Siddhartha Rao

SamsTeach Yourself

C++

in One Hour a Day

Sams Teach Yourself C++ in One Hour a Day,
Eighth Edition

Copyright © 2017 by Pearson Education, Inc.

ISBN-13: 978-0-7897-5774-6
ISBN-10: 0-7897-5774-5
Library of Congress Control Number: 2016958138

First Printing: December 2016

http://www.pearsoned.com/permissions/

Contents

Introduction

PART I: The Basics

LESSON 1: Getting Started

A Brief History of C++
Connection to C
Advantages of C++
Evolution of the C++ Standard
Who Uses Programs Written in C++?

Programming a C++ Application
Steps to Generating an Executable
Analyzing Errors and “Debugging”
Integrated Development Environments
Programming Your First C++ Application
Building and Executing Your First C++ Application
Understanding Compiler Errors

What’s New in C++7?

LESSON 2: The Anatomy of a C++ Program
Parts of the Hello World Program
Preprocessor Directive #include
The Body of Your Program main ()

Returning a Value
The Concept of Namespaces
Comments in C++ Code
Functions in C++

Basic Input Using std: : cin and Output Using std: : cout

LESSON 3: Using Variables, Declaring Constants
What Is a Variable?
Memory and Addressing in Brief

Declaring Variables to Access and Use Memory

NoRN- R TG IS IS BENS BYe e NI NI 6 |

—_— = =
N O

17
18
18

20
21
22
23
26

31
32
32
32

Declaring and Initializing Multiple Variables of a Type
Understanding the Scope of a Variable
Global Variables
Naming Conventions
Common Compiler-Supported C++ Variable Types
Using Type bool to Store Boolean Values
Using Type char to Store Character Values
The Concept of Signed and Unsigned Integers
Signed Integer Types short, int, long, and long long

Unsigned Integer Types unsigned short, unsigned int,

unsigned long, and unsigned long long

Avoid Overflow Errors by Selecting Correct
Data Types

Floating-Point Types £1loat and double
Determining the Size of a Variable Using sizeof

Avoid Narrowing Conversion Errors by Using
List Initialization

Automatic Type Inference Using auto

Using typedef to Substitute a Variable’s Type

What Is a Constant?
Literal Constants
Declaring Variables as Constants Using const
Constant Expressions Using constexpr
Enumerations
Defining Constants Using #define

Keywords You Cannot Use as Variable or Constant Names

LESSON 4: Managing Arrays and Strings
What Is an Array?
The Need for Arrays
Declaring and Initializing Static Arrays
How Data Is Stored in an Array
Accessing Data Stored in an Array
Modifying Data Stored in an Array
Multidimensional Arrays
Declaring and Initializing Multidimensional Arrays

Accessing Elements in a Multidimensional Array

34
35
37
38
39
40
41
41
42

42

43
45
46

48
48
50
50
51
52
53
55
57
58

63
64
64
65
66
67
69
71
72
73

Dynamic Arrays 74

C-style Character Strings 76
C++ Strings: Using std: :string 79
LESSON 5: Working with Expressions, Statements, and Operators 85
Statements 86
Compound Statements or Blocks 87
Using Operators 87
The Assignment Operator (=) 87
Understanding L-values and R-values 87
Operators to Add (+), Subtract (-), Multiply (*), Divide (/),
and Modulo Divide (%) 88
Operators to Increment (++) and Decrement (--) 89
To Postfix or to Prefix? 90
Equality Operators (==) and (!=) 92
Relational Operators 92
Logical Operations NOT, AND, OR, and XOR 95
Using C++ Logical Operators NOT (1), AND (&&), and OR (| |) 96
Bitwise NOT (~), AND (&), OR (]), and XOR (*) Operators 100
Bitwise Right Shift (>>) and Left Shift (<<) Operators 102
Compound Assignment Operators 104
Using Operator sizeof to Determine the Memory Occupied by a Variable 106
Operator Precedence 108
LESSON 6: Controlling Program Flow 113
Conditional Execution Using if .. else 114
Conditional Programming Using if .. else 115
Executing Multiple Statements Conditionally 117
Nested if Statements 118
Conditional Processing Using switch-case 122
Conditional Execution Using Operator (2 :) 126
Getting Code to Execute in Loops 128
A Rudimentary Loop Using goto 128
The while Loop 130
The do..while Loop 132
The for Loop 133

The Range-Based for Loop 137

Modifying Loop Behavior Using continue and break
Loops That Don’t End—That Is, Infinite Loops
Controlling Infinite Loops

Programming Nested Loops
Using Nested Loops to Walk a Multidimensional Array
Using Nested Loops to Calculate Fibonacci Numbers

LESSON 7: Organizing Code with Functions

The Need for Functions
What Is a Function Prototype?
What Is a Function Definition?
What Is a Function Call, and What Are Arguments?
Programming a Function with Multiple Parameters
Programming Functions with No Parameters or No Return Values
Function Parameters with Default Values
Recursion—Functions That Invoke Themselves
Functions with Multiple Return Statements

Using Functions to Work with Different Forms of Data
Overloading Functions
Passing an Array of Values to a Function
Passing Arguments by Reference

How Function Calls Are Handled by the Microprocessor
Inline Functions
Automatic Return Type Deduction

Lambda Functions

LESSON 8: Pointers and References Explained

What Is a Pointer?
Declaring a Pointer
Determining the Address of a Variable Using the Reference Operator (&)
Using Pointers to Store Addresses
Access Pointed Data Using the Dereference Operator (*)
What Is the sizeof () of a Pointer?

Dynamic Memory Allocation
Using Operators new and delete to Allocate
and Release Memory Dynamically
Effect of Incrementing and Decrementing Operators
(++ and --) on Pointers

139
140
141
143
145
147

151
152
153
154
154
155
156
157
159
161
162
163
165
166
168
169
171
172

177
178
178
179
180
183
185
187

187

191

Using the const Keyword on Pointers
Passing Pointers to Functions
Similarities between Arrays and Pointers
Common Programming Mistakes When Using Pointers
Memory Leaks
When Pointers Don’t Point to Valid Memory Locations
Dangling Pointers (Also Called Stray or Wild Pointers)
Checking Whether Allocation Request Using new Succeeded
Pointer Programming Best-Practices
What Is a Reference?
What Makes References Useful?
Using Keyword const on References

Passing Arguments by Reference to Functions

PART II: Fundamentals of Object-Oriented C++ Programming

LESSON 9: Classes and Objects
The Concept of Classes and Objects
Declaring a Class
An Object as an Instance of a Class
Accessing Members Using the Dot Operator (.)
Accessing Members Using the Pointer Operator (->)
Keywords public and private
Abstraction of Data via Keyword private
Constructors
Declaring and Implementing a Constructor
When and How to Use Constructors
Overloading Constructors
Class Without a Default Constructor
Constructor Parameters with Default Values
Constructors with Initialization Lists
Destructor
Declaring and Implementing a Destructor
When and How to Use a Destructor
Copy Constructor
Shallow Copying and Associated Problems
Ensuring Deep Copy Using a Copy Constructor

Move Constructors Help Improve Performance

193
194
195
198
198
199
200
202
204
205
206
208
208

215
216
216
217
218
219
220
222
224
224
225
227
228
230
231
233
234
234
237
237
240
244

Different Uses of Constructors and the Destructor 246

Class That Does Not Permit Copying 246
Singleton Class That Permits a Single Instance 247

Class That Prohibits Instantiation on the Stack 249
Using Constructors to Convert Types 251

this Pointer 254
sizeof () a Class 255
How struct Differs from class 257
Declaring a friend of a class 258
union: A Special Data Storage Mechanism 260
Declaring a Union 260
Where Would You Use a union? 261

Using Aggregate Initialization on Classes and Structs 263
constexpr with Classes and Objects 266
LESSON 10: Implementing Inheritance 271
Basics of Inheritance 272
Inheritance and Derivation 272

C++ Syntax of Derivation 274
Access Specifier Keyword protected 276

Base Class Initialization—Passing Parameters to the Base Class 279
Derived Class Overriding Base Class’s Methods 281
Invoking Overridden Methods of a Base Class 283
Invoking Methods of a Base Class in a Derived Class 284
Derived Class Hiding Base Class’s Methods 286

Order of Construction 288

Order of Destruction 288
Private Inheritance 291
Protected Inheritance 293
The Problem of Slicing 297
Multiple Inheritance 297
Avoiding Inheritance Using final 300
LESSON 11: Polymorphism 305
Basics of Polymorphism 306
Need for Polymorphic Behavior 306

Polymorphic Behavior Implemented Using Virtual Functions 308

Need for Virtual Destructors 310

How Do virtual Functions Work? Understanding

the Virtual Function Table 314
Abstract Base Classes and Pure Virtual Functions 318
Using virtual Inheritance to Solve the Diamond Problem 321
Specifier override to Indicate Intention to Override 326
Use final to Prevent Function Overriding 327
Virtual Copy Constructors? 328
LESSON 12: Operator Types and Operator Overloading 335
What Are Operators in C++? 336
Unary Operators 337
Types of Unary Operators 337
Programming a Unary Increment/Decrement Operator 338
Programming Conversion Operators 341

Programming Dereference Operator (*) and Member

Selection Operator (->) 344
Binary Operators 346
Types of Binary Operators 346
Programming Binary Addition (a+b) and Subtraction (a-b) Operators 347
Implementing Addition Assignment (+=) and Subtraction
Assignment (-=) Operators 350
Overloading Equality (==) and Inequality (=) Operators 352
Overloading <, >, <=, and >= Operators 354
Overloading Copy Assignment Operator (=) 357
Subscript Operator ([1) 360
Function Operator () 364
Move Constructor and Move Assignment Operator for High
Performance Programming 365
The Problem of Unwanted Copy Steps 365
Declaring a Move Constructor and Move Assignment Operator 366
User Defined Literals 371
Operators That Cannot Be Overloaded 373
LESSON 13: Casting Operators 377
The Need for Casting 378

Why C-Style Casts Are Not Popular with Some C++ Programmers 379

The C++ Casting Operators 379

Using static cast 380
Using dynamic_cast and Runtime Type Identification 381

Using reinterpret cast 384
Using const_cast 385
Problems with the C++ Casting Operators 386
LESSON 14: An Introduction to Macros and Templates 391
The Preprocessor and the Compiler 392
Using Macro #define to Define Constants 392
Using Macros for Protection against Multiple Inclusion 395

Using #define to Write Macro Functions 396
Why All the Parentheses? 398
Using Macro assert to Validate Expressions 399
Advantages and Disadvantages of Using Macro Functions 400

An Introduction to Templates 402
Template Declaration Syntax 402

The Different Types of Template Declarations 403
Template Functions 403
Templates and Type Safety 405
Template Classes 406
Declaring Templates with Multiple Parameters 407
Declaring Templates with Default Parameters 408
Sample Template class<> HoldsPair 408
Template Instantiation and Specialization 410
Template Classes and static Members 412
Variable Templates, Also Called Variadic Templates 413

Using static assert to Perform Compile-Time Checks 417

Using Templates in Practical C++ Programming 418

PART Illi: Learning the Standard Template Library (STL)

LESSON 15: An Introduction to the Standard Template Library 421
STL Containers 422
Sequential Containers 422

Associative Containers 423

Container Adapters 425

STL Iterators 425

STL Algorithms 426
The Interaction between Containers and Algorithms Using Iterators 427
Using Keyword auto to Let Compiler Define Type 429
Choosing the Right Container 429
STL String Classes 432
LESSON 16: The STL String Class 435
The Need for String Manipulation Classes 436
Working with the STL String Class 437
Instantiating the STL String and Making Copies 437
Accessing Character Contents of a std: :string 440
Concatenating One String to Another 442
Finding a Character or Substring in a String 444
Truncating an STL string 445
String Reversal 448

String Case Conversion 449
Template-Based Implementation of an STL String 450
C++14 operator “”s in std: :string 451
LESSON 17: STL Dynamic Array Classes 455
The Characteristics of std: : vector 456
Typical Vector Operations 456
Instantiating a Vector 456
Inserting Elements at the End Using push_back () 458

List Initialization 459
Inserting Elements at a Given Position Using insert () 459
Accessing Elements in a Vector Using Array Semantics 462
Accessing Elements in a Vector Using Pointer Semantics 464
Removing Elements from a Vector 465
Understanding the Concepts of Size and Capacity 467
The STL deque Class 469
LESSON 18: STL 1ist and forward list 475
The Characteristics of a std: :1list 476
Basic 1ist Operations 476
Instantiating a std::1ist Object 476

Inserting Elements at the Front or Back of the List 478

Inserting at the Middle of the List
Erasing Elements from the List

Reversing and Sorting Elements in a List
Reversing Elements Using list: :reverse ()

Sorting Elements

Sorting and Removing Elements from a 1ist That Contains

Instances of a class

std::forward list Introduced in C++11

LESSON 19: STL Set Classes
An Introduction to STL Set Classes
Basic STL set and multiset Operations
Instantiating a std: : set Object
Inserting Elements in a set or multiset
Finding Elements in an STL set or multiset
Erasing Elements in an STL set or multiset

Pros and Cons of Using STL set and multiset

STL Hash Set Implementation std: : unordered_set and

std: :unordered multiset

LESSON 20: STL Map Classes

An Introduction to STL Map Classes

Basic std: :map and std: :multimap Operations
Instantiating a std: :map or std: :multimap
Inserting Elements in an STL map or multimap
Finding Elements in an STL map
Finding Elements in an STL multimap
Erasing Elements from an STL map or multimap

Supplying a Custom Sort Predicate

STL’s Hash Table-Based Key-Value Container
How Hash Tables Work

Using unordered map and unordered multimap

PART IV: More STL

LESSON 21: Understanding Function Objects
The Concept of Function Objects and Predicates
Typical Applications of Function Objects

479
482
483
484
485

487
490

495
496
496
497
499
500
502
507

507

513
514
515
515
517
519
522
522
525
528
529
529

537
538
538

Unary Functions
Unary Predicate
Binary Functions

Binary Predicate

LESSON 22: Lambda Expressions
What Is a Lambda Expression?
How to Define a Lambda Expression
Lambda Expression for a Unary Function
Lambda Expression for a Unary Predicate
Lambda Expression with State via Capture Lists [...]
The Generic Syntax of Lambda Expressions
Lambda Expression for a Binary Function

Lambda Expression for a Binary Predicate

LESSON 23: STL Algorithms

What Are STL Algorithms?

Classification of STL Algorithms
Non-Mutating Algorithms
Mutating Algorithms

Usage of STL Algorithms
Finding Elements Given a Value or a Condition
Counting Elements Given a Value or a Condition
Searching for an Element or a Range in a Collection
Initializing Elements in a Container to a Specific Value

Using std: :generate () to Initialize Elements to a Value
Generated at Runtime

Processing Elements in a Range Using for each ()
Performing Transformations on a Range Using std: : transform ()
Copy and Remove Operations

Replacing Values and Replacing Element
Given a Condition

Sorting and Searching in a Sorted Collection and Erasing Duplicates
Partitioning a Range

Inserting Elements in a Sorted Collection

538
543
545
547

553
554
555
555
557
559
560
562
564

569
570
570
570
571
573
573
576
577
580

582
583
585
588

590
592
595
597

LESSON 24: Adaptive Containers: Stack and Queue
The Behavioral Characteristics of Stacks and Queues
Stacks
Queues
Using the STL stack Class
Instantiating the Stack
Stack Member Functions
Insertion and Removal at Top Using push () and pop ()
Using the STL queue Class
Instantiating the Queue

Member Functions of a queue

Insertion at End and Removal at the Beginning of queue

via push () and pop ()
Using the STL Priority Queue
Instantiating the priority gqueue Class

Member Functions of priority queue

Insertion at the End and Removal at the Beginning of priority queue

via push () and pop ()

LESSON 25: Working with Bit Flags Using STL
The bitset Class
Instantiating the std: :bitset
Using std: :bitset and Its Members
Useful Operators Featured in std: :bitset
std: :bitset Member Methods
The vector<bools>
Instantiating vector<bool>

vector<bools> Functions and Operators

PART V: Advanced C++ Concepts

LESSON 26: Understanding Smart Pointers

What Are Smart Pointers?
The Problem with Using Conventional (Raw) Pointers
How Do Smart Pointers Help?

How Are Smart Pointers Implemented?

Types of Smart Pointers
Deep Copy
Copv on Write Mechanism

603
604
604
604
605
605
606
607
609
609
610

611
613
613
615

616

621
622
622
623
624
625
627
627
628

633
634
634
634
635
636
637
639

Reference-Counted Smart Pointers 639

Reference-Linked Smart Pointers 640
Destructive Copy 640
Using the std: :unique ptr 643
Popular Smart Pointer Libraries 645
LESSON 27: Using Streams for Input and Output 649
Concept of Streams 650
Important C++ Stream Classes and Objects 651
Using std: : cout for Writing Formatted Data to Console 652
Changing Display Number Formats Using std: : cout 653
Aligning Text and Setting Field Width Using std: : cout 655

Using std: : cin for Input 656
Using std: :cin for Input into a Plain Old Data Type 656
Using std: :cin: :get for Input into char* Buffer 657
Using std: :cin for Input into a std: :string 658
Using std: : £stream for File Handling 660
Opening and Closing a File Using open () and close () 660
Creating and Writing a Text File Using open () and operator<< 662
Reading a Text File Using open () and operators> 663
Writing to and Reading from a Binary File 664
Using std: : stringstream for String Conversions 666
LESSON 28: Exception Handling 671
What Is an Exception? 672
What Causes Exceptions? 672
Implementing Exception Safety via try and catch 673
Using catch(...) to Handle All Exceptions 673
Catching Exception of a Type 674
Throwing Exception of a Type Using throw 676
How Exception Handling Works 677
Class std: :exception 680
Your Custom Exception Class Derived from std: :exception 680
LESSON 29: Going Forward 687
What’s Different in Today’s Processors? 688
How to Better Use Multiple Cores 689
What Is a Thread? 689

Why Program Multithreaded Applications? 690

How Can Threads Transact Data? 691

Using Mutexes and Semaphores to Synchronize Threads 692
Problems Caused by Multithreading 692
Writing Great C++ Code 693
C++17: Expected Features 694
if and switch Support Initializers 695
Copy Elision Guarantee 696
std::string view Avoids Allocation Overheads 696
std: :variant As a Typesafe Alternative to a union 697
Conditional Code Compilation Using if constexpr 697
Improved Lambda Expressions 698
Automatic Type Deduction for Constructors 698
template<auto> 699
Learning C++ Doesn’t Stop Here! 699
Online Documentation 699
Communities for Guidance and Help 699

PART VI: Appendixes

APPENDIX A: Working with Numbers: Binary and Hexadecimal 701
APPENDIX B: C++ Keywords 707
APPENDIX C: Operator Precedence 709
APPENDIX D: ASCIl Codes 711
APPENDIX E: Answers 717

Index 763

Introduction

2011 and 2014 were two special years for C++. While C++11 ushered in a dramatic
improvement to C++, introducing new keywords and constructs that increased your
programming efficiency, C++14 brought in incremental improvements that added
finishing touches to the features introduced by C++11.

This book helps you learn C++ in tiny steps. It has been thoughtfully divided into lessons
that teach you the fundamentals of this object-oriented programming language from a
practical point of view. Depending on your proficiency level, you will be able to master
C++ one hour at a time.

Learning C++ by doing is the best way—so try the rich variety of code samples in this
book hands-on and help yourself improve your programming proficiency. These code
snippets have been tested using the latest versions of the available compilers at the
time of writing, namely the Microsoft Visual C++ compiler for C++ and GNU’s C++
compiler, which both offer a rich coverage of C++14 features.

Who Should Read This Book?

The book starts with the very basics of C++. All that is needed is a desire to learn this
language and curiosity to understand how stuff works. An existing knowledge of C++
programming can be an advantage but is not a prerequisite. This is also a book you
might like to refer to if you already know C++ but want to learn additions that have been
made to the language. If you are a professional programmer, Part III, “Learning the
Standard Template Library (STL),” is bound to help you create better, more practical C++
applications.

Visit the publisher’s website and register this book at
informit.com/register for convenient access to any updates,
downloads, or errata that may be available for this book.

NOTE

Organization of This Book

Depending on your current proficiency levels with C++, you can choose the section
you would like to start with. Concepts introduced by C++11 and C++14 are sprinkled
throughout the book, in the relevant lessons. This book has been organized into five
parts:

m Part I, “The Basics,” gets you started with writing simple C++ applications. In
doing so, it introduces you to the keywords that you most frequently see in C++
code of a variable without compromising on type safety.

m Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you the
concept of classes. You learn how C++ supports the important object-oriented pro-
gramming principles of encapsulation, abstraction, inheritance, and polymorphism.
Lesson 9, “Classes and Objects,” teaches you the concept of move constructor
followed by the move assignment operator in Lesson 12, “Operator Types and
Operator Overloading.” These performance features help reduce unwanted and
unnecessary copy steps, boosting the performance of your application. Lesson
14, “An Introduction to Macros and Templates,” is your stepping stone to writing
powerful generic C++ code.

m Part III, “Learning the Standard Template Library (STL),” helps you write efficient
and practical C++ code using the STL string class and containers. You learn how
std: : string makes simple string concatenation operations safe and easy and how
you don’t need to use C-style char* strings anymore. You will be able to use STL
dynamic arrays and linked lists instead of programming your own.

m Part IV, “More STL,” focuses on algorithms. You learn to use sort on containers
such as vector via iterators. In this part, you find out how keyword auto intro-
duced by C++11 has made a significant reduction to the length of your iterator dec-
larations. Lesson 22, “Lambda Expressions,” presents a powerful new feature that
results in significant code reduction when you use STL algorithms.

m Part V, “Advanced C++ Concepts,” explains language capabilities such as smart
pointers and exception handling, which are not a must in a C++ application but help
make a significant contribution toward increasing its stability and quality. This part
ends with a note on best practices in writing good C++ applications, and introduces
you to the new features expected to make it to the next version of the ISO standard
called C++17.

Conventions Used in This Book

Within the lessons, you find the following elements that provide additional information:

NOTE These boxes provide additional information related to material
you read.
These boxes alert your attention to problems or side effects that
CAUTION can occur in special situations.
These boxes give you best practices in writing your C++ pro-
TIP
grams.
DO DON’'T

a quick summary of a fundamental offered in these boxes.

DO use the “Do/Don’t” boxes to find DON’T overlook the useful information
principle in a lesson.

This book uses different typefaces to differentiate between code and plain English.
Throughout the lessons, code, commands, and programming-related terms appear in a
computer typeface.

Sample Code for This Book

The code samples in this book are available online for download from the publisher’s
website.

LESSON 1
Getting Started

Welcome to Sams Teach Yourself C++ in One Hour a Day! You're ready to
get started on becoming a proficient C++ programmer.
In this lesson, you find out

m Why C++ is a standard in software development
m How to enter, compile, and link your first working C++ program

B What's new in C++

A Brief History of C++

The purpose of a programming language is to make consumption of computational
resources easier. C++ is not a new language, yet one that is popularly adopted and continu-
ously evolving. As of the time of writing this book, the newest version of C++ ratified by
the International Organization for Standardization (ISO) is popularly called C++14, pub-
lished in December 2014.

Connection to C

Initially developed by Bjarne Stroustroup at Bell Labs in 1979, C++ was designed to be
a successor to C. In contrast to C, however, C++ was designed to be an object-oriented
language that implements concepts such as inheritance, abstraction, polymorphism, and
encapsulation. C++ features classes that are used to contain member data and member
methods. These member methods operate using member data. The effect of this
organization is that the programmer models data and actions he wants to perform

using the same. Many popular C++ compilers have continued to support

C programming too.

Knowledge or experience in C programming is not a prerequisite
for learning C++. If your ultimate goal is to learn an object-oriented
programming language like C++, then you don’t need to start
learning a procedural language like C.

NOTE

Advantages of C++

C++ is considered an intermediate-level programming language, which means that it
allows for high-level programming of applications as well as low-level programming

of libraries that work close to the hardware. For many programmers, C++ provides the
optimal mix of being a high-level language that lets one develop complex applications
while supplying flexibility in allowing the developer to extract the best performance via
accurate control of resource consumption and availability.

In spite of the presence of newer programming languages such as Java and others based
on .NET, C++ has remained relevant and has also evolved. Newer languages provide
certain features like memory management via garbage collection implemented in a run-
time component that endear them to some programmers. Yet, C++ remains the language
of choice for cases where accurate control over their application’s resource consumption
and performance is needed. A tiered architecture where a web server programmed in
C++ serves other components programmed in HTML, Java, or .NET is common.

Evolution of the C++ Standard

Due to its popularity, years of evolution resulted in C++ being accepted and adopted on
many different platforms, most using their own C++ compilers. This evolution caused
compiler-specific deviations and, therefore, interoperability problems and porting issues.
Hence, there emerged a need to standardize the language and provide compiler manufac-
turers with a standard language specification to work with.

In 1998, the first standard version of C++ was ratified by the ISO Committee in
ISO/IEC 14882:1998. Since then the standard has undergone ambitious changes that have
improved the usability of the language, and have extended the support of the standard
library. As of the time of writing this book, the current ratified version of the standard is
ISO/IEC 14882:2014, informally termed C++14.

The current standard may not be immediately or completely
supported by all popular compilers. Therefore, while it may be good
to know of the newest additions to the standard from an academic
point of view, one must remember that these additions are not a
prerequisite to writing good, functioning C++ applications.

NOTE

Who Uses Programs Written in C++?

The list of applications, operating systems, web services, and database and enterprise
software programmed in C++ is a long one. No matter who you are or what you do with
a computer, chances are that you already are consuming software programmed in C++.
In addition to software engineers, C++ is often a language of choice for research work by
physicists and mathematicians.

Programming a C++ Application

When you start Notepad on Windows or the Terminal on Linux, you actually are telling
the processor to run an executable of that program. The executable is the finished prod-
uct that can be run and should do what the programmer intended to achieve.

Steps to Generating an Executable

Writing a C++ program is a first step towards creating an executable that can eventually run
on your operating system. The basic steps in creating applications in C++ are the following:

1. Writing (or programming) C++ code using a text editor

2. Compiling code using a C++ compiler that converts it to a machine language
version contained in “object files”

3. Linking the output of the compiler using a linker to get an executable (.exe in
Windows, for example)

Compilation is the step where code in C++, contained typically in text files with the
extension .cpp, is converted into byte code that the processor can execute. The compiler
converts one code file at a time, generating an object file with a .o or .obj extension,
ignoring dependencies that this CPP file may have on code in another file. The linker
joins the dots and resolves these dependencies. In the event of successful linkage, it cre-
ates an executable for the programmer to execute and distribute. This entire process is
also called building an executable.

Analyzing Errors and “Debugging”

Most applications rarely compile and execute as intended at the first run. A huge or
complex application programmed in any language—C++ included—needs many runs as
part of a testing effort to identify errors in code, called bugs. After the bugs are fixed,
the executable is rebuilt, and the testing process continues. Thus, in addition to the three
steps—programming, compiling, and linking—software development also involves a step
called debugging in which the programmer analyzes errors in code and fixes them. Good
development environments supply tools and features that help in debugging.

Integrated Development Environments

Many programmers prefer using an Integrated Development Environment (IDE) in
which the programming, compiling, and linking steps are integrated within a unified
user interface that also supplies debugging features that make it easier to detect errors
and solve problems.

The fastest way to start writing, compiling, and executing C++
applications would be an online IDE that runs in your browser.
Visit one such tool at http://www.tutorialspoint.com/compile_
cpp_online.php.

TIP

In addition, install one of the many free C++ IDEs and compilers.
The popular ones are Microsoft Visual Studio Express for
Windows and the GNU C++ Compiler called g++ for Linux.

If you're programming on Linux, you can install the free Eclipse
IDE to develop C++ applications using the g++ compiler.

http://www.tutorialspoint.com/compile_cpp_online.php
http://www.tutorialspoint.com/compile_cpp_online.php

DO

DON’T

DO save your files with the .cpp
extension.

DO use a simple text editor or an
Integrated Development Environment
to write code.

DON’T use a .c extension for your
C++ file because some compilers
would compile these files as C
programs instead of C++.

DON’T use rich text editors like word
processors to write code, because
they often add their own markup in
addition to the code you program.

Programming Your First C++ Application

Now that you know the tools and the steps involved, it is time to program your first
C++ application that follows tradition and displays a “Hello World!” on your screen.

If you are programming on Linux, use a simple text editor (I used gedit on Ubuntu) to
create a CPP file with contents as seen in Listing 1.1.

If you are on Windows and using Microsoft Visual Studio, you may follow these steps:

1. Invoke the New Project Wizard via the menu option File, New Project.

2. Under Visual C++, choose the type Win32 Console Application and name your

project Hello. Click OK.

3. Under Application Settings, uncheck the Precompiled Header option. Click Finish.

4. Replace the automatically generated contents in Hello.cpp with the code snippet

shown in Listing 1.1.

LISTING 1.1 Hello.cpp, the Hello World Program

1 #include <iostream>

2

3 int main()

4: {

5 std::cout << "Hello World!" << std::endl;
6 return 0;

7.}

This simple application does nothing more than display a line on the screen using
std: :cout. std: :endl instructs cout to end that line, and the application exits by

returning O to the operating system.

To read a program to yourself, it might help if you know how to
pronounce the special characters and keywords.

NOTE

For instance, you can call #include hash-include. Other versions
are sharp-include or pound-include, depending on where you
come from.

Similarly, you can read std: :cout as standard-c-out. endl is
end-line.

The devil is in the details, meaning that you need to be typing your
code in exactly the same way as shown in the listings. Compilers
are strict, and if you mistakenly put a : at the end of a statement
where a ; is required, you may expect a compilation failure
accompanied by a long error report!

CAUTION

Building and Executing Your First C++ Application

If you’re using Linux, open the terminal, navigate to the directory containing Hello.
cpp, and invoke the g++ compiler and linker using the command line:

g++ -0 hello Hello.cpp

This command instructs g++ to create an executable named hello by compiling your
C++ file Hello. cpp.

If you’re using Microsoft Visual Studio on Windows, press Ctrl+F5 to run your program
directly via the IDE. This compiles, links, and executes your application. Alternatively,
perform the individual steps:

1. Right-click the project and select Build to generate the executable Hello.exe.

2. Navigate to the path of the executable using the command-prompt (typically under
the Debug directory of the project folder).

3. Run it by typing the name of the executable.

Your program composed in Microsoft Visual Studio looks similar to that illustrated in
Figure 1.1.

FIGURE 1.1 : : B ik Launch (GG
) B b 1.1 Hello World - Microsoft Visual Stu... IR & | Quick Launch (Cir+Q P = B X

A Slmple Hello File Edit View Project Build Debug Team Tools Test Window Help -
World” C++ e : : o
R - BT - = | Debug ~| Win32 - P Local Windows Debugger = | = =

program edited in
Microsoft Visual

1.1 Hello Worldepp # X Solution Explorer

Studio Express. Ml 1.1 Hello World *| (Global Scope) | ® main0 - dlo-5 9@
le <iostream> % ™
% Colut e
int main() R Solution 1.1 Hello World' (1 pi
{ 0 4 ™ 1.1 Hello World
std:icout << "Hello World" << std:tendlj P *® References
return 8; 3 External Dependencies
H o b g Header Files
100% =4 b Resource Files
4 . Source Files
Output = x b %+ 1.1 Hello World.cpp
Show output from: Build - B ReadMe.txt
=s=sss==== Build: 1 succeeded, @ failed, @ up-to-date, @ skippec a
! -
4 3
Error List [l

Build succeeded

Executing . /hello on Linux or Hello.exe on Windows returns the following output:

Hello World!

Congratulations! You have started on your way to learning one of the most popular and
powerful programming languages of all times!

Significance of the C++ ISO Standard

As you can see, standard compliance helps the code snippet in Listing 1.1 to be
compiled and executed on multiple platforms or operating systems—the prerequi-
site being the availability of standard compliant C++ compilers. Thus, if you need

to create a product that needs to be run by Windows as well as Linux users, for
example, standard compliant programming practices (that don’t use a compiler or
platform-specific semantics) give you an inexpensive way to reach more users with-
out needing to program specifically for every environment you need to be supporting.
This, of course, works optimally for applications that don’t need much interaction at
an operating system level.

Understanding Compiler Errors

Compilers are painfully exact in their requirements, yet good ones make a decent
effort at telling you where you have made mistakes. If you face a problem in compiling
the application in Listing 1.1, you might get errors that look quite like the following
(introduced deliberately by omitting the semicolon in Line 5):

hello.cpp(6): error C2143: syntax error : missing ';' before 'return'

This error message from the Visual C++ Compiler is quite descriptive: It tells the name
of the file that contains the error, the line number (6, in this case) where you missed a
semicolon, and a description of the error itself accompanied by the error number (C2143,
in this case). Though the punctuation mark was deleted from the fifth line for this
example, the error reported is in the line after because the error became apparent to the
compiler only when it analyzed the return statement which indicated that the previous
statement ought to have been terminated before the return. You can try to add the semi-
colon at the start of the sixth line and the program compiles just fine!

Line-breaks don’t automatically terminate statements in C++ as
they do in some languages such as VBScript.

NOTE

In C++, it is possible to have a statement spanning multiple
lines. It is also possible to have multiple statements in a line
with each statement terminated by a ;.

What’s New in C++?

If you are an experienced C++ programmer, you might have noticed that the basic

C++ program in Listing 1.1 hasn’t changed one bit. While it’s true that C++ remains
backward compliant with previous versions of C++, a lot of work has been done recently
to make the language simpler to use and to program in.

The most recent major update in the language was released as a part of the ISO standard
ratified in 2011, popularly called C++11. C++14 released in 2014 features minor improve-
ments and corrections over C++11.

Features such as auto introduced first in C++11 allow you to define a variable whose
type is deduced automatically by the compiler, compacting wordy declarations without
compromising on type-safety. C++14 extends the same function to return types as well.
Lambda functions are functions without a name. They allow you to write compact
function objects without long class definitions, significantly reducing lines of code.

C++ promises programmers the ability to write portable, multithreaded, and yet
standard-compliant C++ applications. These applications, when correctly built, support
concurrent execution paradigms and are well positioned to scale in performance when
the user boosts the capability of his hardware configuration by increasing the number
of CPU cores. These are some of the many improvements featured in C++ that are
discussed throughout this book.

New languages features expected in the next major revision, called C++17, are introduced
at the end of the book in Lesson 29, “Going Forward.”

Summary

In this lesson you learned how to program, compile, link, and execute your first C++
program. This lesson also gave you a brief overview on the evolution of C++ and demon-
strated the effectiveness of a standard in showing that the same program can be compiled
using different compilers on different operating systems.

Q&A

Q Can I ignore warning messages from my compiler?

A In certain cases, compilers issue warning messages. Warnings are different from
errors in that the line in question is syntactically correct and compile-worthy.
However, there possibly is a better way to write it, and good compilers issue a
warning with a recommendation for a fix.

The suggested correction can mean a more secure way of programming or one that
lets your application work with characters and symbols from non-Latin languages.
You should heed these warnings and improve your program accordingly. Don’t
mask the warning messages, unless you are sure that they’re false positives.

Q How does an interpreted language differ from a compiled language?

A Languages such as Windows Script are interpreted. There is no compilation step.
An interpreted language uses an interpreter that directly reads the script text file
(code) and performs the desired actions. Consequently, you need to have the inter-
preter installed on a machine where the script needs to be executed; consequently,
performance usually takes a hit as the interpreter works as a runtime translator
between the microprocessor and the code written.

Q What are runtime errors, and how are they different from compile-time
errors?

A Errors that happen when you execute your application are called runtime errors.
You might have experienced the infamous “Access Violation” on older versions of
Windows, which is a runtime error. Compile-time errors don’t reach the end-user
and are an indication of syntactical problems; they keep the programmer from
generating an executable.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of

the material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. What is the difference between an interpreter and a compiler?
2. What does the linker do?

3. What are the steps in the normal development cycle?

Exercises

1. Look at the following program and try to guess what it does without running it:

1: #include <iostream>

2: int main()

30

4 int x = 8;

5: int y = 6;

6: std::cout << std::endl;

7 std::cout << X - y << " " << x * y << " " << X + Y
8 std::cout << std::endl;

9: return 0;

10:

2. Type in the program from Exercise 1 and then compile and link it. What does it do?
Does it do what you guessed?

3. What do you think is the error in this program:

1: include <iostream>

2: int main()

3: |

4: std::cout << "Hello Buggy World \n";
5 return 0;

6: }

4. Fix the error in the program in Exercise 3, compile, link, and run it. What
does it do?

LESSON 2
The Anatomy of a
C++ Program

C++ programs are organized into classes comprising member functions
and member variables. Most of this book is devoted to explaining these
parts in depth, but to get a sense of how a program fits together, you
must see a complete working program.

In this lesson, you learn

The parts of a C++ program
How the parts work together

What a function is and what it does

Basic input and output operations

Parts of the Hello World Program

Your first C++ program in Lesson 1, “Getting Started,” did nothing more than write a
simple “Hello World” statement to the screen. Yet this program contains some of the
most important and basic building blocks of a C++ program. You use Listing 2.1 as a
starting point to analyze components all C++ programs contain.

LISTING 2.1 HelloWorldAnalysis.cpp: Analyze a Simple C++ Program

1: // Preprocessor directive that includes header iostream
2: #include <iostream>

3:

4: // Start of your program: function block main()
5: int main()

6: {

7: /* Write to the screen */

8: std::cout << "Hello World" << std::endl;

9:

10: // Return a value to the 0S

11: return 0;

12: }

This C++ program can be broadly classified into two parts: the preprocessor directives
that start with a # and the main body of the program that starts with int main().

Lines 1, 4, 7, and 10, which start with a // or with a /*,
NOTE are called comments and are ignored by the compiler. These
comments are for humans to read.

Comments are discussed in greater detail in the next section.

Preprocessor Directive #include

As the name suggests, a preprocessor is a tool that runs before the actual compilation
starts. Preprocessor directives are commands to the preprocessor and always start with
a pound sign #. In Line 2 of Listing 2.1, #include <filenames> tells the preprocessor
to take the contents of the file (iostream, in this case) and include them at the line
where the directive is made. iostream is a standard header file that enables the usage
of std::cout used in Line 8 to display “Hello World” on the screen. In other words, the
compiler was able to compile Line 8 that contains std::cout because we instructed the
preprocessor to include the definition of std::cout in Line 2.

Professionally programmed C++ applications include standard
headers supplied by the development environment and those
created by the programmer. Complex applications are typically
programmed in multiple files wherein some need to include
others. So, if an artifact declared in FileA needs to be used in
FileB, you need to include the former in the latter. You usually do
that by inserting the following include statement in FileA:

NOTE

#include "...relative path to FileB\FileB"

We use quotes in this case and not angle brackets in including
a self-programmed header. <> brackets are typically used when
including standard headers.

The Body of Your Program main ()

Following the preprocessor directive(s) is the body of the program characterized by the
function main(). The execution of a C++ program always starts here. It is a standardized
convention that function main() is declared with an int preceding it. int is the return
value type of the function main() and stands for integer.

In many C++ applications, you find a variant of the main ()
function that looks like this:

NOTE

int main (int argc, char* argv[])

This is also standard compliant and acceptable as main returns
int. The contents of the parenthesis are “arguments” supplied
to the program. This program possibly allows the user to start it
with command-line arguments, such as

program.exe /DoSomethingSpecific

/DoSomethingSpecific is the argument for that program
passed by the OS as a parameter to it, to be handled within
main (int argc, char* argvl[]).

Let’s discuss Line 8 that fulfills the actual purpose of this program!

std::cout << "Hello World" << std::endl;

cout (“console-out”, also pronounced see-out) is the statement that writes “Hello World”
to the display console—that is, screen. cout is a stream defined in the standard std
namespace (hence, std::cout), and what you are doing in this line is putting the text
"Hello World" into this stream by using the stream insertion operator <<. std::endl
is used to end a line, and inserting it into a stream is akin to inserting a carriage return.
Note that the stream insertion operator << is used every time a new entity needs to be
inserted into the stream.

The good thing about streams in C++ is that different stream types support similar
stream semantics to perform a different operation with the same text. For example,
insertion into a file instead of a console would use the same insertion operator << on an
std::fstream instead of std::cout. Thus, working with streams gets intuitive, and
when you are used to one stream (such as cout, which writes text to the console), you
will find it easy to work with others (such as £stream, which helps save files to the disk).

Streams are discussed in greater detail in Lesson 27, “Using Streams for Input and Output.”

The actual text, including the quotes "Hello World", is called a
string literal.

NOTE

Returning a Value

Functions in C++ need to return a value unless explicitly specified otherwise. main()

is a function, too, and always returns an integer. This integer value is returned to the
operating system (OS) and, depending on the nature of your application, can be very
useful as most OSes provide for an ability to query on the return value of an application
that has terminated naturally. In many cases, one application is launched by another and
the parent application (that launches) wants to know if the child application (that was
launched) has completed its task successfully. The programmer can use the return value
of main() to convey a success or error state to the parent application.

Conventionally programmers return O in the event of success or
-1 in the event of error. However, the return value is an integer,
and the programmer has the flexibility to convey many different
states of success or failure using the available range of integer
return values.

NOTE

C++ is case-sensitive. So, expect compilation to fail if you write
Int instead of int and std: :Cout instead of std: :cout.

CAUTION

The Concept of Namespaces

The reason you used std::cout in the program and not only cout is that the artifact
(cout) that you want to invoke is in the standard (std) namespace.

So, what exactly are namespaces?

Assume that you didn’t use the namespace qualifier in invoking cout and assume that
cout existed in two locations known to the compiler—which one should the compiler
invoke? This causes a conflict and the compilation fails, of course. This is where
namespaces get useful. Namespaces are names given to parts of code that help in
reducing the potential for a naming conflict. By invoking std::cout, you are telling the
compiler to use that one unique cout that is available in the std namespace.

You use the std (pronounced “standard”) namespace to invoke
functions, streams, and utilities that have been ratified by the
ISO Standards Committee.

NOTE

Many programmers find it tedious to repeatedly add the std namespace specifier to
their code when using cout and other such features contained in the same. The using
namespace declaration as demonstrated in Listing 2.2 helps you avoid this repetition.

LISTING 2.2 The using namespace Declaration

1: // Preprocessor directive

2: #include <iostreams>

3:

4: // Start of your program

5: int main()

6: |

7: // Tell the compiler what namespace to search in
8: using namespace std;

9:

10: /* Write to the screen using std::cout */
11: cout << "Hello World" << endl;

12:

13: // Return a value to the 0S

14: return 0;

15: }

Analysis v

Note Line 8. By telling the compiler that you are using the namespace std, you
don’t need to explicitly mention the namespace on Line 11 when using std::cout or
std::endl.

A more restrictive variant of Listing 2.2 is shown in Listing 2.3 where you do not include
a namespace in its entirety. You only include those artifacts that you wish to use.

LISTING 2.3 Another Demonstration of the using Keyword

1: // Preprocessor directive

2: #include <iostream>

3:

4: // Start of your program

5: int main()

6: {

7: using std::cout;

8: using std::endl;

9:
10: /* Write to the screen using std::cout */
11: cout << "Hello World" << endl;
12:
13: // Return a value to the 0S
14: return 0;
15: }

Analysis v

Line 8 in Listing 2.2 has now been replaced by Lines 7 and 8 in Listing 2.3. The differ-

ence between using namespace std and using std::cout is that the former allows
all artifacts in the std namespace (cout, cin, etc.) to be used without explicit inclusion

of the namespace qualifier std::. With the latter, the convenience of not needing to dis-
ambiguate the namespace explicitly is restricted to only std::cout and std::endl.

Comments in C++ Code

Lines 1, 4, 10, and 13 in Listing 2.3 contain text in a spoken language (English, in this
case) yet do not interfere with the ability of the program to compile. They also do not
alter the output of the program. Such lines are called comments. Comments are ignored
by the compiler and are popularly used by programmers to explain their code—hence,
they are written in human-readable language.

C++ supports comments in two styles:

®m // indicates the start of a comment, valid until the end of that line. For example:

// This is a comment - won’t be compiled

m /* followed by */ indicates that the contained text is a comment, even if it spans

multiple lines:

/* This is a comment
and it spans two lines */

NOTE

It might seem strange that a programmer needs to explain his
own code, but the bigger a program gets or the larger the num-
ber of programmers working on a particular module gets, the
more important it is to write code that can be easily understood.
Comments help a programmer document what is being done and
why it is being done in that particular manner.

DO

DON'T

DO add comments explaining the
working of complicated algorithms
and complex parts of your program.

DO compose comments in a style
that fellow programmers can
understand.

Functions in C++

DON’T use comments to explain or
repeat the obvious.

DON'’T forget that adding comments
will not justify writing obscure code.

DON’T forget that when code is
modified, comments might need to
be updated, too.

Functions enable you to divide the content of your application into functional units that
can be invoked in a sequence of your choosing. A function, when invoked, typically
returns a value to the invoking/calling function. The most famous function is, of
course, int main(). It is recognized by the compiler as the starting point of your
C++ application and has to return an int (i.e., an integer).

You as a programmer have the choice and usually the need to compose your own
functions. Listing 2.4 is a simple application that uses a function to display statements on
the screen using std::cout with various parameters.

LISTING 2.4 Declaring, Defining, and Calling a Function That Demonstrates Capabilities
of std: :cout

1: #include <iostream>
2: using namespace std;
3:
4: // Declare a function
5: int DemoConsoleOutput () ;
6:
7: int main()
8: {
9: // Call i.e. invoke the function
10 DemoConsoleOutput () ;
11
12 return 0;
13: }
14:
15: // Define i.e. implement the previously declared function
16: int DemoConsoleOutput ()
17: |
18 cout << "This is a simple string literal" << endl;
19 cout << "Writing number five: " << 5 << endl;
20 cout << "Performing division 10 / 5 = " << 10 / 5 << endl;
21 cout << "Pi when approximated is 22 / 7 = " << 22 / 7 << endl;
22 cout << "Pi is 22 / 7 = " << 22.0 / 7 << endl;
23:
24: return 0;
25: }
Output v

This is a simple string literal
Writing number five: 5
Performing division 10 / 5 =
Pi when approximated is 22 /
Pi is 22 / 7 = 3.14286

2
7 =3

Analysis v

Lines 5, 10, and 16 through 25 are those of interest. Line 5 is called a function
declaration, which basically tells the compiler that you want to create a function called
DemoConsoleOutput() that returns an int (integer). This declaration enables the

compiler to compile Line 10 where DemoConsoleOutput() is called inside main(). The
compiler assumes that the definition (that is, the implementation of the function) is going
to come up, which it does later in Lines 16 through 25.

This function actually demonstrates the capabilities of cout. Note how it not only prints
text the same way as it displayed “Hello World” in previous examples, but also the result
of simple arithmetic computations. Lines 21 and 22 both attempt to display the result of
pi (22 /7), but the latter is more accurate simply because by dividing 22.0 by 7, you tell
the compiler to treat the result as a real number (a £loat in C++ terms) and not as an
integer.

Note that your function is required to return an integer, as declared in Line 5, and
returns 0. Similarly, main() returns 0, too. Given that main() has delegated all its
activity to the function DemoConsoleOutput (), you would be wiser to use the return
value of the function in returning from main() as seen in Listing 2.5.

LISTING 2.5 Using the Return Value of a Function

1: #include <iostreams>

2: using namespace std;

3:

4: // Function declaration and definition

5: int DemoConsoleOutput ()

6: {

7: cout << "This is a simple string literal" << endl;

8: cout << "Writing number five: " << 5 << endl;

9: cout << "Performing division 10 / 5 = " << 10 / 5 << endl;
10: cout << "Pi when approximated is 22 / 7 = " << 22 / 7 << endl;
11: cout << "Pi actually is 22 / 7 = " << 22.0 / 7 << endl;
12:

13: return 0;

14: }

15:

16: int main()

17: |

18 // Function call with return used to exit
19: return DemoConsoleOutput () ;

20: }

Analysis v

The output of this application is the same as the output of the previous listing. Yet,
there are slight changes in the way it is programmed. For one, as you have defined (i.e.,
implemented) the function before main() at Line 5, you don’t need an extra declaration
of the same. Modern C++ compilers take it as a function declaration and definition in

one. main() is a bit shorter, too. Line 19 invokes the function DemoConsoleOutput ()
and simultaneously returns the return value of the function from the application.

In cases such as this where a function is not required to make
a decision, or return success or failure status, you can declare a
function of return type void:

NOTE

void DemoConsoleOutput ()

This function cannot return a value.

Functions can take parameters, can be recursive, can contain multiple return statements,
can be overloaded, can be expanded in-line by the compiler, and lots more. These
concepts are introduced in greater detail in Lesson 7, “Organizing Code with Functions.”

Basic Input Using std: :cin and Output
Using std: :cout

Your computer enables you to interact with applications running on it in various forms
and allows these applications to interact with you in many forms, too. You can interact
with applications using the keyboard or the mouse. You can have information displayed
on the screen as text, displayed in the form of complex graphics, printed on paper using
a printer, or simply saved to the file system for later usage. This section discusses the
very simplest form of input and output in C++—using the console to write and read
information.

You use std::cout (pronounced “standard see-out”) to write simple text data to the
console and use std::cin (“standard see-in”) to read text and numbers (entered using the
keyboard) from the console. In fact, in displaying “Hello World” on the screen, you have
already encountered cout, as seen in Listing 2.1:

8: std::cout << "Hello World" << std::endl;

The statement shows cout followed by the insertion operator << (that helps insert data
into the output stream), followed by the string literal “Hello World” to be inserted,
followed by a newline in the form of std::endl (pronounced “standard end-line”).

The usage of cin is simple, too, and as cin is used for input, it is accompanied by the
variable you want to be storing the input data in:

std::cin >> Variable;

Thus, cin is followed by the extraction operator >> (extracts data from the input stream),
which is followed by the variable where the data needs to be stored. If the user input
needs to be stored in two variables, each containing data separated by a space, then you
can do so using one statement:

std::cin >> Variablel >> Variable2;

Note that cin can be used for text as well as numeric inputs from the user, as shown in
Listing 2.6.

LISTING 2.6 Use cin and cout to Display Number and Text Input by User

1: #include <iostream>
2: #include <string>
3: using namespace std;
4:
5: int main()
6: |
7: // Declare a variable to store an integer
8: int inputNumber;
9:
10: cout << "Enter an integer: ";
11:
12: // store integer given user input
13: cin >> inputNumber;
14:
15: // The same with text i.e. string data
16: cout << "Enter your name: ";
17: string inputName;
18: cin >> inputName;
19:
20: cout << inputName << " entered " << inputNumber << endl;
21:
22: return 0;
23: }
Output v

Enter an integer: 2017
Enter your name: Siddhartha
Siddhartha entered 2017

Analysis v

Line 8 shows how a variable of name inputNumber is declared to store data of type
int. The user is requested to enter a number using cout in Line 10, and the entered
number is stored in the integer variable using cin in Line 13. The same exercise is

repeated with storing the user’s name, which of course cannot be held in an integer but
in a different type called string as seen in Lines 17 and 18. The reason you included
<string> in Line 2 was to use type string later inside main(). Finally in Line 20, a
cout statement is used to display the entered name with the number and an intermediate
text to produce the output Siddhartha entered 2017.

This is a simple example of how basic input and output work in C++. Don’t worry if the
concept of variables is not clear to you as it is explained in good detail in the following
Lesson 3, “Using Variables, Declaring Constants.”

If I had entered a couple of words as my name (for example:
NOTE Siddhartha Rao) while executing Listing 2.6, cin would’ve still

stored only the first word, “Siddhartha,” in the string. To be able

to store entire lines, use the function getline (), discussed in

Lesson 4, “Managing Arrays and Strings,” in Listing 4.7.
Summary

This lesson introduced the basic parts of a simple C++ program. You understood
what main() is, got an introduction to namespaces, and learned the basics of console
input and output. You are able to use a lot of these in every program you write.

Q&A
Q What does #include do?

A This is a directive to the preprocessor that runs when you call your compiler. This
specific directive causes the contents of the file named in <> after #include to be
inserted at that line as if it were typed at that location in your source code.

Q What is the difference between // comments and /* comments?

A The double-slash comments (//) expire at the end of the line. Slash-star (/*)
comments are in effect until there is a closing comment mark (* /). The double-
slash comments are also referred to as single-line comments, and the slash-star
comments are often referred to as multiline comments. Remember, not even the
end of the function terminates a slash-star comment; you must put in the closing
comment mark or you will receive a compile-time error.

Q When do you need to program command-line arguments?

A To supply options that allow the user to alter the behavior of a program. For
example, the command 1s in Linux or dir in Windows enables you to see the
contents within the current directory or folder. To view files in another directory,
you specify the path of the same using command-line arguments, as in 1s / or
dir \.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. What is the problem in declaring Int main()?

2. Can comments be longer than one line?

Exercises

1. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can
you fix it?
1: #include <iostream>

: void main()

{

2
3
4: std::Cout << Is there a bug here?";
5

}

2. Fix the bug in Exercise 1 and recompile, link, and run it.

3. Modify Listing 2.4 to demonstrate subtraction (using —) and multiplication
(using *).

LESSON 3
Using Variables,
Declaring Constants

Variables are tools that help the programmer temporarily store data for
a finite amount of time. Constants are tools that help the programmer
define artifacts that are not allowed to change or make changes.

In this lesson, you find out

® How to declare and define variables and constants
m How to assign values to variables and manipulate those values
® How to write the value of a variable to the screen
]

How to use keywords auto and constexpr

What Is a Variable?

Before you actually explore the need and use of variables in a programming language,
take a step back and first see what a computer contains and how it works.

Memory and Addressing in Brief

All computers, smart phones, and other programmable devices contain a microprocessor
and a certain amount of memory for temporary storage called Random Access Memory
(RAM). In addition, many devices also allow for data to be persisted on a storage device
such as the hard disk. The microprocessor executes your application, and in doing so it
works with the RAM to fetch the application binary code to be executed as well as the
data associated with it, which includes that displayed on the screen and that entered by
the user.

The RAM itself can be considered to be a storage area akin to a row of lockers in

the dorms, each locker having a number—that is, an address. To access a location in
memory, say location 578, the processor needs to be asked via an instruction to fetch a
value from there or write a value to it.

Declaring Variables to Access and Use Memory

The following examples will help you understand what variables are. Assume you are
writing a program to multiply two numbers supplied by the user. The user is asked to
feed the multiplicand and the multiplier into your program, one after the other, and you
need to store each of them so that you can use them later to multiply. Depending on what
you want to be doing with the result of the multiplication, you might even want to store it
for later use in your program. It would be slow and error-prone if you were to explicitly
specify memory addresses (such as 578) to store the numbers, as you would need to
worry about inadvertently overwriting existing data at the location or your data being
overwritten at a later stage.

When programming in languages like C++, you define variables to store those values.
Defining a variable is quite simple and follows this pattern:

VariableType VariableName;

or

VariableType VariableName = InitialvValue;

The variable type attribute tells the compiler the nature of data the variable can store, and
the compiler reserves the necessary space for it. The name chosen by the programmer is
a friendly replacement for the address in the memory where the variable’s value is stored.

Unless the initial value is assigned, you cannot be sure of the contents of that memory
location, which can be bad for the program. Therefore, initialization is optional, but
it’s often a good programming practice. Listing 3.1 shows how variables are declared,
initialized, and used in a program that multiplies two numbers supplied by the user.

LISTING 3.1 Using Variables to Store Numbers and the Result of Their Multiplication

1: #include <iostream>
2: using namespace std;
3:
4: int main ()
5: {
6: cout << "This program will help you multiply two numbers" << endl;
7:
8: cout << "Enter the first number: ";
9: int firstNumber = 0;
10: cin >> firstNumber;
11
12: cout << "Enter the second number: ";
13: int secondNumber = 0;
14: cin >> secondNumber;
15:
16: // Multiply two numbers, store result in a variable
17 int multiplicationResult = firstNumber * secondNumber;
18
19: // Display result
20 cout << firstNumber << " x " << secondNumber;
21: cout << " = " << multiplicationResult << endl;
22:
23: return 0;
24: }
Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis v

This application asks the user to enter two numbers, which the program multiplies and
displays the result. To use numbers entered by the user, it needs to store them in the
memory. Variables firstNumber and secondNumber declared in Lines 9 and 13 do the
job of temporarily storing integer values entered by the user. You use std::cin in Lines
10 and 14 to accept input from the user and to store them in the two integer variables.
The cout statement in Line 21 is used to display the result on the console.

Analyzing a variable declaration further:

9: int firstNumber = 0;

What this line declares is a variable of type int, which indicates an integer, with a name
called firstNumber. Zero is assigned to the variable as an initial value.

The compiler does the job of mapping this variable firstNumber to a location in
memory and takes care of the associated memory-address bookkeeping for you for all
the variables that you declare. The programmer thus works with human-friendly names,
while the compiler manages memory-addressing and creates the instructions for the
microprocessor to execute in working with the RAM.

Naming variables appropriately is important for writing good,
understandable, and maintainable code.

CAUTION

Variable names in C++ can be alphanumeric, but they cannot
start with a number. They cannot contain spaces and cannot
contain arithmetic operators (such as +, -, and so on) within
them. Variable names also cannot be reserved keywords. For
example, a variable named return will cause compilation failure.

Variable names can contain the underscore character_that often
is used in descriptive variable naming.

Declaring and Initializing Multiple
Variables of a Type

In Listing 3.1, firstNumber, secondNumber, and multiplicationResult are all of
the same type—integers—and are declared in three separate lines. If you wanted to, you
could condense the declaration of these three variables to one line of code that looks like
this:

int firstNumber = 0, secondNumber = 0, multiplicationResult = 0;

As you can see, C++ makes it possible to declare multiple
variables of a type at once and to declare variables at the
beginning of a function. Yet, declaring a variable when it is first
needed is often better as it makes the code readable—one
notices the type of the variable when the declaration is close to
its point of first use.

NOTE

CAUTION

Data stored in variables is data stored in RAM. This data is lost
when the application terminates unless the programmer explicitly
persists the data on a storage medium like a hard disk.

Storing to a file on disk is discussed in Lesson 27, “Using
Streams for Input and Output.”

Understanding the Scope of a Variable

Ordinary variables like the ones we have declared this far have a well-defined scope
within which they’re valid and can be used. When used outside their scope, the variable
names will not be recognized by the compiler and your program won’t compile. Beyond
its scope, a variable is an unidentified entity that the compiler knows nothing of.

To better understand the scope of a variable, reorganize the program in Listing 3.1 into
a function MultiplyNumbers() that multiplies the two numbers and returns the result.
See Listing 3.2.

LISTING 3.2 Demonstrating the Scope of the Variables

NV NNONNNNRPRRRRR R B P2
O Ul W N KH O W OoWNOo0 U WD EHE o v

W 30 Ul W N

#include <iostream>
using namespace std;

void MultiplyNumbers ()

{

}

cout << "Enter the first number: ";
int firstNumber = 0;
cin >> firstNumber;

cout << "Enter the second number: ";
int secondNumber = 0;
cin >> secondNumber;

// Multiply two numbers, store result in a variable
int multiplicationResult = firstNumber * secondNumber;

// Display result
cout << firstNumber << " X " << secondNumber;
cout << " = " << multiplicationResult << endl;

int main ()

{

cout << "This program will help you multiply two numbers" << endl;

// Call the function that does all the work
MultiplyNumbers () ;

27:

28: // cout << firstNumber << " x " << secondNumber;
29: // cout << " = " << multiplicationResult << endl;
30:

31: return 0;

32: }

Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis v

Listing 3.2 does exactly the same activity as Listing 3.1 and produces the same output.
The only difference is that the bulk of the work is delegated to a function called
MultiplyNumbers() invoked by main(). Note that variables firstNumber and
secondNumber cannot be used outside of MultiplyNumbers(). If you uncomment
Lines 28 or 29 in main(), you experience compile failure of type undeclared

identifier

This is because the scope of the variables firstNumber and secondNumber is local,
hence limited to the function they’re declared in, in this case MultiplyNumbers().

A local variable can be used in a function after variable declaration till the end of the
function. The curly brace (}) that indicates the end of a function also limits the scope of
variables declared in the same. When a function ends, all local variables are destroyed
and the memory they occupied returned.

When compiled, variables declared within MultiplyNumbers() perish when the
function ends, and if they’re used in main(), compilation fails as the variables have not
been declared in there.

If you declare another set of variables with the same name in
main (), then don’t still expect them to carry a value that might
have been assigned in MultiplyNumbers ().

CAUTION

The compiler treats the variables in main () as independent
entities even if they share their names with a variable declared
in another function, as the two variables in question are limited
by their scope.

Global Variables

If the variables used in function MultiplyNumbers() in Listing 3.2 were declared
outside the scope of the function MultiplyNumber () instead of within it, then they
would be usable in both main() and MultiplyNumbers(). Listing 3.3 demonstrates
global variables, which are the variables with the widest scope in a program.

