implements a

basic compile-time check to ensure that the pointer is being cast to a related type. This

is an improvement over a C-style cast that allows a pointer to one object to be cast to an

absolutely unrelated type without any complaint. Using static_cast, a pointer can

be upcasted to the base type, or can be downcasted to the derived type, as the following

code-sample indicates.

Base* objBase = new Derived ();
Derived* objDer = static_cast<Derived*>(objBase); // ok!

// class Unrelated is not related to Base
Unrelated* notRelated = static_cast<Unrelated*>(objBase); // Error
// The cast is not permitted as types are unrelated

Casting a Derived* to a Base* is called upcasting and can be
done without any explicit casting operator:

Derived objDerived;

Base* objBase = &objDerived; // ok!

Casting a Base* to a Derived* is called downcasting and cannot
be done without usage of explicit casting operators:

Derived objDerived;

Base* objBase = &objDerived; // Upcast -> ok!

Derived* objDer = objBase; // Error: Downcast needs
explicit cast

NOTE

However, note that static_cast verifies only that the pointer types are related. It does

not perform any runtime checks. So, with static_cast, a programmer could still get

away with this bug:

Base* objBase = new Base();
Derived* objDer = static_cast<Derived*>(objBase); // Still no errors!

Here, objDer actually points to a partial Derived object because the object being pointed

to is actually a Base() type. Because static_cast performs only a compile-time

check of verifying that the types in question are related and does not perform a runtime

check, a call to objDer->DerivedFunction() would get compiled, but probably result

in unexpected behavior during runtime.

ptg18655082

The C++ Casting Operators 381

13

Apart from helping in upcasting or downcasting, static_cast can, in many cases, help

make implicit casts explicit and bring them to the attention of the programmer or reader:

double Pi = 3.14159265;
int num = static_cast<int>(Pi); // Making an otherwise implicit cast, explicit

In the preceding code, num = Pi would have worked as well and to the same effect.

However, using a static_cast brings the nature of conversion to the attention of the

reader and indicates (to someone who knows static_cast) that the compiler has

performed the necessary adjustments based on the information available at compile-

time to perform the required type conversion. You would also need to use static_

cast when using conversion operators or constructors that have been declared using

 keyword explicit. Avoiding implicit conversions via keyword explicit is discussed

in Lesson 9, “Classes and Objects,” and Lesson 12, “Operator Types and Operator

Overloading.”

Using dynamic_cast and Runtime Type Identification
Dynamic casting, as the name suggests, is the opposite of static casting and actually

executes the cast at runtime—that is, at application execution time. The result of a

dynamic_cast operation can be checked to see whether the attempt at casting suc-

ceeded. The typical usage syntax of the dynamic_cast operator is

destination_type* Dest = dynamic_cast<class_type*>(Source);

if(Dest) // Check for success of the casting operation
 Dest->CallFunc ();

For example:

Base* objBase = new Derived();

// Perform a downcast
Derived* objDer = dynamic_cast<Derived*>(objBase);

if(objDer) // Check for success of the cast
 objDer->CallDerivedFunction ();

As shown in the preceding short example, given a pointer to a base-class object, the

programmer can resort to dynamic_cast to verify the type of the destination object

being pointed to before proceeding to use the pointer as such. Note that in the code

snippet it is apparent that the destination object is a Derived type. So, the sample is of

demonstrative value only. Yet, this is not always the case—for example, when a pointer

of type Derived* is passed to a function that accepts type Base*. The function can

ptg18655082

382 LESSON 13: Casting Operators

use dynamic_cast given a base-class pointer type to detected type and then perform

 operations specific to the types detected. Thus, dynamic_cast helps determine the type

at runtime and use a casted pointer when it is safe to do so. See Listing 13.1, which uses a

familiar hierarchy of class Tuna and class Carp related to base class Fish, where

the function DetectFishType() dynamically detects whether a Fish* is a Tuna* or

a Carp*.

Therefore, this mechanism of identifying the type of the object at
runtime is called runtime type identification (RTTI).NOTE

LISTING 13.1 Using Dynamic Casting to Tell Whether a Fish Object Is a Tuna or a Carp

 0: #include <iostream>
 1: using namespace std;
 2:
 3: class Fish
 4: {
 5: public:
 6: virtual void Swim()
 7: {
 8: cout << "Fish swims in water" << endl;
 9: }
10:
11: // base class should always have virtual destructor
12: virtual ~Fish() {}
13: };
14:
15: class Tuna: public Fish
16: {
17: public:
18: void Swim()
19: {
20: cout << "Tuna swims real fast in the sea" << endl;
21: }
22:
23: void BecomeDinner()
24: {
25: cout << "Tuna became dinner in Sushi" << endl;
26: }
27: };
28:
29: class Carp: public Fish
30: {
31: public:
32: void Swim()

ptg18655082

The C++ Casting Operators 383

13

33: {
34: cout << "Carp swims real slow in the lake" << endl;
35: }
36:
37: void Talk()
38: {
39: cout << "Carp talked Carp!" << endl;
40: }
41: };
42:
43: void DetectFishType(Fish* objFish)
44: {
45: Tuna* objTuna = dynamic_cast <Tuna*>(objFish);
46: if (objTuna) // check success of cast
47: {
48: cout << "Detected Tuna. Making Tuna dinner: " << endl;
49: objTuna->BecomeDinner();
50: }
51:
52: Carp* objCarp = dynamic_cast <Carp*>(objFish);
53: if(objCarp)
54: {
55: cout << "Detected Carp. Making carp talk: " << endl;
56: objCarp->Talk();
57: }
58:
59: cout << "Verifying type using virtual Fish::Swim: " << endl;
60: objFish->Swim(); // calling virtual function Swim
 61: }
 62:
 63: int main()
 64: {
 65: Carp myLunch;
 66: Tuna myDinner;
 67:
 68: DetectFishType(&myDinner);
 69: cout << endl;
 70: DetectFishType(&myLunch);
 71:
 72: return 0;
 73:}

Output ▼
Detected Tuna. Making Tuna dinner:
Tuna became dinner in Sushi
Verifying type using virtual Fish::Swim:
Tuna swims real fast in the sea

ptg18655082

384 LESSON 13: Casting Operators

Detected Carp. Making carp talk:
Carp talked Carp!
Verifying type using virtual Fish::Swim:
Carp swims real slow in the lake

Analysis ▼

This sample uses a hierarchy where classes Tuna and Carp inherit from Fish.

For sake of explanation, not only do the two derived classes implement the virtual func-

tion Swim(), but they contain a function each that is specific to their types, namely

Tuna::BecomeDinner() and Carp::Talk(). What is special in this sample is that

given an instance of the base class Fish*, you are able to dynamically detect whether

that pointer points to a Tuna or a Carp. This dynamic detection or runtime type identi-

fication happens in function DetectFishType() defined in Lines 43–61. In Line 45,

dynamic_cast is used to test the nature of the input base class pointer of type Fish*

for type Tuna*. If this Fish* points to a Tuna, the operator returns a valid address, else

it returns NULL. Hence, the result of a dynamic_cast always needs to be checked for

validity. After the check in Line 46 succeeds, you know that the pointer objTuna points

to a valid Tuna, and you are able to call function Tuna::BecomeDinner() using it, as

shown in Line 49. With the Carp, you use the pointer to invoke function Carp::Talk()

as shown in Line 56. Before returning, DetectFishType() does a verification on the

type by invoking Fish::Swim(), which being virtual redirects the call to the Swim()

method implemented in Tuna or Carp, as applicable.

The return value of a dynamic_cast operation should always be
checked for validity. It is NULL when the cast fails.CAUTION

Using reinterpret_cast
reinterpret_cast is the closest a C++ casting operator gets to the C-style cast.

It really does allow the programmer to cast one object type to another, regardless of

whether or not the types are related; that is, it forces a reinterpretation of type using a

syntax as seen in the following sample:

Base* objBase = new Base ();
Unrelated* notRelated = reinterpret_cast<Unrelated*>(objBase);
// The code above compiles, but is not good programming!

ptg18655082

The C++ Casting Operators 385

13

This cast actually forces the compiler to accept situations that static_cast would

normally not permit. It finds usage in certain low-level applications (such as drivers, for

example) where data needs to be converted to a simple type that an API—Application

Program Interface—can accept (for example, some OS-level APIs require data to be sent

as a BYTE array, that is, unsigned char*):

SomeClass* object = new SomeClass();
// Need to send the object as a byte-stream...
unsigned char* bytesFoAPI = reinterpret_cast<unsigned char*>(object);

The cast used in the preceding code has not changed the binary representation of the

source object and has effectively cheated the compiler into allowing the programmer

to peek into individual bytes contained by an object of type SomeClass. Because no

other C++ casting operator would allow such a conversion that compromises type safety,

reinterpret_cast is a last resort in performing an otherwise unsafe (and nonportable)

conversion.

As far as possible, you should refrain from using reinterpret_
cast in your applications because it allows you to instruct the
compiler to treat type X as an unrelated type Y, which does not
look like good design or implementation.

CAUTION

Using const_cast
const_cast enables you to turn off the const access modifier to an object. If you are

wondering why this cast is necessary at all, you are probably right in doing so. In an

ideal situation where programmers write their classes correctly, they remember to use the

const keyword frequently and in the right places. The practical world is unfortunately

way too different, and code like following is prevalent:

class SomeClass
{
public:
 // ...
 void DisplayMembers(); //problem - display function isn't const
};

ptg18655082

386 LESSON 13: Casting Operators

So, when you program a function such as

void DisplayAllData (const SomeClass& object)
{
 object.DisplayMembers (); // Compile failure
 // reason: call to a non-const member using a const reference
}

You are evidently correct in passing object as a const reference. After all, a display

function should be read-only and should not be allowed to call non-const member

 functions—that is, should not be allowed to call a function that can change the state of

the object. However, the implementation of DisplayMembers(), which also ought to be

const, unfortunately is not. Now, so long as SomeClass belongs to you and the source

code is in your control, you can make corrective changes to DisplayMembers(). In

many cases, however, it might belong to a third-party library, and making changes to it is

not possible. In situations such as these, const_cast is your savior.

The syntax for invoking DisplayMembers() in such a scenario is

void DisplayAllData (const SomeClass& object)
{
 SomeClass& refData = const_cast<SomeClass&>(object);
 refData.DisplayMembers(); // Allowed!
}

Note that using const_cast to invoke non-const functions should be a last resort.

In general, keep in mind that using const_cast to modify a const object can also

result in undefined behavior.

Note that const_cast can also be used with pointers:

void DisplayAllData (const SomeClass* data)
{
 // data->DisplayMembers(); Error: attempt to invoke a non-const function!
 SomeClass* pCastedData = const_cast<SomeClass*>(data);
 pCastedData->DisplayMembers(); // Allowed!
}

Problems with the C++ Casting
Operators
Not everyone is happy with all C++ casting operators—not even those who swear by

C++. Their reasons range from the syntax being cumbersome and non-intuitive to being

redundant.

ptg18655082

Problems with the C++ Casting Operators 387

13

Let’s simply compare this code:

double Pi = 3.14159265;

// C++ style cast: static_cast
int num = static_cast <int>(Pi); // result: Num is 3

// C-style cast
int num2 = (int)Pi; // result: num2 is 3

// leave casting to the compiler
int num3 = Pi; // result: num3 is 3. No errors!

In all three cases, the programmer achieved the same result. In practical scenarios, the

second option is probably the most prevalent, followed by the third. Few people might

use the first option. In any case, the compiler is intelligent enough to convert such types

correctly. This gives the cast syntax an impression that it makes the code more difficult

to read.

Similarly, other uses of static_cast are also handled well by C-style casts that are

admittedly simpler looking:

// using static_cast
Derived* objDer = static_cast <Derived*>(objBase);

// But, this works just as well...
Derived* objDerSimple = (Derived*)objBase;

Thus, the advantage of using static_cast is often overshadowed by the clumsiness of

its syntax.

Looking at other operators, reinterpret_cast is for forcing your way through

when static_cast does not work; ditto for const_cast with respect to modifying

the const access modifiers. Thus, C++ casting operators other than dynamic_cast

are avoidable in modern C++ applications. Only when addressing the needs of legacy

 applications might other casting operators become relevant. In such cases, preferring

C-style casts to C++ casting operators is often a matter of taste. What’s important is that

you avoid casting as far as possible, and when you do use it, you know what happens

behind the scenes.

ptg18655082

388 LESSON 13: Casting Operators

DO DON’T

DO remember that casting a
Derived* to a Base* is called
 upcasting and this is safe.

DO remember that casting a Base*
directly to a Derived* is called
downcasting, and this can be unsafe
unless you use dynamic_cast, and
check for success.

DO remember that the objective of
creating an inheritance hierarchy is
typically in having virtual functions
that when invoked using base class
pointers ensure that the available
derived class versions are invoked.

DON’T forget to check the pointer for
validity after using dynamic_cast.

DON’T design your application
around RTTI using dynamic_cast.

Summary
In this lesson, you learned the different C++ casting operators, the arguments for and

against using them. You also learned that in general you should avoid the usage of casts.

Q&A
 Q Is it okay to modify the contents of a const-object by casting a pointer or

 reference to it using const_cast?

 A Most definitely not. The result of such an operation is not defined and is definitely

not desired.

 Q I need a Bird*, but have a Dog* at hand. The compiler does not allow
me to use the pointer to the Dog object as a Bird*. However, when I use
 reinterpret_cast to cast the Dog* to Bird*, the compiler does not complain
and it seems I can use this pointer to call Bird’s member function, Fly().
Is this okay?

 A Again, definitely not. reinterpret_cast changed only the interpretation of the

pointer, and did not change the object being pointed to (that is still a Dog). Calling

a Fly() function on a Dog object will not give the results you are looking for, and

could possibly cause an application failure.

ptg18655082

Workshop 389

13

 Q I have a Derived object being pointed to by a objBase that is a Base*.
I am sure that objBase points to a Derived object, so do I really need to use
dynamic_cast?

 A Because you are sure that the object being pointed to is a Derived type, you can

save on runtime performance by using static_cast.

 Q C++ provides casting operators, and yet I am advised to not use them as much
as possible. Why is that?

 A You keep aspirin at home, but you don’t make it your staple diet just because it’s

available, right? Use casts only when you need them.

Workshop
The workshop contains quiz questions to help solidify your understanding of the material

covered and exercises to provide you with experience in using what you’ve learned. Try

to answer the quiz and exercise questions before checking the answers in Appendix E,

and be certain you understand the answers before going to the next lesson.

Quiz
1. You have a base class object pointer objBase. What cast would you use to

 determine whether it is a Derived1 type or a Derived2 type?

2. You have a const reference to an object and tried calling a public member

 function, written by you. The compiler does not allow this because the function in

question is not a const member. Would you correct the function or would you use

const_cast?

3. reinterpret_cast should be used only when static_cast does not work, and

the cast is known to be required and safe. True or false?

4. Is it true that many instances of static_cast-based conversions, especially

between simple data types, would be performed automatically by a good C++

 compiler?

Exercises
1. BUG BUSTERS: What is the problem in the following code?

void DoSomething(Base* objBase)
{
 Derived* objDer = dynamic_cast <Derived*>(objBase);
 objDer->DerivedClassMethod();
}

ptg18655082

390 LESSON 13: Casting Operators

2. You have pointer objFish* that points to object of class Tuna.

Fish* objFish = new Tuna;
Tuna* pTuna = <what cast?>objFish;

What cast would you use to get a pointer Tuna* point to this object of type Tuna?

Demonstrate using code.

ptg18655082

LESSON 14
An Introduction to
Macros and Templates

By now, you should have a solid understanding of basic C++ syntax.
Programs written in C++ should be understandable and you are poised
to learn language features that help you write applications efficiently.

In this lesson, you learn

 ■ An introduction to the preprocessor

 ■ The #define keyword and macros

 ■ An introduction to templates

 ■ How to write templates functions and classes

 ■ The difference between macros and templates

 ■ How to use static_assert introduced in C++11 to perform
 compile-time checks

ptg18655082

392 LESSON 14: An Introduction to Macros and Templates

The Preprocessor and the Compiler
Lesson 2, “The Anatomy of a C++ Program,” introduced the preprocessor. The

 preprocessor, as the name indicates, is what runs before the compiler starts. In other

words, the preprocessor actually decides what is compiled on the basis of how you

instruct it. Preprocessor directives are characterized by the fact that they all start with

a # sign. For example:

// instruct preprocessor to insert contents of iostream here
#include <iostream>

// define a macro constant
#define ARRAY_LENGTH 25
int numbers[ARRAY_LENGTH]; // array of 25 integers

// define a macro function
#define SQUARE(x) ((x) * (x))
int TwentyFive = SQUARE(5);

This lesson focuses on two types of preprocessor directives seen in the code snippet

above, one using #define to define a constant and another using #define to define a

macro function. Both these directives, irrespective of what role they play, actually tell the

preprocessor to replace every instance of the macro (ARRAY_LENGTH or SQUARE) with

the value they define.

Macros are also about text substitution. The preprocessor does
nothing intelligent beyond replacing in-place the identifier by
another text.

NOTE

Using Macro #define to Define
Constants
The syntax of using #define to compose a constant is simple:

#define identifier value

For example, a constant ARRAY_LENGTH that is substituted by 25 would hence be the

 following:

#define ARRAY_LENGTH 25

ptg18655082

393

14

Using Macro #define to Define Constants

This identifier is now replaced by 25 wherever the preprocessor encounters the text

ARRAY_LENGTH:

int numbers [ARRAY_LENGTH] = {0};
double radiuses [ARRAY_LENGTH] = {0.0};
std::string names [ARRAY_LENGTH];

After the preprocessor runs, the three are visible to the compiler as follows:

int numbers [25] = {0}; // an array of 25 integers
double radiuses [25] = {0.0}; // an array of 25 doubles
std::string names [25]; // an array of 25 std::strings

The replacement is applicable to every section of your code, including a for loop such

as this one:

for(int index = 0; index < ARRAY_LENGTH; ++index)
 numbers[index] = index;

This for loop is visible to the compiler as

for(int index = 0; index < 25; ++index)
 numbers[index] = index;

To see exactly how such a macro works, review Listing 14.1.

LISTING 14.1 Declaring and Using Macros That Define Constants

 0: #include <iostream>
 1: #include<string>
 2: using namespace std;
 3:
 4: #define ARRAY_LENGTH 25
 5: #define PI 3.1416
 6: #define MY_DOUBLE double
 7: #define FAV_WHISKY "Jack Daniels"
 8:
 9: int main()
10: {
11: int numbers [ARRAY_LENGTH] = {0};
12: cout << "Array’s length: " << sizeof(numbers) / sizeof(int) << endl;
13:
14: cout << "Enter a radius: ";
15: MY_DOUBLE radius = 0;
16: cin >> radius;
17: cout << "Area is: " << PI * radius * radius << endl;
18:

ptg18655082

394 LESSON 14: An Introduction to Macros and Templates

19: string favoriteWhisky (FAV_WHISKY);
20: cout << "My favorite drink is: " << FAV_WHISKY << endl;
21:
22: return 0;
23: }

Output ▼
Array’s length: 25
Enter a radius: 2.1569
Area is: 14.7154
My favorite drink is: Jack Daniels

Analysis ▼

ARRAY_LENGTH, PI, MY_DOUBLE, and FAV_WHISKY are the four macro constants

defined in Lines 4 to 7, respectively. As you can see, ARRAY_LENGTH is used in defining

the length of an array at Line 11, which has been confirmed indirectly by using operator

sizeof() in Line 12. MY_DOUBLE is used to declare a variable radius of type double

in Line 15, whereas PI is used to calculate the area of the circle in Line 17. Finally,

FAV_WHISKY is used to initialize a std::string object in Line 19 and is directly used

in the cout statement in Line 20. All these instances show how the preprocessor simply

makes a text replacement.

This “dumb” text replacement that seems to have found a ubiquitous application in

Listing 14.1 has its drawbacks, too.

As the preprocessor makes dumb text substitutions, it does
not check for correctness of the substitution (but the compiler
always does). You could define FAV_WHISKY in Line 7 in
Listing 14.1 like this:

#define FAV_WHISKY 42 // "Jack Daniels"

which would result in a compilation error in Line 19 for the
std::string instantiation, but in the absence of it, the compiler
would go ahead and print the following:

My favorite drink is: 42

This, of course, wouldn’t make sense, and most importantly went
through undetected. Additionally, you don’t have much control
on the macro defined constant PI: was it a double or a float?
The answer is neither. PI to the preprocessor was just a text
 substitution element “3.1416”. It never was a defined data type.

TIP

ptg18655082

395

14

Using Macro #define to Define Constants

Using Macros for Protection against
Multiple Inclusion
C++ programmers typically declare their classes and functions in .H files called header

files. The respective functions are defined in .CPP files that include the header files

using the #include<header> preprocessor directive. If one header file—let’s call it

class1.h—declares a class that has another class declared in class2.h as a member,

then class1.h needs to include class2.h. If the design were complicated, and the

other class required the former as well, then class2.h would include class1.h, too!

For the preprocessor however, two header files that include each other is a problem

of recursive nature. To avoid this problem, you can use macros in conjunction with

 preprocessor directives #ifndef and #endif.

header1.h that includes <header2.h> looks like the following:

#ifndef HEADER1_H _//multiple inclusion guard:
#define HEADER1_H_ // preprocessor will read this and following lines once
#include <header2.h>

class Class1
{
 // class members
};
#endif // end of header1.h

header2.h looks similar, but with a different macro definition and includes <header1.h>:

#ifndef HEADER2_H_//multiple inclusion guard
#define HEADER2_H_
#include <header1.h>

class Class2
{
 // class members
};
#endif // end of header2.h

Constants are better defined using the const keyword with data
types instead. So, this is much better:

const int ARRAY_LENGTH = 25;

const double PI = 3.1416;

const char* FAV_WHISKY = "Jack Daniels";

typedef double MY_DOUBLE; // typedef aliases a type

ptg18655082

396 LESSON 14: An Introduction to Macros and Templates

#ifndef can be read as if-not-defined. It is a conditional
 processing command, instructing the preprocessor to continue
only if the identifier has not been defined.

#endif marks the end of this conditional processing instruction
for the preprocessor.

NOTE

Thus, when the preprocessor enters header1.h in the first run and encounters #ifndef

statement, it notices that the macro HEADER1_H_ has not been defined and proceeds.

The first line following #ifndef defines the macro HEADER1_H_ ensuring that a second

preprocessor run of this file terminates at the first line containing #ifndef, as that

condition now evaluates to false. The same stands true for header2.h. This simple

mechanism is arguably one of the most frequently used macro-based functionalities in

the world of C++ programming.

Using #define to Write Macro
Functions
The capability of the preprocessor to simply replace text elements identified by a macro

often results it in being used to write simple functions, for example:

#define SQUARE(x) ((x) * (x))

This helps determine the square of a number. Similarly, a macro that calculates the area

of a circle looks like this:

#define PI 3.1416
#define AREA_CIRCLE(r) (PI*(r)*(r))

Macro functions are often used for such very simple calculations. They provide the

advantage of normal function calls in that these are expanded inline before compilations

and hence can help improve code performance in certain cases. Listing 14.2 demonstrates

the use of these macro functions.

LISTING 14.2 Using Macro Functions That Calculate the Square of a Number,
Area of a Circle, and Min and Max of Two Numbers

 0: #include <iostream>
 1: #include<string>
 2: using namespace std;
 3:

ptg18655082

397

14

Using #define to Write Macro Functions

 4: #define SQUARE(x) ((x) * (x))
 5: #define PI 3.1416
 6: #define AREA_CIRCLE(r) (PI*(r)*(r))
 7: #define MAX(a, b) (((a) > (b)) ? (a) : (b))
 8: #define MIN(a, b) (((a) < (b)) ? (a) : (b))
 9:
10: int main()
11: {
12: cout << "Enter an integer: ";
13: int num = 0;
14: cin >> num;
15:
16: cout << "SQUARE(" << num << ") = " << SQUARE(num) << endl;
17: cout << "Area of a circle with radius " << num << " is: ";
18: cout << AREA_CIRCLE(num) << endl;
19:
20: cout << "Enter another integer: ";
21: int num2 = 0;
22: cin >> num2;
23:
24: cout << "MIN(" << num << ", " << num2 << ") = ";
25: cout << MIN (num, num2) << endl;
26:
27: cout << "MAX(" << num << ", " << num2 << ") = ";
28: cout << MAX (num, num2) << endl;
29:
30: return 0;
31: }

Output ▼
Enter an integer: 36
SQUARE(36) = 1296
Area of a circle with radius 36 is: 4071.51
Enter another integer: -101
MIN(36, -101) = -101
MAX(36, -101) = 36

Analysis ▼

Lines 4 to 8 contain a few utility macro functions that return the square of a number,

area of a circle, and min and max of two numbers, respectively. Note how AREA_CIRCLE

in Line 6 evaluates the area using a macro constant PI, thus indicating that one macro

can reuse another. After all, these are just plain text replacement commands for the

 preprocessor. Let’s analyze Line 25, which uses the macro MIN:

cout << MIN (num, num2) << endl;

ptg18655082

398 LESSON 14: An Introduction to Macros and Templates

This line is essentially fed to the compiler in the following format where the macro is

expanded in-place:

cout << (((num) < (num2)) ? (num) : (num2)) << endl;

Note that macros are not type sensitive and macro functions can
therefore cause problems. AREA_CIRCLE, for instance, should
ideally be a function that returns double so that you are certain
of the return value resolution of the area calculated, and its
 independence to the nature of the input radius was.

CAUTION

Why All the Parentheses?
Take a look at the macro to calculate the circle’s area again:

#define AREA_CIRCLE(r) (PI*(r)*(r))

This calculation has curious syntax in the number of brackets used. In comparison, refer

to the function Area() programmed in Listing 7.1 of Lesson 7, “Organizing Code with

Functions.”

// Function definitions (implementations)
double Area(double radius)
{
 return Pi * radius * radius; // look, no brackets?
}

So, why did you overdo the brackets for the macro while the same formula in a function

looks a lot different. The reason lies in the way the macro is evaluated—as a text

 substitution mechanism supported by the preprocessor.

Consider the macro without most of the brackets:

#define AREA_CIRCLE(r) (PI*r*r)

What would happen when you invoke this macro using a statement like this:

cout << AREA_CIRCLE (4+6);

This would be expanded by the compiler into

cout << (PI*4+6*4+6); // not the same as PI*10*10

ptg18655082

399

14

Using #define to Write Macro Functions

Thus, following the rules of operator precedence where multiplication happens before

addition, the compiler actually evaluates the area like this:

cout << (PI*4+24+6); // 42.5664 (which is incorrect)

In the absence of parenthesis, plain-text conversion played havoc on our programming

logic! Parenthesis help avoid this problem:

#define AREA_CIRCLE(r) (PI*(r)*(r))
cout << AREA_CIRCLE (4+6);

The expression after substitution is viewed by the compiler as the following:

cout << (PI*(4+6)*(4+6)); // PI*10*10, as expected

These brackets automatically result in the calculation of an accurate area, making your

macro code independent of operator precedence and the effects thereof.

Using Macro assert to Validate Expressions
Although it is good to test every code path immediately after programming, it might be

physically impossible for very large applications. What is possible, though, is to check for

valid expressions or variable values.

The assert macro enables you to do just that. To use assert you include <assert.h>

and the syntax is as follows:

assert (expression that evaluates to true or false);

A sample use of assert() that validates the contents of a pointer is

#include <assert.h>
int main()
{
 char* sayHello = new char [25];
 assert(sayHello != NULL); // throws a message if pointer is NULL

 // other code

 delete [] sayHello;
 return 0;
}

assert() ensures that you are notified if the pointer is invalid. For demonstration

 purposes, I initialized sayHello to NULL, and on execution in debug mode Visual Studio

immediately popped up the screen you see in Figure 14.1.

ptg18655082

400 LESSON 14: An Introduction to Macros and Templates

FIGURE 14.1

What happens
when an assert
checking validity
of the pointer
fails.

Thus, assert(), as implemented in Microsoft Visual Studio, enables you to click the

Retry button that brings you back into your application, and the call stack indicates

which line failed the assertion test. This makes assert() a handy debugging feature;

for instance, you can validate input parameters of functions using assert. This is highly

recommended and helps you improve the quality of your code over the long term.

assert() is typically disabled in release modes and provides
you with an error message or information only in the debug build
of most development environments.

Additionally, some environments have implemented this as a
function, not as a macro.

NOTE

As assert does not make it to the release build, it is important
to ensure that checks that are critical to the functioning of your
application (for example, the return value of a dynamic_cast
operation) are still performed using an if-statement. An assert
assists you in problem detection; it’s not something to replace
pointer checks necessary in the code.

CAUTION

Advantages and Disadvantages of Using
Macro Functions
Macros enable you to reuse certain utility functions irrespective of the type of variables

you are dealing with. Consider the following line from Listing 14.2 again:

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

ptg18655082

401

14

Using #define to Write Macro Functions

You can use this macro function MIN on integers:

cout << MIN(25, 101) << endl;

But you can reuse the same on double, too:

cout << MIN(0.1, 0.2) << endl;

Note that if MIN() were to be a normal function, you would program two variants of it:

MIN_INT() that accepted int parameters and returned an int and MIN_DOUBLE() that

does the same with type double instead. This optimization in reducing lines of code is

a slight advantage and entices some programmers into using macros for defining simple

utility functions. These macro functions get expanded inline before compilation and

hence the performance of a simple macro is superior to that of an ordinary function

call doing the same task. This is because the function call requires the creation of a call

stack, passing arguments, and so on—administrative overload that often takes more CPU

time than the calculation of MIN itself.

Yet, macros do not support any form of type safety, and that is a major disadvantage.

Additionally, debugging a complicated macro is not easy either.

If you need the ability to program generic functions that are type independent, yet type

safe, you program a template function instead of a macro function. These are explained

in the next section. If you need to boost performance, you call that function inline.

You have already been introduced to programming inline functions using keyword

inline in Listing 7.10 in Lesson 7.

DO DON’T

DO program your own macro func-
tions as infrequently as possibly.

DO use const variables where you
can instead of macros.

DO remember that macros are not
type safe and the preprocessor per-
forms no type checking.

DON’T forget to envelop every vari-
able in a macro function definition
with brackets.

DON’T forget to insert multiple inclu-
sion guards using #ifndef, #define,
and #endif in your header files.

DON’T forget to sprinkle your code
with generous number of assert()
statements—these don’t make it to
the release version and are good at
improving the quality of your code.

It’s time to learn generic programming practices using templates!

ptg18655082

402 LESSON 14: An Introduction to Macros and Templates

An Introduction to Templates
Templates are arguably one of the most powerful features of the C++ language that often

are the least approached, or understood. Before we tackle with this matter, let’s first

look at the definition of a template as supplied by Webster’s Dictionary:

Pronunciation: \’tem-plét\

Function: noun

Etymology: Probably from French templet, diminutive of temple, part of a loom,

probably from Latin templum

Date: 1677

1: a short piece or block placed horizontally in a wall under a beam to distribute its

weight or pressure (as over a door)

2: (1): a gauge, pattern, or mold (as a thin plate or board) used as a guide to the

form of a piece being made (2): a molecule (as of DNA) that serves as a pattern

for the generation of another macromolecule (as messenger RNA) b: overlay

3: something that establishes or serves as a pattern

The last definition probably comes closest to the interpretation of the word template as

used in the C++ parlance. Templates in C++ enable you to define a behavior that you can

apply to objects of varying types. This sounds ominously close to what macros let you do

(refer to the simple macro MAX that determined the greater of two numbers), save for the

fact that macros are type unsafe and templates are type safe.

Template Declaration Syntax
You begin the declaration of a template using the template keyword followed by a type

parameter list. The format of this declaration is

template <parameter list>
template function / class declaration..

The keyword template marks the start of a template declaration and is followed by the

template parameter list. This parameter list contains the keyword typename that defines

the template parameter objType, making it a placeholder for the type of the object that

the template is being instantiated for.

template <typename T1, typename T2 = T1>
bool TemplateFunction(const T1& param1, const T2& param2);

// A template class
template <typename T1, typename T2 = T1>

ptg18655082

An Introduction to Templates 403

14

class MyTemplate
{
private:
 T1 member1;
 T2 member2;

public:
 T1 GetObj1() {return member1; }
 // ... other members
};

What you see is a template function and a template class, each taking two template

parameters T1 and T2, where T2 has been given the default type as that of T1.

The Different Types of Template Declarations
A template declaration can be

 ■ A declaration or definition of a function

 ■ A declaration or definition of a class

 ■ A definition of a member function or a member class of a class template

 ■ A definition of a static data member of a class template

 ■ A definition of a static data member of a class nested within a class template

 ■ A definition of a member template of a class or class template

Template Functions
Imagine a function that would adapt itself to suit parameters of different types. Such

a function is possible using template syntax! Let’s analyze a sample template declaration

that is the equivalent of the previously discussed macro MAX that returns the greater of

two supplied parameters:

template <typename objType>
const objType& GetMax(const objType& value1, const objType& value2)
{
 if (value1 > value2)

return value1;
 else

return value2;
}

Sample usage:

int num1 = 25;
int num2 = 40;

ptg18655082

404 LESSON 14: An Introduction to Macros and Templates

int maxVal = GetMax <int> (num1, num2);
double double1 = 1.1;
double double2 = 1.001;
double maxVal = GetMax <double>(double1, double2);

Note the detail <int> used in the call to GetMax. It effectively defines the template

parameter objType as int. The preceding code leads to the compiler generating

two versions of the template function GetMax, which can be visualized as the following:

const int& GetMax(const int& value1, const int& value2)
{
 //...
}
const double& GetMax(const double& value1, const double& value2)
{
 // ...
}

In reality, however, template functions don’t necessarily need an accompanying type

specifier. So, the following function call works perfectly well:

int maxVal = GetMax(num1, num2);

Compilers in this case are intelligent enough to understand that the template function is

being invoked for the integer type. With template classes, however, you need to explicitly

specify type, as shown in Listing 14.3.

LISTING 14.3 A Template Function GetMax That Helps Evaluate the Higher of Two
Supplied Values

 0: #include<iostream>
 1: #include<string>
 2: using namespace std;
 3:
 4: template <typename Type>
 5: const Type& GetMax(const Type& value1, const Type& value2)
 6: {
 7: if (value1 > value2)
 8: return value1;
 9: else
10: return value2;
11: }
12:
13: template <typename Type>
14: void DisplayComparison(const Type& value1, const Type& value2)
15: {
16: cout << "GetMax(" << value1 << ", " << value2 << ") = ";

ptg18655082

An Introduction to Templates 405

14

17: cout << GetMax(value1, value2) << endl;
18: }
19:
20: int main()
21: {
22: int num1 = -101, num2 = 2011;
23: DisplayComparison(num1, num2);
24:
25: double d1 = 3.14, d2 = 3.1416;
26: DisplayComparison(d1, d2);
27:
28: string name1("Jack"), name2("John");
29: DisplayComparison(name1, name2);
30:
31: return 0;
32: }

Output ▼
GetMax(-101, 2011) = 2011
GetMax(3.14, 3.1416) = 3.1416
GetMax(Jack, John) = John

Analysis ▼

This sample features two template functions: GetMax() in Lines 4 to 11, which is used by

DisplayComparison() in Lines 13 to 18. main() demonstrates in Lines 23, 26, and 29

how the same template function has been reused for very different data types: integer,

double, and std::string. Not only are these template functions reusable (just like

their macro counterparts), but they’re easier to program and maintain and are type-safe!

Note that you could’ve also invoked DisplayComparison with the explicit type:

23: DisplayComparison<int>(num1, num2);

However, this is unnecessary when calling template functions. You don’t need to specify

the template parameter type(s) because the compiler is able to infer it automatically.

When programming template classes, though, you need to do it.

Templates and Type Safety
Template functions DisplayComparison() and GetMax() shown in Listing 14.3 are

type safe. This means that they would not allow a meaningless call like this one:

DisplayComparison(num1, name1);

This would immediately result in a compile failure.

ptg18655082

406 LESSON 14: An Introduction to Macros and Templates

Template Classes
Lesson 9, “Classes and Objects,” taught you that classes are programming units that

encapsulate certain attributes and methods that operate on those attributes. Attributes

typically are private members, such as int Age in a class Human. Classes are design

blueprints, and the real-world representation of a class is an object of the class. So, “Tom”

can be thought of as an object of class Human with attribute Age containing value 15,

for example. Apparently, we mean years. If you were required to store age as the number

of seconds since birth for a certain reason unique to your application, then int might be

insufficient. To be on the safe side, you might want to use a long long instead. This

is where template classes could be handy. Template classes are the templatized versions

of C++ classes. These are blueprints of blueprints. When using a template class, you are

given the option to specify the “type” you are specializing the class for. This enables you

to create some humans with template parameter Age as a long long, some with int,

and some with Age as an integer of type short.

A simple template class that uses a single parameter T to hold a member variable can be

written as the following:

template <typename T>
class HoldVarTypeT
{
private:
 T value;

public:
 void SetValue (const T& newValue) { value = newValue; }
 T& GetValue() {return value;}
};

The type of the variable value is T, and that is assigned at the time the template is used,

that is, instantiated. So, let’s look at a sample usage of this template class:

HoldVarTypeT <int> holdInt; // template instantiation for int
holdInt.SetValue(5);
cout << "The value stored is: " << holdInt.GetValue() << endl;

You have used this template class to hold and retrieve an object of type int; that is, the

Template class is instantiated for a template parameter of type int. Similarly, you can

use the same class to deal with character strings in a similar manner:

HoldVarTypeT <char*> holdStr;
holdStr.SetValue("Sample string");
cout << "The value stored is: " << holdStr.GetValue() << endl;

Thus, the template class defines a pattern for classes and helps implement that pattern on

different data types that the template may be instantiated with.

ptg18655082

An Introduction to Templates 407

14

Template classes can be instantiated with types other than
simple ones like int or classes supplied by the standard library.
You may instantiate a template using a class defined by you.
For example, when you add the code that defines template
class HoldVarTypeT to Listing 9.1 in Lesson 9, you will be able
to instantiate the template for class Human by appending the
 following code to main():

HoldVarTypeT<Human> holdHuman;

holdHuman.SetValue(firstMan);

holdHuman.GetValue().IntroduceSelf();

TIP

Declaring Templates with Multiple Parameters
The template parameter list can be expanded to declare multiple parameters separated by

a comma. So, if you want to declare a generic class that holds a pair of objects that can

be of differing types, you can do so using the construct as shown in the following sample

(that displays a template class with two template parameters):

template <typename T1, typename T2>
class HoldsPair
{
private:
 T1 value1;
 T2 value2;
public:
 // Constructor that initializes member variables
 HoldsPair (const T1& val1, const T2& val2)
 {

value1 = val1;
value2 = val2;

 };
 // ... Other member functions
};

In this example, class HoldsPair accepts two template parameters named T1 and T2.

We can use this class to hold two objects of the same type or of different types as you

can see here:

// A template instantiation that pairs an int with a double
HoldsPair <int, double> pairIntDouble (6, 1.99);

// A template instantiation that pairs an int with an int
HoldsPair <int, int> pairIntDouble (6, 500);

ptg18655082

408 LESSON 14: An Introduction to Macros and Templates

Declaring Templates with Default Parameters
We could modify the previous version of HoldsPair <...> to declare int as the

default template parameter type.

template <typename T1=int, typename T2=int>
class HoldsPair
{
 // ... method declarations
};

This is similar in construction to functions that define default input parameter values

except for the fact that, in this case, we define default types.

The second usage of HoldsPair can thus be compacted to

// Pair an int with an int (default type)
HoldsPair <> pairInts (6, 500);

Sample Template class<> HoldsPair
It’s time to develop further on the template version of HoldsPair that has been covered

so far. Have a look at Listing 14.4.

LISTING 14.4 A Template Class with a Pair of Member Attributes

 0: #include <iostream>
 1: using namespace std;
 2:
 3: // template with default params: int & double
 4: template <typename T1=int, typename T2=double>
 5: class HoldsPair
 6: {
 7: private:
 8: T1 value1;
 9: T2 value2;
10: public:
11: HoldsPair(const T1& val1, const T2& val2) // constructor
12: : value1(val1), value2(val2) {}
13:
14: // Accessor functions
15: const T1 & GetFirstValue () const
16: {
17: return value1;
18: }
19:
20: const T2& GetSecondValue () const

ptg18655082

An Introduction to Templates 409

14

21: {
22: return value2;
23: }
24: };
25:
26: int main ()
27: {
28: HoldsPair<> pairIntDbl (300, 10.09);
29: HoldsPair<short,const char*>pairShortStr(25,"Learn templates, love C++”);
30:
31: cout << "The first object contains -" << endl;
32: cout << "Value 1: " << pairIntDbl.GetFirstValue () << endl;
33: cout << "Value 2: " << pairIntDbl.GetSecondValue () << endl;
34:
35: cout << "The second object contains -" << endl;
36: cout << "Value 1: " << pairShortStr.GetFirstValue () << endl;
37: cout << "Value 2: " << pairShortStr.GetSecondValue () << endl;
38:
39: return 0;
40: }

Output ▼
The first object contains -
Value 1: 300
Value 2: 10.09
The second object contains -
Value 1: 25
Value 2: Learn templates, love C++

Analysis ▼

This simple program illustrates how to declare the template class HoldsPair to hold

a pair of values of types that are dependent on the template’s parameter list. Line 1

contains a template parameter list that defines two template parameters T1 and T2 with

default types as int and double, respectively. Accessor functions GetFirstValue()

and GetSecondValue() can be used to query the values held by the object. Note

how GetFirstValue and GetSecondValue get adapted on the basis of the template

instantiation syntax to return the appropriate object types. You have managed to define

a pattern in HoldsPair that you can reuse to deliver the same logic for different

 variable types. Thus, templates increase code reusability.

ptg18655082

410 LESSON 14: An Introduction to Macros and Templates

Template Instantiation and Specialization
A template class is a blueprint of a class, and therefore doesn’t truly exist for the com-

piler before it has been used in one form or another. That is, as far as the compiler is

concerned, a template class you define but don’t consume is code that is simply ignored.

However, once you instantiate a template class, like HoldsPair, by supplying template

arguments like this:

HoldsPair<int, double> pairIntDbl;

You are instructing the compiler to create a class for you using the template and

instantiate it for the types specified as template arguments (int and double in this case).

Thus, in the case of templates, instantiation is the act or process of creating a specific

type using one or more template arguments.

On the other hand, there may be situations that require you to explicitly define a

(different) behavior of a template when instantiated with a specific type. This is where

you specialize a template (or behavior thereof) for that type. A specialization of template

class HoldsPair when instantiated with template parameters both of type int would

look like this:

template<> class HoldsPair<int, int>
{
 // implementation code here
};

Needless to say, code that specializes a template must follow the template definition.

Listing 14.5 is an example of a template specialization that demonstrates how different a

specialized version can be from the template it specializes.

LISTING 14.5 Demonstrates Template Specialization

 0: #include <iostream>
 1: using namespace std;
 2:
 3: template <typename T1 = int, typename T2 = double>
 4: class HoldsPair
 5: {
 6: private:
 7: T1 value1;
 8: T2 value2;
 9: public:
10: HoldsPair(const T1& val1, const T2& val2) // constructor
11: : value1(val1), value2(val2) {}
12:

ptg18655082

An Introduction to Templates 411

14

13: // Accessor functions
14: const T1 & GetFirstValue() const;
15: const T2& GetSecondValue() const;
16: };
17:
18: // specialization of HoldsPair for types int & int here
19: template<> class HoldsPair<int, int>
20: {
21: private:
22: int value1;
23: int value2;
24: string strFun;
25: public:
26: HoldsPair(const int& val1, const int& val2) // constructor
27: : value1(val1), value2(val2) {}
28:
29: const int & GetFirstValue() const
30: {
31: cout << "Returning integer " << value1 << endl;
32: return value1;
33: }
34: };
35:
36: int main()
37: {
38: HoldsPair<int, int> pairIntInt(222, 333);
39: pairIntInt.GetFirstValue();
40:
41: return 0;
42: }

Output ▼
Returning integer 222

Analysis ▼

Clearly, when you compare the behavior of the class HoldsPair in Listing 14.4 to

that in this one, you notice that the template is behaving remarkably different. In fact,

the function GetFirstValue() has been modified in the template instantiation for

HoldsPair<int,int> to also display output. A closer look at the specialization code

in Lines 18 to 34 shows that this version also has a string member declared in Line

24—a member that is missing in the original template definition of HoldsPair<>

seen in Lines 3–16. In fact, the original template definition doesn’t even supply an

 implementation of the accessor functions GetFirstValue() and GetSecondValue(),

and the program still compiles. This is because the compiler was only required to

consider the template instantiation for <int, int>—for which we have supplied a

ptg18655082

412 LESSON 14: An Introduction to Macros and Templates

specialized implementation that was complete enough. Thus, this sample has not only

demonstrated template specialization but also how template code is considered or even

ignored by the compiler depending on its usage.

Template Classes and static Members
We learned how code in templates begins to exist for the compiler when used and not

otherwise. So, how would static member attributes function within a template class?

You learned in Lesson 9 that declaring a class member static results in the member

being shared across all instances of a class. It’s similar with a template class, too, save

for the fact that a static member is shared across all objects of a template class with

the same template instantiation. So a static member X within a template class is static

within all instances of the class instantiated for int. Similarly, X is also static within all

instances of the class specialized for double, independent of the other template instan-

tiation for int. In other words, you can visualize it as the compiler creating two versions

of the static member variable in a template class: X_int for template instantiation as int

and X_double for template instantiations as double. Listing 14.6 demonstrates this.

LISTING 14.6 The Effect of Static Variables on Template Class and Instances Thereof

 0: #include <iostream>
 1: using namespace std;
 2:
 3: template <typename T>
 4: class TestStatic
 5: {
 6: public:
 7: static int staticVal;
 8: };
 9:
10: // static member initialization
11: template<typename T> int TestStatic<T>::staticVal;
12:
13: int main()
14: {
15: TestStatic<int> intInstance;
16: cout << "Setting staticVal for intInstance to 2011" << endl;
17: intInstance.staticVal = 2011;
18:
19: TestStatic<double> dblnstance;
20: cout << "Setting staticVal for Double_2 to 1011" << endl;
21: dblnstance.staticVal = 1011;
22:
23: cout << "intInstance.staticVal = " << intInstance.staticVal << endl;
24: cout << "dblnstance.staticVal = " << dblnstance.staticVal << endl;
25:
26: return 0;
27: }

ptg18655082

An Introduction to Templates 413

14

Output ▼
Setting staticVal for intInstance to 2011
Setting staticVal for Double_2 to 1011
intInstance.staticVal = 2011
dblnstance.staticVal = 1011

Analysis ▼

In Lines 17 and 21, you set member staticVal for an instantiation of the template for

type int and type double, respectively. The output demonstrates that the compiler

has stored two distinct values in two different static members though both are called

 staticVal. Thus, the compiler ensured that the behavior of the static variable remains

intact for the instantiation of the template class for a particular type.

Static member instantiation syntax for a template class is not to
be missed in Line 11 in Listing 14.6.

template<typename T> int TestStatic<T>::staticVal;

This follows the pattern:

template<template parameters> StaticType
ClassName<Template Arguments>::StaticVarName;

NOTE

Variable Templates, Also Called Variadic Templates
Let’s assume that you want to write a generic function that adds two values. Template

function Sum() achieves just that:

template <typename T1, typename T2, typename T3>
void Sum(T1& result, T2 num1, T3 num2)
{
 result = num1 + num2;
 return;
}

This is simple. However, if you were required to write one single function that would

be capable of adding any number of values, each passed as an argument, you would

need to make use of variable templates in defining such a function. Variable templates

or variadic templates have been part of C++ since C++14, released in 2014. Listing 14.7

demonstrates the use of variable templates in defining such a function.

ptg18655082

414 LESSON 14: An Introduction to Macros and Templates

LISTING 14.7 Function Using Variadic Templates Demonstrates Variable Arguments

 0: #include <iostream>
 1: using namespace std;
 2:
 3: template <typename Res, typename ValType>
 4: void Sum(Res& result, ValType& val)
 5: {
 6: result = result + val;
 7: }
 8:
 9: template <typename Res, typename First, typename... Rest>
10: void Sum(Res& result, First val1, Rest... valN)
11: {
12: result = result + val1;
13: return Sum(result, valN ...);
14: }
15:
16: int main()
17: {
18: double dResult = 0;
19: Sum (dResult, 3.14, 4.56, 1.1111);
20: cout << "dResult = " << dResult << endl;
21:
22: string strResult;
23: Sum (strResult, "Hello ", "World");
24: cout << "strResult = " << strResult.c_str() << endl;
25:
26: return 0;
27: }

Output ▼
dResult = 8.8111
strResult = Hello World

Analysis ▼

The sample demonstrates that the function Sum() we defined using variable templates

not only processed completely different argument types as seen in Lines 19 and 23, but

also processed a varying number of arguments. Sum() invoked by Line 19 uses four

arguments, while that in Line 23 uses three arguments of which one is a std::string

and the following two are const char*. During compilation, the compiler actually

 creates code for the right kind of Sum() that would suit the call, doing so recursively

until all arguments have been processed.

ptg18655082

An Introduction to Templates 415

14

You may have noticed the use of the ellipsis mark ... in the
preceding code sample. Ellipses in C++ used with templates tell
the compiler that the template class or function may accept an
arbitrary number of template arguments of any type.

NOTE

Variable templates are a powerful addition to C++ that finds application in mathematical

processing as well as in the accomplishment of certain simple tasks. Programmers using

variable templates save themselves the repetitive effort of implementing functions that

perform a task in various overloaded versions, creating code that is shorter and simpler to

maintain.

C++14 supplies you with an operator that would tell the number
of template arguments passed in a call to a variable template.
In Listing 14.7, you could use this operator inside a function like
Sum(), like this:

int arrNums[sizeof...(Rest)];

// length of array evaluated using sizeof...()
at compile time

You must not confuse sizeof...() with sizeof(Type). The
latter returns the size of a type, while the former returns the
number of template arguments sent to a variadic template.

NOTE

The support of variable templates has also ushered in standard support for tuples.
std::tuple is the class template that implements the tuple. It may be instantiated

with a varying number of member elements and types thereof. These may be individu-

ally accessed using standard library function std::get. Listing 14.8 demonstrates the

instantiation and use of a std::tuple.

LISTING 14.8 Instantiating and Using a std::tuple

 0: #include <iostream>
 1: #include <tuple>
 2: #include <string>
 3: using namespace std;
 4:
 5: template <typename tupleType>
 6: void DisplayTupleInfo(tupleType& tup)
 7: {
 8: const int numMembers = tuple_size<tupleType>::value;
 9: cout << "Num elements in tuple: " << numMembers << endl;

ptg18655082

416 LESSON 14: An Introduction to Macros and Templates

10: cout << "Last element value: " << get<numMembers - 1>(tup) << endl;
11: }
12:
13: int main()
14: {
15: tuple<int, char, string> tup1(make_tuple(101, 's', "Hello Tuple!"));
16: DisplayTupleInfo(tup1);
17:
18: auto tup2(make_tuple(3.14, false));
19: DisplayTupleInfo(tup2);
20:
21: auto concatTup(tuple_cat(tup2, tup1)); // contains tup2, tup1 members
22: DisplayTupleInfo(concatTup);
23:
24: double pi;
25: string sentence;
26: tie(pi, ignore, ignore, ignore, sentence) = concatTup;
27: cout << "Unpacked! Pi: " << pi << " and \"" << sentence << "\"" << endl;
28:
29: return 0;
30: }

Output ▼
Num elements in tuple: 3
Last element value: Hello Tuple!
Num elements in tuple: 2
Last element value: 0
Num elements in tuple: 5
Last element value: Hello Tuple!
Unpacked! Pi: 3.14 and "Hello Tuple!"

Analysis ▼

First and foremost, if the code in Listing 14.8 overwhelms you, then do not worry! Tuples

are an advanced concept and typically find application in generic template programming.

The topic has nevertheless been introduced in this book to give you a broad idea about

what this concept, which is still under evolution, is all about. Lines 15, 18, and 21 contain

three different instantiations of a std::tuple. tup1 contains three members: an int,

a char, and a std::string. tup2 contains a double and a bool and also uses the

 compiler’s automatic type deduction feature via keyword the auto. tup3 is actually a

tuple with five members: double, bool, int, char, and string—a result of concatena-

tion using template function std::tuple_cat.

Template function DisplayTupleInfo() in Lines 5–14 demonstrates the usage

of tuple_size that resolves to the number of elements contained by that specific

ptg18655082

An Introduction to Templates 417

14

 instantiation of std::tuple during compilation. std::get used in Line 10 is the

mechanism to access individual values stored in a tuple using their zero-based indices.

Finally, std::tie in Line 26 demonstrates how the contents of a tuple can be unpacked

or copied into individual objects. We use std::ignore to instruct tie to ignore the

tuple members that were not of any interest to the application.

Using static_assert to Perform Compile-Time
Checks
This is a feature introduced since C++11 that enables you to block compilation if certain

checks are not fulfilled. Weird as this might sound, it’s useful with template classes. For

example, you might want to ensure that your template class is not instantiated for an

 integer! static_assert is a compile-time assert that can display a custom message on

your development environment (or console):

static_assert(expression being validated, "Error message when check fails");

To ensure that your template class cannot be instantiated for type int, you can use

static_assert() with sizeof(T), comparing it against sizeof(int) and

 displaying an error message if the inequality check fails:

static_assert(sizeof(T) != sizeof(int), "No int please!");

Such a template class that uses static_assert to block compilation for certain

 instantiation types is seen in Listing 14.9.

LISTING 14.9 A Finicky Template Class That Protests Using static_assert
When Instantiated for Type int

 0: template <typename T>
 1: class EverythingButInt
 2: {
 3: public:
 4: EverythingButInt()
 5: {
 6: static_assert(sizeof(T) != sizeof(int), "No int please!");
 7: }
 8: };
 9:
10: int main()
11: {
12: EverythingButInt<int> test; // template instantiation with int.
13: return 0;
14: }

ptg18655082

418 LESSON 14: An Introduction to Macros and Templates

Output ▼

There is no output as compile fails, providing you with the note you supplied:

error: No int please!

Analysis ▼

The protest registered by the compiler is programmed in Line 6. Thus, static_assert

is a way C++11 helps you protect your template code against unwanted instantiation.

Using Templates in Practical C++ Programming
An important and powerful application of templates is in the Standard Template Library

(STL). STL is comprised of a collection of template classes and functions containing

generic utility classes and algorithms. These STL template classes enable you to

 implement dynamic arrays, lists, and key-value pair containers, whereas algorithms, such

as sort, work on those containers and process the data they contain.

The knowledge of template syntax you gained earlier greatly assists you in using STL

containers and functions that are presented in great detail in the following lessons of this

book. A better understanding of STL containers and algorithms in turn helps you write

efficient C++ applications that use STL’s tested and reliable implementation and helps

you avoid spending time in boilerplate details.

DO DON’T

DO use templates for the implemen-
tation of generic concepts.

DO choose templates over macros.

DON’T forget to use the principles of
const correctness when program-
ming template functions and classes.

DON’T forget that a static member
contained within a template class is
static for every type-specialization of
the class.

Summary
In this lesson, you learned more details about working with the preprocessor. Each

time you run the compiler, the preprocessor runs first and translates directives such as

#define.

The preprocessor does text substitution, although with the use of macros these can

be somewhat complex. Macro functions provide complex text substitution based on

ptg18655082

419

14

Workshop

 arguments passed at compile time to the macro. It is important to put parentheses around

every argument in the macro to ensure that the correct substitution takes place.

Templates help you write reusable code that supplies the developer with a pattern that

can be used for a variety of data types. They also make for a type-safe replacement

of macros. With the knowledge of templates gained in this lesson, you are now poised to

learn to use the STL!

Q&A
 Q Why should I use inclusion guards in my header files?

 A Inclusion guards using #ifndef, #define, and #endif protect your header

from multiple or recursive inclusion errors, and in some cases they even speed up

 compilation.

 Q When should I favor macro functions over templates if the functionality in
question can be implemented in both?

 A Ideally, you should always favor templates as the templates allow for generic

 implementation that is also type safe. Macros don’t allow for type-safe

 implementations and are best avoided.

 Q Do I need to specify template arguments when invoking a template function?

 A Normally not as the compiler can infer this for you, given the arguments used in the

function call.

 Q How many instances of static variables exist for a given template class?

 A This is entirely dependent on the number of types for which the template class has

been instantiated. So, if your class has been instantiated for an int, a string,

and a custom type X, you can expect three instances of your static variable to be

 available—one per template instantiation.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers.

ptg18655082

420 LESSON 14: An Introduction to Macros and Templates

Quiz
1. What is an inclusion guard?

2. Consider the following macro:

#define SPLIT(x) x / 5

What is the result if this is called with 20?

3. What is the result if the SPLIT macro in Question 2 is called with 10+10?

4. How would you modify the SPLIT macro to avoid erroneous results?

Exercises
1. Write a macro that multiplies two numbers.

2. Write a template version of the macro in Exercise 1.

3. Implement a template function for swap that exchanges two variables.

4. BUG BUSTERS: How would you improve the following macro that computes the

quarter of an input value?

#define QUARTER(x) (x / 4)

5. Write a simple template class that holds two arrays of types that are defined via the

class’s template parameter list. The size of the array is 10, and the template class

should have accessor functions that allow for the manipulation of array elements.

6. Write a template function Display() that can be invoked with a varying number

and type of arguments, and would display each of them.

ptg18655082

LESSON 15
An Introduction to the
Standard Template
Library

Put in simple terms, the standard template library (STL) is a set of tem-
plate classes and functions that supply the programmer with

 ■ Containers for storing information

 ■ Iterators for accessing the information stored

 ■ Algorithms for manipulating the content of the containers

In this lesson, you get an overview of these three pillars of STL.

ptg18655082

422 LESSON 15: An Introduction to the Standard Template Library

STL Containers
Containers are STL classes that are used to store data. STL supplies two types of

 container classes:

 ■ Sequential containers

 ■ Associative containers

In addition to these STL also provides classes called container adapters that are variants

of the same with reduced functionality to support a specific purpose.

Sequential Containers
As the name suggests, these are containers used to hold data in a sequential fashion, such

as arrays and lists. Sequential containers are characterized by a fast insertion time, but

are relatively slow in find operations.

The STL sequential containers are

 ■ std::vector—Operates like a dynamic array and grows at the end. Think of a

vector like a shelf of books to which you can add or remove books on one end

 ■ std::deque—Similar to std::vector except that it allows for new elements to

be inserted or removed at the beginning, too

 ■ std::list—Operates like a doubly linked list. Think of this like a chain where an

object is a link in the chain. You can add or remove links—that is, objects—at any

position

 ■ std::forward_list—Similar to a std::list except that it is a singly linked

list of elements that allows you to iterate only in one direction

The STL vector class is akin to an array and allows for random access of an element;

that is, you can directly access or manipulate an element in the vector given its position

(index) using the subscript operator ([]). In addition to this, the STL vector is a

dynamic array and therefore can resize itself to suit the application’s runtime require-

ments. To keep the property of being able to randomly access an element in the array

when given a position, most implementations of the STL vector keep all elements in

contiguous locations. Therefore, a vector that needs to resize itself often can reduce the

ptg18655082

STL Containers 423

15

performance of the application, depending on the type of the object it contains. Lesson 4,

“Managing Arrays and Strings,” introduced you to the vector briefly in Listing 4.4. This

container is discussed extensively in Lesson 17, “STL Dynamic Array Classes.”

You can think of the STL list as STL’s implementation of a regular linked list.

Although elements in a list cannot be randomly accessed, as they can be in the STL

vector, a list can organize elements in noncontiguous sections of memory. Therefore,

the std::list does not have the performance issues that are applicable to a vector

when the vector needs to reallocate its internal array. STL list class is discussed exten-

sively in Lesson 18, “STL list and forward_list.”

Associative Containers
Associative containers are those that store data in a sorted fashion—akin to a dictionary.

This results in slower insertion times, but presents significant advantages when it comes

to searching.

The associative containers supplied by STL are

 ■ std::set—Stores unique values sorted on insertion in a container featuring

 logarithmic complexity

 ■ std::unordered_set—Stores unique values sorted on insertion in a container

f eaturing near constant complexity. Available starting C++11

 ■ std::map—Stores key-value pairs sorted by their unique keys in a container with

logarithmic complexity

 ■ std::unordered_map—Stores key-value pairs sorted by their unique keys in a

 container with near constant complexity. Available starting C++11

 ■ std::multiset—Akin to a set. Additionally, supports the ability to store mul-

tiple items having the same value; that is, the value doesn’t need to be unique

 ■ std::unordered_multiset—Akin to a unordered_set. Additionally, supports

the ability to store multiple items having the same value; that is, the value doesn’t

need to be unique. Available starting C++11.

 ■ std::multimap—Akin to a map. Additionally, supports the ability to store

 key-value pairs where keys don’t need to be unique.

 ■ std::unordered_multimap—Akin to a unordered_map. Additionally, supports

the ability to store key-value pairs where keys don’t need to be unique. Available

 starting C++11.

ptg18655082

424 LESSON 15: An Introduction to the Standard Template Library

Complexity in this case is an indication of the performance of
the container with relation to the number of elements contained
by it. Therefore, when we speak of constant complexity, as in the
case of std::unordered_map, we mean that the performance of
the container is unrelated to the number of elements contained
by it. Such a container would need as much time to perform on a
thousand elements as it would on a million.

Logarithmic complexity as is the case with std::map indicates
that the performance is proportional to the logarithm of the
number of elements contained in it. Such a container would take
twice as long in processing a million elements as it would in
 processing a thousand.

Linear complexity means that the performance is proportional to
the number of elements. Such a container would be a thousand
times slower in processing a million elements than it would be in
processing a thousand.

For a given container, the complexities may be different for
 differing operations. That is, the element insertion complexity
may be constant but search complexity linear. Therefore, an
understanding of how a container may perform in addition to
the functionality it will be used with is key to choosing the right
 container.

NOTE

The sort criteria of STL containers can be customized by programming predicate

 functions.

Some implementations of STL also feature associative containers
such as hash_set, hash_multiset, hash_map, and hash_
multimap. These are similar to the unordered_* containers,
which are supported by the standard. In some scenarios, hash_*
and the unordered_* variants can be better at searching for an
 element as they offer constant time operations (independent of
the number of elements in the container). Typically, these con-
tainers also supply public methods that are identical to those
supplied by their standard counterparts and hence are as easy
to use.

Using the standard-compliant variants will result in code that is
easier to port across platforms and compilers, and should hence
be preferred. It is also possible that the logarithmic reduction
in performance of a standard-compliant container might not
 significantly affect your application.

TIP

ptg18655082

STL Iterators 425

15

Container Adapters
Container adapters are variants of sequential and associative containers that have limited

functionality and are intended to fulfill a particular purpose. The main adapter classes are

 ■ std::stack—Stores elements in a LIFO (last-in-first-out) fashion, allowing

 elements to be inserted (pushed) and removed (popped) at the top.

 ■ std::queue—Stores elements in FIFO (first-in-first-out) fashion, allowing the

first element to be removed in the order they’re inserted.

 ■ std::priority_queue—Stores elements in a sorted order, such that the one

whose value is evaluated to be the highest is always first in the queue.

These containers are discussed in detail in Lesson 24, “Adaptive Containers: Stack and

Queue.”

STL Iterators
The simplest example of an iterator is a pointer. Given a pointer to the first element in an

array, you can increment it and point to the next element or, in many cases, manipulate

the element at that location.

Iterators in STL are template classes that in some ways are a generalization of pointers.

These are template classes that give the programmer a handle by which he can work with

and manipulate STL containers and perform operations on them. Note that operations

could as well be STL algorithms that are template functions, Iterators are the bridge that

allows these template functions to work with containers, which are template classes, in a

consistent and seamless manner.

Iterators supplied by STL can be broadly classified into the following:

 ■ Input iterator—One that can be dereferenced to reference an object. The object

can be in a collection, for instance. Input iterators of the purest kinds guarantee

read access only.

 ■ Output iterator—One that allows the programmer to write to the collection.

Output iterators of the strictest types guarantee write access only.

The basic iterator types mentioned in the preceding list are further refined into the

 following:

 ■ Forward iterator—A refinement of the input and output iterators allowing both

input and output. Forward iterators may be constant, allowing for read-only access

ptg18655082

426 LESSON 15: An Introduction to the Standard Template Library

to the object the iterator points to, and otherwise allow for both read and write

operations, making it mutable. A forward iterator would typically find use in a

 singly linked list.

 ■ Bidirectional iterator—A refinement of the forward iterator in that it can be

 decremented to move backward as well. A bidirectional iterator would typically

find use in a doubly linked list.

 ■ Random access iterators—In general, a refinement over the concept of

 bidirectional iterators that allow addition and subtraction of offsets or allow one

iterator to be subtracted from another to find the relative separation or distance

between the two objects in a collection. A random iterator would typically find use

in an array.

At an implementation level, a refinement can be thought of as an
inheritance or a specialization.NOTE

STL Algorithms
Finding, sorting, reversing, and the like are standard programming requirements that

should not require the programmer to reinvent implementation to support. This is

 precisely why STL supplies these functions in the form of STL algorithms that work well

with containers using iterators to help the programmer with some of the most common

requirements.

Some of the most used STL algorithms are

 ■ std::find—Helps find a value in a collection

 ■ std::find_if—Helps find a value in a collection on the basis of a specific

 user-defined predicate

 ■ std::reverse—Reverses a collection

 ■ std::remove_if—Helps remove an item from a collection on the basis of a

 user-defined predicate

 ■ std::transform—Helps apply a user-defined transformation function to ele-

ments in a container

These algorithms are template functions in the std namespace and require that the

 standard header <algorithm> be included.

ptg18655082

The Interaction between Containers and Algorithms Using Iterators 427

15

The Interaction between Containers
and Algorithms Using Iterators
Let’s examine how iterators seamlessly connect containers and the STL algorithms

using an example. The program shown in Listing 15.1 uses the STL sequential container

std::vector, which is akin to a dynamic array, to store some integers and then find

one in the collection using the algorithm std::find. Note how iterators form the bridge

connecting the two. Don’t worry about the complexity of the syntax or functionality.

Containers such as std::vector and algorithms such as std::find are discussed in

detail in Lesson 17, “STL Dynamic Array Classes,” and Lesson 23, “STL Algorithms,”

respectively. If you find this part complicated, you can skip the section for the moment.

