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Preface
C++	is	one	of	the	most	popular	and	most	widely	used	programming	languages,
and	it	has	been	like	that	for	three	decades.	Designed	with	a	focus	on
performance,	efficiency,	and	flexibility,	C++	combines	paradigms	such	as
object-oriented,	imperative,	generic,	and,	more	recently,	functional
programming.	C++	is	standardized	by	the	International	Organization	for
Standardization	(ISO)	and	has	undergone	massive	changes	over	the	last	decade.
With	the	standardization	of	C++11,	the	language	has	entered	into	a	new	age,
which	has	been	widely	referred	to	as	modern	C++.	Type	inference,	move
semantics,	lambda	expression,	smart	pointers,	uniform	initialization,	variadic
templates,	and	many	other	recent	features	have	changed	the	way	we	write	code
in	C++	to	the	point	that	it	almost	looks	like	a	new	programming	language.

This	book	addresses	many	of	the	new	features	included	in	C++11,	C++14,	and
the	forthcoming	C++17.	This	book	is	organized	in	recipes,	each	covering	one
particular	language	or	library	feature,	or	a	common	problem	developers	face	and
its	typical	solution	using	modern	C++.	Through	more	than	100	recipes,	you	will
learn	to	master	both	core	language	features	and	the	standard	libraries,	including
those	for	strings,	containers,	algorithms,	iterators,	input/output,	regular
expressions,	threads,	filesystem,	atomic	operations,	and	utilities.

This	book	took	about	6	months	to	write,	and	during	this	time	the	work	on	the
C++17	standard	has	progressed.	At	the	point	of	writing	this	preface,	the	standard
is	completed,	but	is	yet	to	be	approved	and	published	later	this	year.	A	number
of	recipes	in	this	book	cover	C++17	features,	including	fold	expressions,
constexpr	if,	structured	bindings,	new	standard	attributes,	optional,	any,	variant
and	string_view	types,	and	the	filesystem	library.

All	the	recipes	in	the	book	contain	code	samples	that	show	how	to	use	a	feature
or	how	to	solve	a	problem.	These	code	samples	have	been	written	using	Visual
Studio	2017,	but	have	been	also	compiled	using	Clang	and	GCC.	Since	the
support	for	various	language	and	library	features	have	been	gradually	added	to
all	these	compilers,	it	is	recommended	that	you	use	the	latest	version	to	ensure
that	all	of	them	are	supported.	At	the	time	of	writing	this,	the	latest	versions	are



GCC	7.0,	Clang	5.0,	and	VC++	2017	(version	19.1).	Although	GCC	and	Clang
support	all	the	features	addressed	in	this	book,	VC++	is	yet	to	support	fold
expressions,	constexpr	if,	and	searchers	for	std::search().



What	this	book	covers

Chapter	1,	Learning	Modern	Core	Language	Features,	teaches	you	about	modern
core	language	features	including	type	inference,	uniform	initialization,	scoped
enums,	range-based	for	loops,	structured	bindings,	and	others.

Chapter	2,	Working	with	Numbers	and	Strings,	discusses	how	to	convert	between
numbers	and	strings,	generate	pseudo-random	numbers,	work	with	regular
expressions,	and	various	types	of	string.

Chapter	3,	Exploring	Functions,	dives	into	defaulted	and	deleted	functions,
variadic	templates,	lambda	expressions,	and	higher-order	functions.

Chapter	4,	Preprocessor	and	Compilation,	takes	a	look	at	various	aspects	of
compilation,	from	how	to	perform	conditional	compilation,	to	compile-time
assertions,	code	generation,	or	hinting	the	compiler	with	attributes.

Chapter	5,	Standard	Library	Containers,	Algorithms,	and	Iterators,	introduces	you
to	several	standard	containers,	many	algorithms,	and	teaches	you	how	to	write
your	own	random	access	iterator.

Chapter	6,	General	Purpose	Utilities,	dives	into	the	chrono	library;	the	any,
optional,	and	variant	types;	and	learn	about	type	traits.

Chapter	7,	Working	with	Files	and	Streams,	explains	how	to	read	and	write	data
to/from	streams,	use	I/O	manipulators	to	control	streams,	and	explores	the
filesystem	library.

Chapter	8,	Leveraging	Threading	and	Concurrency,	informs	you	how	to	work	with
threads,	mutexes,	locks,	condition	variables,	promises,	futures,	and	atomic	types.

Chapter	9,	Robustness	and	Performance,	focuses	on	exceptions,	constant
correctness,	type	casts,	smart	pointers,	and	move	semantics.

Chapter	10,	Implementing	Patterns	and	Idioms,	covers	various	useful	patterns	and
idioms,	such	as	the	pimpl	idiom,	the	non-virtual	interface	idiom,	or	the	curiously
recurring	template	pattern.



Chapter	11,	Exploring	Testing	Frameworks,	helps	you	get	a	kickstart	with	three	of
the	most	widely	used	testing	frameworks,	Boost.Test,	Google	Test,	and	Catch.



What	you	need	for	this	book

The	code	presented	in	the	book	is	available	for	download	from	your	account	at	ht
tps://www.packtpub.com/,	although	I	encourage	you	to	try	writing	all	the	samples	by
yourself.	In	order	to	compile	them,	you	need	VC++	2017	on	Windows	and
GCC	7.0	or	Clang	5.0	on	Linux	and	Mac.	If	you	don't	have	the	latest	version	of
the	compiler,	or	you	want	to	try	another	compiler,	you	can	use	one	that	is
available	online.	Although	there	are	various	online	platforms	that	you	could	use,
I	recommend	https://wandbox.org/	for	GCC	and	Clang	and	http://webcompiler.cloudapp.net/
for	VC++.

https://www.packtpub.com/
https://wandbox.org/
http://webcompiler.cloudapp.net/


Who	this	book	is	for

This	book	is	intended	for	all	C++	developers,	regardless	of	their	experience
level.	The	typical	reader	is	an	entry-	or	medium-level	C++	developer	who	wants
to	master	the	language	and	become	a	prolific	modern	C++	developer.	The
experienced	C++	developer	will	find	a	good	reference	for	many	C++11,	C++14,
and	C++17	language	and	library	features	that	may	come	in	handy	from	time	to
time.	The	book	consists	of	more	than	one	hundred	recipes	that	are	simple,
intermediate,	or	advanced.	However,	they	all	require	prior	knowledge	of	C++,
and	that	includes	functions,	classes,	templates,	namespaces,	macros,	and	others.
Therefore,	if	you	are	not	familiar	with	the	language,	it	is	recommended	that	you
first	read	an	introductory	book	to	familiarize	yourself	with	the	core	aspects,	and
then	proceed	with	this	book.



Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it,	How	it	works,	There's	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as
follows:



Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.



How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.



How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.



There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make
the	reader	more	knowledgeable	about	the	recipe.



See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.



Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.

Code	words	in	text,	folder	names,	filenames,	file	extensions,	path	names,	URLs,
user	input,	and	others	are	shown	as	follows:	#include	<iostream>.

A	block	of	code	is	set	as	follows:

				#include	<iostream>

				int	main()

				{

						std::cout	<<	"Hello	World!"	<<	std::endl;

						return	0;

				}

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.



Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors


Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http:
//www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.pac
ktpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on
the	book's	webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed
by	entering	the	book's	name	in	the	Search	box.	Please	note	that	you	need	to	be
logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/Modern-Cpp-Programming-Cookbook.	We	also	have	other	code	bundles	from	our	rich
catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Modern-Cpp-Programming-Cookbook
https://github.com/PacktPublishing/


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/su
pport	and	enter	the	name	of	the	book	in	the	search	field.	The	required	information
will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.



Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.



Learning	Modern	Core	Language
Features
The	recipes	included	in	this	chapter	are	as	follows:

Using	auto	whenever	possible
Creating	type	aliases	and	alias	templates
Understanding	uniform	initialization
Understanding	the	various	forms	of	non-static	member	initialization
Controlling	and	querying	object	alignment
Using	scoped	enumerations
Using	override	and	final	for	virtual	methods
Using	range-based	for	loops	to	iterate	on	a	range
Enabling	range-based	for	loops	for	custom	types
Using	explicit	constructors	and	conversion	operators	to	avoid	implicit
conversion
Using	unnamed	namespaces	instead	of	static	globals
Using	inline	namespaces	for	symbol	versioning
Using	structured	bindings	to	handle	multi-return	values



Introduction
The	C++	language	has	gone	through	a	major	transformation	in	the	past	decade
with	the	development	and	release	of	C++11	and	then	later	with	its	newer
versions	C++14	and	C++17.	These	new	standards	have	introduced	new
concepts,	simplified	or	extended	existing	syntax	and	semantics,	and	overall
transformed	the	way	we	write	code.	C++11	looks	like	a	new	language,	and	code
written	using	the	new	standards	is	called	modern	C++	code.



Using	auto	whenever	possible
Automatic	type	deduction	is	one	of	the	most	important	and	widely	used	features
in	modern	C++.	The	new	C++	standards	have	made	it	possible	to	use	auto	as	a
placeholder	for	types	in	various	contexts	and	let	the	compiler	deduce	the	actual
type.	In	C++11,	auto	can	be	used	for	declaring	local	variables	and	for	the	return
type	of	a	function	with	a	trailing	return	type.	In	C++14,	auto	can	be	used	for	the
return	type	of	a	function	without	specifying	a	trailing	type	and	for	parameter
declarations	in	lambda	expressions.	Future	standard	versions	are	likely	to	expand
the	use	of	auto	to	even	more	cases.	The	use	of	auto	in	these	contexts	has	several
important	benefits.	Developers	should	be	aware	of	them,	and	prefer	auto
whenever	possible.	An	actual	term	was	coined	for	this	by	Andrei	Alexandrescu
and	promoted	by	Herb	Sutter--almost	always	auto	(AAA).



How	to	do	it...
Consider	using	auto	as	a	placeholder	for	the	actual	type	in	the	following
situations:

To	declare	local	variables	with	the	form	auto	name	=	expression	when	you	do
not	want	to	commit	to	a	specific	type:

								auto	i	=	42;										//	int	

								auto	d	=	42.5;								//	double	

								auto	s	=	"text";						//	char	const	*	

								auto	v	=	{	1,	2,	3	};	//	std::initializer_list<int>	

To	declare	local	variables	with	the	auto	name	=	type-id	{	expression	}	form
when	you	need	to	commit	to	a	specific	type:

								auto	b		=	new	char[10]{	0	};												//	char*	

								auto	s1	=	std::string	{"text"};									//	std::string

								auto	v1	=	std::vector<int>	{	1,	2,	3	};	//	std::vector<int>

								auto	p		=	std::make_shared<int>(42);				//	std::shared_ptr<int>

To	declare	named	lambda	functions,	with	the	form	auto	name	=	lambda-
expression,	unless	the	lambda	needs	to	be	passed	or	return	to	a	function:

								auto	upper	=	[](char	const	c)	{return	toupper(c);	};

To	declare	lambda	parameters	and	return	values:

								auto	add	=	[](auto	const	a,	auto	const	b)	{return	a	+	b;};

To	declare	function	return	type	when	you	don't	want	to	commit	to	a	specific
type:

								template	<typename	F,	typename	T>	

								auto	apply(F&&	f,	T	value)	

								{	

										return	f(value);	

								}



How	it	works...
The	auto	specifier	is	basically	a	placeholder	for	an	actual	type.	When	using	auto,
the	compiler	deduces	the	actual	type	from	the	following	instances:

From	the	type	of	the	expression	used	to	initialize	a	variable,	when	auto	is
used	to	declare	variables.
From	the	trailing	return	type	or	the	type	of	the	return	expression	of	a
function,	when	auto	is	used	as	a	placeholder	for	the	return	type	of	a	function.

In	some	cases,	it	is	necessary	to	commit	to	a	specific	type.	For	instance,	in	the
preceding	example,	the	compiler	deduces	the	type	of	s	to	be	char	const	*.	If	the
intention	was	to	have	a	std::string,	then	the	type	must	be	specified	explicitly.
Similarly,	the	type	of	v	was	deduced	as	std::initializer_list<int>.	However,	the
intention	could	be	to	have	a	std::vector<int>.	In	such	cases,	the	type	must	be
specified	explicitly	on	the	right	side	of	the	assignment.

There	are	some	important	benefits	of	using	the	auto	specifier	instead	of	actual
types;	the	following	is	a	list	of,	perhaps,	the	most	important	ones:

It	is	not	possible	to	leave	a	variable	uninitialized.	This	is	a	common	mistake
that	developers	do	when	declaring	variables	specifying	the	actual	type,	but
it	is	not	possible	with	auto	that	requires	an	initialization	of	the	variable	in
order	to	deduce	the	type.
Using	auto	ensures	that	you	always	use	the	correct	type	and	that	implicit
conversion	will	not	occur.	Consider	the	following	example	where	we
retrieve	the	size	of	a	vector	to	a	local	variable.	In	the	first	case,	the	type	of
the	variable	is	int,	though	the	size()	method	returns	size_t.	That	means	an
implicit	conversion	from	size_t	to	int	will	occur.	However,	using	auto	for	the
type	will	deduce	the	correct	type,	that	is,	size_t:

								auto	v	=	std::vector<int>{	1,	2,	3	};	

								int	size1	=	v.size();							

								//	implicit	conversion,	possible	loss	of	data	

								auto	size2	=	v.size();	

								auto	size3	=	int{	v.size()	};		//	error,	narrowing	conversion

Using	auto	promotes	good	object-oriented	practices,	such	as	preferring



interfaces	over	implementations.	The	lesser	the	number	of	types	specified
the	more	generic	the	code	is	and	more	open	to	future	changes,	which	is	a
fundamental	principle	of	object-oriented	programming.
It	means	less	typing	and	less	concern	for	actual	types	that	we	don't	care
about	anyways.	It	is	very	often	that	even	though	we	explicitly	specify	the
type,	we	don't	actually	care	about	it.	A	very	common	case	is	with	iterators,
but	one	can	think	of	many	more.	When	you	want	to	iterate	over	a	range,
you	don't	care	about	the	actual	type	of	the	iterator.	You	are	only	interested
in	the	iterator	itself;	so,	using	auto	saves	time	used	for	typing	possibly	long
names	and	helps	you	focus	on	actual	code	and	not	type	names.	In	the
following	example,	in	the	first	for	loop,	we	explicitly	use	the	type	of	the
iterator.	It	is	a	lot	of	text	to	type,	the	long	statements	can	actually	make	the
code	less	readable,	and	you	also	need	to	know	the	type	name	that	you
actually	don't	care	about.	The	second	loop	with	the	auto	specifier	looks
simpler	and	saves	you	from	typing	and	caring	about	actual	types.

								std::map<int,	std::string>	m;	

								for	(std::map<int,std::string>::const_iterator	it	=	m.cbegin();

										it	!=	m.cend();	++it)	

								{	/*...*/	}	

								for	(auto	it	=	m.cbegin();	it	!=	m.cend();	++it)

								{	/*...*/	}

Declaring	variables	with	auto	provides	a	consistent	coding	style	with	the
type	always	in	the	right-hand	side.	If	you	allocate	objects	dynamically,	you
need	to	write	the	type	both	on	the	left	and	right	side	of	the	assignment,	for
example,	int	p	=	new	int(42).	With	auto,	the	type	is	specified	only	once	on	the
right	side.

However,	there	are	some	gotchas	when	using	auto:

The	auto	specifier	is	only	a	placeholder	for	the	type,	not	for	the	const/volatile
and	references	specifiers.	If	you	need	a	const/volatile	and/or	reference	type,
then	you	need	to	specify	them	explicitly.	In	the	following	example,	foo.get()
returns	a	reference	to	int;	when	variable	x	is	initialized	from	the	return
value,	the	type	deduced	by	the	compiler	is	int,	and	not	int&.	Therefore,	any
change	to	x	will	not	propagate	to	foo.x_.	In	order	to	do	so,	one	should	use
auto&:

								class	foo	{	

										int	x_;	

								public:	



								public:	

										foo(int	const	x	=	0)	:x_{	x	}	{}	

										int&	get()	{	return	x_;	}	

								};	

								foo	f(42);	

								auto	x	=	f.get();	

								x	=	100;	

								std::cout	<<	f.get()	<<	std::endl;	//	prints	42

It	is	not	possible	to	use	auto	for	types	that	are	not	moveable:

								auto	ai	=	std::atomic<int>(42);	//	error

It	is	not	possible	to	use	auto	for	multi-word	types,	such	as	long	long,	long
double,	or	struct	foo.	However,	in	the	first	case,	the	possible	workarounds	are
to	use	literals	or	type	aliases;	as	for	the	second,	using	struct/class	in	that
form	is	only	supported	in	C++	for	C	compatibility	and	should	be	avoided
anyways:

								auto	l1	=	long	long{	42	};	//	error	

								auto	l2	=	llong{	42	};					//	OK	

								auto	l3	=	42LL;												//	OK

If	you	use	the	auto	specifier	but	still	need	to	know	the	type,	you	can	do	so	in
any	IDE	by	putting	the	cursor	over	a	variable,	for	instance.	If	you	leave	the
IDE,	however,	that	is	not	possible	anymore,	and	the	only	way	to	know	the
actual	type	is	to	deduce	it	yourself	from	the	initialization	expression,	which
could	probably	mean	searching	through	the	code	for	function	return	types.

The	auto	can	be	used	to	specify	the	return	type	from	a	function.	In	C++11,	this
requires	a	trailing	return	type	in	the	function	declaration.	In	C++14,	this	has	been
relaxed,	and	the	type	of	the	return	value	is	deduced	by	the	compiler	from	the
return	expression.	If	there	are	multiple	return	values	they	should	have	the	same
type:

				//	C++11	

				auto	func1(int	const	i)	->	int	

				{	return	2*i;	}	

				//	C++14	

				auto	func2(int	const	i)	

				{	return	2*i;	}

As	mentioned	earlier,	auto	does	not	retain	const/volatile	and	reference	qualifiers.
This	leads	to	problems	with	auto	as	a	placeholder	for	the	return	type	from	a
function.	To	explain	this,	let	us	consider	the	preceding	example	with	foo.get().



This	time	we	have	a	wrapper	function	called	proxy_get()	that	takes	a	reference	to	a
foo,	calls	get(),	and	returns	the	value	returned	by	get(),	which	is	an	int&.	However,
the	compiler	will	deduce	the	return	type	of	proxy_get()	as	being	int,	not	int&.
Trying	to	assign	that	value	to	an	int&	fails	with	an	error:

				class	foo	

				{	

						int	x_;	

				public:	

						foo(int	const	x	=	0)	:x_{	x	}	{}	

						int&	get()	{	return	x_;	}	

				};	

				auto	proxy_get(foo&	f)	{	return	f.get();	}	

				auto	f	=	foo{	42	};	

				auto&	x	=	proxy_get(f);	//	cannot	convert	from	'int'	to	'int	&'

To	fix	this,	we	need	to	actually	return	auto&.	However,	this	is	a	problem	with
templates	and	perfect	forwarding	the	return	type	without	knowing	whether	that
is	a	value	or	a	reference.	The	solution	to	this	problem	in	C++14	is	decltype(auto)
that	will	correctly	deduce	the	type:

				decltype(auto)	proxy_get(foo&	f)	{	return	f.get();	}	

				auto	f	=	foo{	42	};	

				decltype(auto)	x	=	proxy_get(f);

The	last	important	case	where	auto	can	be	used	is	with	lambdas.	As	of	C++14,
both	lambda	return	type	and	lambda	parameter	types	can	be	auto.	Such	a	lambda
is	called	a	generic	lambda	because	the	closure	type	defined	by	the	lambda	has	a
templated	call	operator.	The	following	shows	a	generic	lambda	that	takes	two
auto	parameters	and	returns	the	result	of	applying	operator+	on	the	actual	types:

				auto	ladd	=	[]	(auto	const	a,	auto	const	b)	{	return	a	+	b;	};	

				struct	

				{	

							template<typename	T,	typename	U>	

							auto	operator	()	(T	const	a,	U	const	b)	const	{	return	a+b;	}	

				}	L;

This	lambda	can	be	used	to	add	anything	for	which	the	operator+	is	defined.	In	the
following	example,	we	use	the	lambda	to	add	two	integers	and	to	concatenate	to
std::string	objects	(using	the	C++14	user-defined	literal	operator	""s):

				auto	i	=	ladd(40,	2);												//	42	

				auto	s	=	ladd("forty"s,	"two"s);	//	"fortytwo"s



See	also
Creating	type	aliases	and	alias	templates
Understanding	uniform	initialization



Creating	type	aliases	and	alias
templates
In	C++,	it	is	possible	to	create	synonyms	that	can	be	used	instead	of	a	type	name.
This	is	achieved	by	creating	a	typedef	declaration.	This	is	useful	in	several	cases,
such	as	creating	shorter	or	more	meaningful	names	for	a	type	or	names	for
function	pointers.	However,	typedef	declarations	cannot	be	used	with	templates	to
create	template	type	aliases.	An	std::vector<T>,	for	instance,	is	not	a	type
(std::vector<int>	is	a	type),	but	a	sort	of	family	of	all	types	that	can	be	created
when	the	type	placeholder	T	is	replaced	with	an	actual	type.

In	C++11,	a	type	alias	is	a	name	for	another	already	declared	type,	and	an	alias
template	is	a	name	for	another	already	declared	template.	Both	of	these	types	of
aliases	are	introduced	with	a	new	using	syntax.



How	to	do	it...
Create	type	aliases	with	the	form	using	identifier	=	type-id	as	in	the	following
examples:

								using	byte				=	unsigned	char;	

								using	pbyte			=	unsigned	char	*;	

								using	array_t	=	int[10];	

								using	fn						=	void(byte,	double);	

								void	func(byte	b,	double	d)	{	/*...*/	}	

								byte	b	{42};	

								pbyte	pb	=	new	byte[10]	{0};	

								array_t	a{0,1,2,3,4,5,6,7,8,9};	

								fn*	f	=	func;

Create	alias	templates	with	the	form	template<template-params-list>	identifier	=
type-id	as	in	the	following	examples:

								template	<class	T>	

								class	custom_allocator	{	/*	...	*/};	

								template	<typename	T>	

								using	vec_t	=	std::vector<T,	custom_allocator<T>>;	

								vec_t<int>											vi;	

								vec_t<std::string>			vs;	

For	consistency	and	readability,	you	should	do	the	following:

Not	mix	typedef	and	using	declarations	for	creating	aliases.
Use	the	using	syntax	to	create	names	of	function	pointer	types.



How	it	works...
A	typedef	declaration	introduces	a	synonym	(or	an	alias	in	other	words)	for	a
type.	It	does	not	introduce	another	type	(like	a	class,	struct,	union,	or	enum
declaration).	Type	names	introduced	with	a	typedef	declaration	follow	the	same
hiding	rules	as	identifier	names.	They	can	also	be	redeclared,	but	only	to	refer	to
the	same	type	(therefore,	you	can	have	valid	multiple	typedef	declarations	that
introduce	the	same	type	name	synonym	in	a	translation	unit	as	long	as	it	is	a
synonym	for	the	same	type).	The	following	are	typical	examples	of	typedef
declarations:

				typedef	unsigned	char			byte;	

				typedef	unsigned	char	*	pbyte;	

				typedef	int													array_t[10];	

				typedef	void(*fn)(byte,	double);	

				template<typename	T>	

				class	foo	{	

						typedef	T	value_type;	

				};	

				typedef	std::vector<int>	vint_t;

A	type	alias	declaration	is	equivalent	to	a	typedef	declaration.	It	can	appear	in	a
block	scope,	class	scope,	or	namespace	scope.	According	to	C++11	paragraph
7.1.3.2:

A	typedef-name	can	also	be	introduced	by	an	alias-declaration.	The	identifier
following	the	using	keyword	becomes	a	typedef-name	and	the	optional	attribute-
specifier-seq	following	the	identifier	appertains	to	that	typedef-name.	It	has	the
same	semantics	as	if	it	were	introduced	by	the	typedef	specifier.	In	particular,	it
does	not	define	a	new	type	and	it	shall	not	appear	in	the	type-id.

An	alias-declaration	is,	however,	more	readable	and	more	clear	about	the	actual
type	that	is	aliased	when	it	comes	to	creating	aliases	for	array	types	and	function
pointer	types.	In	the	examples	from	the	How	to	do	it...	section,	it	is	easily
understandable	that	array_t	is	a	name	for	the	type	array	of	10	integers,	and	fn	is	a
name	for	a	function	type	that	takes	two	parameters	of	type	byte	and	double	and
returns	void.	That	is	also	consistent	with	the	syntax	for	declaring	std::function
objects	(for	example,	std::function<void(byte,	double)>	f).



The	driving	purpose	of	the	new	syntax	is	to	define	alias	templates.	These	are
templates	which,	when	specialized,	are	equivalent	to	the	result	of	substituting	the
template	arguments	of	the	alias	template	for	the	template	parameters	in	the	type-
id.

It	is	important	to	take	note	of	the	following	things:

Alias	templates	cannot	be	partially	or	explicitly	specialized.
Alias	templates	are	never	deduced	by	template	argument	deduction	when
deducing	a	template	parameter.
The	type	produced	when	specializing	an	alias	template	is	not	allowed	to
directly	or	indirectly	make	use	of	its	own	type.



Understanding	uniform	initialization
Brace-initialization	is	a	uniform	method	for	initializing	data	in	C++11.	For	this
reason,	it	is	also	called	uniform	initialization.	It	is	arguably	one	of	the	most
important	features	from	C++11	that	developers	should	understand	and	use.	It
removes	previous	distinctions	between	initializing	fundamental	types,	aggregate
and	non-aggregate	types,	and	arrays	and	standard	containers.



Getting	ready
For	continuing	with	this	recipe,	you	need	to	be	familiar	with	direct	initialization
that	initializes	an	object	from	an	explicit	set	of	constructor	arguments	and	copy
initialization	that	initializes	an	object	from	another	object.	The	following	is	a
simple	example	of	both	types	of	initialization,	but	for	further	details,	you	should
see	additional	resources:

				std::string	s1("test");			//	direct	initialization	

				std::string	s2	=	"test";		//	copy	initialization



How	to	do	it...
To	uniformly	initialize	objects	regardless	of	their	type,	use	the	brace-
initialization	form	{}	that	can	be	used	for	both	direct	initialization	and	copy
initialization.	When	used	with	brace	initialization,	these	are	called	direct	list	and
copy	list	initialization.

				T	object	{other};			//	direct	list	initialization	

				T	object	=	{other};	//	copy	list	initialization

Examples	of	uniform	initialization	are	as	follows:

Standard	containers:

								std::vector<int>	v	{	1,	2,	3	};

								std::map<int,	std::string>	m	{	{1,	"one"},	{	2,	"two"	}};

Dynamically	allocated	arrays:

								int*	arr2	=	new	int[3]{	1,	2,	3	};				

Arrays:

								int	arr1[3]	{	1,	2,	3	};	

Built-in	types:

								int	i	{	42	};

								double	d	{	1.2	};				

User-defined	types:

								class	foo

								{

										int	a_;

										double	b_;

								public:

										foo():a_(0),	b_(0)	{}

										foo(int	a,	double	b	=	0.0):a_(a),	b_(b)	{}

								};	

								foo	f1{};	

								foo	f2{	42,	1.2	};	

								foo	f3{	42	};



User-defined	POD	types:

								struct	bar	{	int	a_;	double	b_;};

								bar	b{	42,	1.2	};



How	it	works...
Before	C++11	objects	required	different	types	of	initialization	based	on	their
type:

Fundamental	types	could	be	initialized	using	assignment:

								int	a	=	42;	

								double	b	=	1.2;

Class	objects	could	also	be	initialized	using	assignment	from	a	single	value
if	they	had	a	conversion	constructor	(prior	to	C++11,	a	constructor	with	a
single	parameter	was	called	a	conversion	constructor):

								class	foo	

								{	

										int	a_;	

								public:	

										foo(int	a):a_(a)	{}	

								};	

								foo	f1	=	42;

Non-aggregate	classes	could	be	initialized	with	parentheses	(the	functional
form)	when	arguments	were	provided	and	only	without	any	parentheses
when	default	initialization	was	performed	(call	to	the	default	constructor).
In	the	next	example,	foo	is	the	structure	defined	in	the	How	to	do	it...
section:

								foo	f1;											//	default	initialization	

								foo	f2(42,	1.2);	

								foo	f3(42);	

								foo	f4();									//	function	declaration

Aggregate	and	POD	types	could	be	initialized	with	brace-initialization.	In
the	next	example,	bar	is	the	structure	defined	in	the	How	to	do	it...	section:

								bar	b	=	{42,	1.2};	

								int	a[]	=	{1,	2,	3,	4,	5};

Apart	from	the	different	methods	of	initializing	the	data,	there	are	also	some
limitations.	For	instance,	the	only	way	to	initialize	a	standard	container	was	to
first	declare	an	object	and	then	insert	elements	into	it;	vector	was	an	exception
because	it	is	possible	to	assign	values	from	an	array	that	can	be	prior	initialized



using	aggregate	initialization.	On	the	other	hand,	however,	dynamically
allocated	aggregates	could	not	be	initialized	directly.

All	the	examples	in	the	How	to	do	it...	section	use	direct	initialization,	but	copy
initialization	is	also	possible	with	brace-initialization.	The	two	forms,	direct	and
copy	initialization,	may	be	equivalent	in	most	cases,	but	copy	initialization	is
less	permissive	because	it	does	not	consider	explicit	constructors	in	its	implicit
conversion	sequence	that	must	produce	an	object	directly	from	the	initializer,
whereas	direct	initialization	expects	an	implicit	conversion	from	the	initializer	to
an	argument	of	the	constructor.	Dynamically	allocated	arrays	can	only	be
initialized	using	direct	initialization.

Of	the	classes	shown	in	the	preceding	examples,	foo	is	the	one	class	that	has	both
a	default	constructor	and	a	constructor	with	parameters.	To	use	the	default
constructor	to	perform	default	initialization,	we	need	to	use	empty	braces,	that
is,	{}.	To	use	the	constructor	with	parameters,	we	need	to	provide	the	values	for
all	the	arguments	in	braces	{}.	Unlike	non-aggregate	types	where	default
initialization	means	invoking	the	default	constructor,	for	aggregate	types,	default
initialization	means	initializing	with	zeros.

Initialization	of	standard	containers,	such	as	the	vector	and	the	map	also	shown
above,	is	possible	because	all	standard	containers	have	an	additional	constructor
in	C++11	that	takes	an	argument	of	type	std::initializer_list<T>.	This	is	basically
a	lightweight	proxy	over	an	array	of	elements	of	type	T	const.	These	constructors
then	initialize	the	internal	data	from	the	values	in	the	initializer	list.

The	way	the	initialization	using	std::initializer_list	works	is	the	following:

The	compiler	resolves	the	types	of	the	elements	in	the	initialization	list	(all
elements	must	have	the	same	type).
The	compiler	creates	an	array	with	the	elements	in	the	initializer	list.
The	compiler	creates	an	std::initializer_list<T>	object	to	wrap	the	previously
created	array.
The	std::initializer_list<T>	object	is	passed	as	an	argument	to	the
constructor.

An	initializer	list	always	takes	precedence	over	other	constructors	where	brace-
initialization	is	used.	If	such	a	constructor	exists	for	a	class,	it	will	be	called
when	brace-initialization	is	performed:



when	brace-initialization	is	performed:

				class	foo	

				{	

						int	a_;	

						int	b_;	

				public:	

						foo()	:a_(0),	b_(0)	{}	

						foo(int	a,	int	b	=	0)	:a_(a),	b_(b)	{}	

						foo(std::initializer_list<int>	l)	{}	

				};	

				foo	f{	1,	2	};	//	calls	constructor	with	initializer_list<int>

The	precedence	rule	applies	to	any	function,	not	just	constructors.	In	the
following	example,	two	overloads	of	the	same	function	exist.	Calling	the
function	with	an	initializer	list	resolves	to	a	call	to	the	overload	with	an
std::initializer_list:

				void	func(int	const	a,	int	const	b,	int	const	c)	

				{	

						std::cout	<<	a	<<	b	<<	c	<<	std::endl;	

				}	

				void	func(std::initializer_list<int>	const	l)	

				{	

						for	(auto	const	&	e	:	l)	

								std::cout	<<	e	<<	std::endl;	

				}	

				func({	1,2,3	});	//	calls	second	overload

This,	however,	has	the	potential	of	leading	to	bugs.	Let's	take,	for	example,	the
vector	type.	Among	the	constructors	of	the	vector,	there	is	one	that	has	a	single
argument	representing	the	initial	number	of	elements	to	be	allocated	and	another
one	that	has	an	std::initializer_list	as	an	argument.	If	the	intention	is	to	create	a
vector	with	a	preallocated	size,	using	the	brace-initialization	will	not	work,	as
the	constructor	with	the	std::initializer_list	will	be	the	best	overload	to	be	called:

				std::vector<int>	v	{5};

The	preceding	code	does	not	create	a	vector	with	five	elements,	but	a	vector	with
one	element	with	a	value	5.	To	be	able	to	actually	create	a	vector	with	five
elements,	initialization	with	the	parentheses	form	must	be	used:

				std::vector<int>	v	(5);

Another	thing	to	note	is	that	brace-initialization	does	not	allow	narrowing
conversion.	According	to	the	C++	standard	(refer	to	paragraph	8.5.4	of	the
standard),	a	narrowing	conversion	is	an	implicit	conversion:



standard),	a	narrowing	conversion	is	an	implicit	conversion:

-	From	a	floating-point	type	to	an	integer	type
-	From	long	double	to	double	or	float,	or	from	double	to	float,	except	where	the
source	is	a	constant	expression	and	the	actual	value	after	conversion	is	within
the	range	of	values	that	can	be	represented	(even	if	it	cannot	be	represented
exactly)
-	From	an	integer	type	or	unscoped	enumeration	type	to	a	floating-point	type,
except	where	the	source	is	a	constant	expression	and	the	actual	value	after
conversion	will	fit	into	the	target	type	and	will	produce	the	original	value	when
converted	to	its	original	type
-	From	an	integer	type	or	unscoped	enumeration	type	to	an	integer	type	that
cannot	represent	all	the	values	of	the	original	type,	except	where	the	source	is	a
constant	expression	and	the	actual	value	after	conversion	will	fit	into	the	target
type	and	will	produce	the	original	value	when	converted	to	its	original	type.

The	following	declarations	trigger	compiler	errors	because	they	require	a
narrowing	conversion:

				int	i{	1.2	};											//	error	

				double	d	=	47	/	13;	

				float	f1{	d	};										//	error	

				float	f2{47/13};								//	OK

To	fix	the	error,	an	explicit	conversion	must	be	done:

				int	i{	static_cast<int>(1.2)	};	

				double	d	=	47	/	13;	

				float	f1{	static_cast<float>(d)	};

A	brace-initialization	list	is	not	an	expression	and	does	not	have	a
type.	Therefore,	decltype	cannot	be	used	on	a	brace-init	list,	and
template	type	deduction	cannot	deduce	the	type	that	matches	a
brace-init	list.



There's	more
The	following	sample	shows	several	examples	of	direct-list-initialization	and
copy-list-initialization.	In	C++11,	the	deduced	type	of	all	these	expressions	is
std::initializer_list<int>.

auto	a	=	{42};			//	std::initializer_list<int>

auto	b	{42};					//	std::initializer_list<int>

auto	c	=	{4,	2};	//	std::initializer_list<int>

auto	d	{4,	2};			//	std::initializer_list<int>

C++17	has	changed	the	rules	for	list	initialization,	differentiating	between	the
direct-	and	copy-list-initialization.	The	new	rules	for	type	deduction	are	as
follows:

for	copy	list	initialization	auto	deduction	will	deduce	a
std::initializer_list<T>	if	all	elements	in	the	list	have	the	same	type,	or	be	ill-
formed.
for	direct	list	initialization	auto	deduction	will	deduce	a	T	if	the	list	has	a
single	element,	or	be	ill-formed	if	there	is	more	than	one	element.

Base	on	the	new	rules,	the	previous	examples	would	change	as	follows:	a	and	c
are	deduced	as	std::initializer_list<int>;	b	is	deduced	as	an	int;	d,	which	uses
direct	initialization	and	has	more	than	one	value	in	the	brace-init-list,	triggers	a
compiler	error.

auto	a	=	{42};			//	std::initializer_list<int>

auto	b	{42};					//	int

auto	c	=	{4,	2};	//	std::initializer_list<int>

auto	d	{4,	2};			//	error,	too	many



See	also
Using	auto	whenever	possible
Understanding	the	various	forms	of	non-static	member	initialization



Understanding	the	various	forms	of
non-static	member	initialization
Constructors	are	a	place	where	non-static	class	member	initialization	is	done.
Many	developers	prefer	assignments	in	the	constructor	body.	Aside	from	the
several	exceptional	cases	when	that	is	actually	necessary,	initialization	of	non-
static	members	should	be	done	in	the	constructor's	initializer	list	or,	as	of	C++11,
using	default	member	initialization	when	they	are	declared	in	the	class.	Prior	to
C++11,	constants	and	non-constant	non-static	data	members	of	a	class	had	to	be
initialized	in	the	constructor.	Initialization	on	declaration	in	a	class	was	only
possible	for	static	constants.	As	we	will	see	further,	this	limitation	was	removed
in	C++11	that	allows	initialization	of	non-statics	in	the	class	declaration.	This
initialization	is	called	default	member	initialization	and	is	explained	in	the	next
sections.

This	recipe	will	explore	the	ways	the	non-static	member	initialization	should	be
done.



How	to	do	it...
To	initialize	non-static	members	of	a	class	you	should:

Use	default	member	initialization	for	providing	default	values	for	members
of	classes	with	multiple	constructors	that	would	use	a	common	initializer
for	those	members	(see	[3]	and	[4]	in	the	following	code).
Use	default	member	initialization	for	constants,	both	static	and	non-static
(see	[1]	and	[2]	in	the	following	code).
Use	the	constructor	initializer	list	to	initialize	members	that	don't	have
default	values,	but	depend	on	constructor	parameters	(see	[5]	and	[6]	in	the
following	code).
Use	assignment	in	constructors	when	the	other	options	are	not	possible
(examples	include	initializing	data	members	with	pointer	this,	checking
constructor	parameter	values,	and	throwing	exceptions	prior	to	initializing
members	with	those	values	or	self-references	of	two	non-static	data
members).

The	following	example	shows	these	forms	of	initialization:

				struct	Control	

				{	

						const	int	DefaultHeigh	=	14;																		//	[1]	

						const	int	DefaultWidth	=	80;																		//	[2]	

						TextVAligment	valign	=	TextVAligment::Middle;	//	[3]	

						TextHAligment	halign	=	TextHAligment::Left;			//	[4]	

						std::string	text;	

						Control(std::string	const	&	t)	:	text(t)							//	[5]	

						{}	

						Control(std::string	const	&	t,	

								TextVerticalAligment	const	va,	

								TextHorizontalAligment	const	ha):		

						text(t),	valign(va),	halign(ha)																	//	[6]	

						{}	

				};



How	it	works...
Non-static	data	members	are	supposed	to	be	initialized	in	the	constructor's
initializer	list	as	shown	in	the	following	example:

				struct	Point	

				{	

						double	X,	Y;	

						Point(double	const	x	=	0.0,	double	const	y	=	0.0)	:	X(x),	Y(y)		{}	

				};

Many	developers,	however,	do	not	use	the	initializer	list,	but	prefer	assignments
in	the	constructor's	body,	or	even	mix	assignments	and	the	initializer	list.	That
could	be	for	several	reasons--for	larger	classes	with	many	members,	the
constructor	assignments	may	look	easier	to	read	than	long	initializer	lists,
perhaps	split	on	many	lines,	or	it	could	be	because	they	are	familiar	with	other
programming	languages	that	don't	have	an	initializer	list	or	because,
unfortunately,	for	various	reasons	they	don't	even	know	about	it.

It	is	important	to	note	that	the	order	in	which	non-static	data
members	are	initialized	is	the	order	in	which	they	were	declared	in
the	class	definition,	and	not	the	order	of	their	initialization	in	a
constructor	initializer	list.	On	the	other	hand,	the	order	in	which
non-static	data	members	are	destroyed	is	the	reversed	order	of
construction.

Using	assignments	in	the	constructor	is	not	efficient,	as	this	can	create	temporary
objects	that	are	later	discarded.	If	not	initialized	in	the	initializer	list,	non-static
members	are	initialized	via	their	default	constructor	and	then,	when	assigned	a
value	in	the	constructor's	body,	the	assignment	operator	is	invoked.	This	can	lead
to	inefficient	work	if	the	default	constructor	allocates	a	resource	(such	as
memory	or	a	file)	and	that	has	to	be	deallocated	and	reallocated	in	the
assignment	operator:

				struct	foo	

				{	

						foo()		

						{	std::cout	<<	"default	constructor"	<<	std::endl;	}	

						foo(std::string	const	&	text)		

						{	std::cout	<<	"constructor	'"	<<	text	<<	"'"	<<	std::endl;	}	

						foo(foo	const	&	other)

						{	std::cout	<<	"copy	constructor"	<<	std::endl;	}	



						{	std::cout	<<	"copy	constructor"	<<	std::endl;	}	

						foo(foo&&	other)		

						{	std::cout	<<	"move	constructor"	<<	std::endl;	};	

						foo&	operator=(foo	const	&	other)		

						{	std::cout	<<	"assignment"	<<	std::endl;	return	*this;	}	

						foo&	operator=(foo&&	other)		

						{	std::cout	<<	"move	assignment"	<<	std::endl;	return	*this;}	

						~foo()		

						{	std::cout	<<	"destructor"	<<	std::endl;	}	

				};	

				struct	bar	

				{	

						foo	f;	

						bar(foo	const	&	value)	

						{	

								f	=	value;	

						}	

				};	

				foo	f;	

				bar	b(f);

The	preceding	code	produces	the	following	output	showing	how	data	member	f
is	first	default	initialized	and	then	assigned	a	new	value:

default	constructor	

default	constructor	

assignment	

destructor	

destructor

Changing	the	initialization	from	the	assignment	in	the	constructor	body	to	the
initializer	list	replaces	the	calls	to	the	default	constructor	plus	assignment
operator	with	a	call	to	the	copy	constructor:

				bar(foo	const	&	value)	:	f(value)	{	}

Adding	the	preceding	line	of	code	produces	the	following	output:

default	constructor	

copy	constructor	

destructor	

destructor

For	those	reasons,	at	least	for	other	types	than	the	built-in	types	(such	as	bool,
char,	int,	float,	double	or	pointers),	you	should	prefer	the	constructor	initializer	list.
However,	to	be	consistent	with	your	initialization	style,	you	should	always
prefer	the	constructor	initializer	list	when	that	is	possible.	There	are	several
situations	when	using	the	initializer	list	is	not	possible;	these	include	the
following	cases	(but	the	list	could	be	expanded	with	other	cases):



If	a	member	has	to	be	initialized	with	a	pointer	or	reference	to	the	object
that	contains	it,	using	the	this	pointer	in	the	initialization	list	may	trigger	a
warning	with	some	compilers	that	it	is	used	before	the	object	is	constructed.
If	you	have	two	data	members	that	must	contain	references	to	each	other.
If	you	want	to	test	an	input	parameter	and	throw	an	exception	before
initializing	a	non-static	data	member	with	the	value	of	the	parameter.

Starting	with	C++11,	non-static	data	members	can	be	initialized	when	declared
in	the	class.	This	is	called	default	member	initialization	because	it	is	supposed	to
represent	initialization	with	default	values.	Default	member	initialization	is
intended	for	constants	and	for	members	that	are	not	initialized	based	on
constructor	parameters	(in	other	words	members	whose	value	does	not	depend
on	the	way	the	object	is	constructed):

				enum	class	TextFlow	{	LeftToRight,	RightToLeft	};	

				struct	Control	

				{	

						const	int	DefaultHeight	=	20;	

						const	int	DefaultWidth	=	100;	

						TextFlow	textFlow	=	TextFlow::LeftToRight;	

						std::string	text;	

						Control(std::string	t)	:	text(t)	

						{}	

				};

In	the	preceding	example,	DefaultHeight	and	DefaultWidth	are	both	constants;
therefore,	the	values	do	not	depend	on	the	way	the	object	is	constructed,	so	they
are	initialized	when	declared.	The	textFlow	object	is	a	non-constant	non-static
data	member	whose	value	also	does	not	depend	on	the	way	the	object	is
initialized	(it	could	be	changed	via	another	member	function),	therefore,	it	is	also
initialized	using	default	member	initialization	when	it	is	declared.	text,	on	the
other	hand,	is	also	a	non-constant	non-static	data	member,	but	its	initial	value
depends	on	the	way	the	object	is	constructed	and	therefore	it	is	initialized	in	the
constructor's	initializer	list	using	a	value	passed	as	an	argument	to	the
constructor.

If	a	data	member	is	initialized	both	with	the	default	member	initialization	and
constructor	initializer	list,	the	latter	takes	precedence	and	the	default	value	is
discarded.	To	exemplify	this,	let's	again	consider	the	foo	class	earlier	and	the
following	bar	class	that	uses	it:



				struct	bar	

				{	

						foo	f{"default	value"};	

						bar()	:	f{"constructor	initializer"}	

						{	

						}	

				};	

				bar	b;

The	output	differs,	in	this	case,	as	follows,	because	the	value	from	the	default
initializer	list	is	discarded,	and	the	object	is	not	initialized	twice:

constructor

constructor	initializer

destructor

Using	the	appropriate	initialization	method	for	each	member	leads
not	only	to	more	efficient	code	but	also	to	better	organized	and
more	readable	code.



Controlling	and	querying	object
alignment
C++11	provides	standardized	methods	for	specifying	and	querying	the	alignment
requirements	of	a	type	(something	that	was	previously	possible	only	through
compiler-specific	methods).	Controlling	the	alignment	is	important	in	order	to
boost	performance	on	different	processors	and	enable	the	use	of	some
instructions	that	only	work	with	data	on	particular	alignments.	For	example,
Intel	SSE	and	Intel	SSE2	require	16	bytes	alignment	of	data,	whereas	for	Intel
Advanced	Vector	Extensions	(or	Intel	AVX),	it	is	highly	recommended	to	use	32
bytes	alignment.	This	recipe	explores	the	alignas	specifier	for	controlling	the
alignment	requirements	and	the	alignof	operator	that	retrieves	the	alignment
requirements	of	a	type.



Getting	ready
You	should	be	familiar	with	what	data	alignment	is	and	the	way	the	compiler
performs	default	data	alignment.	However,	basic	information	about	the	latter	is
provided	in	the	How	it	works...	section.



How	to	do	it...
To	control	the	alignment	of	a	type	(both	at	the	class	level	or	data	member
level)	or	an	object,	use	the	alignas	specifier:

								struct	alignas(4)	foo	

								{	

										char	a;	

										char	b;	

								};	

								struct	bar	

								{	

										alignas(2)	char	a;	

										alignas(8)	int		b;	

								};	

								alignas(8)			int	a;	

								alignas(256)	long	b[4];

To	query	the	alignment	of	a	type,	use	the	alignof	operator:

								auto	align	=	alignof(foo);



How	it	works...
Processors	do	not	access	memory	one	byte	at	a	time,	but	in	larger	chunks	of
powers	of	twos	(2,	4,	8,	16,	32,	and	so	on).	Owing	to	this,	it	is	important	that
compilers	align	data	in	memory	so	that	it	can	be	easily	accessed	by	the
processor.	Should	this	data	be	misaligned,	the	compiler	has	to	do	extra	work	for
accessing	data;	it	has	to	read	multiple	chunks	of	data,	shift,	and	discard
unnecessary	bytes	and	combine	the	rest	together.

C++	compilers	align	variables	based	on	the	size	of	their	data	type:	1	byte	for	bool
and	char,	2	bytes	for	short,	4	bytes	for	int,	long	and	float,	8	bytes	for	double	and	long
long,	and	so	on.	When	it	comes	to	structures	or	unions,	the	alignment	must	match
the	size	of	the	largest	member	in	order	to	avoid	performance	issues.	To
exemplify,	let's	consider	the	following	data	structures:

				struct	foo1				//	size	=	1,	alignment	=	1	

				{	

						char	a;	

				};	

				struct	foo2				//	size	=	2,	alignment	=	1	

				{	

						char	a;	

						char	b;	

				};	

				struct	foo3				//	size	=	8,	alignment	=	4	

				{	

						char	a;	

						int		b;	

				};

foo1	and	foo2	have	different	sizes,	but	the	alignment	is	the	same--that	is,	1--
because	all	data	members	are	of	type	char,	which	has	a	size	of	1.	In	structure	foo3,
the	second	member	is	an	integer,	whose	size	is	4.	As	a	result,	the	alignment	of
members	of	this	structure	is	done	at	addresses	that	are	multiples	of	4.	To	achieve
that,	the	compiler	introduces	padding	bytes.	The	structure	foo3	is	actually
transformed	into	the	following:

				struct	foo3_	

				{	

						char	a;								//	1	byte	

						char	_pad0[3];	//	3	bytes	padding	to	put	b	on	a	4-byte	boundary	

						int		b;								//	4	bytes	

				};



Similarly,	the	following	structure	has	a	size	of	32	bytes	and	an	alignment	of	8;
that	is	because	the	largest	member	is	a	double	whose	size	is	8.	This	structure,
however,	requires	padding	in	several	places	to	make	sure	that	all	members	can
be	accessed	at	addresses	that	are	multiples	of	8:

				struct	foo4	

				{	

						int	a;	

						char	b;	

						float	c;	

						double	d;	

						bool	e;	

				};

The	equivalent	structure	created	by	the	compiler	is	as	follows:

				struct	foo4_	

				{	

						int	a;									//	4	bytes	

						char	b;								//	1	byte	

						char	_pad0[3];	//	3	bytes	padding	to	put	c	on	a	8-byte	boundary		

						float	c;							//	4	bytes	

						char	_pad1[4];	//	4	bytes	padding	to	put	d	on	a	8-byte	boundary	

						double	d;						//	8	bytes	

						bool	e;								//	1	byte	

						char	_pad2[7];	//	7	bytes	padding	to	make	sizeof	struct	multiple	of	8	

				};

In	C++11,	specifying	the	alignment	of	an	object	or	type	is	done	using	the	alignas
specifier.	This	can	take	either	an	expression	(an	integral	constant	expression	that
evaluates	to	0	or	a	valid	value	for	an	alignment),	a	type-id,	or	a	parameter	pack.
The	alignas	specifier	can	be	applied	to	the	declaration	of	a	variable	or	a	class	data
member	that	does	not	represent	a	bit	field,	or	to	the	declaration	of	a	class,	union,
or	enumeration.	The	type	or	object	on	which	an	alignas	specification	is	applied
will	have	the	alignment	requirement	equal	to	the	largest,	greater	than	zero,
expression	of	all	alignas	specifications	used	in	the	declaration.

There	are	several	restrictions	when	using	the	alignas	specifier:

The	only	valid	alignments	are	the	powers	of	two	(	1,	2,	4,	8,	16,	32,	and	so
on).	Any	other	values	are	illegal,	and	the	program	is	considered	ill-formed;
that	doesn't	necessarily	have	to	produce	an	error,	as	the	compiler	may
choose	to	ignore	the	specification.
An	alignment	of	0	is	always	ignored.
If	the	largest	alignas	on	a	declaration	is	smaller	than	the	natural	alignment
without	any	alignas	specifier,	then	the	program	is	also	considered	ill-formed.



In	the	following	example,	the	alignas	specifier	is	applied	on	a	class	declaration.
The	natural	alignment	without	the	alignas	specifier	would	have	been	1,	but	with
alignas(4)	it	becomes	4:

				struct	alignas(4)	foo	

				{	

						char	a;	

						char	b;	

				};

In	other	words,	the	compiler	transforms	the	preceding	class	into	the	following:

				struct	foo	

				{	

						char	a;	

						char	b;	

						char	_pad0[2];	

				};

The	alignas	specifier	can	be	applied	both	on	the	class	declaration	and	the	member
data	declarations.	In	this	case,	the	strictest	(that	is,	largest)	value	wins.	In	the
following	example,	member	a	has	a	natural	size	of	1	and	requires	an	alignment
of	2;	member	b	has	a	natural	size	of	4	and	requires	an	alignment	of	8,	therefore,
the	strictest	alignment	would	be	8.	The	alignment	requirement	of	the	entire	class
is	4,	which	is	weaker	(that	is,	smaller)	than	the	strictest	required	alignment	and
therefore	it	will	be	ignored,	though	the	compiler	will	produce	a	warning:

				struct	alignas(4)	foo	

				{	

						alignas(2)	char	a;	

						alignas(8)	int		b;	

				};

The	result	is	a	structure	that	looks	like	this:

				struct	foo	

				{	

						char	a;	

						char	_pad0[7];	

						int	b;	

						char	_pad1[4];	

				};

The	alignas	specifier	can	also	be	applied	on	variables.	In	the	next	example,
variable	a,	that	is	an	integer,	is	required	to	be	placed	in	memory	at	a	multiple	of
8.	The	next	variable,	the	array	of	4	a,	that	is	an	integer,	is	required	to	be	placed	in
memory	at	a	multiple	of	8.	The	next	variable,	the	array	of	4	longs,	is	required	to
be	placed	in	memory	at	a	multiple	of	256.	As	a	result,	the	compiler	will



introduce	up	to	244	bytes	of	padding	between	the	two	variables	(depending	on
where	in	memory,	at	an	address	multiple	of	8,	the	variable	a	is	located):

				alignas(8)			int	a;			

				alignas(256)	long	b[4];	

				printf("%pn",	&a);	//	eg.	0000006C0D9EF908	

				printf("%pn",	&b);	//	eg.	0000006C0D9EFA00

Looking	at	the	addresses,	we	can	see	that	the	address	of	a	is	indeed	a	multiple	of
8,	and	the	address	of	b	is	a	multiple	of	256	(hexadecimal	100).

To	query	the	alignment	of	a	type,	we	use	the	alignof	operator.	Unlike	sizeof,	this
operator	can	only	be	applied	to	type-ids,	and	not	on	variables	or	class	data
members.	The	types	on	which	it	can	be	applied	can	be	complete	types,	an	array
type,	or	a	reference	type.	For	arrays,	the	value	returned	is	the	alignment	of	the
element	type;	for	references,	the	value	returned	is	the	alignment	of	the
referenced	type.	Here	are	several	examples:

Expression Evaluation
alignof(char) 1,	because	the	natural	alignment	of	char	is	1
alignof(int) 4,	because	the	natural	alignment	of	int	is	4
alignof(int*) 4	on	32-bit,	8	on	64-bit,	the	alignment	for	pointers
alignof(int[4]) 4,	because	the	natural	alignment	of	the	element	type	is	4

alignof(foo&)
8,	because	the	specified	alignment	for	class	foo	that	is	the
referred	type	(as	shown	in	the	last	example)	was	8



Using	scoped	enumerations
Enumeration	is	a	basic	type	in	C++	that	defines	a	collection	of	values,	always	of
an	integral	underlying	type.	Their	named	values,	that	are	constant,	are	called
enumerators.	Enumerations	declared	with	keyword	enum	are	called	unscoped
enumerations	and	enumerations	declared	with	enum	class	or	enum	struct	are	called
scoped	enumerations.	The	latter	ones	were	introduced	in	C++11	and	are
intended	to	solve	several	problems	of	the	unscoped	enumerations.



How	to	do	it...
Prefer	to	use	scoped	enumerations	instead	of	unscoped	ones.
In	order	to	use	scoped	enumerations,	you	should	declare	enumerations
using	enum	class	or	enum	struct:

								enum	class	Status	{	Unknown,	Created,	Connected	};

								Status	s	=	Status::Created;

The	enum	class	and	enum	struct	declarations	are	equivalent,	and
throughout	this	recipe	and	the	rest	of	the	book,	we	will	use	enum
class.



How	it	works...
Unscoped	enumerations	have	several	issues	that	are	creating	problems	for
developers:

They	export	their	enumerators	to	the	surrounding	scope	(for	which	reason,
they	are	called	unscoped	enumerations),	and	that	has	the	following	two
drawbacks:	it	can	lead	to	name	clashes	if	two	enumerations	in	the	same
namespace	have	enumerators	with	the	same	name,	and	it's	not	possible	to
use	an	enumerator	using	its	fully	qualified	name:

								enum	Status	{Unknown,	Created,	Connected};

								enum	Codes	{OK,	Failure,	Unknown};			//	error	

								auto	status	=	Status::Created;							//	error

Prior	to	C++	11,	they	could	not	specify	the	underlying	type	that	is	required
to	be	an	integral	type.	This	type	must	not	be	larger	than	int,	unless	the
enumerator	value	cannot	fit	a	signed	or	unsigned	integer.	Owing	to	this,
forward	declaration	of	enumerations	was	not	possible.	The	reason	was	that
the	size	of	the	enumeration	was	not	known	since	the	underlying	type	was
not	known	until	values	of	the	enumerators	were	defined	so	that	the	compiler
could	pick	the	appropriate	integer	type.	This	has	been	fixed	in	C++11.
Values	of	enumerators	implicitly	convert	to	int.	That	means	you	can
intentionally	or	accidentally	mix	enumerations	that	have	a	certain	meaning
and	integers	(that	may	not	even	be	related	to	the	meaning	of	the
enumeration)	and	the	compiler	will	not	be	able	to	warn	you:

								enum	Codes	{	OK,	Failure	};	

								void	include_offset(int	pixels)	{/*...*/}	

								include_offset(Failure);

The	scoped	enumerations	are	basically	strongly	typed	enumerations	that	behave
differently	than	the	unscoped	enumerations:

They	do	not	export	their	enumerators	to	the	surrounding	scope.	The	two
enumerations	shown	earlier	would	change	to	the	following,	no	longer
generating	a	name	collision	and	being	possible	to	fully	qualify	the	names	of
the	enumerators:



								enum	class	Status	{	Unknown,	Created,	Connected	};	

								enum	class	Codes	{	OK,	Failure,	Unknown	};	//	OK	

								Codes	code	=	Codes::Unknown;															//	OK

You	can	specify	the	underlying	type.	The	same	rules	for	underlying	types
of	unscoped	enumerations	apply	to	scoped	enumerations	too,	except	that
the	user	can	specify	explicitly	the	underlying	type.	This	also	solves	the
problem	with	forward	declarations	since	the	underlying	type	can	be	known
before	the	definition	is	available:

								enum	class	Codes	:	unsigned	int;	

								void	print_code(Codes	const	code)	{}	

								enum	class	Codes	:	unsigned	int	

								{		

											OK	=	0,		

											Failure	=	1,		

											Unknown	=	0xFFFF0000U	

								};

Values	of	scoped	enumerations	no	longer	convert	implicitly	to	int.
Assigning	the	value	of	an	enum	class	to	an	integer	variable	would	trigger	a
compiler	error	unless	an	explicit	cast	is	specified:

								Codes	c1	=	Codes::OK;																							//	OK	

								int	c2	=	Codes::Failure;																				//	error	

								int	c3	=	static_cast<int>(Codes::Failure);		//	OK



Using	override	and	final	for	virtual
methods
Unlike	other	similar	programming	languages,	C++	does	not	have	a	specific
syntax	for	declaring	interfaces	(that	are	basically	classes	with	pure	virtual
methods	only)	and	also	has	some	deficiencies	related	to	how	virtual	methods	are
declared.	In	C++,	the	virtual	methods	are	introduced	with	the	virtual	keyword.
However,	the	keyword	virtual	is	optional	for	declaring	overrides	in	derived
classes	that	can	lead	to	confusion	when	dealing	with	large	classes	or	hierarchies.
You	may	need	to	navigate	throughout	the	hierarchy	up	to	the	base	to	figure	out
whether	a	function	is	virtual	or	not.	On	the	other	hand,	sometimes,	it	is	useful	to
make	sure	that	a	virtual	function	or	even	a	derived	class	can	no	longer	be
overridden	or	derived	further.	In	this	recipe,	we	will	see	how	to	use	C++11
special	identifiers	override	and	final	to	declare	virtual	functions	or	classes.



Getting	ready
You	should	be	familiar	with	inheritance	and	polymorphism	in	C++	and	concepts,
such	as	abstract	classes,	pure	specifiers,	virtual,	and	overridden	methods.



How	to	do	it...
To	ensure	correct	declaration	of	virtual	methods	both	in	base	and	derived
classes,	but	also	increase	readability,	do	the	following:

Always	use	the	virtual	keyword	when	declaring	virtual	functions	in	derived
classes	that	are	supposed	to	override	virtual	functions	from	a	base	class,	and
Always	use	the	override	special	identifier	after	the	declarator	part	of	a	virtual
function	declaration	or	definition.

								class	Base	

								{	

										virtual	void	foo()	=	0;

										virtual	void	bar()	{}	

										virtual	void	foobar()	=	0;	

								};

								void	Base::foobar()	{}

								class	Derived1	:	public	Base	

								{	

										virtual	void	foo()	override	=	0;

										virtual	void	bar()	override	{}

										virtual	void	foobar()	override	{}	

								};	

								class	Derived2	:	public	Derived1	

								{	

										virtual	void	foo()	override	{}	

								};

The	declarator	is	the	part	of	the	type	of	a	function	that	excludes	the
return	type.

To	ensure	that	functions	cannot	be	overridden	further	or	classes	cannot	be
derived	any	more,	use	the	final	special	identifier:

After	the	declarator	part	of	a	virtual	function	declaration	or	definition	to
prevent	further	overrides	in	a	derived	class:

								class	Derived2	:	public	Derived1	

								{	

										virtual	void	foo()	final	{}	

								};



After	the	name	of	a	class	in	the	declaration	of	the	class	to	prevent	further
derivations	of	the	class:

								class	Derived4	final	:	public	Derived1	

								{	

										virtual	void	foo()	override	{}	

								};



How	it	works...
The	way	override	works	is	very	simple;	in	a	virtual	function	declaration	or
definition,	it	ensures	that	the	function	is	actually	overriding	a	base	class	function,
otherwise,	the	compiler	will	trigger	an	error.

It	should	be	noted	that	both	override	and	final	keywords	are	special	identifiers
having	a	meaning	only	in	a	member	function	declaration	or	definition.	They	are
not	reserved	keywords	and	can	still	be	used	elsewhere	in	a	program	as	user-
defined	identifiers.

Using	the	override	special	identifier	helps	the	compiler	to	detect	situations	when	a
virtual	method	does	not	override	another	one	like	shown	in	the	following
example:

				class	Base	

				{	

				public:	

						virtual	void	foo()	{}

						virtual	void	bar()	{}

				};	

				class	Derived1	:	public	Base	

				{	

				public:				

						void	foo()	override	{}

						//	for	readability	use	the	virtual	keyword				

						virtual	void	bar(char	const	c)	override	{}

						//	error,	no	Base::bar(char	const)	

				};

The	other	special	identifier,	final,	is	used	in	a	member	function	declaration	or
definition	to	indicate	that	the	function	is	virtual	and	cannot	be	overridden	in	a
derived	class.	If	a	derived	class	attempts	to	override	the	virtual	function,	the
compiler	triggers	an	error:

				class	Derived2	:	public	Derived1	

				{	

						virtual	void	foo()	final	{}	

				};	

				class	Derived3	:	public	Derived2	

				{	

						virtual	void	foo()	override	{}	//	error	

				};



The	final	specifier	can	also	be	used	in	a	class	declaration	to	indicate	that	it
cannot	be	derived:

				class	Derived4	final	:	public	Derived1	

				{	

						virtual	void	foo()	override	{}	

				};

				class	Derived5	:	public	Derived4	//	error	

				{	

				};

Since	both	override	and	final	have	this	special	meaning	when	used	in	the	defined
context	and	are	not	in	fact	reserved	keywords,	you	can	still	use	them	anywhere
elsewhere	in	the	C++	code.	This	ensured	that	existing	code	written	before
C++11	did	not	break	because	of	the	use	of	these	names	for	identifiers:

				class	foo	

				{	

						int	final	=	0;	

						void	override()	{}	

				};



Using	range-based	for	loops	to	iterate
on	a	range
Many	programming	languages	support	a	variant	of	a	for	loop	called	for	each,	that
is,	repeating	a	group	of	statements	over	the	elements	of	a	collection.	C++	did	not
have	core	language	support	for	this	until	C++11.	The	closest	feature	was	the
general	purpose	algorithm	from	the	standard	library	called	std::for_each,	that
applies	a	function	to	all	the	elements	in	a	range.	C++11	brought	language
support	for	for	each	that	is	actually	called	range-based	for	loops.	The	new	C++17
standard	provides	several	improvements	to	the	original	language	feature.



Getting	ready
In	C++11,	a	range-based	for	loop	has	the	following	general	syntax:

				for	(	range_declaration	:	range_expression	)	loop_statement

To	exemplify	the	various	ways	of	using	a	range-based	for	loops,	we	will	use	the
following	functions	that	return	sequences	of	elements:

				std::vector<int>	getRates()	

				{	

						return	std::vector<int>	{1,	1,	2,	3,	5,	8,	13};	

				}	

				std::multimap<int,	bool>	getRates2()	

				{	

						return	std::multimap<int,	bool>	{	

								{	1,	true	},	

								{	1,	true	},	

								{	2,	false	},	

								{	3,	true	},	

								{	5,	true	},	

								{	8,	false	},	

								{	13,	true	}	

						};	

				}



How	to	do	it...
Range-based	for	loops	can	be	used	in	various	ways:

By	committing	to	a	specific	type	for	the	elements	of	the	sequence:

								auto	rates	=	getRates();

								for	(int	rate	:	rates)	

										std::cout	<<	rate	<<	std::endl;	

								for	(int&	rate	:	rates)	

										rate	*=	2;

By	not	specifying	a	type	and	letting	the	compiler	deduce	it:

								for	(auto&&	rate	:	getRates())	

										std::cout	<<	rate	<<	std::endl;	

								for	(auto	&	rate	:	rates)	

										rate	*=	2;	

								for	(auto	const	&	rate	:	rates)	

										std::cout	<<	rate	<<	std::endl;

By	using	structured	bindings	and	decomposition	declaration	in	C++17:

								for	(auto&&	[rate,	flag]	:	getRates2())	

										std::cout	<<	rate	<<	std::endl;



How	it	works...
The	expression	for	the	range-based	for	loops	shown	earlier	in	the	How	to	do	it...
section	is	basically	syntactic	sugar	as	the	compiler	transforms	it	into	something
else.	Before	C++17,	the	code	generated	by	the	compiler	used	to	be	the
following:

				{	

						auto	&&	__range	=	range_expression;	

						for	(auto	__begin	=	begin_expr,	__end	=	end_expr;	

						__begin	!=	__end;	++__begin)	{	

								range_declaration	=	*__begin;	

								loop_statement	

						}	

				}

What	begin_expr	and	end_expr	are	in	this	code	depends	on	the	type	of	the	range:

For	C-like	arrays,	__range	and	__bound	are	the	number	of	elements	in	the	array.
For	a	class	type	with	begin()	and	end()	members	(regardless	of	their	type	and
accessibility):	__range.begin()	and	__range.end().
For	others	it	is	begin(__range)	and	end(__range)	that	are	determined	via
argument	dependent	lookup.

It	is	important	to	note	that	if	a	class	contains	any	members	(function,	data
member,	or	enumerators)	called	begin	or	end,	regardless	of	their	type	and
accessibility,	they	will	be	picked	for	begin_expr	and	end_expr.	Therefore,	such	a
class	type	cannot	be	used	in	range-based	for	loops.

In	C++17,	the	code	generated	by	the	compiler	is	slightly	different:

				{	

						auto	&&	__range	=	range_expression;	

						auto	__begin	=	begin_expr;	

						auto	__end	=	end_expr;	

						for	(;	__begin	!=	__end;	++__begin)	{	

								range_declaration	=	*__begin;	

								loop_statement	

						}	

				}

The	new	standard	has	removed	the	constraint	that	the	begin	expression	and	end
expression	must	have	the	same	type.	The	end	expression	does	not	need	to	be	an
actual	iterator,	but	it	has	to	be	able	to	be	compared	for	inequality	with	an



actual	iterator,	but	it	has	to	be	able	to	be	compared	for	inequality	with	an
iterator.	A	benefit	of	this	is	that	the	range	can	be	delimited	by	a	predicate.



See	also
Enabling	range-based	for	loops	for	custom	types



Enabling	range-based	for	loops	for
custom	types
As	we	have	seen	in	the	preceding	recipe,	the	range-based	for	loops,	known	as	for
each	in	other	programming	languages,	allows	you	to	iterate	over	the	elements	of	a
range,	providing	a	simplified	syntax	over	the	standard	for	loops	and	making	the
code	more	readable	in	many	situations.	However,	range-based	for	loops	do	not
work	out	of	the	box	with	any	type	representing	a	range,	but	require	the	presence
of	a	begin()	and	end()	function	(for	non-array	types)	either	as	a	member	or	free
function.	In	this	recipe,	we	will	see	how	to	enable	a	custom	type	to	be	used	in
range-based	for	loops.



Getting	ready
It	is	recommended	that	you	read	the	recipe	Using	range-based	for	loops	to
iterate	on	a	range	before	continuing	with	this	one	if	you	need	to	understand	how
range-based	for	loops	work	and	what	is	the	code	the	compiler	generates	for	such
a	loop.

To	show	how	we	can	enable	range-based	for	loops	for	custom	types	representing
sequences,	we	will	use	the	following	implementation	of	a	simple	array:

				template	<typename	T,	size_t	const	Size>	

				class	dummy_array	

				{	

						T	data[Size]	=	{};	

				public:	

						T	const	&	GetAt(size_t	const	index)	const	

						{	

								if	(index	<	Size)	return	data[index];	

								throw	std::out_of_range("index	out	of	range");	

						}	

						void	SetAt(size_t	const	index,	T	const	&	value)	

						{	

								if	(index	<	Size)	data[index]	=	value;	

								else	throw	std::out_of_range("index	out	of	range");	

						}	

						size_t	GetSize()	const	{	return	Size;	}	

				};

The	purpose	of	this	recipe	is	to	enable	writing	code	like	the	following:

				dummy_array<int,	3>	arr;	

				arr.SetAt(0,	1);	

				arr.SetAt(1,	2);	

				arr.SetAt(2,	3);	

				for(auto&&	e	:	arr)	

				{		

						std::cout	<<	e	<<	std::endl;	

				}



How	to	do	it...
To	enable	a	custom	type	to	be	used	in	range-based	for	loops,	you	need	to	do	the
following:

Create	mutable	and	constant	iterators	for	the	type	that	must	implement	the
following	operators:

operator++	for	incrementing	the	iterator.
operator*	for	dereferencing	the	iterator	and	accessing	the	actual	element
pointed	by	the	iterator.
operator!=	for	comparing	with	another	iterator	for	inequality.

Provide	free	begin()	and	end()	functions	for	the	type.

Given	the	earlier	example	of	a	simple	range,	we	need	to	provide	the	following:

1.	 The	following	minimal	implementation	of	an	iterator	class:

								template	<typename	T,	typename	C,	size_t	const	Size>	

								class	dummy_array_iterator_type	

								{	

								public:	

										dummy_array_iterator_type(C&	collection,		

																																				size_t	const	index)	:	

										index(index),	collection(collection)	

										{	}	

								bool	operator!=	(dummy_array_iterator_type	const	&	other)	const	

								{	

										return	index	!=	other.index;	

								}	

								T	const	&	operator*	()	const	

								{	

										return	collection.GetAt(index);	

								}	

								dummy_array_iterator_type	const	&	operator++	()	

								{	

										++index;	

										return	*this;	

								}	

								private:	

										size_t			index;	

										C&							collection;	

								};



2.	 Alias	templates	for	mutable	and	constant	iterators:

								template	<typename	T,	size_t	const	Size>	

								using	dummy_array_iterator	=		

											dummy_array_iterator_type<	

													T,	dummy_array<T,	Size>,	Size>;	

								template	<typename	T,	size_t	const	Size>	

								using	dummy_array_const_iterator	=		

											dummy_array_iterator_type<	

													T,	dummy_array<T,	Size>	const,	Size>;

3.	 Free	begin()	and	end()	functions	that	return	the	corresponding	begin	and	end
iterators,	with	overloads	for	both	alias	templates:

								template	<typename	T,	size_t	const	Size>	

								inline	dummy_array_iterator<T,	Size>	begin(

										dummy_array<T,	Size>&	collection)	

								{	

										return	dummy_array_iterator<T,	Size>(collection,	0);	

								}	

								template	<typename	T,	size_t	const	Size>	

								inline	dummy_array_iterator<T,	Size>	end(

										dummy_array<T,	Size>&	collection)	

								{	

										return	dummy_array_iterator<T,	Size>(

												collection,	collection.GetSize());	

								}	

								template	<typename	T,	size_t	const	Size>	

								inline	dummy_array_const_iterator<T,	Size>	begin(	

										dummy_array<T,	Size>	const	&	collection)	

								{	

										return	dummy_array_const_iterator<T,	Size>(	

												collection,	0);	

								}	

								template	<typename	T,	size_t	const	Size>	

								inline	dummy_array_const_iterator<T,	Size>	end(	

										dummy_array<T,	Size>	const	&	collection)	

								{	

										return	dummy_array_const_iterator<T,	Size>(	

												collection,	collection.GetSize());	

								}



How	it	works...
Having	this	implementation	available,	the	range-based	for	loop	shown	earlier
compiles	and	executes	as	expected.	When	performing	argument	dependent
lookup,	the	compiler	will	identify	the	two	begin()	and	end()	functions	that	we
wrote	(that	take	a	reference	to	a	dummy_array)	and	therefore	the	code	it	generates
becomes	valid.

In	the	preceding	example,	we	have	defined	one	iterator	class	template	and	two
alias	templates,	called	dummy_array_iterator	and	dummy_array_const_iterator.	The	begin()
and	end()	functions	both	have	two	overloads	for	these	two	types	of	iterators.	This
is	necessary	so	that	the	container	we	have	considered	could	be	used	in	range-
based	for	loops	with	both	constant	and	non-constant	instances:

				template	<typename	T,	const	size_t	Size>	

				void	print_dummy_array(dummy_array<T,	Size>	const	&	arr)	

				{	

						for	(auto	&&	e	:	arr)	

						{	

								std::cout	<<	e	<<	std::endl;	

						}	

				}

A	possible	alternative	to	enable	range-based	for	loops	for	the	simple	range	class
we	considered	for	this	recipe	is	to	provide	member	begin()	and	end()	functions.	In
general,	that	could	make	sense	only	if	you	own	and	can	modify	the	source	code.
On	the	other	hand,	the	solution	shown	in	this	recipe	works	in	all	cases	and
should	be	preferred	to	other	alternatives.



See	also
Creating	type	aliases	and	alias	templates



Using	explicit	constructors	and
conversion	operators	to	avoid	implicit
conversion
Before	C++11,	a	constructor	with	a	single	parameter	was	considered	a
converting	constructor.	With	C++11,	every	constructor	without	the	explicit
specifier	is	considered	a	converting	constructor.	Such	a	constructor	defines	an
implicit	conversion	from	the	type	or	types	of	its	arguments	to	the	type	of	the
class.	Classes	can	also	define	converting	operators	that	convert	the	type	of	the
class	to	another	specified	type.	All	these	are	useful	in	some	cases,	but	can	create
problems	in	other	cases.	In	this	recipe,	we	will	see	how	to	use	explicit
constructors	and	conversion	operators.



Getting	ready
For	this	recipe,	you	need	to	be	familiar	with	converting	constructors	and
converting	operators.	In	this	recipe,	you	will	learn	how	to	write	explicit
constructors	and	conversion	operators	to	avoid	implicit	conversions	to	and	from
a	type.	The	use	of	explicit	constructors	and	conversion	operators	(called	user-
defined	conversion	functions)	enables	the	compiler	to	yield	errors--that	in	some
cases	are	coding	errors--and	allow	developers	to	spot	those	errors	quickly	and	fix
them.



How	to	do	it...
To	declare	explicit	constructors	and	conversion	operators	(regardless	of	whether
they	are	functions	or	function	templates),	use	the	explicit	specifier	in	the
declaration.

The	following	example	shows	both	an	explicit	constructor	and	a	converting
operator:

				struct	handle_t	

				{	

						explicit	handle_t(int	const	h)	:	handle(h)	{}	

						explicit	operator	bool()	const	{	return	handle	!=	0;	};	

				private:	

						int	handle;	

				};



How	it	works...
To	understand	why	explicit	constructors	are	necessary	and	how	they	work,	we
will	first	look	at	converting	constructors.	The	following	class	has	three
constructors:	a	default	constructor	(without	parameters),	a	constructor	that	takes
an	int,	and	a	constructor	that	takes	two	parameters,	an	int	and	a	double.	They	don't
do	anything,	except	printing	a	message.	As	of	C++11,	these	are	all	considered
converting	constructors.	The	class	also	has	a	conversion	operator	that	converts
the	type	to	a	bool:

				struct	foo	

				{	

						foo()

						{	std::cout	<<	"foo"	<<	std::endl;	}

						foo(int	const	a)

						{	std::cout	<<	"foo(a)"	<<	std::endl;	}

						foo(int	const	a,	double	const	b)

						{	std::cout	<<	"foo(a,	b)"	<<	std::endl;	}	

						operator	bool()	const	{	return	true;	}	

				};

Based	on	this,	the	following	definitions	of	objects	are	possible	(note	that	the
comments	represent	the	console	output):

				foo	f1;														//	foo	

				foo	f2	{};											//	foo	

				foo	f3(1);											//	foo(a)	

				foo	f4	=	1;										//	foo(a)	

				foo	f5	{	1	};								//	foo(a)	

				foo	f6	=	{	1	};						//	foo(a)	

				foo	f7(1,	2.0);						//	foo(a,	b)	

				foo	f8	{	1,	2.0	};			//	foo(a,	b)	

				foo	f9	=	{	1,	2.0	};	//	foo(a,	b)

f1	and	f2	invoke	the	default	constructor.	f3,	f4,	f5,	and	f6	invoke	the	constructor
that	takes	an	int.	Note	that	all	the	definitions	of	these	objects	are	equivalent,	even
if	they	look	different	(f3	is	initialized	using	the	functional	form,	f4	and	f6	are
copy	initialized,	and	f5	is	directly	initialized	using	brace-init-list).	Similarly,	f7,
f8,	and	f9	invoke	the	constructor	with	two	parameters.

It	may	be	important	to	note	that	if	foo	defines	a	constructor	that	takes	an
std::initializer_list,	then	all	the	initializations	using	{}	would	resolve	to	that



constructor:

				foo(std::initializer_list<int>	l)		

				{	std::cout	<<	"foo(l)"	<<	std::endl;	}

In	this	case,	f5	and	f6	will	print	foo(l),	while	f8	and	f9	will	generate	compiler
errors	because	all	elements	of	the	initializer	list	should	be	integers.

These	may	all	look	right,	but	the	implicit	conversion	constructors	enable
scenarios	where	the	implicit	conversion	may	not	be	what	we	wanted:

				void	bar(foo	const	f)	

				{	

				}	

				bar({});													//	foo()	

				bar(1);														//	foo(a)	

				bar({	1,	2.0	});					//	foo(a,	b)

The	conversion	operator	to	bool	in	the	example	above	also	enables	us	to	use	foo
objects	where	boolean	values	are	expected:

				bool	flag	=	f1;	

				if(f2)	{}	

				std::cout	<<	f3	+	f4	<<	std::endl;	

				if(f5	==	f6)	{}

The	first	two	are	examples	where	foo	is	expected	to	be	used	as	boolean	but	the
last	two	with	addition	and	test	for	equality	are	probably	incorrect,	as	we	most
likely	expect	to	add	foo	objects	and	test	foo	objects	for	equality,	not	the	booleans
they	implicitly	convert	to.

Perhaps	a	more	realistic	example	to	understand	where	problems	could	arise
would	be	to	consider	a	string	buffer	implementation.	This	would	be	a	class	that
contains	an	internal	buffer	of	characters.	The	class	may	provide	several
conversion	constructors:	a	default	constructor,	a	constructor	that	takes	a	size_t
parameter	representing	the	size	of	the	buffer	to	preallocate,	and	a	constructor
that	takes	a	pointer	to	char	that	should	be	used	to	allocate	and	initialize	the
internal	buffer.	Succinctly,	such	a	string	buffer	could	look	like	this:

				class	string_buffer	

				{	

				public:	

						string_buffer()	{}	

						string_buffer(size_t	const	size)	{}	

						string_buffer(char	const	*	const	ptr)	{}	



						string_buffer(char	const	*	const	ptr)	{}	

						size_t	size()	const	{	return	...;	}	

						operator	bool()	const	{	return	...;	}	

						operator	char	*	const	()	const	{	return	...;	}	

				};

Based	on	this	definition,	we	could	construct	the	following	objects:

				std::shared_ptr<char>	str;	

				string_buffer	sb1;													//	empty	buffer	

				string_buffer	sb2(20);									//	buffer	of	20	characters	

				string_buffer	sb3(str.get());			

				//	buffer	initialized	from	input	parameter

sb1	is	created	using	the	default	constructor	and	thus	has	an	empty	buffer;	sb2	is
initialized	using	the	constructor	with	a	single	parameter	and	the	value	of	the
parameter	represents	the	size	in	characters	of	the	internal	buffer;	sb3	is	initialized
with	an	existing	buffer	and	that	is	used	to	define	the	size	of	the	internal	buffer
and	to	copy	its	value	into	the	internal	buffer.	However,	the	same	definition	also
enables	the	following	object	definitions:

				enum	ItemSizes	{DefaultHeight,	Large,	MaxSize};	

				string_buffer	b4	=	'a';	

				string_buffer	b5	=	MaxSize;

In	this	case,	b4	is	initialized	with	a	char.	Since	an	implicit	conversion	to	size_t
exists,	the	constructor	with	a	single	parameter	will	be	called.	The	intention	here
is	not	necessarily	clear;	perhaps	it	should	have	been	"a"	instead	of	'a',	in	which
case	the	third	constructor	would	have	been	called.	However,	b5	is	most	likely	an
error,	because	MaxSize	is	an	enumerator	representing	an	ItemSizes	and	should	have
nothing	to	do	with	a	string	buffer	size.	These	erroneous	situations	are	not	flagged
by	the	compiler	in	any	way.

Using	the	explicit	specifier	in	the	declaration	of	a	constructor,	that	constructor
becomes	an	explicit	constructor	and	no	longer	allows	implicit	constructions	of
objects	of	a	class	type.	To	exemplify	this,	we	will	slightly	change	the
string_buffer	class	earlier	to	declare	all	constructors	explicit:

				class	string_buffer	

				{	

				public:	

						explicit	string_buffer()	{}	

						explicit	string_buffer(size_t	const	size)	{}	

						explicit	string_buffer(char	const	*	const	ptr)	{}	

						explicit	operator	bool()	const	{	return	...;	}	



						explicit	operator	bool()	const	{	return	...;	}	

						explicit	operator	char	*	const	()	const	{	return	...;	}	

				};

The	change	is	minimal,	but	the	definitions	of	b4	and	b5	in	the	earlier	example	no
longer	work,	and	are	incorrect,	since	the	implicit	conversion	from	char	or	int	to
size_t	are	no	longer	available	during	overload	resolution	to	figure	out	what
constructor	should	be	called.	The	result	is	compiler	errors	for	both	b4	and	b5.
Note	that	b1,	b2,	and	b3	are	still	valid	definitions	even	if	the	constructors	are
explicit.

The	only	way	to	fix	the	problem,	in	this	case,	is	to	provide	an	explicit	cast	from
char	or	int	to	string_buffer:

				string_buffer	b4	=	string_buffer('a');	

				string_buffer	b5	=	static_cast<string_buffer>(MaxSize);	

				string_buffer	b6	=	string_buffer{	"a"	};

With	explicit	constructors,	the	compiler	is	able	to	immediately	flag	erroneous
situations	and	developers	can	react	accordingly,	either	fixing	the	initialization
with	a	correct	value	or	providing	an	explicit	cast.

This	is	only	the	case	when	initialization	is	done	with	copy
initialization	and	not	when	using	the	functional	or	universal
initialization.

The	following	definitions	are	still	possible	(and	wrong)	with	explicit
constructors:

				string_buffer	b7{	'a'	};	

				string_buffer	b8('a');

Similar	to	constructors,	conversion	operators	can	be	declared	explicit	(as	shown
earlier).	In	this	case,	the	implicit	conversions	from	the	object	type	to	the	type
specified	by	the	conversion	operator	are	no	longer	possible	and	require	an
explicit	cast.	Considering	b1	and	b2,	the	string_buffer	objects	defined	earlier,	the
following	are	no	longer	possible	with	explicit	conversion	operator	bool:

				std::cout	<<	b1	+	b2	<<	std::endl;	

				if(b1	==	b2)	{}

Instead,	they	require	explicit	conversion	to	bool:

				std::cout	<<	static_cast<bool>(b1)	+	static_cast<bool>(b2);



				std::cout	<<	static_cast<bool>(b1)	+	static_cast<bool>(b2);

				if(static_cast<bool>(b1)	==	static_cast<bool>(b2))	{}



See	also
Understanding	uniform	initialization



Using	unnamed	namespaces	instead
of	static	globals
The	larger	a	program	the	greater	the	chances	are	you	could	run	into	name
collisions	with	file	locals	when	your	program	is	linked.	Functions	or	variables
that	are	declared	in	a	source	file	and	are	supposed	to	be	local	to	the	translation
unit	may	collide	with	other	similar	functions	or	variables	declared	in	another
translation	unit.	That	is	because	all	symbols	that	are	not	declared	static	have
external	linkage	and	their	names	must	be	unique	throughout	the	program.	The
typical	C	solution	for	this	problem	is	to	declare	those	symbols	static,	changing
their	linkage	from	external	to	internal	and	therefore	making	them	local	to	a
translation	unit.	In	this	recipe,	we	will	look	at	the	C++	solution	for	this	problem.



Getting	ready
In	this	recipe,	we	will	discuss	concepts	such	as	global	functions,	static	functions,
and	variables,	namespaces,	and	translation	units.	Apart	from	these,	it	is	required
that	you	understand	the	difference	between	internal	and	external	linkage;	that	is
key	for	this	recipe.



How	to	do	it...
When	you	are	in	a	situation	where	you	need	to	declare	global	symbols	as	statics
to	avoid	linkage	problems,	prefer	to	use	unnamed	namespaces:

1.	 Declare	a	namespace	without	a	name	in	your	source	file.
2.	 Put	the	definition	of	the	global	function	or	variable	in	the	unnamed

namespace	without	making	them	static.

The	following	example	shows	two	functions	called	print()	in	two	different
translation	units;	each	of	them	is	defined	in	an	unnamed	namespace:

				//	file1.cpp	

				namespace	

				{	

						void	print(std::string	message)	

						{	

								std::cout	<<	"[file1]	"	<<	message	<<	std::endl;	

						}	

				}	

				void	file1_run()	

				{	

						print("run");	

				}	

				//	file2.cpp	

				namespace	

				{	

						void	print(std::string	message)	

						{	

								std::cout	<<	"[file2]	"	<<	message	<<	std::endl;	

						}	

				}	

				void	file2_run()	

				{	

						print("run");	

				}



How	it	works...
When	a	function	is	declared	in	a	translation	unit,	it	has	external	linkage.	That
means	two	functions	with	the	same	name	from	two	different	translation	units
would	generate	a	linkage	error	because	it	is	not	possible	to	have	two	symbols
with	the	same	name.	The	way	this	problem	is	solved	in	C,	and	by	some	in	C++
also,	is	to	declare	the	function	or	variable	static	and	change	its	linkage	from
external	to	internal.	In	this	case,	its	name	is	no	longer	exported	outside	the
translation	unit,	and	the	linkage	problem	is	avoided.

The	proper	solution	in	C++	is	to	use	unnamed	namespaces.	When	you	define	a
namespace	like	the	ones	shown	above,	the	compiler	transforms	it	to	the
following:

				//	file1.cpp	

				namespace	_unique_name_	{}	

				using	namespace	_unique_name_;	

				namespace	_unique_name_	

				{	

						void	print(std::string	message)	

						{	

								std::cout	<<	"[file1]	"	<<	message	<<	std::endl;	

						}	

				}	

				void	file1_run()	

				{	

						print("run");	

				}

First	of	all,	it	declares	a	namespace	with	a	unique	name	(what	the	name	is	and
how	it	generates	that	name	is	a	compiler	implementation	detail	and	should	not	be
a	concern).	At	this	point,	the	namespace	is	empty,	and	the	purpose	of	this	line	is
to	basically	establish	the	namespace.	Second,	a	using	directive	brings	everything
from	the	_unique_name_	namespace	into	the	current	namespace.	Third,	the
namespace,	with	the	compiler-generated	name,	is	defined	as	it	was	in	the
original	source	code	(when	it	had	no	name).

By	defining	the	translation	unit	local	print()	functions	in	an	unnamed	namespace,
they	have	local	visibility	only,	yet	their	external	linkage	no	longer	produces
linkage	errors	since	they	now	have	external	unique	names.



Unnamed	namespaces	are	also	working	in	a	perhaps	more	obscure	situation
involving	templates.	Template	arguments	cannot	be	names	with	internal	linkage,
so	using	static	variables	is	not	possible.	On	the	other	hand,	symbols	in	an
unnamed	namespace	have	external	linkage	and	can	be	used	as	template
arguments.	This	problem	is	shown	in	the	following	example	where	declaring	t1
produces	a	compiler	error	because	the	non-type	argument	expression	has	internal
linkage.	However,	t2	is	correct	because	Size2	has	external	linkage:

				template	<int	const&	Size>	

				class	test	{};	

				static	int	Size1	=	10;	

				namespace	

				{	

						int	Size2	=	10;	

				}	

				test<Size1>	t1;	

				test<Size2>	t2;



See	also
Using	inline	namespaces	for	symbol	versioning



Using	inline	namespaces	for	symbol
versioning
The	C++11	standard	has	introduced	a	new	type	of	namespace	called	inline
namespaces	that	are	basically	a	mechanism	that	makes	declarations	from	a
nested	namespace	look	and	act	like	they	were	part	of	the	surrounding
namespace.	Inline	namespaces	are	declared	using	the	inline	keyword	in	the
namespace	declaration	(unnamed	namespaces	can	also	be	inlined).	This	is	a
helpful	feature	for	library	versioning,	and	in	this	recipe,	we	will	see	how	inline
namespaces	can	be	used	for	versioning	symbols.	From	this	recipe,	you	will	learn
how	to	version	your	source	code	using	inline	namespaces	and	conditional
compilation.



Getting	ready
In	this	recipe,	we	will	discuss	namespaces	and	nested	namespaces,	templates	and
template	specializations,	and	conditional	compilation	using	preprocessor	macros.
Familiarity	with	these	concepts	is	required	in	order	to	proceed	with	the	recipe.



How	to	do	it...
To	provide	multiple	versions	of	a	library	and	let	the	user	decide	what	version	to
use,	do	the	following:

Define	the	content	of	the	library	inside	a	namespace.
Define	each	version	of	the	library	or	parts	of	it	inside	an	inner	inline
namespace.
Use	preprocessor	macros	and	#if	directives	to	enable	a	particular	version	of
the	library.

The	following	example	shows	a	library	that	has	two	versions	that	clients	can	use:

				namespace	modernlib	

				{	

						#ifndef	LIB_VERSION_2	

						inline	namespace	version_1	

						{	

								template<typename	T>	

								int	test(T	value)	{	return	1;	}	

						}	

						#endif	

						#ifdef	LIB_VERSION_2	

						inline	namespace	version_2	

						{	

								template<typename	T>	

								int	test(T	value)	{	return	2;	}	

						}	

						#endif	

				}



How	it	works...
A	member	of	an	inline	namespace	is	treated	as	if	it	was	a	member	of	the
surrounding	namespace.	Such	a	member	can	be	partially	specialized,	explicitly
instantiated,	or	explicitly	specialized.	This	is	a	transitive	property,	which	means
that	if	a	namespace	A	contains	an	inline	namespace	B	that	contains	an	inline
namespace	C,	then	the	members	of	C	appear	as	they	were	members	of	both	B
and	A	and	the	members	of	B	appear	as	they	were	members	of	A.

To	better	understand	why	inline	namespaces	are	helpful,	let's	consider	the	case
of	developing	a	library	that	evolves	over	time	from	a	first	version	to	a	second
version	(and	further	on).	This	library	defines	all	its	types	and	functions	under	a
namespace	called	modernlib.	In	the	first	version,	this	library	could	look	like	this:

				namespace	modernlib	

				{	

						template<typename	T>	

						int	test(T	value)	{	return	1;	}	

				}

A	client	of	the	library	can	make	the	following	call	and	get	back	the	value	1:

				auto	x	=	modernlib::test(42);

However,	the	client	might	decide	to	specialize	the	template	function	test()	as	the
following:

				struct	foo	{	int	a;	};	

				namespace	modernlib	

				{	

						template<>	

						int	test(foo	value)	{	return	value.a;	}	

				}	

				auto	y	=	modernlib::test(foo{	42	});

In	this	case,	the	value	of	y	is	no	longer	1,	but	42	because	the	user-specialized
function	gets	called.

Everything	is	working	correctly	so	far,	but	as	a	library	developer	you	decide	to
create	a	second	version	of	the	library,	yet	still	ship	both	the	first	and	the	second



version	and	let	the	user	control	what	to	use	with	a	macro.	In	this	second	version,
you	provide	a	new	implementation	of	the	test()	function	that	no	longer	returns	1,
but	2.	To	be	able	to	provide	both	the	first	and	second	implementations,	you	put
them	in	nested	namespaces	called	version_1	and	version_2	and	conditionally
compile	the	library	using	preprocessor	macros:

				namespace	modernlib	

				{	

						namespace	version_1	

						{	

								template<typename	T>	

								int	test(T	value)	{	return	1;	}	

						}	

						#ifndef	LIB_VERSION_2	

						using	namespace	version_1;	

						#endif	

						namespace	version_2		

						{	

								template<typename	T>	

								int	test(T	value)	{	return	2;	}	

						}	

						#ifdef	LIB_VERSION_2	

						using	namespace	version_2;	

						#endif	

				}

Suddenly,	the	client	code	will	break,	regardless	of	whether	it	uses	the	first	or
second	version	of	the	library.	That	is	because	the	test	function	is	now	inside	a
nested	namespace,	and	the	specialization	for	foo	is	done	in	the	modernlib
namespace,	when	it	should	actually	be	done	in	modernlib::version_1	or
modernlib::version_2.	This	is	because	the	specialization	of	a	template	is	required	to
be	done	in	the	same	namespace	where	the	template	was	declared.	In	this	case,
the	client	needs	to	change	the	code	like	this:

				#define	LIB_VERSION_2	

				#include	"modernlib.h"	

				struct	foo	{	int	a;	};	

				namespace	modernlib	

				{	

						namespace	version_2		

						{	

								template<>	

								int	test(foo	value)	{	return	value.a;	}	

						}	

				}

This	is	a	problem	because	the	library	leaks	implementation	details,	and	the	client



needs	to	be	aware	of	those	in	order	do	the	template	specialization.	These	internal
details	are	hidden	with	inline	namespaces	in	the	manner	shown	in	the	How	to	do
it...	section	of	this	recipe.	With	that	definition	of	the	modernlib	library,	the	client
code	with	the	specialization	of	the	test()	function	in	the	modernlib	namespace	is	no
longer	broken,	because	either	version_1::test()	or	version_2::test()	(depending	on
what	version	the	client	is	actually	using)	acts	as	being	part	of	the	enclosing
modernlib	namespace	when	template	specialization	is	done.	The	details	of	the
implementation	are	now	hidden	to	the	client	that	only	sees	the	surrounding
namespace	modernlib.

However,	you	should	keep	in	mind	that:

The	namespace	std	is	reserved	for	the	standard	and	should	never	be	inlined.
A	namespace	should	not	be	defined	inline	if	it	was	not	inline	in	its	first
definition.



See	also
Using	unnamed	namespaces	instead	of	static	globals
Conditionally	compiling	your	source	code	recipe	of	Chapter	4,	Preprocessor
and	Compilation



Using	structured	bindings	to	handle
multi-return	values
Returning	multiple	values	from	a	function	is	something	very	common,	yet	there
is	no	first-class	solution	in	C++	to	enable	it	directly.	Developers	have	to	choose
between	returning	multiple	values	through	reference	parameters	to	a	function,
defining	a	structure	to	contain	the	multiple	values	or	returning	a	std::pair	or
std::tuple.	The	first	two	use	named	variables	that	have	the	advantage	that	they
clearly	indicate	the	meaning	of	the	return	value,	but	have	the	disadvantage	that
they	have	to	be	explicitly	defined.	std::pair	has	its	members	called	first	and
second,	and	std::tuple	has	unnamed	members	that	can	only	be	retrieved	with	a
function	call,	but	can	be	copied	to	named	variables	using	std::tie().	None	of
these	solutions	is	ideal.

C++17	extends	the	semantic	use	of	std::tie()	into	a	first-class	core	language
feature	that	enables	unpacking	the	values	of	a	tuple	to	named	variables.	This
feature	is	called	structured	bindings.



Getting	ready
For	this	recipe,	you	should	be	familiar	with	the	standard	utility	types	std::pair
and	std::tuple	and	the	utility	function	std::tie().



How	to	do	it...
To	return	multiple	values	from	a	function	using	a	compiler	that	supports
C++17	you	should	do	the	following:

1.	 Use	an	std::tuple	for	the	return	type.

								std::tuple<int,	std::string,	double>	find()	

								{	

										return	std::make_tuple(1,	"marius",	1234.5);	

								}

2.	 Use	structured	bindings	to	unpack	the	values	of	the	tuple	into	named
objects.

								auto	[id,	name,	score]	=	find();

3.	 Use	decomposition	declaration	to	bind	the	returned	values	to	variables
inside	an	if	statement	or	switch	statement.

								if	(auto	[id,	name,	score]	=	find();	score	>	1000)	

								{	

										std::cout	<<	name	<<	std::endl;	

								}



How	it	works...
Structured	bindings	are	a	language	feature	that	works	just	like	std::tie(),	except
that	we	don't	have	to	define	named	variables	for	each	value	that	needs	to	be
unpacked	explicitly	with	std::tie().	With	structured	bindings,	we	define	all
named	variables	in	a	single	definition	using	the	auto	specifier	so	that	the	compiler
can	infer	the	correct	type	for	each	variable.

To	exemplify	this,	let's	consider	the	case	of	inserting	items	in	a	std::map.	The
insert	method	returns	a	std::pair	containing	an	iterator	to	the	inserted	element	or
the	element	that	prevented	the	insertion,	and	a	boolean	indicating	whether	the
insertion	was	successful	or	not.	The	following	code	is	very	explicit	and	the	use
of	second	or	first->second	makes	the	code	harder	to	read	because	you	need	to
constantly	figure	out	what	they	represent:

				std::map<int,	std::string>	m;	

				auto	result	=	m.insert({	1,	"one"	});	

				std::cout	<<	"inserted	=	"	<<	result.second	<<	std::endl	

														<<	"value	=	"	<<	result.first->second	<<	std::endl;

The	preceding	code	can	be	made	more	readable	with	the	use	of	std::tie,	that
unpacks	tuples	into	individual	objects	(and	works	with	std::pair	because
std::tuple	has	a	converting	assignment	from	std::pair):

				std::map<int,	std::string>	m;	

				std::map<int,	std::string>::iterator	it;	

				bool	inserted;	

				std::tie(it,	inserted)	=	m.insert({	1,	"one"	});	

				std::cout	<<	"inserted	=	"	<<	inserted	<<	std::endl	

														<<	"value	=	"	<<	it->second	<<	std::endl;	

				std::tie(it,	inserted)	=	m.insert({	1,	"two"	});	

				std::cout	<<	"inserted	=	"	<<	inserted	<<	std::endl	

														<<	"value	=	"	<<	it->second	<<	std::endl;

The	code	is	not	necessarily	simpler	because	it	requires	defining	in	advance	the
objects	that	the	pair	is	unpacked	to.	Similarly,	the	more	elements	the	tuple	has
the	more	objects	you	need	to	define,	but	using	named	objects	makes	the	code
easier	to	read.



C++17	structured	bindings	elevate	the	unpacking	of	tuple	elements	into	named
objects	to	the	rank	of	a	language	feature;	it	does	not	require	the	use	of	std::tie(),
and	objects	are	initialized	when	declared:

				std::map<int,	std::string>	m;	

				{	

						auto[it,	inserted]	=	m.insert({	1,	"one"	});	

						std::cout	<<	"inserted	=	"	<<	inserted	<<	std::endl	

																<<	"value	=	"	<<	it->second	<<	std::endl;	

				}	

				{	

						auto[it,	inserted]	=	m.insert({	1,	"two"	});	

						std::cout	<<	"inserted	=	"	<<	inserted	<<	std::endl	

																<<	"value	=	"	<<	it->second	<<	std::endl;	

				}

The	use	of	multiple	blocks	in	the	above	example	is	necessary	because	variables
cannot	be	redeclared	in	the	same	block,	and	structured	bindings	imply	a
declaration	using	the	auto	specifier.	Therefore,	if	you	need	to	make	multiple	calls
like	in	the	example	above	and	use	structured	bindings	you	must	either	use
different	variable	names	or	multiple	blocks	as	shown	above.	An	alternative	to
that	is	to	avoid	structured	bindings	and	use	std::tie(),	because	it	can	be	called
multiple	times	with	the	same	variables,	therefore	you	only	need	to	declare	them
once.

In	C++17,	it	is	also	possible	to	declare	variables	in	if	and	switch	statements	with
the	form	if(init;	condition)	and	switch(init;	condition).	This	could	be	combined
with	structured	bindings	to	produce	simpler	code.	In	the	following	example,	we
attempt	to	insert	a	new	value	into	a	map.	The	result	of	the	call	is	unpacked	into
two	variables,	it	and	inserted,	defined	in	the	scope	of	the	if	statement	in	the
initialization	part.	The	condition	of	the	if	statement	is	evaluated	from	the	value
of	the	inserted	object:

				if(auto	[it,	inserted]	=	m.insert({	1,	"two"	});	inserted)

				{	std::cout	<<	it->second	<<	std::endl;	}



Working	with	Numbers	and	Strings
The	recipes	included	in	this	chapter	are	as	follows:

Converting	between	numeric	and	string	types
Limits	and	other	properties	of	numeric	types
Generating	pseudo-random	numbers
Initializing	all	bits	of	internal	state	of	a	pseudo-random	number	generator
Using	raw	string	literals	to	avoid	escaping	characters
Creating	cooked	user-defined	literals
Creating	raw	user-defined	literals
Creating	a	library	of	string	helpers
Verifying	the	format	of	a	string	using	regular	expressions
Parsing	the	content	of	a	string	using	regular	expressions
Replacing	the	content	of	a	string	using	regular	expressions
Using	string_view	instead	of	constant	string	references



Introduction
Numbers	and	strings	are	the	fundamental	types	of	any	programming	language;
all	other	types	are	based	or	composed	of	these	ones.	Developers	are	confronted
all	the	time	with	tasks,	such	as	converting	between	numbers	and	strings,	parsing
strings,	or	generating	random	numbers.	This	chapter	is	focused	on	providing
useful	recipes	for	these	common	tasks	using	modern	C++	language	and	library
features.



Converting	between	numeric	and
string	types
Converting	between	number	and	string	types	is	a	ubiquitous	operation.	Prior	to
C++11,	there	was	little	support	for	converting	numbers	to	strings	and	back,	and
developers	had	to	resort	mostly	to	type-unsafe	functions	and	usually	wrote	their
own	utility	functions	in	order	to	avoid	writing	the	same	code	over	and	over
again.	With	C++11,	the	standard	library	provides	utility	functions	for	converting
between	numbers	and	strings.	In	this	recipe,	you	will	learn	how	to	convert
between	numbers	and	strings	and	the	other	way	around	using	modern	C++
standard	functions.



Getting	ready
All	the	utility	functions	mentioned	in	this	recipe	are	available	in	the	<string>
header.



How	to	do	it...
Use	the	following	standard	conversion	functions	when	you	need	to	convert
between	numbers	and	strings:

To	convert	from	an	integer	or	floating	point	type	to	a	string	type,
use	std::to_string()	or	std::to_wstring()	as	shown	in	the	following	code
snippet:

								auto	si	=	std::to_string(42);						//	si="42"	

								auto	sl	=	std::to_string(42l);					//	sl="42"	

								auto	su	=	std::to_string(42u);					//	su="42"	

								auto	sd	=	std::to_wstring(42.0);			//	sd=L"42.000000"	

								auto	sld	=	std::to_wstring(42.0l);	//	sld=L"42.000000"

To	convert	from	a	string	type	to	an	integer	type,	use	std::stoi(),	std::stol(),
std::stoll(),	std::stoul(),	or	std::stoull();	refer	to	the	following	code	snippet:

								auto	i1	=	std::stoi("42");																	//	i1	=	42	

								auto	i2	=	std::stoi("101010",	nullptr,	2);	//	i2	=	42	

								auto	i3	=	std::stoi("052",	nullptr,	8);				//	i3	=	42	

								auto	i4	=	std::stoi("0x2A",	nullptr,	16);		//	i4	=	42

To	convert	from	a	string	type	to	a	floating	point	type,	use	std::stof(),
std::stod(),	or	std::stold(),	as	shown	in	the	following	code	snippet:

								//	d1	=	123.45000000000000	

								auto	d1	=	std::stod("123.45");	

								//	d2	=	123.45000000000000	

								auto	d2	=	std::stod("1.2345e+2");	

								//	d3	=	123.44999980926514	

								auto	d3	=	std::stod("0xF.6E6666p3");



How	it	works...
To	convert	between	an	integral	or	floating	point	type	to	a	string	type,	you	can
use	either	the	std::to_string()	or	std::to_wstring()	function.	These	functions	are
available	in	the	<string>	header	and	have	overloads	for	signed	and	unsigned
integer	and	real	types.	They	produce	the	same	result	as	std::sprintf()	and
std::swprintf()	would	produce	when	called	with	the	appropriate	format	specifier
for	each	type.	The	following	code	snippet	list	all	the	overloads	of	these	two
functions.

				std::string	to_string(int	value);	

				std::string	to_string(long	value);	

				std::string	to_string(long	long	value);	

				std::string	to_string(unsigned	value);	

				std::string	to_string(unsigned	long	value);	

				std::string	to_string(unsigned	long	long	value);	

				std::string	to_string(float	value);	

				std::string	to_string(double	value);	

				std::string	to_string(long	double	value);	

				std::wstring	to_wstring(int	value);	

				std::wstring	to_wstring(long	value);	

				std::wstring	to_wstring(long	long	value);	

				std::wstring	to_wstring(unsigned	value);	

				std::wstring	to_wstring(unsigned	long	value);	

				std::wstring	to_wstring(unsigned	long	long	value);	

				std::wstring	to_wstring(float	value);	

				std::wstring	to_wstring(double	value);	

				std::wstring	to_wstring(long	double	value);

When	it	comes	to	the	opposite	conversion,	there	is	an	entire	set	of	functions	that
have	the	name	with	the	format	ston	(string	to	number),	where	n	stands	for	i
(integer),	l	(long),	ll	(long	long),	ul	(unsigned	long),	or	ull	(unsigned	long	long).	The
following	listing	shows	all	these	functions,	each	of	them	with	two	overloads,	one
that	takes	an	std::string	and	one	that	takes	an	std::wstring	as	the	first	parameter:

				int	stoi(const	std::string&	str,	std::size_t*	pos	=	0,		

													int	base	=	10);	

				int	stoi(const	std::wstring&	str,	std::size_t*	pos	=	0,		

													int	base	=	10);	

				long	stol(const	std::string&	str,	std::size_t*	pos	=	0,		

													int	base	=	10);	

				long	stol(const	std::wstring&	str,	std::size_t*	pos	=	0,		

													int	base	=	10);	

				long	long	stoll(const	std::string&	str,	std::size_t*	pos	=	0,		

																				int	base	=	10);	

				long	long	stoll(const	std::wstring&	str,	std::size_t*	pos	=	0,		

																				int	base	=	10);	

				unsigned	long	stoul(const	std::string&	str,	std::size_t*	pos	=	0,	

																								int	base	=	10);	

				unsigned	long	stoul(const	std::wstring&	str,	std::size_t*	pos	=	0,		



				unsigned	long	stoul(const	std::wstring&	str,	std::size_t*	pos	=	0,		

																								int	base	=	10);	

				unsigned	long	long	stoull(const	std::string&	str,		

																														std::size_t*	pos	=	0,	int	base	=	10);	

				unsigned	long	long	stoull(const	std::wstring&	str,		

																														std::size_t*	pos	=	0,	int	base	=	10);	

				float							stof(const	std::string&	str,	std::size_t*	pos	=	0);	

				float							stof(const	std::wstring&	str,	std::size_t*	pos	=	0);	

				double						stod(const	std::string&	str,	std::size_t*	pos	=	0);	

				double						stod(const	std::wstring&	str,	std::size_t*	pos	=	0);	

				long	double	stold(const	std::string&	str,	std::size_t*	pos	=	0);	

				long	double	stold(const	std::wstring&	str,	std::size_t*	pos	=	0);

The	way	the	string	to	integral	type	functions	work	is	by	discarding	all	white
spaces	before	a	non-whitespace	character,	then	taking	as	many	characters	as
possible	to	form	a	signed	or	unsigned	number	(depending	on	the	case),	and	then
converting	that	to	the	requested	integral	type	(stoi()	will	return	an	integer,	stoul()
will	return	an	unsigned	long,	and	so	on).	In	all	the	following	examples,	the	result	is
integer	42,	except	for	the	last	example	where	the	result	is	-42:

				auto	i1	=	std::stoi("42");													//	i1	=	42	

				auto	i2	=	std::stoi("			42");										//	i2	=	42	

				auto	i3	=	std::stoi("			42fortytwo");		//	i3	=	42	

				auto	i4	=	std::stoi("+42");												//	i4	=	42	

				auto	i5	=	std::stoi("-42");												//	i5	=	-42

A	valid	integral	number	may	consist	of	the	following	parts:

A	sign,	plus	(+)	or	minus	(-)	(optional).
Prefix	0	to	indicate	an	octal	base	(optional).
Prefix	0x	or	0X	to	indicate	a	hexadecimal	base	(optional).
A	sequence	of	digits.