LISTING 3.3 Using Global Variables

1: #include <iostreams>

2: using namespace std;

3:

4: // three global integers

5: int firstNumber = 0;

6: int secondNumber = 0;

7: int multiplicationResult = 0;

8:

9: void MultiplyNumbers ()

10: {

11: cout << "Enter the first number: ";

12: cin >> firstNumber;

13:

14: cout << "Enter the second number: ";

15 cin >> secondNumber;

16

17: // Multiply two numbers, store result in a variable
18 multiplicationResult = firstNumber * secondNumber;
19
20 // Display result
21: cout << "Displaying from MultiplyNumbers(): ";
22: cout << firstNumber << " X " << secondNumber;
23: cout << " = " << multiplicationResult << endl;
24: }
25: int main ()
26:
27: cout << "This program will help you multiply two numbers" << endl;
28:
29: // Call the function that does all the work
30: MultiplyNumbers () ;

31:

32: cout << "Displaying from main(): ";

33:

34: // This line will now compile and work!

35: cout << firstNumber << " X " << secondNumber;
36: cout << " = " << multiplicationResult << endl;
37:

38: return 0;

39: }

Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 19

Displaying from MultiplyNumbers(): 51 x 19 = 969
Displaying from main(): 51 x 19 = 969

Analysis Vv

Listing 3.3 displays the result of multiplication in two functions, neither of which has
declared the variables firstNumber, secondNumber, and multiplicationResult
These variables are global as they have been declared in Lines 5-7, outside the
scope of any function. Note Lines 23 and 36 that use these variables and display their
values. Pay special attention to how multiplicationResult is first assigned in
MultiplyNumbers() yet is effectively reused in main().

Indiscriminate use of global variables is considered poor pro-
gramming practice. This is because global variables can be
assigned values in any/every function and can contain an unpre-
dictable state, especially when functions that modify them run in
different threads or are programmed by different programmers in
a team.

CAUTION

An elegant way of programming Listing 3.3 without using global
variables would have the function MultiplyNumbers () return the
integer result of the multiplication t0 main ().

Naming Conventions

In case you haven’t noticed, we named the function MultiplyNumbers() where every
word in the function name starts with a capital letter (called Pascal casing), while
variables firstNumber, secondNumber, and multiplicationResult were given
names where the first word starts with a lowercase letter (called camel casing). This book
follows a convention where variable names follow camel casing, while other artifacts
such as function names follow Pascal casing.

You may come across C++ code wherein a variable name is prefixed with characters
that explain the type of the variable. This convention is called the Hungarian notation

and is frequently used in the programming of Windows applications. So, firstNumber
in Hungarian notation would be iFirstNumber, where the prefix i stands for integer.

A global integer would be called g_iFirstNumber. Hungarian notation has lost
popularity in recent years in part due to improvements in Integrated Development
Environments (IDEs) that display the type of a variable when required—on mouse hover,
for instance.

Examples of commonly found bad variable names follow:

int 1 = 0;

bool b = false;

The name of the variable should indicate its purpose, and the two can be better declared as

int totalCash = 0;
bool isLampOn = false;

Naming conventions are used to make the code readable to
programmers, not to compilers. So choose a convention that
suits wisely and use it consistently.

CAUTION

When working in a team, it is a good idea to align on the conven-
tion to be used before starting a new project. When working on
an existing project, adopt the used convention so that the new
code remains readable to others.

Common Compiler-Supported C++
Variable Types

In most of the examples thus far, you have defined variables of type int—that is,
integers. However, C++ programmers can choose from a variety of fundamental
variable types supported directly by the compiler. Choosing the right variable type is as
important as choosing the right tools for the job! A Phillips screwdriver won’t work well
with a regular screw head just like an unsigned integer can’t be used to store values that
are negative! Table 3.1 enlists the various variable types and the nature of data they can
contain.

TABLE 3.1 Variable Types

Type Values
bool true Or false
char 256 character values

unsigned short int
short int

unsigned long int
long int

unsigned long long

long long

int (16 bit)

int (32 bit)

unsigned int (16 bit)
unsigned int (32 bit)
float

double

0 to 65,535

-32,768 to 32,767

0 to 4,294,967,295
-2,147,483,648 to 2,147,483,647
0 to 18,446,744,073,709,551,615

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

-32,768 to 32,767
-2,147,483,648 to 2,147,483,647
0 to 65,535

0 to 4,294,967,295

1.2e-38 to 3.4e38

2.2e-308 to 1.8e308

The following sections explain the important types in greater detail.

Using Type bool to Store Boolean Values

C++ provides a type that is specially created for containing Boolean values true or
false, both of which are reserved C++ keywords. This type is particularly useful in
storing settings and flags that can be ON or OFF, present or absent, available or unavail-

able, and the like.

A sample declaration of an initialized Boolean variable is

bool alwaysOnTop = false;

An expression that evaluates to a Boolean type is

bool deleteFile = (userSelection == "yes");
// evaluates to true if userSelection contains "yes", else to false

Conditional expressions are explained in Lesson 5, “Working with Expressions,

Statements, and Operators.”

Using Type char to Store Character Values
Use type char to store a single character. A sample declaration is

char userInput = 'Y'; // initialized char to 'Y'

Note that memory is comprised of bits and bytes. Bits can be either 0 or 1, and bytes
can contain numeric representation using these bits. So, working or assigning character
data as shown in the example, the compiler converts the character into a numeric
representation that can be placed into memory. The numeric representation of Latin
characters A-Z, a—z, numbers 0-9, some special keystrokes (for example, DEL), and
special characters (such as backspace) has been standardized by the American Standard
Code for Information Interchange, also called ASCII.

You can look up the table in Appendix D, “ASCII Codes,” to see that the character Y
assigned to variable userInput has the ASCII value 89 in decimal. Thus, what the
compiler does is store 89 in the memory space allocated for userInput.

The Concept of Signed and Unsigned Integers

Sign implies positive or negative. All numbers you work with using a computer are stored
in the memory in the form of bits and bytes. A memory location that is 1 byte large con-

tains 8 bits. Each bit can either be a 0 or 1 (that is, carry one of these two values at best).

Thus, a memory location that is 1 byte large can contain a maximum of 2 to the power 8

values—that is, 256 unique values. Similarly, a memory location that is 16 bits large can

contain 2 to the power 16 values—that is, 65,536 unique values.

If these values were to be unsigned—assumed to be only positive—then one byte could
contain integer values ranging from O through 255 and two bytes would contain val-

ues ranging from 0 through 65,535, respectively. Look at Table 3.1 and note that the
unsigned short is the type that supports this range, as it is contained in 16 bits of
memory. Thus, it is quite easy to model positive values in bits and bytes (see Figure 3.1).

FIGURE 3.1 15 Bit 0
Organization of bits

inal6bitunsigned 17 1711111111111 = 65535
short integer.

16 bits carry value

How to model negative numbers in this space? One way is to “sacrifice” a bit as the
sign-bit that would indicate if the values contained in the other bits are positive or

negative (see Figure 3.2). The sign-bit needs to be the most-significant-bit (MSB) as

the least-significant-one would be required to model odd numbers. So, when the MSB
contains sign-information, it is assumed that 0 would be positive and 1 would mean nega-
tive, and the other bytes contain the absolute value.

FIGURE 3.2 15 Bit 0
Organization of bits

in a 16-bit signed 111111111111 11
short integer.

(¢ J
Y

15 bits contain absolute value

Sign Bit
0: Indicates positive integer
1: Indicates negative integer

Thus, a signed number that occupies 8 bits can contain values ranging from —128 through
127, and one that occupies 16 bits can contain values ranging from —32,768 through
32,767. If you look at Table 3.1 again, note that the (signed) short is the type that
supports positive and negative integer values in a 16-bit space.

Signed Integer Types short, int, long,
and long long

These types differ in their sizes and thereby differ in the range of values they can
contain. int is possibly the most used type and is 32 bits wide on most compilers.
Use the right type depending on your projection of the maximum value that particular
variable would be expected to hold.

Declaring a variable of a signed type is simple:

short int gradesInMath = -5; // not your best score
int moneyInBank = -70000; // overdraft

long populationChange = -85000; // reducing population
long long countryGDPChange = -70000000000;

Unsigned Integer Types unsigned short, unsigned
int, unsigned long, and unsigned long long

Unlike their signed counterparts, unsigned integer variable types cannot contain sign
information, and hence they can actually support twice as many positive values.

Declaring a variable of an unsigned type is as simple as this:

unsigned short int numColorsInRainbow = 7;

unsigned int numEggsInBasket = 24; // will always be positive
unsigned long numCarsInNewYork = 700000;

unsigned long long countryMedicareExpense = 70000000000;

You would use an unsigned variable type when you expect only

NOTE positive values. So, if you're counting the number of apples,
don’t use int; use unsigned int. The latter can hold twice as
many values in the positive range as the former can.

So, an unsigned type might not be suited for a variable in a

CAUTION gned ype mig

banking application used to store the account balance as banks

do allow some customers an overdraft facility. To see an example
that demonstrates the differences between signed and unsigned

types, visit Listing 5.3 in Lesson 5.

Avoid Overflow Errors by Selecting Correct
Data Types

Data types such as short, int, long, unsigned short, unsigned int, unsigned
long, and the like have a finite capacity for containing numbers. When you exceed the
limit imposed by the type chosen in an arithmetic operation, you create an overflow.

Take unsigned short for an example. Data type short consumes 16 bits and can
hence contain values from 0O through 65,535. When you add 1 to 65,535 in an unsigned
short, the value overflows to 0. It’s like the odometer of a car that suffers a mechanical
overflow when it can support only five digits and the car has done 99,999 kilometers

(or miles).

In this case, unsigned short was never the right type for such a counter. The
programmer was better off using unsigned int to support numbers higher than 65,535.

In the case of a signed short integer, which has a range of —32,768 through 32,767,
adding 1 to 32,767 may result in the signed integer taking the highest negative value.
This behavior is compiler dependent.

Listing 3.4 demonstrates the overflow errors that you can inadvertently introduce via
arithmetic operations.

LISTING 3.4 Demonstrating the lll-Effects of Signed and Unsigned Integer
Overflow Errors

0: #include <iostreams
1: using namespace std;
2
3: int main()
4
5: unsigned short uShortValue = 65535;
6 cout << "Incrementing unsigned short " << uShortValue << " gives: ";
7 cout << ++uShortValue << endl;
8
9: short signedShort = 32767;
10: cout << "Incrementing signed short " << signedShort << " gives: ";
11: cout << ++signedShort << endl;
12:
13: return 0;
14:
Output v

Incrementing unsigned short 65535 gives: 0
Incrementing signed short 32767 gives: -32768

Analysis v

The output indicates that unintentional overflow situations result in unpredictable and

unintuitive behavior for the application. Lines 7 and 11 increment an unsigned short
and a signed short that have previously been initialized to their maximum supported

values —65,535 and 32,767, respectively. The output demonstrates the value they hold

after the increment operation, namely an overflow of 65,535 to zero in the unsigned short
and an overflow of 32,767 to —32,768 in the signed short. One wouldn’t expect the result

of an increment operation to reduce the value in question, but that is exactly what hap-

pens when an integer type overflows. If you were using the values in question to allocate
memory, then with the unsigned short, you can reach a point where you request zero

bytes when your actual need is 65536 bytes.

The operations ++uShortvalue and ++signedShort Seen in
Listing 3.4 at lines 7 and 11 are prefix increment operations.
These are explained in detail in Lesson 5.

NOTE

Floating-Point Types float and double

Floating-point numbers are what you might have learned in school as real numbers.
These are numbers that can be positive or negative. They can contain decimal values.
So, if you want to store the value of pi (22 / 7 or 3.14) in a variable in C++, you would
use a floating-point type.

Declaring variables of these types follows exactly the same pattern as the int in
Listing 3.1. So, a £loat that allows you to store decimal values would be declared as the
following:

float pi = 3.14;

And a double precision £loat (called simply a double) is defined as

double morePrecisePi = 22.0 / 7;

C++14 adds support for chunking separators in the form of a
single quotation mark. This improves readability of code, as seen
in the following initializations:

TIP

int moneyInBank = -70'000; // -70000
long populationChange = -85'000; // -85000

long long countryGDPChange = -70'000'000'000; //
-70 billion

double pi = 3.141'592'653'59; // 3.14159265359

The data types mentioned thus far are often referred to as POD
(Plain Old Data). The category POD contains these as well as
aggregations (structs, enums, unions, or classes) thereof.

NOTE

Determining the Size of a Variable
Using sizeof

Size is the amount of memory that the compiler reserves when the programmer declares
a variable to hold the data assigned to it. The size of a variable depends on its type, and
C++ has a very convenient operator called sizeof that tells you the size in bytes of a
variable or a type.

The usage of sizeof is simple. To determine the size of an integer, you invoke sizeof
with parameter int (the type) as demonstrated by Listing 3.5.

cout << "Size of an int: " << sizeof (int);

LISTING 3.5 Finding the Size of Standard C++ Variable Types

1: #include <iostreams>
2
3: int main()
4: |
5: using namespace std;
6 cout << "Computing the size of some C++ inbuilt variable types" << endl;
7
8 cout << "Size of bool: " << sizeof (bool) << endl;
9: cout << "Size of char: " << sizeof (char) << endl;
10: cout << "Size of unsigned short int: " << sizeof (unsigned short) << endl;
11: cout << "Size of short int: " << sizeof (short) << endl;
12: cout << "Size of unsigned long int: " << sizeof (unsigned long) << endl;
13: cout << "Size of long: " << sizeof(long) << endl;
14: cout << "Size of int: " << sgizeof (int) << endl;
15: cout << "Size of unsigned long long: "<< sizeof (unsigned long long)<<
endl;
16: cout << "Size of long long: " << sizeof(long long) << endl;
17: cout << "Size of unsigned int: " << sizeof (unsigned int) << endl;
18: cout << "Size of float: " << sizeof(float) << endl;
19: cout << "Size of double: " << sizeof (double) << endl;
20:
21: cout << "The output changes with compiler, hardware and OS" << endl;
22:
23: return 0;

24: }

Output v

Computing the size of some C++ inbuilt variable types
Size of bool: 1

Size of char: 1

Size of unsigned short int: 2

Size of short int: 2

Size of unsigned long int: 4

Size of long: 4

Size of int: 4

Size of unsigned long long: 8

Size of long long: 8

Size of unsigned int: 4

Size of float: 4

Size of double: 8

The output changes with compiler, hardware and OS

Analysis v

The output of Listing 3.5 reveals sizes of various types in bytes and is specific to my
platform: compiler, OS, and hardware. This output in particular is a result of running the
program in 32-bit mode (compiled by a 32-bit compiler) on a 64-bit operating system.
Note that a 64-bit compiler probably creates different results, and the reason I chose a
32-bit compiler was to be able to run the application on 32-bit as well as 64-bit systems.
The output tells that the sizeof a variable doesn’t change between an unsigned or signed
type; the only difference in the two is the MSB that carries sign information in the former.

All sizes seen in the output are in bytes. The size of a type is an
important parameter to be considered, especially for types used
to hold numbers. A short int can hold a smaller range than a

long long. You therefore wouldn’t use a short int to hold the
population of a country, for example.

NOTE

C++11 introduced fixed-width integer types that allow you to
specify the exact width of the integer in bits. These are ints t
or uintg_t for 8bit signed and unsigned integers, respectively.
You may also use 16-bit (int16 t, uintile t), 32-bit (int32_t,
uint32 t), and 64-bit (int64 t, uinte4 t) integer types. To use
these types, remember to include header

<cstdints.

TIP

Avoid Narrowing Conversion Errors by Using
List Initialization

When you initialize a variable of a smaller integer type (say, short) using another of
a larger type (say, an int), you are risking a narrowing conversion error, because the
compiler has to fit data stored in a type that can potentially hold much larger numbers
into a type that doesn’t have the same capacity (that is, is narrower). Here's an example:

int largeNum = 5000000;
short smallNum = largeNum; // compiles OK, yet narrowing error

Narrowing isn’t restricted to conversions between integer types only. You may face
narrowing errors if you initialize a float using a double, a float (or double) using
an int, or an int using a £loat. Some compilers may warn, but this warning will not
cause an error that stops compilation. In such cases, you may be confronted by bugs that
occur infrequently and at execution time.

To avoid this problem, C++11 recommends list initialization techniques that prevent
narrowing. To use this feature, insert initialization values/variables within braces {...}.
The list initialization syntax is as follows:

int largeNum = 5000000;

short anotherNum{ largeNum }; // error! Amend types

int anotherNum{ largeNum }; // OK!

float someFloat{ largeNum }; // error! An int may be narrowed
float someFloat{ 5000000 }; // OK! 5000000 can be accomodated

It may not be immediately apparent, but this feature has the potential to spare bugs that
occur when data stored in a type undergoes a narrowing conversion at execution time—
these occur implicitly during an initialization and are tough to solve.

Automatic Type Inference Using auto

There are cases where the type of a variable is apparent given the initialization value
being assigned to it. For example, if a variable is being initialized with the value true,
the type of the variable can be best estimated as bool. Compilers supporting C++11 and
beyond give you the option of not having to explicitly specify the variable type when
using the keyword auto.

auto coinFlippedHeads = true;

We have left the task of defining an exact type for variable coinFlippedHeads to the
compiler. The compiler checks the nature of the value the variable is being initialized
to and then decides on the best possible type that suits this variable. In this particular
case, it is clear that an initialization value of true best suits a variable that is of type
bool. The compiler thus determines bool as the type that suits variable coinFlipped-
Heads best and internally treats coinFlippedHeads as a bool, as also demonstrated
by Listing 3.6.

LISTING 3.6 Using the auto Keyword and Relying on the Compiler’s Type-Inference

Capabilities
1: #include <iostreams
2: using namespace std;
3:
4: int main()
5: {
6: auto coinFlippedHeads = true;
7: auto largeNumber = 2500000000000;
8:
9: cout << "coinFlippedHeads = " << coinFlippedHeads;
10: cout << " , sizeof (coinFlippedHeads) = " << sizeof (coinFlippedHeads) <<
endl;
11: cout << "largeNumber = " << largeNumber;
12: cout << " , sizeof (largeNumber) = " << sizeof (largeNumber) << endl;
13:
14: return 0;
15: }
Output v

coinFlippedHeads = 1 , sizeof (coinFlippedHeads) = 1

largeNumber = 2500000000000 , sizeof (largeNumber) 8

Analysis v

See how instead of deciding that coinFlippedHeads should be of type bool or that
largeNumber should be a long long, you have used the auto keyword in Lines 6
and 7 where the two variables have been declared. This delegates the decision on the
type of variable to the compiler, which uses the initialization value as a ballpark. You
have used sizeof to actually check whether the compiler created the types you sus-
pected it would, and you can check against the output produced by your code to verify
that it really did.

Using auto requires you to initialize the variable for the compiler
that uses this initial value in deciding what the variable type
can be.

NOTE

When you don't initialize a variable of type auto, you get a
compile error.

Even if auto seems to be a trivial feature at first sight, it makes programming a lot easier
in those cases where the type variable is a complex type. The role of auto in writing
simpler, yet type-safe code is revisited in Lesson 15, “An Introduction to the Standard
Template Library,” and beyond.

Using typedef to Substitute a Variable’s
Type

C++ allows you to substitute variable types to something that you might find convenient.
You use the keyword typedef for that. Here is an example where a programmer wants
to call an unsigned int a descriptive STRICTLY POSITIVE INTEGER.

typedef unsigned int STRICTLY POSITIVE INTEGER;
STRICTLY_POSITIVE_INTEGER numEggsInBasket = 4532;

When compiled, the first line tells the compiler that a STRICTLY POSITIVE INTEGER
is nothing but an unsigned int. At later stages when the compiler encounters the already
defined type STRICTLY POSITIVE INTEGER, it substitutes it for unsigned int and
continues compilation.

typedef or type substitution is particularly convenient when
dealing with complex types that can have a cumbersome syntax,
for example, types that use templates. Templates are discussed
later in Lesson 14, “An Introduction to Macros and Templates.”

NOTE

What Is a Constant?

Imagine you are writing a program to calculate the area and the circumference of
a circle. The formulas are

Area = pi * Radius * Radius;
Circumference = 2 * pi * Radius

In this formula, pi is the constant of value 22 /7. You don’t want the value of pi to
change anywhere in your program. You also want to avoid any accidental assignments of
possibly incorrect values to pi. C++ enables you to define pi as a constant that cannot
be changed after declaration. In other words, after it’s defined, the value of a constant
cannot be altered. Assignments to a constant in C++ cause compilation errors.

Thus, constants are like variables in C++ except that these cannot be changed. Similar
to variables, constants also occupy space in the memory and have a name to identify the
address where the space is reserved. However, the content of this space cannot be over-
written. Constants in C++ can be

Literal constants

Declared constants using the const keyword

Constant expressions using the constexpr keyword (new since C++11)

Enumerated constants using the enum keyword

Defined constants that are not recommended and deprecated

Literal Constants

Literal constants can be of many types—integer, string, and so on. In your first C++
program in Listing 1.1, you displayed “Hello World” using the following statement:

std::cout << "Hello World" << std::endl;

In here, “Hello World” is a string literal constant. You literally have been using literal
constants all the while! When you declare an integer someNumber, like this:

int someNumber = 10;

The integer variable someNumber is assigned an initial value of ten. Here decimal ten
is a part of the code, gets compiled into the application, is unchangeable, and is a literal
constant too. You may initialize the integer using a literal in octal notation, like this:

int someNumber = 012 // octal 12 evaluates to decimal 10

Starting in C++14, you may also use binary literals, like this:

int someNumber = 0b1010; // binary 1010 evaluates to decimal 10

C++ also allows you to define your own literals. For example,
temperature as 32.0_r (Fahrenheit) or 0.0_c (Centigrade),
distance as 16_m (Miles) or 10_km (Kilometers), and so on.

TIP

These suffixes F, ¢, m, and _km are called user-defined literals
and are explained in Lesson 12, “Operator Types and Operator
Overloading,” after the prerequisite concepts are explained.

Declaring Variables as Constants Using const

The most important type of constants in C++ from a practical and programmatic point
of view are declared by using keyword const before the variable type. The generic
declaration looks like the following:

const type-name constant-name = value;

Let’s see a simple application that displays the value of a constant called pi (see Listing 3.7).

LISTING 3.7 Declaring a Constant Called pi

1: #include <iostream>
2
3: int main()
4:
5: using namespace std;
6
7 const double pi = 22.0 / 7;
8 cout << "The value of constant pi is: " << pi << endl;
9:
10: // Uncomment next line to view compile failure
11: // pi = 345;
12:
13: return 0;
14: }
Output v

The value of constant pi is: 3.14286

Analysis v

Note the declaration of constant pi in Line 7. We use the const keyword to tell the
compiler that pi is a constant of type double. If you uncomment Line 11 where the

programmer tries to assign a value to a variable you have defined as a constant, you see
a compile failure that says something similar to, ““You cannot assign to a variable that
is const.” Thus, constants are a powerful way to ensure that certain data cannot be
modified.

It is good programming practice to define variables that are not
supposed to change their values as const. The usage of the
const keyword indicates that the programmer has thought about
ensuring the constantness of data where required and protects
his application from inadvertent changes to this constant.

NOTE

This is particularly useful in a multiprogrammer environment.

Constants are useful when declaring the length of static arrays, which are fixed at
compile time. Listing 4.2 in Lesson 4, “Managing Arrays and Strings,” includes a sample
that demonstrates the use of a const int to define the length of an array.

Constant Expressions Using constexpr
Keyword constexpr allows function-like declaration of constants:

constexpr double GetPi() {return 22.0 / 7;}

One constexpr can use another:

constexpr double TwicePi() {return 2 * GetPi();}

constexpr may look like a function, however, allows for optimization possibilities from
the compiler’s and application’s point of view. So long as a compiler is capable of evaluat-
ing a constant expression to a constant, it can be used in statements and expressions at
places where a constant is expected. In the preceding example, TwicePi() is a constexpr
that uses a constant expression GetPi(). This will possibly trigger a compile-time optimi-
zation wherein every usage of TwicePi() is simply replaced by 6.28571 by the compiler,
and not the code that would calculate 2 x 22 / 7 when executed.

Listing 3.8 demonstrates the usage of constexpr.

LISTING 3.8 Using constexpr to Calculate Pi

#include <iostreams>
constexpr double GetPi() { return 22.0 / 7; }
constexpr double TwicePi() { return 2 * GetPi(); }

U W N

int main()

using namespace std;
const double pi = 22.0 / 7;

o J O

e}

10: cout << "constant pi contains value " << pi << endl;

11: cout << "constexpr GetPi() returns value " << GetPi() << endl;

12: cout << "constexpr TwicePi() returns value " << TwicePi() << endl;
13: return 0;

14: }

Output v

constant pi contains value 3.14286
constexpr GetPi() returns value 3.14286
constexpr TwicePi() returns value 6.28571

Analysis v

The program demonstrates two methods of deriving the value of pi—one as a constant
variable pi as declared in Line 8 and another as a constant expression GetPi() declared
in Line 2. GetPi() and TwicePi() may look like functions, but they are not exactly.
Functions are invoked at program execution time. But, these are constant expressions and
the compiler had already substituted every usage of GetPi() by 3.14286 and every usage
of TwicePi() by 6.28571. Compile-time resolution of TwicePi() increases the speed of
program execution when compared to the same calculation being contained in a function.

Constant expressions need to contain simple implementations
that return simple types like integer, double, and so on. C++14
allows constexpr to contain decision-making constructs such as
if and switch statements. These conditional statements are dis-
cussed in detail in Lesson 6, “Controlling Program Flow.”

NOTE

The usage of constexpr Will not guarantee compile-time
optimization—for example, if you use a constexpr expression to
double a user provided number. The outcome of such an expres-
sion cannot be calculated by the compiler, which may ignore the
usage of constexpr and compile as a regular function.

To see a demonstration of how a constant expression is used
in places where the compiler expects a constant, see the code
sample in Listing 4.2 in Lesson 4.

In the previous code samples, we defined our own constant pi
as an exercise in learning the syntax of declaring constants and
constexpr. Yet, most popular C++ compilers already supply you
with a reasonably precise value of pi in the constant m_pPI. You
may use this constant in your programs after including header
file <cmaths.

TIP

Enumerations

There are situations where a particular variable should be allowed to accept only a
certain set of values. These are situations where you don’t want the colors in the rainbow
to contain Turquoise or the directions on a compass to contain Left. In both these cases,
you need a type of variable whose values are restricted to a certain set defined by you.
Enumerations are exactly the tool you need in this situation and are characterized by the
keyword enum. Enumerations comprise a set of constants called enumerators.

In the following example, the enumeration RainbowColors contains individual colors
such as Violet as enumerators:

enum RainbowColors

{
Violet = 0,
Indigo,
Blue,
Green,
Yellow,
Orange,
Red

}i

Here’s another enumeration for the cardinal directions:

enum CardinalDirections

{
North,
South,
East,
West

}i

Enumerations are used as user-defined types. Variables of this type can be assigned a
range of values restricted to the enumerators contained in the enumeration. So, if defining
a variable that contains the colors of a rainbow, you declare the variable like this:

RainbowColors MyFavoriteColor = Blue; // Initial value

In the preceding line of code, you declared an enumerated constant MyFavoriteColor
of type RainbowColors. This enumerated constant variable is restricted to contain any
of the legal VIBGYOR colors and no other value.

The compiler converts the enumerator such as violet and so on
into integers. Each enumerated value specified is one more than
the previous value. You have the choice of specifying a starting
value, and if this is not specified, the compiler takes it as 0. So,
North is evaluated as value 0.

NOTE

If you want, you can also specify an explicit value against each of
the enumerated constants by initializing them.

Listing 3.9 demonstrates how enumerated constants are used to hold the four cardinal
directions, with an initializing value supplied to the first one.

LISTING 3.9 Using Enumerated Values to Indicate Cardinal Wind Directions

1: #include <iostream>

2: using namespace std;

3:

4: enum CardinalDirections

5: |

6: North = 25,

7 South,

8: East,

9: West

10: };

11:

12: int main()

13: |

14: cout << "Displaying directions and their symbolic values" << endl;
15: cout << "North: " << North << endl;

16: cout << "South: " << South << endl;

17: cout << "East: " << East << endl;

18: cout << "West: " << West << endl;

19:
20: CardinalDirections windDirection = South;
21: cout << "Variable windDirection = " << windDirection << endl;
22:
23: return 0;

24: }

Output v

Displaying directions and their symbolic values
North: 25

South: 26

East: 27

West: 28

Variable windDirection = 26

Analysis v

Note how we have enumerated the four cardinal directions but have given the first North
an initial value of 25 (see Line 6). This automatically ensures that the following constants
are assigned values 26, 27, and 28 by the compiler as demonstrated in the output. In Line
20 you create a variable of type CardinalDirections that is assigned an initial value
South. When displayed on the screen in Line 21, the compiler dispatches the integer
value associated with South, which is 26.

You may want to take a look at Listings 6.4 and 6.5 in

Lesson 6. They use enum to enumerate the days of the week and
conditional processing to tell what the day of the user’s choosing
is named after.

TIP

Defining Constants Using #define

First and foremost, don’t use this if you are writing a program anew. The only reason
this book analyzes the definition of constants using #define is to help you understand
certain legacy programs that do define constants such as pi using this syntax:

#define pi 3.14286

#define is a preprocessor macro, and what is done here is that all mentions of pi
henceforth are replaced by 3.14286 for the compiler to process. Note that this is a text
replacement (read: non-intelligent replacement) done by the preprocessor. The compiler
neither knows nor cares about the actual type of the constant in question.

Defining constants using the preprocessor via #define is depre-
cated and should not be used.

CAUTION

Keywords You Cannot Use as Variable
or Constant Names

Some words are reserved by C++, and you cannot use them as variable names. These
keywords have special meaning to the C++ compiler. Keywords include if, while, for,
and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in
Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so
you should check its manual for a complete list.

TABLE 3.2 Major C++ Keywords

asm
auto

bool
break
case
catch
char
class
const
constexpr
continue
default
delete

do

double

dynamic_cast

else
enum
explicit
export
extern
false
float
for
friend
goto

if
inline
int
long
mutable

namespace

new
operator

private
protected
public

register
reinterpret cast
return

short

signed

sizeof

static
static_cast
struct

switch

template

In addition, the following words are reserved:

and
and_eq

bitand

bitor
compl

not

not_eq
or

or_eq

this
throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar t

while

Xor

Xor_eq

DO DON'T

DO give variables descriptive names, DON’T give names that are too short
even if that makes them long. or contain just a character.

DO initialize variables, and use list DON’T give names that use exotic
initialization to avoid narrowing con- acronyms known only to you.

VRSO EOS: DON’T give names that are reserved
DO ensure that the name of the vari- C++ keywords as these won't

able explains its purpose. compile.

DO put yourself into the shoes of
one who hasn’t seen your code yet
and think whether the name would
make sense to him or her.

DO check whether your team is
following certain naming conventions
and follow them.

Summary

In this lesson you learned about using memory to store values temporarily in variables
and constants. You learned that variables have a size determined by their type and

that the operator sizeof can be used to determine the size of one. You got to know of
different types of variables such as bool, int, and so on and that they are to be used

to contain different types of data. The right choice of a variable type is important in
effective programming, and the choice of a variable that’s too small for the purpose can
result in a wrapping error or an overflow situation. You learned about the keyword auto,
where you let the compiler decide the data-type for you on the basis of the initialization
value of the variable.

You also learned about the different types of constants and usage of the most important
ones among them using the keywords const, constexpr, and enum.

Q&A

Q Why define constants at all if you can use regular variables instead of them?

A Constants, especially those declared using the keyword const, are your way of
telling the compiler that the value of a particular variable be fixed and not allowed
to change. Consequently, the compiler always ensures that the constant variable is
never assigned another value, not even if another programmer was to take up your
work and inadvertently try to overwrite the value. So, declaring constants where

you know the value of a variable should not change is a good programming practice
and increases the quality of your application.

Q Why should I initialize the value of a variable?

A If you don’t initialize, you don’t know what the variable contains for a starting
value. The starting value is just the contents of the location in the memory that are
reserved for the variable. Initialization such as that seen here:

int myFavoriteNumber = 0;

writes the initial value of your choosing, in this case 0, to the memory location
reserved for the variable myFavoriteNumber as soon as it is created. There are
situations where you do conditional processing depending on the value of a variable
(often checked against nonzero). Such logic does not work reliably without initial-
ization because an unassigned or initiated variable contains junk that is often
nonzero and random.

Q Why does C++ give me the option of using short int and int and long
int? Why not just always use the integer that always allows for the highest
number to be stored within?

A C++ is a programming language that is used to program for a variety of
applications, many running on devices with little computing capacity or memory
resources. The simple old cell phone is one example where processing capacity
and available memory are both limited. In this case, the programmer can often save
memory or speed or both by choosing the right kind of variable if he doesn’t need
high values. If you are programming on a regular desktop or a high-end smart-
phone, chances are that the performance gained or memory saved in choosing one
integer type over another is going to be insignificant and in some cases even absent.

Q Why should I not use global variables frequently? Isn’t it true that they’re
usable throughout my application and I can save some time otherwise lost
to passing values around functions?

A Global variables can be read and assigned globally. The latter is the problem as they
can be changed globally. Assume you are working on a project with a few other
programmers in a team. You have declared your integers and other variables to be
global. If any programmer in your team changes the value of your integer inadver-
tently in his code—which even might be a different .CPP file than the one you are
using—the reliability of your code is affected. So, sparing a few seconds or minutes
should not be criteria, and you should not use global variables indiscriminately to
ensure the stability of your code.

Q C++ is giving me the option of declaring unsigned integers that are supposed
to contain only positive integer values and zero. What happens if I decrement
a zero value contained in an unsigned int?

A You see a wrapping effect. Decrementing an unsigned integer that contains 0 by
1 means that it wraps to the highest value it can hold! Check Table 3.1—you see
that an unsigned short can contain values from O to 65,535. So, declare an
unsigned short and decrement it to see the unexpected:

unsigned short myShortInt = 0; // Initial Value
myShortInt = myShortInt - 1; // Decrement by 1
std::cout << myShortInt << std::endl; // Output: 65535!

Note that this is not a problem with the unsigned short, rather with your usage
of the same. An unsigned integer (or short or long) is not to be used when nega-
tive values are within the specifications. If the contents of myShortInt are to be
used to dynamically allocate those many number of bytes, a little bug that allows
a zero value to be decremented would result in 64KB being allocated! Worse,

if myShortInt were to be used as an index in accessing a location of memory,
chances are high that your application would access an external location and
would crash!

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain that you understand the answers before continuing to the
next lesson.

Quiz

. What is the difference between a signed and an unsigned integer?

[EN

. Why should you not use #define to declare a constant?

. Why would you initialize a variable?

H W N

. Consider the enum below. What is the value of Queen?

enum YourCards {Ace, Jack, Queen, King};

5. What is wrong with this variable name?

int Integer = 0;

Exercises

1.

Modify enum YourCards in quiz question 4 to demonstrate that the value of
Queen can be 45.

. Write a program that demonstrates that the size of an unsigned integer and a normal

integer are the same, and that both are smaller in size than a long integer.

. Write a program to calculate the area and circumference of a circle where the

radius is fed by the user.

. In Exercise 3, if the area and circumference were to be stored in integers, how

would the output be any different?

. BUGBUSTERS: What is wrong in the following initialization:

auto Integer;

LESSON 4
Managing Arrays
and Strings

In previous lessons, you declared variables used to contain a single int,
char, or string to mention a few instances. However, you may want to
declare a collection of objects, such as 20 ints or a string of characters

to hold a name.
In this lesson, you learn

m What arrays are and how to declare and use them
m What strings are and how to use character arrays to make them

m A brief introduction to std: :string

What Is an Array?

The dictionary definition of an array gets really close to what we want to be understanding.
According to Merriam Webster, an array is “a group of elements forming a complete
unit, for example an array of solar panels.”

The following are characteristics of an array:

® An array is a collection of elements.
m All elements contained in an array are of the same kind.

m This collection forms a complete set.

In C++, arrays enable you to store data elements of a type in the memory, in a sequential
and ordered fashion.

The Need for Arrays

Imagine that you are writing a program where the user can type in five integers and you
display them back to him. One way would be to have your program declare five distinct
and unique integer variables and use them to store and display values. The declarations
would look like this:

int firstNumber = 0;

int secondNumber = 0;

int thirdNumber = 0;

int fourthNumber = 0;
int fifthNumber = 0;

If your user wants this program to store and display 500 integers at a later stage, you
need to declare 500 such integers using the preceding system. This still is doable given
generous amounts of patience and time. However, imagine the user asks you to support
500,000 integers instead of 5—what would you do?

You would do it right and do it smart from the point go by declaring an array of five
integers each initialized to zero, like this:

int myNumbers [5] = {0};

Thus, if you were asked to support 500,000 integers, your array would scale up quite
quickly, like this:

int manyNumbers [500000] = {0};

An array of five characters would be defined as

char myCharacters [5];

Such arrays are called static arrays because the number of elements they contain as well
as the memory the array consumes is fixed at the time of compilation.

Declaring and Initializing Static Arrays

In the preceding lines of code, you declared an array called myNumbers that contains
five elements of type int—that is, integer—all initialized to a value 0. Thus, array
declaration in C++ follows a simple syntax:

ElementType ArrayName [constant number of elements] = {optional initial values};

You can even declare an array and initialize its contents on a per-element basis, like this
integer array where each of the five integers is initialized to five different integer values:

int myNumbers [5] = {34, 56, -21, 5002, 365};

You can have all elements in an array initialized to zero (the default supplied by the
compiler to numerical types), like this:

int myNumbers [5] = {}; // initializes all integers to 0

You can also partially initialize elements in an array, like this:

int myNumbers [5] = {34, 56};
// initialize first two elements to 34 and 56 and the rest to 0

You can define the length of an array (that is, the number of elements in one) as a
constant and use that constant in your array definition:

const int ARRAY LENGTH = 5;
int myNumbers [ARRAY LENGTH] = {34, 56, -21, 5002, 365};

This is particularly useful when you need to access and use the length of the array at
multiple places, such as when iterating elements in one, and then instead of having to
change the length at each of those places, you just correct the initialization value at the
const int declaration.

You can opt to leave out the number of elements in an array if you know the initial values
of the elements in the array:

int myNumbers [] = {2016, 2052, -525}; // array of 3 elements

The preceding code creates an array of three integers with the initial values 2016, 2052,
and -525.

Arrays declared thus far are called static arrays as the length
of the array is a constant and fixed by the programmer at
compile-time. This array cannot take more data than what the
programmer has specified. It also does not consume any less
memory if left half-used or unused. Arrays where the length is
decided at execution-time are called dynamic arrays. Dynamic
arrays are briefly introduced later in this lesson and are
discussed in detail in Lesson 17, “STL Dynamic Array Classes.”

NOTE

How Data Is Stored in an Array

Think of books placed on a shelf, one next to the other. This is an example of a
one-dimensional array, as it expands in only one dimension, that is the number of books
on it. Each book is an element in the array, and the rack is akin to the memory that has
been reserved to store this collection of books as shown in Figure 4.1.

FIGURE 4.1
Books on a shelf:
a one-dimensional
array.

It is not an error that we started numbering the books with 0. As you later see, indexes
in C++ start at 0 and not at 1. Similar to the five books on a shelf, the array myNumbers
containing five integers looks similar to Figure 4.2.

FIGURE 4.2 :
Organization of an s'ze°f(int)
array of five integers, |
myNumbers, in
memory.

Note that the memory space occupied by the array is comprised of five blocks, each of
equal size, that is defined by the type of data to be held in the array, in this case integer.
If you remember, you studied the size of an integer in Lesson 3, “Using Variables,
Declaring Constants.” The amount of memory reserved by the compiler for the array
myNumbers is hence sizeof (int) * 5. In general, the amount of memory reserved by
the compiler for an array in bytes is

Bytes consumed by an array = sizeof (element-type) * Number of Elements

Accessing Data Stored in an Array

Elements in an array can be accessed using their zero-based index. These indexes are
called zero-based because the first element in an array is at index 0. So, the first integer
value stored in the array myNumbers is myNumbers [0], the second is myNumbers [1],
and so on. The fifth is myNumbers [4]. In other words, the index of the last element in
an array is always (Length of Array — 1).

When asked to access element at index N, the compiler uses the memory address of the
first element (positioned at index zero) as the starting point and then skips N elements

by adding the offset computed as N*sizeof (element) to reach the address containing
the (N+1)th element. The C++ compiler does not check if the index is within the actual
defined bounds of the array. You can try fetching the element at index 1001 in an array of
only 10 elements, putting the security and stability of your program at risk. The onus of
ensuring that the array is not accessed beyond its bounds lies solely on the programmer.

Accessing an array beyond its bounds results in unpredictable
behavior. In many cases this causes your program to crash.
Accessing arrays beyond their bounds should be avoided at
all costs.

CAUTION

Listing 4.1 demonstrates how you declare an array of integers, initialize its elements to
integer values, and access them to display them on the screen.

LISTING 4.1 Declaring an Array of Integers and Accessing Its Elements

0: #include <iostream>

1:

2: using namespace std;

3:

4: int main ()

5:

6: int myNumbers [5] = {34, 56, -21, 5002, 365};

7:

8: cout << "First element at index 0: " << myNumbers [0] << endl;

9: cout << "Second element at index 1: " << myNumbers [1] << endl;
10: cout << "Third element at index 2: " << myNumbers [2] << endl;
11: cout << "Fourth element at index 3: " << myNumbers [3] << endl;
12 cout << "Fifth element at index 4: " << myNumbers [4] << endl;
13:

14: return 0;

15: }
Output v

First element at index 0: 34
Second element at index 1: 56
Third element at index 2: -21
Fourth element at index 3: 5002
Fifth element at index 4: 365

Analysis v

Line 6 declares an array of five integers with initial values specified for each of them.
The subsequent lines simply display the integers using cout and using the array variable
myNumbers with an appropriate index.

To familiarize you with the concept of zero-based indexes used

to access elements in arrays, we started numbering lines of
code in Listing 4.1 and beyond with the first line being numbered
as Line 0.

NOTE

Modifying Data Stored in an Array

In the previous code listing, you did not enter user-defined data into the array. The syntax
for assigning an integer to an element in that array is quite similar to assigning an integer
value to an integer variable.

For example, assigning a value 2016 to an integer is like the following:

int thisYear;
thisYear = 2016;

Assigning a value 2016 to the fourth element in your array is like this:

myNumbers [3] = 2016; // Assign 2016 to the fourth element

Listing 4.2 demonstrates the use of constants in declaring the length of an array and shows
how individual array elements can be assigned values during the execution of the program.

LISTING 4.2 Assigning Values to Elements in an Array

0: #include <iostreams

1: using namespace std;

2: constexpr int Square (int number) { return number*number; }
3:

4: int main()

5: |

6: const int ARRAY LENGTH = 5;

7:

8: // Array of 5 integers, initialized using a const

9: int myNumbers [ARRAY LENGTH] = {5, 10, 0, -101, 20};
10:

11: // Using a constexpr for array of 25 integers

12: int moreNumbers [Square (ARRAY LENGTH)];

13

14: cout << "Enter index of the element to be changed: ";
15 int elementIndex = 0;

16 cin >> elementIndex;

17:

18: cout << "Enter new value: ";

19: int newValue = 0;
20 cin >> newValue;

N
=

22: myNumbers [elementIndex] = newValue;

23: moreNumbers [elementIndex] = newValue;

24 :

25: cout << "Element " << elementIndex << " in array myNumbers is: ";
26: cout << myNumbers[elementIndex] << endl;

27:

28: cout << "Element " << elementIndex << " in array moreNumbers is: ";
29: cout << moreNumbers[elementIndex] << endl;

30:

31: return 0;

32: }

Output v

Enter index of the element to be changed: 3
Enter new value: 101

Element 3 in array myNumbers is: 101
Element 3 in array moreNumbers is: 101

Analysis Vv

Array length needs to be a constant integer. This can therefore also be specified in a
constant ARRAY LENGTH used in Line 9 or a constant expression Square () used in Line
12. Thus, the array myNumbers is declared to be 5 elements in length, while the array
moreNumbers to be 25. Lines 14-20 ask the user to enter the index in the array of the
element he wants to modify and the new value to be stored at that index. Lines 22 and 23
demonstrate how to modify a specific element in an array given that index. Lines 2629
demonstrate how to access elements in an array given an index. Note that modifying

the element at index 3 actually modifies the fourth element in the array, as indexes are
zero-based entities. You have to get used to this.

Many novice C++ programmers assign the fifth value at index
five in an array of five integers. Note that this exceeds the bound
of the array as the compiled code tries accessing the sixth
element in the array which is beyond its defined bounds.

NOTE

This kind of error is called a fence-post error. It's named after the
fact that the number of posts needed to build a fence is always
one more than the number of sections in the fence.

CAUTION

Something fundamental is missing in Listing 4.2: It does not
check whether the index entered by the user is within the bounds
of the array. The previous program should actually verify whether
elementIndex iS within O and 4 for array myNumbers and within
0 and 24 for array moreNumbers and reject all other entries. This
missing check allows the user to potentially assign and access a
value beyond the bounds of the array. This can potentially cause
the application—and the system, in a worst-case scenario—to
crash.

Performing checks is explained in Lesson 6, “Controlling
Program Flow.”

Using Loops to Access Array Elements

When working with arrays and their elements in serial order, you should access them
(in other words, iterate) using loops. See Lesson 6, and Listing 6.10 in particular,

to quickly learn how elements in an array can be efficiently inserted or accessed
using a for loop.

DO DON’T
DO always initialize arrays, or else DON’T ever access the Nth element
they will contain junk values. using index N, in an array of N

DO always ensure that your arrays are

elements. Use index (N-1).

used within their defined boundaries. DON'’T forget that the first element in

an array is accessed using index O.

Multidimensional Arrays

The arrays that we have seen thus far have been akin to books on a shelf. There can be
more books on a longer shelf and fewer books on a shorter one. That is, the length of the

shelf is the only dimension defining the capacity of the shelf, hence it is one-dimensional.
Now, what if we were to use arrays to model an array of solar panels as shown in Figure 4.3?

Solar panels, unlike bookshelves, expand in two dimensions: in length and in breadth.

FIGURE 4.3 Column 0 Column 1 Column 2

Array of solar panels
on a roof. Row 0 Panel Panel Panel
0 1 2
Panel Panel Panel
Row 1 3 4 5

As you see in Figure 4.3, six solar panels are placed in a two-dimensional arrangement
comprised of two rows and three columns. From one perspective, you can see this
arrangement as an array of two elements, each element itself being an array of three
panels—in other words, an array of arrays. In C++, you can model two-dimensional
arrays, but you are not restricted to just two dimensions. Depending on your need and the
nature of the application, you can model multidimensional arrays in memory, too.

Declaring and Initializing Multidimensional Arrays

C++ enables you to declare multidimensional arrays by indicating the number of
elements you want to reserve in each dimension. So, a two-dimensional array of integers
representing the solar panels in Figure 4.3 is

int solarPanels [2][3];

Note that in Figure 4.3, you have also assigned each panel an ID ranging from 0 through
5 for the six panels in the solar array. If you were to initialize the integer array in the
same order, it would look like the following:

int solarPanels [2]1[3] = {{o0, 1, 2}, {3, 4, 5}};

As you see, the initialization syntax used is actually similar to one where we initialize
two one-dimensional arrays. An array comprising of three rows and three columns would
look like this:

int threeRowsThreeColumns [3][3] = {{-501, 206, 2016}, {989, 101, 206}, {303,
456, 596}};

Even though C++ enables us to model multidimensional arrays,
the memory where the array is contained is one-dimensional. So,
the compiler maps the multidimensional array into the memory
space, which expands only in one direction.

NOTE

If you wanted to, you could also initialize the array called
solarPanels like the following, and it would still contain the
same values in the respective elements:

int solarPanels [2]1[3] = {0, 1, 2, 3, 4, 5};

However, the earlier method makes a better example because
it's easier to imagine and understand a multidimensional array
as an array of arrays.

Accessing Elements in a Multidimensional Array

Think of a multidimensional array as an array comprising elements that are arrays.
So, when dealing with a two-dimensional array comprising three rows and three
columns, each containing integers, visualize it as handling an array comprising three
elements, where each element is an array comprising three integers.

When you need to access an integer in this array, you would need to use a first subscript
to address the array where the integer is and the second subscript to address that integer
in this array. Consider this array:

int threeRowsThreeColumns [3][3] = {{-501, 205, 2016}, {989, 101, 206}, {303,
456, 596}};

It has been initialized in a way you can visualize three arrays, each containing three
integers. Here, the integer element with value 205 is at position [0] [1]. The element
with value 456 is at position [2] [1]. Listing 4.3 explains how integer elements in this
array can be accessed.

LISTING 4.3 Accessing Elements in a Multidimensional Array

#include <iostream>
using namespace std;

int main()

{

int threeRowsThreeColumns [3][3] = \
{{-501, 205, 2016}, {989, 101, 206}, {303, 456, 596}};

cout << "Row 0: " << threeRowsThreeColumns [0] [0] << " " \
<< threeRowsThreeColumns [0] [1] << " " \

W W J O Ul & WDN K O

10: << threeRowsThreeColumns [0] [2] << endl;
11:

12:

13: cout << "Row 1: " << threeRowsThreeColumns [1][0] << " " \
14: << threeRowsThreeColumns [1][1] << " " \
15: << threeRowsThreeColumns [1] [2] << endl;
16:

17: cout << "Row 2: " << threeRowsThreeColumns [2][0] << " "\
18: << threeRowsThreeColumns [2] [1] << " " \
19: << threeRowsThreeColumns [2] [2] << endl;
20:

21: return 0;

22: }

Output v

Row 0: -501 205 2016
Row 1: 989 101 206
Row 2: 303 456 596

Analysis v

Note how you have accessed elements in the array row-wise, starting with the array that
is Row O (the first row, with index 0) and ending with the array that is Row 2 (third row,
with index 2). As each of the rows is an array, the syntax for addressing the third element
in the first row (row index 0, element index 2) is seen in Line 10.

In Listing 4.3 the length of the code increases dramatically with
the increase in the number of elements in the array or dimen-
sions thereof. This code is actually unsustainable in a profes-
sional development environment.

NOTE

You can see a more efficient way to program accessing elements
in @ multidimensional array in Listing 6.14 in Lesson 6, in which
you use a nested for loop to access all elements in such an
array. Using for loops is actually shorter and less error-prone,
and the length of the program is not affected by changing the
number of elements in the array.

Dynamic Arrays

Consider an application that stores medical records for hospitals. There is no good
way for the programmer to know what the upper limits of the number of records his
application might need to handle are. He can make an assumption that is way more

than the reasonable limit for a small hospital to err on the safe side. In those cases, he is
reserving huge amounts of memory without reason and reducing the performance of the

system.

The key is to not use static arrays like the ones we have seen thus far, rather to choose
dynamic arrays that optimize memory consumption and scale up depending on the
demand for resources and memory at execution-time. C++ provides you with convenient
and easy-to-use dynamic arrays in the form of std: : vector as shown in Listing 4.4.

LISTING 4.4 Creating a Dynamic Array of Integers and Inserting Values Dynamically

0: #include <iostreams>
1: #include <vectors>
2:
3: using namespace std;
4:
5: int main()
6: {
7: vector<int> dynArray (3); // dynamic array of int
8:
9: dynArray [0] = 365;
10: dynArray[1l] = -421;
11: dynArray[2]= 789;
12:
13 cout << "Number of integers in array: " << dynArray.size() << endl;
14:
15 cout << "Enter another element to insert" << endl;
16 int newValue = 0;
17: cin >> newValue;
18: dynArray.push_back (newValue) ;
19:
20 cout << "Number of integers in array: " << dynArray.size() << endl;
21: cout << "Last element in array: ";
22: cout << dynArray[dynArray.size() - 1] << endl;
23 return 0;
24:
25: }
Output v

Number of integers in array: 3
Enter another element to insert

2017

Number of integers in array: 4
Last element in array: 2017

Analysis v

Don’t worry about the syntax in Listing 4.4 as vector and templates have not been
explained as yet. Try to observe the output and correlate it to the code. The initial size

of the array according to the output is 3, consistent with the declaration of the array
(std: :vector) at Line 7. Knowing this, you still ask the user to enter a fourth number
at Line 15, and, interestingly enough, you are able to insert this number into the back

of the array using push_back () at Line 18. The vector dynamically resizes itself to
accommodate more data. This can be then seen in the size of the array that increases to
4. Note the usage of the familiar static array syntax to access data in the vector. Line 22
accesses the last element (wherever that might be, given a position calculated at run-time)
using the zero-based index, where the last element is at index “size () - 17
being the function that returns the total number of elements (integers) contained in the

.size()

vector.

To use the dynamic array class std: :vector, you need to
include header vector, which is also shown in Line 1 of Listing 4.4.

NOTE

#include <vectors>

Vectors are explained in greater detail in Lesson 17.

C-style Character Strings

C-style strings are a special case of an array of characters. You have already seen some
examples of C-style strings in the form of string literals that you have been writing into
your code:

std::cout << "Hello World";

This is equivalent to using the array declaration:

char sayHello[] — {uHul tet, '1v, '1v, o', ' ', 'W', 'o', 'r', '1', 'dr,
"o}
std::cout << sayHello << std::endl;

Note that the last character in the array is a null character "\0'. This is also called the
string-terminating character because it tells the compiler that the string has ended. Such
C-style strings are a special case of character arrays in that the last character always pre-
cedes the null-terminator "\0. When you embed a string literal in your code, the compiler
does the job of adding a "\O' after it.

If you inserted '\0' anywhere in the middle of the array, it would not change the size of
the array; it would only mean that string-processing using the array as input would stop
at that point. Listing 4.5 demonstrates this point.

"\o' might look like two characters to you, and it indeed is two
characters typed using the keyboard. Yet, the backslash is a spe-
cial escape code that the compiler understands and \ o means
null—that is, it asks the compiler to insert a null or zero in there.

NOTE

You could not write "o directly because that would be accepted
as character zero, which has the nonzero ASCII code 48.

Check the table in Appendix D, “ASCII Codes,” to see this and
other ASCII values.

LISTING 4.5 Analyzing the Null-Terminator in a C-style String

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: |
5: char sayHello[] = {'H', 'e','1l','1l','o'," ', 'W','o','r','1",'d",'"\0"'};
6: cout << sayHello << endl;
7: cout << "Size of array: " << sizeof (sayHello) << endl;
8:
9: cout << "Replacing space with null" << endl;
10: sayHello[5] = '\0';
11: cout << sayHello << endl;
12: cout << "Size of array: " << sizeof (sayHello) << endl;
13:
14: return 0;
15: }
Output v

Hello World

Size of array: 12
Replacing space with null
Hello

Size of array: 12

Analysis v

Line 10 is where we replace the space in “Hello World” by the null-terminating charac-
ter. Note that the array now has two null-terminators, but it’s the first one that results in
the display of the string in Line 11 being truncated to just “Hello”. sizeof () at Lines 7
and 12 indicates that the size of the array has not changed, even if the displayed data
changed a lot.

If you forget to add the '\ o' when declaring and initializing the
character array in Listing 4.5 at Line 5, then expect the output
to contain garbled characters after printing “Hello World”; this is
because std: :cout does not stop with printing the array until it
reaches a null character, even if it means exceeding the bounds
of the array.

CAUTION

This mistake can cause your program to crash and, in some
cases, compromise the stability of the system.

C-style strings are fraught with danger. Listing 4.6 demonstrates the risks involved in
using one.

LISTING 4.6 A Risky Application Using C-style Strings and User Input

0: #include<iostreams>

1: #include<string.h>

2: using namespace std;

3: int main()

4: {

5: cout << "Enter a word NOT longer than 20 characters:" << endl;
6:

7: char userInput [21] = {'\0'};

8: cin >> userlInput;

9:

10: cout << "Length of your input was: " << strlen (userInput) << endl;
11:

12: return 0;

13: }
Output v

Enter a word NOT longer than 20 characters:
Don'tUseThisProgram
Length of your input was: 19

Analysis v

The danger is visible in the output. The program is begging the user to not enter data
longer than 20 characters. The reason it does so is that the character buffer declared in
Line 7 meant to store user input has a fixed—static—length of 21 characters. As the last
character in the string needs to be a null-terminator '\0', the maximum length of text
stored by the buffer is limited to 20. Note the usage of strlen() in Line 10 to compute
the length of the string. Strlen () walks the character buffer and counts the number

of characters crossed until it reaches the null-terminator that indicates the end of the
string. This null-terminator has been inserted by cin at the end of the user’s input. This
behavior of strlen makes it dangerous as it can easily walk past the bounds of

the character array if the user has supplied text longer than the mentioned limit. See
Listing 6.2 in Lesson 6 to learn how to implement a check that ensures an array is not
written beyond its bounds.

Applications programmed in C (or in C++ by programmers who
have a strong C background) often use string copy functions
such as strcpy (), concatenation functions such as strcat (),
and strlen() to determine the length of a string, in addition to
others of this kind.

CAUTION

These functions take C-style strings as input and are dangerous
as they seek the null-terminator and can exceed the boundaries
of the character array they're using if the programmer has not
ensured the presence of the terminating null.

C++ Strings: Using std::string

C++ standard strings are an efficient and safer way to deal with text input—and to
perform string manipulations like concatenations. std: : string is not static in size
like a char array implementation of a C-style string is and can scale up when more
data needs to be stored in it. Using std: : string to manipulate string data is shown in
Listing 4.7.

LISTING 4.7 Using std::string to Initialize, Store User Input, Copy, Concatenate,
and Determine the Length of a String

0: #include <iostream>
1: #include <strings
2:

3: using namespace std;
4

5: int main()
6: {
7: string greetString ("Hello std::string!");
8: cout << greetString << endl;
9:
10: cout << "Enter a line of text: " << endl;
11: string firstLine;
12: getline(cin, firstLine);
13:
14: cout << "Enter another: " << endl;
15: string secondLine;
16: getline(cin, secondLine) ;
17:
18: cout << "Result of concatenation: " << endl;
19: string concatString = firstLine + " " + secondLine;
20 cout << concatString << endl;
21:
22 cout << "Copy of concatenated string: " << endl;
23 string aCopy;
24: aCopy = concatString;
25: cout << aCopy << endl;
26:
27: cout << "Length of concat string: " << concatString.length() << endl;
28
29: return 0;
30: }
Output v

Hello std::string!
Enter a line of text:

I love

Enter another:

C++ strings

Result of concatenation:

I love C++ strings

Copy of concatenated string:
I love C++ strings

Length of concat string: 18

Analysis Vv

Try to understand the output and correlate it to the various elements in code. Don’t let

new syntax features bother you at this stage. The program starts with displaying a string

that has been initialized in Line 7 to “Hello std::string”. It then asks the user to
enter two lines of text, which are stored in variables firstLine and secondLine in

Lines 12 and 16. The actual concatenation is simple and looks like an arithmetic addition

in Line 19, where even a space has been added to the first line. The act of copying is

a simple act of assigning in Line 24. Determining the length of the string is done by
invoking length () on it in Line 27.

To use a C++ string, you need to include the header string:

NOTE

#include <string>

This is also visible in Line 1 in Listing 4.7.

To learn the various functions of std: : string in detail, take a quick look at Lesson 16,
“The STL string Class.” Because you have not learned about classes and templates yet,
ignore sections that seem unfamiliar in that lesson and concentrate on understanding the
gist of the samples.

Summary

This lesson taught you about the basics of arrays, what they are, and where they can be
used. You learned how to declare them, initialize them, access elements in an array, and
write values to elements in an array. You learned how important it is to not exceed the
bounds of an array. That is called a buffer overflow, and ensuring that input is checked
before using to index elements helps ensure that the limits of an array are not crossed.

Dynamic arrays are those where the programmer doesn’t need to worry about fixing the
max length of an array at compile-time, and they allow for better memory management
in the event of usage that is lesser than the expected maximum.

You also learned that C-style strings are a special case of char arrays where the end of
the string is marked by a null-terminating character '\0'. More importantly, though,
you learned that C++ offers a far better option in the std: : string, which provides
convenient utility functions that enable you to determine the length, concatenate, and
perform similar actions.

Q&A

Q Why take the trouble to initialize a static array’s elements?

A Unless initialized, the array, unlike a variable of any other type, contains junk and
unpredictable values as the memory at that location was left untouched after the last
operations. Initializing arrays ensures that the information therein has a distinct and
predictable initial state.

Q Would you need to initialize the elements in a dynamic array for the same
reasons as mentioned in the first question?

A Actually, no. A dynamic array is quite a smart array. Elements in the array don’t
need to be initialized to a default value unless there is a specific reason related to
the application that needs you to have certain initial values in the array.

Q Given a choice, would you use C-style strings that need a null-terminator?

A Yes, but only if someone places a gun to your head. C++ std: :stringis a lot
safer and supplies features that should make any good programmer stay away from
using C-style strings.

Q Does the length of the string include the null-terminator at the end of it?

A No, it doesn’t. The length of string “Hello World” is 11, including the space and
excluding the null character at the end of it.

Q Well, I still want to use C-style strings in char arrays defined by myself. What
should be the size of the array I am using?

A Here you go with one of the complications of using C-style strings. The size of the
array should be one greater than the size of the largest string it will ever contain.
This is essential so that it can accommodate for the null character at the end of the
largest string. If “Hello World” was to be the largest string your char array would
ever hold, then the length of the array needs to be 11 + 1 = 12 characters.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material
covered and exercises to provide you with experience in using what you’ve learned. Try to
answer the quiz and exercise questions before checking the answers in Appendix E, and be
certain you understand the answers before continuing to the next lesson.