LISTING 15.1 Find an Element and Its Position in a Vector

 1: #include <iostream>
 2: #include <vector>
 3: #include <algorithm>
 4: using namespace std;
 5:
 6: int main ()
 7: {
 8: // A dynamic array of integers
 9: vector <int> intArray;
10:
11: // Insert sample integers into the array
12: intArray.push_back (50);
13: intArray.push_back (2991);
14: intArray.push_back (23);
15: intArray.push_back (9999);
16:
17: cout << "The contents of the vector are: " << endl;
18:
19: // Walk the vector and read values using an iterator
20: vector <int>::iterator arrIterator = intArray.begin ();
21:
22: while (arrIterator != intArray.end ())
23: {
24: // Write the value to the screen
25: cout << *arrIterator << endl;
26:
27: // Increment the iterator to access the next element
28: ++ arrIterator;
29: }
30:
31: // Find an element (say 2991) using the 'find' algorithm
32: vector <int>::iterator elFound = find (intArray.begin ()
33: ,intArray.end (), 2991);

ptg18655082

428 LESSON 15: An Introduction to the Standard Template Library

34:
35: // Check if value was found
36: if (elFound != intArray.end ())
37: {
38: // Determine position of element using std::distance
39: int elPos = distance (intArray.begin (), elFound);
40: cout << "Value "<< *elFound;
41: cout << " found in the vector at position: " << elPos << endl;
42: }
43:
44: return 0;
45: }

Output ▼
The contents of the vector are:
50
2991
23
9999
Value 2991 found in the vector at position: 1

Analysis ▼

Listing 15.1 displays the use of iterators in walking through the vector and as interfaces

that help connect algorithms such as find to containers like vector that contains the

data on which the algorithm is meant to operate. The iterator object arrIterator

is declared in Line 20 and is initialized to the beginning of the container; that is,

the vector using the return value of the member function begin(). Lines 22 to

29 demonstrate how this iterator is used in a loop to locate and display the elements

 contained in the vector, in a manner that is quite similar to how one can display the

contents of a static array. The usage of the iterator is consistent across all STL containers.

They all feature a function begin() that points to the first element, and a function

end() that points to the end of the container after the last element. This also explains

why the while loop in Line 22 stops at the element before end() and not with end().

Line 32 demonstrates how find is used to locate a value in the vector. The result of the

find operation is an iterator as well, and the success of the find is tested by comparing

the iterator against the end of the container, as seen in Line 36. If an element is found,

it can be displayed by dereferencing that iterator (such as how one would dereference

a pointer). The algorithm distance is applied by computing the offset position of the

 element found.

ptg18655082

Choosing the Right Container 429

15

If you blindly replace all instances of "vector" with "deque" in Listing 15.1, your code

would still compile and work perfectly. That’s how easy iterators make working with

algorithms and containers.

Using Keyword auto to Let Compiler Define Type
Listing 15.1 shows a number of iterator declarations. They look similar to this:

20: vector <int>::iterator arrIterator = intArray.begin ();

This iterator type definition might look intimidating. If you are using a C++11-compliant

compiler, you can simplify this line to the following:

20: auto arrIterator = intArray.begin (); // compiler detects type

Note that a variable defined as type auto needs initialization (so the compiler can detect

type depending on that of the value it is being initialized to).

Choosing the Right Container
Clearly, your application might have requirements that can be satisfied by more than one

STL container. There is a selection to be made, and this selection is important because a

wrong choice could result in performance issues and scalability bottlenecks.

Therefore, it is important to evaluate the advantages and disadvantages of the containers

before selecting one. See Table 15.1 for more details.

TABLE 15.1 Properties of STL’s Container Classes

Container Advantages Disadvantages

std::vector
(Sequential Container)

Quick (constant time)
insertion at the end.

Resizing can result in
 performance loss.

Array-like access. Search time is proportional to
the number of elements in the
container.

Insertion only at the end.

std::deque
(Sequential Container)

All advantages of the
 vector. Additionally, offers
constant-time insertion at the
beginning of the container
too.

Disadvantages of the vector
with respect to performance
and search are applicable to
the deque.

ptg18655082

430 LESSON 15: An Introduction to the Standard Template Library

Container Advantages Disadvantages

Unlike the vector, the deque
by specification does not need
to feature the reserve() func-
tion that allows the programmer
to reserve memory space to
be used—a feature that avoids
frequent resizing to improve
performance.

std::list (Sequential
Container)

Constant time insertion at
the front, middle, or end of
the list.

Elements cannot be accessed
randomly given an index as in
an array.

Removal of elements from a
list is a constant-time activ-
ity regardless of the position
of the element.

Accessing elements can
be slower than the vector
because elements are not
stored in adjacent memory
locations.

Insertion or removal of ele-
ments does not invalidate
iterators that point to other
elements in the list.

Search time is proportional to
the number of elements in the
container.

std::forward_list
(Sequential Container)

Singly linked list class that
allows iteration only in one
direction.

Allows insertion only at the
front of the list via push_
front().

std::set (Associative
Container)

Search is not directly propor-
tional to the number of ele-
ments in the container, rather
to the logarithm thereof and
hence is often significantly
faster than sequential con-
tainers.

Insertion of elements is slower
than in sequential counterparts,
as elements are sorted at
insertion.

std::unordered set
(Associative Container)

Search, insertion, and
removal in this type of con-
tainer are nearly independent
of the number of elements in
the container.

As elements are weakly
ordered, one cannot rely on
their relative position within the
container.

std::multiset
(Associative Container)

Should be used when a set
needs to contain nonunique
values too.

Insertions may be slower than
in a sequential container as
elements (pairs) are sorted on
insertion.

ptg18655082

Choosing the Right Container 431

15

Container Advantages Disadvantages

std::unordered_
multiset (Associative
Container)

Should be preferred over an
unordered_set when you
need to contain nonunique
values too.

Elements are weakly ordered,
so one cannot rely on their
relative position within the con-
tainer.

Performance is similar to
unordered_set, namely,
constant average time
for search, insertion, and
removal of elements, inde-
pendent of size of container.

std::map (Associative
Container)

Key-value pairs container that
offers search performance
proportional to the logarithm
of number of elements in
the container and hence
often significantly faster than
sequential containers.

Elements (pairs) are sorted on
insertion, hence insertion will
be slower than in a sequential
container of pairs.

std::unordered_map.
(Associative Container)

Offers advantage of near con-
stant time search, insertion,
and removal of elements
independent of the size of
the container.

Elements are weakly ordered
and hence not suited to cases
where order is important.

std::multimap.
(Associative Container)

To be selected over
std::map when requirements
necessitate the need of a
key-value pairs container that
holds elements with nonu-
nique keys.

Insertion of elements will be
slower than in a sequential
equivalent as elements are
sorted on insertion.

std::unordered_
multimap (Associative
Container)

To be selected over multi-
map when you need a key-
value pairs container where
keys can be nonunique.

Is a weakly ordered container,
so you cannot use it when you
need to rely on the relative
order of elements.

Allows constant average
time insertion, search, and
removal of elements, inde-
pendent of the size of the
container.

ptg18655082

432 LESSON 15: An Introduction to the Standard Template Library

STL String Classes
STL supplies a template class that has been specially designed for string operations.

std::basic_string<T> is used popularly in its two template specializations:

 ■ std::string—A char-based specialization of std::basic_string used for

the manipulation of simple character strings.

 ■ std::wstring— A wchar_t-based specialization of std::basic_string

used for the manipulation of wide character strings typically used to store Unicode

 characters that support symbols from different languages.

This utility class is extensively discussed in Lesson 16, “The STL String Class,” where

you see how it makes working with and manipulating strings really simple.

Summary
In this lesson, you learned the concepts on which STL containers, iterators, and

 algorithms are based. You were introduced to the basic_string<T>, which is

 discussed in detailed in the upcoming lesson. Containers, iterators, and algorithms are

one of the most important concepts in STL, and a thorough understanding of these will

help you efficiently use STL in your application. Lessons 17 through 25 explain the

 implementation of these concepts and their application in greater detail.

Q&A
 Q I need to use an array. I don’t know the number of elements it needs to

 contain. What STL container should I use?

 A A std::vector or a std::deque is perfectly suited to this requirement.

Both manage memory and can dynamically scale themselves to an application’s

 increasing requirements.

 Q My application has a requirement that involves frequent searches. What kind
of container should I choose?

 A An associative container like std::map or std::set or the unordered variants

thereof are most suited to requirements that involve frequent searches.

ptg18655082

Workshop 433

15

 Q I need to store key-value pairs for quick lookup. However, the use-case can
result in multiple keys that are not unique. What container should I choose?

 A An associative container of type std::multimap is suited to this requirement.

A multimap can hold nonunique key-value pairs and can offer a quick lookup that

is characteristic of associative containers.

 Q An application needs to be ported across platforms and compilers. There is
a requirement for a container that helps in a quick lookup based on a key.
Should I use std::map or std::hash_map?

 A Portability is an important constraint and using standard-compliant containers

is necessary. hash_map is not part of the C++ standard and therefore may not

be supported across all platforms relevant to your application. You may use

std::unordered_map if you are using C++11-compliant compilers for all the

platforms concerned.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered. Try to answer the quiz questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. What would be your choice of a container that has to contain an array of objects

with insertion possible at the top and at the bottom?

2. You need to store elements for quick lookup. What container would you choose?

3. You need to store elements in a std::set but still have the storage and lookup

 criteria altered, based on conditions that are not necessarily the value of the

 elements. Is this possible?

4. What feature in STL is used to connect algorithms to containers?

5. Would you choose to use container hash_set in an application that needs to be

ported to different platforms and built using different C++ compilers?

ptg18655082

LESSON 16
The STL String Class

The standard template library (STL) supplies the programmer with a
container class that aids in string operations and manipulations.
The string class not only dynamically resizes itself to cater to the
 application’s requirement but also supplies useful helper functions or
methods that help manipulate the string and work using it. Thus, it helps
programmers make use of standard, portable, and tested functionality in
their applications and focus time on developing features that are critical to it.

In this lesson, you learn

 ■ Why string manipulation classes are necessary

 ■ How to work with the STL string class

 ■ How STL helps you concatenate, append, find, and perform other
string operations with ease

 ■ How to use template-based implementation of the STL string

 ■ The operator ""s supported by STL string since C++14

ptg18655082

436 LESSON 16: The STL String Class

The Need for String Manipulation
Classes
In C++, a string is an array of characters. As you saw in Lesson 4, “Managing Arrays

and Strings,” the simplest character array can be defined as following:

char staticName [20];

staticName is the declaration of a character array (also called a string) of a fixed

(hence static) length of 20 elements. As you see, this buffer can hold a string of limited

length and would soon be overrun if you tried to hold a greater number of characters in

it. Resizing this statically allocated array is not possible. To overcome this constraint,

C++ supplies dynamic allocation of data. Therefore, a more dynamic representation of a

string array is

char* dynamicName = new char [arrayLen];

dynamicName is a dynamically allocated character array that can be instantiated to

the length as stored in the value arrayLen, determinable at runtime, and hence can

be allocated to hold a data of variable length. However, should you want to change the

length of the array at runtime, you would first have to deallocate the allocated memory

and then reallocate to hold the required data.

Things get complicated if these char* strings are used as member attributes of a class.

In situations where an object of this class is assigned to another, in the absence of a

 correctly programmed copy constructor and assignment operator, the two objects contain

copies of a pointer, essentially pointing to the same char buffer. The result is two string

pointers in two objects, each holding the same address and hence pointing to the same

location in memory. The destruction of the first object results in the pointer in the other

object being invalidated, and an impending crash looms on the horizon.

String classes solve these problems for you. The STL string classes std::string that

models a character string and std::wstring that models a wide character string helps

you in the following ways:

 ■ Reduces the effort of string creation and manipulation

 ■ Increases the stability of the application being programmed by internally managing

memory allocation details

 ■ Features copy constructor and assignment operators that automatically ensure that

member strings get correctly copied

ptg18655082

Working with the STL String Class 437

16

 ■ Supplies useful utility functions that help in truncating, finding, and erasing to

name a few

 ■ Provides operators that help in comparisons

 ■ Lets you focus efforts on your application’s primary requirements rather than on

string manipulation details

Both std::string and std::wstring are actually template
specializations of the same class, namely std::basic_string<T>
for types char and wchar_t, respectively. When you have learned
using one, you can use the same methods and operators on
the other.

NOTE

You will soon learn some useful helper functions that STL string classes supply using

std::string as an example.

Working with the STL String Class
The most commonly used string functions are

 ■ Copying

 ■ Concatenating

 ■ Finding characters and substrings

 ■ Truncating

 ■ String reversal and case conversions, which are achieved using algorithms provided

by the standard library

To use the STL string class, you must include the header <string>.

Instantiating the STL String and Making Copies
The string class features many overloaded constructors and therefore can be

 instantiated and initialized in many different ways. For example, you can simply initialize

or assign a constant character string literal to a regular STL std::string object:

const char* constCStyleString = "Hello String!";
std::string strFromConst (constCStyleString);

ptg18655082

438 LESSON 16: The STL String Class

or

std::string strFromConst = constCStyleString;

The preceding is similar to

std::string str2 ("Hello String!");

As is apparent, instantiating a string object and initializing it to a value did not require

supplying the length of the string or the memory allocation details—the constructor of

the STL string class automatically did this.

Similarly, it is possible to use one string object to initialize another:

std::string str2Copy (str2);

You can also instruct the constructor of string to accept only the first n characters of

the supplied input string:

// Initialize a string to the first 5 characters of another
std::string strPartialCopy (constCStyleString, 5);

You can also initialize a string to contain a specific number of instances of a particular

character:

// Initialize a string object to contain 10 'a's
std::string strRepeatChars (10, 'a');

Listing 16.1 analyzes some popularly used std::string instantiation and string copy

techniques.

LISTING 16.1 STL String Instantiation and Copy Techniques

 0: #include <string>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6: const char* constCStyleString = "Hello String!";
 7: cout << "Constant string is: " << constCStyleString << endl;
 8:
 9: std::string strFromConst (constCStyleString); // constructor

ptg18655082

Working with the STL String Class 439

16

10: cout << "strFromConst is: " << strFromConst << endl;
11:
12: std::string str2 ("Hello String!");
13: std::string str2Copy (str2);
14: cout << "str2Copy is: " << str2Copy << endl;
15:
16: // Initialize a string to the first 5 characters of another
17: std::string strPartialCopy (constCStyleString, 5);
18: cout << "strPartialCopy is: " << strPartialCopy << endl;
19:
20: // Initialize a string object to contain 10 'a's
21: std::string strRepeatChars (10, 'a');
22: cout << "strRepeatChars is: " << strRepeatChars << endl;
23:
24: return 0;
25: }

Output ▼
Constant string is: Hello String!
strFromConst is: Hello String!
str2Copy is: Hello String!
strPartialCopy is: Hello
strRepeatChars is: aaaaaaaaaa

Analysis ▼

The preceding code sample displays how you can instantiate an STL string object

and initialize it to another string, creating a partial copy or initializing your STL

string object to a set of recurring characters. constCStyleString is a C-style

character string that contains a sample value, initialized in Line 6. Line 9 displays how

easy std::string makes it to create a copy using the constructor. Line 12 copies

another constant string into a std::string object str2, and Line 13 demonstrates

how std::string has another overloaded constructor that allows you to copy a

std::string object, to get str2Copy. Line 17 demonstrates how partial copies can be

achieved and Line 21 how a std::string can be instantiated and initialized to contain

repeating occurrences of the same character. This code sample was just a small dem-

onstration of how std::string and its numerous copy constructors make it easy for a

programmer to create strings, copy them, and display them.

ptg18655082

440 LESSON 16: The STL String Class

If you were to use character strings to copy from another of the
same kind, the equivalent of Line 9 in Listing 16.1 would be this:

const char* constCStyleString = "Hello World!";

// To create a copy, first allocate memory for one...

char* copy = new char [strlen (constCStyleString) + 1];

strcpy (copy, constCStyleString); // The copy step

// deallocate memory after using copy

delete [] copy;

As you can see, the result is many more lines of code and higher
probability of introducing errors, and you need to worry about
memory management and deallocations. STL string does all
this for you, and more!

NOTE

Accessing Character Contents of a std::string
The character contents of an STL string can be accessed via iterators or via an

array-like syntax where the offset is supplied, using the subscript operator [].

A C-style representation of the string can be obtained via member function c_str().

See Listing 16.2.

LISTING 16.2 Two Ways of Accessing Character Clements of an STL
string::Operator[] and Iterators

 0: #include <string>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: string stlString ("Hello String"); // sample
 8:
 9: // Access the contents of the string using array syntax
10: cout << "Display elements in string using array-syntax: " << endl;
11: for (size_t charCounter = 0;
12: charCounter < stlString.length();
13: ++ charCounter)
14: {
15: cout << "Character [" << charCounter << "] is: ";
16: cout << stlString [charCounter] << endl;

ptg18655082

Working with the STL String Class 441

16

17: }
18: cout << endl;
19:
20: // Access the contents of a string using iterators
21: cout << "Display elements in string using iterators: " << endl;
22: int charOffset = 0;
23: string::const_iterator charLocator;
24: for (auto charLocator = stlString.cbegin();
25: charLocator != stlString.cend ();
26: ++ charLocator)
27: {
28: cout << "Character [" << charOffset ++ << "] is: ";
29: cout << *charLocator << endl;
30: }
31: cout << endl;
32:
33: // Access contents as a const char*
34: cout << "The char* representation of the string is: ";
35: cout << stlString.c_str () << endl;
36:
37: return 0;
38: }

Output ▼
Display elements in string using array-syntax:
Character [0] is: H
Character [1] is: e
Character [2] is: l
Character [3] is: l
Character [4] is: o
Character [5] is:
Character [6] is: S
Character [7] is: t
Character [8] is: r
Character [9] is: i
Character [10] is: n
Character [11] is: g

Display elements in string using iterators:
Character [0] is: H
Character [1] is: e
Character [2] is: l
Character [3] is: l
Character [4] is: o
Character [5] is:
Character [6] is: S
Character [7] is: t
Character [8] is: r
Character [9] is: i

ptg18655082

442 LESSON 16: The STL String Class

Character [10] is: n
Character [11] is: g

The char* representation of the string is: Hello String

Analysis ▼

The code displays the multiple ways of accessing the contents of a string. Iterators are

important in the sense that many of the string’s member function return their results in

the form of iterators. Lines 11–17 display the characters in the string using array-like

semantics via the subscript operator [], implemented by the std::string class. Note

that this operator needs you to supply the offset as seen in Line 16. Therefore, it is impor-

tant that you do not cross the bounds of the string; that is, you do not read a character

at an offset beyond the length of the string. Lines 24–30 also print the content of the

string character by character, but using iterators.

You may avoid the tedious iterator declaration seen in Line 24
by using keyword auto, thereby telling the compiler to deter-
mine the type of charLocator using the return value of
std::string::cbegin(), as seen here:

24: // delete line: string::const_iterator charLocator;

25: for (auto charLocator = stlString.cbegin();

26: charLocator != stlString.cend();

27: ++ charLocator)

28: {

29: cout << "Character ["<<charOffset++ <<"] is: ";

30: cout << *charLocator << endl;

31: }

TIP

Concatenating One String to Another
String concatenation can be achieved by using either the += operator or the append()

member function:

string sampleStr1 ("Hello");
string sampleStr2 (" String! ");
sampleStr1 += sampleStr2; // use std::string::operator+=
// alternatively use std::string::append()
sampleStr1.append (sampleStr2); // (overloaded for char* too)

ptg18655082

Working with the STL String Class 443

16

Listing 16.3 demonstrates the usage of these two variants.

LISTING 16.3 Concatenate Strings Using Addition Assignment Operator (+=) or append()

 0: #include <string>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: string sampleStr1 ("Hello");
 8: string sampleStr2 (" String!");
 9:
10: // Concatenate
11: sampleStr1 += sampleStr2;
12: cout << sampleStr1 << endl << endl;
13:
14: string sampleStr3 (" Fun is not needing to use pointers!");
15: sampleStr1.append (sampleStr3);
16: cout << sampleStr1 << endl << endl;
17:
18: const char* constCStyleString = " You however still can!";
19: sampleStr1.append (constCStyleString);
20: cout << sampleStr1 << endl;
21:
22: return 0;
23: }

Output ▼
Hello String!

Hello String! Fun is not needing to use pointers!

Hello String! Fun is not needing to use pointers! You however still can!

Analysis ▼

Lines 11, 15, and 19 display different methods of concatenating to an STL string. Note

the use of the += operator and the capability of the append function, which has many

overloads, to accept another string object (as shown in Line 11) and to accept a C-style

character string.

ptg18655082

444 LESSON 16: The STL String Class

Finding a Character or Substring in a String
The STL string supplies a find() member function with a few overloaded versions

that help find a character or a substring in a given string object.

// Find substring "day" in sampleStr, starting at position 0
size_t charPos = sampleStr.find ("day", 0);

// Check if the substring was found, compare against string::npos
if (charPos != string::npos)
 cout << "First instance of \"day\" was found at position " << charPos;
else
 cout << "Substring not found." << endl;

Listing 16.4 demonstrates the utility of std::string::find().

LISTING 16.4 Using string::find() to Locate a Substring or char

 0: #include <string>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: string sampleStr ("Good day String! Today is beautiful!");
 8: cout << "Sample string is:" << endl << sampleStr << endl << endl;
 9:
10: // Find substring "day" - find() returns position
11: size_t charPos = sampleStr.find ("day", 0);
12:
13: // Check if the substring was found...
14: if (charPos != string::npos)
15: cout << "First instance \"day\" at pos. " << charPos << endl;
16: else
17: cout << "Substring not found." << endl;
18:
19: cout << "Locating all instances of substring \"day\"" << endl;
20: size_t subStrPos = sampleStr.find ("day", 0);
21:
22: while (subStrPos != string::npos)
23: {
24: cout << "\"day\" found at position " << subStrPos << endl;
25:
26: // Make find() search forward from the next character onwards
27: size_t searchOffset = subStrPos + 1;
28:
29: subStrPos = sampleStr.find ("day", searchOffset);
30: }

ptg18655082

Working with the STL String Class 445

16

31:
32: return 0;
33: }

Output ▼
Sample string is:
Good day String! Today is beautiful!

First instance "day" at pos. 5
Locating all instances of substring "day"
"day" found at position 5
"day" found at position 19

Analysis ▼

Lines 11–17 display the simplest usage of the find() function where it ascertains

whether a particular substring is found in a string. This is done by comparing the result

of the find() operation against std::string::npos (that is actually –1) and indicates

that the element searched for has not been found. When the find() function does not

return npos, it returns the offset that indicates the position of the substring or character

in the string. The code thereafter indicates how find() can be used in a while loop

to locate all instances of a substring in an STL string. The overloaded version of the

find() function used here accepts two parameters: the substring or character to search

for and the search offset that indicates the point from which find() should search. We

manipulate the search using this offset to get find() to search for the next occurrence of

the substring as seen in Line 29.

The STL string also features find functions such as find_
first_of(), find_first_not_of(), find_last_of(), and
find_last_not_of() that assist the programmer in working with
strings.

NOTE

Truncating an STL string
The STL string features a function called erase() that can erase

 ■ A number of characters when given an offset position and count

string sampleStr ("Hello String! Wake up to a beautiful day!");
sampleStr.erase (13, 28); // Hello String!

ptg18655082

446 LESSON 16: The STL String Class

 ■ A character when supplied with an iterator pointing to it

sampleStr.erase (iCharS); // iterator points to a specific character

 ■ A number of characters given a range supplied by two iterators that bind the same

sampleStr.erase (sampleStr.begin (), sampleStr.end ()); // erase from begin
to end

The sample that follows in Listing 16.5 demonstrates different applications of the

 overloaded versions of string::erase() function.

LISTING 16.5 Using string::erase() to Truncate a String Starting an Offset Position
or Given an Iterator

 0: #include <string>
 1: #include <algorithm>
 2: #include <iostream>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: string sampleStr ("Hello String! Wake up to a beautiful day!");
 9: cout << "The original sample string is: " << endl;
10: cout << sampleStr << endl << endl;
11:
12: // Delete characters given position and count
13: cout << "Truncating the second sentence: " << endl;
14: sampleStr.erase (13, 28);
15: cout << sampleStr << endl << endl;
16:
17: // Find character 'S' using find() algorithm
18: string::iterator iCharS = find (sampleStr.begin (),
19: sampleStr.end (), 'S');
20:
21: // If character found, 'erase' to deletes a character
22: cout << "Erasing character 'S' from the sample string:" << endl;
23: if (iCharS != sampleStr.end ())
24: sampleStr.erase (iCharS);
25:
26: cout << sampleStr << endl << endl;
27:
28: // Erase a range of characters using an overloaded version of erase()
29: cout << "Erasing a range between begin() and end(): " << endl;
30: sampleStr.erase (sampleStr.begin (), sampleStr.end ());
31:
32: // Verify the length after the erase() operation above
33: if (sampleStr.length () == 0)
34: cout << "The string is empty" << endl;
35:
36: return 0;
37: }

ptg18655082

Working with the STL String Class 447

16

Output ▼
The original sample string is:
Hello String! Wake up to a beautiful day!

Truncating the second sentence:
Hello String!

Erasing character 'S' from the sample string:
Hello tring!

Erasing a range between begin() and end():
The string is empty

Analysis ▼

The listing indicates the three versions of the erase() function. One version erases a

set of characters when supplied a staring offset and count, as shown in Line 14. Another

version erases a specific character given an iterator that points to it, as shown in Line 24.

The final version erases a range of characters given a couple of iterators that supply the

bounds of this range, as shown in Line 30. As the bounds of this range are supplied by

begin() and end() member functions of the string that effectively include all the

contents of the string, calling an erase() on this range clears the string object of its

contents. Note that the string class also supplies a clear() function that effectively

clears the internal buffer and resets the string object.

 C++11 helps simplify wordy iterator declarations as shown in
Listing 16.5:

string::iterator iCharS = find (sampleStr.begin(),

 sampleStr.end (), 'S');

To reduce this, use keyword auto as introduced in Lesson 3,
“Using Variables, Declaring Constants”:

auto iCharS = find (sampleStr.begin(),

 sampleStr.end (), 'S');

The compiler automatically deducts type of variable iCharS given
return value type information from std::find().

TIP

ptg18655082

448 LESSON 16: The STL String Class

String Reversal
Sometimes it is important to reverse the contents of a string. Say you want to determine

whether the string input by the user is a palindrome. One way to do it would be to reverse

a copy of the same and then compare the two. STL strings can be reversed easily using

the generic algorithm std::reverse():

string sampleStr ("Hello String! We will reverse you!");
reverse (sampleStr.begin (), sampleStr.end ());

Listing 16.6 demonstrates the application of algorithm std::reverse() to a

std::string.

LISTING 16.6 Reversing an STL String Using std::reverse

 0: #include <string>
 1: #include <iostream>
 2: #include <algorithm>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: string sampleStr ("Hello String! We will reverse you!");
 9: cout << "The original sample string is: " << endl;
10: cout << sampleStr << endl << endl;
11:
12: reverse (sampleStr.begin (), sampleStr.end ());
13:
14: cout << "After applying the std::reverse algorithm: " << endl;
15: cout << sampleStr << endl;
16:
17: return 0;
18: }

Output ▼
The original sample string is:
Hello String! We will reverse you!

After applying the std::reverse algorithm:
!uoy esrever lliw eW !gnirtS olleH

ptg18655082

Working with the STL String Class 449

16

Analysis ▼

The std::reverse() algorithm used in Line 12 works on the bounds of the container

that are supplied to it using the two input parameters. In this case, these bounds are the

starting and the ending bounds of the string object, reversing the contents of the entire

string. It would also be possible to reverse a string in parts by supplying the appropriate

bounds as input. Note that the bounds should never exceed end().

String Case Conversion
String case conversion can be effected using the algorithm std::transform(), which

applies a user-specified function to every element of a collection. In this case, the

 collection is the string object itself. The sample in Listing 16.7 shows how to switch the

case of characters in a string.

LISTING 16.7 Converting an STL String Using std::transform() to Uppercase

 0: #include <string>
 1: #include <iostream>
 2: #include <algorithm>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: cout << "Please enter a string for case-convertion:" << endl;
 9: cout << "> ";
10:
11: string inStr;
12: getline (cin, inStr);
13: cout << endl;
14:
15: transform(inStr.begin(), inStr.end(), inStr.begin(), ::toupper);
16: cout << "The string converted to upper case is: " << endl;
17: cout << inStr << endl << endl;
18:
19: transform(inStr.begin(), inStr.end(), inStr.begin(), ::tolower);
20: cout << "The string converted to lower case is: " << endl;
21: cout << inStr << endl << endl;
22:
23: return 0;
24: }

ptg18655082

450 LESSON 16: The STL String Class

Output ▼
Please enter a string for case-convertion:
> ConverT thIS StrINg!

The string converted to upper case is:
CONVERT THIS STRING!

The string converted to lower case is:
convert this string!

Analysis ▼

Lines 15 and 19 demonstrate how efficiently std::transform() can be used to change

the case of the contents of an STL string.

Template-Based Implementation
of an STL String
The std::string class, as you have learned, is actually a specialization of the STL

template class std::basic_string <T>. The template declaration of container class

basic_string is as follows:

template<class _Elem,
 class _Traits,
 class _Ax>
 class basic_string

In this template definition, the parameter of utmost importance is the first one: _Elem.

This is the type collected by the basic_string object. The std::string is therefore

the template specialization of basic_string for _Elem=char, whereas the wstring is

the template specialization of basic_string for _Elem=wchar_t.

In other words, the STL string class is defined as

typedef basic_string<char, char_traits<char>, allocator<char> >
 string;

and the STL wstring class is defined as

typedef basic_string<wchar_t, char_traits<wchar_t>, allocator<wchar_t> >
 string;

ptg18655082

451

16

C++14 operator ""s in std::string

So, all string features and functions studied so far are actually those supplied by basic_

string, and are therefore also applicable to the STL wstring class.

You would use the std::wstring when programming an applica-
tion that needs to better support non-Latin characters such as
those in Japanese or Chinese.

TIP

C++14 operator ""s in std::string
C++14 compliant versions of the standard library support operator ""s that convert

the string contained within the quotes, in entirety, to a std::basic_string<t>. This

makes certain string operations intuitive and simple as Listing 16.8 demonstrates.

LISTING 16.8 Using operator ""s Introduced by C++14

 0: #include<string>
 1: #include<iostream>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: string str1("Traditional string \0 initialization");
 7: cout << "Str1: " << str1 << " Length: " << str1.length() << endl;
 8:
 9: string str2("C++14 \0 initialization using literals"s);
10: cout << "Str2: " << str2 << " Length: " << str2.length() << endl;
11:
12: return 0;
13: }

Output ▼
Str1: Traditional string Length: 19
Str2: C++14 initialization using literals Length: 37

Analysis ▼

Line 6 initializes an instance of std::string from a regular character string literal.

Note the null character placed in the middle of the string that results in the word

"initialization" to be completely missed by str1. Line 9 uses the operator ""s

introduced by C++14 to demonstrate how the instance str2 can now be used to contain

(and therefore also manipulate) character buffers containing null characters too, for

instance.

ptg18655082

452 LESSON 16: The STL String Class

C++14 introduces a literal operator ""s in std::chrono, as
seen here:

std::chrono::seconds timeInSec(100s); // 100 seconds

std::string timeinText = "100"s; // string "100"

The former indicates time in seconds and is an integer literal,
while the latter gives a string.

CAUTION

C++17 is expected to introduce std::string_view, which prom-
ises to improve performance by avoiding unnecessary memory
allocation. Visit Lesson 29, “Going Forward,” to learn of this and
other features expected in C++17.

TIP

Summary
In this lesson, you learned that the STL string class is a container supplied by the

 standard template library that helps the programmer with many string manipulation

requirements. The advantage of using this class is apparent in that the need for the

 programmer to implement memory management, string comparison, and string

 manipulation functions is taken care of by a container class supplied by the STL

 framework.

Q&A
 Q I need to reverse a string using std::reverse(). What header has to be

included for me to be able to use this function?

 A <algorithm> is the header that needs to be included for std::reverse() to be

available.

 Q What role does std::transform() play in converting a string to lowercase
using the tolower () function?

 A std::transform() invokes tolower () for the characters in the string object

that are within the bounds supplied to the transform function.

ptg18655082

Workshop 453

16

 Q Why do std::wstring and std::string feature exactly the same behavior
and member functions?

 A They do so because they are both template specializations of the template class

std::basic_string.

 Q Does the comparison operator < of the STL string class produce results that
are case sensitive or not case sensitive?

 A The results are based on a case-sensitive comparison.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. What STL template class does the std::string specialize?

2. If you were to perform a case-insensitive comparison of two strings, how would

you do it?

3. Are the STL string and a C-style string similar?

Exercises
1. Write a program to verify whether the word input by the user is a palindrome.

For example: ATOYOTA is a palindrome, as the word does not change when

reversed.

2. Write a program that tells the user the number of vowels in a sentence.

3. Convert every alternate character of a string into uppercase.

4. Your program should have four string objects that are initialized to “I,” “Love,”

“STL,” and “String.” Append them with a space in between and display the

 sentence.

5. Write a program that displays the position of every occurrence of character ‘a’ in

the string "Good day String! Today is beautiful!".

ptg18655082

LESSON 17
STL Dynamic Array
Classes

Unlike static arrays, dynamic arrays supply the programmer with the
flexibility of storing data without needing to know the exact volume thereof
at the time of programming the application. Naturally, this is a frequently
needed requirement, and the Standard Template Library (STL) supplies a
ready-to-use solution in the form of the std::vector class.

In this lesson, you learn

 ■ The characteristics of std::vector

 ■ Typical vector operations

 ■ The concept of a vector’s size and capacity

 ■ The STL deque class

ptg18655082

456 LESSON 17: STL Dynamic Array Classes

The Characteristics of std::vector
vector is a template class that supplies generic functionality of a dynamic array and

 features the following characteristics:

 ■ Addition of elements to the end of the array in constant time; that is, the time

needed to insert at the end is not dependent on the size of the array. Ditto for

removal of an element at the end.

 ■ The time required for the insertion or removal of elements at the middle is directly

proportional to the number of elements behind the element being removed.

 ■ The number of elements held is dynamic, and the vector class manages the

 memory usage.

A vector is a dynamic array that can be visualized as seen in Figure 17.1.

Element
[0]

Element
[1]

Element
[2]

Insertion at
back

FIGURE 17.1

The internals of
a vector.

To use class std::vector, include header:

#include <vector>

TIP

Typical Vector Operations
The behavioral specifications and public members of the std::vector class are defined by

the C++ standard. Consequently, operations on the vector that you will learn in this lesson

are supported by a variety of C++ programming platforms that are standard compliant.

Instantiating a Vector
A vector is a template class that needs to be instantiated in accordance with template

instantiation techniques that are covered in Lesson 14, “An introduction to Macros and

Templates.” The template instantiation of vector needs to specify the type of object that

you want to collect in this dynamic array.

std::vector<int> dynIntArray; // vector containing integers
std::vector<float> dynFloatArray; // vector containing floats
std::vector<Tuna> dynTunaArray; // vector containing Tunas

ptg18655082

Typical Vector Operations 457

17

To declare an iterator that points to an element in the list, you would use

std::vector<int>::const_iterator elementInVec;

If you need an iterator that can be used to modify values or invoke non-const functions,

you use iterator instead of const_iterator.

Given that std::vector has a few overloaded constructors, you also have an option of

instantiating a vector telling the number of elements it should start with and their initial

values, or you can use a part of whole of one vector in instantiating another.

Listing 17.1 demonstrates a few vector instantiations

LISTING 17.1 Different Forms of Instantiating std::vector: Specify Size,
Initial Value, and Copying Values from Another

 0: #include <vector>
 1:
 2: int main ()
 3: {
 4: // vector of integers
 5: std::vector<int> integers;
 6:
 7: // vector initialized using C++11 list initialization
 8: std::vector<int> initVector{ 202, 2017, -1 };
 9:
10: // Instantiate a vector with 10 elements (it can still grow)
11: std::vector<int> tenElements (10);
12:
13: // Instantiate a vector with 10 elements, each initialized to 90
14: std::vector<int> tenElemInit (10, 90);
15:
16: // Initialize vector to the contents of another
17: std::vector<int> copyVector (tenElemInit);
18:
19: // Vector initialized to 5 elements from another using iterators
20: std::vector<int> partialCopy (tenElements.cbegin(),
21: tenElements.cbegin() + 5);
22:
23: return 0;
24: }

Analysis ▼

The preceding code features a template specialization of the vector class for type

integer; in other words, it instantiates a vector of integers. This vector, named

integers, uses the default constructor in Line 5 that is useful when you do not know

ptg18655082

458 LESSON 17: STL Dynamic Array Classes

the minimal size requirements of the container—that is, when you do not know how

many integers you want to hold in it. The second form of instantiation seen in Line 8

uses the concept of list initialization introduced by C++11 to initialize initVector with

three elements containing values 202, 2017, and –1, respectively. The vector instantia-

tion as seen in Lines 11 and 14 are ones where the programmer knows that he needs a

vector that contains at least 10 elements. Note that this does not limit the ultimate size

of the container, rather just sets the initializing size. Finally, Lines 17 and 20 demon-

strate how a vector can be used to instantiate the contents of another—in other words,

to create one vector object that is the copy of another, or a part thereof. This is also a

construct that works for all STL containers. The last form is the one that uses iterators.

partialCopy contains the first five elements from vecWithTenElements.

The fourth construct can work only with objects of like types.
So, you could instantiate a vecArrayCopy—a vector of integer
objects using another vector of integer objects. If one of them
were to be a vector of, say, type float, the code would not
compile.

NOTE

Inserting Elements at the End Using push_back()
Having instantiated a vector of integers, the obvious next task is to insert elements

(integers) into it. Insertion in a vector happens at the end of the array, and elements are

“pushed” into its back using the member function push_back():

vector <int> integers; // declare a vector of type int

// Insert sample integers into the vector:
integers.push_back (50);
integers.push_back (1);

Listing 17.2 demonstrates the use of push_back() in the dynamic addition of elements

to a std::vector.

LISTING 17.2 Inserting Elements in a Vector Using push_back()

 0: #include <iostream>
 1: #include <vector>
 2: using namespace std;
 3:
 4: int main ()
 5: {
 6: vector <int> integers;
 7:

ptg18655082

Typical Vector Operations 459

17

 8: // Insert sample integers into the vector:
 9: integers.push_back (50);
10: integers.push_back (1);
11: integers.push_back (987);
12: integers.push_back (1001);
13:
14: cout << "The vector contains ";
15: cout << integers.size () << " Elements" << endl;
16:
17: return 0;
18: }

Output ▼
The vector contains 4 Elements

Analysis ▼

push_back(), as seen in Lines 9–12 is the vector class’s public member function

that inserts objects at the end of the dynamic array. Note the usage of function size(),

which returns the number of elements held in the vector.

List Initialization
C++11 features initializer lists via class std::initialize_list<> that, when

 supported, enables you to instantiate and initialize elements in a container like you

would in a static array. std::vector, like most containers, supports List Initialization

 allowing you to instantiate a vector with elements in one line:

vector<int> integers = {50, 1, 987, 1001};
// alternatively:
vector<int> vecMoreIntegers {50, 1, 987, 1001};

This syntax reduces three lines in Listing 17.2.

Inserting Elements at a Given Position
Using insert()
You use push_back() to insert elements at the end of a vector. What if you want

to insert in the middle? Many STL containers, including std::vector, feature an

insert() function with many overloads.

ptg18655082

460 LESSON 17: STL Dynamic Array Classes

In one, you can specify the position at which an element can be inserted into the

sequence:

// insert an element at the beginning
integers.insert (integers.begin (), 25);

In another, you can specify the position as well as the number of elements with a value

that need to be inserted:

// Insert 2 elements of value 45 at the end
integers.insert (integers.end (), 2, 45);

You can also insert the contents of one vector into another at a chosen position:

// Another vector containing 2 elements of value 30
vector <int> another (2, 30);

// Insert two elements from another container in position [1]
integers.insert (integers.begin () + 1,

another.begin (), another.end ());

You use an iterator, often returned by begin() or end(), to tell the insert() function

the position where you want the new elements to be placed.

Note that this iterator can also be the return value of an STL
algorithm, for example the std::find() function, which can
be used to find an element and then insert another at that
position (insertion will shift the element found). Algorithms like
find() and more are discussed in detail in Lesson 23, “STL
Algorithms.”

TIP

These forms of vector::insert() are demonstrated in Listing 17.3.

LISTING 17.3 Using the vector::insert Function to Insert Elements at a Set Position

 0: #include <vector>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: void DisplayVector(const vector<int>& inVec)
 5: {
 6: for (auto element = inVec.cbegin();
 7: element != inVec.cend();

ptg18655082

Typical Vector Operations 461

17

 8: ++ element)
 9: cout << *element << ' ';
10:
11: cout << endl;
12: }
13:
14: int main ()
15: {
16: // Instantiate a vector with 4 elements, each initialized to 90
17: vector <int> integers (4, 90);
18:
19: cout << "The initial contents of the vector: ";
20: DisplayVector(integers);
21:
22: // Insert 25 at the beginning
23: integers.insert (integers.begin (), 25);
24:
25: // Insert 2 numbers of value 45 at the end
26: integers.insert (integers.end (), 2, 45);
27:
28: cout << "Vector after inserting elements at beginning and end: ";
29: DisplayVector(integers);
30:
31: // Another vector containing 2 elements of value 30
32: vector <int> another (2, 30);
33:
34: // Insert two elements from another container in position [1]
35: integers.insert (integers.begin () + 1,
36: another.begin (), another.end ());
37:
38: cout << "Vector after inserting contents from another vector: ";
39: cout << "in the middle:" << endl;
40: DisplayVector(integers);
41:
42: return 0;
43: }

Output ▼
The initial contents of the vector: 90 90 90 90
Vector after inserting elements at beginning and end: 25 90 90 90 90 45 45
Vector after inserting contents from another vector: in the middle:
25 30 30 90 90 90 90 45 45

Analysis ▼

This code demonstrates the power of the insert() function by enabling you to put

 values in the middle of the container. vector in Line 17 contains four elements, all

initialized to 90. Taking this vector as a starting point, we use various overloaded forms

ptg18655082

462 LESSON 17: STL Dynamic Array Classes

of the vector::insert() member function. In Line 23 you add one element at the

beginning. Line 26 adds two elements of value 45 at the end. Line 35 demonstrates how

elements can be inserted from one vector into the middle (in this example, the second

position at offset 1) of another.

Although vector::insert() is a versatile function, push_back() should be your

preferred way of adding elements to a vector. This is because insert() is an inefficient

way to add elements to the vector (when adding in a position that is not the end of the

sequence) because adding elements in the beginning or the middle makes the vector

class shift all subsequent elements backward (after making space for the last ones at the

end). Thus, depending on the type of the objects contained in the sequence, the cost of

this shift operation can be significant in terms of the copy constructor or copy assign-

ment operator invoked. In our little sample, the vector contains objects of type int that

are relatively inexpensive to move around. This might not be the case in many other uses

of the vector class.

If your container needs to have very frequent insertions in the
middle, you should ideally choose the std::list, explained in
Lesson 18, “STL list and forward_list.”

TIP

Accessing Elements in a Vector Using
Array Semantics
Elements in a vector can be accessed using the following methods: via array semantics

using the subscript operator ([]), using the member function at(), or using iterators.

Listing 17.1 showed how an instance of vector can be created that is initialized for 10

elements:

std::vector <int> tenElements (10);

You can access and set individual elements using an array-like syntax:

tenElements[3] = 2011; // set 4th element

Listing 17.4 demonstrates how elements in a vector can be accessed using the subscript

operator ([]).

ptg18655082

Typical Vector Operations 463

17

LISTING 17.4 Accessing Elements in a vector Using Array Semantics

 0: #include <iostream>
 1: #include <vector>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6: vector <int> integers{ 50, 1, 987, 1001 };
 7:
 8: for (size_t index = 0; index < integers.size (); ++index)
 9: {
10: cout << "Element[" << index << "] = " ;
11: cout << integers[index] << endl;
12: }
13:
14: integers[2] = 2011; // change value of 3rd element
15: cout << "After replacement: " << endl;
16: cout << "Element[2] = " << integers[2] << endl;
17:
18: return 0;
19: }

Output ▼
Element[0] = 50
Element[1] = 1
Element[2] = 987
Element[3] = 1001
After replacement:
Element[2] = 2011

Analysis ▼

At Lines 11, 14, and 16 the vector has been used to access and assign elements the

same way you might use a static array using vector’s subscript operator ([]). This

 subscript operator accepts an element-index that is zero-based just as in a static array.

Note how the for loop has been programmed in Line 15 to ensure that the index doesn’t

cross the bounds of the vector by comparing it against vector::size().

ptg18655082

464 LESSON 17: STL Dynamic Array Classes

Accessing elements in a vector using [] is fraught with the
same dangers as accessing elements in an array; that is, you
should not cross the bounds of the container. If you use the sub-
script operator ([]) to access elements in a vector at a posi-
tion that is beyond its bounds, the result of the operation will be
undefined (anything could happen, possibly an access violation).

A safer alternative is to use the at() member function:

// gets element at position 2

cout < < integers.at (2);

// the vector::at() version of the code above in
Listing 17.4, line 11:

cout < < integers.at(index);

at() performs a runtime check against the size() of the
 container and throws an exception if you cross the boundaries
(which you shouldn’t anyway).

Subscript operator ([]) is safe when used in a manner that
ensures bound integrity, as in the earlier example.

CAUTION

Accessing Elements in a Vector Using Pointer
Semantics
You can also access elements in a vector using pointer-like semantics by the use of

iterators, as shown in Listing 17.5.

LISTING 17.5 Accessing Elements in a Vector Using Pointer Semantics (Iterators)

 0: #include <iostream>
 1: #include <vector>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6: vector <int> integers{ 50, 1, 987, 1001 };
 7:
 8: vector <int>::const_iterator element = integers.cbegin ();
 9: // auto element = integers.cbegin (); // auto type deduction
10:
11: while (element != integers.end ())
12: {
13: size_t index = distance (integers.cbegin (), element);
14:

ptg18655082

Typical Vector Operations 465

17

15: cout << "Element at position ";
16: cout << index << " is: " << *element << endl;
17:
18: // move to the next element
19: ++ element;
20: }
21:
22: return 0;
23: }

Output ▼
Element at position 0 is: 50
Element at position 1 is: 1
Element at position 2 is: 987
Element at position 3 is: 1001

Analysis ▼

The iterator in this example behaves more or less like a pointer, and the nature of its

usage in the preceding application is like pointer arithmetic, as seen in Line 16 where

the value stored in the vector is accessed using the dereference operator (*) and Line 19

where the iterator, when incremented using operator (++), points to the next element.

Notice how std::distance() is used in Line 21 to evaluate the zero-based offset

 position of the element in the vector (that is, position relative to the beginning), given

cbegin() and the iterator pointing to the element. Line 9 presents a simpler alternative

to the iterator declaration seen in Line 8 using automatic type deduction capabilities of

the compiler, introduced in Lesson 3, “Using Variables, Declaring Constants.”

Removing Elements from a Vector
Just the same way as the vector features insertion at the end via the push_back()

function, it also features the removal of an element at the end via the pop_back()

 function. Removal of an element from the vector using pop_back() takes constant

time—that is, the time required is independent of the number of elements stored in the

vector. The code that follows in Listing 17.6 demonstrates the use of function

pop_back() to delete elements at the end of the vector.

LISTING 17.6 Using pop_back() to Delete the Last Element

 0: #include <iostream>
 1: #include <vector>
 2: using namespace std;
 3:

ptg18655082

466 LESSON 17: STL Dynamic Array Classes

 4: template <typename T>
 5: void DisplayVector(const vector<T>& inVec)
 6: {
 7: for (auto element = inVec.cbegin(); // auto and cbegin(): C++11
 8: element != inVec.cend(); // cend() is new in C++11
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: vector <int> integers;
18:
19: // Insert sample integers into the vector:
20: integers.push_back (50);
21: integers.push_back (1);
22: integers.push_back (987);
23: integers.push_back (1001);
24:
25: cout << "Vector contains " << integers.size () << " elements: ";
26: DisplayVector(integers);
27:
28: // Erase one element at the end
29: integers.pop_back ();
30:
31: cout << "After a call to pop_back()" << endl;
32: cout << "Vector contains " << integers.size () << " elements: ";
33: DisplayVector(integers);
34:
35: return 0;
36: }

Output ▼
Vector contains 4 elements: 50 1 987 1001
After a call to pop_back()
Vector contains 3 elements: 50 1 987

Analysis ▼

The output indicates that the pop_back() function used at Line 29 has reduced the

 elements in the vector by erasing the last element inserted into it. Line 32 calls size()

again to demonstrate that the number of elements in the vector has reduced by one, as

indicated in the output.

ptg18655082

Understanding the Concepts of Size and Capacity 467

17

Function DisplayVector() in Lines 4–13 has taken a tem-
plate form in Listing 17.6 as compared to Listing 17.3 where it
accepted only a vector for integers. This helps us reuse this
template function for a vector of type float (instead of int):

vector <float> vecFloats;

DisplayVector(vecFloats); // works, as a generic
function

This generic form of DisplayVector() would also support a
vector of any class that features an operator that returns a
value cout would understand.

NOTE

Understanding the Concepts of Size
and Capacity
The size of a vector is the number of elements stored in a vector. The capacity of

a vector is the total number of elements that can potentially be stored in the vector

before it reallocates memory to accommodate more elements. Therefore, a vector’s size

is less than or equal to its capacity.

You can query a vector for the number of elements by calling size():

cout << "Size: " << integers.size ();

or query it for its capacity by calling capacity():

cout << "Capacity: " << integers.capacity () << endl;

A vector can cause some amount of performance problems when it needs to frequently

reallocate the memory of the internal dynamic array. To a great extent, this problem

can be addressed by using the member function reserve(number). What reserve()

essentially does is increase the amount of memory allocated for the vector’s internal

array so as to accommodate the number of elements without needing to reallocate.

Depending on the type of the objects stored in the vector, reducing the number of

reallocations also reduces the number of times the objects are copied and saves on

performance. The code sample in Listing 17.7 demonstrates the difference between

size() and capacity().

ptg18655082

468 LESSON 17: STL Dynamic Array Classes

LISTING 17.7 Demonstration of size() and capacity()

 0: #include <iostream>
 1: #include <vector>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: // instantiate a vector object that holds 5 integers of default value
 8: vector <int> integers (5);
 9:
10: cout << "Vector of integers was instantiated with " << endl;
11: cout << "Size: " << integers.size ();
12: cout << ", Capacity: " << integers.capacity () << endl;
13:
14: // Inserting a 6th element in to the vector
15: integers.push_back (666);
16:
17: cout << "After inserting an additional element... " << endl;
18: cout << "Size: " << integers.size ();
19: cout << ", Capacity: " << integers.capacity () << endl;
20:
21: // Inserting another element
22: integers.push_back (777);
23:
24: cout << "After inserting yet another element... " << endl;
25: cout << "Size: " << integers.size ();
26: cout << ", Capacity: " << integers.capacity () << endl;
27:
28: return 0;
29: }

Output ▼
Vector of integers was instantiated with
Size: 5, Capacity: 5
After inserting an additional element...
Size: 6, Capacity: 7
After inserting yet another element...
Size: 7, Capacity: 7

Analysis ▼

Line 8 shows the instantiation of a vector of integers containing five integers at default

value (0). Lines 11 and 12, which display the size and the capacity of the vector,

ptg18655082

469

17

The STL deque Class

respectively, display that both are equal at instantiation time. Line 9 inserts a sixth

element in the vector. Given that the capacity of the vector was five prior to the

 insertion, there isn’t adequate memory in the internal buffer of the vector to support

this new sixth element. In other words, for the vector class to scale itself and store six

elements, it needs to reallocate the internal buffer. The implementation of the reallocation

logic is smart—to avoid another reallocation on insertion of another element, it preemp-

tively allocates a capacity greater than the requirements of the immediate scenario.

The output shows that on insertion of a sixth element in a vector that has the capacity

for five, the reallocation involved increases the capacity to seven elements. size()

always reflects the number of elements in the vector and has a value of six at this stage.

The addition of a seventh element in Line 22 results in no increase in capacity—the

existing allocated memory meets the demand sufficiently. Both size and capacity dis-

play an equal value at this stage, indicating that the vector is used to its full capacity,

and insertion of the next element will cause the vector to reallocate its internal buffer,

 copying existing values before it inserts the new value.

The preemptive increase in the capacity of the vector when the
internal buffer is reallocated is not regulated by any clause in the
C++ standard. This level of performance optimization may vary
depending on the provider of STL library in use.

NOTE

The STL deque Class
deque (pronunciation rhymes with deck) is an STL dynamic array class quite similar

in properties to that of the vector except that it allows for the insertion and removal

of elements at the front and back of the array. You would instantiate a deque of integers

like this:

// Define a deque of integers
std::deque <int> intDeque;

To use a std::deque, include header <deque>:

#include<deque>

TIP

ptg18655082

470 LESSON 17: STL Dynamic Array Classes

A deque can be visualized as shown in Figure 17.2.

Element
[0]

Element
[1]

Insertion at
back

Insertion at
front

FIGURE 17.2

Internals of a
deque.

The deque is similar to the vector in that it supports element insertions and deletions

at the back via the push_back() and pop_back() functions. Just like the vector,

the deque also allows you to access it using array semantics via operator ([]). deque is

 different from the vector in that it also enables you to insert elements at the front using

push_front() and remove from the front using pop_front(), as demonstrated by

Listing 17.8.

LISTING 17.8 Instantiating an STL deque and Using push_front() and pop_front()
Functions to Insert and Delete Elements at the Front

 0: #include <deque>
 1: #include <iostream>
 2: #include <algorithm>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: // Define a deque of integers
 9: deque<int> intDeque;
10:
11: // Insert integers at the bottom of the array
12: intDeque.push_back (3);
13: intDeque.push_back (4);
14: intDeque.push_back (5);
15:
16: // Insert integers at the top of the array
17: intDeque.push_front (2);
18: intDeque.push_front (1);
19: intDeque.push_front (0);
20:
21: cout << "The contents of the deque after inserting elements ";
22: cout << "at the top and bottom are:" << endl;
23:
24: // Display contents on the screen
25: for (size_t count = 0;
26: count < intDeque.size ();
27: ++ count)
28: {
29: cout << "Element [" << count << "] = ";

ptg18655082

471

17

The STL deque Class

30: cout << intDeque [count] << endl;
31: }
32:
33: cout << endl;
34:
35: // Erase an element at the top
36: intDeque.pop_front ();
37:
38: // Erase an element at the bottom
39: intDeque.pop_back ();
40:
41: cout << "The contents of the deque after erasing an element ";
42: cout << "from the top and bottom are:" << endl;
43:
44: // Display contents again: this time using iterators
45: // if on older compilers, remove auto and uncomment next line
46: // deque <int>::iterator element;
47: for (auto element = intDeque.begin ();
48: element != intDeque.end ();
49: ++ element)
50: {
51: size_t Offset = distance (intDeque.begin (), element);
52: cout << "Element [" << Offset << "] = " << *element << endl;
53: }
54:
55: return 0;
56: }

Output ▼
The contents of the deque after inserting elements at the top and bottom are:
Element [0] = 0
Element [1] = 1
Element [2] = 2
Element [3] = 3
Element [4] = 4
Element [5] = 5

The contents of the deque after erasing an element from the top and bottom are:
Element [0] = 1
Element [1] = 2
Element [2] = 3
Element [3] = 4

Analysis ▼

Line 9 is where you instantiate a deque of integers. Note how similar this syntax is to

the instantiation of a vector of integers. Lines 12–14 display the usage of the deque

member function push_back() followed by push_front() in Lines 17–19. The latter

ptg18655082

472 LESSON 17: STL Dynamic Array Classes

makes the deque unique in comparison to the vector. Ditto for the usage of

pop_front(), as shown in Line 36. The first mechanism of displaying the contents of

deque as seen in Lines 25–31 uses the array-like syntax to access elements, whereas

Lines 47–53 demonstrate the usage of iterators. Algorithm std::distance() is used in

Line 51 to evaluate the offset position of the element in the deque in the same manner

that you have already seen work with the vector in Listing 17.5.

When you need to empty an STL container such as a vector or
a deque, that is, delete all elements contained in it, you would
use member function clear().

The following code deletes all elements in vector integers
from Listing 17.7:

integers.clear();

To delete all elements in deque intDeque from Listing 17.8, add
code:

intDeque.clear();

Note that both vector and deque also feature a member
function called empty() that returns true when the container
is empty. It doesn’t actually delete existing elements—the way
clear() does.

intDeque.clear();

if (intDeque.empty())

 cout << "The container is now empty" << endl;

TIP

DO DON’T

DO use the dynamic arrays vector
or deque when you don’t know the
number of elements you need to
store.

DO remember that a vector can
grow only at one end via the function
push_back().

DO remember that a deque can grow
on both ends via the functions
push_back() and push_front().

DON’T forget that the function
pop_back() deletes the last element
from the collection.

DON’T forget that the function
pop_front() deletes the first
element from a deque.

DON’T access a dynamic array
beyond its bounds.

ptg18655082

473

17

Q&A

Summary
In this lesson, you learned the basics of using the vector and the deque as dynamic

arrays. The concepts of size and capacity were explained, and you saw how the usage of

the vector can be optimized to reduce the number of reallocations of its internal buffer,

which copies the objects contained and potentially reduces performance. The vector is

the simplest of the STL’s containers, yet the most used and, arguably, the most efficient one.

Q&A
 Q Does the vector change the order of the elements stored in it?

 A The vector is a sequential container, and elements are stored and accessed in the

very order that they are inserted.

 Q What function is used to insert items in a vector, and where is the object
inserted?

 A The member function push_back() inserts elements at the end of the vector.

 Q What function gets the number of elements stored in a vector?

 A The member function size() returns the number of elements stored in a vector.

Incidentally, this is true for all STL containers.

 Q Does the insertion or removal of elements at the end of the vector take more
time if the vector contains more elements?

 A No. Insertion and removal of elements at the end of a vector are constant-time

activities.

 Q What is the advantage of using the reserve() member function?

 A reserve() allocates space in the internal buffer of the vector, and insertion

of elements does not need the vector to reallocate the buffer and copy existing

 contents. Depending on the nature of the objects stored in the vector, reserving

space in a vector can result in performance improvements.

 Q Are the properties of the deque any different than the vector when it comes
to insertion of elements?

 A No, the properties of the deque are similar to that of the vector when it comes

to insertion, which is a constant-time activity for elements added at the end of

sequence and a linear-time activity for elements inserted in the middle. However,

the vector allows insertion at only one end (the bottom), whereas the deque allows

for insertion at both ends (the top and the bottom).

ptg18655082

474 LESSON 17: STL Dynamic Array Classes

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can elements be inserted at the middle or the beginning of a vector in constant

time?

2. My vector returns size() as 10 and capacity() as 20. How many more

 elements can I insert in it without needing the vector class to trigger a buffer

 reallocation?

3. What does the pop_back() function do?

4. If vector <int> is a dynamic array of integers, a vector <Mammal> is a

dynamic array of what type?

5. Can elements in a vector be randomly accessed? If so, how?

6. What iterator type allows random access of elements in a vector?

Exercises
1. Write an interactive program that accepts integer input from the user and saves it in

the vector. The user should be able to query a value stored in the vector at any

time, given an index.

2. Extend the program from Exercise 1 to be able to tell the user whether a value he

queries for already exists in the vector.

3. Jack sells jars on eBay. To help him with packaging and shipment, write a program

in which he can enter the dimensions of each of these articles, store them in a

 vector, and have them printed on the screen.

4. Write an application that initializes a deque to the following three strings:

“Hello”, “Containers are cool!”, and “C++ is evolving!”. You must

display them using a generic function that would work for a deque of all kinds.

Your application needs to demonstrate the usage of List Initialization introduced by

C++11 and the operator ""s introduced by C++14.

ptg18655082

LESSON 18
STL list and
forward_list

The Standard Template Library (STL) supplies the programmer with a
doubly linked list in the form of template class std::list. The main
advantage of a linked list is in fast and constant time insertion and
removal of elements. Starting with C++11, you can also use a singly
linked list in the form of std::forward_list that can be traversed only
in one direction.

In this lesson, you learn

 ■ How to instantiate list and forward_list

 ■ How to use the STL list classes, including insertion and removal

 ■ How to reverse and sort elements

ptg18655082

476 LESSON 18: STL list and forward_list

The Characteristics of a std::list
A linked list is a collection of nodes in which each node, in addition to containing

a value or object of interest, also points to the next node; that is, each node links to the

next one and previous one as shown in Figure 18.1.

Node N

Link
Prev

Data Link
Next

Node N + 1

Link
Prev

Data Link
Next

FIGURE 18.1

Visual representation
of a doubly linked
list.

The STL implementation of the list class allows for constant-time insertions in the top,

bottom, or middle of the list.

To use class std::list, include header:

#include <list>

TIP

Basic list Operations
To use STL’s list class, include header file <list>. The template class list that exists

in the std namespace is a generic implementation that needs to be template-instantiated

before you can use any of its useful member functions.

Instantiating a std::list Object
The template instantiation of list needs to specify the type of object that you want to

collect in the list. So, the initialization of a list would look like the following:

std::list<int> linkInts; // list containing integers
std::list<float> listFloats; // list containing floats
std::list<Tuna> listTunas; // list containing objects of type Tuna

To declare an iterator that points to an element in the list, you would use

std::list<int>::const_iterator elementInList;

If you need an iterator that can be used to modify values or invoke non-const functions,

you use iterator instead of const_iterator.

Given that implementations of the std::list do provide you with a set of overloaded

constructors, you can even create lists that are initialized to contain a number of elements

of your choosing, each initialized to a value, as demonstrated by Listing 18.1.

ptg18655082

477

18

Basic list Operations

LISTING 18.1 Different Forms of Instantiating std::list, Specifying Number
of Elements and Initial Values

 0: #include <list>
 1: #include <vector>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: // instantiate an empty list
 8: list <int> linkInts;
 9:
10: // instantiate a list with 10 integers
11: list<int> listWith10Integers(10);
12:
13: // instantiate a list with 4 integers, each value 99
14: list<int> listWith4IntegerEach99 (10, 99);
15:
16: // create an exact copy of an existing list
17: list<int> listCopyAnother(listWith4IntegerEach99);
18:
19: // a vector with 10 integers, each 2017
20: vector<int> vecIntegers(10, 2017);
21:
22: // instantiate a list using values from another container
23: list<int> listContainsCopyOfAnother(vecIntegers.cbegin(),
24: vecIntegers.cend());
25:
26: return 0;
27: }

Analysis ▼

This program produces no output and demonstrates the application of the various

 overloaded constructors in creating a list of integers. In Line 8 you create an empty

list, whereas in Line 11 you create a list containing 10 integers. Line 14 is a list,

called listWith4IntegersEach99, that contains 4 integers that are each initial-

ized to value 99. Line 17 demonstrates creating a list that is an exact copy of the

contents of another. Lines 20–24 are surprising and curious! You instantiate a vector

that contains 10 integers, each containing value 2017, and then instantiate a list in

Line 23 that contains elements copied from the vector, using const iterators returned

by vector::cbegin() and vector::cend() (new in C++11). Listing 18.1 is also a

demonstration of how iterators help decouple the implementation of one container from

another, enabling you to use their generic functionality to instantiate a list using values

taken from a vector, as shown in Lines 23 and 24.

ptg18655082

478 LESSON 18: STL list and forward_list

On comparing Listing 18.1 against Listing 17.1 in Lesson 17,
“STL Dynamic Array Classes,” you will note a remarkable pattern
and similarity in the way containers of different types have been
instantiated. The more you program using STL containers, the
more reusable patterns you will see and the easier it will get.

NOTE

Inserting Elements at the Front or Back of the List
Similar to a deque, insertion at the front (or top, depending on your perspective) is

effected using the list member method push_front(). Insertion at the end is done

using member method push_back(). These two methods take one input parameter,

which is the value to be inserted:

linkInts.push_back (-1);
linkInts.push_front (2001);

Listing 18.2 demonstrates the effect of using these two methods on a list of integers.

LISTING 18.2 Inserting Elements in the List Using push_front() and push_back()

 0: #include <list>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents (const T& container)
 6: {
 7: for (auto element = container.cbegin();
 8: element != container.cend();
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: std::list <int> linkInts{ -101, 42 };
18:
19: linkInts.push_front (10);
20: linkInts.push_front (2011);
21: linkInts.push_back (-1);
22: linkInts.push_back (9999);
23:

ptg18655082

479

18

Basic list Operations

24: DisplayContents(linkInts);
25:
26: return 0;
27: }

Output ▼
2011 10 -101 42 -1 9999

Analysis ▼

Line 17 features the template instantiation of a list for type int and uses C++11 List

Initialization syntax {…} to ensure that linkInts is constructed with two integers

(-101 and 42) linked within it. Lines 19–22 demonstrate the usage of push_front()

and push_back(). The value being supplied as an argument to push_front()

takes the first position in the list, whereas that sent via push_back() takes the last

position. The output displays the content of the list via generic template function

DisplayContents() demonstrating the order of the inserted elements (and that they

aren’t stored in order of insertion).

DisplayContents() in Listing 18.2, Lines 4–13 is a more
generic version of the method DisplayVector() in Listing 17.6
(note the changed parameter list). Although the latter worked
only for the vector, generalizing the type of elements stored in
one, this version is truly generic even across container types.

You can invoke the version of DisplayContents() in Listing
18.2 with a vector, a list, or a deque as an argument, and it
will work just fine.

NOTE

Inserting at the Middle of the List
std::list is characterized by its capability to insert elements at the middle of the

 collection in constant time. This is done using the member function insert().

The list::insert() member function is available in three forms:

 ■ Form 1
iterator insert(iterator pos, const T& x)

Here the insert function accepts the position of insertion as the first parameter and

the value to insert as the second. This function returns an iterator pointing to the

recently inserted element in the list.

ptg18655082

480 LESSON 18: STL list and forward_list

 ■ Form 2
void insert(iterator pos, size_type n, const T& x)

This function accepts the position of insertion as the first parameter, the value to

insert as the last parameter, and the number of elements in variable n.