The	optional	prefix	0	(for	octal)	is	applied	only	when	the	specified	base	is	8	or	0.
Similarly,	the	optional	prefix	0x	or	0X	(for	hexadecimal)	is	applied	only	when	the
specified	base	is	16	or	0.

The	functions	that	convert	a	string	to	an	integer	have	three	parameters:

The	input	string.
A	pointer	that	when	not	null	will	receive	the	number	of	characters	that	were
processed	and	that	can	include	any	leading	white	spaces	that	were
discarded,	the	sign,	and	the	base	prefix,	so	it	should	not	be	confused	with
the	number	of	digits	the	integral	value	has.
A	number	indicating	the	base;	by	default,	this	is	10.



The	valid	digits	in	the	input	string	depend	on	the	base.	For	base	2,	the	only	valid
digits	are	0	and	1;	for	base	5,	they	are	01234.	For	base	11,	the	valid	digits	are	0-9	and
characters	A	and	a.	This	continues	until	we	reach	base	36	that	has	valid	characters
0-9,	A-Z,	and	a-z.

The	following	are	more	examples	of	strings	with	numbers	in	various	bases
converted	to	decimal	integers.	Again,	in	all	cases,	the	result	is	either	42	or	-42:

				auto	i6	=	std::stoi("052",	nullptr,	8);	

				auto	i7	=	std::stoi("052",	nullptr,	0);	

				auto	i8	=	std::stoi("0x2A",	nullptr,	16);	

				auto	i9	=	std::stoi("0x2A",	nullptr,	0);	

				auto	i10	=	std::stoi("101010",	nullptr,	2);	

				auto	i11	=	std::stoi("22",	nullptr,	20);	

				auto	i12	=	std::stoi("-22",	nullptr,	20);	

				auto	pos	=	size_t{	0	};	

				auto	i13	=	std::stoi("42",	&pos);						//	pos	=	2	

				auto	i14	=	std::stoi("-42",	&pos);					//	pos	=	3	

				auto	i15	=	std::stoi("		+42dec",	&pos);//	pos	=	5

An	important	thing	to	note	is	that	these	conversion	functions	throw	if	the
conversion	fails.	There	are	two	exceptions	that	can	be	thrown:

std::invalid_argument:	If	the	conversion	cannot	be	performed:

								try	

								{	

											auto	i16	=	std::stoi("");	

								}	

								catch	(std::exception	const	&	e)	

								{	

											//	prints	"invalid	stoi	argument"	

											std::cout	<<	e.what()	<<	std::endl;	

								}

std::out_of_range:	If	the	converted	value	is	outside	the	range	of	the	result	type
(or	if	the	underlying	function	sets	errno	to	ERANGE):

								try	

								{	

											//	OK

											auto	i17	=	std::stoll("12345678901234");		

											//	throws	std::out_of_range	

											auto	i18	=	std::stoi("12345678901234");	

								}	

								catch	(std::exception	const	&	e)	

								{	

											//	prints	"stoi	argument	out	of	range"

											std::cout	<<	e.what()	<<	std::endl;	

								}

The	other	set	of	functions	that	convert	a	string	to	a	floating	point	type	is	very



The	other	set	of	functions	that	convert	a	string	to	a	floating	point	type	is	very
similar,	except	that	they	don't	have	a	parameter	for	the	numeric	base.	A	valid
floating	point	value	can	have	different	representations	in	the	input	string:

Decimal	floating	point	expression	(optional	sign,	sequence	of	decimal	digits
with	optional	point,	optional	e	or	E	followed	by	exponent	with	optional
sign).
Binary	floating	point	expression	(optional	sign,	0x	or	0X	prefix,	sequence	of
hexadecimal	digits	with	optional	point,	optional	p	or	P	followed	by	exponent
with	optional	sign).
Infinity	expression	(optional	sign	followed	by	case	insensitive	INF	or
INFINITY).
A	non-number	expression	(optional	sign	followed	by	case	insensitive	NAN
and	possibly	other	alphanumeric	characters).

The	following	are	various	examples	of	converting	strings	to	doubles:

				auto	d1	=	std::stod("123.45");									//	d1	=		123.45000000000000	

				auto	d2	=	std::stod("+123.45");								//	d2	=		123.45000000000000	

				auto	d3	=	std::stod("-123.45");								//	d3	=	-123.45000000000000	

				auto	d4	=	std::stod("		123.45");							//	d4	=		123.45000000000000	

				auto	d5	=	std::stod("		-123.45abc");			//	d5	=	-123.45000000000000	

				auto	d6	=	std::stod("1.2345e+2");						//	d6	=		123.45000000000000	

				auto	d7	=	std::stod("0xF.6E6666p3");			//	d7	=		123.44999980926514	

				auto	d8	=	std::stod("INF");												//	d8	=	inf	

				auto	d9	=	std::stod("-infinity");						//	d9	=	-inf	

				auto	d10	=	std::stod("NAN");											//	d10	=	nan	

				auto	d11	=	std::stod("-nanabc");							//	d11	=	-nan

The	floating-point	base	2	scientific	notation,	seen	earlier	in	the	form	0xF.6E6666p3,
is	not	the	topic	of	this	recipe.	However,	for	a	clear	understanding,	a	short
description	is	provided;	although,	it	is	recommended	that	you	see	additional
references	for	details.	A	floating-point	constant	in	the	base	2	scientific	notation
is	composed	of	several	parts:

The	hexadecimal	prefix	0x.
An	integer	part,	in	this	example	was	F,	which	in	decimal	is	15.
A	fractional	part,	which	in	this	example	was	6E6666,	or	011011100110011001100110
in	binary.	To	convert	that	to	decimal,	we	need	to	add	inverse	powers	of
two:	1/4	+	1/8	+	1/32	+	1/64	+	1/128	+	....
A	suffix,	representing	a	power	of	2;	in	this	example,	p3	means	2	at	the
power	of	3.



The	value	of	the	decimal	equivalent	is	determined	by	multiplying	the	significant
(composed	of	the	integer	and	fractional	parts)	and	the	base	at	the	power	of
exponent.	For	the	given	hexadecimal	base	2	floating	point	literal,	the	significant
is	15.4312499...	(note	that	digits	after	the	seventh	one	are	not	shown),	the	base	is
2,	and	the	exponent	is	3.	Therefore,	the	result	is	15.4212499...	*	8,	which	is
123.44999980926514.



See	also
Limits	and	other	properties	of	numeric	types



Limits	and	other	properties	of
numeric	types
Sometimes,	it	is	necessary	to	know	and	use	the	minimum	and	maximum	values
representable	with	a	numeric	type,	such	as	char,	int,	or	double.	Many	developers
are	using	standard	C	macros	for	this,	such	as	CHAR_MIN/CHAR_MAX,	INT_MIN/INT_MAX,	or
DBL_MIN/DBL_MAX.	C++	provides	a	class	template	called	numeric_limits	with
specializations	for	every	numeric	type	that	enables	you	to	query	the	minimum
and	maximum	value	of	a	type,	but	is	not	limited	to	that	and	offers	additional
constants	for	type	properties	querying,	such	as	whether	a	type	is	signed	or	not,
how	many	bits	it	needs	for	representing	its	values,	for	floating	point	types
whether	it	can	represent	infinity,	and	many	others.	Prior	to	C++11,	the	use	of
numeric_limits<T>	was	limited	because	it	could	not	be	used	in	places	where
constants	were	needed	(examples	can	include	the	size	of	arrays	and	switch
cases).	Due	to	that,	developers	preferred	to	use	the	C	macros	throughout	their
code.	In	C++11,	that	is	no	longer	the	case,	as	all	the	static	members	of
numeric_limits<T>	are	now	constexpr,	which	means	they	can	be	used	everywhere	a
constant	expression	is	expected.



Getting	ready
The	numeric_limits<T>	class	template	is	available	in	the	namespace	std	in
the	<limits>	header.



How	to	do	it...
Use	std::numeric_limits<T>	to	query	various	properties	of	a	numeric	type	T:

Use	min()	and	max()	static	methods	to	get	the	smallest	and	largest	finite
numbers	of	a	type:

								template<typename	T,	typename	I>	

								T	minimum(I	const	start,	I	const	end)	

								{	

										T	minval	=	std::numeric_limits<T>::max();	

										for	(auto	i	=	start;	i	<	end;	++i)	

										{	

												if	(*i	<	minval)	

														minval	=	*i;	

										}	

										return	minval;	

								}	

								int	range[std::numeric_limits<char>::max()	+	1]	=	{	0	};	

								switch(get_value())	

								{	

										case	std::numeric_limits<int>::min():	

										break;	

								}

Use	other	static	methods	and	static	constants	to	retrieve	other	properties	of
a	numeric	type:

								auto	n	=	42;	

								std::bitset<std::numeric_limits<decltype(n)>::digits>		

										bits	{	static_cast<unsigned	long	long>(n)	};

In	C++11,	there	is	no	limitation	to	where	std::numeric_limits<T>	can
be	used;	therefore,	preferably	use	it	over	C	macros	in	your	modern
C++	code.



How	it	works...
The	std::numeric_limits<T>	is	a	class	template	that	enables	developers	to	query
property	of	numeric	types.	Actual	values	are	available	through	specializations,
and	the	standard	library	provides	specializations	for	all	the	built-in	numeric
types	(char,	short,	int,	long,	float,	double,	and	so	on).	In	addition,	third	parties	may
provide	additional	implementation	for	other	types.	An	example	could	be	a
numeric	library	that	implements	a	bigint	integer	type	and	a	decimal	type	and
provides	specializations	of	numeric_limits	for	these	types	(such	as
numeric_limits<bigint>	and	numeric_limits<decimal>).

The	following	specializations	of	numeric	types	are	available	in
the	<limits>	header.	Note	that	specializations	for	char16_t	and	char32_t	are	new	in
C++11;	the	others	were	available	previously.	Apart	from	the	specializations
listed	ahead,	the	library	also	includes	specializations	for	every	cv-qualified
version	of	these	numeric	types,	and	they	are	identical	to	the	unqualified
specialization.	For	example,	consider	type	int;	there	are	four	actual
specializations	(and	they	are	identical):	numeric_limits<int>,	numeric_limits<const	int>,
numeric_limits<volatile	int>,	and	numeric_limits<const	volatile	int>:

				template<>	class	numeric_limits<bool>;	

				template<>	class	numeric_limits<char>;	

				template<>	class	numeric_limits<signed	char>;	

				template<>	class	numeric_limits<unsigned	char>;	

				template<>	class	numeric_limits<wchar_t>;	

				template<>	class	numeric_limits<char16_t>;	

				template<>	class	numeric_limits<char32_t>;	

				template<>	class	numeric_limits<short>;	

				template<>	class	numeric_limits<unsigned	short>;	

				template<>	class	numeric_limits<int>;	

				template<>	class	numeric_limits<unsigned	int>;	

				template<>	class	numeric_limits<long>;	

				template<>	class	numeric_limits<unsigned	long>;	

				template<>	class	numeric_limits<long	long>;	

				template<>	class	numeric_limits<unsigned	long	long>;	

				template<>	class	numeric_limits<float>;	

				template<>	class	numeric_limits<double>;	

				template<>	class	numeric_limits<long	double>;

As	mentioned	earlier,	in	C++11,	all	static	members	of	numeric_limits	are	constexpr,
which	means	they	can	be	used	in	all	places	where	constant	expressions	are
needed.	These	have	several	major	advantages	over	C++	macros:



They	are	easier	to	remember,	as	the	only	thing	you	need	to	know	is	the
name	of	the	type	that	you	should	know	anyway,	and	not	countless	names	of
macros.
They	support	types	that	are	not	available	in	C,	such	as	char16_t	and	char32_t.
They	are	the	only	possible	solution	for	templates	where	you	don't	know	the
type.
Minimum	and	maximum	are	only	two	of	the	various	properties	of	types	it
provides;	therefore,	its	actual	use	is	beyond	the	numeric	limits.	As	a	side
note,	for	this	reason,	the	class	should	have	been	perhaps	called
numeric_properties,	instead	of	numeric_limits.

The	following	function	template	print_type_properties()	prints	the	minimum	and
maximum	finite	values	of	the	type	as	well	as	other	information:

				template	<typename	T>	

				void	print_type_properties()	

				{	

						std::cout		

								<<	"min="		

								<<	std::numeric_limits<T>::min()								<<	std::endl	

								<<	"max="	

								<<	std::numeric_limits<T>::max()								<<	std::endl	

								<<	"bits="	

								<<	std::numeric_limits<T>::digits							<<	std::endl	

								<<	"decdigits="	

								<<	std::numeric_limits<T>::digits10					<<	std::endl	

								<<	"integral="	

								<<	std::numeric_limits<T>::is_integer			<<	std::endl	

								<<	"signed="	

								<<	std::numeric_limits<T>::is_signed				<<	std::endl	

								<<	"exact="	

								<<	std::numeric_limits<T>::is_exact					<<	std::endl	

								<<	"infinity="	

								<<	std::numeric_limits<T>::has_infinity	<<	std::endl;	

				}

If	we	call	the	print_type_properties()	function	for	unsigned	short,	int,	and	double,	it
will	have	the	following	output:

unsigned	short int double

min=0

max=65535

bits=16

decdigits=4

min=-2147483648

max=2147483647

bits=31

decdigits=9

min=2.22507e-308

max=1.79769e+308

bits=53

decdigits=15



integral=1

signed=0

exact=1

infinity=0

integral=1

signed=1

exact=1

infinity=0

integral=0

signed=1

exact=0

infinity=1

The	one	thing	to	take	note	of	is	the	difference	between	the	digits	and	digits10
constants:

digits	represent	the	number	of	bits	(excluding	the	sign	bit	if	present)	and
padding	bits	(if	any)	for	integral	types	and	the	number	of	bits	of	the
mantissa	for	floating	point	types.
digits10	is	the	number	of	decimal	digits	that	can	be	represented	by	a	type
without	a	change.	To	understand	this	better,	let's	consider	the	case	of
unsigned	short.	This	is	a	16-bit	integral	type.	It	can	represent	numbers
between	0	and	65536.	It	can	represent	numbers	up	to	five	decimal	digits,
10,000	to	65,536,	but	it	cannot	represent	all	five	decimal	digit	numbers,	as
numbers	from	65,537	to	99,999	require	more	bits.	Therefore,	the	largest
numbers	that	it	can	represent	without	requiring	more	bits	have	four	decimal
digits	(numbers	from	1,000	to	9,999).	This	is	the	value	indicated	by	digits10.
For	integral	types,	it	has	a	direct	relationship	to	constant	digits;	for	an
integral	type	T,	the	value	of	digits10	is	std::numeric_limits<T>::digits	*
std::log10(2).



Generating	pseudo-random	numbers
Generating	random	numbers	is	necessary	for	a	large	variety	of	applications,	from
games	to	cryptography,	from	sampling	to	forecasting.	However,	the	term
random	numbers	is	not	actually	correct,	as	the	generation	of	numbers	through
mathematical	formulas	is	deterministic	and	does	not	produce	true	random
numbers,	but	numbers	that	look	random	and	are	called	pseudo-random.	True
randomness	can	only	be	achieved	through	hardware	devices,	based	on	physical
processes,	and	even	that	can	be	challenged,	as	one	may	consider	even	the
universe	to	be	actually	deterministic.	Modern	C++	provides	support	for
generating	pseudo-random	numbers	through	a	pseudo-random	number	library
containing	number	generators	and	distributions.	Theoretically,	it	can	also
produce	true	random	numbers,	but	in	practice,	those	could	actually	be	only
pseudo-random.



Getting	ready
In	this	recipe,	we	discuss	the	standard	support	for	generating	pseudo-random
numbers.	Understanding	the	difference	between	random	and	pseudo-random
numbers	is	the	key.	On	the	other	hand,	being	familiar	with	various	statistical
distributions	is	a	plus.	It	is	mandatory,	though,	that	you	know	what	a	uniform
distribution	is	because	all	engines	in	the	library	produce	numbers	that	are
uniformly	distributed.



How	to	do	it...
To	generate	pseudo-random	numbers	in	your	application,	you	should	perform
the	following	steps:

1.	 Include	the	header	<random>:

								#include	<random>

2.	 Use	an	std::random_device	generator	for	seeding	a	pseudo-random	engine:

								std::random_device	rd{};

3.	 Use	one	of	the	available	engines	for	generating	numbers	and	initialize	it
with	a	random	seed:

								auto	mtgen	=	std::mt19937{	rd()	};

4.	 Use	one	of	the	available	distributions	for	converting	the	output	of	the
engine	to	one	of	the	desired	statistical	distributions:

								auto	ud	=	std::uniform_int_distribution<>{	1,	6	};

5.	 Generate	the	pseudo-random	numbers:

								for(auto	i	=	0;	i	<	20;	++i)	

										auto	number	=	ud(mtgen);



How	it	works...
The	pseudo-random	number	library	contains	two	types	of	components:

Engines,	which	are	generators	of	random	numbers;	these	could	produce
either	pseudo-random	numbers	with	a	uniform	distribution	or,	if	available,
actual	random	numbers.
Distributions	that	convert	the	output	of	an	engine	into	a	statistical
distribution.

All	engines	(except	for	random_device)	produce	integer	numbers	in	a	uniform
distribution,	and	all	engines	implement	the	following	methods:

min():	This	is	a	static	method	that	returns	the	minimum	value	that	can	be
produced	by	the	generator.
max():	This	is	a	static	method	that	returns	the	maximum	value	that	can	be
produced	by	the	generator.
seed():	This	initializes	the	algorithm	with	a	start	value	(except	for
random_device,	which	cannot	be	seeded).
operator():	This	generates	a	new	number	uniformly	distributed	between	min()
and	max().
discard():	This	generates	and	discards	a	given	number	of	pseudo-random
numbers.

The	following	engines	are	available:

linear_congruential_engine:	This	is	a	linear	congruential	generator	that
produces	numbers	using	the	following	formula:

x(i)	=	(A	*	x(i-1)	+	C)	mod	M

mersenne_twister_engine:	This	is	a	Mersenne	twister	generator	that	keeps	a
value	on	W	*	(N-1)	*	R	bits;	each	time	a	number	needs	to	be	generated,	it
extracts	W	bits.	When	all	bits	have	been	used,	it	twists	the	large	value	by
shifting	and	mixing	the	bits	so	that	it	has	a	new	set	of	bits	to	extract	from.
subtract_with_carry_engine:	This	is	a	generator	that	implements	a	subtract	with



carry	algorithm	based	on	the	following	formula:

x(i)	=	(x(i	-	R)	-	x(i	-	S)	-	cy(i	-	1))	mod	M

		In	the	preceding	formula,	cy	is	defined	as:

cy(i)	=	x(i	-	S)	-	x(i	-	R)	-	cy(i	-	1)	<	0	?	1	:	0

In	addition,	the	library	provides	engine	adapters	that	are	also	engines	wrapping
another	engine	and	producing	numbers	based	on	the	output	of	the	base	engine.
Engine	adapters	implement	the	same	methods	mentioned	earlier	for	the	base
engines.	The	following	engine	adapters	are	available:

discard_block_engine:	A	generator	that	from	every	block	of	P	numbers
generated	by	the	base	engine	keeps	only	R	numbers,	discarding	the	rest.
independent_bits_engine:	A	generator	that	produces	numbers	with	a	different
number	of	bits	than	the	base	engine.
shuffle_order_engine:	A	generator	that	keeps	a	shuffled	table	of	K	numbers
produced	by	the	base	engine	and	returns	numbers	from	this	table,	replacing
them	with	numbers	generated	by	the	base	engine.

All	these	engines	and	engine	adaptors	are	producing	pseudo-random	numbers.
The	library,	however,	provides	another	engine	called	random_device	that	is
supposed	to	produce	non-deterministic	numbers,	but	this	is	not	an	actual
constraint	as	physical	sources	of	random	entropy	might	not	be	available.
Therefore,	implementations	of	random_device	could	actually	be	based	on	a	pseudo-
random	engine.	The	random_device	class	cannot	be	seeded	like	the	other
engines	and	has	an	additional	method	called	entropy()	that	returns	the	random
device	entropy,	which	is	0	for	a	deterministic	generator	and	nonzero	for	a	non-
deterministic	generator.	However,	this	is	not	a	reliable	method	for	determining
whether	the	device	is	actually	deterministic	or	non-deterministic.	For	instance,
both	GNU	libstdc++	and	LLVM	libc++	implement	a	non-deterministic	device,	but
return	0	for	entropy.	On	the	other	hand,	VC++	and	boost.random	return	32	and	10,
respectively,	for	entropy.

All	these	generators	produce	integers	in	a	uniform	distribution.	This	is,	however,
only	one	of	the	many	possible	statistical	distributions	that	random	numbers	are
needed	in	most	applications.	To	be	able	to	produce	numbers	(either	integer	or



real)	in	other	distributions,	the	library	provides	several	classes	that	are	called
distributions	and	are	converting	the	output	of	an	engine	according	to	the
statistical	distribution	it	implements.	The	following	distributions	are	available:

Type Class	name Numbers Statistical	distribution

Uniform uniform_int_distribution integer Uniform
uniform_real_distribution real Uniform

Bernoulli bernoulli_distribution boolean Bernoulli
binomial_distribution integer binomial
negative_binomial_distribution integer negative	binomial
geometric_distribution integer geometric

Poisson poisson_distribution integer poisson
exponential_distribution real exponential
gamma_distribution real gamma
weibull_distribution real Weibull
extreme_value_distribution real extreme	value

Normal normal_distribution real standard	normal
(Gaussian)

lognormal_distribution real lognormal
chi_squared_distribution real chi-squared
cauchy_distribution real Cauchy
fisher_f_distribution real Fisher's	F-distribution
student_t_distribution real Student's	t-distribution

Sampling discrete_distribution integer discrete

piecewise_constant_distribution real values	distributed	on
constant	subintervals

piecewise_linear_distribution real values	distributed	on
defined	subintervals



Each	of	the	engines	provided	by	the	library	has	advantages	and	disadvantages.
The	linear	congruential	engine	has	a	small	internal	state,	but	it	is	not	very	fast.
On	the	other	hand,	the	subtract	with	carry	engine	is	very	fast,	but	requires	more
memory	for	its	internal	state.	The	Mersenne	twister	is	the	slowest	of	them	and
the	one	that	has	the	largest	internal	state,	but	when	initialized	appropriately	can
produce	the	longest	non-repeating	sequence	of	numbers.	In	the	following
examples,	we	will	use	std::mt19937,	a	32-bit	Mersenne	twister	with	19,937	bits	of
internal	state.

The	simplest	way	to	generate	random	numbers	looks	like	this:

				auto	mtgen	=	std::mt19937	{};	

				for	(auto	i	=	0;	i	<	10;	++i)	

						std::cout	<<	mtgen()	<<	std::endl;

In	this	example,	mtgen	is	an	std::mt19937	Mersenne	twister.	To	generate	numbers,
you	only	need	to	use	the	call	operator	that	advances	the	internal	state	and	returns
the	next	pseudo-random	number.	However,	this	code	is	flawed,	as	the	engine	is
not	seeded.	As	a	result,	it	always	produces	the	same	sequence	of	numbers,	which
is	probably	not	what	you	want	in	most	cases.

There	are	different	approaches	for	initializing	the	engine.	One	approach,
common	with	the	C	rand	library,	is	to	use	the	current	time.	In	modern	C++,	it
should	look	like	this:

				auto	seed	=	std::chrono::high_resolution_clock::now()	

																.time_since_epoch()	

																.count();	

				auto	mtgen	=	std::mt19937{	static_cast<unsigned	int>(seed)	};

In	this	example,	seed	is	a	number	representing	the	number	of	ticks	since	the
clock's	epoch	until	the	present	moment.	This	number	is	then	used	to	seed	the
engine.	The	problem	with	this	approach	is	that	the	value	of	that	seed	is	actually
deterministic,	and	in	some	classes	of	applications	it	could	be	prone	to	attacks.	A
more	reliable	approach	is	to	seed	the	generator	with	actual	random	numbers.
The	std::random_device	class	is	an	engine	that	is	supposed	to	return	true	random
numbers,	though	implementations	could	actually	be	based	on	a	pseudo-random
generator:

				std::random_device	rd;	

				auto	mtgen	=	std::mt19937	{rd()};

Numbers	produced	by	all	engines	follow	a	uniform	distribution.	To	convert	the



Numbers	produced	by	all	engines	follow	a	uniform	distribution.	To	convert	the
result	to	another	statistical	distribution,	we	have	to	use	a	distribution	class.	To
show	how	generated	numbers	are	distributed	according	to	the	selected
distribution,	we	will	use	the	following	function.	This	function	generates	a
specified	number	of	pseudo-random	numbers	and	counts	their	repetition	in	a
map.	The	values	from	the	map	are	then	used	to	produce	a	bar-like	diagram
showing	how	often	each	number	occurred:

				void	generate_and_print(	

						std::function<int(void)>	gen,		

						int	const	iterations	=	10000)	

				{	

						//	map	to	store	the	numbers	and	their	repetition	

						auto	data	=	std::map<int,	int>{};	

						//	generate	random	numbers	

						for	(auto	n	=	0;	n	<	iterations;	++n)	

								++data[gen()];	

						//	find	the	element	with	the	most	repetitions	

						auto	max	=	std::max_element(	

																	std::begin(data),	std::end(data),		

																	[](auto	kvp1,	auto	kvp2)	{	

								return	kvp1.second	<	kvp2.second;	});	

						//	print	the	bars	

						for	(auto	i	=	max->second	/	200;	i	>	0;	--i)	

						{	

								for	(auto	kvp	:	data)	

								{	

										std::cout	

												<<	std::fixed	<<	std::setprecision(1)	<<	std::setw(3)	

												<<	(kvp.second	/	200	>=	i	?	(char)219	:	'	');	

								}	

								std::cout	<<	std::endl;	

						}	

						//	print	the	numbers	

						for	(auto	kvp	:	data)	

						{	

								std::cout	

										<<	std::fixed	<<	std::setprecision(1)	<<	std::setw(3)	

										<<	kvp.first;	

						}	

						std::cout	<<	std::endl;	

				}

The	following	code	generates	random	numbers	using	the	std::mt19937	engine	with
a	uniform	distribution	in	the	range	[1,	6];	that	is	basically	what	you	get	when	you
throw	a	dice:

				std::random_device	rd{};	

				auto	mtgen	=	std::mt19937{	rd()	};	

				auto	ud	=	std::uniform_int_distribution<>{	1,	6	};	

				generate_and_print([&mtgen,	&ud]()	{return	ud(mtgen);	});



				generate_and_print([&mtgen,	&ud]()	{return	ud(mtgen);	});

The	output	of	the	program	looks	like	this:

In	the	next	and	final	example,	we	change	the	distribution	to	a	normal	distribution
with	the	mean	5	and	the	standard	deviation	2.	This	distribution	produces	real
numbers;	therefore,	in	order	to	use	the	previous	generate_and_print()	function,	the
numbers	must	be	rounded	to	integers:

				std::random_device	rd{};	

				auto	mtgen	=	std::mt19937{	rd()	};	

				auto	nd	=	std::normal_distribution<>{	5,	2	};	

				generate_and_print(	

						[&mtgen,	&nd]()	{	

								return	static_cast<int>(std::round(nd(mtgen)));	});

The	following	will	be	the	output	of	the	earlier	code:



See	also
Initializing	all	bits	of	internal	state	of	a	pseudo-random	number	generator



Initializing	all	bits	of	internal	state	of
a	pseudo-random	number	generator
In	the	previous	recipe,	we	have	looked	at	the	pseudo-random	number	library
with	its	components	and	how	it	can	be	used	to	produce	numbers	in	different
statistical	distributions.	One	important	factor	that	was	overlooked	in	that	recipe
is	the	proper	initialization	of	the	pseudo-random	number	generators.	In	this
recipe,	you	will	learn	how	to	initialize	a	generator	in	order	to	produce	the	best
sequence	of	pseudo-random	numbers.



Getting	ready
You	should	read	the	previous	recipe,	Generating	pseudo-random	numbers,	to	get
an	overview	of	what	the	pseudo-random	number	library	offers.



How	to	do	it...
To	properly	initialize	a	pseudo-random	number	generator	to	produce	the	best
sequence	of	pseudo-random	numbers,	perform	the	following	steps:

1.	 Use	an	std::random_device	to	produce	random	numbers	to	be	used	as	seeding
values:

								std::random_device	rd;

2.	 Generate	random	data	for	all	internal	bits	of	the	engine:

								std::array<int,	std::mt19937::state_size>	seed_data	{};

								std::generate(std::begin(seed_data),	std::end(seed_data),	

																						std::ref(rd));

3.	 Create	an	std::seed_seq	object	from	the	previously	generated	pseudo-random
data:

								std::seed_seq	seq(std::begin(seed_data),	std::end(seed_data));

4.	 Create	an	engine	object	and	initialize	all	the	bits	representing	the	internal
state	of	the	engine;	for	example,	a	mt19937	has	19,937	bits	of	internal	states:

								auto	eng	=	std::mt19937{	seq	};

5.	 Use	the	appropriate	distribution	based	on	the	requirements	of	the
application:

								auto	dist	=	std::uniform_real_distribution<>{	0,	1	};



How	it	works...
In	all	examples	shown	in	the	previous	recipe,	we	used	an	std::mt19937	engine	to
produce	pseudo-random	numbers.	Though	the	Mersenne	twister	is	slower	than
the	other	engines,	it	can	produce	the	longest	sequences	of	non-repeating	numbers
and	with	the	best	spectral	characteristics.	However,	initializing	the	engine	in	the
manner	shown	in	the	previous	recipe	will	not	have	this	effect.	With	a	careful
analysis	(that	is	beyond	the	purpose	of	this	recipe	or	this	book),	it	can	be	shown
that	the	engine	has	a	bias	toward	producing	some	values	repeatedly	and	omitting
others,	thus	generating	numbers	not	in	a	uniform	distribution,	but	rather	in	a
binomial	or	Poisson	distribution.	The	problem	is	that	the	internal	state	of	mt19937
has	624	32-bit	integers,	and	in	the	examples	from	the	previous	recipe	we	have
only	initialized	one	of	them.

When	working	with	the	pseudo-random	number	library,	remember	the	following
rule	of	thumb	(shown	in	the	information	box):

In	order	to	produce	the	best	results,	engines	must	have	all	their
internal	state	properly	initialized	before	generating	numbers.

The	pseudo-random	number	library	provides	a	class	for	this	particular	purpose,
called	std::seed_seq.	This	is	a	generator	that	can	be	seeded	with	any	number	of	32-
bit	integers	and	produces	a	requested	number	of	integers	evenly	distributed	in
the	32-bit	space.

In	the	preceding	code	from	the	How	to	do	it...	section,	we	defined	an	array	called
seed_data	with	a	number	of	32-bit	integers	equal	to	the	internal	state	of	the	mt19937
generator;	that	is	624	integers.	Then,	we	initialized	the	array	with	random
numbers	produced	by	an	std::random_device.	The	array	was	later	used	to	seed
an	std::seed_seq,	which	in	turn	was	used	to	seed	the	mt19937	generator.



Creating	cooked	user-defined	literals
Literals	are	constants	of	built-in	types	(numerical,	boolean,	character,	character
string,	and	pointer)	that	cannot	be	altered	in	a	program.	The	language	defines	a
series	of	prefixes	and	suffixes	to	specify	literals	(and	the	prefix/suffix	is	actually
part	of	the	literal).	C++11	allows	creating	user-defined	literals	by	defining
functions	called	literal	operators	that	introduce	suffixes	for	specifying	literals.
These	work	only	with	numerical	character	and	character	string	types.	This	opens
the	possibility	of	defining	both	standard	literals	in	future	versions	and	allows
developers	to	create	their	own	literals.	In	this	recipe,	we	will	see	how	we	can
create	our	own	cooked	literals.



Getting	ready
User-defined	literals	can	have	two	forms:	raw	and	cooked.	Raw	literals	are	not
processed	by	the	compiler,	whereas	cooked	literals	are	values	processed	by	the
compiler	(examples	can	include	handling	escape	sequences	in	a	character	string
or	identifying	numerical	values	such	as	integer	2898	from	literal	0xBAD).	Raw
literals	are	only	available	for	integral	and	floating-point	types,	whereas	cooked
literals	are	also	available	for	character	and	character	string	literals.



How	to	do	it...
To	create	cooked	user-defined	literals,	you	should	follow	these	steps:

1.	 Define	your	literals	in	a	separate	namespace	to	avoid	name	clashes.
2.	 Always	prefix	the	user-defined	suffix	with	an	underscore	(_).
3.	 Define	a	literal	operator	of	the	following	form	for	cooked	literals:

								T	operator	""	_suffix(unsigned	long	long	int);	

								T	operator	""	_suffix(long	double);	

								T	operator	""	_suffix(char);	

								T	operator	""	_suffix(wchar_t);	

								T	operator	""	_suffix(char16_t);	

								T	operator	""	_suffix(char32_t);	

								T	operator	""	_suffix(char	const	*,	std::size_t);	

								T	operator	""	_suffix(wchar_t	const	*,	std::size_t);	

								T	operator	""	_suffix(char16_t	const	*,	std::size_t);	

								T	operator	""	_suffix(char32_t	const	*,	std::size_t);

The	following	example	creates	a	user-defined	literal	for	specifying	kilobytes:

				namespace	compunits	

				{	

						constexpr	size_t	operator	""	_KB(unsigned	long	long	const	size)	

						{	

								return	static_cast<size_t>(size	*	1024);	

						}	

				}	

				auto	size{	4_KB	};									//	size_t	size	=	4096;	

				using	byte	=	unsigned	char;	

				auto	buffer	=	std::array<byte,	1_KB>{};



How	it	works...
When	the	compiler	encounters	a	user-defined	literal	with	a	user-defined	suffix	S
(it	always	has	a	leading	underscore	for	third-party	suffixes,	as	the	suffixes
without	a	leading	underscore	are	reserved	for	the	standard	library)	it	does	an
unqualified	name	lookup	in	order	to	identify	a	function	with	the	name	operator
"operator	""	S.	If	it	finds	one,	then	it	calls	it	according	to	the	type	of	the	literal	and
the	type	of	the	literal	operator.	Otherwise,	the	compiler	will	yield	and	error.

In	the	example	from	the	How	to	do	it...	section,	the	literal	operator	is	called
operator	""	_KB	and	has	an	argument	of	type	unsigned	long	long	int.	This	is	the	only
integral	type	possible	for	literal	operators	for	handling	integral	types.	Similarly,
for	floating-point	user-defined	literals,	the	parameter	type	must	be	long
double	since	for	numeric	types	the	literal	operators	must	be	able	to	handle	the
largest	possible	values.	This	literal	operator	returns	a	constexpr	value	so	that	it	can
be	used	where	compile	time	values	are	expected,	such	as	specifying	the	size	of
an	array	as	shown	in	the	above	example.

When	the	compiler	identifies	a	user-defined	literal	and	has	to	call	the	appropriate
user-defined	literal	operator,	it	will	pick	the	overload	from	the	overload	set
according	to	the	following	rules:

For	integral	literals:	It	calls	in	the	following	order:	the	operator	that	takes
an	unsigned	long	long,	the	raw	literal	operator	that	takes	a	const	char*,	or	the
literal	operator	template.
For	floating-point	literals:	It	calls	in	the	following	order:	the	operator	that
takes	a	long	double,	the	raw	literal	operator	that	takes	a	const	char*,	or	the
literal	operator	template.
For	character	literals:	It	calls	the	appropriate	operator	depending	on	the
character	type	(char,	wchar_t,	char16_t,	and	char32_t).
For	string	literals:	It	calls	the	appropriate	operator,	depending	on	the	string
type	that	takes	a	pointer	to	the	string	of	characters	and	the	size.

In	the	following	example,	we	define	a	system	of	units	and	quantities.	We	want	to
operate	with	kilograms,	pieces,	liters,	and	other	types	of	units.	This	could	be



useful	in	a	system	that	can	process	orders	and	you	need	to	specify	the	amount
and	unit	for	each	article.	The	following	are	defined	in	the	namespace	units:

A	scoped	enumeration	for	the	possible	types	of	units	(kilogram,	meter,	liter,
and	pieces):

								enum	class	unit	{	kilogram,	liter,	meter,	piece,	};

A	class	template	to	specify	quantities	of	a	particular	unit	(such	as	3.5
kilograms	or	42	pieces):

								template	<unit	U>	

								class	quantity	

								{

										const	double	amount;	

										public:	

												constexpr	explicit	quantity(double	const	a)	:	

														amount(a)	{}	

										explicit	operator	double()	const	{	return	amount;	}	

								};

The	operator+	and	operator-	functions	for	the	quantity	class	template	in	order	to
be	able	to	add	and	subtract	quantities:

								template	<unit	U>	

								constexpr	quantity<U>	operator+(quantity<U>	const	&q1,	

																																								quantity<U>	const	&q2)	

								{

										return	quantity<U>(static_cast<double>(q1)	+	

																													static_cast<double>(q2));	

								}	

								template	<unit	U>	

								constexpr	quantity<U>	operator-(quantity<U>	const	&q1,	

																																								quantity<U>	const	&q2)

								{

										return	quantity<U>(static_cast<double>(q1)	-	

																													static_cast<double>(q2));

								}

Literal	operators	to	create	quantity	literals,	defined	in	an	inner	namespace
called	unit_literals.	The	purpose	of	this	is	to	avoid	possible	name	clashes
with	literals	from	other	namespaces.	If	such	collisions	do	happen,
developers	could	select	the	ones	that	they	should	use	using	the	appropriate
namespace	in	the	scope	where	the	literals	need	to	be	defined:

								namespace	unit_literals	

								{	

										constexpr	quantity<unit::kilogram>	operator	""	_kg(	

														long	double	const	amount)	

										{	



										{	

												return	quantity<unit::kilogram>		

														{	static_cast<double>(amount)	};	

										}	

										constexpr	quantity<unit::kilogram>	operator	""	_kg(	

													unsigned	long	long	const	amount)	

										{	

												return	quantity<unit::kilogram>		

														{	static_cast<double>(amount)	};	

										}	

										constexpr	quantity<unit::liter>	operator	""	_l(	

													long	double	const	amount)	

										{	

													return	quantity<unit::liter>		

															{	static_cast<double>(amount)	};	

										}	

										constexpr	quantity<unit::meter>	operator	""	_m(	

													long	double	const	amount)	

										{	

												return	quantity<unit::meter>		

														{	static_cast<double>(amount)	};	

										}	

										constexpr	quantity<unit::piece>	operator	""	_pcs(	

													unsigned	long	long	const	amount)	

										{	

												return	quantity<unit::piece>		

														{	static_cast<double>(amount)	};	

										}	

								}

By	looking	carefully,	you	can	note	that	the	literal	operators	defined	earlier	are
not	the	same:

_kg	is	defined	for	both	integral	and	floating	point	literals;	that	enables	us	to
create	both	integral	and	floating	point	values	such	as	1_kg	and	1.0_kg.
_l	and	_m	are	defined	only	for	floating	point	literals;	that	means	we	can	only
define	quantity	literals	for	these	units	with	floating	points,	such	as	4.5_l	and
10.0_m.
_pcs	is	only	defined	for	integral	literals;	that	means	we	can	only	define
quantities	of	an	integer	number	of	pieces,	such	as	42_pcs.

Having	these	literal	operators	available,	we	can	operate	with	various	quantities.
The	following	examples	show	both	valid	and	invalid	operations:

				using	namespace	units;	

				using	namespace	unit_literals;	

				auto	q1{	1_kg	};				//	OK

				auto	q2{	4.5_kg	};		//	OK

				auto	q3{	q1	+	q2	};	//	OK

				auto	q4{	q2	-	q1	};	//	OK



				//	error,	cannot	add	meters	and	pieces	

				auto	q5{	1.0_m	+	1_pcs	};	

				//	error,	cannot	have	an	integer	number	of	liters	

				auto	q6{	1_l	};	

				//	error,	can	only	have	an	integer	number	of	pieces	

				auto	q7{	2.0_pcs}

q1	is	a	quantity	of	1	kg;	that	is	an	integer	value.	Since	an	overloaded	operator	""
_kg(unsigned	long	long	const)	exists,	the	literal	can	be	correctly	created	from	the
integer	1.	Similarly,	q2	is	a	quantity	of	4.5	kilograms;	that	is	a	real	value.
Since	an	overload	operator	""	_kg(long	double)	exists,	the	literal	can	be	created	from
the	double	floating	point	value	4.5.

On	the	other	hand,	q6	is	a	quantity	of	1	liter.	Since	there	is	no	overloaded	operator
""	_l(unsigned	long	long),	the	literal	cannot	be	created.	It	would	require	an	overload
that	takes	a	unsigned	long	long,	but	such	an	overload	does	not	exist.	Similarly,	q7	is
a	quantity	of	2.0	pieces,	but	piece	literals	can	only	be	created	from	integer	values
and,	therefore,	this	generates	another	compiler	error.



There's	more...
Though	user-defined	literals	are	available	from	C++11,	standard	literal	operators
have	been	available	only	from	C++14.	The	following	is	a	list	of	these	standard
literal	operators:

operator""s	for	defining	std::basic_string	literals:

								using	namespace	std::string_literals;	

								auto	s1{		"text"s	};	//	std::string	

								auto	s2{	L"text"s	};	//	std::wstring	

								auto	s3{	u"text"s	};	//	std::u16string	

								auto	s4{	U"text"s	};	//	std::u32string

operator""h,	operator""min,	operator""s,	operator""ms,	operator""us,	and	operator""ns
for	creating	a	std::chrono::duration	value:

								using	namespace	std::literals::chrono_literals;	

								//	std::chrono::duration<long	long>	

								auto	timer	{2h	+	42min	+	15s};

operator""if,	operator""i,	and	operator""il	for	creating	a	std::complex	value:

								using	namespace	std::literals::complex_literals;	

								auto	c{	12.0	+	4.5i	};	//	std::complex<double>



See	also
Using	raw	string	literals	to	avoid	escaping	characters
Creating	raw	user-defined	literals



Creating	raw	user-defined	literals
In	the	previous	recipe,	we	have	looked	at	the	way	C++11	allows	library
implementers	and	developers	to	create	user-defined	literals	and	the	user-defined
literals	available	in	the	C++14	standard.	However,	user-defined	literals	have	two
forms,	a	cooked	form,	where	the	literal	value	is	processed	by	the	compiler	before
being	supplied	to	the	literal	operator,	and	a	raw	form,	in	which	the	literal	is	not
parsed	by	the	compiler.	The	latter	is	only	available	for	integral	and	floating-point
types.	In	this	recipe,	we	will	look	at	creating	raw	user-defined	literals.



Getting	ready
Before	continuing	with	this	recipe,	it	is	strongly	recommended	that	you	go
through	the	previous	one,	Creating	cooked	user-defined	literals,	as	general
details	about	user-defined	literals	will	not	be	reiterated	here.

To	exemplify	the	way	raw	user-defined	literals	can	be	created,	we	will	define
binary	literals.	These	binary	literals	can	be	of	8-bit,	16-bit,	and	32-bit	(unsigned)
types.	These	types	will	be	called	byte8,	byte16,	and	byte32,	and	the	literals	we	create
will	be	called	_b8,	_b16,	and	_b32.



How	to	do	it...
To	create	raw	user-defined	literals,	you	should	follow	these	steps:

1.	 Define	your	literals	in	a	separate	namespace	to	avoid	name	clashes.
2.	 Always	prefix	the	used-defined	suffix	with	an	underscore	(_).
3.	 Define	a	literal	operator	or	literal	operator	template	of	the	following	form:

								T	operator	""	_suffix(const	char*);	

								template<char...>	T	operator	""	_suffix();

The	following	sample	shows	a	possible	implementation	of	8-bit,	16-bit,	and	32-
bit	binary	literals:

				namespace	binary	

				{	

						using	byte8		=	unsigned	char;	

						using	byte16	=	unsigned	short;	

						using	byte32	=	unsigned	int;	

						namespace	binary_literals	

						{	

								namespace	binary_literals_internals	

								{	

										template	<typename	CharT,	char...	bits>	

										struct	binary_struct;	

										template	<typename	CharT,	char...	bits>	

										struct	binary_struct<CharT,	'0',	bits...>	

										{	

												static	constexpr	CharT	value{	

														binary_struct<CharT,	bits...>::value	};	

										};	

										template	<typename	CharT,	char...	bits>	

										struct	binary_struct<CharT,	'1',	bits...>	

										{	

												static	constexpr	CharT	value{	

														static_cast<CharT>(1	<<	sizeof...(bits))	|	

														binary_struct<CharT,	bits...>::value	};	

										};	

										template	<typename	CharT>	

										struct	binary_struct<CharT>	

										{	

												static	constexpr	CharT	value{	0	};	

										};	

								}	

								template<char...	bits>	

								constexpr	byte8	operator""_b8()	

								{	

										static_assert(	



										static_assert(	

												sizeof...(bits)	<=	8,	

												"binary	literal	b8	must	be	up	to	8	digits	long");	

										return	binary_literals_internals::	

																				binary_struct<byte8,	bits...>::value;	

								}	

								template<char...	bits>	

								constexpr	byte16	operator""_b16()	

								{	

										static_assert(	

												sizeof...(bits)	<=	16,	

												"binary	literal	b16	must	be	up	to	16	digits	long");	

										return	binary_literals_internals::	

																				binary_struct<byte16,	bits...>::value;	

								}	

								template<char...	bits>	

								constexpr	byte32	operator""_b32()	

								{	

										static_assert(	

													sizeof...(bits)	<=	32,	

													"binary	literal	b32	must	be	up	to	32	digits	long");	

										return	binary_literals_internals::	

																				binary_struct<byte32,	bits...>::value;	

								}	

						}	

				}



How	it	works...
The	implementation	in	the	previous	section	enables	us	to	define	binary	literals	of
the	form	1010_b8	(a	byte8	value	of	decimal	10)	or	000010101100_b16	(a	byte16
value	of	decimal	2130496).	However,	we	want	to	make	sure	that	we	do	not
exceed	the	number	of	digits	for	each	type.	In	other	words,	values	such	as
111100001_b8	should	be	illegal	and	the	compiler	should	yield	an	error.

First	of	all,	we	define	everything	inside	a	namespace	called	binary	and	start	with
introducing	several	type	aliases	(byte8,	byte16,	and	byte32).

The	literal	operator	templates	are	defined	in	a	nested	namespace	called
binary_literal_internals.	This	is	a	good	practice	in	order	to	avoid	name	collision
with	other	literal	operators	from	other	namespaces.	Should	something	like	that
happen,	you	can	choose	to	use	the	appropriate	namespace	in	the	right	scope
(such	as	one	namespace	in	a	function	or	block	and	another	namespace	in	another
function	or	block).

The	three	literal	operator	templates	are	very	similar.	The	only	things	that	are
different	are	their	names	(_b8,	_16,	and	_b32),	return	type	(byte8,	byte16,	and	byte32),
and	the	condition	in	the	static	assert	that	checks	the	number	of	digits.

We	will	explore	the	details	of	variadic	template	and	template	recursion	in	a	later
recipe;	however,	for	a	better	understanding,	this	is	how	this	particular
implementation	works:	bits	is	a	template	parameter	pack,	that	is	not	a	single
value,	but	all	the	values	the	template	could	be	instantiated	with.	For	example,	if
we	consider	the	literal	1010_b8,	then	the	literal	operator	template	would	be
instantiated	as	operator""	_b8<'1',	'0',	'1',	'0'>().	Before	proceeding	with
computing	the	binary	value,	we	check	the	number	of	digits	in	the	literal.	For	_b8,
this	must	not	exceed	eight	(including	any	trailing	zeros).	Similarly,	it	should	be
up	to	16	digits	for	_b16	and	32	for	_b32.	For	this,	we	use	the	sizeof...	operator	that
returns	the	number	of	elements	in	a	parameter	pack	(in	this	case,	bits).

If	the	number	of	digits	is	correct,	we	can	proceed	to	expand	the	parameter	pack
and	recursively	compute	the	decimal	value	represented	by	the	binary	literal.	This
is	done	with	the	help	of	an	additional	class	template	and	its	specializations.



These	templates	are	defined	in	yet	another	nested	namespace,	called
binary_literals_internals.	This	is	also	a	good	practice	because	it	hides	(without
proper	qualification)	the	implementation	details	from	the	client	(unless	an
explicit	using	namespace	directive	makes	them	available	to	the	current
namespace).

Even	though	this	looks	like	recursion,	it	is	not	a	true	runtime
recursion,	because	after	the	compiler	expands	and	generates	the
code	from	templates,	what	we	end	up	with	is	basically	calls	to
overloaded	functions	with	a	different	number	of	parameters.	This	is
later	explained	in	the	recipe	Writing	a	function	template	with	a
variable	number	of	arguments.

The	binary_struct	class	template	has	a	template	type	CharT	for	the	return	type	of	the
function	(we	need	this	because	our	literal	operator	templates	should	return	either
byte8,	byte16,	or	byte32)	and	a	parameter	pack:

				template	<typename	CharT,	char...	bits>	

				struct	binary_struct;

Several	specializations	of	this	class	template	are	available	with	parameter	pack
decomposition.	When	the	first	digit	of	the	pack	is	'0',	the	computed	value
remains	the	same,	and	we	continue	expanding	the	rest	of	the	pack.	If	the	first
digit	of	the	pack	is	'1',	then	the	new	value	is	1	shifted	to	the	left	with	the	number
of	digits	in	the	remainder	of	the	pack	bit,	or	the	value	of	the	rest	of	the	pack:

				template	<typename	CharT,	char...	bits>	

				struct	binary_struct<CharT,	'0',	bits...>	

				{	

						static	constexpr	CharT	value{	

								binary_struct<CharT,	bits...>::value	};	

				};	

				template	<typename	CharT,	char...	bits>	

				struct	binary_struct<CharT,	'1',	bits...>	

				{	

						static	constexpr	CharT	value{	

								static_cast<CharT>(1	<<	sizeof...(bits))	|	

								binary_struct<CharT,	bits...>::value	};	

				};

The	last	specialization	covers	the	case	when	the	pack	is	empty;	in	this	case	we
return	0:

				template	<typename	CharT>	

				struct	binary_struct<CharT>	

				{	



				{	

						static	constexpr	CharT	value{	0	};	

				};

After	defining	these	helper	classes,	we	could	implement	the	byte8,	byte16,	and
byte32	binary	literals	as	intended.	Note	that	we	need	to	bring	the	content	of	the
namespace	binary_literals	in	the	current	namespace	in	order	to	use	the	literal
operator	templates:

				using	namespace	binary;	

				using	namespace	binary_literals;	

				auto	b1	=	1010_b8;	

				auto	b2	=	101010101010_b16;	

				auto	b3	=	101010101010101010101010_b32;

The	following	definitions	trigger	compiler	errors	because	the	condition	in
static_assert	is	not	met:

				//	binary	literal	b8	must	be	up	to	8	digits	long	

				auto	b4	=	0011111111_b8;	

				//	binary	literal	b16	must	be	up	to	16	digits	long	

				auto	b5	=	001111111111111111_b16;	

				//	binary	literal	b32	must	be	up	to	32	digits	long	

				auto	b6	=	0011111111111111111111111111111111_b32;



See	also
Using	raw	string	literals	to	avoid	escaping	characters
Creating	cooked	user-defined	literals
Writing	a	function	template	with	variable	number	of	arguments	recipe	of	Ch
apter	3,	Exploring	Functions
Creating	type	aliases	and	alias	templates	recipe	of	Chapter	1,	Learning
Modern	Core	Language	Features



Using	raw	string	literals	to	avoid
escaping	characters
Strings	may	contain	special	characters,	such	as	non-printable	characters
(newline,	horizontal	and	vertical	tab,	and	so	on),	string	and	character	delimiters
(double	and	single	quotes)	or	arbitrary	octal,	hexadecimal,	or	Unicode	values.
These	special	characters	are	introduced	with	an	escape	sequence	that	starts	with
a	backslash,	followed	by	either	the	character	(examples	include	'	and	"),	its
designated	letter	(examples	include	n	for	a	new	line,	t	for	a	horizontal	tab),	or	its
value	(examples	include	octal	050,	hexadecimal	XF7,	or	Unicode	U16F0).	As	a
result,	the	backslash	character	itself	has	to	be	escaped	with	another	backslash
character.	This	leads	to	more	complicated	literal	strings	that	can	be	hard	to	read.

To	avoid	escaping	characters,	C++11	introduced	raw	string	literals	that	do	not
process	escape	sequences.	In	this	recipe,	you	will	learn	how	to	use	the	various
forms	of	raw	string	literals.



Getting	ready
In	this	recipe,	and	throughout	the	rest	of	the	book,	I	will	use	the	s	suffix	to	define
basic_string	literals.	This	has	been	covered	in	the	recipe	Creating	cooked	user-
defined	literals.



How	to	do	it...
To	avoid	escaping	characters,	define	the	string	literals	with	the	following:

1.	 R"(	literal	)"	as	the	default	form:

								auto	filename	{R"(C:\Users\Marius\Documents\)"s};

								auto	pattern	{R"((\w+)=(\d+)$)"s};	

								auto	sqlselect	{	

										R"(SELECT	*	

										FROM	Books	

										WHERE	Publisher='Paktpub'	

										ORDER	BY	PubDate	DESC)"s};

2.	 R"delimiter(	literal	)delimiter"	where	delimiter	is	any	character	sequence	not
present	in	the	actual	string	when	the	sequence	)"	should	actually	be	part	of
the	string.	Here	is	an	example	with	!!	as	delimited:

								auto	text{	R"!!(This	text	contains	both	"(	and	)".)!!"s	};	

								std::cout	<<	text	<<	std::endl;



How	it	works...
When	string	literals	are	used,	escapes	are	not	processed,	and	the	actual	content
of	the	string	is	written	between	the	delimiter	(in	other	words,	what	you	see	is
what	you	get).	The	following	example	shows	what	appears	as	the	same	raw
literal	string;	however,	the	second	one	still	contains	escaped	characters.	Since
these	are	not	processed	in	the	case	of	string	literals,	they	will	be	printed	as	they
are	in	the	output:

				auto	filename1	{R"(C:\Users\Marius\Documents\)"s};	

				auto	filename2	{R"(C:\\Users\\Marius\\Documents\\)"s};	

				//	prints	C:\Users\Marius\Documents\		

				std::cout	<<	filename1	<<	std::endl;	

				//	prints	C:\\Users\\Marius\\Documents\\		

				std::cout	<<	filename2	<<	std::endl;

In	case	the	text	has	to	contain	the	)"	sequence,	then	a	different	delimiter	must	be
used,	in	the	R"delimiter(	literal	)delimiter"	form.	According	to	the	standard,	the
possible	characters	in	a	delimiter	can	be	as	follows:

any	member	of	the	basic	source	character	set	except:	space,	the	left	parenthesis
(the	right	parenthesis	),	the	backslash	\,	and	the	control	characters	representing
horizontal	tab,	vertical	tab,	form	feed,	and	newline.

Raw	string	literals	can	be	prefixed	by	one	of	L,	u8,	u,	and	U	to	indicate	a	wide,
UTF-8,	UTF-16,	or	UTF-32	string	literal.	The	following	are	examples	of	such
string	literals.	Note	that	the	presence	of	string	literal	operator	""s	at	the	end	of	the
string	makes	the	compiler	deduce	the	type	as	various	string	classes	and	not
character	arrays:

				auto	t1{	LR"(text)"		};		//	const	wchar_t*	

				auto	t2{	u8R"(text)"	};		//	const	char*	

				auto	t3{	uR"(text)"		};		//	const	char16_t*	

				auto	t4{	UR"(text)"		};		//	const	char32_t*	

				auto	t5{	LR"(text)"s		};	//	wstring	

				auto	t6{	u8R"(text)"s	};	//	string	

				auto	t7{	uR"(text)"s		};	//	u16string	

				auto	t8{	UR"(text)"s		};	//	u32string



See	also
Creating	cooked	user-defined	literals



Creating	a	library	of	string	helpers
The	string	types	from	the	standard	library	are	a	general	purpose	implementation
that	lacks	many	helpful	methods,	such	as	changing	the	case,	trimming,	splitting,
and	others	that	may	address	different	developer	needs.	Third-party	libraries	that
provide	rich	sets	of	string	functionalities	exist.	However,	in	this	recipe,	we	will
look	at	implementing	several	simple,	yet	helpful,	methods	you	may	often	need	in
practice.	The	purpose	is	rather	to	see	how	string	methods	and	standard	general
algorithms	can	be	used	for	manipulating	strings,	but	also	to	have	a	reference	to
reusable	code	that	can	be	used	in	your	applications.

In	this	recipe,	we	will	implement	a	small	library	of	string	utilities	that	will
provide	functions	for	the	following:

Changing	a	string	to	lowercase	or	uppercase.
Reversing	a	string.
Trimming	white	spaces	from	the	beginning	and/or	the	end	of	the	string.
Trimming	a	specific	set	of	characters	from	the	beginning	and/or	the	end	of
the	string.
Removing	occurrences	of	a	character	anywhere	in	the	string.
Tokenizing	a	string	using	a	specific	delimiter.



Getting	ready
The	string	library	we	will	be	implementing	should	work	with	all	the	standard
string	types,	std::string,	std::wstring,	std::u16string,	and	std::u32string.	To	avoid
specifying	long	names	such	as	std::basic_string<CharT,	std::char_traits<CharT>,
std::allocator<CharT>>,	we	will	use	the	following	alias	templates	for	strings	and
string	streams:

				template	<typename	CharT>	

				using	tstring	=		

							std::basic_string<CharT,	std::char_traits<CharT>,		

																									std::allocator<CharT>>;	

				template	<typename	CharT>	

				using	tstringstream	=		

							std::basic_stringstream<CharT,	std::char_traits<CharT>,		

																															std::allocator<CharT>>;

To	implement	these	string	helper	functions,	we	need	to	include	the
header	<string>	for	strings	and	<algorithm>	for	the	general	standard	algorithms	we
will	use.

In	all	the	examples	in	this	recipe,	we	will	use	the	standard	user-defined	literal
operators	for	strings	from	C++14,	for	which	we	need	to	explicitly	use
the	std::string_literals	namespace.



How	to	do	it...
1.	 To	convert	a	string	to	lowercase	or	uppercase,	apply	the	tolower()	or	toupper()

functions	on	the	characters	of	a	string	using	the	general	purpose	algorithm
std::transform():

								template<typename	CharT>	

								inline	tstring<CharT>	to_upper(tstring<CharT>	text)	

								{	

										std::transform(std::begin(text),	std::end(text),	

																									std::begin(text),	toupper);	

										return	text;	

								}	

								template<typename	CharT>	

								inline	tstring<CharT>	to_lower(tstring<CharT>	text)	

								{	

										std::transform(std::begin(text),	std::end(text),		

																									std::begin(text),	tolower);	

										return	text;	

								}

2.	 To	reverse	a	string,	use	the	general	purpose	algorithm	std::reverse():

								template<typename	CharT>	

								inline	tstring<CharT>	reverse(tstring<CharT>	text)	

								{	

										std::reverse(std::begin(text),	std::end(text));	

										return	text;	

								}

3.	 To	trim	a	string,	at	the	beginning,	end,	or	both,	use	std::basic_string's
methods	find_first_not_of()	and	find_last_not_of():

								template<typename	CharT>	

								inline	tstring<CharT>	trim(tstring<CharT>	const	&	text)	

								{	

										auto	first{	text.find_first_not_of('	')	};	

										auto	last{	text.find_last_not_of('	')	};	

										return	text.substr(first,	(last	-	first	+	1));	

								}	

								template<typename	CharT>	

								inline	tstring<CharT>	trimleft(tstring<CharT>	const	&	text)	

								{	

										auto	first{	text.find_first_not_of('	')	};	

										return	text.substr(first,	text.size()	-	first);	

								}	

								template<typename	CharT>	

								inline	tstring<CharT>	trimright(tstring<CharT>	const	&	text)	

								{	

										auto	last{	text.find_last_not_of('	')	};	



										auto	last{	text.find_last_not_of('	')	};	

										return	text.substr(0,	last	+	1);	

								}

4.	 To	trim	characters	in	a	given	set	from	a	string,	use	overloads	of
std::basic_string's	methods	find_first_not_of()	and	find_last_not_of(),	that	take
a	string	parameter	that	defines	the	set	of	characters	to	look	for:

								template<typename	CharT>	

								inline	tstring<CharT>	trim(tstring<CharT>	const	&	text,		

																																			tstring<CharT>	const	&	chars)	

								{	

										auto	first{	text.find_first_not_of(chars)	};	

										auto	last{	text.find_last_not_of(chars)	};	

										return	text.substr(first,	(last	-	first	+	1));	

								}	

								template<typename	CharT>	

								inline	tstring<CharT>	trimleft(tstring<CharT>	const	&	text,		

																																							tstring<CharT>	const	&	chars)	

								{	

										auto	first{	text.find_first_not_of(chars)	};	

										return	text.substr(first,	text.size()	-	first);	

								}	

								template<typename	CharT>	

								inline	tstring<CharT>	trimright(tstring<CharT>	const	&text,	

																																								tstring<CharT>	const	&chars)	

								{	

										auto	last{	text.find_last_not_of(chars)	};	

										return	text.substr(0,	last	+	1);	

								}

5.	 To	remove	characters	from	a	string,	use	std::remove_if()	and
std::basic_string::erase():

								template<typename	CharT>	

								inline	tstring<CharT>	remove(tstring<CharT>	text,		

																																					CharT	const	ch)	

								{	

										auto	start	=	std::remove_if(	

																										std::begin(text),	std::end(text),		

																										[=](CharT	const	c)	{return	c	==		ch;	});	

										text.erase(start,	std::end(text));	

										return	text;	

								}

6.	 To	split	a	string	based	on	a	specified	delimiter,	use	std::getline()	to	read
from	an	std::basic_stringstream	initialized	with	the	content	of	the	string.	The
tokens	extracted	from	the	stream	are	pushed	into	a	vector	of	strings:

								template<typename	CharT>	

								inline	std::vector<tstring<CharT>>	split	

											(tstring<CharT>	text,	CharT	const	delimiter)	

								{

										auto	sstr	=	tstringstream<CharT>{	text	};	

										auto	tokens	=	std::vector<tstring<CharT>>{};	



										auto	tokens	=	std::vector<tstring<CharT>>{};	

										auto	token	=	tstring<CharT>{};	

										while	(std::getline(sstr,	token,	delimiter))		

										{	

												if	(!token.empty())	tokens.push_back(token);	

										}	

										return	tokens;	

								}



How	it	works...
For	implementing	the	utility	functions	from	the	library,	we	have	two	options:

Functions	would	modify	a	string	passed	by	a	reference.
Functions	would	not	alter	the	original	string	but	return	a	new	string.

The	second	option	has	the	advantage	that	it	preserves	the	original	string,	which
may	be	helpful	in	many	cases.	Otherwise,	in	those	cases,	you	would	first	have	to
make	a	copy	of	the	string	and	alter	the	copy.	The	implementation	provided	in
this	recipe	takes	the	second	approach.

The	first	functions	we	implemented	in	the	How	to	do	it...	section	were	to_upper()
and	to_lower().	These	functions	change	the	content	of	a	string	either	to	uppercase
or	lowercase.	The	simplest	way	to	implement	this	is	using	the	std::transform()
standard	algorithm.	This	is	a	general	purpose	algorithm	that	applies	a	function	to
every	element	of	a	range	(defined	by	a	begin	and	end	iterator)	and	stores	the
result	in	another	range	for	which	only	the	begin	iterator	needs	to	be	specified.
The	output	range	can	be	the	same	as	the	input	range,	which	is	exactly	what	we
did	to	transform	the	string.	The	applied	function	is	toupper()	or	tolower():

				auto	ut{	string_library::to_upper("this	is	not	UPPERCASE"s)	};		

				//	ut	=	"THIS	IS	NOT	UPPERCASE"	

				auto	lt{	string_library::to_lower("THIS	IS	NOT	lowercase"s)	};		

				//	lt	=	"this	is	not	lowercase"

The	next	function	we	considered	was	reverse(),	that,	as	the	name	implies,
reverses	the	content	of	a	string.	For	this,	we	used	the	std::reverse()	standard
algorithm.	This	general	purpose	algorithm	reverses	the	elements	of	a	range
defined	by	a	begin	and	end	iterator:

				auto	rt{string_library::reverse("cookbook"s)};	//	rt	=	"koobkooc"

When	it	comes	to	trimming,	a	string	can	be	trimmed	at	the	beginning,	end,	or
both	sides.	Because	of	that,	we	implemented	three	different	functions:	trim()	for
trimming	at	both	ends,	trimleft()	for	trimming	at	the	beginning	of	a	string,	and
trimright()	for	trimming	at	the	end	of	a	string.	The	first	version	of	the	functions



trims	only	spaces.	In	order	to	find	the	right	part	to	trim,	we	use
the	find_first_not_of()	and	find_last_not_of()	methods	of	std::basic_string.	These
return	the	first	and	last	characters	in	the	string	that	are	not	the	specified
character.	Subsequently,	a	call	to	the	substr()	method	of	std::basic_string	returns	a
new	string.	The	substr()	method	takes	an	index	in	the	string	and	a	number	of
elements	to	copy	to	the	new	string:

				auto	text1{"			this	is	an	example			"s};	

				//	t1	=	"this	is	an	example"	

				auto	t1{	string_library::trim(text1)	};	

				//	t2	=	"this	is	an	example			"	

				auto	t2{	string_library::trimleft(text1)	};	

				//	t3	=	"			this	is	an	example"	

				auto	t3{	string_library::trimright(text1)	};

It	could	be	sometimes	useful	to	trim	other	characters	and	then	spaces	from	a
string.	In	order	to	do	that,	we	provided	overloads	for	the	trimming	functions	that
specify	a	set	of	characters	to	be	removed.	That	set	is	also	specified	as	a	string.
The	implementation	is	very	similar	to	the	previous	one	because	both
find_first_not_of()	and	find_last_not_of()	have	overloads	that	take	a	string
containing	the	characters	to	be	excluded	from	the	search:

				auto	chars1{"	!%\n\r"s};	

				auto	text3{"!!		this	%	needs	a	lot\rof	trimming		!\n"s};	

				auto	t7{	string_library::trim(text3,	chars1)	};								

				//	t7	=	"this	%	needs	a	lot\rof	trimming"	

				auto	t8{	string_library::trimleft(text3,	chars1)	};				

				//	t8	=	"this	%	needs	a	lot\rof	trimming		!\n"	

				auto	t9{	string_library::trimright(text3,	chars1)	};			

				//	t9	=	"!!		this	%	needs	a	lot\rof	trimming"

If	removing	characters	from	any	part	of	the	string	is	necessary,	the	trimming
methods	are	not	helpful	because	they	only	treat	a	contiguous	sequence	of
characters	at	the	start	and	end	of	a	string.	For	that,	however,	we	implemented	a
simple	remove()	method.	This	uses	the	std:remove_if()	standard	algorithm.	Both
std::remove()	and	std::remove_if()	work	in	a	way	that	may	not	be	very	intuitive	at
first.	They	remove	elements	that	satisfy	the	criteria	from	a	range	defined	by	a
first	and	last	iterator	by	rearranging	the	content	of	the	range	(using	move
assignment).	The	elements	that	need	to	be	removed	are	placed	at	the	end	of	the
range,	and	the	function	returns	an	iterator	to	the	first	element	in	the	range	that
represents	the	removed	elements.	This	iterator	basically	defines	the	new	end	of
the	range	that	was	modified.	If	no	element	was	removed,	the	returned	iterator	is
the	end	iterator	of	the	original	range.	The	value	of	this	returned	iterator	is	then
used	to	call	the	std::basic_string::erase()	method	that	actually	erases	the	content	of



the	string	defined	by	two	iterators.	The	two	iterators	in	our	case	are	the	iterator
returned	by	std::remove_if()	and	the	end	of	the	string:

				auto	text4{"must	remove	all	*	from	text**"s};	

				auto	t10{	string_library::remove(text4,	'*')	};		

				//	t10	=	"must	remove	all		from	text"	

				auto	t11{	string_library::remove(text4,	'!')	};		

				//	t11	=	"must	remove	all	*	from	text**"

The	last	method	we	implemented	splits	the	content	of	a	string	based	on	a
specified	delimiter.	There	are	various	ways	to	implement	this.	In	this
implementation,	we	used	std::getline().	This	function	reads	characters	from	an
input	stream	until	a	specified	delimiter	is	found	and	places	the	characters	in	a
string.	Before	starting	to	read	from	the	input	buffer,	it	calls	erase()	on	the	output
string	to	clear	its	content.	Calling	this	method	in	a	loop	produces	tokens	that	are
placed	in	a	vector.	In	our	implementation,	empty	tokens	were	skipped	from	the
result	set:

				auto	text5{"this	text	will	be	split			"s};	

				auto	tokens1{	string_library::split(text5,	'	')	};		

				//	tokens1	=	{"this",	"text",	"will",	"be",	"split"}	

				auto	tokens2{	string_library::split(""s,	'	')	};				

				//	tokens2	=	{}



See	also
Creating	cooked	user-defined	literals
Creating	type	aliases	and	alias	templates	recipe	of	Chapter	1,	Learning
Modern	Core	Language	Features



Verifying	the	format	of	a	string	using
regular	expressions
Regular	expressions	are	a	language	intended	for	performing	pattern	matching
and	replacements	in	texts.	C++11	provides	support	for	regular	expressions
within	the	standard	library	through	a	set	of	classes,	algorithms,	and	iterators
available	in	the	header	<regex>.	In	this	recipe,	we	will	see	how	regular	expressions
can	be	used	to	verify	that	a	string	matches	a	pattern	(examples	can	include
verifying	an	e-mail	or	IP	address	formats).



Getting	ready
Throughout	this	recipe,	we	will	explain	whenever	necessary	the	details	of	the
regular	expressions	that	we	use.	However,	you	should	have	at	least	some	basic
knowledge	of	regular	expressions	in	order	to	use	the	C++	standard	library	for
regular	expressions.	A	description	of	regular	expressions	syntax	and	standards	is
beyond	the	purpose	of	this	book;	if	you	are	not	familiar	with	regular	expressions,
it	is	recommended	that	you	read	more	about	them	before	continuing	with	the
recipes	that	focus	on	regular	expressions.



How	to	do	it...
In	order	to	verify	that	a	string	matches	a	regular	expression,	perform	the
following	steps:

1.	 Include	headers	<regex>	and	<string>	and	the	namespace	std::string_literals
for	C++14	standard	user-defined	literals	for	strings:

								#include	<regex>	

								#include	<string>	

								using	namespace	std::string_literals;

2.	 Use	raw	string	literals	to	specify	the	regular	expression	to	avoid	escaping
backslashes	(that	can	occur	frequently).	The	following	regular	expression
validates	most	e-mails	formats:

								auto	pattern	{R"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s};

3.	 Create	an	std::regex/std::wregex	object	(depending	on	the	character	set	that	is
used)	to	encapsulate	the	regular	expression:

								auto	rx	=	std::regex{pattern};

4.	 To	ignore	casing	or	specify	other	parsing	options,	use	an	overloaded
constructor	that	has	an	extra	parameter	for	regular	expression	flags:

								auto	rx	=	std::regex{pattern,	std::regex_constants::icase};	

5.	 Use	std::regex_match()	to	match	the	regular	expression	to	an	entire	string:

								auto	valid	=	std::regex_match("marius@domain.com"s,	rx);



How	it	works...
Considering	the	problem	of	verifying	the	format	of	e-mail	addresses,	even
though	this	may	look	like	a	trivial	problem,	in	practice	it	is	hard	to	find	a	simple
regular	expression	that	covers	all	the	possible	cases	for	valid	e-mail	formats.	In
this	recipe,	we	will	not	try	to	find	that	ultimate	regular	expression,	but	rather	to
apply	a	regular	expression	that	is	good	enough	for	most	cases.	The	regular
expression	we	will	use	for	this	purpose	is	this:

				^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$

The	following	table	explains	the	structure	of	the	regular	expression:

Part Description
^ Start	of	string
[A-Z0-

9._%+-

]+

At	least	one	character	in	the	range	A-Z,	0-9,	or	one	of	-,	%,	+	or	-	that
represents	the	local	part	of	the	email	address

@ Character	@

[A-Z0-

9.-]+

At	least	one	character	in	the	range	A-Z,	0-9,	or	one	of	-,	%,	+	or	-	that
represents	the	hostname	of	the	domain	part

\. A	dot	that	separates	the	domain	hostname	and	label

[A-Z]

{2,}

The	DNS	label	of	a	domain	that	can	have	between	2	and	63
characters

$ End	of	the	string

Bear	in	mind	that	in	practice	a	domain	name	is	composed	of	a	hostname
followed	by	a	dot-separated	list	of	DNS	labels.	Examples	include	localhost,
gmail.com,	or	yahoo.co.uk.	This	regular	expression	we	are	using	does	not	match
domains	without	DNS	labels,	such	as	localhost	(an	e-mail,	such	as	root@localhost
is	a	valid	e-mail).	The	domain	name	can	also	be	an	IP	address	specified	in
brackets,	such	as	[192.168.100.11]	(as	in	john.doe@[192.168.100.11]).	E-mail	addresses
containing	such	domains	will	not	match	the	regular	expression	defined	above.
Even	though	these	rather	rare	formats	will	not	be	matched,	the	regular



expression	can	cover	most	of	the	e-mail	formats.

The	regular	expression	in	the	example	in	this	chapter	is	provided
for	didactical	purposes	only,	and	it	is	not	intended	for	being	used
as	it	is	in	production	code.	As	explained	earlier,	this	sample	does
not	cover	all	possible	e-mail	formats.

We	began	by	including	the	necessary	headers,	<regex>	for	regular	expressions	and
<string>	for	strings.	The	is_valid_email()	function	shown	in	the	following	(that
basically	contains	the	samples	from	the	How	to	do	it...	section)	takes	a	string
representing	an	e-mail	address	and	returns	a	boolean	indicating	whether	the	e-
mail	has	a	valid	format	or	not.	We	first	construct	an	std::regex	object	to
encapsulate	the	regular	expression	indicated	with	the	raw	string	literal.	Using
raw	string	literals	is	helpful	because	it	avoids	escaping	backslashes	that	are	used
for	escape	characters	in	regular	expressions	too.	The	function	then	calls
std::regex_match(),	passing	the	input	text	and	the	regular	expression:

				bool	is_valid_email_format(std::string	const	&	email)	

				{	

						auto	pattern	{R"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s};	

						auto	rx	=	std::regex{pattern};	

						return	std::regex_match(email,	rx);	

				}

The	std::regex_match()	method	tries	to	match	the	regular	expression	against	the
entire	string.	If	successful	it	returns	true,	otherwise	false:

				auto	ltest	=	[](std::string	const	&	email)		

				{	

						std::cout	<<	std::setw(30)	<<	std::left		

																<<	email	<<	"	:	"		

																<<	(is_valid_email_format(email)	?		

																			"valid	format"	:	"invalid	format")	

																<<	std::endl;	

				};	

				ltest("JOHN.DOE@DOMAIN.COM"s);									//	valid	format	

				ltest("JOHNDOE@DOMAIL.CO.UK"s);								//	valid	format	

				ltest("JOHNDOE@DOMAIL.INFO"s);									//	valid	format	

				ltest("J.O.H.N_D.O.E@DOMAIN.INFO"s);			//	valid	format	

				ltest("ROOT@LOCALHOST"s);														//	invalid	format	

				ltest("john.doe@domain.com"s);									//	invalid	format

In	this	simple	test,	the	only	e-mails	that	do	not	match	the	regular	expression	are
ROOT@LOCALHOST	and	john.doe@domain.com.	The	first	contains	a	domain	name	without	a
dot-prefixed	DNS	label	and	that	case	is	not	covered	in	the	regular	expression.



The	second	contains	only	lowercase	letters,	and	in	the	regular	expression,	the
valid	set	of	characters	for	both	the	local	part	and	the	domain	name	was
uppercase	letters,	A	to	Z.

Instead	of	complicating	the	regular	expression	with	additional	valid	characters
(such	as	[A-Za-z0-9._%+-]),	we	can	specify	that	the	match	can	ignore	the	case.	This
can	be	done	with	an	additional	parameter	to	the	constructor	of	the	std::basic_regex
class.	The	available	constants	for	this	purpose	are	defined	in	the	regex_constants
namespace.	The	following	slight	change	to	the	is_valid_email_format()	will	make	it
ignore	the	case	and	allow	e-mails	with	both	lowercase	and	uppercase	letters	to
correctly	match	the	regular	expression:

				bool	is_valid_email_format(std::string	const	&	email)	

				{	

						auto	rx	=	std::regex{	

								R"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s,	

								std::regex_constants::icase};	

						return	std::regex_match(email,	rx);	

				}

This	is_valid_email_format()	function	is	pretty	simple,	and	if	the	regular	expression
was	provided	as	a	parameter	along	with	the	text	to	match,	it	could	be	used	for
matching	anything.	However,	it	would	be	nice	to	be	able	to	handle	with	a	single
function	not	only	multi-byte	strings	(std::string)	but	also	wide	strings
(std::wstring).	This	can	be	achieved	by	creating	a	function	template	where	the
character	type	is	provided	as	a	template	parameter:

				template	<typename	CharT>	

				using	tstring	=	std::basic_string<CharT,	std::char_traits<CharT>,		

																																						std::allocator<CharT>>;	

				template	<typename	CharT>	

				bool	is_valid_format(tstring<CharT>	const	&	pattern,		

																									tstring<CharT>	const	&	text)	

				{	

						auto	rx	=	std::basic_regex<CharT>{		

								pattern,	std::regex_constants::icase	};	

						return	std::regex_match(text,	rx);	

				}

We	start	by	creating	an	alias	template	for	std::basic_string	in	order	to	simplify	its
use.	The	new	is_valid_format()	function	is	a	function	template	very	similar	to	our
implementation	of	is_valid_email().	However,	we	now	use	std::basic_regex<CharT>
instead	of	the	typedef	std::regex,	which	is	std::basic_regex<char>,	and	the	pattern	is
provided	as	the	first	argument.	We	now	implement	a	new	function	called



is_valid_email_format_w()	for	wide	strings	that	relies	on	this	function	template.	The
function	template,	however,	can	be	reused	for	implementing	other	validations,
such	as	if	a	license	plate	has	a	particular	format:

				bool	is_valid_email_format_w(std::wstring	const	&	text)	

				{	

						return	is_valid_format(	

								LR"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s,		

								text);	

				}	

				auto	ltest2	=	[](auto	const	&	email)	

				{	

						std::wcout	<<	std::setw(30)	<<	std::left	

									<<	email	<<	L"	:	"	

									<<	(is_valid_email_format_w(email)	?	L"valid"	:	L"invalid")	

									<<	std::endl;	

				};	

				ltest2(L"JOHN.DOE@DOMAIN.COM"s);							//	valid

				ltest2(L"JOHNDOE@DOMAIL.CO.UK"s);						//	valid

				ltest2(L"JOHNDOE@DOMAIL.INFO"s);							//	valid

				ltest2(L"J.O.H.N_D.O.E@DOMAIN.INFO"s);	//	valid

				ltest2(L"ROOT@LOCALHOST"s);												//	invalid

				ltest2(L"john.doe@domain.com"s);							//	valid

Of	all	the	examples	shown	above,	the	only	one	that	does	not	match	is
ROOT@LOCAHOST,	as	already	expected.

The	std::regex_match()	method	has,	in	fact,	several	overloads,	and	some	of	them
have	a	parameter	that	is	a	reference	to	an	std::match_results	object	to	store	the
result	of	the	match.	If	there	is	no	match,	then	std::match_results	is	empty	and	its
size	is	0.	Otherwise,	if	there	is	a	match,	the	std::match_results	object	is	not	empty
and	its	size	is	1	plus	the	number	of	matched	subexpressions.

The	following	version	of	the	function	uses	the	mentioned	overloads	and	returns
the	matched	subexpressions	in	an	std::smatch	object.	Note	that	the	regular
expression	is	changed,	as	three	caption	groups	are	defined--	one	for	the	local
part,	one	for	the	hostname	part	of	the	domain,	and	one	for	the	DNS	label.	If	the
match	is	successful,	then	the	std::smatch	object	will	contain	four	submatch
objects:	the	first	to	match	the	entire	string,	the	second	for	the	first	capture	group
(the	local	part),	the	third	for	the	second	capture	group	(the	hostname),	and	the
fourth	for	the	third	and	last	capture	group	(the	DNS	label).	The	result	is	returned
in	a	tuple,	where	the	first	item	actually	indicates	success	or	failure:

				std::tuple<bool,	std::string,	std::string,	std::string>

				is_valid_email_format_with_result(std::string	const	&	email)	

				{	

						auto	rx	=	std::regex{		



						auto	rx	=	std::regex{		

								R"(^([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,})$)"s,		

								std::regex_constants::icase	};	

						auto	result	=	std::smatch{};	

						auto	success	=	std::regex_match(email,	result,	rx);	

						return	std::make_tuple(	

								success,		

								success	?	result[1].str()	:	""s,	

								success	?	result[2].str()	:	""s,		

								success	?	result[3].str()	:	""s);	

				}

Following	the	preceding	code,	we	use	C++17	structured	bindings	to	unpack	the
content	of	the	tuple	into	named	variables:

				auto	ltest3	=	[](std::string	const	&	email)	

				{	

						auto	[valid,	localpart,	hostname,	dnslabel]	=		

							is_valid_email_format_with_result(email);	

						std::cout	<<	std::setw(30)	<<	std::left	

									<<	email	<<	"	:	"	

									<<	std::setw(10)	<<	(valid	?	"valid"	:	"invalid")	

									<<	"local="	<<	localpart		

									<<	";domain="	<<	hostname		

									<<	";dns="	<<	dnslabel	

									<<	std::endl;	

				};	

				ltest3("JOHN.DOE@DOMAIN.COM"s);	

				ltest3("JOHNDOE@DOMAIL.CO.UK"s);	

				ltest3("JOHNDOE@DOMAIL.INFO"s);	

				ltest3("J.O.H.N_D.O.E@DOMAIN.INFO"s);	

				ltest3("ROOT@LOCALHOST"s);	

				ltest3("john.doe@domain.com"s);

The	output	of	the	program	will	be	as	follows:

				JOHN.DOE@DOMAIN.COM												:	valid	

							local=JOHN.DOE;domain=DOMAIN;dns=COM	

				JOHNDOE@DOMAIL.CO.UK											:	valid	

							local=JOHNDOE;domain=DOMAIL.CO;dns=UK	

				JOHNDOE@DOMAIL.INFO												:	valid	

							local=JOHNDOE;domain=DOMAIL;dns=INFO	

				J.O.H.N_D.O.E@DOMAIN.INFO						:	valid	

							local=J.O.H.N_D.O.E;domain=DOMAIN;dns=INFO	

				ROOT@LOCALHOST																	:	invalid	

							local=;domain=;dns=	

				john.doe@domain.com												:	valid	

							local=john.doe;domain=domain;dns=com



There's	more...
There	are	multiple	versions	of	regular	expressions,	and	the	C++	standard	library
supports	six	of	them:	ECMAScript,	basic	POSIX,	extended	POSIX,	awk,	grep,
and	egrep	(grep	with	option	-E).	The	default	grammar	used	is	ECMAScript,	and
in	order	to	use	another,	you	explicitly	have	to	specify	the	grammar	when
defining	the	regular	expression.	In	addition	to	specifying	the	grammar,	you	can
also	specify	parsing	options,	such	as	matching	by	ignoring	the	case.

The	standard	library	provides	more	classes	and	algorithms	than	what	we	have
seen	so	far.	The	main	classes	available	in	the	library	are	the	following	(all	of
them	are	class	templates	and,	for	convenience,	typedefs	are	provided	for	different
character	types):

The	class	template	std::basic_regex	defines	the	regular	expression	object:

								typedef	basic_regex<char>				regex;	

								typedef	basic_regex<wchar_t>	wregex;

The	class	template	std::sub_match	represents	a	sequence	of	characters	that
matches	a	capture	group;	this	class	is	actually	derived	from	std::pair,	and	its
first	and	second	members	represent	iterators	to	the	first	and	the	one-past-end
characters	in	the	match	sequence;	if	there	is	no	match	sequence,	the	two
iterators	are	equal:

								typedef	sub_match<const	char	*>												csub_match;	

								typedef	sub_match<const	wchar_t	*>									wcsub_match;	

								typedef	sub_match<string::const_iterator>		ssub_match;	

								typedef	sub_match<wstring::const_iterator>	wssub_match;

The	class	template	std::match_results	is	a	collection	of	matches;	the	first
element	is	always	a	full	match	in	the	target,	and	the	other	elements	are
matches	of	subexpressions:

								typedef	match_results<const	char	*>												cmatch;	

								typedef	match_results<const	wchar_t	*>									wcmatch;	

								typedef	match_results<string::const_iterator>		smatch;	

								typedef	match_results<wstring::const_iterator>	wsmatch;

The	algorithms	available	in	the	regular	expressions	standard	library	are	the
following:



following:

std::regex_match():	This	tries	to	match	a	regular	expression	(represented	by	a
std::basic_regex	instance)	to	an	entire	string.
std::regex_search():	This	tries	to	match	a	regular	expression	(represented	by	a
std::basic_regex	instance)	to	a	part	of	a	string	(including	the	entire	string).
std::regex_replace():	This	replaces	matches	from	a	regular	expression
according	to	a	specified	format.

The	iterators	available	in	the	regular	expressions	standard	library	are	the
following:

std::regex_interator:	A	constant	forward	iterator	used	to	iterate	through	the
occurrences	of	a	pattern	in	a	string.	It	has	a	pointer	to	an	std::basic_regex	that
must	live	until	the	iterator	is	destroyed.	Upon	creation	and	when
incremented,	the	iterator	calls	std::regex_search()	and	stores	a	copy	of	the
std::match_results	object	returned	by	the	algorithm.
std::regex_token_iterator:	A	constant	forward	iterator	used	to	iterate	through
the	submatches	of	every	match	of	a	regular	expression	in	a	string.
Internally,	it	uses	an	std::regex_iterator	to	step	through	the	submatches.
Since	it	stores	a	pointer	to	an	std::basic_regex	instance,	the	regular	expression
object	must	live	until	the	iterator	is	destroyed.



See	also
Parsing	the	content	of	a	string	using	regular	expressions
Replacing	the	content	of	a	string	using	regular	expressions
Using	structured	bindings	to	handle	multi-return	values	recipe	of	Chapter	1,
Learning	Modern	Core	Language	Features



Parsing	the	content	of	a	string	using
regular	expressions
In	the	previous	recipe,	we	have	looked	at	how	to	use	std::regex_match()	to	verify
that	the	content	of	a	string	matches	a	particular	format.	The	library	provides
another	algorithm	called	std::regex_search()	that	matches	a	regular	expression
against	any	part	of	a	string,	and	not	only	the	entire	string	as	regex_match()	does.
This	function,	however,	does	not	allow	searching	through	all	the	occurrences	of
a	regular	expression	in	an	input	string.	For	this	purpose,	we	need	to	use	one	of
the	iterator	classes	available	in	the	library.

In	this	recipe,	you	will	learn	how	to	parse	the	content	of	a	string	using	regular
expressions.	For	this	purpose,	we	will	consider	the	problem	of	parsing	a	text	file
containing	name-value	pairs.	Each	such	pair	is	defined	on	a	different	line	having
the	format	name	=	value,	but	lines	starting	with	a	#	represent	comments	and	must
be	ignored.	The	following	is	an	example:

				#remove	#	to	uncomment	the	following	lines	

				timeout=120	

				server	=	127.0.0.1	

					

				#retrycount=3



Getting	ready
For	general	information	about	regular	expressions	support	in	C++11,	refer	to
the	Verifying	the	format	of	a	string	using	regular	expressions	recipe.	Basic
knowledge	of	regular	expressions	is	required	for	proceeding	with	this	recipe.

In	the	following	examples,	text	is	a	variable	defined	as	shown	here:

				auto	text	{	

						R"(	

								#remove	#	to	uncomment	the	following	lines	

								timeout=120	

								server	=	127.0.0.1	

								#retrycount=3	

						)"s};



How	to	do	it...
In	order	to	search	for	occurrences	of	a	regular	expression	through	a	string	you
should	perform	the	following:

1.	 Include	headers	<regex>	and	<string>	and	the	namespace	std::string_literals
for	C++14	standard	user-defined	literals	for	strings:

								#include	<regex>	

								#include	<string>	

								using	namespace	std::string_literals;

2.	 Use	raw	string	literals	to	specify	the	regular	expression	to	avoid	escaping
backslashes	(that	can	occur	frequently).	The	following	regular	expression
validates	the	file	format	proposed	earlier:

								auto	pattern	{R"(^(?!#)(\w+)\s*=\s*([\w\d]+[\w\d._,\-:]*)$)"s};

3.	 Create	an	std::regex/std::wregex	object	(depending	on	the	character	set	that	is
used)	to	encapsulate	the	regular	expression:

								auto	rx	=	std::regex{pattern};

4.	 To	search	for	the	first	occurrence	of	a	regular	expression	in	a	given	text,	use
the	general	purpose	algorithm	std::regex_search()	(example	1):

								auto	match	=	std::smatch{};	

								if	(std::regex_search(text,	match,	rx))	

								{	

										std::cout	<<	match[1]	<<	'='	<<	match[2]	<<	std::endl;	

								}

5.	 To	find	all	the	occurrences	of	a	regular	expression	in	a	given	text,	use	the
iterator	std::regex_iterator	(example	2):

								auto	end	=	std::sregex_iterator{};	

								for	(auto	it=std::sregex_iterator{	std::begin(text),		

																																											std::end(text),	rx	};	

													it	!=	end;	++it)	

								{	

										std::cout	<<	'''	<<	(*it)[1]	<<	"'='"		

																				<<	(*it)[2]	<<	'''	<<	std::endl;	

								}



6.	 To	iterate	through	all	the	subexpressions	of	a	match,	use	the	iterator
std::regex_token_iterator	(example	3):

								auto	end	=	std::sregex_token_iterator{};	

								for	(auto	it	=	std::sregex_token_iterator{	

																										std::begin(text),		std::end(text),	rx	};	

													it	!=	end;	++it)	

								{	

										std::cout	<<	*it	<<	std::endl;	

								}



How	it	works...
A	simple	regular	expression	that	can	parse	the	input	file	shown	earlier	may	look
like	this:

				^(?!#)(\w+)\s*=\s*([\w\d]+[\w\d._,\-:]*)$

This	regular	expression	is	supposed	to	ignore	all	lines	that	start	with	a	#;	for
those	that	do	not	start	with	#,	match	a	name	followed	by	the	equal	sign	and	then
a	value	that	can	be	composed	of	alphanumeric	characters	and	several	other
characters	(underscore,	dot,	comma,	and	so	on).	The	exact	meaning	of	this
regular	expression	is	explained	as	follows:

Part Description
^ Start	of	line

(?!#)
A	negative	lookahead	that	makes	sure	that	it	is	not	possible	to
match	the	#	character

(\w)+
A	capturing	group	representing	an	identifier	of	at	least	a	one	word
character

\s* Any	white	spaces
= Equal	sign
\s* Any	white	spaces

([\w\d]+

[\w\d._,\-

:]*)

A	capturing	group	representing	a	value	that	starts	with	an
alphanumeric	character,	but	can	also	contain	a	dot,	comma,
backslash,	hyphen,	colon,	or	an	underscore.

$ End	of	line

We	can	use	std::regex_search()	to	search	for	a	match	anywhere	in	the	input	text.
This	algorithm	has	several	overloads,	but	in	general	they	work	in	the	same	way.
You	must	specify	the	range	of	characters	to	work	through,	an	output
std::match_results	object	that	will	contain	the	result	of	the	match,	and
a	std::basic_regex	object	representing	the	regular	expression	and	matching	flags



(that	define	the	way	the	search	is	done).	The	function	returns	true	if	a	match	was
found	or	false	otherwise.

In	the	first	example	from	the	previous	section	(see	the	4th	list	item),	match	is	an
instance	of	std::smatch	that	is	a	typedef	of	std::match_results	with
string::const_iterator	as	the	template	type.	If	a	match	was	found,	this	object	will
contain	the	matching	information	in	a	sequence	of	values	for	all	matched
subexpressions.	The	submatch	at	index	0	is	always	the	entire	match.	The
submatch	at	index	1	is	the	first	subexpression	that	was	matched,	the	submatch	at
index	2	is	the	second	subexpression	that	was	matched,	and	so	on.	Since	we	have
two	capturing	groups	(that	are	subexpressions)	in	our	regular	expression,	the
std::match_results	will	have	three	submatches	in	case	of	success.	The	identifier
representing	the	name	is	at	index	1,	and	the	value	after	the	equal	sign	is	at	index
2.	Therefore,	this	code	only	prints	the	following:

				timeout=120

The	std::regex_search()	algorithm	is	not	able	to	iterate	through	all	the	possible
matches	in	a	text.	To	do	that,	we	need	to	use	an	iterator.
std::regex_iterator	is	intended	for	this	purpose.	It	allows	not	only	iterating	through
all	the	matches,	but	also	accessing	all	the	submatches	of	a	match.	The	iterator
actually	calls	std::regex_search()	upon	construction	and	on	each	increment,	and	it
remembers	the	result	std::match_results	from	the	call.	The	default	constructor
creates	an	iterator	that	represents	the	end	of	the	sequence	and	can	be	used	to	test
when	the	loop	through	the	matches	should	stop.

In	the	second	example	from	the	previous	section	(see	the	5th	list	item),	we	first
create	an	end	of	sequence	iterator,	and	then	we	start	iterating	through	all	the
possible	matches.	When	constructed,	it	will	call	std::regex_match(),	and	if	a	match
is	found,	we	can	access	its	results	through	the	current	iterator.	This	will	continue
until	no	match	is	found	(end	of	the	sequence).	This	code	will	print	the	following
output:

				'timeout'='120'	

				'server'='127.0.0.1'

An	alternative	to	std::regex_iterator	is	std::regex_token_iterator.	This	works	similar
to	the	way	std::regex_iterator	works	and,	in	fact,	it	contains	such	an	iterator
internally,	except	that	it	enables	us	to	access	a	particular	subexpression	from	a



match.	This	is	shown	in	the	third	example	in	the	How	to	do	it...	section	(the	the
6th	list	item).	We	start	by	creating	an	end-of-sequence	iterator	and	then	loop
through	the	matches	until	the	end-of-sequence	is	reached.	In	the	constructor	we
used,	we	did	not	specify	the	index	of	the	subexpression	to	access	through	the
iterator;	therefore,	the	default	value	of	0	is	used.	That	means	this	program	will
print	the	entire	matches:

				timeout=120	

				server	=	127.0.0.1

If	we	wanted	to	access	only	the	first	subexpression	(that	means	the	names	in	our
case),	all	we	had	to	do	was	specify	the	index	of	the	subexpression	in	the
constructor	of	the	token	iterator.	This	time,	the	output	that	we	get	is	only	the
names:

				auto	end	=	std::sregex_token_iterator{};	

				for	(auto	it	=	std::sregex_token_iterator{	std::begin(text),		

																			std::end(text),	rx,	1	};	

									it	!=	end;	++it)	

				{	

						std::cout	<<	*it	<<	std::endl;	

				}

An	interesting	thing	about	the	token	iterator	is	that	it	can	return	the	unmatched
parts	of	the	string	if	the	index	of	the	subexpressions	is	-1,	in	which	case	it	returns
an	std::match_results	object	that	corresponds	to	the	sequence	of	characters
between	the	last	match	and	the	end	of	the	sequence:

				auto	end	=	std::sregex_token_iterator{};	

				for	(auto	it	=	std::sregex_token_iterator{	std::begin(text),		

																			std::end(text),	rx,	-1	};	

									it	!=	end;	++it)	

				{	

						std::cout	<<	*it	<<	std::endl;	

				}

This	program	will	output	the	following	(note	that	the	empty	lines	are	actually
part	of	the	output):

	

				#remove	#	to	uncomment	the	following	lines	

				#retrycount=3



See	also
Verifying	the	format	of	a	string	using	regular	expressions
Replacing	the	content	of	a	string	using	regular	expressions



Replacing	the	content	of	a	string
using	regular	expressions
In	the	last	two	recipes,	we	have	looked	at	how	to	match	a	regular	expression	on	a
string	or	a	part	of	a	string	and	iterate	through	matches	and	submatches.	The
regular	expression	library	also	supports	text	replacement	based	on	regular
expressions.	In	this	recipe,	we	will	see	how	to	use	std::regex_replace()	to	perform
such	text	transformations.



Getting	ready
For	general	information	about	regular	expressions	support	in	C++11,	refer	to
the	Verifying	the	format	of	a	string	using	regular	expressions	recipe.



How	to	do	it...
In	order	to	perform	text	transformations	using	regular	expressions,	you	should
perform	the	following:

1.	 Include	the	<regex>	and	<string>	and	the	namespace	std::string_literals	for
C++14	standard	user	defined	literals	for	strings:

								#include	<regex>	

								#include	<string>	

								using	namespace	std::string_literals;

2.	 Use	the	std::regex_replace()	algorithm	with	a	replacement	string	as	the
third	argument.	Consider	this	example:	replace	all	words	composed	of
exactly	three	characters	that	are	either	a,	b,	or	c	with	three	hyphens:

								auto	text{"abc	aa	bca	ca	bbbb"s};	

								auto	rx	=	std::regex{	R"(\b[a|b|c]{3}\b)"s	};	

								auto	newtext	=	std::regex_replace(text,	rx,	"---"s);

3.	 Use	the	std::regex_replace()	algorithm	with	match	identifiers	prefixed	with	a
$	for	the	third	argument.	For	example,	replace	names	in	the	"lastname,
firstname"	with	names	in	the	format	"firstname	lastname",	as	follows:

								auto	text{	"bancila,	marius"s	};	

								auto	rx	=	std::regex{	R"((\w+),\s*(\w+))"s	};	

								auto	newtext	=	std::regex_replace(text,	rx,	"$2	$1"s);



How	it	works...
The	std::regex_replace()	algorithm	has	several	overloads	with	different	types	of
parameters,	but	the	meaning	of	the	parameters	is	as	follows:

The	input	string	on	which	the	replacement	is	performed.
An	std::basic_regex	object	that	encapsulates	the	regular	expression	used	to
identify	the	parts	of	the	strings	to	be	replaced.
The	string	format	used	for	replacement.
Optional	matching	flags.

The	return	value	is,	depending	on	the	overload	used,	either	a	string	or	a	copy	of
the	output	iterator	provided	as	an	argument.	The	string	format	used	for
replacement	can	either	be	a	simple	string	or	a	match	identifier	indicated	with	a	$
prefix:

$&	indicates	the	entire	match.
$1,	$2,	$3,	and	so	on,	indicate	the	first,	second,	third	submatch,	and	so	on.
$`	indicates	the	part	of	the	string	before	the	first	match.
$'	indicates	the	part	of	the	string	after	the	last	match.

In	the	first	example	shown	in	the	How	to	do	it...	section,	the	initial	text	contains
two	words	made	of	exactly	three	a,	b,	or	c	characters,	abc	and	bca.	The	regular
expression	indicates	an	expression	of	exactly	three	characters	between	word
boundaries.	That	means	a	subtext,	such	as	bbbb,	will	not	match	the	expression.
The	result	of	the	replacement	is	that	the	string	text	will	be	---	aa	---	ca	bbbb.

Additional	flags	for	the	match	can	be	specified	to	the	std::regex_replace()
algorithm.	By	default,	the	matching	flag	is	std::regex_constants::match_default	that
basically	specifies	ECMAScript	as	the	grammar	used	for	constructing	the	regular
expression.	If	we	want,	for	instance,	to	replace	only	the	first	occurrence,	then	we
can	specify	std::regex_constants::format_first_only.	In	the	next	example,	the	result	is
---	aa	bca	ca	bbbb	as	the	replacement	stops	after	the	first	match	is	found:

				auto	text{	"abc	aa	bca	ca	bbbb"s	};	

				auto	rx	=	std::regex{	R"(\b[a|b|c]{3}\b)"s	};	

				auto	newtext	=	std::regex_replace(text,	rx,	"---"s,	

																					std::regex_constants::format_first_only);



																					std::regex_constants::format_first_only);

The	replacement	string,	however,	can	contain	special	indicators	for	the	whole
match,	a	particular	submatch,	or	the	parts	that	were	not	matched,	as	explained
earlier.	In	the	second	example	shown	in	the	How	to	do	it...	section,	the	regular
expression	identifies	a	word	of	at	least	one	character,	followed	by	a	coma	and
possible	white	spaces	and	then	another	word	of	at	least	one	character.	The	first
word	is	supposed	to	be	the	last	name	and	the	second	word	is	supposed	to	be	the
first	name.	The	replacement	string	has	the	$2	$1	format.	This	is	an	instruction	to
replace	the	matched	expression	(in	this	example,	the	entire	original	string)	with
another	string	formed	of	the	second	submatch	followed	by	space	and	then	the
first	submatch.

In	this	case,	the	entire	string	was	a	match.	In	the	next	example,	there	will	be
multiple	matches	inside	the	string,	and	they	will	all	be	replaced	with	the
indicated	string.	In	this	example,	we	are	replacing	the	indefinite	article	a	when
preceding	a	word	that	starts	with	a	vowel	(this,	of	course,	does	not	cover	words
that	start	with	a	vowel	sound)	with	the	indefinite	article	an:

				auto	text{"this	is	a	example	with	a	error"s};	

				auto	rx	=	std::regex{R"(\ba	((a|e|i|u|o)\w+))"s};	

				auto	newtext	=	std::regex_replace(text,	rx,	"an	$1");

The	regular	expression	identifies	the	letter	a	as	a	single	word	(\b	indicates	a	word
boundary,	so	\ba	means	a	word	with	a	single	letter	a)	followed	by	a	space	and	a
word	of	at	least	two	characters	starting	with	a	vowel.	When	such	a	match	is
identified,	it	is	replaced	with	a	string	formed	of	the	fixed	string	an	followed	by	a
space	and	the	first	subexpression	of	the	match,	which	is	the	word	itself.	In	this
example,	the	newtext	string	will	be	this	is	an	example	with	an	error.

Apart	from	the	identifiers	of	the	subexpressions	($1,	$2,	and	so	on),	there	are
other	identifiers	for	the	entire	match	($&),	the	part	of	the	string	before	the	first
match	($`)	and	the	part	of	the	string	after	the	last	match	($').	In	the	last	example,
we	change	the	format	of	a	date	from	dd.mm.yyyy	to	yyyy.mm.dd,	but	also	show	the
matched	parts:

				auto	text{"today	is	1.06.2016!!"s};	

				auto	rx	=		

							std::regex{R"((\d{1,2})(\.|-|/)(\d{1,2})(\.|-|/)(\d{4}))"s};							

				//	today	is	2016.06.1!!	

				auto	newtext1	=	std::regex_replace(text,	rx,	R"($5$4$3$2$1)");	

				//	today	is	[today	is	][1.06.2016][!!]!!	

				auto	newtext2	=	std::regex_replace(text,	rx,	R"([$`][$&][$'])");



The	regular	expression	matches	a	one-	or	two-digit	number	followed	by	a	dot,
hyphen,	or	slash;	followed	by	another	one-	or	two-digit	number;	then	a	dot,
hyphen,	or	slash;	and	last	a	four-digit	number.

For	newtext1,	the	replacement	string	is	$5$4$3$2$1;	that	means	year,	followed	by
the	second	separator,	then	month,	the	first	separator,	and	finally	day.	Therefore,
for	the	input	string	"today	is	1.06.2016!",	the	result	is	"today	is	2016.06.1!!".

For	newtext2,	the	replacement	string	is	[$`][$&][$'];	that	means	the	part	before	the
first	match,	followed	by	the	entire	match,	and	finally	the	part	after	the	last	match
are	in	square	brackets.	However,	the	result	is	not	"[!!][1.06.2016][today	is	]"	as
you	perhaps	might	expect	at	a	first	glance,	but	"today	is	[today	is	][1.06.2016]
[!!]!!".	The	reason	is	that	what	is	replaced	is	the	matched	expression,	and,	in	this
case,	that	is	only	the	date	("1.06.2016").	This	substring	is	replaced	with	another
string	formed	of	the	all	parts	of	the	initial	string.