Quiz
1. Check the array myNumbers in Listing 4.1. What are the indexes of the first and
last elements in that array?
2. If you need to allow the user to input strings, would you use C-style strings?

3. How many characters are in '\0' as seen by the compiler?

4. You forget to end your C-style string with a null-terminator. What happens when
you use it?

5. See the declaration of vector in Listing 4.4 and try composing a dynamic array that
contains elements of the type char.

Exercises

1. Declare an array that represents the squares on the chessboard; the type of the array
being an enum that defines the pieces that may possibly occupy the squares.

HINT: The enum will contain enumerators (Rook, Bishop, and so on), thereby
limiting the range of possible values that the elements in the array can hold. Don’t
forget that a cell may also be empty!

2. BUG BUSTERS: What is wrong with this code fragment?

int myNumbers[5] = {0};
myNumbers [5] = 450; // Setting the 5th element to value 450

3. BUG BUSTERS: What is wrong with this code fragment?

int myNumbers [5] ;
cout << myNumbers[3];

LESSON 5
Working with
Expressions,
Statements, and
Operators

At its heart, a program is a set of commands executed in sequence.
These commands are programmed into expressions and statements and
use operators to perform specific calculations or actions.

In this lesson, you learn

m What statements are
B What blocks or compound statements are
m What operators are

m How to perform simple arithmetic and logical operations

Statements

Languages—spoken or programmed—are composed of statements that are executed one
after another. Let’s analyze the first important statement you learned:

cout << "Hello World" << endl;

A statement using cout displays text using the console on the screen. All statements in
C++ end with a semicolon (;), which defines the boundary of a statement. This is similar
to the period (.) you add when ending a sentence in English. The next statement can start
immediately after the semicolon, but for convenience and readability you often program
successive statements on successive lines. In other words, this is actually a set of two
statements in a line:

cout << "Hello World" << endl; cout << "Another hello" << endl;

Whitespaces typically are not visible to the compiler. This
includes spaces, tabs, line feeds, carriage returns, and so on.
Whitespaces within string literals, though, make a difference to
the output.

NOTE

The following would be invalid:

cout << "Hello
World" << endl; // new line in string literal not allowed

Such code typically results in an error indicating that the compiler is missing a closing
quote () and a statement-terminating semicolon (;) in the first line. If you need to spread
a statement over two lines for some reason, you can do it by inserting a backslash (\) at
the end:

cout << "Hello \
World" << endl; // split to two lines is OK

Another way of writing the preceding statement in two lines is to write two string literals
instead of just one:

cout << "Hello "
"World" << endl; // two string literals is also OK

In the preceding example, the compiler notices two adjacent string literals and
concatenates them for you.

Splitting a statement into many lines can be useful when you

have long text elements or complex expressions comprised of many
variables that make a statement much longer than what most
displays can allow.

NOTE

Compound Statements or Blocks

When you group statements together within braces {...}, you create a compound
statement or a block.

int daysInYear = 365;
cout << "Block contains an int and a cout statement" << endl;

A block typically groups many statements to indicate that they belong together. Blocks
are particularly useful when programming conditional if statements or loops, which are
explained in Lesson 6, “Controlling Program Flow.”

Using Operators

Operators are tools that C++ provides for you to be able to work with data, transform it,
process it, and possibly make decisions on the basis of it.

The Assignment Operator (=)
The assignment operator is one that you already have been using intuitively in this book:

int daysInYear = 365;

The preceding statement uses the assignment operator in initializing the integer to 365.
The assignment operator replaces the value contained by the operand to the left
(unimaginatively called I-value) by that on the right (called r-value).

Understanding L-values and R-values

L-values often refer to locations in memory. A variable such as daysInYear from the
preceding example is actually a handle to a memory location and is an l-value. R-values,
on the other hand, can be the very content of a memory location.

So, all I-values can be r-values, but not all r-values can be l-values. To understand it
better, look at the following example, which doesn’t make any sense and therefore won’t
compile:

365 = daysInYear;

Operators to Add (+), Subtract (-), Multiply (*),
Divide (/), and Modulo Divide (%)

You can perform an arithmetic operation between two operands by using + for addition,
— for subtraction, * for multiplication, / for division, and % for modulo operation:

int numl = 22;

int num2 = 5;

int addNums = numl + num2; // 27

int subtractNums = numl - num2; // 17

int multiplyNums = numl * num2; // 110

int divideNums = numl / num2; // 4

int moduloNums = numl % num2; // 2

Note that the division operator (/) returns the result of division between two operands.
In the case of integers, however, the result contains no decimals as integers by definition
cannot hold decimal data. The modulo operator (%) returns the remainder of a division
operator, and it is applicable only on integer values. Listing 5.1 is a simple program

that demonstrates an application to perform arithmetic functions on two numbers input
by the user.

LISTING 5.1 Demonstrate Arithmetic Operators on Integers Input by the User

0: #include <iostreams

1: using namespace std;

2:

3: int main()

4: {

5: cout << "Enter two integers:" << endl;

6: int numl = 0, num2 = 0;

7 cin >> numl;

8: cin >> num2;

9:
10 cout << numl << " + " << num2 << " = " << numl + num2 << endl;
11 cout << numl << " - " << num2 << " = " << numl - num2 << endl;
12 cout << numl << " * " << num2 << " = " << numl * num2 << endl;

13: cout << numl << " / " << num2 << " = " << numl / num2 << endl;

14: cout << numl << " & " << num2 << " = " << numl % num2 << endl;
15:

16: return 0;

17: }

Output v

Enter two integers:
365

25

365 + 25 = 390

365 25 = 340

365 25 = 9125

*
365 / 25 = 14
365 % 25 = 15

Analysis v

Most of the program is self-explanatory. The line of most interest is possibly the one
that uses the ¥ modulo operator. This returns the remainder that is the result of dividing
numl (365) by num2 (25).

Operators to Increment (++) and Decrement (--)

Sometimes you need to count in increments of one. This is particularly required in
variables that control loops where the value of the variable needs to be incremented or
decremented every time a loop has been executed.

C++ includes the ++ (increment) and -- (decrement) operators to help you with this task.

The syntax for using these is the following:

int numl = 101;

int num2 = numl++; // Postfix increment operator
int num2 = ++numl; // Prefix increment operator
int num2 = numl--; // Postfix decrement operator
int num2 = --numl; // Prefix decrement operator

As the code sample indicates, there are two different ways of using the incrementing and
decrementing operators: before and after the operand. Operators that are placed before
the operand are called prefix increment or decrement operators, and those that are placed
after are called postfix increment or decrement operators.

To Postfix or to Prefix?

It’s important to first understand the difference between prefix and postfix and then use
the one that works for you. The result of execution of the postfix operators is that the
I-value is first assigned the r-value and after that assignment the r-value is incremented
(or decremented). This means that in all cases where a postfix operator has been used,
the value of num2 is the old value of num1 (the value before the increment or decrement
operation).

Prefix operators have exactly the opposite in behavior. The r-value is first incremented
and then assigned to the I-value. In these cases, num2 and numl carry the same value.
Listing 5.2 demonstrates the effect of prefix and postfix increment and decrement opera-
tors on a sample integer.

LISTING 5.2 Demonstrate the Difference Between Postfix and Prefix Operators

0: #include <iostream>

1: using namespace std;

2:

3: int main()

a: |

5: int startValue = 101;

6: cout << "Start value of integer being operated: " << startValue << endl;

7

8: int postfixIncrement = startValue++;

9: cout << "Result of Postfix Increment = " << postfixIncrement << endl;
10: cout << "After Postfix Increment, startValue = " << startValue << endl;
11:

12: startValue = 101; // Reset

13: int prefixIncrement = ++startValue;

14: cout << "Result of Prefix Increment = " << prefixIncrement << endl;
15: cout << "After Prefix Increment, startValue = " << startValue << endl;
16:

17: startValue = 101; // Reset

18: int postfixDecrement = startValue--;

19: cout << "Result of Postfix Decrement = " << postfixDecrement << endl;
20: cout << "After Postfix Decrement, startValue = " << startValue << endl;
21:

22 startValue = 101; // Reset

23: int prefixDecrement = --startValue;

24 : cout << "Result of Prefix Decrement = " << prefixDecrement << endl;
25: cout << "After Prefix Decrement, startValue = " << startValue << endl;
26:

27: return 0;

N
[ee]
—

Output v

Start value of integer being operated: 101
Result of Postfix Increment = 101

After Postfix Increment, startValue = 102
Result of Prefix Increment = 102

After Prefix Increment, startValue = 102
Result of Postfix Decrement = 101

After Postfix Decrement, startValue = 100
Result of Prefix Decrement = 100
After Prefix Decrement, startValue = 100

Analysis v

The results show that the postfix operators were different from the prefix ones in that the
l-values being assigned in Lines 8 and 18 contain the original values of the integer before
the actual increment or decrement operations. The prefix operations in Lines 13 and 23,
on the other hand, result in the l-value being assigned the incremented or decremented
value. This is the most important difference that needs to be kept in perspective when
choosing the right operator type.

Note that in the following statements, the prefix or postfix operators make no difference
to the output of the program:

startValue++; // Is the same as..
++startValue;

This is because there is no assignment of an initial value, and the end result in both cases
is just that the integer startvalue is incremented.

You often hear of cases where prefix increment or decrement
operators are preferred on grounds of better performance. That
is, ++startvalue is preferred over startvalue++.

NOTE

This is true at least theoretically because with the postfix
operators, the compiler needs to store the initial value
temporarily in the event of it needing to be assigned. The effect
on performance in these cases is negligible with respect to
integers, but in the case of certain classes there might be a
point in this argument. Smart compilers may optimize away the
differences.

Equality Operators (==) and (!=
Often you need to check for a certain condition being fulfilled or not being fulfilled

before you proceed to take an action. Equality operators == (operands are equal)
and != (operands are unequal) help you with exactly that.

The result of an equality check is a bool—that is, true or false.

int personAge = 20;

bool checkEquality = (personAge == 20); // true

bool checkInequality = (personAge != 100); // true

bool checkEqualityAgain = (personAge == 200); // false
bool checkInequalityAgain = (personAge != 20); // false

Relational Operators

In addition to equality checks, you might want to check for inequality of a certain
variable against a value. To assist you with that, C++ includes relational operators (see
Table 5.1).

TABLE 5.1 Relational Operators

Operator Name Description

Less than (<) Evaluates to true if one operand is less than the
other (op1 < op2), else evaluates to false

Greater than (>) Evaluates to true if one operand is greater than
the other (op1 > op2), else evaluates to false

Less than or equal to (<=) Evaluates to true if one operand is less than or
equal to another, else evaluates to false

Greater than or equal to (>=) Evaluates to true if one operand is greater than or
equal to another, else evaluates to false

As Table 5.1 indicates, the result of a comparison operation is always true or false, in
other words a bool. The following sample code indicates how the relational operators
introduced in Table 5.1 can be put to use:

int personAge = 20;

bool checkLessThan = (personAge < 100); // true

bool checkGreaterThan = (personAge > 100); // false
bool checkLessThanEqualTo = (personAge <= 20); // true

bool checkGreaterThanEqualTo = (personBAge >= 20); // true
bool checkGreaterThanEqualToAgain = (personAge >= 100); // false

Listing 5.3 is a program that demonstrates the effect of using these operators by
displaying the result on the screen.

LISTING 5.3 Demonstrating Equality and Relational Operators

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: cout << "Enter two integers:" << endl;

6: int numl = 0, num2 = 0;

7: cin >> numl;

8: cin >> num2;

9:

10: bool isEqual = (numl == num2);

11 cout << "Result of equality test: " << isEqual << endl;
12:

13: bool isUnequal = (numl != num2);

14: cout << "Result of inequality test: " << isUnequal << endl;
15

16 bool isGreaterThan = (numl > num2);

17 cout << "Result of " << numl << " > " << num2;
18: cout << " test: " << isGreaterThan << endl;

19
20 bool isLessThan = (numl < num2);
21: cout << "Result of " << numl << " < " << num2 << " test:
" << isLessThan << endl;
22:
23: bool isGreaterThanEquals = (numl >= num2) ;
24: cout << "Result of " << numl << " >= " << num2;
25: cout << " test: " << isGreaterThanEquals << endl;
26:
27: bool isLessThanEquals = (numl <= num2);
28: cout << "Result of " << numl << " <= " << num2;
29: cout << " test: " << isLessThanEquals << endl;
30:

31: return 0;

32: }

Output v

Enter two

365

-24

Result
Result
Result
Result
Result
Result

of
of
of
of
of
of

Next run:

Enter two

101

101

Result
Result
Result
Result
Result
Result

of
of
of
of
of
of

integers:

equality test: 0

inequality test: 1
365 > -24 test: 1
365 < -24 test: 0
365 >= -24 test: 1
365 <= -24 test: O

integers:

equality test: 1

inequality test: 0
101 > 101 test: O
101 < 101 test: O
101 >= 101 test: 1
101 <= 101 test: 1

Analysis Vv

The program displays the binary result of the various operations. Interesting is to note
the output in the event the two supplied integers are identical. The operators ==, >=,
and <= produce identical results too.

The fact that the output of equality and relational operators is binary makes these
perfectly suited to using them in statements that help in decision-making and as loop
condition expressions that ensure a loop executes only so long as the condition evaluates
to true. You can learn more about conditional execution and loops in Lesson 6.

NOTE

The output of Listing 5.3 displayed Boolean values containing
false as 0. Those containing true were displayed as 1. From

a compiler’s point of view, an expression evaluates false

when it evaluates to zero. A check against false is a check
against zero. An expression that evaluates to a non-zero value is
evaluated as true.

Logical Operations NOT, AND, OR, and XOR

Logical NOT operation is supported by the operator ! and works on a single operand.
Table 5.2 is the truth table for a logical NOT operation, which, as expected, simply
inverses the supplied Boolean flag.

TABLE 5.2 Truth Table of Logical NOT Operation

Operand Result of NOT (Operand)
False True
True False

Other operators such as AND, OR, and XOR need two operands. Logical AND operation
evaluates to true only when each operand evaluates to true. Table 5.3 demonstrates the
functioning of a logical AND operation.

TABLE 5.3 Truth Table of Logical AND Operation

Operand 1 Operand 2 Result of Operand1l AND Operand2
False False False

True False False

False True False

True True True

Logical AND operation is supported by operator &&.

Logical OR evaluates to true when at least one of the operands evaluates to true,
as demonstrated by Table 5.4.

TABLE 5.4 Truth Table of Logical OR Operation

Operand 1 Operand 2 Result of Operandl OR Operand2
False False False

True False True

False True True

True True True

Logical OR operation is supported by operator ||.

The exclusive OR (abbreviated to XOR) operation is slightly different than the logical OR
for it evaluates to true when any one operand is true but not both, as demonstrated by
Table 5.5.

TABLE 5.5 Truth Table of Logical XOR Operation

Operand 1 Operand 2 Result of Operandl OR Operand2
False False False

True False True

False True True

True True False

C++ provides a bitwise XOR in the form of operator *. This operator helps evaluate
a result that is generated via an XOR operation on the operand’s bits.

Using C++ Logical Operators NOT (!),
AND (&&), and OR (| |)

Consider these statements:

m “If it is raining AND if there are no buses, I cannot go to work.”

m “If there is a deep discount OR if I am awarded a record bonus, I can buy that car.”

You need such logical constructs in programming where the result of two operations is
used in a logical context in deciding the future flow of your program. C++ provides logi-
cal AND and OR operators that you can use in conditional statements, hence condition-
ally changing the flow of your program.

Listing 5.4 demonstrates the workings of logical AND and logical OR operators.

LISTING 5.4 Analyzing C++ Logical Operators && and | |

: #include <iostream>
: using namespace std;

= |
cout << "Enter true(l) or false(0) for two operands:" << endl;

0
1
2
3: int main()
4
5
6 bool opl = false, op2 = false;

7: cin >> opl;

8: cin >> op2;

9:

10: cout << opl << " AND " << op2 << " = " << (opl && op2) << endl;
11: cout << opl << " OR " << op2 << " = " << (opl || op2) << endl;
12:

13: return 0;

14: }

Output v

Enter true(l) or false(0) for two operands:
1

0

1 AND 0 = O

10RO =1

Next run:

Enter true(l) or false(0) for two operands:
1

1

1 AND 1 =1

10R1 =1

Analysis v

The program actually indicates how the operators supply logical AND and OR functions
to you. What the program doesn’t do is show you how to use them in making decisions.

Listing 5.5 demonstrates a program that executes different lines of code depending on
the values contained in variables using conditional statement processing and logical
operators.

LISTING 5.5 Using Logical NOT (!) and Logical AND (&&) Operators in if Statements
for Conditional Processing

#include <iostream>
using namespace std;

int main()
cout << "Use boolean values(0 / 1) to answer the questions" << endl;
cout << "Is it raining? ";
bool isRaining = false;
cin >> isRaining;

W J 0 Ul B W o

10: cout << "Do you have buses on the streets? ";

11: bool busesPly = false;

12: cin >> busesPly;

13:

14: // Conditional statement uses logical AND and NOT
15: if (isRaining && !busesPly)

16: cout << "You cannot go to work" << endl;

17: else

18: cout << "You can go to work" << endl;

19:

20: if (isRaining && busesPly)

21: cout << "Take an umbrella" << endl;

22:

23: if ((!isRaining) && busesPly)

24: cout << "Enjoy the sun and have a nice day" << endl;
25:

26: return 0;

27: }

Output v

Use boolean values(0 / 1) to answer the questions
Is it raining? 1

Do you have buses on the streets? 1

You can go to work

Take an umbrella

Next run:

Use boolean values(0 / 1) to answer the questions
Is it raining? 1

Do you have buses on the streets? 0

You cannot go to work

Last run:

Use boolean values(0 / 1) to answer the questions
Is it raining? 0

Do you have buses on the streets? 1

You can go to work

Enjoy the sun and have a nice day

Analysis v

The program in Listing 5.5 uses conditional statements in the form of the if construct
that has not been introduced to you. Yet, try to understand the behavior of this

construct by correlating it against the output. Line 15 contains the logical expression
(isRaining && !busesPly) that can be read as “Raining AND NO buses.” This uses
the logical AND operator to connect the absence of buses (indicated by the logical NOT
on presence of buses) to the presence of rain.

If you want to read a little about the if construct that helps in
conditional execution, you can quickly visit Lesson 6.

NOTE

Listing 5.6 uses logical NOT (!) and OR (]|) operators in a demonstration of conditional
processing.

LISTING 5.6 Using Logical NOT and Logical OR Operators to Help You Decide If You Can
Buy That Dream Car

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: cout << "Answer questions with 0 or 1" << endl;

6: cout << "Is there a discount on your favorite car? ";
7: bool onDiscount = false;

8: cin >> onDiscount;

9:

10: cout << "Did you get a fantastic bonus? ";

11 bool fantasticBonus = false;

12: cin >> fantasticBonus;

13:

14: if (onDiscount || fantasticBonus)

15 cout << "Congratulations, you can buy that car!" << endl;
16 else

17 cout << "Sorry, waiting a while is a good idea" << endl;
18:

19 if (!onDiscount)
20 cout << "Car not on discount" << endl;
21
22 return 0;

N
w
—

Output v

Answer questions with 0 or 1

Is there a discount on your favorite car? 0
Did you get a fantastic bonus? 1
Congratulations, you can buy that car!

Car not on discount

Next run:

Answer questions with 0 or 1

Is there a discount on your favorite car? 0
Did you get a fantastic bonus? 0

Sorry, waiting a while is a good idea

Car not on discount

Last run:

Answer questions with 0 or 1

Is there a discount on your favorite car? 1
Did you get a fantastic bonus? 1
Congratulations, you can buy that car!

Analysis v

The program recommends buying a car if you get a discount or if you got a fantastic
bonus (or both). If not, it recommends waiting. It also uses the logical not operation in
Line 19 to remind you that the car is not on discount. Line 14 uses the if construct fol-
lowed by an accompanying else in Line 16. The if construct executes the following
statement in Line 15 when the condition (onDiscount || fantasticBonus) evaluates
to true. This expression contains the logical OR operator and evaluates to true when
there is a discount on your favorite car or if you have received a fantastic bonus. When
the expression evaluates to false, the statement following else in Line 17 is executed.

Bitwise NOT (~), AND (&), OR (|), and XOR (")
Operators

The difference between the logical and the bitwise operators is that bitwise operators
don’t return a boolean result. Instead, they supply a result in which individual bits are
governed by executing the operator on the operands’ bits. C++ allows you to perform
operations such as NOT, OR, AND, and exclusive OR (that is, XOR) operations on a bit-
wise mode where you can manipulate individual bits by negating them using ~, ORring

them using |, ANDing them using &, and XORring them using *. The latter three are
performed against a number (typically a bit mask) of your choosing.

Some bitwise operations are useful in those situations where bits contained in an
integer—for example, each specify the state of a certain flag. Thus, an integer with

32 bits can be used to carry 32 Boolean flags. Listing 5.7 demonstrates the use of bitwise
operators.

LISTING 5.7 Demonstrating the Use of Bitwise Operators to Perform NOT, AND, OR,
and XOR on Individual Bits in an Integer

0: #include <iostream>

1: #include <bitset>

2: using namespace std;

3:

4: int main()

5: |

6: cout << "Enter a number (0 - 255): ";

7: unsigned short inputNum = 0;

8: cin >> inputNum;

9:

10: bitset<8> inputBits (inputNum) ;

11: cout << inputNum << " in binary is " << inputBits << endl;

12:

13: bitset<8> bitwiseNOT = (~inputNum) ;

14: cout << "Logical NOT ~" << endl;

15: cout << "~" << inputBits << " = " << bitwiseNOT << endl;

16:

17 cout << "Logical AND, & with 00001111" << endl;

18 bitset<8> bitwiseAND = (0x0F & inputNum);// O0xOF is hex for 0001111
19: cout << "0001111l & " << inputBits << " = " << bitwiseAND << endl;
20
21: cout << "Logical OR, | with 00001111" << endl;
22: bitset<8> bitwiseOR = (0xO0F | inputNum);
23: cout << "00001111 | " << inputBits << " = " << bitwiseOR << endl;
24:
25 cout << "Logical XOR, * with 00001111" << endl;
26 bitset<8> bitwiseXOR = (0x0F * inputNum) ;
27 cout << "00001111 * " << inputBits << " = " << bitwiseXOR << endl;
28
29 return 0;

w
o
—

Output v

Enter a number (0 - 255): 181
181 in binary is 10110101
Logical NOT ~

~10110101 = 01001010

Logical AND, & with 00001111
0001111 & 10110101 = 00000101
Logical OR, | with 00001111
00001111 ‘ 10110101 = 10111111
Logical XOR, * with 00001111
00001111 * 10110101 = 10111010

Analysis v

This program uses bitset—a type you have not seen yet—to make displaying binary
data easier. The role of std::bitset here is purely to help with displaying and nothing
more. In Lines 10, 13, 18, and 22 you actually assign an integer to a bitset object, which
is used to display that same integer data in binary mode. The operations are done on
integers. For a start, focus on the output, which shows you the original integer 181 fed
by the user in binary and then proceeds to demonstrate the effect of the various bitwise
operators ~, &, |, and * on this integer. You see that the bitwise NOT used in Line 14
toggles the individual bits. The program also demonstrates how the operators &, |, and *
work, performing the operations using each bit in the two operands to create the result.
Correlate this result with the truth tables introduced earlier, and the workings should
become clearer to you.

If you want to learn more about manipulating bit flags in C++,
take a look at Lesson 25, “Working with Bit Flags Using STL.” It
discusses the std: :bitset in detail.

NOTE

Bitwise Right Shift (>>) and Left Shift (<<) Operators

Shift operators move the entire bit sequence to the right or to the left, and thus can help
with multiplication or division by multiples of two, apart from having other uses in an
application.

A sample use of a shift operator used to multiply by two is the following:

int doubledValue = num << 1; // shift bits one position left to double value

A sample use of a shift operator used to halve is the following:

int halvedvalue = num >> 1; // shift bits one position right to halve value

Listing 5.8 demonstrates how you can use shift operators to effectively multiply or divide
an integer value.

LISTING 5.8 Using Bitwise Right Shift Operator (>>) to Quarter and Half and Left Shift
(<<) to Double and Quadruple an Input Integer

0: #include <iostreams>
1: using namespace std;
2:
3: int main()
4: {
5: cout << "Enter a number: ";
6: int inputNum = 0;
7: cin >> inputNum;
8:
9: int halfNum = inputNum >> 1;
10 int quarterNum = inputNum >> 2;
11: int doubleNum = inputNum << 1;
12: int quadrupleNum = inputNum << 2;
13:
14: cout << "Quarter: " << quarterNum << endl;
15 cout << "Half: " << halfNum << endl;
16 cout << "Double: " << doubleNum << endl;
17 cout << "Quadruple: " << quadrupleNum << endl;
18
19: return 0;
20: }
Output v

Enter a number: 16
Quarter: 4

Half: 8

Double: 32
Quadruple: 64

Analysis v

The input number is 16, which in binary terms is 1000. In Line 9, you move it one bit
right to change it to 0100, which is 8, effectively halving it. In Line 10, you move it two
bits right changing 1000 to 00100, which is 4. Similarly the effect of the left shift opera-
tors in Lines 11 and 12 are exactly the opposite. You move it one bit left to get 10000,

which is 32 and two bits left to get 100000, which is 64, effectively doubling and quadru-
pling the number!

Bitwise shift operators don’t rotate values. Additionally, the
result of shifting signed numbers is implementation dependent.
On some compilers, most-significant-bit when shifted left is not
assigned to the least-significant-bit; rather the latter is zero.

NOTE

Compound Assignment Operators

Compound assignment operators are assignment operators where the operand to the left
is assigned the value resulting from the operation.

Consider the following code:

int numl = 22;
int num2 = 5;
numl += num2; // numl contains 27 after the operation

This is similar to what’s expressed in the following line of code:

numl = numl + num2;
Thus, the effect of the += operator is that the sum of the two operands is calculated and

then assigned to the operand on the left (which is num1). Table 5.6 is a quick reference on
the many compound assignment operators and explains their working.

TABLE 5.6 Compound Assignment Operators

Operator Usage Equivalent

Addition Assignment numl += num2; numl = numl + num2;
Subtraction Assignment numl -= num2; numl = numl - num2;
Multiplication Assignment numl *= num2; numl = numl * num2;
Division Assignment numl /= num2; numl = numl / num2;
Modulo Assignment numl %= num2; numl = numl % num2;

Bitwise Left-Shift Assignment numl <<= num2; numl = numl << num2;

Operator Usage Equivalent

Bitwise Right-Shift Assignment numl >>= num2; numl = numl >> num2;
Bitwise AND Assignment numl &= num2; numl = numl & num2;
Bitwise OR Assignment numl |= num2; numl = numl | num2;
Bitwise XOR Assignment numl “= num2; numl = numl * num2;

Listing 5.9 demonstrates the effect of using these operators.

LISTING 5.9 Using Compound Assignment Operators to Add; Subtract; Divide; Perform
Modulus; Shift; and Perform Bitwise OR, AND, and XOR

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: cout << "Enter a number: ";

6: int value = 0;

7: cin >> value;

8:

9: value += 8;

10: cout << "After += 8, value = " << value << endl;

11: value -= 2;

12: cout << "After -= 2, value = " << value << endl;

13: value /= 4;

14: cout << "After /= 4, value = " << value << endl;

15 value *= 4;

16 cout << "After *= 4, value = " << value << endl;

17: value %= 1000;

18 cout << "After %= 1000, value = " << value << endl;

19
20 // Note: henceforth assignment happens within cout
21: cout << "After <<= 1, value = " << (value <<= 1) << endl;
22: cout << "After >>= 2, value = " << (value >>= 2) << endl;
23:
24: cout << "After |= 0x55, value = " << (value |= 0x55) << endl;
25 cout << "After = 0x55, value = " << (value *= 0x55) << endl;
26 cout << "After &= O0xO0F, value = " << (value &= O0xO0F) << endl;
27
28 return 0;

N
e}
—

Output v

Enter a number: 440
After += 8, value = 448

After -= 2, value = 446
After /= 4, value = 111
After *= 4, value = 444
After %= 1000, value = 444
After <<= 1, value = 888
After >>= 2, value = 222
After |= 0x55, value = 223
After *= 0x55, value = 138

After &= 0x0F, value = 10

Analysis Vv

Note that value is continually modified throughout the program via the various assign-
ment operators. Each operation is performed using value, and the result of the operation
is assigned back to it. Hence, at Line 9, the user input 440 is added to 8, which results

in 448 and is assigned back to value. In the subsequent operation at Line 11, 2 is sub-
tracted from 448, resulting in 446, which is assigned back to value, and so on.

Using Operator sizeof to Determine the Memory
Occupied by a Variable

This operator tells you the amount of memory in bytes consumed by a particular type
or a variable. The usage of sizeof is the following:

sizeof (variable);
or

sizeof (type);

sizeof (...) might look like a function call, but it is not a func-
tion. sizeof is an operator. Interestingly, this operator cannot be
defined by the programmer and hence cannot be overloaded.

NOTE

You learn more about defining your own operators in Lesson 12,
“Operator Types and Operator Overloading.”

Listing 5.10 demonstrates the use of sizeof in determining memory space occupied
by an array. Additionally, you might want to revisit Listing 3.4 to analyze the usage of
sizeof in determining memory consumed by the most familiar variable types.

LISTING 5.10

Using sizeof to Determine the Number of Bytes Occupied by an Array

of 100 Integers, and That by Each Element Therein

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: cout << "Use sizeof to determine memory used by arrays" << endl;

6: int myNumbers [100] = {0};

7:

8: cout << "Bytes used by an int: " << sizeof(int) << endl;

9: cout << "Bytes used by myNumbers: " << sizeof (myNumbers) << endl;
10: cout << "Bytes used by an element: " << sizeof (myNumbers[0]) << endl;
11
12: return 0;

13: }
Output v

Use sizeof to
Bytes used by
Bytes used by
Bytes used by

Analysis v

determine memory used by arrays
an int: 4

myNumbers: 400

an element: 4

The program demonstrates how sizeof is capable of returning the size of an array of
100 integers in bytes, which is 400 bytes. The program also demonstrates that the size of

each element is 4 bytes.

sizeof can be useful when you need to dynamically allocate memory for N objects,
especially of a type created by yourself. You would use the result of the sizeof opera-
tion in determining the amount of memory occupied by each object and then dynami-
cally allocate using the operator new.

Dynamic memory allocation is explained in detail in Lesson 8, “Pointers and References

Explained.”

Operator Precedence

You possibly learned something in school on the order of arithmetic operations called
BODMAS (Brackets Orders Division Multiplication Addition Subtraction), indicating the
order in which a complex arithmetical expression should be evaluated.

In C++, you use operators and expressions such as the following:

int myNumber = 10 * 30 + 20 - 5 * 5 << 2;
The question is, what value would myNumber contain? This is not left to guesswork of

any kind. The order in which the various operators are invoked is very strictly specified
by the C++ standard. This order is what is meant by operator precedence. See Table 5.7.

TABLE 5.7 The Precedence of Operators

Rank Name Operator
1 Scope resolution
2 Member selection, subscripting, increment, and decrement .o
()
++ -
3 sizeof, prefix increment and decrement, complement, and, ++ -
not, unary minus and plus, address-of and dereference, new, ~

new[], delete, delete[], casting, sizeof ()

&
0

4 Member selection for pointer Lk >

5 Multiply, divide, modulo * /0%

6 Add, subtract + -

7 Shift (shift left, shift right) << >>

8 Inequality relational << = >>=

9 Equality, inequality == I=

10 Bitwise AND &

11 Bitwise exclusive OR
12 Bitwise OR

Rank Name Operator

13 Logical AND &&

14 Logical OR [

15 Conditional ?:

16 Assignment operators = *= /= %=
+= -= <<=
>>=
&= |= =

17 Comma /

Have another look at the complicated expression used as the earlier example:

int myNumber = 10 * 30 + 20 - 5 * 5 << 2;

In evaluating the result of this expression, you need to use the rules related to operator
precedence as shown in Table 5.7 to understand what value the compiler assigns it. As
multiply and divide have priority over add and subtract, which in turn have priority over
shift, you simplify it to the following:

int myNumber = 300 + 20 - 25 << 2;

As add and subtract have priority over shift, this gets simplified to:

int myNumber = 295 << 2;

Finally, you perform the shift operation. Knowing that one bit left shift doubles, and
hence two bits left shift quadruples, you can say that the expression evaluates to 295 * 4,
which is 1180.

Use parentheses to make reading code easy.

CAUTION
The expression used earlier is deliberately composed poorly for
explaining operator precedence. It is easy for the compiler to
understand, but you should write code that humans can under-
stand, too.

So, the same expression is much better written this way:

int myNumber = ((10 * 30) - (5 * 5) + 20) << 2; //
1180

DO DON'T

DO use parentheses to make your DON’T program complicated expres-
code and expressions readable. sions relying on the operator prece-
dence table; your code needs to be
human readable, too.

DO use the right variable types
and ensure that it will never reach
overflow situations. DON’T confuse ++variable and
variable++ thinking they're the
same. They're different when used in
an assignment.

DO understand that all |-values (for
example, variables) can be r-values,
but not all r-values (for example,
“Hello World”) can be l-values.

Summary

In this lesson you learned what C++ statements, expressions, and operators are. You
learned how to perform basic arithmetic operations such as addition, subtraction, multi-
plication, and division in C++. You also had an overview on logical operations such as
NOT, AND, OR, and XOR. You learned of the C++ logical operators !, &&, and || that
help you in conditional statements and the bitwise operators such as ~, &, |, and * that
help you manipulate data, one bit at a time.

You learned about operator precedence and how important it is to use parenthesis to
write code that can also be understood by fellow programmers. You were given an over-
view on integer overflow and how important avoiding it actually is.

Q&A

Q Why do some programs use unsigned int if unsigned short takes less
memory and compiles, too?
A unsigned short typically has a limit of 65535, and if incremented, overflows to

zero. To avoid this behavior, well-programmed applications choose unsigned int
when it is not certain that the value will stay well below this limit.

Q I need to calculate the double of a number after it’s divided by three. So, do
you see any problem in the following code:

int result = Number / 3 << 1;

A Yes! Why didn’t you simply use parenthesis to make this line simpler to read to fel-
low programmers? Adding a comment or two won’t hurt either.

Q My application divides two integer values 5 and 2:

int numl = 5, num2 = 2;
int result = numl / num2;

On execution, the result contains value 2. Isn’t this wrong?

A Not at all. Integers are not meant to contain decimal data. The result of this opera-
tion is hence 2 and not 2.5. If 2.5 is the result you expect, change all data types to
float or double. These are meant to handle floating-point (decimal) operations.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain that you understand the answers before continuing to the
next lesson.

Quiz
1. I am writing an application to divide numbers. What’s a better suited data type: int
or float?
. What is the value of 32 /7?
. What is the value of 32.0/7?

. Is sizeof (...) afunction?

o & ON

. I need to compute the double of a number, add 5 to it, and then double it again. Is
this correct?

int result = number << 1 + 5 << 1;

6. What is the result of XOR operation where the XOR operands both evaluate to
true?
Exercises
1. Improve on the code in quiz question 5, using parenthesis to create clarity.
2. What is the value of result stored by this expression:

int result = number << 1 + 5 << 1;

3. Write a program that asks the user to input two Boolean values and demonstrates
the result of various bitwise operators on them.

LESSON 6
Controlling Program
Flow

Most applications behave differently given a new situation or different
user input. To enable your application to react differently, you need to
program conditional statements that execute different code segments
in different situations.

In this lesson, you find out

m How to make your program behave differently in certain conditions
m How to execute a section of code repeatedly in a loop

® How to better control the flow of execution in a loop

Conditional Execution Using if .. else

Programs you have seen and composed thus far have a serial order of execution—from
top-down. Every line was executed and no line was ever ignored. But, serial execution of
all lines of code in a top-down fashion rarely happens in most applications.

Imagine you want a program that multiplies two numbers if the user presses m or adds
the numbers if he presses anything else.

As you can see in Figure 6.1, not all code paths are executed in every run. If the user
presses m, the code that multiplies the two numbers is executed. If he enters anything
other than m, the code that performs addition is executed. There is never a situation
where both are executed.

FIGURE 6.1

Example of condi- Start]

tional processing +

required on the

basis of user input. Numil = 25
Num2 = 56

Result =

User enters
- Num1l 4+ Num2

lml?

Result =
Num1l * Numz2

le

Display
Result

v

[End]

Conditional Programming Using if .. else

Conditional execution of code is implemented in C++ using the if .. else construct
that looks like this:
if (conditional expression)

Do something when expression evaluates true;

else // Optional
Do something else when condition evaluates false;

So,an if ... else construct that lets a program multiply if the user enters m and adds
otherwise looks like this:

if (userSelection == 'm')

result = numl * num2; // multiply
else

result = numl + num2; // add

Note that evaluation of an expression to true in C++ essentially
NOTE means that the expression does not evaluate to false, false
being zero. So, an expression that evaluates to any non-zero
number—negative or positive—is essentially considered to be
evaluating to true when used in a conditional statement.

Let’s analyze this construct in Listing 6.1, which enables the user to decide whether he
wants to either multiply or divide two numbers, hence using conditional processing to
generate the desired output.

LISTING 6.1 Multiplying or Adding Two Integers on the Basis of User Input

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: |

5: cout << "Enter two integers: " << endl;
6: int numl = 0, num2 = 0;

7: cin >> numl;

8: cin >> num2;

9:
10: cout << "Enter \'m\' to multiply, anything else to add: ";
11: char userSelection = '\0';
12: cin >> userSelection;

iy
w

14: int result = 0;

15: if (userSelection == 'm')
16: result = numl * num2;
17: else

18: result = numl + num2;
19:

20: cout << "result is: " << result << endl;
21:

22: return 0;

23: }

Output v

Enter two integers:

25

56

Enter 'm'

result is:

Next run:

Enter two
25
56
Enter 'm'

result is:

to multiply, anything else to add: m
1400

integers:

to multiply, anything else to add: a
81

Analysis v

Note the use of if in Line 15 and else in Line 17. We are instructing the compiler to
execute multiplication in Line 15 when the expression (userSelection == 'm') that
follows if evaluates to true or to execute addition if the expression evaluates to false.
(userSelection == 'm') is an expression that evaluates to true when the user has

entered character m (case-sensitive), else it evaluates to false. Thus, this simple program
models the flowchart in Figure 6.1 and demonstrates how your application can behave
differently in different situations.

NOTE

The else part of the if .. else construct is optional and
doesn’t need to be used in those situations where there is noth-
ing to be executed in event of failure.

CAUTION If in Listing 6.1, Line 15 is

15: if (userSelection == 'm');

then the if construct is meaningless as it has been terminated
in the same line by an empty statement (the semicolon). Be
careful and avoid this situation as you won’t get a compile error
in such cases.

Some good compilers may warn you of an “empty control state-
ment” in this situation.

Executing Multiple Statements Conditionally

If you want to execute multiple statements in event of a condition succeeding or failing,
you need to enclose them within statement blocks. These are essentially braces
{...} enclosing multiple statements to be executed as a block. For example:

if (condition)

{

// condition success block
Statement 1;
Statement 2;

}

else

{

// condition failure block
Statement 3;
Statement 4;

Such blocks are also called compound statements.

Listing 6.2 is a safer version of Listing 4.6 in Lesson 4, “Managing Array and Strings.”
It uses a compound statement that copies user input into a static character array if the
length of user input is within the bounds of the array.

LISTING 6.2 Check for Bounds Before Copying a String into a char Array

#include <iostream>
#include <strings>
#include <string.h>
using namespace std;
int main()

{

Ul W NN B o

6: cout << "Enter a line of text: " << endl;
7: string userInput;
8: getline (cin, userInput);
9:
10: char copyInput([20] = { '\0' };
11: if (userInput.length() < 20) // check bounds
12: {
13: strcpy (copyInput, userInput.c_str());
14: cout << "copyInput contains: " << copyInput << endl;
15: }
16: else
17: cout << "Bounds exceeded: won't copy!" << endl;
18:
19: return 0;
20: }
Output v

Enter a line of text:
This fits buffer!
copyInput contains: This fits buffer!

Next run:

Enter a line of text:
This doesn't fit the buffer!
Bounds exceeded: won't copy!

Analysis v

Note how the length of the string is checked against the length of the buffer in Line 11
before copying into it. What is also special about this if check is the presence of a state-
ment block in Lines 12 through 15 (also called compound statement) in the event of the
check evaluating to true.

Nested if Statements

Often you have situations where you need to validate against a host of different
conditions, many of which are dependent on the evaluation of a previous condition. C++
allows you to nest if statements to handle such requirements.

Nested if statements are similar to this:

if (expressionl)

{

DoSomethingl;
if (expression2)

DoSomething2;
else
DoSomethingElse2;
}
else
DoSomethingElsel;

Consider an application similar to Listing 6.1, in which the user can instruct the applica-
tion to divide or multiply by pressing a command character d or m. Now, division should
be permitted only when the divisor is non-zero. So, in addition to checking the user input
for the intended command, it is also important to check if the divisor is non-zero when
the user instructs the program to divide. Listing 6.3 uses a nested if construct.

LISTING 6.3 Using Nested if Statements in Multiplying or Dividing a Number

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: cout << "Enter two numbers: " << endl;

6: float numl = 0, num2 = 0;

7: cin >> numl;

8: cin >> num2;

9:

10: cout << "Enter 'd' to divide, anything else to multiply: ";
11: char userSelection = '\0';

12: cin >> userSelection;

13:

14: if (userSelection == 'd')

15 {

16 cout << "You wish to divide!" << endl;

17: if (num2 != 0)

18 cout << numl << " / " << num2 << " = " << numl / num2 << endl;
19 else
20 cout << "Division by zero is not allowed" << endl;
21: }
22: else
23: {
24: cout << "You wish to multiply!" << endl;
25: cout << numl << " X " << num2 << " = " << numl * num2 << endl;
26: }
27:
28 return 0;

N
e}
—

Output v

Enter two numbers:

45

9

Enter 'd' to divide, anything else to multiply:
You wish to multiply!

45 x 9 = 405

Next run:

Enter two numbers:
22
7
Enter 'd' to divide,
You wish to divide!
22 / 7 = 3.14286

Last run:

Enter two numbers:
365

0
Enter 'd' to divide,
You wish to divide!
Division by zero is not allowed

Analysis v

anything else to multiply:

anything else to multiply:

m

d

d

The output is the result of running the program three times with three different sets of
input, and as you can see, the program has executed different code paths for each of these
three runs. This program has a few changes over Listing 6.1:

m The numbers are accepted as floating-point variables, to better handle decimals,

which are important when dividing numbers.

m The if condition is different than in Listing 6.1. You no longer check whether the user
has pressed m; rather, Line 14 contains an expression (userSelection == 'd')
that evaluates to true when the user enters character *d’ . If so, you proceed with

division.

m Given that this program divides two numbers and the divisor is entered by the user,
it is important to check if the divisor is non-zero. This is done using the nested i £

in Line 17.

Thus, what this program demonstrates is how nested if constructs can be very useful in
performing different tasks depending on the evaluation of multiple parameters.

The nested tabs (white spaces) that you inserted in the code are
optional, but they make a significant contribution to the readabil-
ity of the nested if constructs. Many modern IDEs indent code
automatically.

TIP

Note that if...else constructs can also be grouped together. Listing 6.4 is a program
that asks the user for the day of the week and then tells what that day is named after
using grouped if...else constructs.

LISTING 6.4 Using a Grouped if..else Construct

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: enum DaysOfWeek

6: {

7: Sunday = 0,

8: Monday,

9: Tuesday,

10: Wednesday,

11: Thursday,

12: Friday,

13: Saturday

14: }i

15

16 cout << "Find what days of the week are named after!" << endl;
17: cout << "Enter a number for a day (Sunday = 0): ";

18

19 int dayInput = Sunday; // Initialize to Sunday
20 cin >> dayInput;
21:
22: if (dayInput == Sunday)
23: cout << "Sunday was named after the Sun" << endl;
24: else if (dayInput == Monday)
25 cout << "Monday was named after the Moon" << endl;
26 else if (dayInput == Tuesday)
27 cout << "Tuesday was named after Mars" << endl;
28 else if (dayInput == Wednesday)
29: cout << "Wednesday was named after Mercury" << endl;
30: else if (dayInput == Thursday)

31: cout << "Thursday was named after Jupiter" << endl;

32: else if (dayInput == Friday)

33: cout << "Friday was named after Venus" << endl;
34: else if (dayInput == Saturday)

35: cout << "Saturday was named after Saturn" << endl;
36: else

37: cout << "Wrong input, execute again" << endl;

38:

39: return 0;

40: }

Output v

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 5
Friday was named after Venus

Next run:

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 9
Wrong input, execute again

Analysis v

Note the if-else-if construct used in Lines 22 through 37 to check user input and pro-
duce the corresponding output. The output in the second run indicates that the program
is able to tell the user when he enters a number that is outside the expected range 06,
and hence does not correspond to any day of the week. The advantage of this construct
is that it is perfectly suited to validating conditions that are mutually exclusive, that is,
Monday can never be a Tuesday and an invalid input cannot be any day of the week.
Another interesting thing to note in this program is the use of the enumeration called
DaysOfWeek declared in Line 5 and used throughout the if statements. You could’ve
simply compared user input against integer values such as 0 for Sunday and so on.
However, the use of the enumerator Sunday makes the code more readable.

Conditional Processing Using switch-case

The objective of switch-case is to enable you to check a particular expression against a
host of possible constants and possibly perform a different action for each of those differ-
ent values. The new C++ keywords you would often find in such a construct are switch
case, default, and break.

The following is the syntax of a switch-case construct:

switch (expression)

{

case LabelA:
DoSomething;
break;

case LabelB:
DoSomethingElse;
break;

// And so on...

default:
DoStuffWhenExpressionIsNotHandledAbove;
break;

What happens is that the resulting code evaluates the expression and checks against
each of the case labels following it for equality. Each case label needs to be a constant.
It then executes the code following that label. When the expression does not evaluate
to Labela, it checks against LabelB. If that check evaluates to true, it executes
DoSomethingElse. This check continues until it encounters a break. This is the first
time we are using the keyword break. break causes execution to exit the code block.
breaks are not compulsory; however, without a break the execution simply continues
checking against the next labels and so on, which is what you want to avoid in this case.
default is optional, too, and is the case that is executed when the expression does not
equate to any of the labels in the switch-case construct.

switch-case constructs are well-suited to being used with enu-
merators. The keyword enum was introduced in Lesson 3, “Using
Variables, Declaring Constants.”

TIP

Listing 6.5 is the switch-case equivalent of the program in Listing 6.4 that tells what
the days of the week are named after and also uses enumerated constants.

LISTING 6.5 Tell What Days of the Week Are Named After Using switch-case,
break, and default

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: enum DaysOfWeek

6: {

7: Sunday = 0,

8: Monday,

9: Tuesday,

10: Wednesday,

11: Thursday,

12: Friday,

13: Saturday

14: }i

15:

16: cout << "Find what days of the week are named after!" << endl;
17: cout << "Enter a number for a day (Sunday = 0): ";
18:

19: int dayInput = Sunday; // Initialize to Sunday

20: cin >> dayInput;

21:

22: switch (dayInput)

23: {

24: case Sunday:

25: cout << "Sunday was named after the Sun" << endl;
26: break;

27:

28: case Monday:

29: cout << "Monday was named after the Moon" << endl;
30: break;

31:

32: case Tuesday:

33: cout << "Tuesday was named after Mars" << endl;
34: break;

35:

36: case Wednesday:

37: cout << "Wednesday was named after Mercury" << endl;
38: break;

39:

40 case Thursday:

41 cout << "Thursday was named after Jupiter" << endl;
42: break;

43

44 case Friday:

45: cout << "Friday was named after Venus" << endl;

'S
)

break;

47 :

48: case Saturday:

49: cout << "Saturday was named after Saturn" << endl;
50: break;

51:

52: default:

53: cout << "Wrong input, execute again" << endl;
54: break;

55: }

56:

57: return 0;

58: }

Output v

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 5
Friday was named after Venus

Next run:

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 9
Wrong input, execute again

Analysis v

Lines 22-55 contain the switch-case construct that produces different output depend-
ing on the integer contained in dayInput as entered by the user. When the user enters
the number 5, the application checks the switch expression dayInput that evaluates to
5 against the first four labels that are enumerators Sunday (value 0) through Thursday
(value 4), skipping the code below each of them as none of them are equal to 5. It reaches
label Friday where the expression evaluating to 5 equals enumerated constant Friday.
Thus, it executes the code under Friday until it reaches break in Line 46 and exits the
switch construct. In the second run, when an invalid value is entered, the execution
reaches default and runs the code under it, displaying the message asking the user to
execute again.

This program using switch-case produces exactly the same output as Listing 6.4 using
the if-else-if construct. Yet, the switch-case version looks a little more structured
and is possibly well-suited to situations where you want to be doing more than just writ-
ing a line to the screen (in which case you would also include code within a case within
braces, creating blocks).

Conditional Execution Using Operator (2:)

C++ has an interesting and powerful operator called the conditional operator that is
similar to a compacted if-else construct.

The conditional operator is also called a ternary operator as it takes three operands:

(conditional expression evaluated to bool) ? expressionl if true : expression2
if false;

Such an operator can be used in compactly evaluating the greater of two given numbers,
as seen here:

int max = (numl > num2)? numl : num2; // max contains greater of numl and num2

Listing 6.6 is a demonstration of conditional processing using operator (?:).

LISTING 6.6 Using the Conditional Operator (?:) to Find the Max of Two Numbers

0: #include <iostream>
1: using namespace std;
2:
3: int main()
a: |
5: cout << "Enter two numbers" << endl;
6: int numl = 0, num2 = 0;
7 cin >> numl;
8: cin >> num2;
9:
10: int max = (numl > num2)? numl : num2;
11: cout << "The greater of " << numl << " and " \
12: << num2 << " is: " << max << endl;
13:
14: return 0;
15: }
Output v
Enter two numbers
365
-1

The greater of 365 and -1 is: 365

Analysis v

Line 10 is the code of interest. It contains a compact statement that makes a decision on
which of the two numbers input is larger. This line is another way to code the following
using if-else:
int max;
if (numl > num2)

max = numl;

else
max = num2;

Thus, conditional operators saved a few lines! Saving lines of code, however, should
not be a priority. There are programmers who prefer conditional operators and those that
don’t. It is important to code conditional operators in a way that can be easily understood.

DO DON'T

DO use enumerators in switch DON’T add two cases with the same
expressions to make code label—it won’t make sense and won’t
readable. compile.
DO remember to handle DON’T complicate your case statements
default, unless deemed totally by including cases without break and
unnecessary. relying on sequence. This will break
DO check whether you functionality in the futurg when yqu move
inadvertently forgot to insert the case statements without paying
Ty adequate attention to sequence.
DON’T use complicated conditions or
expressions when using conditional
operators (? :).

TIP C++17 is expected to introduce conditional compilation using
if constexpr, and initializers within if and switch constructs.
Learn more about these features in Lesson 29, “Going Forward.”

Getting Code to Execute in Loops

So far you have seen how to make your program behave differently when certain vari-
ables contain different values—for example, in Listing 6.1 where you multiplied when
the user pressed m; otherwise, you added. However, what if the user doesn’t want the
program to just end? What if he wants to perform another add or multiply operation, or
maybe five more? This is when you need to repeat the execution of already existing code.

This is when you need to program a loop.

A Rudimentary Loop Using goto

As the name suggests, goto instructs execution to continue from a particular, labeled,
point in code. You can use it to go backward and re-execute certain statements.

The syntax for the goto statement is

SomeFunction ()

{

Start: // Called a label
CodeThatRepeats;

goto Start;

You declare a label called Start and use goto to repeat execution from this point

on, as demonstrated in Listing 6.7. Unless you invoke goto given a condition that can
evaluate to false under certain circumstances, or unless the code that repeats contains a
return statement executed under certain conditions, the piece of code between the goto
command and label will repeat endlessly and keep the program from ending.

LISTING 6.7 Asking the User Whether He Wants to Repeat Calculations Using goto

: #include <iostream>
using namespace std;

int main()

{

Start:
int numl = 0, num2 = 0;

cout << "Enter two integers: " << endl;
cin >> numl;

O W W 3 o0 Ul b W N - O

[

cin >> num2;

fary
=

12: cout << numl << " X " << num2 << " = " << numl * num2 << endl;

13: cout << numl << " + " << num2 << " = " << numl + num2 << endl;
14:

15: cout << "Do you wish to perform another operation (y/n)?" << endl;
16: char repeat = 'y';

17: cin >> repeat;

18:

19: if (repeat == 'y')

20: goto Start;

21:

22: cout << "Goodbye!" << endl;

23:

24: return 0;

25: }

Output v

Enter two integers:

56

25

56 x 25 = 1400
56 + 25 = 81
Do you wish to perform another operation (y/n)?

Yy

Enter two integers:
95

-47

95 x -47 = -4465

95 + -47 = 48

Do you wish to perform another operation (y/n)?
n

Goodbye!

Analysis v

Note that the primary difference between Listing 6.7 and Listing 6.1 is that 6.1 needs two
runs (two separate executions) to enable the user to enter a new set of numbers and see
the result of her addition and multiplication. Listing 6.7 does that in one execution cycle
by asking the user if she wishes to perform another operation. The code that actually
enables this repetition is in Line 20, where goto is invoked if the user enters character
'y’ for yes. Execution of goto in Line 20 results in the program jumping to the label
Start declared in Line 5, which effectively restarts the program.

goto is not the recommended form of programming loops
because the prolific usage of goto can result in unpredictable
flow of code where execution can jump from one line to another
in no particular order or sequence, in some cases leaving vari-
ables in unpredictable states, too.

CAUTION

A bad case of programming using goto results in what is called
spaghetti code. You can avoid goto by using while, do. . .while,
and for loops that are explained in the following pages.

The only reason you were taught goto is so that you understand
code that uses one.

The while Loop

C++ keyword while can help do what goto did in Listing 6.7, but in a refined manner.
Its usage syntax is

while (expression)

{

// Expression evaluates to true
StatementBlock;

The statement block is executed repeatedly so long as the expression evaluates to
true. It is hence important to code in a way that there are situations where the expres-
sion would also evaluate to false, else the while loop would never end.

Listing 6.8 is an equivalent of Listing 6.7 but uses while instead of goto in allowing the
user to repeat a calculation cycle.

LISTING 6.8 Using a while Loop to Help the User Rerun Calculations

#include <iostream>
using namespace std;

int main()

{

char userSelection = 'm'; // initial value

while (userSelection != 'x'")
cout << "Enter the two integers: " << endl;
int numl = 0, num2 = 0;
cin >> numl;

O W 0 O Ul b WNBRE O

o
i

12: cin >> num2;

13:

14: cout << numl << " X " << num2 << " = " << numl * num2 << endl;
15: cout << numl << " + " << num2 << " = " << numl + num2 << endl;
16:

17: cout << "Press x to exit(x) or any other key to recalculate" << endl;
18: cin >> userSelection;

19: }

20:

21: cout << "Goodbye!" << endl;

22:

23: return 0;

24: }

Output v

Enter the two integers:

56

25

56 x 25 = 1400

56 + 25 = 81

Press x to exit(x) or any other key to recalculate
r

Enter the two integers:

365

-5

365 x -5 = -1825

365 + -5 = 360

Press x to exit(x) or any other key to recalculate
X

Goodbye!

Analysis v

The while loop in Lines 7-19 contains most of the logic in this program. Note how the
while checks the expression (userSelection != 'x'), proceeding only if this expres-
sion evaluates to true. To enable a first run, you initialized the char variable userSe-
lection to 'm' in Line 5. This needed to be any value that is not 'x' (else the condition
would fail at the very first loop and the application would exit without letting the user

do anything constructive). The first run is very simple, but the user is asked in Line 17

if he wishes to perform another set of calculations. Line 18 containing the user’s input

is where you modify the expression that while evaluates, giving the program a chance
to continue or to terminate. When the first loop is done, execution returns to evaluating
the expression in the while statement at Line 7 and repeats if the user has not pressed
x. When the user presses x at the end of a loop, the next evaluation of the expression at

Line 7 results in a false, and the execution exits the while loop, eventually ending the
application after displaying a goodbye statement.

A loop is also called an iteration. Statements involving while,
do...while, and for are also called iterative statements.

NOTE

The do..while Loop

There are cases (like the one in Listing 6.8) where you need to ensure that a certain seg-
ment of code repeats in a loop and that it executes at least once. This is where the do...
while loop is useful.

The syntax of the do..while loop is

do

{

StatementBlock; // executed at least once
} while(condition); // ends loop if condition evaluates to false

Note how the line containing the while(expression) terminates with a semicolon.
This is different from the previous while loop in which a semicolon following while
would’ve effectively terminated the loop in the very line, resulting in an empty statement.

Listing 6.9 demonstrates how do...while loops can be implemented in executing state-
ments at least once.

LISTING 6.9 Using do..while to Repeat Execution of a Block of Code

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: char userSelection = 'x'; // initial value

6: do

7: {

8: cout << "Enter the two integers: " << endl;

9: int numl = 0, num2 = 0;

10: cin >> numl;

11: cin >> num2;

12:

13: cout << numl << " X " << num2 << " = " << numl * num2 << endl;
14: cout << numl << " + " << num2 << " = " << numl + num2 << endl;

16: cout << "Press x to exit(x) or any other key to recalculate" << endl;

17: cin >> userSelection;
18: } while (userSelection != 'x');
19:

20: cout << "Goodbye!" << endl;
21:

22: return 0;

23: }

Output v

Enter the two integers:

654

-25

654 x -25 = -16350

654 + -25 = 629

Press x to exit(x) or any other key to recalculate
m

Enter the two integers:

909

101

909 x 101 = 91809

909 + 101 = 1010

Press x to exit(x) or any other key to recalculate
X

Goodbye!

Analysis v

This program is similar in behavior and output to Listing 6.8. Indeed the only difference
is the do keyword at Line 6 and the usage of while later at Line 18. The execution of
code happens serially, one line after another until the while is reached at Line 18. This
is where while evaluates the expression (userSelection != 'x'). When the expres-
sion evaluates to true (that is, the user doesn’t press character ‘x’ to exit), execution of
the loop repeats. When the expression evaluates to false (that is, the user presses ‘x’),
execution quits the loop and continues with wishing goodbye and ending the application.

The for Loop

The for statement is a more sophisticated loop in that it allows for an initialization state-
ment executed once (typically used to initialize a counter), checking for an exit condition
(typically using this counter), and performing an action at the end of every loop (typically
incrementing or modifying this counter).

The syntax of the for loop is

for (initial expression executed only once;
exit condition executed at the beginning of every loop;
loop expression executed at the end of every loop)

DoSomething;

The for loop is a feature that enables the programmer to define a counter variable with
an initial value, check the value against an exit condition at the beginning of every loop,
and change the value of the variable at the end of a loop.

Listing 6.10 demonstrates an effective way to access elements in an array using
a for loop.

LISTING 6.10 Using for Loops to Enter Elements in a Static Array and Displaying It

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: const int ARRAY LENGTH = 5;

6: int myNums [ARRAY LENGTH] = {0};

7:

8: cout << "Populate array of " << ARRAY LENGTH << " integers" << endl;
9:

10: for (int counter = 0; counter < ARRAY LENGTH; ++counter)

11: {

12: cout << "Enter an integer for element " << counter << ": ";
13: cin >> myNums [counter] ;

14: }

15:

16: cout << "Displaying contents of the array: " << endl;

17:

18: for (int counter = 0; counter < ARRAY LENGTH; ++counter)

19: cout << "Element " << counter << " = " << myNums[counter] << endl;
20:

21: return O0;

N
N
—

Output v

Populate array of 5 integers

Enter an integer for element 0: 365
Enter an integer for element 1: 31
Enter an integer for element 2: 24
Enter an integer for element 3: -59
Enter an integer for element 4: 65536
Displaying contents of the array:
Element 0 = 365

Element 1 = 31

Element 2 = 24

Element 3 = -59

Element 4 = 65536

Analysis v

There are two for loops in Listing 6.10—at Lines 10 and 18. The first helps enter
elements into an array of integers and the other to display. Both for loops are identical
in syntax. Both declare an index variable counter to access elements the array. This
variable is incremented at the end of every loop; therefore, it helps access the next
element in the next run of the loop. The middle expression in the for loop is the exit

condition. It checks whether counter that is incremented at the end of every loop is still
within the bounds of the array by comparing it against ARRAY LENGTH. This way, it is
also ensured that the for loop never exceeds the length of the array.

NOTE

A variable such as counter from Listing 6.10 that helps access
elements in a collection such as an array is also called an
iterator.

The scope of this iterator declared within the for construct

is limited to the for loop. Thus, in the second for loop in
Listing 6.10, this variable that has been re-declared is effectively
a new variable.

The usage of the initialization, conditional expression, and the expression to be
evaluated at the end of every loop is optional. It is possible to have a for loop without
some or any of these, as shown in Listing 6.11.