 ■ Form 3
template <class InputIterator>
void insert(iterator pos, InputIterator f, InputIterator l)

This overloaded variant is a template function that accepts, in addition to the

 position, two input iterators that mark the bounds of the collection to insert into the

list. Note that the input type InputIterator is a template-parameterized type and

therefore can point to the bounds of any collection—be it an array, a vector, or

just another list.

Listing 18.3 demonstrates the use of these overloaded variants of the list::insert()

function.

LISTING 18.3 Various Methods of Inserting Elements in a List

 0: #include <list>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents (const T& container)
 6: {
 7: for (auto element = container.cbegin();
 8: element != container.cend();
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: list <int> linkInts1;
18:
19: // Inserting elements at the beginning...
20: linkInts1.insert (linkInts1.begin (), 2);
21: linkInts1.insert (linkInts1.begin (), 1);
22:
23: // Inserting an element at the end...
24: linkInts1.insert (linkInts1.end (), 3);
25:
26: cout << "The contents of list 1 after inserting elements:" << endl;
27: DisplayContents (linkInts1);

ptg18655082

481

18

Basic list Operations

28:
29: list <int> linkInts2;
30:
31: // Inserting 4 elements of the same value 0...
32: linkInts2.insert (linkInts2.begin (), 4, 0);
33:
34: cout << "The contents of list 2 after inserting '";
35: cout << linkInts2.size () << "' elements of a value:" << endl;
36: DisplayContents (linkInts2);
37:
38: list <int> linkInts3;
39:
40: // Inserting elements from another list at the beginning...
41: linkInts3.insert (linkInts3.begin (),
42: linkInts1.begin (), linkInts1.end ());
43:
44: cout << "The contents of list 3 after inserting the contents of ";
45: cout << "list 1 at the beginning:" << endl;
46: DisplayContents (linkInts3);
47:
48: // Inserting elements from another list at the end...
49: linkInts3.insert (linkInts3.end (),
50: linkInts2.begin (), linkInts2.end ());
51:
52: cout << "The contents of list 3 after inserting ";
53: cout << "the contents of list 2 at the end:" << endl;
54: DisplayContents (linkInts3);
55:
56: return 0;
57: }

Output ▼
The contents of list 1 after inserting elements:
1 2 3
The contents of list 2 after inserting '4' elements of a value:
0 0 0 0
The contents of list 3 after inserting the contents of list 1 at the beginning:
1 2 3
The contents of list 3 after inserting the contents of list 2 at the end:
1 2 3 0 0 0 0

Analysis ▼

begin() and end() are member functions that return iterators pointing to the begin-

ning and the end of the list, respectively. This is generally true for all STL containers,

including the std::list. The list::insert() function accepts an iterator that marks

the position before which items are to be inserted. The iterator returned by the end()

ptg18655082

482 LESSON 18: STL list and forward_list

 function, as used in Line 24, points to after the last element in the list. Therefore,

that line inserts integer value 3 before the end as the last value. Line 32 indicates the

 initialization of a list with four elements placed at the beginning—that is, at the front—

each with value 0. Lines 41 and 42 demonstrate the usage of the list::insert()

 function to insert elements from one list at the end of another. Although this example

inserts a list of integers into another list, the range inserted could as well have

been within the limits of a vector, supplied by begin() and end() as also seen in

Listing 18.1, or a regular static array.

Erasing Elements from the List
The list member function erase() comes in two overloaded forms: one that erases

one element given an iterator that points to it and another that accepts a range and

therefore erases a range of elements from the list. You can see the list::erase()

function in action in Listing 18.4, which demonstrates how you erase an element or a

range of elements from a list.

LISTING 18.4 Erasing Elements from a List

 0: #include <list>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents(const T& container)
 6: {
 7: for(auto element = container.cbegin();
 8: element != container.cend();
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: std::list <int> linkInts{ 4, 3, 5, -1, 2017 };
18:
19: // Store an iterator obtained in using insert()
20: auto val2 = linkInts.insert(linkInts.begin(), 2);
21:
22: cout << "Initial contents of the list:" << endl;
23: DisplayContents(linkInts);
24:
25: cout << "After erasing element '"<< *val2 << "':" << endl;
26: linkInts.erase(val2);
27: DisplayContents(linkInts);
28:

ptg18655082

483

18

Reversing and Sorting Elements in a List

29: linkInts.erase(linkInts.begin(), linkInts.end());
30: cout << "Number of elements after erasing range: ";
31: cout << linkInts.size() << endl;
32:
33: return 0;
34: }

Output ▼
Initial contents of the list:
2 4 3 5 -1 2017
After erasing element '2':
4 3 5 -1 2017
Number of elements after erasing range: 0

Analysis ▼

When insert() is used to insert a value as seen in Line 20, it returns an iterator to the

newly inserted element. This iterator pointing to an element with value 2 is stored in a

variable val2, to be used later in a call to erase() at Line 26 to delete this very ele-

ment from the list. Line 29 demonstrates the usage of erase() to delete a range of

elements. You clear a range from begin() to end(), effectively erasing the entire list.

The shortest and simplest way to empty an STL container, such
as a std::list, is to call member function clear().

A simpler Line 29 in Listing 18.4 would therefore be

linkInts.clear();

TIP

Listing 18.4 demonstrates at Line 31 that the number of
elements in a std::list can be determined using list method
size(), very similar to that of a vector. This is a pattern appli-
cable to all STL container classes.

NOTE

Reversing and Sorting Elements
in a List
list has a special property that iterators pointing to the elements in a list remain valid

in spite of rearrangement of the elements or insertion of new elements and so on. To keep

this important property intact, the list function features sort() and reverse() as

ptg18655082

484 LESSON 18: STL list and forward_list

member methods even though the STL supplies these as algorithms that will and do work

on the list class. The member versions of these algorithms ensure that iterators point-

ing to elements in the list are not invalidated when the relative position of an element is

disturbed.

Reversing Elements Using list::reverse()
list features a member function reverse() that takes no parameters and reverses the

order of contents in a list for the programmer:

linkInts.reverse(); // reverse order of elements

The usage of reverse() is demonstrated in Listing 18.5.

LISTING 18.5 Reversing Elements in a List

 0: #include <list>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents(const T& container)
 6: {
 7: for (auto element = container.cbegin();
 8: element != container.cend();
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: std::list<int> linkInts{ 0, 1, 2, 3, 4, 5 };
18:
19: cout << "Initial contents of list:" << endl;
20: DisplayContents(linkInts);
21:
22: linkInts.reverse();
23:
24: cout << "Contents of list after using reverse():" << endl;
25: DisplayContents(linkInts);
26:
27: return 0;
28: }

ptg18655082

Reversing and Sorting Elements in a List 485

18

Output ▼
Initial contents of list:
0 1 2 3 4 5
Contents of list after using reverse():
5 4 3 2 1 0

Analysis ▼

As shown in Line 22, reverse() simply reverses the order of elements in the list.

It is a simple call without parameters that ensures that iterators pointing to elements in

the list, if kept by the programmer, remain valid even after the reversal.

Sorting Elements
The list member function sort() is available in a version that takes no parameters:

linkInts.sort(); // sort in ascending order

Another version allows you to define your own sort priorities via a binary predicate

 function as a parameter:

bool SortPredicate_Descending (const int& lhs, const int& rhs)
{
 // define criteria for list::sort: return true for desired order
 return (lhs > rhs);
}
// Use predicate to sort a list:
linkInts.sort (SortPredicate_Descending);

These two variants are demonstrated in Listing 18.6.

LISTING 18.6 Sorting a List of Integers in Ascending and Descending Order Using
list::sort()

 0: #include <list>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: bool SortPredicate_Descending (const int& lhs, const int& rhs)
 5: {
 6: // define criteria for list::sort: return true for desired order
 7: return (lhs > rhs);
 8: }
 9:

ptg18655082

486 LESSON 18: STL list and forward_list

10: template <typename T>
11: void DisplayContents (const T& container)
12: {
13: for (auto element = container.cbegin();
14: element != container.cend();
15: ++ element)
16: cout << *element << ' ';
17:
18: cout << endl;
19: }
20:
21: int main ()
22: {
23: list <int> linkInts{ 0, -1, 2011, 444, -5 };
24:
25: cout << "Initial contents of the list are - " << endl;
26: DisplayContents (linkInts);
27:
28: linkInts.sort ();
29:
30: cout << "Order after sort():" << endl;
31: DisplayContents (linkInts);
32:
33: linkInts.sort (SortPredicate_Descending);
34: cout << "Order after sort() with a predicate:" << endl;
35: DisplayContents (linkInts);
36:
37: return 0;
38: }

Output ▼
Initial contents of the list are -
0 -1 2011 444 -5
Order after sort():
-5 -1 0 444 2011
Order after sort() with a predicate:
2011 444 0 -1 -5

Analysis ▼

This sample demonstrates the sort() member function on a list of integers. Line 28

displays the usage of a sort() function without parameters that sorts elements in

ascending order by default, comparing integers using operator < (which, in the case

of integers, is implemented by the compiler). However, if the programmer wants to

 override this default behavior, he must supply the sort() with a binary predicate as seen

in Line 33. The function SortPredicate_Descending(), defined in Lines 4–8, is a

ptg18655082

Reversing and Sorting Elements in a List 487

18

binary predicate that helps the list’s sort() function decide whether one element is

less than the other. If not, it swaps their positions. In other words, you tell the list what’s

to be interpreted as less (which, in this case, is the first parameter being greater than the

second). The predicate returns true only if the first value is greater than the second.

That is, sort() that uses the predicate interprets the first value (lhs) to be logically less

than the second (rhs) only if the numeric value of the former is greater than that of the

latter. On the basis of this interpretation, it swaps position to fulfill the criteria specified

by the predicate.

Sorting and Removing Elements from a list
That Contains Instances of a class
What if you had a list of a class type, and not a simple built-in type such as int? Say

a list of address book entries where each entry is a class that contains name, address, and

so on. How would you ensure that this list is sorted on name?

The answer is one of the following:

 ■ Implement operator < within the class type that the list contains.

 ■ Supply a sort binary predicate—a function that takes two values as input and

returns a Boolean value indicating whether the first value is smaller than the second.

Most practical applications involving STL containers rarely collect integers; instead, they

collect user-defined types such as classes or structs. Listing 18.7 demonstrates one

using the example of a contacts list. It seems rather long at first sight but is mostly full

of simple code.

LISTING 18.7 A List of Class Objects: Creating a Contacts List

 0: #include <list>
 1: #include <string>
 2: #include <iostream>
 3: using namespace std;
 4:
 5: template <typename T>
 6: void displayAsContents (const T& container)
 7: {
 8: for (auto element = container.cbegin();
 9: element != container.cend();
10: ++ element)
11: cout << *element << endl;
12:
13: cout << endl;
14: }
15:

ptg18655082

488 LESSON 18: STL list and forward_list

16: struct ContactItem
17: {
18: string name;
19: string phone;
20: string displayAs;
21:
22: ContactItem (const string& conName, const string & conNum)
23: {
24: name = conName;
25: phone = conNum;
26: displayAs = (name + ": " + phone);
27: }
28:
29: // used by list::remove() given contact list item
30: bool operator == (const ContactItem& itemToCompare) const
31: {
32: return (itemToCompare.name == this->name);
33: }
34:
35: // used by list::sort() without parameters
36: bool operator < (const ContactItem& itemToCompare) const
37: {
38: return (this->name < itemToCompare.name);
39: }
40:
41: // Used in displayAsContents via cout
42: operator const char*() const
43: {
44: return displayAs.c_str();
45: }
46: };
47:
48: bool SortOnphoneNumber (const ContactItem& item1,
49: const ContactItem& item2)
50: {
51: return (item1.phone < item2.phone);
52: }
53:
54: int main ()
55: {
56: list <ContactItem> contacts;
57: contacts.push_back(ContactItem("Jack Welsch", "+1 7889879879"));
58: contacts.push_back(ContactItem("Bill Gates", "+1 97789787998"));
59: contacts.push_back(ContactItem("Angi Merkel", "+49 234565466"));
60: contacts.push_back(ContactItem("Vlad Putin", "+7 66454564797"));
61: contacts.push_back(ContactItem("Ben Affleck", "+1 745641314"));
62: contacts.push_back(ContactItem("Dan Craig", "+44 123641976"));
63:
64: cout << "List in initial order: " << endl;
65: displayAsContents(contacts);
66:

ptg18655082

Reversing and Sorting Elements in a List 489

18

67: contacts.sort();
68: cout << "Sorting in alphabetical order via operator<:" << endl;
69: displayAsContents(contacts);
70:
71: contacts.sort(SortOnphoneNumber);
72: cout << "Sorting in order of phone numbers via predicate:" << endl;
73: displayAsContents(contacts);
74:
75: cout << "Erasing Putin from the list: " << endl;
76: contacts.remove(ContactItem("Vlad Putin", ""));
77: displayAsContents(contacts);
78:
79: return 0;
80: }

Output ▼
List in initial order:
Jack Welsch: +1 7889879879
Bill Gates: +1 97 789787998
Angi Merkel: +49 234565466
Vlad Putin: +7 66454564797
Ben Affleck: +1 745641314
Dan Craig: +44 123641976

Sorting in alphabetical order via operator<:
Angi Merkel: +49 234565466
Ben Affleck: +1 745641314
Bill Gates: +1 97 789787998
Dan Craig: +44 123641976
Jack Welsch: +1 7889879879
Vlad Putin: +7 66454564797

Sorting in order of phone numbers via predicate:
Ben Affleck: +1 745641314
Jack Welsch: +1 7889879879
Bill Gates: +1 97 789787998
Dan Craig: +44 123641976
Angi Merkel: +49 234565466
Vlad Putin: +7 66454564797

After erasing Putin from the list:
Ben Affleck: +1 745641314
Jack Welsch: +1 7889879879
Bill Gates: +1 97 789787998
Dan Craig: +44 123641976
Angi Merkel: +49 234565466

ptg18655082

490 LESSON 18: STL list and forward_list

Analysis ▼

For a start, focus on main() in Lines 54–80. You have instantiated a list of address

book items of type ContactItem in Line 56. In Lines 57–62, you populate this list with

names and (fake) telephone numbers of celebrity technologists and politicians, and display

this initial order in Line 65. Line 67 uses list::sort() without a predicate function.

In the absence of a predicate, this sort function seeks the presence of operator< in

ContactItem that has been defined in Lines 36–39. ContactItem::operator< helps

list::sort() sort its elements in alphabetical order of the stored names (and not tele-

phone numbers or a random logic). To sort the same list in the order of phone numbers,

you use list::sort() supplying a binary predicate function SortOnPhoneNumber()

as an argument in Line 71. This function implemented in Lines 48–52 ensures that the

input arguments of type ContactItem are compared to each other on the basis of the

phone numbers and not the names. Thus, it helps list::sort() sort the list of celebri-

ties on the basis of their phone numbers as the output indicates. Finally, Line 76 is where

you use list::remove() to remove a celebrity contact from the list. You supply an

object with the celebrity’s name as a parameter. list::remove() compares this object

to other elements in the list, using ContactItem::operator= implemented in Lines

30–33. This operator returns true if the names match, helping list::remove() decide

what the criteria of a match should be.

This example not only demonstrates how STL’s template version of the linked list can

be used to create a list of any object type, but also the importance of operators and

predicates.

std::forward_list Introduced in C++11
Starting with C++11, you have the option of using a forward_list instead of a doubly

linked list in std::list. std::forward_list is a singly linked list—that is, it allows

iteration in only one direction as shown in Figure 18.2.

Node 1

Data Link
Next

Node 2

Data Link
Next

Node N

Data Link
Next

FIGURE 18.2

A visual
representation of a
singly linked list.

To use a std::forward_list, you need to include header
<forward_list>:

#include<forward_list>

TIP

ptg18655082

Reversing and Sorting Elements in a List 491

18

The usage of the forward_list is similar to list, save for the fact that you can

move iterators only in one direction and that you have a push_front() function to

insert elements but no push_back(). Of course, you can always use insert() and its

 overloaded functions to insert an element at a given position.

Listing 18.8 demonstrates some functions of a forward_list class.

LISTING 18.8 Basic Insertion and Removal Operations on a forward_list

 0: #include<forward_list>
 1: #include<iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents (const T& container)
 6: {
 7: for (auto element = container.cbegin();
 8: element != container.cend ();
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: forward_list<int> flistIntegers{ 3, 4, 2, 2, 0 };
18: flistIntegers.push_front(1);
19:
20: cout << "Contents of forward_list: " << endl;
21: DisplayContents(flistIntegers);
22:
23: flistIntegers.remove(2);
24: flistIntegers.sort();
25: cout << "Contents after removing 2 and sorting: " << endl;
26: DisplayContents(flistIntegers);
27:
28: return 0;
29: }

Output ▼
Contents of forward_list:
1 3 4 2 2 0
Contents after removing 2 and sorting:
0 1 3 4

ptg18655082

492 LESSON 18: STL list and forward_list

Analysis ▼

As the sample shows, the forward_list is similar in function to a list. As the

 forward_list doesn’t support bidirectional iteration, you can use operator++ on

an iterator, but not operator--. This sample demonstrates the usage of function

remove(2) in Line 23 to remove all elements with value 2. Line 29 demonstrates

sort() using the default sort predicate that uses std::less<T>.

The advantage of the forward_list is that in being a singly linked list, its memory

consumption is slightly lower than that of a list (as an element needs to know only the

next element but not the previous one).

DO DON’T

DO choose a std::list over
std::vector where you frequently
insert or delete elements, especially
in the middle—a vector needs to
resize its internal buffer to allow
array semantics and causes expen-
sive copy operations, but a list just
links or unlinks elements.

DO remember that you can insert in
the beginning or end of a list using
the push_front() or push_back()
member methods, respectively.

DO remember to program operator<
and operator== in a class that will
be collected in a STL container such
as list to supply the default sort or
remove predicate.

DO remember that you can always
determine the number of elements
in the list using the list::size()
method, as with any other STL
 container class.

DO remember that you can empty a
list using list::clear() method,
as with any other STL container
class.

DON’T use a list when you have infre-
quent insertions or deletions at the
ends and no insertions or deletions
in the middle; vector or deque can
be significantly faster in these cases.

DON’T forget to supply a predi-
cate function if you want the list
to sort() or remove() using non-
default criteria.

ptg18655082

493

18

Workshop

Summary
This lesson taught you the properties of the list and the different list operations.

You now know some of the most useful list functions and can create a list of any

object type.

Q&A
 Q Why does the list provide member functions such as sort() and remove()?

 A The STL list class is bound to respect the property that iterators pointing to ele-

ments in the list should remain valid irrespective of the position of the elements

in the list itself. Although STL algorithms work on list too, the list’s member

functions ensure that the aforementioned property of the list is withheld and iter-

ators pointing to elements in the list before the sort was done continue to point to

the same elements even after the sort.

 Q You are using a list of type CAnimal, which is a class. What operators
should CAnimal define for list member functions to be able to work on it
 accurately?

 A You must provide the default comparison operator == and the default < operator to

any class that can be used in STL containers.

 Q How would you replace keyword auto by an explicit type declaration in the
following line:
list<int> linkInts(10); // list of 10 integers
auto firstElement = linkInts.begin();

 A You would replace auto by the following explicit type declaration:

list<int> linkInts(10); // list of 10 integers
list<int>::iterator firstElement = linkInts.begin();

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

ptg18655082

494 LESSON 18: STL list and forward_list

Quiz
1. Is there any loss in performance when inserting items in the middle of the STL

list as compared to the beginning or the end?

2. Two iterators are pointing to two elements in an STL list object, and then an

 element is inserted between them. Are these iterators invalidated by the insert

action?

3. How can the contents of a std::list be cleared?

4. Is it possible to insert multiple elements in a list?

Exercises
1. Write a short program that accepts numbers from the user and inserts them at the

top of the list.

2. Using a short program, demonstrate that an iterator pointing to an element in a

list continues to remain valid even after another element has been inserted before

it, thus changing the relative position of the former element.

3. Write a program that inserts the contents of a vector into an STL list using the

list’s insert() function.

4. Write a program that sorts and reverses a list of strings.

ptg18655082

LESSON 19
STL Set Classes

The Standard Template Library (STL) supplies the programmer with
container classes that help with applications requiring frequent and quick
searches. The std::set and std::multiset are used to contain a
sorted set of elements and offer you the ability to find elements given a
logarithmic complexity. Their unordered counterparts offer constant-time
insertion and search capabilities.

This lesson includes

 ■ How STL set and multiset, unordered_set, and unordered_
multiset containers can be of use to you

 ■ Insertion, removal, and search of elements

 ■ Advantages and disadvantages in using these containers

ptg18655082

496 LESSON 19: STL Set Classes

An Introduction to STL Set Classes
The set and multiset are containers that facilitate a quick lookup of keys in a con-

tainer that stores them; that is, the keys are the values stored in the one-dimensional

container. The difference between the set and the multiset is that the latter allows for

duplicates whereas the former can store only unique values.

Figure 19.1 is only demonstrative and indicates that a set of names contains unique

names, whereas a multiset permits duplicates.

“Jack”
“Steve”

“Amanda”
“Jill”

A set of strings

“Jack”
“Steve”

“Amanda”
“Jill”

“Jack”

A multiset of strings

FIGURE 19.1

Visual
representation
of a set and a
multiset of
names.

To facilitate quick searching, STL implementations of the set and multiset internally

look like a binary tree. This means that elements inserted in a set or a multiset are

sorted on insertion for quicker lookups. It also means that, unlike in a vector where

 elements at a position can be replaced by another, an element at a given position in a set

cannot be replaced by a new element of a different value. This enables the set to place

the new element in a possible different location in accordance with its value relative to

those in the internal tree.

To use class std::set or std::multiset, include header:

#include <set>

TIP

Basic STL set and multiset Operations
STL set and multiset are template classes that need to be instantiated before you can

use any of their member functions.

ptg18655082

497

19

Basic STL set and multiset Operations

Instantiating a std::set Object
Instantiating a set or multiset of a type requires a specialization of the template class

std::set or std::multiset for that type:

std::set <int> setInts;
std::multiset <int> msetInts;

To define a set or multiset that contains objects of class Tuna, you would program the

following:

std::set <Tuna> tunaSet;
std::multiset <Tuna> tunaMSet;

To declare an iterator that points to an element in the set or multiset, you would use

this:

std::set<int>::const_iterator element;
std::multiset<int>::const_iterator element;

If you need an iterator that can be used to modify values or invoke non-const functions,

you would use iterator instead of const_iterator.

Given that both set and multiset are containers that sort elements on insertion, they

use a default predicate std::less when you don’t supply a sort criteria. This ensures that

your set contains elements sorted in ascending order.

You create a binary sort predicate by defining a class with operator() that takes two

values of the type contained in the set as input and returns true depending on your

 criteria. One such sort predicate that sorts in descending order is the following:

// used as a template parameter in set / multiset instantiation
template <typename T>
struct SortDescending
{
 bool operator()(const T& lhs, const T& rhs) const
 {

return (lhs > rhs);
 }
};

You then supply this predicate in the set or multiset instantiation as follows:

// a set and multiset of integers (using sort predicate)
set <int, SortDescending<int>> setInts;
multiset <int, SortDescending<int>> msetInts;

In addition to these variants, you can always create a set or a multiset that copies

from another or copies via a supplied range, as demonstrated in Listing 19.1.

ptg18655082

498 LESSON 19: STL Set Classes

LISTING 19.1 Different Instantiation Techniques of set and multiset

 0: #include <set>
 1:
 2: // used as a template parameter in set / multiset instantiation
 3: template <typename T>
 4: struct SortDescending
 5: {
 6: bool operator()(const T& lhs, const T& rhs) const
 7: {
 8: return (lhs > rhs);
 9: }
10: };
11:
12: int main ()
13: {
14: using namespace std;
15:
16: // a simple set or multiset of integers (using default sort predicate)
17: set<int> setInts1;
18: multiset<int> msetInts1;
19:
20: // set and multiset instantiated given a user-defined sort predicate
21: set<int, SortDescending<int>> setInts2;
22: multiset<int, SortDescending<int>> msetInts2;
23:
24: // creating one set from another, or part of another container
25: set<int> setInts3(setInts1);
26: multiset<int> msetInts3(setInts1.cbegin(), setInts1.cend());
27:
28: return 0;
29: }

Analysis ▼

This program produces no output but demonstrates the various instantiation techniques

for set and multiset, specialized to contain type int. In Lines 17 and 18, you see

the simplest form where the template parameters other than type have been ignored,

resulting in the default sort predicate being taken, as implemented in struct (or

class) std::less<T>. If you want to override the default sort, you need to specify a

predicate like the ones defined in Lines 3–10 and used in main() in Lines 21 and 22.

This predicate ensures that the sort is descending (default ascending). Finally, Lines 25

and 26 show instantiation techniques where one set is a copy of another and a multiset

instantiates from a range of values taken from a set (but could be a vector or a list

or any STL container class that returns iterators that describe bounds via cbegin() and

cend()).

ptg18655082

499

19

Inserting Elements in a set or multiset
Most functions in a set and multiset work in a similar fashion. They accept similar

parameters and return similar value types. For instance, inserting elements in both kinds

of containers can be done using the member insert(), which accepts the value to be

inserted or a range taken from another container:

setInts.insert (-1);
msetInts.insert (setInts.begin (), setInts.end ());

Listing 19.2 demonstrates inserting elements in these containers.

LISTING 19.2 Inserting Elements in an STL set and multiset

 0: #include <set>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents(const T& container)
 6: {
 7: for (auto element = container.cbegin();
 8: element != container.cend();
 9: ++element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: set <int> setInts{ 202, 151, -999, -1 };
18: setInts.insert(-1); // duplicate
19: cout << "Contents of the set: " << endl;
20: DisplayContents(setInts);
21:
22: multiset <int> msetInts;
23: msetInts.insert(setInts.begin(), setInts.end());
24: msetInts.insert(-1); // duplicate
25:
26: cout << "Contents of the multiset: " << endl;
27: DisplayContents(msetInts);
28:
29: cout << "Number of instances of '-1' in the multiset are: '";
30: cout << msetInts.count(-1) << "'" << endl;
31:
32: return 0;
33: }

Basic STL set and multiset Operations

ptg18655082

500 LESSON 19: STL Set Classes

Output ▼
Contents of the set:
-999 -1 151 202
Contents of the multiset:
-999 -1 -1 151 202
Number of instances of '-1' in the multiset are: '2'

Analysis ▼

Lines 4–13 contain the generic template function DisplayContents(), which you

have also seen in Lesson 17, “STL Dynamic Array Classes,” and Lesson 18, “STL

list and forward_list,” and writes the contents of an STL container to the console

or screen. Lines 17 and 22, as you already know, instantiate a set and a multiset,

respectively, with the former using C++11 List Initialization syntax. In Lines 18 and 24

we attempt inserting a duplicate value in the set and multiset. Line 23 demonstrates

how insert()can be used to insert the contents of a set into a multiset, insert-

ing in this case the contents of setInts into msetInts. The output demonstrates that

the multiset is able to hold multiple values, while set isn’t. Line 30 demonstrates the

multiset::count() member function, which returns the number of elements in the

multiset that hold that particular value.

Use multiset::count() to find the number of elements in
the multiset that have the same value as that supplied as an
 argument to this function.

TIP

Finding Elements in an STL set or multiset
Associative containers like set and multiset or map and multimap feature find()—a

member function that enables you to find a value given a key:

auto elementFound = setInts.find (-1);

// Check if found...
if (elementFound != setInts.end ())
 cout << "Element " << *elementFound << " found!" << endl;
else
 cout << "Element not found in set!" << endl;

The use of find() is demonstrated in Listing 19.3. In case of a multiset that allows

multiple elements with the same value, this function finds the first value that matches the

supplied key.

ptg18655082

501

19

LISTING 19.3 Using the find Member Function

 0: #include <set>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: int main ()
 5: {
 6: set<int> setInts{ 43, 78, -1, 124 };
 7:
 8: // Display contents of the set to the screen
 9: for (auto element = setInts.cbegin();
10: element != setInts.cend ();
11: ++ element)
12: cout << *element << endl;
13:
14: // Try finding an element
15: auto elementFound = setInts.find (-1);
16:
17: // Check if found...
18: if (elementFound != setInts.end ())
19: cout << "Element " << *elementFound << " found!" << endl;
20: else
21: cout << "Element not found in set!" << endl;
22:
23: // finding another
24: auto anotherFind = setInts.find (12345);
25:
26: // Check if found...
27: if (anotherFind != setInts.end ())
28: cout << "Element " << *anotherFind << " found!" << endl;
29: else
30: cout << "Element 12345 not found in set!" << endl;
31:
32: return 0;
33: }

Output ▼
-1
43
78
124
Element -1 found!
Element 12345 not found in set!

Analysis ▼

Lines 15–21 display the usage of the find() member function. find() returns an itera-

tor that needs to be compared against end(), as shown in Line 18, to verify whether

Basic STL set and multiset Operations

ptg18655082

502 LESSON 19: STL Set Classes

an element was found. If the iterator is valid, you can access the value pointed by it using

*elementFound.

The example in Listing 19.3 works correctly for a multiset, too;
that is, if Line 6 is a multiset instead of a set, it does not
change the way the application works. Given that a multiset
may hold multiple elements of the same value at contiguous
locations, you may access them using the iterator returned by
find() and advancing it (count() – 1) number of times to
access all elements of a value. Member function count() was
demonstrated in Listing 19.2.

NOTE

Erasing Elements in an STL set or multiset
Associative containers such as set and multiset or map and multimap feature

erase()—a member function that allows you to delete a value given a key:

setObject.erase (key);

Another form of the erase() function allows the deletion of a particular element given

an iterator that points to it:

setObject.erase (element);

You can erase a range of elements from a set or a multiset using iterators that supply

the bounds:

setObject.erase (iLowerBound, iUpperBound);

The sample in Listing 19.4 demonstrates the use of erase() in removing elements from

the set or multiset.

LISTING 19.4 Using the erase Member Function on a multiset

 0: #include <set>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents (const T& Input)
 6: {
 7: for (auto element = Input.cbegin();

ptg18655082

503

19

 8: element != Input.cend ();
 9: ++ element)
10: cout << *element << ' ';
11:
12: cout << endl;
13: }
14:
15: typedef multiset <int> MSETINT;
16:
17: int main ()
18: {
19: MSETINT msetInts{ 43, 78, 78, -1, 124 };
20:
21: cout << "multiset contains " << msetInts.size () << " elements: ";
22: DisplayContents(msetInts);
23:
24: cout << "Enter a number to erase from the set: ";
25: int input = 0;
26: cin >> input;
27:
28: cout << "Erasing " << msetInts.count (input);
29: cout << " instances of value " << input << endl;
30:
31: msetInts.erase (input);
32:
33: cout << "multiset now contains " << msetInts.size () << " elements: ";
34: DisplayContents(msetInts);
35:
36: return 0;
37: }

Output ▼
multiset contains 5 elements: -1 43 78 78 124
Enter a number to erase from the set: 78
Erasing 2 instances of value 78
multiset now contains 3 elements: -1 43 124

Analysis ▼

Note the usage of typedef in Line 15. Line 28 demonstrates the usage of count() to

tell the number of elements with a specific value. The actual erase happens in Line 31,

which deletes all elements that match the particular number input by the user.

Basic STL set and multiset Operations

ptg18655082

504 LESSON 19: STL Set Classes

Member function erase() is overloaded. Invoked with a value as
seen in Listing 19.4, it will delete all elements that evaluate to
it. Invoked using an iterator, say one returned by a find() opera-
tion, it will delete that one element, as seen here:

MSETINT::iterator elementFound = msetInts.find
(numberToErase);

if (elementFound != msetInts.end ())

 msetInts.erase (elementFound);

else

 cout << "Element not found!" << endl;

You can also use erase() to delete a range of values from the
multiset:

MSETINT::iterator elementFound = msetInts.find
(valueToErase);

if (elementFound != msetInts.end ())

 msetInts.erase (msetInts.begin (), elementFound);

The preceding snippet removes all elements from the start to
the element of value valueToErase, not including the latter.
Both set and multiset can be emptied of their contents using
member function clear().

TIP

Now that you have an overview of the basic set and multiset functions, it’s time to

review a sample that features a practical application made using this container class. The

sample in Listing 19.5 is the simplest implementation of a menu-based telephone direc-

tory that enables the user to insert names and telephone numbers, find them, erase them,

and display them all.

LISTING 19.5 A Telephone Directory Featuring STL set, find, and erase

 0: #include <set>
 1: #include <iostream>
 2: #include <string>
 3: using namespace std;
 4:
 5: template <typename T>
 6: void DisplayContents (const T& container)
 7: {
 8: for (auto iElement = container.cbegin();
 9: iElement != container.cend();
10: ++ iElement)
11: cout << *iElement << endl;

ptg18655082

505

19

12:
13: cout << endl;
14: }
15:
16: struct ContactItem
17: {
18: string name;
19: string phoneNum;
20: string displayAs;
21:
22: ContactItem (const string& nameInit, const string & phone)
23: {
24: name = nameInit;
25: phoneNum = phone;
26: displayAs = (name + ": " + phoneNum);
27: }
28:
29: // used by set::find() given contact list item
30: bool operator == (const ContactItem& itemToCompare) const
31: {
32: return (itemToCompare.name == this->name);
 33: }
 34:
 35: // used to sort
 36: bool operator < (const ContactItem& itemToCompare) const
 37: {
 38: return (this->name < itemToCompare.name);
 39: }
 40:
 41: // Used in DisplayContents via cout
 42: operator const char*() const
 43: {
 44: return displayAs.c_str();
 45: }
 46: };
 47:
 48: int main ()
 49: {
 50: set<ContactItem> setContacts;
 51: setContacts.insert(ContactItem("Jack Welsch", "+1 7889 879 879"));
 52: setContacts.insert(ContactItem("Bill Gates", "+1 97 7897 8799 8"));
 53: setContacts.insert(ContactItem("Angi Merkel", "+49 23456 5466"));
 54: setContacts.insert(ContactItem("Vlad Putin", "+7 6645 4564 797"));
 55: setContacts.insert(ContactItem("John Travolta", "91 234 4564 789"));
 56: setContacts.insert(ContactItem("Ben Affleck", "+1 745 641 314"));
 57: DisplayContents(setContacts);
 58:
 59: cout << "Enter a name you wish to delete: ";
 60: string inputName;
 61: getline(cin, inputName);
 62:
 63: auto contactFound = setContacts.find(ContactItem(inputName, ""));
 64: if(contactFound != setContacts.end())

Basic STL set and multiset Operations

ptg18655082

506 LESSON 19: STL Set Classes

65: {
66: setContacts.erase(contactFound);
67: cout << "Displaying contents after erasing " << inputName << endl;
68: DisplayContents(setContacts);
69: }
70: else
71: cout << "Contact not found" << endl;
72:
73: return 0;
74: }

Output ▼
Angi Merkel: +49 23456 5466
Ben Affleck: +1 745 641 314
Bill Gates: +1 97 7897 8799 8
Jack Welsch: +1 7889 879 879
John Travolta: 91 234 4564 789
Vlad Putin: +7 6645 4564 797

Enter a name you wish to delete: John Travolta
Displaying contents after erasing John Travolta
Angi Merkel: +49 23456 5466
Ben Affleck: +1 745 641 314
Bill Gates: +1 97 7897 8799 8
Jack Welsch: +1 7889 879 879
Vlad Putin: +7 6645 4564 797

Analysis ▼

This is similar to Listing 18.7 that sorted a std::list in alphabetical order, the dif-

ference being that in the case of std::set, sort happens on insertion. As the output

indicates, you didn’t need to invoke any function to ensure that elements in the set are

sorted because they’re sorted on insertion, using operator< that you implemented in

Lines 36–39. You give the user the choice to delete an entry, and Line 63 demonstrates

the call to find() to locate that entry that is deleted in Line 66 using erase().

This implementation of the telephone directory is based on the
STL set and therefore does not allow for multiple entries con-
taining the same value. If you need your implementation of the
directory to allow two people with the same name to be stored,
you would choose the STL multiset. The preceding code would
still work correctly if setContacts were to be a multiset. To
make further use of the multiset’s capability to store multiple
entries of the same value, you use the count() member function
to know the number of items that hold a particular value.

TIP

ptg18655082

507

19

Pros and Cons of Using STL set and multiset

Pros and Cons of Using STL set
and multiset
The STL set and multiset provide significant advantages in applications that need fre-

quent lookups because their contents are sorted and therefore quicker to locate. However,

to provide this advantage, the container needs to sort elements at insertion time. Thus,

there is an overhead in inserting elements because elements are sorted—an overhead that

might be a worthwhile compromise if you need to use features and functions such as

find() often.

find() makes use of the internal binary tree structure. This sorted binary tree structure

results in another implicit disadvantage over sequential containers such as the vector. In a

vector, the element pointed to by an iterator (say, one returned by a std::find() opera-

tion) can be overwritten by a new value. In case of a set, however, elements are sorted by

the set class according to their respective values, and therefore overwriting an element

using an iterator should never be done, even if that were programmatically possible.

STL Hash Set Implementation std::unordered_set
and std::unordered_multiset
The STL std::set and STL std::multiset sort elements (that are simultaneously

the keys) on the basis of std::less<T> or a supplied predicate. Searching in a sorted

container is faster than searching in an unsorted container such as a vector, and

std::sort() offers logarithmic complexity. This means that the time spent finding an

element in a set is not directly proportional to the number of elements in the set, rather

to the LOG thereof. So, on average it takes twice as long to search in a set of 10,000 ele-

ments as it would take in a set of 100 (as 100^2 = 10000, or log(10000) = 2 × log(100)).

Yet, this dramatic improvement of performance over an unsorted container (where search

is directly proportional to the number of elements) is not enough at times. Programmers

and mathematicians alike seek constant-time insertions and sort possibilities, and one of

them uses a hash-based implementation, where a hash function is used to determine the

sorting index. Elements inserted into a hash set are first evaluated by a hash function that

generates a unique index, which is the index of the bucket they’re placed in.

The hash set variant provided by STL since C++11 is the container class

std::unordered_set.

To use STL containers std::unordered_set or
std::unordered_ multiset, include

#include<unordered_set>

TIP

ptg18655082

508 LESSON 19: STL Set Classes

The usage of this class doesn’t change too much in comparison to a std::set:

// instantiation:
unordered_set<int> usetInt;

// insertion of an element
usetInt.insert(1000);

// find():
auto elementFound = usetInt.find(1000);

if (elementFound != usetInt.end())
 cout << *elementFound << endl;

Yet, one very important feature of an unordered_set is the availability of a hash func-

tion that is responsible for deciding the sorting order:

unordered_set<int>::hasher HFn = usetInt.hash_function();

The decision to use a std::unordered_set or a std::set is best taken after the per-

formance of the respective containers is measured in simulations involving operations

and data volumes that closely resemble real-world usage. Listing 19.6 demonstrates the

usage of some of the common methods supplied by std::hash_set.

LISTING 19.6 std::unordered_set and the Use of insert(), find(), size(),
max_bucket_count(), load_factor(), and max_load_factor()

 0: #include<unordered_set>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: template <typename T>
 5: void DisplayContents(const T& cont)
 6: {
 7: cout << "Unordered set contains: ";
 8: for (auto element = cont.cbegin();
 9: element != cont.cend();
10: ++ element)
11: cout<< *element << ' ';
12:
13: cout << endl;
14:
15: cout << "Number of elements, size() = " << cont.size() << endl;
16: cout << "Bucket count = " << cont.bucket_count() << endl;
17: cout << "Max load factor = " << cont.max_load_factor() << endl;
18: cout << "Load factor: " << cont.load_factor() << endl << endl;
19: }
20:
21: int main()

ptg18655082

509

19

22: {
23: unordered_set<int> usetInt{ 1, -3, 2017, 300, -1, 989, -300, 9 };
24: DisplayContents(usetInt);
25: usetInt.insert(999);
26: DisplayContents(usetInt);
27:
28: cout << "Enter int you want to check for existence in set: ";
29: int input = 0;
30: cin >> input;
31: auto elementFound = usetInt.find(input);
32:
33: if (elementFound != usetInt.end())
34: cout << *elementFound << " found in set" << endl;
35: else
36: cout << input << " not available in set" << endl;
37:
38: return 0;
39: }

Output ▼
Unordered set contains: 9 1 -3 989 -1 2017 300 -300
Number of elements, size() = 8
Bucket count = 8
Max load factor = 1
Load factor: 1

Unordered set contains: 9 1 -3 989 -1 2017 300 -300 999
Number of elements, size() = 9
Bucket count = 64
Max load factor = 1
Load factor: 0.140625

Enter int you want to check for existence in set: -300
-300 found in set

Analysis ▼

The sample creates an unordered_set of integers; inserts values into it using List

Initialization at Line 23; and then displays contents, including statistics supplied by meth-

ods max_bucket_count(), load_factor(), and max_load_factor() as shown in

Lines 15–18. The output tells that the bucket count is initially at eight, with eight ele-

ments in the container, resulting in a load factor of 1, which is the same as the maximum

load factor. When a ninth element is inserted into the unordered_set, it reorganizes

itself, creates 64 buckets, and re-creates the hash table and the load factor reduces.

The rest of the code in main() demonstrates how the syntax for finding elements in an

unordered_set is similar to that in a set. find() returns an iterator that needs to be

checked for success of find() as shown in Line 33 before it can be used.

Pros and Cons of Using STL set and multiset

ptg18655082

510 LESSON 19: STL Set Classes

As hashes are typically used in a hash table to look up a
value given a key, see the section on std::unordered_map in
Lesson 20, “STL Map Classes.”

std::unordered_map is an implementation of a hash table that
was new in C++11.

NOTE

DO DON’T

DO remember that STL set and
multiset containers are optimized
for situations that involve frequent
search.

DO remember that a std::multiset
allows multiple elements (keys) of
the same value whereas std::set
permits only unique values.

DO use multiset::count(value)
to find the number of elements of a
particular value.

DO remember that set::size() or
multiset::size() gives you the
number of elements in the container.

DON’T forget to program operator<
and operator== for classes that
can be collected in containers such
as set or multiset. The former
becomes the sort predicate, whereas
the latter is used for functions such
as set::find().

DON’T use std::set or
std::multiset in scenarios with
frequent insertions and infrequent
searches. std::vector or
std::list is usually better suited to
such cases.

Summary
In this lesson, you learned about using the STL set and multiset, their significant

member functions, and their characteristics. You also saw their application in the pro-

gramming of a simple menu-based telephone directory that also features search and erase

functions.

Q&A
 Q How would I declare a set of integers to be sorted and stored in order of

descending magnitude?

 A set <int> is a set of integers. This takes the default sort predicate std::less

<T> to sort items in order of ascending magnitude and can also be expressed as set

<int, less <int>>. To sort in order of descending magnitude, define the set

as set <int, greater <int>>.

ptg18655082

Workshop 511

19

 Q What would happen if, in a set of strings, I inserted the string "Jack" twice?

 A A set is not meant to be used to contain non-unique values. The set of strings

would contain only one instance of "Jack".

 Q In the preceding example, if I wanted to have two instances of "Jack", what
would I change?

 A By design, a set holds only unique values. You would need to change your

 selection of container to a multiset.

 Q What multiset member function returns the count of items of a particular
value in the container?

 A count(value) is the function of interest.

 Q I have found an element in the set using the find() function and have an
 iterator pointing to it. Would I use this iterator to change the value being
pointed to?

 A No. Some STL implementations might allow the user to change the value of an

 element inside a set via an iterator returned by, for example, find. However, this

is not the correct thing to do. An iterator to an element in the set should be used as

a const iterator—even when the STL implementation has not enforced it as such.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. You declare a set of integers as set <int>. What function supplies the sort

 criteria?

2. Where would you find duplicate elements in a multiset?

3. What set or multiset function supplies the number of elements in the container?

ptg18655082

512 LESSON 19: STL Set Classes

Exercises
1. Extend the telephone directory example in this lesson to find a person’s name given

a phone number. (Hint: Adjust operators < and == and ensure that items are sorted

and compared according to phone numbers.)

2. Define a multiset to store entered words and their meanings; that is, make a

multiset work as a dictionary. (Hint: The multiset should be one of a structure

that contains two strings: the word and its meaning.)

3. Demonstrate via a simple program that a set cannot accept duplicate entries,

whereas a multiset can.

ptg18655082

LESSON 20
STL Map Classes

The Standard Template Library (STL) supplies the programmer with
container classes that help with applications that require frequent and
quick searches.

This lesson covers

 ■ How STL map and multimap, unordered_map, and unordered_
multimap containers can be of use to you

 ■ Insertion, removal, and search of elements

 ■ Supplying a custom sort predicate

 ■ Basics of how hash tables work

ptg18655082

514 LESSON 20: STL Map Classes

An Introduction to STL Map Classes
The map and multimap are key-value pair containers that allow for a lookup on the basis

of a key as shown in Figure 20.1.

Key Value

Pair

Key Value

Pair

Key Value

Pair

Map (Container of Key-Value Pairs, Sorted by Key)

FIGURE 20.1

Visual illustration
of a container for
pairs, each holding
a key and a value.

The difference between the map and the multimap is that only the latter allows for

 duplicates, whereas the former can store only unique keys.

To facilitate quick searching, STL implementations of the map and multimap internally

look like binary trees. This means that elements inserted in a map or a multimap are

sorted on insertion. It also means that, unlike in a vector where elements at a position

can be replaced by another, elements in a map at a given position cannot be replaced by

a new element of a different value. This is because the map would ideally like to have it

placed in a possible different location in accordance with its value relative to those in the

internal tree.

ptg18655082

515

20

Basic std::map and std::multimap Operations

To use class std::map or std::multimap, include header:

#include<map>

TIP

Basic std::map and std::multimap
Operations
STL map and multimap are template classes that need to be instantiated before you can

use any of their member functions.

Instantiating a std::map or std::multimap
Instantiating a map or multimap of an integer as key and a string as value requires a

specialization of the template class std::map or std::multimap. The template instan-

tiation of the map class needs the programmer to specify the key type, the value type,

and optionally a predicate that helps the map class to sort the elements on insertion.

Therefore, typical map instantiation syntax looks like this:

#include <map>
using namespace std;
...
map <keyType, valueType, Predicate=std::less <keyType>> mapObj;
multimap <keyType, valueType, Predicate=std::less <keyType>> mmapObj;

Thus, the third template parameter is optional. When you supply only the key type and

the value type, ignoring the third template parameter, std::map and std::multimap

default to class std::less<> to define the sort criteria. Thus, a map or multimap that

maps an integer to a string looks like this:

std::map<int, string> mapIntToStr;
std::multimap<int, string> mmapIntToStr;

Listing 20.1 illustrates instantiation techniques in greater detail.

LISTING 20.1 Instantiating map and multimap Objects That Map an int Key
to a string Value

 0: #include<map>
 1: #include<string>
 2:
 3: template<typename keyType>
 4: struct ReverseSort

ptg18655082

516 LESSON 20: STL Map Classes

 5: {
 6: bool operator()(const keyType& key1, const keyType& key2)
 7: {
 8: return (key1 > key2);
 9: }
10: };
11:
12: int main ()
13: {
14: using namespace std;
15:
16: // map and multimap key of type int to value of type string
17: map<int, string> mapIntToStr1;
18: multimap<int, string> mmapIntToStr1;
19:
20: // map and multimap constructed as a copy of another
21: map<int, string> mapIntToStr2(mapIntToStr1);
22: multimap<int, string> mmapIntToStr2(mmapIntToStr1);
23:
24: // map and multimap constructed given a part of another map or multimap
25: map<int, string> mapIntToStr3(mapIntToStr1.cbegin(),
26: mapIntToStr1.cend());
27:
28: multimap<int, string> mmapIntToStr3(mmapIntToStr1.cbegin(),
29: mmapIntToStr1.cend());
30:
31: // map and multimap with a predicate that inverses sort order
32: map<int, string, ReverseSort<int>> mapIntToStr4
33: (mapIntToStr1.cbegin(), mapIntToStr1.cend());
34:
35: multimap<int, string, ReverseSort<int>> mmapIntToStr4
36: (mapIntToStr1.cbegin(), mapIntToStr1.cend());
37:
38: return 0;
39: }

Analysis ▼

For a start, focus on main() in Lines 12–39. The simplest map and multimap of an

 integer key to a string value can be seen in Lines 17 and 18. Lines 25–28 demonstrate the

creation of a map or a multimap initialized to a range of values from another as input.

Lines 31–36 demonstrate how you instantiate a map or multimap with your own custom

sort criteria. Note that the default sort (in the previous instantiations) uses std::less<T>

that would sort elements in the increasing order. If you want to change this behavior,

you supply a predicate that is a class or a struct that implements operator(). Such a

predicate struct ReverseSort is in Lines 3–10 and has been used in the instantiation

of a map at Line 32 and a multimap at Line 35.

ptg18655082

517

20

Basic std::map and std::multimap Operations

Inserting Elements in an STL map or multimap
Most functions in a map and multimap work in a similar fashion. They accept similar

parameters and return similar value types. You can insert elements in both kinds of

 containers by using the insert member function:

std::map<int, std::string> mapIntToStr1;
// insert pair of key and value using make_pair function
mapIntToStr.insert (make_pair (-1, "Minus One"));

As these two containers maintain elements in key-value pairs, you can also directly

 supply a std::pair initialized to the key and value to be inserted:

mapIntToStr.insert (pair <int, string>(1000, "One Thousand"));

Alternatively, you can use an array-like syntax to insert, which does appear quite user

friendly and is supported via subscript operator[]:

mapIntToStr [1000000] = "One Million";

You can also instantiate a multimap as a copy of a map:

std::multimap<int, std::string> mmapIntToStr(mapIntToStr.cbegin(),
mapIntToStr.cend());

Listing 20.2 demonstrates the various instantiation methods.

LISTING 20.2 Inserting Elements in a map and multimap Using Overloads of insert()
and Array Semantics via operator[]

 0: #include <map>
 1: #include <iostream>
 2: #include<string>
 3:
 4: using namespace std;
 5:
 6: // Type-define the map and multimap definition for easy readability
 7: typedef map <int, string> MAP_INT_STRING;
 8: typedef multimap <int, string> MMAP_INT_STRING;
 9:
 10: template <typename T>
 11: void DisplayContents (const T& cont)
 12: {
 13: for (auto element = cont.cbegin();
 14: element != cont.cend();
 15: ++ element)
 16: cout << element->first << " -> " << element->second << endl;
 17:
 18: cout << endl;
 19: }

ptg18655082

518 LESSON 20: STL Map Classes

20:
21: int main ()
22: {
23: MAP_INT_STRING mapIntToStr;
24:
25: // Insert key-value pairs into the map using value_type
26: mapIntToStr.insert (MAP_INT_STRING::value_type (3, "Three"));
27:
28: // Insert a pair using function make_pair
29: mapIntToStr.insert (make_pair (-1, "Minus One"));
30:
31: // Insert a pair object directly
32: mapIntToStr.insert (pair <int, string>(1000, "One Thousand"));
33:
34: // Use an array-like syntax for inserting key-value pairs
35: mapIntToStr [1000000] = "One Million";
36:
37: cout << "The map contains " << mapIntToStr.size ();
38: cout << " key-value pairs. They are: " << endl;
39: DisplayContents(mapIntToStr);
40:
41: // instantiate a multimap that is a copy of a map
42: MMAP_INT_STRING mmapIntToStr(mapIntToStr.cbegin(),
43: mapIntToStr.cend());
44:
45: // The insert function works the same way for multimap too
46: // A multimap can store duplicates - insert a duplicate
47: mmapIntToStr.insert (make_pair (1000, "Thousand"));
48:
49: cout << endl << "The multimap contains " << mmapIntToStr.size();
50: cout << " key-value pairs. They are: " << endl;
51: cout << "The elements in the multimap are: " << endl;
52: DisplayContents(mmapIntToStr);
53:
54: // The multimap can return number of pairs with same key
55: cout << "The number of pairs in the multimap with 1000 as their key: "
56: << mmapIntToStr.count (1000) << endl;
57:
58: return 0;
59: }

Output ▼
The map contains 4 key-value pairs. They are:
-1 -> Minus One
3 -> Three
1000 -> One Thousand
1000000 -> One Million

ptg18655082

519

20

Basic std::map and std::multimap Operations

The multimap contains 5 key-value pairs. They are:
The elements in the multimap are:
-1 -> Minus One
3 -> Three
1000 -> One Thousand
1000 -> Thousand
1000000 -> One Million

The number of pairs in the multimap with 1000 as their key: 2

Analysis ▼

Note how we typedef the template instantiation of the map and multimap in Lines 7

and 8. You can do this to make your code look a bit simpler (and reduce clutter caused

by template syntax). Lines 10–19 are a form of DisplayContents() adapted for map

and multimap in which the iterator is used to access first, which indicates the key,

and second, which indicates the value. Lines 26–32 demonstrate the different ways of

inserting a key-value pair into a map using overloaded variants of method insert().

Line 35 demonstrates how you can use array-semantics via operator[] to insert ele-

ments in a map. Note that these insert mechanisms work as well for a multimap, which

is demonstrated in Line 47, where you insert a duplicate into a multimap. Interestingly,

the multimap is initialized as a copy of the map, as shown in Lines 42 and 43. The out-

put demonstrates how the two containers have automatically sorted the input key-value

pairs in ascending order of keys. The output also demonstrates that the multimap can

store two pairs with the same key (in this case 1000). Line 56 demonstrates the usage of

multimap::count() to tell the number of elements with a supplied key in the container.

Finding Elements in an STL map
Associative containers, such as map and multimap, feature a member function called

find() that enables you to find a value given a key. The result of a find() operation is

always an iterator:

multimap <int, string>::const_iterator pairFound = mapIntToStr.find(key);

You would first check this iterator for the success of find() and then use it to access the

found value:

if (pairFound != mapIntToStr.end())
{
 cout << "Key " << pairFound->first << " points to Value: ";
 cout << pairFound->second << endl;
}
else
 cout << "Sorry, pair with key " << key << " not in map" << endl;

ptg18655082

520 LESSON 20: STL Map Classes

If you are using C++11-compliant compilers, the iterator declara-
tion can be simplified using keyword auto:

auto pairFound = mapIntToStr.find(key);

The compiler determines the type of the iterator automatically by
inferring it from the declared return value of map::find().

TIP

The example in Listing 20.3 demonstrates the usage of multimap::find().

LISTING 20.3 Using find() Member Function to Locate a Key-Value Pair in a map

 0: #include <map>
 1: #include <iostream>
 2: #include <string>
 3: using namespace std;
 4:
 5: template <typename T>
 6: void DisplayContents (const T& cont)
 7: {
 8: for (auto element = cont.cbegin();
 9: element != cont.cend();
10: ++ element)
11: cout << element->first << " -> " << element->second << endl;
 12:
 13: cout << endl;
 14: }
 15:
 16: int main()
 17: {
 18: map<int, string> mapIntToStr;
 19:
 20: mapIntToStr.insert(make_pair(3, "Three"));
 21: mapIntToStr.insert(make_pair(45, "Forty Five"));
 22: mapIntToStr.insert(make_pair(-1, "Minus One"));
 23: mapIntToStr.insert(make_pair(1000, "Thousand"));
 24:
 25: cout << "The multimap contains " << mapIntToStr.size();
 26: cout << " key-value pairs. They are: " << endl;
 27:
 28: // Print the contents of the map to the screen
 29: DisplayContents(mapIntToStr);
 30:
 31: cout << "Enter the key you wish to find: ";
 32: int key = 0;
 33: cin >> key;
 34:

ptg18655082

521

20

Basic std::map and std::multimap Operations

35: auto pairFound = mapIntToStr.find(key);
36: if (pairFound != mapIntToStr.end())
37: {
38: cout << "Key " << pairFound->first << " points to Value: ";
 39: cout << pairFound->second << endl;
40: }
41: else
42: cout << "Sorry, pair with key " << key << " not in map" << endl;
43:
44: return 0;
45: }

Output ▼
The multimap contains 4 key-value pairs. They are:
-1 -> Minus One
3 -> Three
45 -> Forty Five
1000 -> Thousand

Enter the key you wish to find: 45
Key 45 points to Value: Forty Five

Next, run (where find() locates no matching key):

The multimap contains 4 key-value pairs. They are:
-1 -> Minus One
3 -> Three
45 -> Forty Five
1000 -> Thousand

Enter the key you wish to find: 2011
Sorry, pair with key 2011 not in map

Analysis ▼

Lines 20–23 in main() populate a map with sample pairs, each mapping an integer key

to a string value. When the user supplies a key to be used in finding in the map, Line 35

uses the find() function to look up the supplied key in the map. map::find() always

returns an iterator, and it is always wise to check for the success of the find() operation

by comparing this iterator to end(), as shown in Line 36. If the iterator is indeed valid,

use member second to access the value, as shown in Line 39. In the second run, you

input a key 2011 that is not represented in the map, and an error message is displayed to

the user.

ptg18655082

522 LESSON 20: STL Map Classes

Never use the result of a find() operation directly without
checking the iterator returned for success.CAUTION

Finding Elements in an STL multimap
If Listing 20.3 were a multimap, opening the possibility that the container contains

multiple pairs with the same key, you would need to find the values that correspond to

the repeating key. Hence, in the case of a multiset you would use multiset::count()

to find the number of values corresponding to a key and increment the iterator to access

those consequently placed values.

auto pairFound = mmapIntToStr.find(key);

// Check if find() succeeded
if(pairFound != mmapIntToStr.end())
{
 // Find the number of pairs that have the same supplied key
 size_t numPairsInMap = mmapIntToStr.count(1000);

 for(size_t counter = 0;
counter < numPairsInMap; // stay within bounds
++ counter)

 {
cout << "Key: " << pairFound->first; // key
cout << ", Value [" << counter << "] = ";
cout << pairFound->second << endl; // value

++ pairFound;
 }
}
else
 cout << "Element not found in the multimap";

Erasing Elements from an STL map or multimap
The map and multimap feature a member function, erase(), which deletes an element

from the container. The erase() is invoked with the key as the parameter to delete all

pairs with a certain key:

mapObject.erase (key);

Another form of the erase() function allows the deletion of a particular element given

an iterator that points to it:

mapObject.erase(element);

ptg18655082

523

20

Basic std::map and std::multimap Operations

You can erase a range of elements from a map or a multimap using iterators that supply

the bounds:

mapObject.erase (lowerBound, upperBound);

Listing 20.4 illustrates the usage of the erase() functions.

LISTING 20.4 Erasing Elements from a multimap

 0: #include<map>
 1: #include<iostream>
 2: #include<string>
 3: using namespace std;
 4:
 5: template<typename T>
 6: void DisplayContents(const T& cont)
 7: {
 8: for (auto element = cont.cbegin();
 9: element != cont.cend();
10: ++ element)
11: cout<< element->first<< " -> "<< element->second<< endl;
 12:
 13: cout<< endl;
 14: }
 15:
 16: int main()
 17: {
 18: multimap<int, string> mmapIntToStr;
 19:
 20: // Insert key-value pairs into the multimap
 21: mmapIntToStr.insert(make_pair(3, "Three"));
 22: mmapIntToStr.insert(make_pair(45, "Forty Five"));
 23: mmapIntToStr.insert(make_pair(-1, "Minus One"));
 24: mmapIntToStr.insert(make_pair(1000, "Thousand"));
 25:
 26: // Insert duplicates into the multimap
 27: mmapIntToStr.insert(make_pair(-1, "Minus One"));
 28: mmapIntToStr.insert(make_pair(1000, "Thousand"));
 29:
 30: cout<< "The multimap contains "<< mmapIntToStr.size();
 31: cout<< " key-value pairs. "<< "They are: "<< endl;
 32: DisplayContents(mmapIntToStr);
 33:
 34: // Erasing an element with key as -1 from the multimap
 35: auto numPairsErased = mmapIntToStr.erase(-1);
 36: cout<< "Erased " << numPairsErased << " pairs with -1 as key."<< endl;
 37:
 38: // Erase an element given an iterator from the multimap
 39: auto pair = mmapIntToStr.find(45);

ptg18655082

524 LESSON 20: STL Map Classes

40: if(pair != mmapIntToStr.end())
41: {
42: mmapIntToStr.erase(pair);
43: cout<< "Erased a pair with 45 as key using an iterator"<< endl;
44: }
45:
46: // Erase a range from the multimap...
47: cout << "Erasing the range of pairs with 1000 as key." << endl;
48: mmapIntToStr.erase(mmapIntToStr.lower_bound(1000),
48: mmapIntToStr.upper_bound(1000));
50:
51: cout<< "The multimap now contains "<< mmapIntToStr.size();
52: cout<< " key-value pair(s)."<< "They are: "<< endl;
53: DisplayContents(mmapIntToStr);
54:
55: return 0;
56: }

Output ▼
The multimap contains 6 key-value pairs. They are:
-1 -> Minus One
-1 -> Minus One
3 -> Three
45 -> Forty Five
1000 -> Thousand
1000 -> Thousand

Erased 2 pairs with -1 as key.
Erased a pair with 45 as key using an iterator
Erasing the range of pairs with 1000 as key.
The multimap now contains 1 key-value pair(s).They are:
3 -> Three

Analysis ▼

Lines 21–28 insert sample values into the multimap, some of them being duplicates

(because a multimap, unlike a map, does support the insertion of pairs with duplicate

keys). After pairs have been inserted into the multimap, the code erases items by

using the version of the erase function that accepts a key and erases all items with

that key (–1) as shown in Line 35. The return value of map::erase(key) is the number

of elements erased, which is displayed on the screen. In Line 39, you use the iterator

returned by find(45) to erase a pair from the map with key 45. Lines 48 and 49 dem-

onstrate how pairs with a key can be deleted given a range specified by lower_bound()

and upper_bound().

ptg18655082

Supplying a Custom Sort Predicate 525

20

Supplying a Custom Sort Predicate
The map and multimap template definition includes a third parameter that accepts the

sort predicate for the map to function correctly. This third parameter, when not supplied

(as in the preceding examples), is substituted with the default sort criterion provided by

std::less <>, which essentially compares two objects using operator <.

To supply a different sort criterion than what the key-type supports, you would typically

program a binary predicate in the form of a class or a struct using operator():

template<typename keyType>
struct Predicate
{
 bool operator()(const keyType& key1, const keyType& key2)
 {

// your sort priority logic here
 }
};

A map that holds a std::string type as the key has a default sort criterion based on

the operator < defined by the std::string class, triggered via default sort predicate

std::less<T> and therefore is case sensitive. For many applications, such as a telephone

directory, it is important to feature an insertion and search operation that is not case

 sensitive. One way of solving this requirement is to supply the map with a sort predicate

that returns either true or false on the basis of a comparison that is not case sensitive:

map <keyType, valueType, Predicate> mapObject;

Listing 20.5 explains this in detail.

LISTING 20.5 Supplying a Custom Sort Predicate—A Telephone Directory

 0: #include<map>
 1: #include<algorithm>
 2: #include<string>
 3: #include<iostream>
 4: using namespace std;
 5:
 6: template <typename T>
 7: void DisplayContents (const T& cont)
 8: {
 9: for (auto element = cont.cbegin();
10: element != cont.cend();
11: ++ element)
12: cout << element->first << " -> " << element->second << endl;
 13:

ptg18655082

526 LESSON 20: STL Map Classes

14: cout << endl;
15: }
16:
17: struct PredIgnoreCase
18: {
19: bool operator()(const string& str1, const string& str2) const
20: {
21: string str1NoCase(str1), str2NoCase(str2);
22: transform(str1.begin(), str1.end(), str1NoCase.begin(), ::tolower);
23: transform(str2.begin(), str2.end(), str2NoCase.begin(), ::tolower);
24:
25: return(str1NoCase< str2NoCase);
26: };
27: };
28:
29: typedef map<string, string> DIR_WITH_CASE;
30: typedef map<string, string, PredIgnoreCase> DIR_NOCASE;
31:
32: int main()
33: {
34: // Case-sensitive directorycase of string-key plays no role
35: DIR_WITH_CASE dirWithCase;
36:
37: dirWithCase.insert(make_pair("John", "2345764"));
38: dirWithCase.insert(make_pair("JOHN", "2345764"));
39: dirWithCase.insert(make_pair("Sara", "42367236"));
40: dirWithCase.insert(make_pair("Jack", "32435348"));
41:
42: cout << "Displaying contents of the case-sensitive map:"<< endl;
43: DisplayContents(dirWithCase);
44:
45: // Case-insensitive mapcase of string-key affects insertion & search
46: DIR_NOCASE dirNoCase(dirWithCase.begin(), dirWithCase.end());
47:
48: cout << "Displaying contents of the case-insensitive map:"<< endl;
49: DisplayContents(dirNoCase);
50:
51: // Search for a name in the two maps and display result
52: cout << "Please enter a name to search"<< endl<< "> ";
53: string name;
54: cin >> name;
55:
56: auto pairWithCase = dirWithCase.find(name);
57: if(pairWithCase != dirWithCase.end())
58: cout << "Num in case-sens. dir: " << pairWithCase->second << endl;
59: else
60: cout << "Num not found in case-sensitive dir" << endl;
61:
62: auto pairNoCase = dirNoCase.find(name);
63: if (pairNoCase != dirNoCase.end())
64: cout << "Num found in CI dir: " << pairNoCase->second << endl;

ptg18655082

Supplying a Custom Sort Predicate 527

20

65: else
66: cout << "Num not found in the case-insensitive directory" << endl;
67:
68: return 0;
69: }

Output ▼
Displaying contents of the case-sensitive map:
JOHN -> 2345764
Jack -> 32435348
John -> 2345764
Sara -> 42367236

Displaying contents of the case-insensitive map:
Jack -> 32435348
JOHN -> 2345764
Sara -> 42367236

Please enter a name to search
> jack
Num not found in case-sensitive dir
Num found in CI dir: 32435348

Analysis ▼

The code in question contains two directories with equal content, one that has been

instantiated with the default sort predicate, using std::less<T> and case-sensitive

std::string::operator<, and another that has been instantiated with a predicate

struct PredIgnoreCase defined in Lines 17–27. This predicate compares two strings

after reducing them to lowercase, thereby ensuring a “case-insensitive” comparison that

will evaluate "John" and "JOHN" as equals. The output indicates that when you search

the two maps for "jack" the map with the case-insensitive instantiation is able to locate

"Jack" in its records, whereas the map with default instantiation is unable to find this

entry. Also note how the case-sensitive map has two entries for John, one of them being

"JOHN", while the case-insensitive map that identified "John" and "JOHN" as duplicate

elements with an identical key has only one element with the same.