See	also
Verifying	the	format	of	a	string	using	regular	expressions
Parsing	the	content	of	a	string	using	regular	expressions



Using	string_view	instead	of	constant
string	references
When	working	with	strings,	temporary	objects	are	created	all	the	time,	even	if
you	might	not	be	really	aware	of	it.	Many	times	the	temporary	objects	are
irrelevant	and	only	serve	the	purpose	of	copying	data	from	one	place	to	another
(for	example,	from	a	function	to	its	caller).	This	represents	a	performance	issue
because	they	require	memory	allocation	and	data	copying,	which	is	desirable	to
be	avoided.	For	this	purpose,	the	C++17	standard	provides	a	new	string	class
template	called	std::basic_string_view	that	represents	a	non-owning	constant
reference	to	a	string	(that	is,	a	sequence	of	characters).	In	this	recipe,	you	will
learn	when	and	how	you	should	use	this	class.



Getting	ready
The	string_view	class	is	available	in	the	namespace	std	in	the	string_view	header.



How	to	do	it...
You	should	use	std::string_view	to	pass	a	parameter	to	a	function	(or	return	a
value	from	a	function),	instead	of	std::string	const	&	unless	your	code	needs	to
call	other	functions	that	take	std::string	parameters	(in	which	case,	conversions
would	be	necessary):

				std::string_view	get_filename(std::string_view	str)	

				{	

						auto	const	pos1	{str.find_last_of('')};	

						auto	const	pos2	{str.find_last_of('.')};	

						return	str.substr(pos1	+	1,	pos2	-	pos1	-	1);	

				}	

				char	const	file1[]	{R"(c:\test\example1.doc)"};	

				auto	name1	=	get_filename(file1);	

				std::string	file2	{R"(c:\test\example2)"};	

				auto	name2	=	get_filename(file2);	

				auto	name3	=	get_filename(std::string_view{file1,	16});



How	it	works...
Before	we	look	at	how	the	new	string	type	works,	let's	consider	the	following
example	of	a	function	that	is	supposed	to	extract	the	name	of	a	file	without	its
extension.	This	is	basically	how	you	would	write	the	function	from	the	previous
section	before	C++17.

Note	that	in	this	example	the	file	separator	is	\	(backslash)	as	in
Windows.	For	Linux-based	systems,	it	has	to	be	changed	to	/
(slash).

				std::string	get_filename(std::string	const	&	str)	

				{	

						auto	const	pos1	{str.find_last_of('')};	

						auto	const	pos2	{str.find_last_of('.')};	

						return	str.substr(pos1	+	1,	pos2	-	pos1	-	1);	

				}	

				auto	name1	=	get_filename(R"(c:\test\example1.doc)");	//	example1	

				auto	name2	=	get_filename(R"(c:\test\example2)");					//	example2	

				if(get_filename(R"(c:\test\_sample_.tmp)").front()	==	'_')	{}

This	is	a	relatively	simple	function.	It	takes	a	constant	reference	to	an	std::string
and	identifies	a	substring	bounded	by	the	last	file	separator	and	the	last	dot	that
basically	represents	a	filename	without	an	extension	(and	without	folder	names).

The	problem	with	this	code,	however,	is	that	it	creates	one,	two,	or,	possibly,
even	more	temporaries,	depending	on	the	compiler	optimizations.	The	function
parameter	is	a	constant	std::string	reference,	but	the	function	is	called	with	a
string	literal,	which	means	std::string	needs	to	be	constructed	from	the	literal.
These	temporaries	need	to	allocate	and	copy	data,	which	is	both	time-	and
resource-consuming.	In	the	last	example,	all	we	want	to	do	is	check	whether	the
first	character	of	the	filename	is	an	underscore,	but	we	create	at	least	two
temporary	string	objects	for	that	purpose.

The	std::basic_string_view	class	template	is	intended	to	solve	this	problem.	This
class	template	is	very	similar	to	std::basic_string,	the	two	having	almost	the	same
interface.	The	reasons	for	this	is	that	the	std::basic_string_view	is	intended	to	be
used	instead	of	a	constant	reference	to	an	std::basic_string	without	further	code
changes.	Just	like	with	std::basic_string,	there	are	specializations	for	all	types	of



standard	characters:

				typedef	basic_string_view<char>					string_view;	

				typedef	basic_string_view<wchar_t>		wstring_view;	

				typedef	basic_string_view<char16_t>	u16string_view;	

				typedef	basic_string_view<char32_t>	u32string_view;

The	std::basic_string_view	class	template	defines	a	reference	to	a	constant
contiguous	sequence	of	characters.	As	the	name	implies,	it	represents	a	view	and
cannot	be	used	to	modify	the	reference	sequence	of	characters.
An	std::basic_string_view	object	has	a	relatively	small	size	because	all	that	it	needs
is	a	pointer	to	the	first	character	in	the	sequence	and	the	length.	It	can	be
constructed	not	only	from	an	std::basic_string	object	but	also	from	a	pointer	and	a
length	or	from	a	null-terminated	sequence	of	characters	(in	which	case,	it	will
require	an	initial	traversing	of	the	string	in	order	to	find	the	length).	Therefore,
the	std::basic_string_view	class	template	can	also	be	used	as	a	common	interface
for	multiple	types	of	strings	(as	long	as	data	only	needs	to	be	read).	On	the	other
hand,	converting	from	an	std::basic_string_view	to	an	std::basic_string	is	easy
because	the	former	has	both	a	to_string()	and	a	converting	operator
std::basic_string	to	create	a	new	std::basic_string	object.

Passing	std::basic_string_view	to	functions	and	returning	std::basic_string_view	still
creates	temporaries	of	this	type,	but	these	are	small	size	objects	on	the	stack	(a
pointer	and	a	size	could	be	16	bytes	for	64-bit	platforms);	therefore,	they	should
incur	fewer	performance	costs	than	allocating	heap	space	and	copying	data.

Note	that	Microsoft	implementation	of	std::basic_string	provides	an
optimization	for	small	strings,	by	having	a	statically	allocated
buffer	of	16	characters	that	does	not	involve	heap	operations,
which	are	only	required	when	the	size	of	the	string	exceeds	16
characters.

In	addition	to	the	methods	that	are	identical	to	those	available	in	std::basic_string,
the	std::basic_string_view	has	two	more:

remove_prefix():	Shrinks	the	view	by	incrementing	the	start	with	N	characters
and	decrementing	the	length	with	N	characters.
remove_suffix():	Shrinks	the	view	by	decrementing	the	length	with	N
characters.



The	two	member	functions	are	used	in	the	following	example	to	trim
an	std::string_view	from	spaces,	both	at	the	beginning	and	the	end.	The
implementation	of	the	function	first	looks	for	the	first	element	that	is	not	a	space
and	then	for	the	last	element	that	is	not	a	space.	Then,	it	removes	from	the	end
everything	after	the	last	non-space	character,	and	from	the	beginning	everything
until	the	first	non-space	character.	The	function	returns	the	new	view	trimmed	at
both	ends:

				std::string_view	trim_view(std::string_view	str)	

				{	

						auto	const	pos1{	str.find_first_not_of("	")	};	

						auto	const	pos2{	str.find_last_not_of("	")	};	

						str.remove_suffix(str.length()	-	pos2	-	1);	

						str.remove_prefix(pos1);	

						return	str;	

				}	

				auto	sv1{	trim_view("sample")	};	

				auto	sv2{	trim_view("		sample")	};	

				auto	sv3{	trim_view("sample		")	};	

				auto	sv4{	trim_view("		sample		")	};	

				auto	s1{	sv1.to_string()	};	

				auto	s2{	sv2.to_string()	};	

				auto	s3{	sv3.to_string()	};	

				auto	s4{	sv4.to_string()	};

When	using	an	std::basic_string_view,	you	must	be	aware	of	two
things:	you	cannot	change	the	underlying	data	referred	by	a	view
and	you	must	manage	the	lifetime	of	the	data,	as	the	view	is	a	non-
owning	reference.



See	also
Creating	a	library	of	string	helpers



Exploring	Functions
The	recipes	included	in	this	chapter	are	as	follows:

Defaulted	and	deleted	functions
Using	lambdas	with	standard	algorithms
Using	generic	lambdas
Writing	a	recursive	lambda
Writing	a	function	template	with	a	variable	number	of	arguments
Using	fold	expressions	to	simplify	variadic	function	templates
Implementing	higher-order	functions	map	and	fold
Composing	functions	into	a	higher-order	function
Uniformly	invoking	anything	callable



Introduction
Functions	are	a	fundamental	concept	in	programming;	regardless	of	the	topic	we
discuss,	we	end	up	writing	functions.	Trying	to	cover	functions	in	a	single
chapter	is	not	only	hard	but	also	not	very	rational.	This	book	contains	recipes
related	to	functions	in	all	the	other	chapters.	This	chapter,	however,	covers
modern	language	features	related	to	functions	and	callable	objects,	with	a	focus
on	lambda	expressions,	concepts	from	functional	languages	such	as	higher-order
functions,	and	type-safe	functions	with	a	variable	number	of	arguments.



Defaulted	and	deleted	functions
In	C++,	classes	have	special	members	(constructors,	destructors,	and	operators)
that	may	be	either	implemented	by	default	by	the	compiler	or	supplied	by	the
developer.	However,	the	rules	for	what	can	be	default	implemented	are	a	bit
complicated	and	can	lead	to	problems.	On	the	other	hand,	developers	sometimes
want	to	prevent	objects	from	being	copied,	moved,	or	constructed	in	a	particular
way.	That	is	possible	by	implementing	different	tricks	using	these	special
members.	The	C++11	standard	has	simplified	many	of	these	by	allowing
functions	to	be	deleted	or	defaulted	in	the	manner	we	will	see	in	the	next	section.



Getting	started
For	this	recipe,	you	need	to	know	what	special	member	functions	are	and	what
copyable	and	moveable	means.



How	to	do	it...
Use	the	following	syntax	to	specify	how	functions	should	be	handled:

To	default	a	function,	use	=default	instead	of	the	function	body.	Only	special
class	member	functions	that	have	defaults	can	be	defaulted:

								struct	foo	

								{	

										foo()	=	default;	

								};

To	delete	a	function,	use	=delete	instead	of	the	function	body.	Any	function,
including	non-member	functions,	can	be	deleted:

								struct	foo	

								{	

										foo(foo	const	&)	=	delete;	

								};	

								void	func(int)	=	delete;

Use	defaulted	and	deleted	functions	to	achieve	various	design	goals,	such	as	the
following	examples:

To	implement	a	class	that	is	not	copyable,	and	implicitly	not	movable,
declare	the	copy	operations	as	deleted:

								class	foo_not_copyable	

								{	

								public:	

										foo_not_copyable()	=	default;	

										foo_not_copyable(foo_not_copyable	const	&)	=	delete;	

										foo_not_copyable&	operator=(foo_not_copyable	const&)	=	delete;	

								};

To	implement	a	class	that	is	not	copyable,	but	is	movable,	declare	the	copy
operations	as	deleted	and	explicitly	implement	the	move	operations	(and
provide	any	additional	constructors	that	are	needed):

								class	data_wrapper	

								{	

										Data*	data;	

								public:	

										data_wrapper(Data*	d	=	nullptr)	:	data(d)	{}	

										~data_wrapper()	{	delete	data;	}	



										~data_wrapper()	{	delete	data;	}	

										data_wrapper(data_wrapper	const&)	=	delete;	

										data_wrapper&	operator=(data_wrapper	const	&)	=	delete;	

										data_wrapper(data_wrapper&&	o)	:data(std::move(o.data))		

										{		

												o.data	=	nullptr;		

										}	

										data_wrapper&	operator=(data_wrapper&&	o)	

										{	

												if	(this	!=	&o)	

												{	

														delete	data;	

														data	=	std::move(o.data);	

														o.data	=	nullptr;	

												}	

												return	*this;	

										}	

								};

To	ensure	a	function	is	called	only	with	objects	of	a	specific	type,	and
perhaps	prevent	type	promotion,	provide	deleted	overloads	for	the	function
(the	following	example	with	free	functions	can	also	be	applied	to	any	class
member	functions):

								template	<typename	T>	

								void	run(T	val)	=	delete;	

								void	run(long	val)	{}	//	can	only	be	called	with	long	integers



How	it	works...
A	class	has	several	special	members	that	can	be	implemented,	by	default,	by	the
compiler.	These	are	the	default	constructor,	copy	constructor,	move	constructor,
copy	assignment,	move	assignment,	and	destructor	(for	a	discussion	on	move
semantics,	refer	to	the	Implementing	move	semantics	recipe	from	Chapter	9,
Robustness	and	Performance).	If	you	don't	implement	them,	then	the	compiler
does	it	so	that	instances	of	a	class	can	be	created,	moved,	copied,	and	destructed.
However,	if	you	explicitly	provide	one	or	more	of	these	special	methods,	then
the	compiler	will	not	generate	the	others	according	to	the	following	rules:

If	a	user-defined	constructor	exists,	the	default	constructor	is	not	generated
by	default.
If	a	user-defined	virtual	destructor	exists,	the	default	constructor	is	not
generated	by	default.
If	a	user-defined	move	constructor	or	move	assignment	operator	exists,	then
the	copy	constructor	and	copy	assignment	operator	are	not	generated	by
default.
If	a	user-defined	copy	constructor,	move	constructor,	copy	assignment
operator,	move	assignment	operator,	or	destructor	exists,	then	the	move
constructor	and	move	assignment	operator	are	not	generated	by	default.
If	a	user-defined	copy	constructor	or	destructor	exists,	then	the	copy
assignment	operator	is	generated	by	default.
If	a	user-defined	copy	assignment	operator	or	destructor	exists,	then	the
copy	constructor	is	generated	by	default.

Note	that	the	last	two	rules	in	the	preceding	list	are	deprecated
rules	and	may	no	longer	be	supported	by	your	compiler.

Sometimes,	developers	need	to	provide	empty	implementations	of	these	special
members	or	hide	them	in	order	to	prevent	the	instances	of	the	class	from
being	constructed	in	a	specific	manner.	A	typical	example	is	a	class	that	is	not
supposed	to	be	copyable.	The	classical	pattern	for	this	is	to	provide	a	default
constructor	and	hide	the	copy	constructor	and	copy	assignment	operators.	While



this	works,	the	explicitly	defined	default	constructor	ensures	the	class	is	no
longer	considered	trivial	and,	therefore,	a	POD	type	(that	can	be	constructed
with	reinterpret_cast).	The	modern	alternative	to	this	is	using	a	deleted	function	as
shown	in	the	preceding	section.

When	the	compiler	encounters	=default	in	the	definition	of	a	function,	it	will
provide	the	default	implementation.	The	rules	for	special	member	functions
mentioned	earlier	still	apply.	Functions	can	be	declared	=default	outside	the	body
of	a	class	if	and	only	if	they	are	inlined:

				class	foo	

				{	

				public:	

						foo()	=	default;	

						inline	foo&	operator=(foo	const	&);	

				};	

				inline	foo&	foo::operator=(foo	const	&)	=	default;

When	the	compiler	encounters	the	=delete	in	the	definition	of	a	function,	it	will
prevent	the	calling	of	the	function.	However,	the	function	is	still	considered
during	overload	resolution,	and	only	if	the	deleted	function	is	the	best	match,	the
compiler	generates	an	error.	For	example,	by	giving	the	previously	defined
overloads	for	the	run()	function,	only	calls	with	long	integers	are	possible.	Calls
with	arguments	of	any	other	type,	including	int,	for	which	an	automatic	type
promotion	to	long	exists,	will	determine	a	deleted	overload	to	be	considered	the
best	match	and	therefore	the	compiler	will	generate	an	error:

				run(42);		//	error,	matches	a	deleted	overload	

				run(42L);	//	OK,	long	integer	arguments	are	allowed

Note	that	previously	declared	functions	cannot	be	deleted,	as	the	=delete
definition	must	be	the	first	declaration	in	a	translation	unit:

				void	forward_declared_function();	

				//	...	

				void	forward_declared_function()	=	delete;	//	error

The	rule	of	thumb	(also	known	as	The	Rule	of	Five)	for	class
special	member	functions	is	that,	if	you	explicitly	define	any	copy
constructor,	move	constructor,	copy	assignment	operator,	move
assignment	operator,	or	destructor,	then	you	must	either	explicitly
define	or	default	all	of	them.



Using	lambdas	with	standard
algorithms
One	of	the	most	important	modern	features	of	C++	is	lambda	expressions,	also
referred	to	as	lambda	functions	or	simply	lambdas.	Lambda	expressions	enable
us	to	define	anonymous	function	objects	that	can	capture	variables	in	the	scope
and	be	invoked	or	passed	as	arguments	to	functions.	Lambdas	are	useful	for
many	purposes,	and	in	this	recipe,	we	will	see	how	to	use	them	with	standard
algorithms.



Getting	ready
In	this	recipe,	we	discuss	standard	algorithms	that	take	an	argument	that	is	a
function	or	predicate	applied	to	the	elements	it	iterates	through.	You	need	to
know	what	unary	and	binary	functions	are	and	what	predicates	and	comparison
functions	are.	You	also	need	to	be	familiar	with	function	objects	because	lambda
expressions	are	syntactic	sugar	for	function	objects.



How	to	do	it...
You	should	prefer	to	use	lambda	expressions	to	pass	callbacks	to	standard
algorithms	instead	of	functions	or	function	objects:

Define	anonymous	lambda	expressions	in	the	place	of	the	call	if	you	only
need	to	use	the	lambda	in	a	single	place:

								auto	numbers	=		

										std::vector<int>{	0,	2,	-3,	5,	-1,	6,	8,	-4,	9	};	

								auto	positives	=	std::count_if(	

										std::begin(numbers),	std::end(numbers),		

										[](int	const	n)	{return	n	>	0;	});

Define	a	named	lambda,	that	is,	one	assigned	to	a	variable	(usually	with	the
auto	specifier	for	the	type),	if	you	need	to	call	the	lambda	in	multiple	places:

								auto	ispositive	=	[](int	const	n)	{return	n	>	0;	};	

								auto	positives	=	std::count_if(	

										std::begin(numbers),	std::end(numbers),	ispositive);

Use	generic	lambda	expressions	if	you	need	lambdas	that	only	differ	in
their	argument	types	(available	since	C++14):

								auto	positives	=	std::count_if(	

										std::begin(numbers),	std::end(numbers),		

										[](auto	const	n)	{return	n	>	0;	});



How	it	works...
The	non-generic	lambda	expression	shown	on	the	second	bullet	earlier	takes	a
constant	integer	and	returns	true	if	it	is	greater	than	0,	or	false	otherwise.	The
compiler	defines	an	unnamed	function	object	with	the	call	operator	having	the
signature	of	the	lambda	expression:

				struct	__lambda_name__	

				{	

						bool	operator()(int	const	n)	const	{	return	n	>	0;	}	

				};

The	way	the	unnamed	function	object	is	defined	by	the	compiler	depends	on	the
way	we	define	the	lambda	expression	that	can	capture	variables,	use	the	mutable
specifier	or	exception	specifications,	or	have	a	trailing	return	type.	The
__lambda_name__	function	object	shown	earlier	is	actually	a	simplification	of	what
the	compiler	generates	because	it	also	defines	a	default	copy	and	move
constructor,	a	default	destructor,	and	a	deleted	assignment	operator.

It	must	be	well	understood	that	the	lambda	expression	is	actually	a
class.	In	order	to	call	it,	the	compiler	needs	to	instantiate	an	object
of	the	class.	The	object	instantiated	from	a	lambda	expression	is
called	a	lambda	closure.

In	the	next	example,	we	want	to	count	the	number	of	elements	in	a	range	that	are
greater	than	or	equal	to	5	and	less	than	or	equal	to	10.	The	lambda	expression,	in
this	case,	will	look	like	this:

				auto	numbers	=	std::vector<int>{	0,	2,	-3,	5,	-1,	6,	8,	-4,	9	};	

				auto	start{	5	};	

				auto	end{	10	};	

				auto	inrange	=	std::count_if(	

													std::begin(numbers),	std::end(numbers),		

													[start,	end](int	const	n)	{

																return	start	<=	n	&&	n	<=	end;});

This	lambda	captures	two	variables,	start	and	end,	by	copy	(that	is,	value).	The
resulting	unnamed	function	object	created	by	the	compiler	looks	very	much	like
the	one	we	defined	earlier.	With	the	default	and	deleted	special	members
mentioned	earlier,	the	class	looks	like	this:

				class	__lambda_name_2__	



				class	__lambda_name_2__	

				{	

						int	start_;	

						int	end_;	

				public:	

						explicit	__lambda_name_2__(int	const	start,	int	const	end)	:	

								start_(start),	end_(end)	

						{}	

						__lambda_name_2__(const	__lambda_name_2__&)	=	default;	

						__lambda_name_2__(__lambda_name_2__&&)	=	default;	

						__lambda_name_2__&	operator=(const	__lambda_name_2__&)		

									=	delete;	

						~__lambda_name_2__()	=	default;	

						bool	operator()	(int	const	n)	const	

						{	

								return	start_	<=	n	&&	n	<=	end_;	

						}	

				};

The	lambda	expression	can	capture	variables	by	copy	(or	value)	or	by	reference,
and	different	combinations	of	the	two	are	possible.	However,	it	is	not	possible	to
capture	a	variable	multiple	times,	and	it	is	only	possible	to	have	&	or	=	at	the
beginning	of	the	capture	list.

A	lambda	can	only	capture	variables	from	an	enclosing	function
scope.	It	cannot	capture	variables	with	static	storage	duration	(that
is,	variables	declared	in	a	namespace	scope	or	with	the	static	or
external	specifier).

The	following	table	shows	various	combinations	for	lambda	captures	semantics.

Lambda Description
[](){} Does	not	capture	anything
[&](){} Captures	everything	by	reference
[=](){} Captures	everything	by	copy
[&x](){} Capture	only	x	by	reference
[x](){} Capture	only	x	by	copy
[&x...]()

{} Capture	pack	extension	x	by	reference

[x...](){} Capture	pack	extension	x	by	copy

[&,	x](){}
Captures	everything	by	reference	except	for	x	that	is	captured	by



copy

[=,	&x]()

{}

Captures	everything	by	copy	except	for	x	that	is	captured	by
reference

[&,	this]

(){}

Captures	everything	by	reference	except	for	pointer	this	that	is
captured	by	copy	(this	is	always	captured	by	copy)

[x,	x](){} Error,	x	is	captured	twice

[&,	&x]()

{}

Error,	everything	is	captured	by	reference,	cannot	specify	again	to
capture	x	by	reference

[=,	=x]()

{}

Error,	everything	is	captured	by	copy,	cannot	specify	again	to
capture	x	by	copy

[&this]()

{} Error,	pointer	this	is	always	captured	by	copy

[&,	=](){} Error,	cannot	capture	everything	both	by	copy	and	by	reference

The	general	form	of	a	lambda	expression,	as	of	C++17,	looks	like	this:

				[capture-list](params)	mutable	constexpr	exception	attr	->	ret

				{	body	}

All	parts	shown	in	this	syntax	are	actually	optional	except	for	the	capture	list,
that	can,	however,	be	empty,	and	the	body,	that	can	also	be	empty.	The
parameter	list	can	actually	be	omitted	if	no	parameters	are	needed.	The	return
type	does	not	need	to	be	specified,	as	the	compiler	can	infer	it	from	the	type	of
the	returned	expression.	The	mutable	specifier	(that	tells	the	compiler	the	lambda
can	actually	modify	variables	captured	by	copy),	the	constexpr	specifier	(that	tells
the	compiler	to	generate	a	constexpr	call	operator),	and	the	exception	specifiers
and	attributes	are	all	optional.

The	simplest	possible	lambda	expression	is	[]{},	though	it	is	often
written	as	[](){}.



There's	more...
There	are	cases	where	lambda	expressions	only	differ	in	the	type	of	their
arguments.	In	this	case,	the	lambdas	can	be	written	in	a	generic	way,	just	like
templates,	but	using	the	auto	specifier	for	the	type	parameters	(no	template	syntax
is	involved).	This	is	addressed	in	the	next	recipe,	mentioned	in	the	See	also
section.



See	also
Using	generic	lambdas
Writing	a	recursive	lambda



Using	generic	lambdas
In	the	preceding	recipe,	we	saw	how	to	write	lambda	expressions	and	use	them
with	standard	algorithms.	In	C++,	lambdas	are	basically	syntactic	sugar	for
unnamed	function	objects,	which	are	classes	that	implement	the	call	operator.
However,	just	like	any	other	function,	this	can	be	implemented	generically	with
templates.	C++14	takes	advantage	of	this	and	introduces	generic	lambdas	that	do
not	need	to	specify	actual	types	for	their	parameters	and	use	the	auto	specifier
instead.	Though	not	referred	with	this	name,	generic	lambdas	are	basically
lambda	templates.	They	are	useful	in	cases	where	we	want	to	use	the	same
lambda	but	with	different	types	of	parameter.



Getting	started
It	is	recommended	that	you	read	the	preceding	recipe,	Using	lambdas	with
standard	algorithms,	before	you	continue	with	this	one.



How	to	do	it...
Write	generic	lambdas:

By	using	the	auto	specifier	instead	of	actual	types	for	lambda	expression
parameters.
When	you	need	to	use	multiple	lambdas	that	only	differ	by	their	parameter
types.

The	following	example	shows	a	generic	lambda	used	with	the	std::accumulate()
algorithm	first	with	a	vector	of	integers	and	then	with	a	vector	of	strings.

								auto	numbers	=

										std::vector<int>{0,	2,	-3,	5,	-1,	6,	8,	-4,	9};		

								auto	texts	=		

										std::vector<std::string>{"hello"s,	"	"s,	"world"s,	"!"s};	

								auto	lsum	=	[](auto	const	s,	auto	const	n)	{return	s	+	n;};	

								auto	sum	=	std::accumulate(	

										std::begin(numbers),	std::end(numbers),	0,	lsum);	

										//	sum	=	22	

								auto	text	=	std::accumulate(	

										std::begin(texts),	std::end(texts),	""s,	lsum);	

										//	sum	=	"hello	world!"s



How	it	works...
In	the	example	from	the	previous	section,	we	have	defined	a	named	lambda
expression,	that	is,	a	lambda	expression	that	has	its	closure	assigned	to	a
variable.	This	variable	is	then	passed	as	an	argument	to	the	std::accumulate()
function.	This	general	algorithm	takes	the	begin	and	the	end	iterators	that	define
a	range,	an	initial	value	to	accumulate	over,	and	a	function	that	is	supposed	to
accumulate	each	value	in	the	range	to	the	total.	This	function	takes	a	first
parameter	representing	the	currently	accumulated	value	and	a	second	parameter
representing	the	current	value	to	accumulate	to	the	total,	and	it	returns	the	new
accumulated	value.	Note	that	I	did	not	use	the	term	add	because	this	can	be	used
for	other	things	than	just	adding.	It	can	also	be	used	for	calculating	a	product,
concatenating,	or	other	operations	that	aggregate	values	together.

The	two	calls	to	std::accumulate()	in	this	example	are	almost	the	same,	only	the
types	of	the	arguments	are	different:

In	the	first	call,	we	pass	iterators	to	a	range	of	integers	(from	a	vector<int>),	0
for	the	initial	sum	and	a	lambda	that	adds	two	integers	and	returns	their
sum.	This	produces	a	sum	of	all	integers	in	the	range;	for	this	example,	it	is
22.
In	the	second	call,	we	pass	iterators	to	a	range	of	strings	(from	a
vector<string>),	an	empty	string	for	the	initial	value,	and	a	lambda	that
concatenates	two	strings	by	adding	them	together	and	returning	the	result.
This	produces	a	string	that	contains	all	the	strings	in	the	range	put	together
one	after	an	other;	for	this	example,	the	result	is	"hello	world!".

Though	generic	lambdas	can	be	defined	anonymously	in	the	place	where	they
are	called,	it	does	not	really	make	sense	because	the	very	purpose	of	a	generic
lambda	(that	is	basically,	as	mentioned	earlier,	a	lambda	expression	template)	is
to	be	reused,	as	shown	in	the	example	from	the	How	to	do	it...	section.

When	defining	this	lambda	expression	used	with	multiple	calls	to
std::accumulate(),	instead	of	specifying	concrete	types	for	the	lambda	parameters
(such	as	int	or	std::string)	we	used	the	auto	specifier	and	let	the	compiler	deduce



the	type.	When	encountering	a	lambda	expression	that	has	the	auto	specifier	for	a
parameter	type,	the	compiler	generates	an	unnamed	function	object	that	has	a
call	operator	template.	For	the	generic	lambda	expression	in	this	example,	the
function	object	would	look	like	this:

				struct	__lambda_name__	

				{	

						template<typename	T1,	typename	T2>	

						auto	operator()(T1	const	s,	T2	const	n)	const	{	return	s	+	n;	}	

							__lambda_name__(const	__lambda_name__&)	=	default;	

							__lambda_name__(__lambda_name__&&)	=	default;	

							__lambda_name__&	operator=(const	__lambda_name__&)	=	delete;	

							~__lambda_name__()	=	default;	

				};

The	call	operator	is	a	template	with	a	type	parameter	for	each	parameter	in	the
lambda	that	was	specified	with	auto.	The	return	type	of	the	call	operator	is	also
auto,	which	means	the	compiler	will	deduce	it	from	the	type	of	the	returned
value.	This	operator	template	will	be	instantiated	with	the	actual	types	the
compiler	will	identify	in	the	context	where	the	generic	lambda	is	used.



See	also
Using	lambdas	with	standard	algorithms
Using	auto	whenever	possible	recipe	of	Chapter	1,	Learning	Modern	Core
Language	Features



Writing	a	recursive	lambda
Lambdas	are	basically	unnamed	function	objects,	which	means	that	it	should	be
possible	to	call	them	recursively.	Indeed,	they	can	be	called	recursively;
however,	the	mechanism	for	doing	it	is	not	obvious,	as	it	requires	assigning	the
lambda	to	a	function	wrapper	and	capturing	the	wrapper	by	reference.	Though	it
can	be	argued	that	a	recursive	lambda	does	not	really	make	sense	and	a	function
is	probably	a	better	design	choice,	in	this	recipe	we	will	look	at	how	to	write	a
recursive	lambda.



Getting	ready
To	demonstrate	how	to	write	a	recursive	lambda,	we	will	consider	the	well-
known	example	of	the	Fibonacci	function.	This	is	usually	implemented
recursively	in	C++,	as	follows:

				constexpr	int	fib(int	const	n)	

				{	

						return	n	<=	2	?	1	:	fib(n	-	1)	+	fib(n	-	2);	

				}



How	to	do	it...
In	order	to	write	a	recursive	lambda	function,	you	must	perform	the	following:

Define	the	lambda	in	a	function	scope.
Assign	the	lambda	to	an	std::function	wrapper.
Capture	the	std::function	object	by	reference	in	the	lambda	in	order	to	call	it
recursively.

The	following	are	examples	of	recursive	lambdas:

A	recursive	Fibonacci	lambda	expression	in	the	scope	of	a	function	that	is
invoked	from	the	scope	where	it	is	defined:

								void	sample()	

								{	

										std::function<int(int	const)>	lfib	=		

												[&lfib](int	const	n)	

												{	

														return	n	<=	2	?	1	:	lfib(n	-	1)	+	lfib(n	-	2);	

												};	

										auto	f10	=	lfib(10);	

								}

A	recursive	Fibonacci	lambda	expression	returned	by	a	function,	that	can	be
invoked	from	any	scope:

								std::function<int(int	const)>	fib_create()	

								{	

										std::function<int(int	const)>	f	=	[](int	const	n)		

										{	

												std::function<int(int	const)>	lfib	=	[&lfib](int	n)	

												{	

														return	n	<=	2	?	1	:	lfib(n	-	1)	+	lfib(n	-	2);	

												};	

												return	lfib(n);	

										};	

										return	f;	

								}	

								void	sample()	

								{	

										auto	lfib	=	fib_create();	

										auto	f10	=	lfib(10);	

								}



How	it	works...
The	first	thing	you	need	to	consider	when	writing	a	recursive	lambda	is	that	a
lambda	expression	is	a	function	object	and,	in	order	to	call	it	recursively	from
the	lambda's	body,	the	lambda	must	capture	its	closure	(that	is,	the	instantiation
of	the	lambda).	In	other	words,	the	lambda	must	capture	itself	and	this	has
several	implications:

First	of	all,	the	lambda	must	have	a	name;	an	unnamed	lambda	cannot	be
captured	in	order	to	be	called	again.
Secondly,	the	lambda	can	only	be	defined	in	a	function	scope.	The	reason
for	this	is	that	a	lambda	can	only	capture	variables	from	a	function	scope;	it
cannot	capture	any	variable	that	has	a	static	storage	duration.	Objects
defined	in	a	namespace	scope	or	with	the	static	or	external	specifiers	have
static	storage	duration.	If	the	lambda	was	defined	in	a	namespace	scope,	its
closure	would	have	static	storage	duration	and	therefore	the	lambda	would
not	capture	it.
The	third	implication	is	that	the	type	of	the	lambda	closure	cannot	remain
unspecified,	that	is,	be	declared	with	the	auto	specifier.	It	is	not	possible	for
a	variable	declared	with	the	auto	type	specifier	to	appear	in	its	own
initializer	because	the	type	of	the	variable	is	not	known	when	the	initializer
is	being	processed.	Therefore,	you	must	specify	the	type	of	the	lambda
closure.	The	way	we	can	do	this	is	using	the	general	purpose	function
wrapper	std::function.
Last,	but	not	least,	the	lambda	closure	must	be	captured	by	reference.	If	we
capture	by	copy	(or	value),	then	a	copy	of	the	function	wrapper	is	made,	but
the	wrapper	is	uninitialized	when	the	capturing	is	done.	We	end	up	with	an
object	that	we	are	not	able	to	call.	Even	though	the	compiler	will	not
complain	about	capturing	by	value,	when	the	closure	is	invoked,
an	std::bad_function_call	is	thrown.

In	the	first	example	from	the	How	to	do	it...	section,	the	recursive	lambda	is
defined	inside	another	function	called	sample().	The	signature	and	the	body	of	the
lambda	expression	are	the	same	as	those	of	the	regular	recursive	function	fib()
defined	in	the	introductory	section.	The	lambda	closure	is	assigned	to	a	function



wrapper	called	lfib	that	is	then	captured	by	reference	by	the	lambda	and	called
recursively	from	its	body.	Since	the	closure	is	captured	by	reference,	it	will	be
initialized	at	the	time	it	has	to	be	called	from	the	lambda's	body.

In	the	second	example,	we	have	defined	a	function	that	returns	the	closure	of	a
lambda	expression	that,	in	turn,	defines	and	invokes	a	recursive	lambda	with	the
argument	it	was,	in	turn,	invoked	with.	This	is	a	pattern	that	must	be
implemented	when	a	recursive	lambda	needs	to	be	returned	from	a	function.
This	is	necessary	because	the	lambda	closure	must	still	be	available	at	the	time
the	recursive	lambda	is	called.	If	it	is	destroyed	before	that,	we	are	left	with	a
dangling	reference	and	calling	it	will	cause	the	program	to	terminate	abnormally.
This	erroneous	situation	is	exemplified	in	the	following	sample:

				//	this	implementation	of	fib_create	is	faulty

				std::function<int(int	const)>	fib_create()	

				{	

						std::function<int(int	const)>	lfib	=	[&lfib](int	const	n)	

						{	

								return	n	<=	2	?	1	:	lfib(n	-	1)	+	lfib(n	-	2);	

						};	

						return	lfib;	

				}	

				void	sample()	

				{	

						auto	lfib	=	fib_create();

						auto	f10	=	lfib(10);							//	crash	

				}

The	solution	for	this	is	to	create	two	nested	lambda	expressions	as	shown	in	the
How	to	do	it...	section.	The	fib_create()	method	returns	a	function	wrapper	that
when	invoked	creates	the	recursive	lambda	that	captures	itself.	This	is	slightly
and	subtly,	yet	fundamentally,	different	from	the	implementation	shown	in	the
preceding	sample.	The	outer	f	lambda	does	not	capture	anything,	especially	by
reference;	therefore,	we	don't	have	the	issue	with	dangling	references.	However,
when	invoked,	it	creates	a	closure	of	the	nested	lambda,	the	actual	lambda	we
are	interested	in	calling	and	returns	the	result	of	applying	that	recursive	lfib
lambda	to	its	parameter.



Writing	a	function	template	with	a
variable	number	of	arguments
It	is	sometimes	useful	to	write	functions	with	a	variable	number	of	arguments	or
classes	with	a	variable	number	of	members.	Typical	examples	include	functions
such	as	printf	that	take	a	format	and	a	variable	number	of	arguments,	or	classes
such	as	tuple.	Before	C++11,	the	former	was	possible	only	with	the	use	of
variadic	macros	(that	enable	writing	only	type-unsafe	functions)	and	the	latter
was	not	possible	at	all.	C++11	introduced	variadic	templates,	which	are
templates	with	a	variable	number	of	arguments	that	make	it	possible	to	write
both	type-safe	function	templates	with	a	variable	number	of	arguments	and	also
class	templates	with	a	variable	number	of	members.	In	this	recipe,	we	will	look
at	writing	function	templates.



Getting	ready
Functions	with	a	variable	number	of	arguments	are	called	variadic	functions.
Function	templates	with	a	variable	number	of	arguments	are	called	variadic
function	templates.	Knowledge	of	C++	variadic	macros	(va_start,	va_end,	va_arg
and	va_copy,	va_list)	is	not	necessary	for	learning	how	to	write	variadic	function
templates,	but	it	represents	a	good	starting	point.

We	have	already	used	variadic	templates	in	our	previous	recipes,	but	this	one
will	provide	detailed	explanations.



How	to	do	it...
In	order	to	write	variadic	function	templates,	you	must	perform	the	following
steps:

1.	 Define	an	overload	with	a	fixed	number	of	arguments	to	end	compile-time
recursion	if	the	semantics	of	the	variadic	function	template	require	it	(refer
to	[1]	in	the	following	code).

2.	 Define	a	template	parameter	pack	to	introduce	a	template	parameter	that
can	hold	any	number	of	arguments,	including	zero;	these	arguments	can	be
either	types,	non-types,	or	templates	(refer	to	[2]).

3.	 Define	a	function	parameter	pack	to	hold	any	number	of	function
arguments,	including	zero;	the	size	of	the	template	parameter	pack	and	the
corresponding	function	parameter	pack	is	the	same	and	can	be	determined
with	the	sizeof...	operator	(refer	to	[3]).

4.	 Expand	the	parameter	pack	in	order	to	replace	it	with	the	actual	arguments
being	supplied	(refer	to	[4]).

The	following	example	that	illustrates	all	the	preceding	points,	is	a	variadic
function	template	that	adds	a	variable	number	of	arguments	using	operator+:

				template	<typename	T>																	//	[1]	overload	with	fixed	

				T	add(T	value)																								//					number	of	arguments	

				{	

						return	value;	

				}	

				template	<typename	T,	typename...	Ts>	//	[2]	typename...	Ts	

				T	add(T	head,	Ts...	rest)													//	[3]	Ts...	rest	

				{	

						return	head	+	add(rest...);									//	[4]	rest...		

				}



How	it	works...
At	a	first	look,	the	preceding	implementation	looks	like	recursion,	because
function	add()	calls	itself,	and	in	a	way	it	is,	but	it	is	a	compile-time	recursion	that
does	not	incur	any	sort	of	runtime	recursion	and	overhead.	The	compiler	actually
generates	several	functions	with	a	different	number	of	arguments,	based	on	the
variadic	function	template	usage,	so	it	is	only	function	overloading	that	is
involved	and	not	any	sort	of	recursion.	However,	implementation	is	done	as	if
parameters	would	be	processed	in	a	recursive	manner	with	an	end	condition.

In	the	preceding	code	we	can	identify	the	following	key	parts:

Typename...	Ts	is	a	template	parameter	pack	that	indicates	a	variable	number
of	template	type	arguments.
Ts...	rest	is	a	function	parameter	pack	that	indicates	a	variable	number	of
function	arguments.
Rest...	is	an	expansion	of	the	function	parameter	pack.

The	position	of	the	ellipsis	is	not	syntactically	relevant.	typename...
Ts,	typename	...	Ts,	and	typename	...Ts	are	all	equivalent.

In	the	add(T	head,	Ts...	rest)	parameter,	head	is	the	first	element	of	the	list	of
arguments,	and	...rest	is	a	pack	with	the	rest	of	the	parameters	in	the	list	(this
can	be	zero	or	more).	In	the	body	of	the	function,	rest...	is	an	expansion	of	the
function	parameter	pack.	This	means	the	compiler	replaces	the	parameter	pack
with	its	elements	in	their	order.	In	the	add()	function,	we	basically	add	the	first
argument	to	the	sum	of	the	remaining	arguments,	which	gives	the	impression	of
a	recursive	processing.	This	recursion	ends	when	there	is	a	single	argument	left,
in	which	case	the	first	add()	overload	(with	a	single	argument)	is	called	and
returns	the	value	of	its	argument.

This	implementation	of	the	function	template	add()	enables	us	to	write	code,	as
shown	here:

				auto	s1	=	add(1,	2,	3,	4,	5);		

				//	s1	=	15	

				auto	s2	=	add("hello"s,	"	"s,	"world"s,	"!"s);		



				auto	s2	=	add("hello"s,	"	"s,	"world"s,	"!"s);		

				//	s2	=	"hello	world!"

When	the	compiler	encounters	add(1,	2,	3,	4,	5),	it	generates	the	following
functions	(arg1,	arg2,	and	so	on,	are	not	the	actual	names	the	compiler	generates)
that	show	this	is	actually	only	calls	to	overloaded	functions	and	not	recursion:

				int	add(int	head,	int	arg1,	int	arg2,	int	arg3,	int	arg4)		

				{return	head	+	add(arg1,	arg2,	arg3,	arg4);}	

				int	add(int	head,	int	arg1,	int	arg2,	int	arg3)		

				{return	head	+	add(arg1,	arg2,	arg3);}	

				int	add(int	head,	int	arg1,	int	arg2)		

				{return	head	+	add(arg1,	arg2);}	

				int	add(int	head,	int	arg1)		

				{return	head	+	add(arg1);}	

				int	add(int	value)		

				{return	value;}

With	GCC	and	Clang,	you	can	use	the	__PRETTY_FUNCTION__	macro	to
print	the	name	and	the	signature	of	the	function.

By	adding	a	std::cout	<<	__PRETTY_FUNCTION__	<<	std::endl	at	the	beginning	of	the	two
functions	we	wrote,	we	get	the	following	when	running	the	code:

				T	add(T,	Ts	...)	[with	T	=	int;	Ts	=	{int,	int,	int,	int}]	

				T	add(T,	Ts	...)	[with	T	=	int;	Ts	=	{int,	int,	int}]	

				T	add(T,	Ts	...)	[with	T	=	int;	Ts	=	{int,	int}]	

				T	add(T,	Ts	...)	[with	T	=	int;	Ts	=	{int}]	

				T	add(T)	[with	T	=	int]

Since	this	is	a	function	template,	it	can	be	used	with	any	type	that	supports
operator+.	The	other	example,	add("hello"s,	"	"s,	"world"s,	"!"s),	produces	the
"hello	world!"	string.	However,	the	std::basic_string	type	has	different	overloads
for	operator+,	including	one	that	can	concatenate	a	string	to	a	character,	so	we
should	be	able	to	also	write	the	following:

				auto	s3	=	add("hello"s,	'	',	"world"s,	'!');		

				//	s3	=	"hello	world!"

However,	that	will	generate	compiler	errors	as	follows	(note	that	I	actually
replaced	std::basic_string<char,	std::char_traits<char>,	std::allocator<char>	>	with
string	"hello	world"	for	simplicity):

In	instantiation	of	'T	add(T,	Ts	...)	[with	T	=	char;	Ts	=	{string,	char}]':	

16:29:			required	from	'T	add(T,	Ts	...)	[with	T	=	string;	Ts	=	{char,	string,	char}]'	

22:46:			required	from	here	

16:29:	error:	cannot	convert	'string'	to	'char'	in	return	

	In	function	'T	add(T,	Ts	...)	[with	T	=	char;	Ts	=	{string,	char}]':	



17:1:	warning:	control	reaches	end	of	non-void	function	[-Wreturn-type]

What	happens	is	that	the	compiler	generates	the	code	shown	next	where	the
return	type	is	the	same	as	the	type	of	the	first	argument.	However,	the	first
argument	is	either	a	std::string	or	a	char	(again,	std::basic_string<char,
std::char_traits<char>,	std::allocator<char>	>	was	replaced	with	string	for
simplicity).	In	cases	where	char	is	the	type	of	the	first	argument,	the	type	of	the
return	value	head+add(...)	that	is	an	std::string	does	not	match	the	function	return
type	and	does	not	have	an	implicit	conversion	to	it:

				string	add(string	head,	char	arg1,	string	arg2,	char	arg3)		

				{return	head	+	add(arg1,	arg2,	arg3);}	

				char	add(char	head,	string	arg1,	char	arg2)		

				{return	head	+	add(arg1,	arg2);}	

				string	add(string	head,	char	arg1)		

				{return	head	+	add(arg1);}	

				char	add(char	value)		

				{return	value;}

We	can	fix	this	by	modifying	the	variadic	function	template	to	have	auto	for	the
return	type	instead	of	T.	In	this	case,	the	return	type	is	always	inferred	from	the
return	expression,	and	in	our	example,	it	will	be	std::string	in	all	cases:

				template	<typename	T,	typename...	Ts>	

				auto	add(T	head,	Ts...	rest)	

				{	

						return	head	+	add(rest...);	

				}

It	should	be	further	added	that	a	parameter	pack	can	appear	in	a	brace-
initialization	and	its	size	can	be	determined	using	the	sizeof...	operator.	Also,
variadic	function	templates	do	not	necessarily	imply	compile-time	recursion	as
we	have	shown	in	this	recipe.	All	these	are	shown	in	the	following	example
where	we	define	a	function	that	creates	a	tuple	with	an	even	number	of
members.	We	first	use	sizeof...(a)	to	make	sure	that	we	have	an	even	number	of
arguments	and	assert	by	generating	a	compiler	error	otherwise.	The	sizeof...
operator	can	be	used	with	both	template	parameter	packs	and	function	parameter
packs.	sizeof...(a)	and	sizeof...(T)	would	produce	the	same	value.	Then,	we
create	and	return	a	tuple.	The	template	parameter	pack	T	is	expanded	(with	T...)
into	the	type	arguments	of	the	std::tuple	class	template,	and	the	function
parameter	pack	a	is	expanded	(with	a...)	into	the	values	for	the	tuple	members
using	brace	initialization:

				template<typename...	T>	

				auto	make_even_tuple(T...	a)	

				{	



				{	

						static_assert(sizeof...(a)	%	2	==	0,		

																				"expected	an	even	number	of	arguments");	

						std::tuple<T...>	t	{	a...	};	

						return	t;	

				}	

				auto	t1	=	make_even_tuple(1,	2,	3,	4);	//	OK	

				//	error:	expected	an	even	number	of	arguments	

				auto	t2	=	make_even_tuple(1,	2,	3);



See	also
Using	fold	expressions	to	simplify	variadic	function	templates
Creating	raw	user-defined	literals	recipe	of	Chapter	2,	Working	with	Numbers
and
Strings



Using	fold	expressions	to	simplify
variadic	function	templates
In	this	chapter,	we	are	discussing	folding	several	times;	this	is	an	operation	that
applies	a	binary	function	to	a	range	of	values	to	produce	a	single	value.	We	have
seen	this	when	we	discussed	variadic	function	templates	and	will	see	it	again
with	higher-order	functions.	It	turns	out	there	is	a	significant	number	of	cases
where	the	expansion	of	a	parameter	pack	in	variadic	function	templates	is
basically	a	folding	operation.	To	simplify	writing	such	variadic	function
templates	C++17	introduced	fold	expressions	that	fold	an	expansion	of	a
parameter	pack	over	a	binary	operator.	In	this	recipe,	we	will	see	how	to	use	fold
expressions	to	simplify	writing	variadic	function	templates.



Getting	ready
The	examples	in	this	recipe	are	based	on	the	variadic	function	template	add()	that
we	wrote	in	the	previous	recipe,	Writing	a	function	template	with	a	variable
number	of	arguments.	That	implementation	is	a	left-folding	operation.	For
simplicity,	we	present	the	function	again:

				template	<typename	T>	

				T	add(T	value)	

				{	

						return	value;	

				}	

				template	<typename	T,	typename...	Ts>	

				T	add(T	head,	Ts...	rest)	

				{	

						return	head	+	add(rest...);	

				}



How	to	do	it...
To	fold	a	parameter	pack	over	a	binary	operator,	use	one	of	the	following	forms:

Left	folding	with	a	unary	form	(...	op	pack):

								template	<typename...	Ts>	

								auto	add(Ts...	args)	

								{	

										return	(...	+	args);	

								}

Left	folding	with	a	binary	form	(init	op	...	op	pack):

								template	<typename...	Ts>	

								auto	add_to_one(Ts...	args)	

								{	

										return	(1	+	...	+	args);	

								}

Right	folding	with	a	unary	form	(pack	op	...):

								template	<typename...	Ts>	

								auto	add(Ts...	args)	

								{	

										return	(args	+	...);	

								}

Right	folding	with	a	binary	form	(pack	op	...	op	init):

								template	<typename...	Ts>	

								auto	add_to_one(Ts...	args)	

								{	

										return	(args	+	...	+	1);	

								}

The	parentheses	shown	above	are	part	of	the	fold	expression	and
cannot	be	omitted.



How	it	works...
When	the	compiler	encounters	a	fold	expression,	it	expands	it	in	one	of	the
following	expressions:

Expression Expansion
(...	op	pack) ((pack$1	op	pack$2)	op	...)	op	pack$n
(init	op	...	op	pack) (((init	op	pack$1)	op	pack$2)	op	...)	op	pack$n
(pack	op	...) pack$1	op	(...	op	(pack$n-1	op	pack$n))
(pack	op	...	op	init) pack$1	op	(...	op	(pack$n-1	op	(pack$n	op	init)))

When	the	binary	form	is	used,	the	operator	on	both	the	left-hand	and	right-hand
side	of	the	ellipses	must	be	the	same,	and	the	initialization	value	must	not
contain	an	unexpanded	parameter	pack.

The	following	binary	operators	are	supported	with	fold	expressions:

+ - * / % ^ & | = < > <<

>> += -= *= /= %= ^= &= |= <<= >>= ==

!= <= >= && || , .* ->*.

When	using	the	unary	form,	only	operators	such	as	*,	+,	&,	|,	&&,	||,	and	,	(comma)
are	allowed	with	an	empty	parameter	pack.	In	this	case,	the	value	of	the	empty
pack	is	as	follows:

+ 0

* 1

& -1

| 0

&& true

|| false

, void()



Now	that	we	have	the	function	templates	implemented	earlier	(let's	consider	the
left-folding	version),	we	can	write	the	following	code:

				auto	sum	=	add(1,	2,	3,	4,	5);									//	sum	=	15	

				auto	sum1	=	add_to_one(1,	2,	3,	4,	5);	//	sum	=	16

Considering	the		add(1,	2,	3,	4,	5)	call,	it	would	produce	the	following	function:

				int	add(int	arg1,	int	arg2,	int	arg3,	int	arg4,	int	arg5)	

				{	

						return	((((arg1	+	arg2)	+	arg3)	+	arg4)	+	arg5);	

				}

Due	to	the	aggressive	ways	modern	compilers	do	optimizations,
this	function	can	be	inlined	and	eventually	end	up	with	an
expression	such	as	auto	sum	=	1	+	2	+	3	+	4	+	5.



There's	more...
Fold	expressions	work	with	all	overloads	for	the	supported	binary	operators,	but
do	not	work	with	arbitrary	binary	functions.	It	is	possible	to	implement	a
workaround	for	that	by	providing	a	wrapper	type	to	hold	a	value	and	an
overloaded	operator	for	that	wrapper	type:

				template	<typename	T>	

				struct	wrapper	

				{	

						T	const	&	value;	

				};	

				template	<typename	T>	

				constexpr	auto	operator<(wrapper<T>	const	&	lhs,		

																													wrapper<T>	const	&	rhs)		

				{	

						return	wrapper<T>	{	

								lhs.value	<	rhs.value	?	lhs.value	:	rhs.value};	

				}	

				template	<typename...	Ts>	

				constexpr	auto	min(Ts&&...	args)		

				{	

						return	(wrapper<Ts>{args}	<	...).value;	

				}

In	the	preceding	code,	wrapper	is	a	simple	class	template	that	holds	a	constant
reference	to	a	value	of	type	T.	An	overloaded	operator<	is	provided	for	this	class
template;	this	overload	does	not	return	a	Boolean	to	indicate	that	the	first
argument	is	less	than	the	second,	but	actually	an	instance	of	the	wrapper	class	type
to	hold	the	minimum	value	of	the	two	arguments.	The	variadic	function	template
min()	uses	this	overloaded	operator<	to	fold	the	pack	of	arguments	expanded	to
instances	of	the	wrapper	class	template:

				auto	m	=	min(1,	2,	3,	4,	5);	//	m	=	1



See	also
Implementing	higher-order	functions	map	and	fold



Implementing	higher-order	functions
map	and	fold
Throughout	the	preceding	recipes	in	this	book,	we	have	used	the	general	purpose
algorithms	std::transform()	and	std::accumulate()	in	several	examples,	such	as
implementing	string	utilities	to	create	uppercase	or	lowercase	copies	of	a	string
or	summing	the	values	of	a	range.	These	are	basically	implementations	of
higher-order	functions,	map	and	fold.	A	higher-order	function	is	a	function	that
takes	one	or	more	other	functions	as	arguments	and	applies	them	to	a	range	(a
list,	vector,	map,	tree,	and	so	on),	producing	either	a	new	range	or	a	value.	In	this
recipe,	we	will	see	how	to	implement	map	and	fold	functions	to	work	with	C++
standard	containers.



Getting	ready
Map	is	a	higher-order	function	that	applies	a	function	to	the	elements	of	a	range
and	returns	a	new	range	in	the	same	order.

Fold	is	a	higher-order	function	that	applies	a	combining	function	to	the	elements
of	the	range	producing	a	single	result.	Since	the	order	of	the	processing	can	be
important,	there	are	usually	two	versions	of	this	function--foldleft,	that	processes
elements	from	left	to	right,	and	foldright	that	combines	the	elements	from	right	to
left.

Most	descriptions	of	the	function	map	indicate	that	it	is	applied	to
a	list,	but	this	is	a	general	term	that	can	indicate	different
sequential	types,	such	as	list,	vector,	and	array,	and	also
dictionaries	(that	is,	maps),	queues,	and	so	on.	For	this	reason,	I
prefer	to	use	the	term	range	when	describing	these	higher-order
functions.



How	to	do	it...
To	implement	the	map	function	you	should:

Use	std::transform	on	containers	that	support	iterating	and	assignment	to	the
elements,	such	as	std::vector	or	std::list:

								template	<typename	F,	typename	R>	

								R	mapf(F&&	f,	R	r)	

								{	

										std::transform(	

												std::begin(r),	std::end(r),	std::begin(r),		

												std::forward<F>(f));	

										return	r;	

								}

Use	other	means	such	as	explicit	iteration	and	insertion	for	containers	that
do	not	support	assignment	to	the	elements,	such	as	std::map:

								template<typename	F,	typename	T,	typename	U>	

								std::map<T,	U>	mapf(F&&	f,	std::map<T,	U>	const	&	m)	

								{	

										std::map<T,	U>	r;	

										for	(auto	const	kvp	:	m)	

												r.insert(f(kvp));	

										return	r;	

								}	

								template<typename	F,	typename	T>	

								std::queue<T>	mapf(F&&	f,	std::queue<T>	q)	

								{	

										std::queue<T>	r;	

										while	(!q.empty())	

										{	

												r.push(f(q.front()));	

												q.pop();	

										}	

										return	r;	

								}

To	implement	the	fold	function	you	should:

Use	std::accumulate()	on	containers	that	support	iterating:

								template	<typename	F,	typename	R,	typename	T>	

								constexpr	T	foldl(F&&	f,	R&&	r,	T	i)	

								{	

										return	std::accumulate(	

												std::begin(r),	std::end(r),		

												std::move(i),		

												std::forward<F>(f));	

								}	



								}	

								template	<typename	F,	typename	R,	typename	T>	

								constexpr	T	foldr(F&&	f,	R&&	r,	T	i)	

								{	

										return	std::accumulate(	

												std::rbegin(r),	std::rend(r),		

												std::move(i),		

												std::forward<F>(f));	

								}

Use	other	means	to	explicitly	process	containers	that	do	not	support
iterating,	such	as	std::queue:

								template	<typename	F,	typename	T>	

								constexpr	T	foldl(F&&	f,	std::queue<T>	q,	T	i)	

								{	

										while	(!q.empty())	

										{	

												i	=	f(i,	q.front());	

												q.pop();	

										}	

										return	i;	

								}



How	it	works...
In	the	preceding	examples,	we	have	implemented	the	map	in	a	functional	way,
without	side-effects.	That	means	it	preserves	the	original	range	and	returns	a
new	one.	The	arguments	of	the	function	are	the	function	to	apply	and	the	range.
In	order	to	avoid	confusion	with	the	std::map	container,	we	have	called	this
function	mapf.	There	are	several	overloads	for	mapf	as	shown	earlier:

The	first	overload	is	for	containers	that	support	iterating	and	assignment	to
its	elements;	this	includes	std::vector,	std::list,	and	std::array,	but	also	C-like
arrays.	The	function	takes	an	rvalue	reference	to	a	function	and	a	range	for
which	std::begin()	and	std::end()	are	defined.	The	range	is	passed	by	value	so
that	modifying	the	local	copy	does	not	affect	the	original	range.	The	range
is	transformed	by	applying	the	given	function	to	each	element	using	the
standard	algorithm	std::transform();	the	transformed	range	is	then	returned.
The	second	overload	is	specialized	for	std::map	that	does	not	support	direct
assignment	to	its	elements	(std::pair<T,	U>).	Therefore,	this	overload	creates
a	new	map,	then	iterates	through	its	elements	using	a	range-based	for	loop,
and	inserts	into	the	new	map	the	result	of	applying	the	input	function	to
each	element	of	the	original	map.
The	third	overload	is	specialized	for	std::queue,	which	is	a	container	that
does	not	support	iterating.	It	can	be	argued	that	a	queue	is	not	a	typical
structure	to	map	over,	but	for	the	sake	of	demonstrating	different	possible
implementations,	we	are	considering	it.	In	order	to	iterate	over	the	elements
of	a	queue,	the	queue	must	be	altered--you	need	to	pop	elements	from	the
front	until	the	list	is	empty.	This	is	what	the	third	overload	does--it
processes	each	element	of	the	input	queue	(passed	by	value)	and	pushes	the
result	of	applying	the	given	function	to	the	front	element	of	the	remaining
queue.

Now	that	we	have	these	overloads	implemented,	we	can	apply	them	to	a	lot	of
containers,	as	shown	in	the	following	examples:

Retain	absolute	values	from	a	vector.	In	this	example,	the	vector	contains
both	negative	and	positive	values.	After	applying	the	mapping,	the	result	is



a	new	vector	with	only	positive	values.

								auto	vnums	=		

										std::vector<int>{0,	2,	-3,	5,	-1,	6,	8,	-4,	9};		

								auto	r	=	funclib::mapf([](int	const	i)	{	

										return	std::abs(i);	},	vnums);		

								//	r	=	{0,	2,	3,	5,	1,	6,	8,	4,	9}

Square	the	numerical	values	of	a	list.	In	this	example,	the	list	contains
integral	values.	After	applying	the	mapping,	the	result	is	a	list	containing
the	squares	of	the	initial	values.

								auto	lnums	=	std::list<int>{1,	2,	3,	4,	5};	

								auto	l	=	funclib::mapf([](int	const	i)	{	

										return	i*i;	},	lnums);	

								//	l	=	{1,	4,	9,	16,	25}

Rounded	amounts	of	floating	point.	For	this	example,	we	need	to	use
std::round();	however,	this	has	overloads	for	all	floating	point	types,	which
makes	it	impossible	for	the	compiler	to	pick	the	right	one.	As	a	result,	we
either	have	to	write	a	lambda	that	takes	an	argument	of	a	specific	floating
point	type	and	returns	the	value	of	std::round()	applied	to	that	value	or	create
a	function	object	template	that	wraps	std::round()	and	enables	its	call
operator	only	for	floating	point	types.	This	technique	is	used	in	the
following	example:

								template<class	T	=	double>	

								struct	fround	

								{			

										typename	std::enable_if<	

												std::is_floating_point<T>::value,	T>::type	

										operator()(const	T&	value)	const	

										{	

												return	std::round(value);	

										}	

								};	

								auto	amounts	=		

										std::array<double,	5>	{10.42,	2.50,	100.0,	23.75,	12.99};	

								auto	a	=	funclib::mapf(fround<>(),	amounts);	

								//	a	=	{10.0,	3.0,	100.0,	24.0,	13.0}

Uppercase	the	string	keys	of	a	map	of	words	(where	the	key	is	the	word	and
the	value	is	the	number	of	appearances	in	the	text).	Note	that	creating	an
uppercase	copy	of	a	string	is	itself	a	mapping	operation.	Therefore,	in	this
example,	we	use	mapf	to	apply	toupper()	to	the	elements	of	the	string
representing	the	key	in	order	to	produce	an	uppercase	copy:

								auto	words	=	std::map<std::string,	int>{		

										{"one",	1},	{"two",	2},	{"three",	3}		



										{"one",	1},	{"two",	2},	{"three",	3}		

								};	

								auto	m	=	funclib::mapf(	

										[](std::pair<std::string,	int>	const	kvp)	{	

												return	std::make_pair(	

														funclib::mapf(toupper,	kvp.first),		

														kvp.second);	

										},	

										words);	

								//	m	=	{{"ONE",	1},	{"TWO",	2},	{"THREE",	3}}

Normalize	values	from	a	queue	of	priorities--initially,	the	values	are	from	1
to	100,	but	we	want	to	normalize	them	into	two	values,	1=high	and
2=normal.	All	initial	priorities	that	have	a	value	up	to	30	become	a	high
priority,	the	others	get	a	normal	priority:

								auto	priorities	=	std::queue<int>();	

								priorities.push(10);	

								priorities.push(20);	

								priorities.push(30);	

								priorities.push(40);	

								priorities.push(50);	

								auto	p	=	funclib::mapf(	

										[](int	const	i)	{	return	i	>	30	?	2	:	1;	},		

										priorities);	

								//	p	=	{1,	1,	1,	2,	2}

To	implement	fold,	we	actually	have	to	consider	the	two	possible	types	of
folding,	that	is,	from	left	to	right	and	from	right	to	left.	Therefore,	we	have
provided	two	functions	called	foldl	(for	left	folding)	and	foldr	(for	right	folding).
The	implementations	shown	in	the	previous	section	are	very	similar--they	both
take	a	function,	a	range,	and	an	initial	value	and	call	std::algorithm()	to	fold	the
values	of	the	range	into	a	single	value.	However,	foldl	uses	direct	iterators,
whereas	foldr	uses	reverse	iterators	to	traverse	and	process	the	range.	The	second
overload	is	a	specialization	for	type	std::queue,	which	does	not	have	iterators.

Based	on	these	implementations	for	folding,	we	can	do	the	following	examples:

Adding	the	values	of	a	vector	of	integers.	In	this	case,	both	left	and	right
folding	will	produce	the	same	result.	In	the	following	examples,	we	pass
either	a	lambda	that	takes	a	sum	and	a	number	and	returns	a	new	sum	or	the
function	object	std::plus<>	from	the	standard	library	that	applies	operator+	to
two	operands	of	the	same	type	(basically	similar	to	the	closure	of	the
lambda):

								auto	vnums	=		

											std::vector<int>{0,	2,	-3,	5,	-1,	6,	8,	-4,	9};		

								auto	s1	=	funclib::foldl(	



								auto	s1	=	funclib::foldl(	

											[](const	int	s,	const	int	n)	{return	s	+	n;	},		

											vnums,	0);																//	s1	=	22	

								auto	s2	=	funclib::foldl(	

											std::plus<>(),	vnums,	0);	//	s2	=	22	

								auto	s3	=	funclib::foldr(	

											[](const	int	s,	const	int	n)	{return	s	+	n;	},		

											vnums,	0);																//	s3	=	22	

								auto	s4	=	funclib::foldr(	

											std::plus<>(),	vnums,	0);	//	s4	=	22

Concatenating	strings	from	a	vector	into	a	single	string:

								auto	texts	=		

											std::vector<std::string>{"hello"s,	"	"s,	"world"s,	"!"s};	

								auto	txt1	=	funclib::foldl(	

											[](std::string	const	&	s,	std::string	const	&	n)	{	

											return	s	+	n;},		

											texts,	""s);				//	txt1	=	"hello	world!"	

								auto	txt2	=	funclib::foldr(	

											[](std::string	const	&	s,	std::string	const	&	n)	{	

											return	s	+	n;	},		

											texts,	""s);				//	txt2	=	"!world	hello"

Concatenating	an	array	of	characters	into	a	string:

								char	chars[]	=	{'c','i','v','i','c'};	

								auto	str1	=	funclib::foldl(std::plus<>(),	chars,	""s);		

								//	str1	=	"civic"	

								auto	str2	=	funclib::foldr(std::plus<>(),	chars,	""s);		

								//	str2	=	"civic"

Counting	the	number	of	words	from	a	text	based	on	their	already	computed
appearances	available	in	a	map<string,	int>:

								auto	words	=	std::map<std::string,	int>{		

											{"one",	1},	{"two",	2},	{"three",	3}	};	

								auto	count	=	funclib::foldl(	

											[](int	const	s,	std::pair<std::string,	int>	const	kvp)	{	

														return	s	+	kvp.second;	},	

											words,	0);	//	count	=	6



There's	more...
These	functions	can	be	pipelined,	that	is,	they	can	call	one	function	with	the
result	of	another.	The	following	example	maps	a	range	of	integers	into	a	range	of
positive	integers	by	applying	the	std::abs()	function	to	its	elements.	The	result	is
then	mapped	into	another	range	of	squares.	These	are	then	summed	together	by
applying	a	left	fold	on	the	range:

				auto	vnums	=	std::vector<int>{	0,	2,	-3,	5,	-1,	6,	8,	-4,	9	};	

				auto	s	=	funclib::foldl(	

						std::plus<>(),	

						funclib::mapf(	

								[](int	const	i)	{return	i*i;	},		

								funclib::mapf(	

										[](int	const	i)	{return	std::abs(i);	},	

										vnums)),	

						0);	//	s	=	236

As	an	exercise,	we	could	implement	the	fold	function	as	a	variadic	function
template,	in	the	manner	seen	in	a	previous	recipe.	The	function	that	performs	the
actual	folding	is	provided	as	an	argument:

				template	<typename	F,	typename	T1,	typename	T2>	

				auto	foldl(F&&f,	T1	arg1,	T2	arg2)	

				{	

						return	f(arg1,	arg2);	

				}	

				template	<typename	F,	typename	T,	typename...	Ts>	

				auto	foldl(F&&	f,	T	head,	Ts...	rest)	

				{	

						return	f(head,	foldl(std::forward<F>(f),	rest...));	

				}

When	we	compare	this	with	the	add()	function	template	that	we	wrote	in	the
recipe	Writing	a	function	template	with	a	variable	number	of	arguments,	we	can
notice	several	differences:

The	first	argument	is	a	function,	which	is	perfectly	forwarded	when	calling
foldl	recursively.
The	end	case	is	a	function	that	requires	two	arguments	because	the	function
we	use	for	folding	is	a	binary	one	(taking	two	arguments).
The	return	type	of	the	two	functions	we	wrote	is	declared	as	auto	because	it



must	match	the	return	type	of	the	supplied	binary	function	f	that	is	not
known	until	we	call	foldl:

				auto	s1	=	foldl(std::plus<>(),	1,	2,	3,	4,	5);		

				//	s1	=	15	

				auto	s2	=	foldl(std::plus<>(),	"hello"s,	'	',	"world"s,	'!');		

				//	s2	=	"hello	world!"	

				auto	s3	=	foldl(std::plus<>(),	1);	//	error,	too	few	arguments



See	also
Creating	a	library	of	string	helpers	recipe	of	Chapter	2,	Working	with
Numbers	and	Strings
Writing	a	function	template	with	a	variable	number	of	arguments
Composing	functions	into	a	higher-order	function



Composing	functions	into	a	higher-
order	function
In	the	previous	recipe,	we	implemented	two	higher-order	functions,	map	and
fold,	and	saw	various	examples	of	using	them.	At	the	end	of	the	recipe,	we	saw
how	they	can	be	pipelined	to	produce	a	final	value	after	several	transformations
of	the	original	data.	Pipelining	is	a	form	of	composition,	which	means	creating
one	new	function	from	two	or	more	given	functions.	In	the	mentioned	example,
we	didn't	actually	compose	functions;	we	only	called	a	function	with	the	result
produced	by	another,	but	in	this	recipe,	we	will	see	how	to	actually	compose
functions	together	into	a	new	function.	For	simplicity,	we	will	only	consider
unary	functions	(functions	that	take	only	one	argument).



Getting	ready
Before	you	go	forward,	it	is	recommended	that	you	read	the	previous	recipe,
Implementing	higher-order	functions	map	and	fold.	It	is	not	mandatory	for
understanding	this	recipe,	but	we	will	refer	to	the	map	and	fold	functions
implemented	here.



How	to	do	it...
To	compose	unary	functions	into	a	higher-order	function,	you	should:

For	composing	two	functions,	provide	a	function	that	takes	two	functions,
f	and	g,	as	arguments	and	returns	a	new	function	(a	lambda)	that	returns
f(g(x))	where	x	is	the	argument	of	the	composed	function:

								template	<typename	F,	typename	G>	

								auto	compose(F&&	f,	G&&	g)	

								{		

										return	[=](auto	x)	{	return	f(g(x));	};	

								}	

								auto	v	=	compose(	

										[](int	const	n)	{return	std::to_string(n);	},	

										[](int	const	n)	{return	n	*	n;	})(-3);	//	v	=	"9"

For	composing	a	variable	number	of	functions,	provide	a	variadic	template
overload	of	the	function	described	previously:

								template	<typename	F,	typename...	R>	

								auto	compose(F&&	f,	R&&...	r)	

								{	

										return	[=](auto	x)	{	return	f(compose(r...)(x));	};	

								}	

								auto	n	=	compose(	

										[](int	const	n)	{return	std::to_string(n);	},	

										[](int	const	n)	{return	n	*	n;	},	

										[](int	const	n)	{return	n	+	n;	},	

										[](int	const	n)	{return	std::abs(n);	})(-3);	//	n	=	"36"



How	it	works...
Composing	two	unary	functions	into	a	new	one	is	relatively	trivial.	Create	a
template	function	that	we	called	compose()	in	the	earlier	examples,	with	two
arguments--f	and	g--that	represent	functions,	and	return	a	function	that	takes	one
argument	x	and	returns	f(g(x)).	It	is	important	though	that	the	type	of	the	value
returned	by	the	g	function	is	the	same	as	the	type	of	the	argument	of
the	f	function.	The	returned	value	of	the	compose	function	is	a	closure,	that
is,	an	instantiation	of	a	lambda.

In	practice,	it	is	useful	to	be	able	to	combine	more	than	just	two	functions
together.	This	can	be	achieved	by	writing	a	variadic	template	version	of	the
compose()	function.	Variadic	templates	are	explained	in	more	detail	in	the	Writing
a	function	template	with	a	variable	number	of	arguments	recipe.	Variadic
templates	imply	compile-time	recursion	by	expanding	the	parameter	pack.	This
implementation	is	very	similar	to	the	first	version	of	compose(),	except	as	follows:

It	takes	a	variable	number	of	functions	as	arguments.
The	returned	closure	calls	compose()	recursively	with	the	expanded	parameter
pack;	recursion	ends	when	only	two	functions	are	left,	in	which	case,	the
previously	implemented	overload	is	called.

Even	if	the	code	looks	like	recursion	is	happening,	this	is	not	true
recursion.	It	could	be	called	compile-time	recursion,	but	with	every
expansion,	we	get	a	call	to	another	method	with	the	same	name	but
a	different	number	of	arguments,	which	does	not
represent	recursion.

Now	that	we	have	these	variadic	template	overloads	implemented,	we	can
rewrite	the	last	example	from	the	previous	recipe,	Implementing	higher-order
functions	map	and	fold.	Having	an	initial	vector	of	integers,	we	map	it	to	a	new
vector	with	only	positive	values	by	applying	std::abs()	on	each	element.	The
result	is	then	mapped	to	a	new	vector	by	doubling	the	value	of	each	element.
Finally,	the	values	in	the	resulting	vector	are	folded	together	by	adding	them	to
the	initial	value	0:

				auto	s	=	compose(	



				auto	s	=	compose(	

						[](std::vector<int>	const	&	v)	{	

								return	foldl(std::plus<>(),	v,	0);	},	

						[](std::vector<int>	const	&	v)	{	

								return	mapf([](int	const	i)	{return	i	+	i;	},	v);	},	

						[](std::vector<int>	const	&	v)	{	

								return	mapf([](int	const	i)	{return	std::abs(i);	},	v);	})(vnums);



There's	more...
Composition	is	usually	represented	by	a	dot	(.)	or	asterisk	(*),	such	as	f	.	g	or	f	*
g.	We	can	actually	do	something	similar	in	C++	by	overloading	operator*	(it
would	make	little	sense	to	try	to	overload	operator	dot).	Similar	to	the	compose()
function,	operator*	should	work	with	any	number	of	arguments;	therefore,	we	will
have	two	overloads,	just	like	in	the	case	of	compose():

The	first	overload	takes	two	arguments	and	calls	compose()	to	return	a	new
function.
The	second	overload	is	a	variadic	template	function	that	again	calls	operator*
by	expanding	the	parameter	pack:

				template	<typename	F,	typename	G>	

				auto	operator*(F&&	f,	G&&	g)	

				{	

						return	compose(std::forward<F>(f),	std::forward<G>(g));	

				}	

				template	<typename	F,	typename...	R>	

				auto	operator*(F&&	f,	R&&...	r)	

				{	

						return	operator*(std::forward<F>(f),	r...);	

				}

We	can	now	simplify	the	actual	composition	of	functions	by	applying	operator*
instead	of	the	more	verbose	call	to	compose:

				auto	n	=	

						([](int	const	n)	{return	std::to_string(n);	}	*	

							[](int	const	n)	{return	n	*	n;	}	*	

							[](int	const	n)	{return	n	+	n;	}	*	

							[](int	const	n)	{return	std::abs(n);	})(-3);	//	n	=	"36"	

				auto	c	=		

						[](std::vector<int>	const	&	v)	{	

								return	foldl(std::plus<>(),	v,	0);	}	*	

						[](std::vector<int>	const	&	v)	{	

								return	mapf([](int	const	i)	{return	i	+	i;	},	v);	}	*	

						[](std::vector<int>	const	&	v)	{	

								return	mapf([](int	const	i)	{return	std::abs(i);	},	v);	};	

				auto	s	=	c(vnums);	//	s	=	76



See	also
Writing	a	function	template	with	a	variable	number	of	arguments



Uniformly	invoking	anything	callable
Developers,	and	especially	those	who	implement	libraries,	sometimes	need	to
invoke	a	callable	object	in	a	uniform	manner.	This	can	be	a	function,	a	pointer	to
a	function,	a	pointer	to	a	member	function,	or	a	function	object.	Examples	of
such	cases	include	std::bind,	std::function,	std::mem_fn,	and	std::thread::thread.
C++17	defines	a	standard	function	called	std::invoke()	that	can	invoke	any
callable	object	with	the	provided	arguments.	This	is	not	intended	to	replace
direct	calls	to	functions	or	function	objects,	but	it	is	useful	in	template
metaprogramming	for	implementing	various	library	functions.



Getting	ready
For	this	recipe,	you	should	be	familiar	with	how	to	define	and	use	function
pointers.

To	exemplify	how	std::invoke()	can	be	used	in	different	contexts,	we	will	use	the
following	function	and	class:

				int	add(int	const	a,	int	const	b)	

				{	

						return	a	+	b;	

				}	

				struct	foo	

				{	

						int	x	=	0;	

						void	increment_by(int	const	n)	{	x	+=	n;	}	

				};



How	to	do	it...
The	std::invoke()	function	is	a	variadic	function	template	that	takes	the	callable
object	as	the	first	argument	and	a	variable	list	of	arguments	that	are	passed	to	the
call.	std::invoke()	can	be	used	to	call	the	following:

Free	functions:

								auto	a1	=	std::invoke(add,	1,	2);			//	a1	=	3

Free	functions	through	pointer	to	function:

								auto	a2	=	std::invoke(&add,	1,	2);		//	a2	=	3	

								int(*fadd)(int	const,	int	const)	=	&add;	

								auto	a3	=	std::invoke(fadd,	1,	2);		//	a3	=	3

Member	functions	through	pointer	to	member	function:

								foo	f;	

								std::invoke(&foo::increment_by,	f,	10);

Data	members:

								foo	f;	

								auto	x1	=	std::invoke(&foo::x,	f);		//	x1	=	0

Function	objects:

								foo	f;	

								auto	x3	=	std::invoke(std::plus<>(),		

										std::invoke(&foo::x,	f),	3);	//	x3	=	3

Lambda	expressions:

								auto	l	=	[](auto	a,	auto	b)	{return	a	+	b;	};	

								auto	a	=	std::invoke(l,	1,	2);	//	a	=	3

In	practice,	std:invoke()	should	be	used	in	template	meta-programming	for
invoking	a	function	with	an	arbitrary	number	of	arguments.	To	exemplify	such	a
case,	we	present	a	possible	implementation	for	our	std::apply()	function,	and	also
a	part	of	the	standard	library	as	of	C++17	that	calls	a	function	by	unpacking	the
members	of	a	tuple	into	the	arguments	of	the	function:

				namespace	details	



				namespace	details	

				{	

						template	<class	F,	class	T,	std::size_t...	I>	

						auto	apply(F&&	f,	T&&	t,	std::index_sequence<I...>)	

						{	

								return	std::invoke(	

										std::forward<F>(f),	

										std::get<I>(std::forward<T>(t))...);	

						}	

				}	

				template	<class	F,	class	T>	

				auto	apply(F&&	f,	T&&	t)	

				{	

						return	details::apply(	

								std::forward<F>(f),	

								std::forward<T>(t),	

								std::make_index_sequence<	

										std::tuple_size<std::decay_t<T>>::value>	{});	

				}



How	it	works...
Before	we	see	how	std::invoke()	works,	let's	have	a	short	look	at	how	different
callable	objects	can	be	invoked.	Given	a	function,	obviously,	the	ubiquitous	way
of	invoking	it	is	directly	passing	it	the	necessary	parameters.	However,	we	can
also	invoke	the	function	using	function	pointers.	The	trouble	with	function
pointers	is	that	defining	the	type	of	the	pointer	can	be	cumbersome.	Using	auto
can	simplify	things	(as	shown	in	the	following	code),	but	in	practice,	you	usually
need	to	define	the	type	of	the	pointer	to	function	first	and	then	define	an	object
and	initialize	it	with	the	correct	function	address.	Here	are	several	examples:

				//	direct	call	

				auto	a1	=	add(1,	2);				//	a1	=	3	

				//	call	through	function	pointer	

				int(*fadd)(int	const,	int	const)	=	&add;	

				auto	a2	=	fadd(1,	2);			//	a2	=	3	

				auto	fadd2	=	&add;	

				auto	a3	=	fadd2(1,	2);		//	a3	=	3

Calling	through	a	function	pointer	becomes	more	cumbersome	when	you	need	to
invoke	a	class	function	through	an	object	that	is	an	instance	of	the	class.	The
syntax	for	defining	the	pointer	to	a	member	function	and	invoking	it	is	not
simple:

				foo	f;	

				f.increment_by(3);	

				auto	x1	=	f.x;				//	x1	=	3	

				void(foo::*finc)(int	const)	=	&foo::increment_by;	

				(f.*finc)(3);	

				auto	x2	=	f.x;				//	x2	=	6	

				auto	finc2	=	&foo::increment_by;	

				(f.*finc2)(3);	

				auto	x3	=	f.x;				//	x3	=	9

Regardless	of	how	cumbersome	this	kind	of	call	may	look,	the	actual	problem	is
writing	library	components	(functions	or	classes)	that	are	able	to	call	any	of
these	types	of	callable	objects,	in	a	uniform	manner.	This	is	what	benefits	in
practice	from	a	standard	function,	such	as	std::invoke().

The	implementation	details	of	std::invoke()	are	complex,	but	the	way	it	works	can



be	explained	in	simple	terms.	Supposing	the	call	has	the	form	invoke(f,	arg1,	arg2,
...,	argN),	then	consider	the	following:

If	f	is	a	pointer	to	a	member	function	of	a	T	class,		then	the	call	is	equivalent
with	either:

(arg1.*f)(arg2,	...,	argN),	if	arg1	is	an	instance	of	T
(arg1.get().*f)(arg2,	...,	argN),	if	arg1	is	a	specialization	of
reference_wrapper

((*arg1).*f)(arg2,	...,	argN),	if	it	is	otherwise
If	f	is	a	pointer	to	a	data	member	of	a	T	class	and	there	is	a	single	argument,
in	other	words,	the	call	has	the	form	invoke(f,	arg1),	then	the	call	is
equivalent	to	either:

arg1.*f	if	arg1	is	an	instance	class	T
arg1.get().*f	if	arg1	is	a	specialization	of	reference_wrapper
(*arg1).*f,	if	it	is	otherwise

If	f	is	a	function	object,	then	the	call	is	equivalent	to	f(arg1,	arg2,	...,	argN)



See	also
Writing	a	function	template	with	a	variable	number	of	arguments



Preprocessor	and	Compilation
The	recipes	included	in	this	chapter	are	as	follows:

Conditionally	compiling	your	source	code
Using	the	indirection	pattern	for	preprocessor	stringification	and
concatenation
Performing	compile-time	assertion	checks	with	static_assert
Conditionally	compiling	classes	and	functions	with	enable_if
Selecting	branches	at	compile	time	with	constexpr	if
Providing	metadata	to	the	compiler	with	attributes



Introduction
In	C++,	compilation	is	the	process	by	which	source	code	is	transformed	into
machine	code	and	organized	in	object	files	that	are	then	linked	together	to
produce	an	executable.	The	compiler	actually	works	on	a	single	file	at	a	time,
produced	by	the	preprocessor	from	a	single	source	file	and	all	the	header	files
that	it	includes.	This	is,	however,	an	oversimplification	of	what	happens	when
we	compile	the	code.	This	chapter	addresses	topics	related	to	preprocessing	and
compilation,	with	a	focus	on	various	methods	to	perform	conditional
compilation,	but	also	touching	other	modern	topics	such	as	using	attributes	for
providing	implementation-defined	language	extensions.



Conditionally	compiling	your	source
code
Conditional	compilation	is	a	simple	mechanism	that	enables	developers	to
maintain	a	single	code	base,	but	only	consider	some	parts	of	the
code	for	compilation	to	produce	different	executables,	usually	in	order	to	run	on
different	platforms,	hardware	or	depend	on	different	libraries	or	library	versions.
Common	examples	include	using	or	ignoring	code	based	on	the	compiler,
platform	(x86,	x64,	ARM,	and	so	on),	configuration	(debug	or	release),	or	any
user-defined	specific	conditions.	In	this	recipe,	we	take	a	look	at	how	conditional
compilation	works.



Getting	ready
Conditional	compilation	is	a	technique	used	extensively	for	many	purposes.	In
this	recipe,	we	will	look	at	several	examples	and	explain	how	they	work.	The
technique	is	not	in	any	way	limited	to	these	examples.	For	the	scope	of	this
recipe,	we	will	only	consider	the	three	major	compilers,	GCC,	Clang,	and	VC++.



How	to	do	it...
To	conditionally	compile	portions	of	code,	use	the	#if,	#ifdef,	and	#ifndef
directives	(with	the	#elif,	#else,	and	#endif	directives).	The	general	form	for
conditional	compilation	is	as	follows:

				#if	condition1	

						text	

				#elif	condition2	

						text	

				#elif	condition3	

						text	

				#else	

						text	

				#endif

To	define	macros	for	conditional	compilation,	you	can	use	either	of	the
following:

A	#define	directive	in	your	source	code:

								#define	DEBUG_PRINTS	

								#define	VERBOSITY_LEVEL	5

Compiler	command-line	options	that	are	specific	to	each	compiler.
Examples	for	the	most	widely	used	compilers	are	as	follows:

For	Visual	C++,	use	/Dname	or	/Dname=value	(where	/Dname	is	equivalent	to
/Dname=1),

for	example,	cl	/DVERBOSITY_LEVEL=5.	

For	GCC	and	Clang,	use	-D	name	or	-D	name=value	(where	-D	name	is
equivalent	to	-D	name=1),

for	example,	gcc	-D	VERBOSITY_LEVEL=5.

The	following	are	typical	examples	of	conditional	compilation:

Header	guards	to	avoid	duplicate	definitions:

								#if	!defined(_UNIQUE_NAME_)	

								#define	_UNIQUE_NAME_	

								class	foo	{	};	



								class	foo	{	};	

								#endif

Compiler-specific	code	for	cross-platform	applications.	The	following	is	an
example	for	printing	a	message	to	the	console	with	the	name	of	the
compiler:

								void	show_compiler()	

								{	

										#if	defined	_MSC_VER	

												std::cout	<<	"Visual	C++"	<<	std::endl;	

										#elif	defined	__clang__	

												std::cout	<<	"Clang"	<<	std::endl;	

										#elif	defined	__GNUG__	

												std::cout	<<	"GCC"	<<	std::endl;	

										#else	

												std::cout	<<	"Unknown	compiler"	<<	std::endl;	

										#endif	

								}

Target-specific	code	for	multiple	architectures,	for	example,	for
conditionally	compiling	code	for	multiple	compilers	and	architectures:

								void	show_architecture()	

								{	

										#if	defined	_MSC_VER	

												std::cout	<<	

												#if	defined	_M_X64	

														"AMD64"	

												#elif	defined	_M_IX86	

														"INTEL	x86"	

												#elif	defined	_M_ARM	

														"ARM"	

												#else	

														"unknown"	

												#endif	

										<<	std::endl;	

										#elif	defined	__clang__	||	__GNUG__	

										std::cout	<<	

												#if	defined	__amd64__	

														"AMD64"	

												#elif	defined	__i386__	

														"INTEL	x86"	

												#elif	defined	__arm__	

														"ARM"	

												#else	

														"unknown"	

												#endif	

										<<	std::endl;	

										#else	

										#error	Unknown	compiler	

										#endif	

								}



Configuration-specific	code,	for	example,	for	conditionally	compiling	code
for	debug	and	release	builds:

								void	show_configuration()	

								{	

										std::cout	<<	

										#ifdef	_DEBUG	

												"debug"	

										#else	

												"release"	

										#endif	

										<<	std::endl;	

								}



How	it	works...
When	you	use	the	preprocessor	directives	#if,	#ifndef,	#ifdef,	#elif,	#else,	and
#endif,	the	compiler	will	select	at	most	one	branch	whose	body	will	be	included
in	the	translation	unit	for	compilation.	The	body	of	these	directives	can	be	any
text,	including	other	preprocessor	directives.	The	following	rules	apply:

#if,	#ifdef,	and	#ifndef	must	be	matched	by	a	#endif.
#if	directive	may	have	multiple	#elif	directives,	but	only	one	#else,	which
must	also	be	the	last	one	before	#endif.
#if,	#ifdef,	#ifndef,	#elif,	#else,	and	#endif	can	be	nested.
#if	directive	requires	a	constant	expression,	whereas	#ifdef	and	#ifndef
require	an	identifier.
The	operator	defined	can	be	used	for	preprocessor	constant	expressions,	but
only	in	#if	and	#elif	directives.
defined(identifier)	is	considered	true	if	identifier	is	defined,	otherwise	it	is
considered	false.
An	identifier	defined	as	an	empty	text	is	considered	defined.
#ifdef	identifier	is	equivalent	to	#if	defined(identifier).
#ifndef	identifier	is	equivalent	to	#if	!defined(identifier).
defined(identifier)	and	defined	identifier	are	equivalent.

Header	guards	are	one	of	the	most	common	forms	of	conditional	compilation.
This	technique	is	used	to	prevent	the	content	of	a	header	file	from
being	compiled	several	times	(although	the	header	is	still	scanned	every	time	in
order	to	detect	what	should	be	included).	Since	headers	are	often	included	in
multiple	source	files,	having	them	compiled	for	every	translation	unit	where	they
are	included	would	produce	multiple	definitions	for	the	same	symbols,	which	is
an	error.	Therefore,	the	code	in	headers	is	guarded	for	multiple	compilations	in
the	manner	shown	in	the	example	from	the	previous	section.	The	way	this
works,	considering	the	given	example,	is	that	if	macro	_UNIQUE_NAME_	is	not
defined,	then	the	code	after	the	#if	directive,	until	#endif,	is	included	into	the
translation	unit	and	compiled.	When	that	happens,	the	macro	_UNIQUE_NAME_	is
defined	with	the	#define	directive.	The	next	time	the	header	is	included	in	a
translation	unit,	the	macro	_UNIQUE_NAME_	is	defined	and	the	code	in	the	body	of	the



#if	directive	is	not	included	in	the	translation	unit	and,	therefore,	not	compiled
again.

Note	that	the	name	of	the	macro	must	be	unique	throughout	the
application,	otherwise	only	the	code	from	the	first	header	where
the	macro	is	used	will	be	compiled,	code	from	other	headers	using
the	same	name	will	be	ignored.

Another	important	example	of	conditional	compilation	is	cross-platform	code,
which	needs	to	account	for	different	compilers	and	architectures,	usually	one
among	Intel	x86,	AMD64,	or	ARM.	However,	the	compiler	defines	its	own
macros	for	the	possible	platforms.	The	samples	from	the	How	to	do	it...	section
show	how	to	conditionally	compile	code	for	multiple	compilers	and
architectures.

Note	that	in	the	mentioned	example,	we	only	consider	a	few
architectures.	In	practice,	there	are	multiple	macros	to	identify	the
same	architecture.	Ensure	that	you	read	the	documentation	of	each
compiler	before	using	these	types	of	macros	in	your	code.

Configuration-specific	code	is	also	handled	with	macros	and	conditional
compilation.	Compilers	such	as	GCC	and	Clang	do	not	define	any	special
macros	for	debug	configurations	(when	the	-g	flag	is	used).	Visual	C++	does
define	_DEBUG	for	a	debug	configuration,	which	was	shown	in	the	last	example
from	the	How	to	do	it...	section.	For	the	other	compilers,	you	would	have	to
explicitly	define	a	macro	to	identify	such	a	debug	configuration.



See	also
Using	the	indirection	pattern	for	preprocessor	stringification	and
concatenation



Using	the	indirection	pattern	for
preprocessor	stringification	and
concatenation
The	C++	preprocessor	provides	two	operators	for	transforming	identifiers	into
strings	and	concatenating	identifiers	together.	The	first	one,	operator	#,	is	called
the	stringizing	operator,	and	the	second	one,	operator	##,	is	called	the	token-
pasting,	merging,	or	concatenating	operator.	Although	their	use	is	limited	to
some	particular	cases,	it	is	important	to	understand	how	they	work.



Getting	ready
For	this	recipe,	you	need	to	know	how	to	define	macros	using	the	preprocessor
directive	#define.



How	to	do	it...
To	create	a	string	from	an	identifier	using	the	preprocessor's	operator#,	use	the
following	pattern:

1.	 Define	a	helper	macro	taking	one	argument	that	expands	to	#	followed	by
the	argument:

								#define	MAKE_STR2(x)	#x	

2.	 Define	the	macro	you	want	to	use,	taking	one	argument	that	expands	to	the
helper	macro:

								#define	MAKE_STR(x)	MAKE_STR2(x)

To	concatenate	identifiers	together	using	the	preprocessor's	operator##,	use	the
following	pattern:

1.	 Define	a	helper	macro	with	one	or	more	arguments	that	use	the	token-
pasting	operator	##	to	concatenate	arguments:

								#define	MERGE2(x,	y)				x##y

2.	 Define	the	macro	you	want	to	use,	by	using	the	helper	macro:

								#define	MERGE(x,	y)					MERGE2(x,	y)



How	it	works...
To	understand	how	these	work,	let's	consider	the	MAKE_STR	and	MAKE_STR2	macros
defined	earlier.	When	used	with	any	text,	they	will	produce	a	string	containing
that	text.	The	following	example	shows	how	both	these	macros	can	be	used	to
define	strings	containing	the	text	"sample".

				std::string	s1	{	MAKE_STR(sample)	};		//	s1	=	"sample"	

				std::string	s2	{	MAKE_STR2(sample)	};	//	s2	=	"sample"	

On	the	other	hand,	when	a	macro	is	passed	as	an	argument,	the	results	are
different.	In	the	following	example,	NUMBER	is	a	macro	that	expands	to	an	integer
42.	When	used	as	an	argument	to	MAKE_STR,	it	indeed	produces	the	string	"42";
however,	when	used	as	an	argument	to	MAKE_STR2,	it	produces	string	"NUMBER":

#define	NUMBER	42	

std::string	s3	{	MAKE_STR(NUMBER)	};				//	s3	=	"42"	

std::string	s4	{	MAKE_STR2(NUMBER)	};			//	s4	=	"NUMBER"	

The	C++	standard	defines	the	following	rules	for	argument	substitution	in
function-like	macros	(paragraph	16.3.1):

After	the	arguments	for	the	invocation	of	a	function-like	macro	have	been
identified,	argument	substitution	takes	place.	A	parameter	in	the	replacement
list,	unless	preceded	by	a	#	or	##	preprocessing	token	or	followed	by	a	##
preprocessing	token	(see	below),	is	replaced	by	the	corresponding	argument
after	all	the	macros	contained	therein	have	been	expanded.	Before	being
substituted,	each	argument's	preprocessing	tokens	are	completely	macro
replaced	as	if	they	formed	the	rest	of	the	preprocessing	file;	no	other
preprocessing	tokens	is	available.

What	this	says	is	that	macro	arguments	are	expanded	before	they	are	substituted
into	the	macro	body,	except	for	the	case	when	the	operator	#	or	##	is	preceding	or
following	a	parameter	in	the	macro	body.	As	a	result,	the	following	happens:

For	MAKE_STR2(NUMBER),	the	NUMBER	parameter	in	the	replacement	list	is	preceded



by	#	and,	therefore,	it	is	not	expanded	before	substituting	the	argument	in
the	macro	body;	therefore,	after	the	substitution,	we	have	#NUMBER	that
becomes	"NUMBER".
For	MAKE_STR(NUMBER),	the	replacement	list	is	MAKE_STR2(NUMBER)	that	has	no	#	or
##;	therefore,	the	NUMBER	parameter	is	replaced	with	its	corresponding
argument,	42,	before	being	substituted.	The	result	is	MAKE_STR2(42),	which	is
then	scanned	again	and,	after	expansion,	it	becomes	"42".

The	same	processing	rules	apply	to	macros	using	the	token-pasting	operator.
Therefore,	in	order	to	make	sure	that	your	stringification	and	concatenation
macros	work	for	all	cases,	always	apply	the	indirection	pattern	described	in	this
recipe.

The	token-pasting	operator	is	typically	used	in	macros	that	factor	repetitive	code
to	avoid	writing	the	same	thing	explicitly	over	and	over	again.	The	following
simple	example	shows	a	practical	use	of	the	token-pasting	operator;	given	a	set
of	classes,	we	want	to	provide	factory	methods	that	create	an	instance	of	each
class:

				#define	DECL_MAKE(x)				DECL_MAKE2(x)	

				#define	DECL_MAKE2(x)			x*	make##_##x()	{	return	new	x();	}	

				struct	bar	{};	

				struct	foo	{};	

				DECL_MAKE(foo)	

				DECL_MAKE(bar)	

				auto	f	=	make_foo();	//	f	is	a	foo*	

				auto	b	=	make_bar();	//	b	is	a	bar*	

Those	familiar	with	the	Windows	platform	have	probably	used	the	_T	(or	_TEXT)
macro	for	declaring	string	literals	that	are	either	translated	to	Unicode	or	ANSI
strings	(both	single-	and	multi-type	character	strings):

				auto	text{	_T("sample")	};	//	text	is	either	"sample"	or	L"sample"

The	Windows	SDK	defines	the	_T	macro	as	follows.	Note	that	when	_UNICODE	is
defined,	the	token-pasting	operator	is	defined	to	concatenate	together	the	L	prefix
and	the	actual	string	being	passed	to	the	macro:

				#ifdef	_UNICODE	

				#define	__T(x)			L	##	x	

				#else	

				#define	__T(x)			x	

				#endif	



				#endif	

				#define	_T(x)				__T(x)	

				#define	_TEXT(x)	__T(x)

At	a	first	look,	it	seems	unnecessary	to	have	one	macro	calling	another	macro,
but	this	level	of	indirection	is	key	for	making	the	#	and	##	operators	work	with
other	macros,	as	we	have	seen	in	this	recipe.



See	also
Conditionally	compiling	your	source	code



Performing	compile-time	assertion
checks	with	static_assert
In	C++,	it	is	possible	to	perform	both	runtime	and	compile-time	assertion	checks
to	ensure	that	specific	conditions	in	your	code	are	true.	Runtime	assertions	have
the	disadvantage	that	they	are	verified	late	when	the	program	is	running,	and
only	if	the	control	flow	reaches	them.	There	is	no	alternative	when	the	condition
depends	on	runtime	data;	however,	when	that	is	not	the	case,	compile-time
assertion	checks	are	to	be	preferred.	With	compile-time	assertions,	the	compiler
is	able	to	notify	you	early	in	the	development	stage	with	an	error	that	a	particular
condition	is	not	met.	These,	however,	can	only	be	used	when	the	condition	can
be	evaluated	at	compile	time.	In	C++11,	compile-time	assertions	are	performed
with	static_assert.



Getting	ready
The	most	common	use	of	static	assertion	checks	is	with	template
metaprogramming,	where	they	can	be	used	for	validating	that	preconditions	on
template	types	are	met	(examples	can	include	whether	a	type	is	a	POD	type,
copy-constructible,	or	a	reference	type,	and	so	on).	Another	typical	example	is	to
ensure	that	types	(or	objects)	have	an	expected	size.



How	to	do	it...
Use	static_assert	declarations	to	ensure	that	conditions	in	different	scopes	are
met:

namespace:	In	this	example,	we	validate	that	the	size	of	the	class	item	is
always	16:

								struct	alignas(8)	item	

								{	

										int						id;	

										bool					active;	

										double			value;	

								};	

								static_assert(sizeof(item)	==	16,		

																						"size	of	item	must	be	16	bytes");

class:	In	this	example,	we	validate	that	pod_wrapper	can	only	be	used	with
POD	types:

								template	<typename	T>	

								class	pod_wrapper	

								{	

										static_assert(std::is_pod<T>::value,		

																								"POD	type	expected!");	

										T	value;	

								};	

								struct	point	

								{	

										int	x;	

										int	y;	

								};	

								pod_wrapper<int>									w1;	//	OK	

								pod_wrapper<point>							w2;	//	OK	

								pod_wrapper<std::string>	w3;	//	error:	POD	type	expected

block	(function):	In	this	example,	we	validate	that	a	function	template	has
only	arguments	of	an	integral	type:

								template<typename	T>	auto	

								mul(T	const	a,	T	const	b)	

								{	

										static_assert(std::is_integral<T>::value,	

																								"Integral	type	expected");	

										return	a	*	b;	

								}	

								auto	v1	=	mul(1,	2);							//	OK	

								auto	v2	=	mul(12.0,	42.5);	//	error:	Integral	type	expected



								auto	v2	=	mul(12.0,	42.5);	//	error:	Integral	type	expected



How	it	works...
static_assert	is	basically	a	declaration,	but	it	does	not	introduce	a	new	name.
These	declarations	have	the	following	form:

				static_assert(condition,	message);

The	condition	must	be	convertible	to	a	Boolean	value	at	compile	time,	and	the
message	must	be	a	string	literal.	As	of	C++17,	the	message	is	optional.

When	the	condition	in	a	static_assert	declaration	evaluates	to	true,	nothing
happens.	When	the	condition	evaluates	to	false,	the	compiler	generates	an	error
that	contains	the	specified	message,	if	any.



See	also
	Conditionally	compiling	classes	and	functions	with	enable_if
Selecting	branches	at	compile	time	with	constexpr	if



Conditionally	compiling	classes	and
functions	with	enable_if
Template	metaprogramming	is	a	powerful	feature	of	C++	that	enables	us	to	write
generic	classes	and	functions	that	work	with	any	type.	That	is	actually	a	problem
sometimes	because	the	language	does	not	define	any	mechanism	for	specifying
constraints	on	the	types	that	can	be	substituted	for	the	template	parameters.
However,	we	can	still	achieve	that	using	metaprogramming	tricks	and	leveraging
a	rule	called	substitution	failure	is	not	an	error,	known	shortly	as	SFINAE.	This
recipe	will	focus	on	implementing	type	constraints	for	templates.



Getting	ready
Developers	have	used	a	class	template	usually	called	enable_if	for	many	years	in
conjunction	with	SFINAE	to	implement	constraints	on	template	types.
The	enable_if	family	of	templates	has	become	part	of	the	C++11	standard	and	is
implemented	as	follows:

				template<bool	Test,	class	T	=	void>	

				struct	enable_if	

				{};	

				template<class	T>	

				struct	enable_if<true,	T>	

				{	

						typedef	T	type;	

				};

To	be	able	to	use	std::enable_if,	you	must	include	the	header	<type_traits>.



How	to	do	it...
std::enable_if	can	be	used	in	multiple	scopes	to	achieve	different	purposes;
consider	the	following	examples:

On	a	class	template	parameter	to	enable	a	class	template	only	for	types	that
meet	a	specified	condition:

								template	<typename	T,	

																		typename	=	typename	

																					std::enable_if<std::is_pod<T>::value,	T>::type>	

								class	pod_wrapper	

								{	

										T	value;	

								};	

								struct	point	

								{	

										int	x;	

										int	y;	

								};	

								pod_wrapper<int>									w1;	//	OK	

								pod_wrapper<point>							w2;	//	OK	

								pod_wrapper<std::string>	w3;	//	error:	too	few	template	arguments

On	a	function	template	parameter,	function	parameter,	or	function	return
type	to	enable	a	function	template	only	for	types	that	meet	a	specified
condition:

								template<typename	T,	

																	typename	=	typename	std::enable_if<	

																				std::is_integral<T>::value,	T>::type>	

								auto	mul(T	const	a,	T	const	b)	

								{	

										return	a	*	b;	

								}	

								auto	v1	=	mul(1,	2);					//	OK	

								auto	v2	=	mul(1.0,	2.0);	

								//	error:	no	matching	overloaded	function	found

To	simplify	the	cluttered	code	that	we	end	up	writing	when	we	use	std::enable_if,
we	can	leverage	alias	templates	and	define	two	aliases,	called	EnableIf	and
DisabledIf:

				template	<typename	Test,	typename	T	=	void>	

				using	EnableIf	=	typename	std::enable_if<Test::value,	T>::type;	

				template	<typename	Test,	typename	T	=	void>	



				template	<typename	Test,	typename	T	=	void>	

				using	DisableIf	=	typename	std::enable_if<!Test::value,	T>::type;

Based	on	these	alias	templates,	the	following	definitions	are	equivalent	to	the
ones	shown	above:

				template	<typename	T,	typename	=	EnableIf<std::is_pod<T>>>	

				class	pod_wrapper	

				{	

						T	value;	

				};	

				template<typename	T,	typename	=	EnableIf<std::is_integral<T>>>	

				auto	mul(T	const	a,	T	const	b)	

				{	

						return	a	*	b;	

				}



How	it	works...
std::enable_if	works	because	the	compiler	applies	the	SFINAE	rule	when
performing	overload	resolution.	Before	we	can	explain	how	std::enable_if	works,
we	should	have	a	quick	look	at	what	SFINAE	is.

When	the	compiler	encounters	a	function	call,	it	needs	to	build	a	set	of	possible
overloads	and	select	the	best	match	for	the	call	based	on	the	arguments	for	the
function	call.	When	building	this	overload	set,	the	compiler	evaluates	function
templates	too	and	has	to	perform	a	substitution	for	the	specified	or	deduced
types	into	the	template	arguments.	According	to	SFINAE,	when	the	substitution
fails,	instead	of	yielding	an	error,	the	compiler	should	just	remove	the	function
template	from	the	overload	set	and	continue.

The	standard	specifies	a	list	of	type	and	expression	errors	that	are
also	SFINAE	errors.	These	include	an	attempt	to	create	an	array	of
void	or	an	array	of	size	zero,	an	attempt	to	create	a	reference	to
void,	an	attempt	to	create	a	function	type	with	a	parameter	of	type
void,	or	an	attempt	to	perform	an	invalid	conversion	in	a	template
argument	expression	or	in	an	expression	used	in	a	function
declaration.	For	the	complete	list	of	exceptions,	consult	the	C++
standard	or	other	resources.

Let's	consider	the	following	two	overloads	of	a	function	called	func().	The	first
overload	is	a	function	template	that	has	a	single	argument	of	type	T::data_type;
that	means	it	can	only	be	instantiated	with	types	that	have	an	inner	type	called
data_type.	The	second	overload	is	a	function	that	has	a	single	argument	of	type
int:

				template	<typename	T>	

				void	func(typename	T::data_type	const	a)		

				{	std::cout	<<	"func<>"	<<	std::endl;	}	

				void	func(int	const	a)		

				{	std::cout	<<	"func"	<<	std::endl;	}	

				template	<typename	T>	

				struct	some_type	

				{	

						using	data_type	=	T;	

				};



				};

If	the	compiler	encounters	a	call	such	as	func(42),	then	it	must	find	an	overload
that	can	take	an	int	argument.	When	it	builds	the	overload	set	and	substitutes	the
template	parameter	with	the	provided	template	argument,	the	result	void
func(int::data_type	const)	is	invalid,	because	int	does	not	have	a	data_type	member.
Due	to	SFINAE,	the	compiler	will	not	emit	an	error	and	stop,	but	will	simply
ignore	the	overload	and	continue.	It	then	finds	void	func(int	const),	and	that	will
be	the	best	(and	only)	match	that	it	will	call.

If	the	compiler	encounters	a	call	such	as,	func<some_type<int>>(42),	then	it	builds	an
overload	set	containing	void	func(some_type<int>::data_type	const>	and	void	func(int
const),	and	the	best	match	in	this	case	is	the	first	overload;	no	SFINAE	is
involved	this	time.

On	the	other	hand,	if	the	compiler	encounters	a	call	such	as,	func("string"s),	then
it	again	relies	on	SFINAE	to	ignore	the	function	template,	because
std::basic_string	does	not	have	a	value_type	member	either.	This	time,	however,	the
overload	set	does	not	contain	any	match	for	the	string	argument;	therefore,	the
program	is	ill-formed	and	the	compiler	emits	an	error	and	stops.

The	class	template	enable_if<bool,	T>	does	not	have	any	members,	but	its	partial
specialization	enable_if<true,	T>	does	have	an	inner	type	called	type,	that	is	a
synonym	for	T.	When	the	compile-time	expression	supplied	as	the	first	argument
to	enable_if	evaluates	to	true,	the	inner	member	type	is	available,	otherwise	it	is
not.

Considering	the	last	definition	of	function	mul()	from	the	How	to	do	it...	section,
when	the	compiler	encounters	a	call	such	as,	mul(1,	2),	it	tries	to	substitute	int	for
the	template	parameter	T;	since	int	is	an	integral	type,	std::is_integral<T>	evaluates
to	true	and,	therefore,	a		specialization	of	enable_if	that	defines	an	inner	type
called	type	is	instantiated.	As	a	result,	the	alias	template	EnableIf	becomes	a
synonym	for	this	type,	which	is	void	(from	the	expression	typename	T	=	void).	The
result	is	a	function	template	int	mul<int,	void>(int	a,	int	b)	that	can	be	called	with
the	supplied	arguments.