LISTING 6.11 Using a for Loop, Omitting Loop Expression, to Repeat Calculations
on User Request

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: // without loop expression (third expression missing)

6: for (char userSelection = 'm'; (userSelection != 'x');)

7: {

8: cout << "Enter the two integers: " << endl;

9: int numl = 0, num2 = 0;

10: cin >> numl;

11: cin >> num2;

12:

13: cout << numl << " x " << num2 << " = " << numl * num2 << endl;
14: cout << numl << " + " << num2 << " = " << numl + num2 << endl;
15:

16: cout << "Press x to exit or any other key to recalculate" << endl;
17: cin >> userSelection;

18: }

19:
20: cout << "Goodbye!" << endl;
21:
22: return O;
23: }

Output v

Enter the two integers:

56

25

56 x 25 1400

56 + 25 = 81

Press x to exit or any other key to recalculate

m
Enter the two integers:
789

-36

789 x -36 = -28404

789 + -36 = 753

Press x to exit or any other key to recalculate
X

Goodbye!

Analysis v

This program is identical to Listing 6.8 that used the while loop; the only difference
is that this one uses the for construct in Line 6. The interesting thing about this for
loop is that it contains only the initialization expression and the conditional expression,
ignoring the option to change a variable at the end of each loop.

You can initialize multiple variables in a for loop within the first
NOTE R) \ ;
initialization expression that is executed once. A for loop in
Listing 6.11 with multiple initializations looks like the following:

for (int counterl = 0, counter2 = 5; // initialize
counterl < ARRAY LENGTH; // check
++counterl, --counter2) // increment, decrement

Note the new addition called counter2 that is initialized to 5.

Interestingly, we also are able to decrement it in the loop expres-
sion, once per loop.

The Range-Based for Loop

C++11 introduced a new variant of the for loop that makes operating over a range of
values, such as those contained in an array, simpler to code and to read.

The syntax of the range-based for loop also uses the same keyword for:

for (VarType varName : sequence)

{
}

// Use varName that contains an element from sequence

For example, given an array of integers someNums, you would use a range-based for
to read elements contained in the array, like this:

int someNums[] = { 1, 101, -1, 40, 2040 };

for (int aNum : someNums) // range based for
cout << "The array elements are " << aNum << endl;

TIP

You may simplify this for statement further by using automatic
variable type deduction feature via keyword auto to compose a
generic for loop that will work for an array elements of any type:

for (auto anElement : elements) // range based for
cout << "Array elements are " << anElement << endl;

Keyword auto and the automatic variable type inferencing feature
was introduced in Lesson 3.

Listing 6.12 demonstrates the range-based for on ranges of different types.

LISTING 6.12 Using Range-Based for Loop Over Arrays and a std: :string

@ J o0 Ul W NP O

WWWNoNONDDNDDNNDNDNDNDERRRR R B B P
N O W®JIO U WNREOWO®-CUO U AW R oW

#include<iostreams>
#include <string>
using namespace std;

int main()

{

int someNums[] = { 1, 101, -1, 40, 2040 };

for (const int& aNum : someNums)
cout << aNum << ' ';
cout << endl;

for (auto anElement : { 5, 222, 110, -45, 2017 })
cout << anElement << ' ';
cout << endl;

char charArray[] = { 'h', 'e', '1', '1', 'o' };
for (auto aChar : charArray)

cout << aChar << ' ';
cout << endl;

double moreNums[] = { 3.14, -1.3, 22, 10101 };
for (auto anElement : moreNums)

cout << anElement << ' ';
cout << endl;

string sayHello{ "Hello World!" };
for (auto anElement : sayHello)

cout << anElement << ' ';
cout << endl;

return 0;

Output v

1 101 -1 40 2040

5 222 110 -45 2017
hello

3.14 -1.3 22 10101
Hello World!

Analysis v

The code sample contains multiple implementations of the range-based for, as seen in
Lines 8, 12, 17, 22, and 27, respectively. Each of these instances uses the loop to display
the contents of a range on the screen, one element at a time. What’s interesting is that,
while the nature of the range changes from being an array of integers someNums in
Line 8 to an unspecified range in Line 12 to an array of char charArray in Line 17,
and even a std::string in Line 27, the syntax of the range-based for loop remains
consistent.

This simplicity of implementation makes the range-based for one of the more popular
features recently introduced by C++.

Modifying Loop Behavior Using continue
and break

There are a few cases—especially in complicated loops handling many parameters with
many conditions—where you are not able to program the loop condition efficiently and
need to modify program behavior even within the loop. This is where continue and
break can help you.

continue lets you resume execution from the top of the loop. The code following it
within the block is skipped. Thus, the effect of continue in a while, do...while, or
for loop is that it results in the loop condition being reevaluated and the loop block
being reentered if the condition evaluates to true.

In case of a continue within a for loop, the loop expression
(the third expression within the for statement typically used

to increment the counter) is evaluated before the condition is
reevaluated.

NOTE

On the other hand, break exits the loop’s block, thereby ending the loop when invoked.

Usually programmers expect all code in a loop to be executed
when the loop conditions are satisfied. continue and break
modify this behavior and can result in nonintuitive code.

CAUTION

Therefore, continue and break should be used sparingly.

Loops That Don’t End—That Is, Infinite Loops

Remember that while, do...while, and for loops have a condition expression that
results in the loop terminating when the condition evaluates to false. If you program a
condition that always evaluates to true, the loop never ends.

An infinite while loop looks like this:

while (true) // while expression fixed to true

{
}

DoSomethingRepeatedly;

An infinite do...while loop would be

do

{

DoSomethingRepeatedly;
} while(true) ; // do.while expression never evaluates to false

An infinite for loop can be programmed the following way:

for (;;) // no condition supplied = unending for

{
}

DoSomethingRepeatedly;

Strange as it may seem, such loops do have a purpose. Imagine an operating system that
needs to continually check whether you have connected a device such as a USB stick to
the USB port. This is an activity that should not stop for so long as the OS is running.
Such cases warrant the use of loops that never end. Such loops are also called infinite
loops as they execute forever, to eternity.

Controlling Infinite Loops

If you want to end an infinite loop (say the OS in the preceding example needs to
shut down), you do so by inserting a break (typically used within an 1f (condition)
block).

The following is an example of using break to exit an infinite while:

while (true) // while condition fixed to true

{

DoSomethingRepeatedly;
if (expression)
break; // exit loop when expression evaluates to true

Using break inside an infinite do...while:

do

{

DoSomethingRepeatedly;
if (expression)
break; // exit loop when expression evaluates to true
} while(true);

Using break inside an infinite for loop:

for (;;) // no condition supplied = unending for

{

DoSomethingRepeatedly;
if (expression)
break; // exit loop when expression evaluates to true

Listing 6.13 shows how to program infinite loops using continue and break to control
the exit criteria.

LISTING 6.13 Using continue to Restart and break to Exit an Infinite for Loop

{

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: for(;;) // an infinite loop
6:

7:

cout << "Enter two integers: " << endl;

8: int numl = 0, num2 = 0;

9: cin >> numl;

10: cin >> num2;

11:

12: cout << "Do you wish to correct the numbers? (y/n): ";

13: char changeNumbers = '\0';

14: cin >> changeNumbers;

15:

16: if (changeNumbers == 'y')

17: continue; // restart the loop!

18:

19: cout << numl << " X " << num2 << " = " << numl * num2 << endl;
20: cout << numl << " + " << num2 << " = " << numl + num2 << endl;
21:

22: cout << "Press x to exit or any other key to recalculate" << endl;
23: char userSelection = '\0';

24 cin >> userSelection;

25:

26: if (userSelection == 'x')

27: break; // exit the infinite loop

28: }

29:

30: cout << "Goodbye!" << endl;

31:

32: return 0;

33: }

Output v

Enter two integers:

560

25

Do you wish to correct the numbers? (y/n): y
Enter two integers:

56

25

Do you wish to correct the numbers? (y/n): n
56 x 25 = 1400

56 + 25 = 81

Press x to exit or any other key to recalculate
r

Enter two integers:

95

-1

Do you wish to correct the numbers? (y/n): n
95 x -1 = -95

95 + -1 = 94

Press x to exit or any other key to recalculate
bd

Goodbye!

Analysis v

The for loop in Line 5 is different from the one in Listing 6.11 in that this is an infinite
for loop containing no condition expression that is evaluated on every iteration of the
loop. In other words, without the execution of a break statement, this loop (and hence
this application) never exits. Note the output, which is different from the other output you
have seen so far in that it allows the user to make a correction to his input before the pro-
gram proceeds to calculate the sum and multiplication. This logic is implemented using
a continue given the evaluation of a certain condition in Lines 16 and 17. When the
user presses character 'y’ on being asked whether he wants to correct the numbers, the
condition in Line 16 evaluates to true, hence executing the following continue. When
continue is encountered, execution jumps to the top of the loop, asking the user again
whether he wants to enter two integers. Similarly, at the end of the loop when the user is
asked whether he wants to exit, his input is checked against 'x' in Line 26, and if so, the
following break is executed, ending the infinite loop.

NOTE Listing 6.13 uses an empty for (; ;) statement to create an
infinite loop. You can replace that with while (true) or a do. ..
while (true) ; to generate the same output using a different
loop type.

DO DON'T

DO use do..while when the logic DON’T use goto.

in the loop needs to be executed at ST UEE comcinme Ane) ek
least once.

indiscriminately.
DO use while, do..while, or for
loops with well-defined condition
expressions.

DON’T program infinite loops termi-
nated using break unless absolutely
necessary.

DO indent code in a statement
block contained in a loop to improve
readability.

Programming Nested Loops

Just as you saw nested if statements in the beginning of this lesson, often you do need to
nest one loop under another. Imagine two arrays of integers. If you want to find the mul-
tiple of each number in arrayl against each in array?2, you use a nested loop to make

programming this easy. The first loop iterates arrayl, while the second iterates array?2
under the first.

Listing 6.14 demonstrates the usage of nested loops.

LISTING 6.14 Using Nested Loops to Multiply Each Element in an Array by Each

in Another
0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int ARRAY1l LEN = 3;
6: const int ARRAY2 LEN = 2;
7:
8: int myNumsl[ARRAY1 LEN] = {35, -3, 0};
9: int myNums2 [ARRAY2 LEN] = {20, -1};
10:
11: cout << "Multiplying each int in myNumsl by each in myNums2:" << endl;
12:
13: for(int indexl = 0; indexl < ARRAY1l LEN; ++indexl)
14: for(int index2 = 0; index2 < ARRAY2 LEN; ++index2)
15: cout << myNumsl[indexl] << " x " << myNums2 [index2] \
16: << " = " << myNumsl[indexl] * myNums2[index2] << endl;
17:
18: return 0;
19: }
Output v

Multiplying each int in myNumsl by each in myNums2:
35 x 20 = 700

35 x -1 = -35
-3 x 20 = -60
-3 x -1 =23
0 x 20 =0
0x -1=0

Analysis v

The two nested for loops in question are in Lines 13 and 14. The first for loop iterates
the array myNums1, whereas the second for loop iterates the other array myNums2. The
first for loop executes the second for loop within each iteration. The second for loop

iterates over all elements in myNums2 and in each iteration multiplies that element with
the element indexed via index1 from the first loop above it. So, for every element in
myNums1, the second loop iterates over all elements in myNums2, resulting in the first
element in myNums1 at offset 0 being multiplied with all elements in myNums2. Then the
second element in myNums1 is multiplied with all elements in myNums2. Finally, the third
element in myNums1 is multiplied with all elements in myNums?2.

For convenience and for keeping focus on the loops, the con-
tents of the array in Listing 6.14 are initialized. You should feel
free to derive from previous examples, such as Listing 6.10, to
get the user to enter numbers into the integer array.

NOTE

Using Nested Loops to Walk a Multidimensional
Array

In Lesson 4, you learned of multidimensional arrays. Indeed in Listing 4.3 you access
elements in a two-dimensional array of three rows and three columns. What you did
there was to individually access each element in the array, one element per line. There
was no automation, and, if the array was to be made larger, you would need to code a
lot more, in addition to changing the array’s dimensions to access its elements. However,
using loops can change all that, as demonstrated by Listing 6.15.

LISTING 6.15 Using Nested Loops to Iterate Elements in a Two-dimensional Array

of Integers

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: const int NUM ROWS = 3;

6: const int NUM_COLUMNS = 4;

7:

8: // 2D array of integers

9: int MyInts[NUM ROWS] [NUM_COLUMNS] = { {34, -1, 879, 22},
10: {24, 365, -101, -1},
11: {-20, 4o, 97} };
12:

13 // iterate rows, each array of int

14: for (int row = 0; row < NUM_ROWS; ++row)

15: {

16: // iterate integers in each row (columns)

17: for (int column = 0; column < NUM_COLUMNS; ++column)
18: {

19: cout << "Integer[" << row << "] [" << column \
20: << "] = " << MyInts[row] [column] << endl;
21: }

22: }

23:

24: return 0;

25: }

Output v

Integer[0] [0] = 34

Integer[0] [1] = -1

Integer[0] [2] = 879

Integer[0] [3] = 22

Integer[1] [0] = 24

Integer[1] [1] = 365

Integer[1] [2] = -101

Integer[1] [3] = -1

Integer[2] [0] = -20

Integer[2] [1] = 40

Integer[2] [2] = 90

Integer[2] [3] = 97

Analysis v

Lines 14-22 contain two for loops that you need to access and iterate through a
two-dimensional array of integers. A two-dimensional array is in effect an array of an
array of integers. Note how the first for loop accesses the rows (each being an array
of integers), whereas the second accesses each element in this array—that is, accesses
columns therein.

Listing 6.15 uses braces to enclose the nested for only to
improve readability. This nested loop works just fine without the
braces, t00, as the loop statement is just a single statement to
be executed (and not a compound statement that necessitates
the use of enclosing braces).

NOTE

Using Nested Loops to Calculate Fibonacci Numbers

The famed Fibonacci series is a set of numbers starting with 0 and 1, where every
following number in the series is the sum of the previous two. So, a Fibonacci series
starts with a sequence like this:

0,1,1,2,3,5,8, ... and so on

Listing 6.16 demonstrates how to create a Fibonacci series comprised of as many num-
bers as you want (limited by the data-bearing capacity of the integer holding the final
number).

LISTING 6.16 Using Nested Loops to Calculate a Fibonacci Series

0: #include <iostreams>
1: using namespace std;
2:
3: int main()
4: {
5: const int numsToCalculate = 5;
6: cout << "This program will calculate " << numsToCalculate \
7: << " Fibonacci Numbers at a time" << endl;
8:
9: int numl = 0, num2 = 1;
10: char wantMore = '\0';
11: cout << numl << " " << num2 << " ";
12:
13: do
14: {
15 for (int counter = 0; counter < numsToCalculate; ++counter)
16 {
17 cout << numl + num2 << " ";
18
19 int num2Temp = num2;
20 num2 = numl + num2;
21: numl = num2Temp;
22: }
23:
24 cout << endl << "Do you want more numbers (y/n)? ";
25 cin >> wantMore;
26 }while (wantMore == 'y');
27
28 cout << "Goodbye!" << endl;
29:
30 return 0;

w
=
—

Output v

This program will calculate 5 Fibonacci Numbers at a time
0112358

Do you want more numbers (y/n)? y

13 21 34 55 89

Do you want more numbers (y/n)? y

144 233 377 610 987

Do you want more numbers (y/n)? y

1597 2584 4181 6765 10946

Do you want more numbers (y/n)? n

Goodbye'!

Analysis v

The outer do...while at Line 13 is basically the query loop that repeats if the user wants
to see more numbers. The inner for loop at Line 15 does the job of calculating the next
Fibonacci number and displays five numbers at a time. In Line 19 you hold the value in
num?2 in a temporary variable num2Temp to be able to reuse it at Line 21. Note that if
you hadn’t stored this temp value, you would be assigning the modified value in Line

20 directly to num1, which is not what you want. When the user presses ‘y’ to get more
numbers, the do..while loop executes once more, thereby executing the nested for loop
that generates five more Fibonacci numbers.

Summary

This lesson taught you how to code conditional statements that create alternative execu-
tion paths and make code blocks repeat in a loop. You learned the if..else construct
and using switch-case statements to handle different situations in the event of variables
containing different values.

In understanding loops, you were taught goto—but you were simultaneously warned
against using it due to its ability to create code that cannot be understood. You learned
programming loops in C++ using while, do..while, and for constructs. You learned
how to make the loops iterate endlessly to create infinite loops and to use continue and
break to better control them.

Q&A

Q What happens if I omit a break in a switch-case statement?

A The break statement enables program execution to exit the switch construct.
Without it, execution continues evaluating the following case statements.

Q How do I exit an infinite loop?

A Use break to exit any loop containing it. Using return exits the function
module, too.

Q My while loop looks like while (Integer). Does the while loop execute
when Integer evaluates to -1?

A Ideally a while expression should evaluate to a Boolean value true or false.
false is zero. A condition that does not evaluate to zero is considered to evaluate
to true. Because -1 is not zero, the while condition evaluates to true and the
loop is executed. If you want the loop to be executed only for positive numbers,
write an expression while (Integer>0). This rule is true for all conditional
statements and loops.

Q Is there an empty while loop equivalent of for (;;)?

A No, while always needs an accompanying conditional expression.

Q I changed a do..while (exp) ; to a while (exp) ; by copying and pasting.
Should I anticipate any problems?

A Yes, big ones! while (exp) ; is already a valid yet empty while loop due to the
null statement (the semicolon) following the while, even if it is followed by a
statement block. The statement block in question is executed once, but outside of
the loop. Exercise caution when copying and pasting code.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered as well as exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. Why bother to indent code within statement blocks, nested i£fs, and nested loops
when it compiles even without indentation?
2. You can implement a quick fix using goto. Why would you still avoid it?

3. Is it possible to write a for loop where the counter decrements? How would
it look?

4.

What is the problem with the following loop?

for (int counter=0; counter==10; ++counter)
cout << counter << " ",

Exercises

1.
2.

Write a for loop to access elements in an array in the reverse order.

Write a nested loop equivalent of Listing 6.14 that adds elements in two arrays, but
in reverse order.

. Write a program that displays Fibonacci numbers similar to Listing 6.16 but asks

the user how many numbers she wants to compute.

. Write a switch-case construct that tells if a color is in the rainbow or otherwise.

Use enumerated constants.

. BUG BUSTERS: What is wrong with this code?

for (int counter=0; counter=10; ++counter)
cout << counter << " ";

. BUG BUSTERS: What is wrong with this code?

int loopCounter = 0;

while (loopCounter <5);
cout << loopCounter << " ";
loopCounter++;

. BUG BUSTERS: What is wrong with this code?

cout << "Enter a number between 0 and 4" << endl;
int input = 0;

cin >> input;

switch (input)

{
case
case
case
case

W N R o

case 4:
cout << "Valid input" << endl;
default:

cout << "Invalid input" << endl;

LESSON 7
Organizing Code with
Functions

So far in this book you have seen simple programs where all programming
effort is contained in main (). This works well for really small programs
and applications. The larger and more complex your program gets, the lon-
ger the contents of main () become, unless you choose to structure your
program using functions.

Functions give you a way to compartmentalize and organize your program’s
execution logic. They enable you to split the contents of your application
into logical blocks that are invoked sequentially.

A function is hence a subprogram that optionally takes parameters and
returns a value, and it needs to be invoked to perform its task. In this les-
son you learn

The need for programming functions

Function prototypes and function definition

Passing parameters to functions and returning values from them
Overloading functions

Recursive functions

C++11 lambda functions

The Need for Functions

Think of an application that asks the user to enter the radius of a circle and then
computes the circumference and area. One way to do this is to have it all inside main().
Another way is to break this application into logical blocks: in particular two that
compute area and circumference given radius, respectively. See Listing 7.1.

LISTING 7.1 Two Functions That Compute the Area and Circumference of a Circle
Given Radius

0: #include <iostreams

1: using namespace std;

2:

3: const double Pi = 3.14159265;

4:

5: // Function Declarations (Prototypes)
6: double Area(double radius) ;

7: double Circumference (double radius);
8:

9: int main()

10: |

11: cout << "Enter radius: ";

12: double radius = 0;

13: cin >> radius;

14:

15: // Call function "Area"

16: cout << "Area is: " << Area(radius) << endl;
17:

18: // Call function "Circumference"
19: cout << "Circumference is: " << Circumference (radius) << endl;
20:
21: return 0;
22: }
23:
24: // Function definitions (implementations)
25: double Area(double radius)
26: {
27: return Pi * radius * radius;
28: }
29:
30: double Circumference (double radius)
31: |
32: return 2 * Pi * radius;
33: }

Output v

Enter radius: 6.5
Area is: 132.732
Circumference is: 40.8407

Analysis v

main(), which is also a function, is compact and delegates activity to functions such as
Area() and Circumference() that are invoked in Lines 16 and 19, respectively.

The program demonstrates the following artifacts involved in programming using
functions:

m Function prototypes are declared in Lines 6 and 7, so the compiler knows what the
terms Area and Circumference are when used in main () mean.

® Functions Area () and Circumference () are invoked in main () in Lines 16
and 19.

® Function Area () iS defined in Lines 25-28, Circumference () in Lines 30-33.

Compartmentalizing the computation of area and circumference into different functions
can potentially help reuse as the functions can be invoked repeatedly, as and when
required.

What Is a Function Prototype?
Let’s take a look at Listing 7.1 again—Lines 6 and 7 in particular:

double Area(double radius);
double Circumference (double radius) ;

Figure 7.1 shows what a function prototype is comprised of.

E'GtURf 71 double Area(double radius);
arts of a
function prototype. L J
Y Y E o
Retumn Foriction Function parameter(s) - optional:
value name Parameter list comprised of type and
type optionally name, separated by comma

in event of multiple parameters

The function prototype basically tells what a function is called (the name, Area), the list
of parameters the function accepts (one parameter, a double called radius), and the
return type of the function (a double).

Without the function prototype, on reaching Lines 16 and 19 in main() the compiler
wouldn’t know what the terms Area and Circumference are. The function prototypes
tell the compiler that Area and Circumference are functions; they take one parameter
of type double and return a value of type double. The compiler then recognizes these
statements as valid and the job of linking the function call to its implementation and
ensuring that the program execution actually triggers them is that of the linker.

A function can have multiple parameters separated by commas,
but it can have only one return type.

NOTE

When programming a function that does not need to return any
value, specify the return type as void.

What Is a Function Definition?

The actual meat and potatoes—the implementation of a function—is what is called the
definition. Analyze the definition of function Area():

25: double Area(double radius)

26: {
27: return Pi * radius * radius;
28: }

A function definition is always comprised of a statement block. A return statement is
necessary unless the function is declared with return type void. In this case, Area()
needs to return a value because the function has been declared as one that returns as
double. The statement block contains statements within open and closed braces ({...})
that are executed when the function is called. Area() uses the input parameter radius
that contains the radius as an argument sent by the caller to compute the area of the
circle.

What Is a Function Call, and What Are Arguments?

Calling a function is the same as invoking one. When a function declaration contains
parameters, the function call needs to send arguments. Arguments are values the func-
tion requests within its parameter list. Let’s analyze a call to Area() in Listing 7.1:

16: cout << "Area 1is: " << Area(radius) << endl;

Here, Area(radius) is the function call, wherein radius is the argument sent to the
function Area(). When invoked, execution jumps to function Area() that uses the radius
sent to compute the area of the circle.

Programming a Function with Multiple Parameters

Assume you were writing a program that computes the surface area of a cylinder, as
shown in Figure 7.2.

FIGURE 7.2 Radius
A cylinder. >

Height

The formula you use would be the following:

Area of Cylinder = Area of top circle + Area of bottom circle + Area of Side
= Pi * radius®™2 + Pi * radius "2 + 2 * Pi * radius * height
= 2 * Pi * radius®™2 + 2 * Pi * radius * height

Thus, you need to work with two variables, the radius and the height, in computing the
area of the cylinder. In such cases, when writing a function that computes the surface
area of the cylinder, you specify at least two parameters in the parameter list, within the
function declaration. You do this by separating individual parameters by a comma as
shown in Listing 7.2.

LISTING 7.2 Function That Accepts Two Parameters to Compute the Surface Area

of a Cylinder
0: #include <iostreams>
1: using namespace std;
2:
3: const double Pi = 3.14159265;
4:
5: // Declaration contains two parameters
6: double SurfaceArea(double radius, double height);
7:
8: int main()
9: {
10: cout << "Enter the radius of the cylinder: ";
11 double radius = 0;
12: cin >> radius;
13: cout << "Enter the height of the cylinder: ";

14: double height = 0;

15: cin >> height;

16:

17: cout << "Surface area: " << SurfaceArea(radius, height) << endl;
18:

19: return 0;

20: }

21:

22: double SurfaceArea(double radius, double height)

23: |

24: double area = 2 * Pi * radius * radius + 2 * Pi * radius * height;
25: return area;

26: }

Output v

Enter the radius of the cylinder: 3
Enter the height of the cylinder: 6.5
Surface Area: 179.071

Analysis v

Line 6 contains the declaration of the function SurfaceArea() with two parameters:
radius and height, both of type double, separated by a comma. Lines 22-26 show
the definition—that is, the implementation of SurfaceArea(). As you can see, the input
parameters radius and height are used to compute the value stored in the local vari-
able area that is then returned to the caller.

Function parameters are like local variables. They are valid within
the scope of the function only. So in Listing 7.2, parameters
radius and height within function surfacearea () are copies of
variables with similar names within main ().

NOTE

Programming Functions with No Parameters
or No Return Values

If you delegate the task of saying “Hello World” to a function that does only that and
nothing else, you could do it with one that doesn’t need any parameters (as it doesn’t need
to do anything apart from say “Hello”), and possibly one that doesn’t return any value
(because you don’t expect anything from such a function that would be useful elsewhere).
Listing 7.3 demonstrates one such function.

LISTING 7.3 A Function with No Parameters and No Return Values

0: #include <iostream>
1: using namespace std;
2:

3: void SayHello() ;

4:

5: int main()

6: |

7: SayHello() ;

8: return 0;

9: }

10:

11: void SayHello()

12: {

13: cout << "Hello World" << endl;
14: }
Output v

Hello World

Analysis v

Note that the function prototype in Line 3 declares function SayHello() as one with
return value of type void—that is, SayHello() doesn’t return a value. Consequently, in
the function definition in Lines 11-14, there is no return statement. Some programmers
prefer to insert a symbolic empty return statement at the end:

void SayHello()

{

cout << "Hello World" << endl;
return; // an empty return

Function Parameters with Default Values

In samples thus far, you assumed the value of Pi, fixed it as a constant, and never gave
the user an opportunity to change it. However, the user may be interested in a less or
more accurate reading. How do you program a function that would use a default value of
Pi of your choosing unless another one is supplied?

One way of solving this problem is to supply an additional parameter in function Area()
for Pi and supply a value chosen by you as a default one. Such an adaptation of function
Area() from Listing 7.1 would look like the following:

double Area(double radius, double pi = 3.14);

Note the second parameter pi is assigned a default value of 3.14. This second parameter
is therefore an optional parameter for the caller. The function Area() can be invoked as
if the second parameter didn’t exist:

Area (radius) ;

In this case, the second parameter defaults to the value of 3.14. However, when required,
the same function can be invoked using two arguments:

Area(radius, 3.14159); // more precise pi

Listing 7.4 demonstrates how you can program functions that contain default values for
parameters that can be overridden with a user-supplied value, if available and desired.

LISTING 7.4 Function That Computes the Area of a Circle, Using Pi as a Second
Parameter with Default Value 3.14

0: #include <iostream>

1: using namespace std;

2:

3: // Function Declarations (Prototypes)

4: double Area(double radius, double pi = 3.14);
5:

6: int main()

7: {

8: cout << "Enter radius: ";

9: double radius = 0;

10: cin >> radius;

11:

12: cout << "pi is 3.14, do you wish to change this (y / n)? ";
13: char changePi = 'n';

14: cin >> changePi;

15:

16: double circleArea = 0;

17: if (changePi == 'y')

18: {

19: cout << "Enter new pi: ";

20: double newPi = 3.14;

21: cin >> newPi;

22: circleArea = Area (radius, newPi);

23: }

24 : else

25: circleArea = Area(radius); // Ignore 2nd param, use default value
26:

27: // Call function "Area"

28: cout << "Area is: " << circleArea << endl;
29:

30 return 0;

w
i
—

32:
33: // Function definitions (implementations)
34: double Area(double radius, double pi)

35: {

36: return pi * radius * radius;
37: }

Output v

Enter radius: 1
Pi is 3.14, do you wish to change this (y / n)? n
Area is: 3.14

Next run:

Enter radius: 1

Pi is 3.14, do you wish to change this (y / n)? y
Enter new Pi: 3.1416

Area 1is: 3.1416

Analysis v

In the two runs, the radius entered by the user was the same—1. In the second run,
however, the user opted for the choice to change the precision of Pi, and hence the area
computed is slightly different. Note that in both cases, as seen in Lines 22 and 25, you
invoke the same function. Line 25 invokes Area() without the second parameter pi.
In this case, the parameter pi in Area() contains value 3.14, supplied as default in the
declaration in Line 4.

You can have multiple parameters with default values; however,
these should all be at the tail end of the parameter list.

NOTE

Recursion—Functions That Invoke Themselves

In certain cases, you can actually have a function call itself. Such a function is called a
recursive function. Note that a recursive function should have a very clearly defined exit
condition where it returns without invoking itself again.

In the absence of an exit condition or in the event of a bug in
the same, your program execution gets stuck at the recursive
function that won’t stop invoking itself, and this eventually stops
when the “stack overflows,” causing an application crash.

CAUTION

Recursive functions can be useful when determining a number in the Fibonacci series as
shown in Listing 7.5. This series starts with two numbers, 0 and 1:

F(0) = 0
F(1) =1

And the value of a subsequent number in the series is the sum of the previous two
numbers. So, the nth value (for n > 1) is determined by the (recursive) formula:

Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

As a result the Fibonacci series expands to

Lo e e B B

(2
(3
(4
(5
(6

1
2
3
5
8

, and so on.

LISTING 7.5 Using Recursive Functions to Calculate a Number in the Fibonacci Series

0: #include <iostreams
1: using namespace std;
2:
3: int GetFibNumber (int fibIndex)
4: {
5: if (fibIndex < 2)
6: return fibIndex;
7: else // recursion if fibIndex >= 2
8: return GetFibNumber (fibIndex - 1) + GetFibNumber (fibIndex - 2);
9: }
10:
11: int main()
12: |
13: cout << "Enter 0O-based index of desired Fibonacci Number: ";
14: int index = 0;
15: cin >> index;
16
17 cout << "Fibonacci number is: " << GetFibNumber (index) << endl;
18: return 0;
19: }
Output v

Enter O-based index of desired Fibonacci Number: 6
Fibonacci number is: 8

Analysis v

The function GetFibNumber () defined in Lines 3-9 is recursive as it invokes itself at
Line 8. The exit condition programmed in Lines 5 and 6 ensures that the function will
return without recursion if fibIndex is less than two. Thus, Get FibNumber () invokes
itself recursively with ever reducing values of £ibIndex. It ultimately reaches a state
where the exit condition is satisfied, the recursion ends, and a Fibonacci value is deter-
mined and returned to main().

Functions with Multiple Return Statements

You are not restricted to having only one return statement in your function definition.
You can return from any point in the function, and multiple times if you want, as shown
in Listing 7.6. Depending on the logic and the need of the application, this might or
might not be poor programming practice.

LISTING 7.6 Using Multiple Return Statements in One Function

0: #include <iostreams>

1: using namespace std;

2: const double Pi = 3.14159265;

3:

4: void QueryAndCalculate ()

5: {

6: cout << "Enter radius: ";

7: double radius = 0;

8: cin >> radius;

9:

10: cout << "Area: " << Pi * radius * radius << endl;
11:

12: cout << "Do you wish to calculate circumference (y/n)? ";
13: char calcCircum = 'n';

14: cin >> calcCircum;

15:

16: if (calcCircum == 'n')

17: return;

18:

19: cout << "Circumference: " << 2 * Pi * radius << endl;
20: return;

21: }

22:

23: int main()

24: |

25 QueryAndCalculate ();

26:

27: return 0;

N
fee}
—

Output v

Enter radius: 1

Area: 3.14159

Do you wish to calculate circumference (y/n)? y
Circumference: 6.28319

Next run:

Enter radius: 1
Area: 3.14159
Do you wish to calculate circumference (y/n)? n

Analysis v

The function QueryAndCalculate() contains multiple return statements: one at Line
17 and the next one at Line 20. If the user presses 'n' for calculating circumference,

the program quits by using the return statement. For all other values, it continues with
calculating the circumference and then returning.

Use multiple returns in a function with caution. It is a lot easier
to understand and follow a function that starts at the top and
returns at the bottom than one that returns at multiple points in-
between.

CAUTION

In Listing 7.6, use of multiple returns could’ve been avoided sim-
ply by changing the if condition to testing for 'y' or yes:

if (calcCircum == 'y')

cout << "Circumference: " << 2*Pi*radius << endl;

Using Functions to Work with Different
Forms of Data

Functions don’t restrict you to passing values one at a time; you can pass an array of
values to a function. You can create two functions with the same name and return value
but different parameters. You can program a function such that its parameters are not
created and destroyed within the function call; instead, you use references that are

valid even after the function has exited so as to allow you to manipulate more data or
parameters in a function call. In this section you learn about passing arrays to functions,
function overloading, and passing arguments by reference to functions.

Overloading Functions

Functions with the same name and return type but with different parameters or set of
parameters are said to be overloaded functions. Overloaded functions can be quite useful
in applications where a function with a particular name that produces a certain type

of output might need to be invoked with different sets of parameters. Say you need to
be writing an application that computes the area of a circle and the area of a cylinder.
The function that computes the area of a circle needs a parameter—the radius. The
other function that computes the area of the cylinder needs the height of the cylinder in
addition to the radius of the cylinder. Both functions need to return the data of the same
type, containing the area. So, C++ enables you to define two overloaded functions, both
called Area, both returning double, but one that takes only the radius as input and
another that takes the height and the radius as input parameters as shown in Listing 7.7.

LISTING 7.7 Using an Overloaded Function to Calculate the Area of a Circle or a Cylinder

0: #include <iostreams>

1: using namespace std;

2:

3: const double Pi = 3.14159265;

4:

5: double Area(double radius); // for circle

6: double Area(double radius, double height); // for cylinder
7:

8: int main()

9: {

10: cout << "Enter z for Cylinder, c¢ for Circle: ";

11 char userSelection = 'z';

12: cin >> userSelection;

13:

14: cout << "Enter radius: ";

15 double radius = 0;

16: cin >> radius;

17

18 if (userSelection == 'z')

19: {
20 cout << "Enter height: ";
21: double height = 0;
22: cin >> height;
23:
24 // Invoke overloaded variant of Area for Cyclinder
25 cout << "Area of cylinder is: " << Area (radius, height) << endl;
26 }
27 else
28 cout << "Area of cylinder is: " << Area (radius) << endl;

\S]
e}

30: return 0;

31: }

32:

33: // for circle

34: double Area(double radius)

35: |

36: return Pi * radius * radius;
37: }

38:

39: // overloaded for cylinder
40: double Area(double radius, double height)

41:

42: // reuse the area of circle

43: return 2 * Area (radius) + 2 * Pi * radius * height;
44: }

Output v

Enter z for Cylinder, c¢ for Circle: z
Enter radius: 2

Enter height: 5

Area of cylinder is: 87.9646

Next run:

Enter z for Cylinder, c¢ for Circle: c
Enter radius: 1
Area of cylinder is: 3.14159

Analysis v

Lines 5 and 6 declare the prototype for the overloaded forms of Area(): The first over-
loaded variant accepts a single parameter—radius of a circle. The next one accepts two
parameters—radius and height of a cylinder. The function is called overloaded because
there are two prototypes with the same name, Area(); same return types, double; and
different sets of parameters. The definitions of the overloaded functions are in Lines
34-44, where the two functions determine the area of a circle given the radius and the
area of a cylinder given the radius and height, respectively. Interestingly, as the area of a
cylinder is comprised of the area of the two circles it contains (one on top and the other
on the bottom) in addition to the area of the sides, the overloaded version for cylinder
was able to reuse Area() for the circle, as shown in Line 43.

Passing an Array of Values to a Function
A function that displays an integer can be represented like this:

void DisplayInteger (int Number) ;

A function that can display an array of integers has a slightly different prototype:

void DisplayIntegers (int[] numbers, int Length);
The first parameter tells the function that the data being input is an array, whereas the

second parameter supplies the length of the array such that you can use the array without
crossing its boundaries. See Listing 7.8.

LISTING 7.8 Function That Takes an Array as a Parameter

0: #include <iostreams>

1: using namespace std;

2:

3: void DisplayArray (int numbers[], int length)

4: {

5: for (int index = 0; index < length; ++index)
6: cout << numbers[index] << " ";

7:

8: cout << endl;

9: }

10:

11: void DisplayArray(char characters[], int length)
12: {

13: for (int index = 0; index < length; ++index)
14: cout << characters[index] << " ";

15

16: cout << endl;

17: }

18

19: int main()
20: {
21: int myNums[4] = {24, 58, -1, 245};
22: DisplayArray (myNums, 4);
23:
24: char myStatement[7] = {'H', 'e', 'l', '1', 'o', '!', '\0'};
25 DisplayArray (myStatement, 7);
26
27 return 0;

N
©
—

Output v

24 58 -1 245
Hello!

Analysis v

There are two overloaded functions called DisplayArray() here: one that displays the
contents of elements in an array of integers and another that displays the contents of an
array of characters. In Lines 22 and 25, the two functions are invoked using an array
of integers and an array of characters, respectively, as input. Note that in declaring and
initializing the array of characters in Line 24, you have intentionally included the null
character—as a best practice and a good habit—even though the array is not used as a
string in a cout statement or the like (cout << myStatement;) in this application.

Passing Arguments by Reference

Take another look at the function in Listing 7.1 that computed the area of a circle given
the radius:

24: // Function definitions (implementations)
25: double Area(double radius)

26: {
27: return Pi * radius * radius;
28: }

Here, the parameter radius contains a value that is copied into it when the function is
invoked in main():

15: // Call function "Area"
16: cout << "Area 1is: " << Area(radius) << endl;

This means that the variable radius in main() is unaffected by the function call, as
Area() works on a copy of the value radius contains, held in radius. There are cases
where you might need a function to work on a variable that modifies a value that is avail-
able outside the function, too, say in the calling function. This is when you declare a
parameter that takes an argument by reference. A form of the function Area() that com-
putes and returns the area as a parameter by reference looks like this:

// output parameter result by reference
void Area (double radius, double& result)

{
}

result = Pi * radius * radius;

Note how Area() in this form takes two parameters. Don’t miss the ampersand (&) next
to the second parameter result. This sign indicates to the compiler that the second
argument should NOT be copied to the function; instead, it is a reference to the variable
being passed. The return type has been changed to void as the function no longer sup-
plies the area computed as a return value, rather as an output parameter by reference.
Returning values by references is demonstrated in Listing 7.9, which computes the area
of a circle.

LISTING 7.9 Fetching the Area of a Circle as a Reference Parameter and Not
as a Return Value

0: #include <iostream>
1: using namespace std;
2:
3: const double Pi = 3.1416;
4:
5: // output parameter result by reference
6: void Area(double radius, double& result)
7: {
8: result = Pi * radius * radius;
9: }
10:
11: int main()
12: {
13: cout << "Enter radius: ";
14: double radius = 0;
15: cin >> radius;
16:
17 double areaFetched = 0;
18 Area(radius, areaFetched);
19:
20 cout << "The area is: " << areaFetched << endl;
21: return 0;
22: }
Output v

Enter radius: 2
The area is: 12.5664

Analysis v

Note Lines 17 and 18 where the function Area() is invoked with two parameters; the
second is one that should contain the result. As Area() takes the second parameter by
reference, the variable result used in Line 8 within Area points to the same memory
location as the double areaFetched declared in Line 17 within the caller main().
Thus, the result computed in function Area() at Line 8 is available in main() and
displayed on the screen in Line 20.

NOTE A function can return only one value using the return state-
ment. So, if your function needs to perform operations that
affect many values required at the caller, passing arguments
by reference is one way to get a function to supply those many
modifications back to the calling module.

How Function Calls Are Handled
by the Microprocessor

Although it is not extremely important to know exactly how a function call is imple-
mented on a microprocessor level, you might find it interesting. Understanding this helps
you understand why C++ gives you the option of programming inline functions, which
are explained later in this section.

A function call essentially means that the microprocessor jumps to executing the next
instruction belonging to the called function at a nonsequential memory location. After it
is done with executing the instructions in the function, it returns to where it left off. To
implement this logic, the compiler converts your function call into a CALL instruction
for the microprocessor. This instruction is accompanied by the address in memory the
next instruction needs to be taken from—this address belongs to your function routine.
When the microprocessor encounters CALL, it saves the position of the instruction to be
executed after the function call on the stack and jumps to the memory location contained
in the CALL instruction.

Understanding the Stack

The stack is a Last-In-First-Out memory structure, quite like a stack of plates where
you pick the plate on top, which was the last one to be placed on the stack. Putting
data onto the stack is called a push operation. Getting data out of the stack is
called a pop operation. As the stack grows upward, the stack pointer always incre-
ments as it grows and points to the top of the stack. See Figure 7.3.

FIQURE 7.3 Stack Pointer
A visual represen- (always points to the top

tation of a stack
e e < where the next element

integers. INTEGER 3 can be inserted, fam
INTEGER 2 pUShEd)
INTEGER 1

The nature of the stack makes it optimal for handling function calls. When a function
is called, all local variables are instantiated on the stack—that is, pushed onto the
stack. When the function ends, they’re simply popped off it, and the stack pointer
returns to where it originally was.

This memory location contains instructions belonging to the function. The
microprocessor executes them until it reaches the RET statement (the microprocessor’s
code for return programmed by you). The RET statement results in the microprocessor
popping that address from the stack stored during the CALL instruction. This address
contains the location in the calling function where the execution needs to continue from.
Thus, the microprocessor is back to the caller and continues where it left off.

Inline Functions

A regular function call is translated into a CALL instruction, which results in stack
operations and microprocessor execution shift to the function and so on. This might
sound like a lot of stuff happening under the hood, but it happens quite quickly—for
most of the cases. However, what if your function is a very simple one like the following?

double GetPi()

{
}

return 3.14159;

The overhead of performing an actual function call on this might be quite high for the
amount of time spent actually executing GetPi(). This is why C++ compilers enable the
programmer to declare such functions as inline. Keyword inline is the programmers’
request that these functions be expanded inline where called.

inline double GetPi()

{
}

return 3.14159;

Functions that perform simple operations like doubling a number are good candidates for
being inlined, too. Listing 7.10 demonstrates one such case.

LISTING 7.10 Using an Inline Function That Doubles an Integer

0: #include <iostream>
1: using namespace std;
2:
3: // define an inline function that doubles
4: inline long DoubleNum (int inputNum)
5: |
6: return inputNum * 2;
7: }
8:
9: int main()
10: |
11: cout << "Enter an integer: ";
12: int inputNum = 0;
13: cin >> inputNum;
14:
15: // Call inline function
16: cout << "Double is: " << DoubleNum(inputNum) << endl;
17:
18: return 0;
19: }
Output v

Enter an integer: 35
Double is: 70

Analysis v

The keyword in question is inline used in Line 4. Compilers typically see this keyword
as a request to place the contents of the function DoubleNum() directly where the func-
tion has been invoked—in Line 16—which increases the execution speed of the code.

Classifying functions as inline can also result in a lot of code bloat, especially if the
function being inline does a lot of sophisticated processing. Using the inline keyword
should be kept to a minimum and reserved for only those functions that do very little and
need to do it with minimal overhead, as demonstrated earlier.

Most modern C++ compilers offer various performance
optimization options. Some, such as the Microsoft C++ Compiler,
offer you to optimize for size or speed. Optimizing for size may
help in developing software for devices and peripherals where
memory may be at a premium. When optimizing for size, the
compiler might often reject many inline requests as that might
bloat code.

NOTE

When optimizing for speed, the compiler typically sees and uti-
lizes opportunities to inline code where it would make sense and
does it for you—sometimes even in those cases where you have
not explicitly requested it.

Automatic Return Type Deduction

You learned about the keyword auto in Lesson 3, “Using Variables, Declaring
Constants.” It lets you leave variable type deduction to the compiler that does so on the
basis of the initialization value assigned to the variable. Starting with C++14, the same
applies also to functions. Instead of specifying the return type, you would use auto and
let the compiler deduce the return type for you on the basis of return values you program.

Listing 7.11 demonstrates the usage of auto in a function that computes the area of a
circle.

LISTING 7.11 Using auto as Return Type of Function Area ()

0: #include <iostreams>

1: using namespace std;

2:

3: const double Pi = 3.14159265;
4:

5: auto Area(double radius)

6: {

7: return Pi * radius * radius;
8: }

9:

10: int main()

11: |

12 cout << "Enter radius: ";

=
w

double radius = 0;

14: cin >> radius;

15:

16: // Call function "Area"

17: cout << "Area 1is: " << Area(radius) << endl;
18:

19: return 0;

20: }

Output v

Enter radius: 2
Area is: 12.5664

Analysis Vv

The line of interest is Line 5, which uses auto as the return type of function Area(). The
compiler deduces the return type on the basis of the return expression that uses double.
Thus, in spite of using auto, Area() in Listing 7.11 compiles to no different code than
Area() in Listing 7.1 with return type double.

Functions that rely on automatic return type deduction need to
NOTE be defined (i.e., implemented) before they're invoked. This is
because the compiler needs to know a function’s return type at
the point where it is used. If such a function has multiple return
statements, they need to all deduce to the same type. Recursive
calls need to follow at least one return statement.

Lambda Functions

This section is just an introduction to a concept that’s not exactly easy for beginners. So,
skim through it and try to learn the concept without being disappointed if you don’t grasp
it all. Lambda functions are discussed in depth in Lesson 22, “Lambda Expressions.”

Lambda functions were introduced in C++11 and help in the usage of STL algorithms to
sort or process data. Typically, a sort function requires you to supply a binary predicate.
This is a function that compares two arguments and returns true if one is less than the
other, else false, thereby helping in deciding the order of elements in a sort operation.
Such predicates are typically implemented as operators in a class, leading to a tedious bit
of coding. Lambda functions can compact predicate definitions as shown in Listing 7.12.

LISTING 7.12 Using Lambda Functions to Display Elements in an Array and to Sort Them

0: #include <iostream>
1: #include <algorithm>
2: #include <vector>
3: using namespace std;
4:
5: void DisplayNums (vector<int>& dynArray)
6: |
7: for_each (dynArray.begin(), dynArray.end(), \
8: [] (int Element) {cout << Element << " ";});
9:
10: cout << endl;
11: }
12:
13: int main()
14: {
15 vector<int> myNums;
16 myNums .push_back (501) ;
17 myNums .push back(-1) ;
18: myNums .push_back (25) ;
19 myNums . push_back (-35) ;
20
21 DisplayNums (myNums) ;
22:
23: cout << "Sorting them in descending order" << endl;
24:
25 sort (myNums.begin(), myNums.end(), \
26 [] (int Numl, int Num2) {return (Num2 < Numl); });
27
28 DisplayNums (myNums) ;
29:
30: return 0;
31: }
Output v

501 -1 25 -35
Sorting them in descending order
501 25 -1 -35

Analysis v

The program contains integers pushed into a dynamic array provided by the C++
Standard Library in the form of a std::vector in Lines 15-19. The function
DisplayNums() uses the STL algorithm for each to iterate through each ele-
ment in the array and display its value. In doing so, it uses a lambda function in Line
8. std::sort used in Line 25 also uses a binary predicate (Line 26) in the form of

a lambda function that returns true if the second number is smaller than the first,
effectively sorting the collection in an ascending order.

The syntax of a lambda function is the following:

[optional parameters] (parameter list){ statements; }

N Predicates and their use in algorithms such as sort are dis-
OTE cussed at length in Lesson 23, “STL Algorithms.” Listing 23.6
in particular is a code sample that uses a lambda and a non-
lambda variant in an algorithm, thereby allowing you to compare
the programming efficiency introduced by lambda functions.
Summary

In this lesson, you learned the basics of modular programming. You learned how
functions can help you structure your code better and also help you reuse algorithms you
write. You learned that functions can take parameters and return values, parameters can
have default values that the caller can override, and parameters can also contain argu-
ments passed by reference. You learned how to pass arrays, and you also learned how

to program overloaded functions that have the same name and return type but different
parameter lists.

Last but not the least, you got a sneak preview into what lambda functions are.
Completely new as of C++11, lambda functions have the potential to change how C++
applications will be programmed henceforth, especially when using STL.

Q&A

Q What happens if I program a recursive function that doesn’t end?

A Program execution doesn’t end. That might not be bad, per se, for there are
while (true) and for (; ;) loops that do the same; however, a recursive function
call consumes more and more stack space, which is finite and runs out, eventually
causing an application crash due to a stack overflow.

Q Why not inline every function? It increases execution speed, right?

A That really depends. However, inlining every function results in functions that
are used in multiple places to be placed at the point where they’re called, and this
results in code bloat. That apart, most modern compilers are better judges of what

calls can be inlined and do so for the programmer, depending on the compiler’s
performance settings.

Q Can I supply default parameter values to all parameters in a function?

A Yes, that is definitely possible and recommended when that makes sense.

Q I have two functions, both called Area. One takes a radius and the other takes

height. I want one to return £loat and the other to return double. Will this
work?

A Function overloading needs both functions with the same name to also have the

same return types. In this case, your compiler shows an error as the name has been
used twice in what it expects to be two functions of different names.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain that you understand the answers before continuing to the
next lesson.

Quiz

1.
2.

What is the scope of variables declared in a function’s prototype?

What is the nature of the value passed to this function?

int Func(int &someNumber) ;

. I have a function that invokes itself. What is such a function called?

. I have declared two functions, both with the same name and return type but differ-

ent parameter lists. What are these called?

. Does the stack pointer point to the top, middle, or bottom of the stack?

Exercises

1.

Write overloaded functions that calculate the volume of a sphere and a cylinder.
The formulas are the following:

Volume of sphere = (4 * Pi * radius * radius * radius) / 3
Volume of a cylinder = Pi * radius * radius * height

2. Write a function that accepts an array of double as input.
3. BUG BUSTERS: What is wrong with the following code?

#include <iostreams>
using namespace std;
const double Pi = 3.1416;

void Area (double radius, double result)

{
}

result = Pi * radius * radius;

int main()

cout << "Enter radius: ";
double radius = 0;
cin >> radius;

double areaFetched = 0;
Area (radius, areaFetched);

cout << "The area is: " << areaFetched << endl;
return 0;

4. BUG BUSTERS: What is wrong with the following function declaration?
double Area(double Pi = 3.14, double radius);

5. Write a function with return type void that still helps the caller calculate the area
and circumference of a circle when supplied the radius.

LESSON 8
Pointers and
References Explained

One of the biggest advantages of C++ is that it enables you to write
high-level applications that are abstracted from the machine as well

as those that work close to the hardware. Indeed, C++ enables you to
tweak the performance of your application on a bytes and bits level.
Understanding how pointers and references work is one step toward being
able to write programs that are effective in their consumption of system
resources.

In this lesson, you find out

What pointers are
What the free store is

How to use operators new and delete to allocate and free memory

How to write stable applications using pointers and dynamic
allocation

What references are

m Differences between pointers and references

m When to use a pointer and when to use references

What Is a Pointer?

A pointer is also a variable—one that stores an address in memory. Just the same way
as a variable of type int is used to contain an integer value, a pointer variable is used to
contain a memory address, as illustrated in Figure 8.1.

FIGURE 8.1
Visualizing a pointer. Pointer at address Data in memory at
0x101 contains value | ———————> address 0x558
0x558
Memory
Addresses ox101 0x558

Thus, a pointer is a variable, and like all variables a pointer occupies space in memory
(in the case of Figure 8.1, at address 0x101). What’s special about pointers is that the
value contained in a pointer (in this case, 0x558) is interpreted as a memory address.
So, a pointer is a special variable that points to a location in memory.

Memory locations are typically addressed using hexadecimal
notation. This is a number system with base 16, that is,

one featuring 16 distinct symbols from 0-9 followed by A-F.

It is convention to prefix 0ox when displaying hexadecimal
numbers. Thus, OxA is hexadecimal for 10 in decimal; OxF is
hexadecimal for 15; and 0x10 is hexadecimal for 16. For more
information, see Appendix A, “Working with Numbers: Binary and
Hexadecimal.”

NOTE

Declaring a Pointer

A pointer being a variable needs to be declared, too. You normally declare a pointer

to point to a specific value type (for example, int). This would mean that the address
contained in the pointer points to a location in the memory that holds an integer. You can
also specify a pointer to a block of memory (also called a void pointer).

A pointer being a variable needs to be declared like all variables do:

PointedType * PointerVariableName;

As is the case with most variables, unless you initialize a pointer it will contain a random
value. You don’t want a random memory address to be accessed so you initialize a
pointer to NULL. NULL is a value that can be checked against and one that cannot be a
memory address:

PointedType * PointerVariableName = NULL; // initializing value

Thus, declaring a pointer to an integer would be

int *pointsToInt = NULL;

A pointer, like all data types you have learned, contains a junk
value unless it has been initialized. This junk value is particularly
dangerous in the case of a pointer because the value of the
pointer is expected to contain an address. Uninitialized pointers
can result in your program accessing invalid memory locations,
resulting in a crash.

CAUTION

Determining the Address of a Variable Using
the Reference Operator (&)

Variables are tools the language provides for you to work with data in memory. This
concept is explained in detail in Lesson 3, “Using Variables, Declaring Constants.”

If varName is a variable, &varName gives the address in memory where its value is
placed.

So, if you have declared an integer, using the syntax that you’re well acquainted with,
such as

int age = 30;
&age would be the address in memory where the value (30) is placed. Listing 8.1

demonstrates the concept of the memory address of an integer variable that is used to
hold the value it contains.

LISTING 8.1 Determining the Addresses of an int and a double

#include <iostream>
using namespace std;

int main()
{
int age = 30;
const double Pi = 3.1416;

// Use & to find the address in memory
cout << "Integer age is located at: 0x" << &age << endl;
cout << "Double Pi is located at: 0xXx" << &Pi << endl;

O W W J o0 Ul b WNKE O

12: return 0;

Output v

Integer age is at: 0x0045FE00
Double Pi is located at: 0x0045FDF8

Analysis v

Note how referencing operator (&) has been used in Lines 9 and 10 to reveal the addresses
of variables age and constant Pi. The text 0x has been appended as a convention that is
used when displaying hexadecimal numbers.

You know that the amount of memory consumed by a variable is
dependent on its type. Listing 3.4 in Lesson 3 uses sizeof ()
to demonstrate that the size of an integer is 4 bytes (on my
system, using my compiler). So, using the preceding output

that says that integer age is located at address 0x0045FE00
and using the knowledge that sizeof (int) is 4, you know that
the four bytes located in the range 0x0045FE00 t0 0x0045FE04
belong to the integer age.

NOTE

The referencing operator (&) is also called the address-of
operator.

NOTE

Using Pointers to Store Addresses

You have learned how to declare pointers and how to determine the address of a variable.
You also know that pointers are variables that are used to hold memory addresses. It’s
time to connect these dots and use pointers to store the addresses obtained using the
referencing operator (&).

Assume a variable declaration of the types you already know:

// Declaring a variable
Type VariableName = Initialvalue;

To store the address of this variable in a pointer, you would declare a pointer to the same
Type and initialize the pointer to the variable’s address using the referencing operator
(&):

// Declaring a pointer to Type and initializing to address
Type* Pointer = &Variable;

Thus, if you have declared an integer, using the syntax that you're well acquainted with,
such as

int age = 30;

You would declare a pointer to the type int to hold the actual address where age is
stored, like this:

int* pointsTolInt = &age; // Pointer to integer age

In Listing 8.2 you see how a pointer can be used to store an address fetched using the
referencing operator (&).

LISTING 8.2 Demonstrating the Declaration and Initialization of a Pointer

0: #include <iostreams>
1: using namespace std;
2:
3: int main()
4: {
5: int age = 30;
6: int* pointsToInt = &age; // pointer initialized to &age
7:
8: // Displaying the value of pointer
9: cout << "Integer age is at: 0x" << hex << pointsTolInt << endl;
10:
11: return 0;
12: }
Output v

Integer age is at: 0x0045FE00

Analysis v

Essentially, the output of this code snippet is the same as the previous one in Listing 8.1
because both the samples are displaying the same thing—the address in memory where
integer age is stored. The difference here is that the address is first assigned to a pointer
at Line 6, and the value of the pointer (now the address) is displayed using cout at Line 9.

Your output might differ in addresses from those you see in
these samples. In fact, the address of a variable might change
at every run of the application on the very same computer.

NOTE

Now that you know how to store an address in a pointer variable, it is easy to imagine
that the same pointer variable can be reassigned a different memory address and made to
point to a different value, as shown in Listing 8.3.

LISTING 8.3 Pointer Reassignment to Another Variable

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4: {

5: int age = 30;

6:

7: int* pointsToInt = &age;

8: cout << "pointsToInt points to age now" << endl;

9:

10: // Displaying the value of pointer

11: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
12:

13: int dogsAge = 9;

14: pointsToInt = &dogsAge;

15: cout << "pointsToInt points to dogsAge now" << endl;
16:

17: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
18:

19: return 0;

20: }
Output v

pointsToInt points to age now
pointsToInt = 0x002EFB34
pointsTolInt points to dogsAge now
pointsToInt = 0x002EFB1C

Analysis v

This program demonstrates that one pointer to an integer, pointsToInt, can point to any
integer. In Line 7, it has been initialized to &age, hence containing the address of vari-
able age. In Line 14 the same pointer is assigned &dogsAge, pointing to another location
in the memory that contains dogsAge. Correspondingly, the output indicates that the
value of the pointer, that is the address being pointed to, changes as the two integers age
and dogsAge are, of course, stored in different locations in memory, 0x002EFB34 and
0x002EFB1C, respectively.

Access Pointed Data Using the Dereference
Operator (*)

You have a pointer to data, containing a valid address. How do you access that
location—that is, get or set data at that location? The answer lies in using the
dereferencing operator (*). Essentially, if you have a valid pointer pData, use *pData
to access the value stored at the address contained in the pointer. Operator (*) is
demonstrated by Listing 8.4.

LISTING 8.4 Demonstrating the Use of the Dereference Operator (*) to Access
Integer Values

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int age = 30;
6: int dogsAge = 9;
7:
8: cout << "Integer age = " << age << endl;
9: cout << "Integer dogsAge = " << dogsAge << endl;
10:
11 int* pointsToInt = &age;
12: cout << "pointsToInt points to age" << endl;
13:
14: // Displaying the value of pointer
15 cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
16
17 // Displaying the value at the pointed location
18: cout << "*pointsToInt = " << dec << *pointsToInt << endl;
19
20 pointsToInt = &dogsAge;
21 cout << "pointsToInt points to dogsAge now" << endl;
22:
23: cout << "pointsToInt = 0x" << hex << pointsToInt << endl;
24: cout << "*pointsToInt = " << dec << *pointsToInt << endl;
25
26: return 0;
27: }
Output v

Integer age = 30

Integer dogsAge = 9
pointsToInt points to age
pointsToInt = 0x0025F788

*pointsToInt = 30

pointsToInt points to dogsAge now
pointsToInt = 0x0025F77C
*pointsToInt = 9

Analysis v

In addition to changing the address stored within a pointer as also in the previous sample
in Listing 8.3, this one also uses the dereference operator (*) with the same pointer
variable pointsToInt to print the different values at these two addresses. Note Lines 18
and 24. In both these lines, the integer pointed to by pointsToInt is accessed using the
dereference operator (*). As the address contained in pointsToInt is changed at

Line 20, the same pointer after this assignment accesses the variable dogsage,
displaying 9.

When the dereference operator (*) is used, the application essentially uses the address
stored in the pointer as a starting point to fetch 4 bytes from the memory that belong to
an integer (as this is a pointer to integers and sizeof(int) is 4). Thus, the validity of
the address contained in the pointer is absolutely essential. By initializing the pointer to
&age in Line 11, you have ensured that the pointer contains a valid address. When you
don’t initialize the pointer, it can contain any random value (that existed in the memory
location where the pointer variable is located) and dereference of that pointer usually
results in an Access Violation—that is, accessing a memory location that your application
was not authorized to.

The dereferencing operator (*) is also called the indirection
operator.

NOTE

You have used the pointer in the preceding sample to read (get) values from the pointed
memory location. Listing 8.5 shows what happens when *pointsToInt is used as an
1-value—that is, assigned to instead of just being accessed.

LISTING 8.5 Manipulating Data Using a Pointer and the Dereference Operator (*)

#include <iostream>
using namespace std;

int main()

{
int dogsAge = 30;
cout << "Initialized dogsAge = " << dogsAge << endl;

<N o0 Ul W NP o

8: int* pointsToAnAge = &dogsAge;
: cout << "pointsToAnAge points to dogsAge" << endl;
10:

11: cout << "Enter an age for your dog: ";

12:

13: // store input at the memory pointed to by pointsToAnAge
14: cin >> *pointsToAnAge;

15:

16: // Displaying the address where age is stored

17: cout << "Input stored at 0x" << hex << pointsToAnAge << endl;
18:

19: cout << "Integer dogsAge = " << dec << dogsAge << endl;
20:

21: return 0;

22: }

Output v

Initialized dogsAge = 30
pointsToAnAge points to dogsAge
Enter an age for your dog: 10
Input stored at 0x0025FAl8
Integer dogsAge = 10

Analysis v

The key step here is in Line 14 where the age input by the user is saved at the location
stored in the pointer pointsToAnAge. Line 19 that displays variable dogsage shows the
value you stored using the pointer. This is because pointsToAnAge points to dogsAge,
as initialized in Line 8. Any change to that memory location where dogsAge is stored,
and where pointsToAnAge points to, made using one is going to be reflected in the
other.