In Listing 20.5, struct PredIgnoreCase can also be a class if
you add the keyword public for operator(). For a C++ compiler,
a struct is akin to a class with members that are public by
default and inherit public by default.

NOTE

ptg18655082

528 LESSON 20: STL Map Classes

This sample demonstrated how you can use predicates to customize the behavior of a

map. It also implies that the key could potentially be of any type, and that the program-

mer can supply a predicate that defines the behavior of the map for that type. Note that

the predicate was a struct that implemented operator(). Such objects that double as

functions are called function objects or functors. This topic is addressed in further detail

in Lesson 21, “Understanding Function Objects.”

The std::map is well suited for storing key-value pairs where you
can look up a value given a key. map does probably deliver bet-
ter performance than an STL vector or list when it comes to
searching. Yet, it does slow down when the number of elements
increases. The operational performance of a map is said to be
logarithmic in nature—that is, proportional to the LOG of the
number of elements placed in the map.

In simple words, logarithmic complexity means that a container
such as std::map or std::set needs twice as long in finding an
element when it contains 10,000 elements as it would need if it
contained 100 (100^2 = 10000).

An unsorted vector presents linear complexity when it comes
to search, which means that it would be a 100 times slower if it
contained 10,000 elements instead of 100.

NOTE

So, while logarithmic complexity already looks good, one should remember that inser-

tions in a map (or multimap or set or multiset) get slower, too, as these containers

sort on insertion. Thus, the search for faster containers continues, and mathematicians

and programmers alike seek the holy grail of containers featuring constant-time inser-

tions and searches. The Hash Table is one such container that promises constant-time

insertions and near-constant–time searches (in most cases), given a key, independent of

the size of the container.

STL’s Hash Table-Based Key-Value
Container
Starting with C++11, the STL supports a hash map in the form of class

std::unordered_map. To use this template container class include

#include<unordered_map>

ptg18655082

STL’s Hash Table-Based Key-Value Container 529

20

The unordered_map promises average constant-time insertion and the removal and

lookup of arbitrary elements in the container.

How Hash Tables Work
Although it is not within the scope of this book to discuss this topic in detail (for it has

been the subject of one PhD thesis too many), let’s just try to grasp the basics of what

makes hash tables work.

A hash table can be viewed as a collection of key-value pairs, where given a key, the

table can find a value. The difference between the hash table and a simple map is that a

hash table stores key-value pairs in buckets, each bucket having an index that defines its

relative position in the table (akin to an array). This index is decided by a hash-function

that uses the key as input:

Index = HashFunction(key, TableSize);

When performing a find() given a key, HashFunction() is used once again to deter-

mine the position of the element and the table returns the value at the position, like an

array would return an element stored within it. In cases where HashFunction() is not

optimally programmed, more than one element would have the same Index, landing in

the same bucket—that internally would be a list of elements. In such cases, called colli-
sions, a search would be slower and not a constant any more.

Using unordered_map and unordered_multimap
Introduced starting in C++11, these two containers that implement hash tables are not too

different from std::map and std::multimap, respectively. Instantiation, insertion, and

find follow similar patterns:

// instantiate unordered_map of int to string:
unordered_map<int, string> umapIntToStr;

// insert()
umapIntToStr.insert(make_pair(1000, "Thousand"));

// find():
auto pairFound = umapIntToStr.find(1000);
cout << pairFound->first << " - " << pairFound->second << endl;

// find value using array semantics:
cout << "umapIntToStr[1000] = " << umapIntToStr[1000] << endl;

ptg18655082

530 LESSON 20: STL Map Classes

Yet, one important feature of an unordered_map is the availability of a hash function

that is responsible for deciding the sorting order:

unordered_map<int, string>::hasher hFn =
umapIntToStr.hash_function();

You can view the priority assigned to a key by invoking the hash function for a key:

size_t hashingVal = hFn(1000);

As an unordered_map stores key-value pairs in buckets, it does an automatic load

 balancing when the number of elements in the map reach or tend to reach the number of

buckets in the same:

cout << "Load factor: " << umapIntToStr.load_factor() << endl;
cout << "Max load factor = " << umapIntToStr.max_load_factor() << endl;
cout << "Max bucket count = " << umapIntToStr.max_bucket_count() << endl;

load_factor() is an indicator of the extent to which buckets in the unordered_map

have been filled. When load_factor() exceeds max_load_factor() due to an

 insertion, the map reorganizes itself to increase the number of available buckets and

rebuilds the hash table, as demonstrated by Listing 20.6.

std::unordered_multimap is similar to unordered_map except
that it supports multiple pairs with the same key.TIP

LISTING 20.6 Instantiating STL Hash Table Implementation unordered_map, Using
insert(), find(), size(), max_bucket_count(), load_factor(), and max_load_
factor()

 0: #include<iostream>
 1: #include<string>
 2: #include<unordered_map>
 3: using namespace std;
 4:
 5: template <typename T1, typename T2>
 6: void DisplayUnorderedMap(unordered_map<T1, T2>& cont)
 7: {
 8: cout << "Unordered Map contains: " << endl;
 9: for (auto element = cont.cbegin();
10: element != cont.cend();
11: ++ element)
12: cout << element->first << " -> "<< element->second<< endl;
 13:

ptg18655082

STL’s Hash Table-Based Key-Value Container 531

20

14: cout << "Number of pairs, size(): " << cont.size() << endl;
15: cout << "Bucket count = " << cont.bucket_count() << endl;
16: cout << "Current load factor: " << cont.load_factor() << endl;
17: cout << "Max load factor = " << cont.max_load_factor() << endl;
18: }
19:
20: int main()
21: {
22: unordered_map<int, string> umapIntToStr;
23: umapIntToStr.insert(make_pair(1, "One"));
24: umapIntToStr.insert(make_pair(45, "Forty Five"));
25: umapIntToStr.insert(make_pair(1001, "Thousand One"));
26: umapIntToStr.insert(make_pair(-2, "Minus Two"));
27: umapIntToStr.insert(make_pair(-1000, "Minus One Thousand"));
28: umapIntToStr.insert(make_pair(100, "One Hundred"));
29: umapIntToStr.insert(make_pair(12, "Twelve"));
30: umapIntToStr.insert(make_pair(-100, "Minus One Hundred"));
31:
32: DisplayUnorderedMap<int, string>(umapIntToStr);
33:
34: cout << "Inserting one more element" << endl;
35: umapIntToStr.insert(make_pair(300, "Three Hundred"));
36: DisplayUnorderedMap<int, string>(umapIntToStr);
37:
38: cout << "Enter key to find for: ";
39: int Key = 0;
40: cin >> Key;
41:
42: auto element = umapIntToStr.find(Key);
43: if (element != umapIntToStr.end())
44: cout << "Found! Key pairs with value " << element->second << endl;
45: else
46: cout << "Key has no corresponding pair value!" << endl;
47:
48: return 0;
49: }

Output ▼
Unordered Map contains:
1 -> One
-2 -> Minus Two
45 -> Forty Five
1001 -> Thousand One
-1000 -> Minus One Thousand
12 -> Twelve
100 -> One Hundred
-100 -> Minus One Hundred

ptg18655082

532 LESSON 20: STL Map Classes

Number of pairs, size(): 8
Bucket count = 8
Current load factor: 1
Max load factor = 1
Inserting one more element
Unordered Map contains:
1 -> One
-2 -> Minus Two
45 -> Forty Five
1001 -> Thousand One
-1000 -> Minus One Thousand
12 -> Twelve
100 -> One Hundred
-100 -> Minus One Hundred
300 -> Three Hundred
Number of pairs, size(): 9
Bucket count = 64
Current load factor: 0.140625
Max load factor = 1
Enter key to find for: 300
Found! Key pairs with value Three Hundred

Analysis ▼

Observe the output and note how unordered_map that starts with an initial bucket

count of eight, populated with eight pairs, resizes itself when a ninth pair has been

inserted. This is when the bucket count is increased to 64. Note the usage of methods

bucket_count(), load_factor(), and max_load_factor() in Lines 14–17. Apart

from these, note that the rest of code really doesn’t distinguish heavily compared to a

std::map. This includes the usage of find() in Line 42, which returns an iterator

as with a std::map that needs to be checked against end() to confirm success of the

 operation.

Don’t rely on the order of elements in an unordered_map (hence
the name) irrespective of the key. The order of an element
 relative to other elements in a map depends on many factors,
including its key, order of insertion, and number of buckets to
name a few.

These containers are optimized for search performance and are
not for you to rely on the order of elements when you iterate
through them.

CAUTION

ptg18655082

Summary 533

20

std::unordered_map supplies insertions and searches (in event
of no collisions) that are almost constant time, independent of
the number of elements contained. This, however, doesn’t neces-
sarily make the std::unordered_map superior to the std::map
that provides logarithmic complexity in all situations. The con-
stant could be a lot longer, making the former slow in cases
where the number of elements contained is small.

It is important to base one’s decision on the type of container
after performing certain benchmark tests that simulate usage in
a real scenario.

NOTE

DO DON’T

DO use a map in those situations
where you need a key-value pair
where keys are unique.

DO use a multimap in those situa-
tions where you need a key-value pair
where keys can repeat (for example,
a telephone directory).

DO remember that both map and
multimap, like other STL containers,
feature member method size() that
tells you the number of pairs they
contain.

DO use an unordered_map or
 unordered_multimap when constant-
time insertions and searches are
absolutely essential (typically when
the number of elements is very high).

DON’T forget that
multimap::count(key) can tell you
the number of pairs indexed using
key available in the container.

DON’T forget to check the result of
a find() operation by comparing it
against the end() of a container.

Summary
In this lesson, you learned about using the STL map and multimap, their significant

member functions, and their characteristics. You also learned that these containers

have a logarithmic complexity and that STL supplies your hash table containers in the

form of unordered_map and unordered_multimap. These feature performance in

insert() and find() operations that is independent of container size. You also learned

ptg18655082

534 LESSON 20: STL Map Classes

the importance of being able to customize the sort criterion using a predicate, as demon-

strated in the Directory application of Listing 20.5.

Q&A
 Q How would I declare a map of integers to be sorted or stored in order of

descending magnitude?

 A map <int> defines a map of integers. This takes the default sort predicate

std::less <T> to sort items in order of ascending magnitude and can also be

expressed as map <int, less <int>>. To sort in order of descending magni-

tude, define the map as map <int, greater <int>>.

 Q What would happen if in a map of strings I inserted the string "Jack" twice?

 A A map is not meant to be used to insert non-unique values. So, the map would still

contain only one pair having a key called "Jack".

 Q In the preceding example, what would I change if I wanted to have two
instances of "Jack"?

 A By design a map holds only unique values. You need to change your selection of

container to a multimap.

 Q What multimap member function returns the count of items of a particular
value in the container?

 A count(value) is the function of interest.

 Q I have found an element in the map using the find() function and have an
iterator pointing to it. Would I use this iterator to change the value being
pointed to?

 A No. Some STL implementations might allow the user to change the value of an

element inside a map via an iterator returned by find(). This, however, is not the

correct thing to do. An iterator to an element in the map should be used as a const

iterator—even when your implementation of STL has not enforced it as such.

 Q I am using an older compiler that doesn’t support keyword auto. How should
I declare a variable that holds the return value of a map::find()?

 A An iterator is always defined using this syntax:

 container<Type>::iterator variableName;

ptg18655082

Workshop 535

20

So the iterator declaration for a map of integers would be the following:

 std::map<int>::iterator pairFound = mapIntegers.find(1000);
 if (pairFound != mapIntegers.end())
 { // Do Something }

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. You declare a map of integers as map<int>. What function supplies the sort

 criteria?

2. Where would you find duplicate elements in a multimap?

3. What map or multimap function supplies the number of elements in the container?

4. Where would you find duplicate elements in a map?

Exercises
1. You need to write an application that works as a telephone directory where the

names of the people need not be unique. What container would you choose? Write

a definition of the container.

2. The following is a map template definition in your dictionary application:

map <wordProperty, string, fPredicate> mapWordDefinition;

where WordProperty is a structure:

struct WordProperty
{
 string word;
 bool isLatinBase;
};

Define the binary predicate fPredicate that helps the map sort a key of type

WordProperty according to the string attribute it contains.

3. Demonstrate via a simple program that a map cannot accept duplicate entries,

whereas a multimap can.

ptg18655082

LESSON 21
Understanding
Function Objects

Function objects or functors might sound exotic or intimidating, but they
are entities of C++ that you have probably seen, if not also used, without
having realized it. In this lesson, you learn

 ■ The concept of function objects

 ■ The usage of function objects as predicates

 ■ How unary and binary predicates are implemented using function
objects

ptg18655082

538 LESSON 21: Understanding Function Objects

The Concept of Function Objects
and Predicates
On a conceptual level, function objects are objects that work as functions. On an

 implementation level, however, function objects are objects of a class that implement

operator(). Although functions and function-pointers can also be classified as function

objects, it is the capability of an object of a class that implements operator() to

carry state (that is, values in member attributes of the class) that makes it useful with

Standard Template Library (STL) algorithms.

Function objects as typically used by a C++ programmer working with STL are

 classifiable into the following types:

 ■ Unary function—A function called with one argument; for example, f(x).

When a unary function returns a bool, it is called a predicate.

 ■ Binary function—A function called with two arguments; for example, f(x, y).

A binary function that returns a bool is called a binary predicate.

Function objects that return a boolean type are naturally suited for use in algorithms

that help in decision making. find() and sort() are two such algorithms that you

learned about in previous lessons. A function object that combines two function objects

is called an adaptive function object.

Typical Applications of Function Objects
It is possible to explain function objects over pages and pages of theoretical explanations.

It is also possible to understand how they look and work via tiny sample applications.

Let’s take the practical approach and dive straight into the world of C++ programming

with function objects or functors!

Unary Functions
Functions that operate on a single parameter are unary functions. A unary function can

do something very simple—for example, display an element on the screen. This can be

programmed as the following:

// A unary function
template <typename elementType>
void FuncDisplayElement (const elementType& element)
{
 cout << element << ' ';
};

ptg18655082

Typical Applications of Function Objects 539

21

The function FuncDisplayElement accepts one parameter of templatized type

 elementType that it displays using console output statement std::cout. The same

 function can also have another representation in which the implementation of the

 function is actually contained by the operator() of a class or a struct:

// Struct that can behave as a unary function
template <typename elementType>
struct DisplayElement
{
 void operator () (const elementType& element) const
 {

cout << element << ' ';
 }
};

Note that DisplayElement is a struct. If it were a class,
 operator() would need to be given a public access modifier.
A struct is akin to a class where members are public by default.

TIP

Either of these implementations can be used with the STL algorithm for_each() to print

the contents of a collection to the screen, an element at a time, as shown in Listing 21.1.

LISTING 21.1 Displaying the Contents of a Collection on the Screen Using
a Unary Function

 0: #include <algorithm>
 1: #include <iostream>
 2: #include <vector>
 3: #include <list>
 4: using namespace std;
 5:
 6: // struct that behaves as a unary function
 7: template <typename elementType>
 8: struct DisplayElement
 9: {
10: void operator () (const elementType& element) const
11: {
12: cout << element << ' ';
13: }
14: };
15:
16: int main ()
17: {
18: vector <int> numsInVec{ 0, 1, 2, 3, -1, -9, 0, -999 };
19: cout << "Vector of integers contains: " << endl;

ptg18655082

540 LESSON 21: Understanding Function Objects

20:
21: for_each (numsInVec.begin (), // Start of range
22: numsInVec.end (), // End of range
23: DisplayElement<int> ()); // Unary function object
24:
25: // Display the list of characters
26: list <char> charsInList{ 'a', 'z', 'k', 'd' };
27: cout << endl << "List of characters contains: " << endl;
28:
29: for_each (charsInList.begin(),
30: charsInList.end(),
31: DisplayElement<char> ());
32:
33: return 0;
34: }

Output ▼
Vector of integers contains:
0 1 2 3 -1 -9 0 -999
List of characters contains:
a z k d

Analysis ▼

Lines 8–14 contain the function object DisplayElement, which implements

 operator(). The usage of this function object is seen with STL algorithm std::for_

each() in Lines 21–23. for_each() accepts three parameters: The first is the starting

point of the range, the second is the end of the range, and the third parameter is the

function that is called for every element in the specified range. In other words, that code

invokes DisplayElement::operator() for every element in the vector numsInVec.

Lines 29–31 demonstrate the same functionality with a list of characters.

In Listing 21.1, you may optionally use FuncDisplayElement
instead of struct DisplayElement to the same effect:

for_each (charsInList.begin(),

charsInList.end(),

FuncDisplayElement<char>);

NOTE

ptg18655082

Typical Applications of Function Objects 541

21

C++11 introduced lambda expressions that are unnamed func-
tion objects.

A lambda expression version of struct DisplayElement<T>
from Listing 21.1 compacts the entire code, including the defini-
tion of the struct and its usage, in three lines within main(),
replacing Lines 21–24:

// Display elements using lambda expression

for_each (numsInVec.begin(), // Start of range

numsInVec.end(), // End of range

 [](int& Element) {cout << element << ' '; });

 // Lambda expression

Thus, lambdas are a fantastic improvement to C++, and
you should not miss learning them in Lesson 22, “Lambda
Expressions.” Listing 22.1 demonstrates using lambda functions
in a for_each() to display the contents of a container, instead
of the function object as seen in Listing 21.1.

TIP

The real advantage of using a function object implemented in a struct becomes

 apparent when you are able to use the object of the struct to store information. This is

something FuncDisplayElement cannot do the way a struct can because a struct

can have member attributes in addition to operator(). A slightly modified version that

makes use of member attributes is the following:

template <typename elementType>
struct DisplayElementKeepCount
{
 int count;

 DisplayElementKeepCount () // constructor
 {

count = 0;
 }

 void operator () (const elementType& element)
 {

++ count;
cout << element << ' ';

 }
};

ptg18655082

542 LESSON 21: Understanding Function Objects

In the preceding snippet, DisplayElementKeepCount is a slight modification over the

previous version. operator() is not a const member function anymore as it increments

(hence, changes) member count to keep a count of the number of times it was called

to display data. This count is made available via the public member attribute count.

The advantage of using such function objects that can also store state is shown in

Listing 21.2.

LISTING 21.2 Function Object That Holds State

 0: #include<algorithm>
 1: #include<iostream>
 2: #include<vector>
 3: using namespace std;
 4:
 5: template<typename elementType>
 6: struct DisplayElementKeepCount
 7: {
 8: int count;
 9:
10: DisplayElementKeepCount() : count(0) {} // constructor
11:
12: void operator()(const elementType& element)
13: {
14: ++ count;
15: cout << element<< ' ';
16: }
17: };
18:
19: int main()
20: {
21: vector<int> numsInVec{ 22, 2017, -1, 999, 43, 901 };
22: cout << "Displaying the vector of integers: "<< endl;
23:
24: DisplayElementKeepCount<int> result;
25: result = for_each (numsInVec.begin(),
26: numsInVec.end(),
27: DisplayElementKeepCount<int>());
28:
29: cout << endl << "Functor invoked " << result.count << " times";
30:
31: return 0;
32: }

Output ▼
Displaying the vector of integers:
22 2017 -1 999 43 901
Functor invoked 6 times

ptg18655082

Typical Applications of Function Objects 543

21

Analysis ▼

The biggest difference between this sample and the one in Listing 21.1 is the usage of

DisplayElementKeepCount() as the return value of for_each(). operator() imple-

mented in struct DisplayElementKeepCount is invoked by algorithm for_each()

for every element in the container. It displays the element and increments the internal

counter stored in member attribute count. After for_each() is done, you use the object

in Line 29 to display the number of times elements were displayed. Note that a regular

function used in this scenario instead of the function implemented in a struct would

not be able to supply this feature in such a direct way.

Unary Predicate
A unary function that returns a bool is a predicate. Such functions help make deci-

sions for STL algorithms. Listing 21.3 is a sample predicate that determines whether an

input element is a multiple of an initial value.

LISTING 21.3 A Unary Predicate That Determines Whether a Number Is a Multiple
of Another

 0: // A structure as a unary predicate
 1: template <typename numberType>
 2: struct IsMultiple
 3: {
 4: numberType Divisor;
 5:
 6: IsMultiple (const numberType& divisor)
 7: {
 8: Divisor = divisor;
 9: }
10:
11: bool operator () (const numberType& element) const
12: {
13: // Check if the divisor is a multiple of the divisor
14: return ((element % Divisor) == 0);
15: }
16: };

Analysis ▼

Here the operator() returns bool and can work as a unary predicate. The structure

has a constructor and is initialized to the value of the divisor in Line 8. This value

stored in the object is then used to determine whether the elements sent for comparison

are divisible by it, as you can see in the implementation of operator(), using the math

operation modulus % that returns the remainder of a division operation in Line 14. The

predicate compares that remainder to zero to determine whether the number is a multiple.

ptg18655082

544 LESSON 21: Understanding Function Objects

In Listing 21.4, we make use of the predicate as seen previously in Listing 21.3 to

 determine whether numbers in a collection are multiples of a divisor input by the user.

LISTING 21.4 Unary Predicate IsMultiple Used with std::find_if() to Find
an Element in a vector That Is a Multiple of a User-Supplied Divisor

 0: #include <algorithm>
 1: #include <vector>
 2: #include <iostream>
 3: using namespace std;
 4: // insert code from Listing 21.3 here
 5:
 6: int main ()
 7: {
 8: vector <int> numsInVec{ 25, 26, 27, 28, 29, 30, 31 };
 9: cout << "The vector contains: 25, 26, 27, 28, 29, 30, 31" << endl;
10:
11: cout << "Enter divisor (> 0): ";
12: int divisor = 2;
13: cin >> divisor;
14:
15: // Find the first element that is a multiple of divisor
16: auto element = find_if (numsInVec.begin (),
17: numsInVec.end (),
18: IsMultiple<int>(divisor));
19:
20: if (element != numsInVec.end ())
21: {
22: cout << "First element in vector divisible by " << divisor;
23: cout << ": " << *element << endl;
24: }
25:
26: return 0;
27: }

Output ▼
The vector contains: 25, 26, 27, 28, 29, 30, 31
Enter divisor (> 0): 4
First element in vector divisible by 4: 28

Analysis ▼

The sample starts with a sample container that is a vector of integers. The usage

of the unary predicate is in find_if() as shown in Line 16. In here, the function

object IsMultiple() is initialized to a divisor value supplied by the user and

ptg18655082

Typical Applications of Function Objects 545

21

stored in variable Divisor. find_if() works by invoking the unary predicate

IsMultiple::operator() for every element in the specified range. When the

 operator() returns true for an element (which happens when that element is divided

by 4 and does not produce a remainder), find_if() returns an iterator element to

that element. The result of the find_if() operation is compared against the end() of

the container to verify that an element was found, as shown in Line 20, and the iterator

 element is then used to display the value, as shown in Line 23.

To see how using lambda expressions compact the program
shown in Listing 21.4, take a look at Listing 22.3 in Lesson 22.TIP

Unary predicates find application in a lot of STL algorithms such as std::partition()

that can partition a range using the predicate, stable_partition() that does the

same while keeping relative order of the elements partitioned, find functions such as

std::find_if(), and functions that help erase elements such as std::remove_if() that

erases elements in a range that satisfy the predicate.

Binary Functions
Functions of type f(x, y) are particularly useful when they return a value based on

the input supplied. Such binary functions can be used for a host of arithmetic activity that

involves two operands, such as addition, multiplication, subtraction, and so on. A sample

binary function that returns the multiple of input arguments can be written as follows:

template <typename elementType>
class Multiply
{
public:
 elementType operator () (const elementType& elem1,

const elementType& elem2)
 {

return (elem1 * elem2);
 }
};

The implementation of interest is again in operator() that accepts two arguments

and returns their multiple. Such binary functions are used in algorithms such as

std::transform() where you can use it to multiply the contents of two containers.

Listing 21.5 demonstrates the usage of such binary functions in std::transform().

ptg18655082

546 LESSON 21: Understanding Function Objects

LISTING 21.5 Using a Binary Function to Multiply Two Ranges

 0: #include <vector>
 1: #include <iostream>
 2: #include <algorithm>
 3:
 4: template <typename elementType>
 5: class Multiply
 6: {
 7: public:
 8: elementType operator () (const elementType& elem1,
 9: const elementType& elem2)
10: {
11: return (elem1 * elem2);
12: }
13: };
14:
15: int main ()
16: {
17: using namespace std;
18:
19: vector <int> multiplicands{ 0, 1, 2, 3, 4 };
20: vector <int> multipliers{ 100, 101, 102, 103, 104 };
21:
22: // A third container that holds the result of multiplication
23: vector <int> vecResult;
24:
25: // Make space for the result of the multiplication
26: vecResult.resize (multipliers.size());
27: transform (multiplicands.begin (), // range of multiplicands
28: multiplicands.end (), // end of range
29: multipliers.begin (), // multiplier values
30: vecResult.begin (), // holds result
31: Multiply <int> ()); // multiplies
32:
33: cout << "The contents of the first vector are: " << endl;
34: for (size_t index = 0; index < multiplicands.size (); ++ index)
35: cout << multiplicands [index] << ' ';
36: cout << endl;
37:
38: cout << "The contents of the second vector are: " << endl;
39: for (size_t index = 0; index < multipliers.size (); ++index)
40: cout << multipliers [index] << ' ';
41: cout << endl;
42:
43: cout << "The result of the multiplication is: " << endl;
44: for (size_t index = 0; index < vecResult.size (); ++ index)
45: cout << vecResult [index] << ' ';
46:
47: return 0;
48: }

ptg18655082

Typical Applications of Function Objects 547

21

Output ▼
The contents of the first vector are:
0 1 2 3 4
The contents of the second vector are:
100 101 102 103 104
The result of the multiplication is:
0 101 204 309 416

Analysis ▼

Lines 4–13 contain the class Multiply, as shown in the preceding code snippet. In this

sample, you use the algorithm std::transform() to multiply the contents of two ranges

and store in a third. In this case, the ranges in question are held in std::vector as

 multiplicands, multipliers, and vecResult. You use std::transform() in Lines

27–31 to multiply every element in multiplicands by its corresponding element in

multipliers and store the result of the multiplication in vecResult. The multiplication

itself is done by the binary function Multiply::operator() that is invoked for every

element in the vectors that make the source and destination ranges. The return value of

the operator() is held in vecResult.

This sample thus demonstrates the application of binary functions in perform-

ing arithmetic operations on elements in STL containers. The next sample also uses

std::transform() but to convert a string to lowercase using function tolower().

Binary Predicate
A function that accepts two arguments and returns a bool is a binary predicate. Such

functions find application in STL functions such as std::sort(). Listing 21.6 demon-

strates the usage of a binary predicate that compares two strings after reducing them

both to lowercase. Such a predicate can be used in performing a case-insensitive sort on

a vector of string, for instance.

LISTING 21.6 A Binary Predicate for Case-Insensitive String Sort

 0: #include <algorithm>
 1: #include <string>
 2: using namespace std;
 3:
 4: class CompareStringNoCase
 5: {
 6: public:
 7: bool operator () (const string& str1, const string& str2) const
 8: {
 9: string str1LowerCase;

ptg18655082

548 LESSON 21: Understanding Function Objects

10:
11: // Assign space
12: str1LowerCase.resize (str1.size ());
13:
14: // Convert every character to the lower case
15: transform (str1.begin (), str1.end (), str1LowerCase.begin (),
16: ::tolower);
17:
18: string str2LowerCase;
19: str2LowerCase.resize (str2.size ());
20: transform (str2.begin (), str2.end (), str2LowerCase.begin (),
21: ::tolower);
22:
23: return (str1LowerCase < str2LowerCase);
24: }
25: };

Analysis ▼

The binary predicate implemented in operator() first brings the input strings down to

lowercase using algorithm std::transform() as shown in Lines 15 and 20 before using

the string’s comparison operator, operator <, to return the result of comparison.

You can use this binary-predicate with algorithm std::sort() to sort a dynamic array

contained in a vector of string as demonstrated by Listing 21.7.

LISTING 21.7 Using Function Object class CompareStringNoCase to Perform
a Case-Insensitive Sort on a vector<string>

 0: // Insert class CompareStringNoCase from Listing 21.6 here
 1: #include <vector>
 2: #include <iostream>
 3:
 4: template <typename T>
 5: void DisplayContents (const T& container)
 6: {
 7: for (auto element = container.cbegin();
 8: element != container.cend ();
 9: ++ element)
10: cout << *element << endl;
11: }
12:
13: int main ()
14: {
15: // Define a vector of string to hold names
16: vector <string> names;
17:
18: // Insert some sample names in to the vector

ptg18655082

Typical Applications of Function Objects 549

21

19: names.push_back ("jim");
20: names.push_back ("Jack");
21: names.push_back ("Sam");
22: names.push_back ("Anna");
23:
24: cout << "The names in vector in order of insertion: " << endl;
25: DisplayContents(names);
26:
27: cout << "Names after sorting using default std::less<>: " << endl;
28: sort(names.begin(), names.end());
29: DisplayContents(names);
30:
31: cout << "Sorting using predicate that ignores case:" << endl;
32: sort(names.begin(), names.end(), CompareStringNoCase());
33: DisplayContents(names);
34:
35: return 0;
36: }

Output ▼
The names in vector in order of insertion:
jim
Jack
Sam
Anna
Names after sorting using default std::less<>:
Anna
Jack
Sam
jim
Sorting using predicate that ignores case:
Anna
Jack
jim
Sam

Analysis ▼

Output displays the contents of the vector in three stages. The first displays contents

in order of insertion. The second after a sort() at Line 28 reorders using default sort

 predicate less<T>, the output demonstrates that jim is not placed after Jack because

this is a case-sensitive sort via string::operator<. The last version uses the sort

 predicate class CompareStringNoCase<> in Line 32 (implemented in Listing 21.6)

that ensures that jim comes after Jack notwithstanding the difference in case.

ptg18655082

550 LESSON 21: Understanding Function Objects

Binary predicates are required in a variety of STL algorithms. For example,

std::unique() that erases duplicate neighboring elements, std::sort() that

sorts, std::stable_sort() that sorts while maintaining relative order, and

std::transform() that can perform an operation on two ranges are some of the STL

algorithms that need a binary predicate.

Summary
In this lesson, you gained an insight into the world of functors (or function objects).

You learned how function objects are more useful when implemented in a structure or

a class than those that are simple functions because the former can also be used to hold

 state-related information. You got an insight into predicates, which are a special class of

function objects, and saw some practical examples that display their utility.

Q&A
 Q A predicate is a special category of a function object. What makes it special?

 A Predicates always return boolean.

 Q What kind of a function object should I use in a call to a function such as
remove_if()?

 A You should use a unary predicate that would take the value to be processed as the

initial state via the constructor.

 Q What kind of a function object should I use for a map?

 A You should use a binary predicate.

 Q Is it possible that a simple function with no return value can be used as a
 predicate?

 A Yes. A function with no return values can still do something useful. For example, it

can display input data.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

ptg18655082

Workshop 551

21

Quiz
1. What is the term used for a unary function that returns a bool result?

2. What would be the utility of a function object that neither modifies data nor returns

bool? Can you explain using an example?

3. What is the definition of the term function objects?

Exercises
1. Write a unary function that can be used with std::for_each() to display the

double of the input parameter.

2. Extend this predicate to indicate the number of times it was used.

3. Write a binary predicate that helps sort in ascending order.

ptg18655082

LESSON 22
Lambda Expressions

Lambda expressions are a compact way to define and construct function
objects without a name. These expressions were introduced in C++11. In
this lesson, you find out

 ■ How to program a lambda expression

 ■ How to use lambda expressions as predicates

 ■ What are C++14 generic lambda expressions

 ■ How to program lambda expressions that can hold and manipulate
a state

ptg18655082

554 LESSON 22: Lambda Expressions

What Is a Lambda Expression?
A lambda expression can be visualized as a compact version of an unnamed struct

(or class) with a public operator(). In that sense, a lambda expression is a function

object like those in Lesson 21, “Understanding Function Objects.” Before jumping into

analyzing the programming of lambda functions, take a function object from Listing 21.1

(from Lesson 21) as an example:

// struct that behaves as a unary function
template <typename elementType>
struct DisplayElement
{
 void operator () (const elementType& element) const
 {

cout << element << ' ';
 }
};

This function object displays an object element on the screen using cout and is

 typically used in algorithms such as std::for_each():

// Display every integer contained in a vector
for_each (numsInVec.cbegin (), // Start of range

numsInVec.cend (), // End of range
DisplayElement <int> ()); // Unary function object

A lambda expression compacts the entire code including the definition of the function

object into three lines:

// Display every integer contained in a vector using lambda exp.
for_each (numsInVec.cbegin (), // Start of range

numsInVec.cend (), // End of range
[](const int& element) {cout << element << ' '; });

When the compiler sees the lambda expression, in this case

[](const int& element) {cout << element << ' '; }

it automatically expands this expression into a representation that is similar to struct

DisplayElement<int>:

struct NoName
{
 void operator () (const int& element) const
 {

ptg18655082

Lambda Expression for a Unary Function 555

22

cout << element << ' ';
 }
};

Lambda Expressions are also called Lambda Functions.
TIP

How to Define a Lambda Expression
The definition of a lambda expression has to start with square brackets[]. These brackets

essentially tell the compiler that the lambda expression has started. They are followed

by the parameter list, which is the same as the parameter list you would supply your

 implementation of operator() if you were not using a lambda expression.

Lambda Expression for a Unary
Function
The lambda version of a unary operator(Type) that takes one parameter would be the

following:

[](Type paramName) { // lambda expression code here; }

Note that you can pass the parameter by reference if you so wish:

[](Type& paramName) { // lambda expression code here; }

Use Listing 22.1 to study the usage of a lambda function in displaying the contents of a

Standard Template Library (STL) container using algorithm for_each().

LISTING 22.1 Displaying Elements in a Container via Algorithm for_each() That Is
Invoked with a Lambda Expression Instead of a Function Object

 0: #include <algorithm>
 1: #include <iostream>
 2: #include <vector>
 3: #include <list>
 4:
 5: using namespace std;
 6:

ptg18655082

556 LESSON 22: Lambda Expressions

 7: int main ()
 8: {
 9: vector <int> numsInVec{ 101, -4, 500, 21, 42, -1 };
10:
11: list <char> charsInList{ 'a', 'h', 'z', 'k', 'l' };
12: cout << "Display elements in a vector using a lambda: " << endl;
13:
14: // Display the array of integers
15: for_each (numsInVec.cbegin (), // Start of range
16: numsInVec.cend (), // End of range
17: [](const int& element) {cout << element << ' '; }); // lambda
 18:
 19: cout << endl;
 20: cout << "Display elements in a list using a lambda: " << endl;
 21:
 22: // Display the list of characters
 23: for_each (charsInList.cbegin (), // Start of range
 24: charsInList.cend (), // End of range
 25: [](auto& element) {cout << element << ' '; }); // lambda
 26:
 27: return 0;
 28: }

Output ▼
Display elements in a vector using a lambda:
101 -4 500 21 42 -1
Display elements in a list using a lambda:
a h z k l

Analysis ▼

There are two lambda expressions of interest in Lines 17 and 25. They are similar, save

for the type of the input parameter, as they have been customized to the nature of the

elements within the two containers. The first takes one parameter that is an int, as it

is used to print one element at a time from a vector of integers, whereas the second

accepts a char (automatically deduced by the compiler) as it is used to display elements

of type char stored in a std::list.

ptg18655082

Lambda Expression for a Unary Predicate 557

22

You may have noticed that the second lambda expression in
Listing 22.1 is slightly different:

for_each (charsInList.cbegin (), // Start of range

charsInList.cend (), // End of range

[](auto& element) {cout << element << ' '; }); // lambda

This lambda uses the compiler’s automatic type deduction capa-
bilities invoked using keyword auto. This is an improvement to
lambda expressions that are supported by compilers that are
C++14 compliant. The compiler would interpret this lambda
expression as

for_each (charsInList.cbegin (), // Start of range

charsInList.cend (), // End of range

[](const char& element) {cout << element << ' '; });

TIP

The code in Listing 22.1 is similar to that in Listing 21.1 with the
exception that the latter uses function objects. In fact, Listing 22.1
is a lambda version of function object DisplayElement<T>.

Comparing the two, you realize how lambda functions have the
potential to make C++ code simpler and more compact.

NOTE

Lambda Expression for a Unary Predicate
A predicate helps make decisions. A unary predicate is a unary expression that returns

a bool, conveying true or false. Lambda expressions can return values, too. For

example, the following code is a lambda expression that returns true for numbers that

are even:

[](int& num) {return ((num % 2) == 0); }

The nature of the return value in this case tells the compiler that the lambda expression

returns a bool.

ptg18655082

558 LESSON 22: Lambda Expressions

You can use a lambda expression that is a unary predicate in algorithms, such as

std::find_if(), to find even numbers in a collection. See Listing 22.2 for an example.

LISTING 22.2 Find an Even Number in a Collection Using a Lambda Expression for
a Unary Predicate and Algorithm std::find_if()

 0: #include<algorithm>
 1: #include<vector>
 2: #include<iostream>
 3: using namespace std;
 4:
 5: int main()
 6: {
 7: vector<int> numsInVec{ 25, 101, 2017, -50 };
 8:
 9: auto evenNum = find_if(numsInVec.cbegin(),
10: numsInVec.cend(), // range to find in
11: [](const int& num){return ((num % 2) == 0); });
12:
13: if (evenNum != numsInVec.cend())
14: cout << "Even number in collection is: " << *evenNum << endl;
15:
16: return 0;
17: }

Output ▼
Even number in collection is: -50

Analysis ▼

The lambda function that works as a unary predicate is shown in Line 11. Algorithm

find_if() invokes the unary predicate for every element in the range. When the

 predicate returns true, find_if() reports a find by returning an iterator evenNum to

that element. The predicate in this case is the lambda expression that returns true when

find_if() invokes it with an integer that is even (that is, the result of modulus operation

with 2 is zero).

Listing 22.2 not only demonstrates a lambda expression as
a unary predicate, but also the use of const within a lambda
expression.

Remember to use const for input parameters, especially when
they’re a reference to avoid unintentional changes to the value of
elements in a container.

NOTE

ptg18655082

559

22

Lambda Expression with State via Capture Lists [...]

Lambda Expression with State via
Capture Lists [...]
In Listing 22.2, you created a unary predicate that returned true if an integer was

divisible by 2—that is, the integer is an even number. What if you want a more generic

function that returns true when the number is divisible by a divisor of the user’s

choosing? You need to maintain that “state”—the divisor—in the expression:

int divisor = 2; // initial value
…
auto element = find_if (begin of a range,

end of a range,
[divisor](int dividend){return (dividend % divisor) == 0; });

A list of arguments transferred as state variables [...] is also called the lambda’s capture

list.

Such a lambda expression is a one-line equivalent of the
16 lines of code seen in Listing 21.3 that defines unary predi-
cate struct IsMultiple<>.

Thus, lambdas introduced in C++11 improve programming
 efficiency by leaps and bounds!

NOTE

Listing 22.3 demonstrates the application of a unary predicate given a state variable in

finding a number in the collection that is a multiple of a divisor supplied by the user.

LISTING 22.3 Demonstrating the Use of Lambda Expressions That Hold State to Check
Whether One Number Is Divisible by Another

 0: #include <algorithm>
 1: #include <vector>
 2: #include <iostream>
 3: using namespace std;
 4:
 5: int main()
 6: {
 7: vector <int> numsInVec{25, 26, 27, 28, 29, 30, 31};
 8: cout << "The vector contains: {25, 26, 27, 28, 29, 30, 31}";
 9:
10: cout << endl << "Enter divisor (> 0): ";
11: int divisor = 2;
12: cin >> divisor;
13:

ptg18655082

560 LESSON 22: Lambda Expressions

14: // Find the first element that is a multiple of divisor
15: vector <int>::iterator element;
16: element = find_if (numsInVec.begin ()
17: , numsInVec.end ()
18: , [divisor](int dividend){return (dividend % divisor) == 0; });
19:
20: if (element != numsInVec.end ())
21: {
22: cout << "First element in vector divisible by " << divisor;
23: cout << ": " << *element << endl;
24: }
25:
26: return 0;
27: }

Output ▼
The vector contains: {25, 26, 27, 28, 29, 30, 31}
Enter divisor (> 0): 4
First element in vector divisible by 4: 28

Analysis ▼

The lambda expression that contains state and works as a predicate is shown in Line 18.

divisor is the state-variable, comparable to IsMultiple::Divisor that you saw in

Listing 21.3. Hence, state variables are akin to members in a function object class that

you would have composed in days prior to C++11. You are now able to pass states on to

your lambda function and customize its usage on the basis of the same.

Listing 22.3 features the lambda expression equivalent of Listing
21.4, without the function object class IsMultiple. Lambda
expressions introduced in C++11 have served a reduction in
16 lines of code!

NOTE

The Generic Syntax of Lambda
Expressions
A lambda expression always starts with square brackets and can be configured to take

multiple state variables separated using commas in a capture list [...]:

[stateVar1, stateVar2](Type& param) { // lambda code here; }

ptg18655082

The Generic Syntax of Lambda Expressions 561

22

If you want to ensure that these state variables are modified within a lambda, you add

keyword mutable:

[stateVar1, stateVar2](Type& param) mutable { // lambda code here; }

Note that here, the variables supplied in the capture list [] are modifiable within the

lambda, but changes do not take effect outside it. If you want to ensure that modifications

made to the state variables within the lambda are valid outside it, too, then you use

 references:

[&stateVar1, &stateVar2](Type& param) { // lambda code here; }

Lambdas can take multiple input parameters, separated by commas:

[stateVar1, stateVar2](Type1& var1, Type2& var2) { // lambda code here; }

If you want to mention the return type and not leave the disambiguation to the compiler,

you use -> as in the following:

[stateVar1, stateVar2](Type1 var1, Type2 var2) -> ReturnType
{ return (value or expression); }

Finally, the compound statement {} can hold multiple statements, each separated by a ;

as shown here:

[stateVar1, stateVar2](Type1 var1, Type2 var2) -> ReturnType
{
 Statement 1;
 Statement 2;
 return (value or expression);
}

If your lambda expression spans multiple lines, you are required
to supply an explicit return type.

Listing 22.5 later in this lesson demonstrates a lambda function
that specifies a return type and spans multiple lines.

NOTE

Thus, a lambda function is a compact, fully functional replacement of a function object

such as the following:

template<typename Type1, typename Type2>
struct IsNowTooLong
{
 // State variables
 Type1 var1;
 Type2 var2;

ptg18655082

562 LESSON 22: Lambda Expressions

 // Constructor
 IsNowTooLong(const Type1& in1, Type2& in2): var1(in1), var2(in2) {};

 // the actual purpose
 ReturnType operator()
 {

Statement 1;
Statement 2;
return (value or expression);

 }
};

Lambda Expression for a Binary Function
A binary function takes two parameters and optionally returns a value. A lambda expres-

sion equivalent of the same would be

[...](Type1& param1Name, Type2& param2Name) { // lambda code here; }

A lambda function that multiplies two equal-sized vectors element by element using

std::transform() and stores the result in a third vector is shown in Listing 22.4.

LISTING 22.4 Lambda Expression as a Binary Function to Multiply Elements from Two
Containers and Store in a Third

 0: #include <vector>
 1: #include <iostream>
 2: #include <algorithm>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: vector <int> vecMultiplicand{ 0, 1, 2, 3, 4 };
 9: vector <int> vecMultiplier{ 100, 101, 102, 103, 104 };
10:
11: // Holds the result of multiplication
12: vector <int> vecResult;
13:
14: // Make space for the result of the multiplication
15: vecResult.resize(vecMultiplier.size());
16:
17: transform (vecMultiplicand.begin (), // range of multiplicands
18: vecMultiplicand.end (), // end of range
19: vecMultiplier.begin (), // multiplier values

ptg18655082

Lambda Expression for a Binary Function 563

22

20: vecResult.begin (), // range that holds result
21: [](int a, int b) {return a * b; }); // lambda
22:
23: cout << "The contents of the first vector are: " << endl;
24: for (size_t index = 0; index < vecMultiplicand.size(); ++index)
25: cout << vecMultiplicand[index] << ' ';
26: cout << endl;
27:
28: cout << "The contents of the second vector are: " << endl;
29: for (size_t index = 0; index < vecMultiplier.size(); ++index)
30: cout << vecMultiplier[index] << ' ';
31: cout << endl;
32:
33: cout << "The result of the multiplication is: " << endl;
34: for (size_t index = 0; index < vecResult.size(); ++index)
35: cout << vecResult[index] << ' ';
36:
37: return 0;
38: }

Output ▼
The contents of the first vector are:
0 1 2 3 4
The contents of the second vector are:
100 101 102 103 104
The result of the multiplication is:
0 101 204 309 416

Analysis ▼

The lambda expression in question is shown in Line 17 as a parameter to

std::transform(). This algorithm takes two ranges as input and applies a transforma-

tion algorithm that is contained in a binary function. The return value of the binary func-

tion is stored in a target container. This binary function is a lambda expression that takes

two integers as input and returns the result of the multiplication via the return value. This

return value is stored by std::transform() in vecResult. The output demonstrates the

contents of the two containers and the result of multiplying them element by element.

Listing 22.4 was the demonstration of the lambda equivalent of
function object class Multiply<> in Listing 21.5.NOTE

ptg18655082

564 LESSON 22: Lambda Expressions

Lambda Expression for a Binary
Predicate
A binary function that returns true or false to help make a decision is called a binary
predicate. These predicates find use in sort algorithms, such as std::sort(), that invoke

the binary predicate for any two values in a container to know which one should be

placed after the other. The generic syntax of a binary predicate is

[...](Type1& param1Name, Type2& param2Name) { // return bool expression; }

Listing 22.5 demonstrates a lambda expression used in a sort.

LISTING 22.5 Lambda Expression as a Binary Predicate in std::sort()
to Enable Case-Insensitive Sort

 0: #include <algorithm>
 1: #include <string>
 2: #include <vector>
 3: #include <iostream>
 4: using namespace std;
 5:
 6: template <typename T>
 7: void DisplayContents (const T& input)
 8: {
 9: for (auto element = input.cbegin();
10: element != input.cend ();
11: ++ element)
12: cout << *element << endl;
13: }
14:
15: int main ()
16: {
17: vector <string> namesInVec{ "jim", "Jack", "Sam", "Anna" };
18:
19: cout << "The names in vector in order of insertion: " << endl;
20: DisplayContents(namesInVec);
21:
22: cout << "Order after case sensitive sort: " << endl;
23: sort(namesInVec.begin(), namesInVec.end());
24: DisplayContents(namesInVec);
25:
26: cout << "Order after sort ignoring case:" << endl;
27: sort(namesInVec.begin(), namesInVec.end(),
28: [](const string& str1, const string& str2) -> bool // lambda
 29: {
 30: string str1LC; // LC = lowercase
 31:

ptg18655082

Lambda Expression for a Binary Predicate 565

22

32: // Assign space
33: str1LC.resize (str1.size ());
34:
35: // Convert every character to the lower case
36: transform(str1.begin(), str1.end(), str1LC.begin(),::tolower);
37:
38: string str2LC;
39: str2LC.resize (str2.size ());
40: transform(str2.begin(), str2.end(), str2LC.begin(),::tolower);
41:
42: return (str1LC < str2LC);
43: } // end of lambda
44:); // end of sort
45:
46: DisplayContents(namesInVec);
47:
48: return 0;
49: }

Output ▼
The names in vector in order of insertion:
jim
Jack
Sam
Anna
Order after case sensitive sort:
Anna
Jack
Sam
jim
Order after sort ignoring case:
Anna
Jack
jim
Sam

Analysis ▼

This demonstrates a genuinely large lambda function spanning Lines 28–43 as the third

parameter of std::sort()! What this lambda function demonstrates is that a lambda

can span multiple statements, the prerequisite being that the return value type is explic-

itly specified as shown in Line 28 (bool). The output demonstrates the content of the

 vector as inserted, where "jim" is before "Jack". The content of the vector after a

sort without a supplied lambda or predicate as shown in Line 23 sorts "jim" after "Sam",

as this is a case-sensitive via std::less<> executed using string::operator<. Finally,

ptg18655082

566 LESSON 22: Lambda Expressions

a case-insensitive sort() that uses a lambda expression to first convert the string to low-

ercase and then compares them is seen in Lines 28–43 that places "jim" after "Jack" as

the user typically would expect.

This extraordinarily large lambda in Listing 22.5 is a lambda
version of Listing 21.6, class CompareStringNoCase, used in
Listing 21.7.

Clearly, this example also demonstrates that a function object
as seen in Listing 21.6 is reusable in multiple std::sort()
statements, if required, and also in other algorithms that need
a binary predicate, while a lambda would need to be rewritten
every time it needs to be used.

So, you need to use lambdas when they’re short, sweet, and
effective.

NOTE

DO DON’T

DO remember that lambda expres-
sions always start with [] or
[state1, state2, ..].

DO remember that unless specified,
state variables supplied within a cap-
ture list [] are not modifiable unless
you use the keyword mutable.

DON’T forget that lambda expres-
sions are unnamed representations
of a class or a struct with
 operator().

DON’T forget to use const correct
parameter types when writing your
lambda expressions [](const
T& value) { // lambda
expression ; }.

DON’T forget to explicitly mention
return type when the lambda expres-
sion includes multiple statements
within the statement block {}.

DON’T choose lambda expressions
over a function object when the
lambda gets extremely long and
spans multiple statements, for these
are redefined in every use and do
not assist code reusability.

ptg18655082

Q&A 567

22

Summary
In this lesson, you learned about an important feature introduced in C++11: lambda

expressions. You saw how lambdas are basically unnamed function objects that can

take parameters, have state, return values, and be multiple lined. You learned how to

use lambdas instead of function objects in STL algorithms, helping find(), sort(), or

transform(). Lambdas make programming in C++ fast and efficient, and you should

try to use them where applicable.

Q&A
 Q Should I always prefer a lambda over a function object?

 A Lambdas that span multiple lines as shown in Listing 22.5 might not help increase

programming efficiency over function objects that are easily reused.

 Q How are the state parameters of a lambda transferred, by value or by
 reference?

 A When a lambda is programmed with a capture list as this:

 [Var1, Var2, ... N](Type& Param1, ...) { …expression ;}

the state parameters Var1 and Var2 are copied (not supplied as a reference). If you

want to have them as reference parameters, you use this syntax:

 [&Var1, &Var2, ... &N](Type& Param1, ...) { ...expression ;}

In this case, you need to exercise caution as modifications to the state variables sup-

plied within the capture list continue outside the lambda.

 Q Can I use the local variables in a function in a lambda?

 A You can pass the local variables in a capture list:

 [Var1, Var2, ... N](Type& Param1, ...) { ...expression ;}

If you want to capture all variables, you use this syntax:

 [=](Type& Param1, ...) { ...expression ;}

ptg18655082

568 LESSON 22: Lambda Expressions

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. How does a compiler recognize the start of a lambda expression?

2. How would you pass state variables to a lambda function?

3. If you need to supply a return value in a lambda, how would you do it?

Exercises
1. Write a lambda binary predicate that would help sort elements in a container in

descending order.

2. Write a lambda function that, when used in for_each(), adds a user-specified

value to that in a container such as vector.

ptg18655082

LESSON 23
STL Algorithms

An important part of the Standard Template Library (STL) is a set of
generic functions, supplied by the header <algorithm>, that help
 manipulate or work with the contents of a container. In this lesson, you
learn the usage of algorithms that reduce boilerplate code in helping you:

 ■ Count, search, find, copy, and remove elements from a container

 ■ Set values in a range of elements to the return value of a generator
function or a predefined constant

 ■ Sort or partition elements in a range

 ■ Insert elements at the correct position in a sorted range

ptg18655082

570 LESSON 23: STL Algorithms

What Are STL Algorithms?
Finding, searching, removing, and counting are some generic algorithmic activities that

find application in a broad range of programs. STL solves these and many other require-

ments in the form of generic template functions that work on containers using iterators.

To use STL algorithms, the programmer first has to include the header <algorithm>.

Although most algorithms work via iterators on containers, not
all algorithms necessarily work on containers and hence not all
algorithms need iterators. Some, such as swap(), simply accept
a pair of values to swap them. Similarly, min() and max() work
directly on values, too.

NOTE

Classification of STL Algorithms
STL algorithms can be broadly classified into two types: non-mutating and mutating

algorithms.

Non-Mutating Algorithms
Algorithms that change neither the order nor the contents of a container are called

non-mutating algorithms. Some of the prominent non-mutating algorithms are shown

in Table 23.1.

TABLE 23.1 Quick Reference of Non-Mutating Algorithms

Algorithm Description

Counting Algorithms

count() Finds all elements in a range whose values match a supplied
value

count_if() Finds all elements in a range whose values satisfy a supplied
condition

Search Algorithms

search() Searches for the first occurrence of a given sequence within a
target range either on the basis of element equality (that is, the
operator ==) or using a specified binary predicate

search_n() Searches a specified target range for the first occurrence of
n number of elements of a given value or those that satisfy a
given predicate

ptg18655082

Classification of STL Algorithms 571

23

Algorithm Description

find() Searches for the first element in the range that matches the
specified value

find_if() Searches for the first element in a range that satisfies the speci-
fied condition

find_end() Searches for the last occurrence of a particular subrange in a
supplied range

find_first_of() Searches for the first occurrence of any element supplied in
one range within a target range; or, in an overloaded version,
searches for the first occurrence of an element that satisfies a
supplied find criterion

adjacent_find() Searches for two elements in a collection that are either equal or
satisfy a supplied condition

Comparison Algorithms

equal() Compares two elements for equality or uses a specified binary
predicate to determine the same

mismatch() Locates the first difference position in two ranges of elements
using a specified binary predicate

lexicographical_
compare()

Compares the elements between two sequences to determine
which is the lesser of the two

Mutating Algorithms
Mutating algorithms are those that change the contents or the order of the sequence they

are operating on. Some of the most useful mutating algorithms supplied by STL are

shown in Table 23.2.

TABLE 23.2 A Quick Reference of Mutating Algorithms

Algorithm Description

Initialization Algorithms

fill() Assigns the specified value to every element in the specified
range.

fill_n() Assigns the specified value to the first n elements in the
specified range.

generate() Assigns the return value of a specified function object to
each element in the supplied range.

generate_n() Assigns the value generated by a function to a specified
count of values in a specified range.

ptg18655082

572 LESSON 23: STL Algorithms

Algorithm Description

Modifying Algorithms

for_each() Performs an operation on every element in a range. When
the specified argument modifies the range, for_each
becomes a mutating algorithm.

transform() Applies a specified unary function on every element in the
specified range.

Copy Algorithms

copy() Copies one range into another.

copy_backward() Copies one range into another, arranging elements in the
destination range in the reverse order.

Removal Algorithms

remove() Removes an element of a specified value from a specified
range.

remove_if() Removes an element that satisfies a specified unary predi-
cate from a specified range.

remove_copy() Copies all elements from a source range to a destination
range, except those of a specified value.

remove_copy_if() Copies all elements from a source range to a destination
range except those that satisfy a specified unary predicate.

unique() Compares adjacent elements in a range and removes the
following duplicates. An overloaded version works using a
binary predicate.

unique_copy() Copies all but adjacent duplicate elements from a specified
source range to a specified destination range.

Replacement Algorithms

replace() Replaces every element in a specified range that matches a
specified value by a replacement value.

replace_if() Replaces every element in a specified range that matches a
specified value by a replacement value.

Sort Algorithms

sort() Sorts elements in a range using a specified sort criterion,
which is a binary predicate that supplies a strict-weak–
ordering. sort might change relative positions of equivalent
elements.

stable_sort() Stable sort is similar to sort but preserves order, too.

partial_sort() Sorts a specified number of elements in a range.

ptg18655082

Usage of STL Algorithms 573

23

Algorithm Description

partial_sort_copy() Copies elements from a specified source range to a destina-
tion range that holds them in a sort order.

Partitioning Algorithms

partition() Given a specified range, splits elements into two sets within
it: those that satisfy a unary predicate come first and the
rest after. Might not maintain the relative order of elements
in a set.

stable_partition() Partitions an input range into two sets as in partition but
maintains relative ordering.

Algorithms That Work on Sorted Containers

binary_search() Used to determine whether an element exists in a sorted col-
lection.

lower_bound() Returns an iterator pointing to the first position where an ele-
ment can potentially be inserted in a sorted collection based
on its value or on a supplied binary predicate.

upper_bound() Returns an iterator pointing to the last position where an
element can potentially be inserted into a sorted collection
based on its value or on a supplied binary predicate.

Usage of STL Algorithms
The usage of the STL algorithms mentioned in Tables 23.1 and 23.2 is best learned in a

hands-on coding session. To that end, practice using the code examples that follow and

start applying them to your programs.

Finding Elements Given a Value or a Condition
Given a container such as a vector, STL algorithms find() and find_if() help you

find an element that matches a value or fulfills a condition, respectively. The usage of

find() follows this pattern:

auto element = find (numsInVec.cbegin(), // Start of range
 numsInVec.cend(), // End of range
 numToFind); // Element to find

// Check if find() succeeded
if (element != numsInVec.cend ())
 cout << "Result: Value found!" << endl;

ptg18655082

574 LESSON 23: STL Algorithms

find_if() is similar and requires you to supply a unary predicate (a unary function that

returns true or false) as the third parameter.

auto evenNum = find_if (numsInVec.cbegin(), // Start of range
 numsInVec.cend(), // End of range

 [](int element) { return (element % 2) == 0; });

if (evenNum != numsInVec.cend())
 cout << "Result: Value found!" << endl;

Thus, both find functions return an iterator, which you need to compare against the

end() or cend() of the container to verify the success of the find operation. If this

check is successful, you can use this iterator further. Listing 23.1 demonstrates the usage

of find() to locate a value in a vector, and find_if() to locate the first even value.

LISTING 23.1 Using find() to Locate an Integer Value in a vector, find_if to Locate
the First Even Number Given an Unary Predicate in a Lambda Expression

 0: #include <iostream>
 1: #include <algorithm>
 2: #include <vector>
 3:
 4: int main()
 5: {
 6: using namespace std;
 7: vector<int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };
 8:
 9: cout << "Enter number to find in collection: ";
10: int numToFind = 0;
11: cin >> numToFind;
12:
13: auto element = find (numsInVec.cbegin (), // Start of range
14: numsInVec.cend (), // End of range
 15: numToFind); // Element to find
 16:
 17: // Check if find succeeded
 18: if (element != numsInVec.cend ())
 19: cout << "Value " << *element << " found!" << endl;
 20: else
 21: cout << "No element contains value " << numToFind << endl;
 22:
 23: cout << "Finding the first even number using find_if: " << endl;
 24:
 25: auto evenNum = find_if (numsInVec.cbegin(), // Start range
 26: numsInVec.cend(), // End range
 27: [](int element) { return (element % 2) == 0; });
 28:

ptg18655082

Usage of STL Algorithms 575

23

29: if (evenNum != numsInVec.cend ())
30: {
31: cout << "Number '" << *evenNum << "' found at position [";
32: cout << distance (numsInVec.cbegin (), evenNum) << "]" << endl;
33: }
34:
35: return 0;
36: }

Output ▼
Enter number to find in collection: 42
Value 42 found!
Finding the first even number using find_if:
Number '0' found at position [1]

Next run:

Enter number to find in collection: 2016
No element contains value 2016
Finding the first even number using find_if:
Number '0' found at position [1]

Analysis ▼

main() starts with initializing a vector of integers to sample values in Line 7. You use

find() in Lines 13–15 to find the number entered by the user. The use of find_if()

to locate the first even number given the range is shown in Lines 25–27. Line 27 is the

unary predicate supplied to find_if() as a lambda expression. This lambda expres-

sion returns true when element is divisible by 2, thereby indicating to the algorithm

that the element satisfies the criteria being checked for. Note the usage of algorithm

std::distance() in Line 32 to find the relative position of an element found against

the start of the container.

Note how Listing 23.1 always checks the iterator returned by
find() or find_if() for validity against cend(). This check
should never be skipped, as it indicates the success of the
find() operation, which should not be taken for granted.

CAUTION

ptg18655082

576 LESSON 23: STL Algorithms

Counting Elements Given a Value or a Condition
std::count() and count_if() are algorithms that help in counting elements given

a range. std::count() helps you count the number of elements that match a value

(tested via equality operator==):

size_t numZeroes = count (numsInVec.cbegin (), numsInVec.cend (), 0);
cout << "Number of instances of '0': " << numZeroes << endl;

std::count_if() helps you count the number of elements that fulfill a unary predicate

supplied as a parameter (which can be a function object or a lambda expression):

// Unary predicate:
template <typename elementType>
bool IsEven (const elementType& number)
{
 return ((number % 2) == 0); // true, if even
}
...
// Use the count_if algorithm with the unary predicate IsEven:
size_t numEvenNums = count_if (numsInVec.cbegin (),

 numsInVec.cend (), IsEven <int>);
cout << "Number of even elements: " << numEvenNums << endl;

The code in Listing 23.2 demonstrates the usage of these functions.

LISTING 23.2 Demonstrates the Usage of std::count() to Determine Number of
Elements with a Value and count_if() to Determine Number of Elements That Fulfill
a Condition

 0: #include <algorithm>
 1: #include <vector>
 2: #include <iostream>
 3:
 4: // unary predicate for *_if functions
 5: template <typename elementType>
 6: bool IsEven (const elementType& number)
 7: {
 8: return ((number % 2) == 0); // true, if even
 9: }
10:
11: int main ()
12: {
13: using namespace std;
14: vector <int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };
15:
16: size_t numZeroes = count (numsInVec.cbegin(), numsInVec.cend(), 0);
17: cout << "Number of instances of '0': " << numZeroes << endl << endl;

ptg18655082

Usage of STL Algorithms 577

23

18:
19: size_t numEvenNums = count_if (numsInVec.cbegin(),
20: numsInVec.cend(), IsEven <int>);
 21:
 22: cout << "Number of even elements: " << numEvenNums << endl;
 23: cout << "Number of odd elements: ";
 24: cout << numsInVec.size () - numEvenNums << endl;
 25:
 26: return 0;
 27: }

Output ▼
Number of instances of '0': 1
Number of even elements: 2
Number of odd elements: 4

Analysis ▼

Line 16 uses count() to determine the number of instances of 0 in the vector.

Similarly, Line 19 uses count_if() to determine the number of even elements in the

vector. Note the third parameter, which is a unary predicate IsEven() defined in Lines

5–9. The number of elements in the vector that are odd is calculated by subtracting

the return of count_if() with the total number of elements contained in the vector

returned by size().

Listing 23.2 uses predicate function IsEven() in count_if(),
whereas Listing 23.1 used a lambda function doing the work of
IsEven() in find_if().

The lambda version saves lines of code, but you should remem-
ber that if the two samples were merged, IsEven() could be
used in both find_if() and count_if(), increasing opportuni-
ties for reuse.

NOTE

Searching for an Element or a Range in a Collection
Listing 23.1 demonstrated how you can find an element in a container. Sometimes, you

need to find a range of values or a pattern. In such situations, you should use search()

or search_n(). search() can be used to check if one range is contained in another:

auto range = search (numsInVec.cbegin(), // Start range to search in
 numsInVec.cend(), // End range to search in
 numsInList.cbegin(), // start range to search
 numsInList.cend()); // End range to search for

ptg18655082

578 LESSON 23: STL Algorithms

search_n() can be used to check if n instances of a value placed consequently are to be

found in a container:

auto partialRange = search_n (numsInVec.cbegin(), // Start range
 numsInVec.cend(), // End range
 3, // num items to be searched for
 9); // value to search for

Both functions return an iterator to the first instance of the pattern found, and this itera-

tor needs to be checked against end() before it can be used. Listing 23.3 demonstrates

the usage of search() and search_n().

LISTING 23.3 Finding a Range in a Collection Using search() and search_n()

 0: #include <algorithm>
 1: #include <vector>
 2: #include <list>
 3: #include <iostream>
 4: using namespace std;
 5:
 6: template <typename T>
 7: void DisplayContents (const T& container)
 8: {
 9: for(auto element = container.cbegin();
10: element != container.cend();
11: ++ element)
12: cout << *element << ' ';
13:
14: cout << endl;
15: }
16:
17: int main()
18: {
19: vector <int> numsInVec{ 2017, 0, -1, 42, 10101, 25, 9, 9, 9 };
20: list <int> numsInList{ -1, 42, 10101 };
21:
22: cout << "The contents of the sample vector are: " << endl;
23: DisplayContents (numsInVec);
24:
25: cout << "The contents of the sample list are: " << endl;
26: DisplayContents (numsInList);
27:
28: cout << "search() for the contents of list in vector:" << endl;
29: auto range = search (numsInVec.cbegin(), // Start range to search in
30: numsInVec.cend(), // End range to search in
 31: numsInList.cbegin(), // Start range to search for
 32: numsInList.cend()); // End range to search for
 33:
 34: // Check if search found a match

ptg18655082

Usage of STL Algorithms 579

23

35: if (range != numsInVec.end())
36: {
37: cout << "Sequence in list found in vector at position: ";
38: cout << distance (numsInVec.cbegin(), range) << endl;
39: }
40:
41: cout << "Searching {9, 9, 9} in vector using search_n(): " << endl;
42: auto partialRange = search_n (numsInVec.cbegin(), // Start range
43: numsInVec.cend(), // End range
 44: 3, // Count of item to be searched for
 45: 9); // Item to search for
 46:
 47: if (partialRange != numsInVec.end())
 48: {
 49: cout << "Sequence {9, 9, 9} found in vector at position: ";
 50: cout << distance (numsInVec.cbegin(), partialRange) << endl;
 51: }
 52:
 53: return 0;
 54: }

Output ▼
The contents of the sample vector are:
2017 0 -1 42 10101 25 9 9 9
The contents of the sample list are:
-1 42 10101
search() for the contents of list in vector:
Sequence in list found in vector at position: 2
Searching {9, 9, 9} in vector using search_n():
Sequence {9, 9, 9} found in vector at position: 6

Analysis ▼

The sample starts with two sample containers, a vector and a list that are initially popu-

lated with sample integer values. search() is used to find the presence of the contents

of the list in vector, as shown in Line 29. As you want to search in the entire vector

for the contents of the entire list, you supply a range as returned by the iterators corre-

sponding to cbegin() and cend() member methods of the two container classes. This

actually demonstrates how well iterators connect the algorithms to the containers. The

physical characteristics of the containers that supply those iterators are of no significance

to algorithms, which search the contents of a list in a vector seamlessly as they only

work with iterators. search_n() is used in Line 42 to find the first occurrence of series

{9, 9, 9}in the vector.

ptg18655082

580 LESSON 23: STL Algorithms

Initializing Elements in a Container to a
Specific Value
fill() and fill_n() are the STL algorithms that help set the contents of a given

range to a specified value. fill() is used to overwrite the elements in a range given the

bounds of the range and the value to be inserted:

vector <int> numsInVec (3);

// fill all elements in the container with value 9
fill (numsInVec.begin (), numsInVec.end (), 9);

As the name suggests, fill_n() resets a specified n number of values. It needs a

 starting position, a count, and the value to fill:

fill_n (numsInVec.begin () + 3, /*count*/ 3, /*fill value*/ -9);

Listing 23.4 demonstrates how these algorithms make initializing elements in a

vector<int> easy.