On	the	other	hand,	when	the	compiler	encounters	a	call	such	as	mul(1.0,	2.0),	it
tries	to	substitute	double	for	the	template	parameter	T.	However,	this	is	not	an
integral	type;	as	a	result,	the	condition	in	std::enable_if	evaluates	to	false	and	the



class	template	does	not	define	an	inner	member	type.	This	results	in	a	substitution
error,	but	according	to	SFINAE,	the	compiler	will	not	emit	an	error	but	move	on.
However,	since	no	other	overload	is	found,	there	will	be	no	mul()	function	that
can	be	called.	Therefore,	the	program	is	considered	ill-formed	and	the	compiler
stops	with	an	error.

A	similar	situation	is	encountered	with	the	class	template	pod_wrapper.	It	has	two
template	type	parameters:	the	first	is	the	actual	POD	type	that	is	being	wrapped,
and	the	second	is	the	result	of	the	substitution	of	enable_if	and	is_pod.	If	the	type	is
a	POD	type	(as	in	pod_wrapper<int>),	then	the	inner	member	type	from	enable_if
exists	and	it	substitutes	the	second	template	type	parameter.	However,	if	the
inner	member	type	is	not	a	POD	type	(as	in	pod_wrapper<std::string>),	then	the	inner
member	type	is	not	defined,	and	the	substitution	fails,	producing	an	error	such	as
"too	few	template	arguments".



There's	more...
static_assert	and	std::enable_if	can	be	used	to	achieve	the	same	goals.	In	fact,	in
the	previous	recipe,	Performing	compile-time	assertion	checks	with
static_assert,	we	have	defined	the	same	class	template	pod_wrapper	and	function
template	mul().	For	these	examples,	static_assert	seems	like	a	better	solution
because	the	compiler	emits	better	error	messages	(provided	that	you	specify
relevant	messages	in	the	static_assert	declaration).	These	two,	however,	work
quite	differently	and	are	not	intended	as	alternatives.

static_assert	does	not	rely	on	SFINAE	and	is	applied	after	overload	resolution	is
performed.	The	result	of	a	failed	assert	is	a	compiler	error.	On	the	other	hand,
std::enable_if	is	used	to	remove	candidates	from	the	overload	set	and	does	not
trigger	compiler	errors	(given	that	the	exceptions	the	standard	specifies	for
SFINAE	do	not	occur).	The	actual	error	that	can	occur	after	SFINAE	is	an
empty	overload	set	that	makes	a	program	ill-formed	since	a	particular	function
call	cannot	be	performed.

To	understand	the	difference	between	static_assert	and	std::enable_if	with
SFINAE,	let's	consider	the	case	when	we	want	to	have	two	function	overloads:
one	that	should	be	called	for	arguments	of	integral	types	and	one	for	arguments
of	any	other	type	than	integral	types.	With	static_assert,	we	can	write	the
following	(note	that	the	dummy	second	type	parameter	on	the	second	overload	is
necessary	to	define	two	different	overloads,	otherwise	we	would	just	have	two
definitions	of	the	same	function):

				template	<typename	T>	

				auto	compute(T	const	a,	T	const	b)	

				{	

						static_assert(std::is_integral<T>,		

																				"An	integral	type	expected");	

						return	a	+	b;	

				}	

				template	<typename	T,	typename	=	void>	

				auto	compute(T	const	a,	T	const	b)	

				{	

						static_assert(!std::is_integral<T>,		

																				"A	non-integral	type	expected");	

						return	a	*	b;	

				}	

				auto	v1	=	compute(1,	2);		



				auto	v1	=	compute(1,	2);		

				//	error:	ambiguous	call	to	overloaded	function	

				auto	v2	=	compute(1.0,	2.0);		

				//	error:	ambiguous	call	to	overloaded	function

Regardless	of	how	we	try	to	call	this	function,	we	end	up	with	an	error,	because
the	compiler	finds	two	overloads	that	it	could	potentially	call.	This	is	because
static_assert	is	only	considered	after	the	overload	resolution	has	been	resolved,
which,	in	this	case,	builds	a	set	of	two	possible	candidates.

The	solution	to	this	problem	is	std::enable_if	and	SFINAE.	We	use	std::enable_if
via	the	alias	templates	EnableIf	and	DisableIf	defined	above	on	a	template
parameter	(although	we	still	use	the	dummy	template	parameter	on	the	second
overload	to	introduce	two	different	definitions).	The	following	example	shows
the	two	overloads	rewritten.	The	first	overload	is	enabled	only	for	integral	types,
while	the	second	is	disabled	for	integral	types.	

				template	<typename	T,	typename	=	EnableIf<std::is_integral<T>>>	

				auto	compute(T	const	a,	T	const	b)	

				{	

						return	a	*	b;	

				}	

				template	<typename	T,	typename	=	DisableIf<std::is_integral<T>>,		

														typename	=	void>	

				auto	compute(T	const	a,	T	const	b)	

				{	

						return	a	+	b;	

				}	

				auto	v1	=	compute(1,	2);					//	OK;	v1	=	2	

				auto	v2	=	compute(1.0,	2.0);	//	OK;	v2	=	3.0

With	SFINAE	at	work,	when	the	compiler	builds	the	overload	set	for	either
compute(1,	2)	or	compute(1.0,	2.0);	it	will	simply	discard	the	overload	that	produces
a	substitution	failure	and	move	on,	ending	up	in	each	case	with	an	overload	set
containing	a	single	candidate.



See	also
Performing	compile-time	assertion	checks	with	static_assert
Creating	type	aliases	and	alias	templates	recipe	of	Chapter	1,	Learning
Modern	Core	Language	Features



Selecting	branches	at	compile	time
with	constexpr	if
In	the	previous	recipes,	we	saw	how	we	can	impose	restrictions	on	types	and
functions	using	static_assert	and	std::enable_if	and	how	these	two	are	different.
Template	metaprogramming	can	become	complicated	and	cluttered	when	we	use
SFINAE	and	std::enable_if	to	define	function	overloads	or	when	we	write
variadic	function	templates.	A	new	feature	of	C++17	is	intended	to	simplify	such
code;	it	is	called	constexpr	if,	and	it	defines	an	if	statement	with	a	condition	that
is	evaluated	at	compile	time,	resulting	in	the	compiler	selecting	the	body	of	a
branch	or	another	into	the	translation	unit.	Typical	usage	of	constexpr	if	is
for	simplification	of	variadic	templates	and	std::enable_if-based	code.



Getting	ready
In	this	recipe,	we	will	refer	to	and	simplify	the	code	written	in	previous	recipes.
Before	continuing	with	the	recipe,	you	should	take	a	moment	to	go	back	and
review	the	code	we	have	written	in	those	recipes,	which	is	as	follows:

The	compute()	overloads	for	integral	and	non-integral	types	from
the	Conditionally	compiling	classes	and	functions	with	enable_if	recipe.
User-defined	8-,	16-,	and	32-bit	binary	literals	from	the	Creating	raw	user-
defined	literals	recipe	of	Chapter	2,	Working	with	Numbers	and	Strings.

These	implementations	have	several	issues:

They	are	hard	to	read.	There	is	a	lot	of	focus	on	the	template	declaration,
yet	the	body	of	the	functions	are	very	simple,	for	instance.	The	biggest
problem,	though,	is	that	it	requires	a	greater	attention	from	developers
because	it	is	cluttered	with	complicated	declarations,	such	as	typename	=
std::enable_if<std::is_integral<T>::value,	T>::type.
There	is	too	much	code.	The	end	purpose	in	the	first	example	is	to	have	a
generic	function	that	behaves	differently	for	different	types,	yet	we	had	to
write	two	overloads	for	the	function;	moreover,	to	differentiate	the	two,	we
had	to	use	an	extra,	unused,	template	parameter.	In	the	second	example,	the
purpose	was	to	build	an	integer	value	out	of	characters	'0'	and	'1',	yet	we
had	to	write	one	class	template	and	three	specializations	to	make	it	happen.
It	requires	advanced	template	metaprogramming	skills,	which	shouldn't	be
necessary	for	doing	something	this	simple.

The	syntax	for	constexpr	if	is	very	similar	to	regular	if	statements	and	requires
the	constexpr	keyword	before	the	condition.	The	general	form	is	as	follows:

				if	constexpr	(init-statement	condition)	statement-true	

				else	statement-false



How	to	do	it...
Use	constexpr	if	statements	to	do	the	following:

To	avoid	using		std::enable_if	and	relying	on	SFINAE	to	impose	restrictions
on	function	template	types	and	conditionally	compile	code:

								template	<typename	T>	

								auto	compute(T	const	a,	T	const	b)	

								{	

										if	constexpr	(std::is_integral<T>::value)	

												return	a	*	b;	

										else		

												return	a	+	b;	

								}

To	simplify	writing	variadic	templates	and	implement	metaprogramming
compile-time	recursion:

								namespace	binary	

								{	

										using	byte8	=	unsigned	char;	

										namespace	binary_literals	

										{	

												namespace	binary_literals_internals	

												{											

														template	<typename	CharT,	char	d,	char...	bits>	

														constexpr	CharT	binary_eval()	

														{	

																if	constexpr(sizeof...(bits)	==	0)		

																		return	static_cast<CharT>(d-'0');	

																else	if	constexpr(d	==	'0')		

																		return	binary_eval<CharT,	bits...>();	

																else	if	constexpr(d	==	'1')		

																		return	static_cast<CharT>(	

																				(1	<<	sizeof...(bits))	|		

																				binary_eval<CharT,	bits...>());	

														}								

												}	

												template<char...	bits>	

												constexpr	byte8	operator""_b8()	

												{	

														static_assert(	

																sizeof...(bits)	<=	8,	

																"binary	literal	b8	must	be	up	to	8	digits	long");	

														return	binary_literals_internals::	

																										binary_eval<byte8,	bits...>();	

												}	

										}	

								}



How	it	works...
The	way	constexpr	if	works	is	relatively	simple:	the	condition	in	the	if	statement
must	be	a	compile-time	expression	that	evaluates	or	can	be	convertible	to	a
Boolean.	If	the	condition	is	true,	the	body	of	the	if	statement	is	selected,	which
means	it	ends	up	into	the	translation	unit	for	compilation.	If	the	condition	is
false,	the	else	branch,	if	any	is	defined,	is	evaluated.	Return	statements	in
discarded	constexpr	if	branches	to	not	contribute	to	the	function	return	type
deduction.

In	the	first	example	from	the	How	to	do	it...	section,	the	compute()	function
template	has	a	clean	signature.	The	body	is	also	very	simple;	if	the	type	that	is
substituted	for	the	template	parameter	is	an	integral	type,	the	compiler	will	select
the	first	branch	(that	is,	return	a	*	b;)	for	code	generation	and	discard	the	else
branch.	For	non-integral	types,	because	the	condition	evaluates	to	false,	the
compiler	will	select	the	else	branch	(that	is,	return	a	+	b;)	for	code	generation	and
discard	the	rest.

In	the	second	example	from	the	How	to	do	it...	section,	the	internal	helper
function	binary_eval()	is	a	variadic	template	function	without	any	parameters;	it
only	has	template	parameters.	The	function	evaluates	the	first	argument	and	then
does	something	with	the	rest	of	the	arguments	in	a	recursive	manner	(but
remember	this	is	not	a	runtime	recursion).	When	there	is	a	single	character	left
and	the	size	of	the	remaining	pack	is	0,	we	return	the	decimal	value	represented
by	the	character	(0	for	'0'	and	1	for	'1').	If	the	current	first	element	is	a	'0',	we
return	the	value	determined	by	evaluating	the	rest	of	the	arguments	pack,	which
involves	a	recursive	call.	If	the	current	first	element	is	a	'1',	we	return	the	value
by	shifting	a	1	to	the	left	on	a	number	of	positions	given	by	the	size	of	the
remaining	pack	bit	or	the	value	determined	by	evaluating	the	rest	of	the
arguments	pack,	which	again	involves	a	recursive	call.



Providing	metadata	to	the	compiler
with	attributes
C++	has	been	very	deficient	when	it	comes	to	features	that	enable	reflection	or
introspection	on	types	or	data	or	standard	mechanisms	to	define	language
extensions.	Because	of	that,	compilers	have	defined	their	own	specific
extensions	for	this	purpose.	Examples	include	the	VC++	__declspec()	specifier	or
the	GCC	__attribute__((...)).	C++11,	however,	introduces	the	concept	of
attributes	that	enable	compilers	to	implement	extensions	in	a	standard	way	or
even	embedded	domain-specific	languages.	The	new	C++	standards	define
several	attributes	all	compilers	should	implement,	and	that	will	be	the	topic	of
this	recipe.



How	to	do	it...
Use	standard	attributes	to	provide	hints	for	the	compiler	about	various	design
goals:

To	ensure	that	the	return	value	from	a	function	cannot	be	ignored,	declare
the	function	with	the	[[nodiscard]]	attribute:

								[[nodiscard]]	int	get_value1()	

								{	

										return	42;	

								}	

								get_value1();

								//	warning:	ignoring	return	value	of	function		

								//										declared	with	'nodiscard'	attribute	get_value1();

Alternatively,	you	can	declare	enumerations	and	classes	used	as	the	return
type	of	a	function	with	the	[[nodiscard]]	attribute;	in	this	case,	the	return
value	of	any	function	returning	such	a	type	cannot	be	ignored:

								enum	class[[nodiscard]]	ReturnCodes{	OK,	NoData,	Error	};	

								ReturnCodes	get_value2()	

								{	

										return	ReturnCodes::OK;	

								}	

								struct[[nodiscard]]	Item{};	

								Item	get_value3()	

								{	

										return	Item{};	

								}	

								//	warning:	ignoring	return	value	of	function		

								//										declared	with	'nodiscard'	attribute	

								get_value2();	

								get_value3();

To	ensure	that	usage	of	functions	or	types	that	are	considered	deprecated	is
flagged	by	the	compiler	with	a	warning,	declare	them	with	the	[[deprecated]]
attribute:

								[[deprecated("Use	func2()")]]	void	func()	

								{	

								}	

								//	warning:	'func'	is	deprecated	:	Use	func2()	

								func();	



								func();	

								class	[[deprecated]]	foo		

								{	

								};	

								//	warning:	'foo'	is	deprecated	

								foo	f;

To	ensure	that	the	compiler	does	not	emit	a	warning	for	unused	variables,
use	the	[[maybe_unused]]	attribute:

								double	run([[maybe_unused]]	int	a,	double	b)	

								{	

										return	2	*	b;	

								}	

								[[maybe_unused]]	auto	i	=	get_value1();

To	ensure	that	intentional	fall-through	case	labels	in	a	switch	statement	are
not	flagged	by	the	compiler	with	a	warning,	use	the	[[fallthrough]]	attribute:

								void	option1()	{}	

								void	option2()	{}	

								int	alternative	=	get_value1();	

								switch	(alternative)	

								{	

										case	1:	

												option1();	

												[[fallthrough]];	//	this	is	intentional	

										case	2:	

											option2();	

								}



How	it	works...
The	attributes	are	a	very	flexible	feature	of	C++;	they	can	be	used	almost
everywhere,	but	the	actual	usage	is	specifically	defined	for	each	particular
attribute.	They	can	be	used	on	types,	functions,	variables,	names,	code	blocks,	or
entire	translation	units.

Attributes	are	specified	between	double	square	brackets	(for	example	[[attr1]])
and	more	than	one	attribute	can	be	specified	in	a	declaration	(for	example,
[[attr1,	attr2,	attr3]]).

Attributes	can	have	arguments,	for	example,	[[mode(greedy)]],	and	can	be	fully
qualified,	for	example,	[[sys::hidden]]	or	[[using	sys:	visibility(hidden),	debug]].

Attributes	can	appear	either	before	or	after	the	name	of	the	entity	on	which	they
are	applied,	or	both,	in	which	case	they	are	combined.	The	following	are	several
examples	that	exemplify	this:

				//	attr1	applies	to	a,	attr2	applies	to	b	

				int	a	[[attr1]],	b	[[attr2]];	

				//	attr1	applies	to	a	and	b	

				int	[[attr1]]	a,	b;	

				//	attr1	applies	to	a	and	b,	attr2	applies	to	a	

				int	[[attr1]]	a	[[attr2]],	b;

Attributes	cannot	appear	in	a	namespace	declaration,	but	they	can	appear	as	a
single	line	declaration	anywhere	in	a	namespace.	In	this	case,	it	is	specific	to
each	attribute	whether	it	applies	to	the	following	declaration,	to	the	namespace,
or	to	the	translation	unit:

				namespace	test	

				{	

						[[debug]];	

				}

Attributes	are	often	ignored	or	briefly	mentioned	in	books	and	tutorials	on
modern	C++	programming,	and	the	reason	for	that	is	probably	the	fact	that
developers	cannot	actually	write	attributes,	as	this	language	feature	is	intended
for	compiler	implementations.	For	some	compilers,	it	may	be	possible,	though,
to	define	user-provided	attributes;	such	a	compiler	is	GCC,	which	supports
plugins	that	add	extra	features	to	the	compiler,	and	they	can	be	used	for	defining



plugins	that	add	extra	features	to	the	compiler,	and	they	can	be	used	for	defining
new	attributes	too.

However,	the	standard	does	define	several	attributes	all	compilers	must
implement	and	using	them	can	help	you	write	better	code.	We	have	seen	some	of
them	in	the	examples	from	the	previous	section.	These	attributes	have	been
defined	in	different	versions	of	the	standard:

In	C++11:
The	[[noreturn]]	attribute	indicates	that	a	function	does	not	return.
The	[[carries_dependency]]	attribute	indicates	that	the	dependency	chain
in	release-consume	std::memory_order	propagates	in	and	out	of	the
function,	which	allows	the	compiler	to	skip	unnecessary	memory	fence
instructions.

In	C++14:
The	[[deprecated]]	and	[[deprecated("reason")]]	attributes	indicate	that	the
entity	declared	with	these	attributes	is	considered	deprecated	and
should	not	be	used.	These	attributes	can	be	used	with	classes,	non-
static	data	members,	typedefs,	functions,	enumerations,	and	template
specializations.	The	reason	string	is	an	optional	parameter.

In	C++17:
The	[[fallthrough]]	attribute	indicates	that	fall-through	between	labels
in	a	switch	statement	is	intentional.	The	attribute	must	appear	on	a	line
of	its	own	immediately	before	a	case	label.
The	[[nodiscard]]	attribute	indicates	that	a	return	value	from	a	function
cannot	be	ignored.
The	[[maybe_unused]]	attribute	indicates	that	an	entity	may	be	unused,	but
the	compiler	should	not	emit	a	warning	about	that.	This	attribute	can
be	applied	to	variables,	classes,	non-static	data	members,
enumerations,	enumerators,	and	typedefs.



Standard	Library	Containers,
Algorithms,	and	Iterators
We	will	cover	the	following	recipes	in	this	chapter:

Using	vector	as	a	default	container
Using	bitset	for	fixed-size	sequences	of	bits
Using	vector<bool>	for	variable-size	sequences	of	bits
Finding	elements	in	a	range
Sorting	a	range
Initializing	a	range
Using	set	operations	on	a	range
Using	iterators	to	insert	new	elements	in	a	container
Writing	your	own	random	access	iterator
Container	access	with	non-member	functions



Introduction
The	C++	standard	library	has	evolved	a	lot	with	C++11,	C++14	and	C++17.
However,	at	its	core,	initially	sat	three	main	pillars:	containers,	algorithms,	and
iterators.	They	are	all	implemented	as	general	purpose	classes	or	function
templates.	In	this	chapter,	we'll	look	at	how	these	could	be	employed	together
for	achieving	various	goals.



Using	vector	as	a	default	container
The	standard	library	provides	various	types	of	containers	that	store	collections	of
objects;	the	library	includes	sequence	containers	(such	as	vector,	array,	or	list),
ordered	and	unordered	associative	containers	(such	as	set	and	map),	and	container
adapters	that	do	not	store	data	but	provide	an	adapted	interface	towards	a
sequence	container	(such	as	stack	and	queue).	All	of	them	are	implemented	as
class	templates,	which	means	they	can	be	used	with	any	type	(providing	it	meets
the	container	requirements).	Though	you	should	always	use	the	container	that	is
the	most	appropriate	for	a	particular	problem	(which	not	only	provides	good
performance	in	terms	of	speed	of	inserts,	deletes,	access	to	elements,	and
memory	usage	but	also	makes	the	code	easy	to	read	and	maintain),	the	default
choice	should	be	vector.	In	this	recipe,	we	will	see	why	vector	should	be	the
preferred	choice	for	a	container	and	what	are	the	most	common	operations
with	vector.



Getting	ready
The	reader	is	expected	to	be	familiar	with	C-like	arrays,	both	statically	and
dynamically	allocated.

The	class	template	vector	is	available	in	the	std	namespace	in	the	<vector>	header.



How	to	do	it...
To	initialize	a	std::vector	class	template,	you	can	use	any	of	the	following
methods,	but	you	are	not	restricted	to	only	these:

Initialize	from	an	initialization	list:

								std::vector<int>	v1	{	1,	2,	3,	4,	5	};

Initialize	from	a	C-like	array:

								int	arr[]	=	{	1,	2,	3,	4,	5	};	

								std::vector<int>	v2(arr,	arr	+	5);	//	{	1,	2,	3,	4,	5	}

Initialize	from	another	container:

								std::list<int>	l{	1,	2,	3,	4,	5	};	

								std::vector<int>	v3(l.begin(),	l.end());	//{	1,	2,	3,	4,	5	}

Initialize	from	a	count	and	a	value:

								std::vector<int>	v4(5,	1);	//	{1,	1,	1,	1,	1}

To	modify	the	content	of	std::vector,	use	any	of	the	following	methods,	but	you
are	not	restricted	to	only	these:

Add	an	element	at	the	end	of	the	vector	with	push_back():

								std::vector<int>	v1{	1,	2,	3,	4,	5	};

								v1.push_back(6);	//	v1	=	{	1,	2,	3,	4,	5,	6	}

Remove	an	element	from	the	end	of	the	vector	with	pop_back():

								v1.pop_back();

Insert	anywhere	in	the	vector	with	insert():

								int	arr[]	=	{	1,	2,	3,	4,	5	};

								std::vector<int>	v2;

								v2.insert(v2.begin(),	arr,	arr	+	5);	//	v2	=	{	1,	2,	3,	4,	5	}

Add	an	element	by	creating	it	at	the	end	of	the	vector	with	emplace_back():

								struct	foo



								struct	foo

								{

										int	a;

										double	b;

										std::string	c;

										foo(int	a,	double	b,	std::string	const	&	c)	:

												a(a),	b(b),	c(c)	{}

								};

								std::vector<foo>	v3;

								v3.emplace_back(1,	1.0,	"one"s);	

								//	v3	=	{	foo{1,	1.0,	"one"}	}

Insert	an	element	by	creating	it	anywhere	in	the	vector	with	emplace():

								v3.emplace(v3.begin(),	2,	2.0,	"two"s);

								//	v3	=	{	foo{2,	2.0,	"two"},	foo{1,	1.0,	"one"}	}

To	modify	the	whole	content	of	the	vector,	use	any	of	the	following	methods,
but	you	are	not	restricted	to	only	these:

Assign	from	another	vector	with	operator=;	this	replaces	the	content	of	the
container:

								std::vector<int>	v1{	1,	2,	3,	4,	5	};

								std::vector<int>	v2{	10,	20,	30	};

								v2	=	v1;	//	v1	=	{	1,	2,	3,	4,	5	}

Assign	from	another	sequence	defined	by	a	begin	and	end	iterator	with
the	assign()	method;	this	replaces	the	content	of	the	container:

								int	arr[]	=	{	1,	2,	3,	4,	5	};

								std::vector<int>	v3;

								v3.assign(arr,	arr	+	5);	//	v3	=	{	1,	2,	3,	4,	5	}

Swap	the	content	of	two	vectors	with	the	swap()	method:

								std::vector<int>	v4{	1,	2,	3,	4,	5	};

								std::vector<int>	v5{	10,	20,	30	};

								v4.swap(v5);	//	v4	=	{	10,	20,	30	},	v5	=	{	1,	2,	3,	4,	5	}

Remove	all	the	elements	with	the	clear()	method:

								std::vector<int>	v6{	1,	2,	3,	4,	5	};

								v6.clear();	//	v6	=	{	}

Remove	one	or	more	elements	with	the	erase()	method	(which	requires
either	an	iterator	or	a	pair	of	iterators	that	define	the	range	of	elements	from
the	vector	to	be	removed):



								std::vector<int>	v7{	1,	2,	3,	4,	5	};

								v7.erase(v7.begin()	+	2,	v7.begin()	+	4);	//	v7	=	{	1,	2,	5	}

To	get	the	address	of	the	first	element	in	a	vector,	usually	to	pass	the	content	of	a
vector	to	a	C-like	API,	use	any	of	the	following	methods:

Use	the	data()	method,	which	returns	a	pointer	to	the	first	element,
providing	direct	access	to	the	underlying	contiguous	sequence	of	memory
where	the	vector	elements	are	stored;	this	is	only	available	since	C++11:

								void	process(int	const	*	const	arr,	int	const	size)	

								{	/*	do	something	*/	}

								std::vector<int>	v{	1,	2,	3,	4,	5	};

								process(v.data(),	static_cast<int>(v.size()));

Get	the	address	of	the	first	element:

								process(&v[0],	static_cast<int>(v.size()));

Get	the	address	of	the	element	referred	by	the	front()	method:

								process(&v.front(),	static_cast<int>(v.size()));

Get	the	address	of	the	element	pointed	by	the	iterator	returned	from	begin():

								process(&*v.begin(),	static_cast<int>(v.size()));



How	it	works...
The	std::vector	class	is	designed	to	be	the	C++	container	most	similar	to	and
inter-operable	with	C-like	arrays.	A	vector	is	a	variable-sized	sequence	of
elements,	guaranteed	to	be	stored	contiguously	in	memory,	which	makes	the
content	of	a	vector	easily	passable	to	a	C-like	function	that	takes	a	pointer	to	an
element	of	an	array	and,	usually,	a	size.	There	are	many	benefits	of	using	a
vector	instead	of	C-like	arrays	and	these	benefits	include:

No	direct	memory	management	is	required	from	the	developer,	as	the
container	does	this	internally,	allocating	memory,	reallocating,	and
releasing.

Note	that	a	vector	is	intended	for	storing	object	instances.	If	you
need	to	store	pointers,	do	not	store	raw	pointers	but	smart
pointers.	Otherwise,	you	need	to	handle	the	lifetime	management	of
the	pointed	objects.

The	possibility	of	modifying	the	size	of	the	vector.
Simple	assignment	or	concatenation	of	two	vectors.
Direct	comparison	of	two	vectors.

The	vector	class	is	a	very	efficient	container,	with	all	implementations	providing
a	lot	of	optimizations	that	most	developers	are	not	capable	of	doing	with	C-like
arrays.	Random	access	to	its	elements	and	insertion	and	removal	at	the	end	of	a
vector	is	a	constant	O(1)	operation	(provided	that	reallocation	is	not	necessary),
while	insertion	and	removal	anywhere	else	is	a	linear	O(n)	operation.

Compared	to	other	standard	containers,	the	vector	has	various	benefits:

It	is	compatible	with	C-like	arrays	and	C-like	APIs;	the	content	of	other
containers	(except	for	std::array)	needs	to	be	copied	to	a	vector	before	being
passed	to	a	C-like	API	expecting	an	array.
It	has	the	fastest	access	to	elements	of	all	containers.
It	has	no	per-element	memory	overhead	for	storing	elements,	as	elements
are	stored	in	a	contiguous	space,	like	a	C	array	(and	unlike	other	containers



such	as	list	that	requires	additional	pointers	to	other	elements,	or
associative	containers	that	require	hash	values).

std::vector	is	very	similar	in	semantics	to	C-like	arrays	but	has	a	variable	size.
The	size	of	a	vector	can	increase	and	decrease.	There	are	two	properties	that
define	the	size	of	a	vector:

Capacity	is	the	number	of	elements	the	vector	can	accommodate	without
performing	additional	memory	allocations;	this	is	indicated	by
the	capacity()	method.
Size	is	the	actual	number	of	elements	in	the	vector;	this	is	indicated	by
the	size()	method.

Size	is	always	smaller	or	equal	to	capacity.	When	size	is	equal	to	capacity	and	a
new	element	needs	to	be	added,	the	capacity	needs	to	be	modified	so	that	the
vector	has	space	for	more	elements.	In	this	case,	the	vector	allocates	a	new
chunk	of	memory	and	moves	the	previous	content	to	the	new	location	and	then
frees	the	previously	allocated	memory.	Though	this	sounds	time-consuming	(and
it	is),	implementations	increase	the	capacity	exponentially,	by	doubling	it	each
time	it	needs	to	be	changed.	As	a	result,	on	average,	each	element	of	the	vector
only	needs	to	be	moved	once	(that	is	because	all	the	elements	of	the	vector	are
moved	during	an	increase	of	capacity,	but	then	an	equal	number	of	elements	can
be	added	without	incurring	more	moves,	given	that	insertions	are	performed	at
the	end	of	the	vector).

If	you	know	beforehand	how	many	elements	will	be	inserted	in	the	vector,	you
can	first	call	the	reserve()	method	to	increase	the	capacity	to	at	least	the	specified
amount	(this	method	does	nothing	if	the	specified	size	is	smaller	than	the	current
capacity)	and	only	then	insert	the	elements.

On	the	other	hand,	if	you	need	to	free	additional	reserved	memory,	you	can	use
the	shrink_to_fit()	method	to	request	this,	but	it	is	an	implementation	decision
whether	to	free	any	memory	or	not.	An	alternative	to	this	non-binding	method,
available	since	C++11,	is	to	do	a	swap	with	a	temporary,	empty	vector:

				std::vector<int>	v{	1,	2,	3,	4,	5	};

				std::vector<int>().swap(v);	//	v.size	=	0,	v.capacity	=	0

Calling	the	clear()	method	only	removes	all	the	elements	from	the	vector	but



does	not	free	any	memory.

It	should	be	noted	that	the	vector	implements	operations	specific	to	other	types
of	containers:

stack:	With	push_back()	and	emplace_back()	to	add	at	the	end	and	pop_back()	to
remove	from	the	end.	Keep	in	mind	that	pop_back()	does	not	return	the	last
element	that	has	been	removed.	You	need	to	access	that	explicitly,	if	that	is
necessary,	for	instance,	using	the	back()	method	before	removing	the
element.
list:	With	insert()	and	emplace()	to	add	elements	in	the	middle	of	the
sequence	and	erase()	to	remove	elements	from	anywhere	in	the	sequence.



There’s	more...
The	rule	of	thumb	for	C++	containers	is:	use	std::vector	as	the
default	container	unless	you	have	good	reasons	to	use	another	one.



See	also
Using	bitset	for	fixed-size	sequences	of	bits
Using	vector<bool>	for	variable-size	sequences	of	bits



Using	bitset	for	fixed-size	sequences
of	bits
It	is	not	uncommon	for	developers	to	operate	with	bit	flags;	this	can	be	either
because	they	work	with	operating	system	APIs,	usually	written	in	C,	that	take
various	types	of	arguments	(such	as	options	or	styles)	in	the	form	of	bit	flags,	or
because	they	work	with	libraries	that	do	similar	things,	or	simply	because	some
types	of	problems	are	naturally	solved	with	bit	flags.	One	can	think	of
alternatives	to	working	with	bits	and	bit	operations,	such	as	defining	arrays
having	one	element	for	every	option/flag,	or	defining	a	structure	with	members
and	functions	to	model	the	bit	flags,	but	these	are	often	more	complicated,	and	in
case	you	need	to	pass	a	numerical	value	representing	bit	flags	to	a	function	you
still	need	to	convert	the	array	or	the	structure	to	a	sequence	of	bits.	For	this
reason,	the	C++	standard	provides	a	container	called	std::bitset	for	fixed-size
sequences	of	bits.



Getting	ready
For	this	recipe,	you	must	be	familiar	with	bitwise	operations	(and,	or,	xor,	not,
and	shifting).

The	bitset	class	is	available	in	the	std	namespace	in	the	<bitset>	header.	A	bitset
represents	a	fixed-size	sequence	of	bits,	with	the	size	defined	at	compile	time.
For	convenience,	in	this	recipe,	all	examples	will	be	with	bitsets	of	8	bits.



How	to	do	it...
To	construct	an	std::bitset	object,	use	one	of	the	available	constructors:

An	empty	bitset	with	all	bits	set	to	0:

								std::bitset<8>	b1;	//	[0,0,0,0,0,0,0,0]

A	bitset	from	a	numerical	value:

								std::bitset<8>	b2{	10	};	//	[0,0,0,0,1,0,1,0]

A	bitset	from	a	string	of	'0'	and	'1':

								std::bitset<8>	b3{	"1010"s	};	//	[0,0,0,0,1,0,1,0]

A	bitset	from	a	string	containing	any	two	characters	representing	'0'	and
'1';	in	this	case,	we	must	specify	which	character	represents	a	0	and	which
character	represents	a	1:

								std::bitset<8>	b4	

										{	"ooooxoxo"s,	0,	std::string::npos,	'o',	'x'	};	

										//	[0,0,0,0,1,0,1,0]

To	test	individual	bits	in	the	set	or	the	entire	set	for	specific	values,	use	any	of
the	available	methods:

count()	to	get	the	number	of	bits	set	to	1:

								std::bitset<8>	bs{	10	};

								std::cout	<<	"has	"	<<	bs.count()	<<	"	1s"	<<	std::endl;

any()	to	check	whether	there	is	at	least	one	bit	set	to	1:

								if	(bs.any())	std::cout	<<	"has	some	1s"	<<	std::endl;

all()	to	check	whether	all	the	bits	are	set	to	1:

								if	(bs.all())	std::cout	<<	"has	only	1s"	<<	std::endl;

none()	to	check	whether	all	the	bits	are	set	to	0:

								if	(bs.none())	std::cout	<<	"has	no	1s"	<<	std::endl;



								if	(bs.none())	std::cout	<<	"has	no	1s"	<<	std::endl;

test()	to	check	the	value	of	an	individual	bit:

								if	(!bs.test(0))	std::cout	<<	"even"	<<	std::endl;

operator[]	to	access	and	test	individual	bits:

								if(!bs[0])	std::cout	<<	"even"	<<	std::endl;

To	modify	the	content	of	a	bitset,	use	any	of	the	following	methods:

Member	operators	|=,	&=,	^=	,	and	~	to	perform	binary	or,	and,	xor,	and	not
operations,	or	non-member	operators	|,	&,	and	^:

								std::bitset<8>	b1{	42	};	//	[0,0,1,0,1,0,1,0]

								std::bitset<8>	b2{	11	};	//	[0,0,0,0,1,0,1,1]

								auto	b3	=	b1	|	b2;							//	[0,0,1,0,1,0,1,1]

								auto	b4	=	b1	&	b2;							//	[0,0,0,0,1,0,1,0]

								auto	b5	=	b1	^	b2;							//	[1,1,0,1,1,1,1,0]

								auto	b6	=	~b1;											//	[1,1,0,1,0,1,0,1]

Member	operators	<<=,	<<,	>>=,	>>	to	perform	shifting	operations:

								auto	b7	=	b1	<<	2;							//	[1,0,1,0,1,0,0,0]

								auto	b8	=	b1	>>	2;							//	[0,0,0,0,1,0,1,0]

flip()	to	toggle	the	entire	set	or	an	individual	bit	from	0	to	1	or	from	1	to	0:

								b1.flip();															//	[1,1,0,1,0,1,0,1]

								b1.flip(0);														//	[1,1,0,1,0,1,0,0]

set()	to	change	the	entire	set	or	an	individual	bit	to	true	or	the	specified
value:

								b1.set(0,	true);									//	[1,1,0,1,0,1,0,1]

								b1.set(0,	false);								//	[1,1,0,1,0,1,0,0]

reset()	to	change	the	entire	set	or	an	individual	bit	to	false:

								b1.reset(2);													//	[1,1,0,1,0,0,0,0]

To	convert	a	bitset	to	a	numerical	or	string	value,	use	the	following	methods:

to_ulong()	and	to_ullong()	to	convert	to	unsigned	long	or	unsigned	long	long:

								std::bitset<8>	bs{	42	};

								auto	n1	=	bs.to_ulong();		//	n1	=	42UL

								auto	n2	=	bs.to_ullong();	//	n2	=	42ULL



								auto	n2	=	bs.to_ullong();	//	n2	=	42ULL

to_string()	to	convert	to	std::basic_string;	by	default	the	result	is	a	string
containing	'0'	and	'1',	but	you	can	specify	a	different	character	for	these
two	values:

								auto	s1	=	bs.to_string();									//	s1	=	"00101010"

								auto	s2	=	bs.to_string('o',	'x');	//	s2	=	"ooxoxoxo"



How	it	works...
If	you've	ever	worked	with	C	or	C-like	APIs,	chances	are	you	either	wrote	or	at
least	have	seen	code	that	manipulates	bits	to	define	styles,	options,	or	other	kinds
of	values.	This	usually	involves	operations,	such	as:

Defining	the	bit	flags;	these	can	be	enumerations,	static	constants	in	a	class,
or	macros	introduced	with	#define	in	the	C	style.	Usually,	there	is	a	flag
representing	no	value	(style,	option,	and	so	on).	Since	these	are	supposed	to
be	bit	flags,	their	values	are	powers	of	2.
Adding	and	removing	flags	from	the	set	(that	is,	a	numerical	value).	Adding
a	bit	flag	is	done	with	the	bit-or	operator	(value	|=	FLAG)	and	removing	a	bit
flag	is	done	with	the	bit-and	operator,	with	the	negated	flag	(value	&=	~FLAG).
Testing	whether	a	flag	is	added	to	the	set	(value	&	FLAG	==	FLAG).
Calling	functions	with	the	flags	as	an	argument.

The	following	shows	a	simple	example	of	flags	defining	the	border	style	of	a
control	that	can	have	a	border	on	the	left,	right,	top,	or	bottom	side,	or	any
combination	of	these,	including	no	border:

				#define	BORDER_NONE			0x00

				#define	BORDER_LEFT			0x01

				#define	BORDER_TOP				0x02

				#define	BORDER_RIGHT		0x04

				#define	BORDER_BOTTOM	0x08

				void	apply_style(unsigned	int	const	style)

				{

						if	(style	&	BORDER_BOTTOM)	{	/*	do	something	*/	}

				}

				//	initialize	with	no	flags

				unsigned	int	style	=	BORDER_NONE;

				//	set	a	flag

				style	=	BORDER_BOTTOM;

				//	add	more	flags

				style	|=	BORDER_LEFT	|	BORDER_RIGHT	|	BORDER_TOP;

				//	remove	some	flags

				style	&=	~BORDER_LEFT;

				style	&=	~BORDER_RIGHT;

				//	test	if	a	flag	is	set

				if	((style	&	BORDER_BOTTOM)	==	BORDER_BOTTOM)	{}

				//	pass	the	flags	as	argument	to	a	function

				apply_style(style);



The	standard	std::bitset	class	is	intended	as	a	C++	alternative	to	this	C-like
working	style	with	sets	of	bits.	It	enables	us	to	write	more	robust	and	safer	code
because	it	abstracts	the	bit	operations	with	member	functions,	though	we	still
need	to	identify	what	each	bit	in	the	set	is	representing:

Adding	and	removing	flags	is	done	with	the	set()	and	reset()	methods,
which	set	the	value	of	a	bit	indicated	by	its	position	to	1	or	0	(or	true	and
false);	alternatively,	we	can	use	the	index	operator	for	the	same	purpose.
Testing	if	a	bit	is	set	is	done	with	the	test()	method.
Conversion	from	an	integer	or	a	string	is	done	through	the	constructor,	and
conversion	to	an	integer	or	string	is	done	with	member	functions	so	that	the
values	from	bitsets	can	be	used	where	integers	are	expected	(such	as
arguments	to	functions).

In	addition	to	these	mentioned	operations,	the	bitset	class	has	additional	methods
for	performing	bitwise	operations	on	bits,	shifting,	testing,	and	others	that	have
been	shown	in	the	previous	section.

Conceptually,	std::bitset	is	a	representation	of	a	numerical	value	that	enables	you
to	access	and	modify	individual	bits.	Internally,	however,	a	bitset	has	an	array	of
integer	values	on	which	it	performs	bit	operations.	The	size	of	a	bitset	is	not
limited	to	the	size	of	a	numerical	type;	it	can	be	anything,	except	that	it	is	a
compile-time	constant.

The	example	with	the	control	border	styles	from	the	previous	section	can	be
written	using	std::bitset	in	the	following	manner:

				struct	border_flags

				{

						static	const	int	left	=	0;

						static	const	int	top	=	1;

						static	const	int	right	=	2;

						static	const	int	bottom	=	3;

				};

				//	initialize	with	no	flags

				std::bitset<4>	style;

				//	set	a	flag

				style.set(border_flags::bottom);

				//	set	more	flags

				style

						.set(border_flags::left)

						.set(border_flags::top)

						.set(border_flags::right);

				//	remove	some	flags

				style[border_flags::left]	=	0;

				style.reset(border_flags::right);



				style.reset(border_flags::right);

				//	test	if	a	flag	is	set

				if	(style.test(border_flags::bottom))	{}

				//	pass	the	flags	as	argument	to	a	function

				apply_style(style.to_ulong());



There's	more...
The	bitset	can	be	created	from	an	integer	and	can	convert	its	value	to	an	integer
using	the	to_ulong()	or	to_ullong()	methods.	However,	if	the	size	of	the	bitset	is
larger	than	the	size	of	these	numerical	types	and	any	of	the	bits	beyond	the	size
of	the	requested	numerical	type	is	set	to	1,	then	these	methods	throw
an	std::overflow_error	exception	because	the	value	cannot	be	represented	on
unsigned	long	or	unsigned	long	long.	In	order	to	extract	all	the	bits,	we	need	to	do	the
following	operations,	as	shown	in	the	next	code:

Clear	the	bits	beyond	the	size	of	unsigned	long	or	unsigned	long	long.
Convert	the	value	to	unsigned	long	or	unsigned	long	long.
Shift	the	bitset	with	the	number	of	bits	in	unsigned	long	or	unsigned	long	long.
Do	this	until	all	the	bits	are	retrieved.

				template	<size_t	N>

				std::vector<unsigned	long>	bitset_to_vectorulong(std::bitset<N>	bs)

				{

						auto	result	=	std::vector<unsigned	long>	{};

						auto	const	size	=	8	*	sizeof(unsigned	long);

						auto	const	mask	=	std::bitset<N>{	static_cast<unsigned	long>(-1)};

						auto	totalbits	=	0;

						while	(totalbits	<	N)

						{

								auto	value	=	(bs	&	mask).to_ulong();

								result.push_back(value);

								bs	>>=	size;

								totalbits	+=	size;

						}

						return	result;

				}

				std::bitset<128>	bs	=

											(std::bitset<128>(0xFEDC)	<<	96)	|

											(std::bitset<128>(0xBA98)	<<	64)	|

											(std::bitset<128>(0x7654)	<<	32)	|

											std::bitset<128>(0x3210);

				std::cout	<<	bs	<<	std::endl;

				auto	result	=	bitset_to_vectorulong(bs);

				for	(auto	const	v	:	result)	

						std::cout	<<	std::hex	<<	v	<<	std::endl;

For	cases	where	the	size	of	the	bitset	cannot	be	known	at	compile	time,	the
alternative	is	std::vector<bool>,	which	we	will	cover	in	the	next	recipe.



See	also
Using	vector<bool>	for	variable-size	sequences	of	bits



Using	vector<bool>	for	variable-size
sequences	of	bits
In	the	previous	recipe,	we	looked	at	using	std::bitset	for	fixed-size	sequences	of
bits.	Sometimes,	however,	an	std::bitset	is	not	a	good	choice	because	you	do	not
know	the	number	of	bits	at	compile	time,	and	just	defining	a	set	of	a	large
enough	number	of	bits	is	not	a	good	idea	because	you	can	get	into	a	situation
when	the	number	is	not	actually	large	enough.	The	standard	alternative	for	this	is
to	use	the	std::vector<bool>	container	that	is	a	specialization	of	std::vector	with
space	and	speed	optimizations,	as	implementations	do	not	actually	store	Boolean
values,	but	individual	bits	for	each	element.

For	this	reason,	however,	std::vector<bool>	does	not	meet	the
requirements	of	a	standard	container	or	sequential	container,	nor
does	std::vector<bool>::iterator	meet	the	requirements	of	a	forward
iterator.	As	a	result,	this	specialization	cannot	be	used	in	generic
code	where	a	vector	is	expected.	On	the	other	hand,	being	a	vector,
it	has	a	different	interface	from	that	of	std::bitset	and	cannot	be
viewed	as	a	binary	representation	of	a	number.	There	are	no	direct
ways	to	construct	std::vector<bool>	from	a	number	or	string	nor	to
convert	to	a	number	or	string.



Getting	ready...
This	recipe	assumes	you	are	familiar	with	both	std::vector	and	std::bitset.	If	you
didn’t	read	the	previous	recipes,	Using	vector	as	a	default	container	and	Using
bitset	for	fixed-size	sequences	of	bits,	you	should	do	that	before	continuing.

The	vector<bool>	class	is	available	in	the	std	namespace	in	the	<vector>	header.



How	to	do	it...
To	manipulate	an	std::vector<bool>,	use	the	same	methods	you	would	use	for
an	std::vector<T>,	as	shown	in	the	following	examples:

Creating	an	empty	vector:

								std::vector<bool>	bv;	//	[]

Adding	bits	to	the	vector:

								bv.push_back(true);		//	[1]

								bv.push_back(true);		//	[1,	1]

								bv.push_back(false);	//	[1,	1,	0]

								bv.push_back(false);	//	[1,	1,	0,	0]

								bv.push_back(true);		//	[1,	1,	0,	0,	1]

Setting	the	values	of	individual	bits:

								bv[3]	=	true;								//	[1,	1,	0,	1,	1]

Using	generic	algorithms:

								auto	count_of_ones	=	std::count(bv.cbegin(),	bv.cend(),	true);

Removing	bits	from	the	vector:

								bv.erase(bv.begin()	+	2);	//	[1,	1,	1,	1]



How	it	works...
std::vector<bool>	is	not	a	standard	vector	because	it	is	designed	to	provide	space
optimization	by	storing	a	single	bit	for	each	element	instead	of	a	Boolean	value.
Therefore,	its	elements	are	not	stored	in	a	contiguous	sequence	and	cannot	be
substituted	for	an	array	of	Booleans.	Due	to	this:

The	index	operator	cannot	return	a	reference	to	a	specific	element	because
elements	are	not	stored	individually:

								std::vector<bool>	bv;

								bv.resize(10);

								auto&	bit	=	bv[0];						//	error

Dereferencing	an	iterator	cannot	produce	a	reference	to	bool	for	the	same
reason	as	mentioned	earlier:

								auto&	bit	=	*bv.begin();	//	error

There	is	no	guarantee	that	individual	bits	can	be	manipulated	independently
at	the	same	time	from	different	threads.
The	vector	cannot	be	used	with	algorithms	that	require	forward	iterators,
such	as	std::search().
The	vector	cannot	be	used	in	some	generic	code	where	std::vector<T>	is
expected	if	such	code	requires	any	of	the	operations	mentioned	in	this	list.

An	alternative	to	std::vector<bool>	is	std::dequeu<bool>,	which	is	a
standard	container	(a	double-ended	queue)	that	meets	all	container
and	iterator	requirements	and	can	be	used	with	all	standard
algorithms.	However,	this	will	not	have	the	space	optimization	that
std::vector<bool>	is	providing.



There's	more...
The	std::vector<bool>	interface	is	very	different	from	std::bitset.	If	you	want	to	be
able	to	write	code	in	a	similar	manner,	you	can	create	a	wrapper	on
std::vector<bool>,	which	looks	like	std::bitset,	where	possible.	The	following
implementation	provides	members	similar	to	what	is	available	in	std::bitset:

				class	bitvector

				{

						std::vector<bool>	bv;

				public:

						bitvector(std::vector<bool>	const	&	bv)	:	bv(bv)	{}

						bool	operator[](size_t	const	i)	{	return	bv[i];	}

						inline	bool	any()	const	{

								for	(auto	b	:	bv)	if	(b)	return	true;

										return	false;

						}

						inline	bool	all()	const	{

								for	(auto	b	:	bv)	if	(!b)	return	false;

										return	true;

						}

						inline	bool	none()	const	{	return	!any();	}

						inline	size_t	count()	const	{

								return	std::count(bv.cbegin(),	bv.cend(),	true);

						}

						inline	size_t	size()	const	{	return	bv.size();	}

						inline	bitvector	&	add(bool	const	value)	{

								bv.push_back(value);

								return	*this;

						}

						inline	bitvector	&	remove(size_t	const	index)	{

								if	(index	>=	bv.size())

										throw	std::out_of_range("Index	out	of	range");

								bv.erase(bv.begin()	+	index);

								return	*this;

						}

						inline	bitvector	&	set(bool	const	value	=	true)	{

								for	(size_t	i	=	0;	i	<	bv.size();	++i)

										bv[i]	=	value;

								return	*this;

						}

						inline	bitvector&	set(size_t	const	index,	bool	const	value	=	true)	{

								if	(index	>=	bv.size())

										throw	std::out_of_range("Index	out	of	range");

								bv[index]	=	value;

								return	*this;

						}



						}

						inline	bitvector	&	reset()	{

								for	(size_t	i	=	0;	i	<	bv.size();	++i)	bv[i]	=	false;

								return	*this;

						}

						inline	bitvector	&	reset(size_t	const	index)	{

								if	(index	>=	bv.size())

										throw	std::out_of_range("Index	out	of	range");

								bv[index]	=	false;

								return	*this;

						}

						inline	bitvector	&	flip()	{

								bv.flip();

								return	*this;

						}

						std::vector<bool>&	data()	{	return	bv;	}

				};

This	is	only	a	basic	implementation,	and	if	you	want	to	use	such	a	wrapper,	you
should	add	additional	methods,	such	as	bit	logic	operations,	shifting,	maybe
reading	and	writing	from	and	to	streams,	and	so	on.	However,	with	the	preceding
code,	we	can	write	the	following	examples:

				bitvector	bv;

				bv.add(true).add(true).add(false);	//	[1,	1,	0]

				bv.add(false);																					//	[1,	1,	0,	0]

				bv.add(true);																						//	[1,	1,	0,	0,	1]

				if	(bv.any())	std::cout	<<	"has	some	1s"	<<	std::endl;

				if	(bv.all())	std::cout	<<	"has	only	1s"	<<	std::endl;

				if	(bv.none())	std::cout	<<	"has	no	1s"	<<	std::endl;

				std::cout	<<	"has	"	<<	bv.count()	<<	"	1s"	<<	std::endl;

				bv.set(2,	true);																			//	[1,	1,	1,	0,	1]

				bv.set();																										//	[1,	1,	1,	1,	1]

				bv.reset(0);																							//	[0,	1,	1,	1,	1]

				bv.reset();																								//	[0,	0,	0,	0,	0]

				bv.flip();																									//	[1,	1,	1,	1,	1]



See	also
Using	vector	as	a	default	container
Using	bitset	for	fixed-size	sequences	of	bits



Finding	elements	in	a	range
One	of	the	most	common	operations	we	do	in	any	application	is	searching
through	data.	Therefore,	it	is	not	surprising	that	the	standard	library	provides
many	generic	algorithms	for	searching	through	standard	containers	or	anything
that	can	represent	a	range	and	is	defined	by	a	start	and	a	past-the-end	iterator.	In
this	recipe,	we	will	see	what	these	standard	algorithms	are	and	how	they	can	be
used.



Getting	ready
For	all	the	examples	in	this	recipe,	we	will	use	std::vector,	but	all	algorithms
work	with	ranges	defined	by	a	begin	and	past-the-end,	either	input	or	forward
iterators,	depending	on	the	algorithm	(for	more	information	about	the	various
types	of	iterators,	see	the	recipe,	Writing	your	own	random	access	iterator).	All
these	algorithms	are	available	in	the	std	namespace	in	the	<algorithm>	header.	



How	to	do	it...
The	following	is	a	list	of	algorithms	that	can	be	used	for	finding	elements	in
a	range:

Use	std::find()	to	find	a	value	in	a	range;	this	algorithm	returns	an	iterator	to
the	first	element	equal	to	the	value:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	it	=	std::find(v.cbegin(),	v.cend(),	3);

								if	(it	!=	v.cend())	std::cout	<<	*it	<<	std::endl;

Use	std::find_if()	to	find	a	value	in	a	range	that	meets	a	criterion	from	a
unary	predicate;	this	algorithm	returns	an	iterator	to	the	first	element	for
which	the	predicate	returns	true:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	it	=	std::find_if(v.cbegin(),	v.cend(),	

																															[](int	const	n)	{return	n	>	10;	});

								if	(it	!=	v.cend())	std::cout	<<	*it	<<	std::endl;

Use	std::find_if_not()	to	find	a	value	in	a	range	that	does	not	meet	a	criterion
from	a	unary	predicate;	this	algorithm	returns	an	iterator	to	the	first	element
for	which	the	predicate	returns	false:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	it	=	std::find_if_not(v.cbegin(),	v.cend(),	

																												[](int	const	n)	{return	n	%	2	==	1;	});

								if	(it	!=	v.cend())	std::cout	<<	*it	<<	std::endl;

Use	std::find_first_of()	to	search	for	the	occurrence	of	any	value	from	a
range	in	another	range;	this	algorithm	returns	an	iterator	to	the	first	element
that	is	found:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								std::vector<int>	p{	5,	7,	11	};

								auto	it	=	std::find_first_of(v.cbegin(),	v.cend(),

																																					p.cbegin(),	p.cend());

								if	(it	!=	v.cend())	

										std::cout	<<	"found	"	<<	*it

																				<<	"	at	index	"	<<	std::distance(v.cbegin(),	it)

																				<<	std::endl;



Use	std::find_end()	to	find	the	last	occurrence	of	a	subrange	of	elements	in	a
range;	this	algorithm	returns	an	iterator	to	the	first	element	of	the	last
subrange	in	the	range:

								std::vector<int>	v1{	1,	1,	0,	0,	1,	0,	1,	0,	1,	0,	1,	1	};

								std::vector<int>	v2{	1,	0,	1	};

								auto	it	=	std::find_end(v1.cbegin(),	v1.cend(),

																																v2.cbegin(),	v2.cend());

								if	(it	!=	v1.cend())

										std::cout	<<	"found	at	index	"

																				<<	std::distance(v1.cbegin(),	it)	<<	std::endl;

Use	std::search()	to	search	for	the	first	occurrence	of	a	subrange	in	a	range;
this	algorithm	returns	an	iterator	to	the	first	element	of	the	subrange	in	the
range:

								auto	text	=	"The	quick	brown	fox	jumps	over	the	lazy	dog"s;

								auto	word	=	"over"s;

								auto	it	=	std::search(text.cbegin(),	text.cend(),

																														word.cbegin(),	word.cend());

								if	(it	!=	text.cend())

										std::cout	<<	"found	"	<<	word

																				<<	"	at	index	"	

																				<<	std::distance(text.cbegin(),	it)	<<	std::endl;

Use	std::search()	with	a	searcher,	which	is	a	class	that	implements	a
searching	algorithm	and	meets	some	predefined	criteria.	This	overload	of
std::search()	was	introduced	in	C++17,	and	available	standard	searchers
implement	the	Boyer-Moore	and	the	Boyer-Moore-Horspool	string
searching	algorithms:

								auto	text	=	"The	quick	brown	fox	jumps	over	the	lazy	dog"s;

								auto	word	=	"over"s;

								auto	it	=	std::search(

										text.cbegin(),	text.cend(),

										std::make_boyer_moore_searcher(word.cbegin(),	word.cend()));

								if	(it	!=	text.cend())

										std::cout	<<	"found	"	<<	word

																				<<	"	at	index	"	

																				<<	std::distance(text.cbegin(),	it)	<<	std::endl;

Use	std::search_n()	to	search	for	N	consecutive	occurrences	of	a	value	in	a
range;	this	algorithm	returns	an	iterator	to	the	first	element	of	the	found
sequence	in	the	range:

								std::vector<int>	v{	1,	1,	0,	0,	1,	0,	1,	0,	1,	0,	1,	1	};



								auto	it	=	std::search_n(v.cbegin(),	v.cend(),	2,	0);

								if	(it	!=	v.cend())

										std::cout	<<	"found	at	index	"	

																				<<	std::distance(v.cbegin(),	it)	<<	std::endl;

Use	std::adjacent_find()	to	find	two	adjacent	elements	in	a	range	that	are
equal	or	satisfy	a	binary	predicate;	this	algorithm	returns	an	iterator	to	the
first	element	that	is	found:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	it	=	std::adjacent_find(v.cbegin(),	v.cend());

								if	(it	!=	v.cend())

										std::cout	<<	"found	at	index	"	

																				<<	std::distance(v.cbegin(),	it)	<<	std::endl;

							auto	it	=	std::adjacent_find(

									v.cbegin(),	v.cend(),

									[](int	const	a,	int	const	b)	{

											return	IsPrime(a)	&&	IsPrime(b);	});

								if	(it	!=	v.cend())

										std::cout	<<	"found	at	index	"	

																				<<	std::distance(v.cbegin(),	it)	<<	std::endl;

Use	std::binary_search()	to	find	whether	an	element	exists	in	a	sorted	range;
this	algorithm	returns	a	Boolean	value	to	indicate	whether	the	value	was
found	or	not:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	success	=	std::binary_search(v.cbegin(),	v.cend(),	8);

								if	(success)	std::cout	<<	"found"	<<	std::endl;

Use	std::lower_bound()	to	find	the	first	element	in	a	range	not	less	than	a
specified	value;	this	algorithm	returns	an	iterator	to	the	element:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	it	=	std::lower_bound(v.cbegin(),	v.cend(),	1);

								if	(it	!=	v.cend())

										std::cout	<<	"lower	bound	at	"

																				<<	std::distance(v.cbegin(),	it)	<<	std::endl;

Use	std::upper_bound()	to	find	the	first	element	in	a	range	greater	than	a
specified	value;	this	algorithm	returns	an	iterator	to	the	element:

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	it	=	std::upper_bound(v.cbegin(),	v.cend(),	1);

								if	(it	!=	v.cend())

										std::cout	<<	"upper	bound	at	"

																				<<	std::distance(v.cbegin(),	it)	<<	std::endl;



Use	std::equal_range()	to	find	a	subrange	in	a	range	whose	values	are	equal	to
a	specified	value.	This	algorithm	returns	a	pair	of	iterators	defining	the	first
and	the	one-past-end	iterators	to	the	subrange;	these	two	iterators	are
equivalent	to	those	returned	by	std::lower_bound()	and	std::upper_bound():

								std::vector<int>	v{	1,	1,	2,	3,	5,	8,	13	};

								auto	bounds	=	std::equal_range(v.cbegin(),	v.cend(),	1);

								std::cout	<<	"range	between	indexes	"

																		<<	std::distance(v.cbegin(),	bounds.first)

																		<<	"	and	"

																		<<	std::distance(v.cbegin(),	bounds.second)

																		<<	std::endl;



How	it	works...
The	way	these	algorithms	work	is	very	similar:	they	all	take	as	arguments
iterators	that	define	the	searchable	range	and	additional	arguments	that	depend
on	each	algorithm.	Except	for	std::search(),	which	returns	a	Boolean,	and
std::equal_range(),	which	returns	a	pair	of	iterators,	they	all	return	an	iterator	to	the
searched	element	or	to	a	subrange.	These	iterators	must	be	compared	with	the
end	iterator	(that	is,	the	past-last-element)	of	the	range	to	check	whether	the
search	was	successful	or	not.	If	the	search	did	not	find	an	element	or	a	subrange,
then	the	returned	value	is	the	end	iterator.

All	these	algorithms	have	multiple	overloads,	but	in	the	How	to	do	it...	section,
we	only	looked	at	one	particular	overload	to	show	how	the	algorithm	can	be
used.	For	a	complete	reference	of	all	overloads,	you	should	see	other	sources.

In	all	the	preceding	examples,	we	used	constant	iterators,	but	all	these	algorithms
work	the	same	with	mutable	iterators	and	with	reverse	iterators.	Because	they
take	iterators	as	input	arguments,	they	can	work	with	standard	containers,	C-like
arrays,	or	anything	that	represents	a	sequence	and	has	iterators	available.

A	special	note	on	the	std::binary_search()	algorithm	is	necessary:	the	iterator
parameters	that	define	the	range	to	search	in	should	at	least	meet	the
requirements	of	the	forward	iterators.	Regardless	of	the	type	of	the	supplied
iterators,	the	number	of	comparisons	is	always	logarithmic	on	the	size	of	the
range.	However,	the	number	of	iterator	increments	is	different	if	the	iterators	are
random	access,	in	which	case	the	number	of	increments	is	also	logarithmic,	or
are	not	random	access,	in	which	case,	it	is	linear	and	proportional	to	the	size	of
the	range.

All	these	algorithms,	except	for	std::find_if_not(),	were	available	before	C++11.
However,	some	overloads	of	them	have	been	introduced	in	the	newer	standards.
An	example	is	std::search()	that	has	several	overloads	introduced	in	C++17.	One
of	these	overloads	has	the	following	form:

				template<class	ForwardIterator,	class	Searcher>

				ForwardIterator	search(ForwardIterator	first,	ForwardIterator	last,

																											const	Searcher&	searcher	);



This	overload	searches	for	the	occurrence	of	a	pattern	defined	by	a	searcher
function	object	for	which	the	standard	provides	several	implementations:

default_searcher	basically	delegates	the	searching	to	the	standard	std::search()
algorithm.
boyer_moore_searcher	implements	the	Boyer-Moore	algorithm	for	string
searching.
boyer_moore_horspool_algorithm	implements	the	Boyer-Moore-Horspool
algorithm	for	string	searching.



There's	more...
Many	standard	containers	have	a	member	function	find(),	for	finding	elements	in
the	container.	When	such	a	method	is	available	and	suits	your	needs,	it	should	be
preferred	to	the	general	algorithms	because	these	member	functions	are
optimized	based	on	the	particularities	of	each	container.



See	also
Using	vector	as	a	default	container
Initializing	a	range
Using	set	operations	on	a	range
Sorting	a	range



Sorting	a	range
In	the	previous	recipe,	we	looked	at	the	standard	general	algorithms	for
searching	in	a	range.	Another	common	operation	we	often	need	to	do	is	sorting	a
range	because	many	routines,	including	some	of	the	algorithms	for	searching,
require	a	sorted	range.	The	standard	library	provides	several	general	algorithms
for	sorting	ranges,	and	in	this	recipe,	we	will	see	what	these	algorithms	are	and
how	they	can	be	used.



Getting	ready
The	sorting	general	algorithms	work	with	ranges	defined	by	a	start	and	end
iterator	and,	therefore,	can	sort	standard	containers,	C-like	arrays,	or	anything
that	represents	a	sequence	and	has	random	iterators	available.	However,	all	the
examples	in	this	recipe	will	use	std::vector.



How	to	do	it...
The	following	is	a	list	of	standard	general	algorithms	for	searching	a	range:

Use	std::sort()	for	sorting	a	range:

								std::vector<int>	v{3,	13,	5,	8,	1,	2,	1};

								std::sort(v.begin(),	v.end());

								//	v	=	{1,	1,	2,	3,	5,	8,	13}

								std::sort(v.begin(),	v.end(),	std::greater<>());

								//	v	=	{13,	8,	5,	3,	2,	1	,1}

Use	std::stable_sort()	for	sorting	a	range	but	keeping	the	order	of	the	equal
elements:

								struct	Task

								{

										int	priority;

										std::string	name;

								};

								bool	operator<(Task	const	&	lhs,	Task	const	&	rhs)	{

										return	lhs.priority	<	rhs.priority;

								}

								bool	operator>(Task	const	&	lhs,	Task	const	&	rhs)	{

										return	lhs.priority	>	rhs.priority;

								}

								std::vector<Task>	v{	

										{	10,	"Task	1"s	},	{	40,	"Task	2"s	},	{	25,	"Task	3"s	},

										{	10,	"Task	4"s	},	{	80,	"Task	5"s	},	{	10,	"Task	6"s	},

								};

								std::stable_sort(v.begin(),	v.end());

								//	{{	10,	"Task	1"	},{	10,	"Task	4"	},{	10,	"Task	6"	},

								//		{	25,	"Task	3"	},{	40,	"Task	2"	},{	80,	"Task	5"	}}

								std::stable_sort(v.begin(),	v.end(),	std::greater<>());

								//	{{	80,	"Task	5"	},{	40,	"Task	2"	},{	25,	"Task	3"	},

								//		{	10,	"Task	1"	},{	10,	"Task	4"	},{	10,	"Task	6"	}}

Use	std::partial_sort()	for	sorting	a	part	of	a	range	(and	leaving	the	rest	in	an
unspecified	order):

								std::vector<int>	v{	3,	13,	5,	8,	1,	2,	1	};

								std::partial_sort(v.begin(),	v.begin()	+	4,	v.end());

								//	v	=	{1,	1,	2,	3,	?,	?,	?}

								std::partial_sort(v.begin(),	v.begin()	+	4,	v.end(),



								std::partial_sort(v.begin(),	v.begin()	+	4,	v.end(),

																										std::greater<>());

								//	v	=	{13,	8,	5,	3,	?,	?,	?}

Use	std::partial_sort_copy()	for	sorting	a	part	of	a	range	by	copying	the
sorted	elements	to	a	second	range	and	leaving	the	original	range
unchanged:

								std::vector<int>	v{	3,	13,	5,	8,	1,	2,	1	};

								std::vector<int>	vc(v.size());

								std::partial_sort_copy(v.begin(),	v.end(),	

																															vc.begin(),	vc.end());

								//	v	=	{3,	13,	5,	8,	1,	2,	1}

								//	vc	=	{1,	1,	2,	3,	5,	8,	13}

								std::partial_sort_copy(v.begin(),	v.end(),	

																															vc.begin(),	vc.end(),	std::greater<>());

								//	vc	=	{13,	8,	5,	3,	2,	1,	1}

Use	std::nth_element()	for	sorting	a	range	so	that	the	Nth	element	is	the	one
that	would	be	in	that	position	if	the	range	was	completely	sorted,	and	the
elements	before	it	are	all	smaller	and	the	ones	after	it	are	all	greater,	without
any	guarantee	that	they	are	also	ordered:

								std::vector<int>	v{	3,	13,	5,	8,	1,	2,	1	};

								std::nth_element(v.begin(),	v.begin()	+	3,	v.end());

								//	v	=	{1,	1,	2,	3,	5,	8,	13}

								std::nth_element(v.begin(),	v.begin()	+	3,	v.end(),

																									std::greater<>());

								//	v	=	{13,	8,	5,	3,	2,	1,	1}

Use	std::is_sorted()	to	check	whether	a	range	is	sorted:

								std::vector<int>	v	{	1,	1,	2,	3,	5,	8,	13	};

								auto	sorted	=	std::is_sorted(v.cbegin(),	v.cend());

								sorted	=	std::is_sorted(v.cbegin(),	v.cend(),	

																																std::greater<>());

Use	std::is_sorted_until()	to	find	a	sorted	subrange	from	the	beginning	of	a
range:

								std::vector<int>	v{	3,	13,	5,	8,	1,	2,	1	};

								auto	it	=	std::is_sorted_until(v.cbegin(),	v.cend());

								auto	length	=	std::distance(v.cbegin(),	it);



How	it	works...
All	the	preceding	general	algorithms	take	random	iterators	as	arguments	to
define	the	range	to	be	sorted	and,	some	of	them	additionally	take	an	output
range.	They	all	have	overloads,	one	that	requires	a	comparison	function	for
sorting	the	elements,	and	one	that	does	not	and	uses	operator<	for	comparing	the
elements.

These	algorithms	work	in	the	following	way:

std::sort()	modifies	the	input	range	so	that	its	elements	are	sorted	according
to	the	default	or	the	specified	comparison	function;	the	actual	algorithm	for
sorting	is	an	implementation	detail.
std::stable_sort()	is	similar	to	std::sort(),	but	it	guarantees	to	preserve	the
original	order	of	elements	that	are	equal.
std::partial_sort()	takes	three	iterator	arguments	indicating	the	first,	middle,
and	last	element	in	a	range,	where	middle	can	be	any	element,	not	just	the
one	at	the	natural	middle	position.	The	result	is	a	partially	sorted	range	so
that	that	first	middle	-	first	smallest	elements	from	the	original	range,	that
is,	[first,	last),	are	found	in	the	[first,	middle)	subrange	and	the	rest	of	the
elements	are	in	an	unspecified	order,	in	the	[middle,	last)	subrange.
std::partial_sort_copy()	is	not	a	variant	of	std::partial_copy(),	as	the	name	may
suggest,	but	of	std::sort().	It	sorts	a	range	without	altering	it	by	copying	its
elements	to	an	output	range.	The	arguments	of	the	algorithm	are	the	first
and	last	iterators	of	the	input	and	output	ranges.	If	the	output	range	has	a
size	M	that	is	greater	than	or	equal	to	the	size	N	of	the	input	range,	the	input
range	is	entirely	sorted	and	copied	to	the	output	range;	the	first	N	elements
of	the	output	range	are	overwritten,	and	the	last	M	-	N	elements	are	left
untouched.	If	the	output	range	is	smaller	than	the	input	range,	then	only	the
first	M	sorted	elements	from	the	input	range	are	copied	to	the	output	range
(which	is	entirely	overwritten	in	this	case).
std::nth_element()	is	basically	an	implementation	of	a	selection	algorithm,
which	is	an	algorithm	for	finding	the	Nth	smallest	element	of	a	range.	This
algorithm	takes	three	iterator	arguments	representing	the	first,	Nth,	and	last
element,	and	partially	sorts	the	range	so	that	after	sorting,	the	Nth	element



is	the	one	that	would	be	in	that	position	if	the	range	had	been	entirely
sorted.	In	the	modified	range,	all	the	N-1	elements	before	the	nth	one	are
smaller	than	it,	and	all	the	elements	after	the	nth	element	are	greater	than	it.
However,	there	is	no	guarantee	on	the	order	of	these	other	elements.
std::is_sorted()	checks	whether	the	specified	range	is	sorted	according	to	the
specified	or	default	comparison	function	and	returns	a	Boolean	value	to
indicate	that.
std::is_sorted_until()	finds	a	sorted	subrange	of	the	specified	range,	starting
from	the	beginning,	using	either	a	provided	comparison	function	or	the
default	operator<.	The	returned	value	is	an	iterator	representing	the	upper
bound	of	the	sorted	subrange,	which	is	also	the	iterator	of	the	one-past-last
sorted	element.



There's	more...
Some	standard	containers,	std::list	and	std::forward_list,	provide	a	member
function,	sort(),	which	is	optimized	for	those	containers.	These	member
functions	should	be	preferred	over	the	general	standard	algorithm,	std::sort().



See	also
Using	vector	as	a	default	container
Initializing	a	range
Using	set	operations	on	a	range
Finding	elements	in	a	range



Initializing	a	range
In	the	previous	recipes,	we	explored	the	general	standard	algorithms	for
searching	in	a	range	and	sorting	a	range.	The	algorithms	library	provides	many
other	general	algorithms	and	among	them	are	several	that	are	intended	for	filling
a	range	with	values.	In	this	recipe,	you	will	learn	what	these	algorithms	are	and
how	they	should	be	used.



Getting	ready
All	the	examples	in	this	recipe	use	std::vector.	However,	like	all	the	general
algorithms,	the	ones	we	will	see	in	this	recipe	take	iterators	to	define	the	bounds
of	a	range	and	can	therefore	be	used	with	any	standard	container,	C-like	arrays,
or	custom	types	representing	a	sequence	that	have	forward	iterators	defined.

Except	for	std::iota(),	which	is	available	in	the	<numeric>	header,	all	the	other
algorithms	are	found	in	the	<algorithm>	header.



How	to	do	it...
To	assign	values	to	a	range,	use	any	of	the	following	standard	algorithms:

std::fill()	to	assign	a	value	to	all	the	elements	of	a	range;	the	range	is
defined	by	a	first	and	last	forward	iterator:

								std::vector<int>	v(5);

								std::fill(v.begin(),	v.end(),	42);

								//	v	=	{42,	42,	42,	42,	42}

std::fill_n()	to	assign	values	to	a	number	of	elements	of	a	range;	the	range
is	defined	by	a	first	forward	iterator	and	a	counter	that	indicates	how	many
elements	should	be	assigned	the	specified	value:

								std::vector<int>	v(10);

								std::fill_n(v.begin(),	5,	42);

								//	v	=	{42,	42,	42,	42,	42,	0,	0,	0,	0,	0}

std::generate()	to	assign	the	value	returned	by	a	function	to	the	elements	of	a
range;	the	range	is	defined	by	a	first	and	last	forward	iterator,	and	the
function	is	invoked	once	for	each	element	in	the	range:

								std::random_device	rd{};

								std::mt19937	mt{	rd()	};

								std::uniform_int_distribution<>	ud{1,	10};

								std::vector<int>	v(5);

								std::generate(v.begin(),	v.end(),	

																						[&ud,	&mt]	{return	ud(mt);	});	

std::generate_n()	to	assign	the	value	returned	by	a	function	to	a	number	of
elements	of	a	range;	the	range	is	defined	by	a	first	forward	iterator	and	a
counter	that	indicates	how	many	elements	should	be	assigned	the	value
from	the	function	that	is	invoked	once	for	each	element:

								std::vector<int>	v(5);

								auto	i	=	1;

								std::generate_n(v.begin(),	v.size(),	[&i]	{	return	i*i++;	});

								//	v	=	{1,	4,	9,	16,	25}

std::iota()	to	assign	sequentially	increasing	values	to	the	elements	of	a
range;	the	range	is	defined	by	a	first	and	last	forward	iterator,	and	the
values	are	incremented	using	the	prefix	operator++	from	an	initial	specified



value:

								std::vector<int>	v(5);

								std::iota(v.begin(),	v.end(),	1);

								//	v	=	{1,	2,	3,	4,	5}



How	it	works...
std::fill()	and	std::fill_n()	work	similarly	but	differ	in	the	way	the	range	is
specified:	for	the	former	by	a	first	and	last	iterator,	for	the	latter	by	a	first	iterator
and	a	count.	The	second	algorithm	returns	an	iterator,	representing	either	the
one-past-last	assigned	element	if	the	counter	is	greater	than	zero,	or	an	iterator	to
the	first	element	of	the	range	otherwise.

std::generate()	and	std::generate_n()	are	also	similar,	differing	only	in	the	way	the
range	is	specified.	The	first	takes	two	iterators,	defining	the	range's	lower	and
upper	bounds,	and	the	second,	an	iterator	to	the	first	element	and	a	count.	Like
std::fill_n(),	std::generate_n()	also	returns	an	iterator,	representing	either	the	one-
past-last	assigned	element	if	the	count	is	greater	than	zero,	or	an	iterator	to	the
first	element	of	the	range,	otherwise.	These	algorithms	call	a	specified	function
for	each	element	in	the	range	and	assign	the	returned	value	to	the	element.	The
generating	function	does	not	take	any	argument,	so	the	value	of	the	argument
cannot	be	passed	to	the	function	as	this	is	intended	as	a	function	to	initialize	the
elements	of	a	range.	If	you	need	to	use	the	value	of	the	elements	to	generate	new
values,	you	should	use	std::transform().

std::iota()	takes	its	name	from	the	ι	(iota)	function	from	the	APL	programming
language,	and	though	it	was	a	part	of	the	initial	STL,	it	was	only	included	in	the
standard	library	in	C++11.	This	function	takes	a	first	and	last	iterator	to	a	range
and	an	initial	value	that	is	assigned	to	the	first	element	of	the	range	and	then
used	to	generate	sequentially	increasing	values	using	the	prefix	operator++	for	the
rest	of	the	elements	in	the	range.



See	also
Using	vector	as	a	default	container
Sorting	a	range
Using	set	operations	on	a	range
Finding	elements	in	a	range
Generating	pseudo-random	numbers	recipe	of	Chapter	2,	Working	with
Numbers	and	Strings
Initializing	all	bits	of	internal	state	of	a	pseudo-random	number	generator
recipe	of	Chapter	2,	Working	with	Numbers	and	Strings



Using	set	operations	on	a	range
The	standard	library	provides	several	algorithms	for	set	operations	that	enable	us
to	do	unions,	intersections,	or	differences	of	sorted	ranges.	In	this	recipe,	we	will
see	what	these	algorithms	are	and	how	they	work.



Getting	ready
The	algorithms	for	set	operations	work	with	iterators,	which	means	they	can	be
used	for	standard	containers,	C-like	arrays,	or	any	custom	type	representing	a
sequence	that	has	input	iterators	available.	All	the	examples	in	this	recipe	will
use	std::vector.

For	all	the	examples	in	the	next	section,	we	will	use	the	following	ranges:

				std::vector<int>	v1{	1,	2,	3,	4,	4,	5	};

				std::vector<int>	v2{	2,	3,	3,	4,	6,	8	};

				std::vector<int>	v3;



How	to	do	it...
Use	the	following	general	algorithms	for	set	operations:

std::set_union()	to	compute	the	union	of	two	ranges	into	a	third	range:

								std::set_union(v1.cbegin(),	v1.cend(),

																							v2.cbegin(),	v2.cend(),

																							std::back_inserter(v3));

								//	v3	=	{1,	2,	3,	3,	4,	4,	5,	6,	8}

std::merge()	to	merge	the	content	of	two	ranges	into	a	third	one;	this	is
similar	to	std::set_union()	except	that	it	copies	the	entire	content	of	the	input
ranges	into	the	output	one,	not	just	their	union:

								std::merge(v1.cbegin(),	v1.cend(),

																			v2.cbegin(),	v2.cend(),

																			std::back_inserter(v3));

								//	v3	=	{1,	2,	2,	3,	3,	3,	4,	4,	4,	5,	6,	8}

std::set_intersection()	to	compute	the	intersection	of	the	two	ranges	into	a
third	range:

								std::set_intersection(v1.cbegin(),	v1.cend(),

																														v2.cbegin(),	v2.cend(),

																														std::back_inserter(v3));

								//	v3	=	{2,	3,	4}

std::set_difference()	to	compute	the	difference	of	two	ranges	into	a	third
range;	the	output	range	will	contain	elements	from	the	first	range,	which	are
not	present	in	the	second	range:

								std::set_difference(v1.cbegin(),	v1.cend(),

																												v2.cbegin(),	v2.cend(),

																												std::back_inserter(v3));

								//	v3	=	{1,	4,	5}

std::set_symmetric_difference()	to	compute	a	dual	difference	of	the	two	ranges
into	a	third	range;	the	output	range	will	contain	elements	that	are	present	in
any	of	the	input	ranges,	but	only	in	one:

								std::set_symmetric_difference(v1.cbegin(),	v1.cend(),

																																						v2.cbegin(),	v2.cend(),

																																						std::back_inserter(v3));

								//	v3	=	{1,	3,	4,	5,	6,	8}



std::includes()	to	check	if	one	range	is	a	subset	of	another	range	(that	is,	all
its	elements	are	also	present	in	the	other	range):

								std::vector<int>	v1{	1,	2,	3,	4,	4,	5	};

								std::vector<int>	v2{	2,	3,	3,	4,	6,	8	};

								std::vector<int>	v3{	1,	2,	4	};

								std::vector<int>	v4{	};

								auto	i1	=	std::includes(v1.cbegin(),	v1.cend(),	

																																v2.cbegin(),	v2.cend());	//	i1	=	false

								auto	i2	=	std::includes(v1.cbegin(),	v1.cend(),	

																																v3.cbegin(),	v3.cend());	//	i2	=	true

								auto	i3	=	std::includes(v1.cbegin(),	v1.cend(),	

																																v4.cbegin(),	v4.cend());	//	i3	=	true



How	it	works...
All	the	set	operations	that	produce	a	new	range	from	two	input	ranges,	in	fact,
have	the	same	interface	and	work	in	a	similar	way:

They	take	two	input	ranges,	each	defined	by	a	first	and	last	input	iterator.
They	take	an	output	iterator	to	an	output	range	where	elements	will	be
inserted.
They	have	an	overload	that	takes	an	extra	argument	representing	a
comparison	binary	function	object	that	must	return	true	if	the	first	argument
is	less	than	the	second.	When	a	comparison	function	object	is	not
specified,	operator<	is	used.
They	return	an	iterator	past	the	end	of	the	constructed	output	range.
The	input	ranges	must	be	sorted	using	either	operator<	or	the	provided
comparison	function,	depending	on	the	overload	that	is	used.
The	output	range	must	not	overlap	any	of	the	two	input	ranges.

We	will	demonstrate	the	way	they	work	with	additional	examples	using	vectors
of	a	POD	type	Task	that	we	also	used	in	a	previous	recipe:

				struct	Task

				{

						int	priority;

						std::string	name;

				};

				bool	operator<(Task	const	&	lhs,	Task	const	&	rhs)	{

						return	lhs.priority	<	rhs.priority;

				}	

				bool	operator>(Task	const	&	lhs,	Task	const	&	rhs)	{

						return	lhs.priority	>	rhs.priority;

				}

				std::vector<Task>	v1{

						{	10,	"Task	1.1"s	},

						{	20,	"Task	1.2"s	},

						{	20,	"Task	1.3"s	},

						{	20,	"Task	1.4"s	},

						{	30,	"Task	1.5"s	},

						{	50,	"Task	1.6"s	},

				};

				std::vector<Task>	v2{

						{	20,	"Task	2.1"s	},

						{	30,	"Task	2.2"s	},

						{	30,	"Task	2.3"s	},

						{	30,	"Task	2.4"s	},



						{	30,	"Task	2.4"s	},

						{	40,	"Task	2.5"s	},

						{	50,	"Task	2.6"s	},

				};

The	particular	way	each	algorithm	produces	the	output	range	is	described	here:

std::set_union()	copies	all	the	elements	present	in	one	or	both	of	the	input
ranges	to	the	output	range,	producing	a	new	sorted	range.	If	an	element	is
found	M	times	in	the	first	range	and	N	times	in	the	second	range,	then	all
the	M	elements	from	the	first	range	will	be	copied	to	the	output	range	in
their	existing	order,	and	then	the	N-M	elements	from	the	second	range	are
copied	to	the	output	range	if	N	>	M,	or	0	elements	otherwise:

								std::vector<Task>	v3;

								std::set_union(v1.cbegin(),	v1.cend(),

																							v2.cbegin(),	v2.cend(),

																							std::back_inserter(v3));

								//	v3	=	{{10,	"Task	1.1"},{20,	"Task	1.2"},{20,	"Task	1.3"},

								//							{20,	"Task	1.4"},{30,	"Task	1.5"},{30,	"Task	2.3"},

								//							{30,	"Task	2.4"},{40,	"Task	2.5"},{50,	"Task	1.6"}}

std::merge()	copies	all	the	elements	from	both	the	input	ranges	into	the
output	range,	producing	a	new	range	sorted	with	respect	to	the	comparison
function:

								std::vector<Task>	v4;

								std::merge(v1.cbegin(),	v1.cend(),

																			v2.cbegin(),	v2.cend(),

																			std::back_inserter(v4));

								//	v4	=	{{10,	"Task	1.1"},{20,	"Task	1.2"},{20,	"Task	1.3"},

								//							{20,	"Task	1.4"},{20,	"Task	2.1"},{30,	"Task	1.5"},

								//							{30,	"Task	2.2"},{30,	"Task	2.3"},{30,	"Task	2.4"},

								//							{40,	"Task	2.5"},{50,	"Task	1.6"},{50,	"Task	2.6"}}

std::set_intersection()	copies	all	the	elements	that	are	found	in	both	the	input
ranges	into	the	output	range,	producing	a	new	range	sorted	with	respect	to
the	comparison	function:

								std::vector<Task>	v5;

								std::set_intersection(v1.cbegin(),	v1.cend(),

																														v2.cbegin(),	v2.cend(),

																														std::back_inserter(v5));

								//	v5	=	{{20,	"Task	1.2"},{30,	"Task	1.5"},{50,	"Task	1.6"}}

std::set_difference()	copies	to	the	output	range	all	the	elements	from	the	first
input	range	that	are	not	found	in	the	second	input	range.	For	equivalent
elements	that	are	found	in	both	the	ranges,	the	following	rule	applies:	if	an



element	is	found	M	times	in	the	first	range	and	N	times	in	the	second	range,
and	if	M	>	N,	then	it	is	copied	M-N	times;	otherwise	it	is	not	copied:

								std::vector<Task>	v6;

								std::set_difference(v1.cbegin(),	v1.cend(),

																												v2.cbegin(),	v2.cend(),

																												std::back_inserter(v6));

								//	v6	=	{{10,	"Task	1.1"},{20,	"Task	1.3"},{20,	"Task	1.4"}}

std::set_symmetric_difference()	copies	to	the	output	range	all	the	elements	that
are	found	in	either	of	the	two	input	ranges	but	not	in	both	of	them.	If	an
element	is	found	M	times	in	the	first	range	and	N	times	in	the	second	range,
then	if	M	>	N,	the	last	M-N	of	those	elements	from	the	first	range	are
copied	into	the	output	rage,	else,	the	last	N-M	of	those	elements	from	the
second	range	will	be	copied	into	the	output	range:

								std::vector<Task>	v7;

								std::set_symmetric_difference(v1.cbegin(),	v1.cend(),

																																						v2.cbegin(),	v2.cend(),

																																						std::back_inserter(v7));

								//	v7	=	{{10,	"Task	1.1"},{20,	"Task	1.3"},{20,	"Task	1.4"}

								//							{30,	"Task	2.3"},{30,	"Task	2.4"},{40,	"Task	2.5"}}

On	the	other	hand,	std::includes()	does	not	produce	an	output	range;	it	only
checks	whether	the	second	range	is	included	in	the	first	range.	It	returns	a
Boolean	value	that	is	true	if	the	second	range	is	empty	or	all	its	elements	are
included	in	the	first	range,	or	false	otherwise.	It	also	has	two	overloads,	one	of
them	specifying	a	comparison	binary	function	object.



See	also
Using	vector	as	a	default	container
Sorting	a	range
Initializing	a	range
Using	iterators	to	insert	new	elements	in	a	container
Finding	elements	in	a	range



Using	iterators	to	insert	new	elements
in	a	container
When	you’re	working	with	containers,	it	is	often	useful	to	insert	new	elements	at
the	beginning,	end,	or	somewhere	in	the	middle.	There	are	algorithms,	such
as	the	ones	we	saw	in	the	previous	recipe,	Using	set	operations	on	a	range,	that
require	an	iterator	to	a	range	to	insert	into,	but	if	you	simply	pass	an	iterator,
such	as	the	one	returned	by	begin(),	it	will	not	insert	but	overwrite	the	elements	of
the	container.	Moreover,	it’s	not	possible	to	insert	at	the	end	by	using	the	iterator
returned	by	end().	In	order	to	perform	such	operations,	the	standard	library
provides	a	set	of	iterators	and	iterator	adapters	that	enable	these	scenarios.



Getting	ready
The	iterators	and	adapters	discussed	in	this	recipe	are	available	in	the	std
namespace	in	the	<iterator>	header.	If	you	include	headers	such	as,	<algorithm>,
you	do	not	have	to	explicitly	include	<iterator>.



How	to	do	it...
Use	the	following	iterator	adapters	to	insert	new	elements	in	a	container:

std::back_inserter()	to	insert	elements	at	the	end,	for	containers	that	have	a
push_back()	method:

								std::vector<int>	v{	1,2,3,4,5	};

								std::fill_n(std::back_inserter(v),	3,	0);

								//	v={1,2,3,4,5,0,0,0}

std::front_inserter()	to	insert	elements	at	the	beginning,	for	containers	that
have	a	push_front()	method:

								std::list<int>	l{	1,2,3,4,5	};

								std::fill_n(std::front_inserter(l),	3,	0);

								//	l={0,0,0,1,2,3,4,5}

std::inserter()	to	insert	anywhere	in	a	container,	for	containers	that	have	an
insert()	method:

								std::vector<int>	v{	1,2,3,4,5	};

								std::fill_n(std::inserter(v,	v.begin()),	3,	0);

								//	v={0,0,0,1,2,3,4,5}

								std::list<int>	l{	1,2,3,4,5	};

								auto	it	=	l.begin();

								std::advance(it,	3);

								std::fill_n(std::inserter(l,	it),	3,	0);

								//	l={1,2,3,0,0,0,4,5}



How	it	works...
std::back_inserter(),	std::front_inserter(),	and	std::inserter()	are	all	helper	functions
that	create	iterator	adapters	of	types,	std::back_insert_iterator,
std::front_insert_iterator,	and	std::insert_iterator.	These	are	all	output	iterators	that
append,	prepend,	or	insert	into	the	container	for	which	they	were	constructed.
Incrementing	and	dereferencing	these	iterators	does	not	do	anything.	However,
upon	assignment,	these	iterators	call	the	following	methods	from	the	container:

std::back_insterter_iterator	calls	push_back()
std::front_inserter_iterator	calls	push_front()
std::insert_iterator	calls	insert()

The	following	is	the	over-simplified	implementation	of	std::back_inserter_iterator:

				template<class	C>

				class	back_insert_iterator	{

				public:

						typedef	back_insert_iterator<C>	T;

						typedef	typename	C::value_type	V;

						explicit	back_insert_iterator(	C&	c	)	:container(	&c	)	{	}

						T&	operator=(	const	V&	val	)	{	

								container->push_back(	val	);

								return	*this;

						}

						T&	operator*()	{	return	*this;	}

						T&	operator++()	{	return	*this;	}

						T&	operator++(	int	)	{	return	*this;	}

						protected:

						C*	container;

				};

Because	of	the	way	the	assignment	operator	works,	these	iterators	can	only	be
used	with	some	standard	containers:

std::back_insert_iterator	can	be	used	with	std::vector,	std::list,	std::deque,	and
std::basic_string.
std::front_insert_iterator	can	be	used	with	std::list,	std::forward_list,	and
std:deque.



std::insert_iterator	can	be	used	with	all	the	standard	containers.

The	following	example	inserts	three	elements	with	the	value	0	at	the	beginning
of	an	std::vector:

				std::vector<int>	v{	1,2,3,4,5	};

				std::fill_n(std::inserter(v,	v.begin()),	3,	0);

				//	v={0,0,0,1,2,3,4,5}

The	std::inserter()	adapter	takes	two	arguments:	the	container,	and	the	iterator
where	an	element	is	supposed	to	be	inserted.	Upon	calling	insert()	on	the
container,	the	std::insert_iterator	increments	the	iterator,	so	upon	being	assigned
again,	it	can	insert	a	new	element	into	the	next	position.	Here	is	how	the
assignment	operator	is	implemented	for	this	iterator	adapter:

				T&	operator=(const	V&	v)

				{		

						iter	=	container->insert(iter,	v);

						++iter;

						return	(*this);

				}



There's	more...
These	iterator	adapters	are	intended	to	be	used	with	algorithms	or	functions	that
insert	multiple	elements	into	a	range.	They	can	be	used,	of	course,	to	insert	a
single	element,	but	that	is	rather	an	anti-pattern,	since	simply	calling	push_back(),
push_front(),	or	insert()	is	much	simpler	and	intuitive	in	this	case.	The	following
examples	should	be	avoided:

				std::vector<int>	v{	1,2,3,4,5	};

				*std::back_inserter(v)	=	6;	//	v	=	{1,2,3,4,5,6}

				std::back_insert_iterator<std::vector<int>>	it(v);

				*it	=	7;																				//	v	=	{1,2,3,4,5,6,7}



See	also
Using	set	operations	on	a	range



Writing	your	own	random	access
iterator
In	the	first	chapter,	we	saw	how	we	can	enable	range-based	for	loops	for	custom
types	by	implementing	iterators	and	free	begin()	and	end()	functions	to	return
iterators	to	the	first	and	one-past-the-last	element	of	the	custom	range.
You	might	have	noticed	that	the	minimal	iterator	implementation	that	we
provided	in	that	recipe	does	not	meet	the	requirements	for	a	standard
iterator	because	it	cannot	be	copy	constructible	or	assigned	and	cannot	be
incremented.	In	this	recipe,	we	will	build	upon	that	example	and	show	how	to
create	a	random	access	iterator	that	meets	all	requirements.



Getting	ready
For	this	recipe,	you	should	know	the	types	of	iterators	the	standard	defines	and
how	they	are	different.	A	good	overview	of	their	requirements	is	available	at	http:
//www.cplusplus.com/reference/iterator/.

To	exemplify	how	to	write	a	random	access	iterator,	we	will	consider	a	variant
of	the	dummy_array	class	used	in	the	Enabling	range-based	for	loops	for	custom
types	recipe	of	Chapter	1,	Learning	Modern	Core	Language	Features.	This	is	a
very	simple	array	concept,	with	no	practical	value,	other	than	serving	as	a	code
base	for	demonstrating	iterators:

				template	<typename	Type,	size_t	const	SIZE>

				class	dummy_array

				{

						Type	data[SIZE]	=	{};

				public:

						Type&	operator[](size_t	const	index)

						{

								if	(index	<	SIZE)	return	data[index];

								throw	std::out_of_range("index	out	of	range");

						}

					Type	const	&	operator[](size_t	const	index)	const

					{

							if	(index	<	SIZE)	return	data[index];

							throw	std::out_of_range("index	out	of	range");

					}

						size_t	size()	const	{	return	SIZE;	}

				};

All	the	code	shown	in	the	next	section,	the	iterator	classes,	typedefs,	and	the
begin()	and	end()	functions,	will	be	a	part	of	this	class.

http://www.cplusplus.com/reference/iterator/


How	to	do	it...
To	provide	mutable	and	constant	random	access	iterators	for	the	dummy_array	class
shown	in	the	previous	section,	add	the	following	members	to	the	class:

An	iterator	class	template,	which	is	parameterized	with	the	type	of	elements
and	the	size	of	the	array.	The	class	must	have	the	following	public	typedefs
that	define	standard	synonyms:

								template	<typename	T,	size_t	const	Size>

								class	dummy_array_iterator

								{

								public:

										typedef	dummy_array_iterator												self_type;

										typedef	T																															value_type;

										typedef	T&																														reference;

										typedef	T*																														pointer;

										typedef	std::random_access_iterator_tag	iterator_category;

										typedef	ptrdiff_t																							difference_type;

								};

Private	members	for	the	iterator	class:	a	pointer	to	the	array	data	and	a
current	index	into	the	array:

								private:

											pointer	ptr	=	nullptr;

											size_t	index	=	0;

Private	method	for	the	iterator	class	to	check	whether	two	iterator	instances
point	to	the	same	array	data:

								private:

										bool	compatible(self_type	const	&	other)	const

										{

												return	ptr	==	other.ptr;

										}

An	explicit	constructor	for	the	iterator	class:

								public:

											explicit	dummy_array_iterator(pointer	ptr,	

																																									size_t	const	index)	

													:	ptr(ptr),	index(index)	{	}

Iterator	class	members	to	meet	common	requirements	for	all	iterators:	copy-
constructible,	copy-assignable,	destructible,	prefix,	and	postfix



incrementable.	In	this	implementation,	the	post	increment	operator	is
implemented	in	terms	of	the	pre-increment	operator	to	avoid	code
duplication:

								dummy_array_iterator(dummy_array_iterator	const	&	o)	

											=	default;

								dummy_array_iterator&	operator=(dummy_array_iterator	const	&	o)	

											=	default;

								~dummy_array_iterator()	=	default;

								self_type	&	operator++	()

								{

											if	(index	>=	Size)	

													throw	std::out_of_range("Iterator	cannot	be	incremented	past	

																																						the	end	of	range.");

										++index;

										return	*this;

								}

								self_type	operator++	(int)

								{

										self_type	tmp	=	*this;

										++*this;

										return	tmp;

								}

Iterator	class	members	to	meet	input	iterator	requirements:	test	for
equality/inequality,	dereferenceable	as	rvalues:

								bool	operator==	(self_type	const	&	other)	const

								{

										assert(compatible(other));

										return	index	==	other.index;

								}

								bool	operator!=	(self_type	const	&	other)	const

								{

										return	!(*this	==	other);

								}

								reference	operator*	()	const

								{

										if	(ptr	==	nullptr)

												throw	std::bad_function_call();

										return	*(ptr	+	index);

								}

								reference	operator->	()	const

								{

										if	(ptr	==	nullptr)

												throw	std::bad_function_call();

										return	*(ptr	+	index);

								}

Iterator	class	members	to	meet	forward	iterator	requirements:	default
constructible:

								dummy_array_iterator()	=	default;



								dummy_array_iterator()	=	default;

Iterator	class	members	to	meet	bidirectional	iterator	requirements:
decrementable:

								self_type	&	operator--()

								{

										if	(index	<=	0)	

												throw	std::out_of_range("Iterator	cannot	be	decremented	

																																					past	the	end	of	range.");

										--index;

										return	*this;

								}

								self_type	operator--(int)

								{

										self_type	tmp	=	*this;

										--*this;

										return	tmp;

								}

Iterator	class	members	to	meet	random	access	iterator	requirements:
arithmetic	add	and	subtract,	comparable	for	inequality	with	other	iterators,
compound	assignments,	and	offset	dereferenceable:

								self_type	operator+(difference_type	offset)	const

								{

										self_type	tmp	=	*this;

										return	tmp	+=	offset;

								}

								self_type	operator-(difference_type	offset)	const

								{

										self_type	tmp	=	*this;

										return	tmp	-=	offset;

								}

								difference_type	operator-(self_type	const	&	other)	const

								{

										assert(compatible(other));

										return	(index	-	other.index);

								}

								bool	operator<(self_type	const	&	other)	const

								{

										assert(compatible(other));

										return	index	<	other.index;

								}

								bool	operator>(self_type	const	&	other)	const

								{

										return	other	<	*this;

								}

								bool	operator<=(self_type	const	&	other)	const

								{

										return	!(other	<	*this);

								}

								bool	operator>=(self_type	const	&	other)	const



								bool	operator>=(self_type	const	&	other)	const

								{

										return	!(*this	<	other);

								}

								self_type	&	operator+=(difference_type	const	offset)

								{

										if	(index	+	offset	<	0	||	index	+	offset	>	Size)

												throw	std::out_of_range("Iterator	cannot	be	incremented	

																																					past	the	end	of	range.");

										index	+=	offset;

										return	*this;

								}

								self_type	&	operator-=(difference_type	const	offset)

								{

										return	*this	+=	-offset;

								}

								value_type	&	operator[](difference_type	const	offset)

								{

										return	(*(*this	+	offset));

								}

								value_type	const	&	operator[](difference_type	const	offset)	const

								{

										return	(*(*this	+	offset));

								}

Add	typedefs	to	the	dummy_array	class	for	mutable	and	constant	iterator
synonyms:

								public:

											typedef	dummy_array_iterator<Type,	SIZE>	

																			iterator;

											typedef	dummy_array_iterator<Type	const,	SIZE>	

																			constant_iterator;

Add	the	public	begin()	and	end()	functions	to	the	dummy_array	class	to	return	the
iterators	to	the	first	and	one-past-last	elements	in	the	array:

								iterator	begin()	

								{

										return	iterator(data,	0);

								}

								iterator	end()

								{

										return	iterator(data,	SIZE);

								}

								constant_iterator	begin()	const

								{

										return	constant_iterator(data,	0);

								}

								constant_iterator	end()	const

								{

										return	constant_iterator(data,	SIZE);

								}



								}



How	it	works...
The	standard	library	defines	five	categories	of	iterators:

Input	iterators:	These	are	the	simplest	category	and	guarantee	validity	only
for	single-pass	sequential	algorithms.	After	being	incremented,	the	previous
copies	may	become	invalid.
Output	iterators:	These	are	basically	input	iterators	that	can	be	used	to	write
to	the	pointed	element.
Forward	iterators:	These	can	read	(and	write)	data	to	the	pointed
element.	They	satisfy	the	requirements	for	input	iterators	and,	in	addition,
must	be	default	constructible	and	must	support	multi-pass	scenarios	without
invalidating	the	previous	copies.
Bidirectional	iterators:	These	are	forward	iterators	that,	in	addition,	support
decrementing,	so	they	can	move	in	both	directions.
Random	access	iterators:	These	support	access	to	any	element	in	the
container	in	constant	time.	They	implement	all	the	requirements	for
bidirectional	iterators,	and,	in	addition,	support	arithmetic	operations	+	and	-
,	compound	assignments	+=	and	-=,	comparisons	with	other	iterators	with	<,
<=,	>,	>=,	and	the	offset	dereference	operator.

Forward,	bidirectional,	and	random	access	iterators	that	also	implement	the
requirements	of	output	iterators	are	called	mutable	iterators.

In	the	previous	section,	we	saw	how	to	implement	random	access	iterators,	with
a	step-by-step	walkthrough	of	the	requirements	of	each	category	of	iterators	(as
each	iterator	category	includes	the	requirements	of	the	previous	category	and
adds	new	requirements).	The	iterator	class	template	is	common	for	both	constant
and	mutable	iterators,	and	we	have	defined	two	synonyms	for	it	called	iterator
and	constant_iterator.

After	implementing	the	inner	iterator	class	template,	we	also	defined	the	begin()
and	end()	member	functions	that	return	an	iterator	to	the	first	and	the	one-past-
last	element	in	the	array.	These	methods	have	overloads	to	return	mutable	or
constant	iterators,	depending	on	whether	the	dummy_array	class	instance	is	mutable



or	constant.

With	this	implementation	of	the	dummy_array	class	and	its	iterators,	we	can	write
the	following	samples.	For	more	examples,	check	the	source	code	that
accompanies	this	book:

				dummy_array<int,	3>	a;

				a[0]	=	10;

				a[1]	=	20;

				a[2]	=	30;

				std::transform(a.begin(),	a.end(),	a.begin(),	

																			[](int	const	e)	{return	e	*	2;	});

				for	(auto&&	e	:	a)	std::cout	<<	e	<<	std::endl;

				auto	lp	=	[](dummy_array<int,	3>	const	&	ca)

				{

						for	(auto	const	&	e	:	ca)	

								std::cout	<<	e	<<	std::endl;

				};

				lp(a);

				dummy_array<std::unique_ptr<Tag>,	3>	ta;

				ta[0]	=	std::make_unique<Tag>(1,	"Tag	1");

				ta[1]	=	std::make_unique<Tag>(2,	"Tag	2");

				ta[2]	=	std::make_unique<Tag>(3,	"Tag	3");

				for	(auto	it	=	ta.begin();	it	!=	ta.end();	++it)

						std::cout	<<	it->id	<<	"	"	<<	it->name	<<	std::endl;



There's	more...
Apart	from	begin()	and	end(),	a	container	may	have	additional	methods	such
as	cbegin()/cend()	(for	constant	iterators),	rbegin()/rend()	(for	mutable	reverse
iterators),	and	crbegin()/	crend()	(for	constant	reverse	iterators).	Implementing	this
is	left	as	an	exercise	for	you.

On	the	other	hand,	in	modern	C++,	these	functions	that	return	the	first	and	last
iterators	do	not	have	to	be	member	functions	but	can	be	provided	as	non-
member	functions.	In	fact,	this	is	the	topic	of	the	next	recipe,	Container	access
with	non-member	functions.



See	also
Enabling	range-based	for	loops	for	custom	types	recipe	of	Chapter	1,
Learning	Modern	Core	Language	Features
Creating	type	aliases	and	alias	templates	recipe	of	Chapter	1,	Learning
Modern	Core	Language	Features



Container	access	with	non-member
functions
Standard	containers	provide	the	begin()	and	end()	member	functions	for	retrieving
iterators	to	the	first	and	one-past-last	element	of	the	container.	There	are	actually
four	sets	of	these	functions.	Apart	from	begin()/end(),	containers	provide
cbegin()/cend()	to	return	constant	iterators,	rbegin()/rend()	to	return	mutable	reverse
iterators,	and	crbegin()/crend()	to	return	constant	reverse	iterators.	In
C++11/C++14,	all	these	have	non-member	equivalents	that	work	with	standard
containers,	C-like	arrays,	and	any	custom	type	that	specializes	them.	In	C++17,
even	more	non-member	functions	have	been	added;	std::data()--that	returns	a
pointer	to	the	block	of	memory	containing	the	elements	of	the	container,
std::size()--that	returns	the	size	of	a	container	or	array,	and	std::empty()--that
returns	whether	the	given	container	is	empty.		These	non-member	functions	are
intended	for	generic	code	but	can	be	used	anywhere	in	your	code.



Getting	ready
In	this	recipe,	we	will	use	as	an	example,	the	dummy_array	class	and	its	iterators	that
we	implemented	in	the	previous	recipe,	Writing	your	own	random	access
iterator.	You	should	read	that	recipe	before	continuing	with	this	one.

Non-member	begin()/end()	functions	and	the	other	variants,	as	well	as	non-
member	data(),	size()	and	empty()	are	available	in	the	std	namespace	in
the	<iterator>	header,	which	is	implicitly	included	with	any	of	the	following
headers:	<array>,	<deque>,	<forward_list>,	<list>,	<map>,	<regex>,	<set>,	<string>,
<unordered_map>,	<unordered_set>,	and	<vector>.

In	this	recipe,	we	will	refer	to	the	std::begin()/std::end()	functions,	but	everything
discussed	also	applies	to	the	other	functions:	std::cbegin()/std::cend(),
std::rbegin()/std::rend(),	and	std::crbegin()/std::crend().



How	to	do	it...
Use	the	non-member	std::begin()/std::end()	function	and	the	other	variants,	as
well	as	std::data(),	std::size()	and	std::empty()		with:

Standard	containers:

								std::vector<int>	v1{	1,	2,	3,	4,	5	};

								auto	sv1	=	std::size(v1);		//	sv1	=	5

								auto	ev1	=	std::empty(v1);	//	ev1	=	false

								auto	dv1	=	std::data(v1);		//	dv1	=	v1.data()

								for	(auto	i	=	std::begin(v1);	i	!=	std::end(v1);	++i)

										std::cout	<<	*i	<<	std::endl;

								std::vector<int>	v2;

								std::copy(std::cbegin(v1),	std::cend(v1),

																		std::back_inserter(v2));

(C-like)	arrays:

								int	a[5]	=	{	1,	2,	3,	4,	5	};

								auto	pos	=	std::find_if(std::crbegin(a),	std::crend(a),	

																																[](int	const	n)	{return	n	%	2	==	0;	});

								auto	sa	=	std::size(a);		//	sa	=	5

								auto	ea	=	std::empty(a);	//	ea	=	false

								auto	da	=	std::data(a);		//	da	=	a

Custom	types	that	provide	corresponding	member	functions,	begin()/end(),
data(),	empty(),	or	size():

								dummy_array<std::string,	5>	sa;

								dummy_array<int,	5>	sb;

								sa[0]	=	"1"s;

								sa[1]	=	"2"s;

								sa[2]	=	"3"s;

								sa[3]	=	"4"s;

								sa[4]	=	"5"s;

								std::transform(

										std::begin(sa),	std::end(sa),	

										std::begin(sb),	

										[](std::string	const	&	s)	{return	std::stoi(s);	});

								//	sb	=	[1,	2,	3,	4,	5]

								auto	sa_size	=	std::size(sa);	//	sa_size	=	5

Generic	code	where	the	type	of	the	container	is	not	known:

								template	<typename	F,	typename	C>

								void	process(F&&	f,	C	const	&	c)

								{



								{

										std::for_each(std::begin(c),	std::end(c),	

																								std::forward<F>(f));

								}

								auto	l	=	[](auto	const	e)	{std::cout	<<	e	<<	std::endl;	};

								process(l,	v1);	//	std::vector<int>

								process(l,	a);		//	int[5]

								process(l,	sa);	//	dummy_array<std::string,	5>



How	it	works...
These	non-member	functions	were	introduced	in	different	versions	of	the
standard,	but	all	of	them	were	modified	in	C++17	to	return	constexpr	auto:

std::begin()	and	std::end()	in	C++11
std::cbegin()/std::cend(),	std::rbegin()/std::rend(),	and	std::crbegin()/std::crend()
in	C++14
std::data(),	std::size(),	and	std::empty()	in	C++17

The	begin()/end()	family	of	functions	have	overloads	for	container	classes	and
arrays,	and	all	they	do	is	the	following:

Return	the	results	of	calling	the	container-corresponding	member	function
for	containers.
Return	a	pointer	to	the	first	or	one-past-last	element	of	the	array	for	arrays.