What Is the sizeof () of a Pointer?

You have learned that the pointer is just another variable that contains a memory
address. Hence, irrespective of the type that is being pointed to, the content of a
pointer is an address—a number. The length of an address, that is the number of bytes
required to store it, is a constant for a given system. The sizeof() a pointer is hence
dependent on the compiler and the operating system the program has been compiled
for and is not dependent on the nature of the data being pointed to, as Listing 8.6
demonstrates.

LISTING 8.6 Demonstrating That Pointers to Different Types Have the Same Sizes

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << "sizeof fundamental types -" << endl;
6: cout << "sizeof (char) = " << sizeof (char) << endl;
7: cout << "sizeof (int) = " << sizeof (int) << endl;
8: cout << "sizeof (double) = " << sizeof (double) << endl;
9:
10: cout << "sizeof pointers to fundamental types -" << endl;
11: cout << "sizeof (char*) = " << sizeof (char*) << endl;
12: cout << "sizeof (int*) = " << sizeof (int*) << endl;
13: cout << "sizeof (double*) = " << sizeof (double*) << endl;
14:
15: return 0;
16: }
Output v
sizeof fundamental types -
sizeof (char) =1
sizeof (int) = 4
sizeof (double) = 8
sizeof pointers to fundamental types -
sizeof (char*) = 4
sizeof (int*) = 4
sizeof (double*) = 4

Analysis v

The output clearly shows that even though a sizeof(char) is 1 byte and a
sizeof(double) is 8 bytes, the sizeof (char*) and sizeof(double*) are both 4
bytes. This is because the amount of memory consumed by a pointer that stores an
address is the same, irrespective of whether the memory at the address contains 1 byte or
8 bytes of data.

The output for Listing 8.6 that displays that the sizeof a pointer
is 4 bytes might be different than what you see on your system.
The output was generated when the code was compiled using a
32-bit compiler. If you use a 64-bit compiler and run the program
on a 64-bit system, you might see that the sizeof your pointer
variable is 64 bits—that is, 8 bytes.

NOTE

Dynamic Memory Allocation

When you write a program containing an array declaration such as

int myNums[100]; // a static array of 100 integers

your program has two problems:

1. You are actually limiting the capacity of your program as it cannot store more than
100 numbers.

2. You are reducing the performance of the system in cases where only 1 number
needs to be stored, yet space has been reserved for 100.

These problems exist because the memory allocation in an array as declared earlier is
static and fixed by the compiler.

To program an application that is able to optimally consume memory resources on the
basis of the needs of the user, you need to use dynamic memory allocation. This enables
you to allocate more when you need more memory and release memory that you have
in excess. C++ supplies you two operators, new and delete, to help you better manage
the memory consumption of your application. Pointers being variables that are used to
contain memory addresses play a critical role in efficient dynamic memory allocation.

Using Operators new and delete to Allocate
and Release Memory Dynamically

You use new to allocate new memory blocks. The most frequently used form of new
returns a pointer to the requested memory if successful or else throws an exception.
When using new, you need to specify the data type for which the memory is being
allocated:

Type* Pointer = new Type; // request memory for one element

You can also specify the number of elements you want to allocate that memory for
(when you need to allocate memory for more than one element):

Type* Pointer = new Type[numElements]; // request memory for numElements

Thus, if you need to allocate integers, you use the following syntax:

int* pointToAnInt = new int; // get a pointer to an integer
int* pointToNums = new int[10]; // pointer to a block of 10 integers

Note that new indicates a request for memory. There is no
guarantee that a call for allocation always succeeds because
this depends on the state of the system and the availability of
memory resources.

NOTE

Every allocation using new needs to be eventually released using an equal and opposite
de-allocation via delete:

Type* Pointer = new Type; // allocate memory
delete Pointer; // release memory allocated above

This rule also applies when you request memory for multiple elements:

Type* Pointer = new Type[numElements]; // allocate a block
delete[] Pointer; // release block allocated above

Note the usage of delete[] when you allocate a block using
new[...] and delete when you allocate just an element
using new.

NOTE

If you don’t release allocated memory after you stop using it, this memory remains
reserved and allocated for your application. This in turn reduces the amount of system
memory available for applications to consume and possibly even makes the execution of
your application slower. This is called a leak and should be avoided at all costs.

Listing 8.7 demonstrates memory dynamic allocation and deallocation.

LISTING 8.7 Accessing Memory Allocated Using new via Operator (*) and Releasing
It Using delete

#include <iostream>
using namespace std;

int main()
// Request for memory space for an int
int* pointsToAnAge = new int;

// Use the allocated memory to store a number
cout << "Enter your dog’s age: ";
cin >> *pointsToAnAge;

O W 0 J O Ul b W N BHE O

iy

11:

12: // use indirection operator* to access value

13: cout << "Age " << *pointsToAnAge << " 1is stored at 0x" << hex <<
pointsToAnAge << endl;

14:

15: delete pointsToAnAge; // release memory

16:

17: return 0;

18: }

Output v

Enter your dog’s age: 9
Age 9 is stored at 0x00338120

Analysis v

Line 6 demonstrates the use of operator new to request space for an integer where you
plan to store the dog’s age as input by the user. Note that new returns a pointer, and that
is the reason it is assigned to one. The age entered by the user is stored in this newly
allocated memory using cin and the dereference operator (*) in Line 10. Line 13 displays
this stored value using the dereference operator (*) again and also displays the memory
address where the value is stored. Note that the address contained in pointsToAnAge in
Line 13 still is what was returned by new in Line 6 and hasn’t changed since.

Operator delete cannot be invoked on any address contained in
a pointer, rather only those that have been returned by new and
only those that have not already been released by a delete.

CAUTION

Thus, the pointers seen in Listing 8.6 contain valid addresses,
yet should not be released using delete because the addresses
were not returned by a call to new.

Note that when you allocate for a range of elements using new[...], you would de-allocate
using delete[] as demonstrated by Listing 8.8.

LISTING 8.8 Allocating Using new[..] and Releasing It Using delete[]

0: #include <iostreams>
1: #include <string>

2: using namespace std;
3

4: int main()
5: |
6: cout << "How many integers shall I reserve memory for?" << endl;
7 int numEntries = 0;
8: cin >> numEntries;
9:
10: int* myNumbers = new int [numEntries];
11:
12: cout << "Memory allocated at: 0x" << myNumbers << hex << endl;
13:
14: // de-allocate before exiting
15: delete[] myNumbers;
16:
17: return 0;
18: }
Output v
How many integers shall I reserve memory for?
5001

Memory allocated at: 0x00C71578

Analysis Vv

The most important lines in question are the new[] and delete[] operators used in
Lines 10 and 15, respectively. What makes this sample different from Listing 8.7 is the
dynamic allocation of a block of memory that can accommodate as many integers as the
user requests. During this execution, we requested space for 5001 integers. In another
run, it may be 20 or 55000. This program will allocate a different amount of memory
required in every execution, depending on user input. Such allocations for an array of ele-
ments need to be matched by de-allocation using delete([] to free memory when done.

Operators new and delete allocate memory from the free store.
The free store is a memory abstraction in the form of a pool of
memory where your application can allocate (that is, reserve)
memory from and de-allocate (that is, release) memory to.

NOTE

Effect of Incrementing and Decrementing
Operators (++ and --) on Pointers

A pointer contains a memory address. For example, the pointer to an integer in

Listing 8.3 contains 0x002EFB34—the address where the integer is placed. The integer
itself is 4 bytes long and hence occupies four places in memory from 0x002EFB34 to
0x002EFB37. Incrementing this pointer using operator (++) would not result in the pointer
pointing to 0x002EFB35, for pointing to the middle of an integer would literally be
pointless.

An increment or decrement operation on a pointer is interpreted by the compiler as your
need to point to the next value in the block of memory, assuming it to be of the same
type, and not to the next byte (unless the value type is 1 byte large, like a char, for
instance).

So, incrementing a pointer such as pointsToInt seen in Listing 8.3 results in it being
incremented by 4 bytes, which is the sizeof an int. Using ++ on this pointer is telling
the compiler that you want it to point to the next consecutive integer. Hence, after
incrementing, the pointer would then point to 0x002EFB38. Similarly, adding 2 to this
pointer would result in it moving 2 integers ahead, that is 8 bytes ahead. Later you see a
correlation between this behavior displayed by pointers and indexes used in arrays.

Decrementing pointers using operator (--) demonstrates the same effect—the address value
contained in the pointer is reduced by the sizeof the data type it is being pointed to.

What Happens When You Increment or Decrement a Pointer?

The address contained in the pointer is incremented or decremented by the sizeof
the type being pointed to (and not necessarily a byte). This way, the compiler ensures
that the pointer never points to the middle or end of data placed in the memory; it
only points to the beginning.

If a pointer has been declared as
Type* pType = Address;

++pType would mean that pType contains (and hence points to) Address +
sizeof (Type) .

See Listing 8.9 that explains the effect of incrementing pointers or adding offsets
to them.

LISTING 8.9 Using Offset Values and Operators to Increment and Decrement Pointers

0: #include <iostream>

1: using namespace std;

2:

3: int main()

4: {

5: cout << "How many integers you wish to enter? ";

6: int numEntries = 0;

7: cin >> numEntries;

8:

9: int* pointsToInts = new int [numEntries];

10:

11: cout << "Allocated for " << numEntries << " integers" << endl;
12: for (int counter = 0; counter < numEntries; ++counter)
13: {

14: cout << "Enter number "<< counter << ": ";

15: cin >> *(pointsTolInts + counter);

16: }

17:

18: cout << "Displaying all numbers entered: " << endl;
19: for (int counter = 0; counter < numEntries; ++counter)
20: cout << *(pointsTolInts++) << " ";

21:

22: cout << endl;

23:

24 // return pointer to initial position

25: pointsToInts -= numEntries;

26:

27: // done with using memory? release

28: delete[] pointsToInts;

29:

30: return 0;

31: }

Output v

How many integers you wish to enter? 2
Allocated for 2 integers

Enter number 0: 8774

Enter number 1: -5

Displaying all numbers entered:

8774 -5

Another run:

How many integers you wish to enter? 5
How many integers you wish to enter? 5
Allocated for 5 integers

Enter number 0: 543

Enter number 1: 756

Enter number 2: 2017

Enter number 3: -101

Enter number 4: 101010012
Displaying all numbers entered:
543 756 2017 -101 101010012

Analysis v

The program asks the user for the number of integers he wants to feed into the system
before allocating memory for the same in Line 9. The sample demonstrates two methods
of incrementing pointers. One uses an offset value as seen in Line 15, where we store
user input directly into the memory location using offset variable counter. The other
uses operator ++ as seen in Line 20 to increment the address contained in the pointer
variable to the next valid integer in the allocated memory. Operators were introduced in
Lesson 5, “Working with Expressions, Statements, and Operators.”

Lines 12-16 are a for loop where the user is asked to enter the numbers that are then
stored in consecutive positions in the memory using the expression in Line 15. It is here
that the zero-based offset value (counter) is added to the pointer, causing the compiler
to create instructions that insert the value fed by the user at the next appropriate location
for an integer without overwriting the previous value. The for loop in Lines 19 and 20 is
similarly used to display those values stored by the previous loop.

The original pointer address returned by new during allocation needs to be used in

the call to delete[] during de-allocation. As this value contained in pointsToInts

has been modified by operator ++ in Line 20, we bring the pointer back to the original
position (address) using operator -= in Line 25 before invoking delete[] on that address
in Line 28.

Using the const Keyword on Pointers

In Lesson 3, you learned that declaring a variable as const effectively ensures that value
of the variable is fixed as the initialization value for the life of the variable. The value of
a const-variable cannot be changed, and therefore it cannot be used as an 1-value.

Pointers are variables, too, and hence the const keyword that is relevant to variables

is relevant to pointers as well. However, pointers are a special kind of variable as they
contain a memory address and are used to modify memory at that address. Thus, when it
comes to pointers and constants, you have the following combinations:

m The address contained in the pointer is constant and cannot be changed, yet the data
at that address can be changed:

int daysInMonth = 30;

int* const pDaysInMonth = &daysInMonth;

*pDaysInMonth = 31; // OK! Data pointed to can be changed

int daysInLunarMonth = 28;

pDaysInMonth = &daysInLunarMonth; // Not OK! Cannot change address!

m Data pointed to is constant and cannot be changed, yet the address contained in the
pointer can be changed—that is, the pointer can also point elsewhere:

int hoursInDay = 24;

const int* pointsToInt = &hoursInDay;

int monthsInYear = 12;

pointsTolnt = &monthsInYear; // OK!

*pointsToInt = 13; // Not OK! Cannot change data being pointed to

int* newPointer = pointsToInt; // Not OK! Cannot assign const to non-const

m Both the address contained in the pointer and the value being pointed to are
constant and cannot be changed (most restrictive variant):

int hoursInDay = 24;

const int* const pHoursInDay = &hoursInDay;

*pHoursInDay = 25; // Not OK! Cannot change data being pointed to
int daysInMonth = 30;

pHoursInDay = &daysInMonth; // Not OK! Cannot change address

These different forms of const are particularly useful when passing pointers to
functions. Function parameters need to be declared to support the highest possible
(restrictive) level of const-ness, to ensure that a function does not modify the pointed
value when it is not supposed to. This will keep programmers of your application from
making unwanted changes to pointer values or data.

Passing Pointers to Functions

Pointers are an effective way to pass memory space that contains relevant data for
functions to work on. The memory space shared can also return the result of an
operation. When using a pointer with functions, it becomes important to ensure that the
called function is only allowed to modify parameters that you want to let it modify, but
not others. For example, a function that calculates the area of a circle given radius sent as
a pointer should not be allowed to modify the radius. This is where you use the keyword
const to control what a function is allowed to modify and what it isn’t as demonstrated
by Listing 8.10.

LISTING 8.10 Use the const Keyword in Calculating the Area of a Circle

#include <iostream>
using namespace std;

void CalcArea (const double* const ptrPi, // const pointer to const data
const double* const ptrRadius, // i.e. no changes allowed
double* const ptrArea) // can change data pointed to

U W NP o

// check pointers for validity before using!
if (ptrPi && ptrRadius && ptrArea)

w0 W 3 o0

*ptrArea = (*ptrPi) * (*ptrRadius) * (*ptrRadius);
10: }
11:
12: int main()
13: {
14: const double Pi = 3.1416;
15:
16: cout << "Enter radius of circle: ";
17: double radius = 0;
18: cin >> radius;
19:
20: double area = 0;
21: CalcArea (&Pi, &radius, &area);
22:
23: cout << "Area 1s = " << area << endl;
24:
25: return 0;
26: }
Output v

Enter radius of circle: 10.5
Area is = 346.361

Analysis v

Lines 3-5 demonstrate the two forms of const where both ptrRadius and ptrPi are
supplied as “const pointers to const data,” so that neither the pointer address nor the data
being pointed to can be modified. ptrArea is evidently the parameter meant to store the
output, for the value contained in the pointer (address) cannot be modified, but the data
being pointed to can be. Line 8 shows how pointer parameters to a function are checked
for validity before using them. You don’t want the function to calculate the area if the
caller inadvertently sends a NULL pointer as any of the three parameters, for that would
risk an access violation followed by an application crash.

Similarities between Arrays and Pointers

Don’t you think that the sample in Listing 8.9 where the pointer was incremented using
zero-based index to access the next integer in the memory has too many similarities to
the manner in which arrays are indexed? When you declare an array of integers:

int myNumbers [5];

You tell the compiler to allocate a fixed amount of memory to hold five integers

and give you a pointer to the first element in that array that is identified by the name

you assign the array variable. In other words, myNumbers is a pointer to the first element
myNumbers[0]. Listing 8.11 highlights this correlation.

LISTING 8.11 Demonstrate That the Array Variable Is a Pointer to the First Element

0: #include <iostreams>

1: using namespace std;

2:

3: int main()

4 |

5: // Static array of 5 integers

6 int myNumbers[5];

7

8 // array assigned to pointer to int

9: int* pointToNums = myNumbers;

10:

11: // Display address contained in pointer
12: cout << "pointToNums = 0x" << hex << pointToNums << endl;
13:

14: // Address of first element of array
15: cout << "&myNumbers[0] = 0x" << hex << &myNumbers[0] << endl;
16:

17: return 0;

18: }
Output v
pointToNums = 0x004BFE8C

smyNumbers [0] = 0x004BFE8C

Analysis v

This simple program demonstrates that an array variable can be assigned to a pointer

of the same type as seen in Line 9, essentially confirming that an array is akin to a
pointer. Lines 12 and 15 demonstrate that the address stored in the pointer is the same
as the address where the first element in the array (at index 0) is placed in memory. This
program demonstrates that an array is a pointer to the first element in it.

Should you need to access the second element via the expression myNumbers[1], you can
also access the same using the pointer pointToNums with the syntax *(pointToNums

+ 1). The third element is accessed in the static array using myNumbers[2], whereas the
third element is accessed in the dynamic array using the syntax * (pointToNums + 2).

Because array variables are essentially pointers, it should be possible to use the
de-reference operator (*) that you have used with pointers to work with arrays. Similarly,
it should be possible to use the array operator ([1) to work with pointers as demonstrated
by Listing 8.12.

LISTING 8.12 Accessing Elements in an Array Using the Dereference Operator (*) and
Using the Array Operator ([1) with a Pointer

{

W J 0 Ul B W BE o

S I S R = T e I = R =
N P O wooJo Ul & WwWNREr o v
—

#include <iostream>
using namespace std;

int main()

const int ARRAY LEN = 5;

// Static array of 5 integers, initialized
int myNumbers [ARRAY LEN] = {24, -1, 365, -999, 2011};

// Pointer initialized to first element in array
int* pointToNums = myNumbers;

cout << "Display array using pointer syntax, operator*" << endl;
for (int index = 0; index < ARRAY LEN; ++index)
cout << "Element " << index << " = " << *(myNumbers + index) << endl;

cout << "Display array using ptr with array syntax, operator[]" << endl;
for (int index = 0; index < ARRAY LEN; ++index)

cout << "Element " << index << " = " << pointToNums [index] << endl;

return 0;

Output v

Display
Element
Element
Element
Element
Element
Display
Element
Element
Element
Element
Element

array using pointer syntax, operator*
24

= -1

365

= -999

= 2011

array using ptr with array syntax, operator/[]
0 = 24

= -1

365

-999

2011

o
I

B W N
I

B W N
nn I

Analysis v

The application contains a static array of five integers initialized to five initial values

in Line 8. The application displays the contents of this array, using two alternative
routes—one using the array variable myNumbers with the indirection operator (*) in Line
15 and the other using the pointer variable with the array operator ([1) in Line 19.

Thus, what this program demonstrates is that both array myNumbers and pointer
pointToNums actually exhibit pointer behavior. In other words, an array declaration is
similar to a pointer that will be created to operate within a fixed range of memory. Note
that one can assign an array to a pointer as in Line 11, but one cannot assign a pointer to
an array. This is because by its very nature, an array like myNumbers is static and cannot
be used as an l-value. myNumbers cannot be modified.

It is important to remember that pointers that are allocated
dynamically using operator new still need to be released using
operator delete, even if you accessed data using syntax com-
monly used with static arrays.

CAUTION

If you forget this, your application leaks memory, and that’s bad.

Common Programming Mistakes When
Using Pointers

C++ enables you to allocate memory dynamically so that you can optimize and control
the memory consumption of your application. Unlike newer languages such as C#

and Java that are based on a runtime environment, C++ does not feature an automatic
garbage collector that cleans up the memory your program has allocated but can’t use.
This incredible control over managing memory resources using pointers is accompanied
by a host of opportunities to make mistakes.

Memory Leaks

This is probably one of the most frequent problems with C++ applications: The longer
they run, the larger the amount of memory they consume and the slower the system gets.
This typically happens when the programmer did not ensure that his application releases
memory allocated dynamically using new with a matching call to delete after the block
of memory is no longer required.

It is up to you—the programmer—to ensure that all allocated memory is also released
by your application. Something like this should never be allowed to happen:

int* pointToNums = new int[5]; // initial allocation
// use pointToNums

// forget to release using delete[] pointToNums;

// make another allocation and overwrite
pointToNums = new int[10]; // leaks the previously allocated memory

When Pointers Don’t Point to Valid Memory
Locations

When you dereference a pointer using operator (*) to access the pointed value, you need
to be sure that the pointer contains a valid memory location, or else your program will
either crash or misbehave. Logical as this may seem, invalid pointers are quite a common
reason for application crashes. Pointers can be invalid for a range of reasons, primarily
due to poor programming and memory management. A typical case where a pointer
might be invalid is shown in Listing 8.13.

LISTING 8.13 Poor Pointer Hygiene in a Program That Stores a Boolean Value
Using Pointers

0: #include <iostreams>
1: using namespace std;
2:
3: int main()
4: {
5: // uninitialized pointer (bad)
6: bool* isSunny;
7:
8: cout << "Is it sunny (y/n)? ";
9: char userInput = 'y';
10: cin >> userInput;
11
12: if (userInput == 'y')
13: {
14: isSunny = new bool;
15: *isSunny = true;
16 }
17
18: // isSunny contains invalid value if user entered 'n'
19 cout << "Boolean flag sunny says: " << *isSunny << endl;
20
21 // delete being invoked also when new wasn't

22: delete isSunny;

23:

24: return 0;
25: }

Output v

Is it sunny (y/n)? y
Boolean flag sunny says: 1

Second run:

Is it sunny (y/n)? n
<CRASH! >

Analysis v

There are many problems in the program, some already commented in the code. Note
how memory is allocated and assigned to the pointer in Line 14, which is conditionally
executed when the user presses 'y’ for yes. For all other inputs of the user, this 1 £ block
is not executed, and the pointer isSunny remains invalid. Thus, when the user presses
‘n’ in the second run, the application crashes because isSunny contains an invalid
memory address and dereferencing an invalid pointer in Line 19 causes problems.

Similarly, invoking delete on this pointer, which has not been allocated for using new
as seen in Line 22, is equally wrong. Note that if you have a copy of a pointer, you need
to be calling delete on only one of them (you also need to avoid having copies of a
pointer floating around).

A better (safer, more stable) version of this program would be one where pointers are ini-
tialized, used where their values are valid, and released only once but only when valid.

Dangling Pointers (Also Called Stray
or Wild Pointers)

Note that any valid pointer is invalid after it has been released using delete. In other
words, even a valid pointer isSunny in Listing 8.13 would be invalid after the call to
delete at Line 22, and should not be used after this point.

To avoid this problem, some programmers follow the convention of assigning NULL to a
pointer when initializing it or after it has been deleted. They also always check a pointer
for validity (by comparing against NULL) before dereferencing it using operator (*).

Having learned some typical problems when using pointers, it’s time to correct the faulty
code in Listing 8.13 as seen in Listing 8.14.

LISTING 8.14 Safer Pointer Programming, a Correction of Listing 8.13

#include <iostream>
using namespace std;

0

1

2

3: int main()

4: {

5 cout << "Is it sunny (y/n)? ";
6 char userInput = 'y';

7 cin >> userInput;

8

9: // declare pointer and initialize

10: bool* const isSunny = new bool;
11: *isSunny = true;

12:

13: if (userInput == 'n')

14: *igSunny = false;

15:

16: cout << "Boolean flag sunny says: " << *isSunny << endl;
17:

18: // release valid memory

19: delete isSunny;

20:

21: return 0;

22: }

Output v

Is it sunny (y/n)? y
Boolean flag sunny says: 1

Next run:

Is it sunny (y/n)? n
Boolean flag sunny says: 0

(Ends without crashing, irrespective of user input.)

Analysis v

Minor restructuring has made the code safer for all combinations of user input. Note how
the pointer is initialized to a valid memory address during declaration in Line 10. We

used const to ensure that while the data being pointed to can be modified, the pointer
value (address contained) remains fixed and unchangeable. We also initialized the
Boolean value being pointed to, to true in Line 11. This data initialization doesn’t add to
the stability of the program but to the reliability of the output. These steps ensure that the
pointer is valid for the rest of the program, and it is safely deleted in Line 19, for every
combination of user input.

Checking Whether Allocation Request
Using new Succeeded

In our code to this point, we have assumed that new will return a valid pointer to a block
of memory. Indeed, new usually succeeds unless the application asks for an unusually
large amount of memory or if the system is in such a critical state that it has no memory
to spare. There are applications that need to make requests for large chunks of memory
(for example, database applications). Additionally, it is good to not simply assume that
memory allocation requests will always be successful. C++ provides you with two
possible methods to ensure that your pointer is valid before you use it. The default
method—one that we have been using thus far—uses exceptions wherein unsuccessful
allocations result in an exception of the type std::bad_alloc to be thrown. An excep-
tion results in the execution of your application being disrupted, and unless you have
programmed an exception handler, your application ends rather unelegantly with an
error message “unhandled exception.”

Exceptions are explained in detail in Lesson 28, “Exception Handling.” Listing 8.15 gives
you a sneak peek of how exception handling can be used to check for failed memory
allocation requests. Don’t be too worried if exception handling seems overwhelming at
this stage—it’s mentioned here only for the sake of completeness of the topic of memory
allocations. You may revisit this sample again, after covering Lesson 28.

LISTING 8.15 Handle Exceptions, Exit Gracefully When new Fails

: #include <iostream>
: using namespace std;

0

1

2

3: // remove the try-catch block to see this application crash
4: int main()

5: {

6 try

7

8 // Request a LOT of memory!

9: int* pointsToManyNums = new int [Ox1fffffff];
10: // Use the allocated memory

11:

12: delete[] pointsToManyNums;

13: }

14: catch (bad _alloc)

15: {

16: cout << "Memory allocation failed. Ending program" << endl;
17: }

18: return 0;

19: }

Output v

Memory allocation failed. Ending program

Analysis v

This program might execute differently on your computer. My environment could not
successfully allocate the requested space for 536870911 integers! Had I not programmed
an exception handler (the catch block you see in Lines 14-17), the program would

have ended disgracefully. You may experiment with the behavior of the program in the
absence of the exception handler by commenting Lines 6, 7, and 13—17. When using
debug mode binaries built using Microsoft Visual Studio, program execution results in
output as shown in Figure 8.2.

FIGURE 8.2

Program crash in

absence of :

exception handling iel Hetrog Ervos

in Listing 8.15 ~ Program:

(debug build using .._new_exceptionhandler\Debug'\Pointers_new_exceptionhandler.exe

MSVC compiler). RE010
| - abort() has been called

(Press Retry to debug the application)

The exception handling try-catch construct thus helped the application in making a
controlled exit after informing the user that a problem in memory allocation hampers
normal execution.

For those who don’t want to rely on exceptions, there is a variant of new called
new(nothrow). This variant does not throw an exception when allocation requests
fail, rather it results in the operator new returning NULL. The pointer being assigned,
therefore, can be checked for validity against NULL before it is used. See Listing 8.16.

LISTING 8.16 Using new (nothrow) That Returns NuLL When Allocation Fails

0: #include <iostreams>
1: using namespace std;
2:
3: int main()
4: {
5: // Request LOTS of memory space, use nothrow
6: int* pointsToManyNums = new(nothrow) int [0x1fffffff];
7:
8: if (pointsToManyNums) // check pointsToManyNums != NULL
9: {
10: // Use the allocated memory
11: delete[] pointsToManyNums;
12: }
13: else
14: cout << "Memory allocation failed. Ending program" << endl;
15:
16: return 0;
17: }
Output v

Memory allocation failed. Ending program

Analysis v

Listing 8.16 is the same function as Listing 8.15 with the exception that this uses

new (nothrow). As this variant of new returns NULL when memory allocation fails, we
check the pointer before using it as seen in Line 8. Both variants of new are good, and
the choice is for you to make.

Pointer Programming Best-Practices

There are some basic rules when it comes to using pointers in your application that will
make living with them easier.

DO DON'T

DO always initialize pointer variables, DON’T access a block of memory
or else they will contain junk values. or use a pointer after it has been
These junk values are interpreted as released using delete.

address locations—ones your appli-
cation is not authorized to access.
If you cannot initialize a pointer to

DON’T invoke delete on a memory
address more than once.

a valid address returned by new DON'T leak memory by forgetting to
during variable declaration, initialize invoke delete when done using an
t0 NULL. allocated block of memory.

DO ensure that your application is
programmed in a way that point-

ers are used when their validity is
assured, or else your program might
encounter a crash.

DO remember to release memory
allocated using new by using
delete, Or else your application will
leak memory and reduce system
performance.

What Is a Reference?

A reference is an alias for a variable. When you declare a reference, you need to initialize
it to a variable. Thus, the reference variable is just a different way to access the data
stored in the variable being referenced.

You would declare a reference using the reference operator (&) as seen in the following
statement:

VarType original = Value;
VarType& ReferenceVariable = original;

To further understand how to declare references and use them, see Listing 8.17.

LISTING 8.17 Demonstrating That References Are Aliases for the Assigned Value

0: #include <iostream>
1: using namespace std;
2
3

int main()

int original = 30;
cout << "original = " << original << endl;
cout << "original is at address: " << hex << &original << endl;

@ < o Ul

e}

int& refl = original;

10: cout << "refl is at address: " << hex << &refl << endl;
11:

12: int& ref2 = refl;

13: cout << "ref2 is at address: " << hex << &ref2 << endl;
14: cout << "Therefore, ref2 = " << dec << ref2 << endl;
15:

16: return 0;

17: }

Output v

original = 30

original is at address: 0099F764
refl is at address: 0099F764
ref2 is at address: 0099F764
Therefore, ref2 = 30

Analysis v

The output demonstrates that references, irrespective of whether they’re initialized to
the original variable as seen in Line 9 or to a reference as seen in Line 12, address the
same location in memory where the original is contained. Thus, references are true
aliases—that is, just another name for original. Displaying the value using ref2 in
Line 14 gets the same value as the original in Line 6 because ref2 aliases original
and is contained in the same location in memory.

What Makes References Useful?

References enable you to work with the memory location they are initialized to. This
makes references particularly useful when programming functions. As you learned in
Lesson 7, “Organizing Code with Functions,” a typical function is declared like this:

ReturnType DoSomething(Type parameter);

Function DoSomething() is invoked like this:

ReturnType Result = DoSomething(argument); // function call

The preceding code would result in the argument being copied into Parameter, which is
then used by the function DoSomething(). This copying step can be quite an overhead if
the argument in question consumes a lot of memory. Similarly, when DoSomething()
returns a value, it is copied again into Result. It would be ideal if we could avoid or
eliminate the copy steps, enabling the function to work directly on the data in the caller’s
stack. References enable you to do just that.

A version of the function without the copy step looks like this:

ReturnType DoSomething (Type& parameter); // note the reference&

This function would be invoked as the following:

ReturnType Result = DoSomething(argument) ;

As the argument is being passed by reference, Parameter is not a copy of argument
rather an alias of the latter, much like Ref in Listing 8.17. Additionally, a function

that accepts a parameter as a reference can optionally return values using reference
parameters. See Listing 8.18 to understand how functions can use references instead of
return values.

LISTING 8.18 Function That Calculates Square Returned in a Parameter by Reference

0: #include <iostreams>

1: using namespace std;

2:

3: void GetSquare (int& number)

4: {

5: number *= number;

6: }

7:

8: int main()

9: {
10 cout << "Enter a number you wish to square: ";
11: int number = 0;
12: cin >> number;
13:
14: GetSquare (number) ;
15 cout << "Square is: " << number << endl;
16
17 return 0;

=
fee}
—

Output v

Enter a number you wish to square: 5
Square is: 25

Analysis v

The function that performs the operation of squaring is in Lines 3—6. Note how it accepts
the number to be squared as a parameter by reference and returns the result in the same.
Had you forgotten to mark the parameter number as a reference (&), the result would not
reach the calling function main() as GetSquare() would then perform its operations

on a local copy of number and that would be destroyed when the function exits. Using
references, you ensure that GetSquare() is operating in the same address space where
number in main() is defined. Thus, the result of the operation is available in main()
even after the function GetSquare() has exited.

In this sample, the input parameter containing the number sent by the user has been
modified. If you need both values, the original and the square, you can have the function
accept two parameters: one that contains the input and the other that supplies the square.

Using Keyword const on References

You might need to have references that are not allowed to change the value of the
original variable being aliased. Using const when declaring such references is the way
to achieve that:

int original = 30;

const int& constRef = original;

constRef = 40; // Not allowed: constRef can’t change value in original

int& ref2 = constRef; // Not allowed: ref2 is not const
const int& constRef2 = constRef; // OK

Passing Arguments by Reference to Functions

One of the major advantages of references is that they allow a called function to work on
parameters that have not been copied from the calling function, resulting in significant
performance improvements. However, as the called function works using parameters
directly on the stack of the calling function, it is often important to ensure that the called
function cannot change the value of the variable at the caller’s end. References that

are defined as const help you do just that, as demonstrated by Listing 8.19. A const
reference parameter cannot be used as an l-value, so any attempt at assigning to it causes
a compilation failure.

LISTING 8.19 Using const Reference to Ensure That the Calling Function Cannot
Modify a Value Sent by Reference

0: #include <iostreams>
1: using namespace std;
2:
3: void GetSquare(const int& number, int& result)
4: {
5: result = number*number;
6: }
7:
8: int main()
9: {
10: cout << "Enter a number you wish to square: ";
11 int number = 0;
12: cin >> number;
13:
14: int square = 0;
15: GetSquare (number, square) ;
16 cout << number << "®2 = " << square << endl;
17
18: return 0;
19: }
Output v
Enter a number you wish to square: 27
2772 = 729

Analysis v

In contrast to the program in Listing 8.18 where the variable that sent the number to be
squared also held the result, this one uses two variables—one to send the number to

be squared and the other to hold the result of the operation. To ensure that the number
being sent cannot be modified, it has been marked as a const reference using the const
keyword, as shown in Line 3. This automatically makes parameter number an input
parameter—one whose value cannot be modified.

As an experiment, you may modify Line 5 to return the square using the same logic
shown in the Listing 8.18:

number *= number;

You are certain to face a compilation error that tells you that a const value cannot
be modified. Thus, const references indicate that a parameter is an input param-
eter and ensure that its value cannot be modified. It might seem trivial at first, but in

a multiprogrammer environment where the person writing the first version might be
different from the one enhancing it, using const references will add to the quality of the
program.

Summary

In this lesson you learned about pointers and references. You learned how pointers can
be used to access and manipulate memory and how they’re a tool that assists in dynamic
memory allocation. You learned operators new and delete that can be used to allocate
memory for an element. You learned that their variants new..[] and delete[] help you
allocate memory for an array of data. You were introduced to traps in pointer program-
ming and dynamic allocation and found out that releasing dynamically allocated memory
is important to avoiding leaks. References are aliases and are a powerful alternative to
using pointers when passing arguments to functions in that references are guaranteed to
be valid. You learned of “const correctness” when using pointers and references, and will
hopefully henceforth declare functions with the most restrictive level of const-ness in
parameters as possible.

Q&A

Q Why dynamically allocate when you can do with static arrays where you don’t
need to worry about deallocation?

A Static arrays have a fixed size and will neither scale upward if your application
needs more memory nor will they optimize if your application needs less. This is
where dynamic memory allocation makes a difference.

Q I have two pointers:
int* pointToAnInt = new int;
int* pCopy = pointToAnInt;
Am I not better off calling delete using both to ensure that the memory is gone?

A That would be wrong. You are allowed to invoke delete only once on the address
returned by new. Also, you would ideally avoid having two pointers pointing to the
same address because performing delete on any one would invalidate the other.
Your program should also not be written in a way that you have any uncertainty
about the validity of pointers used.

Q When should I use new (nothrow) ?

A If you don’t want to handle the exception std: :bad_alloc, you use the nothrow
version of operator new that returns NULL if the requested allocation fails.

Q I can call a function to calculate area using the following two methods:

void CalculateArea (const double* const ptrRadius, double* const
ptrArea) ;
void CalculateArea (const double& radius, double& area);

Which variant should I prefer?

A Use the latter one using references, as references cannot be invalid, whereas
pointers can be. Besides, it’s simpler, too.

Q I have a pointer:
int number = 30;
const int* pointToAnInt = &number;
I understand that I cannot change the value of number using the pointer
pointToAnInt due to the const declaration. Can I assign pointToAnInt to a
non-const pointer and then use it to manipulate the value contained in integer

number?

A No, you cannot change the const-correctness of the pointer:

int* pAnother = pointToAnInt; // cannot assign pointer to const to a
non-const

Q Why should I bother passing values to a function by reference?

A You don’t need to so long as it doesn’t affect your program performance much.
However, if your function parameters accept objects that are quite heavy (large in
bytes), then passing by value would be quite an expensive operation. Your function
call would be a lot more efficient in using references. Remember to use const
generously, except where the function needs to store a result in a variable.

Q What is the difference between these two declarations:
int myNumbers [100] ;
int* myArrays[100];

A myNumbers is an array of integers—that is, myNumbers is a pointer to a memory
location that holds 100 integers, pointing to the first at index 0. It is the static
alternative of the following:
int* myNumbers = new int [100]; // dynamically allocated array
// use myNumbers
delete[] myNumbers;
myArrays, on the other hand, is an array of 100 pointers, each pointer being
capable of pointing to an integer or an array of integers.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. Why can’t you assign a const reference to a non-const reference?
2. Are new and delete functions?
3. What is the nature of value contained in a pointer variable?

4. What operator would you use to access the data pointed by a pointer?

Exercises

1. What is the display when these statements are executed:

int number = 3;

int* pNuml = &number;
:_*pNuml = 20;

int* pNum2 = pNuml;
number *= 2;

cout << *pNum2;

u s W N o

2. What are the similarities and differences between these three overloaded functions:

int DoSomething(int numl, int num2);
int DoSomething (int& numl, int& num2);
int DoSomething(int* pNuml, int* pNum2) ;

3. How would you change the declaration of pNum1 in Exercise 1 at Line 1 so as to
make the assignment at Line 3 invalid? (Hint: It has something to do with ensuring
that pNum1 cannot change the data pointed to.)

4. BUG BUSTERS: What is wrong with this code?

#include <iostreams>
using namespace std;
int main()
{
int *pointToAnInt = new int;
pointToAnInt = 9;
cout << "The value at pointToAnInt: " << *pointToAnInt;
delete pointToAnInt;
return 0;

5. BUG BUSTERS: What is wrong with this code?

#include <iostreams

using namespace std;

int main()

{
int pointToAnInt = new int;
int* pNumberCopy = pointToAnInt;
*pNumberCopy = 30;
cout << *pointToAnInt;
delete pNumberCopy;
delete pointToAnInt;
return 0;

6. What is the output of the above program when corrected?

LESSON 9
Classes and Objects

So far you have explored simple programs that start execution at main (),
comprise local and global variables and constants, and feature execution
logic organized into function modules that take parameters and return val-
ues. Our programming style thus far has been procedural, and we haven’t
observed an object-oriented approach yet. In other words, you need to
now learn the basics of object-oriented programming using C++.

In this lesson, you learn

B What classes and objects are

m How classes help you consolidate data with functions that work on
them

About constructors, copy constructors, and the destructor
What the move constructor is
Object-oriented concepts of encapsulation and abstraction

What the this pointer is about

What a struct is and how it differs from class

The Concept of Classes and Objects

Imagine you are writing a program that models a human being, like yourself. This
human being needs to have an identity: a name, date of birth, place of birth, and
gender—information that makes him or her unique. Additionally, the human can per-
form certain functions, such as talk and introduce him- or herself, among others. Thus, a
human being can also be modeled as illustrated by Figure 9.1.

FIGURE 9.1

A broad
representation of
a human.

Human Being

Data
e Gender
e Date of birth
¢ Place of birth
e Name
Methods
¢ IntroduceSelf()

To model a human in a program, what you now need is a construct that enables you to
group within it the attributes that define a human (data) and the activities a human can
perform (functions) using the available attributes. This construct is the class.

Declaring a Class

You declare a class using the keyword class followed by the name of the class, followed
by a statement block {...} that encloses a set of member attributes and member functions
within curly braces, and finally terminated by a semicolon ;.

A declaration of a class tells the compiler about the class and its properties. Declaration
of a class alone does not make a difference to the execution of a program, as the class
needs to be used just the same way as a function would need to be invoked.

A class that models a human looks like the following (ignore syntactic short-comings for
the moment):

class Human

{

// Member attributes:
string name;

string dateOfBirth;
string placeOfBirth;
string gender;

// Member functions:
void Talk(string textToTalk) ;
void IntroduceSelf () ;

}i

Needless to say, IntroduceSelf() uses Talk() and some of the data attributes that
are grouped within class Human. Thus, in keyword class, C++ has provided you
with a powerful way to create your own data type that allows you to encapsulate
attributes and functions that work using those. All attributes of a class, in this case
name, dateOfBirth, placeOfBirth, and gender, and all functions declared within it,
namely Talk() and IntroduceSelf(), are called members of class Human.

Encapsulation, which is the ability to logically group data and functions that work using
it, is an important property of object-oriented programming.

You may often encounter the term method—these are essentially
functions that are members of a class.

NOTE

An Object as an Instance of a Class

A class is like a blueprint, and declaring a class alone has no effect on the execution of a
program. The real-world avatar of a class at program execution time is an object. To use
the features of a class, you typically create an instance of that class, called an object. You
use that object to access its member methods and attributes.

Creating an object of type class Human is similar to creating an instance of another
type, say double:

double pi= 3.1415; // a variable of type double
Human firstMan; // firstMan: an object of class Human

Alternatively, you would dynamically create an instance of class Human using new as
you would for another type, say an int:

int* pointsToNum = new int; // an integer allocated dynamically
delete pointsToNum; // de-allocating memory when done using

Human* firstWoman = new Human(); // dynamically allocated Human
delete firstWoman; // de-allocating memory

Accessing Members Using the Dot Operator (.)

An example of a human would be Adam, male, born in 1970 in Alabama. Instance
firstMan is an object of class Human, an avatar of the class that exists in reality, that
18 at runtime:

Human firstMan; // an instance i.e. object of Human

As the class declaration demonstrates, firstMan has attributes such as dateOfBirth
that can be accessed using the dot operator (.):

firstMan.dateOfBirth = "1970";

This is because attribute dateOfBirth belongs to class Human, being a part of

its blueprint as seen in the class declaration. This attribute exists in reality—that is, at
runtime—only when an object has been instantiated. The dot operator (.) helps you
access attributes of an object.

Ditto for methods such as IntroduceSelf():

firstMan. IntroduceSelf () ;

If you have a pointer firstWoman to an instance of class Human, you can either use
the pointer operator (->) to access members, as explained in the next section, or use the
indirection operator (*) to reference the object following the dot operator.

Human* firstWoman = new Human() ;
(*firstWoman) . IntroduceSelf () ;

Naming conventions continue to apply. A class name and
member functions are declared in Pascal case, for example,
IntroduceSelf (). Class member attributes are in camel case,
for example, dateOfBirth.

NOTE

When we instantiate an object of a class, we declare a variable
with type as that class. We therefore use camel case, which
we have been using for variable names thus far, for example,
firstMan.

Accessing Members Using the Pointer Operator (->)

If an object has been instantiated on the free store using new or if you have a pointer
to an object, then you use the pointer operator (->) to access the member attributes and
functions:

Human* firstWoman = new Human() ;

firstWoman->dateOfBirth = "1970";

firstWoman->IntroduceSelf () ;
delete firstWoman;

A compile-worthy form of class Human featuring a new keyword public is demon-
strated by Listing 9.1.

LISTING 9.1 A Compile-worthy Class Human

0: #include <iostreams>

1: #include <strings>

2: using namespace std;

3:

4: class Human

5: {

6: public:

7: string name;

8: int age;

9:

10: void IntroduceSelf ()

11 {

12: cout << "I am " + name << " and am ";
13: cout << age << " years old" << endl;
14: }

15: };

16

17: int main()

18: {

19 // An object of class Human with attribute name as "Adam"

N
o

Human firstMan;

21: firstMan.name = "Adam";

22: firstMan.age = 30;

23:

24 // BAn object of class Human with attribute name as "Eve"
25: Human firstWoman;

26: firstWoman.name = "Eve";
27: firstWoman.age = 28;

28:

29: firstMan.IntroduceSelf () ;
30: firstWoman.IntroduceSelf () ;
31: }

Output v

I am Adam and am 30 years old
I am Eve and am 28 years old

Analysis v

Lines 4-15 demonstrate a basic C++ class Human. Note the structure of class Human
and how this class has been utilized in main().

This class contains two member variables, one of type string called name at Line 7 and
another of type int called age at Line 8. It also contains a function (also called method)
IntroduceSelf() at Lines 10—14. Lines 20 and 25 in main() instantiate two objects

of class Human, named firstMan and firstWoman, respectively. The lines following
this instantiation of objects set the member variables of the objects £irstMan and
firstWoman using operator, which has been explained shortly before. Note how Lines
29 and 30 invoke the same function IntroduceSelf() on the two objects to create two
distinct lines in the output. In a way this program demonstrates how objects firstMan
and firstWoman are unique and individually distinct real-world representatives of an
abstract type defined by a class Human.

Did you notice the keyword public in Listing 9.17 It’s time you learned features that
help you protect attributes your class should keep hidden from those using it.

Keywords public and private

Information can be classified into at least two categories: data that we don’t mind the
public knowing and data that is private. Gender, for most people, is an example of infor-
mation that we may not mind sharing. However, income may be a private matter.

C++ enables you to model class attributes and methods as public or private. Public class
members can be used by anyone in possession of an object of the class. Private class

members can be used only within the class (or its “friends”). C++ keywords public and
private help you as the designer of a class decide what parts of a class can be invoked
from outside it, for instance, from main(), and what cannot.

What advantages does this ability to mark attributes or methods as private present you
as the programmer? Consider the declaration of class Human ignoring all but the member
attribute age:

class Human

private:
// Private member data:
int age;
string name;

public:
int GetAge ()

{
}

return age;

void SetAge (int humansAge)

{
}

age = humansAge;

// ...Other members and declarations

}i

Assume an instance of a Human called Eve:

Human eve;

When the user of this instance tries to access member age:

cout << eve.age; // compile error

then this user would get a compile error akin to “Error: Human::age—cannot access
private member declared in class Human.” The only permissible way to know the age
would be to ask for it via public method Getage() supplied by class Human and
implemented in a way the programmer of the class thought was an appropriate way to
expose the age:

cout << eve.GetAge(); // OK

If the programmer of class Human so desires, he could use Getage() to show Eve as
younger than she is! In other words, this means C++ allows the class to control what
attributes it wants to expose and how it wants to expose the same. If there were no

GetAge() public member method implemented by class Human, the class would effec-
tively have ensured that the user cannot query age at all. This feature can be useful in
situations that are explained later in this lesson.

Similarly, Human::age cannot be assigned directly either:

eve.age = 22; // compile error

The only permissible way to set the age is via method SetAge():

eve.SetAge (22); // OK

This has many advantages. The current implementation of SetAge() does nothing but
directly set the member variable Human::age. However, you can use SetAge() to verify
the age being set is non-zero and not negative and thus validate external input:

class Human

{

private:
int age;

public:
void SetAge (int humansAge)

{

if (humansAge > 0)
age = humansAge;

Thus, C++ enables the designer of the class to control how data attributes of the class are
accessed and manipulated.

Abstraction of Data via Keyword private

While allowing you to design a class as a container that encapsulates data and methods
that operate on that data, C++ empowers you to decide what information remains
unreachable to the outside world (that is, unavailable outside the class) via keyword
private. At the same time, you have the possibility to allow controlled access to even
information declared private via methods that you have declared as public. Thus your
implementation of a class can abstract member information that classes and functions
outside this class don’t need to have access to.

Going back to the example related to Human::age being a private member, you know
that even in reality many people don’t like to reveal their true age. If class Human was
required to tell an age two years younger than the current age, it could do so easily via
a public function GetAge() that uses the Human::age parameter, reduces it by two, and
supplies the result as demonstrated by Listing 9.2.

LISTING 9.2 A Model of Class Human Where the True age Is Abstracted from the User
and a Younger age Is Reported

#include <iostream>
using namespace std;

0

1

2

3: class Human
4: {
5.
6

7

8

private:
// Private member data:
int age;

9: public:

10: void SetAge (int inputAge)
11: {

12: age = inputAge;

13: }

14:

15: // Human lies about his / her age (if over 30)
16: int GetAge()

17: {

18: if (age > 30)

19: return (age - 2);
20: else
21: return age;
22: }
23: };
24:
25: int main()
26: {
27: Human firstMan;
28: firstMan.SetAge (35) ;
29:

30: Human firstWoman;

31: firstWoman.SetAge (22) ;
32:

33: cout << "Age of firstMan " << firstMan.GetAge() << endl;
34: cout << "Age of firstWoman " << firstWoman.GetAge() << endl;
35:

36: return 0;

37: }
Output v

Age of firstMan 33
Age of firstWoman 22

Analysis v

Note the public method Human::GetAge() at Line 16. As the actual age contained in
private integer member Human::age is not directly accessible, the only resort external
users of this class have toward querying an object of class Human for attribute age is
via method GetAge(). Thus, the actual age held in Human::age is abstracted from the
outside world. Indeed, our Human lies about its age, and GetAge() returns a reduced
value for all humans that are older than 30, as seen in Lines 18-21!

Abstraction is an important concept in object-oriented languages. It empowers
programmers to decide what attributes of a class need to remain known only to the
class and its members with nobody outside it (with the exception of those declared as its
“friends”) having access to it.

Constructors

A constructor is a special function (or method) invoked during the instantiation of a class
to construct an object. Just like functions, constructors can also be overloaded.

Declaring and Implementing a Constructor

A constructor is a special function that takes the name of the class and returns no value.
So, class Human would have a constructor that is declared like this:

class Human

{
public:
Human(); // declaration of a constructor

i

This constructor can be implemented either inline within the class or externally outside
the class declaration. An implementation (also called definition) inside the class looks
like this:

class Human

{
public:
Human ()

{
}

// constructor code here

}i

A variant enabling you to define the constructor outside the class’ declaration looks like
this:

class Human

{
public:
Human(); // constructor declaration

}i

// constructor implementation (definition)
Human: :Human ()

{
}

// constructor code here

: : is called the scope resolution operator. For example,

Human: :dateOfBirth is referring to variable dateofBirth
declared within the scope of class Human. : :dateOfBirth, on
the other hand would refer to another variable dateofBirth in a
global scope.

NOTE

When and How to Use Constructors

A constructor is always invoked during object creation, when an instance of a class is
constructed. This makes a constructor a perfect place for you to initialize class member
variables such as integers, pointers, and so on to values you choose. Take a look at
Listing 9.2 again. Note that if you had forgotten to Setage(), the integer variable
Human::age may contain an unknown value as that variable has not been initialized
(try it by commenting out Lines 28 and 31). Listing 9.3 uses constructors to implement a
better version of class Human, where variable age has been initialized.

LISTING 9.3 Using Constructors to Initialize Class Member Variables

#include <iostream>
#include <strings>
using namespace std;

class Human
private:
string name;
int age;

W W J 0 Ul & WN K O

10: public:

11: Human() // constructor

12: {

13: age = 1; // initialization
14: cout << "Constructed an instance of class Human" << endl;
15: }

16:

17: void SetName (string humansName)
18: {

19: name = humansName;

20: }

21:

22 void SetAge (int humansAge)

23: {

24 : age = humansAge;

25: }

26:

27: void IntroduceSelf ()

28: {

29: cout << "I am " + name << " and am ";
30: cout << age << " years old" << endl;
31: }

32: };

33:

34: int main()

35: |

36: Human firstWoman;

37: firstWoman.SetName ("Eve") ;

38: firstWoman.SetAge (28);

39:

40: firstWoman.IntroduceSelf () ;

41: }

Output v

Constructed an instance of class Human
I am Eve and am 28 years old

Analysis v

In the output you see a new line that indicates object construction. Now, take a look

at main() defined in Lines 34—41. You see that the first line in output was the result

of the creation (construction) of object firstWoman in Line 36. The constructor
Human::Human() in Lines 11-15 contains the cout statement that contributes to this
output. Note how the constructor initializes integer age to zero. Should you forget to
SetAge() on a newly constructed object, you can rest assured that the constructor would
have ensured that the value contained in variable age is not a random integer (that might
look valid) but instead a zero.

A constructor that is invoked without arguments is called the
default constructor. Programming a default constructor is
optional.

NOTE

If you don’t program any constructor, as seen in Listing 9.1, the
compiler creates one for you (that constructs member attributes
but does not initialize Plain Old Data types such as int to any
specific non-zero value).

Overloading Constructors

Constructors can be overloaded just like functions. We can therefore write a constructor
that requires Human to be instantiated with a name as a parameter, for example:

class Human

{
public:
Human ()

{
}

// default constructor code here

Human (string humansName)

{
}

// overloaded constructor code here

}i

The application of overloaded constructors is demonstrated by Listing 9.4 in creating an
object of class Human with a name supplied at the time of construction.

LISTING 9.4 A Class Human with Multiple Constructors

#include <iostreams>
#include <strings>
using namespace std;

class Human
private:
string name;
int age;

W O J 0 U1 & W N KHE O

=
o

: public:
Human() // default constructor

{

[
NP

13: age = 0; // initialized to ensure no junk value

14: cout << "Default constructor: name and age not set" << endl;
15: }

16:

17: Human (string humansName, int humansAge) // overloaded

18: {

19: name = humansName;

20: age = humansAge;

21: cout << "Overloaded constructor creates ";

22: cout << name << " of " << age << " years" << endl;

23: }

24: };

25:

26: int main()

27: {

28: Human firstMan; // use default constructor

29: Human firstWoman ("Eve", 20); // use overloaded constructor
30: }

Output v

Default constructor: name and age not set
Overloaded constructor creates Eve of 20 years

Analysis v

main() in Lines 26-30 is minimalistic and creates two instances of class Human.
firstMan uses the default constructor while firstWoman uses the overloaded
constructor supplying name and age at instantiation. The output is the result of object
construction only! You may appreciate that if class Human had chosen to not support
the default constructor, main() would’ve had no option but to construct every object of
Human using the overloaded constructor that takes name and age as a prerequisite—
making it impossible to create a Human without supplying a name or age.

You can choose to not implement the default constructor to
enforce object instantiation with certain minimal parameters as
explained in the next section.

TIP

Class Without a Default Constructor

In Listing 9.5, see how class Human without the default constructor enforces the
creator to supply a name and age as a prerequisite to creating an object.

LISTING 9.5 A Class with Overloaded Constructor(s) and No Default Constructor

0: #include <iostream>

1: #include <strings>

2: using namespace std;

3:

4: class Human

5: {

6: private:

7: string name;

8: int age;

9:

10: public:

11 Human (string humansName, int humansAge)
12: {

13: name = humansName;

14: age = humansAge;

15 cout << "Overloaded constructor creates " << name;
16: cout << " of age " << age << endl;
17: }

18:

19: void IntroduceSelf ()
20: {
21: cout << "I am " + name << " and am ";
22: cout << age << " years old" << endl;
23: }
24: };
25:
26: int main()
27: |
28: Human firstMan("Adam", 25);
29: Human firstWoman ("Eve", 28);

30:

31: firstMan.IntroduceSelf () ;

32: firstWoman.IntroduceSelf () ;

33: }

Output v

Overloaded constructor creates Adam of age 25
Overloaded constructor creates Eve of age 28
I am Adam and am 25 years old
I am Eve and am 28 years old

Analysis v

This version of class Human has only one constructor that takes a string and an int
as input parameters, as seen in Line 11. There is no default constructor available, and
given the presence of an overloaded constructor, the C++ compiler does not generate a
default constructor for you. This sample also demonstrates the ability to create an object
of class Human with name and age set at instantiation, and no possibility to change it
afterward. This is because the name attribute of the Human is stored as a private vari-
able. Human::name cannot be accessed or modified by main() or by any entity that is
not a member of class Human. In other words, the user of class Human is forced by
the overloaded constructor to specify a name (and age) for every object he creates and

is not allowed to change that name. This models a real-world scenario quite well, don’t
you think? You were named at birth; people are allowed to know your name, but nobody
(except you) has the authority to change it.

Constructor Parameters with Default Values

Just the same way as functions can have parameters with default values specified, so can
constructors. What you see in the following code is a slightly modified version of the
constructor from Listing 9.5 at Line 11 where the age parameter has a default

value of 25:

class Human
private:
string name;
int age;

public:
// overloaded constructor (no default constructor)
Human (string humansName, int humansAge = 25)
name = humansName;
age = humansAge;

cout << "Overloaded constructor creates " << name;
cout << " of age " << age << endl;
// ... other members

i

Such a class can be instantiated with the syntax:

Human adam("Adam"); // adam.age is assigned a default value 25
Human eve("Eve, 18); // eve.age is assigned 18 as specified

Note that a default constructor is one that can be instantiated
without arguments, and not necessarily one that doesn’t take
parameters. So, this constructor with two parameters, both with
default values, is a default constructor:

NOTE

class Human
private:

string name;

int age;
public:
// default values for both parameters
Human (string humansName = "Adam", int humansAge
= 25)
{
name = humansName;
age = humansAge;

cout << "Overloaded constructor creates ";

cout << name << " of age " << age;

}i

The reason is that class Human can still be instantiated without
arguments:

Human adam; // Human takes default name "Adam",
age 25

Constructors with Initialization Lists

You have seen how useful constructors are in initializing member variables. Another
way to initialize members is by using initialization lists. A variant of the constructor in
Listing 9.5 using initialization lists would look like this:

class Human
private:
string name;
int age;

public:
// two parameters to initialize members age and name
Human (string humansName, int humansAge)
:name (humansName) , age (humansAge)

{

cout << "Constructed a human called " << name;
cout << ", " << age << " years old" << endl;

// ... other class members

i

Thus, the initialization list is characterized by a colon (:) following the parameter
declaration contained in parentheses (...), followed by an individual member variable
and the value it is initialized to. This initialization value can be a parameter such as
humansName or can even be a fixed value. Initialization lists can also be useful in
invoking base class constructors with specific arguments. These are discussed again in
Lesson 10, “Implementing Inheritance.”

You can see a version of class Human that features a default constructor with
parameters, default values, and an initialization list in Listing 9.6.

LISTING 9.6 Default Constructor That Accepts Parameters with Default Values to Set
Members Using Initialization Lists

0: #include <iostream>

1: #include <string>

2: using namespace std;

3:

4: class Human

5: |

6: private:

7 int age;

8: string name;

9:

10: public:

11: Human (string humansName = "Adam", int humansAge = 25)
12: :name (humansName) , age (humansAge)

13: {

14: cout << "Constructed a human called " << name;
15: cout << ", " << age << " years old" << endl;
16: }

P
®
—

19: int main()

20: {

21: Human adam;

22: Human eve ("Eve", 18);
23:

24: return 0;

25: }

Output v

Constructed a human called Adam, 25 years old
Constructed a human called Eve, 18 years old

Analysis v

The constructor with initialization lists is seen in Lines 11-16, where you can also see
that the parameters have been given default values "Adam" for name and 25 for age.
Hence, when an instance of class Human called adam is created in Line 21, without
arguments, its members are automatically assigned the default values. eve, on the other
hand, has been supplied with arguments as shown in Line 22—these arguments become
values that are assigned to Human::name and Human::age during construction.

It is possible to define a constructor as a constant expression
too, using keyword constexpr. In special cases where such a
construct would be useful from a performance point of view, you
would use it at the constructor declaration.

NOTE

class Sample
{
const char* someString;
public:
constexpr Sample (const char* input)
:someString (input)
{ // constructor code }

}i

Destructor

A destructor, like a constructor, is a special function, too. A constructor is invoked
at object instantiation, and a destructor is automatically invoked when an object is
destroyed.

Declaring and Implementing a Destructor

The destructor looks like a function that takes the name of the class, yet has a tilde (~)
preceding it. So, class Human would have a destructor that is declared like this:

class Human

{
i

~Human(); // declaration of a destructor

This destructor can either be implemented inline in the class or externally outside the
class declaration. An implementation or definition inside the class looks like this:

class Human

{
public:
~Human ()

{
}

// destructor code here

i

A variant enabling you to define the destructor outside the class’s declaration looks like
this:

class Human

{
public:
~Human(); // destructor declaration

i

// destructor definition (implementation)
Human: : ~Human ()

{
}

// destructor code here

As you can see, the declaration of the destructor differs from that of the constructor
slightly in that this contains a tilde (~). The role of the destructor is, however,
diametrically opposite to that of the constructor.

When and How to Use a Destructor

A destructor is always invoked when an object of a class is destroyed when it goes out of
scope or is deleted via delete. This property makes a destructor the ideal place to reset
variables and release dynamically allocated memory and other resources.

This book has recommended the usage of std::string over a char* buffer, so that you
don’t need to worry about managing memory allocation and timely deallocation yourself.
std::string and other such utilities are nothing but classes themselves that make use
of constructors and the destructor (in addition to operators, which you study in Lesson
12, “Operator Types and Operator Overloading”) in taking away the work of allocation,
deallocation, and memory management from you. Analyze a sample class MyString as
shown in Listing 9.7 that allocates memory for a character string in the constructor and
releases it in the destructor.