LISTING 23.4 Using fill() and fill_n() to Set Initial Values in a Container

 0: #include <algorithm>
 1: #include <vector>
 2: #include <iostream>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: // Initialize a sample vector with 3 elements
 9: vector <int> numsInVec (3);
10:
11: // fill all elements in the container with value 9
12: fill (numsInVec.begin (), numsInVec.end (), 9);
13:
14: // Increase the size of the vector to hold 6 elements
15: numsInVec.resize (6);
16:
17: // Fill the three elements starting at offset position 3 with value -9
18: fill_n (numsInVec.begin () + 3, 3, -9);
19:
20: cout << "Contents of the vector are: " << endl;

ptg18655082

Usage of STL Algorithms 581

23

21: for (size_t index = 0; index < numsInVec.size (); ++ index)
22: {
23: cout << "Element [" << index << "] = ";
24: cout << numsInVec [index] << endl;
25: }
26:
27: return 0;
28: }

Output ▼
Contents of the vector are:
Element [0] = 9
Element [1] = 9
Element [2] = 9
Element [3] = -9
Element [4] = -9
Element [5] = -9

Analysis ▼

Listing 23.4 uses the fill() and fill_n() functions to initialize the contents of the

container to two separate sets of values, as shown in Lines 12 and 18. Note the usage of

the resize() function in Line 15 where the vector is asked to create space for a total

number of 6 elements. The three new elements are later filled with the value -9 using

fill_n() in Line 18. The fill() algorithm works on a complete range, whereas

fill_n() has the potential to work on a partial range.

You may have noticed that code in Listings 23.1, 23.2, and 23.3
use the constant versions of the iterators; that is, cbegin() and
cend() are used in defining the bounds of elements accessed in
a container. However, Listing 23.4 is a deviation in that it uses
begin() and end(). This is simply because the purpose of the
algorithm fill() is to modify the elements in the container, and
this cannot be achieved using constant iterators that don’t allow
changes to the element they point to.

Using constant iterators is a good practice, and you may deviate
from it when you are certain about the need to modify the ele-
ments they point to.

TIP

ptg18655082

582 LESSON 23: STL Algorithms

Using std::generate() to Initialize Elements
to a Value Generated at Runtime
Just as fill() and fill_n() functions fill the collection with a specific value, STL

algorithms, such as generate() and generate_n(), are used to initialize collections

using values returned by a unary function.

You can use generate() to fill a range using the return value of a generator function:

generate (numsInVec.begin (), numsInVec.end (), // range
rand); // generator function

generate_n() is similar to generate() except that you supply the number of elements

to be assigned instead of the closing bound of a range:

generate_n (numsInList.begin (), 5, rand);

Thus, you can use these two algorithms to initialize the contents of a container to the

contents of a file, for example, or to random values, as shown in Listing 23.5.

LISTING 23.5 Using generate() and generate_n() to Initialize Collections to
Random Values

 0: #include <algorithm>
 1: #include <vector>
 2: #include <list>
 3: #include <iostream>
 4: #include <ctime>
 5:
 6: int main ()
 7: {
 8: using namespace std;
 9: srand(time(NULL)); // seed random generator using time
10:
11: vector <int> numsInVec (5);
12: generate (numsInVec.begin (), numsInVec.end (), // range
13: rand); // generator function
 14:
 15: cout << "Elements in the vector are: ";
 16: for (size_t index = 0; index < numsInVec.size (); ++ index)
 17: cout << numsInVec [index] << " ";
 18: cout << endl;
 19:
 20: list <int> numsInList (5);
 21: generate_n (numsInList.begin (), 3, rand);
 22:
 23: cout << "Elements in the list are: ";
 24: for (auto element = numsInList.begin();

ptg18655082

Usage of STL Algorithms 583

23

25: element != numsInList.end();
26: ++ element)
27: cout << *element << ' ';
28:
29: return 0;
30: }

Output ▼
Elements in the vector are: 41 18467 6334 26500 19169
Elements in the list are: 15724 11478 29358 0 0

Analysis ▼

The usage of a random number generator seeded using the current time as seen in Line

9 means that the output is likely to be different on every run of the application. Listing

23.5 uses the generate() in Line 12 to populate all elements in the vector and uses

generate_n() in Line 21 to populate the first three elements in the list with random

values supplied by the generator function rand(). Note that the generate() function

accepts a range as an input and consequently calls the specified function object rand()

for every element in the range. generate_n(), in comparison, accepts only the start-

ing position. It then invokes the specified function object‚ rand(), the number of times

specified by the count parameter to overwrite the contents of that many elements. The

elements in the container that are beyond the specified offset go untouched.

Processing Elements in a Range Using for_each()
The for_each() algorithm applies a specified unary function object to every element in

the supplied range. The usage of for_each() is

fnObjType retValue = for_each (start_of_range,
 end_of_range,
 unaryFunctionObject);

This unary function object can also be a lambda expression that accepts one parameter.

The return value indicates that for_each() returns the function object (also called func-

tor) used to process every element in the supplied range. The implication of this speci-

fication is that using a struct or a class as a function object can help in storing state

information, which you can later query when for_each() is done. This is demonstrated

by Listing 23.6, which uses the function object to display elements in a range and also

uses it to count the number of elements displayed.

ptg18655082

584 LESSON 23: STL Algorithms

LISTING 23.6 Displaying the Contents of Sequences Using for_each()

 0: #include <algorithm>
 1: #include <iostream>
 2: #include <vector>
 3: #include <string>
 4: using namespace std;
 5:
 6: template <typename elementType>
 7: struct DisplayElementKeepcount
 8: {
 9: int count;
10: DisplayElementKeepcount (): count (0) {}
11:
12: void operator () (const elementType& element)
13: {
14: ++ count;
15: cout << element << ' ';
16: }
17: };
18:
19: int main ()
20: {
21: vector <int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };
22:
23: cout << "Elements in vector are: " << endl;
24: DisplayElementKeepcount<int> functor =
25: for_each (numsInVec.cbegin(), // Start of range
26: numsInVec.cend (), // End of range
 27: DisplayElementKeepcount<int> ());// functor
 28: cout << endl;
 29:
 30: // Use the state stored in the return value of for_each!
 31: cout << "'" << functor.count << "' elements displayed" << endl;
 32:
 33: string str ("for_each and strings!");
 34: cout << "Sample string: " << str << endl;
 35:
 36: cout << "Characters displayed using lambda:" << endl;
 37: int numChars = 0;
 38: for_each (str.cbegin(),
 39: str.cend (),
 40: [&numChars](char c) { cout << c << ' '; ++numChars; });
 41:
 42: cout << endl;
 43: cout << "'" << numChars << "' characters displayed" << endl;
 44:
 45: return 0;
 46: }

ptg18655082

Usage of STL Algorithms 585

23

Output ▼
Elements in vector are:
2017 0 -1 42 10101 25
'6' elements displayed
Sample string: for_each and strings!
Characters displayed using lambda:
f o r _ e a c h a n d s t r i n g s !
'21' characters displayed

Analysis ▼

The code sample demonstrates the utility of for_each() invoked in Lines 25 and 38,

and the function object functor returned by for_each() that is programmed to hold

the number of times it was invoked in member count. The code features two sample

ranges, one contained in a vector of integers, numsInVec, and the other a std::string

object str. The first call to for_each() uses DisplayElementKeepCount as

the unary predicate, and the second uses a lambda expression. for_each() invokes

 operator() for every element in the supplied range, which in turn prints the element

on the screen and increments an internal counter. The function object is returned when

for_each() is done, and the member count tells the number of times the object was

used. This facility of storing information (or state) in the object that is returned by the

algorithm can be useful in practical programming situations. for_each() in Line 38

does exactly the same as its previous counterpart in Line 25 for a std::string, using a

lambda expression instead of a function object.

Performing Transformations on a Range Using
std::transform()
std::for_each() and std::transform() are similar in that they both invoke a

function object for every element in a source range. However, std::transform() has

two versions. The first version accepts a unary function and is popularly used to convert

a string to upper- or lowercase using functions toupper() or tolower():

string str ("THIS is a TEst string!");
transform (str.cbegin(), // start source range

str.cend(), // end source range
strLowerCaseCopy.begin(), // start destination range
::tolower); // unary function

ptg18655082

586 LESSON 23: STL Algorithms

The second version accepts a binary function allowing transform() to process a pair

of elements taken from two different ranges:

// sum elements from two vectors and store result in a deque
transform (numsInVec1.cbegin(), // start of source range 1

 numsInVec1.cend(), // end of source range 1
 numsInVec2.cbegin(), // start of source range 2

 sumInDeque.begin(), // store result in a deque
 plus<int>()); // binary function plus

Both versions of the transform() always assign the result of the specified transforma-

tion function to a supplied destination range, unlike for_each(), which works on only a

single range. The usage of std::transform() is demonstrated in Listing 23.7.

LISTING 23.7 Using std::transform() with Unary and Binary Functions

 0: #include <algorithm>
 1: #include <string>
 2: #include <vector>
 3: #include <deque>
 4: #include <iostream>
 5: #include <functional>
 6:
 7: int main()
 8: {
 9: using namespace std;
10:
11: string str ("THIS is a TEst string!");
12: cout << "The sample string is: " << str << endl;
13:
14: string strLowerCaseCopy;
15: strLowerCaseCopy.resize (str.size());
16:
17: transform (str.cbegin(), // start source range
18: str.cend(), // end source range
19: strLowerCaseCopy.begin(), // start dest range
20: ::tolower); // unary function
 21:
 22: cout << "Result of 'transform' on the string with 'tolower':" << endl;
 23: cout << "\"" << strLowerCaseCopy << "\"" << endl << endl;
 24:
 25: // Two sample vectors of integers...
 26: vector<int> numsInVec1{ 2017, 0, -1, 42, 10101, 25 };
 27: vector<int> numsInVec2 (numsInVec1.size(), -1);
 28:
 29: // A destination range for holding the result of addition
 30: deque <int> sumInDeque (numsInVec1.size());
 31:

ptg18655082

587

23

Usage of STL Algorithms

32: transform (numsInVec1.cbegin(), // start of source range 1
33: numsInVec1.cend(), // end of source range 1
34: numsInVec2.cbegin(), // start of source range 2
35: sumInDeque.begin(), // start of dest range
36: plus<int>()); // binary function
 37:
 38: cout << "Result of 'transform' using binary function 'plus': " << endl;
 39: cout << "Index Vector1 + Vector2 = Result (in Deque)" << endl;
 40: for (size_t index = 0; index < numsInVec1.size(); ++ index)
 41: {
 42: cout << index << " \t " << numsInVec1 [index] << "\t+ ";
 43: cout << numsInVec2 [index] << " \t = ";
 44: cout << sumInDeque [index] << endl;
 45: }
 46:
 47: return 0;
 48: }

Output ▼
The sample string is: THIS is a TEst string!
Result of 'transform' on the string with 'tolower':
"this is a test string!"

Result of 'transform' using binary function 'plus':
Index Vector1 + Vector2 = Result (in Deque)
0 2017 + -1 = 2016
1 0 + -1 = -1
2 -1 + -1 = -2
3 42 + -1 = 41
4 10101 + -1 = 10100
5 25 + -1 = 24

Analysis ▼

The sample demonstrates both versions of std::transform(), one that works on a

single range using a unary function tolower(), as shown in Line 20, and another that

works on two ranges and uses a binary function plus(), as shown in Line 36. The first

changes the case of a string, character by character, to lowercase. If you use toupper()

instead of tolower(), you effect a case conversion to uppercase. The other version of

std::transform(), shown in Lines 32–36, acts on elements taken from two input

ranges (two vectors in this case) and uses a binary predicate in the form of the STL func-

tion plus() (supplied by the header <functional>) to add them. std::transform()

takes one pair at a time, supplies it to the binary function plus, and assigns the result

to an element in the destination range—one that happens to belong to an std::deque.

ptg18655082

588 LESSON 23: STL Algorithms

Note that the change in container used to hold the result is purely for demonstration pur-

poses. It only displays how well iterators are used to abstract containers and their imple-

mentation from STL algorithms; transform(), being an algorithm, deals with ranges

and really does not need to know details on the containers that implement these ranges.

So, the input ranges happened to be in vector, and the output ranges happened to be a

deque, and it all works fine—so long as the bounds that define the range (supplied as

input parameters to transform) are valid.

Copy and Remove Operations
STL supplies three prominent copy functions: copy(), copy_if(), and copy_

backward(). copy() can assign the contents of a source range into a destination range

in the forward direction:

auto lastElement = copy (numsInList.cbegin(), // start source range
 numsInList.cend(), // end source range
 numsInVec.begin()); // start dest range

copy_if() is an addition to the standard library starting with C++11 and copies an

 element when a unary predicate supplied by you returns true:

// copy odd numbers from list into vector
copy_if (numsInList.cbegin(), numsInList.cend(),

 lastElement, // copy position in dest range
 [](int element){return ((element % 2) == 1);});

copy_backward() assigns the contents to the destination range in the backward

 direction:

copy_backward (numsInList.cbegin (),
 numsInList.cend (),
 numsInVec.end ());

remove(), on the other hand, deletes elements in a container that matches a specified

value:

// Remove all instances of '0', resize vector using erase()
auto newEnd = remove (numsInVec.begin (), numsInVec.end (), 0);
numsInVec.erase (newEnd, numsInVec.end ());

remove_if() uses a unary predicate and removes from the container those elements for

which the predicate evaluates to true:

// Remove all odd numbers from the vector using remove_if
newEnd = remove_if (numsInVec.begin (), numsInVec.end (),

[](int num) {return ((num % 2) == 1);}); //predicate

numsInVec.erase (newEnd, numsInVec.end ()); // resizing

ptg18655082

Usage of STL Algorithms 589

23

Listing 23.8 demonstrates the usage of the copy and removal functions.

LISTING 23.8 A Sample That Demonstrates copy(), copy_if(), remove(), and
remove_if() to Copy a list into a vector, Remove 0s and Even Numbers

 0: #include <algorithm>
 1: #include <vector>
 2: #include <list>
 3: #include <iostream>
 4: using namespace std;
 5:
 6: template <typename T>
 7: void DisplayContents(const T& container)
 8: {
 9: for (auto element = container.cbegin();
10: element != container.cend();
11: ++ element)
12: cout << *element << ' ';
13:
14: cout << "| Number of elements: " << container.size() << endl;
15: }
16:
17: int main()
18: {
19: list <int> numsInList{ 2017, 0, -1, 42, 10101, 25 };
20:
21: cout << "Source (list) contains:" << endl;
22: DisplayContents(numsInList);
23:
24: // Initialize vector to hold 2x elements as the list
25: vector <int> numsInVec (numsInList.size() * 2);
26:
27: auto lastElement = copy (numsInList.cbegin(), // start source range
28: numsInList.cend(), // end source range
29: numsInVec.begin());// start dest range
30:
31: // copy odd numbers from list into vector
32: copy_if (numsInList.cbegin(), numsInList.cend(),
33: lastElement,
 34: [](int element){return ((element % 2) != 0);});
 35:
 36: cout << "Destination (vector) after copy and copy_if:" << endl;
 37: DisplayContents(numsInVec);
 38:
 39: // Remove all instances of '0', resize vector using erase()
 40: auto newEnd = remove (numsInVec.begin(), numsInVec.end(), 0);
 41: numsInVec.erase (newEnd, numsInVec.end());
 42:
 43: // Remove all odd numbers from the vector using remove_if
 44: newEnd = remove_if (numsInVec.begin(), numsInVec.end(),
 45: [](int element) {return ((element % 2) != 0);});

ptg18655082

590 LESSON 23: STL Algorithms

46: numsInVec.erase (newEnd , numsInVec.end()); // resizing
47:
48: cout << "Destination (vector) after remove, remove_if, erase:" << endl;
49: DisplayContents(numsInVec);
50:
5 1: return 0;
 52: }

Output ▼
Source (list) contains:
2017 0 -1 42 10101 25 | Number of elements: 6
Destination (vector) after copy and copy_if:
2017 0 -1 42 10101 25 2017 -1 10101 25 0 0 | Number of elements: 12
Destination (vector) after remove, remove_if, erase:
42 | Number of elements: 1

Analysis ▼

The usage of copy() is shown in Line 27, where you copy the contents of the list into

the vector. copy_if() is used in Line 32 and copies all but even numbers from the

source range numsInList into the destination range numsInVec starting at the itera-

tor position lastElement returned by copy(). remove()in Line 40 is used to rid

 numsInVec of all instances of 0. remove_if()in Line 44 removes all odd numbers.

 Listing 23.8 demonstrates that both remove() and remove_if()
return an iterator that points to the new end of the container.
Yet the container numsInVec has not been resized yet. Elements
have been deleted by the remove algorithms and other ele-
ments have been shifted forward, but the size() has remained
unaltered, meaning there are values at the end of the vector. To
resize the container (and this is important, else it has unwanted
values at the end), you need to use the iterator returned by
remove() or remove_if() in a subsequent call to erase(), as
shown in Lines 41 and 46.

CAUTION

Replacing Values and Replacing Element
Given a Condition
replace() and replace_if() are the STL algorithms that can replace elements in a

collection that are equivalent to a supplied value or satisfy a given condition, respectively.

replace() replaces elements based on the return value of the comparison operator (==):

cout << "Using 'std::replace' to replace value 5 by 8" << endl;
replace (numsInVec.begin (), numsInVec.end (), 5, 8);

ptg18655082

Usage of STL Algorithms 591

23

replace_if() expects a user-specified unary predicate that returns true for every value

that needs to be replaced:

cout << "Using 'std::replace_if' to replace even values by -1" << endl;
replace_if (numsInVec.begin (), numsInVec.end (),
 [](int element) {return ((element % 2) == 0); }, -1);

The usage of these functions is demonstrated by Listing 23.9.

LISTING 23.9 Using replace() and replace_if() to Replace Values in a Specified
Range

 0: #include <iostream>
 1: #include <algorithm>
 2: #include <vector>
 3: using namespace std;
 4:
 5: template <typename T>
 6: void DisplayContents(const T& container)
 7: {
 8: for (auto element = container.cbegin();
 9: element != container.cend();
10: ++ element)
11: cout << *element << ' ';
12:
13: cout << "| Number of elements: " << container.size() << endl;
14: }
15:
16: int main ()
17: {
18: vector <int> numsInVec (6);
19:
20: // fill first 3 elements with value 8, last 3 with 5
21: fill (numsInVec.begin (), numsInVec.begin () + 3, 8);
22: fill_n (numsInVec.begin () + 3, 3, 5);
23:
24: // shuffle the container
25: random_shuffle (numsInVec.begin (), numsInVec.end ());
26:
27: cout << "The initial contents of vector: " << endl;
28: DisplayContents(numsInVec);
29:
30: cout << endl << "'std::replace' value 5 by 8" << endl;
31: replace (numsInVec.begin (), numsInVec.end (), 5, 8);
32:
33: cout << "'std::replace_if' even values by -1" << endl;
34: replace_if (numsInVec.begin (), numsInVec.end (),
35: [](int element) {return ((element % 2) == 0); }, -1);
36:

ptg18655082

592 LESSON 23: STL Algorithms

37: cout << endl << "Vector after replacements:" << endl;
38: DisplayContents(numsInVec);
39:
40: return 0;
41: }

Output ▼
The initial contents of vector:
5 8 5 8 8 5 | Number of elements: 6

'std::replace' value 5 by 8
'std::replace_if' even values by -1

Vector after replacements:
-1 -1 -1 -1 -1 -1 | Number of elements: 6

Analysis ▼

The sample fills a vector<int> with sample values and then shuffles it using the STL

algorithm std::random_shuffle() as shown in Line 25. Line 31 demonstrates the

usage of replace() to replace all 5s by 8s. Hence, when replace_if(), in Line 34,

replaces all even numbers with –1, the end result is that the collection has six elements,

all containing an identical value of –1, as shown in the output.

Sorting and Searching in a Sorted Collection
and Erasing Duplicates
Sorting and searching a sorted range (for sake of performance) are requirements that

come up in practical applications. Very often you have an array of information that needs

to be sorted, say for presentation’s sake. You can use STL’s sort() algorithm to sort a

container:

sort (numsInVec.begin (), numsInVec.end ()); // ascending order

This version of sort() uses std::less<> as a binary predicate that uses operator<

implemented by the type in the vector. You can supply your own predicate to change the

sort order using an overloaded version:

sort (numsInVec.begin (), numsInVec.end (),
 [](int lhs, int rhs) {return (lhs > rhs);}); // descending order

ptg18655082

Usage of STL Algorithms 593

23

Similarly, duplicates need to be deleted before the collection is displayed. To remove

adjacently placed repeating values, use algorithm unique():

auto newEnd = unique (numsInVec.begin (), numsInVec.end ());
numsInVec.erase (newEnd, numsInVec.end ()); // to resize

To search fast, STL provides you with binary_search() that is effective only on a

sorted container:

bool elementFound = binary_search (numsInVec.begin (), numsInVec.end (), 2011);

if (elementFound)
 cout << "Element found in the vector!" << endl;

Listing 23.10 demonstrates STL algorithms std::sort() that can sort a range,

std::binary_search() that can search a sorted range, and std::unique() that

elimi nates duplicate neighboring elements (that become neighbors after a sort()

 operation).

LISTING 23.10 Using sort(), binary_search(), and unique()

 0: #include <algorithm>
 1: #include <vector>
 2: #include <string>
 3: #include <iostream>
 4: using namespace std;
 5:
 6: template <typename T>
 7: void DisplayContents(const T& container)
 8: {
 9: for (auto element = container.cbegin();
10: element != container.cend();
11: ++ element)
12: cout << *element << endl;
13: }
14:
15: int main ()
16: {
17: vector<string> vecNames{"John", "jack", "sean", "Anna"};
18:
19: // insert a duplicate
20: vecNames.push_back ("jack");
21:
22: cout << "The initial contents of the vector are: " << endl;
23: DisplayContents(vecNames);
24:
25: cout << "The sorted vector contains names in the order:" << endl;
26: sort (vecNames.begin (), vecNames.end ());

ptg18655082

594 LESSON 23: STL Algorithms

27: DisplayContents(vecNames);
28:
29: cout << "Searching for \"John\" using 'binary_search':" << endl;
30: bool elementFound = binary_search (vecNames.begin (), vecNames.end (),
31: "John");
32:
33: if (elementFound)
34: cout << "Result: \"John\" was found in the vector!" << endl;
35: else
36: cout << "Element not found " << endl;
37:
38: // Erase adjacent duplicates
39: auto newEnd = unique (vecNames.begin (), vecNames.end ());
40: vecNames.erase (newEnd, vecNames.end ());
41:
42: cout << "The contents of the vector after using 'unique':" << endl;
43: DisplayContents(vecNames);
44:
45:_ return 0;
46: }

Output ▼
The initial contents of the vector are:
John
jack
sean
Anna
jack
The sorted vector contains names in the order:
Anna
John
jack
jack
sean
Searching for "John" using 'binary_search':
Result: "John" was found in the vector!
The contents of the vector after using 'unique':
Anna
John
jack
sean

Analysis ▼

The preceding code first sorts the sample vector, vecNames in Line 26, before using

binary_search() in Line 30 to find "John" in it. Similarly, std::unique() is used

in Line 39 to delete the second occurrence of an adjacent duplicate. Note that unique(),

ptg18655082

Usage of STL Algorithms 595

23

like remove(), does not resize the container. It results in values being shifted but not

a reduction in the total number of elements. To ensure that you don’t have unwanted

or unknown values at the tail end of the container, always follow a call to unique()

with vector::erase() using the iterator returned by unique(), as demonstrated by

Line 40.

Algorithms such as binary_search() are effective only in sorted
containers. Use of this algorithm on an unsorted vector can have
undesirable consequences.

CAUTION

The usage of stable_sort() is the same as that of sort(),
which you saw earlier. stable_sort() ensures that the relative
order of the sorted elements is maintained. Maintaining relative
order comes at the cost of performance—a factor that needs to
be kept in mind, especially if the relative ordering of elements is
not essential.

NOTE

Partitioning a Range
std::partition() helps partition an input range into two sections: one that satisfies a

unary predicate and another that doesn’t:

bool IsEven (const int& num) // unary predicate
{
 return ((num % 2) == 0);
}
...
partition (numsInVec.begin(), numsInVec.end(), IsEven);

std::partition(), however, does not guarantee the relative order of elements within

each partition. To maintain relative order, when that is important, you should use

std::stable_partition():

stable_partition (numsInVec.begin(), numsInVec.end(), IsEven);

Listing 23.11 demonstrates the usage of these algorithms.

LISTING 23.11 Using partition() and stable_partition() to Partition a Range of
Integers into Even and Odd Values

 0: #include <algorithm>
 1: #include <vector>
 2: #include <iostream>

ptg18655082

596 LESSON 23: STL Algorithms

 3: using namespace std;
 4:
 5: bool IsEven (const int& num) // unary predicate
 6: {
 7: return ((num % 2) == 0);
 8: }
 9:
10: template <typename T>
11: void DisplayContents(const T& container)
12: {
13: for (auto element = container.cbegin();
14: element != container.cend();
15: ++ element)
16: cout << *element << ' ';
17:
18: cout << "| Number of elements: " << container.size() << endl;
19: }
20:
21: int main ()
22: {
23: vector <int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };
24:
25: cout << "The initial contents: " << endl;
26: DisplayContents(numsInVec);
27:
28: vector <int> vecCopy (numsInVec);
29:
30: cout << "The effect of using partition():" << endl;
31: partition (numsInVec.begin (), numsInVec.end (), IsEven);
32: DisplayContents(numsInVec);
33:
34: cout << "The effect of using stable_partition():" << endl;
35: stable_partition (vecCopy.begin (), vecCopy.end (), IsEven);
36: DisplayContents(vecCopy);
37:
38: return 0;
39: }

Output ▼
The initial contents:
2017 0 -1 42 10101 25 | Number of elements: 6
The effect of using partition():
42 0 -1 2017 10101 25 | Number of elements: 6
The effect of using stable_partition():
0 42 2017 -1 10101 25 | Number of elements: 6

ptg18655082

Usage of STL Algorithms 597

23

Analysis ▼

The code partitions a range of integers, as contained inside vector numsInVec, into even

and odd values. This partitioning is first done using std::partition(), as shown in

Line 31, and is repeated on a copy using stable_partition() in Line 35. For the sake

of being able to compare, you copy the sample range numsInVec into vecCopy, the for-

mer partitioned using partition(), and the latter using stable_partition(). The

effect of using stable_partition() rather than partition is apparent in the output.

 stable_partition() maintains the relative order of elements in each partition. Note

that maintaining this order comes at the price of performance that might be small, as in

this case, or significant depending on the type of object contained in the range.

stable_partition() is slower than partition(), and therefore
you should use it only when the relative order of elements in the
container is important.

NOTE

Inserting Elements in a Sorted Collection
It is important that elements inserted in a sorted collection be inserted at the correct posi-

tions. STL supplies functions, such as lower_bound() and upper_bound(), to assist

in meeting that need:

auto minInsertPos = lower_bound (names.begin(), names.end(),
 "Brad Pitt");

// alternatively:
auto maxInsertPos = upper_bound (names.begin(), names.end(),

 "Brad Pitt");

Hence, lower_bound() and upper_bound() return iterators pointing to the minimal

and the maximal positions in a sorted range where an element can be inserted without

breaking the order of the sort.

Listing 23.12 demonstrates the usage of lower_bound() in inserting an element at the

minimal position in a sorted list of names.

LISTING 23.12 Using lower_bound() and upper_bound() to Insert in a Sorted
Collection

 0: #include <algorithm>
 1: #include <list>
 2: #include <string>
 3: #include <iostream>
 4: using namespace std;
 5:

ptg18655082

598 LESSON 23: STL Algorithms

 6: template <typename T>
 7: void DisplayContents(const T& container)
 8: {
 9: for (auto element = container.cbegin();
10: element != container.cend();
11: ++ element)
12: cout << *element << endl;
13: }
14:
15: int main ()
16: {
17: list<string> names{ "John", "Brad", "jack", "sean", "Anna" };
18:
19: cout << "Sorted contents of the list are: " << endl;
20: names.sort ();
21: DisplayContents(names);
22:
23: cout << "Lowest index where \"Brad\" can be inserted is: ";
24: auto minPos = lower_bound (names.begin (), names.end (), "Brad");
25: cout << distance (names.begin (), minPos) << endl;
26:
27: cout << "The highest index where \"Brad\" can be inserted is: ";
28: auto maxPos = upper_bound (names.begin (), names.end (), "Brad");
29: cout << distance (names.begin (), maxPos) << endl;
30:
31: cout << endl;
32:
33: cout << "List after inserting Brad in sorted order: " << endl;
34: names.insert (minPos, "Brad");
35: DisplayContents(names);
36:
37: return 0;
38: }

Output ▼
Sorted contents of the list are:
Anna
Brad
John
jack
sean
Lowest index where "Brad" can be inserted is: 1
The highest index where "Brad" can be inserted is: 2

List after inserting Brad in sorted order:
Anna
Brad
Brad
John
jack
sean

ptg18655082

Summary 599

23

Analysis ▼

An element can be inserted into a sorted collection at two potential positions: one is

returned by lower_bound() and is the lowest (the closest to the beginning of the col-

lection) and another is the iterator returned by upper_bound() that is the highest (the

farthest away from the beginning of the collection). In the case of Listing 23.12, where

the string "Brad" that is inserted into the sorted collection already exists in it, the lower

and upper bounds are different (else, they would’ve been identical). The usage of these

functions is shown in Lines 24 and 29, respectively. As the output demonstrates, the

iterator returned by lower_bound(), when used in inserting the string into the list as

shown in Line 35, results in the list keeping its sorted state. Thus, these algorithms help

you make an insertion at a point in the collection without breaking the sorted nature of

the contents. Using the iterator returned by upper_bound() would have worked fine as

well.

DO DON’T

DO remember to use the con-
tainer’s erase() member method
after using algorithms remove(),
remove_if(), or unique() to
resize the container.

DO always check the iterator
returned by find(), find_if(),
search(), or search_n() func-
tions for validity before using it by
comparing against the end() of
the container.

DO choose stable_partition()
over partition() and stable_
sort() over sort()only when
the relative ordering of sorted
elements is important as the
stable_* versions can reduce the
 performance of the application.

DON’T forget sorting a container using
sort() before calling unique() to
remove repeating adjacent values.
sort() will ensure that all elements of
a value are aligned adjacent to each
other, making unique() effective.

DON’T insert elements into a sorted
container at randomly chosen posi-
tions, rather insert them using positions
returned by lower_bound() or upper_
bound() to ensure that the sorted order
of elements remains undisturbed.

DON’T forget that binary_search() is
used only on a sorted container.

Summary
In this lesson, you learned one of the most important and powerful aspects of STL:

algorithms. You gained an insight into the different types of algorithms, and the samples

should have given you a clearer understanding of the algorithms application.

ptg18655082

600 LESSON 23: STL Algorithms

Q&A
 Q Would I use a mutating algorithm, such as std::transform(), on an associa-

tive container, such as std::set?

 A Even if it were possible, this should not be done. The contents of an associative

container should be treated as constants. This is because associative containers

sort their elements on insertion, and the relative positions of the elements play an

important role in functions such as find() and also in the efficiency of the con-

tainer. For this reason, mutating algorithms, such as std::transform(), should

not be used on STL sets.

 Q I need to set the content of every element of a sequential container to a par-
ticular value. Would I use std::transform()for this activity?

 A Although std::transform() could be used for this activity, fill() or

fill_n() is more suited to the task.

 Q Does copy_backward() reverse the contents of the elements in the destination
container?

 A No, it doesn’t. The STL algorithm copy_backward() reverses the order in which

elements are copied but not the order in which elements are stored; that is, it starts

with the end of the range and reaches the top. To reverse the contents of a collec-

tion, you should use std::reverse().

 Q Should I use std::sort() on a list?

 A std::sort() can be used on a list in the same way it can be used on any sequential

container. However, the list needs to maintain a special property that an operation

on the list does not invalidate existing iterators—a property that std::sort()

 cannot guarantee to upkeep. So, for this reason, STL list supplies the sort()

algorithm in the form of the member function list::sort(), which should be

used because it guarantees that iterators to elements in the list are not invalidated

even if their relative positions in the list have changed.

 Q Why is it important to use functions such as lower_bound() or upper_
bound() while inserting into a sorted range?

 A These functions supply the first and the last positions, respectively, where an

 element can be inserted into a sorted collection without disturbing the sort.

ptg18655082

Workshop 601

23

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. You need to remove items that meet a specific condition from a list. Would you use

std::remove_if() or list::remove_if()?

2. You have a list of a class type ContactItem. How does the list::sort() func-

tion sort items of this type in the absence of an explicitly specified binary predicate?

3. How often does the generate() STL algorithm invoke the generator()

 function?

4. What differentiates std::transform() from std::for_each()?

Exercises
1. Write a binary predicate that accepts strings as input arguments and returns a value

based on case-insensitive comparison.

2. Demonstrate how STL algorithms such as copy() use iterators to do their func-

tions without needing to know the nature of the destination collections by copying

between two sequences held in two dissimilar containers.

3. You are writing an application that records the characteristics of stars that come

up on the horizon in the order in which they rise. In astronomy, the size of the

star—as well as information on their relative rise and set sequences—is important.

If you’re sorting this collection of stars on the basis of their sizes, would you use

std::sort or std::stable_sort?

ptg18655082

LESSON 24
Adaptive Containers:
Stack and Queue

The Standard Template Library (STL) features containers that adapt others
to simulate stack and queue behavior. Such containers that internally use
another and present a distinct behavior are called adaptive containers.

In this lesson, you learn

 ■ The behavioral characteristics of stacks and queues

 ■ Using the STL stack

 ■ Using the STL queue

 ■ Using the STL priority_queue

ptg18655082

604 LESSON 24: Adaptive Containers: Stack and Queue

The Behavioral Characteristics
of Stacks and Queues
Stacks and queues are like arrays or lists but present a restriction on how elements are

inserted, accessed, and removed. Their behavioral characteristics are decided exactly by

the placement of elements on insertion or the position of the element that can be erased

from the container.

Stacks
Stacks are LIFO (last-in-first-out) systems where elements can be inserted or removed

at the top of the container. A stack can be visualized as a stack of plates. The last plate

added to the stack is going to be the first one taken off. Plates in the middle and at the

bottom cannot be inspected. This method of organizing elements involving “addition

and removal at the top” is illustrated in Figure 24.1.

 This behavior of a stack of plates is simulated in the generic STL container

std::stack.

To use class std::stack, include header

#include <stack>
TIP

Queues
Queues are FIFO (first-in-first-out) systems where elements can be inserted behind the

previous one, and the one inserted first gets removed first. A queue can be visualized as

a queue of people waiting for stamps at the post office—those who join the queue earlier,

Removals
(from top)

Insertions
(at top)

Element N

…

Element 2

Element 1

Element 0

FIGURE 24.1

Operations on
a stack.

ptg18655082

605

24

Using the STL stack Class

leave earlier. This method of organizing elements involving “addition at the back but

removal at the front” is illustrated in Figure 24.2.

Element
N

Element
…

Element
1

Removals
(at front)

Insertions
(at back)

Element
0

FIGURE 24.2

Operations on a
queue.

 This behavior of a queue is simulated in the generic STL container std::queue.

To use class std::queue, include header

#include <queue>

TIP

Using the STL stack Class
The STL stack is a template class that needs the inclusion of header <stack>. It is a

generic class that allows insertions and removal of elements at the top and does not per-

mit any access or inspection of elements at the middle. In that sense, the std::stack is

quite similar in behavior to a stack of plates.

Instantiating the Stack
std::stack is defined by some implementations of STL as

template <
 class elementType,
 class Container=deque<Type>
> class stack;

The parameter elementType is the type of object that is collected by the stack. The

second template parameter Container is the stack’s default underlying container imple-

mentation class. std::deque is the default for the stack’s internal data storage and can

be replaced by std::vector or the std::list. Thus, the instantiation of a stack of

integers will look like

std::stack <int> numsInStack;

If you want to create a stack of objects of any type, for instance class Tuna, you would

use the following:

std::stack <Tuna> tunasInStack;

ptg18655082

606 LESSON 24: Adaptive Containers: Stack and Queue

To create a stack that uses a different underlying container, use

std::stack <double, vector <double>> doublesStackedInVec;

Listing 24.1 demonstrates different instantiation techniques.

LISTING 24.1 Instantiation of an STL Stack

 0: #include <stack>
 1: #include <vector>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: // A stack of integers
 8: stack <int> numsInStack;
 9:
10: // A stack of doubles
11: stack <double> dblsInStack;
12:
13: // A stack of doubles contained in a vector
14: stack <double, vector <double>> doublesStackedInVec;
15:
16: // initializing one stack to be a copy of another
17: stack <int> numsInStackCopy(numsInStack);
18:
19: return 0;
20: }

Analysis ▼

The sample produces no output but demonstrates the template instantiation of the STL

stack. Lines 8 and 11 instantiate two stack objects to hold elements of type int and

double, respectively. Line 14 also instantiates a stack of doubles but specifies a

second template parameter—the type of collection class that the stack should use inter-

nally, a vector. If this second template parameter is not supplied, the stack automati-

cally defaults to using a std::deque instead. Finally, Line 17 demonstrates that one

stack object can be constructed as a copy of another.

Stack Member Functions
The stack, which adapts another container, such as the deque, list, or vector,

implements its functionality by restricting the manner in which elements can be inserted

or removed to supply a behavior that is expected strictly from a stack-like mechanism.

Table 24.1 explains the public member functions of the stack class and demonstrates

their usage for a stack of integers.

ptg18655082

607

24

Using the STL stack Class

TABLE 24.1 Member Function of a std::stack

Function Description

push() Inserts an element at the top of the stack

numsInStack.push(25);

pop() Removes the element at the top of the stack

numsInStack.pop();

empty() Tests whether the stack is empty; returns bool

if (numsInStack.empty ())

 DoSomething ();

size() Returns the number of elements in the stack

size_t numElements = numsInStack.size ();

top() Gets a reference to the topmost element in the stack

cout << "Element at the top = " << numsInStack.
top ();

As the table indicates, the public member functions of the stack expose only those meth-

ods that allow insertion and removal at positions that are compliant with a stack’s behav-

ior. That is, even though the underlying container might be a deque, a vector, or a

list, the functionality of that container has not been revealed to enforce the behavioral

characteristics of a stack.

Insertion and Removal at Top Using push()
and pop()
Insertion of elements is done using member method stack<T>::push():

numsInStack.push(25); // 25 is atop the stack

The stack by definition allows access of elements typically at the top using member

top():

cout << numsInStack.top() << endl;

If you want to remove an element at the top, you can use function pop() to help you with

the same:

numsInStack.pop (); // pop: removes topmost element

ptg18655082

608 LESSON 24: Adaptive Containers: Stack and Queue

Listing 24.2 demonstrates inserting elements in a stack using push() and removing

 elements using pop().

LISTING 24.2 Working with a Stack of Integers

 0: #include <stack>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6: stack <int> numsInStack;
 7:
 8: // push: insert values at top of the stack
 9: cout << "Pushing {25, 10, -1, 5} on stack in that order:" << endl;
10: numsInStack.push (25);
11: numsInStack.push (10);
12: numsInStack.push (-1);
13: numsInStack.push (5);
14:
15: cout << "Stack contains " << numsInStack.size () << " elements" << endl;
16: while (numsInStack.size () != 0)
17: {
18: cout << "Popping topmost element: " << numsInStack.top() << endl;
19: numsInStack.pop (); // pop: removes topmost element
20: }
21:
22: if (numsInStack.empty ()) // true: due to previous pop()s
 23: cout << "Popping all elements empties stack!" << endl;
 24:
 25: return 0;
 26: }

Output ▼
Pushing {25, 10, -1, 5} on stack in that order:
Stack contains 4 elements
Popping topmost element: 5
Popping topmost element: -1
Popping topmost element: 10
Popping topmost element: 25
Popping all elements empties stack!

Analysis ▼

The sample first inserts numbers into a stack of integers, numsInStack, using the

stack::push() function in Lines 9–13. It then proceeds to delete elements using

ptg18655082

609

24

Using the STL queue Class

stack::pop(). As stack permits access to only the topmost element, an element at

the top can be accessed using member stack::top() as shown in Line 18. Elements

can be deleted from the stack one at a time using stack::pop(), as shown in Line 19.

The while loop around it ensures that the pop() operation is repeated until the stack

is empty. As is visible from the order of the elements that were popped, the element

inserted last was popped first, demonstrating the typical LIFO behavior of a stack.

Listing 24.2 demonstrates all five member functions of the stack. Note that push_

back() and insert(), which are available with all STL sequential containers, used as

underlying containers by the stack class, are not available as public member functions

of the stack. Ditto for iterators that help you peek at elements that are not at the top of

the container. All that the stack exposes is the element at the top, nothing else.

Using the STL queue Class
The STL queue is a template class that requires the inclusion of the header <queue>.

It is a generic class that allows insertion only at the end and removal of elements only

at the front. A queue does not permit any access or inspection of elements at the

middle; however, elements at the beginning and the end can be accessed. In a sense,

the std::queue is quite similar in behavior to a queue of people at the cashier in a

supermarket!

Instantiating the Queue
std::queue is defined as

template <
 class elementType,
 class Container = deque<Type>
> class queue;

Here, elementType is the type of elements collected by the queue object. Container

is the type of collection that the std::queue class uses to maintain its data. The

std::list, vector, and deque are possible candidates for this template parameter, and

the deque is the default.

The simplest instantiation of a queue of integers would be the following:

std::queue <int> numsInQ;

If you want to create a queue containing elements of type double inside a std::list

(instead of a deque, which is default), use the following:

std::queue <double, list <double>> dblsInQInList;

ptg18655082

610 LESSON 24: Adaptive Containers: Stack and Queue

Just like a stack, a queue can also be instantiated as a copy of another queue:

std::queue<int> copyQ(numsInQ);

Listing 24.3 demonstrates the various instantiation techniques of std::queue.

LISTING 24.3 Instantiating an STL Queue

 0: #include <queue>
 1: #include <list>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: // A queue of integers
 8: queue <int> numsInQ;
 9:
10: // A queue of doubles
11: queue <double> dblsInQ;
12:
13: // A queue of doubles stored internally in a list
14: queue <double, list <double>> dblsInQInList;
15:
16: // one queue created as a copy of another
17: queue<int> copyQ(numsInQ);
18:
19: return 0;
20: }

Analysis ▼

The sample demonstrates how the generic STL class queue can be instantiated to create

a queue of integers, as shown in Line 8, or a queue for objects of type double, as shown

in Line 11. dblsInQInList, as instantiated in Line 14, is a queue in which you have

explicitly specified that the underlying container adapted by the queue to manage its

internals be a std::list, as specified by the second template parameter. In the absence

of the second template parameter, as in the first two queues, the std::deque is used as

the default underlying container for the contents of the queue.

Member Functions of a queue
The std::queue, like std::stack, also bases its implementation on an STL container

such as the vector, list, or deque. The queue exposes only those member functions

that implement the behavioral characteristics of a queue. Table 24.2 explains the member

functions using numsInQ, which Listing 24.3 demonstrates is a queue of integers.

ptg18655082

611

24

Using the STL queue Class

TABLE 24.2 Member Functions of a std::queue

Function Description

push() Inserts an element at the back of the queue; that is, at the
last position

numsInQ.push (10);

pop() Removes the element at the front of the queue; that is,
at the first position

numsInQ.pop ();

front() Returns a reference to the element at the front of the queue

cout << "Element at front: " << numsInQ.front ();

back() Returns a reference to the element at the back of the queue;
that is, the last inserted element

cout << "Element at back: " << numsInQ.back ();

empty Tests whether the queue is empty; returns a boolean value

if (numsInQ.empty ())

 cout << "Queue is empty!";

size() Returns the number of elements in the queue

size_t numElements = numsInQ.size ();

STL queue does not feature functions such as begin() and end(), which are supplied

by most STL containers, including the underlying deque, vector, or list, as used

by the queue class. This is by intention so that the only permissible operations on the

queue are those in compliance with the queue’s behavioral characteristics.

Insertion at End and Removal at the Beginning
of queue via push() and pop()
Insertion of elements in a queue happens at the end and is done using member method

push():

numsInQ.push (5); // elements pushed are inserted at the end

Removal, on the other hand, happens at the beginning and via pop():

numsInQ.pop (); // removes element at front

ptg18655082

612 LESSON 24: Adaptive Containers: Stack and Queue

Unlike the stack, the queue allows elements at both ends—that is, front and back of the

container—to be inspected:

cout << "Element at front: " << numsInQ.front() << endl;
cout << "Element at back: " << numsInQ.back () << endl;

Insertion, removal, and inspection is demonstrated in Listing 24.4.

LISTING 24.4 Inserting, Removing, and Inspecting Elements in a queue of Integers

 0: #include <queue>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6: queue <int> numsInQ;
 7:
 8: cout << "Inserting {10, 5, -1, 20} into queue" << endl;
 9: numsInQ.push (10);
10: numsInQ.push (5); // elements are inserted at the end
11: numsInQ.push (-1);
12: numsInQ.push (20);
13:
14: cout << "Queue contains " << numsInQ.size () << " elements" << endl;
15: cout << "Element at front: " << numsInQ.front() << endl;
16: cout << "Element at back: " << numsInQ.back () << endl;
17:
18: while (numsInQ.size () != 0)
19: {
20: cout << "Deleting element: " << numsInQ.front () << endl;
21: numsInQ.pop (); // removes element at front
22: }
23:
24: if (numsInQ.empty ())
25: cout << "The queue is now empty!" << endl;
26:
27: return 0;
28: }

Output ▼
Inserting {10, 5, -1, 20} into queue
Queue contains 4 elements
Element at front: 10
Element at back: 20
Deleting element: 10
Deleting element: 5

ptg18655082

Using the STL Priority Queue 613

24

Deleting element: -1
Deleting element: 20
The queue is now empty!

Analysis ▼

Elements were added to numsInQ using push() that inserts them at the end (or back)

of the queue in Lines 9–12. Methods front() and back() are used to reference ele-

ments at the beginning and the end positions of the queue, as shown in Lines 15 and 16.

The while loop in Lines 18–22 displays the element at the beginning of the queue,

before removing it using a pop() operation at Line 21. It continues doing this until the

queue is empty. The output demonstrates that elements were erased from the queue in

the same order in which they were inserted because elements are inserted at the rear of

the queue but deleted from the front.

Using the STL Priority Queue
The STL priority_queue is a template class that also requires the inclusion of the

header <queue>. The priority_queue is different from the queue in that the element

of the highest value (or the value deemed as highest by a binary predicate) is available at

the front of the queue and queue operations are restricted to the front.

Instantiating the priority_queue Class
std::priority_queue class is defined as

template <
 class elementType,
 class Container=vector<Type>,

class Compare=less<typename Container::value_type>
>
class priority_queue

Here, elementType is the template parameter that conveys the type of elements to be col-

lected in the priority queue. The second template parameter tells the collection class to be

internally used by priority_queue for holding data, whereas the third parameter allows

the programmer to specify a binary predicate that helps the queue determine the element

that is at the top. In the absence of a specified binary predicate, the priority_queue

class uses the default in std::less, which compares two objects using operator<.

The simplest instantiation of a priority_queue of integers would be

std::priority_queue <int> numsInPrioQ;

ptg18655082

614 LESSON 24: Adaptive Containers: Stack and Queue

If you want to create a priority queue containing elements of type double inside a

std::deque:

priority_queue <int, deque <int>, greater <int>> numsInDescendingQ;

Just like a stack, a queue can also be instantiated as a copy of another queue:

std::priority_queue <int> copyQ(numsInPrioQ);

The instantiation of a priority_queue object is demonstrated by Listing 24.5.

LISTING 24.5 Instantiating an STL priority_queue

 0: #include <queue>
 1: #include <functional>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: // Priority queue of int sorted using std::less <> (default)
 8: priority_queue <int> numsInPrioQ;
 9:
10: // A priority queue of doubles
11: priority_queue <double> dblsInPrioQ;
12:
13: // A priority queue of integers sorted using std::greater <>
14: priority_queue <int, deque <int>, greater<int>> numsInDescendingQ;
15:
16: // a priority queue created as a copy of another
17: priority_queue <int> copyQ(numsInPrioQ);
18:
19: return 0;
20: }

Analysis ▼

Lines 8 and 11 demonstrate the instantiation of two priority_queues for objects

of type int and double, respectively. The absence of any other template parameter

results in the usage of std::vector as the internal container of data, and the default

comparison criterion is provided by std::less. These queues are therefore so priori-

tized that the integer of the highest value is available at the front of the priority queue.

 numsInDescendingQ, however, supplies a deque for the second parameter as the

internal container and std::greater as the predicate. This predicate results in a queue

where the smallest number is available at the front.

ptg18655082

Using the STL Priority Queue 615

24

The effect of using predicate std::greater<T> is explained in Listing 24.7 later in this

lesson.

Listing 24.5 includes standard header <functional> to use
std::greater<>.NOTE

Member Functions of priority_queue
The member functions front() and back(), available in the queue, are not available

in the priority_queue. Table 24.3 introduces the member functions of a priority_

queue.

TABLE 24.3 Member Functions of a std::priority_queue

Function Description

push() Inserts an element into the priority queue

numsInPrioQ.push (10);

pop() Removes the element at the top of the queue; that is, the
largest element in the queue

numsInPrioQ.pop ();

top() Returns a reference to the largest element in the queue
(which also holds the topmost position)

cout << "The largest element in the priority
queue is: " << numsInPrioQ.top ();

empty() Tests whether the priority queue is empty; returns a
 boolean value

if (numsInPrioQ.empty ())

 cout << "The queue is empty!";

size() Returns the number of elements in the priority queue

size_t numElements = numsInPrioQ.size ();

As the table indicates, queue members can only be accessed using top(), which returns

the element of the highest value, evaluated using the user-defined predicate or by

std::less in the absence of one.

ptg18655082

616 LESSON 24: Adaptive Containers: Stack and Queue

Insertion at the End and Removal at the Beginning
of priority_queue via push() and pop()
Insertion of elements in a priority_queue is done using member method push():

numsInPrioQ.push (5); // elements are organized in sorted order

Removal, on the other hand, happens at the beginning via pop():

numsInPrioQ.pop (); // removes element at front

The usage of priority_queue members is demonstrated by Listing 24.6.

LISTING 24.6 Working with a priority_queue Using push(), top(), and pop()

 0: #include <queue>
 1: #include <iostream>
 2:
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: priority_queue <int> numsInPrioQ;
 8: cout << "Inserting {10, 5, -1, 20} into the priority_queue" << endl;
 9: numsInPrioQ.push (10);
10: numsInPrioQ.push (5);
11: numsInPrioQ.push (-1);
12: numsInPrioQ.push (20);
13:
14: cout << "Deleting the " << numsInPrioQ.size () << " elements" << endl;
 15: while (!numsInPrioQ.empty ())
 16: {
 17: cout << "Deleting topmost element: " << numsInPrioQ.top () << endl;
 18: numsInPrioQ.pop ();
 19: }
 20:
 21: return 0;
 22: }

Output ▼
Inserting {10, 5, -1, 20} into the priority_queue
Deleting the 4 elements
Deleting topmost element: 20
Deleting topmost element: 10
Deleting topmost element: 5
Deleting topmost element: -1

ptg18655082

Using the STL Priority Queue 617

24

Analysis ▼

Listing 24.6 inserts sample integers into a priority_queue, as shown in Lines 9–12,

and then erases the element on the top/front using pop(), as shown in Line 18. The out-

put indicates that the element of greatest value is available at the top of the queue. Usage

of priority_queue::pop() therefore effectively deletes the element that evaluates to

having the greatest value among all elements in the container, which is also exposed as

the value at the top, via method top() shown in Line 17. Given that you have not sup-

plied a prioritization predicate, the queue has automatically resorted to sorting elements

in the descending order (highest value at the top).

The next sample, in Listing 24.7, demonstrates the instantiation of a priority_queue

with std::greater <int> as the predicate. This predicate results in the queue evalu-

ating the smallest number as the element with greatest value, which is then available at

the front of the priority queue.

LISTING 24.7 Instantiating a Priority Queue That Holds the Smallest Value at the Top

 0: #include <queue>
 1: #include <iostream>
 2: #include <functional>
 3: int main ()
 4: {
 5: using namespace std;
 6:
 7: // Define a priority_queue object with greater <int> as predicate
 8: priority_queue <int, vector <int>, greater <int>> numsInPrioQ;
 9:
10: cout << "Inserting {10, 5, -1, 20} into the priority queue" << endl;
11: numsInPrioQ.push (10);
12: numsInPrioQ.push (5);
13: numsInPrioQ.push (-1);
14: numsInPrioQ.push (20);
15:
16: cout << "Deleting " << numsInPrioQ.size () << " elements" << endl;
17: while (!numsInPrioQ.empty ())
18: {
19: cout << "Deleting topmost element " << numsInPrioQ.top () << endl;
20: numsInPrioQ.pop ();
21: }
22:
23: return 0;
24: }

ptg18655082

618 LESSON 24: Adaptive Containers: Stack and Queue

Output ▼
Inserting {10, 5, -1, 20} into the priority queue
Deleting 4 elements
Deleting topmost element -1
Deleting topmost element 5
Deleting topmost element 10
Deleting topmost element 20

Analysis ▼

Most of the code and all the values supplied to the priority_queue in this sample

are intentionally the same as those in the previous sample, Listing 24.6. Yet the output

 displays how the two queues behave differently. This priority_queue compares the

elements in it using the predicate greater <int> as shown in Line 8. As a result of this

predicate, the integer with the lowest magnitude is evaluated as greater than others and is

therefore placed at the top position. So, function top() used in Line 19 always displays

the smallest integer number in the priority_queue, one that is deleted soon after using

a pop() operation in Line 20.

Thus, when elements are popped, this priority_queue pops the integers in order of

increasing magnitude.

Summary
This lesson explained the usage of the three key adaptive containers—the STL stack,

queue, and the priority_queue. These adapt sequential containers for their internal

storage requirements, yet via their member functions they present the behavioral charac-

teristics that make stacks and queues so unique.

Q&A
 Q Can an element in the middle of a stack be modified?

 A No, for this would contradict the purpose of a stack, which is supposed to be a

last-in-first-out container.

 Q Can I iterate through all the elements of a queue?

 A The queue does not feature iterators, and elements in a queue can be accessed only

at its ends.

ptg18655082

Workshop 619

24

 Q Can STL algorithms work with adaptive containers?

 A STL algorithms work using iterators. Because neither the stack nor the queue

class supplies iterators that mark the end of the ranges, the use of STL algorithms

with these containers would not be possible.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can you change the behavior of the priority_queue for a certain element, such

that the one with the greatest value is popped last?

2. You have a priority_queue of class Coin. What member operator do you

need to define for the priority_queue class to present the coin with the greater

value at the top position?

3. You have a stack of class Coin and have pushed six objects into it. Can you access

or delete the first coin inserted?

Exercises
1. A queue of people (class Person) are lining up at the post office. Person contains

member attributes that hold age and gender and are defined as

class Person
{
 public:

int age;
bool isFemale;

};

Amend this class such that a priority_queue containing objects of it would offer

the elderly and women (in that order) priority service.

2. Write a program that reverses the user’s string input using the stack class.

ptg18655082

LESSON 25
Working with Bit
Flags Using STL

Bits can be an efficient way of storing settings and flags. The Standard
Template Library (STL) supplies classes that help organize and manipulate
bitwise information. This lesson introduces you to

 ■ The bitset class

 ■ The vector<bool>

ptg18655082

622 LESSON 25: Working with Bit Flags Using STL

The bitset Class
std::bitset is the STL class designed for handling information in bits and bit flags.

std::bitset is not an STL container class because it cannot resize itself. This is a

 utility class that is optimized for working with a sequence of bits whose length is known

at compile time.

To use class std::bitset, include header:

#include <bitset>

TIP

Instantiating the std::bitset
This template class requires you to supply one template parameter that contains the num-

ber of bits the instance of the class has to manage:

bitset <4> fourBits; // 4 bits initialized to 0000

You can also initialize the bitset to a bit sequence represented in a char* string literal:

bitset <5> fiveBits("10101"); // 5 bits 10101

Copying from one bitset while instantiating another is quite simple:

bitset <8> fiveBitsCopy(fiveBits);

Some instantiation techniques of the bitset class are demonstrated by Listing 25.1.

LISTING 25.1 Instantiating a std::bitset

 0: #include <bitset>
 1: #include <iostream>
 2: #include <string>
 3:
 4: int main ()
 5: {
 6: using namespace std;
 7:
 8: bitset <4> fourBits; // 4 bits initialized to 0000
 9: cout << "Initial contents of fourBits: " << fourBits << endl;
10:
11: bitset <5> fiveBits ("10101"); // 5 bits 10101
12: cout << "Initial contents of fiveBits: " << fiveBits << endl;
13:
14: bitset <6> sixBits(0b100001); // C++14 binary literal

ptg18655082

623

25

Using std::bitset and Its Members

15: cout << "Initial contents of sixBits: " << sixBits << endl;
16:
17: bitset <8> eightBits (255); // 8 bits initialized to long int 255
18: cout << "Initial contents of eightBits: " << eightBits << endl;
19:
20: // instantiate one bitset as a copy of another
21: bitset <8> eightBitsCopy(eightBits);
21:
23: return 0;
24: }

Output ▼
Initial contents of fourBits: 0000
Initial contents of fiveBits: 10101
Initial contents of sixBits: 100001
Initial contents of eightBits: 11111111

Analysis ▼

The sample demonstrates four different ways of constructing a bitset object. The

default constructor initializes the bit sequence to 0, as shown in Line 9. A C-style string

that contains the string representation of the desired bit sequence is used in Line 11. An

unsigned long that holds the decimal value of the binary sequence is used in Lines 14

and 17, and the copy constructor is used in Line 21. Note that in each of these instances,

you had to supply the number of bits that the bitset is supposed to contain as a tem-

plate parameter. This number is fixed at compile time; it isn’t dynamic. You can’t insert

more bits into a bitset than what you specified in your code the way you can insert

more elements in a vector than the size() planned at compile time.

Note the usage of binary literal 0b100001 in Line 14. The prefix
0b or 0B tells the compiler that the following digits are a binary
representation of an integer. This literal is new to C++ and intro-
duced in C++14.

TIP

Using std::bitset and Its Members
The bitset class supplies member functions that help perform insertions into the

 bitset, set or reset contents, read the bits, or write them into a stream. It also supplies

operators that help display the contents of a bitset and perform bitwise logical opera-

tions among others.

ptg18655082

624 LESSON 25: Working with Bit Flags Using STL

Useful Operators Featured in std::bitset
You learned operators in Lesson 12, “Operator Types and Operator Overloading,” and

you also learned that the most important role played by operators is in increasing the

usability of a class. std::bitset provides some very useful operators, as shown in

Table 25.1, that make using it really easy. The operators are explained using the sample

bitset you learned in Listing 25.1, fourBits.

TABLE 25.1 Operators Supported by std::bitset

Operator Description

operator<< Inserts a text representation of the bit sequence into the
output stream

cout << fourBits;

operator>> Inserts a string into the bitset object

"0101" >> fourBits;

operator& Performs a bitwise AND operation

bitset <4> result (fourBits1 & fourBits2);

operator| Performs a bitwise OR operation

bitwise <4> result (fourBits1 | fourBits2);

operator^ Performs a bitwise XOR operation

bitwise <4> result (fourBits1 ^ fourBits2);

operator~ Performs a bitwise NOT operation

bitwise <4> result (~fourBits1);

operator>>= Performs a bitwise right shift

fourBits >>= (2); // Shift two bits to the right

operator<<= Performs a bitwise left shift

fourBits <<= (2); // Shift two bits to the left

operator[N] Returns a reference to the nth bit in the sequence

fourBits [2] = 0; // sets the third bit to 0

bool bNum = fourBits [2]; // reads the third bit

In addition to these, std::bitset also features operators such as |=, &=, ^=, and ~=

that help perform bitwise operations on a bitset object.

ptg18655082

625

25

Using std::bitset and Its Members

std::bitset Member Methods
Bits can hold two states—they are either set (1) or reset (0). To help manipulate the con-

tents of a bitset, you can use the member functions as listed in Table 25.2 that can help

you work with a bit, or with all the bits in a bitset.

TABLE 25.2 Member Methods of a std::bitset

Function Description

set() Sets all bits in the sequence to 1

fourBits.set (); // sequence now contains: '1111'

set(N, val=1) Sets the Nth bit with the value as specified in val (default 1)

fourBits.set (2, 0); // sets third bit to 0

reset() Resets all bits in the sequence to 0

fourBits.reset (); // sequence contains: '0000'

reset(N) Clears the Nth bit

fourBits.reset (2); // the third bit is now 0

flip() Toggles all bits in the sequence

fourBits.flip (); // 0101 changes to 1010

size() Returns the number of bits in the sequence

size_t numBits = fourBits.size (); // returns 4

count() Returns the number of bits that are set

size_t numBitsSet = fourBits.count();

size_t numBitsReset = fourBits.size() - fourBits.
count();

The usage of these member methods and operators is demonstrated in Listing 25.2.

LISTING 25.2 Performing Logical Operations Using a Bitset

 0: #include <bitset>
 1: #include <string>
 2: #include <iostream>
 3:
 4: int main ()
 5: {
 6: using namespace std;

ptg18655082

626 LESSON 25: Working with Bit Flags Using STL

 7: bitset <8> inputBits;
 8: cout << "Enter a 8-bit sequence: ";
 9:
10: cin >> inputBits; // store user input in bitset
11:
12: cout << "Num 1s you supplied: " << inputBits.count () << endl;
13: cout << "Num 0s you supplied: ";
14: cout << inputBits.size () - inputBits.count () << endl;
15:
16: bitset <8> inputFlipped (inputBits); // copy
17: inputFlipped.flip (); // toggle the bits
18:
19: cout << "Flipped version is: " << inputFlipped << endl;
20:
21: cout << "Result of AND, OR and XOR between the two:" << endl;
22: cout << inputBits << " & " << inputFlipped << " = ";
23: cout << (inputBits & inputFlipped) << endl; // bitwise AND
24:
25: cout << inputBits << " | " << inputFlipped << " = ";
26: cout << (inputBits | inputFlipped) << endl; // bitwise OR
27:
28: cout << inputBits << " ^ " << inputFlipped << " = ";
29: cout << (inputBits ^ inputFlipped) << endl; // bitwise XOR
30:
31: return 0;
32: }

Output ▼
Enter a 8-bit sequence: 10110101
Num 1s you supplied: 5
Num 0s you supplied: 3
Flipped version is: 01001010
Result of AND, OR and XOR between the two:
10110101 & 01001010 = 00000000
10110101 | 01001010 = 11111111
10110101 ^ 01001010 = 11111111

Analysis ▼

This interactive program demonstrates not only how easy performing bitwise operations

between two-bit sequences using std::bitset is, but also the utility of its stream

operators. Shift operators (>> and <<) implemented by std::bitset made writing a

bit sequence to the screen and reading a bit sequence from the user in string format a

simple task. inputBits contains a user-supplied sequence that is fed into it in Line 10.

count() used in Line 12 tells the number of ones in the sequence, and the number of

zeroes is evaluated as the difference between size() that returns the number of bits in

ptg18655082

627

25

The vector<bool>

the bitset and count(), as shown in Line 14. inputFlipped is at the beginning a copy

of inputBits, and then flipped using flip(), as shown in Line 17. It now contains the

sequence with individual bits flipped—that is, toggled (0s become 1s and vice versa).

The rest of the program demonstrates the result of bitwise AND, OR, and XOR opera-

tions between the two bitsets.

One disadvantage of STL bitset<> is its inability to resize itself
dynamically. You can use the bitset only where the number of
bits to be stored in the sequence is known at compile time.

STL supplies the programmer with a class vector<bool> (also
called bit_vector in some implementations of STL) that over-
comes this shortcoming.

NOTE

The vector<bool>
The vector<bool> is a partial specialization of the std::vector and is intended

for storing boolean data. This class is able to dynamically size itself. Therefore,

the programmer does not need to know the number of boolean flags to be stored at

 compile time.

To use class std::vector<bool>, include header:

#include <vector>

TIP

Instantiating vector<bool>
Instantiating a vector<bool> is similar to a vector, with some convenient overloads:

vector <bool> boolFlags1;

For instance, you can create a vector with 10 boolean values to start with, each initialized

to 1 (that is, true):

vector <bool> boolFlags2 (10, true);

You can also create an object as a copy of another:

vector <bool> boolFlags2Copy (boolFlags2);

Some of the instantiation techniques of a vector<bool> are demonstrated by

Listing 25.3.

ptg18655082

628 LESSON 25: Working with Bit Flags Using STL

LISTING 25.3 The Instantiation of vector<bool>

 0: #include <vector>
 1:
 2: int main ()
 3: {
 4: using namespace std;
 5:
 6: // Instantiate an object using the default constructor
 7: vector <bool> boolFlags1;
 8:
 9: // Initialize a vector with 10 elements with value true
10: vector <bool> boolFlags2 (10, true);
11:
12: // Instantiate one object as a copy of another
13: vector <bool> boolFlags2Copy (boolFlags2);
14:
15: return 0;
16: }

Analysis ▼

This sample presents some of the ways in which a vector<bool> object can be con-

structed. Line 7 is one that uses the default constructor. Line 10 demonstrates the creation

of an object that is initialized to contain 10 boolean flags, each holding the value true.

Line 13 demonstrates how one vector<bool> can be constructed as a copy of another.

vector<bool> Functions and Operators
The vector<bool> features the function flip() that toggles the state of the Boolean

values in the sequence, similar to the function of bitset<>::flip().