The	actual	typical	implementation	for	std::begin()/std::end()	is	the	following:

				template<class	C>

				constexpr	auto	inline	begin(C&	c)	->	decltype(c.begin())

				{

						return	c.begin();

				}

				template<class	C>

				constexpr	auto	inline	end(C&	c)	->	decltype(c.end())

				{

						return	c.end();

				}

				template<class	T,	std::size_t	N>

				constexpr	T*	inline	begin(T	(&array)[N])

				{

						return	array;

				}

				template<class	T,	std::size_t	N>

				constexpr	T*	inline	begin(T	(&array)[N])

				{

						return	array+N;

				}

Custom	specialization	can	be	provided	for	containers	that	do	not	have
corresponding	begin()/end()	members	but	can	still	be	iterated.	The	standard	library



actually	provides	such	specializations	for	std::initializer_list	and	std::valarray.

Specializations	must	be	defined	in	the	same	namespace	where	the
original	class	or	function	template	has	been	defined.	Therefore,	if
you	want	to	specialize	any	of	the	std::begin()/std::end()	pairs	you
must	do	it	in	the	std	namespace.

The	other	non-member	functions	for	container	access,	that	were	introduced	in
C++17,	have	also	several	overloads:

std::data()	has	several	overloads;	for	a	class	C	it	returns	c.data(),	for	arrays	it
returns	the	array,	and	for	std::initializer_list<T>	it	returns	the	il.begin().

								template	<class	C>	

								constexpr	auto	data(C&	c)	->	decltype(c.data())

								{

										return	c.data();

								}

								template	<class	C>	

								constexpr	auto	data(const	C&	c)	->	decltype(c.data())

								{

										return	c.data();

								}

								template	<class	T,	std::size_t	N>

								constexpr	T*	data(T	(&array)[N])	noexcept

								{

										return	array;

								}

								template	<class	E>	

								constexpr	const	E*	data(std::initializer_list<E>	il)	noexcept

								{

										return	il.begin();

								}

std::size()	has	two	overloads;	for	a	class	C	it	returns	c.size(),	and	for	arrays	it
returns	the	size	N.

								template	<class	C>	

								constexpr	auto	size(const	C&	c)	->	decltype(c.size())

								{

										return	c.size();

								}

								template	<class	T,	std::size_t	N>

								constexpr	std::size_t	size(const	T	(&array)[N])	noexcept

								{

										return	N;

								}



std::empty()	has	several	overloads;	for	a	class	C	it	returns	c.empty(),	for	arrays
it	returns	false,	and	for	std::initializer_list<T>	it	returns	il.size()	==	0.

								template	<class	C>	

								constexpr	auto	empty(const	C&	c)	->	decltype(c.empty())

								{

										return	c.empty();

								}

								template	<class	T,	std::size_t	N>	

								constexpr	bool	empty(const	T	(&array)[N])	noexcept

								{

										return	false;

								}

	

								template	<class	E>	

								constexpr	bool	empty(std::initializer_list<E>	il)	noexcept

								{

										return	il.size()	==	0;

								}



There's	more...
These	non-member	functions	are	mainly	intended	for	template	code	where	the
container	is	not	known	and	can	be	a	standard	container,	a	C-like	array,	or	a
custom	type.	Using	the	non-member	version	of	these	functions	enables	us	to
write	simpler	and	less	code	that	works	with	all	these	types	of	containers.

However,	the	use	of	these	functions	is	not	and	should	not	be	limited	to	generic
code.	Though	it	is	rather	a	matter	of	personal	preference,	it	can	be	a	good	habit
to	be	consistent	and	use	them	everywhere	in	your	code.	All	these	methods	have
lightweight	implementations	that	will	most	likely	be	inlined	by	the	compiler,
which	means	that	there	will	be	no	overhead	at	all	over	using	the	corresponding
member	functions.



See	also
Writing	your	own	random	access	iterator



General	Purpose	Utilities
The	recipes	included	in	this	chapter	are	as	follows:

Expressing	time	intervals	with	chrono::duration
Measuring	function	execution	time	with	a	standard	clock
Generating	hash	values	for	custom	types
Using	std::any	to	store	any	value
Using	std::optional	to	store	optional	values
Using	std::variant	as	a	type-safe	union
Visiting	a	std::variant
Registering	a	function	to	be	called	when	a	program	exits	normally
Using	type	traits	to	query	properties	of	types
Writing	your	own	type	traits
Using	std::conditional	to	choose	between	types



Introduction
The	standard	library	contains	many	general	purpose	utilities	and	libraries	beyond
the	containers,	algorithms,	and	iterators	discussed	in	the	previous	chapter.	This
chapter	is	focused	on	three	areas:	the	chrono	library	for	working	with	dates	and
times,	type	traits	that	provide	meta-information	about	other	times,	and	the	new
C++17	types	std::any,	std::optional,	and	std::variant.



Expressing	time	intervals	with
chrono::duration
Working	with	times	and	dates	is	a	common	operation	regardless	of	the
programming	language.	C++11	provides	a	flexible	date	and	time	library	as	part
of	the	standard	library	that	enables	us	to	define	time	points	and	time	intervals.
This	library,	called	chrono,	is	a	general	purpose	utility	library	designed	to	work
with	a	timer	and	clocks	that	can	be	different	on	different	systems	and,	therefore,
be	precision-neutral.	The	library	is	available	in	the	<chrono>	header	in
the	std::chrono	namespace	and	defines	and	implements	several	components,	as
follows:

Durations	that	represent	time	intervals.
Time	points	that	present	a	duration	of	time	since	the	epoch	of	a	clock.
Clocks	that	define	an	epoch	(that	is,	start	of	time)	and	a	tick.

In	this	recipe,	we	will	see	how	to	work	with	durations.



Getting	ready
This	recipe	is	not	intended	as	a	complete	reference	to	the	duration	class.	It	is
recommended	that	you	consult	additional	resources	for	that	purpose	(the	library
reference	documentation	is	available	at	http://en.cppreference.com/w/cpp/chrono).

In	the	chrono	library,	a	time	interval	is	represented	by	a	std::chrono::duration	class.

http://en.cppreference.com/w/cpp/chrono


How	to	do	it...
To	work	with	time	intervals,	use	the	following:

std::chrono::duration	typedefs	for	hours,	minutes,	seconds,	milliseconds,
microseconds,	and	nanoseconds:

								std::chrono::hours								half_day(12);

								std::chrono::minutes						half_hour(30);

								std::chrono::seconds						half_minute(30);

								std::chrono::milliseconds	half_second(500);

								std::chrono::microseconds	half_millisecond(500);

								std::chrono::nanoseconds		half_microsecond(500);

Use	the	standard	user-defined	literal	operators	from	C++14,	available	in	the
namespace	std::chrono_literals	for	creating	durations	of	hours,	minutes,
seconds,	milliseconds,	microseconds,	and	nanoseconds:

								using	namespace	std::chrono_literals;

								auto	half_day									=	12h;

								auto	half_hour								=	30min;

								auto	half_minute						=	30s;

								auto	half_second						=	500ms;

								auto	half_millisecond	=	500us;

								auto	half_microsecond	=	500ns;

Use	direct	conversion	from	a	lower	precision	duration	to	a	higher	precision
duration:

								std::chrono::hours	half_day_in_h(12);

								std::chrono::minutes	half_day_in_min(half_day_in_h);

								std::cout	<<	half_day_in_h.count()	<<	"h"	<<	std::endl;				//12h

								std::cout	<<	half_day_in_min.count()	<<	"min"	<<	std::endl;//720min

Use	std::chrono::duration_cast	to	convert	from	a	higher	precision	to	a	lower
precision	duration:

								using	namespace	std::chrono_literals;

								auto	total_seconds	=	12345s;

								auto	hours	=

											std::chrono::duration_cast<std::chrono::hours>

														(total_seconds);

								auto	minutes	=

											std::chrono::duration_cast<std::chrono::minutes>

														(total_seconds	%	1h);

								auto	seconds	=

											std::chrono::duration_cast<std::chrono::seconds>



											std::chrono::duration_cast<std::chrono::seconds>

														(total_seconds	%	1min);

								std::cout	<<	hours.count()	<<	':'

																		<<	minutes.count()	<<	':'

																		<<	seconds.count()	<<	std::endl;	//	3:25:45

Use	the	conversion	functions	floor(),	round(),	and	ceil()	available	in	C++17
when	rounding	is	necessary:

								using	namespace	std::chrono_literals;

								auto	total_seconds	=	12345s;

								auto	m1	=	std::chrono::floor<std::chrono::minutes>(total_seconds);	

								//	205	min

								auto	m2	=	std::chrono::round<std::chrono::minutes>(total_seconds);	

								//	206	min

								auto	m3	=	std::chrono::ceil<std::chrono::minutes>(total_seconds);		

								//	206	min

								auto	sa	=	std::chrono::abs(total_seconds);

Use	arithmetic	operations,	compound	assignments,	and	comparison
operations	to	modify	and	compare	time	intervals:

								using	namespace	std::chrono_literals;

								auto	d1	=	1h	+	23min	+	45s;	//	d1	=	5025s

								auto	d2	=	3h	+	12min	+	50s;	//	d2	=	11570s

								if	(d1	<	d2)	{	/*	do	something	*/	}



How	it	works...
The	std::chrono::duration	class	defines	a	number	of	ticks	(the	increment	between
two	moments	in	time)	over	a	unit	of	time.	The	default	unit	is	the	second,	and	for
expressing	other	units,	such	as	minutes	or	milliseconds,	we	need	to	use	a	ratio.
For	units	greater	than	the	second,	the	ratio	is	greater	than	one,	such	as	ratio<60>
for	minutes.	For	units	smaller	than	the	second,	the	ratio	is	smaller	than	one,	such
as	ratio<1,	1000>	for	milliseconds.	The	number	of	ticks	can	be	retrieved	with
the	count()	member	function.

The	standard	library	defines	several	type	synonyms	for	durations	of
nanoseconds,	microseconds,	milliseconds,	seconds,	minutes,	and	hours	that	we
used	in	the	first	example	in	the	previous	section.	The	following	code	shows	how
these	durations	are	defined	in	the	chrono	namespace:

				namespace	std	{

						namespace	chrono	{

								typedef	duration<long	long,	ratio<1,	1000000000>>	nanoseconds;

								typedef	duration<long	long,	ratio<1,	1000000>>	microseconds;

								typedef	duration<long	long,	ratio<1,	1000>>	milliseconds;

								typedef	duration<long	long>	seconds;

								typedef	duration<int,	ratio<60>	>	minutes;

								typedef	duration<int,	ratio<3600>	>	hours;

						}

				}

However,	with	this	flexible	definition,	we	can	express	time	intervals	such	as	1.2
sixths	of	a	minute	(which	means	12	seconds),	where	1.2	is	the	number	of	ticks	of
the	duration	and	ratio<10>	(as	in	60/6)	is	the	time	unit:

				std::chrono::duration<double,	std::ratio<10>>	d(1.2);	//	12	sec

In	C++14,	several	standard	user-defined	literal	operators	have	been	added	to	the
namespace	std::chrono_literals.	This	makes	it	easier	to	define	durations,	but	you
must	include	the	namespace	in	the	scope	where	you	want	to	use	the	literal
operators.

You	should	only	include	namespaces	for	user-defined	literal
operators	in	the	scope	where	you	want	to	use	them,	and	not	in
larger	scopes,	in	order	to	avoid	conflict	with	other	operators	with
the	same	name	from	different	libraries	and	namespaces.



the	same	name	from	different	libraries	and	namespaces.

All	arithmetic	operations	are	available	for	the	duration	class.	It	is	possible	to	add
and	subtract	durations,	multiply	or	divide	them	by	a	value,	or	apply	the	modulo
operation.	However,	it	is	important	to	note	that	when	two	durations	of	different
time	units	are	added	or	subtracted,	the	result	is	a	duration	of	the	greatest
common	divisor	of	the	two	time	units.	That	means	that	if	you	add	a	duration
representing	seconds	and	a	duration	representing	minutes,	the	result	is	a	duration
representing	seconds.

Conversion	from	a	duration	with	a	less	precise	time	unit	to	a	duration	with	a
more	precise	time	unit	is	done	implicitly.	On	the	other	hand,	conversion	from	a
more	precise	to	a	less	precise	time	unit	requires	an	explicit	cast.	This	is	done
with	the	non-member	function	std::chrono::duration_cast().	In	the	How	to	do	it...
section,	we	have	seen	an	example	for	determining	the	number	of	hours,	minutes,
and	seconds	of	a	given	duration	expressed	in	seconds.

C++17	has	added	several	more	non-member	conversion	functions	that	perform
duration	casting	with	rounding:	floor()	to	round	down,	ceil()	to	round	up,	and
round()	to	round	to	the	nearest.	Also,	C++17	added	a	non-member	function	abs()
to	retain	the	absolute	value	of	a	duration.



There's	more...
chrono	is	a	general	purpose	library,	and	because	of	that,	it	lacks	many	useful
particular	features,	such	as	expressing	a	date	with	the	year,	month,	and	day	parts,
working	with	time	zones	and	calendars,	and	many	others.	Third-party	libraries
can	implement	these	features	and	a	recommended	one	is	Howard	Hinnant's	date
library	available	under	an	MIT	license	at	https://github.com/HowardHinnant/date.

https://github.com/HowardHinnant/date


See	also
Measuring	function	execution	time	with	a	standard	clock



Measuring	function	execution	time
with	a	standard	clock
In	the	previous	recipe,	we	saw	how	to	work	with	time	intervals	using	the
chrono	standard	library.	However,	we	also	often	need	to	handle	time	points.	The
chrono	library	provides	such	a	component,	representing	a	duration	of	time	since
the	epoch	of	a	clock	(that	is,	the	beginning	of	time	as	defined	by	a	clock).	In	this
recipe,	we	will	see	how	to	use	the	chrono	library	and	time	points	to	measure	the
execution	of	a	function.



Getting	ready
This	recipe	is	tightly	related	to	the	preceding	one,	Expressing	time	intervals	with
chrono::duration.	If	you	did	not	go	through	that	recipe	before,	you	should	do
that	before	continuing	with	this	one.

For	the	examples	in	this	recipe,	we	will	consider	the	following	function	that	does
nothing,	but	takes	some	time	to	execute:

				void	func(int	const	count	=	100000000)

				{

						for	(int	i	=	0;	i	<	count;	++i);

				}



How	to	do	it...
To	measure	the	execution	of	a	function,	you	must	perform	the	following	steps:

1.	 Retrieve	the	current	moment	of	time	using	a	standard	clock:

								auto	start	=	std::chrono::high_resolution_clock::now();

2.	 Call	the	function	you	want	to	measure:

								func();

3.	 Retrieve	the	current	moment	of	time	again;	the	difference	between	the	two
is	the	execution	time	of	the	function:

								auto	diff	=	std::chrono::high_resolution_clock::now()	-	start;

4.	 Convert	the	difference	(that	is	expressed	in	nanoseconds)	to	the	actual
resolution	you	are	interested	in:

								std::cout	<<	std::chrono::duration<double,std::milli>(diff).count()

																		<<	"ms"	<<	std::endl;

								std::cout	<<	std::chrono::duration<double,std::nano>(diff).count()

																		<<	"ns"	<<	std::endl;

To	implement	this	pattern	in	a	reusable	component,	perform	the	following	steps:

1.	 Create	a	class	template	parameterized	with	the	resolution	and	the	clock.
2.	 Create	a	static	variadic	function	template	that	takes	a	function	and	its

arguments.
3.	 Implement	the	pattern	shown	above,	invoking	the	function	with	its

arguments.
4.	 Return	a	duration,	not	the	number	of	ticks.

				template	<typename	Time	=	std::chrono::microseconds,

														typename	Clock	=	std::chrono::high_resolution_clock>

				struct	perf_timer

				{

						template	<typename	F,	typename...	Args>

						static	Time	duration(F&&	f,	Args...	args)

						{

								auto	start	=	Clock::now();

								std::invoke(std::forward<F>(f),	std::forward<Args>(args)...);



								auto	end	=	Clock::now();

								return	std::chrono::duration_cast<Time>(end	-	start);

						}

				};



How	it	works...
A	clock	is	a	component	that	defines	two	things:

A	beginning	of	time	called	epoch;	there	is	no	constraint	of	what	the	epoch
is,	but	typical	implementations	use	January	1,	1970.
A	tick	rate	that	defines	the	increment	between	two	time	points	(such	as	a
millisecond	or	nanosecond).

A	time	point	is	a	duration	of	time	since	the	epoch	of	a	clock.	There	are	several
time	points	that	are	of	particular	importance:

The	current	time,	returned	by	the	clock's	static	member	now().
The	epoch,	or	the	beginning	of	time;	this	is	the	time	point	created	by	the
default	constructor	of	time_point	for	a	particular	clock.
The	minimum	time	that	can	be	represented	by	a	clock,	returned	by	the	static
member	min()	of	time_point.
The	maximum	time	that	can	be	represented	with	a	clock,	returned	by	the
static	member	max()	of	a	time	point.

The	standard	defines	three	types	of	clocks:

system_clock:	This	uses	the	real-time	clock	of	the	current	system	to	represent
time	points.
high_resolution_clock:	This	represents	a	clock	that	uses	the	shortest	possible
tick	period	on	the	current	system.
steady_clock:	This	indicates	a	clock	that	is	never	adjusted.	This	means	that,
unlike	the	other	clocks,	as	the	time	advances,	the	difference	between	two
time	points	is	always	positive.

The	following	example	prints	the	precision	of	each	clock,	regardless	of	whether
it	is	steady	(or	monotone)	or	not:

				template	<typename	T>

				void	print_clock()

				{

						std::cout	<<	"precision:	"	

																<<	(1000000.0	*	double(T::period::num))	/	(T::period::den)	

																<<	std::endl;



																<<	std::endl;

						std::cout	<<	"steady:	"	<<	T::is_steady	<<	std::endl;

				}

				print_clock<std::chrono::system_clock>();

				print_clock<std::chrono::high_resolution_clock>();

				print_clock<std::chrono::steady_clock>();

A	possible	output	is	the	following:

precision:	0.1

steady:	0

precision:	0.001

steady:	1

precision:	0.001

steady:	1

This	means	that	the	system_clock	has	a	resolution	of	0.1	milliseconds	and	is	not	a
monotone	clock.	On	the	other	hand,	the	other	two	clocks,	high_resolution_clock	and
steady_clock,	have	both	a	resolution	of	1	nanosecond	and	are	monotone	clocks.

The	steadiness	of	a	clock	is	important	when	measuring	the	execution	time	of	a
function,	because	if	the	clock	is	adjusted	while	the	function	runs,	the	result	will
not	yield	the	actual	execution	time,	and	values	can	even	be	negative.	You	should
rely	on	a	steady	clock	to	measure	the	function	execution	time.	The	typical	choice
for	that	is	the	high_resolution_clock,	and	that	was	the	clock	we	used	in	the
examples	in	the	How	to	do	it...	section.

When	we	measure	the	execution	time,	we	need	to	retrieve	the	current	time
before	making	the	call	and	after	the	call	returns.	For	that,	we	use	the	clock's	now()
static	method.	The	result	is	a	time_point;	when	we	subtract	two	time	points,	the
result	is	a	duration,	defined	by	the	duration	of	the	clock.

In	order	to	create	a	reusable	component	that	can	be	used	to	measure	the
execution	time	of	any	function,	we	have	defined	a	class	template	called
perf_timer.	This	class	template	is	parameterized	with	the	resolution	we	are
interested	in,	which,	by	default,	is	microseconds,	and	the	clock	we	want	to	use,
which,	by	default,	is	high_resolution_clock.	The	class	template	has	a	single	static
member	duration()--that	is	a	variadic	function	template--that	takes	a	function	to
execute	and	its	variable	number	of	arguments.	The	implementation	is	relatively
simple:	we	retrieve	the	current	time,	invoke	the	function	using	std::invoke	(so	that
it	handles	the	different	mechanisms	for	invoking	anything	callable),	and	then
retrieve	the	current	time	again.	The	return	value	is	a	duration	(with	the	defined
resolution):



				auto	t	=	perf_timer<>::duration(func,	100000000);

				std::cout	<<	std::chrono::duration<double,	std::milli>(t).count()	

														<<	"ms"	<<	std::endl;

				std::cout	<<	std::chrono::duration<double,	std::nano>(t).count()	

														<<	"ns"	<<	std::endl;

It	is	important	to	note	that	we	are	not	returning	a	number	of	ticks	from	the
duration()	function,	but	an	actual	duration	value.	The	reason	is	that	by	returning	a
number	of	ticks	we	lose	the	resolution,	and	won't	know	what	they	actually
represent.	It	is	better	to	call	count()	only	when	the	actual	count	of	ticks	is
necessary:

				auto	t1	=	perf_timer<std::chrono::nanoseconds>::duration(func1);

				auto	t2	=	perf_timer<std::chrono::microseconds>::duration(func2);

				auto	t3	=	perf_timer<std::chrono::milliseconds>::duration(func3);

				std::cout	

						<<	std::chrono::duration<double,	std::micro>(t1	+	t2	+	t3).count()	

						<<	"us"	<<	std::endl;



See	also
Expressing	time	intervals	with	chrono::duration
Uniformly	invoking	anything	callable	recipe	of	Chapter	3,	Exploring	functions



Generating	hash	values	for	custom
types
The	standard	library	provides	several	unordered	associative	containers:
std::unordered_set,	std::unordered_multiset,	std::unordered_map,	and	std::unordered_map.
These	containers	do	not	store	their	elements	in	a	particular	order;	instead,	they
are	grouped	in	buckets.	The	bucket	an	element	belongs	to	depends	on	the	hash
value	of	the	element.	These	standard	containers	use,	by	default,	the	std::hash
class	template	to	compute	the	hash	value.	The	specialization	for	all	basic	types
and	also	some	library	types	is	available.	However,	for	custom	types,	you	must
specialize	the	class	template	yourself.	This	recipe	will	show	you	how	to	do	that
and	also	explain	how	a	good	hash	value	can	be	computed.



Getting	ready
This	recipe	covers	hashing	functionalities	from	the	standard	library.	You	should
be	familiar	with	the	concepts	of	hashes	and	hash	functions.

For	the	examples	in	this	recipe,	we	will	use	the	following	class:

				struct	Item

				{

						int	id;

						std::string	name;

						double	value;

						Item(int	const	id,	std::string	const	&	name,	double	const	value)

								:id(id),	name(name),	value(value)

						{}

						bool	operator==(Item	const	&	other)	const

						{

								return	id	==	other.id	&&	name	==	other.name	&&	

															value	==	other.value;

						}

				};



How	to	do	it...
In	order	to	use	your	custom	types	with	the	unordered	associative	containers,	you
must	perform	the	following	steps:

1.	 Specialize	the	std::hash	class	template	for	your	custom	type;	the
specialization	must	be	done	in	the	std	namespace.

2.	 Define	synonyms	for	the	argument	and	result	type.
3.	 Implement	the	call	operator	so	that	it	takes	a	constant	reference	to	your	type

and	returns	a	hash	value.

To	compute	a	good	hash	value,	you	should	do	the	following:

1.	 Start	with	an	initial	value	that	should	be	a	prime	number	(for	example,	17).
2.	 For	each	field	that	is	used	to	determine	whether	two	instances	of	the	class

are	equal,	adjust	the	hash	value	according	to	the	following	formula:

								hashValue	=	hashValue	*	prime	+	hashFunc(field);

3.	 You	can	use	the	same	prime	number	for	all	fields	with	the	above	formula,
but	it	is	recommended	to	have	a	different	value	than	the	initial	value	(for
instance,	31).

4.	 Use	specialization	of	std::hash	to	determine	the	hash	value	for	class	data
members.

Based	on	the	steps	described	earlier,	the	std::hash	specialization	for	class	Item
looks	like	this:

				namespace	std

				{

						template<>

						struct	hash<Item>

						{

								typedef	Item	argument_type;

								typedef	size_t	result_type;

								result_type	operator()(argument_type	const	&	item)	const

								{

										result_type	hashValue	=	17;

										hashValue	=	31	*	hashValue	+	

																						std::hash<int>{}(item.id);

										hashValue	=	31	*	hashValue	+	

																						std::hash<std::string>{}(item.name);

										hashValue	=	31	*	hashValue	+	



										hashValue	=	31	*	hashValue	+	

																						std::hash<double>{}(item.value);

										return	hashValue;

								}

						};

				}



How	it	works...
The	class	template	std::hash	is	a	function	object	template	whose	call	operator
defines	a	hash	function	with	the	following	properties:

Takes	an	argument	of	the	template	parameter	type	and	returns	a	size_t
value.
Does	not	throw	any	exceptions.
For	two	arguments	that	are	equal,	it	returns	the	same	hash	value.
For	two	arguments	that	are	not	equal,	the	probability	of	returning	the	same
value	is	very	small	(should	be	close	to	1.0/std::numeric_limits<size_t>::max()).

The	standard	provides	specialization	for	all	basic	types,	such	as	bool,	char,	int,
long,	float,	double	(with	all	the	possible	unsigned	and	long	variations),	and	the
pointer	type,	but	also	library	types	including	the	basic_string	and	basic_string_view
types,	unique_ptr	and	shared_ptr,	bitset	and	vector<bool>,	optional	and	variant	(in
C++17),	and	several	other	types.	However,	for	custom	types,	you	have	to
provide	your	own	specialization.	This	specialization	must	be	in	the	namespace
std	(because	that	is	the	namespace	where	the	class	template	hash	is	defined)	and
must	meet	the	requirements	enumerated	earlier.

The	standard	does	not	specify	how	hash	values	should	be	computed,	and	you	can
use	any	function	you	want	as	long	as	it	returns	the	same	value	for	equal	objects
and	has	a	very	small	chance	of	returning	the	same	value	for	non-equal	objects.
The	algorithm	described	in	this	recipe	was	presented	in	the	book	Effective	Java
2nd	Edition	by	Joshua	Bloch.	

When	computing	the	hash	value,	consider	only	the	fields	that	participate	in
determining	whether	two	instances	of	the	class	are	equal	(in	other	words,	fields
that	are	used	in	operator==).	However,	you	must	use	all	these	fields	that	are	used
with	operator==.	In	our	example,	all	the	three	fields	of	class	Item	are	used	to
determine	the	equality	of	two	objects;	therefore,	we	must	use	them	all	to
compute	the	hash.	The	initial	hash	value	should	be	nonzero,	and	in	our	example,
we	picked	the	prime	number	17.	The	important	thing	is	that	these	values	should
not	be	zero,	otherwise	initial	fields	(that	is,	first	in	the	order	of	processing)	that



produce	the	hash	value	zero	will	not	alter	the	hash	(that	remains	zero	as	x	*	0	+	0
=	0).	For	every	field	used	in	computing	the	hash,	we	alter	the	current	hash	by
multiplying	its	previous	value	with	a	prime	number	and	adding	the	hash	of	the
current	field.	For	this	purpose,	we	use	specializations	of	the	class	template
std::hash.	The	use	of	prime	31	is	advantageous	for	performance	optimizations,
because	31	*	x	can	be	replaced	by	the	compiler	with	(x	<<	5)	-	x,	which	is	faster.
Similarly,	you	can	use	127,	because	127	*	x	is	equal	to	(x	<<	7)	-	x	or	8191,
because	8191	*	x	is	equal	to	(x	<<	13)	-	x.

If	your	custom	type	contains	an	array	and	is	used	to	determine	the	equality	of
two	objects	and,	therefore,	needs	to	be	used	to	compute	the	hash,	then	treat	the
array	as	if	its	elements	were	data	members	of	the	class.	In	other	words,	apply	the
same	algorithm	described	earlier	for	all	elements	of	the	array.

Having	the	specialization	std::hash<Item>	shown	in	the	How	to	do	it...	section,	we
can	use	the	Item	class	with	unordered	associative	containers,	such	as
std::unordered_set:

			std::unordered_set<Item>	set2

			{

					{	1,	"one"s,	1.0	},

					{	2,	"two"s,	2.0	},

					{	3,	"three"s,	3.0	},

			};



Using	std::any	to	store	any	value
C++	does	not	have	a	hierarchical	type	system	like	other	languages	(such	as	C#	or
Java)	and,	therefore,	it	does	not	have	a	possibility	to	store	multiple	types	of	value
in	a	single	variable	like	it	is	possible	with	type	Object	in	.NET	and	Java	or
natively	in	JavaScript.	Developers	have	long	time	used	void*	for	that	purpose,	but
this	only	helps	store	pointers	to	anything	and	is	not	type-safe.	Depending	on	the
end	goal,	alternatives	can	include	templates	or	overloaded	functions.	However,
C++17	has	introduced	a	standard	type-safe	container,	called	std::any,	that	can
hold	a	single	value	of	any	type.



Getting	ready
std::any	has	been	designed	based	on	boost::any	and	is	available	in	the	<any>	header.
If	you	are	familiar	with	boost::any	and	have	used	it	in	your	code,	you	can	migrate
it	seamlessly	to	std::any.



How	to	do	it...
Use	the	following	operations	to	work	with	std::any:

To	store	values,	use	the	constructor	or	assign	them	directly	to	a	std::any
variable:

								std::any	value(42);	//	integer	12

								value	=	42.0;							//	double	12.0

								value	=	"42"s;						//	std::string	"12"

To	read	values,	use	the	non-member	function	std::any_cast():

								std::any	value	=	42.0;

								try

								{

										auto	d	=	std::any_cast<double>(value);

										std::cout	<<	d	<<	std::endl;

								}

								catch	(std::bad_any_cast	const	&	e)

								{

										std::cout	<<	e.what()	<<	std::endl;

								}

To	check	the	type	of	the	stored	value,	use	the	member	function	type():

								inline	bool	is_integer(std::any	const	&	a)

								{

										return	a.type()	==	typeid(int);

								}

To	check	whether	the	container	stores	a	value,	use	the	has_value()	member
function:

								auto	ltest	=	[](std::any	const	&	a)	{

										if	(a.has_value())

												std::cout	<<	"has	value"	<<	std::endl;

										else

												std::cout	<<	"no	value"	<<	std::endl;

								};

								std::any	value;

								ltest(value);	//	no	value

								value	=	42;

								ltest(value);	//	has	value

To	modify	the	stored	value,	use	member	functions	emplace(),	reset(),	or
swap():



								std::any	value	=	42;

								ltest(value);	//	has	value

								value.reset();

								ltest(value);	//	no	value



How	it	works...
std::any	is	a	type-safe	container	that	can	hold	values	of	any	type	that	is	(or	rather
whose	decayed	type	is)	copy	constructible.	Storing	values	in	the	container	is
very	simple--you	can	either	use	one	of	the	available	constructors	(the	default
constructor	creates	a	container	that	stores	no	value)	or	the	assignment	operator.
However,	reading	values	is	not	directly	possible,	and	you	need	to	use	the	non-
member	function	std::any_cast()	that	casts	the	stored	value	to	the	specified	type.
This	function	throws	std::bad_any_cast	if	the	stored	value	has	a	different	type	than
the	one	you	are	casting	to.	Casting	between	implicitly	convertible	types,	such	as
int	and	long,	is	not	possible	either.	std::bad_any_cast	is	derived	from	std::bad_cast;
therefore,	you	can	catch	any	of	these	two	exception	types.

It	is	possible	to	check	the	type	of	the	stored	value	using	the	type()	member
function	that	returns	a	type_info	constant	reference.	If	the	container	is	empty,	this
function	returns	typeid(void).	To	check	whether	the	container	stores	a	value,	you
can	use	the	member	function	has_value()	that	returns	true	if	there	is	a	value	or	false
if	the	container	is	empty.

The	following	example	shows	how	to	check	whether	the	container	has	any
value,	how	to	check	the	type	of	the	stored	value,	and	how	to	read	the	value	from
the	container:

			void	log(std::any	const	&	value)

			{

					if	(value.has_value())

					{

							auto	const	&	tv	=	value.type();

							if	(tv	==	typeid(int))

							{

									std::cout	<<	std::any_cast<int>(value)	<<	std::endl;

							}

							else	if	(tv	==	typeid(std::string))

							{

									std::cout	<<	std::any_cast<std::string>(value)	<<	std::endl;

							}

							else	if	(tv	==	typeid(

										std::chrono::time_point<std::chrono::system_clock>))

							{

									auto	t	=	std::any_cast<std::chrono::time_point<

																					std::chrono::system_clock>>(value);

									auto	now	=	std::chrono::system_clock::to_time_t(t);

									std::cout	<<	std::put_time(std::localtime(&now),	"%F	%T")	

																			<<	std::endl;

							}



							}

							else

							{

									std::cout	<<	"unexpected	value	type"	<<	std::endl;

							}

					}

					else

					{

							std::cout	<<	"(empty)"	<<	std::endl;

					}

			}

			log(std::any{});																							//	(empty)

			log(12);																															//	12

			log("12"s);																												//	12

			log(12.0);																													//	unexpected	value	type

			log(std::chrono::system_clock::now());	//	2016-10-30	22:42:57

If	you	want	to	store	multiple	values	of	any	type,	use	a	standard	container	such	as
std::vector	to	hold	values	of	the	type	std::any:

			std::vector<std::any>	values;

			values.push_back(std::any{});

			values.push_back(12);

			values.push_back("12"s);

			values.push_back(12.0);

			values.push_back(std::chrono::system_clock::now());

			for	(auto	const	v	:	values)

					log(v);



See	also
Using	std::optional	to	store	optional	values
Using	std::variant	as	a	type-safe	union



Using	std::optional	to	store	optional
values
Sometimes,	it	is	useful	to	be	able	to	store	either	a	value	or	a	null	if	a	value	is	not
available.	A	typical	example	for	such	a	case	is	the	return	value	of	a	function	that
may	fail	to	produce	a	return	value,	but	this	failure	is	not	an	error.	For	instance,
think	of	a	function	that	finds	and	returns	values	from	a	dictionary	by	specifying	a
key.	Not	finding	a	value	is	a	probable	case	and,	therefore,	the	function	would
either	return	a	Boolean	(or	an	integer	value,	if	more	error	codes	are
necessary)	and	have	a	reference	argument	to	hold	the	return	value	or	return	a
pointer	(raw	or	smart	pointer).	In	C++17,	std::optional	is	a	better	alternative	to
these	solutions.	The	class	template	std::optional	is	a	template	container	for	storing
a	value	that	may	or	may	not	exist.	In	this	recipe,	we	will	see	how	to	use	this
container	and	what	are	its	typical	use	cases.



Getting	ready
The	class	template	std::optional<T>	was	designed	based	on	boost::optional	and	is
available	in	the	<optional>	header.	If	you	are	familiar	with	boost::optional	and	have
used	it	in	your	code,	you	can	migrate	it	seamlessly	to	std::optional.



How	to	do	it...
Use	the	following	operations	to	work	with	std::optional:

To	store	a	value,	use	the	constructor	or	assign	the	value	directly	to
an	std::optional	object:

								std::optional<int>	v1;						//	v1	is	empty

								std::optional<int>	v2(42);		//	v2	contains	42

								v1	=	42;																				//	v1	contains	42

								std::optional<int>	v3	=	v2;	//	v3	contains	42

To	read	the	stored	value,	use	operator*	or	operator->:

								std::optional<int>	v1{	42	};

								std::cout	<<	*v1	<<	std::endl;			//	42

								std::optional<foo>	v2{	foo{	42,	10.5	}	};

								std::cout	<<	v2->a	<<	",	"	

																		<<	v2->b	<<	std::endl;	//	42,	10.5

Alternatively,	use	member	functions	value()	and	value_or()	to	read	the	stored
value:

								std::optional<std::string>	v1{	"text"s	};

								std::cout	<<	v1.value()	

																		<<	std::endl;	//	text

								std::optional<std::string>	v2;

								std::cout	<<	v2.value_or("default"s)	

																		<<	std::endl;	//	default

To	check	whether	the	container	stores	a	value,	use	a	conversion	operator	to
bool	or	the	member	function	has_value():

								struct	foo

								{

										int	a;

										double	b;

								};

								std::optional<int>	v1{	42	};

								if	(v1)	std::cout	<<	*v1	<<	std::endl;

								std::optional<foo>	v2{	foo{	42,	10.5	}	};

								if	(v2.has_value())	

										std::cout	<<	v2->a	<<	",	"	<<	v2->b	<<	std::endl;

To	modify	the	stored	value,	use	member	functions	emplace(),	reset(),	or



swap():

								std::optional<int>	v{	42	};	//	v	contains	42

								v.reset();																		//	v	is	empty

Use	std::optional	to	model	any	of	the	following:

Return	values	from	functions	that	may	fail	to	produce	a	value:

								template	<typename	K,	typename	V>

								std::optional<V>	find(int	const	key,	

																														std::map<K,	V>	const	&	m)

								{

										auto	pos	=	m.find(key);

										if	(pos	!=	m.end())

												return	pos->second;

										return	{};

								}

								std::map<int,	std::string>	m{	

											{	1,	"one"s	},{	2,	"two"s	},{	3,	"three"s	}	};

								auto	value	=	find(2,	m);

								if	(value)	std::cout	<<	*value	<<	std::endl;	//	two

								value	=	find(4,	m);

								if	(value)	std::cout	<<	*value	<<	std::endl;

Parameters	to	functions	that	are	optional:

								std::string	extract(std::string	const	&	text,

																												std::optional<int>	start,

																												std::optional<int>	end)

								{

										auto	s	=	start.value_or(0);

										auto	e	=	end.value_or(text.length());

										return	text.substr(s,	e	-	s);

								}

								auto	v1	=	extract("sample"s,	{},	{});

								std::cout	<<	v1	<<	std::endl;	//	sample

								auto	v2	=	extract("sample"s,	1,	{});

								std::cout	<<	v2	<<	std::endl;	//	ample

								auto	v3	=	extract("sample"s,	1,	4);

								std::cout	<<	v3	<<	std::endl;	//	amp

Class	data	members	that	are	optional:

								struct	book

								{

										std::string																title;

										std::optional<std::string>	subtitle;

										std::vector<std::string>			authors;

										std::string																publisher;

										std::string																isbn;

										std::optional<int>									pages;



										std::optional<int>									pages;

										std::optional<int>									year;

								};



How	it	works...
The	class	template	std::optional	is	a	class	template	that	represents	a	container	for
an	optional	value.	If	the	container	does	have	a	value,	that	value	is	stored	as	part
of	the	optional	object;	no	heap	allocations	and	pointers	are	involved.	The
std::optional	class	template	is	conceptually	implemented	like	this:

				template	<typename	T>

				class	optional

				{

						bool	_initialized;

						std::aligned_storage_t<sizeof(t),	alignof(T)>	_storage;

				};

The	std::aligned_storage_t	alias	template	allows	us	to	create	uninitialized	chunks
of	memory	that	can	hold	objects	of	a	given	type.	The	class	template	std::optional
does	not	contain	a	value	if	it	was	default	constructed,	or	if	it	was	copy
constructed	or	copy	assigned	from	another	empty	optional	object	or	from
an	std::nullopt_t	value.	This	is	a	helper	type,	implemented	as	an	empty	class,	that
indicates	an	optional	object	with	an	uninitialized	state.

The	typical	use	for	an	optional	type	(called	nullable	in	other	programming
languages)	is	the	return	type	from	a	function	that	may	fail.	Possible	solutions	for
this	situation	include	the	following:

Return	an	std::pair<T,	bool>,	where	T	is	the	type	of	the	return	value;	the
second	element	of	the	pair	is	a	Boolean	flag	that	indicates	whether	the	value
of	the	first	element	is	valid	or	not.
Return	a	bool	and	take	an	extra	parameter	of	type	T&	and	assign	a	value	to
this	parameter	only	if	the	function	succeeds.
Return	a	raw	or	smart	pointer	type,	and	use	nullptr	to	indicate	a	failure.

The	class	template	std::optional	is	a	better	approach	because,	on	one	hand,	it	does
not	involve	output	parameters	to	the	function	(which	is	unnatural	for	returning
values)	and	does	not	require	working	with	pointers,	and,	on	the	other	hand,	it
better	encapsulates	the	details	of	an	std::pair<T,	bool>.	However,	optional	objects
can	also	be	used	for	class	data	members,	and	compilers	are	able	to	optimize	the
memory	layout	for	an	efficient	storage.



The	class	template	std::optional	cannot	be	used	to	return
polymorphic	types.	If	you	write,	for	instance,	a	factory	method	that
needs	to	return	different	types	from	a	hierarchy	of	types,	you
cannot	rely	on	std::optional	and	need	to	return	a	pointer,	preferably
a	std::shared_ptr	or	std::unique_ptr	(depending	if	ownership	of	the
object	needs	to	be	shared	or	not).

When	you	use	std::optional	to	pass	optional	arguments	to	a	function,	you	need	to
understand	that	it	may	incur	creating	copies,	which	can	be	a	performance	issue	if
large	objects	are	involved.	Let's	consider	the	following	example	of	a	function
that	has	a	constant	reference	to	the	std::optional	parameter:

				struct	bar	{	/*	details	*/	};

				void	process(std::optional<bar>	const	&	arg)

				{

						/*	do	something	with	arg	*/

				}

				std::optional<bar>	b1{	bar{}	};

				bar	b2{};

				process(b1);	//	no	copy

				process(b2);	//	copy	construction

The	first	call	to	process()	does	not	involve	any	additional	object
construction	because	we	pass	an	std::optional<bar>	object.	The	second	call,
however,	will	involve	the	copy	construction	of	a	bar	object,	because	b2	is	a	bar
and	needs	to	be	copied	to	an	std::optional<bar>;	a	copy	is	made	even	if	bar	has
move	semantics	implemented.	If	bar	was	a	small	object,	this	shouldn't	be	of	a
great	concern,	but	for	large	objects,	it	can	prove	a	performance	issue.	The
solution	to	avoid	this	depends	on	the	context,	and	can	involve	creating	a	second
overload	that	takes	a	constant	reference	to	bar,	or	entirely	avoiding	using
std::optional.



See	also
Using	std::any	to	store	any	value
Using	std::variant	as	a	type-safe	union



Using	std::variant	as	a	type-safe
union
In	C++,	union	is	a	special	class	type	that,	at	any	point,	holds	a	value	of	one	of	its
data	members.	Unlike	regular	classes,	unions	cannot	have	base	classes	nor	can
they	be	derived,	and	they	cannot	contain	virtual	functions	(that	would	not	make
sense	anyway).	Unions	are	mostly	used	to	define	different	representations	of	the
same	data.	However,	unions	only	work	for	types	that	are	POD.	If	a	union
contains	values	of	non-POD	types,	then	these	members	require	explicit
construction	with	a	placement	new	and	explicit	destruction,	which	is	cumbersome
and	error-prone.	In	C++17,	a	type-safe	union	is	available	in	the	form	of	a
standard	library	class	template	called	std::variant.	In	this	recipe,	you	will	learn
how	to	use	it	to	model	alternative	values.



Getting	ready
Although	discriminated	unions	are	not	directly	discussed	in	this	recipe,	being
familiar	with	them	will	help	understand	better	the	design	of,	and	the	way	variant
works.

The	class	template	std::variant	was	designed	based	on	boost::variant	and	is
available	in	the	<variant>	header.	If	you	are	familiar	with	boost::variant	and	have
used	it	in	your	code,	you	can	migrate	your	code	with	little	effort	to	use	the
standard	variant	class	template.



How	to	do	it...
Use	the	following	operations	to	work	with	std::variant:

To	modify	the	stored	value,	use	member	functions	emplace()	or	swap():

								struct	foo

								{

										int	value;

										explicit	foo(int	const	i)	:	value(i)	{}

								};

								std::variant<int,	std::string,	foo>	v	=	42;	//	holds	int

								v.emplace<foo>(42);																									//	holds	foo

To	read	the	stored	values,	use	non-member	functions	std::get	or	std::get_if:

								std::variant<int,	double,	std::string>	v	=	42;

								auto	i1	=	std::get<int>(v);

								auto	i2	=	std::get<0>(v);

								try

								{

										auto	f	=	std::get<double>(v);

								}

								catch	(std::bad_variant_access	const	&	e)

								{

										std::cout	<<	e.what()	<<	std::endl;	//	Unexpected	index

								}

To	store	a	value,	use	the	constructor	or	assign	a	value	directly	to	a	variant
object:

								std::variant<int,	double,	std::string>	v;

								v	=	42;			//	v	contains	int	42

								v	=	42.0;	//	v	contains	double	42.0

								v	=	"42";	//	v	contains	string	"42"

To	check	what	is	the	stored	alternative,	use	member	function	index():

								std::variant<int,	double,	std::string>	v	=	42;

								static_assert(std::variant_size_v<decltype(v)>	==	3);

								std::cout	<<	"index	=	"	<<	v.index()	<<	std::endl;

								v	=	42.0;

								std::cout	<<	"index	=	"	<<	v.index()	<<	std::endl;

								v	=	"42";

								std::cout	<<	"index	=	"	<<	v.index()	<<	std::endl;

To	check	whether	a	variant	holds	an	alternative,	use	the	non-member



function	std::holds_alternative():

								std::variant<int,	double,	std::string>	v	=	42;

								std::cout	<<	"int?	"	<<	std::boolalpha

																		<<	std::holds_alternative<int>(v)

																		<<	std::endl;	//	int?	true

								v	=	"42";

								std::cout	<<	"int?	"	<<	std::boolalpha

																		<<	std::holds_alternative<int>(v)

																		<<	std::endl;	//	int?	false

To	define	a	variant	whose	first	alternative	is	not	default	constructible,	use
std::monostate	as	the	first	alternative	(in	this	example,	foo	is	the	same	class	as
earlier):

								std::variant<std::monostate,	foo,	int>	v;

								v	=	42;								//	v	contains	int	42

								std::cout	<<	std::get<int>(v)	<<	std::endl;

								v	=	foo{	42	};	//	v	contains	foo{42}

								std::cout	<<	std::get<foo>(v).value	<<	std::endl;

To	process	the	stored	value	of	a	variant	and	do	something	depending	on	the
type	of	the	alternative,	use	std::visit():

								std::variant<int,	double,	std::string>	v	=	42;

								std::visit(

										[](auto&&	arg)	{std::cout	<<	arg	<<	std::endl;	},	

										v);



How	it	works...
std::variant	is	a	class	template	that	models	a	type-safe	union,	holding	a	value	of
one	of	its	possible	alternatives	at	any	given	time.	In	some	rare	cases,	it	is
possible,	though,	that	a	variant	object	does	not	store	any	value.	std::variant	has	a
member	function	called	valueless_by_exception()	that	returns	true	if	the	variant	does
not	hold	a	value,	which	is	possible	only	in	case	of	an	exception	during
initialization,	therefore,	the	name	of	the	function.

The	size	of	an	std::variant	object	is	as	large	as	its	largest	alternative.	A	variant
does	not	store	additional	data.	The	value	stored	by	the	variant	is	allocated	within
the	memory	representation	of	the	object	itself.

A	variant	can	hold	multiple	alternatives	of	the	same	type,	and	also	to	hold
different	constant-	and	volatile-qualified	versions	of	the	same	time.	On	the	other
hand,	it	cannot	hold	an	alternative	of	type	void,	or	alternatives	of	array	and
reference	types.	On	the	other	hand,	the	first	alternative	must	always	be	default
constructible.	The	reason	for	that	is	that,	just	like	discriminated	unions,	a	variant
is	default	initialized	with	the	value	of	its	first	alternative.	If	the	first	alternative
type	is	not	default	constructible,	then	the	variant	must	use	std::monostate	as	the
first	alternative.	This	is	an	empty	type	indented	for	making	variants	default
constructible.

It	is	possible	to	query	a	variant	at	compile	time	for	its	size	(that	is,	the	number	of
alternatives	it	defines)	and	for	the	type	of	an	alternative	specified	by	its	zero-
based	index.	On	the	other	hand,	you	can	query	the	index	of	the	currently	hold
alternative	at	runtime	using	the	member	function	index().



There's	more...
A	typical	way	of	manipulating	the	content	of	a	variant	is	through	visitation.	This
is	basically	the	execution	of	an	action	based	on	the	alternative	hold	by	the
variant.	Since	it	is	a	larger	topic,	it	is	addressed	separately	in	the	next	recipe.



See	also
Using	std::any	to	store	any	value
Using	std::optional	to	store	optional	values
Visiting	a	std::variant



Visiting	a	std::variant
std::variant	is	a	new	standard	container	added	to	C++17	based	on	the	boost.variant
library.	A	variant	is	a	type-safe	union	that	holds	the	value	of	one	of	its
alternative	types.	Although	in	the	previous	recipe	we	have	seen	various
operations	with	variants,	the	variants	we	used	were	rather	simple,	with	POD
types	mostly,	which	is	not	the	actual	purpose	for	which	std::variant	was	created.
Variants	are	intended	to	be	used	for	holding	alternatives	of	similar	non-
polymorphic	and	non-POD	types.	In	this	recipe,	we	will	see	a	more	real-world
example	of	using	variants	and	will	learn	how	to	visit	variants.



Getting	ready
For	this	recipe,	you	should	be	familiar	with	the	std::variant	type.	It	is
recommended	that	you	first	read	the	previous	recipe,	Using	std::variant	as	a
type-safe	union.

To	explain	how	variant	visitation	can	be	done,	we	will	consider	a	variant	for
representing	a	media	DVD.	Let's	suppose	we	want	to	model	a	store	or	library
that	has	DVDs	that	could	contain	either	music,	a	movie,	or	software.	However,
these	options	are	not	modeled	as	a	hierarchy	with	common	data	and	virtual
functions,	but	rather	as	non-related	types	that	may	have	similar	properties,	such
as	a	title.	For	simplicity,	we	consider	the	following	properties:

For	a	movie:	Title	and	length	(in	minutes)
For	an	album:	Title,	artist	name,	and	a	list	of	tracks	(each	track	having	a
title	and	length	in	seconds)
For	software:	Title	and	manufacturer

The	following	shows	a	simple	implementation	of	these	types,	without	any
functions,	because	that	is	not	relevant	to	the	visitation	of	a	variant	holding
alternatives	of	these	types:

				enum	class	Genre	{	Drama,	Action,	SF,	Commedy	};

				struct	Movie

				{

						std::string	title;

						std::chrono::minutes	length;

						std::vector<Genre>	genre;

				};

				struct	Track

				{

						std::string	title;

						std::chrono::seconds	length;

				};

				struct	Music

				{

						std::string	title;

						std::string	artist;

						std::vector<Track>	tracks;

				};

				struct	Software

				{



				{

						std::string	title;

						std::string	vendor;

				};

				using	dvd	=	std::variant<Movie,	Music,	Software>;



How	to	do	it...
To	visit	a	variant,	you	must	provide	one	or	more	actions	for	the	possible
alternatives	of	the	variant.	There	are	several	types	of	visitors	that	are	used	for
different	purposes:

A	void	visitor	that	does	not	return	anything,	but	has	side-effects.	The
following	example	prints	the	title	of	each	DVD	to	the	console:

								for	(auto	const	&	d	:	dvds)

								{

										std::visit([](auto&&	arg)	{

																								std::cout	<<	arg.title	<<	std::endl;	},	

																					d);

								}

A	visitor	that	returns	a	value;	the	value	should	have	the	same	type
regardless	of	the	current	alternative	of	the	variant,	or	can	be	itself	a	variant.
In	the	following	example,	we	visit	a	variant	and	return	a	new	variant	of	the
same	type	that	has	the	title	property	from	any	of	its	alternatives	transformed
to	uppercase	letters:

								for	(auto	const	&	d	:	dvds)

								{

										dvd	result	=	std::visit(

														[](auto&&	arg)	->	dvd

														{	

																auto	cpy	{	arg	};	

																cpy.title	=	to_upper(cpy.title);	

																return	cpy;	

														},

												d);

										std::visit(

												[](auto&&	arg)	{

															std::cout	<<	arg.title	<<	std::endl;	},	

												result);

								}

A	visitor	that	does	type	matching	(which	can	either	be	a	void	or	a	value-
returning	visitor)	implemented	by	providing	a	function	object	that	has	an
overloaded	call	operator	for	each	alternative	type	of	the	variant:

								struct	visitor_functor

								{

										void	operator()(Movie	const	&	arg)	const

										{

												std::cout	<<	"Movie"	<<	std::endl;



												std::cout	<<	"Movie"	<<	std::endl;

												std::cout	<<	"	Title:	"	<<	arg.title	<<	std::endl;

												std::cout	<<	"	Length:	"	<<	arg.length.count()	

																						<<	"min"	<<	std::endl;

										}

										void	operator()(Music	const	&	arg)	const

										{

												std::cout	<<	"Music"	<<	std::endl;

												std::cout	<<	"	Title:	"	<<	arg.title	<<	std::endl;

												std::cout	<<	"	Artist:	"	<<	arg.artist	<<	std::endl;

												for	(auto	const	&	t	:	arg.tracks)

														std::cout	<<	"	Track:	"	<<	t.title

																								<<	",	"	<<	t.length.count()	

																								<<	"sec"	<<	std::endl;

										}

										void	operator()(Software	const	&	arg)	const

										{

												std::cout	<<	"Software"	<<	std::endl;

												std::cout	<<	"	Title:	"	<<	arg.title	<<	std::endl;

												std::cout	<<	"	Vendor:	"	<<	arg.vendor	<<	std::endl;

										}

								};

								for	(auto	const	&	d	:	dvds)

								{

										std::visit(visitor_functor(),	d);

								}

A	visitor	that	does	type	matching	implemented	by	providing	a	lambda
expression	that	performs	an	action	based	on	the	type	of	the	alternative:

								for	(auto	const	&	d	:	dvds)

								{

										std::visit([](auto&&	arg)	{

												using	T	=	std::decay_t<decltype(arg)>;

												if	constexpr	(std::is_same_v<T,	Movie>)

												{

														std::cout	<<	"Movie"	<<	std::endl;

														std::cout	<<	"	Title:	"	<<	arg.title	<<	std::endl;

														std::cout	<<	"	Length:	"	<<	arg.length.count()	

																								<<	"min"	<<	std::endl;

												}

												else	if	constexpr	(std::is_same_v<T,	Music>)

												{

														std::cout	<<	"Music"	<<	std::endl;

														std::cout	<<	"	Title:	"	<<	arg.title	<<	std::endl;

														std::cout	<<	"	Artist:	"	<<	arg.artist	<<	std::endl;

														for	(auto	const	&	t	:	arg.tracks)

																std::cout	<<	"	Track:	"	<<	t.title

																										<<	",	"	<<	t.length.count()	

																										<<	"sec"	<<	std::endl;

												}

												else	if	constexpr	(std::is_same_v<T,	Software>)

												{

														std::cout	<<	"Software"	<<	std::endl;

														std::cout	<<	"	Title:	"	<<	arg.title	<<	std::endl;

														std::cout	<<	"	Vendor:	"	<<	arg.vendor	<<	std::endl;

												}

										},	



										},	

										d);

								}



How	it	works...
A	visitor	is	a	callable	object	(a	function,	a	lambda	expression,	or	a	function
object)	that	accepts	every	possible	alternative	from	a	variant.	Visitation	is	done
by	invoking	std::visit()	with	the	visitor	and	one	or	more	variant	objects.	The
variants	do	not	have	to	be	of	the	same	type,	but	the	visitor	must	be	able	to	accept
every	possible	alternative	from	all	the	variants	it	is	invoked	for.	In	the	examples
earlier,	we	have	visited	a	single	variant	object,	but	visiting	multiple	variants	does
not	imply	anything	more	than	passing	them	as	arguments	to	std::visit().

When	you	visit	a	variant,	the	callable	object	is	invoked	with	the	value	currently
stored	in	the	variant.	If	the	visitor	does	not	accept	an	argument	of	the	type	stored
in	the	variant,	the	program	is	ill-formed.	If	the	visitor	is	a	function	object,	then	it
must	overload	its	call	operator	for	all	the	possible	alternative	types	of	the	variant.
If	the	visitor	is	a	lambda	expression,	it	should	be	a	generic	lambda,	which	is
basically	a	function	object	with	a	call	operator	template,	instantiated	by	the
compiler	with	the	actual	type	that	it	is	invoked	with.

Examples	of	both	approaches	were	shown	in	the	previous	section	for	a	type-
matching	visitor.	The	function	object	in	the	first	example	is	straightforward	and
should	not	require	additional	explanations.	On	the	other	hand,	the	generic
lambda	expression	uses	constexpr	if	to	select	a	particular	if	branch	based	on	the
type	of	the	argument	at	compile	time.	The	result	is	that	the	compiler	will	create	a
function	object	with	an	operator	call	template	and	a	body	that	contains	constexpr
if	statements;	when	it	instantiates	that	function	template,	it	will	produce	an
overload	for	each	possible	alternative	type	of	the	variant,	and	in	each	of	these
overloads,	it	will	select	only	the	constexpr	if	branch	that	matches	the	type	of	the
call	operator	argument.	The	result	is	conceptually	equivalent	to	the
implementation	of	the	visitor_functor	class.
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Registering	a	function	to	be	called
when	a	program	exits	normally
It	is	common	that	a	program,	upon	exit,	must	perform	cleanup	code	to	release
resources,	or	write	something	to	a	log,	or	do	some	other	end	operation.	The
standard	library	provides	two	utility	functions	that	enable	us	to	register	functions
to	be	called	when	a	program	terminates	normally,	either	by	returning	from	main()
or	through	a	call	to	std::exit()	or	std::quick_exit().	This	is	particularly	useful	for
libraries	that	need	to	perform	an	action	before	the	program	is	terminated,	without
relying	on	the	user	to	explicitly	call	an	end	function.	In	this	recipe,	you	will	learn
how	to	install	exit	handlers	and	how	they	work.



Getting	ready
All	the	functions	discussed	in	this	recipe,	exit(),	quick_exit(),	atexit(),	and
at_quick_exit(),	are	available	in	the	namespace	std	in	the	header	<cstdlib>.



How	to	do	it...
To	register	functions	to	be	called	upon	termination	of	a	program,	you	should	use
the	following:

std::atexit()	to	register	functions	to	be	invoked	when	they	return	from	main()
or	when	a	call	to	std::exit()	is	made:

								void	exit_handler_1()

								{

										std::cout	<<	"exit	handler	1"	<<	std::endl;

								}

								void	exit_handler_2()

								{

										std::cout	<<	"exit	handler	1"	<<	std::endl;

								}

								std::atexit(exit_handler_1);

								std::atexit(exit_handler_2);

								std::atexit([]()	{std::cout	<<	"exit	handler	3"	<<	std::endl;	});

std::at_quick_exit()	to	register	functions	to	be	invoked	when	a	call	to
std::quick_exit()	is	made:

								void	quick_exit_handler_1()

								{

										std::cout	<<	"quick	exit	handler	1"	<<	std::endl;

								}

								void	quick_exit_handler_2()

								{

										std::cout	<<	"quick	exit	handler	2"	<<	std::endl;

								}

								std::at_quick_exit(quick_exit_handler_1);

								std::at_quick_exit(quick_exit_handler_2);

								std::at_quick_exit([]()	{

										std::cout	<<	"quick	exit	handler	3"	<<	std::endl;	});



How	it	works...
The	exit	handlers,	regardless	of	the	method	they	are	registered	with,	are	called
only	when	the	program	terminates	normally	or	quickly.	If	termination	is	done	in
an	abnormal	way,	via	a	call	to	std::terminate()	or	std::abort(),	none	of	them	are
called.	If	any	of	these	handlers	exits	via	an	exception,	then	std::terminate()	is
called.	Exit	handlers	must	not	have	any	parameters	and	must	return	void.	Once
registered,	an	exit	handler	cannot	be	unregistered.

A	program	can	install	multiple	handlers.	The	standard	guarantees	that	at	least	32
handlers	can	be	registered	with	each	method,	although	actual	implementations
can	support	any	higher	number.	Both	std::atexit()	and	std::at_quick_exit()	are
thread-safe	and,	therefore,	can	be	called	simultaneously	from	different	threads
without	incurring	race	conditions.

If	multiple	handlers	are	registered,	then	they	are	called	in	the	reverse	order	of	the
registration.	The	following	table	shows	the	output	of	a	program	that	registered
the	exit	handlers,	as	shown	in	the	previous	section,	when	the	program	terminates
via	an	std::exit()	and	an	std::quick_exit()	call:

std::exit(0); std::quick_exit(0);

exit	handler	3
exit	handler	2
exit	handler	1

quick	exit	handler	3
quick	exit	handler	2
quick	exit	handler	1

On	the	other	hand,	on	normal	termination	of	the	program,	destruction	of	objects
with	local	storage	duration,	destruction	of	objects	with	static	storage	duration,
and	call	of	registered	exit	handlers	are	done	concurrently.	However,	it	is
guaranteed	that	exit	handlers	registered	before	the	construction	of	a	static	object
are	called	after	the	destruction	of	that	static	object,	and	exit	handlers	registered
after	the	construction	of	a	static	object	are	called	before	the	destruction	of	that
static	object.	To	better	exemplify	this,	let's	consider	the	following	class:

				struct	static_foo

				{

						~static_foo()	{	std::cout	<<	"static	foo	destroyed!"	<<	std::endl;	}

						static	static_foo*	instance()	

						{



						{

								static	static_foo	obj;

								return	&obj;	

						}

				};

When	the	following	sequence	of	code	is	executed,	exit_handler_1	is	registered
before	the	creation	of	the	static	object	static_foo.	On	the	other	hand,	exit_handler_2
and	the	lambda	expression	are	both	registered,	in	that	order,	after	the	static
object	was	constructed.	As	a	result,	the	order	of	calls	at	normal	termination	is	as
follows:

1.	 Lambda	expression
2.	 exit_handler_2
3.	 Destructor	of	static_foo
4.	 exit_handler_1

				std::atexit(exit_handler_1);

				static_foo::instance();

				std::atexit(exit_handler_2);

				std::atexit([]()	{std::cout	<<	"exit	handler	3"	<<	std::endl;	});

				std::exit(42);

The	output	for	the	preceding	program	is	as	follows:

exit	handler	3

exit	handler	2

static	foo	destroyed!

exit	handler	1



See	also
Using	lambdas	with	standard	algorithms	recipe	of	Chapter	3,	Exploring
functions



Using	type	traits	to	query	properties
of	types
Template	metaprogramming	is	a	powerful	feature	of	the	language	that	enables	us
to	write	and	reuse	generic	code	that	works	with	all	types.	In	practice,	however,	it
is	often	necessary	that	generic	code	should	work	differently,	or	not	at	all,	with
different	types,	either	through	intent,	or	for	semantic	correctness,	performance,
or	other	reasons.	For	example,	you	may	want	a	generic	algorithm	to	be
implemented	differently	for	POD	and	non-POD	types,	or	you	want	a	function
template	to	be	instantiated	only	with	integral	types.	C++11	provides	a	set	of	type
traits	to	help	with	this.	Type	traits	are	basically	meta-types	that	provide
information	about	other	types.	The	type	traits	library	contains	a	long	list	of	traits
for	querying	type	properties	(such	as	checking	whether	a	type	is	an	integral	type
or	whether	two	types	are	the	same),	but	also	for	performing	type	transformation
(such	as	removing	const	and	volatile	qualifiers	or	adding	a	pointer	to	a	type).	We
have	used	type	traits	in	several	recipes	earlier	in	the	book;	however,	in	this
recipe,	we	will	look	into	what	the	type	traits	are	and	how	they	work.



Getting	ready
All	type	traits,	introduced	in	C++11,	are	available	in	the	namespace	std	in
the	<type_traits>	header.

Type	traits	can	be	used	in	many	metaprogramming	contexts,	and	throughout	the
book,	we	have	seen	them	used	in	various	situations.	In	this	recipe,	we	will
summarize	some	of	these	use	cases	and	see	how	type	traits	work.

In	this	recipe,	we	will	discuss	full	and	partial	template	specialization.	Familiarity
with	these	concepts	will	help	you	better	understand	the	way	type	traits	work.



How	to	do	it...
The	following	list	shows	various	situations	where	type	traits	are	used	to	achieve
various	design	goals:

With	enable_if,	to	define	preconditions	for	the	types	a	function	template	can
be	instantiated	with:

								template	<typename	T,

																		typename	=	typename	std::enable_if<

																								std::is_arithmetic<T>::value>::type>

								T	multiply(T	const	t1,	T	const	t2)

								{

										return	t1	*	t2;

								}

								auto	v1	=	multiply(42.0,	1.5);					//	OK

								auto	v2	=	multiply("42"s,	"1.5"s);	//	error

With	static_assert,	to	ensure	that	invariants	are	met:

								template	<typename	T>

								struct	pod_wrapper

								{

										static_assert(std::is_pod<T>::value,	"Type	is	not	a	POD!");

										T	value;

								};

								pod_wrapper<int>	i{	42	};												//	OK

								pod_wrapper<std::string>	s{	"42"s	};	//	error

With	std::conditional,	to	select	between	types:

								template	<typename	T>

								struct	const_wrapper

								{

										typedef	typename	std::conditional<

												std::is_const<T>::value,

												T,

												typename	std::add_const<T>::type>::type	const_type;

								};

								static_assert(

										std::is_const<const_wrapper<int>::const_type>::value);

								static_assert(

										std::is_const<const_wrapper<int	const>::const_type>::value);

With	constexpr	if,	to	enable	the	compiler	to	generate	different	code	based	on
the	type	the	template	is	instantiated	with:



								template	<typename	T>

								auto	process(T	arg)

								{

										if	constexpr	(std::is_same<T,	bool>::value)	

												return	!arg;

										else	if	constexpr	(std::is_integral<T>::value)	

												return	-arg;

										else	if	constexpr	(std::is_floating_point<T>::value)	

												return	std::abs(arg);

										else	

												return	arg;

								}

								auto	v1	=	process(false);	//	v1	=	true

								auto	v2	=	process(42);				//	v2	=	-42

								auto	v3	=	process(-42.0);	//	v3	=	42.0

								auto	v4	=	process("42"s);	//	v4	=	"42"



How	it	works...
Type	traits	are	classes	that	provide	meta-information	about	types	or	can	be	used
to	modify	types.	There	are	actually	two	categories	of	type	traits:

Traits	that	provide	information	about	types,	their	properties,	or	their
relations	(such	as	is_integer,	is_arithmetic,	is_array,	is_enum,	is_class,	is_const,
is_pod,	is_constructible,	is_same,	and	so	on).	These	traits	provide	a	constant	bool
member	called	value.
Traits	that	modify	properties	of	types	(such	as	add_const,	remove_const,
add_pointer,	remove_pointer,	make_signed,	make_unsigned,	and	so	on).	These	traits
provide	a	member	typedef	called	type	that	represents	the	transformed	type.

Both	of	these	categories	of	types	have	been	shown	in	the	How	to	do	it...	section;
examples	have	been	discussed	and	explained	in	detail	in	other	recipes.	For
convenience,	a	short	summary	is	provided	here:

In	the	first	example,	the	function	template	multiply()	is	allowed	to	be
instantiated	only	with	arithmetic	types	(that	is,	integral	or	floating	point);
when	instantiated	with	a	different	kind	of	type,	enable_if	does	not	define	a
typedef	member	called	type	and	that	produces	a	compilation	error.
In	the	second	example,	pod_wrapper	is	a	class	template	that	is	supposed	to	be
instantiated	only	with	POD	types.	A	static_assert	declaration	produces	a
compilation	error	if	a	non-POD	type	is	used.
In	the	third	example,	const_wrapper	is	a	class	template	that	provides	a	typedef
member	called	const_type	that	represents	a	const-qualified	type.	In	this
example,	we	used	std::conditional	to	select	between	two	types	at	compile
time:	if	the	type	parameter	T	is	already	a	const	type,	then	we	just	select	T.
Otherwise,	we	use	the	add_const	type	trait	to	qualify	the	type	with	the	const
specifier.
If	the	fourth	example,	process()	is	a	function	template	that	contains	a	series
of	if	constexpr	branches.	Based	on	the	category	of	type,	queried	at	compile
time	with	various	type	traits	(is_same,	is_integer,	is_floating_point),	the
compiler	selects	one	branch	only	to	be	put	into	the	generated	code	and
discards	the	rest.	Therefore,	a	call	such	as	process(42)	will	produce	the



following	instantiation	of	the	function	template:

								int	process(int	arg)

								{

										return	-arg;

								}

Type	traits	are	implemented	by	providing	a	class	template	and	a	partial	or	full
specialization	for	it.	The	following	represent	conceptual	implementation	for
some	type	traits:

The	is_void()	method	indicates	whether	a	type	is	void;	this	uses	full
specialization:

								template	<typename	T>	

								struct	is_void

								{	static	const	bool	value	=	false;	};

								template	<>	

								struct	is_void<void>

								{	static	const	bool	value	=	true;	};

The	is_pointer()	method	indicates	whether	a	type	is	a	pointer	to	an	object	or
a	pointer	to	a	function;	this	uses	partial	specialization:

								template	<typename	T>	

								struct	is_pointer	

								{	static	const	bool	value	=	false;	};

								template	<typename	T>	

								struct	is_pointer<T*>	

								{	static	const	bool	value	=	true;	};



There's	more...
Type	traits	are	not	limited	to	what	the	standard	library	provides.	Using	similar
techniques,	you	can	define	your	own	type	traits	to	achieve	various	goals.	In	the
next	recipe,	we	will	see	how	we	can	define	and	use	our	own	type	traits.



See	also
Selecting	branches	at	compile	time	with	constexpr	if	recipe	of	Chapter	4,
Preprocessor	and	Compilation
Conditionally	compiling	classes	and	functions	with	enable_if	recipe	of	Chapt
er	4,	Preprocessor	and	Compilation
Performing	compile-time	assertion	checks	with	static_assert	recipe	of	Chapte
r	4,	Preprocessor	and	Compilation
Writing	your	own	type	traits
Using	std::conditional	to	choose	between	types



Writing	your	own	type	traits
In	the	previous	recipe,	we	have	seen	what	type	traits	are,	what	traits	the	standard
provides,	and	how	they	can	be	used	for	various	purposes.	In	this	recipe,	we	take
a	step	further	and	take	a	look	at	how	to	define	our	own	custom	traits.



Getting	ready
It	is	recommended	that	you	first	read	the	recipe,	Using	type	traits	to	query
properties	of	types,	before	you	continue	with	this	one.

In	this	recipe,	we	will	learn	how	to	solve	the	following	problem:	we	have	several
classes	that	support	serialization.	Without	getting	into	any	details,	let's	suppose
some	provide	a	"plain"	serialization	to	a	string	(regardless	of	what	that	can
mean),	whereas	others	do	it	based	on	a	specified	encoding.	The	end	goal	is	to
create	a	single,	uniform	API	for	serializing	objects	of	any	of	these	types.	For
this,	we	will	consider	the	following	two	classes:	foo	that	provides	a	simple
serialization,	and	bar	that	provides	serialization	with	encoding:

				struct	foo

				{

						std::string	serialize()

						{

								return	"plain"s;

						}

				};

				struct	bar

				{

						std::string	serialize_with_encoding()

						{

								return	"encoded"s;

						}

				};



How	to	do	it...
Implement	the	following	class	and	function	templates:

A	class	template	called	is_serializable_with_encoding	containing	a	static	const
bool	variable	set	to	false:

								template	<typename	T>

								struct	is_serializable_with_encoding

								{

										static	const	bool	value	=	false;

								};

A	full	specialization	of	the	is_serializable_with_encoding	template	for	class
bar	that	has	the	static	const	bool	variable	set	to	true:

								template	<>

								struct	is_serializable_with_encoding<bar>

								{

										static	const	bool	value	=	true;

								};

A	class	template	called	serializer,	containing	a	static	template	method	called
serialize,	that	takes	an	argument	of	the	template	type	T	and	calls
serialize()	for	that	object:

								template	<bool	b>

								struct	serializer

								{

										template	<typename	T>

										static	auto	serialize(T&	v)	

										{	

												return	v.serialize();	

										}

								};

A	full	specialization	class	template	for	true,	whose	serialize()	static	method
calls	serialize_with_encoding()	for	the	argument:

								template	<>

								struct	serializer<true>

								{

										template	<typename	T>

										static	auto	serialize(T&	v)	

										{	

												return	v.serialize_with_encoding();	

										}

								};



A	function	template	called	serialize(),	that	uses	the	serializer	class	templates
defined	above	and	the	is_serializable_with_encoding	type	trait	to	select	which
of	the	actual	serialization	methods	(plain	or	with	encoding)	should	be
called:

								template	<typename	T>

								auto	serialize(T&	v)

								{

										return	serializer<is_serializable_with_encoding<T>::value>::

													serialize(v);

								}



How	it	works...
is_serializable_with_encoding	is	a	type	trait	that	checks	whether	a	type	T	is
serializable	with	(a	specified)	encoding.	It	provides	a	static	member	of	type	bool
called	value	that	is	equal	to	true	if	T	supports	serialization	with	encoding,	or	false
otherwise.	It	is	implemented	as	a	class	template	with	a	single	type	template
parameter	T;	this	class	template	is	fully	specialized	for	the	types	that	support
encoded	serialization,	in	this	particular	example,	for	the	class	bar:

				std::cout	<<	

						is_serializable_with_encoding<foo>::value	<<	std::endl;				//	false

				std::cout	<<	

						is_serializable_with_encoding<bar>::value	<<	std::endl;				//	true

				std::cout	<<	

						is_serializable_with_encoding<int>::value	<<	std::endl;				//	false

				std::cout	<<	

						is_serializable_with_encoding<string>::value	<<	std::endl;	//	false

The	serialize()	method	is	a	function	template	that	represents	a	common	API	for
serializing	objects	that	support	either	type	of	serialization.	It	takes	a	single
argument	of	the	type	template	parameter	T	and	uses	a	helper	class	template
serializer	to	call	either	the	serialize()	or	the	serialize_with_encoding()	method	of	its
argument.

The	serializer	is	a	class	template	with	a	single,	non-type	template	parameter	of
the	type	bool.	This	class	template	contains	a	static	function	template	called
serialize().	This	function	template	takes	a	single	parameter	of	the	type	template
parameter	T,	calls	serialize()	on	the	argument,	and	returns	the	value	returned
from	that	call.	The	serializer	class	template	has	a	full	specialization	for	the	value
true	of	its	non-type	template	parameter.	In	this	specialization,	the	function
template	serialize()	has	an	unchanged	signature,	but	calls	serialize_with_encoding()
instead	of	serialize().

The	selection	between	using	the	generic	or	the	fully	specialized	class	template	is
done	in	the	serialize()	function	template	using	the	is_serializable_with_encoding	type
trait.	The	static	member	value	of	the	type	trait	is	used	as	the	argument	for	the
non-type	template	parameter	of	serializer.

With	all	that	defined,	we	can	write	the	following	code:



				foo	f;

				bar	b;

				std::cout	<<	serialize(f)	<<	std::endl;	//	plain

				std::cout	<<	serialize(b)	<<	std::endl;	//	encoded



See	also
Using	type	traits	to	query	properties	of	types
Using	std::conditional	to	choose	between	types



Using	std::conditional	to	choose
between	types
In	the	previous	recipes,	we	have	looked	at	some	of	the	features	from	the	type
support	library,	and	particularly	type	traits.	Related	topics	have	been	discussed
in	other	parts	of	the	book,	such	as	using	std::enable_if	to	hide	function	overloads,
in	Chapter	4,	Preprocessor	and	Compilation,	and	std::decay	to	remove	const	and
volatile	qualifiers,	when	we	discussed	visiting	variants,	also	in	this	chapter.
Another	type	transformation	feature	worth	discussing	to	a	larger	extent	is
std::conditional	that	enables	us	to	choose	between	two	types	at	compile	time,
based	on	a	compile-time	Boolean	expression.	From	this	recipe,	you	will	learn
how	it	works	and	how	to	use	it	through	several	examples.



Getting	ready
It	is	recommended	that	you	first	read	the	Using	type	traits	to	query	properties	of
types	recipe	of	this	chapter.



How	to	do	it...
The	following	is	a	list	of	examples	that	show	how	to	use	std::conditional	(and
std::conditional_t)	to	choose	at	compile	time	between	two	types:

In	a	type	alias	or	typedef,	to	select	between	a	32-bit	and	64-bit	integer	type,
based	on	the	platform	(pointer	size	is	4	bytes	on	32-bit	platforms	and	8
bytes	on	68-bit	platforms):

								using	long_type	=	

										std::conditional<

												sizeof(void*)	<=	4,

												long,

												long	long>::type;

								auto	n	=	long_type{	42	};

In	an	alias	template,	to	select	between	a	8-,	16-,	32-,	or	64-bit	integer	type,
based	on	the	user	specification	(as	a	non-type	template	parameter):

								template	<int	size>

								using	number_type	=

										typename	std::conditional<

										size<=1,

										std::int8_t,

												typename	std::conditional<

												size<=2,

												std::int16_t,

														typename	std::conditional<

														size<=4,

														std::int32_t,

														std::int64_t

														>::type

												>::type

										>::type;

								auto	n	=	number_type<2>{	42	};

								static_assert(sizeof(number_type<1>)	==	1);

								static_assert(sizeof(number_type<2>)	==	2);

								static_assert(sizeof(number_type<3>)	==	4);

								static_assert(sizeof(number_type<4>)	==	4);

								static_assert(sizeof(number_type<5>)	==	8);

								static_assert(sizeof(number_type<6>)	==	8);

								static_assert(sizeof(number_type<7>)	==	8);

								static_assert(sizeof(number_type<8>)	==	8);

								static_assert(sizeof(number_type<9>)	==	8);

In	a	type	template	parameter,	to	select	between	integer	and	real	uniform
distribution,	depending	on	whether	the	type	template	parameter	is	of	an



integral	or	floating	point	type:

								template	<typename	T,

																		typename	D	=	std::conditional_t<

																																	std::is_integral<T>::value,

																																	std::uniform_int_distribution<T>,

																																	std::uniform_real_distribution<T>>,

																		typename	=	typename	std::enable_if<

																																	std::is_arithmetic<T>::value>::type>

								std::vector<T>	GenerateRandom(T	const	min,	T	const	max,	

																																						size_t	const	size)

								{

										std::vector<T>	v(size);

										std::random_device	rd{};

										std::mt19937	mt{	rd()	};

										D	dist{	min,	max	};

										std::generate(std::begin(v),	std::end(v),	

												[&dist,	&mt]	{return	dist(mt);	});

										return	v;

								}

								auto	v1	=	GenerateRandom(1,	10,	10);					//	integers

								auto	v2	=	GenerateRandom(1.0,	10.0,	10);	//	doubles



How	it	works...
std::conditional	is	a	class	template	that	defines	a	member	called	type	as	either	one
or	the	other	of	its	two	type	template	parameters.	The	selection	is	done	based	on	a
compile-time	constant	Boolean	expression	provided	as	an	argument	for	a	non-
type	template	parameter.	Its	implementation	looks	like	this:

				template<bool	Test,	class	T1,	class	T2>

				struct	conditional

				{

						typedef	T2	type;

				};

				template<class	T1,	class	T2>

				struct	conditional<true,	T1,	T2>

				{

						typedef	T1	type;

				};

To	help	simplify	the	use	of	std::conditional,	C++14	provides	an	alias	template
called	std::conditional_t,	that	we	have	seen	in	the	third	example	above,	and	that	is
defined	as	follows:

				template<bool	Test,	class	T1,	class	T2>

				using	conditional_t	=	typename	conditional<Test,T1,T2>::type;

Let's	summarize	the	examples	from	the	previous	section:

In	the	first	example,	if	the	platform	is	32-bit,	then	the	size	of	the	pointer
type	is	4	bytes	and,	therefore,	the	compile-time	expression	sizeof(void*)	<=	4
is	true;	as	a	result,	std::conditional	defines	its	member	type	as	long.	If	the
platform	is	64-bit,	then	the	condition	evaluates	to	false,	because	the	size	of
the	pointer	type	is	8	bytes,	and	therefore	the	member	type	is	defined	as	long
long.
A	similar	situation	is	encountered	in	the	second	example,	where
std::conditional	is	used	multiple	times	to	emulate	a	series	of	if...else
statements	to	select	an	appropriate	type.
In	the	third	example,	we	used	the	alias	template	std::conditional_t	to	simplify
the	declaration	of	the	function	template	GenerateRandom.	Here,	std::conditional
is	used	to	define	the	default	value	for	a	type	template	parameter
representing	a	statistical	distribution.	Depending	on	whether	the	first	type



template	parameter	T	is	an	integral	or	floating	point	type,	the	default
distribution	type	is	chosen	between	std::uniform_int_distribution<T>	and
std::uniform_real_distribution<T>.	Use	of	other	types	is	disabled	by
employing	std::enable_if	with	a	third	template	parameter,	as	we	have	seen	in
other	recipes	before.



See	also
Using	type	traits	to	query	properties	of	types
Writing	your	own	type	traits
Conditionally	compiling	classes	and	functions	with	enable_if	recipe	of	Chapt
er	4,	Preprocessor	and	compilation



Working	with	Files	and	Streams
The	recipes	available	in	this	chapter	are	as	follows:

Reading	and	writing	raw	data	from/to	binary	files
Reading	and	writing	objects	from/to	binary	files
Using	localized	settings	for	streams
Using	I/O	manipulators	to	control	the	output	of	a	stream
Using	monetary	I/O	manipulators
Using	time	I/O	manipulators
Working	with	filesystem	paths
Creating,	copying,	and	deleting	files	and	directories
Removing	content	from	a	file
Checking	the	properties	of	an	existing	file	or	directory
Enumerating	the	content	of	a	directory
Finding	a	file



Introduction
One	of	the	most	important	parts	of	the	C++	standard	library	is	the	input/output,
stream-based	library	that	enables	developers	to	work	with	files,	memory	streams,
or	other	types	of	I/O	devices.	The	first	part	of	the	chapter	provides	solutions	to
some	common	stream	operations,	such	as	reading	and	writing	data,	localization
settings,	and	manipulating	the	input	and	output	of	a	stream.	The	second	part	of
the	chapter	explores	the	new	C++17	filesystem	library	that	enables	developers	to
perform	operations	with	the	filesystem	and	its	objects,	such	as	files	and
directories.



Reading	and	writing	raw	data
from/to	binary	files
Some	of	the	data	programs	work	with	has	to	be	persisted	to	disk	files	in	various
ways,	that	can	include	storing	it	in	a	database	or	to	flat	files,	either	as	text	or
binary	data.	This	recipe	and	the	next	one	are	focused	on	persisting	and	loading
both	raw	data	and	objects	from	and	to	binary	files.	In	this	context,	raw	data
means	unstructured	data,	and	in	this	recipe,	we	will	consider	writing	and	reading
the	content	of	a	buffer	(that	is,	a	contiguous	sequence	of	memory,	that	can	be
either	a	C-like	array,	an	std::vector,	or	an	std::array).



Getting	ready
For	this	recipe,	you	should	be	familiar	with	the	standard	stream	input/output
library,	though	some	explanations,	to	the	extent	required	to	understand	this
recipe,	are	provided	below.	You	should	also	be	familiar	with	the	difference
between	binary	and	text	files.

In	this	recipe,	we	will	use	the	ofstream	and	ifstream	classes,	available	in	the
namespace	std	in	the	<fstream>	header.

In	the	following	examples,	we	will	consider	the	following	data	to	write	to	a
binary	file	(and	consequently	to	read	back):

				std::vector<unsigned	char>	output	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9};



How	to	do	it...
To	write	the	content	of	a	buffer	(in	our	example,	an	std::vector)	to	a	binary	file,
you	should	perform	the	following	steps:

1.	 Open	a	file	stream	for	writing	in	binary	mode	by	creating	an	instance	of	the
std::ofstream	class:

								std::ofstream	ofile("sample.bin",	std::ios::binary);

2.	 Ensure	that	the	file	is	actually	open	before	writing	data	to	the	file:

								if(ofile.is_open())

								{

										//	streamed	file	operations

								}

3.	 Write	the	data	to	the	file	by	providing	a	pointer	to	the	array	of	characters
and	the	number	of	characters	to	write:

								ofile.write(reinterpret_cast<char*>(output.data()),	

																				output.size());

4.	 Flush	the	content	of	the	stream	buffer	to	the	actual	disk	file;	this	is
automatically	done	when	you	close	the	stream:

								ofile.close();

To	read	the	entire	content	of	a	binary	file	to	a	buffer,	you	should	perform	the
following	steps:

1.	 Open	a	file	stream	to	read	from	a	file	in	the	binary	mode	by	creating	an
instance	of	the	std::ifstream	class:

								std::ifstream	ifile("sample.bin",	std::ios::binary);

2.	 Ensure	that	the	file	is	actually	opened	before	reading	data	from	it:

								if(ifile.is_open())

								{

										//	streamed	file	operations

								}



3.	 Determine	the	length	of	the	file	by	positioning	the	input	position	indicator
to	the	end	of	the	file,	read	its	value,	and	then	move	the	indicator	to	the
beginning:

								ifile.seekg(0,	std::ios_base::end);

								auto	length	=	ifile.tellg();

								ifile.seekg(0,	std::ios_base::beg);

4.	 Allocate	memory	to	read	the	content	of	the	file:

								std::vector<unsigned	char>	input;

								input.resize(static_cast<size_t>(length));

5.	 Read	the	content	of	the	file	to	the	allocated	buffer	by	providing	a	pointer	to
the	array	of	characters	for	receiving	the	data	and	the	number	of	characters
to	read:

								ifile.read(reinterpret_cast<char*>(input.data()),	length);

6.	 Check	that	the	read	operation	is	completed	successfully:

								auto	success	=	!ifile.fail()	&&	length	==	ifile.gcount();

7.	 Finally,	close	the	file	stream:

								ifile.close();



How	it	works...
The	standard	stream-based	input/output	library	provides	various	classes	that
implement	high-level	input,	output,	or	both	input	and	output	file	stream,	string
stream	and	character	array	operations,	manipulators	that	control	how	these
streams	behave,	and	several	predefined	stream	objects	(cin/wcin,	cout/wcout,
cerr/wcerr,	and	clog/wclog).

These	streams	are	implemented	as	class	templates	and,	for	files,	the	library
provides	several	classes:

basic_filebuf	implements	the	input/output	operations	for	a	raw	file	and	is
similar	in	semantics	with	a	C	FILE	stream.
basic_ifstream	implements	the	high-level	file	stream	input	operations	defined
by	the	basic_istream	stream	interface,	internally	using	a	basic_filebuf	object.
basic_ofstream	implements	the	high-level	file	stream	output	operations
defined	by	the	basic_ostream	stream	interface,	internally	using	a	basic_filebuf
object.
basic_fstream	implements	the	high-level	file	stream	input	and	output
operations	defined	by	the	basic_iostream	stream	interface,	internally	using	a
basic_filebuf	object.

Several	typedefs	for	the	class	templates	mentioned	in	the	preceding	classes	are
also	defined	in	the	<fstream>	header.	The	ofstream	and	ifstream	objects	are	the	type
synonyms	used	in	the	preceding	examples:

				typedef	basic_ifstream<char>				ifstream;

				typedef	basic_ifstream<wchar_t>	wifstream;

				typedef	basic_ofstream<char>				ofstream;

				typedef	basic_ofstream<wchar_t>	wofstream;

				typedef	basic_fstream<char>					fstream;

				typedef	basic_fstream<wchar_t>		wfstream;

In	the	previous	section,	we	saw	how	we	can	write	and	read	raw	data	to	and	from
a	file	stream.	The	way	that	works	is	explained	in	more	detail	here:

To	write	data	to	a	file,	we	instantiated	an	object	of	the	type	std::ofstream.	In
the	constructor,	we	passed	the	name	of	the	file	to	be	opened	and	the	stream



open	mode,	for	which	we	specified	std::ios::binary	to	indicate	binary	mode.
Opening	the	file	like	this	discards	the	previous	file	content.	If	you	want	to
append	content	to	an	existing	file,	you	should	also	use	the	flag	std::ios::app
(that	is,	std::ios::app	|	std::ios::binary).	This	constructor	internally	calls
open()	on	its	underlying	raw	file	object,	that	is,	a	basic_filebuf	object.	If	this
operation	fails,	a	fail	bit	is	set.	To	check	whether	the	stream	has	been
successfully	associated	with	a	file	device,	we	used	is_open()	(that	internally
calls	the	method	with	the	same	name	from	the	underlying	basic_filebuf).
Writing	data	to	the	file	stream	is	done	with	the	write()	method	that	takes	a
pointer	to	the	string	of	characters	to	write	and	the	number	of	characters	to
write.	Since	this	method	operates	with	strings	of	characters,	a
reinterpret_cast	is	necessary	if	data	is	of	another	type,	such	as	unsigned	char	in
our	example.	The	write	operation	does	not	set	a	fail	bit	on	failure,	but	may
throw	an	std::ios_base::failure	exception.	However,	data	is	not	written
directly	to	the	file	device,	but	stored	in	the	basic_filebuf	object.	To	write	it	to
the	file,	the	buffer	needs	to	be	flushed,	which	is	done	by	calling	flush().	This
is	done	automatically	when	closing	the	file	stream,	as	in	the	preceding
example.
To	read	data	from	a	file,	we	instantiated	an	object	of	time	std::ifstream.	In
the	constructor,	we	passed	the	same	arguments	we	used	for	opening	the	file
for	writing,	the	name	of	the	file	and	the	open	mode,	that	is,	std::ios::binary.
The	constructor	internally	calls	open()	on	the	underlying	std::basic_filebuf
object.	To	check	whether	the	stream	has	been	successfully	associated	with	a
file	device,	we	used	is_open()	(that	internally	calls	the	method	with	the	same
name	from	the	underlying	basic_filebuf).	In	this	example,	we	read	the	entire
content	of	the	file	to	a	memory	buffer,	in	particular,	an	std::vector.	Before
we	can	read	the	data,	we	must	know	the	size	of	the	file	in	order	to	allocate	a
buffer	large	enough	to	hold	that	data.	To	do	so,	we	used	seekg()	to	move	the
input	position	indicator	to	the	end	of	the	file,	then	we	called	tellg()	to	return
the	current	position,	which	in	this	case	indicates	the	size	of	the	file,	in
bytes,	and	then	we	moved	the	input	position	indicator	to	the	beginning	of
the	file	to	be	able	to	start	reading	from	the	beginning.	Calling	seekg()	to
move	the	position	indicator	to	the	end	can	be	avoided	by	opening	the	file
with	the	position	indicator	moved	directly	to	the	end.	This	can	be	achieved
using	the	std::ios::ate	opening	flag	in	the	constructor	(or	the	open()	method).
After	allocating	enough	memory	for	the	content	of	the	file,	we	copied	the
data	from	the	file	into	memory	using	the	read()	method.	This	takes	a	pointer



to	the	string	of	characters	that	receives	the	data	read	from	the	stream	and
the	number	of	characters	to	be	read.	Since	the	stream	operates	on
characters,	a	reinterpret_cast	expression	is	necessary	if	the	buffer	contains
other	types	of	data,	such	as	unsigned	char	in	our	example.	This	operation
throws	an	std::basic_ios::failure	exception	if	an	error	occurs.	To	determine
the	number	of	characters	that	have	been	successfully	read	from	the	stream,
we	can	use	the	gcount()	method.	Upon	completing	the	read	operation,	we
close	the	file	stream.

The	operations	shown	in	these	examples	are	the	minimal	ones	necessary	to	write
and	read	data	to	and	from	file	streams.	It	is	important,	though,	that	you	perform
appropriate	checks	for	the	success	of	the	operations	and	catch	possible
exceptions	that	could	occur.

The	example	code	discussed	so	far	in	this	recipe	can	be	reorganized	in	the	form
of	two	general	functions	for	writing	and	reading	data	to	and	from	a	file:

				bool	write_data(char	const	*	const	filename,	

																				char	const	*	const	data,	

																				size_t	const	size)

				{

						auto	success	=	false;

						std::ofstream	ofile(filename,	std::ios::binary);

						if(ofile.is_open())

						{

								try

								{

										ofile.write(data,	size);

											success	=	true;

								}

								catch(std::ios_base::failure	&)

								{

										//	handle	the	error

								}	

								ofile.close();

						}	

						return	success;

				}

				size_t	read_data(char	const	*	const	filename,	

																					std::function<char*(size_t	const)>	allocator)

				{

						size_t	readbytes	=	0;

						std::ifstream	ifile(filename,	std::ios::ate	|	std::ios::binary);

						if(ifile.is_open())

						{

								auto	length	=	static_cast<size_t>(ifile.tellg());

								ifile.seekg(0,	std::ios_base::beg);

								auto	buffer	=	allocator(length);



								auto	buffer	=	allocator(length);

								try

								{

										ifile.read(buffer,	length);

										readbytes	=	static_cast<size_t>(ifile.gcount());

								}

								catch	(std::ios_base::failure	&)

								{

										//	handle	the	error

								}

								ifile.close();

						}

						return	readbytes;

				}

write_data()	is	a	function	that	takes	the	name	of	a	file	and	a	pointer	to	an	array	of
character	and	its	length	and	writes	it	to	the	specified	file.	read_data()	is	a	function
that	takes	the	name	of	a	file	and	a	function	that	allocates	a	buffer	and	reads	the
entire	content	of	the	file	to	the	buffer	returned	by	the	allocated	function.	The
following	is	an	example	of	how	these	functions	can	be	used:

				std::vector<unsigned	char>	output	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9};	

				std::vector<unsigned	char>	input;

				if(write_data("sample.bin",	

																		reinterpret_cast<char*>(output.data()),	

																		output.size()))

				{

						if(read_data("sample.bin",	

																			[&input](size_t	const	length)	{

								input.resize(length);	

								return	reinterpret_cast<char*>(input.data());})	>	0)

								{

										std::cout	<<	(output	==	input	?	"equal":	"not	equal")	

																				<<	std::endl;

								}

						}

Alternatively,	we	could	use	a	dynamically	allocated	buffer,	instead	of	the
std::vector;	the	changes	required	for	that	are	small	in	the	overall	example:

				std::vector<unsigned	char>	output	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9};	

				unsigned	char*	input	=	nullptr;

				size_t	readb	=	0;

				if(write_data("sample.bin",	

																		reinterpret_cast<char*>(output.data()),	

																		output.size()))

				{

						if((readb	=	read_data(

									"sample.bin",	

									[&input](size_t	const	length)	{

								input	=	new	unsigned	char[length];	

								return	reinterpret_cast<char*>(input);	}))	>	0)



								return	reinterpret_cast<char*>(input);	}))	>	0)

								{

										auto	cmp	=	memcmp(output.data(),	input,	output.size());

										std::cout	<<	(cmp	==	0	?	"equal":	"not	equal")	

																				<<	std::endl;

								}

						}

						delete	[]	input;



There's	more...
The	way	of	reading	data	from	a	file	to	memory	shown	in	this	recipe	is	only	one
of	the	several	possible	alternatives.	Compared	to	the	others,	it	is,	however,	the
fastest	method,	even	though	the	alternatives	may	look	more	appealing	from	an
object-oriented	perspective.	It	is	beyond	the	purpose	of	this	recipe	to	compare
the	performance	of	these	alternatives,	but	the	reader	can	take	it	as	an	exercise.

The	following	are	possible	alternatives	for	reading	data	from	a	file	stream:

Initializing	an	std::vector	directly	using	std::istreambuf_iterator	iterators
(similarly,	this	can	be	used	with	std::string):

								std::vector<unsigned	char>	input;

								std::ifstream	ifile("sample.bin",	std::ios::binary);

								if(ifile.is_open())

								{

										input	=	std::vector<unsigned	char>(

													std::istreambuf_iterator<char>(ifile),	

													std::istreambuf_iterator<char>());

										ifile.close();

								}

Assigning	the	content	of	an	std::vector	from	std::istreambuf_iterator	iterators:

								std::vector<unsigned	char>	input;

								std::ifstream	ifile("sample.bin",	std::ios::binary);

								if(ifile.is_open())

								{

										ifile.seekg(0,	std::ios_base::end);

										auto	length	=	ifile.tellg();

										ifile.seekg(0,	std::ios_base::beg);

										input.reserve(static_cast<size_t>(length));

										input.assign(

												std::istreambuf_iterator<char>(ifile),	

												std::istreambuf_iterator<char>());

										ifile.close();

								}

Copying	the	content	of	the	file	stream	to	a	vector	using
std::istreambuf_iterator	iterators	and	an	std::back_inserter	adapter	to	write	to
the	end	of	the	vector:

								std::vector<unsigned	char>	input;

								std::ifstream	ifile("sample.bin",	std::ios::binary);

								if(ifile.is_open())

								{



								{

										ifile.seekg(0,	std::ios_base::end);

										auto	length	=	ifile.tellg();

										ifile.seekg(0,	std::ios_base::beg);

										input.reserve(static_cast<size_t>(length));

										std::copy(std::istreambuf_iterator<char>(ifile),	

																				std::istreambuf_iterator<char>(),	

																				std::back_inserter(input));

										ifile.close();

								}



See	also
Reading	and	writing	objects	from/to	binary	files
Using	I/O	manipulators	to	control	the	output	of	a	stream



Reading	and	writing	objects	from/to
binary	files
In	the	previous	recipe,	we	saw	how	to	write	and	read	raw	data	(that	is,
unstructured	data)	to	and	from	a	file.	Many	times,	however,	we	have	to	persist
and	load	objects.	Writing	and	reading	in	the	manner	shown	in	the	previous
recipe	works	for	POD	types	only.	For	anything	else,	we	must	explicitly	decide
what	is	actually	written	or	read,	as	writing	or	reading	pointers,	virtual	tables,	and
any	sort	of	meta	data	is	not	only	irrelevant,	but	also	semantically	wrong.	These
operations	are	commonly	referred	to	as	serialization	and	deserialization.	In	this
recipe,	we	will	see	how	we	can	serialize	and	deserialize	both	POD	and	non-POD
types	to	and	from	binary	files.



Getting	ready
It	is	recommended	that	you	first	read	the	previous	recipe,	Reading	and	writing
raw	data	from/to	binary	files,	before	you	continue.	You	should	also	know	what
POD	and	non-POD	types	are	and	how	operators	can	be	overloaded.

For	the	examples	in	this	recipe,	we	will	use	the	foo	and	foopod	classes	shown	in
the	following:

				class	foo

				{

						int	i;

						char	c;

						std::string	s;

				public:

						foo(int	const	i	=	0,	char	const	c	=	0,	std::string	const	&	s	=	{}):

								i(i),	c(c),	s(s)

						{}

						foo(foo	const	&)	=	default;

						foo&	operator=(foo	const	&)	=	default;

						bool	operator==(foo	const	&	rhv)	const

						{

								return	i	==	rhv.i	&&

															c	==	rhv.c	&&

															s	==	rhv.s;

						}

										bool	operator!=(foo	const	&	rhv)	const

						{

								return	!(*this	==	rhv);

						}

				};

				struct	foopod

				{

						bool	a;

						char	b;	

						int	c[2];

				};

	

				bool	operator==(foopod	const	&	f1,	foopod	const	&	f2)

				{

						return	f1.a	==	f2.a	&&	f1.b	==	f2.b	&&	

													f1.c[0]	==	f2.c[0]	&&	f1.c[1]	==	f2.c[1];

				}



How	to	do	it...
To	serialize/deserialize	POD	types	that	do	not	contain	pointers,	use
ofstream::write()	and	ifstream::read(),	as	shown	in	the	previous	recipe:

Serialize	objects	to	a	binary	file	using	ofstream	and	the	write()	method:

								std::vector<foopod>	output	{

										{true,	'1',	{1,	2}},	

										{true,	'2',	{3,	4}},	

										{false,	'3',	{4,	5}}

								};

								std::ofstream	ofile("sample.bin",	std::ios::binary);

								if(ofile.is_open())

								{

										for(auto	const	&	value	:	output)

										{

												ofile.write(reinterpret_cast<const	char*>(&value),

																								sizeof(value));

										}

										ofile.close();

								}

Deserialize	objects	from	a	binary	file	using	the	ifstream	and		read()	methods:

								std::vector<foopod>	input;

								std::ifstream	ifile("sample.bin",	std::ios::binary);

								if(ifile.is_open())

								{

										while(true)

										{

												foopod	value;

												ifile.read(reinterpret_cast<char*>(&value),

																							sizeof(value));

												if(ifile.fail()	||	ifile.eof())	break;	

														input.push_back(value);

										}

										ifile.close();

								}

To	serialize	non-POD	types	(or	POD	types	that	contain	pointers),	you	must
explicitly	write	the	value	of	data	members	to	a	file,	and	to	deserialize,	you	must
explicitly	read	from	the	file	to	the	data	members	in	the	same	order.	To	exemplify
this,	we	will	consider	the	foo	class	defined	earlier:

Add	a	member	function	called	write()	to	serialize	objects	of	this	class.	The



method	takes	a	reference	to	an	ofstream	and	returns	a	bool	indicating	whether
the	operation	was	successful	or	not:

								bool	write(std::ofstream&	ofile)	const

								{

										ofile.write(reinterpret_cast<const	char*>(&i),	sizeof(i));

										ofile.write(&c,	sizeof(c));

										auto	size	=	static_cast<int>(s.size());

										ofile.write(reinterpret_cast<char*>(&size),	sizeof(size));

										ofile.write(s.data(),	s.size());

										return	!ofile.fail();

								}

Add	a	member	function	called	read()	to	deserialize	objects	of	this	class.	This
method	takes	a	reference	to	an	ifstream	and	returns	a	bool	indicating	whether
the	operation	was	successful	or	not:

								bool	read(std::ifstream&	ifile)

								{

										ifile.read(reinterpret_cast<char*>(&i),	sizeof(i));

										ifile.read(&c,	sizeof(c));

										auto	size	{0};

										ifile.read(reinterpret_cast<char*>(&size),	sizeof(size));

										s.resize(size);

										ifile.read(reinterpret_cast<char*>(&s.front()),	size);

										return	!ifile.fail();

								}

An	alternative	to	the	write()	and	read()	member	functions	exemplified	above	is	to
overload	operator<<	and	operator>>.	To	do	this,	you	should	perform	the	following
steps:

1.	 Add	friend	declarations	for	non-member	operator<<	and	operator>>	to	the	class
to	be	serialized/deserialized	(in	this	case,	the		foo	class):

								friend	std::ofstream&	operator<<(std::ofstream&	ofile,	

																																									foo	const&	f);

								friend	std::ifstream&	operator>>(std::ifstream&	ifile,	

																																									foo&	f);

2.	 Overload	operator<<	for	your	class:

								std::ofstream&	operator<<(std::ofstream&	ofile,	foo	const&	f)

								{

										ofile.write(reinterpret_cast<const	char*>(&f.i),	

																						sizeof(f.i));

										ofile.write(&f.c,	sizeof(f.c));

										auto	size	=	static_cast<int>(f.s.size());

										ofile.write(reinterpret_cast<char*>(&size),	sizeof(size));

										ofile.write(f.s.data(),	f.s.size());

										return	ofile;



										return	ofile;

								}

3.	 Overload	operator>>	for	your	class:

								std::ifstream&	operator>>(std::ifstream&	ifile,	foo&	f)

								{

										ifile.read(reinterpret_cast<char*>(&f.i),	sizeof(f.i));

										ifile.read(&f.c,	sizeof(f.c));

										auto	size	{0};

										ifile.read(reinterpret_cast<char*>(&size),	sizeof(size));

										f.s.resize(size);

										ifile.read(reinterpret_cast<char*>(&f.s.front()),	size);

										return	ifile;

								}



How	it	works...
Regardless	of	whether	we	serialize	the	entire	object	(for	POD	types)	or	only
parts	of	it,	we	use	the	same	stream	classes	discussed	in	the	previous
recipe,	ofstream	for	output	file	streams	and	ifstream	for	input	file	streams.	Details
about	writing	and	reading	data	using	these	standard	classes	have	been	discussed
in	that	recipe	and	will	not	be	reiterated	here.

When	you	serialize	and	deserialize	objects	to	and	from	files,	you	should	avoid
writing	values	of	pointers	to	a	file,	and	you	must	not	read	pointer	values	from	the
file	since	these	represent	memory	addresses	and	are	meaningless	across
processes,	or	even	in	the	same	process	some	moments	later.	Instead,	you	should
write	data	referred	by	a	pointer	and	read	data	into	objects	referred	by	a	pointer.
This	is	a	general	principle,	and	in	practice,	you	may	encounter	situations	where	a
source	may	have	multiple	pointers	to	the	same	object,	in	which	case	you	might
want	to	write	only	one	copy	and	also	handle	the	reading	in	a	corresponding
manner.	

If	the	objects	you	want	to	serialize	are	of	a	POD	type,	you	can	do	it	just	like	we
did	when	we	discussed	raw	data.	In	the	example	in	this	recipe,	we	serialized	a
sequence	of	objects	of	the	foopod	type.	When	we	deserialize,	we	read	from	the	file
stream	in	a	loop	until	the	end	of	the	file	is	read	or	a	failure	occurs.	The	way
reading	is	done	in	this	case	may	look	counter-intuitive,	but	doing	it	differently
may	lead	to	duplication	of	the	last	read	value:

Reading	is	done	in	an	infinite	loop.
A	read	operation	is	performed	in	the	loop.
A	check	for	failure	or	end	of	file	is	performed,	and	if	any	of	these	occurred,
the	infinite	loop	is	exited.
The	value	is	added	to	the	input	sequence	and	the	looping	continues.

If	reading	is	done	using	a	loop	with	an	exit	condition	that	checks	the	end	of	the
file	bit,	that	is,	while(!ifile.eof()),	the	last	value	will	be	added	twice	to	the	input
sequence.	The	reason	for	that,	is	that	upon	reading	the	last	value,	the	end	of	file
is	not	yet	encountered	(as	that	is	a	mark	beyond	the	last	byte	of	the	file).	The	end



of	file	mark	is	only	reached	at	the	next	read	attempt,	which,	therefore,	sets	the	of
bit	of	the	stream.	However,	the	input	variable	still	has	the	last	value,	as	it	hasn't
been	overwritten	with	anything,	and	this	is	added	for	a	second	time	to	the	input
vector.

If	the	objects	you	want	to	serialize	and	deserialize	are	of	non-POD	types,
writing/reading	these	objects	as	raw	data	is	not	possible.	For	instance,	such	an
object	may	have	a	virtual	table.	Writing	the	vtable	to	a	file	does	not	cause
problems,	even	though	it	does	not	have	any	value;	however,	reading	from	a	file,
and,	therefore,	overwriting	the	vtable	of	an	object	will	have	catastrophic	effects
on	the	object	and	the	program.