LISTING 9.7 A Simple Class That Encapsulates a Character Buffer to Ensure
Deallocation via the Destructor

0: #include <iostreams>

1: #include <string.h>

2: using namespace std;

3: class MyString

4: {

5: private:

6: char* buffer;

7:

8: public:

9: MyString(const char* initString) // constructor
10 {

11: if (initString != NULL)

12: {

13: buffer = new char [strlen(initString) + 1];
14: strcpy (buffer, initString);
15 }

16 else

17: buffer = NULL;

18 }

19
20 ~MyString()
21: {
22: cout << "Invoking destructor, clearing up" << endl;
23: if (buffer != NULL)
24 delete [] buffer;
25 }
26
27 int GetLength()
28 {
29: return strlen(buffer);

30: }

31:

32: const char* GetString()

33: {

34: return buffer;

w
ul

}

36: };

37:

38: int main()

39: |

40: MyString sayHello("Hello from String Class");

41: cout << "String buffer in sayHello is " << sayHello.GetLength();
42: cout << " characters long" << endl;

43:

44 : cout << "Buffer contains: " << sayHello.GetString() << endl;

45: }

Output v

String buffer in sayHello is 23 characters long
Buffer contains: Hello from String Class
Invoking destructor, clearing up

Analysis v

This class basically encapsulates a C-style string in MyString::buffer and relieves
you of the task of allocating memory; it deallocates the same every time you need

to use a string. The lines of utmost interest to us are the constructor MyString() in
Lines 9-18, and the destructor ~MyString() in Lines 20-25. The constructor enforces
construction with an input string via a compulsory input parameter and then copies it to
the character buffer after allocating memory for it using new and strlen in Line 13.
strlen is a function supplied by the standard library that helps determine the length

of the input string. strcpy is the standard library function used in Line 14 for copying
from source initString into this newly allocated memory pointed by buffer. In case
the user of the class has supplied a NULL as initString, MyString::buffer is ini-
tialized to NULL as well (to keep this pointer from containing a random value that can
be dangerous when used to access a memory location). The destructor code does the job
of ensuring that the memory allocated in the constructor is automatically returned to
the system. It checks whether MyString::buffer is not NULL, and, if so, it performs
a deletel] on it that complements the new in the constructor. Note that nowhere in
main() has the programmer ever done a new or a delete. In addition to abstracting the
implementation of memory management from the user, class MyString also ensured
technical correctness in releasing allocated memory. The destructor ~MyString() is
automatically invoked when main ends, and this is demonstrated in the output that
executes the cout statements in the destructor.

Classes that handle strings better are one of the many applicable uses of a destructor.
Lesson 26, “Understanding Smart Pointers,” demonstrates how the destructor play a criti-
cal role in working with pointers in a smarter way.

A destructor cannot be overloaded. A class can have only one
destructor. If you forget to implement a destructor, the compiler
creates and invokes a dummy destructor, that is, an empty one
(that does no cleanup of dynamically allocated memory).

NOTE

Copy Constructor

In Lesson 7, “Organizing Code with Functions,” you learned that arguments passed to a
function like Area() (shown in Listing 7.1) are copied:

double Area(double radius) ;

So, the argument sent as parameter radius is copied when Area() is invoked. This rule
applies to objects, that is, instances of classes as well.

Shallow Copying and Associated Problems

Classes such as MyString, shown in Listing 9.7, contain a pointer member buffer that
points to dynamically allocated memory, allocated in the constructor using new and
deallocated in the destructor using delete[]. When an object of this class is copied, the
pointer member is copied, but not the pointed memory, resulting in two objects pointing
to the same dynamically allocated buffer in memory. When an object is destructed,
delete[] deallocates the memory, thereby invalidating the pointer copy held by the
other object. Such copies are shallow and are a threat to the stability of the program, as
Listing 9.8 demonstrates.

LISTING 9.8 The Problem in Passing Objects of a Class Such as MyString by Value

#include <iostream>
#include <string.h>
using namespace std;
class MyString
{
private:

char* buffer;

W 30 U1l W N o

public:

9: MyString (const char* initString) // Constructor

10: {

11: buffer = NULL;

12: if (initString != NULL)

13: {

14: buffer = new char [strlen(initString) + 1];
15: strcpy (buffer, initString);

16: }

17: }

18:

19: ~MyString() // Destructor

20: {

21: cout << "Invoking destructor, clearing up" << endl;
22: delete [] buffer;

23: }

24 :

25: int GetLength ()

26: { return strlen(buffer); }

27:

28: const char* GetString()

29: { return buffer; }

30: };

31:

32: void UseMyString (MyString str)

33: |

34: cout << "String buffer in MyString is " << str.GetLength();
35: cout << " characters long" << endl;

36:

37: cout << "buffer contains: " << str.GetString() << endl;
38: return;

39: }

40:

41: int main()

42:

43: MyString sayHello("Hello from String Class");

44 UseMyString (sayHello) ;

45:

46: return 0;

47: }

Output v

String buffer in MyString is 23 characters long
buffer contains: Hello from String Class
Invoking destructor, clearing up

Invoking destructor, clearing up

<crash as seen in Figure 9.2>

FIGURE 9.2
Screenshot of
crash caused
by executing

Listing 9.8 |® Debug Assertion Failed!

(in MS Visual 3

Studio debug <) ;

mode). Program: ..tor_CopyMyString\Debug\9.8

NoCopyConstructor_CopyMyString.exe
File: minkernel\crts\ucrt\src\appcrt\heap\debug_heap.cpp
Line: 888

Expression; _CrtlsValidHeapPointer(block)

For information on how your program can cause an assertion
failure, see the Visual C++ documentation on asserts.

(Press Retry to debug the application)

Ew

Analysis v

Why does class MyString that worked just fine in Listing 9.6 cause a crash in Listing
9.7?7 The only difference between Listing 9.6 and 9.7 is that the job of using the object
sayHello of class MyString created in main() has been delegated to function
UseMyString(), invoked in Line 44. Delegating work to this function has resulted in
object sayHello in main() to be copied into parameter str used in UseMyString().
This is a copy generated by the compiler as the function has been declared to take str as
a parameter by value and not by reference. The compiler performs a binary copy of Plain
Old Data such as integers, characters, and pointers to the same. So the pointer value con-
tained in sayHello.buffer has simply been copied to str—that is, sayHello.buffer
points to the same memory location as str.buffer. This is illustrated in Figure 9.3.

FIGURE 9.3
Shallow copy of SEyEeLD)
sayHello into char* buffer o e usmg: "Hello from String Class"
str when new at constructor
UseMyString () A
is invoked.

str (binary copy of SayHello)

Pointer values copied during function call
char buffer (Two pointers containing same address)

The binary copy did not perform a deep copy of the pointed memory location, and you
now have two objects of class MyString pointing to the same location in memory.
Thus, when the function UseMyString() ends, variable str goes out of scope and is
destroyed. In doing so, the destructor of class MyString is invoked, and the destructor
code in Line 22 in Listing 9.8 releases the memory allocated to buffer via deletel].
Note that this call to delete[] invalidates the memory being pointed to in copy say-
Hello contained in main(). When main() ends, sayHello goes out of scope and is
destroyed. This time, however, Line 22 repeats a call to delete on a memory address
that is no longer valid (released and invalidated via the previous destruction of str). This
double delete is what results in a crash.

Ensuring Deep Copy Using a Copy Constructor

The copy constructor is an overloaded constructor that you supply. It is invoked by the
compiler every time an object of the class is copied.

The declaration syntax of a copy constructor for class MyString is the following:

class MyString

{
i

MyString (const MyString& copySource); // copy constructor

MyString: :MyString(const MyString& copySource)

{
}

// Copy constructor implementation code

Thus, a copy constructor takes an object of the same class by reference as a parameter.
This parameter is an alias of the source object and is the handle you have in writing your
custom copy code. You would use the copy constructor to ensure a deep copy of all buf-
fers in the source, as Listing 9.9 demonstrates.

LISTING 9.9 Define a Copy Constructor to Ensure Deep Copy of Dynamically Allocated
Buffers

#include <iostreams>
#include <string.h>
using namespace std;
class MyString
{
private:

char* buffer;

public:
MyString (const char* initString) // constructor

{

O W O J O Ul b W N BHE O

iy

11: buffer = NULL;

12: cout << "Default constructor: creating new MyString" << endl;
13: if (initString != NULL)

14: {

15: buffer = new char [strlen(initString) + 1];

16: strcpy (buffer, initString);

17:

18: cout << "buffer points to: 0x" << hex;

19: cout << (unsigned int*)buffer << endl;

20: }

21: }

22:

23: MyString (const MyString& copySource) // Copy constructor
24: {

25: buffer = NULL;

26: cout << "Copy constructor: copying from MyString" << endl;
27: if (copySource.buffer != NULL)

28: {

29: // allocate own buffer

30: buffer = new char [strlen(copySource.buffer) + 1];
31:

32: // deep copy from the source into local buffer
33: strcpy (buffer, copySource.buffer);

34:

35: cout << "buffer points to: 0x" << hex;

36: cout << (unsigned int*)buffer << endl;

37: }

38: }

39:

40: // Destructor

41: ~MyString ()

42: {

43: cout << "Invoking destructor, clearing up" << endl;
44 delete [] buffer;

45: }

46:

47: int GetLength/()

48: { return strlen(buffer); }

49:

50: const char* GetString()

51: { return buffer; }

52: };

53:

54: void UseMyString (MyString str)

55: {

56: cout << "String buffer in MyString is " << str.GetLength();
57: cout << " characters long" << endl;

58:

59: cout << "buffer contains: " << str.GetString() << endl;
60: return;

61: }

62:

63: int main()

64: |

65: MyString sayHello("Hello from String Class");
66: UseMyString (sayHello) ;

67:

68: return 0;

Output v

Default constructor: creating new MyString
buffer points to: 0x01232D90

Copy constructor: copying from MyString

buffer points to: 0x01232DD8

String buffer in MyString is 17 characters long
buffer contains: Hello from String Class
Invoking destructor, clearing up

Invoking destructor, clearing up

Analysis v

Most of the code is similar to Listing 9.8 save a new copy constructor in Lines 23-38. To
start with, let’s focus on main() that (as before) creates an object sayHello in Line 65.
Creating sayHello results in the first line of output that comes from the constructor of
MyString, at Line 12. For sake of convenience, the constructor also displays the memory
address that buffer points to. main() then passes sayHello by value to function
UseMyString() in Line 66, which automatically results in the copy constructor being
invoked as shown in the output. The code in the copy constructor is similar to that in

the constructor. The basic idea is the same, check the length of C-style string buffer
contained in the copy source at Line 30, allocate proportional memory in one’s own
instance of buffer, and then use strcpy to copy from source to destination at Line 33.
This is not a shallow copy of pointer values. This is a deep copy where the content being
pointed to is copied to a newly allocated buffer that belongs to this object, as illustrated
in Figure 9.4.

FIGURE 9.4

. sayHello
lllustration of a Memory allocated using | .
deep copy char* buffer e TE— ‘;l "Hello from String Class" |
of argument
sayHello into
parameter str
when function str (deep copy of saytello)
UseMyString () is Memory allocated using

I > -
f char* buffer » "Hello £ St o1 =
invoked. new at copy constructor | _ Sron SErAAg ©-ass

memory

The output in Listing 9.9 indicates that the memory address being pointed to by buffer
is different in the copy—that is, two objects don’t point to the same dynamically
allocated memory address. As a result, when function UseMyString() returns and
parameter str is destroyed, the destructor code does a delete[] on the memory address
that was allocated in the copy constructor and belongs to this object. In doing so, it does
not touch memory that is being pointed to by sayHello in main(). So, both functions
end and their respective objects are destroyed successfully and peacefully without the
application crashing.

The copy constructor has ensured deep copy in cases such as
function calls:

NOTE

MyString sayHello("Hello from String Class");
UseMyString (sayHello) ;

However, what if you tried copying via assignment:

MyString overwrite ("who cares? ");

overwrite = sayHello;

This would still be a shallow copy because you still haven’t yet
supplied a copy assignment operator=. In the absence of one,
the compiler has supplied a default for you that does a shallow
copy.

The copy assignment operator is discussed in length in Lesson
12. Listing 12.8 is an improved MyString that implements the
same:

MyString: :operator= (const MyString& copySource)

{

//... copy assignment operator code

Using const in the copy constructor declaration ensures that
the copy constructor does not modify the source object being
referred to.

CAUTION

Additionally, the parameter in the copy constructor is passed by
reference as a necessity. If this weren't a reference, the copy
constructor would itself invoke a copy, thus invoking itself again
and so on till the system runs out of memory.

DO DON’T

DO always program a copy constructor DON’T use raw pointers as class
and copy assignment operator when your members unless absolutely
class contains raw pointer members unavoidable.

(char* and the like).

DO always program the copy constructor
with a const reference source parameter.

DO evaluate avoiding implicit conversions
by using keyword explicit in declaring
constructors.

DO use string classes such as

std: :string and smart pointer classes
as members instead of raw pointers as
they implement copy constructors and
save you the effort.

The class Mystring with a raw pointer member, char* buffer
is used as an example to explain the need for copy constructors.

NOTE

If you were to program a class that needs to contain string data
for storing names and so on, you use std: :string instead of
char* and might not even need a copy constructor given the
absence of raw pointers. This is because the default copy con-
structor inserted by the compiler would ensure the invocation
of all available copy constructors of member objects such as
std::string.

Move Constructors Help Improve Performance

There are cases where objects are subjected to copy steps automatically, due to the nature
of the language and its needs. Consider the following:

class MyString

{
i

MyString Copy (MyString& source) // function

{

// pick implementation from Listing 9.9

MyString copyForReturn (source.GetString()); // create copy
return copyForReturn; // return by value invokes copy constructor

int main()

{

MyString sayHello ("Hello World of C++");
MyString sayHelloAgain (Copy (sayHello)); // invokes 2x copy constructor

return 0;

As the comment indicates, in the instantiation of sayHelloAgain, the copy constructor
was invoked twice, thus a deep copy was performed twice because of our call to function
Copy (sayHello) that returns a MyString by value. However, this value returned is very
temporary and is not available outside this expression. So, the copy constructor invoked
in good faith by the C++ compiler is a burden on performance. This impact becomes sig-
nificant if our class were to contain objects of great size.

To avoid this performance bottleneck, versions of C++ starting with C++11 feature a
move constructor in addition to a copy constructor. The syntax of a move constructor is

// move constructor
MyString (MyString&& moveSource)

{

if (moveSource.buffer != NULL)

{

buffer = moveSource.buffer; // take ownership i.e. 'move'
moveSource.buffer = NULL; // set the move source to NULL

When a move constructor is programmed, the compiler automatically opts for the same
for “moving” the temporary resource and hence avoiding a deep-copy step. With the
move constructor implemented, the comment should be appropriately changed to the fol-
lowing:

MyString sayHelloAgain (Copy (sayHello)); // invokes 1x copy, 1x move constructors

The move constructor is usually implemented with the move assignment operator, which
is discussed in greater detail in Lesson 12. Listing 12.11 is a better version of class
MyString that implements the move constructor and the move assignment operator.

Different Uses of Constructors
and the Destructor

You have learned a few important and basic concepts in this lesson, such as the concepts
of constructors, destructor, and the abstraction of data and methods via keywords such as
public and private. These concepts enable you to create classes that can control how
they’re created, copied, destroyed, or expose data.

Let’s look at a few interesting patterns that help you solve many important design prob-
lems.

Class That Does Not Permit Copying

You are asked to model the constitution of your country. Your constitution permits one
president. Your class President risks the following:

President ourPresident;

DoSomething (ourPresident); // duplicate created in passing by value

President clone;
clone = ourPresident; // duplicate via assignment

Clearly, you need to avoid this situation. Beyond modeling a certain constitution, you
might be programming an operating system and need to model one local area network,
one processor, and so on. You need to ensure that certain resources cannot be copied or
duplicated. If you don’t declare a copy constructor, the C++ compiler inserts a default
public copy constructor for you. This ruins your design and threatens your implementa-
tion. Yet, the language gives you a solution to this design paradigm.

You would ensure that your class cannot be copied by declaring a private copy con-
structor. This ensures that the function call DoSomething(ourPresident) will cause a
compile failure. To avoid assignment, you declare a private assignment operator.

Thus, the solution is the following:

class President

{

private:
President (const Presidenté&); // private copy constructor
President& operator= (const President&); // private copy assignment operator

// .. other attributes

i

There is no need for implementation of the private copy constructor or assignment
operator. Just declaring them as private is adequate and sufficient toward fulfilling your
goal of ensuring non-copyable objects of class President.

Singleton Class That Permits a Single Instance

class President discussed earlier is good, but it has a shortcoming: It cannot help
creation of multiple presidents via instantiation of multiple objects:

President One, Two, Three;

Individually they are non-copyable thanks to the private copy constructors, but

what you ideally need is a class President that has one, and only one, real-world
manifestation—that is, there is only one object and creation of additional ones is
prohibited. Welcome to the concept of singleton that uses private constructors, a private
assignment operator, and a static instance member to create this (controversially)
powerful pattern.

When the keyword static is used on a class’s data member, it
ensures that the member is shared across all instances.

TIP

When static is used on a local variable declared within the
scope of a function, it ensures that the variable retains its value
between function calls.

When static is used on a member function—a method—the
method is shared across all instances of the class.

Keyword static is an essential ingredient in creating a singleton class as demonstrated
by Listing 9.10.

LISTING 9.10 Singleton class President That Prohibits Copying, Assignment, and
Multiple Instance Creation

0: #include <iostream>

1: #include <string>

2: using namespace std;

3:

4: class President

5: |

6: private:

7 President () {}; // private default constructor

8: President (const Presidenté&); // private copy constructor
9: const President& operator=(const Presidenté&); // assignment operator
10:

11: string name;

12:

13: public:

14: static President& GetInstance ()

15: {

16: // static objects are constructed only once

17: static President onlyInstance;

18: return onlyInstance;

19: }

20:

21: string GetName ()

22: { return name; }

23:

24: void SetName (string InputName)

25: { name = InputName; }

26: };

27:

28: int main()

29: {

30: President& onlyPresident = President::GetInstance();

31: onlyPresident.SetName ("Abraham Lincoln");

32:

33: // uncomment lines to see how compile failures prohibit duplicates
34: // President second; // cannot access constructor

35: // President* third= new President(); // cannot access constructor
36: // President fourth = onlyPresident; // cannot access copy constructor
37: // onlyPresident = President::GetInstance(); // cannot access operator=
38:

39: cout << "The name of the President is: ";

40: cout << President::GetInstance() .GetName() << endl;

41:

42: return 0;

43: }

Output v

The name of the President is: Abraham Lincoln

Analysis v

Take a quick look at main() in Lines 28—43 that has a host of commented lines that
show all the combinations in creating new instances or copies of a class President
that won’t compile. Let’s analyze them one by one:

34: // President second; // cannot access constructor
35: // President* third= new President(); // cannot access constructor

Lines 34 and 35 try object creation on the stack and free store, respectively, using the
default constructor, which is unavailable because it’s private, as declared in Line 7.

36: // President fourth = onlyPresident; // cannot access copy constructor

Line 36 is an attempt at creating a copy of an existing object via the copy constructor
(assignment at creation time invokes copy constructor), which is unavailable in main()
because it is declared private in Line 8:

37: // OnlyPresident = President::GetInstance(); // cannot access operator=

Line 37 is an attempt at creating a copy via assignment, which does not work as the
assignment operator is declared private in Line 9. Therefore, main() can never cre-
ate an instance of class President, and the only option left is seen in Line 30, where
it uses the static function GetInstance() to get an instance of class President.
Because GetInstance() is a static member, it is like a global function that can be
invoked without having an object as a handle. GetInstance(), implemented in Lines
14-19, uses a static variable onlyInstance to ensure that there is one and only one
instance of class President created. To understand that better, imagine that Line
17 is executed only once (static initialization) and hence GetInstance() returns

the only one available instance of class President, irrespective of how often
President::GetInstance() is invoked.

Use the singleton pattern only where absolutely necessary,
keeping future growth of the application and its features in per-
spective. Note that the very feature that it restricts creation of
multiple instances can become an architectural bottleneck when
a use case comes up that needs multiple instances of the class.

CAUTION

For example, if our project were to change from modeling a nation
to modeling the United Nations, which is currently represented

by 193 member nations, each with its own president, clearly we
would have an architectural problem given a singleton class
President that would permit the existence of only one instance.

Class That Prohibits Instantiation on the Stack

Space on the stack is often limited. If you are writing a database that may contain tera-
bytes of data in its internal structures, you might want to ensure that a client of this class
cannot instantiate it on the stack; instead it is forced to create instances only on the free
store. The key to ensuring this is declaring the destructor private:

class MonsterDB

{

private:
~MonsterDB(); // private destructor

//... members that consume a huge amount of data

}i

Declaring a private destructor ensures that one is not allowed to create an instance like
this:

int main()

{

MonsterDB myDatabase; // compile error
// .. more code
return 0;

This instance, if successfully constructed, would be on the stack. All objects on the stack
get popped when the stack is unwound and therefore the compiler would need to compile
and invoke the destructor ~MonsterDB() at the end of main(). However, this destructor
is private and therefore inaccessible, resulting in a compile failure.

A private destructor would not stop you from instantiating on the heap:

int main()
MonsterDB* myDatabase = new MonsterDB(); // no error
// .. more code
return 0;

If you see a memory leak there, you are not mistaken. As the destructor is not accessible
from main, you cannot do a delete, either. What class MonsterDB needs to support is a
public static member function that would destroy the instance (a class member would
have access to the private destructor). See Listing 9.11.

LISTING 9.11 A Database class MonsterDB That Allows Object Creation Only on the
Free Store (Using new)

0: #include <iostreams>

1: using namespace std;

2:

3: class MonsterDB

4: {

5: private:

6: ~MonsterDB() {}; // private destructor prevents instances on stack
7:

8: public:

9: static void DestroyInstance (MonsterDB* pInstance)

10: {

11: delete pInstance; // member can invoke private destructor
12: }

13:

14: void DoSomething() {} // sample empty member method

15: };

16:

17: int main()

18: {

19: MonsterDB* myDB = new MonsterDB(); // on heap
20: myDB->DoSomething () ;

21:

22: // uncomment next line to see compile failure
23: // delete myDB; // private destructor cannot be invoked
24:

25: // use static member to release memory

26: MonsterDB: :DestroyInstance (myDB) ;

27:

28: return 0;

29: }

Output v

The code snippet produces no output.

Analysis v

The purpose of the code is just to demonstrate the programming of a class that prohibits
instance creation on the stack. A private destructor, as shown in Line 6, is key. Static
function DestroyInstance() in Lines 9-12 is required for memory deallocation,
because main() cannot invoke delete on myDB. You may test this by uncommenting
Line 23.

Using Constructors to Convert Types

Earlier in this lesson, you learned that constructors can be overloaded, that is, they may
take one or more parameters. This feature is often used to convert one type to another.
Let’s consider a class Human that features an overloaded constructor that accepts an
integer.

class Human
{
int age;
public:
Human (int humansAge): age (humansAge) {}

}i

// Function that takes a Human as a parameter
void DoSomething (Human person)
cout << "Human sent did something" << endl;
return;

This constructor allows a conversion:

Human kid(10);
DoSomething (kid) ;

CAUTION

// convert integer in to a Human

Such converting constructors allow implicit conversions:

Human anotherKid = 11; // int converted to Human

DoSomething (10); // 10 converted to Human!

We declared poSomething (Human person) as a function that
accepts a parameter of type Human and does not accept an

int! So, why did that line work? The compiler knows that class
Human Supports a constructor that accepts an integer and per-
formed an implicit conversion for you—it created an object of
type Human using the integer you supplied and sent it as an argu-
ment to the function.

To avoid implicit conversions, use keyword explicit at the time
of declaring the constructor:

class Human
{

int age;
public:

explicit Human (int humansAge): age (humansAge) {}
}i
Using explicit is not a prerequisite but in many cases a good
programming practice. The following sample in Listing 9.12 dem-

onstrates a version of class Human that does not permit implicit
conversions.

LISTING 9.12 Use Keyword explicit to Block Unintentional Implicit Conversions

{

<N o0 Ul W NP O

class Human

int age;
public:
// explicit constructor blocks implicit conversions

#include<iostreams>
using namespace std;

8:

explicit Human(int humansAge) : age (humansAge) {}

9: };
10:
11: void DoSomething (Human person)
12: {
13: cout << "Human sent did something" << endl;
14: return;
15: }
16:
17: int main()
18: {
19: Human kid(10) ; // explicit conversion is OK
20: Human anotherkKid = Human(11); // explicit, OK
21: DoSomething (kid); // OK
22:
23: // Human anotherKid2 = 11; // failure: implicit conversion not OK
24: // DoSomething(10); // implicit conversion
25:
26: return 0;
27: }
Output v

Human sent did something

Analysis v

The lines of code that don’t contribute to the output are at least as significant as those
that do. main() in Lines 17-27 features variants of object instantiation of class Human
that has been declared with an explicit constructor at Line 8. The lines that compile
are attempts at explicit conversion where an int has been used to instantiate a Human.
Lines 23 and 24 are variants that involve implicit conversion. These lines that are
commented out will compile when we remove keyword explicit at Line 8. Thus, this
sample demonstrates how keyword explicit protects against implicit conversions.

TIP

The problem of implicit conversions and avoiding them using
keyword explicit applies to operators too. Remember to note
the usage of explicit when programming conversion operators
introduced to you in Lesson 12.

this Pointer

An important concept in C++, this is a reserved keyword applicable within the scope
of a class and contains the address of the object. In other words, the value of this is
&object. Within a class member method, when you invoke another member method, the
compiler sends this pointer as an implicit, invisible parameter in the function call:

class Human

private:
void Talk (string Statement)

{
}

cout << Statement;

public:
void IntroduceSelf ()

{
}

Talk ("Bla bla"); // same as Talk(this, "Bla Bla")

i

What you see here is the method IntroducesSelf() using private member Talk()
to print a statement on the screen. In reality, the compiler embeds the this pointer in
calling Talk, that is invoked as Talk(this, "Bla bla").

From a programming perspective, this does not have too many applications, except
those where it is usually optional. For instance, the code to access age within SetAge(),
as shown in Listing 9.2, can have a variant:

void SetAge (int humansAge)

{
}

this->age = humansAge; // same as age = humansAge

Note that the this pointer is not sent to class methods declared
as static as static functions are not connected to an instance
of the class. Instead they are shared by all instances.

NOTE

To use an instance variable in a static function, you would explic-
itly declare a parameter and send this pointer as an argument.

sizeof () a Class

You have learned the fundamentals of defining your own type using keyword class
that enables you to encapsulate data attributes and methods that operate on that data.
Operator sizeof (), covered in Lesson 3, “Using Variables, Declaring Constants,” is
used to determine the memory requirement of a specific type, in bytes. This operator

is valid for classes, too, and basically reports the sum of bytes consumed by each data
attribute contained within the class declaration. Depending on the compiler you use,
sizeof() might or might not include padding for certain attributes on word boundaries.
Note that member functions and their local variables do not play a role in defining the
sizeof() aclass. See Listing 9.13.

LISTING 9.13 The Result of Using sizeof on Classes and Their Instances

0: #include <iostreams>
1: #include <string.h>
2: using namespace std;
3: class MyString
4: {
5: private:
6: char* buffer;
7:
8: public:
9: MyString(const char* initString) // default constructor
10 {
11 buffer = NULL;
12: if (initString != NULL)
13: {
14: buffer = new char [strlen(initString) + 1];
15: strcpy (buffer, initString);
16: }
17: }
18
19 MyString (const MyString& copySource) // copy constructor
20 {
21: buffer = NULL;
22: if (copySource.buffer != NULL)
23: {
24: buffer = new char [strlen(copySource.buffer) + 1];
25: strcpy (buffer, copySource.buffer) ;
26: }
27: }
28
29: ~MyString ()
30: {
31: delete [] buffer;

w
N

}

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

int GetLength ()
{ return strlen(buffer); }

const char* GetString()
{ return buffer; }

}i

class Human
private:
int age;
bool gender;
MyString name;

public:
Human (const MyString& InputName, int InputAge, bool gender)
name (InputName), age (InputAge), gender (gender) {}

int GetAge ()
{ return age; }

}i

int main()

{

MyString mansName ("Adam") ;
MyString womansName ("Eve") ;

cout << "sizeof (MyString) = " << sizeof (MyString) << endl;
cout << "sizeof (mansName) = " << sizeof (mansName) << endl;
cout << "sizeof (womansName) = " << sizeof (womansName) << endl;

Human firstMan(mansName, 25, true);
Human firstWoman (womansName, 18, false);

cout << "sizeof (Human) = " << sizeof (Human) << endl;

cout << "gizeof (firstMan) = " << sizeof (firstMan) << endl;
cout << "sizeof (firstWoman) = " << sizeof (firstWoman) << endl;
return 0;

Output Using 32-Bit Compiler v

sizeof (MyString) = 4
sizeof (mansName) = 4
sizeof (womansName) = 4
sizeof (Human) = 12
sizeof (firstMan) = 12

sizeof (firstWoman) = 12

Output Using 64-Bit Compiler v

sizeof (MyString) = 8
sizeof (mansName) = 8
sizeof (womansName) =
sizeof (Human) = 16

sizeof (firstMan) = 16
sizeof (firstWoman) = 16

Analysis v

The sample is admittedly long as it contains class MyString and a variant of class
Human that uses type MyString to store name. Human also has an added parameter
bool for gender.

Let’s start with analyzing the output. What you see is that the result of sizeof() ona
class is the same as that of an object of the class. Hence, sizeof (MyString) is the same
as sizeof (mansName), because essentially the number of bytes consumed by a class

is fixed at compile-time. Don’t be surprised that mansName and womansName have the
same size in bytes in spite of one containing “Adam” and the other “Eve” because these
are stored by MyString::buffer that is a char*, a pointer whose size is fixed at 4 bytes
(on my 32-bit system) and is independent of the volume of data being pointed to.

Try calculating the sizeof() a Human manually that is reported as 12. Lines 44, 45, and
46 tell that a Human contains an int, a bool, and a MyString. Referring to Listing 3.4
for a quick refresh on bytes consumed by inbuilt types, you know that an int consumes
4 bytes, a bool 1 byte, and MyString 4 bytes on the system I used for the examples,
which do not sum up to 12 as reported by the output. This is because of word padding
and other factors that influence the result of sizeof().

How struct Differs from class

struct is a keyword from the days of C, and for all practical purposes it is treated by a
C++ compiler similarly to a class. The exceptions are applicable to the access specifiers
(public and private) when the programmer has not specified any. Unless specified,
members in a struct are public by default (private for a class), and unless speci-
fied, a struct features public inheritance from a base struct (private for a class).
Inheritance is discussed in detail in Lesson 10.

A struct variant of class Human from Listing 9.13 would be the following:

struct Human
{
// constructor, public by default (as no access specified is mentioned)
Human (const MyString& humansName, int humansAge, bool humansGender)
: name (humansName), age (humansAge), Gender (humansGender) {}

int GetAge ()

{
}

return age;

private:
int age;
bool gender;
MyString name;

i

As you can see, a struct Human is similar to class Human, and instantiation of an
object of type struct would be similar to type class as well:

Human firstMan("Adam", 25, true); // an instance of struct Human

Declaring a friend of a class

A class does not permit external access to its data members and methods that are
declared private. This rule is waived for classes and functions that are disclosed as
friend classes or functions, using keyword friend as seen in Listing 9.14.

LISTING 9.14 Using the friend Keyword to Allow an External Function Displayage ()
Access to Private Data Members

0: #include <iostream»>

1: #include <string>

2: using namespace std;

3:

4: class Human

5: {

6: private:

7: friend void DisplayAge (const Human& person);
8: string name;

9: int age;

10:

11: public:

12: Human (string humansName, int humansAge)
13: {

14: name = humansName;

15: age = humansAge;

16: }

17: };

18:

19: void DisplayAge (const Human& person)
20: |

21: cout << person.age << endl;

N
N

}

23:
24: int main()

25: {

26: Human firstMan ("Adam", 25);

27: cout << "Accessing private member age via friend function: ";
28: DisplayAge (firstMan) ;

29:

30: return 0;

31: }

Output v

Accessing private member age via friend function: 25

Analysis v

Line 7 contains the declaration that indicates to the compiler that function
DisplayAge() in global scope is a friend and therefore is permitted special access to
the private members of class Human. You can comment out Line 7 to see a compile
failure at Line 22.

Like functions, external classes can also be designated as a trusted friend, as Listing 9.15
demonstrates.

LISTING 9.15 Using the friend Keyword to Allow an External Class utility Access to
Private Data Members

0: #include <iostreams>

1: #include <string>

2: using namespace std;

3:

4: class Human

5: |

6: private:

7: friend class Utility;
8: string name;

9: int age;

10:

11: public:

12: Human (string humansName, int humansAge)
13: {

14: name = humansName;
15: age = humansAge;
16: }

17: };

18

19: class Utility

20: |

21: public:

22: static void DisplayAge (const Human& person)
23: {

24: cout << person.age << endl;

25: }

26: };

27:

28: int main()

29: |

30: Human firstMan ("Adam", 25);

31: cout << "Accessing private member age via friend class: ";
32: Utility::DisplayAge (firstMan) ;

33:

34: return 0;

35: }

Output v

Accessing private member age via friend class: 25

Analysis v

Line 7 indicates class Utility is a friend of class Human. This friend declaration
allows all methods in class Utility access even to the private data members and
methods in class Human

union: A Special Data Storage
Mechanism

A union is a special class type where only one of the non-static data members is active
at a time. Thus, a union can accommodate multiple data members, just like a class can,
with the exception that only one of them can actually be used.

Declaring a Union

A union is declared using keyword union, followed by the name of the union and its
data members within braces:

union UnionName

{
Typel memberl;
Type2 member2;

TypeN memberN;

i

You would instantiate and use a union like this:

UnionName unionObject;
unionObject.member2 = value; // choose member2 as the active member

Similar to the struct, the members of a union are public by
default. Unlike a struct, however, unions cannot be used in
inheritance hierarchies.

NOTE

Additionally, the sizeof () a union is always fixed as the size of
the largest member contained in the union—even if that mem-
ber were inactive in an instance of the union.

Where Would You Use a union?

Often a union is used as a member of a struct to model a complex data type. In some
implementations, the ability of a union to interpret the fixed memory space as another
type is used for type conversions or memory reinterpretation—a practice that is contro-
versial and not necessary given alternatives.

Listing 9.16 demonstrates the declaration and usage of unions.

LISTING 9.16 Declaration, Instantiation, and sizeof () Union

0: #include <iostreams>
1: using namespace std;
2:
3: union SimpleUnion
4: {
5: int num;
6: char alphabet;
7: };
8:
9: struct ComplexType
10: {
11 enum DataType
12: {
13: Int,
14: Char
15: } Type;
16
17 union Value
18: {
19 int num;
20 char alphabet;
21
22 value () {}

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

}i

~Value() {}
}value;

void DisplayComplexType (const ComplexType& obj)

{

switch (obj.Type)

case ComplexType::Int:
cout << "Union contains number: " << obj.value.num << endl;
break;

case ComplexType::Char:
cout << "Union contains character: " << obj.value.alphabet << endl;
break;

int main()

{

SimpleUnion ul, u2;

ul.num = 2100;

u2.alphabet = 'C';

cout << "sizeof (ul) containing integer: " << sizeof (ul) << endl;
cout << "sizeof (u2) containing character: " << sizeof (u2) << endl;

ComplexType myDatal, myData2;
myDatal.Type = ComplexType::Int;

myDatal.value.num = 2017;

myData2.Type = ComplexType::Char;
myData2.value.alphabet = 'X';

DisplayComplexType (myDatal) ;
DisplayComplexType (myData2) ;

return 0;

Output v

sizeof (ul) containing integer: 4
sizeof (u2) containing character: 4
Union contains number: 2017

Union contains character: X

Analysis v

The sample demonstrates that sizeof() the union objects ul and u2 returns the same
amount of memory reserved for both objects, notwithstanding the fact that ul is used

to hold an integer and u2 a char, char being smaller than an int. This is because the
compiler reserves the amount of memory for a union that is consumed by the largest
object it contains. Struct ComplexType defined in Lines 9-25, actually contains an enu-
meration DataType that is used to indicate the nature of the object stored in the union,
in addition to the data member, which is a union called value. This combination of a
struct comprising an enumeration used to hold type information and a union used to
hold value is a popular application of the union. For example, the structure VARIANT
popularly used in Windows application programming follows a similar approach. This
combination is used by function DisplayComplexType() defined in Lines 27-39 that
uses the enumeration in executing the right case in the supplied switch-case construct.
For an example, we have included a constructor and destructor in this union—these are
optional in Listing 9.16 given that the union contains Plain-Old-Data types, but may be
required if the union comprises another user-defined type such as a class or a struct.

C++17 is expected to introduce a typesafe alternative to a
union. To learn about the std: :variant, visit Lesson 29,
“Going Forward.”

TIP

Using Aggregate Initialization on Classes
and Structs

The following initialization syntax is called an aggregate initialization syntax:

Type objectName = {argumentl, .., argumentN};

Alternatively, since C++11:

Type objectName {argumentl, .., argumentN};

Aggregate initialization can be applied to an aggregate, and therefore it is important to
understand what data types fall under this category.

You already saw examples of aggregate initialization in the initialization of arrays in
Lesson 4, “Managing Arrays and Strings.”

int myNums[] = { 9, 5, -1 }; // myNums is int[3]
char hellol6] = { 'h', 'e', '1', '1', 'o', ' \O' };

The term aggregate, however, is not limited to arrays of simple types like integers or
characters, but extends also to classes (and therefore structs and unions) too. There are
restrictions imposed by the standard on the specification of a struct or a class that
can be called an aggregate. These restrictions get nuanced depending on the version of
C++ standard that you refer to. Yet, it can be safely said that classes/structs that com-
prise public and non-static data members, contain no private or protected data members,
contain no virtual member functions, feature none or only public inheritance (that is, no
private, protected, or virtual inheritance), and no user-defined constructors are aggregates
too and can be initialized as one.

Inheritance is explained in detail in Lesson 10, “Implementing
Inheritance” and in Lesson 11, “Polymorphism.”

TIP

Thus, the following struct fulfills the prerequisites of being an aggregate and hence,
can be initialized as one:

struct Aggregatel

{
int num;
double pi;

}i

Initialization:

Aggregatel al{ 2017, 3.14 };

Another example:

struct Aggregate2

{

int num;
char hello[6];
int impYears([5];

i

Initialization:

Aggregate2 a2 {42, {'h', 'e', '1', '1', 'o'}, {1998, 2003, 2011, 2014, 2017}};

Listing 9.17 is a sample demonstrating aggregate initialization applied to classes and
structs.

LISTING 9.17 Aggregate Initialization on Class Type

0: #include <iostream>
1: #include<string>
2: using namespace std;
3:
4: class Aggregatel
5: {
6: public:
7: int num;
8: double pi;
9: };
10:
11: struct Aggregate2
12: {
13: char hello[6];
14: int impYears([3];
15 string world;
16 },'
17
18: int main()
19: |
20 int myNums([] = { 9, 5, -1 }; // myNums is int[3]
21 Aggregatel al{ 2017, 3.14 };
22: cout << "Pi is approximately: " << al.pi << endl;
23:
24: Aggregate2 a2{ {'h', 'e', '1', '1', 'o'}, {2011, 2014, 2017},
25
26 // Alternatively
27 Aggregate2 a2 2{'h', 'e', 'l', 'l', 'o', '\0', 2011, 2014, 2017, "world"};
28
29: cout << a2.hello << ' ' << a2.world << endl;
30: cout << "C++ standard update scheduled in: " << a2.impYears[2]
31:
32: return 0;
33: }
Output v

Pi is approximately: 3.14
hello world
C++ standard update scheduled in: 2017

Analysis v

The sample demonstrates how you can use aggregate initialization in instantiating classes
(or structs). Aggregatel defined in Lines 4-9 is a class with public data members, and
Aggregate2 defined in Lines 11-16 is a struct. Lines 21, 24, and 27 are the ones that
demonstrate aggregate initialization on the class and struct, respectively. We access
the members of the class/struct in demonstrating how the compiler placed the initializa-
tion values into the respective data members. Note how some members are an array, and
how a std::string member contained in Aggregate2 has been initialized using this
construct in Line 24.

Aggregate initialization will initialize only the first non-static
member of a union. The aggregate initialization of the unions
declared in Listing 9.16 would be

CAUTION

43: SimpleUnion ul{ 2100 }, u2{ 'C' };
// In u2, member num (int) is initialized to ‘C’
(ASCII 67)

// Although, you wished to initialize member alphabet
(char)

Therefore, for sake of clarity, it may be a good idea to not use
aggregate initialization syntax on union, but the one used in
Listing 9.16.

constexpr With Classes and Objects

We were introduced to constexpr in Lesson 3, where we learned that it offers a power-
ful way to improve the performance of your C++ application. By marking functions that
operate on constants or const-expressions as constexpr, we are instructing the com-
piler to evaluate those functions and insert their result instead of inserting instructions
that compute the result when the application is executed. This keyword can also be used
with classes and objects that evaluate as constants as demonstrated by Listing 9.18. Note
that the compiler would ignore constexpr when the function or class is used with enti-
ties that are not constant.

LISTING 9.18 Using constexpr With class Human

: #include <iostream>
: using namespace std;

{

0
1
2:
3: class Human
4
5

int age;

6: public:
7: constexpr Human (int humansAge) :age (humansAge) {}
8: constexpr int GetAge() const { return age; }
9: };
10:
11: int main()
12: |
13: constexpr Human somePerson(15);
14: const int hisAge = somePerson.GetAge () ;
15:
16: Human anotherPerson(45); // not constant expression
17:
18: return 0;
19: }
Output v

<This sample produces no outputs>

Analysis v

Note the slight modification in class Human in Lines 3-9. It now uses constexpr in
the declaration of its constructor and member function GetAge (). This little addition
tells the compiler to evaluate the creation and usage of instances of class Human as a
constant expression, where possible. somePerson in Line 13 is declared as a constant
instance and used as one in Line 14. Therefore, this instance is likely to be evaluated by
the compiler and the code is optimized for performance at execution. Instance another-
Person in Line 16 is not declared to be a constant and therefore its instantiation or usage
may not be treated by the compiler as a constant expression.

Summary

This lesson taught you one of the most fundamental keywords and concepts in C++, that
of a class. You learned how a class encapsulates member data and member functions that
operate using the same. You saw how access specifiers such as public and private

help you abstract data and functionality that entities external to the class don’t need to

see. You learned the concept of copy constructors, and move constructors introduced by
C++11 that help reduce unwanted copy steps. You saw some special cases where all these
elements come together to help you implement design patterns such as the singleton.

Q&A

Q What is the difference between the instance of a class and an object of that
class?

A Essentially none. When you instantiate a class, you get an instance that can also be
called an object.

Q What is a better way to access members: using the dot operator (.) or using
the pointer operator (->)?

A If you have a pointer to an object, the pointer operator would be best suited. If you
have instantiated an object as a local variable on the stack, then the dot operator is
best suited.

Q Should I always program a copy constructor?

A If your class’ data members are well-programmed smart pointers, string classes, or
STL containers such as std: : vector, then the default copy constructor inserted
by the compiler ensures that their respective copy constructors are invoked.
However, if your class has raw pointer members (such as int* for a dynamic array
instead of std: :vector<ints), you need to supply a correctly programmed copy
constructor that ensures a deep copy of an array during function calls where an
object of the class is passed by value.

Q My class has only one constructor that has been defined with a parameter with
a default value. Is this still a default constructor?

A Yes. If an instance of a class can be created without arguments, then the class is
said to have a default constructor. A class can have only one default constructor.

Q Why do some samples in this lesson use functions such as setage () to set
integer Human: : age? Why not make age public and assign it as needed?

A From a technical viewpoint, making Human: : age a public member would work
as well. However, from a design point of view, keeping member data private is a
good idea. Accessor functions such as GetAge () or SetAge () are a refined and
scalable way to access this private data, allowing you to perform error checks for
instance before the value of Human: : age is set or reset.

Q Why is the parameter of a copy constructor one that takes the copy source by
reference?

A For one, the copy constructor is expected by the compiler to be that way. The rea-
son behind it is that a copy constructor would invoke itself if it accepted the copy
source by value, resulting in an endless copy loop.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before continuing to the

next lesson.

Quiz
1. When I create an instance of a class using new, where is the class created?

2. My class has a raw pointer int+* that contains a dynamically allocated array of
integers. Does sizeof report different sizes depending on the number of integers
in the dynamic array?

3. All my class members are private, and my class does not contain any declared
friend class or function. Who can access these members?

4. Can one class member method invoke another?
5. What is a constructor good for?

6. What is a destructor good for?

Exercises
1. BUG BUSTERS: What is wrong in the following class declaration?

Class Human

int age;
string name;

public:
Human () {}
}

2. How would the user of the class in Exercise 1 access member Human: : age?

3. Write a better version of the class seen in Exercise 1 that initializes all parameters
using an initialization list in the constructor.

4. Write a class Circle that computes the area and circumference given a radius
that is supplied to the class as a parameter at the time of instantiation. Pi should be
contained in a constant private member that cannot be accessed from outside the
circle.

LESSON 10
Implementing
Inheritance

Object-oriented programming is based on four important aspects:
encapsulation, abstraction, inheritance, and polymorphism. Inheritance
is a powerful way to reuse attributes and is a stepping stone towards
polymorphism.

In this lesson, you find out about

Inheritance in the context of programming

The C++ syntax of inheritance

| |
|
B public, private, and protected inheritance
® Multiple inheritance

|

Problems caused by hiding base class methods and slicing

Basics of Inheritance

What Tom Smith inherits from his forefathers is first and foremost his family name that
makes him a Smith. In addition, he inherits certain values that his parents have taught
him and a skill at sculpting wood that has been the Smith family occupation for many
generations. These attributes collectively identify Tom as an offspring of the Smith
family tree.

In programming parlance, you are often faced with situations where components being
managed have similar attributes, differing minutely in details or in behavior. One way to
solve this problem is to make each component a class where each class implements all
attributes and re-implements the common ones. Another solution is using inheritance to
allow classes that are similar to derive from a base class that contains common attributes
and implements common functionality, overriding this base functionality to implement
behavior that makes each class unique. The latter is often the preferred way. Welcome to
inheritance in our world of object-oriented programming, as illustrated by Figure 10.1.

FIGURE 10.1
Inheritance between
classes.

class Base

(also called Super Class)

class Derivedi class Derived2
(Inherits from Base, hence also (Inherits from Base, hence also
called subclass of Base) called subclass of Base)

Inheritance and Derivation

Figure 10.1 shows a diagrammatic relationship between a base class and its derived
classes. It might not be easy right now to visualize what a base class or a derived class
could be. Try to understand that a derived class inherits from the base class and in that
sense is a base class (just like Tom is a Smith).

The is-a relationship between a derived class and its base is
applicable only to public inheritance. This lesson starts with
public inheritance to understand the concept of inheritance
and the most frequent form of inheritance before moving on to
private or protected inheritance.

NOTE

To make understanding this concept easy, think of a base class Bird. Classes are
derived from Bird are class Crow, class Parrot, or class Kiwi. A class Bird
would define the most basic attributes of a bird, such as “is feathered,” “has wings,” “lays
eggs,” “can fly,” and so on. Derived classes such as Crow, Parrot, or Kiwi inherit these
attributes and customize them (for example, a class Kiwi that represents a flightless-
bird would contain no implementation of Fly()). Table 10.1 demonstrates a few more

examples of inheritance.

TABLE 10.1 Examples of Public Inheritance Taken from Daily Life

Base Class Example Derived Classes

Fish Goldfish, Carp, Tuna (Tuna “is a” Fish)

Mammal Human, Elephant, Lion, Platypus (Platypus “is a” Mammal)

Bird Crow, Parrot, Ostrich, Kiwi, Platypus (Platypus “is a” Bird, too!)

Shape Circle, Polygon (Polygon “is a” Shape)

Polygon Triangle, Octagon (Octagon “is a” Polygon, which in turn “is a” Shape)

What these examples show is that when you put on your object-oriented programming
glasses, you see examples of inheritance in many objects around yourself. Fish is a base
class for a Tuna because a Tuna, like a Carp, is a Fish and presents all fish-like char-
acteristics such as being cold-blooded. However, Tuna differs from a Carp in the way it
looks, swims, and in the fact that it is a saltwater fish. Thus, Tuna and Carp inherit com-
mon characteristics from a common base class Fish, yet specialize the base class attri-
butes to distinguish themselves from each other. This is illustrated in Figure 10.2.

FIGURE 10.2

Hierarchical class Fish
relationship ¢ Can swim, lays eggs
between Tuna, ¢ Seawater or freshwater
Carp, and Fish.

class Tuna class Carp

¢ Can swim fast, lays eggs * Swims slowly, lays eggs
* Seawater (marine) fish o Freshwater fish

A platypus can swim, yet is a special animal with mammalian characteristics such as
feeding its young with milk, avian (bird-like) characteristics as it lays eggs, and rep-
tilian characteristics as it is venomous. Thus, one can imagine a class Platypus
inheriting from two base classes, class Mammal and class Bird, to inherit mam-
malian and avian features. This form of inheritance is called multiple inheritance,
which is discussed later in this lesson.

C++ Syntax of Derivation

How would you inherit class Carp from class Fish, or in general a
class Derived from class Base? C++ syntax for doing this would be the following:

class Base

{
bi

// ... base class members

class Derived: access-specifier Base

{
i

// ... derived class members

The access-specifier can be one of public (most frequently used) where a “derived
class is a base class” relationship; private or protected for a “derived class has a base
class” relationship.

An inheritance hierarchical representation for a class Carp that derives from class
Fish would be

class Fish // base class

{
i

// ... Fish's members

class Carp:public Fish // derived class

{
}i

// ... Carp's members

A compile-worthy declaration of a class Carp and class Tuna that derive from
class Fish is demonstrated by Listing 10.1.

A Note About Terminology

When reading about inheritance, you will come across terms such as inherits from or
derives from, which essentially mean the same.

Similarly, the base class is also called the super class. The class that derives from
the base, also known as the derived class, can be called the subclass.

LISTING 10.1 A Simple Inheritance Hierarchy Demonstrated by the Piscean World

0: #include <iostream>

1: using namespace std;

2:

3: class Fish

4: {

5: public:

6: bool isFreshWaterFish;

7:

8: void Swim()

9: {

10: if (isFreshWaterFish)

11 cout << "Swims in lake" << endl;
12: else

13: cout << "Swims in sea" << endl;
14: }

15: };

16:

17: class Tuna: public Fish

18: {

19: public:

20 Tuna ()

21: {

22: isFreshWaterFish = false;
23: }

24: };

25

26: class Carp: public Fish

27: |

28: public:

29 Carp ()

30: {

31: isFreshWaterFish = true;
32: }

33: };

34:

35: int main()

36: {

37: Carp myLunch;

38: Tuna myDinner;

39:

40: cout << "About my food:" << endl;
41:

42 cout << "Lunch: ";
43: myLunch.Swim() ;

44 :

45 cout << "Dinner: ";
46: myDinner.Swim() ;
47 :

48: return 0;

49: }

Output v

About my food:
Lunch: Swims in lake
Dinner: Swims in sea

Analysis Vv

Note Lines 37 and 38 in main() that create an instance of classes Carp and Tuna,
respectively, called myLunch and myDinner. Lines 43 and 46 are where I ask my lunch
and dinner to swim by invoking method Swim(). Now, look at the class definitions of
Tuna in Lines 17-24 and Ccarp in Lines 26-33. As you can see, these classes are com-
pact with their constructors setting the Boolean flag Fish::isFreshWaterFish to the
appropriate values. This flag is later used in function Fish::Swim(). Neither of the two
derived classes seems to define a method Swim() that you have managed to successfully
invoke in main(). This is because Swim() is a public member of base class Fish that
they inherit from, defined in Lines 3—15. This public inheritance in Lines 17 and 26 auto-
matically exposes the base class’s public members, including method Swim(), through
instances of the derived classes Carp and Tuna, which we invoke in main().

Access Specifier Keyword protected

Listing 10.1 is one where class Fish has a public attribute isFreshWaterFish that is
set by the derived classes Tuna and Carp so as to customize (also called specialize) the
behavior of Fish and adapt it to saltwater and freshwater, respectively. However, Listing
10.1 exhibits a serious flaw: If you want, even main() could tamper with isFreshWater-
Fish, which is public and hence open for manipulation from outside class Fish:

myDinner.isFreshWaterFish = true; // but Tuna isn't a fresh water fish!

Apparently, you need a mechanism that allows derived class members to modify chosen
attributes of the base class, while denying access to the same from everyone else. This
means that you want Boolean flag isFreshWaterFish in class Fish to be accessible
to class Tuna and class Carp, but not accessible to main() that instantiates classes
Tuna or Carp. This is where keyword protected helps you.

protected, like public and private, is also an access speci-
fier. When you declare a class attribute or function as pro-
tected, you are effectively making it accessible to classes that
derive (and friends), yet simultaneously making it inaccessible to
everyone else outside the class, including main ().

NOTE

protected is the access specifier you should use if you want a certain attribute in
a base class to be accessible to classes that derive from this base, as demonstrated in
Listing 10.2.

LISTING 10.2 A Better class Fish Using the protected Keyword to Expose Its Member
Attribute Only to the Derived Classes

0: #include <iostreams>

1: using namespace std;

2:

3: class Fish

4: {

5: protected:

6: bool isFreshWaterFish; // accessible only to derived classes
7:

8: public:

9: void Swim()

10: {

11: if (isFreshWaterFish)

12: cout << "Swims in lake" << endl;
13: else

14: cout << "Swims in sea" << endl;
15 }

16 };

17:

18: class Tuna: public Fish

19: {
20: public:
21: Tuna ()
22: {
23: isFreshWaterFish = false; // set protected member in base
24: }

[\
(62}

}i

26:
27: class Carp: public Fish

28: {

29: public:

30: Carp ()

31: {

32: isFreshWaterFish = false;

33: }

34: };

35:

36: int main()

37: |

38: Carp myLunch;

39: Tuna myDinner;

40:

41: cout << "About my food" << endl;

42:

43 : cout << "Lunch: ";

44 : myLunch.Swim() ;

45:

46: cout << "Dinner: ";

47: myDinner.Swim() ;

48:

49: // uncomment line below to see that protected members
50: // are not accessible from outside the class hierarchy
51: // myLunch.isFreshWaterFish = false;
52:

53: return 0;

54: }

Output v

About my food
Lunch: Swims in lake
Dinner: Swims in sea

Analysis v

In spite of the fact that the output of Listing 10.2 is the same as Listing 10.1, there are

a good number of fundamental changes to class Fish as defined in Lines 3—16. The
first and most evident change is that the Boolean member Fish::isFreshWaterFish is
now a protected attribute, and hence, not accessible via main() as shown in Line 51
(uncomment it to see a compiler error). All the same, this member of Fish with access
specifier protected is accessible from the derived classes Tuna and Carp as shown in
Lines 23 and 32, respectively. What this little program effectively demonstrates is the use
of keyword protected in ensuring that base class attributes that need to be inherited are
protected from being accessed outside the class hierarchy.

This is an important aspect of object-oriented programming, combining data abstraction
and inheritance, in ensuring that derived classes can safely inherit base class attributes
that cannot be tampered with by anyone outside this hierarchical system.

Base Class Initialization—Passing Parameters
to the Base Class

What if a base class were to contain an overloaded constructor that requires arguments at
the time of instantiation? How would such a base class be instantiated when the derived
class is being constructed? The clue lies in using initialization lists and in invoking the
appropriate base class constructor via the constructor of the derived class as shown in the
following code:

class Base

public:
Base (int someNumber) // overloaded constructor

{
}

// Use someNumber

}i

Class Derived: public Base

public:
Derived(): Base(25) // instantiate Base with argument 25

{
}

// derived class constructor code

i

This mechanism can be quite useful in class Fish wherein, by supplying a Boolean
input parameter to the constructor of Fish that initializes Fish::isFreshWaterFish,
this base class Fish can ensure that every derived class is forced to mention whether
the Fish is a freshwater one or a saltwater one as shown in Listing 10.3.

LISTING 10.3 Derived Class Constructor with Initialization Lists

#include <iostream>
using namespace std;

class Fish

{

protected:
bool isFreshWaterFish; // accessible only to derived classes

@ 30 Ul B W N o

public:

9: // Fish constructor

10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater) {}
11:

12: void Swim()

13: {

14: if (isFreshWaterFish)

15: cout << "Swims in lake" << endl;
16: else

17: cout << "Swims in sea" << endl;
18: }

19: };

20:

21: class Tuna: public Fish

22: {

23: public:

24: Tuna () : Fish(false) {} // constructor initializes base
25: };

26:

27: class Carp: public Fish

28: {

29: public:

30: Carp(): Fish(true) {}

31: };

32:

33: int main()

34: |

35: Carp myLunch;

36: Tuna myDinner;

37:

38: cout << "About my food" << endl;

39:

40: cout << "Lunch: ";

41 : myLunch.Swim() ;

42

43: cout << "Dinner: ";

44 : myDinner.Swim() ;

45:

46: return 0;

47: }

Output v

About my food
Lunch: Swims in lake
Dinner: Swims in sea

Analysis v

Fish now has a constructor that takes a default parameter initializing Fish::is
FreshWaterFish. Thus, the only possibility to create an object of Fish is via provid-
ing it a parameter that initialized the protected member. This way class Fish ensures
that the protected member doesn’t contain a random value, especially if a derived class
forgets to set it. Derived classes Tuna and Carp are now forced to define a constructor
that instantiates the base class instance of Fish with the right parameter (true or false,
indicating freshwater or otherwise), as shown in Lines 24 and 30, respectively.

In Listing 10.3 you see that boolean member variable

NOTE Fish::isFreshWaterFish was never accessed directly by a
derived class in spite of it being a protected member, as this
variable was set via the constructor of rFish.

To ensure maximum security, if the derived classes don’t need to
access a base class attribute, remember to mark the attribute
private. Therefore, a superior version of Listing 10.3 would fea-
ture Fish::isFreshWaterFish as private, for it is consumed
only by base class Fish. See Listing 10.4.

Derived Class Overriding Base Class’s Methods

If a class Derived implements the same functions with the same return values and
signatures as in a class Base it inherits from, it effectively overrides that method
in class Base as shown in the following code:

class Base

{
public:
void DoSomething()

{
}

// implementation code.. Does something

}i

class Derived:public Base

{
public:
void DoSomething ()

{
}

// implementation code.. Does something else

}i

Thus, if method DoSomething() were to be invoked using an instance of Derived, then
it would not invoke the functionality in class Base.

If classes Tuna and Carp were to implement their own Swim() method that also exists in
the base class as Fish::Swim(), then a call to Swim as shown in main() from the follow-
ing excerpt of Listing 10.3

36: Tuna myDinner;
// ...other lines
44 myDinner.Swim() ;

would result in the local implementation of Tuna::Swim() being invoked, which essentially
overrides the base class’s Fish::Swim() method. This is demonstrated by Listing 10.4.

LISTING 10.4 Derived Classes Tuna and carp Overriding Method swim () in Base

Class Fish
0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: private:
6: bool isFreshWaterFish;
7
8: public:
9: // Fish constructor
10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater) {}
11:
12: void Swim()
13: {
14: if (isFreshWaterFish)
15: cout << "Swims in lake" << endl;
16: else
17: cout << "Swims in sea" << endl;
18: }
19: };
20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna () : Fish(false) {}
25:
26: void Swim()
27: {
28: cout << "Tuna swims real fast" << endl;
29: }
30: };
31:
32: class Carp: public Fish
33: |
34: public:

35: Carp(): Fish(true) {}

36:

37: void Swim()

38: {

39: cout << "Carp swims real slow" << endl;
40: }

41: };

42:

43: int main()

44: |

45: Carp myLunch;

46 Tuna myDinner;

47 :

48: cout << "About my food" << endl;
49:

50: cout << "Lunch: ";
51: myLunch.Swim() ;

52:

53: cout << "Dinner: ";
54: myDinner.Swim() ;
55:

56: return 0;

57: }

Output v

About my food
Lunch: Carp swims real slow
Dinner: Tuna swims real fast

Analysis v

The output demonstrates that myLunch.Swim() in Line 51 invokes Carp::Swim()
defined in Lines 37-40. Similarly, myDinner.Swim() from Line 54 invokes
Tuna::Swim() defined in Lines 26-29. In other words, the implementation of
Fish::Swim() in the base class Fish, as shown in Lines 12-18, is overridden by the
identical function Swim() defined by the classes Tuna and Carp that derive from Fish.
The only way to invoke Fish::Swim() is by having main() use the scope resolution
operator (::) in explicitly invoking Fish::Swim(), as shown later in this lesson.

Invoking Overridden Methods of a Base Class

In Listing 10.4, you saw an example of derived class Tuna overriding the Swim()
function in Fish by implementing its version of the same. Essentially:

Tuna myDinner;
myDinner.Swim(); // will invoke Tuna::Swim()

If you want to be invoke Fish::Swim() in Listing 10.4 via main(), you need to use the
scope resolution operator (::) in the following syntax:

myDinner.Fish::Swim(); // invokes Fish::Swim() using instance of Tuna

Listing 10.5 that follows shortly demonstrates invoking a base class member using an
instance of the derived class.