Otherwise, this class is quite similar to the std::vector in the sense that you can, for

example, even push_back flags into the sequence. The example in Listing 25.4 demon-

strates the usage of this class in further detail.

LISTING 25.4 Using the vector<bool>

 0: #include <vector>
 1: #include <iostream>
 2: using namespace std;
 3:
 4: int main ()
 5: {
 6: vector <bool> boolFlags(3); // instantiated to hold 3 bool flags
 7: boolFlags [0] = true;
 8: boolFlags [1] = true;

ptg18655082

629

25

The vector<bool>

 9: boolFlags [2] = false;
10:
11: boolFlags.push_back (true); // insert a fourth bool at the end
12:
13: cout << "The contents of the vector are: " << endl;
14: for (size_t index = 0; index < boolFlags.size (); ++ index)
15: cout << boolFlags [index] << ' ';
16:
17: cout << endl;
18: boolFlags.flip ();
19:
20: cout << "The contents of the vector are: " << endl;
21: for (size_t index = 0; index < boolFlags.size (); ++ index)
22: cout << boolFlags [index] << ' ';
23:
24: cout << endl;
25:
26: return 0;
27: }

Output ▼
The contents of the vector are:
1 1 0 1
The contents of the vector are:
0 0 1 0

Analysis ▼

In this sample, the Boolean flags in the vector have been accessed using the

operator[], as shown in Lines 7–9, just like you would access a regular vector.

The function flip() used in Line 18 toggles individual bit flags, essentially converting

all 0s to 1s and vice versa. Note the usage of push_back() in Line 11. Even though you

initialized boolFlags to contain three flags in Line 6, you were able to add more to it

dynamically at Line 11. Adding more flags than the number specified at compile time is

what you cannot do with a std::bitset.

Since C++11, you may instantiate boolFlags in Listing 25.4
with initial values using List Initialization:

vector <bool> boolFlags{ true, true, false };

TIP

ptg18655082

630 LESSON 25: Working with Bit Flags Using STL

Summary
In this lesson, you learned about the most effective tool in handling bit sequences and bit

flags: the std::bitset class. You also gained knowledge on the vector<bool> class

that allows you to store Boolean flags—the number of which does not need to be known

at compile time.

Q&A
 Q Given a situation where std::bitset and vector<bool> can both be used,

which of the two classes would you prefer to hold your binary flags?

 A The bitset, as it is most suited to this requirement.

 Q I have a std::bitset object called myBitSet that contains a certain number
of stored bits. How would I determine the number of bits that are at value 0
(or false)?

 A bitset::count() supplies the number of bits at value 1. This number, when sub-

tracted from bitset::size() (which indicates the total number of bits stored),

would give you the number of 0s in the sequence.

 Q Can I use iterators to access the individual elements in a vector<bool>?

 A Yes. Because the vector<bool> is a partial specialization of the std::vector,

iterators are supported.

 Q Can I specify the number of elements to be held in a vector<bool> at
 compile time?

 A Yes, by either specifying the number in the overloaded constructor or using

vector<bool>::resize() function at a later instance.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

ptg18655082

Workshop 631

25

Quiz
1. Can the bitset expand its internal buffer to hold a variable number of elements?

2. Why is the bitset not classified as an STL container class?

3. Would you use the std::vector to hold a number of bits that is fixed and known

at compile time?

Exercises
1. Write a bitset class that contains four bits. Initialize it to a number, display

the result, and add it to another bitset object. (The catch: Bitsets don’t allow

 bitsetA = bitsetX + bitsetY.)

2. Demonstrate how you would toggle (that is, switch) the bits in a bitset.

ptg18655082

LESSON 26
Understanding Smart
Pointers

C++ programmers do not necessarily need to use plain pointer types
when managing memory on the heap (or the free store); they can make
use of smart pointers.

In this lesson, you learn

 ■ What smart pointers are and why you need them

 ■ How smart pointers are implemented

 ■ Different smart pointer types

 ■ Why you should not use the deprecated std::auto_ptr

 ■ The Standard Library smart pointer std::unique_ptr

 ■ Popular smart pointer libraries

ptg18655082

634 LESSON 26: Understanding Smart Pointers

What Are Smart Pointers?
Very simply, a smart pointer in C++ is a class with overloaded operators, which

behaves like a conventional pointer. Yet, it supplies additional value by ensuring proper

and timely destruction of dynamically allocated data and facilitates a well-defined object

lifecycle.

The Problem with Using Conventional (Raw) Pointers
Unlike other modern programming languages, C++ supplies full flexibility to the

 programmer in memory allocation, deallocation, and management. Unfortunately, this

flexibility is a double-edged sword. On one side it makes C++ a powerful language, but

on the other it allows the programmer to create memory-related problems, such as mem-

ory leaks, when dynamically allocated objects are not correctly released.

For example:

SomeClass* ptrData = anObject.GetData ();
/*
 Questions: Is object pointed by ptrData dynamically allocated using new?
 If so, who calls delete? Caller or the called?
 Answer: No idea!
*/
ptrData->DoSomething();

In the preceding code, there is no obvious way to tell whether the memory pointed to by

ptrData

 ■ Was allocated on the heap, and therefore eventually needs to be deallocated

 ■ Is the responsibility of the caller to deallocate

 ■ Will automatically be destroyed by the object’s destructor

Although such ambiguities can be partially solved by inserting comments and enforcing

coding practices, these mechanisms are much too loose to efficiently avoid all errors

caused by abuse of dynamically allocated data and pointers.

How Do Smart Pointers Help?
Given the problems with using conventional pointer and conventional memory manage-

ment techniques, it should be noted that the C++ programmer is not forced to use them

when he needs to manage data on the heap/free store. The programmer can choose a

smarter way to allocate and manage dynamic data by adopting the use of smart pointers

in his programs:

ptg18655082

How Are Smart Pointers Implemented? 635

26

smart_pointer<SomeClass> spData = anObject.GetData ();

// Use a smart pointer like a conventional pointer!
spData->Display ();
(*spData).Display ();

// Don't have to worry about de-allocation
// (the smart pointer's destructor does it for you)

Thus, smart pointers behave like conventional pointers (let’s call those raw pointers now)

but supply useful features via their overloaded operators and destructors to ensure that

dynamically allocated data is destroyed in a timely manner.

How Are Smart Pointers Implemented?
This question can for the moment be simplified to “How did the smart pointer spData

function like a conventional pointer?” The answer is this: Smart pointer classes overload

derefencing operator (*) and member selection operator (->) to make the programmer

use them as conventional pointers. Operator overloading was discussed previously in

Lesson 12, “Operator Types and Operator Overloading.”

Additionally, to allow you to manage a type of your choice on the heap, almost all good

smart pointer classes are template classes that contain a generic implementation of their

functionality. Being templates, they are versatile and can be specialized to manage an

object of a type of your choice.

Listing 26.1 is a sample implementation of a simple smart pointer class.

LISTING 26.1 The Minimal Essential Components of a Smart Pointer Class

 0: template <typename T>
 1: class smart_pointer
 2: {
 3: private:
 4: T* rawPtr;
 5: public:
 6: smart_pointer (T* pData) : rawPtr(pData) {} // constructor
 7: ~smart_pointer () {delete rawPtr;}; // destructor
 8:
 9: // copy constructor
10: smart_pointer (const smart_pointer & anotherSP);
11: // copy assignment operator
12: smart_pointer& operator= (const smart_pointer& anotherSP);
13:
14: T& operator* () const // dereferencing operator

ptg18655082

636 LESSON 26: Understanding Smart Pointers

15: {
16: return *(rawPtr);
17: }
18:
19: T* operator-> () const // member selection operator
 20: {
 21: return rawPtr;
 22: }
 23: };

Analysis ▼

The preceding smart pointer class displays the implementation of the two operators

* and ->, as declared in Lines 14–17 and 19–22, that help this class to function as a

“pointer” in the conventional sense. For instance, to use the smart pointer on an object

of type class Tuna, you would instantiate it like this:

smart_pointer <Tuna> smartTuna (new Tuna);
smartTuna->Swim();
// Alternatively:
(*smartTuna).Swim ();

This class smart_pointer still doesn’t display or implement any functionality that

would make this pointer class very smart and make using it an advantage over using a

conventional pointer. The constructor, as shown in Line 7, accepts a pointer that is saved

as the internal pointer object in the smart pointer class. The destructor frees this pointer,

allowing for automatic memory release.

The implementation that makes a smart pointer really “smart”
is the implementation of the copy constructor, the assignment
operator, and the destructor. They determine the behavior of the
smart pointer object when it is passed across functions, when it
is assigned, or when it goes out of scope (that is, gets destructed).
So, before looking at a complete smart pointer implementation,
you should understand some smart pointer types.

NOTE

Types of Smart Pointers
The management of the memory resource (that is, the ownership model implemented)

is what sets smart pointer classes apart. Smart pointers decide what they do with the

resource when they are copied and assigned to. The simplest implementations often result

ptg18655082

Types of Smart Pointers 637

26

in performance issues, whereas the fastest ones might not suit all applications. In the end,

it is for the programmer to understand how a smart pointer functions before she decides

to use it in her application.

Classification of smart pointers is actually a classification of their memory resource man-

agement strategies. These are

 ■ Deep copy

 ■ Copy on Write (COW)

 ■ Reference counted

 ■ Reference linked

 ■ Destructive copy

Let’s take a brief look into each of these strategies before studying the smart pointer

 supplied by the C++ standard library—the std::unique_ptr

Deep Copy
In a smart pointer that implements deep copy, every smart pointer instance holds a com-

plete copy of the object that is being managed. Whenever the smart pointer is copied,

the object pointed to is also copied (thus, deep copy). When the smart pointer goes out of

scope, it releases the memory it points to (via the destructor).

Although the deep-copy–based smart pointer does not seem to render any value over

passing objects by value, its advantage becomes apparent in the treatment of polymorphic

objects, as seen in the following, where it can avoid slicing:

// Example of Slicing When Passing Polymorphic Objects by Value
// Fish is a base class for Tuna and Carp, Fish::Swim() is virtual
void MakeFishSwim (Fish aFish) // note parameter type
{
 aFish.Swim(); // virtual function
}

// ... Some function
Carp freshWaterFish;
MakeFishSwim (freshWaterFish); // Carp will be 'sliced' to Fish
// Slicing: only the Fish part of Carp is sent to MakeFishSwim()

Tuna marineFish;
MakeFishSwim(marineFish); // Slicing again

ptg18655082

638 LESSON 26: Understanding Smart Pointers

Slicing issues are resolved when the programmer chooses a deep-copy smart pointer, as

shown in Listing 26.2.

LISTING 26.2 Using a Deep-Copy–Based Smart Pointer to Pass Polymorphic Objects
by Their Base Types

 0: template <typename T>
 1: class deepcopy_smart_ptr
 2: {
 3: private:
 4: T* object;
 5: public:
 6: //... other functions
 7:
 8: // copy constructor of the deepcopy pointer
 9: deepcopy_smart_ptr (const deepcopy_smart_ptr& source)
10: {
 11: // Clone() is virtual: ensures deep copy of Derived class object
 12: object = source->Clone ();
 13: }
 14:
 15: // copy assignment operator
 16: deepcopy_smart_ptr& operator= (const deepcopy_smart_ptr& source)
 17: {
 18: if (object)
 19: delete object;
 20:
 21: object = source->Clone ();
 22: }
 23: };

Analysis ▼

As you can see, deepcopy_smart_ptr implements a copy constructor in Lines 9–13

that allows a deep copy of the polymorphic object via a Clone() function that the class

needs to implement. Similarly, it also implements a copy assignment operator in Lines

16–22. For the sake of simplicity, it is taken for granted in this example that the virtual

function implemented by the base class Fish is called Clone(). Typically, smart pointers

that implement deep-copy models have this function supplied as either a template

 parameter or a function object.

Thus, when the smart pointer itself is passed as a pointer to base class type Fish:

deepcopy_smart_ptr<Carp> freshWaterFish(new Carp);
MakeFishSwim (freshWaterFish); // Carp will not be 'sliced'

ptg18655082

Types of Smart Pointers 639

26

The deep copy implemented in the smart pointer’s constructor kicks in to ensure that

the object being passed is not sliced, even though syntactically only the base part of it is

required by the destination function MakeFishSwim().

The disadvantage of the deep-copy–based mechanism is performance. This might not

be a factor for some applications, but for many others it might inhibit the programmer

from using a smart pointer for his application. Instead, he might simply pass a base

type pointer (conventional pointer, Fish*) to functions such as MakeFishSwim(). Other

pointer types try to address this performance issue in various ways.

Copy on Write Mechanism
Copy on Write (COW as it is popularly called) attempts to optimize the performance

of deep-copy smart pointers by sharing pointers until the first attempt at writing to the

object is made. On the first attempt at invoking a non-const function, a COW pointer

typically creates a copy of the object on which the non-const function is invoked,

whereas other instances of the pointer continue sharing the source object.

COW has its fair share of fans. For those that swear by COW, implementing operators (*)

and (->) in their const and non-const versions is key to the functionality of the COW

pointer. The latter creates a copy.

The point is that when you chose a pointer implementation that follows the COW philos-

ophy, be sure that you understand the implementation details before you proceed to use

such an implementation. Otherwise, you might land in situations where you have a copy

too few or a copy too many.

Reference-Counted Smart Pointers
Reference counting in general is a mechanism that keeps a count of the number of

users of an object. When the count reduces to zero, the object is released. So, reference

 counting makes a very good mechanism for sharing objects without having to copy them.

If you have ever worked with a Microsoft technology called COM, the concept of refer-

ence counting would have definitely crossed your path on at least one occasion.

Such smart pointers, when copied, need to have the reference count of the object in

 question incremented. There are at least two popular ways to keep this count:

 ■ Reference count maintained in the object being pointed to

 ■ Reference count maintained by the pointer class in a shared object

ptg18655082

640 LESSON 26: Understanding Smart Pointers

The first variant where the reference count is maintained in the object is called intrusive
reference counting because the object needs to be modified. The object in this case

maintains, increments, and supplies the reference count to any smart pointer class that

manages it. Incidentally, this is the approach chosen by COM. The second variant where

the reference count is maintained in a shared object is a mechanism where the smart

pointer class can keep the reference count on the free store (a dynamically allocated

 integer, for example) and when copied, the copy constructor increments this value.

Therefore, the reference-counting mechanism makes it pertinent that the programmer

works with the smart pointers only when using the object. A smart pointer manag-

ing the object and a raw pointer pointing to it is a bad idea because the smart pointer

(smartly) releases the object when the count maintained by it goes down to zero, but the

raw pointer continues pointing to the part of the memory that no longer belongs to your

application. Similarly, reference counting can cause issues peculiar to their situation: Two

objects that hold a pointer to each other are never released because their cyclic depen-

dency holds their reference counts at a minimum of 1.

Reference-Linked Smart Pointers
Reference-linked smart pointers are ones that don’t proactively count the number of refer-

ences using the object; rather, they just need to know when the number comes down to

zero so that the object can be released.

They are called reference-linked because their implementation is based on a double-

linked list. When a new smart pointer is created by copying an existing one, it is

appended to the list. When a smart pointer goes out of scope or is destroyed, the destruc-

tor de-indexes the smart pointer from this list. Reference linking also suffers from

the problem caused by cyclic dependency, as applicable to reference-counted

pointers.

Destructive Copy
Destructive copy is a mechanism where a smart pointer, when copied, transfers complete

ownership of the object being handled to the destination and resets itself:

destructive_copy_smartptr <SampleClass> smartPtr (new SampleClass ());

SomeFunc (smartPtr); // Ownership transferred to SomeFunc
// Don't use smartPtr in the caller any more!

Although this mechanism is obviously not intuitive to use, the advantage supplied by

destructive copy smart pointers is that they ensure that at any point in time, only one

active pointer points to an object. So, they make good mechanisms for returning pointers

ptg18655082

Types of Smart Pointers 641

26

from functions, and are of use in scenarios where you can use their “destructive” proper-

ties to your advantage.

The implementation of destructive copy pointers deviates from standard, recommended

C++ programming techniques, as shown in Listing 26.3.

std::auto_ptr is by far the most popular (or notorious, depend-
ing on how you look at it) pointer that follows the principles of
destructive copy. Such a smart pointer is useless after it has
been passed to a function or copied into another.

std::auto_ptr has been deprecated in C++11. Instead, you
should use std::unique_ptr, which cannot be passed by
value due to its private copy constructor and copy assignment
 operator. It can only be passed as a reference argument.

CAUTION

LISTING 26.3 A Sample Destructive Copy Smart Pointer

 0: template <typename T>
 1: class destructivecopy_ptr
 2: {
 3: private:
 4: T* object;
 5: public:
 6: destructivecopy_ptr(T* input):object(input) {}
 7: ~destructivecopy_ptr() { delete object; }
 8:
 9: // copy constructor
10: destructivecopy_ptr(destructivecopy_ptr& source)
11: {
12: // Take ownership on copy
13: object = source.object;
14:
15: // destroy source
16: source.object = 0;
17: }
18:
19: // copy assignment operator
20: destructivecopy_ptr& operator= (destructivecopy_ptr& source)
21: {
22: if (object != source.object)
23: {
24: delete object;
25: object = source.object;
26: source.object = 0;
27: }

ptg18655082

642 LESSON 26: Understanding Smart Pointers

28: }
29: };
30:
31: int main()
32: {
33: destructivecopy_ptr<int> num (new int);
34: destructivecopy_ptr<int> copy = num;
35:
36: // num is now invalid
37: return 0;
38: }

Analysis ▼

Listing 26.3 demonstrates the implementation of a destructive-copy–based smart pointer.

Lines 10–17 and 20–28 contain the copy constructor and the copy assignment operator,

respectively. These functions invalidate the source when making a copy; that is, the copy

constructor sets the pointer contained by the source to NULL, after copying it, therefore

justifying the name “destructive copy”. The assignment operator does the same thing.

Thus, num is actually invalidated in Line 34 when it is assigned to another pointer. This

behavior is counterintuitive to the act of assignment.

The copy constructor and copy assignment operators that are
critical to the implementation of destructive copy smart point-
ers as shown in Listing 26.3 also attract maximum criticism.
Unlike most C++ classes, this smart pointer class cannot have
the copy constructor and assignment operator accept const
references, as it needs to invalidate the source after copying it.
This is not only a deviation from traditional copy-constructor and
assignment-operator semantics, but also makes using the smart
pointer class counter intuitive. Few expect the copy source or the
assignment source to be damaged after a copy or assignment
step. The fact that such smart pointers destroy the source also
makes them unsuitable for use in STL containers, such as the
std::vector, or any other dynamic collection class that you
might use. These containers need to copy your content internally
and end up invalidating the pointers.

So, for more than one reason, you are advised to avoid using
destructive copy smart pointers in your programs.

CAUTION

ptg18655082

Types of Smart Pointers 643

26

The auto_ptr was a destructive-copy–based smart pointer
 supported by the C++ Standard until recently. It was finally
marked as deprecated in C++11, and you should use
std::unique_ptr instead.

TIP

Using the std::unique_ptr
std::unique_ptr was introduced to C++ starting with C++11, and it is slightly different

from auto_ptr in the sense that it does not allow copy or assignment.

To use class std::unique_ptr, include header:
#include <memory>

TIP

The unique_ptr is a simple smart pointer similar to what’s shown in Listing 26.1, but

with a private copy constructor and assignment operator to disallow copy via passing as

an argument to a function by value, or copy via assignment. Listing 26.4 demonstrates

using one.

LISTING 26.4 Using std::unique_ptr

 0: #include <iostream>
 1: #include <memory> // include this to use std::unique_ptr
 2: using namespace std;
 3:
 4: class Fish
 5: {
 6: public:
 7: Fish() {cout << "Fish: Constructed!" << endl;}
 8: ~Fish() {cout << "Fish: Destructed!" << endl;}
 9:
10: void Swim() const {cout << "Fish swims in water" << endl;}
11: };
12:
13: void MakeFishSwim(const unique_ptr<Fish>& inFish)
14: {
15: inFish->Swim();
 16: }
 17:

ptg18655082

644 LESSON 26: Understanding Smart Pointers

18: int main()
19: {
20: unique_ptr<Fish> smartFish (new Fish);
21:
22: smartFish->Swim();
 23: MakeFishSwim(smartFish); // OK, as MakeFishSwim accepts reference
 24:
 25: unique_ptr<Fish> copySmartFish;
 26: // copySmartFish = smartFish; // error: operator= is private
 27:
 28: return 0;
 29: }

Output ▼
Fish: Constructed!
Fish swims in water
Fish swims in water
Fish: Destructed!

Analysis ▼

Follow the construction and destruction sequence, as visible in the output. Note that even

though the object pointed to by smartFish was constructed in main(), as expected, it

was destroyed (and automatically so) even without you having invoked operator delete.

This is the behavior of unique_ptr where the pointer that goes out of scope releases the

object it owns via the destructor. Note how you are able to pass smartFish as an argu-

ment to MakeFishSwim() in Line 23. This is not a copy step as MakeFishSwim() accepts

the parameter by reference, as shown in Line 13. If you were to remove the reference

symbol & from Line 13, you would immediately encounter a compile error caused by the

private copy constructor. Similarly, assignment of one unique_ptr object to another, as

shown in Line 26, is also not permitted due to a private copy assignment operator.

In a nutshell, the unique_ptr is safer than the auto_ptr (that was deprecated in

C++11) as it does not invalidate the source smart pointer object during a copy or assign-

ment. Yet, it allows simple memory management by releasing the object at time of

destruction.

ptg18655082

Popular Smart Pointer Libraries 645

26

Listing 26.4 demonstrated that the unique_ptr doesn’t support
copy:
copySmartFish = smartFish; // error: operator= is
private

It however does support move semantics. Therefore, an option
that would work is

unique_ptr<Fish> sameFish (std::move(smartFish));

// smartFish is empty henceforth

If you were ever to write a lambda expression that would need
to capture an unique_ptr, then you would use std::move() in
your lambda capture as supported by C++14.

std::unique_ptr<char> alphabet(new char);

*alphabet = 's';

auto lambda = [capture = std::move(alphabet)]()
{ std::cout << *capture << endl; };

// alphabet is empty henceforth as contents have been
'moved'

lambda();

Don’t be frustrated if the preceding code seems too exotic—it is
admittedly complicated and covers a use case that most profes-
sional programmers would possibly never come across.

TIP

When writing applications using multiple threads, evaluate using
std::shared_ptr and std::weak_ptr supplied by C++11-
compliant libraries. These facilitate thread-safe and reference-
counted object sharing.

NOTE

Popular Smart Pointer Libraries
It’s pretty apparent that the version of the smart pointer shipped with the C++ Standard

Library is not going to meet every programmer’s requirements. This is precisely why

there are many smart pointer libraries out there.

ptg18655082

646 LESSON 26: Understanding Smart Pointers

Boost (www.boost.org) supplies you with some well-tested and well-documented

smart pointer classes, among many other useful utility classes. You can find further

information on Boost smart pointers and downloads at http://www.boost.org/libs/

smart_ptr/smart_ptr.htm.

Summary
In this lesson, you learned how using the right smart pointers can help write code that

uses pointers, yet helps reduce allocation and object ownership–related problems. You

also learned of the different smart pointer types and that it is important to know the

behavior of a smart pointer class before adopting it in your application. You now know

that you should not use std::auto_ptr as it invalidates the source during a copy or

assignment. You learned about smart pointer classes available starting with C++11,

the std::unique_ptr.

Q&A
 Q I need a vector of pointers. Should I choose auto_ptr as the object type to be

held in the vector?

 A As a rule, you should never use std::auto_ptr. It is deprecated. A single copy or

assignment operation can render the source object unusable.

 Q What two operators does a class always need to load to be called a smart
pointer class?

 A The following: operator* and operator->. They help use objects of the class

with regular pointer semantics.

 Q I have an application in which Class1 and Class2 hold member attributes
that point to objects of the other’s type. Should I use a reference-counted
pointer in this scenario?

 A Probably you wouldn’t because of the cyclic dependency that will keep the refer-

ence count from going down to zero and will consequently keep objects of the two

classes permanently in the heap.

 Q A string class also dynamically manages character arrays on the free store.
Is a string class therefore a smart pointer, too?

 A No, it isn’t. These classes typically don’t implement both operator* and

operator-> and are therefore not classifiable as smart pointers.

http://www.boost.org
http://www.boost.org/libs/smart_ptr/smart_ptr.htm
http://www.boost.org/libs/smart_ptr/smart_ptr.htm

ptg18655082

Workshop 647

26

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. Where would you look before writing your own smart pointer for your application?

2. Would a smart pointer slow down your application significantly?

3. Where can reference-counted smart pointers hold the reference count data?

4. Should the linked list mechanism used by reference-linked pointers be singly or

doubly linked?

Exercises
1. BUG BUSTER: Point out the bug in this code:

std::auto_ptr<SampleClass> object (new SampleClass ());
std::auto_ptr<SampleClass> anotherObject (object);
object->DoSomething ();
anotherObject->DoSomething();

2. Use the unique_ptr class to instantiate a Carp that inherits from Fish. Pass the

object as a Fish pointer and comment on slicing, if any.

3. BUG BUSTER: Point out the bug in this code:

std::unique_ptr<Tuna> myTuna (new Tuna);
unique_ptr<Tuna> copyTuna;
copyTuna = myTuna;

ptg18655082

LESSON 27
Using Streams for
Input and Output

You have actually been using streams all through this book, starting with
Lesson 1, “Getting Started,” in which you displayed “Hello World” on
the screen using std::cout. It’s time to give this part of C++ its due
attention and learn streams from a practical point of view. In this lesson,
you find out

 ■ What streams are and how they are used

 ■ How to write to and read from files using streams

 ■ Useful C++ stream operations

ptg18655082

650 LESSON 27: Using Streams for Input and Output

Concept of Streams
You are developing a program that reads from the disk, writes data to the display, reads

user input from the keyboard, and saves data on the disk. Wouldn’t it be useful if you

could treat all read activities and write activities using similar patterns irrespective of

what device or location the data is coming from or going to? This is exactly what C++

streams offer you!

C++ streams are a generic implementation of read and write (in other words, input and

output) logic that enables you to use certain consistent patterns toward reading or writing

data. These patterns are consistent irrespective of whether you are reading data from the

disk or the keyboard or whether you are writing to the display or back to the disk. You

just need to use the right stream class, and the implementation within the class takes care

of device- and OS-specific details.

Let’s refer to one relevant line taken from your first C++ program, Listing 1.1 in

Lesson 1, again:

std::cout << "Hello World!" << std::endl;

That’s right: std::cout is a stream object of class ostream for console output. To use

std::cout, you included header <iostream> that supplies this and other functionality

such as std::cin that allows you to read from a stream.

So, what do I mean when I say that streams allow consistent and device-specific access?

If you were to write "Hello World" to a text file, you would use this syntax on a file

stream object fsHello:

fsHello << "Hello World!" << endl; // "Hello World!" into a file stream

As you can see, after you’ve chosen the right stream class, writing “Hello World” to a file

isn’t too different in C++ than writing it to the display.

operator<< used when writing into a stream is called the
stream insertion operator. You use it when writing to the display,
file, and so on.

operator>> used when writing a stream into a variable is called
the stream extraction operator. You use it when reading input
from the keyboard, file, and so on.

TIP

Going ahead, this lesson studies streams from a practical point of view.

ptg18655082

Important C++ Stream Classes and Objects 651

27

Important C++ Stream Classes
and Objects
C++ provides you with a set of standard classes and headers that help you perform some

important and frequent I/O operations. Table 27.1 is a list of classes that you use frequently.

TABLE 27.1 Popularly Used C++ Stream Classes in the std Namespace

Class/Object Purpose

cout Standard output stream, typically redirected to the console

cin Standard input stream, typically used to read data into variables

cerr Standard output stream for errors

fstream Input and output stream class for file operations; inherits from
ofstream and ifstream

ofstream Output stream class for file operations—that is, used to create
files

ifstream Input stream class for file operations—that is, used to read files

stringsstream Input and output stream class for string operations; inherits
from istringstream and ostringstream; typically used to
perform conversions from (or to) string and other types

cout, cin, and cerr are global objects of stream classes
ostream, istream, and ostream, respectively. Being global
objects, they’re initialized before main() starts.

NOTE

When using a stream class, you have the option of specifying manipulators that perform

specific actions for you. std::endl is one such manipulator that you have been using

thus far to insert a newline character:

std::cout << "This lines ends here" << std::endl;

ptg18655082

652 LESSON 27: Using Streams for Input and Output

Table 27.2 demonstrates a few other such manipulator functions and flags.

TABLE 27.2 Frequently Used Manipulators in the std Namespace for Working with
Streams

Output Manipulators Purpose

endl Inserts a newline character

ends Inserts a null character

Radix Manipulators Purpose

dec Instructs stream to interpret input or display output in
decimal

hex Instructs stream to interpret input or display output in
hexadecimal

oct Instructs stream to interpret input or display output in octal

Floating Point Representation Manipulators Purpose

fixed Instructs stream to display in fixed point notation

scientific Instructs stream to display in scientific notation

<iomanip>

Manipulators Purpose

setprecision Set decimal point precision as a parameter

setw Set field width as a parameter

setfill Set fill character as a parameter

setbase Set the radix/base, akin to using dec, hex, or oct as
a parameter

setiosflag Set flags via a mask input parameter of type
std::ios_base::fmtflags

resetiosflag Restore defaults for a particular type specified by that
contained in std::ios_base::fmtflags

Using std::cout for Writing Formatted
Data to Console
std::cout used for writing to the standard output stream is possibly the most used stream

in this book thus far. Yet, it’s time to revisit cout and use some of the manipulators in

changing the way we are able to align and display data.

ptg18655082

653

27

Using std::cout for Writing Formatted Data to Console

Changing Display Number Formats Using std::cout
It is possible to ask cout to display an integer in hexadecimal or in octal notations.

Listing 27.1 demonstrates using cout to display an input number in various formats.

LISTING 27.1 Displaying an Integer in Decimal, Octal, and Hexadecimal Formats Using
cout and <iomanip> Flags

 0: #include <iostream>
 1: #include <iomanip>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Enter an integer: ";
 7: int input = 0;
 8: cin >> input;
 9:
10: cout << "Integer in octal: " << oct << input << endl;
11: cout << "Integer in hexadecimal: " << hex << input << endl;
12:
13: cout << "Integer in hex using base notation: ";
14: cout<<setiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);
15: cout << input << endl;
16:
17: cout << "Integer after resetting I/O flags: ";
18: cout<<resetiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);
19: cout << input << endl;
20:
21: return 0;
22: }

Output ▼
Enter an integer: 253
Integer in octal: 375
Integer in hexadecimal: fd
Integer in hex using base notation: 0XFD
Integer after resetting I/O flags: 253

Analysis ▼

The code sample uses the manipulators presented in Table 27.2 to change the way cout

displays the same integer object input, supplied by the user. Note how manipulators oct

and hex are used in Lines 10 and 11. In Line 14 you use setiosflags() telling it to

display the numbers in hex using uppercase letters, resulting in cout displaying integer

ptg18655082

654 LESSON 27: Using Streams for Input and Output

input 253 as 0XFD. The effect of resetioflags() used in Line 18 is demonstrated

by the integer being displayed by cout using decimal notation again. Another way to

change the radix used in displaying integer to decimal would be the following:

cout << dec << input << endl; // displays in decimal

It is also possible to format the manner in which cout displays numbers such as Pi in that

you can specify the precision, which in a fixed-point notation specifies the number of

places after decimal to be shown, or you can have a number displayed using scientific

notation. This and more is demonstrated by Listing 27.2.

LISTING 27.2 Using cout to Display Pi and a Circle’s Area Using Fixed-Point and
Scientific Notations

 0: #include <iostream>
 1: #include <iomanip>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: const double Pi = (double)22.0 / 7;
 7: cout << "Pi = " << Pi << endl;
 8:
 9: cout << endl << "Setting precision to 7: " << endl;
10: cout << setprecision(7);
11: cout << "Pi = " << Pi << endl;
12: cout << fixed << "Fixed Pi = " << Pi << endl;
13: cout << scientific << "Scientific Pi = " << Pi << endl;
14:
15: cout << endl << "Setting precision to 10: " << endl;
16: cout << setprecision(10);
17: cout << "Pi = " << Pi << endl;
18: cout << fixed << "Fixed Pi = " << Pi << endl;
19: cout << scientific << "Scientific Pi = " << Pi << endl;
20:
21: cout << endl << "Enter a radius: ";
22: double radius = 0.0;
23: cin >> radius;
24: cout << "Area of circle: " << 2*Pi*radius*radius << endl;
25:
26: return 0;
27: }

ptg18655082

655

27

Using std::cout for Writing Formatted Data to Console

Output ▼
Pi = 3.14286

Setting precision to 7:
Pi = 3.142857
Fixed Pi = 3.1428571
Scientific Pi = 3.1428571e+000

Setting precision to 10:
Pi = 3.1428571429e+000
Fixed Pi = 3.1428571429
Scientific Pi = 3.1428571429e+000

Enter a radius: 9.99
Area of circle: 6.2731491429e+002

Analysis ▼

The output demonstrates how increasing the precision to 7 in Line 10 and to 10 in Line 16

changes the display of the value of Pi. Also note how the manipulator scientific results

in the calculated area of the circle being displayed as 6.2731491429e+002.

Aligning Text and Setting Field Width Using std::cout
One can use manipulators such as setw() to set the width of the field in characters.

Any insertion made to the stream is right aligned in this specified width. Similarly,

setfill() can be used to determine what character fills the empty area in such a

situation, as demonstrated by Listing 27.3.

LISTING 27.3 Set the Width of a Field via setw() and the Fill Characters Using
setfill() Manipulators

 0: #include <iostream>
 1: #include <iomanip>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Hey - default!" << endl;
 7:
 8: cout << setw(35); // set field width to 25 columns
 9: cout << "Hey - right aligned!" << endl;
10:
11: cout << setw(35) << setfill('*');

ptg18655082

656 LESSON 27: Using Streams for Input and Output

12: cout << "Hey - right aligned!" << endl;
13:
14: cout << "Hey - back to default!" << endl;
15:
16: return 0;
17: }

Output ▼
Hey - default!

 Hey - right aligned!
***************Hey - right aligned!
Hey - back to default!

Analysis ▼

The output demonstrates the effect of setw(35) supplied to cout in Line 8 and set-

fill('*') supplied together with setw(35) in Line 11. You see that the latter results in

the free space preceding the text to be displayed to be filled with asterisks, as specified

in setfill().

Using std::cin for Input
std::cin is versatile and enables you to read input into the plain old data types, such as

the int, double, and char*, and you can also read lines or characters from the screen

using methods such as getline().

Using std::cin for Input into a Plain Old Data Type
You can feed integers, doubles, and chars directly from the standard input via cin.

Listing 27.4 demonstrates the usage of cin in reading simple data types from the user.

LISTING 27.4 Using cin to Read Input into an int, a Floating-Point Number Using
Scientific Notation into a double, and Three Letters into a char

 0: #include<iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter an integer: ";
 6: int inputNum = 0;
 7: cin >> inputNum;
 8:
 9: cout << "Enter the value of Pi: ";
10: double Pi = 0.0;

ptg18655082

657

27

Using std::cin for Input

11: cin >> Pi;
12:
13: cout << "Enter three characters separated by space: " << endl;
14: char char1 = '\0', char2 = '\0', char3 = '\0';
15: cin >> char1 >> char2 >> char3;
16:
17: cout << "The recorded variable values are: " << endl;
18: cout << "inputNum: " << inputNum << endl;
19: cout << "Pi: " << Pi << endl;
20: cout << "The three characters: " << char1 << char2 << char3 << endl;
21:
22: return 0;
23: }

Output ▼
Enter an integer: 32
Enter the value of Pi: 0.314159265e1
Enter three characters separated by space:
c + +
The recorded variable values are:
inputNum: 32
Pi: 3.14159
The three characters: c++

Analysis ▼

The most interesting part about Listing 27.4 is that you entered the value of Pi using

exponential notation, and cin filled that data into double Pi. Note how you are able to

fill three-character variables within a single line as shown in Line 15.

Using std::cin::get for Input into char* Buffer
Just like cin allows you to write directly into an int, you can do the same with a C-style

char array, too:

cout << "Enter a line: " << endl;
char charBuf [10] = {0}; // can contain max 10 chars
cin >> charBuf; // Danger: user may enter more than 10 chars

When writing into a C-style string buffer, it is very important that you don’t exceed the

bounds of the buffer to avoid a crash or a security vulnerability. So, a better way of read-

ing into a C-style char buffer is this:

cout << "Enter a line: " << endl;
char charBuf[10] = {0};
cin.get(charBuf, 9); // stop inserting at the 9th character

ptg18655082

658 LESSON 27: Using Streams for Input and Output

This safer way of inserting text into a C-style buffer is demonstrated by Listing 27.5.

LISTING 27.5 Inserting into a char Buffer Without Exceeding Its Bounds

 0: #include<iostream>
 1: #include<string>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Enter a line: " << endl;
 7: char charBuf[10] = {0};
 8: cin.get(charBuf, 9);
 9: cout << "charBuf: " << charBuf << endl;
10:
11: return 0;
12: }

Output ▼
Enter a line:
Testing if I can cross the bounds of the buffer
charBuf: Testing i

Analysis ▼

As the output indicates, you have only taken the first nine characters input by the user

into the char buffer due to the use of cin::get as used in Line 8. This is the safest way

to deal with buffers given a length.

As far as possible, don’t use char arrays. Use std::string
instead of char* wherever possible.TIP

Using std::cin for Input into a std::string
cin is a versatile tool, and you can even use it to scan a string from the user directly into

a std::string:

std::string input;
cin >> input; // stops insertion at the first space

ptg18655082

659

27

Listing 27.6 demonstrates input using cin into a std::string.

LISTING 27.6 Inserting Text into a std::string Using cin

 0: #include<iostream>
 1: #include<string>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Enter your name: ";
 7: string name;
 8: cin >> name;
 9: cout << "Hi " << name << endl;
10:
11: return 0;
12: }

Output ▼
Enter your name: Siddhartha Rao
Hi Siddhartha

Analysis ▼

The output perhaps surprises you as it displays only my first name and not the entire

input string. So what happened? Apparently, cin stops insertion when it encounters the

first white space.

To allow the user to enter a complete line, including spaces, you need to use getline():

string name;
getline(cin, name);

This usage of getline() with cin is demonstrated in Listing 27.7.

LISTING 27.7 Reading a Complete Line Input by User Using getline() and cin

 0: #include<iostream>
 1: #include<string>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Enter your name: ";
 7: string name;

Using std::cin for Input

ptg18655082

660 LESSON 27: Using Streams for Input and Output

 8: getline(cin, name);
 9: cout << "Hi " << name << endl;
10:
11: return 0;
12: }

Output ▼
Enter your name: Siddhartha Rao
Hi Siddhartha Rao

Analysis ▼

getline() as shown in Line 8 did the job of ensuring that white space characters are not

skipped. The output now contains the complete line fed by the user.

Using std::fstream for File Handling
std:fstream is a class that C++ provides for (relatively) platform-independent

file access. std::fstream inherits from std::ofstream for writing a file and

std::ifstream for reading one.

In other words, std::fstream provides you with both read and write functionality.

To use class std::fstream or its base classes, include header:

#include <fstream>
TIP

Opening and Closing a File Using open() and close()
To use an fstream, ofstream, or ifstream class, you need to open a file using method

open():

fstream myFile;
myFile.open("HelloFile.txt",ios_base::in|ios_base::out|ios_base::trunc);

if (myFile.is_open()) // check if open() succeeded
{
 // do reading or writing here

 myFile.close();
}

ptg18655082

661

27

Using std::fstream for File Handling

open() takes two arguments: The first is the path and name of the file being opened

(if you don’t supply a path, it assumes the current directory settings for the application),

whereas the second is the mode in which the file is being opened. The modes chosen

allow the file to be created even if one exists (ios_base::trunc) and allow you to read

and write into the file (in | out).

Note the usage of is_open() to test whether open() succeeded.

 Closing the stream using close() is essential to saving
the file.CAUTION

There is an alternative way of opening a file stream, which is via the constructor:

fstream myFile("HelloFile.txt",ios_base::in|ios_base::out|ios_base::trunc);

Alternatively, if you want to open a file for writing only, use the following:

ofstream myFile("HelloFile.txt", ios_base::out);

If you want to open a file for reading, use this:

ifstream myFile("HelloFile.txt", ios_base::in);

Irrespective of whether you use the constructor or the mem-
ber method open(), it is recommended that you check for the
successful opening of the file via is_open() before continuing
to use the corresponding file stream object.

TIP

The various modes in which a file stream can be opened are the following:

 ■ ios_base::app—Appends to the end of existing files rather than truncating them

 ■ ios_base::ate—Places you at the end of the file, but you can write data

 anywhere in the file

 ■ ios_base::trunc—Causes existing files to be truncated; the default

 ■ ios_base::binary—Creates a binary file (default is text)

 ■ ios_base::in—Opens file for read operations only

 ■ ios_base::out—Opens file for write operations only

ptg18655082

662 LESSON 27: Using Streams for Input and Output

Creating and Writing a Text File Using open()
and operator<<
After you have opened a file stream, you can write to it using operator <<, as Listing

27.8 demonstrates.

LISTING 27.8 Creating a New Text File and Writing Text into It Using ofstream

 0: #include<fstream>
 1: #include<iostream>
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: ofstream myFile;
 7: myFile.open("HelloFile.txt", ios_base::out);
 8:
 9: if (myFile.is_open())
10: {
11: cout << "File open successful" << endl;
12:
13: myFile << "My first text file!" << endl;
14: myFile << "Hello file!";
15:
16: cout << "Finished writing to file, will close now" << endl;
17: myFile.close();
18: }
19:
20: return 0;
21: }

Output ▼
File open successful
Finished writing to file, will close now

Content of file HelloFile.txt:

My first text file!
Hello file!

Analysis ▼

Line 7 opens the file in mode ios_base::out—that is, exclusively for writing. In Line 9

you test if open() succeeded and then proceed to write to the file stream using the inser-

tion operator << as shown in Lines 13 and 14. Finally, you close at Line 17 and return.

ptg18655082

663

27

Listing 27.8 demonstrates how you are able to write into a file
stream the same way as you would write to the standard output
(console) using cout.

This indicates how streams in C++ allow for a similar way of
handling different devices, writing text to the display via cout in
the same way one would write to a file via ofstream.

NOTE

Reading a Text File Using open() and operator>>
To read a file, one can use fstream and open it using flag ios_base::in or use

ifstream. Listing 27.9 demonstrates reading the file HelloFile.txt created in

Listing 27.8.

LISTING 27.9 Reading Text from File HelloFile.txt Created in Listing 27.8

 0: #include<fstream>
 1: #include<iostream>
 2: #include<string>
 3: using namespace std;
 4:
 5: int main()
 6: {
 7: ifstream myFile;
 8: myFile.open("HelloFile.txt", ios_base::in);
 9:
10: if (myFile.is_open())
11: {
12: cout << "File open successful. It contains: " << endl;
13: string fileContents;
14:
15: while (myFile.good())
16: {
17: getline (myFile, fileContents);
18: cout << fileContents << endl;
19: }
20:
21: cout << "Finished reading file, will close now" << endl;
22: myFile.close();
23: }
24: else
25: cout << "open() failed: check if file is in right folder" << endl;
26:
27: return 0;
28: }

Using std::fstream for File Handling

ptg18655082

664 LESSON 27: Using Streams for Input and Output

Output ▼
File open successful. It contains:
My first text file!
Hello file!
Finished reading file, will close now

As Listing 27.9 reads the text file "HelloFile.txt" created using
Listing 27.8, you either need to move that file to this project’s
working directory or merge this code into the previous one.

NOTE

Analysis ▼

As always, you perform check is_open() to verify if the call to open() in Line 8

succeeded. Note the usage of the extraction operator >> in reading the contents of

the file directly into a string that is then displayed on using cout in Line 18. We use

getline() in this sample for reading input from a file stream in an exactly identical way

as you used it in Listing 27.7 to read input from the user, one complete line at a time.

Writing to and Reading from a Binary File
The actual process of writing to a binary file is not too different from what you have

learned thus far. It is important to use ios_base::binary flag as a mask when open-

ing the file. You typically use ofstream::write or ifstream::read as Listing 27.10

demonstrates.

LISTING 27.10 Writing a struct to a Binary File and Reconstructing It from the Same

 0: #include<fstream>
 1: #include<iomanip>
 2: #include<string>
 3: #include<iostream>
 4: using namespace std;
 5:
 6: struct Human
 7: {
 8: Human() {};
 9: Human(const char* inName, int inAge, const char* inDOB) : age(inAge)
10: {
11: strcpy(name, inName);
12: strcpy(DOB, inDOB);
13: }
14:
15: char name[30];

ptg18655082

665

27

16: int age;
17: char DOB[20];
18: };
19:
20: int main()
21: {
22: Human Input("Siddhartha Rao", 101, "May 1916");
23:
24: ofstream fsOut ("MyBinary.bin", ios_base::out | ios_base::binary);
25:
26: if (fsOut.is_open())
27: {
28: cout << "Writing one object of Human to a binary file" << endl;
29: fsOut.write(reinterpret_cast<const char*>(&Input), sizeof(Input));
30: fsOut.close();
31: }
32:
33: ifstream fsIn ("MyBinary.bin", ios_base::in | ios_base::binary);
34:
35: if(fsIn.is_open())
36: {
37: Human somePerson;
38: fsIn.read((char*)&somePerson, sizeof(somePerson));
39:
40: cout << "Reading information from binary file: " << endl;
41: cout << "Name = " << somePerson.name << endl;
42: cout << "Age = " << somePerson.age << endl;
43: cout << "Date of Birth = " << somePerson.DOB << endl;
44: }
45:
46: return 0;
47: }

Output ▼
Writing one object of Human to a binary file
Reading information from binary file:
Name = Siddhartha Rao
Age = 101
Date of Birth = May 1916

Analysis ▼

In Lines 22–31, you create an instance of struct Human that contains a name, age,

and DOB and persist it to the disk in a binary file MyBinary.bin using ofstream. This

information is then read using another stream object of type ifstream in Lines 33–44.

The output of attributes such as name and so on is via the information that has been

Using std::fstream for File Handling

ptg18655082

666 LESSON 27: Using Streams for Input and Output

read from the binary file. This sample also demonstrates the usage of ifstream and

ofstream for reading and writing a file using ifstream::read and ofstream::write,

respectively. Note the usage of reinterpret_cast in Line 29 to essentially force the

compiler to interpret the struct as char*. In Line 38, you use the C-style cast version

of what is used in Line 29.

If it were not for explanation purposes, I would’ve rather persisted
struct Human with all its attributes in an XML file. XML is a
text- and markup-based storage format that allows flexibility and
scalability in the manner in which information can be persisted.

If struct Human were to be delivered in this version and after
delivery if you were to add new attributes to it (like numChildren,
for instance), you would need to worry about ifstream::read
functionality being able to correctly read binary data created
using the older versions.

NOTE

Using std::stringstream for String
Conversions
You have a string. It contains a string value 45 in it. How do you convert this string value

into an integer with value 45? And vice versa? One of the most useful utilities provided

by C++ is class stringstream that enables you to perform a host of conversion

activities.

To use class std::stringstream, include header:

#include <sstream>
TIP

Listing 27.11 demonstrates some simple stringstream operations.

LISTING 27.11 Converting an Integer Value into a String Representation and Vice Versa
Using std::stringstream

 0: #include<fstream>
 1: #include<sstream>
 2: #include<iostream>
 3: using namespace std;
 4:

ptg18655082

667

27

Using std::stringstream for String Conversions

 5: int main()
 6: {
 7: cout << "Enter an integer: ";
 8: int input = 0;
 9: cin >> input;
10:
11: stringstream converterStream;
12: converterStream << input;
13: string inputAsStr;
14: converterStream >> inputAsStr;
15:
16: cout << "Integer Input = " << input << endl;
17: cout << "String gained from integer = " << inputAsStr << endl;
18:
19: stringstream anotherStream;
20: anotherStream << inputAsStr;
21: int Copy = 0;
22: anotherStream >> Copy;
23:
24: cout << "Integer gained from string, Copy = " << Copy << endl;
25:
26: return 0;
27: }

Output ▼
Enter an integer: 45
Integer Input = 45
String gained from integer = 45
Integer gained from string, Copy = 45

Analysis ▼

You ask the user to enter an integer value. You first insert this integer into the string-

stream object, as shown in Line 12, using operator<<. Then, you use the extraction

operator>> in Line 14 to convert this integer into a string. After that, you use this

string as a starting point and get an integer representation Copy of the numeric value held

in string inputAsStr.

ptg18655082

668 LESSON 27: Using Streams for Input and Output

DO DON’T

DO use ifstream when you only
intend to read from a file.

DO use ofstream when you only
intend to write a file.

DO remember to check if a file
stream has opened successfully
via is_open() before inserting or
extracting from the stream.

DON’T forget to close a file stream
using method close() after you are
done using it.

DON’T forget that extracting from cin
to a string via cin >> strData;
typically results in the strData con-
taining text until the first white space
and not the entire line.

DON’T forget that function
getline(cin, strData); fetches
you an entire line from the input
stream, including white spaces.

Summary
This lesson taught you C++ streams from a practical perspective. You learned that you

have been using streams such as I/O streams cout and cin since the very beginning of

the book. You now know how to create simple text files and how to read or write from

them. You learned how stringstream can help you convert simple types such as inte-

gers into strings, and vice versa.

Q&A
Q I see that I can use fstream for both writing and reading to a file, so when

should I use ofstream and ifstream?

A If your code or module needs to only be reading from a file, you should instead use

ifstream. Similarly, if it needs to only write to a file use ofstream. In both cases

fstream would work fine, but for the sake of ensuring data and code integrity, it is

better to have a restrictive policy similar to using const, which is not compulsory

either.

 Q When should I use cin.get(), and when should I use cin.getline()?

 A cin.getline() ensures that you capture the entire line including white spaces

entered by the user. cin.get()helps you capture user input one character at a

time.

 Q When should I use stringstream?

 A stringstream supplies a convenient way of converting integers and other simple

types into a string and vice versa, as also demonstrated by Listing 27.11.

ptg18655082

Workshop 669

27

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. You need to only write to a file. What stream would you use?

2. How would you use cin to get a complete line from the input stream?

3. You need to write std::string objects to a file. Would you choose

ios_base::binary mode?

4. You opened a stream using open(). Why bother using is_open()?

Exercises
1. BUG BUSTER: Find the error in the following code:

fstream myFile;
myFile.open("HelloFile.txt", ios_base::out);
myFile << "Hello file!";
myFile.close();

2. BUG BUSTER: Find the error in the following code:

ifstream myFile("SomeFile.txt");
if(myFile.is_open())
{
 myFile << "This is some text" << endl;
 myFile.close();
}

ptg18655082

LESSON 28
Exception Handling

The title says it all: dealing with extraordinary situations that disrupt the
flow of your program. The lessons thus far have mostly taken an exceed-
ingly positive approach, assuming that memory allocations will succeed,
files will be found, and so on. Reality is often different.

In this lesson, you learn

 ■ What is an exception

 ■ How to handle exceptions

 ■ How exception handling helps you deliver stable C++ applications

ptg18655082

672 LESSON 28: Exception Handling

What Is an Exception?
Your program allocates memory, reads and writes data, saves to a file—the works. All

this executes flawlessly on your awesome development environment, and you are even

proud of the fact that your application doesn’t leak a byte, though it manages a gigabyte!

You ship your application and the customer deploys it on his landscape of a thousand

workstations. Some of his computers are ten years old. It doesn’t take much time for

the first complaint to reach your inbox. Some complaints will be about an “Access

Violation,” whereas some others will quote an “Unhandled Exception.”

There you go—“unhandled” and “exception.” Clearly, your application was doing well

inside your environment, so why all the fuss?

The fact is that the world out there is very heterogeneous. No two computers, even with

the same hardware configuration, are alike. This is because the software running on

each computer and the state the machine is in decide the amount of resources that are

available at a particular time. It is therefore probable that memory allocation that worked

perfectly in your environment fails in another environment.

These failures result in “exceptions.”

Exceptions disrupt the normal flow of your application. After all, if there is no memory

available, there is possibly no way your application can achieve what it set out to do. Yet,

your application can handle that exception and display a friendly error message to the

user, perform any minimal rescue operation if needed, and exit gracefully.

Handling exceptions helps you avoid those “Access Violation” or “Unhandled Exception”

screens or emails. Let’s see what tools C++ provides you for dealing with the unexpected.

What Causes Exceptions?
Exceptions can be caused by external factors, such as a system with insufficient

resources, or by factors internal to your application, such as a pointer that is used in spite

of it containing an invalid value or a divide-by-zero error. Some modules are designed to

communicate errors by throwing exceptions to the caller.

To protect your code against exceptions, you “handle” exceptions
thereby making your code “exception safe.”NOTE

ptg18655082

673

28

Implementing Exception Safety via try and catch

Implementing Exception Safety
via try and catch
try and catch are the most important keywords in C++ as far as implementing excep-

tion safety goes. To make statements exception safe, you enclose them within a try block

and handle the exceptions that emerge out of the try block in the catch block:

void SomeFunc()
{
 try
 {

int* numPtr = new int;
*numPtr = 999;
delete numPtr;

 }
 catch(...) // ... catches all exceptions
 {

cout << "Exception in SomeFunc(), quitting" << endl;
 }
}

Using catch(...) to Handle All Exceptions
Remember in Lesson 8, “Pointers and References Explained,” that I mentioned that the

default form of new returns a valid pointer to a location in memory when it succeeds but

throws an exception when it fails. Listing 28.1 demonstrates how you can make memory

allocations exception safe using new and handle situations where the computer is not able

to allocate the memory you requested.

LISTING 28.1 Using try and catch in Ensuring Exception Safety in Memory Allocations

 0: #include <iostream>
 1: using namespace std;
 2:
 3: int main()
 4: {
 5: cout << "Enter number of integers you wish to reserve: ";
 6: try
 7: {
 8: int input = 0;
 9: cin >> input;
10:
11: // Request memory space and then return it
12: int* numArray = new int [input];
13: delete[] numArray;
14: }

ptg18655082

674 LESSON 28: Exception Handling

15: catch (...)
16: {
17: cout << "Exception occurred. Got to end, sorry!" << endl;
18: }
19: return 0;
20: }

Output ▼
Enter number of integers you wish to reserve: -1
Exception occurred. Got to end, sorry!

Analysis ▼

For this example, I used -1 as the number of integers that I wanted to reserve. This input

is ridiculous, but users do ridiculous things all the time. In the absence of the exception

handler, the program would encounter a very ugly end. But thanks to the exception han-

dler, you see that the output displays a decent message: Got to end, sorry!

Listing 28.1 demonstrates the usage of try and catch blocks. catch() takes param-

eters, just like a function does, and ... means that this catch block accepts all kinds of

exceptions. In this case, however, we might want to specifically isolate exceptions of type

std::bad_alloc as these are thrown when new fails. Catching a specific type will help

you handle that type of problem in particular, for instance, show the user a message tell-

ing what exactly went wrong.

Catching Exception of a Type
The exception in Listing 28.1 was thrown from the C++ Standard Library. Such

 exceptions are of a known type, and catching a particular type is better for you as you

can pinpoint the reason for the exception, do better cleanup, or at least show a precise

message to the user, as Listing 28.2 does.

LISTING 28.2 Catching Exceptions of Type std::bad_alloc

 0: #include <iostream>
 1: #include<exception> // include this to catch exception bad_alloc
 2: using namespace std;
 3:
 4: int main()
 5: {
 6: cout << "Enter number of integers you wish to reserve: ";
 7: try
 8: {

ptg18655082

675

28

 9: int input = 0;
10: cin >> input;
11:
12: // Request memory space and then return it
13: int* numArray = new int [input];
14: delete[] numArray;
15: }
16: catch (std::bad_alloc& exp)
17: {
18: cout << "Exception encountered: " << exp.what() << endl;
19: cout << "Got to end, sorry!" << endl;
20: }
21: catch(...)
22: {
23: cout << "Exception encountered. Got to end, sorry!" << endl;
24: }
25: return 0;
26: }

Output ▼
Enter number of integers you wish to reserve: -1
Exception encountered: bad array new length
Got to end, sorry!

Analysis ▼

Compare the output of Listing 28.2 to that of Listing 28.1. You see that you are now able

to supply a more precise reason for the abrupt ending of the application, namely, “bad

array new length.” This is because you have an additional catch block (yes, two catch

blocks), one that traps exceptions of the type catch(bad_alloc&) shown in Lines

16–20, which is thrown by new.

In general, you can insert as many catch() blocks as you like,
one after another, depending on the exceptions you expect and
those that would help.

catch(...) as demonstrated in Listing 28.2 catches all those
exception types that have not been explicitly caught by other
catch statements.

TIP

Implementing Exception Safety via try and catch

ptg18655082

676 LESSON 28: Exception Handling

Throwing Exception of a Type Using
throw
When you caught std::bad_alloc in Listing 28.2, you actually caught an object of

class std::bad_alloc thrown by new. It is possible for you to throw an exception of

your own choosing. All you need is the keyword throw:

void DoSomething()
{
 if(something_unwanted)

throw object;
}

Let’s study the usage of throw in a custom-defined exception as demonstrated by

Listing 28.3 that divides two numbers.

LISTING 28.3 Throwing a Custom Exception at an Attempt to Divide by Zero

 0: #include<iostream>
 1: using namespace std;
 2:
 3: double Divide(double dividend, double divisor)
 4: {
 5: if(divisor == 0)
 6: throw "Dividing by 0 is a crime";
 7:
 8: return (dividend / divisor);
 9: }
10:
11: int main()
12: {
13: cout << "Enter dividend: ";
14: double dividend = 0;
15: cin >> dividend;
16: cout << "Enter divisor: ";
17: double divisor = 0;
18: cin >> divisor;
19:
20: try
21: {
22: cout << "Result is: " << Divide(dividend, divisor);
23: }
24: catch(const char* exp)
25: {
26: cout << "Exception: " << exp << endl;
27: cout << "Sorry, can't continue!" << endl;
28: }
29:
30: return 0;
31: }

ptg18655082

How Exception Handling Works 677

28

Output ▼
Enter dividend: 2011
Enter divisor: 0
Exception: Dividing by 0 is a crime
Sorry, can't continue!

Analysis ▼

The code not only demonstrates that you are also able to catch exceptions of type char*,

as shown in Line 24, but also that you caught an exception thrown in a called function

Divide() at Line 6. Also note that you did not include all of main() within try {};

you only include the part of it that you expect to throw. This is generally a good prac-

tice, as exception handling can also reduce the execution performance of your code.

How Exception Handling Works
In Listing 28.3, you threw an exception of type char* in function Divide() that was

caught in the catch(char*) handler in calling function main().

Where an exception is thrown, using throw, the compiler inserts a dynamic lookup

for a compatible catch(Type) that can handle this exception. The exception handling

logic first checks if the line throwing the exception is within a try block. If so, it seeks

the catch(Type) that can handle the exception of this Type. If the throw statement

is not within a try block or if there is no compatible catch() for the exception type,

the exception handling logic seeks the same in the calling function. So, the exception

handling logic climbs the stack, one calling function after another, seeking a suitable

catch(Type) that can handle the exception. At each step in the stack unwinding proce-

dure, the variables local to that function are destroyed in reverse sequence of their con-

struction. This is demonstrated by Listing 28.4.

LISTING 28.4 The Destruction Order of Local Objects in Event of an Exception

 0: #include <iostream>
 1: using namespace std;
 2:
 3: struct StructA
 4: {
 5: StructA() {cout << "StructA constructor" << endl; }
 6: ~StructA() {cout << "StructA destructor" << endl; }
 7: };
 8:
 9: struct StructB

ptg18655082

678 LESSON 28: Exception Handling

10: {
11: StructB() {cout << "StructB constructor" << endl; }
12: ~StructB() {cout << "StructB destructor" << endl; }
13: };
14:
15: void FuncB() // throws
16: {
17: cout << "In Func B" << endl;
18: StructA objA;
19: StructB objB;
20: cout << "About to throw up!" << endl;
21: throw "Throwing for the heck of it";
22: }
23:
24: void FuncA()
25: {
26: try
27: {
28: cout << "In Func A" << endl;
29: StructA objA;
30: StructB objB;
31: FuncB();
32: cout << "FuncA: returning to caller" << endl;
33: }
34: catch(const char* exp)
35: {
36: cout << "FuncA: Caught exception: " << exp << endl;
37: cout << "Handled it, will not throw to caller" << endl;
38: // throw; // uncomment this line to throw to main()
39: }
40: }
41:
42: int main()
43: {
44: cout << "main(): Started execution" << endl;
45: try
46: {
47: FuncA();
48: }
49: catch(const char* exp)
50: {
51: cout << "Exception: " << exp << endl;
52: }
53: cout << "main(): exiting gracefully" << endl;
54: return 0;
55: }

ptg18655082

How Exception Handling Works 679

28

Output ▼
main(): Started execution
In Func A
StructA constructor
StructB constructor
In Func B
StructA constructor
StructB constructor
About to throw up!
StructB destructor
StructA destructor
StructB destructor
StructA destructor
FuncA: Caught exception: Throwing for the heck of it
Handled it, will not throw to caller
main(): exiting gracefully

Analysis ▼

In Listing 28.4, main() invokes FuncA() that invokes FuncB(), which throws in Line 21.

Both calling functions FuncA() and main() are exception safe as they both have a

catch(const char*) block implemented. FuncB() that throws the exception has no

catch() blocks, and hence the catch block within FuncA() at Lines 34–39 is the first

handler to the thrown exception from FuncB(), as FuncA() is the caller of FuncB().

Note that FuncA() decided that this exception is not of a serious nature and did not

propagate it to main(). Hence, main() continues as if no problem happened. If you

uncomment Line 38, the exception is thrown to the caller of FuncB()—that is, main()

receives it, too.

The output also indicates the order in which objects are created (the same order as

you coded their instantiations) and the order in which they’re destroyed as soon as

an exception is thrown (in the reverse order of instantiations). This happens not only

in FuncB() that threw the exception, but also in FuncA() that invoked FuncB() and

handled the thrown exception.

Listing 28.4 demonstrates how destructors of local objects are
invoked when an exception is thrown.

Should the destructor of an object invoked due to an exception
also throw an exception, it results in an abnormal termination of
your application.

CAUTION

ptg18655082

680 LESSON 28: Exception Handling

Class std::exception
In catching std::bad_alloc in Listing 28.2, you actually caught an object of class

std::bad_alloc thrown by new. std::bad_alloc is a class that inherits from C++

standard class std::exception, declared in header <exception>.

std::exception is the base class for the following important exceptions:

 ■ bad_alloc—Thrown when a request for memory using new fails

 ■ bad_cast—Thrown by dynamic_cast when you try to cast a wrong type

(a type that has no inheritance relation)

 ■ ios_base::failure—Thrown by the functions and methods in the iostream

library

Class std::exception that is the base class supports a very useful and important virtual

method what() that gives a more descriptive reason on the nature of the problem causing

the exception. In Listing 28.2, exp.what() in Line 18 gives the information, “bad array

new length,” telling you what went wrong. You can make use of std::exception being

a base class for many exceptions types and create one catch(const exception&) that

can catch all exceptions that have std::exception as base:

void SomeFunc()
{
 try
 {

// code made exception safe
 }
 catch (const std::exception& exp) // catch bad_alloc, bad_cast, etc
 {

cout << "Exception encountered: " << exp.what() << endl;
 }
}

Your Custom Exception Class
Derived from std::exception
You can throw an exception of whatever type you want. However, there is a benefit in

inheriting from std::exception—all existing exception handlers that catch(const

std::exception&) and work for bad_alloc, bad_cast and the like will automatically

scale up to catch your new exception class as well because it has the base class in com-

mon with them. This is demonstrated in Listing 28.5.

ptg18655082

681

28

Your Custom Exception Class Derived from std::exception

LISTING 28.5 class CustomException That Inherits from std::exception

 0: #include <exception>
 1: #include <iostream>
 2: #include <string>
 3: using namespace std;
 4:
 5: class CustomException: public std::exception
 6: {
 7: string reason;
 8: public:
 9: // constructor, needs reason
10: CustomException(const char* why):reason(why) {}
11:
12: // redefining virtual function to return 'reason'
13: virtual const char* what() const throw()
14: {
15: return reason.c_str();
16: }
17: };
18:
19: double Divide(double dividend, double divisor)
20: {
21: if(divisor == 0)
22: throw CustomException("CustomException: Dividing by 0 is a crime");
23:
24: return (dividend / divisor);
25: }
26:
27: int main()
28: {
29: cout << "Enter dividend: ";
30: double dividend = 0;
31: cin >> dividend;
32: cout << "Enter divisor: ";
33: double divisor = 0;
34: cin >> divisor;
35: try
36: {
37: cout << "Result is: " << Divide(dividend, divisor);
38: }
39: catch(exception& exp)// catch CustomException, bad_alloc, etc
40: {
41: cout << exp.what() << endl;
42: cout << "Sorry, can't continue!" << endl;
43: }
44:
45: return 0;
46: }

ptg18655082

682 LESSON 28: Exception Handling

Output ▼
Enter dividend: 2011
Enter divisor: 0
CustomException: Dividing by 0 is a crime
Sorry, can't continue!

Analysis ▼

This is the version of Listing 28.3 that threw a simple char* exception on divide by zero.

This one, however, instantiates an object of class CustomException defined in Lines

5– 17 that inherits from std::exception. Note how our custom exception class imple-

ments virtual function what() in Lines 13–16, essentially returning the reason why the

exception was thrown. The catch(exception&) logic in main() in Lines 39–43 han-

dles not only class CustomException, but also other exceptions of type bad_alloc

that have the same base class exception.

 Note the declaration of virtual method
CustomException::what() in Line 13 in Listing 28.5:

virtual const char* what() const throw()

It ends with throw(), which means that this function itself is not
expected to throw an exception—a very important and relevant
restriction on a class that is used as an exception object. If you
still insert a throw within this function, you can expect a compiler
warning.

If a function ends with throw(int), it means that the function is
expected to throw an exception of type int.

NOTE

DO DON’T

DO remember to catch exceptions of
type std::exception.

DO remember to inherit your
custom exception class (if any) from
std::exception.

DO throw exceptions but with
discretion. They’re not a substitute
for return values such as true or
false.

DON’T throw exceptions from
destructors.