When	serializing/deserializing	non-POD	types,	there	are	various	alternatives,
some	of	them	shown	in	the	previous	section:	either	provide	explicit	methods	for
writing	and	reading	or	overloading	the	standard	<<	and	>>	operators.	The	second
approach	has	the	advantage	that	it	enables	the	use	of	your	class	in	generic	code
where	objects	are	written	and	read	to	and	from	stream	files	using	these	operators.

When	you	plan	to	serialize	and	deserialize	your	objects,	consider
versioning	your	data	from	the	very	beginning	to	avoid	problems	if
the	structure	of	your	data	changes	over	time.	How	versioning
should	be	done	is	beyond	the	purpose	of	this	recipe.



See	also
Reading	and	writing	raw	data	from/to	binary	files
Using	I/O	manipulators	to	control	the	output	of	a	stream



Using	localized	settings	for	streams
The	way	writing	or	reading	to	and	from	streams	is	performed	may	depend	on
language	and	regional	settings.	Examples	include	writing	and	parsing	numbers,
time	values,	or	monetary	values,	or	comparing	(collating)	strings.	The	C++
input/output	library	provides	a	general	purpose	mechanism	for	handling
internationalization	features	through	locales	and	facets.	In	this	recipe,	you	will
learn	how	to	use	locales	to	control	the	behavior	of	input/output	streams.



Getting	ready
All	the	examples	in	this	recipe	are	using	the	std::cout	predefined	console	stream
object.	However,	the	same	applies	to	all	input/output	stream	objects.	Also,	in	this
recipe	examples,	we	will	use	the	following	objects	and	lambda	function:

				auto	now	=	std::chrono::system_clock::now();

				auto	stime	=	std::chrono::system_clock::to_time_t(now);

				auto	ltime	=	std::localtime(&stime);

				std::vector<std::string>	names	

						{"John",	"adele",	"Øivind",	"François",	"Robert",	"Åke"};

				auto	sort_and_print	=	[](std::vector<std::string>	v,	

																													std::locale	const	&	loc)

				{

						std::sort(v.begin(),	v.end(),	loc);

						for	(auto	const	&	s	:	v)	std::cout	<<	s	<<	'	';	

						std::cout	<<	std::endl;

				};

	

The	locale	names	used	in	this	recipe	(en_US.utf8,	de_DE.utf8,	and	so	on)	are	the
ones	used	on	UNIX	systems.	The	following	table	lists	their	equivalent	for
Windows	systems:

UNIX Windows

en_US.utf8 English_US.1252

en_GB.utf8 English_UK.1252

de_DE.utf8 German_Germany.1252

sv_SE.utf8 Swedish_Sweden.1252



How	to	do	it...
To	control	the	localization	settings	of	a	stream,	you	must	do	the	following:

Use	std::locale	class	to	represent	the	localization	settings.	There	are	various
ways	to	construct	locale	objects	including	the	following:

Default	construct	it	to	use	the	global	locale	(by	default,	the	C	locale	at
the	program	startup).
From	a	local	name,	such	as	C,	POSIX,	en_US.utf8,	and	so	on,	if
supported	by	the	operating	system.
From	another	locale,	except	for	a	specified	facet.
From	another	locale,	except	for	all	the	facets	from	a	specified	category
that	are	copied	from	another	specified	locale:

								//	default	construct

								auto	loc_def	=	std::locale	{};

								//	from	a	name

								auto	loc_us	=	std::locale	{"en_US.utf8"};

								//	from	another	locale	except	for	a	facet

								auto	loc1	=	std::locale	{loc_def,	new	std::collate<wchar_t>};

								//	from	another	local,	except	the	facet	in	a	category

								auto	loc2	=	std::locale	{loc_def,	loc_us,

																																	std::locale::collate};

To	get	a	copy	of	the	default	C	locale,	use	the	std::locale::classic()	static
method:

								auto	loc	=	std::locale::classic();

To	change	the	default	locale	that	is	copied	every	time	a	locale	is	default
constructed,	use	the	std::locale::global()	static	method:

								std::locale::global(std::locale("en_US.utf8"));

Use	the	imbue()	method	to	change	the	current	locale	of	an	input/output
stream:

								std::cout.imbue(std::locale("en_US.utf8"));

The	following	list	shows	examples	of	using	various	locales:



Use	a	particular	locale,	indicated	by	its	name.	In	this	example,	the	locale	is
for	German:

								auto	loc	=	std::locale("de_DE.utf8");

								std::cout.imbue(loc);

								std::cout	<<	1000.50	<<	std::endl;	

								//	1.000,5

								std::cout	<<	std::showbase	<<	std::put_money(1050)	

																		<<	std::endl;	

								//	10,50	€

								std::cout	<<	std::put_time(ltime,	"%c")	<<	std::endl;	

								//	So	04	Dez	2016	17:54:06	JST

								sort_and_print(names,	loc);	

								//	adele	Åke	François	John	Øivind	Robert

Use	a	locale	corresponding	to	the	user	settings	(as	defined	in	the	system).
This	is	done	by	constructing	an	std::locale	object	from	an	empty	string:

								auto	loc	=	std::locale("");

								std::cout.imbue(loc);

								std::cout	<<	1000.50	<<	std::endl;	

								//	1,000.5

								std::cout	<<	std::showbase	<<	std::put_money(1050)	

																		<<	std::endl;	

								//	$10.50

								std::cout	<<	std::put_time(ltime,	"%c")	<<	std::endl;	

								//	Sun	04	Dec	2016	05:54:06	PM	JST

								sort_and_print(names,	loc);	

								//	adele	Åke	François	John	Øivind	Robert

Set	and	use	the	global	locale:

								std::locale::global(std::locale("sv_SE.utf8"));	//	set	global

								auto	loc	=	std::locale{};																							//	use	global

								std::cout.imbue(loc);

								std::cout	<<	1000.50	<<	std::endl;	

								//	1	000,5

								std::cout	<<	std::showbase	<<	std::put_money(1050)	

																		<<	std::endl;	

								//	10,50	kr

								std::cout	<<	std::put_time(ltime,	"%c")	<<	std::endl;	

								//	sön	4	dec	2016	18:02:29

								sort_and_print(names,	loc);	

								//	adele	François	John	Robert	Åke	Øivind

Use	the	default	C	locale:

								auto	loc	=	std::locale::classic();

								std::cout.imbue(loc);

								std::cout	<<	1000.50	<<	std::endl;	

								//	1000.5

								std::cout	<<	std::showbase	<<	std::put_money(1050)	

																		<<	std::endl;	

								//	1050



								//	1050

								std::cout	<<	std::put_time(ltime,	"%c")	<<	std::endl;	

								//	Sun	Dec	4	17:55:14	2016

								sort_and_print(names,	loc);	

								//	François	John	Robert	adele	Åke	Øivind



How	it	works...
A	locale	object	does	not	actually	store	localized	settings.	A	locale	is	a
heterogeneous	container	of	facets.	A	facet	is	an	object	that	defines	localization
and	internationalization	settings.	The	standard	defines	a	list	of	facets	that	each
locale	must	contain.	In	addition	to	this,	a	locale	can	contain	any	other	user-
defined	facets.	The	following	is	a	list	of	all	standard-defined	facets:

std::collate<char> std::collate<wchar_t>

std::ctype<char> std::ctype<wchar_t>

std::codecvt<char,char,mbstate_t>

std::codecvt<char16_t,char,mbstate_t>

std::codecvt<char32_t,char,mbstate_t>

std::codecvt<wchar_t,char,mbstate_t>

std::moneypunct<char>

std::moneypunct<char,true>

std::moneypunct<wchar_t>

std::moneypunct<wchar_t,true>

std::money_get<char> std::money_get<wchar_t>

std::money_put<char> std::money_put<wchar_t>

std::numpunct<char> std::numpunct<wchar_t>

std::num_get<char> std::num_get<wchar_t>

std::num_put<char> std::num_put<wchar_t>

std::time_get<char> std::time_get<wchar_t>

std::time_put<char> std::time_put<wchar_t>

std::messages<char> std::messages<wchar_t>

A	locale	is	an	immutable	object	containing	immutable	facet	objects.	Locales	are
implemented	as	a	reference-counted	array	of	reference-counted	pointers	to
facets.	The	array	is	indexed	by	std::locale::id	and	all	facets	must	be	derived	from
the	base	class	std::locale::facet	and	must	have	a	public	static	member	of
the	std::locale::id	type	called	id.

It	is	only	possible	to	create	a	locale	object	using	one	of	the	overloaded
constructors	or	with	the	combine()	method	that,	as	the	name	implies,	combines	the
current	locale	with	a	new	compile-time	identifiable	facet	and	returns	a	new
locale	object.	On	the	other	hand,	it	is	possible	to	determine	whether	a	locale
contains	a	particular	facet	using	the	std::has_facet()	function	template,	or	to
obtain	a	reference	to	a	facet	implemented	by	a	particular	locale,	using
the	std::use_facet()	function	template.



In	the	preceding	examples,	we	have	sorted	a	vector	of	strings	and	passed	a	locale
object	as	the	third	argument	to	the	std::sort()	general	algorithm.	This	third
argument	is	supposed	to	be	a	comparison	function	object.	Passing	a	locale	object
works	because	std::locale	has	an	operator()	that	lexicographically	compares	two
strings	using	its	collate	facet.	This	is	actually	the	only	localization	functionality
directly	provided	by	std::locale;	however,	what	this	does	is	invoke	the	collate
facet's	compare()	method	that	performs	the	string	comparison	based	on	the	facet's
rules.

Every	program	has	a	global	locale	created	when	the	program	starts.	The	content
of	this	global	locale	is	copied	into	every	default	constructed	locale.	The	global
locale	can	be	replaced	using	the	static	method	std::locale::global().	By	default,
the	global	locale	is	the	C	locale,	a	locale	equivalent	to	ANCI	C's	locale	with	the
same	name.	This	locale	was	created	for	handling	simple	English	texts,	and	it	is
the	default	one	in	C++	to	provide	compatibility	with	C.	A	reference	to	this	locale
can	be	obtained	with	the	static	method	std::locale::classic().

By	default,	all	streams	use	the	classic	locale	to	write	or	parse	text.	However,	it	is
possible	to	change	the	locale	used	by	a	stream	using	the	stream's	imbue()	method.
This	is	a	member	of	the	std::ios_base	class	that	is	the	base	for	all	input/output
streams.	A	companion	member	is	the	getloc()	method	that	returns	a	copy	of	the
current	stream's	locale.

In	the	preceding	examples,	we	changed	the	locale	for	the	std::cout
stream	object.	In	practice,	you	may	want	to	set	the	same	locale	for
all	stream	objects	associated	with	the	standard	C	streams:	cin,	cout,
cerr,	and	clog	(or	wcin,	wcout,	wcerr,	and	wclog).



See	also
Using	I/O	manipulators	to	control	the	output	of	a	stream
Using	monetary	I/O	manipulators
Using	time	I/O	manipulators



Using	I/O	manipulators	to	control	the
output	of	a	stream
Apart	from	the	stream-based	input/output	library,	the	standard	library	provides	a
series	of	helper	functions,	called	manipulators,	that	control	the	input	or	output
streams	using	operator<<	and	operator>>.	In	this	recipe,	we	will	look	at	some	of
these	manipulators	and	demonstrate	their	use	through	some	examples	that	format
the	output	to	the	console,	and	will	continue	showing	more	manipulators	in	the
next	recipes.	



Getting	ready
The	I/O	manipulators	are	available	in	the	std	namespace	in	headers	<ios>,
<istream>,	<ostream>,	and	<iomanip>.	In	this	recipe,	we	will	only	discuss	some	of	the
manipulators	from	<ios>	and	<iomanip>.



How	to	do	it...
The	following	manipulators	can	be	used	to	control	the	output	or	input	of	a
stream:

boolalpha	and	noboolalpha	enable	and	disable	textual	representation	of
Booleans:

								std::cout	<<	std::boolalpha	<<	true	<<	std::endl;				//	true

								std::cout	<<	false	<<	std::endl;																					//	false

								std::cout	<<	std::noboolalpha	<<	false	<<	std::endl;	//	0

left,	right,	and	internal	affect	the	alignment	of	the	fill	characters;	left	and
right	affect	all	text,	but	internal	affects	only	integer,	floating	point,	and
monetary	output:

								std::cout	<<	std::right	<<	std::setw(10)	<<	"right"	

																		<<	std::endl;

								std::cout	<<	std::setw(10)	<<	"text"	<<	std::endl;

								std::cout	<<	std::left	<<	std::setw(10)	<<	"left"	<<	std::endl;

fixed,	scientific,	hexfloat,	and	defaultfloat	change	the	formatting	used	for
floating-point	types	(for	both	input	and	output	streams).	The	last	two	are
available	only	since	C++11:

								std::cout	<<	std::fixed	<<	0.25	<<	std::endl;	

								//	0.250000

								std::cout	<<	std::scientific	<<	0.25	<<	std::endl;	

								//	2.500000e-01

								std::cout	<<	std::hexfloat	<<	0.25	<<	std::endl;	

								//	0x1p-2

								std::cout	<<	std::defaultfloat	<<	0.25	<<	std::endl;	

								//	0.25

dec,	hex,	and	oct	control	the	base	used	for	integer	types	(both	in	input	and
output	streams):

								std::cout	<<	std::oct	<<	42	<<	std::endl;	//	52

								std::cout	<<	std::hex	<<	42	<<	std::endl;	//	2a

								std::cout	<<	std::dec	<<	42	<<	std::endl;	//	42

setw	changes	the	width	of	the	next	input	or	output	field.	The	default	width	is
0.
setfill	changes	the	fill	character	for	the	output	stream;	this	is	the	character



that	is	used	to	fill	the	next	fields	until	the	specified	width	is	reached.	The
default	fill	character	is	whitespace:

								std::cout	<<	std::right	

																		<<	std::setfill('.')	<<	std::setw(10)	

																		<<	"right"	<<	std::endl;

								//	.....right

setprecision	changes	the	decimal	precision	(how	many	digits	are	generated)
for	the	floating-point	types	in	both	input	and	output	streams.	The	default
precision	is	6:

								std::cout	<<	std::fixed	<<	std::setprecision(2)	<<	12.345	

																		<<	std::endl;	

								//	12.35



How	it	works...
All	of	the	I/O	manipulators	listed	above,	with	the	exception	of	setw,	that	only
refers	to	the	next	output	field,	affect	the	stream	and	all	consecutive	writing	or
reading	operations	use	the	last	specified	format	until	another	manipulator	is	used
again.

Some	of	these	manipulators	are	called	without	arguments.	Examples	include
boolalpha/noboolalpha	or	dec/hex/oct.	These	manipulators	are	functions	that	take	a
single	argument,	that	is	a	reference	to	a	string,	and	return	a	reference	to	the	same
stream:

				std::ios_base&	hex(std::ios_base&	str);

Expressions,	such	as	std::cout	<<	std::hex,	are	possible	because	both
basic_ostream::operator<<	and	basic_istream::operator>>	have	special	overloads	that
take	a	pointer	to	these	functions.

Other	manipulators,	including	some	that	are	not	mentioned	here,	are	invoked
with	arguments.	These	manipulators	are	functions	that	take	one	or	more
arguments	and	return	an	object	of	an	unspecified	type:

				template<class	CharT>

				/*unspecified*/	setfill(CharT	c);

To	better	exemplify	the	use	of	these	manipulators,	we	will	consider	two
examples	that	format	output	to	the	console.

In	the	first	example,	we	will	list	the	table	of	contents	of	a	book	with	the
following	requirements:

The	chapter	number	is	right-aligned	and	shown	with	Roman	numerals.
The	chapter	title	is	left-aligned	and	the	remaining	space	until	the	page
number	is	filled	with	dots.
The	page	number	of	the	chapter	is	right-aligned.

For	this	example,	we	will	use	the	following	classes	and	helper	function:

				struct	Chapter



				struct	Chapter

				{

						int	Number;

						std::string	Title;

						int	Page;	

				};

				struct	BookPart

				{

						std::string	Title;

						std::vector<Chapter>	Chapters;

				};

				struct	Book

				{

						std::string	Title;

						std::vector<BookPart>	Parts;

				};

				std::string	to_roman(unsigned	int	value)

				{

						struct	roman_t	{	unsigned	int	value;	char	const*	numeral;	};

						const	static	roman_t	rarr[13]	=

						{

								{1000,	"M"},	{900,	"CM"},	{500,	"D"},	{400,	"CD"},

								{100,	"C"},	{	90,	"XC"},	{	50,	"L"},	{	40,	"XL"},

								{	10,	"X"},	{	9,	"IX"},	{	5,	"V"},	{	4,	"IV"},

								{	1,	"I"}

						};

						std::string	result;

						for	(auto	const	&	number	:	rarr)

						{

								while	(value	>=	number.value)

								{

										result	+=	number.numeral;

										value	-=	number.value;

								}

						}

						return	result;

				}

The	print_toc()	function,	shown	in	the	following	code	snippet,	takes	a	Book	as	its
argument	and	prints	its	content	to	the	console,	according	to	the	specified
requirements.	For	this	purpose,	we	use	the	following:

std::left	and	std::right	specify	the	text	alignment.
std::setw	specifies	the	width	of	each	output	field.
std::fill	specifies	the	fill	character	(a	space	for	the	chapter	number,	and	a
dot	for	the	chapter	title):

				void	print_toc(Book	const	&	book)

				{

						std::cout	<<	book.Title	<<	std::endl;

						for(auto	const	&	part	:	book.Parts)

						{

								std::cout	<<	std::left	<<	std::setw(15)	<<	std::setfill('	')	

																		<<	part.Title	<<	std::endl;



																		<<	part.Title	<<	std::endl;

								std::cout	<<	std::left	<<	std::setw(15)	<<	std::setfill('-')	

																		<<	'-'	<<	std::endl;

								for(auto	const	&	chapter	:	part.Chapters)

								{

										std::cout	<<	std::right	<<	std::setw(4)	<<	std::setfill('	')	

																				<<	to_roman(chapter.Number)	<<	'	';

										std::cout	<<	std::left	<<	std::setw(35)	<<	std::setfill('.')	

																				<<	chapter.Title;

										std::cout	<<	std::right	<<	std::setw(3)	<<	std::setfill('.')	

																				<<	chapter.Page	<<	std::endl;	

								}

						}	

				}

The	following	is	an	example	of	using	this	method,	with	a	Book	object	describing
the	table	of	contents	from	the	book	The	Fellowship	of	the	Ring:

				auto	book	=	Book	

				{

						"THE	FELLOWSHIP	OF	THE	RING"s,

						{

								{

										"BOOK	ONE"s,

										{

												{1,	"A	Long-expected	Party"s,	21},

												{2,	"The	Shadow	of	the	Past"s,	42},

												{3,	"Three	Is	Company"s,	65},

												{4,	"A	Short	Cut	to	Mushrooms"s,	86},

												{5,	"A	Conspiracy	Unmasked"s,	98},

												{6,	"The	Old	Forest"s,	109},

												{7,	"In	the	House	of	Tom	Bombadil"s,	123},

												{8,	"Fog	on	the	Barrow-downs"s,	135},

												{9,	"At	the	Sign	of	The	Prancing	Pony"s,	149},

												{10,	"Strider"s,	163},

												{11,	"A	Knife	in	the	Dark"s,	176},

												{12,	"Flight	to	the	Ford"s,	197},

										},

								},

								{

										"BOOK	TWO"s,

										{

												{1,	"Many	Meetings"s,	219},

												{2,	"The	Council	of	Elrond"s,	239},

												{3,	"The	Ring	Goes	South"s,	272},

												{4,	"A	Journey	in	the	Dark"s,	295},

												{5,	"The	Bridge	of	Khazad-dum"s,	321},

												{6,	"Lothlorien"s,	333},

												{7,	"The	Mirror	of	Galadriel"s,	353},

												{8,	"Farewell	to	Lorien"s,	367},

												{9,	"The	Great	River"s,	380},

												{10,	"The	Breaking	of	the	Fellowship"s,	390},

										},

								},

						}

				};

				print_toc(book);

In	this	case,	the	output	is	the	following:



THE	FELLOWSHIP	OF	THE	RING

BOOK	ONE	

---------------

			I	A	Long-expected	Party...............21

		II	The	Shadow	of	the	Past..............42

	III	Three	Is	Company....................65

		IV	A	Short	Cut	to	Mushrooms............86

			V	A	Conspiracy	Unmasked...............98

		VI	The	Old	Forest.....................109

	VII	In	the	House	of	Tom	Bombadil.......123

VIII	Fog	on	the	Barrow-downs............135

		IX	At	the	Sign	of	The	Prancing	Pony...149

			X	Strider............................163

		XI	A	Knife	in	the	Dark................176

	XII	Flight	to	the	Ford.................197

BOOK	TWO	

---------------

			I	Many	Meetings......................219

		II	The	Council	of	Elrond..............239

	III	The	Ring	Goes	South................272

		IV	A	Journey	in	the	Dark..............295

			V	The	Bridge	of	Khazad-dum...........321

		VI	Lothlorien.........................333

	VII	The	Mirror	of	Galadriel............353

VIII	Farewell	to	Lorien.................367

		IX	The	Great	River....................380

			X	The	Breaking	of	the	Fellowship.....390

For	the	second	example,	the	goal	is	to	output	a	table	with	the	largest	companies
in	the	world	by	revenue.	The	table	will	have	columns	for	the	company	name,
industry,	revenue	(in	USD	billions),	increase/decrease	of	revenue	growth,
revenue	growth,	the	number	of	employees,	and	country	of	origin.	For	this
example,	we	will	use	the	following	class:

				struct	Company

				{

						std::string	Name;

						std::string	Industry;

						double						Revenue;

						bool								RevenueIncrease;

						double						Growth;

						int									Employees;

						std::string	Country;

				};

The	print_companies()	function	in	the	following	code	snippet	uses	several
additional	manipulators	to	the	ones	shown	in	the	previous	example:

std::boolalpha	displays	Boolean	values	as	true	and	false	instead	of	1	and	0.
std::fixed	indicates	a	fixed	floating-point	representation,	and	then
std::defaultfloat	reverts	to	the	default	floating-point	representation.
std::setprecision	specifies	the	number	of	decimal	digits	to	be	displayed	in	the
output.	Together	with	std::fixed,	this	is	used	to	indicate	a	fixed



representation	with	a	decimal	digit	for	the	growth	field.

				void	print_companies(std::vector<Company>	const	&	companies)

				{	

						for(auto	const	&	company	:	companies)

						{

								std::cout	<<	std::left	<<	std::setw(26)	<<	std::setfill('	')	

																		<<	company.Name;

								std::cout	<<	std::left	<<	std::setw(18)	<<	std::setfill('	')	

																		<<	company.Industry;

								std::cout	<<	std::left	<<	std::setw(5)	<<	std::setfill('	')	

																		<<	company.Revenue;

								std::cout	<<	std::left	<<	std::setw(5)	<<	std::setfill('	')	

																		<<	std::boolalpha	<<	company.RevenueIncrease	

																		<<	std::noboolalpha;

								std::cout	<<	std::right	<<	std::setw(5)	<<	std::setfill('	')	

																		<<	std::fixed	<<	std::setprecision(1)	<<	company.Growth	

																		<<	std::defaultfloat	<<	std::setprecision(6)	<<	'	';

								std::cout	<<	std::right	<<	std::setw(8)	<<	std::setfill('	')	

																		<<	company.Employees	<<	'	';

								std::cout	<<	std::left	<<	std::setw(2)	<<	std::setfill('	')	

																		<<	company.Country

																		<<	std::endl;

						}	

				}

The	following	is	an	example	of	calling	this	method.	The	source	of	the	data
shown	here	is	Wikipedia	(https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue,
as	of	2016):

				std::vector<Company>	companies	

				{

						{"Walmart"s,	"Retail"s,	482,	false,	0.71,	

							2300000,	"US"s},

						{"State	Grid"s,	"Electric	utility"s,	330,	false,	2.91,	

							927839,	"China"s},

						{"Saudi	Aramco"s,	"Oil	and	gas"s,	311,	true,	40.11,	

							65266,	"SA"s},

						{"China	National	Petroleum"s,	"Oil	and	gas"s,	299,	

							false,	30.21,	1589508,	"China"s},

						{"Sinopec	Group"s,	"Oil	and	gas"s,	294,	false,	34.11,	

							810538,	"China"s},

				};	

				print_companies(companies);

In	this	case,	the	output	has	a	table-based	format,	as	follows;	you	can	take	it	as	an
exercise	to	add	a	table	heading	and	perhaps	a	grid	line:

Walmart																			Retail												482		false		0.7		2300000	US

State	Grid																Electric	utility		330		false		2.9			927839	China

Saudi	Aramco														Oil	and	gas							311		true		40.1				65266	SA

China	National	Petroleum		Oil	and	gas							299		false	30.2		1589508	China

Sinopec	Group													Oil	and	gas							294		false	34.1			810538	China

https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue


See	also
Reading	and	writing	raw	data	from/to	binary	files
Using	monetary	I/O	manipulators
Using	time	I/O	manipulators



Using	monetary	I/O	manipulators
In	the	previous	recipe,	we	have	looked	at	some	of	the	manipulators	that	can	be
used	to	control	the	input	and	output	streams.	The	manipulators	discussed	there
were	related	to	numeric	and	text	values.	In	this	recipe,	we	will	see	how	to	use
standard	manipulators	to	write	and	read	monetary	values.



Getting	ready
You	should	be	familiar	with	locales	and	how	to	set	them	for	a	stream.	This	topic
is	discussed	in	the	Using	localized	settings	for	streams	recipe.	It	is	recommended
that	you	read	that	recipe	before	continuing.

The	manipulators	discussed	in	this	recipe	are	available	in	the	std	namespace	in
the	<iomanip>	header.



How	to	do	it...
To	write	a	monetary	value	to	an	output	stream,	you	should	do	the	following:

Set	the	desired	locale	for	controlling	the	monetary	format:

								std::cout.imbue(std::locale("en_GB.utf8"));

Use	either	a	long	double	or	a	std::basic_string	value	for	the	amount:

								long	double	mon	=	12345.67;

								std::string	smon	=	"12345.67";

Use	a	std::put_money	manipulator	with	a	single	argument,	the	monetary	value,
to	display	the	value	using	the	currency	symbol	(if	any	is	available):

								std::cout	<<	std::showbase	<<	std::put_money(mon)	

																		<<	std::endl;	//	£123.46

								std::cout	<<	std::showbase	<<	std::put_money(smon)	

																		<<	std::endl;	//	£123.46

Use	std::put_money	with	two	arguments,	the	monetary	value	and	Boolean	flag
set	to	true,	to	indicate	the	use	of	an	international	currency	string:

								std::cout	<<	std::showbase	<<	std::put_money(mon,	true)	

																		<<	std::endl;	//	GBP	123.46

								std::cout	<<	std::showbase	<<	std::put_money(smon,	true)	

																		<<	std::endl;	//	GBP	123.46

To	read	a	monetary	value	from	an	input	stream,	you	should	do	the	following:

Set	the	desired	locale	for	controlling	the	monetary	format:

								std::istringstream	stext("$123.45	123.45	USD");

								stext.imbue(std::locale("en_US.utf8"));

Use	either	a	long	double	or	std::basic_string	value	to	read	the	amount	from	the
input	stream:

								long	double	v1;

								std::string	v2;

Use	std::get_money()	with	a	single	argument,	the	variable	where	the	monetary



value	is	to	be	written,	if	a	currency	symbol	may	be	used	in	the	input	stream:

								stext	>>	std::get_money(v1)	>>	std::get_money(v2);	

								//	v1	=	12345,	v2	=	"12345"

Use	std::get_money()	with	two	arguments,	the	variable	where	the	monetary
value	is	to	be	written	and	a	Boolean	flag	set	to	true,	to	indicate	the	presence
of	an	international	currency	string:

								stext	>>	std::get_money(v1,	true)	>>	std::get_money(v2,	true);

								//	v1	=	0,	v2	=	"12345"



How	it	works...
The	put_money()	and	get_money()	manipulators	are	very	similar:	they	are	both
function	templates	that	take	an	argument	representing	either	the	monetary	value
to	be	written	to	the	output	stream,	or	a	variable	to	hold	the	monetary	value	read
from	an	input	stream,	and	a	second,	optional	parameter,	to	indicate	whether	an
international	currency	string	is	used.	The	default	alternative	is	the	currency
symbol,	if	one	is	available.	put_money()	uses	the	std::money_put()	facet	settings	to
output	a	monetary	value,	and	get_money()	uses	the	std::money_get()	facet	to	parse	a
monetary	value.	Both	manipulator	function	templates	return	an	object	of	an
unspecified	type.	These	functions	do	not	throw	exceptions:

				template	<class	MoneyT>

				/*unspecified*/	put_money(const	MoneyT&	mon,	bool	intl	=	false);

				template	<class	MoneyT>

				/*unspecified*/	get_money(MoneyT&	mon,	bool	intl	=	false);

Both	manipulator	functions	require	the	monetary	value	to	be	either	a	long	double
or	a	std::basic_string.

However,	it	is	important	to	note	that	monetary	values	are	stored	as
integral	numbers	of	the	smallest	denomination	of	the	currency
defined	by	the	locale	in	use.	Considering	US	dollars	as	that
currency,	$100.00	is	stored	as	10000.0,	and	1	cent,	that	is,	$0.01,
is	stored	as	1.0.

When	writing	a	monetary	value	to	an	output	stream,	it	is	important	to	use	the
std::showbase	manipulator	if	you	want	to	display	the	currency	symbol	or	the
international	currency	string.	This	is	normally	used	to	indicate	the	prefix	of	a
numeric	base	(such	as	0x	for	hexadecimal),	but	for	monetary	values,	it	is	used	to
indicate	whether	currency	symbol/string	should	be	displayed	or	not:

		std::cout	<<	std::put_money(12345.67)	

												<<	std::endl;	//	prints	123.46

		std::cout	<<	std::showbase	<<	std::put_money(12345.67)	

												<<	std::endl;	//	prints	£123.46



See	also
Using	I/O	manipulators	to	control	the	output	of	a	stream
Using	time	I/O	manipulators



Using	time	I/O	manipulators
Similar	to	the	monetary	input/output	manipulators	discussed	in	the	previous
recipe,	the	C++11	standard	provides	manipulators	to	control	the	writing	and
reading	of	time	values	to	and	from	streams,	time	values	represented	in	the	form
of	an	std::tm	object	that	holds	a	calendar	date	and	time.	In	this	recipe,	you	will
learn	how	to	use	these	time	manipulators.



Getting	ready
Time	values	used	by	the	time	I/O	manipulators	are	expressed	in	std::tm	values.
You	should	be	familiar	with	this	structure	from	the	<ctime>	header.

You	should	also	be	familiar	with	locales	and	how	to	set	them	for	a	stream.	This
topic	is	discussed	in	the	Using	localized	settings	for	streams	recipe.	It	is
recommended	that	you	read	that	recipe	before	continuing.

The	manipulators	discussed	in	this	recipe	are	available	in	the	std	namespace	in
the	<iomanip>	header.



How	to	do	it...
To	write	a	time	value	to	an	output	stream,	you	should	perform	the	following
steps:

1.	 Obtain	a	calendar	date	and	time	value	corresponding	to	a	given	time.	There
are	various	ways	to	do	that.	The	following	are	examples	of	converting	the
current	time	to	a	local	time	expressed	as	a	calendar	date	and	time:

								auto	now	=	std::chrono::system_clock::now();

								auto	stime	=	std::chrono::system_clock::to_time_t(now);

								auto	ltime	=	std::localtime(&stime);

								auto	ttime	=	std::time(nullptr);

								auto	ltime	=	std::localtime(&ttime);

2.	 Use	std::put_time()	supplying	a	pointer	to	the	std::tm	object	representing	the
calendar	date	and	time,	and	a	pointer	to	a	null-terminated	character	string
representing	the	format.	The	C++11	standard	provides	a	long	list	of	formats
that	can	be	used;	this	list	can	be	consulted	at	http://en.cppreference.com/w/cpp/io/man
ip/put_time.

3.	 To	write	a	standard	date	and	time	string	according	to	the	settings	of	a
specific	locale,	first	set	the	locale	for	the	stream	by	calling	imbue()	and	then
use	the	std::put_time()	manipulator:

								std::cout.imbue(std::locale("en_GB.utf8"));

								std::cout	<<	std::put_time(ltime,	"%c")	<<	std::endl;	

								//	Sun	04	Dec	2016	05:26:47	JST

The	following	are	examples	of	supported	time	formats:

ISO	8601	date	format	"%F"	or	"%Y-%m-%d":

								std::cout	<<	std::put_time(ltime,	"%F")	<<	std::endl;

								//	2016-12-04

ISO	8601	time	format	"%T":

								std::cout	<<	std::put_time(ltime,	"%T")	<<	std::endl;

								//	05:26:47

http://en.cppreference.com/w/cpp/io/manip/put_time


ISO	8601	combined	date	and	time	in	UTC	format	"%FT%T%z":

								std::cout	<<	std::put_time(ltime,	"%FT%T%z")	<<	std::endl;	

								//	2016-12-04T05:26:47+0900

ISO	8601	week	format	"%Y-W%V":

								std::cout	<<	std::put_time(ltime,	"%Y-W%V")	<<	std::endl;	

								//	2016-W48

ISO	8601	date	with	week	number	format	"%Y-W%V-%u":

								std::cout	<<	std::put_time(ltime,	"%Y-W%V-%u")	<<	std::endl;	

								//	2016-W48-7

ISO	8601	ordinal	date	format	"%Y-%j":

								std::cout	<<	std::put_time(ltime,	"%Y-%j")	<<	std::endl;	

								//	2016-339

To	read	a	time	value	from	an	input	stream,	you	should	perform	the	following
steps:

1.	 Declare	an	object	of	the	std::tm	type	to	hold	the	time	value	read	from	the
stream:

								auto	time	=	std::tm	{};

2.	 Use	std::get_time()	supplying	a	pointer	to	the	std::tm	object	that	will	hold	the
time	value	and	a	pointer	to	a	null-terminated	character	string	representing
the	format.	The	list	of	possible	formats	can	be	consulted	at	http://en.cppreference.
com/w/cpp/io/manip/get_time.	The	following	example	parses	an	ISO	8601
combined	date	and	time	value:

								std::istringstream	stext("2016-12-04T05:26:47+0900");

								stext	>>	std::get_time(&time,	"%Y-%m-%dT%H:%M:%S");

								if	(!stext.fail())	{	/*	do	something	*/	}

3.	 To	read	a	standard	date	and	time	string	according	to	the	settings	of	a
specific	locale,	first	set	the	locale	for	the	stream	by	calling	imblue()	and	then
use	the	std::get_time()	manipulator:

								std::istringstream	stext("Sun	04	Dec	2016	05:35:30	JST");

								stext.imbue(std::locale("en_GB.utf8"));

								stext	>>	std::get_time(&time,	"%c");

								if	(stext.fail())	{	/*	do	something	else	*/	}

http://en.cppreference.com/w/cpp/io/manip/get_time


How	it	works...
The	two	manipulators	for	time	values,	put_time()	and	get_time(),	are	very	similar:
they	are	both	function	templates	with	two	arguments.	The	first	argument	is	a
pointer	to	an	std::tm	object	representing	the	calendar	date	and	time	that	holds	the
value	to	be	written	to	the	stream	or	the	value	read	from	the	stream.	The	second
argument	is	a	pointer	to	a	null-terminated	character	string	representing	the
format	of	the	time	text.	put_time()	uses	the	std::time_put()	facet	to	output	a	date	and
time	value,	and	get_time()	uses	the	std::time_get()	facet	to	parse	a	date	and	time
value.	Both	manipulator	function	templates	return	an	object	of	an	unspecified
type.	These	functions	do	not	throw	exceptions:

				template<class	CharT>

				/*unspecified*/	put_time(const	std::tm*	tmb,	const	CharT*	fmt);

				template<class	CharT>

				/*unspecified*/	get_time(std::tm*	tmb,	const	CharT*	fmt);

The	string	resulted	from	using	put_time()	to	write	a	date	and	time
value	to	an	output	stream	is	the	same	as	resulted	from	a	call	to
std::strftime()	or	std::wcsftime().

The	standard	defines	a	long	list	of	available	conversion	specifiers	that	compose
the	format	string.	These	specifiers	are	prefixed	with	a	%,	in	some	cases	followed
by	an	E	or	a	0.	Some	of	them	are	also	equivalent;	for	instance,	%F	is	equivalent
to	%Y-%m-%d	(that	is	the	ISO	8601	date	format)	and	%T	is	equivalent	to	%H:%M:%S	(that
is	the	ISO	8601	time	format).	The	examples	in	this	recipe	mention	only	a	few	of
the	conversion	specifiers,	referring	to	ISO	8601	date	and	time	formats.	For	the
complete	list	of	conversion	specifiers,	see	the	C++	standard	or	follow	the	links
mentioned	earlier.

It	is	important	to	note	that	not	all	conversion	specifiers	supported
by	put_time()	are	also	supported	by	get_time().	Examples	include	z
(offset	from	UTC	in	the	ISO	8601	format)	and	Z	(time	zone	name	or
abbreviation)	specifiers	that	can	only	be	used	with	put_time().

				std::istringstream	stext("2016-12-04T05:26:47+0900");

				auto	time	=	std::tm	{};

				stext	>>	std::get_time(&time,	"%Y-%m-%dT%H:%M:%S%z");	//	fails

				stext	>>	std::get_time(&time,	"%Y-%m-%dT%H:%M:%S");			//	OK



				stext	>>	std::get_time(&time,	"%Y-%m-%dT%H:%M:%S");			//	OK

The	text	represented	by	some	conversion	specifiers	is	locale	dependent.	All
specifiers	prefixed	with	E	or	0	are	locale	dependent.	To	set	a	particular	locale	for
the	stream,	use	the	imbue()	method,	as	shown	in	the	examples	in	the	previous
section.



See	also
Using	I/O	manipulators	to	control	the	output	of	a	stream
Using	monetary	I/O	manipulators



Working	with	filesystem	paths
An	important	addition	to	the	C++17	standard	is	the	filesystem	library	that	enables
us	to	work	with	paths,	files,	and	directories	in	the	hierarchical	filesystems	(such
as	Windows	or	POSIX	filesystems).	This	standard	library	has	been	developed
based	on	the	boost.filesystem	library.	In	the	next	few	recipes,	we	will	explore
those	features	of	the	library	that	enable	us	to	perform	operations	with	files	and
directories,	such	as	creating,	moving,	or	deleting	them,	but	also	querying
properties	and	searching.	It	is	important,	however,	that	we	first	look	at	how
library	handles	paths.



Getting	ready
For	this	recipe,	we	will	consider	most	of	the	examples	using	Windows	paths.	In
the	accompanying	code,	all	examples	have	both	Windows	and	POSIX
alternatives.

The	filesystem	library	is	available	in	the	std::filesystem	namespace	in
the	<filesystem>	header.	To	simplify	code,	we	will	use	the	following	namespace
alias	in	all	examples:

				namespace	fs	=	std::filesystem;

At	the	time	of	writing	this	book	all	major	compilers	provide	an
implementation	of	the	library,	although	it	is	considered	to	be	still
experimental	and	therefore	provided	in	a	namespace	with	this
name.	Because	of	that,	the	actual	namespace	for	the	library	is
std::experimental::filesystem	and	the	actual	header	for	GCC	and
Clang	is	<experimental/filesystem>.

A	path	to	a	filesystem	component	(file,	directory,	hard	link,	or	soft	link)	is
represented	by	the	path	class.



How	to	do	it...
The	following	is	a	list	of	the	most	common	operations	on	paths:

Create	a	path	using	the	constructor,	assignment	operator,	or
the	assign()	method:

								//	Windows

								auto	path	=	fs::path{"C:\\Users\\Marius\\Documents"};

								//	POSIX

								auto	path	=	fs::path{	"/home/marius/docs"	};

Append	elements	to	a	path	by	including	a	directory	separator	using	member
operator	/=,	non-member	operator	/,	or	the	append()	method:

								path	/=	"Book";

								path	=	path	/	"Modern"	/	"Cpp";

								path.append("Programming");

								//	Windows:	C:\Users\Marius\Documents\Book\Modern\Cpp\Programming

								//	POSIX:			/home/marius/docs/Book/Modern/Cpp/Programming

Concatenate	elements	to	a	path	without	including	a	directory	separator
using	member	operator	+=,	non-member	operator	+,	or	the	concat()	method:

								auto	path	=	fs::path{	"C:\\Users\\Marius\\Documents"	};

								path	+=	"Book";

								path.concat("Modern");

								//	path	=	C:\Users\Marius\Documents\Book\Modern

Decompose	the	elements	of	a	path	to	its	parts,	such	as	root,	root	directory,
parent	path,	filename,	extension,	and	so	on,	using	member	functions	such	as
root_name(),	root_dir(),	filename(),	stem(),	extension(),	and	so	on	(all	of	them	are
shown	in	the	following	example):

								auto	path	=	

										fs::path{"C:\\Users\\Marius\\Documents\\sample.file.txt"};

								std::cout

										<<	"root:	"	<<	path.root_name()	<<	std::endl

										<<	"root	dir:	"	<<	path.root_directory()	<<	std::endl

										<<	"root	path:	"	<<	path.root_path()	<<	std::endl

										<<	"rel	path:	"	<<	path.relative_path()	<<	std::endl

										<<	"parent	path:	"	<<	path.parent_path()	<<	std::endl

										<<	"filename:	"	<<	path.filename()	<<	std::endl

										<<	"stem:	"	<<	path.stem()	<<	std::endl

										<<	"extension:	"	<<	path.extension()	<<	std::endl;



Query	if	parts	of	a	part	are	available	using	member	functions	such	as
has_root_name(),	has_root_directory(),	has_filename(),	has_stem(),	and	has_extension()
(all	of	them	are	shown	in	the	following	example):

								auto	path	=	

										fs::path{"C:\\Users\\Marius\\Documents\\sample.file.txt"};

								std::cout

										<<	"has	root:	"	<<	path.has_root_name()	<<	std::endl

										<<	"has	root	dir:	"	<<	path.has_root_directory()	<<	std::endl

										<<	"has	root	path:	"	<<	path.has_root_path()	<<	std::endl

										<<	"has	rel	path:	"	<<	path.has_relative_path()	<<	std::endl

										<<	"has	parent	path:	"	<<	path.has_parent_path()	<<	std::endl

										<<	"has	filename:	"	<<	path.has_filename()	<<	std::endl

										<<	"has	stem:	"	<<	path.has_stem()	<<	std::endl

										<<	"has	extension:	"	<<	path.has_extension()	<<	std::endl;

Check	whether	a	path	is	relative	or	absolute:

								auto	path2	=	fs::path{	"marius\\temp"	};

								std::cout

										<<	"absolute:	"	<<	path1.is_absolute()	<<	std::endl

										<<	"absolute:	"	<<	path2.is_absolute()	<<	std::endl;

Modify	individual	parts	of	the	path,	such	as	filename	with	replace_filename()
and	remove_filename(),	and	extension	with	replace_extension():

								auto	path	=

										fs::path{"C:\\Users\\Marius\\Documents\\sample.file.txt"};

								path.replace_filename("output");

								path.replace_extension(".log");

								//	path	=	C:\Users\Marius\Documents\output.log

								path.remove_filename();

								//	path	=	C:\Users\Marius\Documents

Convert	the	directory	separator	to	the	system-preferred	separator:

						//	Windows

						auto	path	=	fs::path{"Users/Marius/Documents"};

						path.make_preferred();

						//	path	=	Users\Marius\Documents

						//	POSIX

						auto	path	=	fs::path{	"home/docs"	};

						path.make_preferred();

						//	path	=	/home/marius/docs



How	it	works...
The	std::filesystem::path	class	models	paths	to	filesystem	components.	However,
it	only	handles	the	syntax	and	does	not	validate	the	existence	of	a	component
(such	as	file	or	directory)	represented	by	the	path.

The	library	defines	a	portable,	generic	syntax	for	paths	that	can	accommodate
various	filesystems,	such	as	POSIX	or	Windows,	including	the	Microsoft
Windows	UNC	(Universal	Naming	Convention)	format.	These	two	differ	in
several	key	aspects:

POSIX	systems	have	a	single	tree,	no	root	name,	a	single	root	directory
called	/,	and	a	single	current	directory	and	use	/	for	directory	separator.
Paths	are	represented	as	null-terminated	strings	of	char	encoded	as	UTF-8.
Windows	systems	have	multiple	trees,	each	with	a	root	name	(such	as	C:),	a
root	directory	(such	as	C:),	and	a	current	directory.	Paths	are	represented	as
null-terminated	strings	of	wide	characters	encoded	as	UTF-16.

A	path	name	as	defined	in	the	filesystem	library	has	the	following	syntax:

An	optional	root	name	(C:	or	//localhost)
An	optional	root	directory
Zero	or	more	filenames	(that	may	refer	to	a	file,	directory,	hard	link,	or
symbolic	link)	or	directory-separators

There	are	two	special	filenames	that	are	recognized:	single	dot	(.)	that	represents
the	current	directory	and	the	double	dot	(..)	that	represents	the	parent	directory.
The	directory	separator	can	be	repeated,	in	which	case	it	is	treated	as	a	single
separator	(in	other	words,	/home////docs	is	the	same	as	/home/marius/docs).	A	path
that	has	no	redundant	current	directory	name	(.),	no	redundant	parent	directory
name	(..),	and	no	redundant	directory	separators	is	said	to	be	in	a	normal	form.

The	path	operations	presented	in	the	previous	section	are	only	the	most	common
operations	with	paths.	However,	the	implementation	defines	additional	querying
and	modifying	methods,	iterators,	non-member	comparison	operators,	and
others.	The	following	sample	iterates	through	the	parts	of	a	path	and	prints	them
to	the	console:



to	the	console:

				auto	path	=	

						fs::path{	"C:\\Users\\Marius\\Documents\\sample.file.txt"	};

				for	(auto	const	&	part	:	path)

				{

						std::cout	<<	part	<<	std::endl;

				}

The	following	is	its	result:

C:

Users

Marius

Documents

sample.file.txt

In	this	example,	sample.file.txt	is	the	filename.	This	is	basically	the	part	from	the
last	directory	separator	to	the	end	of	the	path.	This	is	what	member	function
filename()	would	be	returning	for	the	given	path.	The	extension	for	this	file	is	.txt,
which	is	the	string	returned	by	the	extension()	member	function.	To	retrieve	the
filename	without	extension,	another	member	function	called	stem()	is	available.
For	this	example,	the	string	returned	by	this	method	is	sample.file.	For	all	these
methods,	but	also	the	other	decomposition	methods,	there	is	a	corresponding
querying	method	with	the	same	name	and	prefix	has_,	such	as	has_filename(),
has_stem(),	and	has_extension().	All	these	methods	return	a	bool	value	to	indicate
whether	the	path	has	the	corresponding	part.



See	also
Creating,	copying,	and	deleting	files	and	directories
Checking	the	properties	of	an	existing	file	or	directory	



Creating,	copying,	and	deleting	files
and	directories
Operations	with	files,	such	as	copying,	moving,	and	deleting,	or	with	directories,
such	as	creating,	renaming,	and	deleting,	are	all	supported	by	the	filesystem
library.	Files	and	directories	are	identified	with	a	path	(that	can	be	absolute,
canonical,	or	relative),	a	topic	that	was	covered	in	the	previous	recipes.	In	this
recipe,	we	will	look	at	what	are	the	standard	functions	for	the	above-mentioned
operations	and	how	they	work.



Getting	ready
Before	going	forward,	you	should	read	the	Working	with	filesystem	paths	recipe.
Introductory	notes	from	that	recipe	also	apply	here.	However,	all	examples	in
this	recipe	are	platform	independent.

For	all	the	following	examples,	we	will	use	the	following	variables,	and	assume
the	current	path	is	C:\Users\Marius\Documents	on	Windows,	and	/home/marius/docs	for	a
POSIX	system.	We	will	also	assume	the	presence	of	the	file	called	sample.txt	in
the	temp	subdirectory	of	the	current	path	(such	as
C:\Users\Marius\Documents\temp\sample.txt	or	/home/marius/docs/temp/sample.txt):

				auto	err	=	std::error_code{};

				auto	basepath	=	fs::current_path();

				auto	path	=	basepath	/	"temp";

				auto	filepath	=	path	/	"sample.txt";



How	to	do	it...
Use	the	following	library	functions	to	perform	operations	with	directories:

To	create	a	new	directory,	use	create_directory().	This	method	does	nothing
if	the	directory	already	exists,	but	does	not	create	directories	recursively:

								auto	success	=	fs::create_directory(path,	err);

To	create	new	directories	recursively,	use	create_directories():

								auto	temp	=	path	/	"tmp1"	/	"tmp2"	/	"tmp3";

								auto	success	=	fs::create_directories(temp,	err);

To	move	an	existing	directory,	use	rename():

								auto	temp	=	path	/	"tmp1"	/	"tmp2"	/	"tmp3";

								auto	newtemp	=	path	/	"tmp1"	/	"tmp3";

								fs::rename(temp,	newtemp,	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	rename	an	existing	directory,	also	use	rename():

								auto	temp	=	path	/	"tmp1"	/	"tmp3";

								auto	newtemp	=	path	/	"tmp1"	/	"tmp4";

								fs::rename(temp,	newtemp,	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	copy	an	existing	directory,	use	copy().	To	copy	recursively	the	entire
content	of	a	directory,	use	the	copy_options::recursive	flag:

								fs::copy(basepath	/	"temp",	basepath	/	"temp2",

																	fs::copy_options::recursive,	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	create	a	symbolic	link	to	a	directory,	use	create_directory_symlink():

								auto	linkdir	=	basepath	/	"templink";

								fs::create_directory_symlink(path,	linkdir,	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	remove	an	empty	directory,	use	remove():

								auto	temp	=	path	/	"tmp1"	/	"tmp4";



								auto	temp	=	path	/	"tmp1"	/	"tmp4";

								auto	success	=	fs::remove(temp,	err);

To	remove	the	entire	content	of	a	directory	recursively	and	the	directory
itself,	use	remove_all():

								auto	success	=	fs::remove_all(path,	err)	!=	

																							static_cast<std::uintmax_t>(-1);

Use	the	following	library	functions	to	perform	operations	with	files:

To	copy	a	file,	use	copy()	or	copy_file().	The	next	section	explains	the
difference	between	these	two:

								auto	success	=	fs::copy_file(filepath,	path	/	"sample.bak",	err);

								if	(!success)	std::cout	<<	err.message()	<<	std::endl;

								fs::copy(filepath,	path	/	"sample.cpy",	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	rename	a	file,	use	rename():

								auto	newpath	=	path	/	"sample.log";

								fs::rename(filepath,	newpath,	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	move	a	file,	use	rename():

								auto	newpath	=	path	/	"sample.log";

								fs::rename(newpath,	path	/	"tmp1"	/	"sample.log",	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	create	a	symbolic	link	to	a	file,	use	create_symlink():

								auto	linkpath	=	path	/	"sample.txt.link";

								fs::create_symlink(filepath,	linkpath,	err);

								if	(err)	std::cout	<<	err.message()	<<	std::endl;

To	delete	a	file,	use	remove():

								auto	success	=	fs::remove(path	/	"sample.cpy",	err);

								if	(!success)	std::cout	<<	err.message()	<<	std::endl;



How	it	works...
All	the	functions	mentioned	in	this	recipe,	and	other	similar	functions	that	are
not	discussed	here,	have	multiple	overloads	grouped	in	two	categories:

Overloads	that	take	as	a	last	argument	a	reference	to	an	std::error_code:	these
overloads	do	not	throw	an	exception	(they	are	defined	with	the	noexcept
specification),	but	instead	set	the	value	of	the	error_code	object	to	the
operating	system	error	code,	if	an	operating	system	error	occurred.	If	no
such	error	occurred,	then	the	clear()	method	on	the	error_code	object	is	called
to	reset	any	possible	previously	set	code.
Overloads	that	do	not	take	the	last	argument	of	the	std::error_code	type:	these
overloads	throw	exceptions	if	errors	occur.	If	an	operating	system	error
occurs,	they	throw	an	std::filesystem::filesystem_error	exception.	On	the	other
hand,	if	memory	allocation	fails,	these	functions	throw	an	std::bad_alloc
exception.

All	the	examples	in	the	previous	section	used	the	overload	that	does	not	throw
exceptions,	but	instead	set	a	code	when	an	error	occurs.	Some	functions	return	a
bool	to	indicate	success	or	failure.	You	can	check	whether	the	error_code
object	holds	the	code	of	an	error	either	by	checking	whether	the	value	of	the
error	code,	returned	by	method	value(),	is	different	than	zero,	or	by	using	the
conversion	operator	bool,	that	returns	true	for	the	same	case,	and	false	otherwise.
To	retrieve	the	explanatory	string	for	the	error	code,	use	the	message()	method.

Some	of	the	filesystem	library	functions	are	common	for	both	files	and
directories.	This	is	the	case	for	rename(),	remove(),	and	copy().	The	working	details
of	each	of	these	functions	can	be	complex,	especially	in	the	case	of	copy(),	and
are	beyond	the	scope	of	this	recipe.	You	should	read	the	reference
documentation	if	you	need	to	perform	anything	other	than	the	simple	operations
covered	here.

When	it	comes	to	copying	files,	there	are	two	functions	that	can	be	used:	copy()
and	copy_file().	These	have	equivalent	overloads	with	identical
signatures	and,	apparently,	work	the	same	way.	However,	there	is	an	important



difference	(other	than	the	fact	that	copy()	also	works	for	directories):	copy_file()
follows	symbolic	links.	To	avoid	doing	that	and	copying	the	actual	symbolic
link,	you	must	use	either	copy_symlink()	or	copy()	with	the	copy_options::copy_symlinks
flag.	Both	the	copy()	and	copy_file()	functions	have	an	overload	that	takes	an
argument	of	the	std::filesystem::copy_options	type	that	defines	how	the	operation
should	be	performed.	copy_options	is	a	scoped	enum	with	the	following	definition:

				enum	class	copy_options	

				{

						none	=	0,

						skip_existing	=	1,

						overwrite_existing	=	2,

						update_existing	=	4,

						recursive	=	8,

						copy_symlinks	=	16,

						skip_symlinks	=	32,

						directories_only	=	64,

						create_symlinks	=	128,

						create_hard_links	=	256

				};

The	following	table	defines	how	each	of	these	flags	affect	a	copy	operation,
either	with	copy()	or	copy_file().	The	table	is	taken	from	the	27.10.10.4	paragraph
of	the	C++17	standard:

Option	group	controlling
copy_file	function	effects
for	existing	target	files
none (Default)	Error;	file	already	exists

skip_existing
Do	not	overwrite	existing	file;	do	not	report	an
error

overwrite_existing Overwrite	the	existing	file

update_existing
Overwrite	the	existing	file	if	it	is	older	than	the
replacement	file

Option	group	controlling
copy	function	effects	for
subdirectories
none (Default)	Do	not	copy	subdirectories

recursive
Recursively	copy	subdirectories	and	their
contents



Option	group	controlling
copy	function	effects	for
symbolic	links

none (Default)	Follow	symbolic	links

copy_symlinks
Copy	symbolic	links	as	symbolic	links	rather
than	copying	the	files	that	they	point	to

skip_symlinks Ignore	symbolic	links

Option	group	controlling
copy	function	effects	for
choosing	the	form	of
copying
none (Default)	Copy	content

directories_only
Copy	directory	structure	only,	do	not	copy	non-
directory	files

create_symlinks

Make	symbolic	links	instead	of	copies	of	files;
the	source	path	shall	be	an	absolute	path	unless
the	destination	path	is	in	the	current	directory

create_hard_links Make	hard	links	instead	of	copies	of	files

Another	aspect	that	should	be	mentioned	is	related	to	symbolic	links:
create_directory_symlink()	creates	a	symbolic	link	to	a	directory,
whereas	create_symlink()	creates	symbolic	links	to	either	files	or	directories.	On
POSIX	systems,	the	two	are	identical	when	it	comes	to	directories.	On	other
systems	(such	as	Windows),	symbolic	links	to	directories	are	created	differently
than	symbolic	links	to	files.	Therefore,	it	is	recommended	that	you	use
create_directory_symlink()	for	directories,	in	order	to	write	code	that	works
correctly	on	all	systems.

When	you	perform	operations	with	files	and	directories	such	as	the
ones	described	in	this	recipe	and	you	use	the	overloads	that	may
throw	exceptions,	ensure	that	you	try-catch	the	calls.	Regardless	of
the	type	of	overloads	used,	you	should	check	the	success	of	the
operation	and	take	appropriate	action	in	case	of	failure.



See	also
Working	with	filesystem	paths
Removing	content	from	a	file
Checking	the	properties	of	an	existing	file	or	directory



Removing	content	from	a	file
Operations	such	as	copying,	renaming,	moving,	or	deleting	files	are	directly
provided	by	the	filesystem	library.	However,	when	it	comes	to	removing	content
from	a	file,	you	must	perform	explicit	actions.	Regardless	of	whether	you	need
to	do	this	for	a	text	or	binary	files,	you	must	implement	the	following	pattern:

1.	 Create	a	temporary	file.
2.	 Copy	only	the	content	that	you	want	from	the	original	file	to	the	temporary

file.
3.	 Delete	the	original	file.
4.	 Rename/move	the	temporary	file	to	the	name/location	of	the	original	file.



Getting	ready
In	this	recipe,	we	will	see	how	to	implement	the	pattern	mentioned	earlier	for	a
text	file.	To	do	this,	we	will	consider	removing	empty	lines	or	lines	that	start
with	a	semicolon	(;).	For	this	example,	we	will	have	an	initial	file	called
sample.dat	that	contains	the	names	of	Shakespeare's	plays,	but	also	empty	lines
and	lines	that	start	with	a	semicolon.	The	following	is	a	partial	listing	of	this	file
(from	the	beginning):

;Shakespeare's	plays,	listed	by	genre

;TRAGEDIES

Troilus	and	Cressida

Coriolanus

Titus	Andronicus

Romeo	and	Juliet

Timon	of	Athens

Julius	Caesar

The	code	samples	listed	in	the	next	section	use	the	following	variables:

				auto	path	=	fs::current_path();

				auto	filepath	=	path	/	"sample.dat";

				auto	temppath	=	path	/	"sample.tmp";

				auto	err	=	std::error_code{};



How	to	do	it...
Perform	the	following	operations	to	remove	content	from	a	file:

1.	 Open	the	file	for	reading:

								std::ifstream	in(filepath);

								if	(!in.is_open())

								{

										std::cout	<<	"File	could	not	be	opened!"	<<	std::endl;

										return;

								}

2.	 Open	another	temporary	file	for	writing;	if	the	file	already	exists,	truncate
its	content:

								std::ofstream	out(temppath,	std::ios::trunc);

								if	(!out.is_open())

								{

										std::cout	<<	"Temporary	file	could	not	be	created!"	

																				<<	std::endl;

										return;

								}

3.	 Read	line	by	line	from	the	input	file	and	copy	the	selected	content	to	the
output	file:

								auto	line	=	std::string{};

								while	(std::getline(in,	line))

								{

										if	(!line.empty()	&&	line.at(0)	!=	';')

										{

												out	<<	line	<<	'n';

										}

								}

4.	 Close	both	input	and	output	files:

								in.close();

								out.close();

5.	 Delete	the	original	file:

								auto	success	=	fs::remove(filepath,	err);

								if(!success	||	err)

								{

										std::cout	<<	err.message()	<<	std::endl;

										return;

								}



6.	 Rename/move	the	temporary	file	to	the	name/location	of	the	original	file:

								fs::rename(temppath,	filepath,	err);

								if	(err)

								{

										std::cout	<<	err.message()	<<	std::endl;

								}



How	it	works...
The	pattern	described	above	is	the	same	for	binary	files	too,	but	for	our
convenience,	we	are	only	discussing	an	example	with	text	files.	The	temporary
file	in	this	example	is	in	the	same	directory	with	the	original	file.	Alternatively,
this	can	be	located	in	a	separate	directory,	such	as	a	user-temporary	directory.	To
get	a	path	to	a	temporary	directory,	you	can	use
std::filesystem::temp_directory_path().	On	Windows	systems,	this	function	returns
the	same	directory	as	GetTempPath().	On	POSIX	systems,	it	returns	the	path
specified	in	one	of	the	environment	variables	TMPDIR,	TMP,	TEMP,	or	TEMPDIR,	or	if	none
of	them	are	available,	then	it	returns	the	path	/tmp.

How	content	from	the	original	file	is	copied	to	the	temporary	file	varies	from
one	case	to	another,	depending	on	what	needs	to	be	copied.	In	the	preceding
example,	we	have	copied	entire	lines,	unless	they	are	empty	or	start	with	a
semicolon.	For	this	purpose,	we	read	the	content	of	the	original	file	line	by	line
using	std::getline()	until	there	were	no	more	lines	to	read.	After	all	necessary
content	has	been	copied,	the	files	should	be	closed,	so	they	can	be	moved	or
deleted.

To	complete	the	operation,	there	are	three	options:

Delete	the	original	file	and	rename	the	temporary	file	to	the	same	name	as
the	original	one,	if	they	were	in	the	same	directory,	or	move	the	temporary
file	to	the	original	file	location	if	they	were	in	different	directories.	This	is
the	approach	taken	in	this	recipe.	For	this,	we	used	the	remove()	function	to
delete	the	original	file	and	rename()	to	rename	the	temporary	file	to	the
original	filename.
Copy	the	content	of	the	temporary	file	to	the	original	file	(for	this,	you	can
use	either	copy()	or	copy_file()	functions)	and	then	delete	the	temporary	file
(use	remove()	for	that).
Rename	the	original	file	(for	instance,	changing	the	extension	or	the	name)
and	then	use	the	original	filename	to	rename/move	the	temporary	file.

If	you	take	the	first	approach	mentioned	above,	then	you	must	make
sure	that	the	temporary	file	that	is	later	replacing	the	original	file



sure	that	the	temporary	file	that	is	later	replacing	the	original	file
has	the	same	file	permissions	as	the	original	file,	otherwise,
depending	on	the	context	of	your	solution,	it	can	lead	to	problems.



See	also
Creating,	copying,	and	deleting	files	and	directories



Checking	the	properties	of	an	existing
file	or	directory
The	filesystem	library	provides	functions	and	types	that	enable	developers	to
check	for	the	existence	of	a	filesystem	object,	such	as	a	file	or	directory,	its
properties,	such	as	the	type	(file,	directory,	symbolic	link,	and	so	on),	the	last
write	time,	permissions,	and	others.	In	this	recipe,	we	will	look	at	what	these
types	and	functions	are	and	how	they	can	be	used.



Getting	ready
Before	continuing	with	this	recipe,	you	should	read	the	Working	with	filesystem
paths	recipe.

For	the	following	code	samples,	we	will	use	the	namespace	alias	fs	for
the	std::filesystem	namespace.	The	filesystem	library	is	available	in	the	header
with	the	same	name,	<filesystem>.	Also,	we	will	use	the	variables	shown	here,	path
for	the	path	of	a	file	and	err	for	receiving	potential	operating	system	error	codes
from	the	filesystem	APIs:

				auto	path	=	fs::current_path()	/	"main.cpp";

				auto	err	=	std::error_code{};



How	to	do	it...
Use	the	following	library	functions	to	retrieve	information	about	filesystem
objects:

To	check	whether	a	path	refers	to	an	existing	filesystem	object,	use	exists():

								auto	exists	=	fs::exists(path,	err);

								std::cout	<<	"file	exists:	"	<<	std::boolalpha

																		<<	exists	<<	std::endl;

To	check	whether	two	different	paths	refer	to	the	same	filesystem	object,
use	equivalent():

								auto	same	=	fs::equivalent(path,	

																							fs::current_path()	/	"."	/	"main.cpp");

								std::cout	<<	"equivalent:	"	<<	same	<<	std::endl;

To	retrieve	the	size	of	a	file	in	bytes,	use	file_size():

								auto	size	=	fs::file_size(path,	err);

								std::cout	<<	"file	size:	"	<<	size	<<	std::endl;

To	retrieve	the	count	of	hard	links	to	a	filesystem	object,	use
hard_link_count():

								auto	links	=	fs::hard_link_count(path,	err);

								if(links	!=	static_cast<uintmax_t>(-1))

										std::cout	<<	"hard	links:	"	<<	links	<<	std::endl;

								else

										std::cout	<<	"hard	links:	error"	<<	std::endl;

To	retrieve	or	set	the	last	modification	time	for	a	filesystem	object,	use
last_write_time():

								auto	lwt	=	fs::last_write_time(path,	err);

								auto	time	=	decltype(lwt)::clock::to_time_t(lwt);

								auto	localtime	=	std::localtime(&time);

								std::cout	<<	"last	write	time:	"	

																		<<	std::put_time(localtime,	"%c")	<<	std::endl;

To	retrieve	POSIX	file	attributes,	such	as	type	and	permissions,	use
the	status()	function.	This	function	follows	symbolic	links.	To	retrieve	the
file	attributes	of	a	symbolic	link	without	following	it,	use	symlink_status():



								auto	print_perm	=	[](fs::perms	p)

								{

										std::cout	

												<<	((p	&	fs::perms::owner_read)	!=	fs::perms::none	?	

															"r"	:	"-")

												<<	((p	&	fs::perms::owner_write)	!=	fs::perms::none	?	

															"w"	:	"-")

												<<	((p	&	fs::perms::owner_exec)	!=	fs::perms::none	?	

															"x"	:	"-")

												<<	((p	&	fs::perms::group_read)	!=	fs::perms::none	?	

															"r"	:	"-")

												<<	((p	&	fs::perms::group_write)	!=	fs::perms::none	?	

															"w"	:	"-")

												<<	((p	&	fs::perms::group_exec)	!=	fs::perms::none	?	

															"x"	:	"-")

												<<	((p	&	fs::perms::others_read)	!=	fs::perms::none	?	

															"r"	:	"-")

												<<	((p	&	fs::perms::others_write)	!=	fs::perms::none	?	

															"w"	:	"-")

												<<	((p	&	fs::perms::others_exec)	!=	fs::perms::none	?	

															"x"	:	"-")

												<<	std::endl;

								};

								auto	status	=	fs::status(path,	err);

								std::cout	<<	"permissions:	";

								print_perm(status.permissions());

To	check	whether	a	path	refers	to	a	particular	type	of	filesystem	object,
such	as	file,	directory,	symbolic	link,	and	so	on,	use	functions
is_regular_file(),	is_directory(),	is_symlink(),	and	so	on:

								std::cout	<<	"regular	file?	"	<<

																		fs::is_regular_file(path,	err)	<<	std::endl;

								std::cout	<<	"directory?	"	<<

																		fs::is_directory(path,	err)	<<	std::endl;

								std::cout	<<	"char	file?	"	<<

																		fs::is_character_file(path,	err)	<<	std::endl;

								std::cout	<<	"symlink?	"	<<

																		fs::is_symlink(path,	err)	<<	std::endl;



How	it	works...
All	the	functions	discussed	in	this	recipe	have	an	overload	that	throws
exceptions	upon	error,	and	an	overload	that	does	not	throw	but	returns	an	error
code	via	a	function	parameter.	All	the	examples	in	this	recipe	used	this
approach.	More	information	about	these	sets	of	overloads	can	be	found	in
the	Creating,	copying,	and	deleting	files	and	directories	recipe.

These	functions	used	for	retrieving	information	about	the	filesystem	files	and
directories	are	in	general	simple	and	straightforward.	However,	some
considerations	are	necessary:

Checking	whether	a	filesystem	object	exists	can	be	done	with	exists()	either
by	passing	the	path	or	an	std::filesystem::file_status	object	that	was
previously	retrieved	using	the	status()	function.
The	equivalent()	function	determines	whether	two	filesystem	objects	have
the	same	status,	as	retrieved	by	function	status().	If	neither	paths	exists,	or	if
both	exist	but	neither	is	a	file,	directory,	or	symbolic	link,	then	the	function
returns	an	error.	Hard	links	to	the	same	file	object	are	equivalent.	A
symbolic	link	and	its	target	are	also	equivalent.
The	file_size()	function	can	only	be	used	to	determine	the	size	of	regular
files	and	symbolic	links	that	target	a	regular	file.	For	any	other	type	of	file
objects,	such	as	directories,	this	function	fails.	This	function	returns	the	size
in	bytes	of	the	file,	or	-1	if	an	error	occurred.	If	you	want	to	determine
whether	a	file	is	empty,	you	can	use	the	is_empty()	function.	This	works	for
all	types	of	filesystem	objects,	including	directories.
The	last_write_time()	function	has	two	sets	of	overloads:	one	that	is	used	for
retrieving	the	last	modification	time	of	the	filesystem	object,	and	one	that	is
used	to	set	the	last	modification	time.	Time	is	indicated	by	a
std::filesystem::file_time_type	object	that	is	basically	a	type	alias	for
std::chrono::time_point.	The	following	example	changes	the	last	write	time	for
a	file	to	30	minutes	back	than	it	used	to	be:

								using	namespace	std::chrono_literals;

								auto	lwt	=	fs::last_write_time(path,	err);

								fs::last_write_time(path,	lwt	-	30min);



The	status()	function	determines	the	type	and	permissions	of	a	filesystem
object.	However,	if	the	file	is	a	symbolic	link,	the	information	returned	is
about	the	target	of	the	symbolic	link.	To	retrieve	information	about	the
symbolic	link	itself,	the	symlink_status()	function	must	be	used.	Permissions
are	defined	as	an	enumeration,	std::filesystem::perms.	Not	all	the	enumerators
of	this	scoped	enum	represent	permissions;	some	of	them	represent
controlling	bits,	such	as	add_perms	to	indicate	that	permissions	should	be
added,	or	remove_perms	to	indicate	that	permissions	should	be	removed.
The	permissions()	function	can	be	used	to	modify	permissions	of	a	file	or
directory.	The	following	example	adds	all	permissions	to	the	owner	and
user	group	of	a	file:

								fs::permissions(

										path,	

										fs::perms::add_perms	|	

										fs::perms::owner_all	|	fs::perms::group_all,

										err);

To	determine	the	type	of	a	filesystem	object,	such	as	file,	directory,	or
symbolic	link,	there	are	two	options	available:	retrieve	the	file	status	and
then	check	the	type	property,	or	use	one	of	the	available	filesystem
functions,	such	as	is_regular_file(),	is_symlink(),	or	is_directory().	The
following	examples	that	check	whether	a	path	refers	to	a	regular	file	are
equivalent:

								auto	s	=	fs::status(path,	err);

								auto	isfile	=	s.type()	==	std::filesystem::file_type::regular;

								auto	isfile	=	fs::is_regular_file(path,	err);



See	also
Working	with	filesystem	paths
Creating,	copying,	and	deleting	files	and	directories
Enumerating	the	content	of	a	directory



Enumerating	the	content	of	a
directory
So	far	in	this	chapter,	we	took	a	look	at	many	of	the	functionalities	provided	by
the	filesystem	library,	such	as	working	with	paths,	performing	operations	with
files	and	directories	(creating,	moving,	renaming,	deleting,	and	so	on),	and
querying	or	modifying	properties.	Another	useful	functionality	when	working
with	the	filesystem	is	to	iterate	through	the	content	of	a	directory.	The	file
library	provides	two	directory	iterators,	one	called	directory_iterator	that	iterates
the	content	of	a	directory,	and	one	called	recursive_directory_iterator	that	iterates
recursively	the	content	of	a	directory	and	its	subdirectories.	In	this	recipe,	we
will	see	how	to	use	these.



Getting	ready
In	this	recipe,	we	will	work	with	filesystem	paths	and	will	check	the	properties
of	a	filesystem	object.	Therefore,	it	is	recommended	that	you	first	read	the
recipes	Working	with	filesystem	paths	and	Checking	the	properties	of	an	existing
file	or	directory.

For	this	recipe,	we	will	consider	a	directory	with	the	following	structure:

test/

├──data/

│	├──input.dat

│	└──output.dat

├──file_1.txt

├──file_2.txt	

└──file_3.log



How	to	do	it...
Use	the	following	patterns	to	enumerate	the	content	of	a	directory:

To	iterate	only	the	content	of	a	directory	without	recursively	visiting	its
subdirectories,	use	directory_iterator:

								void	visit_directory(fs::path	const	&	dir)

								{

										if	(fs::exists(dir)	&&	fs::is_directory(dir))

										{

												for	(auto	const	&	entry	:	fs::directory_iterator(dir))

												{

														auto	filename	=	entry.path().filename();

														if	(fs::is_directory(entry.status()))

																std::cout	<<	"[+]"	<<	filename	<<	std::endl;

														else	if	(fs::is_symlink(entry.status()))

																std::cout	<<	"[>]"	<<	filename	<<	std::endl;

														else	if	(fs::is_regular_file(entry.status()))

																std::cout	<<	"	"	<<	filename	<<	std::endl;

														else

																std::cout	<<	"[?]"	<<	filename	<<	std::endl;

													}

											}

									}

To	iterate	all	the	content	of	a	directory,	including	its	subdirectories,	use
recursive_directory_iterator	when	the	order	of	processing	the	entries	does	not
matter:

								void	visit_directory_rec(fs::path	const	&	dir)

								{

										if	(fs::exists(dir)	&&	fs::is_directory(dir))

										{

												for	(auto	const	&	entry	:	

																	fs::recursive_directory_iterator(dir))

												{

														auto	filename	=	entry.path().filename();

														if	(fs::is_directory(entry.status()))

																std::cout	<<	"[+]"	<<	filename	<<	std::endl;

														else	if	(fs::is_symlink(entry.status()))

																std::cout	<<	"[>]"	<<	filename	<<	std::endl;

														else	if	(fs::is_regular_file(entry.status()))

																std::cout	<<	"	"	<<	filename	<<	std::endl;

														else

																std::cout	<<	"[?]"	<<	filename	<<	std::endl;

												}

										}

								}

To	iterate	all	the	content	of	a	directory,	including	its	subdirectories,	in	a



structured	manner,	such	as	traversing	a	tree,	use	a	function	similar	to	the
one	in	the	first	example,	that	uses	directory_iterator	to	iterate	the	content	of	a
directory,	but	call	it	recursively	for	each	subdirectory:

								void	visit_directory(

										fs::path	const	&	dir,	

										bool	const	recursive	=	false,	

										unsigned	int	const	level	=	0)

								{

										if	(fs::exists(dir)	&&	fs::is_directory(dir))

										{

												auto	lead	=	std::string(level*3,	'	');

												for	(auto	const	&	entry	:	fs::directory_iterator(dir))

												{

														auto	filename	=	entry.path().filename();

														if	(fs::is_directory(entry.status()))

														{

																std::cout	<<	lead	<<	"[+]"	<<	filename	<<	std::endl;

																if(recursive)

																		visit_directory(entry,	recursive,	level+1);

														}

														else	if	(fs::is_symlink(entry.status()))

																std::cout	<<	lead	<<	"[>]"	<<	filename	<<	std::endl;

														else	if	(fs::is_regular_file(entry.status()))

																std::cout	<<	lead	<<	"	"	<<	filename	<<	std::endl;

														else

																std::cout	<<	lead	<<	"[?]"	<<	filename	<<	std::endl;

												}

										}

								}



How	it	works...
Both	directory_iterator	and	recursive_directory_iterator	are	input	iterators	that	iterate
over	the	entries	of	a	directory.	The	difference	is	that	the	first	one	does	not	visit
the	subdirectories	recursively,	while	the	second	one,	as	the	name	implies,	does.
The	two	have	similar	behavior:

The	order	of	iteration	is	unspecified.
Each	directory	entry	is	visited	only	once.
The	special	paths	dot	(.)	and	dot-dot	(..)	are	skipped.
A	default	constructed	iterator	is	the	end	iterator	and	two	end	iterators	are
always	equal.
When	iterated	pass	the	last	directory	entries,	it	becomes	equal	to	the	end
iterator.
The	standard	does	not	specify	what	happens	if	a	directory	entry	is	added	or
deleted	to	the	iterated	directory	after	the	iterator	has	been	created.
The	standard	defines	non-member	functions	begin()	and	end()	for	both
directory_iterator	and	recursive_directory_iterator,	which	enables	us	to	use
these	iterators	in	range-based	for	loops,	as	seen	in	the	examples	earlier.

Both	iterators	have	overloaded	constructors.	Some	overloads	of	the
recursive_directory_iterator	constructor	take	an	argument	of
the	std::filesystem::directory_options	type	that	specifies	additional	options	for	the
iteration:

none:	This	is	the	default	that	does	not	specify	anything.
follow_directory_symlink:	This	specifies	that	iteration	should	follow	symbolic
links	instead	of	serving	the	link	itself.
skip_permission_denied:	This	specifies	to	ignore	and	skip	the	directories	that
would	trigger	an	access	denied	error.

The	elements	both	directory	iterators	point	to	are	of	the	directory_entry	type.	The
	path()	member	function	returns	the	path	of	the	filesystem	object	represented	by
this	object.	The	status	of	the	filesystem	object	can	be	retrieved	with	member
functions	status()	and	symlink_status()	for	symbolic	links.

The	preceding	examples	follow	a	common	pattern:



The	preceding	examples	follow	a	common	pattern:

Verify	that	the	path	to	iterate	actually	exists.
Use	a	range-based	for	loop	to	iterate	all	the	entries	of	a	directory.
Use	one	of	the	two	directory	iterators	available	in	the	filesystem	library,
depending	on	the	way	iteration	is	supposed	to	be	done.
Process	each	entry	according	to	the	requirements.

In	our	examples,	we	simply	printed	the	names	of	the	directory	entries	to	the
console.	It	is	important	to	note,	as	already	specified	earlier,	that	the	content	of
the	directory	is	iterated	in	an	unspecified	order.	If	you	want	to	process	the
content	in	a	structured	manner,	such	as	showing	subdirectories	and	their	entries
indented	(for	this	particular	case)	or	in	a	tree	(in	other	types	of	applications),
then	using	recursive_directory_iterator	is	not	appropriate.	Instead,	you	should	use
directory_iterator	in	a	function	that	is	called	recursively	from	the	iteration,	for
each	subdirectory,	as	shown	in	the	last	example	in	the	previous	section.

Considering	the	directory	structure	presented	at	the	beginning	of	this	recipe
(relative	to	the	current	path),	we	get	the	following	output	when	using	the
recursive	iterator	as	shown	in	the	following	example:

				visit_directory_rec(fs::current_path()	/	"test");

[+]data

			input.dat

			output.dat

			file_1.txt

			file_2.txt

			file_3.log

On	the	other	hand,	when	using	the	recursive	function	from	the	third	example	as
shown	below,	the	output	is	displayed	ordered	on	sublevels,	as	intended:

				visit_directory(fs::current_path()	/	"test",	true);

[+]data

						input.dat

						output.dat

			file_1.txt

			file_2.txt

			file_3.log



There's	more...
In	the	previous	recipe,	Checking	the	properties	of	an	existing	file	or	directory,
we	have	discussed,	among	others,	about	the	file_size()	function	that	returns	the
size	in	bytes	of	a	file.	However,	this	function	fails	if	the	specified	path	is	a
directory.	To	determine	the	size	of	a	directory,	we	need	to	iterate	recursively
through	the	content	of	a	directory,	retrieve	the	size	of	regular	files	or	symbolic
links,	and	add	them	together.	However,	we	must	make	sure	that	we	check	the
value	returned	by	file_size(),	that	is	-1	cast	to	an	std::uintmax_t,	in	the	case	of	an
error.	This	value	indicating	failure,	should	not	be	added	to	the	total	size	of	a
directory.	The	following	function	also	returns	-1	as	an	uintmax_t	in	the	case	of	an
error:

				std::uintmax_t	dir_size(fs::path	const	&	path)

				{

						auto	size	=	static_cast<uintmax_t>(-1);

						if	(fs::exists(path)	&&	fs::is_directory(path))

						{

								for	(auto	const	&	entry	:	fs::recursive_directory_iterator(path))

								{

										if	(fs::is_regular_file(entry.status())	||

										fs::is_symlink(entry.status()))

										{

												auto	err	=	std::error_code{};

												auto	filesize	=	fs::file_size(entry);

												if	(filesize	!=	static_cast<uintmax_t>(-1))

														size	+=	filesize;

										}

								}

						}

						return	size;

				}



See	also
Checking	the	properties	of	an	existing	file	or	directory
Finding	a	file



Finding	a	file
In	the	previous	recipe,	we	saw	how	we	can	use	directory_iterator	and
recursive_directory_iterator	to	enumerate	the	content	of	a	directory.	Displaying	the
content	of	a	directory	as	we	did	in	the	previous	recipe	is	only	one	of	the
scenarios	where	this	is	needed.	The	other	major	scenario	is	searching	for
particular	entries	in	a	directory,	such	as	files	with	a	particular	name,	extension,
and	so	on.	In	this	recipe,	we	will	see	how	we	can	use	the	directory	iterators	and
the	iterating	patterns	shown	earlier	to	find	files	that	match	a	given	criteria.



Getting	ready
You	should	read	the	previous	recipe,	Enumerating	the	content	of	a	directory,	for
details	about	directory	iterators.	In	this	recipe,	we	will	also	use	the	same	test
directory	structure	presented	in	the	previous	recipe.



How	to	do	it...
To	find	files	that	match	particular	criteria,	use	the	following	pattern,	exemplified
in	the	find_files()	function,	as	follows:

1.	 Use	recursive_directory_iterator	to	iterate	through	all	the	entries	of	a	directory
and	recursively	through	its	subdirectories.

2.	 Consider	regular	files	(and	any	other	type	of	files	you	may	need	to	process).
3.	 Use	a	function	object	(such	as	a	lambda	expression)	to	filter	only	the	files

that	match	your	criteria.
4.	 Add	the	selected	entries	to	a	range	(such	as	a	vector):

								std::vector<fs::path>	find_files(

											fs::path	const	&	dir,	

											std::function<bool(fs::path	const&)>	filter)

								{

										auto	result	=	std::vector<fs::path>{};

										if	(fs::exists(dir))

										{

												for	(auto	const	&	entry	:	

														fs::recursive_directory_iterator(

																dir,	

																fs::directory_options::follow_directory_symlink))

												{

														if	(fs::is_regular_file(entry)	&&

																	filter(entry))

														{

																result.push_back(entry);

														}

												}

										}

										return	result;

								}



How	it	works...
When	we	want	to	find	files	in	a	directory,	the	structure	of	the	directory	and	the
order	its	entries,	including	subdirectories,	are	visited	in	is	probably	not
important.	Therefore,	we	can	use	the	recursive_directory_iterator	to	iterate	through
the	entries.

The	function	,	find_files(),	takes	two	arguments:	a	path	and	a	function	wrapper
that	is	used	to	select	the	entries	that	should	be	returned.	The	return	type	is	a
vector	of	filesystem::path	though,	alternatively,	it	could	also	be	a	vector	of
filesystem::directory_entry.	The	recursive	directory	iterator	used	in	this	example
does	not	follow	symbolic	links,	returning	the	link	itself	and	not	the	target.	This
behavior	can	be	changed,	using	a	constructor	overload	that	has	an	argument	of
type	filesystem::directory_options	and	passing	follow_directory_symlink.

In	the	preceding	example,	we	consider	only	regular	files	and	ignore	the	other
type	of	filesystem	objects.	The	predicate	is	applied	to	the	directory	entry	and,	if
it	returns	true,	the	entry	is	added	to	the	result.

The	following	example	uses	the	find_files()	function	to	find	all	the	files	in	the
test	directory	that	start	with	the	prefix	file_:

				auto	results	=	find_files(

														fs::current_path()	/	"test",

														[](fs::path	const	&	p)	{	

						auto	filename	=	p.wstring();

						return	filename.find(L"file_")	!=	std::wstring::npos;

				});

				for	(auto	const	&	path	:	results)

				{

						std::cout	<<	path	<<	std::endl;

				}

The	output	of	executing	this	program,	with	paths	relative	to	the	current	path,	is
as	follows:

test\file_1.txt

test\file_2.txt

test\file_3.log

A	second	example	shows	how	to	find	files	that	have	a	particular	extension,	in



this	case,	extension	.dat:

				auto	results	=	find_files(

											fs::current_path()	/	"test",

											[](fs::path	const	&	p)	{

						return	p.extension()	==	L".dat";

				});

				for	(auto	const	&	path	:	results)

				{

						std::cout	<<	path	<<	std::endl;

				}

The	output,	again	relative	to	the	current	path,	is	shown	here:

test\data\input.dat

test\data\output.dat



See	also
Checking	the	properties	of	an	existing	file	or	directory
Enumerating	the	content	of	a	directory



Leveraging	Threading	and
Concurrency
This	chapter	includes	the	following	recipes:

Working	with	threads
Handling	exceptions	from	thread	functions
Synchronizing	access	to	shared	data	with	mutexes	and	locks
Avoiding	using	recursive	mutexes
Sending	notifications	between	threads
Using	promises	and	futures	to	return	values	from	threads
Executing	functions	asynchronously
Using	atomic	types
Implementing	parallel	map	and	fold	with	threads
Implementing	parallel	map	and	fold	with	tasks



Introduction
All	computers	contain	multiple	processors	or	at	least	multiple	cores,	and
leveraging	this	computational	power	is	the	key	for	many	categories	of
applications.	Unfortunately,	many	developers	still	have	a	mindset	of	sequential
code	execution,	even	though	operations	that	do	not	depend	on	each	other	could
be	executed	concurrently.	This	chapter	presents	standard	library	support	for
threads,	asynchronous	tasks	and	related	components,	and	some	practical
examples	at	the	end.



Working	with	threads
Most	modern	processors	(except	those	dedicated	to	types	of	applications	that	do
not	require	great	computing	power,	such	as	Internet	of	Things	applications)	have
two,	four,	or	more	cores	that	enable	you	to	concurrently	execute	multiple	threads
of	execution.	Applications	must	be	explicitly	written	to	leverage	the	multiple
processing	units	that	exist;	you	can	write	such	applications	by	executing
functions	on	multiple	threads	at	the	same	time.	The	C++	standard	library
provides	support	for	working	with	threads,	synchronization	of	shared	data,
thread	communication,	and	asynchronous	tasks.	This	chapter	explores	the	most
important	topics	related	to	threads	and	tasks.

A	thread	is	a	sequence	of	instructions	that	can	be	managed	independently	by	a
scheduler,	such	as	the	operating	system.	Threads	could	be	software;	they	can	run
on	single	processing	units,	usually	by	time	slicing.	They	could	be	hardware	as
well;	they	can	run	simultaneously,	that	is,	in	parallel,	on	systems	with
multiprocessors	or	multicores.	Many	software	threads	can	run	concurrently	on	a
hardware	thread	too.	The	C++	library	provides	support	for	working	with
software	threads.	In	the	first	part	of	this	chapter,	we	will	look	at	the	various
threading	objects	and	mechanisms	that	have	built-in	support	in	the	library,	such
as	threads,	locking	objects,	condition	variables,	exception	handling,	and	others.
In	this	recipe,	you	will	learn	how	to	create	and	manage	threads.



Getting	ready
A	thread	of	execution	is	represented	by	the	thread	class	available	in	the	std
namespace	in	the	<thread>	header.	Additional	thread	utilities	are	available	in	the
same	header	but	in	the	std::this_thread	namespace.

In	the	following	examples,	the	print_time()	function	is	used:

				inline	void	print_time()

				{

						auto	now	=	std::chrono::system_clock::now();

						auto	stime	=	std::chrono::system_clock::to_time_t(now);

						auto	ltime	=	std::localtime(&stime);

						std::cout	<<	std::put_time(ltime,	"%c")	<<	std::endl;

				}



How	to	do	it...
Use	the	following	solutions	to	manage	threads:

To	create	an	std::thread	object	without	starting	the	execution	of	a	new
thread,	use	its	default	constructor:

								std::thread	t;

Start	the	execution	of	a	function	on	another	thread	by	constructing
an	std::thread	object	and	passing	the	function	as	an	argument:

								void	func1()

								{

										std::cout	<<	"thread	func	without	params"	<<	std::endl;

								}

								std::thread	t(func1);

								std::thread	t([]()	{

										std::cout	<<	"thread	func	without	params"	

																				<<	std::endl;	});

Start	the	execution	of	a	function	with	arguments	on	another	thread	by
constructing	an	std::thread	object	and	passing	the	function	as	an	argument	to
the	constructor,	followed	by	its	arguments:

								void	func2(int	const	i,	double	const	d,	std::string	const	s)

								{

										std::cout	<<	i	<<	",	"	<<	d	<<	",	"	<<	s	<<	std::endl;

								}

								std::thread	t(func2,	42,	42.0,	"42");

To	wait	for	a	thread	to	finish	the	execution,	use	the	join()	method	on	the
thread	object:

								t.join();

To	allow	a	thread	to	continue	its	execution	independently	of	the	current
thread	object,	use	the	detach()	method:	

								t.detach();

To	pass	arguments	by	reference	to	a	function,	thread	wrap	them	in



either	std::ref	or	std::cref	(if	the	reference	is	constant):

								void	func3(int	&	i)

								{

										i	*=	2;

								}

								int	n	=	42;

								std::thread	t(func3,	std::ref(n));

								t.join();

								std::cout	<<	n	<<	std::endl;	//	84

To	stop	the	execution	of	a	thread	for	a	specified	duration,	use	the
std::this_thread::sleep_for()	function:	

								void	func4()

								{

										using	namespace	std::chrono;

										print_time();

										std::this_thread::sleep_for(2s);

										print_time();

								}

								std::thread	t(func4);

								t.join();

To	stop	the	execution	of	a	thread	until	a	specified	moment	in	time,	use	the
	std::this_thread::sleep_until()	function:

								void	func5()

								{

										using	namespace	std::chrono;

										print_time();

										std::this_thread::sleep_until(

										std::chrono::system_clock::now()	+	2s);

										print_time();

								}

								std::thread	t(func5);

								t.join();

To	suspend	the	execution	of	the	current	thread	and	provide	an	opportunity
to	another	thread	to	perform	the	execution,	use	std::this_thread::yield():

								void	func6(std::chrono::seconds	timeout)

								{

										auto	now	=	std::chrono::system_clock::now();

										auto	then	=	now	+	timeout;

										do

										{

												std::this_thread::yield();

										}	while	(std::chrono::system_clock::now()	<	then);

								}

								std::thread	t(func6,	std::chrono::seconds(2));

								t.join();



								t.join();

								print_time();



How	it	works...
The	std::thread	class	that	represents	a	single	thread	of	execution	has	several
constructors:

A	default	constructor	that	only	creates	the	thread	object,	but	does	not	start
the	execution	of	a	new	thread.
A	move	constructor	that	creates	a	new	thread	object	to	represent	a	thread	of
execution	previously	represented	by	the	object	it	was	constructed	from.
After	the	construction	of	the	new	object,	the	other	object	is	no	longer
associated	with	the	execution	thread.
A	constructor	with	a	variable	number	of	arguments:	the	first	being	a
function	that	represents	the	top-level	thread	function	and	the	others	being
arguments	to	be	passed	to	the	thread	function.	Arguments	need	to	be	passed
to	the	thread	function	by	value.	If	the	thread	function	takes	parameters	by
reference	or	by	constant	reference,	they	must	be	wrapped	in	either
an	std::ref	or	std::cref	object.

The	thread	function,	in	this	case,	cannot	return	a	value.	It	is	not	illegal	for	the
function	to	actually	have	a	return	type	other	than	void,	but	it	ignores	any	value
that	is	directly	returned	by	the	function.	If	it	has	to	return	a	value,	it	can	do	so
using	a	shared	variable	or	a	function	argument.	In	a	future	recipe,	we	will	see
how	a	thread	function	returns	a	value	to	another	thread	using	a	promise.

If	the	function	terminates	with	an	exception,	the	exception	cannot	be	caught	with
a	try...catch	statement	in	the	context	where	a	thread	was	started	and	the	program
terminated	abnormally	with	a	call	to	std::terminate().	All	exceptions	must	be
caught	within	the	executing	thread,	but	they	can	be	transported	across	threads
via	an	std::exception_ptr	object.	We'll	discuss	this	topic	in	the	next	recipe.

After	a	thread	has	started	its	execution,	it	is	both	joinable	and	detachable.
Joining	a	thread	implies	blocking	the	execution	of	the	current	thread	until	the
joined	thread	ends	its	execution.	Detaching	a	thread	means	decoupling	the	thread
object	from	the	thread	of	execution	it	represents,	allowing	both	the	current
thread	and	the	detached	thread	to	be	executed	at	the	same	time.	Joining	a	thread



is	done	with	join()	and	detaching	a	thread	is	done	with	detach().	Once	you	call
either	of	these	two	methods,	the	thread	is	said	to	be	non-joinable	and	the	thread
object	can	be	safely	destroyed.	When	a	thread	is	detached,	the	shared	data	it	may
need	to	access	must	be	available	throughout	its	execution.	The	joinable()	method
indicates	whether	a	thread	can	be	joined	or	not.

Each	thread	has	an	identifier	that	can	be	retrieved--for	the	current	thread,	call	the
std::this_thread::get_id()	function;	for	another	thread	of	execution	represented	by
a	thread	object,	call	its	get_id()	method.

There	are	several	additional	utility	functions	available	in
the	std::this_thread	namespace:

The	yield()	method	hints	the	scheduler	to	activate	another	thread.	This	is
useful	when	implementing	a	busy-waiting	routine,	as	in	the	last	example
from	the	previous	section.
The	sleep_for()	method	blocks	the	execution	of	the	current	thread	for	at	least
the	specified	period	of	time	(the	actual	time	the	thread	is	put	to	sleep	may
be	longer	than	the	requested	period	due	to	scheduling).
The	sleep_until()	method	blocks	the	execution	of	the	current	thread	until	at
least	the	specified	time	point	(the	actual	duration	of	the	sleep	may	be	longer
than	requested	due	to	scheduling).



See	also
Handling	exceptions	from	thread	functions
Synchronizing	access	to	shared	data	with	mutexes	and	locks
Avoiding	using	recursive	mutexes
Sending	notifications	between	threads
Using	promises	and	futures	to	return	values	from	threads



Handling	exceptions	from	thread
functions
In	the	previous	recipe,	we	introduced	the	thread	support	library	and	saw	how	to
do	some	basic	operations	with	threads.	In	that	recipe,	we	briefly	discussed
exception	handling	in	thread	functions	and	mentioned	that	exceptions	cannot
leave	the	top-level	thread	function	because	they	cause	the	program	to
abnormally	terminate	with	a	call	to	std::terminate().	On	the	other	hand,	exceptions
can	be	transported	between	threads	within	an	std::exception_ptr	wrapper;	in	this
recipe,	we	will	see	how	to	do	this.



Getting	ready
You	are	now	familiar	with	the	thread	operations	we	discussed	in	the	previous
recipe,	Working	with	threads.	The	exception_ptr	class	is	available	in	the	std
namespace,	which	is	in	the	<exception>	header;	mutex	(which	we	will	discuss	in
more	detail	in	the	next	recipe)	is	also	available	in	the	same	namespace	but	in
the	<mutex>	header.



How	to	do	it...
To	properly	handle	exceptions	thrown	in	a	worker	thread	from	the	main	thread
or	the	thread	where	it	was	joined,	do	the	following	(assuming	multiple
exceptions	can	be	thrown	from	multiple	threads):

1.	 Use	a	global	container	to	hold	instances	of	std::exception_ptr:

								std::vector<std::exception_ptr>	g_exceptions;

2.	 Use	a	global	mutex	to	synchronize	access	to	the	shared	container:

								std::mutex	g_mutex;

3.	 Use	a	try...catch	block	for	the	code	that	is	being	executed	in	the	top-level
thread	function.	Use	std::current_exception()	to	capture	the	current	exception
and	wrap	a	copy	or	its	reference	into	an	std::exception_ptr	pointer,	which	is
added	to	the	shared	container	for	exceptions:

								void	func1()

								{

										throw	std::exception("exception	1");

								}

								void	func2()

								{

										throw	std::exception("exception	2");

								}

								void	thread_func1()

								{

										try

										{

												func1();

										}

										catch	(...)

										{

												std::lock_guard<std::mutex>	lock(g_mutex);

												g_exceptions.push_back(std::current_exception());

										}

								}

								void	thread_func2()

								{

										try

										{

												func2();

										}

										catch	(...)

										{

												std::lock_guard<std::mutex>	lock(g_mutex);



												std::lock_guard<std::mutex>	lock(g_mutex);

												g_exceptions.push_back(std::current_exception());

										}

								}

4.	 Clear	the	container	from	the	main	thread	before	you	start	the	threads:

								g_exceptions.clear();

5.	 In	the	main	thread,	after	the	execution	of	all	the	threads	has	finished,
inspect	the	caught	exceptions	and	handle	each	of	them	appropriately:

								std::thread	t1(thread_func1);

								std::thread	t2(thread_func2);

								t1.join();

								t2.join();

								for	(auto	const	&	e	:	g_exceptions)

								{

										try

										{

												if(e	!=	nullptr)

														std::rethrow_exception(e);

										}

										catch(std::exception	const	&	ex)

										{

												std::cout	<<	ex.what()	<<	std::endl;

										}

								}



How	it	works...
For	the	example	in	the	preceding	section,	we	assumed	that	multiple	threads	can
throw	exceptions	and	therefore	need	a	container	to	hold	them	all.	If	there	is	a
single	exception	from	a	single	thread	at	a	time,	then	you	do	not	need	a	shared
container	and	a	mutex	to	synchronize	access	to	it.	You	can	use	a	single	global
object	of	the	type	std::exception_ptr	to	hold	the	exception	transported	between
threads.

The	std::current_exception()	is	a	function	that	is	typically	used	in	a	catch	clause	to
capture	the	current	exception	and	create	an	instance	of	std::exception_ptr.	This	is
done	to	hold	a	copy	or	reference	(depending	on	the	implementation)	to	the
original	exception,	which	remains	valid	as	long	as	there	is	an
std::exception_ptr	pointer	available	that	refers	to	it.	If	this	function	is	called	when
no	exception	is	being	handled,	then	it	creates	an	empty	std::exception_ptr.

The	std::exception_ptr	pointer	is	a	wrapper	for	an	exception	captured	with
std::current_exception().	If	default	constructed,	it	does	not	hold	any	exception.
Two	objects	of	this	type	are	equal	if	they	are	both	empty	or	point	to	the	same
exception	object.	The	std::exception_ptr	objects	can	be	passed	to	other	threads
where	they	can	be	rethrown	and	caught	in	a	try...catch	block.

The	std::rethrow_exception()	is	a	function	that	takes	std::exception_ptr	as	an
argument	and	throws	the	exception	object	referred	to	by	its	argument.

std::current_exception(),	std::rethrow_exception(),	and	std::exception_ptr
are	all	available	in	C++11.

In	the	example	from	the	previous	section,	each	thread	function	uses	a	try...catch
statement	for	the	entire	code	it	executes	so	that	no	exception	may	leave	the
function	uncaught.	When	an	exception	is	handled,	a	lock	on	the	global	mutex
object	is	acquired	and	the	std::exception_ptr	object	holding	the	current	exception
is	added	to	the	shared	container.	With	this	approach,	the	thread	function	stops	at
the	first	exception;	however,	in	other	circumstances,	you	may	need	to	execute
multiple	operations	even	if	the	previous	one	throws	an	exception.	In	this	case,



you	will	have	multiple	try...catch	statements	and	perhaps	transport	only	some	of
the	exceptions	outside	the	thread.	In	the	main	thread,	after	all	the	threads	have
finished	executing,	the	container	is	iterated	and	each	non-empty	exception	is
rethrown	and	caught	with	a	try...catch	block	and	handled	appropriately.



See	also
Working	with	threads



Synchronizing	access	to	shared	data
with	mutexes	and	locks
Threads	allow	you	to	execute	multiple	functions	at	the	same	time,	but	it	is	often
necessary	that	these	functions	access	shared	resources.	Access	to	shared
resources	must	be	synchronized	so	that	at	a	time,	only	one	thread	would	be	able
to	read	or	write	from	or	to	the	shared	resource.	An	example	of	this	was	shown	in
the	previous	recipe,	where	multiple	threads	had	the	ability	to	add	objects	to	a
shared	container	at	the	same	time.	In	this	recipe,	we	will	see	what	are	the
mechanisms	the	C++	standard	defines	for	synchronizing	thread	access
with	shared	data	and	how	they	work.



Getting	ready
The	mutex	and	lock	classes	discussed	in	this	recipe	are	available	in	the	std
namespace	in	the	<mutex>	header.	



How	to	do	it...
Use	the	following	pattern	for	synchronizing	access	with	a	single	shared	resource:

1.	 Define	a	mutex	in	the	appropriate	context	(class	or	global	scope):

								std::mutex	g_mutex;

2.	 Acquire	a	lock	on	the	mutex	before	accessing	the	shared	resource	in	each
thread:

								void	thread_func()

								{

										using	namespace	std::chrono_literals;

										{

												std::lock_guard<std::mutex>	lock(g_mutex);

												std::cout	<<	"running	thread	"	

																						<<	std::this_thread::get_id()	<<	std::endl;

										}

										std::this_thread::yield();

										std::this_thread::sleep_for(2s);

										{

												std::lock_guard<std::mutex>	lock(g_mutex);

												std::cout	<<	"done	in	thread	"	

																						<<	std::this_thread::get_id()	<<	std::endl;

										}

								}

Use	the	following	pattern	for	synchronizing	access	to	multiple	shared	resources
at	the	same	time	to	avoid	deadlocks:

1.	 Define	a	mutex	for	each	shared	resource	in	the	appropriate	context	(global
or	class	scope):

								template	<typename	T>

								struct	container

								{

										std::mutex					mutex;

										std::vector<T>	data;

								};

2.	 Lock	the	mutexes	at	the	same	time	using	a	deadlock	avoidance	algorithm
with	std::lock():

								template	<typename	T>

								void	move_between(container<T>	&	c1,	container<T>	&	c2,	

																										T	const	value)



																										T	const	value)

								{

										std::lock(c1.mutex,	c2.mutex);

										//	continued	at	3.

								}

3.	 After	locking	them,	adopt	the	ownership	of	each	mutex	into
an	std::lock_guard	class	to	ensure	they	are	safely	released	at	the	end	of	the
function	(or	scope):

								//	continued	from	2.

								std::lock_guard<std::mutex>	l1(c1.mutex,	std::adopt_lock);

								std::lock_guard<std::mutex>	l2(c2.mutex,	std::adopt_lock);

								c1.data.erase(

										std::remove(c1.data.begin(),	c1.data.end(),	value),	

										c1.data.end());

								c2.data.push_back(value);



How	it	works...
A	mutex	is	a	synchronization	primitive	that	allows	us	to	protect	simultaneous
access	to	shared	resources	from	multiple	threads.	The	C++	standard	library
provides	several	implementations:

std::mutex	is	the	most	commonly	used	mutex	type;	it	is	illustrated	in	the
preceding	code	snippet.	It	provides	methods	to	acquire	and	release	the
mutex.	lock()	tries	to	acquire	the	mutex	and	blocks	it	if	it	is	not	available,
try_lock()	tries	to	acquire	the	mutex	and	returns	it	without	blocking	if	the
mutex	is	not	available,	and	unlock()	releases	the	mutex.
std::timed_mutex	is	similar	to	std::mutex	but	provides	two	more	methods	to
acquire	the	mutex	using	a	timeout:	try_lock_for()	tries	to	acquire	the	mutex
and	returns	it	if	the	mutex	is	not	made	available	during	the	specified
duration,	and	try_lock_until()	tries	to	acquire	the	mutex	and	returns	it	if	the
mutex	is	not	made	available	until	a	specified	time	point.
std::recursive_mutex	is	similar	to	std::mutex,	but	the	mutex	can	be	acquired
multiple	times	from	the	same	thread	without	being	blocked.
std::recursive_timed_mutex	is	a	combination	of	a	recursive	mutex	and	a	timed
mutex.

The	first	thread	that	locks	an	available	mutex	takes	ownership	of	it	and	continues
with	the	execution.	All	consecutive	attempts	to	lock	the	mutex	from	any	thread
fail,	including	the	thread	that	already	owns	the	mutex,	and	the	lock()	method
blocks	the	thread	until	the	mutex	is	released	with	a	call	to	unlock().	If	a	thread
needs	to	be	able	to	lock	a	mutex	multiple	times	without	blocking	it	and	therefore
enter	a	deadlock,	a	recursive_mutex	class	template	should	be	used.

The	typical	use	of	a	mutex	to	protect	access	to	a	shared	resource	comprises
locking	the	mutex,	using	the	shared	resource,	and	then	unlocking	the	mutex:

				g_mutex.lock();

				//	use	the	shared	resource	such	as	std::cout

				std::cout	<<	"accessing	shared	resource"	<<	std::endl;

				g_mutex.unlock();



This	method	of	using	the	mutex	is,	however,	prone	to	error.	This	is	because	each
call	to	lock()	must	be	paired	with	a	call	to	unlock()	on	all	execution	paths,	that	is
both	normal	return	paths	and	exception	return	paths.	In	order	to	safely	acquire
and	release	a	mutex,	regardless	of	the	way	the	execution	of	a	function	goes,	the
C++	standard	defines	several	locking	classes:

std::lock_guard	is	the	locking	mechanism	seen	earlier;	it	represents	a	mutex
wrapper	implemented	in	an	RAII	manner.	It	attempts	to	acquire	the	mutex
at	the	time	of	its	construction	and	release	it	upon	destruction.	This	is
available	in	C++11.	The	following	is	a	typical	implementation	of	lock_guard:

								template	<class	M>

								class	lock_guard

								{

								public:

										typedef	M	mutex_type;

										explicit	lock_guard(M&	Mtx)	:	mtx(Mtx)

										{

												mtx.lock();

										}

										lock_guard(M&	Mtx,	std::adopt_lock_t)	:	mtx(Mtx)

										{	}

										~lock_guard()	noexcept

										{

												mtx.unlock();

										}

										lock_guard(const	lock_guard&)	=	delete;

										lock_guard&	operator=(const	lock_guard&)	=	delete;

								private:

										M&	mtx;

								};

std::unique_lock	is	a	mutex	ownership	wrapper	that	provides	support	for
deferred	locking,	time	locking,	recursive	locking,	transfer	of	ownership,
and	using	it	with	condition	variables.	This	is	available	in	C++11.
std::shared_lock	is	a	mutex-shared	ownership	wrapper	that	provides	support
for	deferred	locking,	time	locking,	and	transfer	of	ownership.	This	is
available	in	C++14.
std::scoped_lock	is	a	wrapper	for	multiple	mutexes	implemented	in	an	RAII
manner:	upon	construction,	it	attempts	to	acquire	ownership	of	the	mutexes
in	a	deadlock	avoidance	manner	as	if	it	is	using	std::lock(),	and	upon
destruction,	it	releases	the	mutexes	in	reverse	order	of	the	way	they	were
acquired.	This	is	available	in	C++17.