Invoking Methods of a Base Class in a Derived Class

Typically, Fish::Swim() would contain a generic implementation of swimming appli-
cable to all fishes, tunas, and carps included. If your specialized implementations in
Tuna:Swim() and Carp::Swim() need to reuse the base class’s generic implementation
of Fish::Swim(), you use the scope resolution operator (::) as shown in the following
code:

class Carp: public Fish

{
public:
Carp(): Fish(true) {}

void Swim()

{

cout << "Carp swims real slow" << endl;
Fish::Swim(); // invoke base class function using operator::

This is demonstrated in Listing 10.5.

LISTING 10.5 Using Scope Resolution Operator (: :) to Invoke Base Class Functions
from Derived Class and main ()

: #include <iostreams>
: using namespace std;

: class Fish

0

1

2

3

4: |

5: private:
6 bool isFreshWaterFish;
7

8

9

0

: public:

// Fish constructor
10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater) {}
11:
12: void Swim()

13: {

14: if (isFreshWaterFish)

15: cout << "Swims in lake" << endl;
16: else

17: cout << "Swims in sea" << endl;
18: }

19: };

20:

21: class Tuna: public Fish

22: {

23: public:

24: Tuna () : Fish(false) {}

25:

26: void Swim()

27: {

28: cout << "Tuna swims real fast" << endl;
29: }

30: };

31:

32: class Carp: public Fish

33: {

34: public:

35: Carp(): Fish(true) {}

36:

37: void Swim()

38: {

39: cout << "Carp swims real slow" << endl;
40: Fish::Swim() ;

41: }

42: },'

43:

44: int main()

45: {

46: Carp myLunch;

47: Tuna myDinner;

48:

49: cout << "About my food" << endl;
50:

51: cout << "Lunch: ";

52: myLunch. Swim() ;

53:

54: cout << "Dinner: ";

55: myDinner.Fish::Swim() ;

56:

57: return 0;

58: }

Output v

About my food

Lunch: Carp swims real slow
Swims in lake

Dinner: Swims in sea

Analysis v

Carp::Swim() in Lines 37-41 demonstrates calling the base class function
Fish::Swim() using the scope resolution operator (::). Line 55, on the other hand,
shows how you would use the scope resolution operator (::) to invoke base class method
Fish::Swim() from main() given an instance of derived class Tuna.

Derived Class Hiding Base Class’s Methods

Overriding can take an extreme form where Tuna::Swim() can potentially hide all over-
loaded versions of Fish::Swim() available, even causing compilation failure when the
overloaded ones are used (hence, called hidden), as demonstrated by Listing 10.6.

LISTING 10.6 Tuna::Swim() Hides Overloaded Method Fish: : Swim(bool)

0: #include <iostream>

1: using namespace std;

2:

3: class Fish

4: {

5: public:

6: void Swim()

7: {

8: cout << "Fish swims... !" << endl;
9: }

10:

11: void Swim(bool isFreshWaterFish) // overloaded version
12: {

13: if (isFreshWaterFish)

14: cout << "Swims in lake" << endl;
15: else

16: cout << "Swims in sea" << endl;
17: }

18: },'

19:
20: class Tuna: public Fish
21: {
22: public:
23: void Swim()

24: {

25: cout << "Tuna swims real fast" << endl;
26: }

27: },'

28:

29: int main()

30: {

31: Tuna myDinner;

w
\S]

33: cout << "About my food" << endl;

34:

35: // myDinner.Swim(false);//failure: Tuna::Swim() hides Fish::Swim(bool)
36: myDinner.Swim() ;

37:

38: return 0;

39: }

Output v

About my food
Tuna swims real fast

Analysis v

This version of class Fish is a bit different from those that you have seen so far. Apart
from being a minimalized version to explain the problem at hand, this version of Fish
contains two overloaded methods for Swim(), one that takes no parameters, as shown in
Lines 6-9, and another that takes a bool parameter, as shown in Lines 11-17. As Tuna
inherits public from Fish as shown in Line 20, one would not be wrong to expect that
both versions of method Fish::Swim() would be available via an instance of class
Tuna. The fact is, however, that Tuna implementing its own Tuna::Swim(), as shown

in Lines 23-26, results in the hiding of Fish::Swim(bool) from the compiler. If you
uncomment Line 35, you see a compilation failure.

So, if you want to invoke the Fish::Swim(bool) function via an instance of Tuna, you
have the following solutions:

m Solution 1: Use the scope resolution operator in main () :

myDinner.Fish: :Swim() ;

m Solution 2: Use keyword using in class Tuna to unhide Swim() in class
Fish:

class Tuna: public Fish

{
public:
using Fish::Swim; // unhide all Swim() methods in class Fish

void Swim()

{
}

cout << "Tuna swims real fast" << endl;

}i

m Solution 3: Override all overloaded variants of Swim () in class Tuna (invoke
methods of Fish::Swim(...) via Tuna::Fish(...) if you want):

class Tuna: public Fish

{
public:
void Swim(bool isFreshWaterFish)

{
}

Fish::Swim(isFreshWaterFish) ;

void Swim()

{
}

cout << "Tuna swims real fast" << endl;

i

Order of Construction

So, when you create an object of class Tuna that derives from class Fish, was the
constructor of Tuna invoked before or after the constructor of class Fish? Additionally,
within the instantiation of objects in the class hierarchy, what respective order do mem-
ber attributes such as Fish::isFreshWaterFish have? Thankfully, the instantiation
sequence is standardized. Base class objects are instantiated before the derived class.

So, the Fish part of Tuna is constructed first, so that member attributes—especially the
protected and public ones contained in class Fish—are ready for consumption when
class Tuna is instantiated. Within the instantiation of class Fish and class Tuna,
the member attributes (such as Fish::isFreshWaterFish) are instantiated before the
constructor Fish::Fish() is invoked, ensuring that member attributes are ready before
the constructor works with them. The same applies to Tuna::Tuna().

Order of Destruction

When an instance of Tuna goes out of scope, the sequence of destruction is the opposite
to that of construction. Listing 10.7 is a simple example that demonstrates the sequence
of construction and destruction.

LISTING 10.7 The Order of Construction and Destruction of the Base Class, Derived
Class, and Members Thereof

0: #include <iostream>
1: using namespace std;
2
3

: class FishDummyMember

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

@ 3 O Ul

{

public:
FishDummyMember (
cout << "FishDummyMember constructor"
~FishDummyMember ()
cout << "FishDummyMember destructor"

}i

class Fish

{

protected:
FishDummyMember dummy;

public:
// Fish constructor
Fish()

{

cout << "Fish constructor” << endl;

~Fish()

{
}

cout << "Fish destructor" << endl;

}i

class TunaDummyMember

{

public:
TunaDummyMember ()
cout << "TunaDummyMember constructor"
~TunaDummyMember ()
cout << "TunaDummyMember destructor"

}i

class Tuna: public Fish
private:
TunaDummyMember dummy ;

<< endl;

<< endl;

<< endl;

<< endl;

55: public:

56: Tuna ()

57: {

58: cout << "Tuna constructor" << endl;
59: }

60: ~Tuna ()

61: {

62: cout << "Tuna destructor" << endl;
63: }

64:

65: };

66:

67: int main()

68: {

69: Tuna myDinner;

70: }

Output v

FishDummyMember constructor
Fish constructor
TunaDummyMember constructor
Tuna constructor
Tuna destructor
TunaDummyMember destructor
Fish destructor
FishDummyMember destructor

Analysis v

main() as shown in Lines 67-70 is pretty short for the volume of output it generates.
Instantiation of a Tuna is enough to generate these lines of output because of the cout
statements that you have inserted into the constructors and destructors of all objects
involved. For the sake of understanding how member variables are instantiated and
destroyed, you defined two dummy classes, FishDummyMember, and TunaDummyMember
with cout in their constructors and destructors. class Fish and class Tuna contain a
member of each of these dummy classes as shown in Lines 20 and 53. The output indicates
that when an object of class Tuna is instantiated, instantiation actually starts at the top of
the hierarchy. So, the base class Fish part of class Tuna is instantiated first, and in
doing so, the members of the Fish—that is, Fish::dummy—are instantiated first. This is
then followed by the constructor of the Fish, which is rightfully executed after the member
attributes such as dummy have been constructed. After the base class has been constructed,
the instantiation of Tuna continues first with instantiation of member Tuna::dummy,
finally followed by the execution of the constructor code in Tuna::Tuna(). The output
demonstrates that the sequence of destruction is exactly the opposite.

Private Inheritance

Private inheritance differs from public inheritance (which is what you have seen up to
now) in that the keyword private is used in the line where the derived class declares its
inheritance from a base class:

class Base

{

// ... base class members and methods
}i
class Derived: private Base // private inheritance
{

// ... derived class members and methods

}i

Private inheritance of the base class means that all public members and attributes of the
base class are private (that is, inaccessible) to anyone with an instance of the derived
class. In other words, even public members and methods of class Base can only be
consumed by class Derived, but not by anyone else in possession of an instance of
Derived

This is in sharp contrast to the examples with Tuna and base Fish that you have been
following since Listing 10.1. main() in Listing 10.1 could invoke function Fish::Swim()
on an instance of Tuna because Fish::Swim() is a public method and because class
Tuna derives from class Fish using public inheritance.

Thus, for the world outside the inheritance hierarchy, private inheritance essentially
does not imply an "is-a" relationship (imagine a tuna that can’t swim!). As private inheri-
tance allows base class attributes and methods to be consumed only by the subclass that
derives from it, this relationship is also called a “has-a” relationship. There are a few
examples of private inheritance in some things you see around you in daily life (see
Table 10.2).

TABLE 10.2 Examples of Private Inheritance Taken from Daily Life

Base Class Example Derived Class
Motor Car (Car “has a” Motor)
Heart Mammal (Mammal “has a” Heart)

Nib Pen (Pen “has a” Nib)

Let’s visualize private inheritance in a car’s relationship to its motor. See Listing 10.8.

LISTING 10.8 A class Car Related to class Motor via private Inheritance

0: #include <iostreams
1: using namespace std;
2:
3: class Motor
4: {
5: public:
6: void SwitchIgnition()
7: {
8: cout << "Ignition ON" << endl;
9: }
10: void PumpFuel ()
11: {
12: cout << "Fuel in cylinders" << endl;
13: }
14: void FireCylinders ()
15: {
16: cout << "Vroooom" << endl;
17: }
18: };
19:
20: class Car:private Motor // private inheritance
21: {
22: public:
23: void Move ()
24: {
25: SwitchIgnition() ;
26: PumpFuel () ;
27: FireCylinders() ;
28: }
29: };
30:
31: int main()
32: |
33 Car myDreamCar;
34: myDreamCar.Move () ;
35:
36: return 0;
37: }
Output v

Ignition ON
Fuel in cylinders
Vroooom

Analysis v

class Motor defined in Lines 3—18 is simple with three public member functions

that switch ignition, pump fuel, and fire the cylinders. class Car as Line 20 demon-
strates inherits from Motor, using keyword private. Thus, public function Car::Move()
invokes members from the base class Motor. If you try inserting the following in main():

myDreamCar . PumpFuel () ; // cannot access base's public member

it fails compilation with an error similar to error €2247: Motor::PumpFuel not
accessible because 'Car' uses 'private' to inherit from 'Motor.'

If another class Racecar had to inherit from car, then irre-
spective of the nature of inheritance between rRacecar and

Car, RaceCar would not have access to any public member or
function of base class Motor. This is because the relationship
between car and Motor is one of private inheritance, meaning
that all entities other than car have private access (that is,
no access) to public and protected members of Base when
using an instance of car.

NOTE

In other words, the most restrictive access specifier takes domi-
nance in the compiler’s calculation of whether one class should
have access to a base class’s public or protected members.

Protected Inheritance

Protected inheritance differs from public inheritance in that the keyword protected is
used in the line where the derived class declares its inheritance from a base class:

class Base

{
}i

// ... base class members and methods

class Derived: protected Base // protected inheritance

{
}i

// ... derived class members and methods

Protected inheritance is similar to private inheritance in the following ways:

m [t also signifies a has-a relationship.
m [t also lets the derived class access all public and protected members of Base.

m Those outside the inheritance hierarchy with an instance of Derived cannot access
public members of Base.

Yet, protected inheritance is a bit different when it comes to the derived class being
inherited from:

class Derived2: protected Derived

{
i

// can access public & protected members of Base

Protected inheritance hierarchy allows the subclass of the subclass (that is, Derived?2)
access to public and protected members of the Base as shown in Listing 10.9. This
would not be possible if the inheritance between Derived and Base were private.

LISTING 10.9 class RaceCar That Derives from class car That Derives from class
Motor Using protected Inheritance

0: #include <iostreams>

1: using namespace std;

2:

3: class Motor

4: {

5: public:

6: void SwitchIgnition()

7: {

8: cout << "Ignition ON" << endl;
9: }

10: void PumpFuel ()

11: {

12: cout << "Fuel in cylinders" << endl;
13: }

14: void FireCylinders ()

15: {

16: cout << "Vroooom" << endl;
17: }

18: };

19:

20: class Car:protected Motor

21: {

22: public:

23 void Move ()

N
=~

{

25: SwitchIgnition() ;

26: PumpFuel () ;

27: FireCylinders() ;

28: }

29: };

30:

31: class RaceCar:protected Car

32: |

33: public:

34: void Move ()

35: {

36: SwitchIgnition(); // RaceCar has access to members of
37: PumpFuel (); // base Motor due to "protected" inheritance
38: FireCylinders(); // between RaceCar & Car, Car & Motor
39: FireCylinders() ;

40: FireCylinders() ;

41: }

42 };

43:

44: int main()

45: {

46: RaceCar myDreamCar;

47: myDreamCar .Move () ;

48:

49: return 0;

50: }

Output v

Ignition ON

Fuel in cylinders
Vroooom

Vrxoooom

Vroooom

Analysis v

class Car inherits using protected from Motor as shown in Line 20. class
RaceCar inherits using protected from class Car using protected as shown in

Line 31. As you can see, the implementation of RaceCar::Move() uses public methods
defined in base class Motor. This access to the ultimate base class Motor via inter-
mediate base class Car is governed by the relationship between Car and Motor. If this
were private instead of protected, SuperClass would have no access to the public
members of Motor as the compiler would choose the most restrictive of the relevant
access specifiers. Note that the nature of the relationship between the classes Car and
RaceCar plays no role in access to base Motor, while the relationship between Car and

Motor does. So, even if you change protected in Line 31 to public or to private,
the fate of compilation of this program remains unchanged.

CAUTION

NOTE

Use private or protected inheritance only when you have to.

In most cases where private inheritance is used, such as that of
the Car and the Motor, the base class could have as well been

a member attribute of the class car instead of being a super-
class. By inheriting from class Motor, you have essentially
restricted your Car to having only one motor, for no significant
gain over having an instance of class Motor as a private
member.

Cars have evolved, and hybrid cars, for instance, have a gas
motor in addition to an electric one. Our inheritance hierarchy for
class Car would prove to be a bottleneck in being compatible
to such developments.

Having an instance of Motor as a private member instead of
inheriting from it is called composition or aggregation. Such a
class Car looks like this:

class Car
{
private:

Motor heartOfCar;

public:
void Move ()
{
heartOfCar.SwitchIgnition() ;
heartOfCar.PumpFuel () ;
heartOfCar.FireCylinders() ;

i

This can be good design as it enables you to easily add more
motors as member attributes to an existing Car class without
changing its inheritance hierarchy or its design with respect to its
clients.

The Problem of Slicing

What happens when a programmer does the following?

Derived objDerived;
Base objectBase = objDerived;

Or, alternatively, what if a programmer does this?

void UseBase (Base input) ;

Derived objDerived;
UseBase (objDerived); // copy of objDerived will be sliced and sent

In both cases, an object of type Derived is being copied into another of type Base,
either explicitly via assignment or by passing as an argument. What happens in these
cases is that the compiler copies only the Base part of objDerived—that is, not the
complete object. The information contained by the data members belonging to Derived
is lost in the process. This is not anticipated, and this unwanted reduction of that part of
data that makes the Derived a specialization of Base is called slicing.

To avoid slicing problems, don’t pass parameters by value. Pass
them as pointers to the base class or as a (optionally const)
reference to the same.

CAUTION

Multiple Inheritance

Earlier in this lesson I mentioned that in some certain cases multiple inheritance might
be relevant, such as with the platypus. The platypus is part mammal, part bird, and part
reptile. For such cases, C++ allows a class to derive from two or more base classes:

class Derived: access-specifier Basel, access-specifier Base2

{
}i

// class members

The class diagram for a platypus, as illustrated by Figure 10.3, looks different from the
previous ones for Tuna and Carp (refer to Figure 10.2).

FIGURE 10.3

Relationship of a class Mammal class Bird class Reptile
class Platypus, * Feeds young milk * Lays eggs ¢ Webbed feet

to classes ¢ Covered with hair/fur * Has a beak/bill ¢ Venomous

Mammal, Reptile,
and Bird.

class Platypus

Can swim

Inherited Attributes
Feeds young milk
Covered with hair/fur
Lays eggs

Has a beak/bill
Webbed feet
Venomous

Thus, the C++ representation of class Platypus is the following:

class Platypus: public Mammal, public Reptile, public Bird

{
i

// ... platypus members

A manifestation of Platypus that demonstrates multiple inheritance is demonstrated by
Listing 10.10.

LISTING 10.10 Using Multiple Inheritance to Model a Platypus That Is Part Mammal,
Part Bird, and Part Reptile

0: #include <iostream>

1: using namespace std;
2:

3: class Mammal

4: {

5: public:

6: void FeedBabyMilk ()
7 {

8: cout << "Mammal: Baby says glug!" << endl;
9: }

10: };

11:

12: class Reptile

13: {

14: public:

15: void SpitVenom()

16: {

17: cout << "Reptile: Shoo enemy! Spits venom!" << endl;
18: }

19: };

20:

21: class Bird

22: {

23: public:

24: void LayEggs ()

25: {

26: cout << "Bird: Laid my eggs, am lighter now!" << endl;
27: }

28: };

29:

30: class Platypus: public Mammal, public Bird, public Reptile
31: {

32: public:

33: void Swim()

34: {

35: cout << "Platypus: Voila, I can swim!" << endl;
36: }

37: };

38:

39: int main()

40: {

41: Platypus realFreak;

42: realFreak.LayEggs () ;

43: realFreak.FeedBabyMilk () ;

44 realFreak.SpitVenom() ;

45: realFreak.Swim() ;

46:

47 return 0;

48: }

Output v

Bird: Laid my eggs, am lighter now!
Mammal: Baby says glug!

Reptile: Shoo enemy! Spits venom!
Platypus: Voila, I can swim!

Analysis v

class Platypus features a really compact definition in Lines 30-37. It essentially does
nothing more than inherit from the three classes Mammal, Reptile, and Bird. main()

in Lines 41-44 is able to invoke these three characteristics of the individual base classes
using an object of the derived class Platypus that is named realFreak. In addition
to invoking the functions inherited from classes Mammal, Bird, and Reptile, main() in
Line 45 invokes Platypus::Swim(). This program demonstrates the syntax of multiple
inheritance and also how a derived class exposes all the public attributes (in this case
public member functions) of its many base classes.

Avoiding Inheritance Using final

Starting with C++11, compilers support specifier £inal. It is used to ensure that a class
declared as £inal cannot be used as a base class. In Listing 10.10 for instance, class
Platypus represents a well-evolved species. You may therefore want to ensure that this
class is final, thereby blocking every possibility to inherit from it. A version of class
Platypus taken from Listing 10.10 and declared as £inal would look like this:

class Platypus final: public Mammal, public Bird, public Reptile

{
public:
void Swim()

{
}

cout << "Platypus: Voila, I can swim!" << endl;

}i

In addition to classes, f£inal can also be used on member functions in controlling
polymorphic behavior. This is discussed in Lesson 11, “Polymorphism.”

Platypus can swim, but it’s not a fish. Hence, in Listing 10.10,
you did not inherit P1atypus from Fish just for the convenience
of reusing an existing Fish: :Swim() function. When making
design decisions, don’t forget that public inheritance also should
signify an “is-a” relationship. It should not be used indiscrimi-
nately with the purpose of fulfilling goals related to code reuse.
Those goals can still be achieved differently.

NOTE

DO

DO create a public inheritance
hierarchy to establish an is-a
relationship.

DO create a private Or protected
inheritance hierarchy to establish a
has-a relationship.

DO remember that public inheritance
means that classes deriving from
the derived class have access to the
public and protected members

of the base class. An object of the
derived class can be used to access
public members of the base.

DO remember that private inheri-
tance means that even classes deriv-
ing from the derived class have no
access to any member of the base
class.

DO remember that protected inheri-
tance means that classes deriving
from the derived class have access
to the public and protected meth-
ods of the base class. Yet, an object
of the derived class cannot be used
to access public members of the
base.

DO remember that irrespective of the
nature of inheritance relationship,
private members in the base class
cannot be accessed by any derived
class.

Summary

DON’T

DON’T create an inheritance hierar-
chy just to reuse a trivial function.

DON’T use private or public inheri-
tance indiscriminately as they can
end up being architectural bottle-
necks towards the future scalability
of your application.

DON’T program derived class func-
tions that hide those in the base
class by having the same name but a
different set of input parameters.

In this lesson, you learned the basics of inheritance in C++. You learned that public
inheritance is an is-a relationship between the derived class and base class, whereas
private and protected inheritances create has-a relationships. You saw the application
of access specifier protected in exposing attributes of a base class only to the derived
class, but keeping them hidden from classes outside the inheritance hierarchy. You

learned that protected inheritance differs from private in that the derived classes of
the derived class can access public and protected members of the base class, which
is not possible in private inheritance. You learned the basics of overriding methods and
hiding them and how to avoid unwanted method hiding via the using keyword.

You are now ready to answer some questions and then continue to learning the next
major pillar of object-oriented programming, polymorphism.

Q&A

Q I have been asked to model class Mammal along with a few mammals such as
the Human, Lion, and whale. Should I use an inheritance hierarchy, and if so
which one?

A As Human, Lion, and Whale are all mammals and essentially fulfill an is-a rela-
tionship, you should use public inheritance where class Mammal is the base class,
and others such as class Human, Lion, and Whale inherit from it.

Q What is the difference between the terms derived class and subclass?

A Essentially none. These are both used to imply a class that derives—that is,
specializes—a base class.

Q A derived class uses public inheritance in relating to its base class. Can it
access the base class’s private members?

A No. The compiler always ensures that the most restrictive of the applicable access
specifiers is in force. Irrespective of the nature of inheritance, private members
of a class are never accessible outside the class. An exception to this rule applies to
classes and functions that have been declared as a friend.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material that was covered and exercises to provide you with experience in using what
you’ve learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix E, and be certain you understand the answers before continuing to
the next lesson.

Quiz
1. I want some base class members to be accessible to the derived class but not out-
side the class hierarchy. What access specifier do I use?

2. If I pass an object of the derived class as an argument to a function that takes a
parameter of the base class by value, what happens?

3. Which one should I favor? Private inheritance or composition?
4. How does the using keyword help me in an inheritance hierarchy?

5. A class Derived inherits private from class Base. Another class
SubDerived inherits public from class Derived. Can SubDerived access
public members of class Base?

Exercises
1. In what order are the constructors invoked for class Platypus as shown in
Listing 10.10?

2. Show how a class Polygon, class Triangle, and class Shape are related
to each other.

3. class D2 inherits from class D1, which inherits from class Base. To keep D2
from accessing the public members in Base, what access specifier would you use
and where would you use it?

4. What is the nature of inheritance with this code snippet?

class Derived: Base

{
}i

// ... Derived members

5. BUG BUSTERS: What is the problem in this code:

class Derived: public Base

{
void SomeFunc (Base value)

{
}

// ... Derived members

/]

LESSON 11
Polymorphism

Having learned the basics of inheritance, creating an inheritance hierarchy,
and understanding that public inheritance essentially models an is-a
relationship, it’s time to move on to consuming this knowledge in learning
the holy grail of object-oriented programming: polymorphism.

In this lesson, you find out

What polymorphism actually means

]
B What virtual functions do and how to use them

B What abstract base classes are and how to declare them
]

What virtual inheritance means and where you need it

Basics of Polymorphism

“Poly” is Greek for many, and “morph” means form. Polymorphism is that feature of
object-oriented languages that allows objects of different types to be treated similarly.
This lesson focuses on polymorphic behavior that can be implemented in C++ via the
inheritance hierarchy, also known as subtype polymorphism.

Need for Polymorphic Behavior

In Lesson 10, “Implementing Inheritance,” you found out how Tuna and Carp inherit
public method Swim() from Fish as shown in Listing 10.1. It is, however, possible that
both Tuna and Carp provide their own Tuna::Swim() and Carp::Swim() methods

to make Tuna and Carp different swimmers. Yet, as each of them is also a Fish, if a
user with an instance of Tuna uses the base class type to invoke Fish::Swim(), he ends
up executing only the generic part Fish::Swim() and not Tuna::Swim(), even though
that base class instance Fish is a part of a Tuna. This problem is demonstrated in
Listing 11.1.

All the code samples in this lesson have been stripped to the
bare essentials required to explain the topic in question and
to keep the number of lines of code to a minimum to improve
readability.

NOTE

When you are programming, you should program your classes
correctly and create inheritance hierarchies that make

sense, keeping the design and purpose of the application in
perspective.

LISTING 11.1 Invoking Methods Using an Instance of the Base Class Fish That Belongs
to a Tuna

: #include <iostreams>
using namespace std;

class Fish

{
public:
void Swim()

{
}

cout << "Fish swims! " << endl;

O W O 3 O Ul b W N KHE O

iy

i

=
=

12: class Tuna:public Fish

13: {

14: public:

15: // override Fish::Swim
16: void Swim()

17: {

18: cout << "Tuna swims!" << endl;
19: }

20: };

21:

22: void MakeFishSwim(Fish& inputFish)
23: {

24: // calling Fish::Swim
25: inputFish.Swim() ;

26: }

27:

28: int main()

29: {

30: Tuna myDinner;

31:

32: // calling Tuna::Swim
33: myDinner.Swim() ;

34:

35: // sending Tuna as Fish
36: MakeFishSwim (myDinner) ;
37:

38: return 0;

39: }

Output v

Tuna swims!
Fish swims!

Analysis v

class Tuna specializes class Fish via public inheritance as shown in Line 12. It
also overrides Fish::Swim(). main() makes a direct call to Tuna::Swim() in Line 33
and passes myDinner (of type Tuna) as a parameter to MakeFishSwim() that inter-
prets it as a reference Fishg, as shown in the declaration at Line 22. In other words,
MakeFishSwim(Fish&) doesn’t care if the object sent was a Tuna, handles it as a Fish,
and invokes Fish::Swim(). So, the second line of output indicates that the same object
Tuna produced the output of a Fish not indicating any specialization thereof (this could

as well be a Carp).

What the user would ideally expect is that an object of type Tuna behaves like a tuna
even if the method invoked is Fish::Swim(). In other words, when inputFish.Swim()
is invoked in Line 25, he expects it to execute Tuna::Swim(). Such polymorphic behavior
where an object of known type class Fish can behave as its actual type; namely,
derived class Tuna, can be implemented by making Fish::Swim() a virtual function.

Polymorphic Behavior Implemented Using Virtual
Functions

You have access to an object of type Fish, via pointer Fish* or reference Fish&. This
object could have been instantiated solely as a Fish, or be part of a Tuna or Carp
that inherits from Fish. You don’t know (and don’t care). You invoke method Swim()
using this pointer or reference, like this:

pFish->Swim() ;
myFish.Swim() ;

What you expect is that the object Fish swims as a Tuna if it is part of a Tuna, as a
Carp if it is part of a Carp, or an anonymous Fish if it wasn’t instantiated as part of
a specialized class such as Tuna or Carp. You can ensure this by declaring function

Swim() in the base class Fish as a virtual function:

class Base

{
}i
class Derived

{
i

virtual ReturnType FunctionName (Parameter List);

ReturnType FunctionName (Parameter List);

Use of keyword virtual means that the compiler ensures that any overriding variant
of the requested base class method is invoked. Thus, if Swim() is declared virtual,
invoking myFish.Swim() (myFish being of type Fishg&) results in Tuna::Swim() being
executed as demonstrated by Listing 11.2.

LISTING 11.2 The Effect of Declaring Fish::Swim() as a virtual Method

#include <iostream>
using namespace std;

class Fish

{

public:

g W N PR o

6: virtual void Swim()
7: {
8: cout << "Fish swims!" << endl;
9: }
10: };
11:
12: class Tuna:public Fish
13: {
14: public:
15: // override Fish::Swim
16: void Swim()
17: {
18: cout << "Tuna swims!" << endl;
19: }
20: };
21:
22: class Carp:public Fish
23: {
24: public:
25: // override Fish::Swim
26: void Swim()
27: {
28: cout << "Carp swims!" << endl;
29: }
30: };
31:
32: void MakeFishSwim(Fish& inputFish)
33: {
34: // calling virtual method Swim()
35: inputFish.Swim() ;
36: }
37:
38: int main()
39: {
40: Tuna myDinner;
41: Carp myLunch;
42:
43: // sending Tuna as Fish
44 MakeFishSwim (myDinner) ;
45:
46: // sending Carp as Fish
47: MakeFishSwim (myLunch) ;
48:
49: return 0;
50: }
Output v

Tuna swims!

Carp swims!

Analysis v

The implementation of function MakeFishSwim(Fish&) has not changed one bit since
Listing 11.1. Yet, the output it produces is dramatically different. For one, Fish::Swim()
has not been invoked at all because of the presence of overriding variants Tuna::Swim()
and Carp::Swim() that have taken priority over Fish::Swim() because the latter has
been declared as a virtual function. This is a very important development. It implies
that even without knowing the exact type of Fish being handled, the implementation
MakeFishSwim() could result in different implementations of Swim() defined in differ-
ent derived classes being invoked, given only a base class instance.

This is polymorphism: treating different fishes as a common type Fish, yet ensuring that
the right implementation of Swim() supplied by the derived types is executed.

Need for Virtual Destructors

There is a more sinister side to the feature demonstrated by Listing 11.1—unintentionally
invoking base class functionality of an instance of type derived, when a specialization is
available. What happens when a function calls operator delete using a pointer of type
Base* that actually points to an instance of type Derived?

Which destructor would be invoked? See Listing 11.3.

LISTING 11.3 A Function That Invokes Operator delete On Base*

: #include <iostreams>
: using namespace std;

: class Fish

0

1

2

3

4: |

5: public:
6 Fish()
7

8

9

0

{
}

cout << "Constructed Fish" << endl;

10:

~Fish()
11: {
12: cout << "Destroyed Fish" << endl;
13: }
14 : };
15:
16: class Tuna:public Fish
17: {
18: public:
19: Tuna ()
20: {
21: cout << "Constructed Tuna" << endl;

22: }

23: ~Tuna ()

24: {

25: cout << "Destroyed Tuna" << endl;

26: }

27: },'

28:

29: void DeleteFishMemory (Fish* pFish)

30: {

31: delete pFish;

32: }

33:

34: int main()

35: {

36: cout << "Allocating a Tuna on the free store:" << endl;
37: Tuna* pTuna = new Tuna;

38: cout << "Deleting the Tuna: " << endl;

39: DeleteFishMemory (pTuna) ;

40:

41: cout << "Instantiating a Tuna on the stack:" << endl;
42: Tuna myDinner;

43: cout << "Automatic destruction as it goes out of scope: " << endl;
44 :

45: return 0;

46: }

Output v

Allocating a Tuna on the free store:
Constructed Fish

Constructed Tuna

Deleting the Tuna:

Destroyed Fish

Instantiating a Tuna on the stack:
Constructed Fish

Constructed Tuna

Automatic destruction as it goes out of scope:
Destroyed Tuna

Destroyed Fish

Analysis v

main() creates an instance of Tuna on the free store using new at Line 37 and

then releases the allocated memory immediately after using service function
DeleteFishMemory() at Line 39. For the sake of comparison, another instance of
Tuna is created as a local variable myDinner on the stack at Line 42 and goes out of
scope when main() ends. The output is created by the cout statements in the construc-
tors and destructors of classes Fish and Tuna. Note that while Tuna and Fish were

both constructed on the free store due to new, the destructor of Tuna was not invoked
during delete, rather only that of the Fish. This is in stark contrast to the construction
and destruction of local member myDinner where all constructors and destructors are
invoked. Lesson 10 demonstrated in Listing 10.7 the correct order of construction and
destruction of classes in an inheritance hierarchy, showing that all destructors need to be
invoked, including ~Tuna(). Clearly, something is amiss.

This flaw means that the destructor of a deriving class that has been instantiated on the
free store using new would not be invoked if delete is called using a pointer of type
Base*. This can result in resources not being released, memory leaks, and so on and is a
problem that is not to be taken lightly.

To avoid this problem, you use virtual destructors as seen in Listing 11.4.

LISTING 11.4 Using virtual Destructors to Ensure That Destructors in Derived Classes
Are Invoked When Deleting a Pointer of Type Base*

0: #include <iostream>

1: using namespace std;

2:

3: class Fish

4: {

5: public:

6: Fish()

7 {

8: cout << "Constructed Fish" << endl;
9: }

10: virtual ~Fish() // virtual destructor!
11: {

12: cout << "Destroyed Fish" << endl;
13: }

14: };

15:

16: class Tuna:public Fish

17: {

18: public:

19: Tuna ()

20: {

21: cout << "Constructed Tuna” << endl;
22: }

23: ~Tuna ()

24: {

25: cout << "Destroyed Tuna" << endl;
26: }

27: };

[\
ee]

29: void DeleteFishMemory (Fish* pFish)

30: {

31: delete pFish;

32: }

33:

34: int main()

35: {

36: cout << "Allocating a Tuna on the free store:" << endl;
37: Tuna* pTuna = new Tuna;

38: cout << "Deleting the Tuna: " << endl;

39: DeleteFishMemory (pTuna) ;

40:

41: cout << "Instantiating a Tuna on the stack:" << endl;
42: Tuna myDinner;

43: cout << "Automatic destruction as it goes out of scope: " << endl;
44 :

45: return 0;

46: }

Output v

Allocating a Tuna on the free store:
Constructed Fish

Constructed Tuna

Deleting the Tuna:

Destroyed Tuna

Destroyed Fish

Instantiating a Tuna on the stack:
Constructed Fish

Constructed Tuna

Automatic destruction as it goes out of scope:
Destroyed Tuna

Destroyed Fish

Analysis v

The only improvement in Listing 11.4 over Listing 11.3 is the addition of keyword
virtual at Line 10 where the destructor of base class Fish has been declared. Note
that this small change resulted in the compiler essentially executing Tuna::~Tuna() in
addition to Fish::~Fish() when operator delete is invoked on Fish+* that actually
points to a Tuna, as shown in Line 31. Now, this output also demonstrates that the
sequence and the invocation of constructors and destructors are the same irrespective of
whether the object of type Tuna is instantiated on the free store using new, as shown in
Line 37, or as a local variable on the stack, as shown in Line 42.

NOTE

Always declare the base class destructor as virtual:

class Base
{
public:
virtual ~Base() {}; // virtual destructor

}i

This ensures that one with a pointer Base* cannot invoke
delete in a way that instances of the deriving classes are not
correctly destroyed.

How Do virtual Functions Work? Understanding the
Virtual Function Table

NOTE

This section is optional toward learning to use polymorphism.
Feel free to skip it or read it to feed your curiosity.

Function MakeFishSwim(Fishg&) in Listingl1.2 ends up invoking Carp::Swim() or
Tuna::Swim() methods in spite of the programmer calling Fish::Swim()within it.
Clearly, at compile time, the compiler knows nothing about the nature of objects that
such a function will encounter to be able to ensure that the same function ends up execut-
ing different Swim() methods at different points in time. The Swim() method that needs
to be invoked is evidently a decision made at runtime, using a logic that implements

polymorphism, which is supplied by the compiler at compile-time.

Consider a class Base that declared N virtual functions:

class Base

{

public:

virtual void Funcl ()

{
}

// Funcl implementation

virtual void Func2 (

{
}

// Func2 implementation

// .. so on and so forth
virtual void FuncN()

{
}

// FuncN implementation

}i

class Derived that inherits from Base overrides Base::Func2(), exposing the other
virtual functions directly from class Base:

class Derived: public Base

{
public:
virtual void Funcl ()

{
}

// Func2 overrides Base::Func2 (

// no implementation for Func2 ()

virtual void FuncN()

{
}

// FuncN implementation

}i

The compiler sees an inheritance hierarchy and understands that the Base defines certain
virtual functions that have been overridden in Derived. What the compiler now does is
to create a table called the Virtual Function Table (VFT) for every class that implements
a virtual function or derived class that overrides it. In other words, classes Base and
Derived get an instance of their own Virtual Function Table. When an object of these
classes is instantiated, a hidden pointer (let’s call it VFT*) is initialized to the respective
VFT. The Virtual Function Table can be visualized as a static array containing function
pointers, each pointing to the virtual function (or override) of interest, as illustrated in
Figure 11.1.

FIGURE 11.1 Instance Base VFT for Base 2365511?:\1"01 0
V!suahzatlon_of a VFT Pointer | virtual Funci() > /I ... base implementation
Virtual Function }

Other members
Table for classes

virtual Func2() Base:Func2()

Derived and
Base.

Y

——

/I ... base implementation

)

Base::FuncN()
{

virtual FuncN() /I ... base implementation

}

Instance Derived VFT for Derived Derived::Func1()
VFT Pointer N virtual Func1() — {

Other members

// overrides Base::Func1()

virtual Func2()

Derived::FuncN()

3 {
virtual FuncN() /I Overrides Base::FuncN()

Thus, each table is comprised of function pointers, each pointing to the available imple-
mentation of a virtual function. In the case of class Derived, all except one function
pointer in its VFT point to local implementations of the virtual method in Derived.
Derived has not overridden Base::Func2(), and hence that function pointer points to
the implementation in class Base.

This means that when a user of class Derived calls

CDerived objDerived;
objDerived.Func2 () ;

the compiler ensures a lookup in the VFT of class Derived and ensures that the
implementation Base::Func2() is invoked. This also applies to calls that use methods
that have been virtually overridden:

void DoSomething(Base& objBase)

{
objBase.Funcl () ; // invoke Derived::Funcl
1
int main()
{

Derived objDerived;
DoSomething (objDerived) ;

}i

In this case, even though objDerived is being interpreted via objBase as an instance
of class Base, the VFT pointer in this instance is still pointing to the same table
created for class Derived. Thus, Funci() executed via this VFT is certainly

Derived::Funcl().

This is how Virtual Function Tables help the implementation of (subtype) polymorphism
in C++.

The proof of existence of a hidden Virtual Function Table pointer is demonstrated by
Listing 11.5, which compares the sizeof two identical classes—one that has virtual
functions and another that doesn’t.

LISTING 11.5 Demonstrating the Presence of a Hidden VFT Pointer in Comparing
Two Classes Identical but for a Function Declared Virtual

0: #include <iostream>

1: using namespace std;

2:

3: class SimpleClass

4: {

5: int a, b;

6:

7: public:

8: void DoSomething() {}

9: };

10:

11: class Base

12: {

13: int a, b;

14:

15: public:

16 virtual void DoSomething() {}
17: };

18

19: int main()
20: {
21 cout << "sizeof (SimpleClass) = " << sizeof (SimpleClass) << endl;
22 cout << "sizeof (Base) = " << sizeof (Base) << endl;
23:
24: return 0;
25: }

Output Using 32-Bit Compiler v

sizeof (SimpleClass) = 8
sizeof (Base) = 12

Output Using 64-Bit Compiler v

sizeof (SimpleClass) = 8
sizeof (Base) = 16

Analysis v

This is a sample that has been stripped to the bare minimum. You see two classes,
SimpleClass and Base, that are identical in the types and number of members,

yet Base has the function DoSomething() declared as virtual (nonvirtual in
SimpleClass). The difference in adding this virtual keyword is that the compiler
generates a virtual function table for class Base and a reserved place for a pointer to the
same in Base as a hidden member. This pointer consumes the 4 extra bytes in my 32-bit
system and is the proof of the pudding.

C++ also allows you to query a pointer Basex if it is of type
Derived* using casting operator dynamic_cast and then per-
form conditional execution on the basis of the result of the
query.

NOTE

This is called runtime type identification (RTTI) and should ideally
be avoided even though it is supported by most C++ compilers.
This is because needing to know the type of derived class object
behind a base class pointer is commonly considered poor pro-
gramming practice.

RTTl and dynamic_cast are discussed in Lesson 13, “Casting
Operators.”

Abstract Base Classes and Pure Virtual Functions

A base class that cannot be instantiated is called an abstract base class. Such a base
class fulfills only one purpose, that of being derived from. C++ allows you to create an
abstract base class using pure virtual functions.

A virtual method is said to be pure virtual when it has a declaration as shown in the
following:

class AbstractBase

{
public:
virtual void DoSomething() = 0; // pure virtual method

i

This declaration essentially tells the compiler that DoSomething() needs to be imple-
mented and by the class that derives from AbstractBase:

class Derived: public AbstractBase

{
public:
void DoSomething() // pure virtual fn. must be implemented

{
}

cout << "Implemented virtual function" << endl;

}i

Thus, what class AbstractBase has done is that it has enforced class Derived to supply
an implementation for virtual method DoSomething(). This functionality where a base
class can enforce support of methods with a specified name and signature in classes that
derive from it is that of an interface. Think of a Fish again. Imagine a Tuna that cannot
swim fast because Tuna did not override Fish::Swim(). This is a failed implementation
and a flaw. Making class Fish an abstract base class with Swim as a pure virtual func-
tion ensures that Tuna that derives from Fish implements Tuna::Swim() and swims
like a Tuna and not like just any Fish. See Listing 11.6.

LISTING 11.6 class Fish as an Abstract Base Class for Tuna and carp

0: #include <iostream>

1: using namespace std;

2:

3: class Fish

4: {

5: public:

6: // define a pure virtual function Swim
7: virtual void Swim() = 0;

8: };

9:

10: class Tuna:public Fish

11: |

12: public:

13: void Swim()

14: {

15: cout << "Tuna swims fast in the sea! " << endl;
16: }

17: };

18

19: class Carp:public Fish
20: {
21 void Swim()
22: {
23 cout << "Carp swims slow in the lake!" << endl;

24: }

25: };

26:

27: void MakeFishSwim(Fishé& inputFish)
28: {

29: inputFish.Swim() ;

30: }

31:

32: int main()

33: |

34: // Fish myFish; // Fails, cannot instantiate an ABC
35: Carp myLunch;

36: Tuna myDinner;

37:

38: MakeFishSwim (myLunch) ;

39: MakeFishSwim (myDinner) ;

40:

41: return 0;

42: }

Output v

Carp swims slow in the lake!
Tuna swims fast in the sea!

Analysis Vv

The first line in main() at Line 34 (commented out) is significant. It demonstrates that
the compiler does not allow you to create an instance of an abstract base class (‘ABC’)
Fish. It expects something concrete, such as a specialization of Fish—for example,
Tuna—which makes sense even in the real-world arrangement of things. Thanks to the
pure virtual function Fish::Swim() declared in Line 7, both Tuna and Carp are forced
into implementing Tuna::Swim() and Carp::Swim(). Lines 27-30 that implement
MakeFishSwim(Fish&) demonstrate that even if an abstract base class cannot be instan-
tiated, you can use it as a reference or a pointer. Abstract base classes are thus a very
good mechanism to declare functions that you expect derived classes to implement and
fulfill. If a class Trout that derived from Fish forgets to implement Trout::Swim(), the
compilation also fails.

Abstract Base Classes are often simply called ABCs.

NOTE

ABC s help enforce certain design constraints on your program.

Using virtual Inheritance to Solve
the Diamond Problem

In Lesson 10 you saw the curious case of a duck-billed platypus that is part mammal,

part bird, and part reptile. This is an example where a class Platypus needs to inherits
from class Mammal, class Bird, and class Reptile. However, each of these in turn

inherits from a more generic class Animal, as illustrated in Figure 11.2.

FIGURE 11.2
The class diagram
of a platypus dem-
onstrating multiple
inheritance.

class Animal
e Can move
A
class Mammal class Bird class Reptile
¢ Feeds young milk e Lays eggs ¢ Webbed feet
* Covered with hair/fur * Has a beak/bill ¢ Venomous
Inherited Attributes Inherited Attributes Inherited Attributes
e Can move e Can move e Can move

class Platypus

Can swim

Inherited Attributes
Can move

Feeds young milk
Covered with hair/fur
Lays eggs

Has a beak/bill
Webbed feet
Venomous

So, what happens when you instantiate a Platypus? How many instances of class
Animal are instantiated for one instance of Platypus? Listing 11.7 helps answer this

question.

LISTING 11.7 Checking for the Number of Base Class Animal Instances for One
Instance of Platypus

0: #include <iostream>

1: using namespace std;

2:

3: class Animal

4: {

5: public:

6: Animal ()

7: {

8: cout << "Animal constructor" << endl;
9: }

10:

11: // sample member

12: int age;

13: };

14:

15: class Mammal:public Animal

16: {

17: };

18:

19: class Bird:public Animal
20: |
21: };
22:

23: class Reptile:public Animal

24: |

25: };

26:

27: class Platypus:public Mammal, public Bird, public Reptile
28: {

29: public:

30: Platypus ()

31: {

32: cout << "Platypus constructor" << endl;
33: }

34: };

35:

36: int main()

37: |

38: Platypus duckBilledP;

39:
40: // uncomment next line to see compile failure
41 : // age is ambiguous as there are three instances of base Animal
42: // duckBilledP.age = 25;
43:
44 return 0;

45: }

Output v

Animal constructor
Animal constructor
Animal constructor
Platypus constructor

Analysis v

As the output demonstrates, due to multiple inheritance and all three base classes

of Platypus inheriting in turn from class Animal, you have three instances of
Animal created automatically for every instance of a Platypus, as shown in Line 38.
This is ridiculous as Platypus is still one animal that has inherited certain attributes
from Mammal, Bird, and Reptile. The problem in the number of instances of base
Animal is not limited to memory consumption alone. Animal has an integer member
Animal::age (that has been kept public for explanation purposes). When you want

to access Animal::age Vvia an instance of Platypus, as shown in Line 42, you get a
compilation error simply because the compiler doesn’t know whether you want to set
Mammal::Animal::age or Bird::Animal::age or Reptile::Animal::age. It can get
even more ridiculous—if you so wanted you could set all three:

duckBilledP.Mammal: :Animal: :age 25;

duckBilledP.Bird: :Animal::age = 25;
duckBilledP.Reptile::Animal::age = 25;

Clearly, one duck-billed platypus should have only one age. Yet, you want class
Platypus to be a Mammal, Bird, and Reptile. The solution is in virtual inheritance. If
you expect a derived class to be used as a base class, it possibly is a good idea to define
its relationship to the base using the keyword virtual:

class Derivedl: public virtual Base

class Derived2: public virtual Base

{
}i

// ... members and functions

// ... members and functions

A better class Platypus (actually a better class Mammal, class Bird, and class Reptile)
is in Listing 11.8.

LISTING 11.8 Demonstrating How virtual Keyword in Inheritance Hierarchy Helps
Restrict the Number of Instances of Base Class animal to One

WWWwWwWwwwwwweonmnooWwnoomwNoWweE R R 2 R B B PR
W WTI0O U WNREOWO®OCTOoOUE WNREOWO®CIOU B WNR o W

41:
42:
43:
44 :

W 3 0 Ul kW O

#include <iostream>
using namespace std;

class Animal

{

public:
Animal ()
{
cout << "Animal constructor" << endl;
}
// sample member
int age;
}i
class Mammal:public virtual Animal
{
}i
class Bird:public virtual Animal
{
}i
class Reptile:public virtual Animal
{
}i
class Platypus final:public Mammal, public Bird, public Reptile
{
public:
Platypus ()

{
}

cout << "Platypus constructor" << endl;

i
int main()
{

Platypus duckBilledP;

// no compile error as there is only one Animal::age
duckBilledP.age = 25;

return 0;

Output v

Animal constructor
Platypus constructor

Analysis v

Do a quick comparison against the output of the previous Listing 11.7, and you see

that the number of instances of class Animal constructed has fallen to one, which

is finally reflective of the fact that only one Platypus has been constructed as well.
This is because of the keyword virtual used in the relationship between classes
Mammal, Bird, and Reptile ensures that when these classes are grouped together under
Platypus the common base Animal exists only in a single instance. This solves a lot
of problems; one among them is Line 41 that now compiles without ambiguity resolution
as shown in Listing 11.7. Also note the usage of keyword final in Line 27 to ensure that
class Platypus cannot be used as a base class.

Problems caused in an inheritance hierarchy containing two or
more base classes that inherit from a common base, which
results in the need for ambiguity resolution in the absence of
virtual inheritance, is called the Diamond Problem.

NOTE

The name “Diamond” is possibly inspired by the shape the
class diagram takes (visualize Figure 11.2 with straight and
slanted lines relating Platypus t0 Animal via Mammal, Bird, and
Reptile to see a diamond).

The virtual keyword in C++ often is used in different contexts
for different purposes. (My best guess is that someone wanted
to save time on inventing an apt keyword.) Here is a summary:

NOTE

A function declared virtual means that an existing overriding
function in a derived class is invoked.

An inheritance relationship declared using keyword virtual
between classes Derivedl and Derived2 that inherits from
class Base means that another class perived3 that inherits
from Derivedl and Derived2 still results in the creation of only
one instance of Base during instantiation of type Deriveds3.

Thus the same keyword virtual is used to implement two
different concepts.

Specifier override to Indicate Intention
to Override

Our versions of base class Fish have featured a virtual function called Swim() as seen in
the following code:

class Fish

{
public:
virtual void Swim()

{
}

cout << "Fish swims!" << endl;

}i

Assume that derived class Tuna were to define a function Swim() but with a slightly
different signature—one using const inserted unintentionally by a programmer who
wants to override Fish::Swim():

class Tuna:public Fish

{
public:
void Swim() const

{
}

cout << "Tuna swims!" << endl;

}i

This function Tuna::Swim() actually does not override Fish::Swim(). The signatures
are different thanks to the presence of const in Tuna::Swim(). Compilation succeeds,
however, and the programmer may falsely believe that he has successfully overridden the
function Swim() in class Tuna. C++11 and beyond give the programmer a specifier
override that is used to verify whether the function being overridden has been declared
as virtual by the base class:

class Tuna:public Fish

{
public:
void Swim() const override // Error: no virtual fn with this sig in Fish

{
}

cout << "Tuna swims!" << endl;

i

Thus, override supplies a powerful way of expressing the explicit intention to override
a base class virtual function, thereby getting the compiler to check whether

m The base class function is virtual.

m The signature of the base class virtual function exactly matches the signature of the
derived class function declared to override.

Use final to Prevent Function
Overriding

Specifier £inal, introduced in C++11, was first presented to you in Lesson 10. A class
declared as final cannot be used as a base class. Similarly, a virtual function
declared as final cannot be overridden in a derived class.

Thus, a version of class Tuna that doesn’t allow any further specialization of virtual
function Swim() would look like this:

class Tuna:public Fish

{

public:
// override Fish::Swim and make this final
void Swim() override final

{
}

cout << "Tuna swims!" << endl;

}i

This version of Tuna can be inherited from, but Swim() cannot be overridden any
further:

class BluefinTuna final:public Tuna

{

public:
void Swim() // Error: Swim() was final in Tuna, cannot override
{
1

}i

A demonstration of specifiers override and f£inal is available in Listing 11.9.

We used final in the declaration of class BluefinTuna as
well. This ensures that class BluefinTuna cannot be used as
a base class. Therefore, the following would result in error:

NOTE

class FailedDerivation:public BluefinTuna

{
}i

Virtual Copy Constructors?

Well, the question mark at the end of the section title is justified. It is technically
impossible in C++ to have virtual copy constructors. Yet, such a feature would help
you create a collection (for example, a static array) of type Base*, each element being a
specialization of that type:

// Tuna, Carp and Trout are classes that inherit public from base class Fish
Fish* pFishes[3];

Fishes[0] = new Tuna();
Fishes[1] = new Carp();
Fishes[2] = new Trout();

Then assigning it into another array of the same type, where the virtual copy constructor
ensures a deep copy of the derived class objects as well, ensures that Tuna, Carp,

and Trout are copied as Tuna, Carp, and Trout even though the copy constructor is
operating on type Fish*.

Well, that’s a nice dream.

Virtual copy constructors are not possible because the virtual keyword in context of
base class methods being overridden by implementations available in the derived class
are about polymorphic behavior generated at runtime. Constructors, on the other hand,
are not polymorphic in nature as they can construct only a fixed type, and hence C++

does not allow usage of the virtual copy constructors.

Having said that, there is a nice workaround in the form of defining your own clone
function that allows you to do just that:

class Fish

{
public:
virtual Fish* Clone() const = 0; // pure virtual function

}i

class Tuna:public Fish

{

// ... other members

public:
Tuna * Clone() const // virtual clone function
{
return new Tuna(*this); // return new Tuna that is a copy of this
1
}i

Thus, virtual function Clone is a simulated virtual copy constructor that needs to be
explicitly invoked, as shown in Listing 11.9.

LISTING 11.9 Tuna and carp That Support a clone Function as a Simulated Virtual
Copy Constructor

0: #include <iostream>

1: using namespace std;

2:

3: class Fish

4: |

5: public:

6: virtual Fish* Clone() = 0;

7: virtual void Swim() = 0;

8: virtual ~Fish() {};

9: };

10:

11: class Tuna: public Fish

12: {

13: public:

14: Fish* Clone() override

15 {

16: return new Tuna (*this);

17 }

18:

19: void Swim() override final
20 {
21: cout << "Tuna swims fast in the sea" << endl;
22: }
23: };
24:
25: class BluefinTuna final:public Tuna
26: {
27: public:
28 Fish* Clone() override
29: {

30: return new BluefinTuna (*this);
31: }

32:

33: // Cannot override Tuna::Swim as it is "final" in Tuna
34: };

35:

36: class Carp final: public Fish

37: |

38: Fish* Clone() override

39: {

40: return new Carp(*this);

41: }

42: void Swim() override final

43: {

44: cout << "Carp swims slow in the lake" << endl;
45: }

46: };

47 :

48: int main()

49:

50: const int ARRAY SIZE = 4;

51:

52: Fish* myFishes[ARRAY SIZE] = {NULL};

53: myFishes[0] = new Tuna();

54: myFishes[1] = new Carp();

55: myFishes[2] = new BluefinTunal() ;

56: myFishes[3] = new Carp();

57:

58: Fish* myNewFishes [ARRAY SIZE];

59: for (int index = 0; index < ARRAY SIZE; ++index)
60: myNewFishes [index] = myFishes[index]->Clone() ;
61:

62: // invoke a virtual method to check

63: for (int index = 0; index < ARRAY SIZE; ++index)
64: myNewFishes [index] ->Swim() ;

65:

66: // memory cleanup

67: for (int index = 0; index < ARRAY SIZE; ++index)
68: {

69: delete myFishes[index];

70: delete myNewFishes [index] ;

71: }

72

73: return 0;

74: }

Output v

Tuna swims fast in the sea
Carp swims slow in the lake
Tuna swims fast in the sea
Carp swims slow in the lake

Analysis Vv

In addition to demonstrating virtual copy constructors via virtual function
Fish::Clone(), Listing 11.9 also demonstrates the usage of keywords override and

final—the latter being applied to virtual functions and classes alike. It also features a
virtual destructor for class Fish in Line 8. Lines 52-56 in main() demonstrate how

a static array of pointers to base class Fish* has been declared and individual elements
assigned to newly created objects of type Tuna, Carp, Tuna, and Carp, respectively.
Note how this array myFishes is able to collect seemingly different types that are all
related by a common base type Fish. This is already cool, if you compare it against
previous arrays in this book that have mostly been of a simple monotonous type int. If
that wasn’t cool enough, you were able to copy into a new array of type Fish* called
myNewFishes using the virtual function Fish::Clone() within a loop, as shown in Line
60. Note that your array is quite small at only four elements. It could’ve been a lot longer
but wouldn’t have made much of a difference to the copy logic that would only need to
adjust the loop-ending condition parameter. Line 64 is the actual check where you invoke
virtual function Fish::Swim() on each stored element in the new array to verify whether
Clone() copied a Tuna as a Tuna and not just a Fish(). The output demonstrates that it
genuinely did copy the Tunas and the Carps just as expected. Also note that the output
of swim() used on instance of BluefinTuna was the same as that for a Tuna, because
Tuna::Swim() was declared as final. Thus, BluefinTuna was not permitted to over-
ride Swim(), and the compiler executed Tuna::Swim() for it.

DO DON’T

DO remember to mark base class DON'’T forget to supply your base
functions that need to be overridden class with a virtual destructor.

by the derived class as virtual. DON'T forget that the compiler does
not allow you to create a standalone
instance of an Abstract Base Class.

DON'T forget that virtual inheritance
is about ensuring that the common
base in a diamond hierarchy has only

DO remember that pure virtual
functions make your class an
Abstract Base Class, and these
functions must be implemented by a
deriving class.

Do mark functions in derived
classes that are intended to override
base functionality using keyword
override.

DO use virtual inheritance to solve
the Diamond Problem.

one instance.

DON’'T confuse the function of
keyword virtual when used in
creating an inheritance hierarchy with
the same when used in declaring
base class functions.

Summary

In this lesson you learned to tap the power of creating inheritance hierarchies in your
C++ code, by using polymorphism. You learned how to declare and program virtual
functions—how they ensure that the derived class implementation overrides that in the

base class even if an instance of the base class is used to invoke the virtual method. You
saw how pure virtual functions were a special type of virtual functions that ensure that
the base class alone cannot be instantiated, making it a perfect place to define interfaces
that derived classes must fulfill. Finally, you saw the Diamond Problem created by mul-
tiple inheritance and how virtual inheritance helps you solve it.

Q&A

Q Why use the virtual keyword with a base class function when code compiles
without it?

A Without the virtual keyword, you are not able to ensure that someone calling
objBase.Function () will be redirected to Derived: : Function (). Besides,
compilation of code is not the only measure of its quality.

Q Why did the compiler create the Virtual Function Table?

A To store function pointers that ensure that the right version of a virtual function is
invoked.

Q Should a base class always have a virtual destructor?

A Ideally yes. Only then can you ensure that when someone does a

Base* pBase = new Derived() ;
delete pBase;

delete on a pointer of type Base* results in the destructor ~Derived () being
invoked. This occurs when destructor ~Base () is declared virtual.

Q What is an Abstract Base Class good for when I can’t even instantiate it
standalone?

A The ABC is not meant to be instantiated as a standalone object; rather it is always
meant to be derived from. It contains pure virtual functions that define the minimal
blueprint of functions that deriving classes need to implement, thus taking the role
of an interface.

Q Given an inheritance hierarchy, do I need to use the keyword virtual on all
declarations of a virtual function or just in the base class?

A Tt is enough to declare a function as virtual once, but that declaration has to be in
the base class.

Q Can I define member functions and have member attributes in an ABC?

A Sure you can. Remember that you still cannot instantiate an ABC as it has at least
one pure virtual function that needs to be implemented by a deriving class.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. You are modeling shapes—circle and triangle—and want every shape to
compulsorily implement functions Area () and Print (). How would you do it?
2. Does a compiler create a Virtual Function Table for all classes?

3. My class Fish has two public methods, one pure virtual function, and some
member attributes. Is it still an abstract base class?

Exercises
1. Demonstrate an inheritance hierarchy that implements the question in Quiz 1 for
Circle and Triangle.
2. BUG BUSTERS: What is the problem in the following code:

class Vehicle

{

public:
Vehicle() {}
~Vehicle () {}

}i

class Car: public Vehicle

{

public:
car() {}
~Car() {}

}i

3. In the (uncorrected) code in Exercise 2, what is the order of execution of construc-
tors and destructors if an instance of car is created and destroyed like this:

Vehicle* pMyRacer = new Car;
delete pMyRacer;

LESSON 12
Operator Types and
Operator Overloading

In addition to encapsulating data and methods, classes can also
encapsulate operators that make it easy to operate on instances of
this class. You can use these operators to perform operations such as
assignment or addition on class objects similar to those on integers
that you saw in Lesson 5, “Working with Expressions, Statements, and
Operators.” Just like functions, operators can also be overloaded.

In this lesson, you learn:

Using the keyword operator

Unary and binary operators

]
[]

m Conversion operators

B The move assignment operator
[]

Operators that cannot be redefined

What Are Operators in C++?

On a syntactical level, there is very little that differentiates an operator from a function,
save for the use of the keyword operator. An operator declaration looks quite like a
function declaration:

return type operator operator symbol (...parameter list...);

The operator symbol in this case could be any of the several operator types that the
programmer can define. It could be + (addition) or && (logical AND) and so on. The
operands help the compiler distinguish one operator from another. So, why does C++
provide operators when functions are also supported?