DON’T take memory allocations
for granted; code that does new
should always be exception safe
and within a try block with a
catch(std::exception&).

DON’T insert any heavy logic or
resource allocations inside a catch()
block. You don’t want to be causing
exceptions when you’re handling one.

ptg18655082

Q&A 683

28

Summary
In this lesson you learned an important part of practical C++ programming. Making your

applications stable beyond your own development environment is important for customer

satisfaction and intuitive user experiences, and this is exactly what exceptions help you

do. You found out that code that allocates resources or memory can fail and hence needs

to be made exception safe. You learned about the C++ exception class std::exception

and that if you need to be programming a custom exception class, you ideally would be

inheriting from this one.

Q&A
 Q Why raise exceptions instead of returning an error?

 A You may not always have the privilege of returning an error. If a call to new fails,

you need to handle exceptions thrown by new to prevent your application from

crashing. Additionally, if an error is very severe and makes the future functioning of

your application impossible, you should consider throwing an exception.

 Q Why should my exception class inherit from std::exception?

 A This is, of course, not compulsory, but it helps you reuse all those catch() blocks

that already catch exceptions of type std::exception. You can write your own

exception class that doesn’t inherit from anything else, but then you have to insert

new catch(MyNewExceptionType&) statements at all the relevant points.

 Q I have a function that throws an exception. Does it need to be caught at the
very same function?

 A Not at all. Just ensure that the exception type thrown is caught at one of the calling

functions in the call stack.

 Q Can a constructor throw an exception?

 A Constructors actually have no choice! They don’t have return values, and throwing

an exception is the best way to demonstrate disagreement.

 Q Can a destructor throw an exception?

 A Technically, yes. However, this is a bad practice as destructors are also called when

the stack is unwound due to an exception. So, a destructor invoked due to an excep-

tion throwing an exception itself can clearly result in quite an ugly situation for the

state of an already unstable application trying to make a clean exit.

ptg18655082

684 LESSON 28: Exception Handling

Workshop
The Workshop contains quiz questions to help solidify your understanding of the

 material covered and exercises to provide you with experience in using what you’ve

learned. Try to answer the quiz and exercise questions before checking the answers in

Appendix E, and be certain you understand the answers before going to the following

lesson.

Quiz
1. What is std::exception?

2. What type of exception is thrown when an allocation using new fails?

3. Is it alright to allocate a million integers in an exception handler (catch block) to

back up existing data for instance?

4. How would you catch an exception object of type class MyException that

inherits from std::exception?

Exercises
1. BUG BUSTER: What is wrong with the following code?

class SomeIntelligentStuff
{
 bool isStuffGoneBad;
public:
 ~SomeIntelligentStuff()
 {

if(isStuffGoneBad)
throw "Big problem in this class, just FYI";

 }
};

2. BUG BUSTER: What is wrong with the following code?

int main()
{
 int* millionNums = new int [1000000];
 // do something with the million integers

 delete []millionNums;
}

ptg18655082

Workshop 685

28

3. BUG BUSTER: What is wrong with the following code?

int main()
{
 try
 {

int* millionNums = new int [1000000];
// do something with the million integers

delete []millionNums;
 }
 catch(exception& exp)
 {

int* anotherMillion = new int [1000000];
// take back up of millionNums and save it to disk

 }
}

ptg18655082

LESSON 29
Going Forward

You have learned the basics of C++ programming. In fact, you have gone
beyond theoretical boundaries in understanding how using the Standard
Template Library (STL), templates, and the Standard Library can help you
write efficient and compact code. It is time to give performance a look
and gain a perspective on programming best practices.

In this lesson, you learn

 ■ How your C++ application can best utilize the processor’s capabilities

 ■ Threads and multithreading

 ■ Best practices in programming in C++

 ■ New Features expected in C++17

 ■ Improving your C++ skills beyond this book

ptg18655082

688 LESSON 29: Going Forward

What’s Different in Today’s Processors?
Until recently, computers got faster by using processors that featured faster processing

speeds, measured in hertz (Hz), megahertz (Mhz), or gigahertz (GHz). For instance, Intel

8086 (see Figure 29.1) was a 16-bit microprocessor launched in 1978 with a clock speed

of about 10MHz.

FIGURE 29.1

The Intel 8086
microprocessor.

Those were the days when processors got significantly faster at regular intervals and

so did your C++ application. It was easy to rely on a waiting game to make use of

improved hardware performance and improving your software’s responsiveness through

it. Although today’s processors are getting faster, the true innovation is in the number of

cores they deploy. At the time of writing this book, even popular smartphones feature

64-bit processors with four cores and more processing capacity than a desktop computer

from a decade ago.

You can think of a multicore processor as a single chip with multiple processors running

in parallel within it. Each processor has its own L1 cache and can work independently of

the other.

A faster processor increasing the speed of your application is logical. How do multiple

cores in a processor help? Each core is evidently capable of running an application in

parallel, but this doesn’t necessarily make your application run any faster unless you

have programmed it to consume this new capability. Single-threaded C++ applications

of the types you have seen this far are possibly missing the bus as far as using multicore

processing capabilities go. The applications run in one thread, and hence on only one

core, as shown in Figure 29.2.

ptg18655082

How to Better Use Multiple Cores 689

29

Core 1 Core N

DoSomething()

DoNextThing()

Core 2

Process Image1()

Cool Image Processor Application
(using multiple cores)

Single-Threaded Application
(using one core)

Process Image2()

FIGURE 29.2

A single-threaded
application in
a multiple-core
processor.

If your application executes all use cases in a serial order, the operating system (OS) will

possibly give it only as much time as other applications in the queue and it will occupy

only one core on the processor. In other words, your application is running on a multicore

processor in the same way as it would do in those years gone by.

How to Better Use Multiple Cores
The key is in creating applications that are multithreaded. Each thread runs in parallel,

allowing the OS to let the threads run on multiple cores. Although it is beyond the scope

of this book to discuss threads and multithreading in great detail, I can just touch this

topic and give you a head start toward high-performance computing.

What Is a Thread?
Your application code always runs in a thread. A thread is a synchronous execution entity

where statements in a thread run one after another. The code inside main() is considered

to execute the main thread of the application. In this main thread, you can create new

threads that can run in parallel. Such applications that are comprised of one or more

threads running in parallel in addition to the main thread are called multithreaded appli-

cations.

The OS dictates how threads are to be created, and you can create threads directly by

calling those APIs supplied by the OS.

ptg18655082

690 LESSON 29: Going Forward

C++ since C++11 specifies thread functions that take care of
calling the OS APIs for you, making your multithreaded application
a little more portable.

If you plan to be writing your application for only one OS, check
your OS’s APIs on creating multithreaded applications.

TIP

The actual act of creating a thread is an OS-specific functionality.
C++ tries to supply you with a platform-independent abstraction in
the form of std::thread in header <thread>.

If you are writing for one platform, you are better off just using
the OS-specific thread functions.

Should you need portable threads in your C++ application, do
look up Boost Thread Libraries at www.boost.org.

NOTE

Why Program Multithreaded Applications?
Multithreading is used in applications that need to do multiple sessions of a certain

activity in parallel. Imagine that you are one of 10,000 other users making a purchase

on Amazon’s web portal at a particular moment. Amazon’s web server can of course not

keep 9,999 users waiting at a time. What the web server does is create multiple threads,

servicing multiple users at the same time. If the web server is running on a multiple-

core processor or a multiple processor cloud, the threads can extract the best out of the

available infrastructure and provide optimal performance to the user.

Another common example of multithreading is an application that does some work in

addition to interacting with the user, for instance via a progress bar. Such applications are

often divided into a User Interface Thread that displays and updates the user interface

and accepts user input, and the Worker Thread that does the work in the background.

A tool that defragments your disk is one such application. After you press the start

button, a Worker Thread is created that starts with the scan and defragmenting activity.

At the same time, the User Interface Thread displays progress and also gives you the

option to cancel the defragmentation. Note that for the User Interface Thread to show

progress, the Worker Thread that does the defragmentation needs to regularly commu-

nicate the same. Similarly, for the Worker Thread to stop working when you cancel, the

User Interface Thread needs to communicate the same.

http://www.boost.org

ptg18655082

How to Better Use Multiple Cores 691

29

Multithreaded applications often need threads to “talk” to each
other so that the application can function as a unit (and not a
collection of runaway threads that do their stuff irrespective of
the other).

Sequence is important, too. You don’t want the User Interface
Thread to end before the defragmenting Worker Thread has
ended. There are situations where one thread needs to wait
on another. For instance, a thread that reads from a database
should wait until the thread that writes is done.

The act of making threads wait on another is called thread syn-
chronization.

NOTE

How Can Threads Transact Data?
Threads can share variables. Threads have access to globally placed data. Threads can

be created with a pointer to a shared object (struct or class) with data in it, shown in

Figure 29.3.

Shared Object

float Progress

bool Cancel

writes

Worker Thread

Defrags Disk Displays Progress

UI Thread

reads

reads

writes

FIGURE 29.3

Worker and user
interface threads
sharing data.

Different threads can communicate by accessing or writing data that is stored in a

location in memory that can be accessed by them all and is hence shared. In the example

of the defragmenter where the Worker Thread knows the progress and the User Interface

Thread needs to be informed of it, the Worker Thread can constantly store the progress

in percentage at an integer that the User Interface Thread uses to display the progress.

ptg18655082

692 LESSON 29: Going Forward

This is a simple case, though—one thread creates information and the other consumes

it. What would happen if multiple threads wrote and read from the same location? Some

threads might start reading data when some other threads have not finished writing them.

The integrity of the data in question would be compromised.

This is why threads need to be synchronized.

Using Mutexes and Semaphores to Synchronize
Threads
Threads are OS-level entities, and the objects that you use to synchronize them are

supplied by the OS, too. Most operating systems provide you with semaphores and

mutexes for performing thread synchronization activity.

You use a mutex, a mutual exclusion synchronization object, to ensure that one thread

has access to a piece of code at a time. In other words, a mutex is used to bracket a

section of code where a thread has to wait until another thread that is currently executing

it is done and releases the mutex. The next thread acquires the mutex, does its job, and

releases the same. C++ starting with C++11 supplies you with an implementation of a

mutex in class std::mutex available via header <mutex>.

Using semaphores, you can control the number of threads that execute a section of code.

A semaphore that allows access to only one thread at a time is also called a binary

semaphore.

Problems Caused by Multithreading
Multithreading with its need for good synchronization across threads can also cause a

good number of sleepless nights when this synchronization is not effective (read: buggy).

Two of the most frequent issues that multithreaded applications face are the following:

 ■ Race conditions—Two or more threads trying to write to the same data. Who

wins? What is the state of that object?

 ■ Deadlock—Two threads waiting on each other to finish resulting in both being in a

“wait” state. Your application is hung.

You can avoid race conditions with good synchronization. In general, when threads are

allowed to write to a shared object, you must take extra care to ensure that

 ■ Only one thread writes at a time.

 ■ No thread is allowed to read that object until the writing thread is done.

ptg18655082

Writing Great C++ Code 693

29

You can avoid deadlocks by ensuring that in no situation do two threads wait on each

other. You can either have a master thread that synchronizes worker threads or program

in a way such that tasks are distributed between threads and result in clear workload

distribution. A thread A can wait on B, but B should never need to wait on A.

Programming multithreaded applications is a specialization in itself. Hence, it is beyond

the scope of this book to explain this interesting and exciting topic to you in detail. You

should either refer to the plenty of online documentation available on the topic or learn

multithreading by hands-on programming. Once you master it, you will automatically

position your C++ applications optimally as far as using multicore processors being

released in the future goes.

Writing Great C++ Code
C++ has not only evolved significantly since the days it was first conceived, but

standardization efforts made by major compiler manufacturers and the availability of

utilities and functions help you write compact and clean C++ code. It is indeed easy to

program readable and reliable C++ applications.

Here is a short list of best practices that help you create good C++ applications:

 ■ Give your variables names that make sense (to others as well as to you). It is worth

spending a second more to give variables better names.

 ■ Always initialize variables such as int, float, and the like.

 ■ Always initialize pointer values to either NULL or a valid address—for instance,

that returned by operator new.

 ■ When using arrays, never cross the bounds of the array buffer. This is called a

buffer overflow and can be exploited as a security vulnerability.

 ■ Don’t use char* string buffers or functions such as strlen() and strcpy().

std::string is safer and provides many useful utility methods including ones

that help you find the length, copy, and append.

 ■ Use a static array only when you are certain of the number of elements it will contain.

If you are not certain of it, choose a dynamic array such as std::vector.

 ■ When declaring and defining functions that take non-POD (plain old data) types

as input, consider declaring parameters as reference parameters to avoid the

unnecessary copy step when the function is called.

 ■ If your class contains a raw pointer member (or members), give thought to how

memory resource ownership needs to be managed in the event of a copy or assign-

ment. That is, consider programming copy constructor and copy assignment operator.

ptg18655082

694 LESSON 29: Going Forward

 ■ When writing a utility class that manages a dynamic array or the like, remember to

program the move constructor and the move assignment operator for better perfor-

mance.

 ■ Remember to make your code const-correct. A get() function should ideally not

be able to modify the class’s members and hence should be a const. Similarly,

function parameters should be const-references, unless you want to change the

values they contain.

 ■ Avoid using raw pointers. Choose the appropriate smart pointers where possible.

 ■ When programming a utility class, take effort in supporting all those operators that

will make consuming and using the class easy.

 ■ Given an option, choose a template version over a macro. Templates are typesafe

and generic.

 ■ When programming a class that will be collected in a container, such as a vector or

a list, or used as a key element in a map, remember to support operator< that will

help define the default sort criteria.

 ■ If your lambda function gets too large, you should possibly consider making a func-

tion object of it—that is, a class with operator() as the functor is reusable and a

single point of maintenance.

 ■ Never take the success of operator new for granted. Code that performs resource

allocation should always be made exception safe—bracketed within try with

corresponding catch() blocks.

 ■ Never throw from the destructor of a class.

This is not an exhaustive list, but it covers some of the most important points that will

help you in writing good and maintainable C++ code.

C++17: Expected Features
One of the great things about C++ is that the Standards Committee is active and

constantly improving the language. Just like its predecessor, C++11, C++17 is expected

to usher in the next wave of major new features to the language. Let us study some

features that are most likely to make it to C++ when the new standard is officially

ratified in 2017.

ptg18655082

C++17: Expected Features 695

29

The features discussed in the following pages are likely to make it
to the standard but aren’t currently part of it—it is likely that your
favorite compiler partially supports some features and doesn’t
support all.

Additionally, it is unlikely but not impossible that the final version
of C++17 will not support all the features introduced here, even
though at the time of writing this book it is expected to.

NOTE

if and switch Support Initializers
This is a small but significant extension to the if and switch statement syntax, and can

be expressed as

if (initializer; condition)
{
 // statements to execute if condition evaluates true
}

Or

switch(initializer; condition)
{
 // cases here
}

The variable declared in the initializer statement is destroyed at the end of the if

statement. When used on the following code taken from Listing 20.3:

auto pairFound = mapIntToStr.find(key);
if (pairFound != mapIntToStr.end())
{
 cout << "Key " << pairFound->first << " points to Value: ";
 cout << pairFound->second << endl;
}

This feature improves it to

if (auto pairFound = mapIntToStr.find(key); pairFound != mapIntToStr.end())
{
 cout << "Key " << pairFound->first << " points to Value: ";
 cout << pairFound->second << endl;
}

ptg18655082

696 LESSON 29: Going Forward

This is more than a reduction of a line of code. It ensures that the variable pairFound

that is needed only in the if block isn’t available outside it, restricting scope to the

minimum required. Additionally, if you were to copy and paste this improved if block,

you would have taken the required logic in full.

Copy Elision Guarantee
When you initialize a variable to the return value of a function, it is possible that

your compiler will create a temporary copy of the integer returned by the function

ReturnInt() before initializing variable num to it:

int num = ReturnInt();

C++17 requires the compiler to elide this temporary copy; that is, to avoid one.

std::string_view Avoids Allocation Overheads
Consider a function that accepts a std::string as a parameter:

void DisplayString (const std::string& strIn)
{
 cout << strIn << endl;
}

When invoked using a string literal, the string literal “Hello World!” is first converted

into a temporary std::string that is consumed by the function DisplayString():

DisplayString(“Hello World!”);

This temporary conversion is a performance overhead that can be avoided by using

std::string_view instead:

void DisplayString (std::string_view& strIn)
{
 cout << strIn << endl;
}

A string literal will not incur allocation overhead when being passed to a function that

accepts a std::string_view as argument.

ptg18655082

C++17: Expected Features 697

29

std::variant As a Typesafe Alternative to a union
Unions are explained in Lesson 9, “Classes and Objects.” One of the problems with the

union is that it enables its content to be interpreted as any other data type supported by

the union; for example:

union SimpleUnion
{
 int num;
 double preciseNum;
};

You may instantiate this union for a double, yet use it as an integer:

SimpleUnion u1;
u1.preciseNum = 3.14; // union stores a double
int num2 = u1.num; // works, but u1 contained a double!

C++17 provides the programmer with the std::variant, a typesafe alternative to the

union:

variant<int, double> varSafe;
varSafe = 3.14; // variant stores double
double pi = get<double>(varSafe); // 3.14
double pi2 = get<1>(varsafe); // 3.14
get<char>(varSafe); // compile fails: no char in variant
get<2>(varSafe); // compile fails: variant with two types, not three
try
{
 get<int>(varSafe); // throws exception as variant stores double
}
catch (bad_variant_access&) { // exception handler code }

Conditional Code Compilation Using if constexpr
This feature is similar to an if-else construct with the exception that the if condition

is evaluated at compile time and the code in the if block (or the accompanying else) is

compiled only if the condition is satisfied at compile time.

#include <type_traits>
#include <iostream>
#include <iomanip>

using namespace std;

template <typename T>
void DisplayData(const T& data)

ptg18655082

698 LESSON 29: Going Forward

{
 if constexpr (is_integral<T>::value)

cout << "Integral data: " << data << endl;
 else if constexpr (is_floating_point<T>::value)

cout << setprecision(15) << "Floating point data: " << data << endl;
 else

cout << "Unidentified data: " << data << endl;
}

Given DisplayData(15), the C++17-compliant compiler would compile only the

following line:

cout << "Integral data: " << data << endl;

Given DisplayData(“Hello World!”), the compiler would compile only the following,

as the function has been invoked with a type that triggers the else block:

cout << "Unidentified data: " << data << endl;

Combined with automatic return type deduction, introduced in Lesson 7, “Organizing

Code with Functions,” this is a powerful feature that can potentially allow a function to

return values of different types depending on the path the compiler executes.

Improved Lambda Expressions
Lambda functions are expected to see the following improvements:

 ■ They will be supported inside constexpr functions.

 ■ They will be allowed to capture a copy of *this using the syntax [*this].

Automatic Type Deduction for Constructors
As of C++14, you would declare a pair combining an integer and a floating point type,

like this:

std::pair<int, double> pairIntToDb (3, 3.14159265359);

C++17 will allow a simplification of the line to

std::pair pairIntToDb (3, 3.14159265359);

The type deduction of the template arguments for constructors will be automatic.

ptg18655082

Learning C++ Doesn’t Stop Here! 699

29

template<auto>
This extends a less-used feature that a template argument may contain a value that is

used at compile time. For example, the std::array is a container that models fixed-size

arrays available starting with C++11. It would be used to model an array of 10 integers,

like this:

std::array<int, 10> myTenNums;

The template declaration of class std::array is similar to the following:

template <class T, std::size_t N> struct array;

C++17 will allow a simplification of the template parameter type that accepts array size

to auto, such that the following would be a perfectly valid and usable array:

template <class T, auto N> struct array;

Learning C++ Doesn’t Stop Here!
Congratulations, you have made great progress in learning C++. The best way to continue

is to code and code more! C++ is a sophisticated language. The more you program, the

higher will be your level of understanding of how it all works behind the scenes.

Online Documentation
You are encouraged to learn more about the signatures of STL containers, their methods,

their algorithms, and their functional details using online resources and documents. One

popular site with structured resources is http://www.cppreference.com/.

Communities for Guidance and Help
C++ has rich and vibrant online communities. Enroll yourself at sites such as

StackOverflow (www.StackOverflow.com), CodeGuru (www.CodeGuru.com), or

CodeProject (www.CodeProject.com) to have your technical queries inspected and

answered by the community.

When you feel confident, feel free to contribute to these communities. You will find

yourself answering challenging questions and learning a lot in the process.

http://www.cppreference.com/
http://www.StackOverflow.com
http://www.CodeGuru.com
http://www.CodeProject.com

ptg18655082

700 LESSON 29: Going Forward

Summary
This concluding lesson is actually an opening page in your quest to learn C++! Having

come this far, you have learned the basics and the advanced concepts of the language.

In this lesson, you learned the theoretical basics of multithreaded programming. You

learned that the only way you can extract the best from multicore processors is to orga-

nize your logic in threads and allow parallel processing. You know that there are pitfalls

in multithreaded applications and ways to avoid them. Last but not the least, you learned

some basic C++ programming best practices. You know that writing good C++ code is

not only about using advanced concepts, but also about giving variable names that others

understand, handling exceptions to take care of the unexpected, and using utility classes

such as smart pointers instead of raw ones. You are now ready to take a leap into the

world of professional C++ programming.

Q&A
 Q I am quite happy with the performance of my application. Should I still

implement multithreaded capabilities?

 A Not at all. Not all applications need to be multithreaded. Rather only those that

need to perform a task concurrently or that serve many users in parallel.

 Q Why should I bother about C++11 and C++14, instead of simply using the old
style of programming?

 A C++11 and C++14 bring changes that make programming in C++ simple.

Keywords such as auto save you long and tedious iterator declarations, and

lambda functions make your for_each() construct compact without the need for a

function object. So, the benefits in programming C++14 are already significant, and

well-written programs are shorter and easier to maintain than those compliant with

older versions of the C++ standard.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the material

covered. Try to answer the questions before checking the answers in Appendix E.

Quiz
1. My image processing application doesn’t respond when it is correcting the contrast.

What should I do?

2. My multithreaded application allows for extremely fast access to the database. Yet,

sometimes I see that the data fetched is garbled. What am I doing wrong?

ptg18655082

Working with
Numbers: Binary
and Hexadecimal

Understanding how the binary and hexadecimal number systems work is
not critical to programming better applications in C++, but it helps you to
better understand what happens under the hood.

ptg18655082

702 APPENDIX A: Working with Numbers: Binary and Hexadecimal

Decimal Numeral System
Numbers that we use on a daily basis are in the range of 0–9. This set of numbers is

called the Decimal Numeral System. As the system is comprised of 10 unique digits, it’s

a system with base of 10.

Hence, as the base is 10, the zero-based position of each digit denotes the power of 10

that the digit is multiplied with. So

957 = 9 x 102 + 5 x 101 + 7 x 100 = 9 x 100 + 5 x 10 + 7

In the number 957, the zero-based position of 7 is 0, that of 5 is 1, and that of 9 is 2. These

position indexes become powers of the base 10, as shown in the example. Remember that

any number to the power 0 is 1 (so, 100 is the same as 10000 as both evaluate to 1).

The decimal system is one in which powers of 10 are the most
important. Digits in a number are multiplied by 10, 100, 1000,
and so on to determine the magnitude of the number.

NOTE

Binary Numeral System
A system with a base of 2 is called a binary system. As the system allows only two

states, it is represented by the numbers 0 and 1. These numbers in C++ typically evaluate

to false and true (true being non-zero).

Just as numbers in a decimal system are evaluated to powers of base 10, those in binary

are evaluated as powers of their base 2:

101 (binary) = 1 x 22 + 0 x 21 + 1 x 20 = 4 + 0 + 1 = 5 (decimal)

So, the decimal equivalent of binary 101 is 5.

 Digits in a binary number are multiplied by powers of 2 such
as 4, 8, 16, 32, and so on to determine the magnitude of the
number. The power is decided by the zero-based place the digit
in question has.

NOTE

To understand the binary numeral system better, let’s examine Table A.1 that enlists the

various powers of two.

ptg18655082

Binary Numeral System 703

A

TABLE A.1 Powers of 2

Power Value Binary Representation

0 20 = 1 1

1 21 = 2 10

2 22 = 4 100

3 23 = 8 1000

4 24 = 16 10000

5 25 = 32 100000

6 26 = 64 1000000

7 27 = 128 10000000

Why Do Computers Use Binary?
Widespread usage of the binary system is relatively new in comparison to the period

of time number systems have been discovered. Its usage has been accelerated by the

development of electronics and computers. The evolution of electronics and elec-

tronic components resulted in a system that detected states of a component as being

ON (under a significant potential difference or voltage) or OFF (no or low potential

difference).

These ON and OFF states were conveniently interpreted as 1 and 0, completely

representing the binary number set and making it the method of choice for perform-

ing arithmetic calculations. Logical operations, such as NOT, AND, OR, and XOR, as

covered in Lesson 5, “Working with Expressions, Statements, and Operators” (in Tables

5.2–5.5), were easily supported by the development of electronic gates, resulting in the

binary system being whole-heartedly adopted as conditional processing became easy.

What Are Bits and Bytes?
A bit is a basic unit in a computational system that contains a binary state. Thus, a bit

is said to be “set” if it contains state 1 or “reset” if it contains state 0. A collection of

bits is a byte. The number of bits in a byte is theoretically not fixed and is a hardware-

dependent number.

However, most computational systems go with the assumption of 8 bits in a byte, for the

simple, convenient reason that 8 is a power of 2. Eight bits in a byte also allows the trans-

mission of up to 28 different values, allowing for 255 distinct values. These 255 distinct

values are enough for the display or transaction of all characters in the ASCII character

set, and more.

ptg18655082

704 APPENDIX A: Working with Numbers: Binary and Hexadecimal

How Many Bytes Make a Kilobyte?
1024 bytes (210 bytes) make a kilobyte. Similarly, 1024 kilobytes make a megabyte.

1024 megabytes make a gigabyte. 1024 gigabytes make a terabyte.

Hexadecimal Numeral System
Hexadecimal is a number system with base 16. A digit in the hexadecimal system can be

in the range of 0–9 and A–F. So, 10 in decimal is A in hexadecimal, and 15 in decimal is

F in hexadecimal:

Decimal Hexadecimal Decimal (continued) Hexadecimal (continued)

0 0 8 8

1 1 9 9

2 2 10 A

3 3 11 B

4 4 12 C

5 5 13 D

6 6 14 E

7 7 15 F

Just as numbers in a decimal system are evaluated to powers of base 10, in binary as

powers of their base 2, those in hexadecimal are evaluated to powers of base 16:

0x31F = 3 x 162 + 1 x 161 + F x 160 = 3 x 256 + 16 + 15 (in decimal) = 799

It is convention that hexadecimal numbers be represented with a
prefix “0x”.NOTE

Why Do We Need Hexadecimal?
Computers work on binary. The state of each unit of memory in a computer is a 0 or a 1.

However, if we as human beings were to interact on computer- or programming-specific

information in 0s and 1s, we would need a lot of space to transact small pieces of infor-

mation. So, instead of writing 1111 in binary, you are a lot more efficient writing F in

hexadecimal.

ptg18655082

Converting to a Different Base 705

A

So, a hexadecimal representation can very efficiently represent the state of 4 bits in a

digit, using a maximum of two hexadecimal digits to represent the state of a byte.

A less-used number system is the Octal Numeral System. This is
a system with base 8, comprising of numbers from 0 to 7.NOTE

Converting to a Different Base
When dealing with numbers, you might see the need to view the same number in a dif-

ferent base—for instance, the value of a binary number in decimal or that of a decimal

number in hexadecimal.

In the previous examples, you saw how numbers can be converted from binary or hexadeci-

mal into decimal. Take a look at converting binary and hexadecimal numbers into decimal.

The Generic Conversion Process
When converting a number in one system to another, you successively divide with the

base, starting with the number being converted. Each remainder fills places in the desti-

nation numeral system, starting with the lowest place. The next division uses the quotient

of the previous division operation with the base as the divisor.

This continues until the remainder is within the destination numeral system and the quo-

tient is 0.

This process is also called the breakdown method.

Converting Decimal to Binary
To convert decimal 33 into binary, you subtract the highest power of
2 possible (32):

Place 1: 33 / 2 = quotient 16, remainder 1

Place 2: 16 / 2 = quotient 8, remainder 0

Place 3: 8 / 2 = quotient 4, remainder 0

Place 4: 4 / 2 = quotient 2, remainder 0

Place 5: 2 / 2 = quotient 1, remainder 0

Place 6: 1 / 2 = quotient 0, remainder 1

Binary equivalent of 33 (reading places): 100001

ptg18655082

706 APPENDIX A: Working with Numbers: Binary and Hexadecimal

Similarly, the binary equivalent of 156 is

Place 1: 156 / 2 = quotient 78, remainder 0

Place 2: 78 / 2 = quotient 39, remainder 0

Place 3: 39 / 2 = quotient 19, remainder 1

Place 4: 19 / 2 = quotient 9, remainder 1

Place 5: 9 / 2 = quotient 4, remainder 1

Place 6: 4 / 2 = quotient 2, remainder 0

Place 7: 2 / 2 = quotient 1, remainder 0

Place 9: 1 / 0 = quotient 0, remainder 1

Binary equivalent of 156: 10011100

Converting Decimal to Hexadecimal
The process is the same as for binary; you divide by base 16 instead of 2.

So, to convert decimal 5211 to hex:

Place 1: 5211 / 16 = quotient 325, remainder B16 (1110 is B16)

Place 2: 325 / 16 = quotient 20, remainder 5

Place 3: 20 / 16 = quotient 1, remainder 4

Place 4: 1 / 16 = quotient 0, remainder 1

521110 = 145B16

To understand better how different number systems work,
you can write a simple C++ program similar to Listing 27.1
in Lesson 27, “Using Streams for Input and Output.” It uses
std::cout with manipulators for displaying an integer in hex,
decimal, and octal notations.

To display an integer in binary, use std::bitset that has been
explained in Lesson 25, “Working with Bit Flags Using STL,”
deriving inspiration from Listing 25.1.

TIP

ptg18655082

C++ Keywords

Keywords are reserved to the compiler for use by the language. You
cannot define classes, variables, or functions that have these keywords
as their names.

ptg18655082

708 APPENDIX B: C++ Keywords

alignas
alignof
and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
char16_t
char32_t
class
compl
const
constexpr
const_cast
continue
decltype
default
delete
do
double
dynamic_cast
else

enum
explicit
export
extern
false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new
noexcept
not
not_eq
nullptr
operator
or
or_eq
private
protected
public
register
reinterpret_cast

return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template
this
thread_local
throw
true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while
xor
xor_eq

 Lesson 10, “Implementing Inheritance,” and Lesson 11,
“Polymorphism,” introduced to two interesting terms—final and
override. These are not reserved C++ keywords for you may
name your objects and functions after them. However, they carry
a special meaning when accompanying certain constructs as
explained in the lessons.

NOTE

ptg18655082

Operator Precedence

It is a good practice to use parentheses that explicitly compartmentalize
your operations. In absence of those parentheses, the compiler resorts
to a predefined order of precedence in which the operators are used. This
operator precedence, as listed in Table C.1, is what the C++ compiler
adheres to in event of ambiguity.

ptg18655082

710 APPENDIX C: Operator Precedence

TABLE C.1 The Precedence of Operators

Rank Name Operator

1 Scope resolution ::

2 Member selection, subscripting, function calls,
postfix increment, and decrement

. ->

[]

()

++ −−

3 sizeof, prefix increment and decrement, comple-
ment, and, not, unary minus and plus, address-of and
dereference, new, new[], delete, delete[],
casting, sizeof()

++ −−

^ !

− +

& *

sizeof

new

new[]

delete

delete[]

()

4 Member selection for pointer .* ->*

5 Multiply, divide, modulo * / %

6 Add, subtract + −

7 Bitwise shift << >>

8 Inequality relational << = >>=

9 Equality, inequality == !=

10 Bitwise AND &

11 Bitwise exclusive OR ^

12 Bitwise OR |

13 Logical AND &&

14 Logical OR ||

15 Ternary conditional, throw, assignment and compound
assignment

?:

throw

= *= /= %=

+= −= <<=

>>=

&= |= ^=

16 Comma ,

ptg18655082

ASCII Codes

Computers work using bits and bytes, essentially numbers. To represent
character data in this numeric system, a standard established by the
American Standard Code for Information Interchange (ASCII) is prevalently
used. ASCII assigns 7-bit numeric codes to Latin characters A–Z, a–z,
numbers 0–9, some special keystrokes (for example, DEL), and special
characters (such as backspace).

7 bits allow for 128 combinations of which the first 32 (0–31) are
reserved as control characters used to interface with peripherals such as
printers.

ptg18655082

712 APPENDIX D: ASCII Codes

ASCII Table of Printable Characters
ASCII codes 32–127 are used for printable characters such as 0–9, A–Z, and a–z and a

few others such as space. The table below shows the decimal and the hexadecimal values

reserved for these symbols.

Symbol DEC HEX Description

32 20 Space

! 33 21 Exclamation mark

“ 34 22 Double quotes (or speech marks)

35 23 Number

$ 36 24 Dollar

% 37 25 Percent sign

& 38 26 Ampersand

' 39 27 Single quote

(40 28 Open parenthesis (or open bracket)

) 41 29 Close parenthesis (or close bracket)

* 42 2A Asterisk

+ 43 2B Plus

, 44 2C Comma

- 45 2D Hyphen

. 46 2E Period, dot or full stop

/ 47 2F Slash or divide

0 48 30 Zero

1 49 31 One

2 50 32 Two

3 51 33 Three

4 52 34 Four

5 53 35 Five

6 54 36 Six

7 55 37 Seven

8 56 38 Eight

9 57 39 Nine

ptg18655082

ASCII Table of Printable Characters 713

D

Symbol DEC HEX Description

: 58 3A Colon

; 59 3B Semicolon

< 60 3C Less than (or open angled bracket)

= 61 3D Equals

> 62 3E Greater than (or close angled bracket)

? 63 3F Question mark

@ 64 40 At symbol

A 65 41 Uppercase A

B 66 42 Uppercase B

C 67 43 Uppercase C

D 68 44 Uppercase D

E 69 45 Uppercase E

F 70 46 Uppercase F

G 71 47 Uppercase G

H 72 48 Uppercase H

I 73 49 Uppercase I

J 74 4A Uppercase J

K 75 4B Uppercase K

L 76 4C Uppercase L

M 77 4D Uppercase M

N 78 4E Uppercase N

O 79 4F Uppercase O

P 80 50 Uppercase P

Q 81 51 Uppercase Q

R 82 52 Uppercase R

S 83 53 Uppercase S

T 84 54 Uppercase T

U 85 55 Uppercase U

V 86 56 Uppercase V

W 87 57 Uppercase W

ptg18655082

714 APPENDIX D: ASCII Codes

Symbol DEC HEX Description

X 88 58 Uppercase X

Y 89 59 Uppercase Y

Z 90 5A Uppercase Z

[91 5B Opening bracket

\ 92 5C Backslash

] 93 5D Closing bracket

^ 94 5E Caret—circumflex

_ 95 5F Underscore

` 96 60 Grave accent

a 97 61 Lowercase a

b 98 62 Lowercase b

c 99 63 Lowercase c

d 100 64 Lowercase d

e 101 65 Lowercase e

f 102 66 Lowercase f

g 103 67 Lowercase g

h 104 68 Lowercase h

i 105 69 Lowercase i

j 106 6A Lowercase j

k 107 6B Lowercase k

l 108 6C Lowercase l

m 109 6D Lowercase m

n 110 6E Lowercase n

o 111 6F Lowercase o

p 112 70 Lowercase p

q 113 71 Lowercase q

r 114 72 Lowercase r

s 115 73 Lowercase s

t 116 74 Lowercase t

u 117 75 Lowercase u

ptg18655082

ASCII Table of Printable Characters 715

D

Symbol DEC HEX Description

v 118 76 Lowercase v

w 119 77 Lowercase w

x 120 78 Lowercase x

y 121 79 Lowercase y

z 122 7A Lowercase z

{ 123 7B Opening brace

| 124 7C Vertical bar

} 125 7D Closing brace

~ 126 7E Equivalency sign—tilde

127 7F Delete

ptg18655082

Answers

Answers for Lesson 1
Quiz

1. An interpreter is a tool that interprets what you code (or an intermedi-

ate byte code) and performs certain actions. A compiler is one that

takes your code as an input and generates an object file. In the case of

C++, after compiling and linking you have an executable that can run

directly by the processor without need for any further interpretation.

2. A compiler takes a C++ code file as input and generates an object file

in machine language. Often your code has dependencies on libraries

and functions in other code files. Creating these links and generating

an executable that integrates all dependencies directly and indirectly

coded by you is the job of the linker.

3. Code. Compile to create object file. Link to create executable. Execute

to test. Debug. Fix errors in code and repeat the steps.

In many cases, compilation and linking is one step.

Exercises
1. Display the result of subtracting y from x, multiplying the two, and

adding the two.

2. Output should be

2 48 14

3. A preprocessor command to include iostream as seen in Line 1 should

start with #.

4. It displays the following:

Hello Buggy World

ptg18655082

718 APPENDIX E: Answers

Answers for Lesson 2
Quiz

1. Code in C++ is case sensitive. Int is not acceptable to the compiler as an integer

type int.

2. Yes.

/* if you comment using this C-style syntax
then you can span your comment over multiple lines */

Exercises
1. It fails because case-sensitive C++ compilers don’t know what std::Cout is or

why the string following it doesn’t start with an opening quote. Additionally, the

declaration of main should always return an int.

2. Here is the corrected version:

#include <iostream>
int main()
{
 std::cout << "Is there a bug here?"; // no bug anymore
 return 0;
}

3. This program derived from Listing 2.4 demonstrates subtraction and multiplication:

##include <iostream>
#using namespace std;
u
// Function declaration
iint DemoConsoleOutput();
{
 int main()
 {
 // Call i.e. invoke the function
 DemoConsoleOutput();

 return 0;
 }

 // Function definition
 int DemoConsoleOutput()
 {
 cout << "Performing subtraction 10 - 5 = " << 10 - 5 << endl;
 cout << "Performing multiplication 10 * 5 = " << 10 * 5 << endl;

 return 0;
}

ptg18655082

Answers for Lesson 3 719

E

Output ▼
Performing subtraction 10 - 5 = 5
Performing multiplication 10 * 5 = 50

Answers for Lesson 3
Quiz

1. A signed integer is one in which the most-significant-bit (MSB) functions as the

sign-bit and indicates if the value of the integer is positive or negative. An unsigned

integer in comparison is used to contain only positive integer values.

2. #define is a preprocessor directive that directs the compiler to do a text replace-

ment wherever the defined value is seen. However, it is not type safe and is a primi-

tive way of defining constants. Therefore, it is to be avoided.

3. To ensure that it contains a definite, non-random value.

4. 2.

5. The name is nondescriptive and repeats the type. Though this compiles, such code

becomes difficult for humans to read and maintain and should be avoided. An inte-

ger is better declared using a name that reveals its purpose. For example:

int age = 0;

Exercises
1. Many ways of achieving this:

enum YourCards {Ace = 43, Jack, Queen, King};
// Ace is 43, Jack is 44, Queen is 45, King is 46
// Alternatively..
enum YourCards {Ace, Jack, Queen = 45, King};
// Ace is 0, Jack is 1, Queen is 45 and King is 46

2. See Listing 3.4 and adapt it (reduce it) to get the answer to this question.

3. Here is a program that asks you to enter radius of a circle and calculates the area

and circumference for you:

#include <iostream>
using namespace std;

int main()
{
 const double Pi = 3.1416;

ptg18655082

720 APPENDIX E: Answers

 cout << "Enter circle's radius: ";
 double radius = 0;
 cin >> radius;

 cout << "Area = " << Pi * radius * radius << endl;
 cout << "Circumference = " << 2 * Pi * radius << endl;

 return 0;
}

Output ▼
Enter circle's radius: 4
Area = 50.2656
Circumference = 25.1328

4. You get a compilation warning (not error) if you store the result of calculating area

and circumference in an integer and the output looks like this:

Output ▼
Enter circle's radius: 4
Area = 50
Circumference = 25

5. auto is a construct where the compiler automatically deduces the type the variable

can take depending on the value it is being initialized to. The code in question does

not initialize and hence causes a compilation failure.

Answers for Lesson 4
Quiz

1. 0 and 4 are the zero-based indexes of the first and last elements of an array with

five elements.

2. No, as they are proven to be unsafe especially in handling user input, giving the

user an opportunity to enter a string longer than the length of the array.

3. One null terminating character.

4. Depending on how you use it. If you use it in a cout statement, for instance, the

display logic reads successive characters seeking a terminating null and crosses the

bounds of the array, possibly causing your application to crash.

ptg18655082

Answers for Lesson 5 721

E

5. That would simply replace the int in the vector’s declaration by char.

vector<char> dynArrChars (3);

Exercises
1. Here you go. The application initializes for ROOKs, but it’s enough for you to get

an idea:

int main()
{
 enum Square
 {
 Empty = 0,
 Pawn,
 Rook,
 Knight,
 Bishop,
 King,
 Queen
 };

 Square chessBoard[8][8];

 // Initialize the squares containing rooks
 chessBoard[0][0] = chessBoard[0][7] = Rook;
 chessBoard[7][0] = chessBoard[7][7] = Rook;

 return 0;
}

2. To set the fifth element of an array, you need to access element myNums[4] as this

is a zero-based index.

3. The fourth element of the array is being accessed without ever being initialized or

assigned. The resulting output is unpredictable. Always initialize variables and also

arrays; otherwise, they contain the last value stored in the memory location they’re

created in.

Answers for Lesson 5
Quiz

1. Integer types cannot contain decimal values that are possibly relevant for the user

who wants to divide two numbers. So, you would use float.

2. As the compiler interprets them to be an integer, it is 4.

ptg18655082

722 APPENDIX E: Answers

3. As the numerator is 32.0 and not 32, the compiler interprets this to be a floating-

point operation, creating a result in a float that is akin to 4.571.

4. No, sizeof is an operator, and one that cannot be overloaded.

5. It does not work as intended because the addition operator has priority over shift,

resulting in a shift of 1 + 5 = 6 bits instead of just one.

6. The result of XOR is false as also indicated by Table 5.5.

Exercises
1. Here is a correct solution:

int result = ((number << 1) + 5) << 1;

2. The result contains number shifted 7 bits left, as operator + takes priority over

operator <<.

3. Here is a program that stores two Boolean values entered by the user and demon-

strates the result of using bitwise operators on them:

 #include <iostream>
 using namespace std;

 int main()
 {
 cout << "Enter a boolean value true(1) or false(0): ";
 bool value1 = false;
 cin >> value1;

 cout << "Enter another boolean value true(1) or false(0): ";
 bool value2 = false;
 cin >> value2;

 cout << "Result of bitwise operators on these operands: " << endl;
 cout << "Bitwise AND: " << (value1 & value2) << endl;
 cout << "Bitwise OR: " << (value1 | value2) << endl;
 cout << "Bitwise XOR: " << (value1 ^ value2) << endl;

 return 0;
}

Output ▼
Enter a boolean value true(1) or false(0): 1
Enter another boolean value true(1) or false(0): 0
Result of bitwise operators on these operands:
Bitwise AND: 0
Bitwise OR: 1
Bitwise XOR: 1

ptg18655082

Answers for Lesson 6 723

E

Answers for Lesson 6
Quiz

1. You indent not for sake of the compiler, but for the sake of other programmers

(humans) who might need to read or understand your code.

2. You avoid it to keep your code from getting unintuitive and expensive to maintain.

3. See the code in the solution to Exercise 1 that uses the decrement operator.

4. As the condition in the for statement is not satisfied, the loop won’t execute even

once and the cout statement it contains is never executed.

Exercises
1. You need to be aware that array indexes are zero-based and the last element is at

index Length – 1:

#include <iostream>
using namespace std;

int main()
{
 const int ARRAY_LEN = 5;
 int myNums[ARRAY_LEN]= {-55, 45, 9889, 0, 45};

 for (int index = ARRAY_LEN - 1; index >= 0; --index)
cout<<"myNums[" << index << "] = "<<myNums[index]<<endl;

 return 0;
}

Output ▼
myNums[4] = 45
myNums [3] = 0
myNums [2] = 9889
myNums [1] = 45
myNums [0] = -55

2. One nested loop equivalent of Listing 6.13 that adds elements in two arrays in the

reverse order is demonstrated below:

#include <iostream>
using namespace std;

ptg18655082

724 APPENDIX E: Answers

int main()
{
 const int ARRAY1_LEN = 3;
 const int ARRAY2_LEN = 2;

 int myNums1[ARRAY1_LEN] = {35, -3, 0};
 int MyInts2[ARRAY2_LEN] = {20, -1};

 cout << "Adding each int in myNums1 by each in MyInts2:" << endl;

 for(int index1 = ARRAY1_LEN - 1; index1 >= 0; --index1)
for(int index2 = ARRAY2_LEN - 1; index2 >= 0; --index2)

cout << myNums1[index1] << " + " << MyInts2[index2] \
<< " = " << myNums1[index1] + MyInts2[index2] << endl;

 return 0;
}

Output ▼
Adding each int in myNums1 by each in myNums2:
0 + -1 = -1
0 + 20 = 20
-3 + -1 = -4
-3 + 20 = 17
35 + -1 = 34
35 + 20 = 55

3. You need to replace the constant integer numsToCalculate with a value fixed at 5

with code that asks the user the following:

cout << "How many Fibonacci numbers you wish to calculate: ";
int numsToCalculate = 0; // no const
cin >> numsToCalculate;

4. The switch-case construct using enumerated constants that tells if a color is in the

rainbow is as below:

#include <iostream>
using namespace std;

int main()
{
 enum Colors
 {

Violet = 0,
Indigo,
Blue,

ptg18655082

Answers for Lesson 6 725

E

Green,
Yellow,
Orange,
Red,
Crimson,
Beige,
Brown,
Peach,
Pink,
White,

 };

 cout << "Here are the available colors: " << endl;
 cout << "Violet: " << Violet << endl;
 cout << "Indigo: " << Indigo << endl;
 cout << "Blue: " << Blue << endl;
 cout << "Green: " << Green << endl;
 cout << "Yellow: " << Yellow << endl;
 cout << "Orange: " << Orange << endl;
 cout << "Red: " << Red << endl;
 cout << "Crimson: " << Crimson << endl;
 cout << "Beige: " << Beige << endl;
 cout << "Brown: " << Brown << endl;
 cout << "Peach: " << Peach << endl;
 cout << "Pink: " << Pink << endl;
 cout << "White: " << White << endl;

 cout << "Choose one by entering code: ";
 int YourChoice = Blue; // initial
 cin >> YourChoice;

 switch (YourChoice)
 {
 case Violet:
 case Indigo:
 case Blue:
 case Green:
 case Yellow:
 case Orange:
 case Red:

cout << "Bingo, your choice is a Rainbow color!" << endl;
break;

 default:
cout << "The color you chose is not in the rainbow" << endl;
break;

 }

 return 0;
}

ptg18655082

726 APPENDIX E: Answers

Output ▼
Here are the available colors:
Violet: 0
Indigo: 1
Blue: 2
Green: 3
Yellow: 4
Orange: 5
RED: 6
Crimson: 7
Beige: 8
Brown: 9
Peach: 10
Pink: 11
White: 12
Choose one by entering code: 4
Bingo, your choice is a Rainbow color!

5. The programmer unintentionally makes an assignment to 10 in the for loop condi-

tion statement.

6. The while statement is followed by a null statement ';' on the same line. Thus,

the intended loop following the while is never reached and because loopCounter

that governs the while is never incremented, the while does not end and the state-

ments following it are never executed.

7. Missing break statement (that is, the default case always executes).

Answers for Lesson 7
Quiz

1. The scope of these variables is the life of the function.

2. someNumber is a reference to the variable in the calling function. It does not hold a

copy.

3. A recursive function.

4. Overloaded functions.

5. Top! Visualize a stack of plates; the one at the top is available for withdrawal, and

that is what the stack pointer points to.

ptg18655082

Answers for Lesson 8 727

E

Exercises
1. The function prototypes would look like this:

double Area (double radius); // circle
double Area (double radius, double height); // cylinder

The function implementations (definitions) use the respective formulas supplied in

the question and return the area to the caller as a return value.

2. Let Listing 7.8 inspire you. The function prototype would be the following:

void ProcessArray(double numbers[], int length);

3. The parameter result ought to be a reference for the function Area() to be

effective:

void Area(double radius, double &result)

4. The default parameter should be listed at the end, or else you will have a compile

error. Alternatively, all parameters should have default values specified.

5. The function needs to return its output data by reference to the caller:

void Calculate (double radius, double &Area, double &Circumference)
{
 Area = 3.14 * radius * radius;
 Circumference = 2 * 3.14 * radius;
}

Answers for Lesson 8
Quiz

1. If the compiler let you do that, it would be an easy way to break exactly what

const references were meant to protect: the data being referred to that cannot be

changed.

2. They’re operators.

3. A memory address.

4. operator *.

ptg18655082

728 APPENDIX E: Answers

Exercises
1. 40.

2. In the first overloaded variant, the arguments are copied to the called function. In

the second, they’re not copied as they’re references to the variables in the caller and

the function can change them. The third variant uses pointers, which unlike refer-

ences can be NULL or invalid, and validity needs to be ensured in such a system.

3. Use the const keyword:

1: const int* pNum1 = &number;

4. You are assigning an integer to a pointer directly (that is, overwriting the contained

memory address by an integer value). Correct version:

*pointToAnInt = 9; // previously: pointToAnInt = 9;

5. There is a double delete on the same memory address returned by new to pNum-

ber and duplicated in pNumberCopy. Remove one.

6. 30.

Answers for Lesson 9
Quiz

1. On the free store. This is the same as it would be if you allocated for an int using

new.

2. sizeof() calculates the size of a class on the basis of the declared data members.

As the sizeof(pointer) is constant and independent of the mass of data being

pointed to, the sizeof(Class) containing one such pointer member remains con-

stant as well.

3. None except member methods of the same class.

4. Yes, it can.

5. A constructor is typically used to initialize data members and resources.

6. Destructors are typically used for releasing resources and deallocating memory.

Exercises
1. C++ is case sensitive. A class declaration should start with class, not Class. It

should end with a semicolon (;) as shown below:

class Human

ptg18655082

Answers for Lesson 9 729

E

{
 int Age;
 string Name;

public:
 Human() {}
};

2. As Human::Age is a private member (remember members of a class are pri-

vate by default as opposed to those in a struct) and as there is no public acces-

sor function, there is no way that the user of this class can access Age.

3. Here is a version of class Human with an initialization list in the constructor:

class Human
{
 int Age;
 string Name;

public:
 Human(string InputName, int InputAge)

: Name(InputName), Age(InputAge) {}
};

4. Note how Pi has not been exposed outside the class as required:

#include <iostream>
using namespace std;

class Circle
{
 const double Pi;
 double radius;

public:
 Circle(double InputRadius) : radius(InputRadius), Pi(3.1416) {}

 double GetCircumference()
 {

return 2*Pi*radius;
 }

 double GetArea()
 {

return Pi*radius*radius;
 }
};

int main()
{

ptg18655082

730 APPENDIX E: Answers

 cout << "Enter a radius: ";
 double radius = 0;
 cin >> radius;

 Circle MyCircle(radius);

 cout << "Circumference = " << MyCircle.GetCircumference() << endl;
 cout << "Area = " << MyCircle.GetArea() << endl;

 return 0;
}

Answers for Lesson 10
Quiz

1. Use access specifier protected to ensure that a member of the base class is vis-

ible to the derived class, but not to one with an instance of the same.

2. The base part of the derived class object gets copied and passed as an argument.

The resulting behavior due to “slicing” can be unpredictable.

3. Composition for design flexibility.

4. Use it to unhide base class methods.

5. No, because the first class that specializes Base—that is, class Derived—has a

private inheritance relationship with Base. Thus, public members of class Base are

private to class SubDerived, hence are not accessible.

Exercises
1. Construction in order mentioned in the class declaration: Mammal - Bird -

Reptile - Platypus. Destruction in reverse order.

2. Like this:

class Shape
{
 // ... Shape members
};

class Polygon: public Shape
{
 // ... Polygon members
}

class Triangle: public Polygon
{
 // ... Triangle members
}

ptg18655082

Answers for Lesson 11 731

E

3. The inheritance relationship between class D1 and Base should be private to

restrict class D2 from accessing the public members of Base.

4. Classes inherit private by default. If Derived had been a struct, that inheri-

tance would’ve been public.

5. SomeFunc is taking the parameter of type Base by value. This means that a call

of this type using an instance of Derived is subject to slicing, which leads to insta-

bility and unpredictable output:

Derived objectDerived;
SomeFunc(objectDerived); // slicing problems

Answers for Lesson 11
Quiz

1. Declare an abstract base class Shape with Area() and Print() as pure virtual

functions, thereby forcing Circle and Triangle to implement the same. They’re

forced to comply with your criteria of requiring to support Area() and Print().

2. No. It creates a VFT only for those classes that contain virtual functions.

3. Yes, as it still cannot be instantiated. As long as a class has at least one pure virtual

function, it remains an ABC irrespective of the presence or absence of other fully

defined functions or parameters.

Exercises
1. The inheritance hierarchy using an abstract base class Shape for classes Circle

and Triangle is as below:

#include<iostream>
using namespace std;

class Shape
{
public:
 virtual double Area() = 0;
 virtual void Print() = 0;
};

class Circle

ptg18655082

732 APPENDIX E: Answers

{
 double radius;
public:
 Circle(double inputRadius) : radius(inputRadius) {}

 double Area()
 {

return 3.1415 * radius * radius;
 }

 void Print()
 {

cout << "Circle says hello!" << endl;
 }
};

class Triangle
{
 double base, height;
public:
 Triangle(double inputBase, double inputHeight) : base(inputBase),
height(inputHeight) {}

 double Area()
 {

return 0.5 * base * height;
 }

 void Print()
 {

cout << "Triangle says hello!" << endl;
 }
};

int main()
{
 Circle myRing(5);
 Triangle myWarningTriangle(6.6, 2);

 cout << "Area of circle: " << myRing.Area() << endl;
 cout << "Area of triangle: " << myWarningTriangle.Area() << endl;

 myRing.Print();
 myWarningTriangle.Print();

 return 0;
}

ptg18655082

Answers for Lesson 12 733

E

2. Missing virtual destructor!

3. Without a virtual destructor, the constructor sequence would be Vehicle()

followed by Car(), whereas the nonvirtual destructor would result only in

~Vehicle() being invoked.

Answers for Lesson 12
Quiz

1. No, C++ does not allow two functions with the same name to have different return

values. You can program two implementations of operator [] with identical return

types, one defined as a const function and the other not. In this case, C++ com-

piler picks the non-const version for assignment-related activities and the const

version otherwise:

Type& operator[](int Index) const;
Type& operator[](int Index);

2. Yes, but only if I don’t want my class to allow copying or assignment. Such a

restriction would be necessity when programming a singleton—a class that permits

the existence of only one instance. Listing 9.10 in Lesson 9, “Classes and Objects,”

contains a demonstration of a singleton class.

3. As there are no dynamically allocated resources contained within class Date that

cause unnecessary memory allocation and deallocation cycles within the copy con-

structor or copy assignment operator, this class is not a good candidate for a move

constructor or move assignment operator.

Exercises
1. The conversion operator int() is as below:

class Date
{
 int day, month, year;
public:
 explicit operator int()
 {

return ((year * 10000) + (month * 100) + day);
 }

 // constructor etc
};

ptg18655082

734 APPENDIX E: Answers

2. The move constructor and move assignment operators are seen below:

class DynIntegers
{
private:
 int* arrayNums;

public:
 // move constructor
 DynIntegers(DynIntegers&& moveSrc)
 {

arrayNums = moveSrc.arrayNums; // take ownership
moveSrc.arrayNums = NULL; // release ownership from source

 }

 // move assignment operator
 DynIntegers& operator= (DynIntegers&& moveSrc)
 {

if(this != &moveSrc)
{

delete [] arrayNums; // release own resources
arrayNums = moveSrc.arrayNums;
moveSrc.arrayNums = NULL;

}
return *this;

 }

 ~DynIntegers() {delete[] arrayNums;} // destructor

 // implement default constructor, copy constructor, assignment operator
};

Answers for Lesson 13
Quiz

1. dynamic_cast.

2. Correct the function, of course. const_cast and casting operators in general

should be a last resort.

3. True.

4. Yes, true.

ptg18655082

Answers for Lesson 14 735

E

Exercises
1. The result of a dynamic_cast operation should always be checked for validity:

void DoSomething(base* pBase)
{
 Derived* objDerived = dynamic_cast <Derived*>(pBase);

 if(objDerived) // check for validity
objDerived->DerivedClassMethod();

}

2. Use static_cast as you know that the object being pointed to is of type Tuna.

Using Listing 13.1 as a base, here is what main() would look like:

int main()
{
 Fish* pFish = new Tuna;
 Tuna* pTuna = static_cast<Tuna*>(pFish);

 // Tuna::BecomeDinner will work only using valid Tuna*
 pTuna->BecomeDinner();

 // virtual destructor in Fish ensures invocation of ~Tuna()
 delete pFish;

 return 0;
}

Answers for Lesson 14
Quiz

1. A preprocessor construct that keeps you from multiplying or recursively including

header files.

2. 4.

3. 10 + 10 / 5 = 10 + 2 = 12.

4. Use brackets:

#define SPLIT(x) ((x) / 5)

ptg18655082

736 APPENDIX E: Answers

Exercises
1. Here it is:

#define MULTIPLY(a,b) ((a)*(b))

2. This is the template version of the macro seen in the answer to quiz question 4:

template<typename T> T Split(const T& input)
{
 return (input / 5);
}

3. The template version of swap would be

template <typename T>
void Swap (T& x, T& y)
{
 T temp = x;
 x = y;
 y = temp;
}

4. #define QUARTER(x) ((x)/ 4)

5. The template class definition would look like the following:

template <typename Array1Type, typename Array2Type>
class TwoArrays
{
private:

Array1Type Array1 [10];
Array2Type Array2 [10];

public:
Array1Type& GetArray1Element(int Index){return Array1[Index];}
Array2Type& GetArray2Element(int Index){return Array2[Index];}

};

6. Here is a full sample containing a Display() function that features variable tem-

plates and usage of the same:

#include <iostream>
using namespace std;

void Display()
{
}

template <typename First, typename ...Last> void Display(First a, Last... U)

ptg18655082

Answers for Lesson 15 737

E

{
 cout << a << endl;
 Display(U...);
}

int main()
{
 Display('a');
 Display(3.14);
 Display('a', 3.14);
 Display('z', 3.14567, "The power of variadic templates!");

 return 0;
}

Output ▼
a
3.14
a
3.14
z
3.14567
The power of variadic templates!

Answers for Lesson 15
Quiz

1. A std::deque. Only a deque simulates a dynamic array and also allows constant-

time insertions at the front and at the back of the container. A std::vector does

not allow insertions at the beginning and is therefore unsuited.

2. A std::set or a std::map if you have key-value pairs. If the elements need to be

available in duplicates, too, you would choose std::multiset or std::multimap.

3. Yes. When you instantiate a std::set template, you can optionally supply a sec-

ond template parameter that is a binary predicate that the set class uses as the sort

criterion. Program this binary predicate to criteria that are relevant to your require-

ments. It needs to be strict-weak ordering compliant.

4. Iterators form the bridge between algorithms and containers so that the former

(which are generic) can work on the latter without having to know (be customized

for) every container type possible.

5. hash_set is not a C++ standard-compliant container. So, you should not use it in

any application that has portability listed as one of its requirements. Use std::map

instead.

ptg18655082

738 APPENDIX E: Answers

Answers for Lesson 16
Quiz

1. std::basic_string <T>

2. Copy the two strings into two copy objects. Convert each copied string into either

lowercase or uppercase. Return the result of comparison of the converted copied

strings.

3. No, they are not. C-style strings are actually raw pointers akin to a character array,

whereas STL string is a class that implements various operators and member

functions to make string manipulation and handling as simple as possible.

Exercises
1. The program needs to use std::reverse():

#include <string>
#include <iostream>
#include <algorithm>

int main ()
{
 using namespace std;

 cout << "Please enter a word for palindrome-check:" << endl;
 string strInput;
 cin >> strInput;

 string strCopy (strInput);
 reverse (strCopy.begin (), strCopy.end ());

 if (strCopy == strInput)
cout << strInput << " is a palindrome!" << endl;

 else
cout << strInput << " is not a palindrome." << endl;

 return 0;
}

2. Use std::find():

#include <string>
#include <iostream>

using namespace std;

ptg18655082

Answers for Lesson 16 739

E

// Find the number of character 'chToFind' in string "strInput"
int GetNumCharacters (string& strInput, char chToFind)
{
 int nNumCharactersFound = 0;

 size_t nCharOffset = strInput.find (chToFind);
 while (nCharOffset != string::npos)
 {

++ nNumCharactersFound;

nCharOffset = strInput.find (chToFind, nCharOffset + 1);
 }

 return nNumCharactersFound;
}

int main ()
{

 cout << "Please enter a string:" << endl << "> ";
 string strInput;
 getline (cin, strInput);

 int nNumVowels = GetNumCharacters (strInput, 'a');
 nNumVowels += GetNumCharacters (strInput, 'e');
 nNumVowels += GetNumCharacters (strInput, 'i');
 nNumVowels += GetNumCharacters (strInput, 'o');
 nNumVowels += GetNumCharacters (strInput, 'u');

 // DIY: handle capitals too..

 cout << "The number of vowels in that sentence is:" << nNumVowels;

 return 0;
}

3. Use function toupper():

#include <string>
#include <iostream>
#include <algorithm>

int main ()
{
 using namespace std;

ptg18655082

740 APPENDIX E: Answers

 cout << "Please enter a string for case-conversion:" << endl;
 cout << "> ";

 string strInput;
 getline (cin, strInput);
 cout << endl;

 for (size_t nCharIndex = 0
; nCharIndex < strInput.length ()
; nCharIndex += 2)
strInput [nCharIndex] = toupper (strInput [nCharIndex]);

 cout << "The string converted to upper case is: " << endl;
 cout << strInput << endl << endl;

 return 0;
}

4. This can be simply programmed as

#include <string>
#include <iostream>

int main ()
{
 using namespace std;

 const string str1 = "I";
 const string str2 = "Love";
 const string str3 = "STL";
 const string str4 = "String.";

 string strResult = str1 + " " + str2 + " " + str3 + " " + str4;

 cout << "The sentence reads:" << endl;
 cout << strResult;

 return 0;
}

5. Use std::string::find():

#include <iostream>
#include <string>

int main()
{
 using namespace std;

ptg18655082

Answers for Lesson 17 741

E

 string sampleStr("Good day String! Today is beautiful!");
 cout << "Sample string is: " << sampleStr << endl;
 cout << "Locating all instances of character 'a'" << endl;

 auto charPos = sampleStr.find('a', 0);

 while (charPos != string::npos)
 {

cout << "'" << 'a' << "' found";
cout << " at position: " << charPos << endl;

// Make the 'find' function search forward from the next character
onwards

size_t charSearchPos = charPos + 1;

charPos = sampleStr.find('a', charSearchPos);
 }

 return 0;
}

Output ▼
Sample string is: Good day String! Today is beautiful!
Locating all instances of character 'a'
'a' found at position: 6
'a' found at position: 20
'a' found at position: 28

Answers for Lesson 17
Quiz

1. No, they can’t. Elements can only be added at the back (that is, the end) of a vector

sequence in constant time.

2. 10 more. At the 11th insertion, you trigger a reallocation.

3. Deletes the last element; that is, removes the element at the back.

4. Of type Mammal.

5. Via (a) the subscript operator ([]) (b) Function at().

6. Random-access iterator.

ptg18655082

742 APPENDIX E: Answers

Exercises
1. One solution is

#include <vector>
#include <iostream>

using namespace std;

char DisplayOptions ()
{
 cout << "What would you like to do?" << endl;
 cout << "Select 1: To enter an integer" << endl;
 cout << "Select 2: Query a value given an index" << endl;
 cout << "Select 3: To display the vector" << endl << "> ";
 cout << "Select 4: To quit!" << endl << "> ";

 char ch;
 cin >> ch;

 return ch;
}

int main ()
{
 vector <int> vecData;

 char chUserChoice = '\0';
 while ((chUserChoice = DisplayOptions ()) != '4')
 {

if (chUserChoice == '1')
{

cout << "Please enter an integer to be inserted: ";
int nDataInput = 0;
cin >> nDataInput;

vecData.push_back (nDataInput);
}
else if (chUserChoice == '2')
{

cout << "Please enter an index between 0 and ";
cout << (vecData.size () - 1) << ": ";
size_t index = 0;
cin >> index;

if (index < (vecData.size ()))
{

cout<<"Element ["<<index<<"] = "<<vecData[index];
cout << endl;

}
}
else if (chUserChoice == '3')

ptg18655082

Answers for Lesson 17 743

E

{
cout << "The contents of the vector are: ";
for (size_t index = 0; index < vecData.size (); ++ index)

cout << vecData [index] << ' ';
cout << endl;

}
 }
 return 0;
}

2. Use the std::find() algorithm:

vector <int>::iterator elementFound = std::find (vecData.begin (),
vecData.end (), value);

if (elementFound != vecData.end())
 cout << "Element found!" << endl;

3. Here is a possible solution. Note the usage of a vector to store instances of a

class Dimensions. Also note how Dimensions implements operator const

char* so that std::cout can directly work on instances of it.