In	the	first	example	of	the	How	to	do	it...	section,	we	used	std::mutex	and
std::lock_guard	to	protect	access	to	the	std::cout	stream	object,	which	is	shared
between	all	the	threads	in	a	program.	The	following	example	shows	how
the	thread_func()	function	can	be	executed	concurrently	on	several	threads:

				std::vector<std::thread>	threads;

				for	(int	i	=	0;	i	<	5;	++i)

						threads.emplace_back(thread_func);

				for	(auto	&	t	:	threads)

						t.join();

A	possible	output	of	the	program	is	as	follows:

running	thread	140296854550272

running	thread	140296846157568

running	thread	140296837764864

running	thread	140296829372160

running	thread	140296820979456

done	in	thread	140296854550272

done	in	thread	140296846157568

done	in	thread	140296837764864

done	in	thread	140296820979456

done	in	thread	140296829372160

When	a	thread	needs	to	take	ownership	of	multiple	mutexes	that	are	meant	for
protecting	multiple	shared	resources,	acquiring	them	one	by	one	may	lead	to
deadlocks.	Let's	consider	the	following	example	(where	container	is	the	class
shown	in	the	How	to	do	it...	section):

				template	<typename	T>

				void	move_between(container<T>	&	c1,	container<T>	&	c2,	T	const	value)

				{

						std::lock_guard<std::mutex>	l1(c1.mutex);

						std::lock_guard<std::mutex>	l2(c2.mutex);

						c1.data.erase(

								std::remove(c1.data.begin(),	c1.data.end(),	value),	

								c1.data.end());

						c2.data.push_back(value);

				}

				container<int>	c1;

				c1.data.push_back(1);

				c1.data.push_back(2);

				c1.data.push_back(3);

				container<int>	c2;

				c2.data.push_back(4);

				c2.data.push_back(5);

				c2.data.push_back(6);

				std::thread	t1(move_between<int>,	std::ref(c1),	std::ref(c2),	3);

				std::thread	t2(move_between<int>,	std::ref(c2),	std::ref(c1),	6);

				t1.join();



				t1.join();

				t2.join();

In	this	example,	the	container	class	holds	data	that	may	be	accessed
simultaneously	from	different	threads;	therefore,	it	needs	to	be	protected	by
acquiring	a	mutex.	The	move_between()	function	is	a	thread-safe	function	that
removes	an	element	from	a	container	and	adds	it	to	a	second	container.	To	do	so,
it	acquires	the	mutexes	of	the	two	containers	sequentially,	then	erases	the
element	from	the	first	container	and	adds	it	to	the	end	of	the	second	container.

This	function	is,	however,	prone	to	deadlocks	because	a	race	condition	might	be
triggered	while	acquiring	the	locks.	Suppose	we	have	a	scenario	where	two
different	threads	execute	this	function,	but	with	different	arguments:

The	first	thread	starts	executing	with	the	arguments	c1	and	c2	in	this	order.
The	first	thread	is	suspended	after	it	acquires	the	lock	for
the	c1	container.	The	second	thread	starts	executing	with	the	arguments	c2
and	c1	in	this	order.
The	second	thread	is	suspended	after	it	acquires	the	lock	for
the	c2	container.
The	first	thread	continues	the	execution	and	tries	to	acquire	the	mutex	for
c2,	but	the	mutex	is	unavailable.	Therefore,	a	deadlock	occurs	(this	can	be
simulated	by	putting	the	thread	to	sleep	for	a	short	while	after	it	acquires
the	first	mutex).

To	avoid	possible	deadlocks	such	as	these,	mutexes	should	be	acquired	in	a
deadlock	avoidance	manner,	and	the	standard	library	provides	a	utility	function
called	std::lock()	that	does	that.	The	move_between()	function	needs	to	change	by
replacing	the	two	locks	with	the	following	code	(as	shown	in	the	How	to	do	it...
section):

				std::lock(c1.mutex,	c2.mutex);

				std::lock_guard<std::mutex>	l1(c1.mutex,	std::adopt_lock);

				std::lock_guard<std::mutex>	l2(c2.mutex,	std::adopt_lock);

The	ownership	of	the	mutexes	must	still	be	transferred	to	a	lock	guard	object	so
they	are	properly	released	after	the	execution	of	the	function	ends	(or	depending
on	the	case,	when	a	particular	scope	ends).

In	C++17,	a	new	mutex	wrapper	is	available,	std::scoped_lock,	that	can	be	used	to



simplify	code,	such	as	the	one	in	the	preceding	example.	This	type	of	lock	can
acquire	the	ownership	of	multiple	mutexes	in	a	deadlock-free	manner.	These
mutexes	are	released	when	the	scoped	lock	is	destroyed.	The	preceding	code	is
equivalent	to	the	following	single	line	of	code:

				std::scoped_lock	lock(c1.mutex,	c2.mutex);



See	also
Working	with	threads
Avoiding	using	recursive	mutexes



Avoiding	using	recursive	mutexes
The	standard	library	provides	several	mutex	types	for	protecting	access	to	shared
resources.	std::recursive_mutex	and	std::recursive_timed_mutex	are	two
implementations	that	allow	you	to	use	multiple	locking	in	the	same	thread.	A
typical	use	of	a	recursive	mutex	is	to	protect	access	to	a	shared	resource	from	a
recursive	function.	Recursive	mutexes	have	a	greater	overhead	than	non-
recursive	mutexes	and,	when	possible,	they	should	be	avoided.	This	recipe
presents	a	use	case	for	transforming	a	thread-safe	type	using	a	recursive	mutex
into	a	thread-safe	type	using	a	non-recursive	mutex.



Getting	ready
You	need	to	be	familiar	with	the	various	mutexes	and	locks	available	in	the
standard	library.	I	recommend	that	you	read	the	previous	recipe,	Synchronizing
access	to	shared	data	with	mutex	and	locks,	to	get	an	overview	of	them.

The	purpose	of	this	recipe	is	to	transform	the	following	class	so	we	can	avoid
using	std::recursive_mutex:

				class	foo_rec

				{

						std::recursive_mutex	m;

						int	data;

				public:

						foo_rec(int	const	d	=	0)	:	data(d)	{}

						void	update(int	const	d)

						{

								std::lock_guard<std::recursive_mutex>	lock(m);

								data	=	d;

						}

						int	update_with_return(int	const	d)

						{

								std::lock_guard<std::recursive_mutex>	lock(m);

								auto	temp	=	data;

								update(d);

								return	temp;

						}

				};



How	to	do	it...
To	transform	the	preceding	implementation	into	a	thread-safe	type	using	a	non-
recursive	mutex,	do	this:

1.	 Replace	std::recursive_mutex	with	std::mutex:

								class	foo

								{

										std::mutex	m;

										int								data;

										//	continued	at	2.

								};

2.	 Define	private	non-thread-safe	versions	of	the	public	methods	or	helper
functions	to	be	used	in	thread-safe	public	methods:

								void	internal_update(int	const	d)	{	data	=	d;	}

								//	continued	at	3.

3.	 Rewrite	the	public	methods	to	use	the	newly	defined	non-thread-safe
private	methods:

								public:

										foo(int	const	d	=	0)	:	data(d)	{}

										void	update(int	const	d)

										{

												std::lock_guard<std::mutex>	lock(m);

												internal_update(d);

										}

										int	update_with_return(int	const	d)

										{

												std::lock_guard<std::mutex>	lock(m);

												auto	temp	=	data;

												internal_update(d);

												return	temp;

										}



How	it	works...
An	std::recursive_mutex	class	may	be	locked	multiple	times	from	a	thread,	either
with	a	call	to	lock()	or	try_lock().	When	a	thread	locks	an	available	recursive
mutex,	it	acquires	its	ownership;	as	a	result	of	this,	consecutive	attempts	to	lock
the	mutex	from	the	same	thread	do	not	block	the	execution	of	the	thread,
creating	a	deadlock.	The	recursive	mutex	is,	however,	released	only	when	an
equal	number	of	calls	to	unlock()	are	made.

The	foo_rec	class	we	just	discussed	uses	a	recursive	mutex	to	protect	access	to
shared	data;	in	this	case,	it	is	an	integer	member	variable	that	is	accessed	from
two	thread-safe	public	functions:

update()	sets	a	new	value	in	the	private	variable.
update_and_return()	sets	a	new	value	in	the	private	variable	and	returns	the
previous	value	to	the	called	function.	This	function	calls	update()	to	set	the
new	value.

The	implementation	of	foo_rec	was	probably	intended	to	avoid	duplication	of
code,	yet	this	particular	approach	is	rather	a	design	error	that	can	be	improved,
as	shown	in	the	How	to	do	it...	section.	Rather	than	reusing	public	thread-safe
functions,	we	can	provide	private	non-thread-safe	functions	that	could	then	be
called	from	the	public	interface.

The	same	solution	can	be	applied	to	other	similar	problems:	define	a	non-thread-
safe	version	of	the	code	and	then	provide,	perhaps	lightweight,	thread-safe
wrappers.



See	also
Working	with	threads
Synchronizing	access	to	shared	data	with	mutexes	and	locks



Sending	notifications	between	threads
Mutexes	are	synchronization	primitives	that	can	be	used	to	protect	access	to
shared	data.	However,	the	standard	library	provides	a	synchronization	primitive
called	a	condition	variable	that	enables	a	thread	to	signal	to	others	that	a	certain
condition	has	occurred.	The	thread	or	the	threads	that	are	waiting	on	the
condition	variable	are	blocked	until	the	condition	variable	is	signaled	or	until	a
timeout	or	a	spurious	wakeup	occurs.	In	this	recipe,	we	will	see	how	to	use
condition	variables	to	send	notifications	between	thread-producing	data	and
thread-consuming	data.



Getting	ready
For	this	recipe,	you	need	to	be	familiar	with	threads,	mutexes,	and
locks.	Condition	variables	are	available	in	the	std	namespace	in	the
<condition_variable>	header.	



How	to	do	it...
Use	the	following	pattern	for	synchronizing	threads	with	notifications	on
condition	variables:

1.	 Define	a	condition	variable	(in	the	appropriate	context):

								std::condition_variable	cv;

2.	 Define	a	mutex	for	threads	to	lock	on:

								std::mutex	cv_mutex;

3.	 Define	the	shared	data	used	between	the	threads:

								int	data	=	0;

4.	 In	the	producing	thread,	lock	the	mutex	before	you	modify	the	data:

								std::thread	p([&](){

										//	simulate	long	running	operation

										{

												using	namespace	std::chrono_literals;

												std::this_thread::sleep_for(2s);

										}

										//	produce

										{

												std::unique_lock	lock(cv_mutex);

												data	=	42;

										}

										//	print	message

										{

												std::lock_guard	l(io_mutex);

												std::cout	<<	"produced	"	<<	data	<<	std::endl;

										}

										//	continued	at	5.

								});

5.	 In	the	producing	thread,	signal	the	condition	variable	with	a	call	to
notify_one()	or	notify_all()	(do	this	after	the	mutex	used	to	protect	the	shared
data	is	unlocked):

								//	continued	from	4.

								cv.notify_one();



6.	 In	the	consuming	thread,	acquire	a	unique	lock	on	the	mutex	and	use	it	to
wait	on	the	condition	variable:

								std::thread	c([&](){

										//	wait	for	notification

										{

												std::unique_lock	lock(cv_mutex);

												cv.wait(lock);

										}

										//	continued	at	7.

								});

7.	 In	the	consuming	thread,	use	the	shared	data	after	the	condition	is	notified:

								//	continued	from	6.

								{

										std::lock_guard	lock(io_mutex);

										std::cout	<<	"consumed	"	<<	data	<<	std::endl;

								}



How	it	works...
The	preceding	example	represents	two	threads	that	share	common	data	(in	this
case,	an	integer	variable).	One	thread	produces	data	after	a	lengthy	computation
(simulated	with	a	sleep),	and	the	other	consumes	it	only	after	it	is	produced.	To
do	so,	they	use	a	synchronization	mechanism	that	uses	a	mutex	and	a	condition
variable	that	blocks	the	consuming	thread	until	a	notification	arises	from	the
producer	thread	indicating	that	data	has	been	made	available.	The	key	in	this
communication	channel	is	the	condition	variable	that	the	consuming	thread	waits
on	until	the	producing	thread	notifies	it.	Both	threads	start	about	the	same	time.
The	producer	thread	begins	a	long	computation	that	is	supposed	to	produce	data
for	the	consuming	thread.	At	the	same	time,	the	consuming	thread	cannot
actually	proceed	until	the	data	is	made	available;	it	must	remain	blocked	until	it
is	notified	that	the	data	has	been	produced.	Once	notified,	it	can	continue	its
execution.	The	entire	mechanism	works	as	follows:

There	must	be	at	least	one	thread	waiting	on	the	condition	variable	to	be
notified.
There	must	be	at	least	one	thread	that	is	signaling	the	condition	variable.
The	waiting	threads	must	first	acquire	a	lock	on	a	mutex
(std::unique_lock<std::mutex>)	and	pass	it	to	the	wait(),	wait_for(),	or	wait_until()
method	of	the	condition	variable.	All	the	waiting	methods	atomically
release	the	mutex	and	block	the	thread	until	the	condition	variable	is
signaled.	At	this	point,	the	thread	is	unblocked	and	the	mutex	is	atomically
acquired	again.
The	thread	that	signals	the	condition	variable	can	do	so	with
either	notify_one(),	where	one	blocked	thread	is	unblocked,	or	notify_all(),
where	all	the	blocked	threads	waiting	for	the	condition	variable	are
unblocked.

Condition	variables	cannot	be	made	completely	predictable	on
multiprocessor	systems.	Therefore,	spurious	wakeups	may	occur
and	a	thread	is	unlocked	even	if	nobody	signals	the	condition
variable.	So,	it	is	necessary	to	check	whether	the	condition	is	true
after	the	thread	has	been	unblocked.	However,	spurious	wakeups



may	occur	multiple	times	and,	therefore,	it	is	necessary	to	check
the	condition	variable	in	a	loop.

The	C++	standard	provides	two	implementations	of	condition	variables:

std::condition_variable,	used	in	this	recipe,	defines	a	condition	variable
associated	with	std::unique_lock.
std::condition_variable_any	represents	a	more	general	implementation	that
works	with	any	lock	that	meets	the	requirements	of	a	basic	lock
(implements	lock()	and	unlock()	methods).	A	possible	use	of	this
implementation	is	providing	interruptible	waits,	as	explained	by	Anthony
Williams	in	C++	concurrency	in	action	(2012):

A	custom	lock	operation	would	both	lock	the	associated	mutex	as
expected	and	also	perform	the	necessary	job	of	notifying	this
condition	variable	when	the	interrupting	signal	is	received.

All	the	waiting	methods	of	the	condition	variable	have	two	overloads:

The	first	overload	takes	std::unique_lock<std::mutex>	(based	on	the	type,	that	is,
duration	or	time	point)	and	causes	the	thread	to	remain	blocked	until	the
condition	variable	is	signaled.	This	overload	atomically	releases	the	mutex
and	blocks	the	current	thread	and	adds	it	to	the	list	of	threads	waiting	on	the
condition	variable.	The	thread	is	unblocked	when	the	condition	is	notified
with	either	notify_one()	or	notify_all(),	a	spurious	wakeup	occurs,	or	a
timeout	occurs	(depending	on	the	function	overload).	When	this	happens,
the	mutex	is	atomically	acquired	again.
The	second	overload	takes	a	predicate	in	addition	to	the	arguments	of	the
other	overloads.	This	predicate	can	be	used	to	avoid	spurious	wakeups
while	waiting	for	a	condition	to	become	true.	This	overload	is	equivalent	to
the	following:

								while(!pred())

										wait(lock);

The	following	code	illustrates	a	similar	but	more	complex	example	than	the	one
presented	in	the	previous	section.	The	producing	thread	generates	data	in	a	loop
(in	this	example,	it	is	a	finite	loop),	and	the	consuming	thread	waits	for	new	data
to	be	made	available	and	consumes	it	(prints	it	to	the	console).	The	producing



thread	terminates	when	it	finishes	producing	data,	and	the	consuming	thread
terminates	when	there	is	no	more	data	to	consume.	Data	is	added	to	queue<int>,
and	a	Boolean	variable	is	used	to	indicate	to	the	consuming	thread	that	the
process	of	producing	data	is	finished:

				std::mutex	g_lockprint;

				std::mutex	g_lockqueue;

				std::condition_variable	g_queuecheck;

				std::queue<int>	g_buffer;

				bool	g_done;

				void	producer(

					int	const	id,	

					std::mt19937&	generator,

					std::uniform_int_distribution<int>&	dsleep,

					std::uniform_int_distribution<int>&	dcode)

				{

						for	(int	i	=	0;	i	<	5;	++i)

						{

								//	simulate	work

								std::this_thread::sleep_for(

										std::chrono::milliseconds(dsleep(generator)));

								//	generate	data

								{

										std::unique_lock<std::mutex>	locker(g_lockqueue);

										int	value	=	id	*	100	+	dcode(generator);

										g_buffer.push(value);

										{

												std::unique_lock<std::mutex>	locker(g_lockprint);

												std::cout	<<	"[produced("	<<	id	<<	")]:	"	<<	value	

																						<<	std::endl;

										}

								}

								//	notify	consumers	

								g_queuecheck.notify_one();

						}

				}

				void	consumer()

				{

						//	loop	until	end	is	signaled

						while	(!g_done)

						{

								std::unique_lock<std::mutex>	locker(g_lockqueue);

								g_queuecheck.wait_for(

										locker,	

										std::chrono::seconds(1),

										[&]()	{return	!g_buffer.empty();	});

								//	if	there	are	values	in	the	queue	process	them

								while	(!g_done	&&	!g_buffer.empty())

								{

										std::unique_lock<std::mutex>	locker(g_lockprint);

										std::cout	

												<<	"[consumed]:	"	<<	g_buffer.front()	

												<<	std::endl;

										g_buffer.pop();

								}



								}

						}

				}

The	consumer	thread	does	the	following:

Loops	until	it	is	signaled	that	the	process	of	producing	data	is	finished.
Acquires	a	unique	lock	on	the	mutex	associated	with	the	condition	variable.
Uses	the	wait_for()	overload	that	takes	a	predicate,	checking	that	the	buffer
is	not	empty	when	a	wakeup	occurs	(to	avoid	spurious	wakeups).	This
method	uses	a	timeout	of	1	second	and	returns	after	the	timeout	has
occurred,	even	if	the	condition	is	signaled.
Consumes	all	of	the	data	from	the	queue	after	it	is	signaled	through	the
condition	variable.

To	test	this,	we	start	several	producing	threads	and	one	consuming	thread.
Producer	threads	generate	random	data	and,	therefore,	share	the	pseudo-random
generator	engines	and	distributions.	All	of	this	is	shown	in	the	following	code
sample:

				auto	seed_data	=	std::array<int,	std::mt19937::state_size>	{};

				std::random_device	rd	{};

				std::generate(std::begin(seed_data),	std::end(seed_data),

																		std::ref(rd));

				std::seed_seq	seq(std::begin(seed_data),	std::end(seed_data));

				auto	generator	=	std::mt19937{	seq	};

				auto	dsleep	=	std::uniform_int_distribution<>{	100,	500	};

				auto	dcode	=	std::uniform_int_distribution<>{	1,	99	};

				std::cout	<<	"start	producing	and	consuming..."	<<	std::endl;

				std::thread	consumerthread(consumer);

				std::vector<std::thread>	threads;

				for	(int	i	=	0;	i	<	5;	++i)

				{

						threads.emplace_back(producer,	

																											i	+	1,	

																											std::ref(generator),

																											std::ref(dsleep),

																											std::ref(dcode));

				}

				//	work	for	the	workers	to	finish

				for	(auto&	t	:	threads)

						t.join();

				//	notify	the	logger	to	finish	and	wait	for	it

				g_done	=	true;

				consumerthread.join();

				std::cout	<<	"done	producing	and	consuming"	<<	std::endl;

A	possible	output	of	this	program	is	as	follows:



A	possible	output	of	this	program	is	as	follows:

start	producing	and	consuming...

[produced(5)]:	550

[consumed]:	550

[produced(5)]:	529

[consumed]:	529

[produced(5)]:	537

[consumed]:	537

[produced(1)]:	122

[produced(2)]:	224

[produced(3)]:	326

[produced(4)]:	458

[consumed]:	122

[consumed]:	224

[consumed]:	326

[consumed]:	458

...

done	producing	and	consuming



See	also
Working	with	threads
Synchronizing	access	to	shared	data	with	mutexes	and	locks



Using	promises	and	futures	to	return
values	from	threads
In	the	first	recipe	of	this	chapter,	we	discussed	how	to	work	with	threads.	You
also	learned	that	thread	functions	cannot	return	values,	and	threads	should	use
other	means,	such	as	shared	data,	to	do	so;	however,	for	this,	synchronization	is
required.	An	alternative	to	communicating	a	return	value	or	an	exception
with	either	the	main	or	another	thread	is	using	std::promise.	This	recipe	will
explain	how	this	mechanism	works.



Getting	ready
The	promise	and	future	classes	used	in	this	recipe	are	available	in	the	std
namespace	in	the	<future>	header.



How	to	do	it...
To	communicate	a	value	from	one	thread	to	another	through	promises	and
futures,	do	this:

1.	 Make	a	promise	available	to	the	thread	function	through	a	parameter,	for
example:

								void	produce_value(std::promise<int>&	p)

								{

										//	simulate	long	running	operation

										{

												using	namespace	std::chrono_literals;

												std::this_thread::sleep_for(2s);

										}

										//	continued	at	2.

								}

2.	 Call	set_value()	on	the	premise	to	set	the	result	to	represent	a	value	or
set_exception()	to	set	the	result	to	indicate	an	exception:

								//	continued	from	1.

								p.set_value(42);

3.	 Make	the	future	associated	with	the	premise	available	to	the	other	thread
function	through	a	parameter,	for	example:

								void	consume_value(std::future<int>&	f)

								{

										//	continued	at	4.

								}

4.	 Call	get()	on	the	future	object	to	get	the	result	set	to	the	promise:

								//	continued	from	3.

								auto	value	=	f.get();

5.	 In	the	calling	thread,	use	get_future()	on	the	promise	to	get	the	future
associated	with	the	promise:

								std::promise<int>	p;

								std::thread	t1(produce_value,	std::ref(p));

								std::future<int>	f	=	p.get_future();

								std::thread	t2(consume_value,	std::ref(f));



								t1.join();

								t2.join();



How	it	works...
The	promise-future	pair	is	basically	a	communication	channel	that	enables
a	thread	to	communicate	a	value	or	exception	with	another	thread	through	a
shared	state.	The	promise	is	an	asynchronous	provider	of	the	result	and	has	an
associated	future	that	represents	an	asynchronous	return	object.	To	establish	this
channel,	you	must	first	create	a	promise.	This,	in	turn,	creates	the	shared	state
that	can	be	later	read	through	the	future	associated	with	the	promise.

To	set	a	result	to	a	promise,	you	can	use	any	of	the	following	methods:

The	set_value()	or	set_value_at_thread_exit()	method	is	used	to	set	a	return
value;	the	later	function	stores	the	value	in	the	shared	state	but	only	makes
it	available	through	the	associated	future	if	the	thread	exits.
The	set_exception()	or	set_exception_at_thread_exit()	method	is	used	to	set	an
exception	as	a	return	value.	The	exception	is	wrapped	in	an	std::exception_ptr
object.	The	later	function	stores	the	exception	into	the	shared	state	but	only
makes	it	available	when	the	thread	exits.

To	retrieve	the	future	object	associated	with	promise,	use	the	get_future()	method.
	To	get	the	value	from	the	future	value,	use	the	get()	method.		This	blocks	the
calling	thread	until	the	value	from	the	shared	state	is	being	made	available.	The
future	class	has	several	methods	for	blocking	the	thread	until	the	result	from	the
shared	state	is	made	available:

wait()	only	returns	when	the	result	is	available.
wait_for()	returns	either	when	the	result	is	available	or	when	the	specified
timeout	expires.
wait_until()	returns	either	when	the	result	is	available	or	when	the	specified
time	point	is	reached.

If	an	exception	is	set	to	the	promise	value,	calling	the	get()	method	on	the	future
will	throw	this	exception.	The	example	from	the	previous	section	is	rewritten	as
the	following	code	to	throw	an	exception	instead	of	setting	a	result.	The	call	to
get()	is	put	in	a	try...catch	block,	and	if	an	exception	is	caught,	its	message	is
printed	to	the	console:



				void	produce_value(std::promise<int>&	p)

				{

						//	simulate	long	running	operation

						{

								using	namespace	std::chrono_literals;

								std::this_thread::sleep_for(2s);

						}

						try

						{

								throw	std::runtime_error("an	error	has	occurred!");

						}

						catch(...)

						{

								p.set_exception(std::current_exception());

						}

				}

				void	consume_value(std::future<int>&	f)

				{

						std::lock_guard<std::mutex>	lock(g_mutex);

						try

						{

								std::cout	<<	f.get()	<<	std::endl;

						}

						catch(std::exception	const	&	e)

						{

								std::cout	<<	e.what()	<<	std::endl;

						}	

				}



There's	more...
Establishing	a	promise-future	channel	in	this	manner	is	a	rather	explicit
operation	that	can	be	avoided	by	using	the	std::async()	function;	this	is	a	higher-
level	utility	that	runs	a	function	asynchronously,	creates	an	internal	promise	and
a	shared	state,	and	returns	a	future	associated	with	the	shared	state.	We	will	see
how	std::async()	works	in	the	next	recipe,	Executing	functions	asynchronously.



See	also
Working	with	threads
Handling	exceptions	from	thread	functions



Executing	functions	asynchronously
Threads	enable	us	to	run	multiple	functions	at	the	same	time;	this	helps	us	take
advantage	of	the	hardware	facilities	in	multiprocessor	or	multicore	systems.
However,	threads	require	explicit	lower-level	operations.	An	alternative	to
threads	is	tasks,	which	are	units	of	work	that	run	in	a	particular	thread.	The	C++
standard	does	not	provide	a	complete	task	library,	but	it	enables	developers	to
execute	functions	asynchronously	on	different	threads	and	communicate	results
back	through	a	promise-future	channel,	as	seen	in	the	previous	recipe.	In	this
recipe,	we	will	see	how	to	do	this	using	std::async()	and	std::future.



Getting	ready
We	will	use	futures,	so	read	the	previous	recipe	to	get	a	quick	overview	of	how
they	work.	Both	async()	and	future	are	available	in	the	std	namespace	in	the
<future>	header.	

For	the	examples	in	this	recipe,	we	will	use	the	following	functions:

				void	do_something()

				{

						//	simulate	long	running	operation

						{

								using	namespace	std::chrono_literals;

								std::this_thread::sleep_for(2s);

						}	

						std::lock_guard<std::mutex>	lock(g_mutex);

						std::cout	<<	"operation	1	done"	<<	std::endl;	

				}

				void	do_something_else()

				{

						//	simulate	long	running	operation

						{

								using	namespace	std::chrono_literals;

								std::this_thread::sleep_for(1s);

						}	

						std::lock_guard<std::mutex>	lock(g_mutex);

						std::cout	<<	"operation	2	done"	<<	std::endl;	

				}

				int	compute_something()

				{

						//	simulate	long	running	operation

						{

								using	namespace	std::chrono_literals;

								std::this_thread::sleep_for(2s);

						}	

						return	42;

				}

				int	compute_something_else()

				{

						//	simulate	long	running	operation

						{

								using	namespace	std::chrono_literals;

								std::this_thread::sleep_for(1s);

						}

						return	24;

				}



How	to	do	it...
To	execute	a	function	asynchronously	on	another	thread	when	the	current	thread
is	continuing	with	the	execution	without	expecting	a	result	do	the	following:

1.	 Use	std::async()	to	start	a	new	thread	to	execute	the	specified	function.
Create	an	asynchronous	provider	and	return	a	future	associated	with	it.	Use
the	std::launch::async	policy	for	the	first	argument	to	the	function	in	order	to
make	sure	the	function	will	run	asynchronously:

								auto	f	=	std::async(std::launch::async,	do_something);

2.	 Continue	with	the	execution	of	the	current	thread:

								do_something_else();

3.	 Call	the	wait()	method	on	the	future	object	returned	by	std::async()	when	you
need	to	make	sure	the	asynchronous	operation	is	completed:

								f.wait();

To	execute	a	function	asynchronously	on	a	worker	thread	while	the	current
thread	continues	its	execution	until	the	result	from	the	asynchronous	function	is
needed	in	the	current	thread,	do	the	following:

1.	 Use	std::async()	to	start	a	new	thread	to	execute	the	specified	function,
create	an	asynchronous	provider,	and	return	a	future	associated	with	it.	Use
the	std::launch::async	policy	of	the	first	argument	to	the	function	to	make
sure	the	function	does	run	asynchronously:

								auto	f	=	std::async(std::launch::async,	compute_something);

2.	 Continue	the	execution	of	the	current	thread:

								auto	value	=	compute_something_else();

3.	 Call	the	get()	method	on	the	future	object	returned	by	std::async()	when	you
need	to	get	the	result	from	the	function	executed	asynchronously:

								value	+=	f.get();



								value	+=	f.get();



How	it	works...
std::async()	is	a	variadic	function	template	that	has	two	overloads:	one	that
specifies	a	launch	policy	as	the	first	argument	and	another	that	does	not.	The
other	arguments	to	std::async()	are	the	function	to	execute	and	its	arguments,	if
any.	The	launch	policy	is	defined	by	a	scoped	enumeration	called
std::launch,	available	in	the	<future>	header:

				enum	class	launch	:	/*	unspecified	*/	

				{

						async	=	/*	unspecified	*/,

						deferred	=	/*	unspecified	*/,

						/*	implementation-defined	*/

				};

The	two	available	launch	policies	specify	the	following:

With	async,	a	new	thread	is	launched	to	execute	the	task	asynchronously.
With	deferred,	the	task	is	executed	on	the	calling	thread	the	first	time	its
result	is	requested.

When	both	the	flags	are	specified	(std::launch::async	|	std::launch::deferred),	it	is
an	implementation	decision	whether	to	run	the	task	asynchronously	on	a	new
thread	or	synchronously	on	the	current	thread.	This	is	the	behavior	of	the
std::async()	overload;	it	does	not	specify	a	launch	policy.	This	behavior	is	not
deterministic.

Do	not	use	the	non-deterministic	overload	of	std::async()	to	run
tasks	asynchronously.	Always	use	the	overload	that	requires	a
launch	policy,	and	always	use	std::launch::async.

Both	the	overloads	of	std::async()	return	a	future	object	that	refers	to	the	shared
state	created	internally	by	std::async()	for	the	promise-future	channel	it
establishes.	When	you	need	the	result	of	the	asynchronous	operation,	call
the	get()	method	on	the	future.	This	blocks	the	current	thread	until	either	the
result	value	or	an	exception	is	made	available.	If	the	future	does	not	transport
any	value	or	if	you	are	not	actually	interested	in	that	value	but	want	to	make	sure
the	asynchronous	operation	would	be	completed	at	some	point,	use	the	wait()



method;	it	blocks	the	current	thread	until	the	shared	state	is	made	available
through	the	future.

The	future	class	has	two	more	waiting	methods:	wait_for()	specifies	a	duration
after	which	the	call	ends	and	returns	even	if	the	shared	state	is	not	yet	available
through	the	future;	wait_until()	specifies	a	time	point	after	which	the	call	returns
even	if	the	shared	state	is	not	yet	available.	These	methods	could	be	used	to
create	a	polling	routine	and	display	a	status	message	to	the	user,	as	shown	in	the
following	example:

				auto	f	=	std::async(std::launch::async,	do_something);

				while(true)

				{

						using	namespace	std::chrono_literals;

						auto	status	=	f.wait_for(500ms);

						if(status	==	std::future_status::ready)	

								break;

						std::cout	<<	"waiting..."	<<	std::endl;

				}

				std::cout	<<	"done!"	<<	std::endl;

The	result	of	running	this	program	is	as	follows:

waiting...

waiting...

waiting...

operation	1	done

done!



See	also
Using	promises	and	futures	to	return	values	from	threads



Using	atomic	types
The	thread	library	provides	support	for	managing	threads	and	synchronizing
access	to	shared	data	with	mutex	and	locks.	The	standard	library	provides
support	for	the	complementary,	lower-level	atomic	operations	on	data,	that
is,	indivisible	operations	that	can	be	executed	concurrently	from	different
threads	on	shared	data	without	the	risk	of	producing	race	conditions	and	without
the	use	of	locks.	The	support	it	provides	includes	atomic	types,	atomic
operations,	and	memory	synchronization	ordering.	In	this	recipe,	we	will	see
how	to	use	some	of	these	types	and	functions.



Getting	ready
All	the	atomic	types	and	operations	are	defined	in	the	std	namespace	in	the
<atomic>	header.	



How	to	do	it...
The	following	is	a	series	of	typical	operations	that	use	atomic	types:

Use	the	std::atomic	class	template	to	create	atomic	objects	that	support
atomic	operations,	such	as	loading,	storing,	or	performing	arithmetic	or
bitwise	operations:

								std::atomic<int>	counter	{0};

								std::vector<std::thread>	threads;

								for(int	i	=	0;	i	<	10;	++i)

								{

										threads.emplace_back([&counter](){

												for(int	i	=	0;	i	<	10;	++i)

														++counter;

										});

								}

								for(auto	&	t	:	threads)	t.join();

								std::cout	<<	counter	<<	std::endl;	//	100

Use	the	std::atomic_flag	class	for	an	atomic	Boolean	type:

								std::atomic_flag	lock	=	ATOMIC_FLAG_INIT;

								int	counter	=	0;

								std::vector<std::thread>	threads;

								for(int	i	=	0;	i	<	10;	++i)

								{

										threads.emplace_back([&](){

												while(lock.test_and_set(std::memory_order_acquire));

												++counter;

												lock.clear(std::memory_order_release);

										});

								}

								for(auto	&	t	:	threads)	t.join();

								std::cout	<<	counter	<<	std::endl;	//	10

Use	the	atomic	type's	members--load(),	store(),	and	exchange()--	or	non-
member	functions--atomic_load()/atomic_load_explicit(),
atomic_store()/atomic_store_explicit(),	and
atomic_exchange()/atomic_exchange_explicit()--to	atomically	read,	set,	or
exchange	the	value	of	an	atomic	object.
Use	its	member	functions	fetch_add()	and	fetch_sub()	or	non-member



functions	atomic_fetch_add()/atomic_fetch_add_explicit()	and
atomic_fetch_sub()/atomic_fetch_sub_explicit()	to	atomically	add	or	subtract	a
value	to	an	atomic	object	and	return	its	value	before	the	operation:

								std::atomic<int>	sum	{0};

								std::vector<int>	numbers	=	generate_random();

								size_t	size	=	numbers.size();

								std::vector<std::thread>	threads;

								for(int	i	=	0;	i	<	10;	++i)

								{

										threads.emplace_back([&sum,	&numbers](size_t	const	start,

																																																size_t	const	end)	{

												for(size_t	i	=	start;	i	<	end;	++i)

												{

														std::atomic_fetch_add_explicit(

																&sum,	numbers[i],	

																std::memory_order_acquire);

														//	same	as	

														//	sum.fetch_add(numbers[i],	std::memory_order_acquire);

												}},

												i*(size/10),

												(i+1)*(size/10));

										}

										for(auto	&	t	:	threads)	t.join();

Use	its	member	functions	fetch_and(),	fetch_or(),	and	fetch_xor()	or	non-
member	functions	atomic_fetch_and()/atomic_fetch_and_explicit(),
atomic_fetch_or()/atomic_fetch_or_explicit(),	and
atomic_fetch_xor()/atomic_fetch_xor_explicit()	to	perform	AND,	OR,	and	XOR
atomic	operations,	respectively,	with	the	specified	argument	and	return	the
value	of	the	atomic	object	before	the	operation.
Use	the	std::atomic_flag	member	functions	test_and_set()	and	clear()	or	non-
member	functions	atomic_flag_test_and_set()/atomic_flag_test_and_set_explicit()
and	atomic_flag_clear()/atomic_flag_clear_explicit()	to	set	or	reset	an	atomic
flag.



How	it	works...
std::atomic	is	a	class	template	that	defines	(including	its	specializations)	an
atomic	type.	The	behavior	of	the	objects	of	atomic	types	is	well	defined	when
one	thread	writes	to	the	object	and	the	other	reads	data,	without	using	locks	to
protect	access.	The	std::atomic	class	provides	several	specializations:

Full	specialization	for	bool,	with	a	typedef	called	atomic_bool.
Full	specialization	for	all	integral	types,	with	typedefs	called	atomic_int,
atomic_long,	atomic_char,	atomic_wchar,	and	many	others.
Partial	specialization	for	pointer	types.

The	atomic	class	template	has	various	member	functions	that	perform	atomic
operations	such	as	the	following:

load()	to	atomically	load	and	return	the	value	of	the	object.
store()	to	atomically	store	a	non-atomic	value	into	the	object;	this	function
does	not	return	anything.
exchange()	to	atomically	store	a	non-atomic	value	in	the	object	and	return	the
previous	value.
operator=	that	has	the	same	effect	as	store(arg).
fetch_add()	to	atomically	add	a	non-atomic	argument	to	the	atomic	value	and
return	the	value	stored	previously.
fetch_sub()	to	atomically	subtract	a	non-atomic	argument	from	the	atomic
value	and	return	the	value	stored	previously.
fetch_and(),	fetch_or(),	and	fetch_xor()	to	atomically	perform	a	bitwise	AND,
OR,	or	XOR	operation	between	the	argument	and	the	atomic	value;	store
the	new	value	in	the	atomic	object;	and	return	the	previous	value.
Prefixing	and	postfixing	operator++	and	operator--	to	atomically	increment
and	decrement	the	value	of	the	atomic	object	with	1.	These	operations	are
equivalent	to	using	fetch_add()	or	fetch_sub().
operator	+=,	-=,	&=,	|=,	and	ˆ=	to	add,	subtract,	or	perform	bitwise	AND,	OR,	or
XOR	operations	between	the	argument	and	the	atomic	value	and	store	the
new	value	in	the	atomic	object.	These	operations	are	equivalent	to	using
fetch_add(),	fetch_sub(),	fetch_and(),	fetch_or(),	and	fetch_xor().



Say	you	have	an	atomic	variable,	such	as	std::atomic<int>	a;	the	following	is	not
an	atomic	operation:

				a	=	a	+	42;

This	involves	a	series	of	operations,	some	of	which	are	atomic:

Atomically	load	the	value	of	the	atomic	object.
Add	42	to	the	value	that	was	loaded.
Atomically	store	the	result	in	the	atomic	object	a.

On	the	other	hand,	the	following	operation,	which	uses	the	member	operator	+=,	is
atomic:

				a	+=	42;

This	operation	has	the	same	effect	as	either	of	the	following:

				a.fetch_add(42);															//	using	member	function

				std::atomic_fetch_add(&a,	42);	//	using	non-member	function

Though	std::atomic	has	full	specialization	for	type	bool,	called	std::atomic<bool>,	the
standard	defines	yet	another	atomic	type	called	std::atomic_flag,	which	is
guaranteed	to	be	lock-free.	This	atomic	type,	however,	is	very	different
than	std::atomic_bool,	and	it	has	only	two	member	functions:

test_and_set()	that	atomically	sets	the	value	to	true	and	returns	the	previous
value.
clear()	that	atomically	sets	the	value	to	false.

All	member	functions	mentioned	earlier,	for	both	std::atomic	and	std::atomic_flag,
have	non-member	equivalents	that	are	prefixed	with	atomic_	or	atomic_flag_,
depending	on	the	type	they	refer	to.	For	instance,	the	equivalent
of	std::atomic::fetch_add()	is	std::atomic_fetch_add(),	and	the	first	argument	of	these
non-member	functions	is	always	a	pointer	to	an	std::atomic	object.	Internally,	the
non-member	function	calls	the	equivalent	member	function	on	the	provided
std::atomic	argument.	Similarly,	the	equivalent	of	std::atomic_flag::test_and_set()	is
std::atomic_flag_test_and_set(),	and	its	first	parameter	is	a	pointer	to
an	std::atomic_flag	object.

All	these	member	functions	of	std::atomic	and	std::atomic_flag	have	two	sets	of



overloads;	one	of	them	has	an	extra	argument	representing	a	memory	order.
Similarly,	all	non-member	functions--such	as	std::atomic_load(),
std::atomic_fetch_add(),	and	std::atomic_flag_test_and_set()--have	a	companion	with
the	suffix	_explicit--std::atomic_load_explicit(),	std::atomic_fetch_add_explicit(),
and	std::atomic_flag_test_and_set_explicit();	these	functions	have	an	extra	argument
that	represents	the	memory	order.

The	memory	order	specifies	how	non-atomic	memory	accesses	are	to	be	ordered
around	atomic	operations.	By	default,	the	memory	order	of	all	atomic	types	and
operations	is	sequential	consistency.	Additional	ordering	types	are	defined	in	the
std::memory_order	enumeration	and	can	be	passed	as	an	argument	to	the	member
functions	of	std::atomic	and	std::atomic_flag	or	the	non-member	functions	with	the
suffix	_explicit().

Sequential	consistency	is	a	consistency	model	that	requires	that	in
a	multiprocessor	system,	all	instructions	are	executed	in	some
order	and	all	writes	become	instantly	visible	throughout	the
system.	This	model	was	first	proposed	by	Leslie	Lamport	in	the
70's,	and	is	described	as	follows:	"the	results	of	any	execution	is
the	same	as	if	the	operations	of	all	the	processors	were	executed	in
some	sequential	order,	and	the	operations	of	each	individual
processor	appear	in	this	sequence	in	the	order	specified	by	its
program."

Various	types	of	memory	ordering	functions	are	described	in	the	following	table,
taken	from	the	C++	reference	website	(http://en.cppreference.com/w/cpp/atomic/memory_orde
r).	The	details	of	how	each	one	of	these	works	is	beyond	the	scope	of	this	book
and	can	be	looked	up	in	the	standard	C++	reference	(see	the	link	we	just	came
across):

Model Explanation

memory_order_relaxed

This	is	a	relaxed	operation.	There	are	no	synchronization
or	ordering	constraints;	only	atomicity	is	required
from	this	operation.

A	load	operation	with	this	memory	order	performs	a
consume	operation	on	the	affected	memory	location;	no
reads	or	writes	in	the	current	thread	that	are	dependent	on
the	value	currently	loaded	can	be	reordered	before	this

http://en.cppreference.com/w/cpp/atomic/memory_order


memory_order_consume
the	value	currently	loaded	can	be	reordered	before	this
load	operation.	Writes	to	data-dependent	variables	in	other
threads	that	release	the	same	atomic	variable	are	visible	in
the	current	thread.	On	most	platforms,	this	affects	compiler
optimizations	only.

memory_order_acquire

A	load	operation	with	this	memory	order	performs	the
acquire	operation	on	the	affected	memory	location;	no
reads	or	writes	in	the	current	thread	can	be	reordered
before	this	load.	All	writes	in	other	threads	that	release	the
same	atomic	variable	are	visible	in	the	current	thread.

memory_order_release

A	store	operation	with	this	memory	order	performs	the
release	operation;	no	reads	or	writes	in	the	current	thread
can	be	reordered	after	this	store.	All	writes	in	the	current
thread	are	visible	in	other	threads	that	acquire	the	same
atomic	variable	and	writes	that	carry	a	dependency	to	the
atomic	variable	become	visible	in	other	threads	that
consume	the	same	atomic.

memory_order_acq_rel

A	read-modify-write	operation	with	this	memory	order	is
both	an	acquire	operation	and	a	release	operation.	No
memory	reads	or	writes	in	the	current	thread	can	be
reordered	before	or	after	this	store.	All	writes	in	other
threads	that	release	the	same	atomic	variable	are	visible
before	the	modification,	and	the	modification	is	visible	in
other	threads	that	acquire	the	same	atomic	variable.

memory_order_seq_cst

Any	operation	with	this	memory	order	is	both	an	acquire
operation	and	a	release	operation;	a	single	total	order	exists
in	which	all	threads	observe	all	modifications	in	the	same
order.

The	first	example	in	the	How	to	do	it...	section	shows	several	threads	repeatedly
by	incrementing	the	counter	concurrently.	This	example	can	be	refined	further
by	implementing	a	class	to	represent	an	atomic	counter	with	methods	such
as	increment()	and	decrement()	that	modify	the	value	of	the	counter,	and	get()	that
retrieves	its	current	value:

				template	

				<typename	T,	

					typename	I	=	typename	std::enable_if<std::is_integral<T>

								::value>::type>



								::value>::type>

				class	atomic_counter

				{

						std::atomic<T>	counter	{0};

						public:

						T	increment()

						{

								return	counter.fetch_add(1);

						}

						T	decrement()

						{

								return	counter.fetch_sub(1);

						}

						T	get()

						{

								return	counter.load();

						}

				};

With	this	class	template,	the	first	example	can	be	rewritten	in	the	following	form
with	the	same	result:

				atomic_counter<int>	counter;

				std::vector<std::thread>	threads;

				for(int	i	=	0;	i	<	10;	++i)

				{

						threads.emplace_back([&counter](){

								for(int	i	=	0;	i	<	10;	++i)

										counter.increment();

						});

				}

				for(auto	&	t	:	threads)	t.join();

				std::cout	<<	counter.get()	<<	std::endl;	//	100



See	also
Working	with	threads
Synchronizing	access	to	shared	data	with	mutexes	and	locks
Executing	functions	asynchronously



Implementing	parallel	map	and	fold
with	threads
In	the	Chapter	3,	Exploring	Functions,	we	discussed	two	higher-order
functions:	map,	which	applies	a	function	to	the	elements	of	a	range	by	either
transforming	the	range	or	producing	a	new	range,	and	fold,	which	combines	the
elements	of	a	range	into	a	single	value.	The	various	implementations	we	did
were	sequential.	However,	in	the	context	of	concurrency,	threads,	and
asynchronous	tasks,	we	can	leverage	the	hardware	and	run	parallel	versions	of
these	functions	to	speed	up	their	execution	for	large	ranges	or	when	the
transformation	and	aggregation	are	time-consuming.	In	this	recipe,	we	will	see	a
possible	solution	for	implementing	map	and	fold	using	threads.



Getting	ready
You	need	to	be	familiar	with	the	concept	of	the	map	and	fold	functions.	It	is
recommended	that	you	read	the	Implementing	higher-order	functions	map	and
fold	recipe	from	the	Chapter	3,	Exploring	Functions.	In	this	recipe,	we	will	use	the
various	thread	functionalities	presented	in	the	Working	with	threads	recipe.		To
measure	the	execution	time	of	these	functions	and	compare	it	with	sequential
alternatives,	we	will	use	the	perf_timer	class	template	introduced	in	the	Measuring
function	execution	time	with	a	standard	clock	recipe	in	Chapter	6,	General	Purpose
Utilities.

A	parallel	version	of	an	algorithm	can	potentially	speed	up
execution	time,	but	this	is	not	necessarily	true	in	all	circumstances.
Context	switching	for	threads	and	synchronized	access	to	shared
data	can	introduce	a	significant	overhead.	For	some
implementations	and	particular	datasets	this	overhead	could	make
a	parallel	version	actually	take	a	longer	time	to	execute	than	a
sequential	version.

To	determine	the	number	of	threads	required	to	split	the	work,	use	the	following
function:

				unsigned	get_no_of_threads()

				{

						return	std::thread::hardware_concurrency();

				}



How	to	do	it...
To	implement	a	parallel	version	of	the	map	function,	do	the	following:

1.	 Define	a	function	template	that	takes	the	begin	and	end	iterators	to	a	range
and	a	function	to	apply	to	all	the	elements:

								template	<typename	Iter,	typename	F>

								void	parallel_map(Iter	begin,	Iter	end,	F	f)

								{

								}

2.	 Check	the	size	of	the	range.	If	the	number	of	elements	is	smaller	than	a
predefined	threshold	(for	this	implementation,	the	threshold	is	10,000),
execute	the	mapping	in	a	sequential	manner:

								auto	size	=	std::distance(begin,	end);

								if(size	<=	10000)

										std::transform(begin,	end,	begin,	std::forward<F>(f));

3.	 For	larger	ranges,	split	the	work	on	multiple	threads	and	let	each	thread
map	a	part	of	the	range.	These	parts	should	not	overlap	to	avoid	the	need	of
synchronizing	access	to	the	shared	data:

								else

								{

										auto	no_of_threads	=	get_no_of_threads();

										auto	part	=	size	/	no_of_threads;

										auto	last	=	begin;

										//	continued	at	4.	and	5.

								}

4.	 Start	the	threads,	and	on	each	thread,	run	a	sequential	version	of	the
mapping:

								std::vector<std::thread>	threads;

								for(unsigned	i	=	0;	i	<	no_of_threads;	++i)

								{

										if(i	==	no_of_threads	-	1)	last	=	end;

										else	std::advance(last,	part);

										threads.emplace_back(

												[=,&f]{std::transform(begin,	last,	

																																		begin,	std::forward<F>(f));});

										begin	=	last;

								}



5.	 Wait	until	all	the	threads	have	finished	their	execution:

								for(auto	&	t	:	threads)	t.join();

The	preceding	steps	put	together	result	in	the	following	implementation:

				template	<typename	Iter,	typename	F>

				void	parallel_map(Iter	begin,	Iter	end,	F	f)

				{

						auto	size	=	std::distance(begin,	end);

						if(size	<=	10000)

								std::transform(begin,	end,	begin,	std::forward<F>(f));	

						else

						{

								auto	no_of_threads	=	get_no_of_threads();

								auto	part	=	size	/	no_of_threads;

								auto	last	=	begin;

								std::vector<std::thread>	threads;

								for(unsigned	i	=	0;	i	<	no_of_threads;	++i)

								{

										if(i	==	no_of_threads	-	1)	last	=	end;

										else	std::advance(last,	part);

										threads.emplace_back(

												[=,&f]{std::transform(begin,	last,	

																																		begin,	std::forward<F>(f));});

										begin	=	last;

								}

								for(auto	&	t	:	threads)	t.join();

						}

				}

To	implement	a	parallel	version	of	the	left	fold	function,	do	the	following:

1.	 Define	a	function	template	that	takes	a	begin	and	end	iterator	to	a	range,	an
initial	value,	and	a	binary	function	to	apply	to	the	elements	of	the	range:

								template	<typename	Iter,	typename	R,	typename	F>

								auto	parallel_reduce(Iter	begin,	Iter	end,	R	init,	F	op)

								{

								}

2.	 Check	the	size	of	the	range.	If	the	number	of	elements	is	smaller	than	a
predefined	threshold	(for	this	implementation,	it	is	10,000),	execute	the
folding	in	a	sequential	manner:

								auto	size	=	std::distance(begin,	end);

								if(size	<=	10000)

										return	std::accumulate(begin,	end,	

																																	init,	std::forward<F>(op));



3.	 For	larger	ranges,	split	the	work	into	multiple	threads	and	let	each	thread
fold	a	part	of	the	range.	These	parts	should	not	overlap	in	order	to	avoid
thread	synchronization	of	shared	data.	The	result	can	be	returned	through	a
reference	passed	to	the	thread	function	in	order	to	avoid	data
synchronization:

								else

								{

										auto	no_of_threads	=	get_no_of_threads();

										auto	part	=	size	/	no_of_threads;

										auto	last	=	begin;

										//	continued	with	4.	and	5.

								}

4.	 Start	the	threads,	and	on	each	thread,	execute	a	sequential	version	of	the
folding:

								std::vector<std::thread>	threads;

								std::vector<R>	values(no_of_threads);

								for(unsigned	i	=	0;	i	<	no_of_threads;	++i)

								{

										if(i	==	no_of_threads	-	1)	last	=	end;

										else	std::advance(last,	part);

										threads.emplace_back(

												[=,&op](R&	result){

														result	=	std::accumulate(begin,	last,	R{},	

																																							std::forward<F>(op));},

												std::ref(values[i]));

										begin	=	last;

								}

5.	 Wait	until	all	the	threads	have	finished	execution	and	fold	partial	results
into	the	final	result:

								for(auto	&	t	:	threads)	t.join();

								return	std::accumulate(std::begin(values),	std::end(values),												

																															init,	std::forward<F>(op));

The	steps	we	just	put	together	result	in	the	following	implementation:

				template	<typename	Iter,	typename	R,	typename	F>

				auto	parallel_reduce(Iter	begin,	Iter	end,	R	init,	F	op)

				{

						auto	size	=	std::distance(begin,	end);

						if(size	<=	10000)

								return	std::accumulate(begin,	end,	init,	std::forward<F>(op));

						else

						{

								auto	no_of_threads	=	get_no_of_threads();

								auto	part	=	size	/	no_of_threads;

								auto	last	=	begin;



								std::vector<std::thread>	threads;

								std::vector<R>	values(no_of_threads);

								for(unsigned	i	=	0;	i	<	no_of_threads;	++i)

								{

										if(i	==	no_of_threads	-	1)	last	=	end;

										else	std::advance(last,	part);

										threads.emplace_back(

												[=,&op](R&	result){

														result	=	std::accumulate(begin,	last,	R{},	

																																							std::forward<F>(op));},

												std::ref(values[i]));

										begin	=	last;

								}

								for(auto	&	t	:	threads)	t.join();

								return	std::accumulate(std::begin(values),	std::end(values),	

																															init,	std::forward<F>(op));

						}

				}



How	it	works...
These	parallel	implementations	of	map	and	fold	are	similar	in	several	aspects:

They	both	fall	back	to	a	sequential	version	if	the	number	of	elements	in	the
range	is	smaller	than	10,000.
They	both	start	the	same	number	of	threads.	These	threads	are	determined
using	the	static	function	std::thread::hardware_concurrency(),	which	returns	the
number	of	concurrent	threads	supported	by	the	implementation.	However,
this	value	is	rather	a	hint	than	an	accurate	value	and	should	be	used	with
that	in	mind.
No	shared	data	is	used	to	avoid	synchronization	of	access.	Even	though	all
the	threads	work	on	the	elements	from	the	same	range,	they	all	process
parts	of	the	range	that	do	not	overlap.
Both	these	functions	are	implemented	as	function	templates	that	take	a
begin	and	end	iterator	to	define	the	range	to	be	processed.	In	order	to	split
the	range	into	multiple	parts	to	be	processed	independently	by	different
threads,	use	additional	iterators	in	the	middle	of	the	range.	For	this,	we	use
std::advance()	to	increment	an	iterator	with	a	particular	number	of	positions.
This	works	well	for	vectors	or	arrays,	but	is	very	inefficient	for	containers
such	as	lists.	Therefore,	this	implementation	is	suited	only	for	ranges	that
have	random	access	iterators.

The	sequential	version	of	map	and	fold	can	be	simply	implemented	in	C++	with
std::transform()	and	std::accumulate().	In	fact,	to	verify	the	correctness	of	the
parallel	algorithms	and	check	whether	they	provide	any	execution	speedup,	we
can	compare	them	with	the	execution	of	these	general	purpose	algorithms.

To	put	it	to	the	test,	we	will	use	map	and	fold	on	a	vector	with	size	varying	from
10,000	to	50	million	elements.	The	range	is	first	mapped	(that	is,	transformed)
by	doubling	the	value	of	each	element	and	then	the	result	is	folded	into	a	single
value	by	adding	together	all	the	elements	of	the	range.	For	simplicity,	each
element	in	the	range	is	equal	to	its	1-based	index	(the	first	element	is	1,
the	second	element	is	2,	and	so	on).	The	following	sample	runs	both	the
sequential	and	parallel	versions	of	map	and	fold	on	vectors	of	different	sizes	and



prints	the	execution	time	in	a	tabular	format.

As	an	exercise,	you	can	vary	the	number	of	elements	and	also	the
number	of	threads	and	see	how	the	parallel	version	performs
compared	to	the	sequential	version.

				std::vector<int>	sizes

				{

						10000,	100000,	500000,	

						1000000,	2000000,	5000000,	

						10000000,	25000000,	50000000

				};

				std::cout

						<<	std::right	<<	std::setw(8)	<<	std::setfill('	')	<<	"size"

						<<	std::right	<<	std::setw(8)	<<	"s	map"

						<<	std::right	<<	std::setw(8)	<<	"p	map"

						<<	std::right	<<	std::setw(8)	<<	"s	fold"

						<<	std::right	<<	std::setw(8)	<<	"p	fold"

						<<	std::endl;

				for	(auto	const	size	:	sizes)

				{

						std::vector<int>	v(size);

						std::iota(std::begin(v),	std::end(v),	1);

						auto	v1	=	v;

						auto	s1	=	0LL;

						auto	tsm	=	perf_timer<>::duration([&]	{

								std::transform(std::begin(v1),	std::end(v1),	std::begin(v1),	

																							[](int	const	i)	{return	i	+	i;	});	});

						auto	tsf	=	perf_timer<>::duration([&]	{

								s1	=	std::accumulate(std::begin(v1),	std::end(v1),	0LL,

																													std::plus<>());	});

						auto	v2	=	v;

						auto	s2	=	0LL;

						auto	tpm	=	perf_timer<>::duration([&]	{

								parallel_map(std::begin(v2),	std::end(v2),	

																					[](int	const	i)	{return	i	+	i;	});	});

						auto	tpf	=	perf_timer<>::duration([&]	{

								s2	=	parallel_reduce(std::begin(v2),	std::end(v2),	0LL,

																													std::plus<>());	});

						assert(v1	==	v2);

						assert(s1	==	s2);

						std::cout

								<<	std::right	<<	std::setw(8)	<<	std::setfill('	')	<<	size

								<<	std::right	<<	std::setw(8)	

								<<	std::chrono::duration<double,	td::micro>(tsm).count()

								<<	std::right	<<	std::setw(8)	

								<<	std::chrono::duration<double,	std::micro>(tpm).count()

								<<	std::right	<<	std::setw(8)	

								<<	std::chrono::duration<double,	std::micro>(tsf).count()

								<<	std::right	<<	std::setw(8)	

								<<	std::chrono::duration<double,	std::micro>(tpf).count()

								<<	std::endl;

				}



A	possible	output	of	this	program	is	shown	in	the	next	screenshot	(executed	on	a
machine	running	Windows	64-bit	with	an	Intel	Core	i7	processor	and	4	physical
and	8	logical	cores).	The	parallel	version,	especially	the	fold	implementation,
performs	better	than	the	sequential	version.	But	this	is	true	only	when	the	length
of	the	vector	exceeds	a	certain	size.	In	the	following	table,	we	can	see	that	for	up
to	1	million	elements,	the	sequential	version	is	still	faster.	The	parallel	version
executes	faster	when	there	are	2	million	or	more	elements	in	the	vector.	Notice
that	the	actual	times	vary	slightly	from	one	run	to	another,	but	they	can	be	very
different	on	different	machines:

				size			s	map			p	map		s	fold		p	fold

			10000						11						10							7						10

		100000					108				1573						72					710

		500000					547				2006					361					862

	1000000				1146				1163					749					862

	2000000				2503				1527				1677				1289

	5000000				5937				3000				4203				2314

10000000			11959				6269				8269				3868

25000000			29872			13823			20961				9156

50000000			60049			27457			41374			19075

To	better	visualize	these	results,	we	can	represent	the	speedup	of	the	parallel
version	in	the	form	of	a	bar	chart.	In	the	following	image,	the	blue	bars	represent
the	speedup	of	a	parallel	map	implementation,	and	the	orange	bars	show	the
speedup	of	the	parallel	fold	implementation.	A	positive	value	indicates	that	the
parallel	version	is	faster;	a	negative	version	indicates	that	the	sequential	version
is	faster:





See	also
Implementing	higher-order	functions	map	and	fold	recipe	of	Chapter	3,
Exploring	Functions
Implementing	parallel	map	and	fold	with	tasks
Working	with	threads



Implementing	parallel	map	and	fold
with	tasks
Tasks	are	a	higher-level	alternative	to	threads	for	performing	concurrent
computations.	std::async()	enables	us	to	execute	functions	asynchronously,
without	the	need	to	handle	lower-level	threading	details.	In	this	recipe,	we	will
take	the	same	task	of	implementing	a	parallel	version	of	the	map	and	fold
functions,	as	in	the	previous	recipe,	but	we	will	use	tasks	and	see	how	it
compares	with	the	thread	version.



Getting	ready
The	solution	presented	in	this	recipe	is	similar	in	many	aspects	to	the	one	that
uses	threads	in	the	previous	recipe,	Implementing	parallel	map	and	fold	with
threads.	Make	sure	you	read	that	one	before	continuing	with	the	current	recipe.



How	to	do	it...
To	implement	a	parallel	version	of	the	map	function,	do	the	following:

1.	 Define	a	function	template	that	takes	a	begin	and	end	iterator	to	a	range,
and	a	function	to	apply	to	all	the	elements:

								template	<typename	Iter,	typename	F>

								void	parallel_map(Iter	begin,	Iter	end,	F	f)

								{

								}

2.	 Check	the	size	of	the	range.	For	a	number	of	elements	smaller	than
the	predefined	threshold	(for	this	implementation,	the	threshold	is	10,000),
execute	the	mapping	in	a	sequential	manner:

								auto	size	=	std::distance(begin,	end);

								if(size	<=	10000)

										std::transform(begin,	end,	begin,	std::forward<F>(f));

3.	 For	larger	ranges,	split	the	work	into	multiple	tasks	and	let	each	task	map	a
part	of	the	range.	These	parts	should	not	overlap	to	avoid	synchronizing
thread	access	to	shared	data:

								else

								{

										auto	no_of_tasks	=	get_no_of_threads();

										auto	part	=	size	/	no_of_tasks;

										auto	last	=	begin;

										//	continued	at	4.	and	5.

								}

4.	 Start	the	asynchronous	functions	and	run	a	sequential	version	of	the
mapping	on	each	one	of	them:

								std::vector<std::future<void>>	tasks;

								for(unsigned	i	=	0;	i	<	no_of_tasks;	++i)

								{

										if(i	==	no_of_tasks	-	1)	last	=	end;

										else	std::advance(last,	part);

										tasks.emplace_back(std::async(

												std::launch::async,	

														[=,&f]{std::transform(begin,	last,	begin,	

																																				std::forward<F>(f));}));

										begin	=	last;

								}



5.	 Wait	until	all	the	asynchronous	functions	have	finished	their	execution:

								for(auto	&	t	:	tasks)	t.wait();

These	steps	put	together	result	in	the	following	implementation:

				template	<typename	Iter,	typename	F>

				void	parallel_map(Iter	begin,	Iter	end,	F	f)

				{

						auto	size	=	std::distance(begin,	end);

						if(size	<=	10000)

								std::transform(begin,	end,	begin,	std::forward<F>(f));	

						else

						{

								auto	no_of_tasks	=	get_no_of_threads();

								auto	part	=	size	/	no_of_tasks;

								auto	last	=	begin;

								std::vector<std::future<void>>	tasks;

								for(unsigned	i	=	0;	i	<	no_of_tasks;	++i)

								{

										if(i	==	no_of_tasks	-	1)	last	=	end;

										else	std::advance(last,	part);

										tasks.emplace_back(std::async(

												std::launch::async,	

														[=,&f]{std::transform(begin,	last,	begin,	

																																				std::forward<F>(f));}));

										begin	=	last;

								}

								for(auto	&	t	:	tasks)	t.wait();

						}

				}

To	implement	a	parallel	version	of	the	left	fold	function,	do	the	following:

1.	 Define	a	function	template	that	takes	a	begin	and	end	iterator	to	a	range,	an
initial	value,	and	a	binary	function	to	apply	to	the	elements	of	the	range:

								template	<typename	Iter,	typename	R,	typename	F>

								auto	parallel_reduce(Iter	begin,	Iter	end,	R	init,	F	op)

								{

								}

2.	 Check	the	size	of	the	range.	For	a	number	of	elements	smaller	than
the	predefined	threshold	(for	this	implementation,	the	threshold	is	10,000),
execute	the	folding	in	a	sequential	manner:

								auto	size	=	std::distance(begin,	end);

								if(size	<=	10000)

										return	std::accumulate(begin,	end,	init,	

																																	std::forward<F>(op));



3.	 For	larger	ranges,	split	the	work	into	multiple	tasks	and	let	each	task	fold	a
part	of	the	range.	These	parts	should	not	overlap	to	avoid	synchronizing
thread	access	to	the	shared	data.	The	result	can	be	returned	through	a
reference	passed	to	the	asynchronous	function	to	avoid	synchronization:

								else

								{

										auto	no_of_tasks	=	get_no_of_threads();

										auto	part	=	size	/	no_of_tasks;

										auto	last	=	begin;

										//	continued	at	4.	and	5.

								}

4.	 Start	the	asynchronous	functions	and	execute	a	sequential	version	of	the
folding	on	each	one	of	them:

								std::vector<std::future<R>>	tasks;

								for(unsigned	i	=	0;	i	<	no_of_tasks;	++i)

								{

										if(i	==	no_of_tasks	-	1)	last	=	end;

										else	std::advance(last,	part);

										tasks.emplace_back(

												std::async(

														std::launch::async,

														[=,&op]{return	std::accumulate(

																																begin,	last,	R{},	

																																std::forward<F>(op));}));

										begin	=	last;

								}

5.	 Wait	until	all	the	asynchronous	functions	have	finished	execution	and	fold
the	partial	results	into	the	final	result:

								std::vector<R>	values;

								for(auto	&	t	:	tasks)

										values.push_back(t.get());

								return	std::accumulate(std::begin(values),	std::end(values),	

																															init,	std::forward<F>(op));

These	steps	put	together	result	in	the	following	implementation:

				template	<typename	Iter,	typename	R,	typename	F>

				auto	parallel_reduce(Iter	begin,	Iter	end,	R	init,	F	op)

				{

						auto	size	=	std::distance(begin,	end);

						if(size	<=	10000)

								return	std::accumulate(begin,	end,	init,	std::forward<F>(op));

						else

						{

								auto	no_of_tasks	=	get_no_of_threads();

								auto	part	=	size	/	no_of_tasks;

								auto	last	=	begin;



								auto	last	=	begin;

								std::vector<std::future<R>>	tasks;

								for(unsigned	i	=	0;	i	<	no_of_tasks;	++i)

								{

										if(i	==	no_of_tasks	-	1)	last	=	end;

										else	std::advance(last,	part);

										tasks.emplace_back(

												std::async(

														std::launch::async,

														[=,&op]{return	std::accumulate(

																																begin,	last,	R{},	

																																std::forward<F>(op));}));

										begin	=	last;

								}

								std::vector<R>	values;

								for(auto	&	t	:	tasks)

										values.push_back(t.get());

								return	std::accumulate(std::begin(values),	std::end(values),	

																															init,	std::forward<F>(op));

						}

				}



How	it	works...
The	implementation	just	proposed	is	only	slightly	different	than	what	we	did	in
the	previous	recipe.	Threads	were	replaced	with	asynchronous	functions,	starting
with	std::async(),	and	results	were	made	available	through	the	returned	std::future.
The	number	of	asynchronous	functions	that	are	launched	concurrently	is	equal	to
the	number	of	threads	the	implementation	can	support.	This	is	returned	by	the
static	method	std::thread::hardware_concurrency(),	but	this	value	is	only	a	hint	and
should	not	be	considered	very	reliable.

There	are	mainly	two	reasons	for	taking	this	approach:

Seeing	how	a	function	implemented	for	parallel	execution	with	threads	can
be	modified	to	use	asynchronous	functions	and,	therefore,	avoid	lower-level
details	of	threading.
Running	a	number	of	asynchronous	functions	equal	to	the	number	of
supported	threads	can	potentially	run	one	function	per	thread;	this	could
provide	the	fastest	execution	time	for	the	parallel	function	because	there	is	a
minimum	overhead	of	context	switching	and	waiting	time.

We	can	test	the	performance	of	the	new	map	and	fold	implementations	using	the
same	method	as	in	the	previous	recipe:

				std::vector<int>	sizes

				{

						10000,	100000,	500000,

						1000000,	2000000,	5000000,

						10000000,	25000000,	50000000

				};

				std::cout

					<<	std::right	<<	std::setw(8)	<<	std::setfill('	')	<<	"size"

					<<	std::right	<<	std::setw(8)	<<	"s	map"

					<<	std::right	<<	std::setw(8)	<<	"p	map"

					<<	std::right	<<	std::setw(8)	<<	"s	fold"

					<<	std::right	<<	std::setw(8)	<<	"p	fold"

					<<	std::endl;

				for(auto	const	size	:	sizes)

				{

						std::vector<int>	v(size);

						std::iota(std::begin(v),	std::end(v),	1);

						auto	v1	=	v;

						auto	s1	=	0LL;



						auto	tsm	=	perf_timer<>::duration([&]	{

								std::transform(std::begin(v1),	std::end(v1),	std::begin(v1),	

																							[](int	const	i)	{return	i	+	i;	});	});

						auto	tsf	=	perf_timer<>::duration([&]	{

								s1	=	std::accumulate(std::begin(v1),	std::end(v1),	0LL,

																													std::plus<>());	});

				auto	v2	=	v;

				auto	s2	=	0LL;

				auto	tpm	=	perf_timer<>::duration([&]	{

						parallel_map(std::begin(v2),	std::end(v2),	

																			[](int	const	i)	{return	i	+	i;	});	});

				auto	tpf	=	perf_timer<>::duration([&]	{

						s2	=	parallel_reduce(std::begin(v2),	std::end(v2),	0LL,	

																											std::plus<>());	});

				assert(v1	==	v2);

				assert(s1	==	s2);

				std::cout

						<<	std::right	<<	std::setw(8)	<<	std::setfill('	')	<<	size

						<<	std::right	<<	std::setw(8)	

						<<	std::chrono::duration<double,	std::micro>(tsm).count()

						<<	std::right	<<	std::setw(8)	

						<<	std::chrono::duration<double,	std::micro>(tpm).count()

						<<	std::right	<<	std::setw(8)	

						<<	std::chrono::duration<double,	std::micro>(tsf).count()

						<<	std::right	<<	std::setw(8)	

						<<	std::chrono::duration<double,	std::micro>(tpf).count()

						<<	std::endl;

				}

A	possible	output	of	the	preceding	program,	which	can	vary	slightly	from	one
execution	to	another	and	greatly	from	one	machine	to	another,	is	as	follows:

				size			s	map			p	map		s	fold		p	fold

			10000						11						11						11						11

		100000					117					260					113						94

		500000					576					303					571					201

	1000000				1180					573				1165					283

	2000000				2371					911				2330					519

	5000000				5942				2144				5841				1886

10000000			11954				4999			11643				2871

25000000			30525			11737			29053				9048

50000000			59665			22216			58689			12942

Similar	to	the	illustration	of	the	threads	solution,	the	speedup	of	the	parallel	map
and	fold	implementations	can	be	seen	in	the	following	chart.	Negative	values
indicate	that	the	sequential	version	was	faster:



If	we	compare	this	with	the	results	from	the	parallel	version	using	threads,	we
will	find	that	these	are	faster	execution	times	and	the	speedup	is	significant,
especially	for	the	fold	function.	The	following	chart	shows	the	speedup	of	tasks'
implementation	over	threads'	implementation.	In	this	chart,	a	value	smaller	than
1	means	that	the	threads	implementation	was	faster:





There's	more...
The	implementation	shown	earlier	is	only	one	of	the	possible	approaches	we	can
take	for	parallelizing	the	map	and	fold	functions.	A	possible	alternative	uses	the
following	strategy:

Divide	the	range	to	process	into	two	equal	parts.
Recursively	call	the	parallel	function	asynchronously	to	process	the	first
part	of	the	range.
Recursively	call	the	parallel	function	synchronously	to	process	the	second
part	of	the	range.
After	the	synchronous	recursive	call	is	finished,	wait	for	the	asynchronous
recursive	call	to	end	too	before	finishing	the	execution.

This	divide-and-conquer	algorithm	can	potentially	create	a	lot	of	tasks.
Depending	on	the	size	of	the	range,	the	number	of	asynchronous	calls	can
greatly	exceed	the	number	of	threads,	and	in	this	case,	there	will	be	lots	of
waiting	time	that	will	affect	the	overall	execution	time.	So	the	following
alternative	is	available:

				template	<typename	Iter,	typename	F>

				void	parallel_map(Iter	begin,	Iter	end,	F	f)

				{	

						auto	size	=	std::distance(begin,	end);

						if(size	<=	10000)

						{

								std::transform(begin,	end,	begin,	std::forward<F>(f));	

						}

						else

						{

								auto	middle	=	begin;

								std::advance(middle,	size	/	2);

								auto	result	=	std::async(

										std::launch::deferred,	

										parallel_map<Iter,	F>,	

										begin,	middle,	std::forward<F>(f));

								parallel_map(middle,	end,	std::forward<F>(f));

								result.wait();

						}

				}

				template	<typename	Iter,	typename	R,	typename	F>

				auto	parallel_reduce(Iter	begin,	Iter	end,	R	init,	F	op)

				{

						auto	size	=	std::distance(begin,	end);



						if(size	<=	10000)

								return	std::accumulate(begin,	end,	init,	std::forward<F>(op));

						else

						{

								auto	middle	=	begin;

								std::advance(middle,	size	/	2);

								auto	result1	=	std::async(

										std::launch::async,	

										parallel_reduce<Iter,	R,	F>,	

										begin,	middle,	R{},	std::forward<F>(op));

								auto	result2	=	parallel_reduce(middle,	end,	init,	

																																							std::forward<F>(op));

								return	result1.get()	+	result2;

						}

				}

When	we	compare	the	execution	time	with	the	first	implementation	using
asynchronous	functions--that	is,	using	the	same	testing	method--we	see	that	this
version	(indicated	by	p2	in	the	next	output)	is	similar	to	the	sequential	version	for
both	map	and	fold	and	much	worse	than	the	first	parallel	version	shown	earlier
(indicated	by	p1):

				size			s	map	p1	map		p2	map		s	fold	p1	fold	p2	fold

			10000						11					11						10							7						10						10

		100000					111				275					120						72						96					426

		500000					551				230					596					365					210				1802

	1000000				1142				381				1209					753					303				2378

	2000000				2411				981				2488				1679					503				4190

	5000000				5962			2191				6237				4177				1969				7974

10000000			11961			4517			12581				8384				2966			15174



See	also
Implementing	parallel	map	and	fold	with	threads
Executing	functions	asynchronously



Robustness	and	Performance
This	chapter	includes	the	following	recipes:

Using	exceptions	for	error	handling
Using	noexcept	for	functions	that	do	not	throw
Ensuring	constant	correctness	for	a	program
Creating	compile-time	constant	expressions
Performing	correct	type	casts
Using	unique_ptr	to	uniquely	own	a	memory	resource
Using	shared_ptr	to	share	a	memory	resource
Implementing	move	semantics



Introduction
C++	is	often	the	first	choice	when	it	comes	to	selecting	an	object-oriented
programming	language	with	performance	and	flexibility	as	key	goals.	Modern
C++	provides	language	and	library	features,	such	as	rvalue	references,	move
semantics,	and	smart	pointers.	When	combined	with	good	practices	for
exception	handling,	constant	correctness,	type-safe	conversions,	resource
allocation	and	releasing,	they	enable	developers	to	write	better,	more	robust	and
performant	code.	This	chapter	contains	recipes	which	address	all	of	these	topics.



Using	exceptions	for	error	handling
Exceptions	are	responses	to	exceptional	circumstances	that	can	appear	when	a
program	is	running.	They	enable	the	transfer	of	the	control	flow	to	another	part
of	the	program.	Exceptions	are	a	mechanism	for	simpler	and	more	robust	error
handling,	as	opposed	to	returning	error	codes	that	could	greatly	complicate	and
clutter	the	code.	In	this	recipe,	we	will	look	at	some	key	aspects	related	to
throwing	and	handling	exceptions.



Getting	ready
I	assume	you	have	basic	knowledge	of	the	mechanism	of	throwing	and	catching
exceptions.



How	to	do	it...
Use	the	following	practices	to	deal	with	exceptions:

Throw	exceptions	by	value:

								void	throwing_func()

								{

										throw	std::system_error(

												std::make_error_code(std::errc::timed_out));

								}

Catch	exceptions	by	reference,	or	in	most	cases,	by	constant	reference:

								try

								{

										throwing_func();

								}

								catch	(std::exception	const	&	e)

								{

										std::cout	<<	e.what()	<<	std::endl;

								}

Order	catch	statements	from	the	most	derived	class	to	the	base	class	of	the
hierarchy	when	catching	multiple	exceptions	from	a	class	hierarchy:

								auto	exprint	=	[](std::exception	const	&	e)

								{

										std::cout	<<	e.what()	<<	std::endl;

								};

								try

								{

										throwing_func();

								}

								catch	(std::system_error	const	&	e)

								{

										exprint(e);

								}

								catch	(std::runtime_error	const	&	e)

								{

										exprint(e);

								}

								catch	(std::exception	const	&	e)

								{

										exprint(e);

								}

Use	catch(...)	to	catch	all	the	exceptions,	regardless	of	their	type:

								try

								{



								{

										throwing_func();

								}

								catch	(std::exception	const	&	e)

								{

										std::cout	<<	e.what()	<<	std::endl;

								}

								catch	(...)

								{

										std::cout	<<	"unknown	exception"	<<	std::endl;

								}

Use	throw;	to	rethrow	the	current	exception.	This	can	be	used	to	create	a
single	exception	handling	function	for	multiple	exceptions.	Throw	the
exception	object	(for	example,	throw	e;)	when	you	want	to	hide	the	original
location	of	the	exception:

								void	handle_exception()

								{

										try

										{

												throw;	//	throw	current	exception

										}

										catch	(const	std::logic_error	&	e)

										{	/*	...	*/	}

										catch	(const	std::runtime_error	&	e)

										{	/*	...	*/	}

										catch	(const	std::exception	&	e)

										{	/*	...	*/	}

								}

								try

								{

										throwing_func();

								}

								catch	(...)

								{

										handle_exception();

								}



How	it	works...
Most	functions	have	to	indicate	the	success	or	failure	of	their	execution.	This	can
be	achieved	in	different	ways.	Here's	a	possibility:	return	an	error	code	(with	a
special	value	for	success)	to	indicate	the	specific	reason	for	failure.	A	variation
of	this	is	to	return	a	Boolean	value	to	only	indicate	success	or	failure.	Another
alternative	is	to	return	invalid	objects	or	null	pointers.	In	any	case,	the	return
value	from	the	functions	should	be	checked.	This	can	lead	to	complex,	cluttered,
hard	to	read	and	maintain	real-world	code.	Moreover,	the	process	of	checking
the	return	value	of	a	function	is	always	executed,	regardless	of	whether	the
function	was	successful	or	failed.	On	the	other	hand,	exceptions	are	thrown	and
handled	only	when	a	function	fails,	which	should	happen	more	rarely	than
successful	executions.	This	can	actually	lead	to	faster	code	than	code	that	returns
and	tests	error	codes.

Exceptions	and	error	codes	are	not	mutually	exclusive.	Exceptions
should	be	used	only	for	transferring	the	control	flow	in	exceptional
situations,	not	for	controlling	the	data	flow	in	a	program.

Class	constructors	are	special	functions	that	do	not	return	any	value.	They	are
supposed	to	construct	an	object,	but	in	the	case	of	failure,	they	will	not	be	able
to	indicate	this	with	a	return	value.	Exceptions	should	be	a	mechanism
which	constructors	should	use	to	indicate	failure.	Together	with	the	resource
acquisition	is	initialization	(RAII)	idiom,	this	ensures	safe	acquisition	and
release	of	resources	in	all	situations.	On	the	other	hand,	exceptions	are	not
allowed	to	leave	a	destructor.	When	this	happens,	the	program	abnormally
terminates	with	a	call	to	std::terminate().	This	is	the	case	for	destructors	called
during	stack	unwinding	due	to	the	occurring	of	another	exception.	When	an
exception	occurs,	the	stack	is	unwound	from	the	point	where	the	exception	was
thrown	to	the	block	where	the	exception	is	handled,	and	this	process	involves	the
destruction	of	all	local	objects	in	all	those	stack	frames.	If	the	destructor	of	an
object	that	is	being	destroyed	during	this	process	throws	an	exception,	another
stack	unwinding	process	should	begin,	which	conflicts	with	the	one	already
under	way.	Because	of	this,	the	program	terminates	abnormally.

The	rule	of	thumb	for	dealing	with	exceptions	in	constructors	and



The	rule	of	thumb	for	dealing	with	exceptions	in	constructors	and
destructors	is	as	follows:
1.	Use	exceptions	to	indicate	the	errors	that	occur	in	constructors.
2.	Do	not	throw	or	let	exceptions	leave	destructors.

It	is	possible	to	throw	any	type	of	exception.	However,	in	most	cases,	you	should
throw	temporaries	and	catch	exceptions	by	constant	reference.	The	following	are
some	guidelines	for	exception	throwing:

Prefer	throwing	either	standard	exceptions	or	your	own	exceptions	derived
from	std::exception	or	another	standard	exception.
Avoid	throwing	exceptions	of	built-in	types,	such	as	integers.
When	using	a	library	or	framework	that	provides	its	own	exception
hierarchy,	prefer	throwing	exceptions	from	this	hierarchy	or	your	own
exceptions	derived	from	it,	at	least	in	the	parts	of	the	code	tightly	related	to
it	to	keep	the	code	consistent.



There's	more...
As	mentioned	in	the	preceding	section,	when	you	need	to	create	your	own
exception	types,	derive	them	from	one	of	the	standard	exceptions	that
are	available,	unless	you	are	using	a	library	or	framework	with	its	own	exception
hierarchy.	The	C++	standard	defines	several	categories	of	exceptions	that	need
to	be	considered	for	this	purpose:

The	std::logic_error	represents	an	exception	that	indicates	an	error	in	the
program	logic,	such	as	an	invalid	argument,	an	index	beyond	the	bounds	of
a	range,	and	so	on.	There	are	various	standard	derived	classes,	such	as
std::invalid_argument,	std::out_of_range,	and	std::length_error.
The	std::runtime_error	represents	an	exception	that	indicates	an	error	beyond
the	scope	of	the	program	or	that	cannot	be	predicted	due	to	various	factors,
including	external	ones,	such	as	overflows	and	underflows	or	operating
system	errors.	The	C++	standard	also	provides	several	derived	classes	from
std::runtime_error,	including	std::overflow_error,	std::underflow_error,	or
std::system_error.
Exceptions	prefixed	with	bad_,	such	as	std::bad_alloc,	std::bad_cast,
and	std::bad_function_call,	represent	various	errors	in	a	program,	such	as
failure	to	allocate	memory,	failure	to	dynamically	cast	or	make	a	function
call,	and	so	on.

The	base	class	for	all	these	exceptions	is	std::exception.	It	has	a	non-throwing
virtual	method	called	what()	that	returns	a	pointer	to	an	array	of	characters
representing	the	description	of	the	error.	When	you	need	to	derive	custom
exceptions	from	a	standard	exception,	use	the	appropriate	category,	such	as
logical	or	runtime	error.	If	none	of	these	categories	is	suitable,	then	you	can
derive	directly	from	std::exception.	The	following	is	a	list	of	possible	solutions
you	can	use	to	derive	from	a	standard	exception:

If	you	need	to	derive	from	std::exception,	then	override	the	virtual	method
what()	to	provide	a	description	of	the	error:

								class	simple_error	:	public	std::exception

								{

								public:

										virtual	const	char*	what()	const	noexcept	override



										virtual	const	char*	what()	const	noexcept	override

										{

												return	"simple	exception";

										}	

								};

If	you	derive	from	std::logic_error	or	std::runtime_error	and	you	only	need	to
provide	a	static	description	that	does	not	depend	on	runtime	data,	then	pass
the	description	text	to	the	base	class	constructor:

								class	another_logic_error	:	public	std::logic_error

								{

								public:

										another_logic_error():

												std::logic_error("simple	logic	exception")

										{}

								};

If	you	derive	from	std::logic_error	or	std::runtime_error	but	the	description
message	depends	on	runtime	data,	provide	a	constructor	with	parameters
and	use	them	to	build	the	description	message.	You	can	either	pass	the
description	message	to	the	base	class	constructor	or	return	it	from	the
overridden	what()	method:

								class	advanced_error	:	public	std::runtime_error

								{

										int	error_code;

										std::string	make_message(int	const	e)

										{

												std::stringstream	ss;

												ss	<<	"error	with	code	"	<<	e;

												return	ss.str();

										}

								public:

										advanced_error(int	const	e)	:	

										std::runtime_error(make_message(e).c_str()),error_code(e)

										{

										}

										int	error()	const	noexcept	

										{

												return	error_code;

										}

								};



See	also
Handling	exceptions	from	thread	functions	from	Chapter	8,	Leveraging
Threading	and	Concurrency
Using	noexcept	for	functions	that	do	not	throw



Using	noexcept	for	functions	that	do
not	throw
Exception	specification	is	a	language	feature	that	can	enable	performance
improvements,	but	on	the	other	hand,	when	done	incorrectly,	it	can	abnormally
terminate	the	program.	The	exception	specification	from	C++03	which	allowed
you	to	indicate	what	types	of	exceptions	a	function	could	throw	has	been
deprecated	and	replaced	with	the	new	C++11	noexcept	specification.	This
specification	only	allows	you	to	indicate	whether	a	function	may	throw	or	not.
This	recipe	provides	information	about	the	modern	exception	specifications	in
C++,	as	well	as	guidelines	on	when	to	use	it.



How	to	do	it...
Use	the	following	constructs	to	specify	or	query	exception	specifications:

Use	nothrow	in	a	function	declaration	to	indicate	that	the	function	is	not
throwing	any	exception:

								void	func_no_throw()	noexcept

								{

								}

Use	nothrow(expr)	in	a	function	declaration,	such	as	template
metaprogramming,	to	indicate	that	the	function	may	or	may	not	throw	an
exception	based	on	a	condition	that	evaluates	to	bool:

								template	<typename	T>

								T	generic_func_1()

								noexcept(std::is_nothrow_constructible<T>::value)

								{

										return	T{};

								}

Use	the	noexcept	operator	at	compile	time	to	check	whether	an	expression	is
declared	to	not	throw	any	exception:

								template	<typename	T>

								T	generic_func_2()	noexcept(noexcept(T{}))

								{

										return	T{};

								}

								template	<typename	F,	typename	A>

								auto	func(F&&	f,	A&&	arg)	noexcept	

								{

										static_assert(!noexcept(f(arg)),	"F	is	throwing!");

										return	f(arg);

								}

								std::cout	<<	noexcept(func_no_throw)	<<	std::endl;



How	it	works...
As	of	C++17,	exception	specification	is	part	of	the	function	type,	but	not	part	of
the	function	signature;	it	may	appear	as	part	of	any	function	declarator.	Because
exception	specification	is	not	part	of	the	function	signature,	two	function
signatures	cannot	differ	only	in	the	exception	specification.	Prior	to	C++17,
exception	specification	was	not	part	of	the	function	type	and	could	only	appear
as	part	of	lambda	declarators	or	top-level	function	declarators;	they	could	not
appear	even	in	typedef	or	type	alias	declarations.	Further	discussions	on	exception
specification	refer	solely	to	the	C++17	standard.

There	are	several	ways	in	which	the	process	of	throwing	an	exception	can	be
specified:

If	no	exception	specification	is	present,	then	the	function	could	potentially
throw	exceptions.
noexcept(false)	is	equivalent	to	no	exception	specification.
noexcept(true)	and	noexcept	indicate	that	a	function	does	not	throw	any
exception.
throw()	is	equivalent	to	noexcept(true)	but	deprecated.

Using	exception	specifications	must	be	done	with	care	because,	if
an	exception	(either	thrown	directly	or	from	another	function	that
is	called)	leaves	a	function	marked	as	non-throwing,	the	program
is	terminated	immediately	and	abnormally	with	a	call	to
std::terminate().

Pointers	to	the	functions	that	do	not	throw	exceptions	can	be	implicitly
converted	into	pointers	to	functions	that	may	throw	exceptions,	but	not	the
opposite.	On	the	other	hand,	if	a	virtual	function	has	a	non-throwing	exception
specification,	it	indicates	that	all	the	declarations	of	all	the	overrides	must
preserve	this	specification	unless	an	overridden	function	is	declared	as	deleted.

At	compile	time,	it	is	possible	to	check	whether	a	function	is	declared	to	be	non-
throwing	or	not	using	operator	noexcept.	This	operator	takes	an	expression	and
returns	true	if	the	expression	is	declared	as	either	non-throwing	or	false.	It	does



not	evaluate	the	expression	it	checks.	The	noexcept	operator,	along	with	the
noexcept	specifier,	is	particularly	useful	in	template	metaprogramming	to	indicate
whether	a	function	may	throw	exceptions	for	some	types.	It	is	also	used	with
static_assert	declarations	to	check	whether	an	expression	breaks	the	non-
throwing	guarantee	of	a	function,	as	seen	in	the	examples	in	the	How	to	do	it...
section.	The	following	code	provides	more	examples	of	how	the	noexcept	operator
works:

				int	double_it(int	const	i)	noexcept

				{

						return	i	+	i;

				}

				int	half_it(int	const	i)

				{

						throw	std::runtime_error("not	implemented!");

				}

				struct	foo

				{

						foo()	{}

				};

				std::cout	<<	std::boolalpha

						<<	noexcept(func_no_throw())	<<	std::endl															//	true

						<<	noexcept(generic_func_1<int>())	<<	std::endl									//	true

						<<	noexcept(generic_func_1<std::string>())	<<	std::endl	//	true

						<<	noexcept(generic_func_2<int>())	<<	std::endl									//	true

						<<	noexcept(generic_func_2<std::string>())	<<	std::endl	//	true

						<<	noexcept(generic_func_2<foo>())	<<	std::endl									//	false

						<<	noexcept(double_it(42))	<<	std::endl																	//	true

						<<	noexcept(half_it(42))	<<	std::endl																			//	false

						<<	noexcept(func(double_it,	42))	<<	std::endl											//	true

						<<	noexcept(func(half_it,	42))	<<	std::endl;												//	true



There's	more...
As	mentioned	earlier,	a	function	declared	with	the	noexcept	specifier	that	exits	due
to	an	exception	causes	the	program	to	terminate	abnormally.	Therefore,	the
noexcept	specifier	should	be	used	with	caution.	Its	presence	can	enable	code
optimizations,	which	help	increase	performance	while	preserving	the	strong
exception	guarantee.	An	example	of	this	is	library	containers.

The	strong	exception	guarantee	specifies	that	either	an	operation	is
completed	successfully,	or	is	completed	with	an	exception	that
leaves	the	program	in	the	same	state	it	was	before	the	operation
started.	This	ensures	commit-or-rollback	semantics.

Many	standard	containers	provide	some	of	their	operations	with	a	strong
exception	guarantee.	An	example	is	vector's	push_back()	method.		This	method
could	be	optimized	by	using	the	move	constructor	or	move	assignment	operator
instead	of	the	copy	constructor	or	copy	assignment	operator	of	the	vector's
element	type.	However,	in	order	to	preserve	its	strong	exception	guarantee,	this
can	only	be	done	if	the	move	constructor	or	assignment	operator	does	not	throw
exceptions.	If	they	do,	then	the	copy	constructor	or	assignment	operator	must	be
used.	The	std::move_if_noexcept()	utility	function	does	this	if	the	move	constructor
of	its	type	argument	is	marked	with	noexcept.	The	ability	to	indicate	that	move
constructors	or	move	assignment	operators	do	not	throw	is	probably	the	most
important	scenario	where	noexcept	is	used.

Consider	the	following	rules	for	exception	specification:

If	a	function	could	potentially	throw	an	exception,	then	do	not	use	any
exception	specifier.
Mark	only	those	functions	with	noexcept	that	are	guaranteed	would	not	to
throw	an	exception.
Mark	only	those	functions	with	noexcept(expression)	that	could	potentially
throw	exceptions	based	on	a	condition.
Do	not	mark	a	function	with	either	noexcept	or	noexcept(expression)	unless	it
provides	a	direct	real	benefit.



See	also
Using	exceptions	for	error	handling



Ensuring	constant	correctness	for	a
program
Although	there	is	no	formal	definition,	constant	correctness	means	objects	that
are	not	supposed	to	be	modified	(are	immutable)	remain	unmodified	indeed.	As
a	developer,	you	can	enforce	this	by	using	the	const	keyword	for	declaring
parameters,	variables,	and	member	functions.	In	this	recipe,	we	will	explore	the
benefits	of	constant	correctness	and	how	to	achieve	it.



How	to	do	it...
To	ensure	constant	correctness	for	a	program,	you	should	always	declare	as
constant:

Parameters	to	functions	that	are	not	supposed	to	be	modified	within	the
function:

								struct	session	{};

								session	connect(std::string	const	&	uri,	

																								int	const	timeout	=	2000)

								{

											/*	do	something	*/

											return	session	{	/*	...	*/	};

								}

Class	data	members	that	do	not	change:

								class	user_settings

								{

								public:

										int	const	min_update_interval	=	15;

										/*	other	members	*/

								};

Class	member	functions	that	do	not	modify	the	object	state	as	seen	from	the
outside:

								class	user_settings

								{

										bool	show_online;

										public:

										bool	can_show_online()	const	{return	show_online;}

										/*	other	members	*/

								};

Function	locals	whose	value	do	not	change	throughout	their	lifetime:

								user_settings	get_user_settings()

								{

										return	user_settings	{};

								}

								void	update()

								{

										user_settings	const	us	=	get_user_settings();

										if(us.can_show_online())	{	/*	do	something	*/	}

										/*	do	more	*/

								}



								}



How	it	works...
Declaring	objects	and	member	functions	constant	has	several	important	benefits:

You	prevent	both	accidental	and	intentional	changes	of	the	object	which,	in
some	cases,	can	result	in	incorrect	program	behavior.
You	enable	the	compiler	to	perform	better	optimizations.
You	document	the	semantics	of	the	code	for	other	users.

Constant	correctness	is	not	a	matter	of	personal	style	but	a	core
principle	that	should	guide	C++	development.

Unfortunately,	the	importance	of	constant	correctness	has	not	been,	and	is	still
not,	stressed	enough	in	books,	C++	communities,	and	working	environments.
But	the	rule	of	thumb	is	that	everything	that	is	not	supposed	to	change	should	be
declared	constant.	This	should	be	done	all	the	time	and	not	only	at	later	stages	of
development	when	you	might	need	to	clean	up	and	refactor	the	code.

When	you	declare	a	parameter	or	variable	as	constant,	you	can	either	put	the
const	keyword	before	the	type	(const	T	c)	or	after	the	type	(T	const	c).	These	two
are	equivalent,	but	regardless	of	which	of	the	two	styles	you	use,	reading	of	the
declaration	must	be	done	from	the	right-hand	side.	const	T	c	is	read	as	c	is	a	T
that	is	constant	and	T	const	c	as	c	is	a	constant	T.	This	gets	a	little	bit	more
complicated	with	pointers.	The	following	table	presents	various	pointer
declarations	and	their	meanings:

Expression Description
T*	p P	is	a	non-constant	pointer	to	a	non-constant	T
const	T*	p P	is	a	non-constant	pointer	to	a	T	that	is	constant
T	const	*	p P	is	a	non-constant	pointer	to	a	constant	T	(same	as	above)
const	T	*	const

p P	is	a	constant	pointer	to	a	T	that	is	constant
T	const	*	const

p P	is	a	constant	pointer	to	a	constant	T	(same	as	above)



T**	p P	is	a	non-constant	pointer	to	a	non-constant	pointer	to	a	non-
constant	T

const	T**	p
P	is	a	non-constant	pointer	to	a	non-constant	pointer	to	a
constant	T

T	const	**	p Same	as	T	const	**	p

const	T*	const	*

p

P	is	a	non-constant	pointer	to	a	constant	pointer,	which	is	a
constant	T

T	const	*	const

*	p Same	as	T	const	*	const	*	p
Placing	the	const	keyword	after	the	type	is	more	natural	because	it
is	consistent	with	the	reading	direction,	from	right	to	left.	For	this
reason,	all	the	examples	in	this	book	use	this	style.

When	it	comes	to	references,	the	situation	is	similar:	const	T	&	c	and	T	const	&	c
are	equivalent,	which	means	c	is	a	reference	to	a	constant	T.	However,	T	const	&
const	c,	which	would	mean	that	c	is	a	constant	reference	to	a	constant	T,	does	not
make	sense	because	references--aliases	of	a	variable--are	implicitly	constant	in
the	sense	that	they	cannot	be	modified	to	represent	an	alias	to	another	variable.

A	non-constant	pointer	to	a	non-constant	object,	that	is,	T*,	can	be	implicitly
converted	into	a	non-constant	pointer	to	a	constant	object,	T	const	*.	However,	T**
cannot	be	implicitly	converted	into	T	const	**	(which	is	the	same	with	const	T**).
It	is	because	this	could	lead	to	constant	objects	being	modified	through	a	pointer
to	a	non-constant	object,	as	shown	in	the	following	example:

				int	const	c	=	42;

				int*	x;	

				int	const	**	p	=	&x;	//	this	is	an	actual	error

				*p	=	&c;

				*x	=	0;														//	this	modifies	c

If	an	object	is	constant,	only	the	constant	functions	of	its	class	can	be	invoked.
However,	declaring	a	member	function	constant	does	not	mean	that	the	function
can	only	be	called	on	constant	objects;	it	could	also	mean	that	the	function	does
not	modify	the	state	of	the	object	as	seen	from	the	outside.	This	is	a	key	aspect,
but	it	is	usually	misunderstood.	A	class	has	an	internal	state	that	it	can	expose	to
its	clients	through	its	public	interface.	However,	not	all	the	internal	states	might
be	exposed,	and	what	is	visible	from	the	public	interface	might	not	have	a	direct
representation	in	the	internal	state.	(If	you	model	order	lines	and	have	the	item



quantity	and	item	selling	price	fields	in	the	internal	representation,	then	you
might	have	a	public	method	that	exposes	the	order	line	amount	by	multiplying
quantity	by	the	price.)	Therefore,	the	state	of	an	object,	as	visible	from	its	public
interface,	is	a	logical	state.	Defining	a	method	as	constant	is	a	statement	that	the
function	does	not	alter	the	logical	state.	However,	the	compiler	prevents	you
from	modifying	data	members	using	such	methods.	To	avoid	this	problem,	data
members	that	are	supposed	to	be	modified	from	constant	methods	should	be
declared	mutable.

In	the	following	example,	computation	is	a	class	with	the	compute()	method,	which
performs	a	long-running	computation	operation.	Because	it	does	not	affect	the
logical	state	of	the	object,	this	function	is	declared	constant.	However,	to	avoid
computing	the	result	of	the	same	input	again,	the	computed	values	are	stored	in	a
cache.	To	be	able	to	modify	the	cache	from	the	constant	function,	it	is	declared
mutable:

				class	computation

				{

						double	compute_value(double	const	input)	const

						{

								/*	long	running	operation	*/

								return	input;

						}

						mutable	std::map<double,	double>	cache;

				public:

						double	compute(double	const	input)	const

						{

								auto	it	=	cache.find(input);

								if(it	!=	cache.end())	return	it->second;

								auto	result	=	compute_value(input);

								cache[input]	=	result;

								return	result;

						}	

				};

A	similar	situation	is	represented	by	the	following	class	that	implements	a
thread-safe	container.	Access	to	shared	internal	data	is	protected	with	mutex.	The
class	provides	methods	such	as	adding	and	removing	values,	and	also	methods
such	as	contains()	which	indicate	whether	an	item	exists	in	the	container.	Because
this	member	function	is	not	intended	to	modify	the	logical	state	of	the	object,	it
is	declared	constant.	However,	access	to	the	shared	internal	state	must	be
protected	with	the	mutex.	In	order	to	lock	and	unlock	the	mutex,	both	mutable
operations,	the	mutex	must	be	declared	mutable:



				template	<typename	T>

				class	container

				{

						std::vector<T>	data;

						mutable	std::mutex	mutex;

				public:

						void	add(T	const	&	value)

						{

								std::lock_guard<std::mutex>	lock(mutex);

								data.push_back(value);

						}

						bool	contains(T	const	&	value)	const

						{

								std::lock_guard<std::mutex>	lock(mutex);

								return	std::find(std::begin(data),	std::end(data),	value)

															!=	std::end(data);

						}	

				};

Sometimes,	a	method	or	an	operator	is	overloaded	to	have	both	constant	and
non-constant	versions.	This	is	often	the	case	with	the	subscript	operator	or
methods	that	provide	direct	access	to	the	internal	state.	The	reason	for	this	is	that
the	method	is	supposed	to	be	available	for	both	constant	and	non-constant
objects.	The	behavior	should	be	different,	though:	for	non-constant	objects,	the
method	should	allow	the	client	to	modify	the	data	it	provides	access	to,	but	for
constant	objects,	it	should	not.	Therefore,	the	non-constant	subscript	operator
returns	a	reference	to	a	non-constant	object,	and	the	constant	subscript	operator
returns	a	reference	to	a	constant	object:

				class	contact	{};

				

				class	addressbook

				{

						std::vector<contact>	contacts;

				public:

						contact&	operator[](size_t	const	index);

						contact	const	&	operator[](size_t	const	index)	const;

				};

It	should	be	noted	that,	if	a	member	function	is	constant,	even	if	an
object	is	constant,	data	returned	by	this	member	function	may	not
be	constant.	



There's	more...
The	const	qualifier	of	an	object	can	be	removed	with	a	const_cast	conversion,	but
this	should	only	be	used	when	you	know	that	the	object	was	not	declared
constant.	You	can	read	more	about	this	in	the	Performing	correct	type
casts	recipe.	



See	also
Creating	compile-time	constant	expressions
Performing	correct	type	casts



Creating	compile-time	constant
expressions
The	possibility	to	evaluate	expressions	at	compile	time	improves	runtime
execution	because	there	is	less	code	to	run	and	the	compiler	can	perform
additional	optimizations.	Compile-time	constants	can	be	not	only	literals	(such
as	a	number	or	string),	but	also	the	result	of	a	function	execution.	If	all	the	input
values	of	a	function	(regardless	of	whether	they	are	arguments,	locals,	or
globals)	are	known	at	compile	time,	the	compiler	can	execute	the	function	and
have	the	result	available	at	compile	time.	This	is	what	generalized	the	constant
expressions	introduced	in	C++11,	which	were	relaxed	in	C++14.	The	keyword
constexpr	(short	for	constant	expression)	can	be	used	to	declare	compile-time
constant	objects	and	functions.	We	have	seen	this	in	several	examples	in	the
previous	chapters.	Now	it's	time	to	learn	how	it	actually	works.



Getting	ready
The	way	generalized	constant	expressions	work	has	been	relaxed	in	C++14,	but
this	introduced	some	breaking	changes	to	C++11.	For	instance,	in	C++11	a
constexpr	function	was	implicitly	const,	but	this	is	no	longer	the	case	in	C++14.	In
this	recipe,	we	will	discuss	generalized	constant	expressions	as	defined	in
C++14.



How	to	do	it...
Use	the	constexpr	keyword	when	you	want	to:

Define	non-member	functions	that	can	be	evaluated	at	compile	time:

								constexpr	unsigned	int	factorial(unsigned	int	const	n)

								{

										return	n	>	1	?	n	*	factorial(n-1)	:	1;

								}

Define	constructors	that	can	be	executed	at	compile	time	to	initialize
constexpr	objects	and	member	functions	to	be	invoked	during	this	period:

								class	point3d

								{

										double	const	x_;

										double	const	y_;

										double	const	z_;

								public:

										constexpr	point3d(double	const	x	=	0,	

																												double	const	y	=	0,	

																												double	const	z	=	0)

												:x_{x},	y_{y},	z_{z}

										{}

										constexpr	double	get_x()	const	{return	x_;}

										constexpr	double	get_y()	const	{return	y_;}

										constexpr	double	get_z()	const	{return	z_;}

								};

Define	variables	that	can	have	their	values	evaluated	at	compile	time:

								constexpr	unsigned	int	size	=	factorial(6);

								char	buffer[size]	{0};

								constexpr	point3d	p	{0,	1,	2};

								constexpr	auto	x	=	p.get_x();



How	it	works...
The	const	keyword	is	used	for	declaring	variables	as	constant	at	runtime;	this
means	that,	once	initialized,	they	cannot	be	changed.	However,	evaluating	the
constant	expression	may	still	imply	runtime	computation.	The	constexpr	keyword
is	used	for	declaring	variables	that	are	constant	at	compile	time	or	functions	that
can	be	executed	at	compile	time.	constexpr	functions	and	objects	can	replace
macros	and	hardcoded	literals	without	any	performance	penalty.

Declaring	a	function	as	constexpr	does	not	mean	that	it	is	always
evaluated	at	compile	time.	It	only	enables	the	use	of	the	function	in
expressions	that	are	evaluated	during	compile	time.	This	only
happens	if	all	the	input	values	of	the	function	can	be	evaluated	at
compile	time.	However,	the	function	may	also	be	invoked	at
runtime.	The	following	code	shows	two	invocations	of	the	same
function,	first	at	compile	time,	and	second	at	runtime:

				constexpr	unsigned	int	size	=	factorial(6);	//	compile	time	evaluation

				int	n;

				std::cin	>>	n;

				auto	result	=	factorial(n);																	//	runtime	evaluation

There	are	some	restrictions	in	regard	to	where	constexpr	can	be	used:

In	the	case	of	variables,	it	is	used	only	when:
Its	type	is	a	literal	type
It	is	initialized	upon	declaration
The	expression	used	for	initializing	the	variable	is	a	constant
expression

In	the	case	of	functions,	it	is	used	only	when:
It	is	not	virtual
The	return	type	and	the	type	of	parameters	are	all	literal	types
There	is	at	least	one	set	of	arguments	for	which	the	invocation	of	the
function	would	produce	a	constant	expression
The	function	body	must	be	either	deleted	or	defaulted;	it	should	not
contain	asm	declarations,	goto	statements,	labels,	try...catch	blocks,	and
local	variables	that	are	either	not	initialized,	of	non-literal	types,	or



with	static	or	thread	storage	duration
If	the	function	is	a	defaulted	copy	or	move	assignment	operator,	then
the	class	must	not	contain	any	mutable	variant	members

In	the	case	of	constructors,	it	is	used	only	when:
All	the	parameters	are	of	a	literal	type.
There	is	no	virtual	base	class	for	the	class.
It	does	not	contain	a	function	try	block.
The	function	body	must	be	either	deleted,	defaulted,	or	satisfy	several
additional	conditions.	The	compound	statement	must	satisfy	all	the
conditions	we	just	mentioned	for	regular	functions.	All	the
constructors	that	initialize	non-static	data	members,	including	base
classes,	must	also	be	constexpr.	And	all	non-static	data	members	must
be	initialized	by	the	constructor	(for	union	types,	only	one	of	the
variants	needs	to	be	initialized).
If	it	is	a	defaulted	copy	or	move	constructor,	then	the	class	must	not
contain	any	mutable	variant	members.

A	function	that	is	constexpr	is	not	implicitly	const	(as	of	C++14),	so	you	need	to
explicitly	use	the	const	specifier	if	the	function	does	not	alter	the	logical	state	of
the	object.	However,	a	function	that	is	constexpr	is	implicitly	inline.	On	the	other
hand,	an	object	that	is	declared	constexpr	is	implicitly	const.	The	following	two
declarations	are	equivalent:

				constexpr	const	unsigned	int	size	=	factorial(6);

				constexpr	unsigned	int	size	=	factorial(6);

There	are	situations	when	you	may	need	to	use	both	constexpr	and	const	in	a
declaration,	as	they	would	refer	to	different	parts	of	the	declaration.	In	the
following	example,	p	is	a	constexpr	pointer	to	a	constant	integer:

				static	constexpr	int	c	=	42;

				constexpr	int	const	*	p	=	&c;

Reference	variables	can	also	be	constexpr	if,	and	only	if,	they	alias	an	object	with
static	storage	duration	or	a	function:

				static	constexpr	int	const	&	r	=	c;



See	also
Ensuring	constant	correctness	for	a	program



Performing	correct	type	casts
It	is	often	the	case	that	data	has	to	be	converted	from	one	type	to	another	type.
Some	conversions	are	necessary	at	compile	time	(such	as	double	to	int);	others	are
necessary	at	runtime	(such	as	upcasting	and	downcasting	pointers	to	the	classes
in	a	hierarchy).	The	language	supports	compatibility	with	C	casting	style	in
either	the	(type)expression	or	type(expression)	form.	However,	this	type	of	casting
breaks	the	type	safety	of	C++.	Therefore,	the	language	also	provides	several
conversions,	static_cast,	dynamic_cast,	const_cast,	and	reinterpret_cast.	They	are	used
to	better	indicate	intent	and	write	safer	code.	In	this	recipe,	we	look	at	how	these
casts	can	be	used.