Consider a utility class Date that encapsulates the day, month, and year:

Date holiday (12, 25, 2016); // initialized to Dec 25, 2016

Assuming that you want to add a day and get the instance to contain the next
day—Dec 26, 2016—which of the following two options would be more intuitive?

m Option 1 (using the increment operator):
++ holiday;

®m Option 2 (using a member function Increment ()):
holiday.Increment(); // Dec 26, 2016

Clearly, Option 1 scores over method Increment (). The operator-based mechanism
facilitates consumption by supplying ease of use and intuitiveness. Implementing operator
(<) in class Date would help you compare two instances of class Date like this:

if (datel < date2)

{
}
else

{
}

// Do something

// Do something else

Operators can be used in more situations than just classes that manage dates. An addition
operator (+) in a string utility class such as MyString introduced to you in Listing 9.9 in
Lesson 9, “Classes and Objects,” would facilitate easy concatenation:

MyString sayHello ("Hello ");

MyString sayWorld (" world");

MyString sumThem (sayHello + sayWorld); // if operator+ were supported by
MyString

The effort in implementing relevant operators will be rewarded by
the ease of consumption of the class.

NOTE

On a broad level, operators in C++ can be classified into two types: unary operators and
binary operators.

Unary Operators

As the name suggests, operators that function on a single operand are called unary
operators. A unary operator that is implemented in the global namespace or as a static
member function of a class uses the following structure:

return type operator operator type (parameter type)

{
}

// ... implementation

A unary operator that is a (non-static) member of a class has a similar structure but is
lacking in parameters, because the single parameter that it works upon is the instance of
the class itself (*this):

return type operator operator type ()

{
}

// ... implementation

Types of Unary Operators

The unary operators that can be overloaded (or redefined) are shown in Table 12.1.

TABLE 12.1 Unary Operators

Operator Name

++ Increment

-- Decrement

* Pointer dereference
-> Member selection

! Logical NOT

& Address-of

Operator Name

~ One’s complement
+ Unary plus
- Unary negation

Conversion operators Conversion into other types

Programming a Unary Increment/Decrement
Operator

A unary prefix increment operator (++) can be programmed using the following syntax
within the class declaration:

// Unary increment operator (prefix)
Date& operator ++ ()

// operator implementation code
return *this;

The postfix increment operator (++), on the other hand, has a different return type and an
input parameter (that is not always used):

Date operator ++ (int)

{
// Store a copy of the current state of the object, before incrementing day
Date copy (*this);

// increment implementation code

// Return state before increment (because, postfix)
return copy;

The prefix and postfix decrement operators have a similar syntax as the increment
operators, just that the declaration would contain a - - where you see a ++. Listing 12.1
shows a simple class Date that allows incrementing days using operator (++).

LISTING 12.1 A Calendar Class That Handles Day, Month, and Year, and Allows
Incrementing and Decrementing Days

#include <iostream>
using namespace std;

0

1

2

3: class Date

4: {

5: private:

6 int day, month, year;
7

8

: public:

9: Date (int inMonth, int inDay, int inYear)
10: : month (inMonth), day(inDay), year (inYear) {};
11:
12: Date& operator ++ () // prefix increment
13: {
14: ++day;
15: return *this;
16: }
17:
18: Date& operator -- () // prefix decrement
19: {
20: --day;
21: return *this;
22: }
23:
24: void DisplayDate()
25: {
26: cout << month << " / " << day << " / " << year << endl;
27: }
28: };
29:
30: int main ()
31: |
32: Date holiday (12, 25, 2016); // Dec 25, 2016
33:
34: cout << "The date object is initialized to: ";
35: holiday.DisplayDate () ;
36:
37: ++holiday; // move date ahead by a day
38: cout << "Date after prefix-increment is: ";
39: holiday.DisplayDate () ;
40:
47 : --holiday; // move date backwards by a day
42: cout << "Date after a prefix-decrement is: ";
43: holiday.DisplayDate ();
44 :
45: return 0;

46: }

Output v

The date object is initialized to: 12 / 25 / 2016
Date after prefix-increment is: 12 / 26 / 2016
Date after a prefix-decrement is: 12 / 25 / 2016

Analysis v

The operators of interest defined in Lines 12 to 22, help in adding or subtracting a day
at a time from instances of class Day, as shown in Lines 37 and 41 in main (). Prefix
increment operators as demonstrated in this sample need to return a reference to the
instance after completing the increment operation.

This version of a date class has a bare minimum implementa-
tion to reduce lines and to explain how prefix operator (++) and
operator (--) are to be implemented. A professional version of
the same would implement rollover functionalities for month and
year and take leap years into consideration as well.

NOTE

To support postfix increment or decrement, you simply add the following code to class
Date:

// postfix differs from prefix operator in return-type and parameters
Date operator ++ (int) // postfix increment
{

Date copy (month, day, year);

++day;

return copy; // copy of instance before increment returned

Date operator -- (int) // postfix decrement

{
Date copy(month, day, year);
--day;
return copy; // copy of instance before decrement returned

When your version of class Date supports both prefix and postfix increment
and decrement operators, you will be able to use objects of the class using the following
syntax:

Date holiday (12, 25, 2016); // instantiate
++ holiday; // using prefix increment operator++
holiday ++; // using postfix increment operator++

-- holiday; // using prefix decrement operator --
holiday --; // using postfix decrement operator --

As the implementation of the postfix operators demonstrates, a
copy containing the existing state of the object is created before
the increment or decrement operation to be returned thereafter.

NOTE

In other words, if you had the choice between using ++ object;
and object ++; to essentially only increment, you should
choose the former to avoid the creation of a temporary copy that
will not be used.

Programming Conversion Operators
If you use Listing 12.1 and insert the following line in main ():

cout << holiday; // error in absence of conversion operator

The code would result in the following compile failure: error: binary '<<' : no
operator found which takes a right-hand operand of type 'Date'
(or there is no acceptable conversion). This error essentially indicates that
cout doesn’t know how to interpret an instance of Date as class Date does not sup-
port the operators that convert its contents into a type that cout would accept.

We know that cout can work well with a const char*:

std::cout << "Hello world"; // const char* works!

So, getting cout to work with an instance of type Date might be as simple as adding an
operator that returns a const char* version:

operator const char* ()

{
}

// operator implementation that returns a char*

Listing 12.2 is a simple implementation of this conversion operator.

LISTING 12.2 Implementing Conversion operator const char* for class Date

#include <iostream>

#include <sstream> // new include for ostringstream
#include <strings>

using namespace std;

class Date

{

o Ul B W N o

7: private:

8: int day, month, year;
9: string dateInString;
10:
11: public:
12: Date (int inMonth, int inDay, int inYear)
13: : month (inMonth), day(inDay), year(inYear) {};
14:
15: operator const char*()
16: {
17: ostringstream formattedDate; // assists string construction
18: formattedDate << month << " / " << day << " / " << year;
19:
20: dateInString = formattedDate.str();
21: return dateInString.c str();
22: }
23: };
24 :
25: int main ()
26: {
27: Date Holiday (12, 25, 2016);
28:
29: cout << "Holiday is on: " << Holiday << endl;
30:
31: // string strHoliday (Holiday); // OK!
32: // strHoliday = Date(11, 11, 2016); // also OK!
33:
34: return 0;
35: }
Output v

Holiday is on: 12 / 25 / 2016

Analysis v

The benefit of implementing operator const char* as shown in Lines 15 to 23 is
visible in Line 29 in main () . Now, an instance of class Date can directly be used in
a cout statement, taking advantage of the fact that cout understands const char*.
The compiler automatically uses the output of the appropriate (and in this case, the only
available) operator in feeding it to cout that displays the date on the screen. In your
implementation of operator const char*, you use std: :ostringstream to convert
the member integers into a std: : string object as shown in Line 18. You could’ve
directly returned formattedDate.str (), yet you store a copy in private member
Date::dateInString in Line 20 because formattedDate being a local variable is
destroyed when the operator returns. So, the pointer got via str () would be invalidated
on function return.

This operator opens up new possibilities toward consuming class Date. It allows you
to even assign an instance of a Date directly to a string:

string strHoliday (holiday) ;
strHoliday = Date (11, 11, 2016);

Note that such assignments cause implicit conversions, that is,
the compiler has used the available conversion operator (in this
case const charx) thereby permitting unintended assignments
that get compiled without error. To avoid implicit conversions, use
keyword explicit at the beginning of an operator declaration,
as follows:

CAUTION

explicit operator const char* ()

{

// conversion code here

Using explicit would force the programmer to assert his
intention to convert using a cast:

string strHoliday(static_cast<const char*>(Holiday)) ;

strHoliday=static_cast<const char*s>(Date(11,11,2016)) ;

Casting, including static_cast, is discussed in detail in
Lesson 13, “Casting Operators.”

Program as many operators as you think your class would be
used with. If your application needs an integer representation of
a Date, then you may program it as follows:

NOTE

explicit operator int ()

{

return day + month + year;

This would allow an instance of pate to be used or transacted
as an integer:

FuncTakesInt (static_cast<ints>(Date (12, 25, 2016)));

Listing 12.8 later in this lesson also demonstrates conversion
operators used with a string class.

Programming Dereference Operator (*) and Member
Selection Operator (->)

The dereference operator (*) and member selection operator (->) are most frequently used
in the programming of smart pointer classes. Smart pointers are utility classes that wrap
regular pointers and simplify memory management by resolving ownership and copy
issues using operators. In some cases, they can even help improve the performance of the
application. Smart pointers are discussed in detail in Lesson 26, “Understanding Smart
Pointers.” This lesson takes a brief look at how overloading operators helps in making
smart pointers work.

Analyze the use of the std: :unique_ ptr in Listing 12.3 and understand how it uses
operator (*) and operator (=) to help you use the smart pointer class like any normal
pointer.

LISTING 12.3 Using Smart Pointer unique ptr to Manage a Dynamically Allocated
Instance of class Date

0: #include <iostream>
1: #include <memory> // new include to use unique ptr
2: using namespace std;
3:
4: class Date
5: {
6: private:
7: int day, month, year;
8: string dateInString;
9:
10: public:
11 Date (int inMonth, int inDay, int inYear)
12 : month (inMonth), day(inDay), year(inYear) {};
13:
14: void DisplayDate ()
15: {
16 cout << month << " / " << day << " / " << year << endl;
17 }
18: };
19
20: int main()
21: {
22 unique_ptr<int> smartIntPtr(new int);
23: *smartIntPtr = 42;
24:
25: // Use smart pointer type like an int*
26 cout << "Integer value is: " << *smartIntPtr << endl;

N
~

28: unique ptr<Date> smartHoliday (new Date(12, 25, 2016));

29: cout << "The new instance of date contains: ";
30:

31: // use smartHoliday just as you would a Date*
32: smartHoliday->DisplayDate () ;

33:

34: return 0;

35: }

Output v

Integer value is: 42
The new instance of date contains: 12 / 25 / 2016

Analysis v

Line 22 is where you declare a smart pointer to type int. This line shows template
initialization syntax for smart pointer class unique ptr. Similarly, Line 28 declares a
smart pointer to an instance of class Date. Focus on the pattern, and ignore the details
for the moment.

Don’t worry if this template syntax looks awkward because
templates are introduced later in Lesson 14, “An Introduction
to Macros and Templates.”

NOTE

This example demonstrates how a smart pointer allows you to use normal pointer syntax
as shown in Lines 23 and 32. In Line 23, you are able to display the value of the int
using *smartIntPtr, whereas in Line 32 you use smartHoliday->DisplayData ()
as if these two variables were an int+* and Date*, respectively. The secret lies in the
pointer class std: :unique_ ptr that is smart because it implements operator (*) and
operator (->).

Smart pointer classes can do a lot more than just parade around
as normal pointers, or de-allocate memory when they go out of
scope. Find out more about this topic in Lesson 26.

NOTE

To see an implementation of a basic smart pointer class that has
overloaded these operators, you may briefly visit Listing 26.1.

Binary Operators

Operators that function on two operands are called binary operators. The definition of
a binary operator implemented as a global function or a static member function is the
following:

return _type operator type (parameterl, parameter2);

The definition of a binary operator implemented as a class member is

return _type operator type (parameter);

The reason the class member version of a binary operator accepts only one parameter is
that the second parameter is usually derived from the attributes of the class itself.

Types of Binary Operators

Table 12.2 contains binary operators that can be overloaded or redefined in your C++
application.

TABLE 12.2 Overloadable Binary Operators

Operator Name

, Comma

1= Inequality

% Modulus

$= Modulus/assignment

& Bitwise AND

&& Logical AND

&= Bitwise AND/assignment
* Multiplication

*= Multiplication/assignment
+ Addition

+= Addition/assignment

- Subtraction

= Subtraction/assignment

Operator Name

>* Pointerto-member selection

/ Division

/= Division/assignment

< Less than

<< Left shift

<<= Left shift/assignment

<= Less than or equal to

= Assignment, Copy Assignment and Move
Assignment

== Equality

> Greater than

>= Greater than or equal to

>> Right shift

>>= Right shift/assignment

- Exclusive OR

= Exclusive OR/assignment

\ Bitwise inclusive OR

|= Bitwise inclusive OR/assignment
| Logical OR

(] Subscript operator

Programming Binary Addition (a+b) and Subtraction
(a-b) Operators

Similar to the increment/decrement operators, the binary plus and minus, when defined,
enable you to add or subtract the value of a supported data type from an object of the
class that implements these operators. Take a look at your calendar class Date again.
Although you have already implemented the capability to increment Date so that it
moves the calendar one day forward, you still do not support the capability to move it,
say, five days ahead. To do this, you need to implement binary operator (+), as the code
in Listing 12.4 demonstrates.

LISTING 12.4 Calendar Class Featuring the Binary Addition Operator

0: #include <iostream>

1: using namespace std;

2:

3: class Date

4: {

5: private:

6: int day, month, year;

7: string dateInString;

8:

9: public:
10 Date (int inMonth, int inDay, int inYear)
11: month (inMonth), day(inDay), year (inYear) {};
12:

13: Date operator + (int daysToAdd) // binary addition
14: {

15 Date newDate (month, day + daysToAdd, year);
16: return newDate;

17: }

18:

19 Date operator - (int daysToSub) // binary subtraction
20 {
21 return Date (month, day - daysToSub, year);
22: }
23:
24: void DisplayDate ()
25: {
26 cout << month << " / " << day << " / " << year << endl;
27 }
28 },'
29:

30: int main()

31: |

32: Date Holiday (12, 25, 2016);

33: cout << "Holiday on: ";

34: Holiday.DisplayDate ();

35:

36: Date PreviousHoliday (Holiday - 19);

37: cout << "Previous holiday on: ";

38: PreviousHoliday.DisplayDate () ;

39:

40 Date NextHoliday (Holiday + 6);

41: cout << "Next holiday on: ";

42: NextHoliday.DisplayDate () ;

43:

44 return 0;

IS
w1
—

Output v

Holiday on: 12 / 25 / 2016
Previous holiday on: 12 / 6 / 2016
Next holiday on: 12 / 31 / 2016

Analysis v

Lines 13 to 22 contain the implementations of the binary operator (+) and operator (-)
that permit the use of simple addition and subtraction syntax as seen in main () in Lines
40 and 36, respectively.

The binary addition operator would also be useful in a string class. In Lesson 9,

you analyze a simple string wrapper class MyString that encapsulates memory
management, copying, and the like, as shown in Listing 9.9. This class MyString
doesn’t support the concatenation of two strings using a simple syntax:

MyString Hello("Hello ");

MyString World(" World");
MyString HelloWorld(Hello + World); // error: operator+ not defined

Defining this operator (+) makes using MyString extremely easy and is hence worth the
effort:

MyString operator+ (const MyString& addThis)

{

MyString newString;

if (addThis.buffer != NULL)

{

newString.buffer = new char[GetLength() + strlen(addThis.buffer) + 1];
strcpy (newString.buffer, buffer);
strcat (newString.buffer, addThis.buffer);

}

return newString;

Add the preceding code to Listing 9.9 with a private default constructor MyString ()
with empty implementation to be able to use the addition syntax. You can see a version
of class MyString with operator (+) among others in Listing 12.11 later in this lesson.

Implementing Addition Assignment (+=)
and Subtraction Assignment (-=) Operators

The addition assignment operators allow syntax such as “a += b;” that allows the
programmer to increment the value of an object a by an amount b. In doing this, the
utility of the addition assignment operator is that it can be overloaded to accept different
types of parameter b. Listing 12.5 that follows allows you to add an integer value to a
Date object.

LISTING 12.5 Defining Operator (+=) and Operator (-=) to Add or Subtract Days
in the Calendar Given an Integer Input

: #include <iostreams>
: using namespace std;

: class Date

0

1

2

3

4: |

5: private:
6 int day, month, year;
7

8

9

: public:

Date(int inMonth, int inDay, int inYear)
10: : month (inMonth), day(inDay), year(inYear) {}
11:
12: void operator+= (int daysToAdd) // addition assignment
13: {
14: day += daysToAdd;
15: }
16:
17: void operator-= (int daysToSub) // subtraction assignment
18: {
19: day -= daysToSub;
20: }
21:
22: void DisplayDate ()
23: {
24: cout << month << " / " << day << " / " << year << endl;
25: }
26: };

27:

28: int main()

29: {

30: Date holiday (12, 25, 2016);

31: cout << "holiday is on: ";

32: holiday.DisplayDate () ;

33:

34: cout << "holiday -= 19 gives: ";
35: holiday -= 19;

36: holiday.DisplayDate() ;

37:

38: cout << "holiday += 25 gives: ";
39: holiday += 25;

40: holiday.DisplayDate () ;

41:

42: return 0;

43: }

Output v

holiday is on: 12 / 25 / 2016
holiday -= 19 gives: 12 / 6 / 2016
holiday += 25 gives: 12 / 31 / 2016

Analysis v

The addition and subtraction assignment operators of interest are in Lines 12 to 20. These
allow adding and subtracting an integer value for days, as seen in main (), for instance:

35: holiday -= 19;
39: holiday += 25;

Your class Date now allows users to add or remove days from it as if they are dealing
with integers using addition or subtraction assignment operators that take an int as a
parameter. You can even provide overloaded versions of the addition assignment operator
(+=) that work with an instance of a fictitious class Days:

// operator that adds a Days to an existing Date
void operator += (const Days& daysToAdd)

{
}

day += daysToAdd.GetDays() ;

The multiplication assignment *=, division assignment /=,
modulus assignment %=, subtraction assignment -=, left-shift
assignment <<=, right-shift assignment >>=, XOR assignment *=,
bitwise inclusive OR assignment |=, and bitwise AND assignment
&= operators have a syntax similar to the addition assignment
operator shown in Listing 12.5.

NOTE

Although the ultimate objective of overloading operators is mak-
ing the class easy and intuitive to use, there are many situa-
tions where implementing an operator might not make sense.
For example, our calendar class pate has absolutely no use for
a bitwise AND assignment &= operator. No user of this class
should ever expect (or even think of) getting useful results from
an operation such as greatbDay &= 20;.

Overloading Equality (==) and Inequality (!=)
Operators
What do you expect when the user of class Date compares one instance to another:

if (datel == date2)

{
}
else

{
}

// Do something

// Do something else

In the absence of an equality operator ==, the compiler simply performs a binary com-
parison of the two objects and returns true when they are exactly identical. This binary
comparison will work for instances of classes containing simple data types (like the Date
class as of now), but it will not work if the class in question has a non-static string mem-
ber (char*), such as MyString in Listing 9.9. When two instances of class MyString
are compared, a binary comparison of the member attributes would actually compare

the member string pointer values (MyString: :buffer). These would not be equal

even when the strings are identical in content. Comparisons involving two instances of
MyString would return false consistently. You solve this problem by defining compari-
son operators. A generic expression of the equality operator is the following:

bool operator== (const ClassType& compareTo)

{
}

// comparison code here, return true if equal else false

The inequality operator can reuse the equality operator:

bool operator!= (const ClassType& compareTo)

{
}

// comparison code here, return true if inequal else false

The inequality operator can be the inverse (logical NOT) of the result of the equality
operator. Listing 12.6 demonstrates comparison operators defined by our calendar
class Date.

LISTING 12.6 Demonstrates Operators == and ! =

0: #include <iostream>

1: using namespace std;

2:

3: class Date

4: {

5: private:

6: int day, month, year;

7:

8: public:

9: Date(int inMonth, int inDay, int inYear)
10: month (inMonth), day(inDay), year (inYear) {}
11:

12: bool operator== (const Date& compareTo)
13: {

14: return ((day == compareTo.day)

15: && (month == compareTo.month)
16: && (year == compareTo.year));
17: }

18:

19: bool operator!= (const Date& compareTo)
20: {

21: return ! (this->operator==(compareTo)) ;
22: }

23:

24: void DisplayDate()

25: {

26 cout << month << " / " << day << " / " << year << endl;
27: }

28: };

29:

30: int main()

31:

32: Date holidayl (12, 25, 2016);

33: Date holiday2 (12, 31, 2016);

34:

35: cout << "holiday 1 is: ";

36: holidayl.DisplayDate() ;

37: cout << "holiday 2 is: ";

38: holiday2.DisplayDate () ;

39:

40: if (holidayl == holiday2)

41: cout << "Equality operator: The two are on the same day" << endl;
42: else

43: cout << "Equality operator: The two are on different days" << endl;
44 :

45: if (holidayl != holiday2)

46: cout << "Inequality operator: The two are on different days" << endl;
47: else

48: cout << "Inequality operator: The two are on the same day" << endl;
49:

50: return 0;

51:

Output v

holiday 1 is: 12 / 25 / 2016

holiday 2 is: 12 / 31 / 2016

Equality operator: The two are on different days
Inequality operator: The two are on different days

Analysis v

The equality operator (==) is a simple implementation that returns true if the day,
month, and year are all equal, as shown in Lines 12 to 17. The inequality operator (! =)
simply reuses the equality operator code as seen in Line 21. The presence of these
operators helps compare two Date objects, holidayl and holiday2, in main () in
Lines 40 and 45.

Overloading <, >, <=, and >= Operators

The code in Listing 12.6 made the Date class intelligent enough to be able to tell
whether two Date objects are equal or unequal. You need to program the less-than (<),
greater-than (>), less-than-equals (<=), and greater-than-equals (>=) operators to enable
conditional checking akin to the following:

if

or

if

(datel < date2) {// do something}

(datel <= date2) {// do something}

or

if (datel > date2) {// do something}

or

if (datel >= date2) {// do something}

These operators are demonstrated by the code shown in Listing 12.7.

LISTING 12.7 Demonstrates Implementing <, <=, >, and >= Operators

0: #include <iostreams>

1: using namespace std;

2:

3: class Date

4: {

5: private:

6: int day, month, year;

7:

8: public:

9: Date (int inMonth, int inDay, int inYear)
10: month (inMonth), day(inDay), year(inYear) {}
11:

12: bool operator< (const Date& compareTo)
13: {

14: if (year < compareTo.year)

15: return true;

16: else if (month < compareTo.month)
17: return true;

18: else if (day < compareTo.day)

19: return true;

20: else

21: return false;

22: }

23:

24: bool operator<= (const Date& compareTo)
25: {

26: if (this->operator== (compareTo))
27: return true;

28: else

29: return this->operator< (compareTo) ;
30: }

31:

32: bool operator > (const Date& compareTo)
33: {

34: return ! (this->operator<= (compareTo)) ;
35: }

w
o

37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72
73:
74 :
75:
76:
77 :
78:
79:
80:
81:

bool operator== (const Date& compareTo)

{
return ((day == compareTo.day)
&& (month == compareTo.month)
&& (year == compareTo.year));
}

bool operator>= (const Date& compareTo)

{

if (this—>operator== (compareTo))
return true;
else
return this->operator> (compareTo) ;
}
void DisplayDate ()
{
cout << month << " / " << day << " / " << year << endl;
}
Vi
int main()

{

Date holidayl (12, 25, 2016);
Date holiday2 (12, 31, 2016);

cout << "holiday 1 is: ";
holidayl.DisplayDate() ;
cout << "holiday 2 is: ";
holiday2.DisplayDate () ;

if (holidayl < holiday2)
cout << "operator<: holidayl happens first"

if (holiday2 > holidayl)
cout << "operator>: holiday2 happens later"

if (holidayl <= holiday2)
cout << "operator<=: holidayl happens on or

if (holiday2 >= holidayl)
cout << "operator>=: holiday2 happens on or

return 0;

<< endl;

<< endl;

before holiday2" << endl;

after holidayl" << endl;

Output v

holiday 1 is: 12 / 25 / 2016

holiday 2 is: 12 / 31 / 2016

operator<: holidayl happens first

operator>: holiday2 happens later

operator<=: holidayl happens on or before holiday2
operator>=: holiday2 happens on or after holidayl

Analysis v

The operators of interest are implemented in Lines 12 to 50 and partially reuse operator
(==) that you saw in Listing 12.6. The implementation of operators ==, <, and > has been
consumed by the rest.

The operators have been consumed inside main () between Lines 68 and 78, which
indicate how easy it now is to compare two different dates.

Overloading Copy Assignment Operator (=)

There are times when you want to assign the contents of an instance of a class to another,
like this:
Date holiday(12, 25, 2016);

Date anotherHoliday (1, 1, 2017);
anotherHoliday = holiday; // uses copy assignment operator

This assignment invokes the default copy assignment operator that the compiler has
built in to your class when you have not supplied one. Depending on the nature of your
class, the default copy assignment operator might be inadequate, especially if your class
is managing a resource that will not be copied. This problem with the default copy
assignment operator is similar to the one with the default copy constructor discussed in
Lesson 9. To ensure deep copies, as with the copy constructor, you need to specify an
accompanying copy assignment operator:

ClassType& operator= (const ClassType& copySource)

{

if (this != ©Source) // protection against copy into self

{
}

return *this;

// copy assignment operator implementation

Deep copies are important if your class encapsulates a raw pointer, such as class
MyString shown in Listing 9.9. To ensure deep copy during assignments, define a copy
assignment operator as shown in Listing 12.8.

LISTING 12.8 A Better class MyString from Listing 9.9 with a Copy Assignment

Operator =
0: #include <iostreams>
1: using namespace std;
2: #include <string.h>
3: class MyString
4:
5: private:
6: char* buffer;
7:
8: public:
9: MyString(const char* initialInput)
10 {
11 if (initialInput != NULL)
12 {
13: buffer = new char [strlen(initialInput) + 1];
14: strcpy (buffer, initiallInput);
15: }
16 else
17 buffer = NULL;
18 }
19
20 // Copy assignment operator
21 MyString& operator= (const MyString& copySource)
22 {
23: if ((this != ©Source) && (copySource.buffer != NULL))
24: {
25: if (buffer != NULL)
26 delete[] buffer;
27:
28: // ensure deep copy by first allocating own buffer
29: buffer = new char [strlen(copySource.buffer) + 11];
30:
31: // copy from the source into local buffer
32: strcpy (buffer, copySource.buffer);
33: }
34:
35: return *this;
36: }

w
~

38: operator const char* ()

39: {

40: return buffer;

41: }

42:

43: ~MyString()

44 {

45: delete[] buffer;

46: }

47: };

48:

49: int main()

50: |

51: MyString stringl ("Hello ");

52: MyString string2 (" World");

53:

54: cout << "Before assignment: " << endl;
55: cout << stringl << string2 << endl;
56: string2 = stringl;

57: cout << "After assignment string2 = stringl: " << endl;
58: cout << stringl << string2 << endl;
59:

60: return 0;

61: }

Output v

Before assignment:

Hello World

After assignment string2 = stringl:
Hello Hello

Analysis v

I have purposely omitted the copy constructor in this sample to reduce lines of code (but
you should be inserting it when programming such a class; refer Listing 9.9 as a refer-
ence). The copy assignment operator is implemented in Lines 21 to 36. It is similar in
function to a copy constructor and performs a starting check to ensure that the same
object is not both the copy source and destination. After the checks return true, the
copy assignment operator for MyString first deallocates its internal buf fer before
reallocating space for the text from the copy source and then uses strcpy () to copy, as
shown in Line 14.

Another subtle change in Listing 12.8 over Listing 9.9 is that you
have replaced function GetString() by operator const char*
as shown in Lines 38 to 41. This operator makes it even easier
1o use class MyString, as shown in Line 55, where one cout
statement is used to display two instances of MyString.

NOTE

When implementing a class that manages a dynamically allo-
cated resource such as an array allocated using new, always
ensure that you have implemented (or evaluated the implementa-
tion of) the copy constructor and the copy assignment operator
in addition to the constructor and the destructor.

CAUTION

Unless you address the issue of resource ownership when an
object of your class is copied, your class is incomplete and
endangers the stability of the application when used.

To create a class that cannot be copied, declare the copy con-
structor and copy assignment operator as private. Declaration
as private without implementation is sufficient for the compiler
to throw error on all attempts at copying this class via passing to
a function by value or assigning one instance into another.

TIP

Subscript Operator ([1)

The operator that allow array-style [1 access to a class is called subscript operator.
The typical syntax of a subscript operator is:

return_type& operator [] (subscript type& subscript);

So, when creating a class such as MyString that encapsulates a dynamic array class of
characters in a char* buffer, a subscript operator makes it really easy to randomly
access individual characters in the buffer:

class MyString
{
// ... other class members
public:
/*const*/ char& operator [] (int index) /*const*/

{

// return the char at position index in buffer

}i

The sample in Listing 12.9 demonstrates how the subscript operator ([]1) helps the user in
iterating through the characters contained in an instance of MyString using normal
array semantics.

LISTING 12.9 Implementing Subscript Operator [] in class MyString to Allow Random
Access to Characters Contained in MyString: :buffer

0: #include <iostream>

1: #include <strings

2: #include <string.h>

3: using namespace std;

4: class MyString

5: {

6: private:

7: char* buffer;

8:

9: // private default constructor

10: MyString () {}

11:

12: public:

13: // constructor

14: MyString (const char* initialInput)

15: {

16: if (initialInput != NULL)

17: {

18: buffer = new char [strlen(initiallInput) + 1];
19: strepy (buffer, initiallInput);
20: }
21: else
22: buffer = NULL;
23: }
24:
25: // Copy constructor: insert from Listing 9.9 here
26: MyString (const MyString& copySource) ;

27:

28: // Copy assignment operator: insert from Listing 12.8 here
29: MyString& operator= (const MyString& copySource) ;
30:

31: const char& operator[] (int index) const

32: {

33: if (index < GetLength())

34: return buffer[index] ;

w w
o un
—

37: // Destructor

38: ~MyString()

39: {

40: if (buffer != NULL)

41: delete [] buffer;

42: }

43:

44: int GetLength() const

45: {

46: return strlen (buffer);

47: }

48:

49: operator const char* ()

50: {

51: return buffer;

52: }

53: };

54:

55: int main()

56:

57: cout << "Type a statement: ";

58: string strlInput;

59: getline(cin, strInput);

60:

61: MyString youSaid(strInput.c_str());

62:

63: cout << "Using operator[] for displaying your input: " << endl;
64: for(int index = 0; index < youSaid.GetLength(); ++index)
65: cout << youSaid[index] << " ";

66: cout << endl;

67:

68: cout << "Enter index 0 - " << youSaid.GetLength() - 1 << ": ";
69: int index = 0;

70: cin >> index;

71: cout << "Input character at zero-based position: " << index;
72 cout << " is: "<< youSaid[index] << endl;

73:

74: return 0;

75: }

Output v

Type a statement: Hey subscript operators[] are fabulous

Using operator[] for displaying your input:

Hey subscript operators [] are fabulous
Enter index 0 - 37: 2

Input character at zero-based position: 2 is: y

Analysis v

This is just a fun program that takes a sentence you input, constructs a MyString

using it, as shown in Line 61, and then uses a for loop to print the string character by
character with the help of the subscript operator ([1) using an array-like syntax, as shown
in Lines 64 and 65. The operator ([]) itself is defined in Lines 31 to 35 and supplies
direct access to the character at the specified position after ensuring that the requested
position is not beyond the end of the char* buffer.

Using keyword const is important even when programming
operators. Note how Listing 12.9 has restricted the return value
of subscript operator [] to const chars&. The program works
and compiles even without the const keywords, yet the reason
you have it there is to avoid this code:

CAUTION

MyString sayHello ("Hello World") ;

sayHello[2] = 'k'; //error: operator[] is const

By using const you are protecting internal member
MyString: :buffer from direct modifications from the outside
via operator []. In addition to classifying the return value
as const, you even have restricted the operator function type
to const to ensure that it cannot modify the class’s member
attributes.

In general, use the maximum possible const restriction to avoid
unintentional data modifications and increase protection of the
class’s member attributes.

When implementing subscript operators, you can improve on the version shown in
Listing 12.9. That one is an implementation of a single subscript operator that works for
both reading from and writing to the slots in the dynamic array.

You can, however, implement two subscript operators—one as a const function and the
other as a non-const one:

char& operator [] (int index); // use to write / change buffer at index
char& operator [] (int index) const; // used only for accessing char at index

The compiler will invoke the const function for read operations and the non-const
version for operations that write into the MyString object. Thus, you can (if you want
to) have separate functionalities in the two subscript operations. There are other binary
operators (listed in Table 12.2) that can be redefined or overloaded, but that are not

discussed further in this lesson. Their implementation, however, is similar to those that
have already been discussed.

Other operators, such as the logical operators and the bitwise operators, need to be
programmed if the purpose of the class would be enhanced by having them. Clearly, a
calendar class such as Date does not necessarily need to implement logical operators,
whereas a class that performs string and numeric functions might need them frequently.

Keep the objective of your class and its use in perspective when overloading operators or
writing new ones.

Function Operator ()

The operator () that make objects behave like a function is called a function operator.
They find application in the standard template library (STL) and are typically used

in STL algorithms. Their usage can include making decisions; such function objects
are typically called unary or binary predicates, depending on the number of operands
they work on. Listing 12.10 analyzes a really simple function object so you can first
understand what gives them such an intriguing name!

LISTING 12.10 A Function Object Created Using Operator ()

1: #include <iostreams

2: #include <string>

3: using namespace std;

4:

5: class Display

6: {

7: public:

8: void operator () (string input) const
9: {

10: cout << input << endl;

11: }

12: };

13:

14: int main ()

15: |

16 Display displayFuncObj;

17

18 // equivalent to displayFuncObj.operator () ("Display this string! ");
19 displayFuncObj ("Display this string! ");
20
21: return 0;

N
N

}

Output v

Display this string!

Analysis v

Lines 8 to 11 implement operator () that is then used inside the function main ()

at Line 19. Note how the compiler allows the use of object displayFuncObj as a
function in Line 19 by implicitly converting what looks like a function call to a call to
operator ().

Hence, this operator is also called the function operator (), and the object of Display is
also called a function object or functor. This topic is discussed exhaustively in Lesson 21,
“Understanding Function Objects.”

Move Constructor and Move Assighment
Operator for High Performance
Programming

The move constructor and the move assignment operators are performance optimization
features that have become a part of the standard in C++11, ensuring that temporary
values (rvalues that don’t exist beyond the statement) are not wastefully copied. This is
particularly useful when handling a class that manages a dynamically allocated resource,
such as a dynamic array class or a string class.

The Problem of Unwanted Copy Steps

Take a look at the addition operator+ as implemented in Listing 12.4. Notice that it
actually creates a copy and returns it. If class MyString as demonstrated in Listing
12.9 supported the addition operator+, the following lines of code would be valid
examples of easy string concatenation:

MyString Hello("Hello ");

MyString World ("World") ;

MyString CPP(" of C++");

MyString sayHello(Hello + World + CPP); // operator+, copy constructor
MyString sayHelloAgain ("overwrite this");

sayHelloAgain = Hello + World + CPP; // operator+, copy constructor, copy
assignment operator=

This simple construct that makes concatenating three strings easy, uses the binary
addition operator+

MyString operator+ (const MyString& addThis)

{

MyString newStr;

if (addThis.buffer != NULL)

{
}

return newStr; // return copy by value, invoke copy constructor

// copy into newStr

While making it easy to concatenate the strings, the addition operator+ can cause
performance problems. The creation of sayHello requires the execution of the addition
operator twice. Each execution of operator+ results in the creation of a temporary copy
as a MyString is returned by value, thus causing the execution of the copy constructor.
The copy constructor executes a deep copy—to a temporary value that does not exist
after the expression. Thus, this expression results in temporary copies (rvalues, for

the purists) that are not ever required after the statement and hence are a performance
bottleneck forced by C++. Well, until recently at least.

This problem has now finally been resolved in C++11 in which the compiler specifically
recognizes temporaries and uses move constructors and move assignment operators,
where supplied by the programmer.

Declaring a Move Constructor and Move
Assignment Operator
The syntax of the move constructor is as follows:

class Sample

{

private:
Type* ptrResource;

public:
Sample (Sample&& moveSource) // Move constructor, note &&

{

ptrResource = moveSource.ptrResource; // take ownership, start move
moveSource.ptrResource = NULL;

}

Sample& operator= (Sample&& moveSource)//move assignment operator, note &&

{

if (this != &moveSource)

{

delete [] ptrResource; // free own resource
ptrResource = moveSource.ptrResource; // take ownership, start move
moveSource.ptrResource = NULL; // free move source of ownership

Sample(); // default constructor
Sample (const Sample& copySource); // copy constructor
Sample& operator= (const Sample& copySource); // copy assignment

}i

Thus, the declaration of the move constructor and assignment operator are different from
the regular copy constructor and copy assignment operator in that the input parameter is
of type Sample&&. Additionally, as the input parameter is the move-source, it cannot be
a const parameter as it is modified. Return values remain the same, as these are over-
loaded versions of the constructor and the assignment operator, respectively.

C++11 compliant compilers ensure that for rvalue temporaries the move constructor

is used instead of the copy constructor and the move assignment operator is invoked
instead of the copy assignment operator. In your implementation of these two, you ensure
that instead of copying, you are simply moving the resource from the source to the
destination. Listing 12.11 demonstrates the effectiveness of these two recent additions in
optimizing class MyString.

LISTING 12.11 class MyString with Move Constructor and Move Assignment
Operator in Addition to Copy Constructor and Copy Assignment Operator

0: #include <iostream>
1: #include <string.h>
2: using namespace std;
3: class MyString

4: {

5: private:

6 char* buffer;

7

8

MyString(): buffer (NULL) // private default constructor
9: {
10: cout << "Default constructor called" << endl;
11: }
12:
13: public:
14: MyString(const char* initialInput) // constructor
15: {

16: cout << "Constructor called for: " << initialInput << endl;

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64 :
65:
66:
67:

if (initialInput != NULL)

{
buffer = new char [strlen(initialInput) + 1];
strcpy (buffer, initiallInput);

}

else
buffer = NULL;

MyString (MyString&& moveSrc) // move constructor

{

cout << "Move constructor moves: " << moveSrc.buffer << endl;
if (moveSrc.buffer != NULL)
buffer = moveSrc.buffer; // take ownership i.e. 'move'
moveSrc.buffer = NULL; // free move source

MyString& operator= (MyString&& moveSrc) // move assignment op.

{
cout << "Move assignment op. moves: " << moveSrc.buffer << endl;
if ((moveSrc.buffer != NULL) && (this != &moveSrc))

{

delete[] buffer; // release own buffer

buffer = moveSrc.buffer; // take ownership i.e. 'move'
moveSrc.buffer = NULL; // free move source

return *this;

MyString (const MyString& copySrc) // copy constructor
{
cout << "Copy constructor copies: " << copySrc.buffer << endl;
if (copySrc.buffer != NULL)
{
buffer = new char[strlen(copySrc.buffer) + 1];
strcpy (buffer, copySrc.buffer);
}
else
buffer = NULL;

MyString& operator= (const MyString& copySrc) // Copy assignment op.

{

cout << "Copy assignment op. copies: " << copySrc.buffer << endl;
if ((this != ©Src) && (copySrc.buffer != NULL))

{

if (buffer != NULL)

68:
69:
70:
71:
72:
73:
74 :
75:
76:
77 :

79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:

}i

delete[] buffer;

buffer = new char[strlen(copySrc.buffer) + 1];
strcpy (buffer, copySrc.buffer);

return *this;

~MyString() // destructor

{

if (buffer != NULL)
delete[] buffer;

int GetLength()

{

return strlen(buffer);

operator const char*(

{

return buffer;

MyString operator+ (const MyString& addThis)

{

cout << "operator+ called: " << endl;
MyString newStr;

if (addThis.buffer != NULL)

{

newStr.buffer = new char[GetLength()+strlen(addThis.buffer)+1];
strcpy (newStr.buffer, buffer);
strcat (newStr.buffer, addThis.buffer);

return newStr;

int main()

{

MyString Hello("Hello ");
MyString World ("World");
MyString CPP (" of C++");

MyString sayHelloAgain ("overwrite this");
sayHelloAgain = Hello + World + CPP;

return 0;

Output v

Output without the move constructor and move assignment operator (by commenting out
Lines 26 to 48):

Constructor called for: Hello

Constructor called for: World

Constructor called for: of C++

Constructor called for: overwrite this
operator+ called:

Default constructor called

Copy constructor copies: Hello World
operator+ called:

Default constructor called

Copy constructor copies: Hello World of C++
Copy assignment op. copies: Hello World of C++

Output with the move constructor and move assignment operator enabled:

Constructor called for: Hello

Constructor called for: World

Constructor called for: of C++
Constructor called for: overwrite this
operator+ called:

Default constructor called

Move constructor moves: Hello World
operator+ called:

Default constructor called

Move constructor moves: Hello World of C++
Move assignment op. moves: Hello World of C++

Analysis v

This might be a really long code sample, but most of it has already been demonstrated in
previous examples and lessons. The most important part of this listing is in Lines 26 to
48 that implement the move constructor and the move assignment operator, respectively.
Parts of the output that have been influenced by this new addition to C++11 has been
marked in bold. Note how the output changes drastically when compared against the
same class without these two entities. If you look at the implementation of the move
constructor and the move assignment operator again, you see that the move semantic

is essentially implemented by taking ownership of the resources from the move source
moveSrc as shown in Line 31 in the move constructor and Line 43 in the move assign-
ment operator. This is immediately followed by assigning NULL to the move source
pointer as shown in Lines 32 and 44. This assignment to NULL ensures that the destruc-
tor of the instance that is the move source essentially does no memory deallocation via

delete in Line 80 as the ownership has been moved to the destination object. Note that in
the absence of the move constructor, the copy constructor is called that does a deep copy
of the pointed string. Thus, the move constructor has saved a good amount of processing
time in reducing unwanted memory allocations and copy steps.

Programming the move constructor and the move assignment operator is completely
optional. Unlike the copy constructor and the copy assignment operator, the compiler
does not add a default implementation for you.

Use this feature to optimize the functioning of classes that point to dynamically allocated
resources that would otherwise be deep copied even in scenarios where they’re only
required temporarily.

User Defined Literals

Literal constants were introduced in Lesson 3, “Using Variables, Declaring Constants.”
Here are some examples of a few:

int bankBalance = 10000;

double pi = 3.14;

char firstAlphabet = ‘a’;
const char* sayHello = "Hello!";

In the preceding code, 10000, 3.14, ‘a’, and "Hello!" are all literal constants!

C++11 extended the standard’s support of literals by allowing you to define your own
literals. For instance, if you were working on a scientific application that deals with
thermodynamics, you may want all your temperatures to be stored and operated using a
scale called Kelvin. You may now declare all your temperatures using a syntax similar to
the following:

Temperature kl = 32.15 F;
Temperature k2 = 0.0_C;

Using literals F and _C that you have defined, you have made your application a lot sim-
pler to read and therefore maintain.

To define your own literal, you define operator "' like this:

ReturnType operator "" YourLiteral (ValueType value)

{
}

// conversion code here

NOTE

Depending on the nature of the user defined literal, the
ValueType parameter would be restricted to one of the following:

unsigned long long int for integral literal

long double for floating point literal

char, wchar_t, charlé6_t, and char32_t for character literal
const char* for raw string literal

const char* together with size t for string literal

const wchar t* together with size t for string literal
const charlé_t* together with size_t for string literal

const char32 t* together with size t for string literal

Listing 12.12 demonstrates a user defined literal that converts types.

LISTING 12.12 Conversion from Fahrenheit and Centigrade to the Kelvin Scale

N R R R R R R R R R
O W O J O Ul b W N KHE O v

21:
22:
23:

W 3 o0 Ul W N O

#include <iostream>

using namespace std;

struct Temperature

{

double Kelvin;
Temperature (long double kelvin) : Kelvin(kelvin) {}

i

Temperature operator"" C(long double celcius)

{

return Temperature (celcius + 273);

}

Temperature operator "" F(long double fahrenheit)

{

return Temperature ((fahrenheit + 459.67) * 5 / 9);

}

int main()

{

Temperature kl = 31.73 F;
Temperature k2 = 0.0_C;

24 : cout << "kl is " << kl.Kelvin << " Kelvin" << endl;

25: cout << "k2 is " << k2.Kelvin << " Kelvin" << endl;
26:

27: return 0;

28: }

Output v

k1l is 273 Kelvin
k2 is 273 Kelvin

Analysis v

Lines 21 and 22 in the sample above initialize two instances of Temperature, one using
a user defined literal _F to declare an initial value in Fahrenheit and the other using a
user defined literal to declare an initial value in Celcius (also called Centigrade). The two
literals are defined in Lines 9-17, and do the work of converting the respective units

into Kelvin and returning an instance of Temperature. Note that k2 has intentionally
been initialized to 0.0_C and not to 0_C, because the literal _C has been defined (and is
required) to take a long double as input value and 0 would’ve interpreted as an integer.

Operators That Cannot Be Overloaded

With all the flexibility that C++ gives you in customizing the behavior of the operators
and making your classes easy to use, it still keeps some cards to itself by not allowing
you to change or alter the behavior of some operators that are expected to perform
consistently. The operators that cannot be redefined are shown in Table 12.3.

TABLE 12.3 Operators That CANNOT Be Overloaded or Redefined

Operator Name

Member selection

L Pointer-to-member selection
Scope resolution

? Conditional ternary operator

sizeof Gets the size of an object/class type

DO

DON’T

DO program as many operators as
would help making using your class
easy, but not more.

DO mark conversion operators
as explicit to avoid implicit
conversions.

DO always program a copy assign-
ment operator (with a copy construc-
tor and destructor) for a class that
contains raw pointer members.

DO always program a move
assignment operator (and move con-
structor) for classes that manage
dynamically allocated resources,
such as an array of data, when using
a C++11-compliant compiler.

Summary

DON'’T forget that the compiler
provides a default copy assignment
operator and copy constructor if

you don’t supply these, and they
won’t ensure deep copies of any raw
pointers contained within the class.

DON’T forget that if you don’t supply
a move assignment operator or move
constructor, the compiler does not
create these for you, but instead falls
back on the regular copy assignment
operator and copy constructor.

You learned how programming operators can make a significant difference to the ease
with which your class can be consumed. When programming a class that manages a
resource, for example a dynamic array or a string, you need to supply a copy constructor
and copy assignment operator for a minimum, in addition to a destructor. A utility class
that manages a dynamic array can do very well with a move constructor and a move
assignment operator that ensures that the contained resource is not deep-copied for
temporary objects. Last but not least, you learned that operators such as ., .*, ::, 2,

and sizeof cannot be redefined.

Q&A

Q My class encapsulates a dynamic array of integers. What functions and
operators should I implement for a minimum?

A When programming such a class, you need to clearly define the behavior in the
scenario where an instance is being copied directly into another via assignment or
copied indirectly by being passed to a function by value. You typically implement
the copy constructor, copy assignment operator, and the destructor. You also
implement the move constructor and move assignment operator if you want to

tweak the performance of this class in certain cases. To enable an array-like access
to elements stored inside an instance of the class, you would want to overload the
subscript operator[].

Q I have an instance object of a class. I want to support this syntax: cout
<< object;. What operator do I need to implement?

A You need to implement a conversion operator that allows your class to be
interpreted as a type that std: : cout can handle upfront. One way is to define
operator char* () as you also did in Listing 12.2.

Q I want to create my own smart pointer class. What functions and operators do
I need to implement for a minimum?

A A smart pointer needs to supply the ability of being used as a normal pointer as in
pSmartPtr or pSmartPtr->Func (). To enable this you implement operator ()
and operator (->). In addition, for it to be smart, you also take care of automatic
resource release/returns by programming the destructor accordingly, and you would
clearly define how copy or assignment works by implementing the copy constructor
and copy assignment operator or by prohibiting it by declaring these two as

private.

Workshop

The Workshop contains quiz questions to help solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can my subscript operator [] return const and non-const variants of return
types?
const Type& operator[] (int index) ;

Type& operator[] (int index); // is this OK?

2. Would you ever declare the copy constructor or copy assignment operator as
private?

3. Would it make sense to define a move constructor and move assignment operator
for your class Date?

Exercises
1. Program a conversion operator for class Date that converts the date it holds into a
unique integer.

2. Program a move constructor and move assignment operator for class
DynIntegers that encapsulates a dynamically allocated array in the form of
private member int*.

LESSON 13
Casting Operators

Casting is a mechanism by which the programmer can temporarily or
permanently change the interpretation of an object by the compiler.
Note that this does not imply that the programmer changes the object
itself—he simply changes the interpretation thereof. Operators that
change the interpretation of an object are called casting operators.

In this lesson, you learn
The need for casting operators
Why C-style casts are not popular with some C++ programmers

The four C++ casting operators

The concepts of upcasting and downcasting

Why C++ casting operators are not all-time favorites either

The Need for Casting

In a perfectly type-safe and type-strong world comprising well-written C++ applications,
there should be no need for casting and for casting operators. However, we live in a real
world where modules programmed by a lot of different people and vendors often using
different environments have to work together. To make this happen, compilers very
often need to be instructed to interpret data in ways that make them compile and the
application function correctly.

Let’s take a real-world example: Although most C++ compilers might support bool as a
native type, a lot of libraries are still in use that were programmed years back and in C.
These libraries made for C compilers had to rely on the use of an integral type to hold
Boolean data. So, a bool on these compilers is something akin to

typedef unsigned short BOOL;

A function that returns Boolean data would be declared as

BOOL IsX ();

Now, if such a library is to be used with a new application programmed in the latest
version of the C++ compiler, the programmer has to find a way to make the bool data
type as understood by his C++ compiler function with the BOOL data type as understood
by the library. The way to make this happen is by using casts:

bool Result = (bool)IsX (); // C-Style cast

The evolution of C++ saw the emergence of new C++ casting operators and that created
a split in the C++ programming community: a group that continued using C-style casts
in their C++ applications, and another that religiously converted to casting keywords
introduced by C++ compilers. The argument of the former group is that the C++ casts
are cumbersome to use, and sometimes differ in functionality to such a small extent that
they are of only theoretical value. The latter group, which evidently is comprised of C++
syntax purists, points out at the flaws in the C-style casts to make their case.

Because the real world contains both kinds of code in operation, it would be good to
simply read through this lesson, know the advantages and disadvantages of each style,
and formulate your own opinion.

Why C-Style Casts Are Not Popular
with Some C++ Programmers

Type safety is one of the mantras that C++ programmers swear by when singing praises
to the qualities of this programming language. In fact, most C++ compilers won’t even let
you get away with this:

char* staticStr = "Hello World!";
int* intArray = staticStr; // error: cannot convert char* to int*

... and rightfully so!
Now, C++ compilers still do see the need to be backward compliant to keep old and
legacy code building, and therefore automatically allow syntax such as:

int* intArray = (int*)staticStr; // Cast one problem away, create another

This C-style cast actually forces the compiler to interpret the destination as a type that
is conveniently of the programmer’s choice—a programmer who, in this case, did not
bother thinking that the compiler reported an error in the first place for good reason
and simply muzzled the compiler and forced it to obey. This, of course, does not go well
down the throats of C++ programmers who see their type safety being compromised by
casts that force anything through.

The C++ Casting Operators

Despite the disadvantages of casting, the concept of casting itself cannot be discarded. In
many situations, casts are legitimate requirements to solve important compatibility issues.
C++ additionally supplies a new casting operator specific to inheritance-based scenarios
that did not exist with C programming.

The four C++ casting operators are

static cast
dynamic_ cast

reinterpret cast

const_cast

The usage syntax of the casting operators is consistent:

destination type result = cast operator<destination type> (object to cast);

Using static cast

static_cast is a mechanism that can be used to convert pointers between related
types, and perform explicit type conversions for standard data types that would otherwise
happen automatically or implicitly. As far as pointers go, static cast implements a
basic compile-time check to ensure that the pointer is being cast to a related type. This

is an improvement over a C-style cast that allows a pointer to one object to be cast to an
absolutely unrelated type without any complaint. Using static_cast, a pointer can

be upcasted to the base type, or can be downcasted to the derived type, as the following
code-sample indicates.

Base* objBase = new Derived ();
Derived* objDer = static_cast<Derived*s(objBase); // ok!

// class Unrelated is not related to Base
Unrelated* notRelated = static cast<Unrelated*>(objBase); // Error
// The cast is not permitted as types are unrelated

Casting a Derived* t0 a Basex* is called upcasting and can be
done without any explicit casting operator:

NOTE

Derived objDerived;

Base* objBase = &objDerived; // ok!

Casting a Base* to a Derivedx* is called downcasting and cannot
be done without usage of explicit casting operators:

Derived objDerived;
Base* objBase = &objDerived; // Upcast -> ok!

Derived* objDer = objBase; // Error: Downcast needs
explicit cast

However, note that static_cast verifies only that the pointer types are related. It does
not perform any runtime checks. So, with static_cast, a programmer could still get
away with this bug:

Base* objBase = new Base();
Derived* objDer = static_cast<Derived*>(objBase); // Still no errors!

Here, objDer actually points to a partial Derived object because the object being pointed
to is actually a Base () type. Because static cast performs only a compile-time
check of verifying that the types in question are related and does not perform a runtime
check, a call to objDer->DerivedFunction () would get compiled, but probably result
in unexpected behavior during runtime.

Apart from helping in upcasting or downcasting, static_cast can, in many cases, help
make implicit casts explicit and bring them to the attention of the programmer or reader:

double Pi = 3.14159265;
int num = static_cast<int>(Pi); // Making an otherwise implicit cast, explicit

In the preceding code, num = Pi would have worked as well and to the same effect.
However, using a static_cast brings the nature of conversion to the attention of the
reader and indicates (to someone who knows static_cast) that the compiler has
performed the necessary adjustments based on the information available at compile-
time to perform the required type conversion. You would also need to use static
cast when using conversion operators or constructors that have been declared using
keyword explicit. Avoiding implicit conversions via keyword explicit is discussed
in Lesson 9, “Classes and Objects,” and Lesson 12, “Operator Types and Operator
Overloading.”

Using dynamic cast and Runtime Type Identification

Dynamic casting, as the name suggests, is the opposite of static casting and actually
executes the cast at runtime—that is, at application execution time. The result of a
dynamic_cast operation can be checked to see whether the attempt at casting suc-
ceeded. The typical usage syntax of the dynamic cast operator is

destination type* Dest = dynamic cast<class_type*>(Source) ;

if (Dest) // Check for success of the casting operation
Dest->CallFunc ();

For example:

Base* objBase = new Derived() ;

// Perform a downcast
Derived* objDer = dynamic cast<Derived*>(objBase) ;

if (objDer) // Check for success of the cast
objDer->CallDerivedFunction () ;

As shown in the preceding short example, given a pointer to a base-class object, the
programmer can resort to dynamic_cast to verify the type of the destination object
being pointed to before proceeding to use the pointer as such. Note that in the code
snippet it is apparent that the destination object is a Derived type. So, the sample is of
demonstrative value only. Yet, this is not always the case—for example, when a pointer
of type Derived= is passed to a function that accepts type Base*. The function can

use dynamic_cast given a base-class pointer type to detected type and then perform
operations specific to the types detected. Thus, dynamic_cast helps determine the type
at runtime and use a casted pointer when it is safe to do so. See Listing 13.1, which uses a
familiar hierarchy of class Tuna and class Carp related to base class Fish, where
the function DetectFishType () dynamically detects whether a Fish* is a Tuna* or

a Carp*.

Therefore, this mechanism of identifying the type of the object at
runtime is called runtime type identification (RTTI).

NOTE

LISTING 13.1 Using Dynamic Casting to Tell Whether a Fish Object Is a Tuna or a Carp

0: #include <iostreams

1: using namespace std;

2:

3: class Fish

4: {

5: public:

6: virtual void Swim()

7: {

8: cout << "Fish swims in water" << endl;
9: }

10:

11: // base class should always have virtual destructor
12: virtual ~Fish() {}

13: };

14:

15: class Tuna: public Fish
16: |
17: public:
18: void Swim()
19: {
20: cout << "Tuna swims real fast in the sea" << endl;
21: }
22:
23: void BecomeDinner (
24: {
25: cout << "Tuna became dinner in Sushi" << endl;
26: }
27: };
28:
29: class Carp: public Fish
30: |
31: public:

w
\S]

void Swim()

33: {

34: cout << "Carp swims real slow in the lake" << endl;
35: }

36:

37: void Talk ()

38: {

39: cout << "Carp talked Carp!" << endl;

40: }

471: };

42:

43: void DetectFishType (Fish* objFish)

44: |

45: Tuna* objTuna = dynamic cast <Tuna*>(objFish);

46: if (objTuna) // check success of cast

47: {

48: cout << "Detected Tuna. Making Tuna dinner: " << endl;
49: objTuna->BecomeDinner () ;

50: }

51:

52: Carp* objCarp = dynamic_cast <Carp*>(objFish);

53: if (objCarp)

54: {

55: cout << "Detected Carp. Making carp talk: " << endl;
56: objCarp->Talk() ;

57: }

58:

59: cout << "Verifying type using virtual Fish::Swim: " << endl;
60: objFish->Swim(); // calling virtual function Swim

61: }

62:

63: int main()

64: {

65: Carp myLunch;

66: Tuna myDinner;

67:

68: DetectFishType (&myDinner) ;

69: cout << endl;

70: DetectFishType (&myLunch) ;

71:

72 return 0;

73:}

Output v

Detected Tuna. Making Tuna dinner:

Tuna became dinner in Sushi

Verifying type using virtual Fish::Swim:
Tuna swims real fast in the sea

Detected Carp. Making carp talk:

Carp talked Carp!

Verifying type using virtual Fish::Swim:
Carp swims real slow in the lake

Analysis v

This sample uses a hierarchy where classes Tuna and Carp inherit from Fish.

For sake of explanation, not only do the two derived classes implement the virtual func-
tion Swim (), but they contain a function each that is specific to their types, namely
Tuna: :BecomeDinner () and Carp: :Talk (). What is special in this sample is that
given an instance of the base class Fish*, you are able to dynamically detect whether
that pointer points to a Tuna or a Carp. This dynamic detection or runtime type identi-
fication happens in function DetectFishType () defined in Lines 43—61. In Line 45,
dynamic_cast is used to test the nature of the input base class pointer of type Fish*
for type Tunax*. If this Fish* points to a Tuna, the operator returns a valid address, else
it returns NULL. Hence, the result of a dynamic cast always needs to be checked for
validity. After the check in Line 46 succeeds, you know that the pointer objTuna points
to a valid Tuna, and you are able to call function Tuna: : BecomeDinner () using it, as
shown in Line 49. With the Carp, you use the pointer to invoke function Carp: : Talk ()
as shown in Line 56. Before returning, DetectFishType () does a verification on the
type by invoking Fish: :Swim (), which being virtual redirects the call to the Swim ()
method implemented in Tuna or Carp, as applicable.

The return value of a dynamic_cast operation should always be
checked for validity. It is NULL when the cast fails.

CAUTION

Using reinterpret cast

reinterpret cast is the closest a C++ casting operator gets to the C-style cast.

It really does allow the programmer to cast one object type to another, regardless of
whether or not the types are related; that is, it forces a reinterpretation of type using a
syntax as seen in the following sample:

Base* objBase = new Base ();

Unrelated* notRelated = reinterpret cast<Unrelated*>(objBase) ;
// The code above compiles, but is not good programming!

This cast actually forces the compiler to accept situations that static cast would
normally not permit. It finds usage in certain low-level applications (such as drivers, for
example) where data needs to be converted to a simple type that an API—Application
Program Interface—can accept (for example, some OS-level APIs require data to be sent
as a BYTE array, that is, unsigned char*):

SomeClass* object = new SomeClass();

// Need to send the object as a byte-stream...
unsigned char* bytesFoAPI = reinterpret cast<unsigned char*>(object);

The cast used in the preceding code has not changed the binary representation of the
source object and has effectively cheated the compiler into allowing the programmer

to peek into individual bytes contained by an object of type SomeClass. Because no
other C++ casting operator would allow such a conversion that compromises type safety,
reinterpret cast is a last resort in performing an otherwise unsafe (and nonportable)
conversion.

As far as possible, you should refrain from using reinterpret
cast in your applications because it allows you to instruct the
compiler to treat type X as an unrelated type Y, which does not
look like good design or implementation.

CAUTION

Using const cast

const_cast enables you to turn off the const access modifier to an object. If you are
wondering why this cast is necessary at all, you are probably right in doing so. In an
ideal situation where programmers write their classes correctly, they remember to use the
const keyword frequently and in the right places. The practical world is unfortunately
way too different, and code like following is prevalent:

class SomeClass

{

public:
//

void DisplayMembers(); //problem - display function isn't const

}i

So, when you program a function such as

void DisplayAllData (const SomeClass& object)

{
object.DisplayMembers (); // Compile failure
// reason: call to a non-const member using a const reference

You are evidently correct in passing object as a const reference. After all, a display
function should be read-only