#include <vector>
#include <iostream>
#include <string>
#include <sstream>

using namespace std;

char DisplayOptions()
{
 cout << "What would you like to do?" << endl;
 cout << "Select 1: To enter length & breadth " << endl;
 cout << "Select 2: Query a value given an index" << endl;
 cout << "Select 3: To display dimensions of all packages" << endl;
 cout << "Select 4: To quit!" << endl << "> ";

 char ch;
 cin >> ch;

 return ch;
}

class Dimensions
{
 int length, breadth;
 string strOut;
public:
 Dimensions(int inL, int inB) : length(inL), breadth(inB) {}

 operator const char* ()

ptg18655082

744 APPENDIX E: Answers

 {
stringstream os;
os << "Length "s << length << ", Breadth: "s << breadth << endl;
strOut = os.str();
return strOut.c_str();

 }
};

int main()
{
 vector <Dimensions> vecData;

 char chUserChoice = '\0';
 while ((chUserChoice = DisplayOptions()) != '4')
 {

if (chUserChoice == '1')
{

cout << "Please enter length and breadth: " << endl;
int length = 0, breadth = 0;
cin >> length;

cin >> breadth;

vecData.push_back(Dimensions(length, breadth));
}
else if (chUserChoice == '2')
{

cout << "Please enter an index between 0 and ";
cout << (vecData.size() - 1) << ": ";
size_t index = 0;
cin >> index;

if (index < (vecData.size()))
{

cout << "Element [" << index << "] = " << vecData[index];
cout << endl;

}
}
else if (chUserChoice == '3')
{

cout << "The contents of the vector are: ";
for (size_t index = 0; index < vecData.size(); ++index)

cout << vecData[index] << ' ';
cout << endl;

}
 }
 return 0;
}

4. List Initializations introduced in C++11 make the code compact:

ptg18655082

Answers for Lesson 18 745

E

#include <deque>
#include <string>
#include <iostream>
using namespace std;

template<typename T>
void DisplayDeque(deque<T> inDQ)
{
 for (auto element = inDQ.cbegin();
 element != inDQ.cend();

++element)
cout << *element << endl;

}

int main()
{
 deque<string> strDq{ "Hello"s, "Containers are cool"s, "C++ is
evolving!"s };
 DisplayDeque(strDq);

 return 0;
}

Answers for Lesson 18
Quiz

1. Elements can be inserted in the middle of the list as they can be at either end. There

is no gain or loss in performance due to position.

2. The specialty of the list is that operations such as these don’t invalidate existing

iterators.

3. theList.clear ();

or

theList.erase (theList.begin(), theList.end());

4. Yes, an overloaded version of the insert() function enables you to insert a range

from a source collection.

Exercises
1. This is like Exercise solution 1 for the vector in Lesson 17, “STL Dynamic Array

Classes.” The only change is that you would use the list::insert() function as

List.insert (List.begin(),nDataInput);

ptg18655082

746 APPENDIX E: Answers

2. Store iterators to two elements in a list. Insert an element in the middle using the

list’s insert function. Use the iterators to demonstrate that they are still able to fetch

the values they pointed to before the insertion.

3. A possible solution is

#include <vector>
#include <list>
#include <iostream>

using namespace std;

int main()
{
 vector <int> vecData{ 0, 10, 20, 30 };

 list <int> linkInts;

 // Insert contents of vector into beginning of list
 linkInts.insert(linkInts.begin(),

vecData.begin(), vecData.end());

 cout << "The contents of the list are: ";

 list <int>::const_iterator element;
 for (element = linkInts.begin();

element != linkInts.end();
++element)
cout << *element << " ";

 return 0;
}

4. A possible solution is

#include <list>
#include <string>
#include <iostream>

using namespace std;

int main()
{
 list <string> names;
 names.push_back("Jack");
 names.push_back("John");
 names.push_back("Anna");
 names.push_back("Skate");

 cout << "The contents of the list are: ";

ptg18655082

Answers for Lesson 19 747

E

 list <string>::const_iterator element;
 for (element = names.begin(); element != names.end(); ++element)

cout << *element << " ";
 cout << endl;

 cout << "The contents after reversing are: ";
 names.reverse();
 for (element = names.begin(); element != names.end(); ++element)

cout << *element << " ";
 cout << endl;

 cout << "The contents after sorting are: ";
 names.sort();
 for (element = names.begin(); element != names.end(); ++element)

cout << *element << " ";
 cout << endl;

 return 0;
}

Answers for Lesson 19
Quiz

1. The default sort criterion is specified by std::less<>, which effectively uses

operator< to compare two integers and returns true if the first is less than the sec-

ond.

2. Given that a multiset sorts elements on insertion, you would find the two ele-

ments of equal value together, one after another.

3. size(), as is the case with all STL containers.

Exercises
1. One solution is

#include <set>
#include <iostream>
#include <string>
using namespace std;

template <typename T>
void DisplayContents(const T& container)
{
 for (auto iElement = container.cbegin();
 iElement != container.cend();

ptg18655082

748 APPENDIX E: Answers

++iElement)
cout << *iElement << endl;

 cout << endl;
}

struct ContactItem
{
 string name;
 string phoneNum;
 string displayAs;

 ContactItem(const string& nameInit, const string & phone)
 {

name = nameInit;
phoneNum = phone;
displayAs = (name + ": " + phoneNum);

 }

 // used by set::find() given contact list item
 bool operator == (const ContactItem& itemToCompare) const
 {

return (itemToCompare.phoneNum == this->phoneNum);
 }

 // used to sort
 bool operator < (const ContactItem& itemToCompare) const
 {

return (this->phoneNum < itemToCompare.phoneNum);
 }

 // Used in DisplayContents via cout
 operator const char*() const
 {

return displayAs.c_str();
 }
};

int main()
{
 set<ContactItem> setContacts;
 setContacts.insert(ContactItem("Jack Welsch", "+1 7889 879 879"));
 setContacts.insert(ContactItem("Bill Gates", "+1 97 7897 8799 8"));
 setContacts.insert(ContactItem("Angi Merkel", "+49 23456 5466"));
 setContacts.insert(ContactItem("Vlad Putin", "+7 6645 4564 797"));
 setContacts.insert(ContactItem("John Travolta", "+1 234 4564 789"));
 setContacts.insert(ContactItem("Ben Affleck", "+1 745 641 314"));
 DisplayContents(setContacts);

 cout << "Enter a number you wish to search: ";
 string input;

ptg18655082

Answers for Lesson 19 749

E

 getline(cin, input);

 auto contactFound = setContacts.find(ContactItem("", input));
 if (contactFound != setContacts.end())
 {

cout << "The number belongs to " << (*contactFound).name << endl;
DisplayContents(setContacts);

 }
 else

cout << "Contact not found" << endl;

 return 0;
}

2. The structure and the multiset definition would be

#include <set>
#include <iostream>
#include <string>

using namespace std;

struct PAIR_WORD_MEANING
{
 string word;
 string meaning;

 PAIR_WORD_MEANING(const string& sWord, const string& sMeaning)
: word(sWord), meaning(sMeaning) {}

 bool operator< (const PAIR_WORD_MEANING& pairAnotherWord) const
 {

return (word < pairAnotherWord.word);
 }

 bool operator== (const string& key)
 {

return (key == this->word);
 }
};

int main()
{
 multiset <PAIR_WORD_MEANING> msetDictionary;
 PAIR_WORD_MEANING word1("C++", "A programming language");
 PAIR_WORD_MEANING word2("Programmer", "A geek!");

 msetDictionary.insert(word1);
 msetDictionary.insert(word2);

 cout << "Enter a word you wish to find the meaning off" << endl;

ptg18655082

750 APPENDIX E: Answers

 string input;
 getline(cin, input);
 auto element = msetDictionary.find(PAIR_WORD_MEANING(input, ""));
 if (element != msetDictionary.end())

cout << "Meaning is: " << (*element).meaning << endl;

 return 0;
}

3. One solution is

#include <set>
#include <iostream>

using namespace std;

template <typename T>
void DisplayContent(const T& cont)
{
 T::const_iterator element;

 for (element = cont.begin(); element != cont.end(); ++element)
cout << *element << " ";

}

int main()
{
 multiset <int> msetIntegers;

 msetIntegers.insert(5);
 msetIntegers.insert(5);
 msetIntegers.insert(5);

 set <int> setIntegers;
 setIntegers.insert(5);
 setIntegers.insert(5);
 setIntegers.insert(5);

 cout << "Displaying the contents of the multiset: ";
 DisplayContent(msetIntegers);
 cout << endl;

 cout << "Displaying the contents of the set: ";
 DisplayContent(setIntegers);
 cout << endl;

 return 0;
}

ptg18655082

751

E

Answers for Lesson 21

Answers for Lesson 20
Quiz

1. The default sort criterion is specified by std::less<>.

2. Next to each other.

3. size(). In fact, this member function would tell you the number of elements in

every container supplied by STL.

4. You would not find duplicate elements in a map!

Exercises
1. An associative container that allows duplicate entries. For example, a

std::multimap:

std::multimap <string, string> mapNamesToNumbers;

2. An associative container that allows duplicate entries.

struct fPredicate
{
 bool operator< (const WordProperty& lsh, const WordProperty& rsh) const
 {

return (lsh.word < rsh.word);
 }
};

3. Take a hint from the similarly solved Exercise 3 in Lesson 19, “STL Set Classes.”

Answers for Lesson 21
Quiz

1. A unary predicate.

2. It can display data, for example, or simply count elements. See usage of

std::transform() in Listing 21.6 with predicate tolower().

3. All entities that exist during the runtime of an application are objects. In this case,

even structures and classes can be made to work as functions, hence the term func-
tion objects. Note that functions can also be available via function pointers—these

are function objects, too.

ptg18655082

752 APPENDIX E: Answers

Exercises
1. A solution is

template <typename elementType=int>
struct Double
{
 void operator () (const elementType element) const
 {

cout << element * 2 << ' ';
 }
};

This unary predicate can be used as

#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
 vector <int> numsInVec;

 for (int count = 0; count < 10; ++count)
numsInVec.push_back(count);

 cout << "Displaying the vector of integers: " << endl;

 // Display the array of integers
 for_each(numsInVec.begin(), // Start of range

numsInVec.end(), // End of range
Double <>()); // Unary function object

 return 0;
}

2. Add a member integer that is incremented every time the operator() is used:

template <typename elementType=int>
struct Double
{
 int usageCount;

 // Constructor
 Double () : usageCount (0) {};

 void operator () (const elementType element) const
 {

++ usageCount;
cout << element * 2 << ' ';

 }
};

ptg18655082

Answers for Lesson 22 753

E

3. The binary predicate is the following:

template <typename elementType>
template <typename elementType>
class SortAscending
{
public:
 bool operator () (const elementType& num1,

const elementType& num2) const
 {

return (num1 < num2);
 }
};

This predicate can be used as

#include<iostream>
#include<vector>
#include<algorithm>
int main()
{
 std::vector <int> numsInVec;

 // Insert sample numbers: 100, 90... 20, 10
 for (int sample = 10; sample > 0; --sample)

numsInVec.push_back(sample * 10);

 std::sort(numsInVec.begin(), numsInVec.end(),
SortAscending<int>());

 for (size_t index = 0; index < numsInVec.size(); ++index)
cout << numsInVec[index] << ' ';

 return 0;
}

Answers for Lesson 22
Quiz

1. A lambda always starts with [].

2. Via a capture list [Var1, Var2, …](Type& param) { ...; }

3. Like this:

[Var1, Var2, ...](Type& param) -> ReturnType { ...; }

ptg18655082

754 APPENDIX E: Answers

Exercises
1. One solution for the lambda is

sort(container.begin(),container.end(),
 [](auto el1, auto el2) {return (el1 > el2); });

It has also been demonstrated in the code supplied in the solution to Exercise 2.

2. This is what the lambda would look like:

cout << "Number you wish to add to all elements: ";
int numInput = 0;
cin >> numInput;

for_each(vecNumbers.begin(), vecNumbers.end(),
[=](int& element) {element += numInput;});

The sample that demonstrates the solutions in Exercise 1 and 2 is

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

template <typename T>
void DisplayContents(const T& container)
{
 for (auto element = container.cbegin();

element != container.cend();
++element)

cout << *element << ' ';
 cout << endl;
}

int main()
{
 vector<int> vecNumbers{ 25, -5, 122, 2011, -10001 };
 DisplayContents(vecNumbers);

 sort(vecNumbers.begin(), vecNumbers.end());
 DisplayContents(vecNumbers);

 sort(vecNumbers.begin(), vecNumbers.end(),
[](int Num1, int Num2) {return (Num1 > Num2); });

 DisplayContents(vecNumbers);

 cout << "Number you wish to add to all elements: ";
 int numcontainer = 0;
 cin >> numcontainer;

ptg18655082

Answers for Lesson 23 755

E

 for_each(vecNumbers.begin(), vecNumbers.end(),
[=](int& element) {element += numcontainer; });

 DisplayContents(vecNumbers);

 return 0;
}

Output ▼
25 -5 122 2011 -10001
-10001 -5 25 122 2011
2011 122 25 -5 -10001
Number you wish to add to all elements: 5
2016 127 30 0 -9996

Answers for Lesson 23
Quiz

1. Use the std::list::remove_if() function because it ensures that existing

iterators to elements in the list (that were not removed) still remain valid.

2. list::sort() (or even std::sort()) in the absence of an explicitly supplied

predicate resorts to a sort using std::less<>, which employs the operator< to

sort objects in a collection.

3. Once per element in the range supplied.

4. for_each() accepts a unary predicate and returns the function object that can be

used to contain state information. std::transform() can work with unary or

binary predicates and features an overloaded version that can therefore work on two

input ranges.

Exercises
1. Here is one solution:

struct CaseInsensitiveCompare
{
 bool operator() (const string& str1, const string& str2) const
 {

string str1Copy (str1), str2Copy (str2);

transform (str1Copy.begin (),

ptg18655082

756 APPENDIX E: Answers

str1Copy.end(), str1Copy.begin (), tolower);
transform (str2Copy.begin (),

str2Copy.end(), str2Copy.begin (), tolower);

return (str1Copy < str2Copy);
 }
};

2. Here is the demonstration. Note how std::copy() works without knowing the

nature of the collections. It works using the iterator classes only:

#include <vector>
#include <algorithm>
#include <list>
#include <string>
#include <iostream>

using namespace std;

int main ()
{
 list <string> listNames;
 listNames.push_back ("Jack");
 listNames.push_back ("John");
 listNames.push_back ("Anna");
 listNames.push_back ("Skate");

 vector <string> vecNames (4);
 copy (listNames.begin (), listNames.end (), vecNames.begin ());

 vector <string> ::const_iterator iNames;
 for (iNames = vecNames.begin (); iNames != vecNames.end (); ++ iNames)

cout << *iNames << ' ';

 return 0;
}

3. The difference between std::sort() and std::stable_sort() is that the latter,

when sorting, ensures the relative positions of the objects remain maintained. Because

the application needs to store data in the sequence it happened, you should choose

stable_sort() to keep the relative ordering between the celestial events intact.

Answers for Lesson 24
Quiz

1. Yes, by supplying a binary predicate.

2. class Coin needs to implement operator<.

ptg18655082

Answers for Lesson 25 757

E

3. No, you can only work on the top of the stack. So you can’t access the coin at the

bottom, which is the first coin inserted.

Exercises
1. The binary predicate could be operator<:

class Person
{
public:
 int age;
 bool isFemale;

 bool operator< (const Person& anotherPerson) const
 {

bool bRet = false;
if (age > anotherPerson.age)

bRet = true;
else if (isFemale && anotherPerson.isFemale)

bRet = true;

return bRet;
 }
};

2. Push individual characters into a stack. As you pop data, you effectively reverse

contents because a stack is a LIFO type of container.

Answers for Lesson 25
Quiz

1. No. The number of bits a bitset can hold is fixed at compile time.

2. Because bitset isn’t a container class. It can’t scale itself dynamically as other

containers do; it doesn’t support iterators in the way containers need to.

3. No. std::bitset is best suited for this purpose.

Exercises
1. std::bitset featuring instantiation, initialization, display, and addition is demon-

strated here:

#include <bitset>
#include <iostream>

ptg18655082

758 APPENDIX E: Answers

int main()
{
 // Initialize the bitset to 1001
 std::bitset <4> fourBits (9);

 std::cout << "fourBits: " << fourBits << std::endl;

 // Initialize another bitset to 0010
 std::bitset <4> fourMoreBits (2);

 std::cout << "fourMoreBits: " << fourMoreBits << std::endl;

 std::bitset<4>addResult(fourBits.to_ulong()+fourMoreBits.to_ulong());
 std::cout << "The result of the addition is: " << addResult;

 return 0;
}

2. Call the flip() function on any of the bitset objects in the preceding sample:

addResult.flip ();
std::cout << "The result of the flip is: " << addResult << std::endl;

Answers for Lesson 26
Quiz

1. I would look at www.boost.org. I hope you would, too!

2. No, typically well-programmed (and correctly chosen) smart pointers would not.

3. When intrusive, objects that they own need to hold it; otherwise, they can hold this

information in a shared object on the free store.

4. The list needs to be traversed in both directions, so it needs to be doubly linked.

Exercises
1. object->DoSomething (); is faulty because the pointer lost ownership of

the object during the previous copy step. This will crash (or do something very

unpleasant).

2. The code would look like this:

http://www.boost.org

ptg18655082

Answers for Lesson 27 759

E

#include <memory>
#include <iostream>
using namespace std;

class Fish
{
public:
 Fish() {cout << "Fish: Constructed!" << endl;}
 ~Fish() {cout << "Fish: Destructed!" << endl;}

 void Swim() const {cout << "Fish swims in water" << endl;}
};

class Carp: public Fish
{
};

void MakeFishSwim(const unique_ptr<Fish>& inFish)
{
 inFish->Swim();
}

int main ()
{
 unique_ptr<Fish> myCarp (new Carp); // note this
 MakeFishSwim(myCarp);

 return 0;
}

As there is no copy step involved, given that MakeFishSwim() accepts the argu-

ment as a reference, there is no question of slicing. Also, note the instantiation syn-

tax of variable myCarp.

3. A unique_ptr does not allow copy or assignment as the copy constructor and

copy assignment operator are both private.

Answers for Lesson 27
Quiz

1. Use ofstream to only write to a file.

2. You would use cin.getline(). See Listing 27.7.

ptg18655082

760 APPENDIX E: Answers

3. You wouldn’t because std::string contains text information and you can stay

with the default mode, which is text (no need for binary).

4. To check whether open() succeeded. If it fails, you may want to show an error and

suspend file processing.

Exercises
1. You opened the file but didn’t check for success of open() using is_open()

before using the stream or closing it.

2. You cannot insert into an ifstream, which is designed for input, not output, and

hence does not support stream insertion operator<<.

Answers for Lesson 28
Quiz

1. A class just like any other, but created expressly as a base class for some other

exception classes such as bad_alloc.

2. std::bad_alloc

3. That’s a bad idea for it’s also possible that the exception was thrown in the first

place because of a lack of memory.

4. Using the same catch(std::exception& exp) that you can also use for type

bad_alloc.

Exercises
1. Never throw in a destructor.

2. You forgot to make the code exception safe (missing try... catch block).

3. Don’t allocate in a catch block! Assume the data allocated in try is lost and con-

tinue with damage control.

Answers for Lesson 29
Quiz

1. It seems that your application does all the activity within one thread. So, if the

image processing itself (contrast correction) is processor intensive, the UI is unre-

ptg18655082

Answers for Lesson 29 761

E

sponsive. You ought to split these two activities into two threads so that the OS

switches the two threads, giving processor time to both the UI and the worker that

does the correction.

2. Your threads are possibly poorly synchronized. You are writing to and reading from

an object at the same time, resulting in inconsistent or garbled data recovery. Insert

a binary semaphore and ensure that the table cannot be accessed when it is being

modified.

ptg18655082

Index

Symbols

+ (addition) operator, 88–89,

347–349

+= (addition assignment)

operator, 442–443

<> (angle brackets), 19

= (assignment) operator, 87,

357–360

\ (backslash), 76–78, 86

& (bitwise AND) operator,

100–102, 624

>> (bitwise right shift) operator,

102–104

~ (bitwise NOT) operator,

100–102

| (bitwise OR) operator,

100–102, 624

^ (bitwise XOR) operator,

100–102, 624

{ } (braces), 48, 87

: (colon), 10, 232

// comment syntax, 23, 28

/* */ comment syntax, 23, 28

?: (conditional) operator,

126–127

- - (decrement) operator, 89,

190–193, 338–341

* (dereferencing) operator,

183–185, 344–345, 635,

639

. (dot) operator, 218–219

/ (division) operator, 88–89

… (ellipses), 415

== (equality) operator, 92, 352

>> (extraction) operator, 27,

624, 649, 663–664

> (greater than) operator,

92–94, 354–357

>= (greater than or equal to)

operator, 354–357

!= (inequality) operator,

92, 352

++ (increment) operator, 89,

191–193, 338–341, 26, 624,

649, 662, 624

< (less than) operator, 92–94,

354–357

<= (less than or equal to)

operator, 92–94, 354–357

&& (logical AND) operator,

95–100

|| (logical OR) operator,

95–100

! (logical NOT) operator,

95–100

-> (member selection) operator,

219–220, 344–345, 635,

639

% (modulo) operator, 88–89

* (multiplication) operator,

88–89

() (parentheses), 364–365,

398–399

& (referencing) operator,

179–180

>>= (right shift) operator, 624

 [] (subscript) operator,

197–198, 360–364, 462,

555

ptg18655082

764 ~ (tilde)

~ (tilde), 234

""s operator, 451–452

:: (scope resolution) operator,

225

; (semicolon), 12, 86, 216

' (single quotation mark), 45

- (subtraction) operator, 88–89,

347–349

0x prefix, 704

\0 string-terminating character,

76–78, 82

A

abstract base classes,

318–320, 332

access-specifier, 274

adapters, container, 425

adaptive containers. See

queues; stacks

adaptive function objects, 538

addition assignment (+=)

operator, 442–443

addition operator (+), 88–89,

347–349

addresses of variables

determining, 179–180

storing in pointers, 180–182

adjacent_find(), 571

advantages of C++, 6

aggregate initialization,

263–266

aggregation, 296

algorithms. See also

containers; specific
algorithms (for example,
for_each())

defined, 570, 618

do’s and don’ts, 599

explained, 426

interaction with containers,

427–429

mutating algorithms, 571–573

non-mutating algorithms,

570–571

transformations, 585–588

allocation of memory. See

dynamic memory allocation

American Standard Code for

Information Interchange

(ASCII) codes, 41, 711–715

AND operator

bitwise AND (&), 100–102,

624

logical AND (&&), 95–100

angle brackets (<>), 19

app class, 661

app constant, 661

append(), 442–443

Area(), 152–153, 158–159

arguments

arrays of values, 165–166

default values, 157–159

defined, 19, 154

multiple parameters, 155–156

no parameters, 156–157

passing by reference,

166–168, 208–209

arithmetic operators, 88–89,

347–349

array class, 699

array operator ([]), 197–198

arrays. See also string class

accessing data in, 67–68

compared to pointers,

195–198

defined, 64

do’s and don’ts, 71

dynamic arrays, 66, 74–76,

469–472

explained, 65

modifying data in, 69–71

multidimensional arrays,

71–73, 145–146

need for, 64–65

passing to functions, 165–166

size of, 82–83

static arrays, 65–66

storing data in, 66–67

ASCII (American Standard Code

for Information Interchange)

codes, 41, 711–715

assert() macro, 399–400

assignment operator (=),

87, 357–360. See also

compound assignment

operators

associative containers,

423–424

ate constant, 661

auto keyword, 12–13, 48–50,

171–172, 493

auto_ptr class, 640–643

automatic type deduction,

48–50, 171–172, 698–699

B

back(), 611

backslash (\), 76–78, 86

bad_alloc class, 679

bad_cast class, 679

base class methods

hiding, 286

initializing, 279–281

invoking, 283–286

overridden methods, 281–284

basic_string class, 450–451

begin(), 481–482

best practices, 693–694

bidirectional iterators, 426

binary constant, 661

binary files, reading/writing,

664–665

binary functions, 545–550

binary literals, 51

binary numeral system,

702–703, 705–706

binary operators

arithmetic operators, 347–349

compound assignment

operators, 350–352

copy assignment, 357–360

equality/inequality, 352

ptg18655082

conditional code compilation 765

explained, 346

function (), 364–365

move assignment, 365–371

move constructor, 365–371

relational operators, 354–357

subscript ([]), 360–364

binary predicates, 363,

547–550

binary_search(), 573, 592–595

bits, 703

bitset class, 622–627, 706

bitwise operators, 100–104,

624

blocks, 87, 117–118

bool type, 40

Boolean variables, declaring,

40

Boost Thread Libraries,

645, 690

braces ({ }), 48, 87

break statement, 139–140

breakdown method, 705

buckets, 507

bugs, 8

bytes, 703

C

.c filename extension, 9

c_str(), 440

C++

advantages of, 6

evolution of, 7

history of, 6

new features, 12–13

revisions of, 12–13

C++17, 695–699

capture lists, 559–560

case, converting, 449–450

case sensitivity, 20, 398

casting

const_cast operator, 385–386

C-style casts, 379

do’s and don’ts, 388

dynamic_cast operator,

381–384

explained, 377

need for, 378

problems with, 386–387

reinterpret_cast operator,

384–385

static_cast operator, 380–381

upcasting, 380

catch keyword, 673–675

catching exceptions

all exceptions, 673–674

catch keyword, 673–675

example, 677–679

exceptions of type, 674–675

failed memory allocation,

202–204

try keyword, 673

cbegin(), 442

cerr class, 651

char buffer, writing to,

657–658

char type, 41

character variables, declaring,

41

chunking separators, 45

cin class, 26–28, 651,

656–660

Circumference(), 152–153

classes. See also constructors;

destructors; inheritance;

individual classes (for
example, fstream class)

accessing members of,

218–220

aggregate initialization,

263–266

aggregation, 296

compared to structs, 257–258

composition, 296

constexpr keyword, 266–267

declaring, 216–217

deep copying, 240–244

explained, 216

friend classes, 258–260

instantiating, 217–218

instantiation on stack,

prohibiting, 249–251

naming conventions, 219

non-copyable objects,

ensuring, 246

private keyword, 220–224

public keyword, 220–222

shallow copying, 237–240

singleton classes, 247–249

sizeof() on, 255–257

subclasses, 275

super classes, 275

unions, 260–266

clear(), 472, 483

Clone(), 638

CodeGuru, 699

CodeProject, 699

collections, inserting elements

into, 597–599

collisions, 529

colon (:), 10

comments, 18, 23, 28

compilation, 8. See also

preprocessor directives

compilers, 10–12, 13,

709–710

compile-time checks,

417–418

compile-time errors, 14

conditional code compilation,

697–698

example, 10–12

operator precedence, 709–710

compiled languages, 13

complexity, 424

composition, 296

compound assignment

operators, 104–106, 350–352

compound statements, 87,

117–118

concatenation, 79–81, 442–443

conditional code compilation,

697–698

ptg18655082

766 conditional operator (?:)

conditional operator (?:),

126–127

conditional programming

conditional operator (?:),

126–127

if statement, 114–122

loops. See loops

switch-case statement,

122–125

const keyword, 52–53,

193–194, 208, 363

const_cast operator, 385–386

in constant, 661

constant complexity, 424

constant expressions, 53–55

constants. See also variables

constant expressions, 53–55

declared constants, 52–53

defined, 50–51

defining, 57, 59–60, 392–394

enumerators, 55–57

literal constants, 51–52,

371–372

naming conventions, 58–59

constexpr keyword, 53–55,

233, 266–267

construction, order of, 288

constructors

automatic type deduction,

698–699

classes without default

constructors, 228–230

converting constructors,

251–253

copy constructors, 233–244

declaring, 224–225

default constructors, 228–230

default values, 230–231

initialization lists, 231–233

move constructors, 244–245

order of construction, 288

overloading, 227–228

uses for, 246–253

virtual copy constructors,

328–331

when to use, 225–226

containers

associative containers,

423–424

choosing, 429–431

container adapters, 425

defined, 422

elements

copy and remove

operations, 588–590

counting, 576–577

finding, 573–575

initializing, 580–583

inserting into collections,

597–599

partitioning, 595–597

processing, 583–585

replacing, 590–592

searching for, 577–579

sorting, 592–595

interaction with algorithms,

427–429

queues, 604–618

sequential containers,

422–423

stacks, 604–608

continue statement, 139–140

conventional pointers, 634

conversion operators, 341–343

converting constructors,

251–253

copy(), 572, 588–590

copy assignment operator,

357–360

copy constructors, 233–244

copy elision, 696

Copy on Write (COW), 639

copy_backward(), 572,

588–590, 600

copy_if(), 588–590

count(), 500, 570, 576–577,

625

count_if(), 570, 576–577

cout class, 651, 653–656, 706

cout statement, 20

COW (Copy on Write), 639

.cpp filename extension, 8

cppreference.com, 699

CPUs, multicore, 688–689

custom sort predicates,

525–528

CustomException class,

680–682

D

dangling pointers, 200–201

deadlock, 692

debugging, 8

decimal numeral system, 702,

705–706,

decrement operator (- -), 89,

191–193, 338–341

deepcopy_smart_ptr class,

637–639

deep-copy-based smart

pointers, 637–639

default constructors, 228–230

default template parameters,

407–408

default values, function

parameters with, 157–159

#define directive, 57

defining constants with,

392–394

writing macro functions with,

396–398

definitions (function), 154

delete operator, 187–190

DemoConsoleOutput(), 24–26

deque class, 422, 469–472,

dereference operator (*),

344–345

dereferencing operator (*),

183–185, 635, 639

derivation, 272–276

DerivedFunction(), 380

destruction, order of, 288–290

destructive copy smart

pointers, 640–643

ptg18655082

767function objects

destructors, 635

declaring, 233–234

order of destruction, 288–290

private destructors, 249–251

virtual destructors, 310–314

when to use, 234–237

directives. See preprocessor

directives

display number formats,

changing, 653–655

DisplayArray(), 165–166

DisplayComparison(), 405

DisplayContents(), 500

DisplayElementKeepCount(),

541–543

DisplayTupleInfo(), 416–417

DisplayVector(), 467

division operator (/), 88–89

do…while loop, 132–133

documentation, 699

dot operator (.), 218–219

double type, 45

dynamic arrays. See also

vector class

declaring, 74–76

defined, 66

deque class, 469–472

dynamic memory allocation

delete operator, 187–190

explained, 187

failed memory allocation,

202–204

new operator, 187–190

dynamic_cast operator, 381–384

E

Eclipse IDE, 8

ellipses (…), 415

empty(), 472, 611, 615

empty return values, 156–157

end(), 481–482

#endif directive, 395–396

endl manipulator, 652

ends manipulator, 652

enumerations, 55–57

enumerators, 55–57

equal(), 571

equality operator (==), 92, 352

erase(), 445–447, 482–483,

502–506, 522–524

errors. See also exceptions

compiler errors, 12

compile-time errors, 14

debugging, 8

fence-post errors, 70

narrowing conversion errors,

48

overflow errors, 43–44

runtime errors, 14

evolution of C++7

exception class, 679–680

exceptions. See also errors

catching, 673–679

causes of, 672

custom classes, 680–682

defined, 671

do’s and don’ts, 682

std::exception class, 679–680

throwing, 676–679, 683

exclusive OR operator, 95–96

executables, generating, 7–8

explicit keyword, 252–253

explicit type declaration, 493

expressions. See also lambda

expressions

constant, 53–55

validating, 399–400

extraction operator (>>), 27,

624, 649, 663–664

F

failed memory allocation,

202–204

false value, 94

fence-post errors, 70

Fibonacci number calculation,

145–146

Fibonacci numbers, calculating,

159–161

field width, setting, 655–656

filename extensions, 8, 9

fill(), 571, 580

fill_n(), 571, 580

final specifier, 300, 327, 708

find(), 426, 444–445,

500–502, 519–522, 571,

573–575

find_end(), 571

find_first_of(), 571

find_if(), 426, 558, 571,

573–575

fixed manipulator, 652

fixed-width integer types, 47

flip(), 625, 628–629

float type, 45

floating-point variables, 45

flow control. See program flow,

controlling

for_each(), 554, 555–556, 572,

583–585

forward iterators, 425–426

forward slash (/), 88–89

forward_list class, 422,

490–492

friend classes, 258–260

front(), 611

fstream class, 651

opening/closing files,

660–661

reading binary files, 664–665

reading text files, 663–664

writing to binary files,

664–665

writing to text files, 662–663

FuncDisplayElement(), 538–541

function objects

binary functions, 545–550,

562–563

defined, 528

ptg18655082

768 function objects

explained, 538

unary functions, 538–545,

555–557

function operator, 364–365

function prototypes, 153–154

<functional>615

functions. See also arguments;

function objects; macros;

virtual functions; specific
functions (for example,
count())

automatic return type

deduction, 171–172

definitions, 154

explained, 23–26

inline functions, 169–171

microprocessor-level

implementation of, 168–169

multiple return statements,

161

need for, 152–153

overloading, 163–164

overridden functions,

preventing, 327

passing pointers to, 194–195

pointers, storing addresses in,

180–182

prototypes, 153–154

template functions, 403–405

functors. See function objects

G

g++ compiler, 8, 10–11

generate(), 571, 581–583

generate_n(), 581–583

get(), 668

GetFibNumber(), 159–161

GetInstance(), 249

getline(), 28, 659–660, 668

GetMax(), 403–405

GetPi(), 53–54, 169–171

GHz (gigahertz), 688

gigabytes, 704

global variables, 37–38, 60

goto loop, 128–130

greater than (>) operator,

92–94, 354–357

greater than or equal to (>=)

operator, 354–357

grouped if…else constructs,

121–122

H

handling exceptions. See

exceptions

hash sets, 507–509

hash tables, 528–533

HashFunction(), 529

header files, inclusion guards

in, 419

Hello World program, 9–11, 18

hex manipulator, 652

hexadecimal numbering

system, 178, 704–705,

706–706

history of C++6

HoldsPair template, 408–409

Hungarian notation, 38–39

Hz (hertz), 688

I

IDEs (Integrated Development

Environments), 8–9, 38–39

if statement, 114–122,

695–696

#ifndef directive, 395–396

Ifstream class, 651

implicit conversions, 343

#include directive, 18–19, 28

inclusion guards, 395–396,

419

increment operator (++), 89,

191–193, 338–341

inequality (!=) operator, 92,

352

infinite loops, 141–143

inheritance

avoiding with final, 300

base class methods, 279–286

do’s and don’ts, 301

multiple inheritance, 297–300

order of construction, 288

order of destruction, 288–290

private inheritance, 291

protected, 276–279

protected inheritance,

293–296

public, 273–274

slicing, 297

initialization lists, 231–233

initializer statement, 695–696

inline functions, 169–171

inline keyword, 169–171

input iterators, 425

input/output, 26–28. See also

streams

insert(), 459–462, 479–482,

499, 608

insertion operator (<<), 26,

624, 649, 662

int keyword, 19–20

int type, 42

int8_t type, 47

int16_t type, 47

int32_t type, 47

int64_t type, 47

integers, 60

fixed-width, 47

signed, 41–42

unsigned, 61

Integrated Development

Environments (IDEs), 8–9,

38–39

International Organization for

Standardization (ISO), 6, 11

interpreted languages, 13

intrusive reference counting,

639

invalid memory locations, 199

<iomanip> manipulators, 652

ptg18655082

769memory

iostream file, 18

ISO (International Organization

for Standardization), 6, 11

iterative statements. See loops

iterators, 425–426, 429,

534–535, 630

J-K-L

keywords, list of, 58–59,

707–708. See also individual
keywords (for example, auto)

kilobytes, 704–704

lambda expressions

for binary functions, 562–563

for binary predicates,

564–566

in C++17, 698

do’s and don’ts, 566

explained, 12–13, 172–174,

554–555

local variables in, 567

state maintenance, 559–560,

567

syntax, 560–562

for unary functions, 555–557

for unary predicates, 557–558

leaks, memory, 188, 198–204

left shift operator (<<),

102–104

length of strings, determining,

79–81

less, 522–524

less than (<) operator, 92–94,

354–357

less than or equal to (<=)

operator, 92–94, 354–357

lexicographical_compare(), 571

line breaks, 12

linear complexity, 424

lists, 422

capture lists, 559–560

do’s and don’ts, 492

erasing elements from,

482–483

initialization, 48, 459

initialization lists, 231–233

inserting elements into,

478–482

instantiating, 476–477

removing elements from,

487–490

reversing elements in,

484–485

sorting elements in, 485–486

literal constants, 51–52,

371–372

load_factor(), 509, 530

local variables in lambda

expressions, 567

logarithmic complexity, 424

logical AND (&&) operator,

95–100

logical NOT (!) operator,

95–100

logical OR (||) operator,

95–100

logical XOR operator, 95–96

long long type, 42

long type, 42

for loop, 133–139

loops

access arrays with, 71

do…while, 132–133

exiting, 139–140

for, 133–139

goto, 128–130

infinite, 141–143

nested, 143–148

resuming execution of,

139–140

while, 130–132

lower_bound(), 573, 597–599

lowercase, converting strings

to, 449–450

l-values, 87–88

M

macros

advantages/disadvantages,

400–401

assert(), 399–400

case sensitivity, 398

compared to templates, 419

do’s and don’ts, 401

inclusion guards in, 395–396

parentheses in, 398–399

protecting against multiple

inclusion with, 395–396

tuples, 415–417

writing, 396–398

main(), 19–20

manipulators, stream, 651–652

map class, 423

custom sort predicates,

525–528

erasing elements from,

522–524

explained, 514

finding elements in, 519–521

inserting elements into,

517–519

instantiating, 515–516

max_bucket_count(), 509

max_load_factor(), 509

megabytes, 704

megahertz (Mhz), 688

member selection operator (->),

344–345, 635, 639

memory. See also pointers

accessing with variables. See

variables

dynamic memory allocation,

187–190, 202–204

l-values, 87–88

memory leaks, 188, 198–204

RAM (Random Access

Memory), 32

raw pointers, 634

r-values, 87–88

ptg18655082

770 memory

stack, 169

variable addresses,

determining, 179–180

memory leaks, 188, 198–204

methods. See functions

Mhz (megahertz), 688

Microsoft Visual Studio

Express, 8

MIN macro, 397, 400–401

mismatch(), 571

modulo operator (%), 88–89

move assignment operator,

365–371

move constructor operator,

365–371

move constructors, 244–245

multicore processors, 688–689

multidimensional arrays,

71–74, 145–146

multimap class, 423

custom sort predicates,

525–528

erasing elements from,

522–524

finding elements in, 522

inserting elements into,

517–519

instantiating, 515–516

multiple inclusion, protecting

against, 395–396

multiple inheritance, 297–300

multiplication operator (*),

88–89

MultiplyNumbers(), 35–36

multiset class, 423, 496–510

do’s and don’ts, 510

erasing elements in, 502–506

explained, 496

finding elements in, 500–502

inserting elements into,

499–500

instantiating, 497–498

pros and cons of, 507

multithreading, 690–693

mutating algorithms, 571–573

mutex class, 692

N

[N] operator, 624

namespaces, 21–22

naming conventions

classes, 219

constants, 58–59

variables, 34, 38–39, 58–59

narrowing conversion errors, 48

nested if statements, 118–122

nested loops, 143–148

.NET, 6

new operator, 187–190,

202–204

new(nothrow) operator, 204,

210

non-copyable objects, ensuring,

246

non-mutating algorithms,

570–571

NOT operator

bitwise NOT (~), 100–102

logical NOT (!), 95–100

null terminator, 76–78, 82

numeric codes (ASCII), 41,

711–715

O

.o filename extension, 8

.obj filename extension, 8

objects, creating, 217–218

oct manipulator, 652

octal numeral system, 705

OFF state, 702

ofstream class, 651

online communities, 699

online documentation, 699

open(), 660, 662–664

operator keyword, 336

operators. See also binary

operators; casting;

overloaded operators; unary

operators

declaring, 336

do’s and don’ts, 374

explained, 336–337

precedence of, 108–109,

709–710

prefix versus postfix, 90–91

order of construction, 288

order of destruction, 288–290

OR operator

bitwise OR (|), 100–102, 624

logical OR (||), 95–100

out constant, 661

output, 26–28. See also

streams

output iterators, 425

overflow errors, 43–44

overloaded constructors,

227–228

overloaded functions, 163–164

overloaded operators, 635

copy assignment, 357–360

equality/inequality, 352

operators that cannot be

overloaded, 373

relational operators, 354–357

overridden functions, 281–284,

327

override specifier, 326–327,

708

P

partial_sort(), 572

partial_sort_copy(), 573

partition(), 573, 595–597

POD (Plain Old Data), 45,

656–657

pointer operator (->), 219–220,

344–345

pointers. See also smart

pointers

accessing data in, 183–185

compared to arrays, 195–198

const keyword, 193–194

ptg18655082

return values 771

declaring, 178–179, 180

decrement operator (--),

191–193

defined, 178

do’s and don’ts, 205

dynamic memory allocation,

187–190

increment operator (++),

191–193

passing to functions, 194–195

raw pointers, 634

sizeof(), 185–186

this, 254

polymorphism. See also virtual

functions

abstract base classes,

318–320, 332

defined, 306

do’s and don’ts, 331

need for, 306–308

pop(), 607–608, 611–613,

616–618

pop operations, 169

pop_back(), 465–466,

470–472

pop_front(), 470–472

postfix operators, 90–91

precedence of operators,

108–109

predicates, 363

binary predicates, 547–550

custom sort predicates,

522–524

unary predicates, 543–545,

557–558

prefix, 21–22

prefix operators, 90–91

preprocessor, 392

preprocessor directives

#define, 57, 392–398

defined, 18

#endif, 395–396

explained, 392

#ifndef, 395–396

#include, 18–19

printable characters (ASCII),

41, 711–715

priority_queue class, 425,

613–618

private destructors, 249–251

private inheritance, 291

private keyword, 220–224, 291

processors, multicore, 688–689

program flow, controlling. See

also loops

conditional operator (?:),

126–127

if statement, 114–122

switch-case statement,

122–125

programs

building, 10–11

compiling, 8, 10–12

executables, 7–8

executing, 10–11

structure of, 18–28

protected inheritance,

276–279, 293–296

protected keyword, 276–279,

293

prototypes (function), 153–154

public inheritance, 273–274

public keyword, 220–222,

273–274, 527

pure virtual functions, 318–320

push(), 607–608, 611–613,

616–618

push operations, 169

push_back(), 76, 458, 470–

472, 478–479, 608, 629

push_front(), 470–472,

478–479

Q-R

queues

explained, 425, 604–605

operators, 628–629

priority_queue class, 613–618

queue class, 425, 609–613

race conditions, 692

RAM (Random Access

Memory), 32

random access iterators, 426

range-based for loops,

137–139

raw pointers, 634

read(), 664–665

recursion, 159–161

references

const keyword, 208

explained, 205–206

intrusive reference counting,

639

need for, 206–208

passing by reference,

166–168, 208–209

reference-counted smart

pointers, 639–640

reference-linked smart

pointers, 640

referencing operator (&),

179–180

refinements, 426

reinterpret_cast operator,

384–385

relational operators, 92–94,

354–357

remove(), 572, 590

remove_copy(), 572

remove_if(), 426, 550, 572,

590

replace(), 572, 590–592

replace_if(), 572, 590–592

reserve(), 473

reserved words. See keywords,

list of

reset(), 625

resetioflags(), 653–654

resetiosflag manipulator, 652

resuming loop execution,

139–140

return statements, multiple,

161

return values, 20

ptg18655082

772 reverse()

reverse(), 448–449, 484–485

reverse algorithm, 426

right shift operator (>>),

102–104

RTTI (runtime type

identification), 318, 382

runtime errors, 14

r-values, 87–88

S

safety (type), templates and,

405

scientific manipulator, 652

scope of variables, 35–36

scope resolution (::) operator,

225

search(), 570, 577–579

search_n(), 570, 577–579

semaphores, 692

separators, chunking, 45

sequential containers,

422–423

set(), 625

set class

do’s and don’ts, 510

erasing elements in, 502–506

explained, 423, 496–510

finding elements in, 500–502

inserting elements into,

499–500

instantiating, 497–498

pros and cons of, 507

setbase manipulator, 652

setfill(), 652, 655–656

setiosflags(), 652, 653–654

setprecision(), 652

setw(), 652, 655–656

shallow copying, 237–240

shared_ptr class, 645

shift operators, 102–104

short type, 42

signed integers, 41–42

single quotation mark ('), 45

singleton classes, 247–249

size(), 611, 615, 625

sizeof(), 46–47, 106–107,

185–186, 255–257

slicing, 297, 637–638

smart pointers

advantages of, 634–635

auto_ptr, 640–643

COW (Copy on Write), 639

deep copy, 637–639

defined, 344, 634

destructive copy, 640–643

implementing, 635–636

libraries, 645

reference-counted, 639–640

reference-linked, 640

shared_ptr, 645

slicing issues, 637–638

unique_ptr, 643–645

weak_ptr, 645

sort(), 485–486, 547–550,

564–566, 572, 592–595,

600

specialization (templates),

410–411

SQUARE macro, 396–397

stable_partition(), 573, 595–

597

stable_sort(), 572, 595

StackOverflow, 699

stacks, 169, 604

inserting and removing

elements in, 607–608

instantiating, 605–606

member functions, 606–607

prohibiting instantiation on,

249–251

stack class, 425, 605–608

ON state, 702

statements. See also loops

blocks, 87, 117–118

break, 139–140

continue, 139–140

cout, 20

explained, 86

if, 114–122

initializer, 695–696

return, 161

switch, 695–696

switch-case, 122–125

static arrays, 65–66

static keyword, 247–248

static members, 412–413

static_assert, 417–418

static_cast operator, 380–381

std namespace, 21–22

stray pointers, 200–201

strcat(), 79

strcpy(), 79

streams

cin class, 656–660

classes, 651

cout class, 653–656

explained, 649–650

extraction operator (>>), 649

fstream class, 660–665

insertion operator (<<), 649

manipulators, 651–652

stringstream class, 665–668

string class, 79–81, 432

“”s operator in, 451–452

accessing, 440–442

concatenating, 442–443

converting case of, 449–450

finding characters in, 444–445

instantiating, 437–440

need for, 436–437

reversing contents of,

448–449

template-based

implementation, 450–451

truncating, 445–447

writing to, 658–660

string literals, 20

string_view class, 452, 696

ptg18655082

unordered_set class 773

stringstream class, 651,

665–668

strlen(), 79

Stroustroup, Bjarne, 6

structs, 257–258

subclasses, 275

subscript ([]) operator,

360–364

subscript operator ([]), 462

substrings, finding, 444–445

subtraction operator (-), 88–89,

347–349

subtype polymorphism. See

polymorphism

super classes, 275

SurfaceArea(), 155–156

switch statement, 695–696

switch-case statement, 122–125

synchronization, thread, 691,

692

T

tables

hash tables, 528–533

virtual function table,

314–318

template keyword, 397

template<auto>699

templates

compared to macros, 419

compile-time checks,

417–418

declaring, 402–408

do’s and don’ts, 418

explained, 402

HoldsPair example, 408–409

instantiating, 410–411

programming applications

of, 418

specialization, 410–411

static members, 412–413

template classes, 406–407

variable templates, 413–417

terabytes, 704

text files

closing, 660–661

opening, 660–661

reading, 663–664

writing to, 662–663

this pointer, 254

threads, 689–693

throw keyword, 676–677

throwing exceptions, 676–679,

683

tilde (~), 100–102

top(), 615

transform(), 426, 449–450,

545–547, 562–563, 572,

585–588

transformations, 585–588

true value, 94

trunc constant, 661

try keyword, 673

tuple class, 415–417

TwicePi(), 53–54

typedef keyword, 50

types

automatic type deduction,

48–50, 698–699

bool, 40

casting, 377–388

char, 41

conversion, 251–253

double, 45

exceptions of type, handling,

674–675

explicit type declaration, 493

fixed-width integer types, 47

float, 45

int, 42

iterator type definitions, 429

long, 42

long long, 42

overflow errors, 43–44

RTTI (runtime type

identification), 382

short, 42

table of, 39–40

type safety, templates and,

405

type substitution, 50

unsigned int, 42–43

unsigned long, 42–43

unsigned long long, 42–43

unsigned short, 42–43

U

uint8_t type, 47

uint16_t type, 47

uint32_t type, 47

uint64_t type, 47

unary functions, 538–545

unary operators

conversion operators,

341–343

dereference, 344–345

explained, 337–338

increment/decrement, 89,

338–341

logical operators, 95–100

member selection, 344–345

unary predicates, 363,

543–545, 557–558

unions

aggregate initialization,

263–266

declaring, 260–263

typesafe alternative to, 697

when to use, 261–263

unique(), 572

unique_copy(), 572

unique_ptr class, 643–645

unordered_map class, 423,

528–533

unordered_multimap class,

423, 528–533

unordered_multiset class, 423,

507–509

unordered_set class, 423,

507–509

ptg18655082

774 unsigned int type

unsigned int type, 42–43

unsigned integers, 42–43, 61

unsigned long long type, 42–43

unsigned long type, 42–43

unsigned short type, 42–43

upcasting, 380

upper_bound(), 573, 597–599

uppercase, converting strings

to, 449–450

User Interface Threads, 690

user-defined literals, 52,

371–372

using keyword, 21–22

V

values

default values, 157–159

passing to functions

arrays of values, 165–166

by reference, 166–168

variable templates, 413–417

variables. See also constants;

types

addresses

determining, 179–180

storing in pointers,

180–182

declaring

automatic type inference,

48–50

Boolean variables, 40

character variables, 41

floating-point variables,

45

multiple variables, 34

overflow errors, 43–44

signed integers, 42

single variables, 32–34

unsigned integers, 42–43

global variables, 37–38, 60

initializing, 60

integers, 60

list initialization, 48

local variables, 567

naming conventions, 38–39,

58–59

narrowing conversion errors,

48

scope, 35–36

size of, 46–47

variadic templates, 413–417

variant class, 263, 697

vector class, 74–76, 422

accessing elements in,

462–465

characteristics of, 455–456

do’s and don’ts, 472

initialization, 459

inserting elements into,

458–462

instantiating, 456–457

removing elements from,

465–466

size and capacity of, 467–469

vector<bool>

accessing with iterators, 630

explained, 627

functions, 628–629

instantiating, 627–628

specifying number of

elements in, 630

virtual copy constructors,

328–331

virtual destructors, 310–314

virtual function table, 314–318

virtual functions

abstract base classes, 318–320

declaring, 308–310

do’s and don’ts, 331

final specifier, 327

inheritance, 321–325

override specifier, 326–327

pure virtual functions,

318–320

virtual function table,

314–318

virtual inheritance, 321–325

virtual keyword, 318, 324–325,

332

W-X-Y-Z

warning messages, 13

weak_ptr class, 645

while loop, 130–132

wild pointers, 200–201

Worker Threads, 690

write(), 664–665

wstring class, 432, 450–451

XOR operator

bitwise XOR, 100–102, 624

logical XOR, 95–96

	Contents
	Intro
	Basics
	1 Start
	A Brief History of C++
	Connection to C
	Advantages of C++
	Evolution of the C++ Standard
	Who Uses Programs Written in C++?

	Programming a C++ Application
	Steps to Generating an Executable
	Analyzing Errors and “Debugging”
	Integrated Development Environments
	Programming Your First C++ Application
	Building and Executing Your First C++ Application
	Understanding Compiler Errors

	What’s New in C++?

	2 Anatomy of a C++ Program
	Parts of the Hello World Program
	Preprocessor Directive #include
	The Body of Your Program main()
	Returning a Value

	The Concept of Namespaces
	Comments in C++ Code
	Functions in C++
	Basic Input Using std::cin and Output Using std::cout

	3 Variables & Constants
	What Is a Variable?
	Memory and Addressing in Brief
	Declaring Variables to Access and Use Memory
	Declaring and Initializing Multiple Variables of a Type
	Understanding the Scope of a Variable
	Global Variables
	Naming Conventions

	Common Compiler-Supported C++ Variable Types
	Using Type bool to Store Boolean Values
	Using Type char to Store Character Values
	The Concept of Signed and Unsigned Integers
	Signed Integer Types short, int, long, and long long
	Unsigned Integer Types unsigned short, unsigned int, unsigned long, and unsigned long long
	Avoid Overflow Errors by Selecting Correct Data Types
	Floating-Point Types float and double

	Determining the Size of a Variable Using sizeof
	Avoid Narrowing Conversion Errors by Using List Initialization

	Automatic Type Inference Using auto
	Using typedef to Substitute a Variable’s Type
	What Is a Constant?
	Literal Constants
	Declaring Variables as Constants Using const
	Constant Expressions Using constexpr
	Enumerations
	Defining Constants Using #define

	Keywords You Cannot Use as Variable or Constant Names

	4 Arrays & Strings
	What Is an Array?
	The Need for Arrays
	Declaring and Initializing Static Arrays
	How Data Is Stored in an Array
	Accessing Data Stored in an Array
	Modifying Data Stored in an Array

	Multidimensional Arrays
	Declaring and Initializing Multidimensional Arrays
	Accessing Elements in a Multidimensional Array
	Dynamic Arrays
	C-style Character Strings
	C++ Strings: Using std::string

	5 Expressions Statements & Operators
	Statements
	Compound Statements or Blocks
	Using Operators
	The Assignment Operator (=)
	Understanding L-values and R-values
	Operators to Add (+), Subtract (-), Multiply (*), Divide (/), and Modulo Divide (%)
	Operators to Increment (++) and Decrement (--)
	To Postfix or to Prefix?
	Equality Operators (==) and (!=)
	Relational Operators
	Logical Operations NOT, AND, OR, and XOR
	Using C++ Logical Operators NOT (!), AND (&&), and OR (||)
	Bitwise NOT (~), AND (&), OR (|), and XOR (^) Operators
	Bitwise Right Shift (>>) and Left Shift (<<) Operators
	Compound Assignment Operators
	Using Operator sizeof to Determine the Memory Occupied by a Variable
	Operator Precedence

	6 Controlling Program Flow
	Conditional Execution Using if … else
	Conditional Programming Using if … else
	Executing Multiple Statements Conditionally
	Nested if Statements
	Conditional Processing Using switch-case
	Conditional Execution Using Operator (?:)

	Getting Code to Execute in Loops
	A Rudimentary Loop Using goto
	The while Loop
	The do…while Loop
	The for Loop
	The Range-Based for Loop

	Modifying Loop Behavior Using continue and break
	Loops That Don’t End—That Is, Infinite Loops
	Controlling Infinite Loops

	Programming Nested Loops
	Using Nested Loops to Walk a Multidimensional Array
	Using Nested Loops to Calculate Fibonacci Numbers

	7 Functions
	The Need for Functions
	What Is a Function Prototype?
	What Is a Function Definition?
	What Is a Function Call, and What Are Arguments?
	Programming a Function with Multiple Parameters
	Programming Functions with No Parameters or No Return Values
	Function Parameters with Default Values
	Recursion—Functions That Invoke Themselves
	Functions with Multiple Return Statements

	Using Functions to Work with Different Forms of Data
	Overloading Functions
	Passing an Array of Values to a Function
	Passing Arguments by Reference

	How Function Calls Are Handled by the Microprocessor
	Inline Functions
	Automatic Return Type Deduction
	Lambda Functions

	8 Pointers & References Explained
	What Is a Pointer?
	Declaring a Pointer
	Determining the Address of a Variable Using the Reference Operator (&)
	Using Pointers to Store Addresses
	Access Pointed Data Using the Dereference Operator (*)
	What Is the sizeof() of a Pointer?

	Dynamic Memory Allocation
	Using Operators new and delete to Allocate and Release Memory Dynamically
	Effect of Incrementing and Decrementing Operators (++ and --) on Pointers
	Using the const Keyword on Pointers
	Passing Pointers to Functions
	Similarities between Arrays and Pointers

	Common Programming Mistakes When Using Pointers
	Memory Leaks
	When Pointers Don’t Point to Valid Memory Locations
	Dangling Pointers (Also Called Stray or Wild Pointers)
	Checking Whether Allocation Request Using new Succeeded

	Pointer Programming Best-Practices
	What Is a Reference?
	What Makes References Useful?
	Using Keyword const on References
	Passing Arguments by Reference to Functions

	Fundamentals of OOP
	9 Classes & Objects
	The Concept of Classes and Objects
	Declaring a Class
	An Object as an Instance of a Class
	Accessing Members Using the Dot Operator (.)
	Accessing Members Using the Pointer Operator (->)

	Keywords public and private
	Abstraction of Data via Keyword private

	Constructors
	Declaring and Implementing a Constructor
	When and How to Use Constructors
	Overloading Constructors
	Class Without a Default Constructor
	Constructor Parameters with Default Values
	Constructors with Initialization Lists

	Destructor
	Declaring and Implementing a Destructor
	When and How to Use a Destructor

	Copy Constructor
	Shallow Copying and Associated Problems
	Ensuring Deep Copy Using a Copy Constructor
	Move Constructors Help Improve Performance

	Different Uses of Constructors and the Destructor
	Class That Does Not Permit Copying
	Singleton Class That Permits a Single Instance
	Class That Prohibits Instantiation on the Stack
	Using Constructors to Convert Types

	this Pointer
	sizeof() a Class
	How struct Differs from class
	Declaring a friend of a class
	union: A Special Data Storage Mechanism
	Declaring a Union
	Where Would You Use a union?

	Using Aggregate Initialization on Classes and Structs
	constexpr with Classes and Objects

	10 Implementing Inheritance
	Basics of Inheritance
	Inheritance and Derivation
	C++ Syntax of Derivation
	Access Specifier Keyword protected
	Base Class Initialization—Passing Parameters to the Base Class
	Derived Class Overriding Base Class’s Methods
	Invoking Overridden Methods of a Base Class
	Invoking Methods of a Base Class in a Derived Class
	Derived Class Hiding Base Class’s Methods
	Order of Construction
	Order of Destruction

	Private Inheritance
	Protected Inheritance
	The Problem of Slicing
	Multiple Inheritance
	Avoiding Inheritance Using final

	11 Polymorphism
	Basics of Polymorphism
	Need for Polymorphic Behavior
	Polymorphic Behavior Implemented Using Virtual Functions
	Need for Virtual Destructors
	How Do virtual Functions Work? Understanding the Virtual Function Table
	Abstract Base Classes and Pure Virtual Functions

	Using virtual Inheritance to Solve the Diamond Problem
	Specifier Override to Indicate Intention to Override
	Use final to Prevent Function Overriding
	Virtual Copy Constructors?

	12 Operator Types & Overloading
	What Are Operators in C++?
	Unary Operators
	Types of Unary Operators
	Programming a Unary Increment/Decrement Operator
	Programming Conversion Operators
	Programming Dereference Operator (*) and Member Selection Operator (>)

	Binary Operators
	Types of Binary Operators
	Programming Binary Addition (a+b) and Subtraction (a-b) Operators
	Implementing Addition Assignment (+=) and Subtraction Assignment (-=) Operators
	Overloading Equality (==) and Inequality (!=) Operators
	Overloading <, >, <=, and >= Operators
	Overloading Copy Assignment Operator (=)
	Subscript Operator ([])

	Function Operator ()
	Move Constructor and Move Assignment Operator for High Performance Programming
	The Problem of Unwanted Copy Steps
	Declaring a Move Constructor and Move Assignment Operator

	User Defined Literals
	Operators That Cannot Be Overloaded

	13 Casting Operators
	The Need for Casting
	Why C-Style Casts Are Not Popular with Some C++ Programmers
	The C++ Casting Operators
	Using static_cast
	Using dynamic_cast and Runtime Type Identification
	Using reinterpret_cast
	Using const_cast

	Problems with the C++ Casting Operators

	14 Intro to Macros & Templates
	The Preprocessor and the Compiler
	Using Macro #define to Define Constants
	Using Macros for Protection against Multiple Inclusion

	Using #define to Write Macro Functions
	Why All the Parentheses?
	Using Macro assert to Validate Expressions
	Advantages and Disadvantages of Using Macro Functions

	An Introduction to Templates
	Template Declaration Syntax
	The Different Types of Template Declarations
	Template Functions
	Templates and Type Safety
	Template Classes
	Declaring Templates with Multiple Parameters
	Declaring Templates with Default Parameters
	Sample Template class<> HoldsPair
	Template Instantiation and Specialization
	Template Classes and static Members
	Variable Templates, Also Called Variadic Templates
	Using static_assert to Perform Compile-Time Checks
	Using Templates in Practical C++ Programming

	Learning the STL
	15 Intro to STL
	STL Containers
	Sequential Containers
	Associative Containers
	Container Adapters

	STL Iterators
	STL Algorithms
	The Interaction between Containers and Algorithms Using Iterators
	Using Keyword auto to Let Compiler Define Type

	Choosing the Right Container
	STL String Classes

	16 STL String Class
	The Need for String Manipulation Classes
	Working with the STL String Class
	Instantiating the STL String and Making Copies
	Accessing Character Contents of a std::string
	Concatenating One String to Another
	Finding a Character or Substring in a String
	Truncating an STL string
	String Reversal
	String Case Conversion

	Template-Based Implementation of an STL String
	C++14 operator “”s in std::string

	17 STL Dynamic Array Classes
	The Characteristics of std::vector
	Typical Vector Operations
	Instantiating a Vector
	Inserting Elements at the End Using push_back()
	List Initialization
	Inserting Elements at a Given Position Using insert()
	Accessing Elements in a Vector Using Array Semantics
	Accessing Elements in a Vector Using Pointer Semantics
	Removing Elements from a Vector

	Understanding the Concepts of Size and Capacity
	The STL deque Class

	18 STL List & Forward_List
	The Characteristics of a std::list
	Basic list Operations
	Instantiating a std::list Object
	Inserting Elements at the Front or Back of the List
	Inserting at the Middle of the List
	Erasing Elements from the List

	Reversing and Sorting Elements in a List
	Reversing Elements Using list::reverse()
	Sorting Elements
	Sorting and Removing Elements from a list That Contains Instances of a class
	std::forward_list Introduced in C++11

	19 STL Set Classes
	An Introduction to STL Set Classes
	Basic STL set and multiset Operations
	Instantiating a std::set Object
	Inserting Elements in a set or multiset
	Finding Elements in an STL set or multiset
	Erasing Elements in an STL set or multiset

	Pros and Cons of Using STL set and multiset
	STL Hash Set Implementation std::unordered_set and std::unordered_multiset

	20 STL Map Classes
	An Introduction to STL Map Classes
	Basic std::map and std::multimap Operations
	Instantiating a std::map or std::multimap
	Inserting Elements in an STL map or multimap
	Finding Elements in an STL map
	Finding Elements in an STL multimap
	Erasing Elements from an STL map or multimap

	Supplying a Custom Sort Predicate
	STL’s Hash Table-Based Key-Value Container
	How Hash Tables Work
	Using unordered_map and unordered_multimap

	More STL
	21 Function Objects
	The Concept of Function Objects and Predicates
	Typical Applications of Function Objects
	Unary Functions
	Unary Predicate
	Binary Functions
	Binary Predicate

	22 Lambda Expressions
	What Is a Lambda Expression?
	How to Define a Lambda Expression
	Lambda Expression for a Unary Function
	Lambda Expression for a Unary Predicate
	Lambda Expression with State via Capture Lists [...]
	The Generic Syntax of Lambda Expressions
	Lambda Expression for a Binary Function
	Lambda Expression for a Binary Predicate

	23 STL Algorithms
	What Are STL Algorithms?
	Classification of STL Algorithms
	Non-Mutating Algorithms
	Mutating Algorithms

	Usage of STL Algorithms
	Finding Elements Given a Value or a Condition
	Counting Elements Given a Value or a Condition
	Searching for an Element or a Range in a Collection
	Initializing Elements in a Container to a Specific Value
	Using std::generate() to Initialize Elements to a Value Generated at Runtime
	Processing Elements in a Range Using for_each()
	Performing Transformations on a Range Using std::transform()
	Copy and Remove Operations
	Replacing Values and Replacing Element Given a Condition
	Sorting and Searching in a Sorted Collection and Erasing Duplicates
	Partitioning a Range
	Inserting Elements in a Sorted Collection

	24 Stack & Queue
	The Behavioral Characteristics of Stacks and Queues
	Stacks
	Queues

	Using the STL stack Class
	Instantiating the Stack
	Stack Member Functions
	Insertion and Removal at Top Using push() and pop()

	Using the STL queue Class
	Instantiating the Queue
	Member Functions of a queue
	Insertion at End and Removal at the Beginning of queue via push() and pop()

	Using the STL Priority Queue
	Instantiating the priority_queue Class
	Member Functions of priority_queue
	Insertion at the End and Removal at the Beginning of priority_queue via push() and pop()

	25 Bit Flags
	The bitset Class
	Instantiating the std::bitset

	Using std::bitset and Its Members
	Useful Operators Featured in std::bitset
	std::bitset Member Methods

	The vector<bool>
	Instantiating vector<bool>
	vector<bool> Functions and Operators

	Advanced C++ Concepts
	26 Smart Pointers
	What Are Smart Pointers?
	The Problem with Using Conventional (Raw) Pointers
	How Do Smart Pointers Help?

	How Are Smart Pointers Implemented?
	Types of Smart Pointers
	Deep Copy
	Copy on Write Mechanism
	Reference-Counted Smart Pointers
	Reference-Linked Smart Pointers
	Destructive Copy
	Using the std::unique_ptr

	Popular Smart Pointer Libraries

	27 Streams for IO
	Concept of Streams
	Important C++ Stream Classes and Objects
	Using std::cout for Writing Formatted Data to Console
	Changing Display Number Formats Using std::cout
	Aligning Text and Setting Field Width Using std::cout

	Using std::cin for Input
	Using std::cin for Input into a Plain Old Data Type
	Using std::cin::get for Input into char* Buffer
	Using std::cin for Input into a std::string

	Using std::fstream for File Handling
	Opening and Closing a File Using open() and close()
	Creating and Writing a Text File Using open() and operator<<
	Reading a Text File Using open() and operator>>
	Writing to and Reading from a Binary File

	Using std::stringstream for String Conversions

	28 Exception Handling
	What Is an Exception?
	What Causes Exceptions?
	Implementing Exception Safety via try and catch
	Using catch(...) to Handle All Exceptions
	Catching Exception of a Type

	Throwing Exception of a Type Using throw
	How Exception Handling Works
	Class std::exception
	Your Custom Exception Class Derived from std::exception

	29 Going forward
	What’s Different in Today’s Processors?
	How to Better Use Multiple Cores
	What Is a Thread?
	Why Program Multithreaded Applications?
	How Can Threads Transact Data?
	Using Mutexes and Semaphores to Synchronize Threads
	Problems Caused by Multithreading

	Writing Great C++ Code
	C++17: Expected Features
	if and switch Support Initializers
	Copy Elision Guarantee
	std::string_view Avoids Allocation Overheads
	std::variant As a Typesafe Alternative to a union
	Conditional Code Compilation Using if constexpr
	Improved Lambda Expressions
	Automatic Type Deduction for Constructors
	template<auto>

	Learning C++ Doesn’t Stop Here!
	Online Documentation
	Communities for Guidance and Help

	Binary & Hexadecimal Numbers
	C++ Keywords
	Operator Precedence
	ASCII Codes
	Answers
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