How	to	do	it...
Use	the	following	casts	to	perform	type	conversions:

Use	static_cast	to	perform	type	casting	of	non-polymorphic	types,	including
casting	of	integers	to	enumerations,	from	floating	point	to	integral	values	or
from	a	pointer	type	to	another	pointer	type,	such	as	from	a	base	class	to	a
derived	class	(downcasting)	or	from	a	derived	class	to	a	base	class
(upcasting),	but	without	any	runtime	checks:

								enum	options	{one	=	1,	two,	three};

								int	value	=	1;

								options	op	=	static_cast<options>(value);

								int	x	=	42,	y	=	13;

								double	d	=	static_cast<double>(x)	/	y;

								int	n	=	static_cast<int>(d);

Use	dynamic_cast	to	perform	type	casting	of	pointers	or	references
of	polymorphic	types	from	a	base	class	to	a	derived	class	or	the	other	way
around.	These	checks	are	performed	at	runtime	and	require	that	Runtime
Type	Information	(RTTI)	is	enabled:

								struct	base

								{

										virtual	void	run()	{}

										virtual	~base()	{}

								};

								struct	derived	:	public	base

								{

								};

								derived	d;

								base	b;

								base*	pb	=	dynamic_cast<base*>(&d);									//	OK

								derived*	pd	=	dynamic_cast<derived*>(&b);			//	fail

								try

								{

										base&	rb	=	dynamic_cast<base&>(d);							//	OK

										derived&	rd	=	dynamic_cast<derived&>(b);	//	fail

								}

								catch	(std::bad_cast	const	&	e)

								{

										std::cout	<<	e.what()	<<	std::endl;

								}



Use	const_cast	to	perform	conversion	between	types	with	different	const	and
volatile	specifiers,	such	as	removing	const	from	an	object	that	was	not
declared	as	const:

								void	old_api(char*	str,	unsigned	int	size)

								{

										//	do	something	without	changing	the	string

								}

								std::string	str{"sample"};

								old_api(const_cast<char*>(str.c_str()),	

																static_cast<unsigned	int>(str.size()));

Use	reinterpret_cast	to	perform	a	bit	reinterpretation,	such	as	conversion
between	integers	and	pointer	types,	from	pointer	types	to	integer,	from	a
pointer	type	to	any	other	pointer	type,	without	involving	any	runtime
checks:

								class	widget

								{

								public:

										typedef	size_t	data_type;

										void	set_data(data_type	d)	{	data	=	d;	}

										data_type	get_data()	const	{	return	data;	}

								private:

										data_type	data;

								};

								widget	w;

								user_data*	ud	=	new	user_data();

								//	write

								w.set_data(reinterpret_cast<widget::data_type>(ud));

								//	read

								user_data*	ud2	=	reinterpret_cast<user_data*>(w.get_data());



How	it	works...
The	explicit	type	conversion,	sometimes	referred	to	as	C-style	casting	or	static
casting,	is	a	legacy	of	compatibility	of	C++	with	the	C	language	and	it	enables
you	to	perform	various	conversions:

Between	arithmetical	types
Between	pointer	types
Between	integral	and	pointer	types
Between	const	or	volatile	qualified	and	unqualified	types
Any	combination	of	the	previous	one	and	any	of	the	preceding	conversions

This	type	of	casting	does	not	work	well	with	polymorphic	types	or	in	templates.
Because	of	this,	C++	provides	the	four	casts	we	saw	in	the	examples	earlier.
Using	these	casts	leads	to	several	important	benefits:

They	express	user	intent	better,	both	to	the	compiler	and	others	that	read	the
code.
They	enable	safer	conversion	between	various	types	(except	for
reinterpret_cast).
They	can	be	easily	searched	in	the	source	code.

static_cast	is	not	a	direct	equivalent	of	C	casting,	even	though	the	name	might
suggest	that.	This	cast	is	performed	at	compile	time	and	can	be	used	to	perform
implicit	conversions,	the	reverse	of	implicit	conversions,	and	conversion
from	pointers	to	types	from	a	hierarchy	of	classes.	It	cannot	be	used	to	trigger	a
conversion	between	unrelated	pointer	types,	though.	In	the	following	example,
converting	from	int*	to	double*	using	static_cast	is	a	compiler	error.	However,
converting	from	base*	to	derived*	(where	base	and	derived	are	the	classes	shown	in
the	How	to	do	it...	section)	does	not	produce	any	compiler	error	but	a	runtime
error,	when	trying	to	use	the	newly	obtained	pointer.	On	the	other	hand,
static_cast	cannot	be	used	to	remove	const	and	volatile	qualifiers:

				int*	pi	=	new	int{	42	};

				double*	pd	=	static_cast<double*>(pi);			//	compiler	error

				base	b;

				derived*	pd	=	static_cast<derived*>(&b);	//	compilers	OK,	runtime	error

				base*	pb1	=	static_cast<base*>(&d);						//	OK



				base*	pb1	=	static_cast<base*>(&d);						//	OK

				int	const	c	=	42;

				int*	pc	=	static_cast<int*>(&c);									//	compiler	error

Safe	typecasting	of	expressions	up,	down,	or	sideways	along	an	inheritance
hierarchy	can	be	performed	with	dynamic_cast.	This	cast	is	performed	at	runtime
and	requires	that	RTTI	is	enabled.	Because	of	this,	it	incurs	a	runtime	overhead.
Dynamic	casting	can	only	be	used	for	pointers	and	references.	When	dynamic_cast
is	used	to	convert	an	expression	to	a	pointer	type	and	the	operation	fails,	the
result	is	a	null	pointer.	When	it	is	used	to	convert	an	expression	to	a	reference
type	and	the	operation	fails,	an	std::bad_cast	exception	is	thrown.	Therefore,
always	put	a	dynamic_cast	conversion	to	a	reference	type	within	a	try...catch	block.

RTTI	is	a	mechanism	which	exposes	information	about	object	data
types	at	runtime.	This	is	available	only	for	polymorphic	types
(types	that	have	at	least	one	virtual	method,	including	a	virtual
destructor,	which	all	base	classes	should	have).	RTTI	is	usually	an
optional	compiler	feature	(or	might	not	be	supported	at	all),	which
means	using	this	functionality	may	require	using	a	compiler	switch.

Though	dynamic	casting	is	performed	at	runtime,	if	you	attempt	to	convert	it
between	non-polymorphic	types,	you'll	get	a	compiler	error:

				struct	struct1	{};

				struct	struct2	{};

				struct1	s1;

				struct2*	ps2	=	dynamic_cast<struct2*>(&s1);	//	compiler	error

reinterpret_cast	is	more	like	a	compiler	directive.	It	does	not	translate	into	any
CPU	instructions,	but	only	instructs	the	compiler	to	interpret	the	binary
representation	of	an	expression	as	it	was	of	another,	specified	type.	This	is	a
type-unsafe	conversion	and	should	be	used	with	care.	It	can	be	used	to
convert	expression	between	integral	types	and	pointers,	pointer	types,	and
function	pointer	types.	Because	no	checks	are	done,	reinterpret_cast	can	be
successfully	used	to	convert	expressions	between	unrelated	types,	such	as
from	int*	to	double*,	which	produces	undefined	behavior:

				int*	pi	=	new	int{	42	};

				double*	pd	=	reinterpret_cast<double*>(pi);

A	typical	use	of	reinterpret_cast	is	to	convert	expressions	between	types	in	code



that	uses	operating-system	or	vendor-specific	APIs.	Many	APIs	store	user	data
in	the	form	of	a	pointer	or	an	integral	type.	Therefore,	if	you	need	to	pass	the
address	of	a	user-defined	type	to	such	APIs,	you	need	to	convert	values	of
unrelated	pointer	types	or	a	pointer	type	value	to	an	integral	type	value.	A
similar	example	was	provided	in	the	previous	section,	where	widget	was	a	class
which	stored	user-defined	data	in	a	data	member	and	provided	methods	for
accessing	it:	set_data()	and	get_data().	If	you	need	to	store	a	pointer	to	an	object	in
widget,	then	use	reinterpret_cast,	as	shown	in	this	example.

const_cast	is	similar	to	reinterpret_cast	in	the	sense	that	it	is	a	compiler	directive
and	does	not	translate	into	CPU	instructions.	It	is	used	to	cast	away	const	or
volatile	qualifiers,	an	operation	which	none	of	the	other	three	conversions
discussed	here	can	do.

const_cast	should	only	be	used	to	remove	const	or	volatile	qualifiers
when	the	object	is	not	declared	const	or	volatile.	Anything	else
incurs	undefined	behavior,	as	shown	in	the	example	below:	

				int	const	a	=	42;

				int	const	*	p	=	&a;

				int*	q	=	const_cast<int*>(p);

				*q	=	0;	//	undefined	behavior



There's	more...
When	using	explicit	type	conversion	in	the	form	(type)expression,	be	aware	that	it
would	select	the	first	choice	from	the	following	list,	which	satisfies	specific	casts
requirements:

1.	 const_cast<type>(expression)
2.	 static_cast<type>(expression)
3.	 static_cast<type>(expression)	+	const_cast<type>(expression)
4.	 reinterpret_cast<type>(expression)
5.	 reinterpret_cast<type>(expression)	+	const_cast<type>(expression)

Moreover,	unlike	the	specific	C++	casts,	C-style	cast	can	be	used	to	convert
between	incomplete	class	types.	If	both	type	and	expression	are	pointers	to
incomplete	types,	then	it	is	not	specified	whether	static_cast	or	reinterpret_cast	is
selected.



See	also
Ensuring	constant	correctness	for	a	program



Using	unique_ptr	to	uniquely	own	a
memory	resource
Manual	handling	of	heap	memory	allocation	and	releasing	is	one	of	the	most
controversial	features	of	C++.	All	allocations	must	be	properly	paired	with	a
corresponding	delete	operation	in	the	correct	scope.	If	the	scope	of	memory
allocation	is	a	function,	for	instance,	and	memory	needs	to	be	released	before	the
function	returns,	then	this	has	to	happen	on	all	the	return	paths,	including	the
abnormal	situation	where	a	function	returns	because	of	an	exception.	C++11
features,	such	as	rvalues	and	move	semantics,	have	enabled	the	development	of
smart	pointers;	these	pointers	can	manage	a	memory	resource	and	automatically
release	it	when	the	smart	pointer	is	destroyed.	In	this	recipe,	we	will	look	at
std::unique_ptr:	a	smart	pointer	that	owns	and	manages	another	object	or	an	array
of	objects	allocated	on	the	heap	and	performs	the	disposal	operation	when	the
smart	pointer	goes	out	of	scope.



Getting	ready
For	this	recipe,	you	need	to	be	familiar	with	move	semantics	and	the
std::move()	conversion	function.	The	unique_ptr	class	is	available	in	the	std
namespace	in	the	<memory>	header.	

For	simplicity	and	readability,	we	will	not	use	in	this	recipe	the
fully	qualified	names	std::unique_ptr	and	std::shared_ptr	but	unique_ptr
and	shared_ptr.

In	the	following	examples,	we	will	use	the	ensuing	class:

				class	foo

				{

						int	a;

						double	b;

						std::string	c;

				public:

						foo(int	const	a	=	0,	double	const	b	=	0,	std::string	const	&	c	=	"")	

						:a(a),	b(b),	c(c)

						{}

						void	print()	const

						{

								std::cout	<<	'('	<<	a	<<	','	<<	b	<<	','	<<	std::quoted(c)	<<	')'	

																		<<	std::endl;

						}

				};



How	to	do	it...
The	following	is	a	list	of	typical	operations	you	need	to	be	aware	of	for	working
with	unique_ptr:

Use	the	available	overloaded	constructors	to	create	an	unique_ptr	that
manages	objects	or	an	array	of	objects	through	a	pointer.	The	default
constructor	creates	a	pointer	that	does	not	manage	any	object:

								std::unique_ptr<int>			pnull;

								std::unique_ptr<int>			pi(new	int(42));

								std::unique_ptr<int[]>	pa(new	int[3]{	1,2,3	});

								std::unique_ptr<foo>			pf(new	foo(42,	42.0,	"42"));

Alternatively,	use	the	std::make_unique()	function	template,	available	in
C++14,	to	create	unique_ptr	objects:

								std::unique_ptr<int>			pi	=	std::make_unique<int>(42);

								std::unique_ptr<int[]>	pa	=	std::make_unique<int[]>(3);

								std::unique_ptr<foo>			pf	=	std::make_unique<foo>(42,	42.0,	"42");

Use	the	overloaded	constructor	that	takes	a	custom	deleter	if	the	default
delete	operator	is	not	appropriate	for	destroying	the	managed	object	or
array:

								struct	foo_deleter

								{

										void	operator()(foo*	pf)	const

										{

												std::cout	<<	"deleting	foo..."	<<	std::endl;

												delete	pf;

										}

								};

								std::unique_ptr<foo,	foo_deleter>	pf(new	foo(42,	42.0,	"42"),

																																													foo_deleter());

Use	std::move()	to	transfer	the	ownership	of	an	object	from	one	unique_ptr	to
another:

								auto	pi	=	std::make_unique<int>(42);

								auto	qi	=	std::move(pi);

								assert(pi.get()	==	nullptr);

								assert(qi.get()	!=	nullptr);



To	access	the	raw	pointer	to	the	managed	object,	use	get()	if	you	want	to
retain	ownership	of	the	object	or	release()	if	you	want	to	release	the
ownership	as	well:

								void	func(int*	ptr)

								{

										if	(ptr	!=	nullptr)

												std::cout	<<	*ptr	<<	std::endl;

										else

												std::cout	<<	"null"	<<	std::endl;

								}

								std::unique_ptr<int>	pi;

								func(pi.get());	//	prints	null

								pi	=	std::make_unique<int>(42);

								func(pi.get());	//	prints	42

Dereference	the	pointer	to	the	managed	object	using	operator*	and	operator->:

								auto	pi	=	std::make_unique<int>(42);

								*pi	=	21;

								auto	pf	=	std::make_unique<foo>();

								pf->print();

If	a	unique_ptr	manages	an	array	of	objects,	operator[]	can	be	used	to	access
individual	elements	of	the	array:

								std::unique_ptr<int[]>	pa	=	std::make_unique<int[]>(3);

								for	(int	i	=	0;	i	<	3;	++i)

										pa[i]	=	i	+	1;

To	check	whether	unique_ptr	can	manage	an	object	or	not,	use	the	explicit
operator	bool	or	check	whether	get()	!=	nullptr	(which	is	what	operator	bool
does):

								std::unique_ptr<int>	pi(new	int(42));

								if	(pi)	std::cout	<<	"not	null"	<<	std::endl;

unique_ptr	objects	can	be	stored	in	a	container.	Objects	returned	by
make_unique()	can	be	stored	directly.	A	lvalue	object	could	be	statically
converted	into	an	rvalue	object	with	std::move()	if	you	want	to	give	up	the
ownership	of	the	managed	object	to	the	unique_ptr	object	in	the	container:

								std::vector<std::unique_ptr<foo>>	data;

								for	(int	i	=	0;	i	<	5;	i++)

										data.push_back(

								std::make_unique<foo>(i,	i,	std::to_string(i)));

								auto	pf	=	std::make_unique<foo>(42,	42.0,	"42");

								data.push_back(std::move(pf));



								data.push_back(std::move(pf));



How	it	works...
unique_ptr	is	a	smart	pointer	that	manages	an	object	or	an	array	allocated	on	the
heap	through	a	raw	pointer,	performing	an	appropriate	disposal	when	the	smart
pointer	goes	out	of	scope,	is	assigned	a	new	pointer	with	operator=,	or	it	gives	up
ownership	using	the	release()	method.	By	default,	operator	delete	is	used	to
dispose	of	the	managed	object.	However,	the	user	may	supply	a	custom	deleter
when	constructing	the	smart	pointer.	This	deleter	must	be	a	function	object,
either	an	lvalue	reference	to	a	function	object	or	a	function,	and	this	callable
object	must	take	a	single	argument	of	the	type	unique_ptr<T,	Deleter>::pointer.

C++14	has	added	the	std::make_unique()	utility	function	template	to	create	an
unique_ptr.	It	avoids	memory	leaks	in	some	particular	contexts,	but	it	has	some
limitations:

It	can	only	be	used	to	allocate	arrays;	you	cannot	also	use	it	to	initialize
them,	which	is	possible	with	a	unique_ptr	constructor.	The	following	two
pieces	of	sample	code	are	equivalent:

								//	allocate	and	initialize	an	array

								std::unique_ptr<int[]>	pa(new	int[3]{	1,2,3	});

								//	allocate	and	then	initialize	an	array

								std::unique_ptr<int[]>	pa	=	std::make_unique<int[]>(3);

								for	(int	i	=	0;	i	<	3;	++i)

										pa[i]	=	i	+	1;

It	cannot	be	used	to	create	an	unique_ptr	object	with	a	user-defined	deleter.

As	we	just	mentioned,	the	great	advantage	of	make_unique()	is	that	it	helps
avoiding	memory	leaks	in	some	contexts	when	exceptions	are	being	thrown.
make_unique()	itself	can	throw	std::bad_alloc	if	the	allocation	fails	or	any	exception
thrown	by	the	constructor	of	the	object	it	creates.	Let's	consider	the	following
example:

				void	some_function(std::unique_ptr<foo>	p)

				{	/*	do	something	*/	}

				

				some_function(std::unique_ptr<foo>(new	foo()));

				some_function(std::make_unique<foo>());



Regardless	of	what	happens	with	the	allocation	and	construction	of	foo,	there	will
be	no	memory	leaks,	irrespective	of	whether	you	use	make_unique()	or	the
constructor	of	unique_ptr.	However,	this	situation	changes	in	a	slightly	different
version	of	the	code:

				void	some_other_function(std::unique_ptr<foo>	p,	int	const	v)

				{

				}

				int	function_that_throws()

				{

						throw	std::runtime_error("not	implemented");

				}

				//	possible	memory	leak

				some_other_function(std::unique_ptr<foo>(new	foo),	

																								function_that_throws());

				//	no	possible	memory	leak

				some_other_function(std::make_unique<foo>(),	

																								function_that_throws());

In	this	example,	some_other_function()	has	an	extra	parameter:	an	integer	value.	The
integer	argument	passed	to	this	function	is	the	returned	value	of	another
function.	If	this	function	call	throws,	using	the	constructor	ofunique_ptr	to	create
the	smart	pointer	can	produce	a	memory	leak.	The	reason	for	this	is	that,	upon
calling	some_other_function(),	the	compiler	might	first	call	foo,	then
function_that_throws(),	and	then	the	constructor	of	unique_ptr.	If
function_that_throws()	throws	an	error,	then	the	allocated	foo	would	leak.	If	the
calling	order	is	function_that_throws()	and	then	new	foo()	and	the	constructor	of
unique_ptr,	a	memory	leak	will	not	happen;	this	is	because	the	stack	starts
unwinding	before	the	foo	object	is	allocated.	However,	by	using	the	make_unique()
function,	this	situation	is	avoided.	This	is	because	the	only	calls	made	are	to
make_unique()	and	function_that_throws().	If	function_that_throws()	is	called	first,	then
the	foo	object	will	not	be	allocated	at	all.	If	make_unique()	is	called	first,	the	foo
object	is	constructed	and	its	ownership	is	passed	to	unique_ptr.	If	a	later	call	to
function_that_throws()	does	throw,	then	the	unique_ptr	will	be	destroyed	when	the
stack	is	unwound	and	the	foo	object	will	be	destroyed	from	the	smart	pointer's
destructor.

Constant	unique_ptr	objects	cannot	transfer	the	ownership	of	a	managed	object	or
array	to	another	unique_ptr	object.	On	the	other	hand,	access	to	the	raw	pointer	to
the	managed	object	can	be	obtained	with	either	get()	or	release().	The	first
method	only	returns	the	underlying	pointer,	but	the	latter	also	releases	the



ownership	of	the	managed	object,	hence	the	name.	After	a	call	to	release(),	the
unique_ptr	object	will	be	empty	and	a	call	to	get()	will	return	nullptr.

A	unique_ptr	that	manages	the	object	of	a	Derived	class	can	be	implicitly	converted
into	a	unique_ptr	that	manages	an	object	of	class	Base	if	Derived	is	derived	from	Base.
This	implicit	conversion	is	safe	only	if	Base	has	a	virtual	destructor	(as	all	base
classes	should	have);	otherwise,	undefined	behavior	is	employed:

				struct	Base

				{

						virtual	~Base()	

						{

								std::cout	<<	"~Base()"	<<	std::endl;

						}

				};

				struct	Derived	:	public	Base

				{

						virtual	~Derived()

						{

								std::cout	<<	"~Derived()"	<<	std::endl;

						}

				};

				std::unique_ptr<Derived>	pd	=	std::make_unique<Derived>();

				std::unique_ptr<Base>	pb	=	std::move(pd);

unique_ptr	can	be	stored	in	containers,	such	as	std::vector.	Because	only	one
unique_ptr	object	can	own	the	managed	object	at	any	point,	the	smart	pointer
cannot	be	copied	to	the	container;	it	has	to	be	moved.	This	is	possible	with
std::move()	that	performs	a	static_cast	to	an	rvalue	reference	type.	This	allows	the
ownership	of	the	managed	object	to	be	transferred	to	the	unique_ptr	object	that	is
created	in	the	container.



See	also
Using	shared_ptr	to	share	a	memory	resource



Using	shared_ptr	to	share	a	memory
resource
Managing	dynamically	allocated	objects	or	arrays	with	std::unique_ptr	is	not
possible	when	the	object	or	array	has	to	be	shared	because	a	std::unique_ptr
retains	its	sole	ownership.	The	C++	standard	provides	another	smart	pointer,
called	std::shared_ptr;	it	is	similar	to	std::unique_ptr	in	many	ways,	but	the
difference	is	that	it	can	share	the	ownership	of	an	object	or	array	with	other
std::shared_ptr.	In	this	recipe,	we	will	see	how	std::shared_ptr	works	and	how	it
differs	from	std::uniqueu_ptr.	We	will	also	look	at	std::weak_ptr,	which	is	a	non-
resource-owning	smart	pointer	that	holds	a	reference	to	an	object	managed	by	a
std::shared_ptr.



Getting	ready
Make	sure	you	read	the	previous	recipe,	Using	unique_ptr	to	uniquely	own	a
memory	resource,	to	become	familiar	with	how	unique_ptr	and	make_unique()	work.
We	will	use	the	foo,	foo_deleter,	Base,	and	Derived	classes	defined	in	this	recipe	and
also	make	several	references	to	it.

Both	the	shared_ptr	and	weak_ptr	classes,	as	well	as	the	make_shared()	function
template,	are	available	in	the	std	namespace	in	the	<memory>	header.	

For	simplicity	and	readability,	we	will	not	use	in	this	recipe	the
fully	qualified	names	std::unique_ptr,	std::shared_ptr,	std::weak_pointer
but	unique_ptr,	shared_ptr	and	weak_ptr.



How	to	do	it...
The	following	is	a	list	of	the	typical	operations	you	need	to	be	aware	of	for
working	with	shared_ptr	and	weak_ptr:

Use	one	of	the	available	overloaded	constructors	to	create	a	shared_ptr	that
manages	an	object	through	a	pointer.	The	default	constructor	creates	an
empty	shared_ptr	which	does	not	manage	any	object:

								std::shared_ptr<int>	pnull1;

								std::shared_ptr<int>	pnull2(nullptr);

								std::shared_ptr<int>	pi1(new	int(42));

								std::shared_ptr<int>	pi2	=	pi1;

								std::shared_ptr<foo>	pf1(new	foo());

								std::shared_ptr<foo>	pf2(new	foo(42,	42.0,	"42"));

Alternatively,	use	the	std::make_shared()	function	template,	available	since
C++11,	for	creating	shared_ptr	objects:

								std::shared_ptr<int>	pi	=	std::make_shared<int>(42);

								std::shared_ptr<foo>	pf1	=	std::make_shared<foo>();

								std::shared_ptr<foo>	pf2	=	std::make_shared<foo>(42,	42.0,	"42");

Use	the	overloaded	constructor	that	takes	a	custom	deleter	if	the	default
delete	operation	is	not	appropriate	for	destroying	the	managed	object:

								std::shared_ptr<foo>	pf1(new	foo(42,	42.0,	"42"),

																																	foo_deleter());

								std::shared_ptr<foo>	pf2(

																		new	foo(42,	42.0,	"42"),

																		[](auto	p)	{

										std::cout	<<	"deleting	foo	from	lambda..."	<<	std::endl;

										delete	p;}

								);

Always	specify	a	deleter	when	managing	an	array	of	objects.	The	deleter
can	either	be	a	partial	specialization	of	std::default_delete	for	arrays	or	any
function	that	takes	a	pointer	to	the	template	type:

								std::shared_ptr<int>	pa1(

										new	int[3]{	1,	2,	3	},

										std::default_delete<int[]>());

								std::shared_ptr<int>	pa2(

										new	int[3]{	1,	2,	3	},

										[](auto	p)	{delete[]	p;	});



To	access	the	raw	pointer	to	the	managed	object,	use	the	get()	function:	

								void	func(int*	ptr)

								{

										if	(ptr	!=	nullptr)

												std::cout	<<	*ptr	<<	std::endl;

										else

												std::cout	<<	"null"	<<	std::endl;

								}

								std::shared_ptr<int>	pi;

								func(pi.get());

								pi	=	std::make_shared<int>(42);

								func(pi.get());

Dereference	the	pointer	to	the	managed	object	using	operator*	and	operator->:

								std::shared_ptr<int>	pi	=	std::make_shared<int>(42);

								*pi	=	21;

								std::shared_ptr<foo>	pf	=	std::make_shared<foo>(42,	42.0,	"42");

								pf->print();

If	a	shared_ptr	manages	an	array	of	objects,	operator[]	can	be	used	to	access
the	individual	elements	of	the	array.	This	is	only	available	in	C++17:

								std::shared_ptr<int>	pa1(

										new	int[3]{	1,	2,	3	},

										std::default_delete<int[]>());

								for	(int	i	=	0;	i	<	3;	++i)

										pa1[i]	*=	2;

To	check	whether	a	shared_ptr	could	manage	an	object	or	not,	use	the
explicit	operator	bool	or	check	whether	get()	!=	nullptr	(which	is	what	operator
bool	does):

								std::shared_ptr<int>	pnull;

								if	(pnull)	std::cout	<<	"not	null"	<<	std::endl;

								std::shared_ptr<int>	pi(new	int(42));

								if	(pi)	std::cout	<<	"not	null"	<<	std::endl;

shared_ptr	objects	can	be	stored	in	containers,	such	as	std::vector:

								std::vector<std::shared_ptr<foo>>	data;

								for	(int	i	=	0;	i	<	5;	i++)

										data.push_back(

												std::make_shared<foo>(i,	i,	std::to_string(i)));

								auto	pf	=	std::make_shared<foo>(42,	42.0,	"42");

								data.push_back(std::move(pf));

								assert(!pf);



Use	weak_ptr	to	maintain	a	non-owning	reference	to	a	shared	object,	which
can	be	later	accessed	through	a	shared_ptr	constructed	from	the	weak_ptr
object:

								auto	sp1	=	std::make_shared<int>(42);

								assert(sp1.use_count()	==	1);

								std::weak_ptr<int>	wpi	=	sp1;

								assert(sp1.use_count()	==	1);

								auto	sp2	=	wpi.lock();

								assert(sp1.use_count()	==	2);

								assert(sp2.use_count()	==	2);

								sp1.reset();

								assert(sp1.use_count()	==	0);

								assert(sp2.use_count()	==	1);

Use	the	std::enable_shared_from_this	class	template	as	the	base	class	for	a	type
when	you	need	to	create	shared_ptr	objects	for	instances	that	are	already
managed	by	another	shared_ptr	object:

								struct	Apprentice;

								struct	Master	:	std::enable_shared_from_this<Master>

								{

										~Master()	{	std::cout	<<	"~Master"	<<	std::endl;	}

										void	take_apprentice(std::shared_ptr<Apprentice>	a);

								private:

										std::shared_ptr<Apprentice>	apprentice;

								};

								struct	Apprentice

								{

										~Apprentice()	{	std::cout	<<	"~Apprentice"	<<	std::endl;	}

										void	take_master(std::weak_ptr<Master>	m);

								private:

										std::weak_ptr<Master>	master;

								};

								void	Master::take_apprentice(std::shared_ptr<Apprentice>	a)

								{

										apprentice	=	a;

										apprentice->take_master(shared_from_this());

								}

								void	Apprentice::take_master(std::weak_ptr<Master>	m)

								{

										master	=	m;

								}

								auto	m	=	std::make_shared<Master>();

								auto	a	=	std::make_shared<Apprentice>();

								m->take_apprentice(a);



How	it	works...
shared_ptr	is	very	similar	to	unique_ptr	in	many	aspects;	however,	it	serves	a
different	purpose:	sharing	the	ownership	of	an	object	or	array.	Two	or	more
shared_ptr	smart	pointers	can	manage	the	same	dynamically	allocated	object	or
array,	which	is	automatically	destroyed	when	the	last	smart	pointer	goes	out	of
scope,	is	assigned	a	new	pointer	with	operator=,	or	is	reset	with	method	reset().	By
default,	the	object	is	destroyed	with	operator	delete;	however,	the	user	could
supply	a	custom	deleter	to	the	constructor,	something	that	is	not	possible	using
std::make_shared().	If	the	shared_ptr	is	used	to	manage	an	array	of	objects,	a	custom
deleter	must	be	supplied.	In	this	case,	you	can	use	std::default_delete<T[]>,	which
is	a	partial	specialization	of	the	std::default_delete	class	template	that	uses	operator
delete[]	to	delete	the	dynamically	allocated	array.

The	utility	function	std::make_shared()	(available	since	C++11)	unlike
std::make_unique(),	which	is	only	available	since	C++14,	should	be	used	to	create
smart	pointers	unless	you	need	to	provide	a	custom	deleter.	The	primary	reason
for	this	is	the	same	as	for	make_unique():	avoiding	potential	memory	leaks	in	some
contexts	when	an	exception	is	thrown.	For	more	information	on	this,	read	the
explanation	provided	on	std::make_unique()	in	the	previous	recipe.

Also,	as	in	the	case	of	unique_ptr,	a	shared_ptr	that	manages	an	object	of	a
Derived	class	can	be	implicitly	converted	into	a	shared_ptr	that	manages	an	object
of	the	Base	class.	This	is	possible	if	the	Derived	class	is	derived	from	Base.	This
implicit	conversion	is	safe	only	if	Base	has	a	virtual	destructor	(as	all	the	base
classes	should	have	when	objects	are	supposed	to	be	deleted	polymorphically
through	a	pointer	or	reference	to	the	base	class);	otherwise,	undefined	behavior
is	employed.	In	C++17,	several	new	non-member	functions	have	been	added:
std::static_pointer_cast(),	std::dynamic_pointer_cast(),	std::const_pointer_cast(),	and
std::reinterpret_pointer_cast().	These	apply	static_cast,	dynamic_cast,	const_cast,	and
reinterpret_cast	to	the	stored	pointer,	returning	a	new	shared_ptr	to	the	designated
type.	In	the	following	example,	Base	and	Derived	are	the	same	classes	used	in	the
previous	recipe:

				std::shared_ptr<Derived>	pd	=	std::make_shared<Derived>();

				std::shared_ptr<Base>	pb	=	pd;

				std::static_pointer_cast<Derived>(pb)->print();



				std::static_pointer_cast<Derived>(pb)->print();

There	are	situations	when	you	need	a	smart	pointer	for	a	shared	object	but
without	it	contributing	to	the	shared	ownership.	Suppose	you	model	a	tree
structure	where	a	node	has	references	to	its	children	and	they	are	represented	by
shared_ptr	objects.	On	the	other	hand,	say	a	node	needs	to	keep	a	reference	to	its
parent.	If	this	reference	were	also	shared_ptr,	then	it	would	create	circular
references	and	no	object	would	ever	be	automatically	destroyed.

weak_ptr	is	a	smart	pointer	used	to	break	such	circular	dependencies.	It	holds	a
non-owning	reference	to	an	object	or	array	managed	by	a	shared_ptr.	The	weak_ptr
can	be	created	from	a	shared_ptr	object.	In	order	to	access	the	managed	object,
you	need	to	get	a	temporary	shared_ptr	object.	To	do	so,	we	need	to	use	the
lock()	method.	This	method	atomically	checks	whether	the	referred	object	still
exists	and	returns	either	an	empty	shared_ptr,	if	the	object	no	longer	exists,	or
a	shared_ptr	that	owns	the	object,	if	it	still	exists.	Because	weak_ptr	is	a	non-owning
smart	pointer,	the	referred	object	can	be	destroyed	before	weak_ptr	goes	out	of
scope	or	when	all	the	owning	shared_ptr	objects	have	been	destroyed,	reset,	or
assigned	to	other	pointers.	The	method	expired()	can	be	used	to	check	whether	the
referenced	object	has	been	destroyed	or	is	still	available.

In	the	How	to	do	it...	section,	the	preceding	example	models	a	master-apprentice
relationship.	There	is	a	Master	class	and	an	Apprentice	class.	The	Master	class	has	a
reference	to	an	Apprentice	class	and	a	method	called	take_apprentice()	to	set	the
Apprentice	object.	The	Apprentice	class	has	a	reference	to	a	Master	class	and
the	method	take_master()	to	set	the	Master	object.	In	order	to	avoid	circular
dependencies,	one	of	these	references	must	be	represented	by	a	weak_ptr.	In	the
proposed	example,	the	Master	class	had	a	shared_ptr	to	own	the	Apprentice	object,
and	the	Apprentice	class	had	a	weak_ptr	to	track	a	reference	to	the	Master	object.	This
example,	however,	is	a	bit	more	complex	because	here,	the
Apprentice::take_master()	method	is	called	from	Master::take_apprentice()	and	needs	a
weak_ptr<Master>.	In	order	to	call	it	from	within	the	Master	class,	we	must	be	able	to
create	a	shared_ptr<Master>	in	the	Master	class,	using	the	this	pointer.	The	only	way
to	do	that	in	a	safe	manner	is	to	use	std::enable_shared_from_this.

std::enable_shared_from_this	is	a	class	template	that	must	be	used	as	a	base	class	for
all	the	classes	where	you	need	to	create	a	shared_ptr	for	the	current	object	(the
this	pointer)	when	this	object	is	already	managed	by	another	shared_ptr.	Its	type



template	parameter	must	be	the	class	that	derives	from	it,	as	in	the	curiously
recurring	template	pattern.	It	has	two	methods:	shared_from_this()	returns	a
shared_ptr,	which	shares	the	ownership	of	the	this	object,		and
weak_from_this()	returns	a	weak_ptr,	which	shares	a	non-owning	reference	to	the
this	object.		The	latter	method	is	only	available	in	C++17.	These	methods	can	be
called	only	on	an	object	that	is	managed	by	an	existing	shared_ptr;	otherwise,	they
throw	an	std::bad_weak_ptr	exception,	as	of	C++17.	Prior	to	C++17,	the	behavior
was	undefined.

Not	using	std::enable_shared_from_this	and	creating	a	shared_ptr<T>(this)	directly
would	lead	to	having	multiple	shared_ptr	objects	which	would	manage	the	same
object	independently,	without	knowing	each	other.	When	this	happens,	the
object	ends	up	being	destroyed	multiple	times	from	different	shared_ptr	objects.



See	also
Using	unique_ptr	to	uniquely	own	a	memory	resource



Implementing	move	semantics
Move	semantics	are	a	key	feature	that	drives	the	performance	improvements	of
modern	C++.	They	enable	moving,	rather	than	copying,	resources	or,	in	general,
objects	which	are	expensive	to	copy.	However,	it	requires	that	classes	implement
a	move	constructor	and	assignment	operator.	These	are	provided	by	the	compiler
in	some	circumstances,	but	in	practice,	it	is	often	the	case	that	you	have	to
explicitly	write	them.	In	this	recipe,	we	will	see	how	to	implement	the	move
constructor	and	the	move	assignment	operator.



Getting	ready
You	are	expected	to	have	basic	knowledge	of	rvalue	references	and	the	special
class	functions	(constructors,	assignment	operators,	and	destructor).	We	will
demonstrate	how	to	implement	a	move	constructor	and	assignment	operator
using	the	following	Buffer	class:

				class	Buffer

				{

						unsigned	char*	ptr;

						size_t	length;

				public:

						Buffer():	ptr(nullptr),	length(0)

						{}

						explicit	Buffer(size_t	const	size):

								ptr(new	unsigned	char[size]	{0}),	length(size)

						{}

						~Buffer()

						{

								delete[]	ptr;

						}

						Buffer(Buffer	const&	other):

								ptr(new	unsigned	char[other.length]),

						length(other.length)

						{

								std::copy(other.ptr,	other.ptr	+	other.length,	ptr);

						}

						Buffer&	operator=(Buffer	const&	other)

						{

								if	(this	!=	&other)

								{

										delete[]	ptr;

										ptr	=	new	unsigned	char[other.length];

										length	=	other.length;

										std::copy(other.ptr,	other.ptr	+	other.length,	ptr);

								}

								return	*this;

						}

						size_t	size()	const	{	return	length;}

						unsigned	char*	data()	const	{	return	ptr;	}

				};



How	to	do	it...
To	implement	the	move	constructor	for	a	class,	do	the	following:

1.	 Write	a	constructor	that	takes	an	rvalue	reference	to	the	class	type:

								Buffer(Buffer&&	other)

								{

								}

2.	 Assign	all	the	data	members	from	the	rvalue	reference	to	the	current	object.
This	can	be	done	either	in	the	body	of	the	constructor,	as	follows,	or	in	the
initialization	list,	which	is	the	preferred	way:

								ptr	=	other.ptr;

								length	=	other.length;

3.	 Assign	the	data	members	from	the	rvalue	reference	to	default	values:

								other.ptr	=	nullptr;

								other.length	=	0;

Put	all	together,	the	move	constructor	for	the	Buffer	class	looks	like	this:

				Buffer(Buffer&&	other):

				{

						ptr	=	other.ptr;

						length	=	other.length;

						other.ptr	=	nullptr;

						other.length	=	0;

				}

To	implement	the	move	assignment	operator	for	a	class,	do	the	following:

1.	 Write	an	assignment	operator	that	takes	an	rvalue	reference	to	the	class	type
and	returns	a	reference	to	it:

								Buffer&	operator=(Buffer&&	other)

								{

								}

2.	 Check	that	the	rvalue	reference	does	not	refer	to	the	same	object	as	this,	and
if	they	are	different,	perform	steps	3	to	5:



								if	(this	!=	&other)

								{

								}

3.	 Dispose	all	the	resources	(such	as	memory,	handles,	and	so	on)	from	the
current	object:

								delete[]	ptr;

4.	 Assign	all	the	data	members	from	the	rvalue	reference	to	the	current	object:

								ptr	=	other.ptr;

								length	=	other.length;

5.	 Assign	the	data	members	from	the	rvalue	reference	to	default	values:

								other.ptr	=	nullptr;

								other.length	=	0;

6.	 Return	a	reference	to	the	current	object,	regardless	of	whether	steps	3	to	5
were	executed	or	not:

								return	*this;

Put	all	together,	the	move	assignment	operator	for	the	Buffer	class	looks	like	this:

				Buffer&	operator=(Buffer&&	other)

				{

						if	(this	!=	&other)

						{

								delete[]	ptr;

								ptr	=	other.ptr;

								length	=	other.length;

								other.ptr	=	nullptr;

								other.length	=	0;

						}

						return	*this;

				}



How	it	works...
The	move	constructor	and	move	assignment	operator	are	provided	by	default	by
the	compiler	unless	a	user-defined	copy	constructor,	move	constructor,	copy
assignment	operator,	move	assignment	operator,	or	destructor	exists	already.
When	provided	by	the	compiler,	they	perform	a	movement	in	a	member-wise
manner.	The	move	constructor	invokes	the	move	constructors	of	the	class	data
members	recursively;	similarly,	the	move	assignment	operator	invokes	the	move
assignment	operators	of	the	class	data	members	recursively.

Move,	in	this	case,	represents	a	performance	benefit	for	objects	that	are	too	large
to	copy	(such	as	a	string	or	container)	or	for	objects	that	are	not	supposed	to	be
copied	(such	as	the	unique_ptr	smart	pointer).	Not	all	classes	are	supposed	to
implement	both	copy	and	move	semantics.	Some	classes	should	only	be
movable,	others	both	copyable	and	movable.	On	the	other	hand,	it	does	not	make
much	sense	for	a	class	to	be	copyable	but	not	moveable,	though	this	can	be
technically	achieved.

Not	all	types	benefit	from	move	semantics.	In	the	case	of	built-in	types	(such	as
bool,	int,	or	double),	arrays,	or	PODs,	the	move	is	actually	a	copy	operation.	On
the	other	hand,	move	semantics	provide	a	performance	benefit	in	the	context	of
rvalues,	that	is,	temporary	objects.	An	rvalue	is	an	object	that	does	not	have	a
name;	it	lives	temporarily	during	the	evaluation	of	an	expression	and	is
destroyed	at	the	next	semicolon:

				T	a;

				T	b	=	a;

				T	c	=	a	+	b;

In	the	preceding	example,	a,	b,	and	c	are	lvalues;	they	are	objects	that	have	a
name	which	can	be	used	to	refer	to	the	object	at	any	point	throughout	its
lifetime.	On	the	other	hand,	when	you	evaluate	the	expression	a+b,	the	compiler
creates	a	temporary	object	(which,	in	this	case,	is	assigned	to	c)	and	then
destroyed	(when	a	semicolon	is	encountered).	These	temporary	objects	are
called	rvalues	because	they	usually	appear	on	the	right-hand	side	of
an	assignment	expression.	In	C++11,	we	can	refer	to	these	objects	through
rvalue	references,	expressed	with	&&.



Move	semantics	are	important	in	the	context	of	rvalues.	This	is	because	they
allow	you	to	take	ownership	of	the	resources	from	the	temporary	object	that	is
destroyed	without	the	client	being	able	to	use	it	after	the	move	operation	is
completed.	On	the	other	hand,	lvalues	cannot	be	moved;	they	can	only	be
copied.	This	is	because	they	can	be	accessed	after	the	move	operation,	and	the
client	expects	the	object	to	be	in	the	same	state.	For	instance,	in	the	preceding
example,	the	expression	b	=	a	assigns	a	to	b.	After	this	operation	is	complete,	the
object	a,	which	is	an	lvalue,	can	still	be	used	by	the	client	and	should	be	in	the
same	state	as	it	was	before.	On	the	other	hand,	the	result	of	a+b	is	temporary	and
its	data	can	be	safely	moved	to	c.

The	move	constructor	is	different	than	a	copy	constructor	because	it	takes	an
rvalue	reference	to	the	class	type	T(T&&),	as	opposed	to	an	lvalue	reference	in	the
case	of	the	copy	constructor	T(T	const&).	Similarly,	move	assignment	takes	an
rvalue	reference,	namely	T&	operator=(T&&),	as	opposed	to	an	lvalue	reference	for
the	copy	assignment	operator,	namely	T&	operator=(T	const	&).	This	is	true	even
though	both	return	a	reference	to	the	T&	class.	The	compiler	selects	the
appropriate	constructor	or	assignment	operator	based	on	the	type	of	argument,
rvalue,	or	lvalue.

When	a	move	constructor/assignment	operator	exists,	an	rvalue	is	moved
automatically.	lvalues	can	also	be	moved,	but	this	requires	an	explicit	static	cast
to	an	rvalue	reference.	This	can	be	done	using	the	std::move()	function,	which
basically	performs	a	static_cast<T&&>:

				std::vector<Buffer>	c;

				c.push_back(Buffer(100));		//	move

				Buffer	b(200);

				c.push_back(b);												//	copy

				c.push_back(std::move(b));	//	move

After	an	object	is	moved,	it	must	remain	in	a	valid	state.	However,	there	is	no
requirement	regarding	what	this	state	should	be.	For	consistency,	you	should	set
all	member	fields	to	their	default	value	(numerical	types	to	0,	pointers	to	nullptr,
booleans	to	false,	and	so	on).

The	following	example	shows	the	different	ways	in	which	Buffer	objects	can	be
constructed	and	assigned:

				Buffer	b1;																//	default	constructor



				Buffer	b2(100);											//	explicit	constructor

				Buffer	b3(b2);												//	copy	constructor

				b1	=	b3;																		//	assignment	operator

				Buffer	b4(std::move(b1));	//	move	constructor

				b3	=	std::move(b4);							//	move	assignment



There's	more...
As	seen	with	the	Buffer	example,	implementing	both	the	move	constructor	and
move	assignment	operator	involves	writing	similar	code	(the	entire	code	of	the
move	constructor	was	also	present	in	the	move	assignment	operator).	This	can
actually	be	avoided	by	calling	the	move	assignment	operator	in	the	move
constructor:

				Buffer(Buffer&&	other)	:	ptr(nullptr),	length(0)

				{

						*this	=	std::move(other);

				}

There	are	two	points	that	must	be	noticed	in	this	example:

Member	initialization	in	the	constructor's	initialization	list	is
necessary	because	these	members	could	potentially	be	used	in	the	move
assignment	operator	later	on	(such	as	the	ptr	member	in	this	example).
Static	casting	of	other	to	an	rvalue	reference.	Without	this	explicit
conversion,	the	copy	assignment	operator	would	be	called.	This	is	because
even	if	an	rvalue	is	passed	to	this	constructor	as	an	argument,	when	it	is
assigned	a	name,	it	is	bound	to	an	lvalue.	Therefore,	other	is	actually	an
lvalue,	and	it	must	be	converted	into	an	rvalue	reference	in	order	to	invoke
the	move	assignment	operator.



See	also
Defaulted	and	deleted	functions	recipe	of	Chapter	3,	Exploring	Functions



Implementing	Patterns	and	Idioms
The	recipes	included	in	this	chapter	are	as	follows:

Avoiding	repetitive	if...else	statements	in	factory	patterns
Implementing	the	pimpl	idiom
Implementing	the	named	parameter	idiom
Separating	interfaces	from	implementations	with	the	non-virtual	interface
idiom
Handling	friendship	with	the	attorney-client	idiom
Static	polymorphism	with	the	curiously	recurring	template	pattern
Implementing	a	thread-safe	singleton



Introduction
Design	patterns	are	general	reusable	solutions	that	can	be	applied	to	common
problems	that	appear	in	software	development.	Idioms	are	patterns,	algorithms,
or	ways	to	structure	the	code	in	one	or	more	programming	languages.	A	great
number	of	books	have	been	written	on	design	patterns.	This	chapter	is	not
intended	to	reiterate	them,	but	rather	to	show	how	to	implement	several	useful
patterns	and	idioms,	with	a	focus	on	readability,	performance,	and	robustness,	in
terms	of	modern	C++.	



Avoiding	repetitive	if...else	statements
in	factory	patterns
It	is	often	the	case	that	we	end	up	writing	repetitive	if...else	statements	(or	an
equivalent	switch	statement)	that	do	similar	things,	often	with	little	variation	and
often	done	by	copying	and	pasting	with	small	changes.	When	the	number	of
alternatives	gets	larger,	the	code	becomes	hard	to	both	read	and	maintain.
Repetitive	if...else	statements	can	be	replaced	with	various	techniques,	such	as
polymorphism.	In	this	recipe,	we	will	see	how	to	avoid	if...else	statements	in
factory	patterns	(a	factory	is	a	function	or	object	that	is	used	to	create	other
objects)	using	a	map	of	functions.



Getting	ready
In	this	recipe,	we	will	consider	the	following	problem:	building	a	system	that	can
handle	image	files	in	various	formats,	such	as	bitmap,	PNG,	JPG,	and	so	on.
Obviously,	the	details	are	beyond	the	scope	of	this	recipe;	the	part	we	are
concerned	with	is	creating	objects	that	handle	various	image	formats.	For	this,
we	will	consider	the	following	hierarchy	of	classes:

				class	Image	{};

				class	BitmapImage	:	public	Image	{};

				class	PngImage	:	public	Image	{};

				class	JpgImage	:	public	Image	{};

On	the	other	hand,	we	define	an	interface	to	a	factory	class	that	can	create
instances	of	the	above	classes,	as	well	as	a	typical	implementation	using	if...else
statements:

				struct	IImageFactory

				{

						virtual	std::shared_ptr<Image>	Create(std::string_view	type)	=	0;

				};

				struct	ImageFactory	:	public	IImageFactory

				{

						virtual	std::shared_ptr<Image>	

						Create(std::string_view	type)	override

						{

								if	(type	==	"bmp")

										return	std::make_shared<BitmapImage>();

								else	if	(type	==	"png")

										return	std::make_shared<PngImage>();

								else	if	(type	==	"jpg")

										return	std::make_shared<JpgImage>();

								return	nullptr;

						}

				};

The	goal	of	this	recipe	is	to	see	how	this	implementation	can	be	refactored	to
avoid	the	repetitive	if...else	statements.



How	to	do	it...
Take	the	following	steps	to	refactor	the	factory	shown	earlier	to	avoid	using
if...else	statements:

1.	 Implement	the	factory	interface:

								struct	ImageFactory	:	public	IImageFactory

								{

										virtual	

										std::shared_ptr<Image>	Create(std::string_view	type)	override

										{	

												//	continued	with	2.	and	3.

										}

								};

2.	 Define	a	map	where	the	key	is	the	type	of	objects	to	create	and	the	value	is
a	function	that	creates	objects:

								static	std::map<

										std::string,

										std::function<std::shared_ptr<Image>()>>	mapping

								{

										{	"bmp",	[]()	{return	std::make_shared<BitmapImage>();	}	},

										{	"png",	[]()	{return	std::make_shared<PngImage>();	}	},

										{	"jpg",	[]()	{return	std::make_shared<JpgImage>();	}	}

								};

3.	 To	create	an	object,	look	up	the	object	type	in	the	map	and,	if	it	is	found,
use	the	associated	function	to	create	a	new	instance	of	the	type:

								auto	it	=	mapping.find(type.data());

								if	(it	!=	mapping.end())

										return	it->second();

								return	nullptr;



How	it	works...
The	repetitive	if...else	statements	in	the	first	implementation	are	very	similar	--
they	check	the	value	of	the	type	parameter	and	create	an	instance	of	the
appropriate	Image	class.	If	the	argument	to	check	was	an	integral	type	(for
instance,	an	enumeration	type),	the	sequence	of	if...else	could	have	also	be
written	in	the	form	of	a	switch	statement.	That	code	can	be	used	like	this:

				auto	factory	=	ImageFactory{};

				auto	image	=	factory.Create("png");

Regardless	of	whether	the	implementation	was	using	if...else	statements	or	a
switch,	refactoring	to	avoid	repetitive	checks	is	relatively	simple.	In	the	refactored
code,	we	used	a	map	that	has	the	key	type	std::string	representing	the	type,	that
is,	the	name,	of	the	image	format,	and	the	value	is
an	std::function<std::shared_ptr<Image>()>.	This	is	a	wrapper	for	a	function	that	takes
no	arguments	and	returns	an	std::shared_ptr<Image>	(a	shared_ptr	of	a	derived	class	is
implicitly	converted	to	a	shared_ptr	of	a	base	class).

Now	that	we	have	this	map	of	functions	that	create	objects,	the	actual
implementation	of	the	factory	is	much	simpler;	check	the	type	of	the	object	to	be
created	in	the	map	and,	if	present,	use	the	associated	value	from	the	map	as	the
actual	function	to	create	the	object,	or	return	nullptr	if	the	object	type	is	not
present	in	the	map.

This	refactoring	is	transparent	for	the	client	code,	as	there	are	no	changes	in	the
way	clients	use	the	factory.	On	the	other	hand,	this	approach	does	require	more
memory	to	handle	the	static	map,	which,	for	some	classes	of	applications,	such
as	IoT,	might	be	an	important	aspect.	The	example	presented	here	is	relatively
simple,	because	the	purpose	is	to	demonstrate	the	concept.	In	real-world	code,	it
might	be	necessary	to	create	objects	differently,	such	as	using	a	different	number
of	arguments	and	different	types	of	arguments.	However,	this	is	not	specific	to
the	refactored	implementation	and	the	solution	with	if...else/switch
statement	needs	to	account	for	that	too.	Therefore,	in	practice,	the	solution	to	this
problem	that	worked	with	if...else	statements	should	also	work	with	the	map.



There's	more...
In	the	preceding	implementation,	the	map	is	a	local	static	to	the	virtual	function,
but	it	can	also	be	a	member	of	the	class	or	even	a	global.	The	following
implementation	has	the	map	defined	as	a	static	member	of	the	class,	and	the
objects	are	not	created	based	on	the	format	name,	but	on	the	type	information,	as
returned	by	the	typeid	operator:

				struct	IImageFactoryByType

				{

						virtual	std::shared_ptr<Image>	Create(std::type_info	const	&	type)	

						=	0;

				};

				struct	ImageFactoryByType	:	public	IImageFactoryByType

				{

						virtual	

						std::shared_ptr<Image>	Create(std::type_info	const	&	type)	

						override

						{

								auto	it	=	mapping.find(&type);

								if	(it	!=	mapping.end())

										return	it->second();

								return	nullptr;

						}

				private:

						static	std::map<

								std::type_info	const	*,

								std::function<std::shared_ptr<Image>()>>	mapping;

				};

				std::map<

						std::type_info	const	*,

						std::function<std::shared_ptr<Image>()>>	ImageFactoryByType::mapping

				{

						{&typeid(BitmapImage),[](){return	std::make_shared<BitmapImage>();}},

						{&typeid(PngImage),			[](){return	std::make_shared<PngImage>();}},

						{&typeid(JpgImage),			[](){return	std::make_shared<JpgImage>();}}

				};

In	this	case,	the	client	code	is	slightly	different,	because	instead	of	passing	a
name	representing	the	type	to	create,	such	as	PNG,	we	pass	the	value	returned	by
the	typeid	operator,	such	as	typeid(PngImage):

				auto	factory	=	ImageFactoryByType{};

				auto	movie	=	factory.Create(typeid(PngImage));



See	also
Implementing	the	pimpl	idiom
Using	shared_ptr	to	share	a	memory	resource	recipe	of	Chapter	9,	Robustness
and	Performance



Implementing	the	pimpl	idiom
PIMPL	stands	for	pointer	to	implementation	(but	is	also	known	as	the	Cheshire
cat	idiom	or	the	compiler	firewall	idiom)	and	is	an	opaque	pointer	technique	that
enables	the	separation	of	the	implementation	details	from	an	interface.	This	has
the	advantage	that	it	enables	changing	the	implementation	without	modifying	the
interface	and,	therefore,	avoiding	the	need	to	recompile	the	code	that	is	using	the
interface.	This	has	the	potential	of	making	libraries	using	the	pimpl	idiom	on
their	ABIs	that	are	backward	compatible	with	older	versions	when	only
implementation	details	change.	In	this	recipe,	we	will	see	how	to	implement	the
pimpl	idiom	using	modern	C++	features.



Getting	ready
The	reader	is	expected	to	be	familiar	with	smart	pointers	and	std::string_view,
both	discussed	in	previous	chapters	of	this	book.

To	demonstrate	the	pimpl	idiom	in	a	practical	manner,	we	will	consider	the
following	class	that	we	will	then	refactor	following	the	pimpl	pattern.	The	class
represents	a	control	that	has	properties	such	as	text,	size,	and	visibility.	Every
time	these	properties	are	changed,	the	control	is	redrawn	(in	this	mocked
implementation,	drawing	means	printing	the	value	of	the	properties	to	the
console):

				class	control

				{

						std::string	text;

						int	width	=	0;

						int	height	=	0;

						bool	visible	=	true;

						void	draw()

						{

								std::cout	

										<<	"control	"	<<	std::endl

										<<	"	visible:	"	<<	std::boolalpha	<<	visible	<<	

													std::noboolalpha	<<	std::endl

										<<	"	size:	"	<<	width	<<	",	"	<<	height	<<	std::endl

										<<	"	text:	"	<<	text	<<	std::endl;

						}

				public:

						void	set_text(std::string_view	t)

						{

								text	=	t.data();

								draw();

						}

						void	resize(int	const	w,	int	const	h)

						{

								width	=	w;

								height	=	h;

								draw();

						}

						void	show()	

						{	

								visible	=	true;	

								draw();

						}

						void	hide()	

						{	

								visible	=	false;	

								draw();

						}



						}

				};



How	to	do	it...
Take	the	following	steps	to	implement	the	pimpl	idiom,	exemplified	here	by
refactoring	the	control	class	shown	earlier:

1.	 Put	all	private	members,	both	data	and	functions,	into	a	separate	class.	We
will	call	this	the	pimpl	class	and	the	original	class	the	public	class.

2.	 In	the	header	file	of	the	public	class,	put	a	forward	declaration	to	the	pimpl
class:

								//	in	control.h

								class	control_pimpl;

3.	 In	the	public	class	definition,	declare	a	pointer	to	the	pimpl	class	using	a
unique_ptr.	This	should	be	the	only	private	data	member	of	the	class:

								class	control

								{

										std::unique_ptr<

												control_pimpl,	void(*)(control_pimpl*)>	pimpl;

								public:

										control();

										void	set_text(std::string_view	text);

										void	resize(int	const	w,	int	const	h);

										void	show();

										void	hide();

								};

4.	 Put	the	pimpl	class	definition	in	the	source	file	of	the	public	class.	The
pimpl	class	mirrors	the	public	interface	of	the	public	class:

								//	in	control.cpp

								class	control_pimpl

								{

										std::string	text;

										int	width	=	0;

										int	height	=	0;

										bool	visible	=	true;

										void	draw()

										{

													std::cout

															<<	"control	"	<<	std::endl

															<<	"	visible:	"	<<	std::boolalpha	<<	visible	

															<<	std::noboolalpha	<<	std::endl

															<<	"	size:	"	<<	width	<<	",	"	<<	height	<<	std::endl

															<<	"	text:	"	<<	text	<<	std::endl;

										}

								public:



								public:

										void	set_text(std::string_view	t)

										{

												text	=	t.data();

												draw();

										}

										void	resize(int	const	w,	int	const	h)

										{

												width	=	w;

												height	=	h;

												draw();

										}

										void	show()

										{

												visible	=	true;

												draw();

										}

										void	hide()

										{

												visible	=	false;

												draw();

										}

								};

5.	 The	pimpl	class	is	instantiated	in	the	constructor	of	the	public	class:

								control::control()	:

										pimpl(new	control_pimpl(),

																[](control_pimpl*	pimpl)	{delete	pimpl;	})

								{}

6.	 Public	class	member	functions	call	the	corresponding	member	functions	of
the	pimpl	class:

								void	control::set_text(std::string_view	text)

								{

										pimpl->set_text(text);

								}

								void	control::resize(int	const	w,	int	const	h)

								{

										pimpl->resize(w,	h);

								}

								void	control::show()

								{

										pimpl->show();

								}

								void	control::hide()

								{

										pimpl->hide();

								}



How	it	works...
The	pimpl	idiom	the	enables	hiding	the	internal	implementation	of	a	class	from
the	clients	of	the	library	or	module	the	class	is	part	of.	This	provides	several
benefits:

A	clean	interface	for	a	class	that	its	clients	see.
Changes	in	the	internal	implementation	do	not	affect	the	public	interface,
which	enables	binary	backward	compatibility	for	newer	versions	of	a
library	(when	the	public	interface	remains	unchanged).
Clients	of	a	class	that	uses	this	idiom	do	not	need	to	be	recompiled	when
changes	to	the	internal	implementation	occur.	This	leads	to	lesser	build
times.
The	header	file	does	not	need	to	include	the	headers	for	the	types	and
functions	used	in	the	private	implementation.	This	again	leads	to	lesser
build	times.

The	benefits	mentioned	above	do	not	come	for	free;	there	are	also	several
drawbacks	that	need	to	be	mentioned:

There	is	more	code	to	write	and	maintain.
The	code	can	arguably	be	less	readable,	as	there	is	a	level	of	indirection	and
all	the	implementation	details	need	to	be	looked	up	in	the	other	files.	In	this
recipe,	the	the	pimpl	class	definition	was	provided	in	the	source	file	of	the
public	class,	but	in	practice,	it	could	be	in	separate	files.
There	is	a	slight	runtime	overhead	because	of	the	level	of	indirection	from
the	public	class	to	the	pimpl	class,	but	in	practice,	this	is	rarely	significant.
This	approach	does	not	work	with	protected	members	because	these	have	to
be	available	to	the	derived	classes.
This	approach	does	not	work	with	the	private	virtual	functions,	that	have	to
appear	in	the	class,	either	because	they	override	functions	from	a	base	class,
or	have	to	be	available	for	overriding	in	a	derived	class.

As	a	rule	of	thumb,	when	implementing	the	pimpl	idiom,	always	put
all	private	member	data	and	functions,	except	for	the	virtual	ones,
in	the	pimpl	class	and	leave	the	protected	data	members	and



in	the	pimpl	class	and	leave	the	protected	data	members	and
functions	and	all	private	virtual	functions	in	the	public	class.

In	the	example	in	this	recipe,	the	control_pimpl	class	is	basically	identical	to	the
original	control	class.	In	practice,	where	classes	are	larger,	have	virtual	functions
and	protected	members,	and	both	functions	and	data,	the	pimpl	class	is	not	a
complete	equivalent	of	how	the	class	would	have	looked	like	if	it	was	not
pimpled.	Also,	in	practice,	the	pimpl	class	may	require	a	pointer	to	the	public
class	in	order	to	call	members	that	were	not	moved	into	the	pimpl	class.

Concerning	the	implementation	of	the	refactored	control	class,	the	pointer	to	the
control_pimpl	object	is	managed	by	a	unique_ptr.	In	the	declaration	of	this	pointer,
we	have	used	a	custom	deleter:

				std::unique_ptr<control_pimpl,	void(*)(control_pimpl*)>	pimpl;

The	reason	for	this	is	that	the	control	class	has	a	destructor	implicitly	defined	by
the	compiler,	at	a	point	where	the	control_pimpl	type	is	still	incomplete	(that	is,	in
the	header).	This	would	result	in	an	error	with	the	unique_ptr	that	cannot	delete	an
incomplete	type.	The	problem	can	be	solved	in	two	ways:

Providing	a	user-defined	destructor	for	the	control	class	that	is	explicitly
implemented	(even	if	declared	as	default)	after	the	complete	definition	of
the	control_pimpl	class	is	available.
Providing	a	custom	deleter	for	the	unique_ptr,	as	we	did	in	this	example.



There's	more...
The	original	control	class	was	both	copyable	and	movable:

				control	c;

				c.resize(100,	20);

				c.set_text("sample");

				c.hide();

				control	c2	=	c;													//	copy

				c2.show();

				control	c3	=	std::move(c2);	//	move

				c3.hide();

The	refactored	control	class	is	only	movable,	not	copyable.	In	order	to	make	it
both	copyable	and	movable,	we	must	provide	the	copy	constructor	and	copy
assignment	operator	and	both	the	move	constructor	and	move	assignment
operator.	The	latter	ones	can	be	defaulted,	but	the	former	ones	must	be	explicitly
implemented	to	create	a	new	control_pimpl	object	from	the	object	that	it	is	copied
from.	The	following	code	shows	the	implementation	of	the	control	class	that	is
both	copyable	and	movable:

				class	control_copyable

				{

						std::unique_ptr<control_pimpl,	void(*)(control_pimpl*)>	pimpl;

				public:

						control_copyable();

						control_copyable(control_copyable	&&	op)	noexcept;

						control_copyable&	operator=(control_copyable	&&	op)	noexcept;

						control_copyable(const	control_copyable&	op);

						control_copyable&	operator=(const	control_copyable&	op);

						void	set_text(std::string_view	text);

						void	resize(int	const	w,	int	const	h);

						void	show();

						void	hide();

				};

				control_copyable::control_copyable()	:

						pimpl(new	control_pimpl(),

												[](control_pimpl*	pimpl)	{delete	pimpl;	})

				{}

				control_copyable::control_copyable(control_copyable	&&)	

							noexcept	=	default;

				control_copyable&	control_copyable::operator=(control_copyable	&&)	

							noexcept	=	default;

				control_copyable::control_copyable(const	control_copyable&	op)

							:	pimpl(new	control_pimpl(*op.pimpl),

															[](control_pimpl*	pimpl)	{delete	pimpl;	})

				{}



				{}

				control_copyable&	control_copyable::operator=(

							const	control_copyable&	op)	

				{

						if	(this	!=	&op)	

						{

								pimpl	=	std::unique_ptr<control_pimpl,void(*)(control_pimpl*)>(

																			new	control_pimpl(*op.pimpl),

																			[](control_pimpl*	pimpl)	{delete	pimpl;	});

						}

						return	*this;

				}

				//	the	other	member	functions



See	also
Using	unique_ptr	to	uniquely	own	a	memory	resource	recipe	of	Chapter	9,
Robustness	and	Performance



Implementing	the	named	parameter
idiom
C++	supports	only	positional	parameters,	which	means	arguments	are	passed	to
a	function	based	on	the	parameter's	position.	Other	languages	also	support
named	parameters--that	is,	they	specify	parameter	names	when	making	a	call
and	invoking	arguments.	This	is	particularly	useful	with	parameters	that	have
default	values.	A	function	may	have	parameters	with	default	values,	although
they	always	appear	after	all	the	nondefaulted	parameters.	However,	if	you	want
to	provide	values	for	only	some	of	the	defaulted	parameters,	there	is	no	way	to
do	it	without	providing	values	for	the	arguments	that	are	positioned	before	them
in	the	function	parameters	list.	A	technique	called	the	named	parameter	idiom
provides	a	method	to	emulate	named	parameters,	which	we	will	explore	in	this
recipe.



Getting	ready
The	control	class	represents	a	visual	control,	such	as	a	button	or	an	input	and	has
properties	such	as	numerical	identifier,	text,	size,	and	visibility.	These	are
provided	to	the	constructor	and,	except	for	the	ID,	all	the	others	have	default
values.	In	practice,	such	a	class	would	have	many	more	properties,	such	as	text
brush,	background	brush,	border	style,	font	size,	font	family,	and	many	others.
To	exemplify	the	named	parameter	idiom,	we	will	use	the	control	class	shown	in
the	following	code	snippet.	

				class	control

				{

						int	id_;

						std::string	text_;

						int	width_;

						int	height_;

						bool	visible_;

				public:

						control(

								int	const	id,

								std::string_view	text	=	"",

								int	const	width	=	0,

								int	const	height	=	0,

								bool	const	visible	=	false):

								id_(id),	text_(text),	

								width_(width),	height_(height),	

								visible_(visible)

						{}

				};



How	to	do	it...
To	implement	the	named	parameter	idiom	for	a	function	(usually	with	many
default	parameters),	do	the	following:

1.	 Create	a	class	to	wrap	the	parameters	of	the	function:

								class	control_properties

								{

										int	id_;

										std::string	text_;

										int	width_;

										int	height_;

										bool	visible_;

								};

2.	 The	class	or	function	that	needs	to	access	these	properties	could	be	declared
as	friend	to	avoid	writing	getters:

								friend	class	control;

3.	 Every	positional	parameter	of	the	original	function	that	does	not	have	a
default	value	should	become	a	positional	parameter	without	a	default	value
in	the	constructor	of	the	class:

								public:

										control_properties(int	const	id)	:id_(id)

										{}

4.	 For	every	positional	parameter	of	the	original	function	that	has	a	default
value,	there	should	be	a	function	(with	the	same	name)	that	sets	the	value
internally	and	returns	a	reference	to	the	class:

								public:

										control_properties&	text(std::string_view	t)	

										{	text_	=	t.data();	return	*this;	}

										control_properties&	width(int	const	w)	

										{	width_	=	w;	return	*this;	}

										control_properties&	height(int	const	h)	

										{	height_	=	h;	return	*this;	}

										control_properties&	visible(bool	const	v)	

										{	visible_	=	v;	return	*this;	}



5.	 The	original	function	should	be	modified,	or	an	overload	should	be
provided,	to	take	an	argument	of	the	new	class	from	which	the	property
values	would	be	read:

								control(control_properties	const	&	cp):

										id_(cp.id_),	

										text_(cp.text_),

										width_(cp.width_),	

										height_(cp.height_),

										visible_(cp.visible_)

								{}

If	we	put	all	that	together,	the	result	is	the	following:

				class	control;

				class	control_properties

				{

						int	id_;

						std::string	text_;

						int	width_	=	0;

						int	height_	=	0;

						bool	visible_	=	false;

						friend	class	control;

				public:

						control_properties(int	const	id)	:id_(id)

						{}

						control_properties&	text(std::string_view	t)	

						{	text_	=	t.data();	return	*this;	}

						control_properties&	width(int	const	w)	

						{	width_	=	w;	return	*this;	}

						control_properties&	height(int	const	h)	

						{	height_	=	h;	return	*this;	}

						control_properties&	visible(bool	const	v)	

						{	visible_	=	v;	return	*this;	}

				};

				class	control

				{

						int	id_;

						std::string	text_;

						int	width_;

						int	height_;

						bool	visible_;

				public:

						control(control_properties	const	&	cp):

								id_(cp.id_),	

								text_(cp.text_),

								width_(cp.width_),	

								height_(cp.height_),

								visible_(cp.visible_)

						{}

				};



How	it	works...
The	initial	control	class	had	a	constructor	with	many	parameters.	In	real-world
code,	you	can	find	examples	like	this	where	the	number	of	parameters	is	much
higher.	A	possible	solution,	often	found	in	practice,	is	to	group	common	Boolean
type	properties	in	bit	flags,	that	could	be	passed	together	as	a	single	integral
argument	(an	example	could	be	the	border	style	for	a	control	that	defines	the
position	where	the	border	should	be	visible:	top,	bottom,	left,	right,	or	any
combination	of	these	four).	Creating	a	control	object	with	the	initial
implementation	is	done	like	this:

				control	c(1044,	"sample",	100,	20,	true);

The	named	parameter	idiom	has	the	advantage	that	it	allows	you	to	specify
values	only	for	the	parameters	that	you	want,	in	any	order,	using	a	name,	which
is	much	more	intuitive	than	a	fixed,	positional	order.

Although	there	isn't	a	single	strategy	for	implementing	the	idiom,	the	example	in
this	recipe	is	rather	typical.	The	properties	of	the	control	class,	provided	as
parameters	in	the	constructor,	have	been	put	into	a	separate	class,	called
control_properties,	that	declares	the	class	control	a	friend	class,	to	allow	it	to	access
its	private	data	members	without	providing	getters.	This	has	the	side	effect	that	it
limits	the	use	of	the	control_properties	outside	the	control	class.	The	non-optional
parameters	of	the	constructor	of	the	control		are	also	non-optional	parameters	of
the	control_properties	constructor.	For	all	the	other	parameters	with	default	values,
the	control_properties	class	defines	a	function	with	a	relevant	name	that	simply
sets	the	data	member	to	the	provided	argument	and	then	returns	a	reference	to
control_properties.	This	enables	the	client	to	chain	calls	to	these	functions	in	any
order.

The	constructor	of	the	control	class	has	been	replaced	with	a	new	one	that	has	a
single	parameter,	a	constant	reference	to	a	control_properties	object,	whose	data
members	are	copied	into	the	control's	data	members.	Creating	a	control	object
with	the	named	parameter	idiom	implemented	in	this	manner	is	done	like	in	the
following	snippet:

				control	c(control_properties(1044)



				control	c(control_properties(1044)

														.visible(true)

														.height(20)

														.width(100));



See	also
Separating	interfaces	and	implementations	with	the	non-virtual	interface
idiom
Handling	friendship	with	the	attorney-client	idiom



Separating	interfaces	and
implementations	with	the	non-virtual
interface	idiom
Virtual	functions	provide	customization	points	for	a	class,	by	allowing	derived
classes	to	modify	implementations	from	a	base	class.	When	a	derived	class
object	is	handled	through	a	pointer	or	a	reference	to	a	base	class,	calls	to
overridden	virtual	functions	end	up	invoking	the	overridden	implementation
from	the	derived	class.	On	the	over	hand,	a	customization	is	an	implementation
detail,	and	a	good	design	separates	interfaces	from	implementation.	The	non-
virtual	interface	idiom,	proposed	by	Herb	Sutter	in	an	article	about	virtuality
in	C/C++	Users	Journal,	promotes	the	separation	of	concerns	of	interfaces	and
implementations	by	making	(public)	interfaces	non-virtual	and	virtual	functions
private.	Public	virtual	interfaces	prevent	a	class	from	enforcing	pre-	and	post-
conditions	on	its	interface.	Users	expecting	an	instance	of	a	base	class	do	not
have	a	guarantee	the	expected	behavior	of	a	public	virtual	method	is	delivered,
since	it	can	be	overridden	in	a	derived	class.	This	idiom	helps	enforcing	the
promised	contract	of	an	interface.



Getting	ready
The	reader	should	be	familiar	with	aspects	related	to	virtual	functions,	such	as
defining	and	overriding	virtual	functions,	abstract	classes,	and	pure	specifiers.



How	to	do	it...
Implementing	this	idiom	requires	following	several	simple	design	guidelines,
formulated	by	Herb	Sutter	in	the	C/C++	Users	Journal,	19(9),	September	2001:

1.	 Make	(public)	interfaces	non-virtual.
2.	 Make	virtual	functions	private.
3.	 Make	virtual	functions	protected	only	if	the	base	implementation	has	to	be

called	from	a	derived	class.
4.	 Make	the	base	class	destructor	either	public	and	virtual	or	protected	and

nonvirtual.

The	following	example	of	a	simple	hierarchy	of	controls	abides	to	all	these	four
guidelines:

				class	control

				{

				private:

						virtual	void	paint()	=	0;

				protected:

						virtual	void	erase_background()	

						{

								std::cout	<<	"erasing	control	background..."	<<	std::endl;

						}

				public:

						void	draw()

						{

								erase_background();

								paint();

						}

						virtual	~control()	{}

				};

				class	button	:	public	control

				{

				private:

						virtual	void	paint()	override

						{

								std::cout	<<	"painting	button..."	<<	std::endl;

						}

				protected:

						virtual	void	erase_background()	override

						{

								control::erase_background();

								std::cout	<<	"erasing	button	background..."	<<	std::endl;

						}

				};

				class	checkbox	:	public	button

				{



				{

				private:

						virtual	void	paint()	override

						{

								std::cout	<<	"painting	checkbox..."	<<	std::endl;

						}

				protected:

						virtual	void	erase_background()	override

						{

								button::erase_background();

								std::cout	<<	"erasing	checkbox	background..."	<<	std::endl;

						}

				};



How	it	works...
The	NVI	idiom	uses	the	template	method	design	pattern	that	allows	derived
classes	to	customize	parts	(that	is,	steps)	of	a	base	class	functionality	(that
is,	algorithm).	This	is	done	by	splitting	the	overall	algorithm	into	smaller	parts,
each	of	them	implemented	by	a	virtual	function.	The	base	class	may	provide,	or
not,	a	default	implementation,	and	the	derived	classes	could	override	them	while
maintaining	the	overall	structure	and	meaning	of	the	algorithm.

The	core	principles	of	the	NVI	idiom	is	that	virtual	functions	should	not	be
public;	they	should	be	either	private	or	protected,	in	case	the	base	class
implementation	could	be	called	from	a	derived	class.	The	interface	of	a	class,	the
public	part	accessible	to	its	clients,	should	comprise	exclusively	of	nonvirtual
functions.	This	provides	several	advantages:

It	separates	the	interface	from	the	details	of	implementation	that	are	no
longer	exposed	to	the	client.
It	enables	the	changing	of	the	details	of	the	implementation	without	altering
the	public	interface	and	without	requiring	changes	to	the	client	code,
therefore,	making	base	classes	more	robust.
It	allows	a	class	to	have	sole	control	of	its	interface.	If	the	public	interface
contains	virtual	methods,	a	derived	class	can	alter	the	promised
functionality,	and	therefore,	the	class	cannot	ensure	its	preconditions	and
postconditions.	When	all	virtual	methods	(except	for	the	destructor)	are	not
accessible	to	its	clients,	the	class	can	enforce	pre-	and	post-conditions	on	its
interface.

A	special	mention	of	the	destructor	of	a	class	is	required	for	this
idiom.	It	is	often	stressed	that	base	class	destructors	should	be
virtual	so	that	objects	can	be	deleted	polymorphically	(through	a
pointer	or	references	to	a	base	class).	Destructing	objects
polymorphically	when	the	destructor	is	not	virtual	incurs	undefined
behavior.	However,	not	all	base	classes	are	intended	to	be	deleted
polymorphically.	For	those	particular	cases,	the	base	class
destructor	should	not	be	virtual.	However,	it	should	also	not	be
public,	but	protected.



public,	but	protected.

The	example	from	the	previous	section	defines	a	hierarchy	of	classes
representing	visual	controls:

control	is	the	base	class,	but	there	are	derived	classes,	such	as	button	and
checkbox	that	are	a	type	of	button	and,	therefore,	are	derived	from	this	class.
The	only	functionality	defined	by	the	control	class	is	drawing	the	controls.
The	draw()	method	is	nonvirtual,	but	it	calls	two	virtual	methods,
erase_background()	and	paint(),	to	implement	the	two	phases	of	drawing	the
control.
erase_background()	is	a	protected	virtual	method	because	derived	classes	need
to	call	it	in	their	own	implementation.
paint()	is	a	private	pure	virtual	method.	Derived	classes	must	implement	it,
but	are	not	supposed	to	call	a	base	implementation.
The	destructor	of	the	class	control	is	public	and	virtual	because	objects	are
expected	to	be	deleted	polymorphically.

An	example	of	using	these	classes	is	shown	as	follows.	Instances	of	these	classes
are	managed	by	smart	pointers	to	the	base	class:

				std::vector<std::shared_ptr<control>>	controls;

				

				controls.push_back(std::make_shared<button>());

				controls.push_back(std::make_shared<checkbox>());

				for	(auto&	c	:	controls)

						c->draw();

The	output	of	this	program	is	the	following:

erasing	control	background...

erasing	button	background...

painting	button...

erasing	control	background...

erasing	button	background...

erasing	checkbox	background...

painting	checkbox...

destroying	button...

destroying	control...

destroying	checkbox...

destroying	button...

destroying	control...

The	NVI	idiom	introduces	a	level	of	indirection,	when	a	public	function	calls	a
non-public	virtual	function	that	does	the	actual	implementation.	In	the	previous
example,	the	draw()	method	called	several	other	functions,	but	in	many	cases	it



could	be	only	one	call:

				class	control

				{

				protected:

						virtual	void	initialize_impl()

						{

								std::cout	<<	"initializing	control..."	<<	std::endl;

						}

				public:

						void	initialize()

						{

								initialize_impl();

						}

				};

				class	button	:	public	control

				{

				protected:

						virtual	void	initialize_impl()

						{

								control::initialize_impl();

								std::cout	<<	"initializing	button..."	<<	std::endl;

						}

				};

In	this	example,	the	class	control	has	an	additional	method	called	initialize()	(the
previous	content	of	the	class	was	not	shown	to	keep	it	simple)	that	calls	a	single
non-public	virtual	method	called	initialize_impl(),	implemented	differently	in
each	derived	class.	This	does	not	incur	much	overhead--if	any	at	all--since
simple	functions	like	this	are	most	likely	inlined	by	the	compiler	anyway.



See	also
Use	override	and	final	for	virtual	methods	recipe	of	Chapter	1,	Learning
Modern	Core	Language	Features



Handling	friendship	with	the
attorney-client	idiom
Granting	functions	and	classes	access	to	the	non-public	parts	of	a	class	with	a
friend	declaration	has	been	usually	seen	as	a	sign	of	bad	design,	as	friendship
breaks	encapsulation	and	couples	classes	and	functions.	Friends,	whether	they
are	classes	or	functions,	get	access	to	all	the	private	parts	of	a	class,	although
they	may	only	need	to	access	parts	of	it.	The	attorney-client	idiom	provides	a
simple	mechanism	to	restrict	friends	access	to	only	designated	private	parts	of	a
class.



Getting	ready
You	must	be	familiar	with	how	friendship	is	declared	and	how	it	works.

To	demonstrate	how	to	implement	this	idiom,	we	will	consider	the	following
classes:	Client,	which	has	some	private	member	data	and	functions	(the	public
interface	is	not	important	here)	and	Friend,	which	is	supposed	to	access	only	parts
of	the	private	details,	for	instance,	data1	and	action1(),	but	has	access	to
everything:

				class	Client

				{

						int	data_1;

						int	data_2;

						void	action1()	{}

						void	action2()	{}

						friend	class	Friend;

				public:

						//	public	interface

				};

				class	Friend

				{

				public:

						void	access_client_data(Client&	c)

						{

								c.action1();

								c.action2();

								auto	d1	=	c.data_1;

								auto	d2	=	c.data_1;

						}

				};



How	to	do	it...
Take	the	following	steps	to	restrict	a	friend's	access	to	the	private	parts	of	a
class:

1.	 In	the	client	class	that	provides	access	to	its	private	parts	to	a	friend,	declare
the	friendships	to	an	intermediate	class,	called	the	Attorney	class:

								class	Client

								{

										int	data_1;

										int	data_2;

										void	action1()	{}

										void	action2()	{}

										friend	class	Attorney;

								public:

										//	public	interface

								};

2.	 Create	a	class	that	contains	only	private	(inline)	functions	that	access	the
private	parts	of	the	client.	This	intermediate	class	allows	the	actual	friend	to
access	its	private	parts:

								class	Attorney

								{

										static	inline	void	run_action1(Client&	c)

										{

												c.action1();

										}

										static	inline	int	get_data1(Client&	c)

										{

												return	c.data_1;

										}

										friend	class	Friend;

								};

3.	 In	the	Friend	class,	access	the	private	parts	of	only	the	Client	class		indirectly
through	the	Attorney	class:

								class	Friend

								{

								public:

										void	access_client_data(Client&	c)

										{

												Attorney::run_action1(c);

												auto	d1	=	Attorney::get_data1(c);

										}



										}

								};



How	it	works...
The	attorney-client	idiom	lays	out	a	simple	mechanism	to	restrict	access	to	the
private	parts	of	the	client	by	introducing	a	middleman,	the	attorney.	Instead	of
providing	friendship	directly	to	those	using	its	internal	state,	the	client	class
offers	friendship	to	an	attorney,	which	in	turn	provides	access	to	a	restricted	set
of	private	data	or	functions	of	the	client.	It	does	so	by	defining	private	static
functions.	Usually,	these	are	also	inline	functions,	which	avoids	any	runtime
overhead	due	to	the	level	of	indirection	the	attorney	class	introduces.	The
client’s	friend	gets	access	to	its	private	parts	by	actually	using	the	private	parts
of	the	attorney.	This	idiom	is	called	attorney-client	because	it	is	similar	to	the
way	an	attorney-client	relationship	works,	with	the	attorney	knowing	all	the
secrets	of	the	client,	but	exposing	only	some	of	them	to	other	parties.

In	practice,	it	might	be	necessary	to	create	more	than	one	attorney	for	a	client
class	if	different	friend	classes	or	functions	must	access	different	private	parts.

On	the	other	hand,	friendship	is	not	inheritable,	which	means	that	a	class	or
function	that	is	friend	to	a	class	B	is	not	friend	with	a	class	D	that	is	derived	from
B.	However,	virtual	functions	overridden	in	D	are	still	accessible	polymorphically
through	a	pointer	or	reference	to	B	from	a	friend	class.	Such	an	example	is	shown
as	follows;	calling	the	run()	method	from	F	prints	base	and	derived:

				class	B

				{

						virtual	void	execute()	{	std::cout	<<	"base"	<<	std::endl;	}

						friend	class	BAttorney;

				};

				class	D	:	public	B

				{

						virtual	void	execute()	override	

						{	std::cout	<<	"derived"	<<	std::endl;	}

				};

				class	BAttorney

				{

						static	inline	void	execute(B&	b)

						{

								b.execute();

						}

						friend	class	F;

				};

				class	F



				class	F

				{

				public:

						void	run()

						{

								B	b;

								BAttorney::execute(b);	//	prints	'base'

								D	d;

								BAttorney::execute(d);	//	prints	'derived'

						}

				};

				F	f;

				f.run();



There's	more
There	are	always	trade-offs	for	using	a	design	pattern,	and	this	one	is	not	an
exception.	There	are	situations	when	using	this	pattern	may	lead	to	a	too	much
overhead	on	development,	testing,	and	maintenance.	However,	the	pattern	could
prove	extremely	valuable	for	some	types	of	applications,	such	as	extensible
frameworks.



See	also
Implementing	the	pimpl	idiom



Static	polymorphism	with	the
curiously	recurring	template	pattern
Polymorphism	is	the	ability	to	have	multiple	forms	for	the	same
interface.	Virtual	functions	allow	derived	classes	to	override	implementations
from	a	base	class.	They	represent	the	most	common	elements	of	a	form	of
polymorphism	called	runtime	polymorphism	because	the	decision	to	call	a
particular	virtual	function	from	the	class	hierarchy	happens	at	runtime.	It	is	also
called	late	binding,	because	the	binding	between	a	function	call	and	the
invocation	of	the	function	happens	late,	during	the	execution	of	the	program.
The	opposite	of	this	is	called	early	binding,	static	polymorphism,	or	compile	time
polymorphism	because	it	occurs	at	compile	time	through	functions	and	operators
overloading.	On	the	other	hand,	a	technique	called	the	curiously	recurring
template	pattern	(or	CRTP)	allows	simulating	the	virtual	functions-based
runtime	polymorphism	at	compile	time,	by	deriving	classes	from	a	base	class
template	parameterized	with	the	derived	class.	This	technique	is	used
extensively	in	some	libraries,	including	the	Microsoft's	Active	Template
Library	(ATL)	and	Windows	Template	Library	(WTL).



Getting	ready
To	demonstrate	how	the	CRTP	works,	we	will	revisit	the	example	with	the
hierarchy	of	control	classes	implemented	in	the	Separating	interfaces	from
implementations	with	the	non-virtual	interface	idiom	recipe.	We	will	define	a	set
of	control	classes	that	have	functionalities	such	as	drawing	the	control,	that	is,
(in	our	example)	an	operation	done	in	two	phases:	erasing	the	background	and
then	painting	the	control.



How	to	do	it...
To	implement	the	curiously	recurring	template	pattern	in	order	to	achieve	static
polymorphism,	do	the	following:

1.	 Provide	a	class	template	that	will	represent	the	base	class	for	other	classes
that	should	be	treated	polymorphically	at	compile	time.	Polymorphic
functions	are	invoked	from	this	class:

								template	<class	T>

								class	control

								{

								public:

										void	draw()

										{

												static_cast<T*>(this)->erase_background();

												static_cast<T*>(this)->paint();

										}

								};

2.	 Derived	classes	use	the	class	template	as	their	base	class;	the	derived	class
is	also	the	template	argument	for	the	base	class.	The	derived	class
implements	the	functions	that	are	invoked	from	the	base	class:

								class	button	:	public	control<button>

								{

								public:

										void	erase_background()

										{

												std::cout	<<	"erasing	button	background..."	<<	std::endl;

										}

										void	paint()

										{

												std::cout	<<	"painting	button..."	<<	std::endl;

										}

								};

								class	checkbox	:	public	control<checkbox>

								{

								public:

										void	erase_background()

										{

												std::cout	<<	"erasing	checkbox	background..."	

																						<<	std::endl;

										}

										void	paint()

										{

												std::cout	<<	"painting	checkbox..."	<<	std::endl;

										}

								};



								};

3.	 Function	templates	can	handle	derived	classes	polymorphically	through	a
pointer	or	reference	to	the	base	class	template:

								template	<class	T>

								void	draw_control(control<T>&	c)

								{

										c.draw();

								}

								button	b;

								draw_control(b);

								checkbox	c;

								draw_control(c);



How	it	works...
Virtual	functions	can	represent	a	performance	issue,	especially	when	they	are
small	and	called	multiple	times	in	a	loop.	Modern	hardware	has	made	most	of
these	situations	rather	irrelevant,	but	there	are	still	some	categories	of
applications	where	performance	is	critical	and	any	performance	gains	are
important.	The	curiously	recurring	template	pattern	enables	the	simulation	of
virtual	calls	at	compile	time	using	metaprogramming	that	eventually	translates	to
functions	overloading.

This	pattern	may	look	rather	strange	at	a	first	glance,	but	it	is	perfectly	legal.	The
idea	is	to	derive	a	class	from	a	base	class	that	is	a	template	class	and	to	pass	the
derived	class	itself	for	the	type	template	parameter	of	the	base	class.	The	base
class	then	makes	calls	to	the	derived	class	functions.	In	our	example,
control<button>::draw()	is	declared	before	the	button	class	is	known	to	the	compiler.
However,	the	control	class	is	a	class	template,	that	means,	it	is	instantiated	only
when	the	compiler	encounters	code	that	uses	it.	At	that	point,	the	button	class,	in
this	example,	is	already	defined	and	known	to	the	compiler,	so	calls	to
button::erase_background()	and	button::paint()	can	be	made.

To	invoke	the	functions	from	the	derived	class,	we	must	first	obtain	a	pointer	to
the	derived	class.	That	is	done	with	a	static_cast	conversion,	as	seen	in
static_cast<T*>(this)->erase_background().	If	this	has	to	be	done	many	times,	the	code
can	be	simplified	by	providing	a	private	function	to	do	that:

				template	<class	T>

				class	control

				{

						T*	derived()	{	return	static_cast<T*>(this);	}

				public:

						void	draw()

						{

								derived()->erase_background();

								derived()->paint();

						}

				};

There	are	some	pitfalls	when	using	the	CRTP	that	you	must	be	aware	of:

All	the	functions	in	the	derived	classes	that	are	called	from	the	base	class



template	must	be	public;	otherwise,	the	base	class	specialization	must	be
declared	a	friend	of	the	derived	class:

								class	button	:	public	control<button>

								{

								private:

										friend	class	control<button>;

										void	erase_background()

										{

												std::cout	<<	"erasing	button	background..."	<<	std::endl;

										}

										void	paint()

										{

												std::cout	<<	"painting	button..."	<<	std::endl;

										}

								};

It	is	not	possible	to	store	in	a	homogeneous	container,	such	as	a	vector	or
list,	objects	of	CRTP	types	because	each	base	class	is	a	unique	type	(such
as	control<button>	and	control<checkbox>).	If	this	is	actually	necessary,	then	a
workaround	can	be	used	to	implement	it.	This	will	be	discussed	and
exemplified	in	the	next	section.
When	using	this	technique,	the	size	of	a	program	may	increase,	because	of
the	way	templates	are	instantiated.



There's	more...
When	objects	of	types	implementing	the	CRTP	need	to	be	stored
homogeneously	in	a	container,	an	additional	idiom	must	be	used.	The	base	class
template	must	be	itself	derived	from	another	class	with	pure	virtual	functions
(and	a	virtual	public	destructor).	To	exemplify	this	on	the	control	class,	the
following	changes	are	necessary:

				class	controlbase

				{

				public:

						virtual	void	draw()	=	0;

						virtual	~controlbase()	{}

				};

				template	<class	T>

				class	control	:	public	controlbase

				{

				public:

						virtual	void	draw()	override

						{

								static_cast<T*>(this)->erase_background();

								static_cast<T*>(this)->paint();

						}

				};

There	are	no	changes	required	to	the	derived	classes,	such	as	button	and	checkbox.
Then,	we	can	store	pointers	to	the	abstract	class	in	a	container,	such	as
std::vector,	as	shown	as	follows:

				void	draw_controls(std::vector<std::shared_ptr<controlbase>>&	v)

				{

						for	(auto	&	c	:	v)

						{

								c->draw();

						}

				}

				std::vector<std::shared_ptr<controlbase>>	v;

				v.emplace_back(std::make_shared<button>());

				v.emplace_back(std::make_shared<checkbox>());

				draw_controls(v);



See	also
Implementing	the	pimpl	idiom
Separating	interfaces	from	implementations	with	the	non-virtual	interface
idiom



Implementing	a	thread-safe	singleton
Singleton	is	probably	one	of	the	most	well-known	design	patterns.	It	restricts	the
instantiation	of	a	single	object	of	a	class,	something	that	is	necessary	in	some
cases,	although	many	times	the	use	of	a	singleton	is	rather	an	anti-pattern	that
can	be	avoided	with	other	design	choices.	Since	a	singleton	means	a	single
instance	of	a	class	is	available	to	an	entire	program,	it	is	likely	that	such	a	unique
instance	might	be	accessible	from	different	threads.	Therefore,	when	you
implement	a	singleton,	you	should	also	make	it	thread-safe.	Before	C++11,
doing	that	was	not	an	easy	job,	and	a	double-checked	locking	technique	was	the
typical	approach.	However,	Scott	Meyers	and	Andrei	Alexandrescu	showed,	in	a
paper	called	C++	and	the	Perils	of	Double-Checked	Locking,	that	using	this
pattern	did	not	guarantee	a	thread-safe	singleton	implementation	in	portable
C++.	Fortunately,	this	changed	in	C++11,	and	this	recipe	shows	how	to	write
one	in	modern	C++.



Getting	ready
For	this	recipe,	you	need	to	know	how	static	storage	duration	and	internal
linkage	and	deleted	and	defaulted	functions	work.	You	should	also	first	read	the
previous	recipe,	Static	polymorphism	with	the	curiously	recurring	template
pattern,	if	you	have	not	done	that	yet	and	are	not	familiar	with	that
pattern	because	we	will	use	it	later	in	this	recipe.



How	to	do	it...
To	implement	a	thread-safe	singleton,	you	should	do	the	following:

1.	 Define	the	singleton	class:

								class	Singleton

								{

								};

2.	 Make	the	default	constructor	private:

								private:

										Singleton()	{}

3.	 Make	the	copy	constructor	and	copy	assignment	operator	public	and	delete:

								public:

										Singleton(Singleton	const	&)	=	delete;

										Singleton&	operator=(Singleton	const&)	=	delete;

4.	 The	function	that	creates	and	returns	the	single	instance	should	be	static	and
should	return	a	reference	to	the	class	type.	It	should	declare	a	static	object
of	the	class	type	and	return	a	reference	to	it:

								public:

										static	Singleton&	instance()

										{

												static	Singleton	single;

												return	single;

										}



How	it	works...
Since	singleton	objects	are	not	supposed	to	be	created	by	the	user	directly,	all
constructors	are	either	private	or	public	and	deleted.	The	default	constructor	is
private	and	not	deleted	because	an	instance	of	the	class	must	be	actually	created
in	the	class	code.	A	static	function,	called	instance(),	in	this	implementation,
returns	the	single	instance	of	the	class.

Though	most	implementations	return	a	pointer,	it	actually	makes
more	sense	to	return	a	reference,	as	there	is	no	circumstance	under
which	this	function	would	return	a	null	pointer	(no	object).

The	implementation	of	the	instance()	method	may	look	simplistic	and	not	thread-
safe	at	a	first	glance,	especially	if	you	are	familiar	with	the	double-checked
locking	pattern	(DCLP).	In	C++11,	this	is	actually	no	longer	necessary	due	to	a
key	detail	of	how	objects	with	static	storage	durations	are	initialized.
Initialization	happens	only	once,	even	if	several	threads	attempt	to	initialize	the
same	static	object	at	the	same	time.	The	responsibility	of	the	DCLP	has	been
moved	from	the	user	to	the	compiler,	although	the	compiler	may	use	another
technique	to	guarantee	the	result.

The	following	quote	from	the	C++	standard,	paragraph	6.7.4,	defines	the	rules
for	static	objects	initialization	(the	highlight	is	the	part	related	to	concurrent
initialization):

The	zero-initialization	(8.5)	of	all	block-scope	variables	with	static	storage
duration	(3.7.1)	or	thread	storage	duration	(3.7.2)	is	performed	before	any	other
initialization	takes	place.	Constant	initialization	(3.6.2)	of	a	block-scope	entity
with	static	storage	duration,	if	applicable,	is	performed	before	its	block	is	first
entered.	An	implementation	is	permitted	to	perform	early	initialization	of	other
block-scope	variables	with	static	or	thread	storage	duration	under	the	same
conditions	that	an	implementation	is	permitted	to	statically	initialize	a	variable
with	static	or	thread	storage	duration	in	namespace	scope	(3.6.2).	Otherwise,
such	a	variable	is	initialized	the	first	time	control	passes	through	its	declaration;
such	a	variable	is	considered	initialized	upon	the	completion	of	its	initialization.



If	the	initialization	exits	by	throwing	an	exception,	the	initialization	is	not
complete,	so	it	will	be	tried	again	the	next	time	control	enters	the	declaration.	If
control	enters	the	declaration	concurrently	while	the	variable	is	being
initialized,	the	concurrent	execution	shall	wait	for	completion	of	the
initialization.	If	control	re-enters	the	declaration	recursively	while	the	variable
is	being	initialized,	the	behavior	is	undefined.

The	static	local	object	has	storage	duration,	but	it	is	instantiated	only	when	it	is
first	used	(at	the	first	call	to	the	method	instance()).	The	object	is	deallocated
when	the	program	exists.	As	a	side	note,	the	only	possible	advantage	of
returning	a	pointer	and	not	a	reference	is	the	ability	to	delete	this	single	instance
at	some	point,	before	the	program	exists,	and	then	maybe	recreate	it.	This	again
does	not	make	too	much	sense,	as	it	conflicts	with	the	idea	of	a	single,	global
instance	of	a	class,	accessible	at	any	point	from	any	place	in	the	program.



There's	more...
There	might	be	situations	in	larger	code	bases	where	you	need	more	than	one
singleton	type.	In	order	to	avoid	writing	the	same	pattern	several	times,	you	can
implement	it	in	a	generic	way.	For	this,	we	need	to	employ	the	curiously
recurring	template	pattern	(or	CRTP)	seen	in	the	previous	recipe.	The	actual
singleton	is	implemented	as	a	class	template.	The	instance()	method	creates	and
returns	an	object	of	the	type	template	parameter,	which	will	be	the	derived	class:

				template	<class	T>

				class	SingletonBase

				{

				protected:

						SingletonBase()	{}

				public:

						SingletonBase(SingletonBase	const	&)	=	delete;

						SingletonBase&	operator=(SingletonBase	const&)	=	delete;

						static	T&	instance()

						{

								static	T	single;

								return	single;

						}

				};

				class	Single	:	public	SingletonBase<Single>

				{

						Single()	{}

						friend	class	SingletonBase<Single>;

				public:

						void	demo()	{	std::cout	<<	"demo"	<<	std::endl;	}

				};

The	Singleton	class	from	the	previous	section	has	become	the	SingletonBase	class
template.	The	default	constructor	is	no	longer	private	but	protected	because	it
must	be	accessible	from	the	derived	class.	In	this	example,	the	class	that	needs	to
have	a	single	object	instantiated	is	called	Single.	Its	constructors	must	be	private,
but	the	default	constructor	must	also	be	available	to	the	base	class	template;
therefore,	SingletonBase<Single>	is	a	friend	of	the	Single	class.



See	also
Static	polymorphism	with	the	curiously	recurring	template	pattern
Defaulted	and	deleted	functions	recipe	of	Chapter	3,	Exploring	Functions



Exploring	Testing	Frameworks
This	chapter	includes	the	following	recipes:

Getting	started	with	Boost.Test
Writing	and	invoking	tests	with	Boost.Test
Asserting	with	Boost.Test
Using	test	fixtures	with	Boost.Test
Controlling	output	with	Boost.Test
Getting	started	with	Google	Test
Writing	and	invoking	tests	with	Google	Test
Asserting	with	Google	Test
Using	test	fixtures	with	Google	Test
Controlling	output	with	Google	Test
Getting	started	with	Catch
Writing	and	invoking	tests	with	Catch
Asserting	with	Catch
Controlling	output	with	Catch



Introduction
Testing	the	code	is	an	important	part	of	software	development.	Although	there	is
no	support	for	testing	in	the	C++	standard,	there	is	a	large	variety	of	frameworks
for	unit	testing	C++	code.	The	purpose	of	this	chapter	is	to	get	you	started	with
several	modern	and	widely	used	testing	frameworks	that	enable	you	to	write
portable	testing	code.	The	frameworks	discussed	in	this	chapter	were	chosen	due
to	their	rich	capabilities,	the	ease	with	which	they	can	be	used	to	write	and
execute	tests,	extensibility,	and	customization.



Getting	started	with	Boost.Test
Boost.Test	is	one	of	the	oldest	and	most	popular	C++	testing	frameworks.	It
provides	an	easy-to-use	set	of	APIs	for	writing	tests	and	organizing	them	into
test	cases	and	test	suites.	It	has	good	support	for	asserting,	exception	handling,
fixtures,	and	other	important	features	required	for	a	testing	framework.
Throughout	the	next	few	recipes,	we	will	explore	the	most	important	features	it
has	which	enable	you	to	write	unit	tests.	In	this	recipe,	we	will	see	how	to	install
the	framework	and	create	a	simple	test	project.



Getting	ready
The	Boost.Test	framework	has	a	macro-based	API.	Although	you	only	need	to
use	the	supplied	macros	for	writing	tests,	a	good	understanding	of	macros	is
recommended	if	you	want	to	use	the	framework	well.	



How	to	do	it...
In	order	to	set	up	your	environment	to	use	Boost.Test,	do	the	following:

1.	 Download	the	latest	version	of	the	Boost	library	from	http://www.boost.org/.
2.	 Unzip	the	content	of	the	archive.
3.	 Build	the	library	using	the	provided	tools	and	scripts	in	order	to	use	either

the	static	or	shared	library	variant.	This	step	is	not	necessary	if	you	only
plan	to	use	the	header-only	version	of	the	library.

To	create	your	first	test	program	using	the	header-only	variant	of	the	Boost.Test
library,	do	the	following:

1.	 Create	a	new	empty	C++	project.
2.	 Do	the	necessary	setup	specific	to	the	development	environment	you	are

using	to	make	the	boost	main	folder	available	to	the	project	for	including
header	files.

3.	 Add	a	new	source	file	to	the	project	with	the	following	content:

								#define	BOOST_TEST_MODULE	My	first	test	module

								#include	<boost/test/included/unit_test.hpp>

								BOOST_AUTO_TEST_CASE(first_test_function)

								{

										BOOST_TEST(true);

								}

4.	 Build	and	run	the	project.

http://www.boost.org/


How	it	works...
The	library	can	be	downloaded	along	with	other	Boost	libraries.	In	this	book,	I
used	version	1.63,	but	the	features	discussed	in	these	recipes	will	probably	be
available	for	many	future	versions.	The	Test	library	comes	in	three	variants:

Single	header:	This	enables	you	to	write	test	programs	without	building	the
library;	you	just	need	to	include	a	single	header.	Its	limitation	is	that	you
can	only	have	a	single	translation	unit	for	the	module;	however,	you	can
still	split	the	module	into	multiple	header	files	so	that	you	can	separate
different	test	suites	in	different	files.
Static	library:	This	enables	you	to	split	a	module	across	different
translation	units,	but	the	library	needs	to	be	built	first	as	a	static	library.
Shared	library:	This	enables	the	same	scenario	as	that	of	the	static	library.
However,	it	has	the	advantage	that,	for	programs	with	many	test	modules,
this	library	is	linked	only	once	and	not	once	for	each	module,	resulting	in	a
smaller	binary	size.	However,	in	this	case,	the	shared	library	must	be
available	at	runtime.

For	simplicity,	we	will	use	the	single-header	variant	in	this	book.	In	the	case	of
static	and	shared	library	variants,	you'd	need	to	build	the	library.	The
downloaded	archive	contains	scripts	for	building	the	library.	However,	the	exact
steps	vary	depending	on	the	platform	and	the	compiler;	they	will	not	be	covered
here	but	are	available	online.

There	are	several	terms	and	concepts	that	you	need	to	understand	in	order	to	use
the	library:

Test	module	is	a	program	that	performs	tests.	There	are	two	types	of
modules:	single-file	(when	you	use	the	single-header	variant)	and	multifile
(when	you	use	either	the	static	or	shared	variant).
Test	assertion	is	a	condition	that	is	checked	by	a	test	module.
Test	case	is	a	group	of	one	or	more	test	assertions	that	is	independently
executed	and	monitored	by	a	test	module	so	that,	if	it	fails	or	leaks
uncaught	exceptions,	the	execution	of	other	tests	would	not	be	stopped.



Test	suite	is	a	collection	of	one	or	more	test	cases	or	test	suites.
Test	unit	is	either	a	test	case	or	test	suite.
Test	tree	is	a	hierarchical	structure	of	test	units.	In	this	structure,	test	cases
are	leaves	and	test	suites	are	non-leaves.
Test	runner	is	a	component	that,	given	a	test	tree,	performs	the	necessary
initialization,	execution	of	tests,	and	results	reporting.
Test	report	is	the	report	produced	by	the	test	runner	from	the	execution	of
the	tests.
Test	log	is	the	recording	of	all	the	events	that	occur	during	the	execution	of
the	test	module.
Test	setup	is	the	part	of	the	test	module	responsible	for	the	initialization	of
the	framework,	construction	of	the	test	tree,	and	individual	test	case	setups.
Test	cleanup	is	a	part	of	the	test	module	responsible	for	cleanup
operations.
Test	fixture	is	a	pair	of	setup	and	cleanup	operations	that	are	invoked	for
multiple	test	units	in	order	to	avoid	repetitive	code.

With	these	concepts	defined,	it	is	possible	to	explain	the	sample	code	listed
earlier:

1.	 #define	BOOST_TEST_MODULE	My	first	test	module	defines	a	stub	for	module
initialization	and	sets	a	name	for	the	main	test	suite.	This	must	be	defined
before	you	include	any	library	header.

2.	 #include	<boost/test/included/unit_test.hpp>	includes	the	single-header	library,
which	includes	all	the	other	necessary	headers.

3.	 BOOST_AUTO_TEST_CASE(first_test_function)	declares	a	test	case	without	parameters
(first_test_function)	and	automatically	registers	it	to	be	included	in	the	test
tree	as	part	of	the	enclosing	test	suite.	In	this	example,	the	test	suite	is	the
main	test	suite	defined	by	BOOST_TEST_MODULE.

4.	 BOOST_TEST(true);	performs	a	test	assertion.

The	output	of	executing	this	test	module	is	as	follows:

Running	1	test	case...

***	No	errors	detected



There's	more...
If	you	don't	want	the	library	to	generate	the	main()	function	but	want	to	write	it
yourself,	then	you	need	to	define	a	couple	more	macros--BOOST_TEST_NO_MAIN	and
BOOST_TEST_ALTERNATIVE_INIT_API--before	you	include	any	of	the	library	headers.
Then,	in	the	main()	function	that	you	supply,	invoke	the	default	test	runner	called
unit_test_main()	by	providing	the	default	initialization	function	called
init_unit_test()	as	an	argument,	as	shown	in	the	following	code	snippet:

				#define	BOOST_TEST_MODULE	My	first	test	module

				#define	BOOST_TEST_NO_MAIN

				#define	BOOST_TEST_ALTERNATIVE_INIT_API

				#include	<boost/test/included/unit_test.hpp>

				BOOST_AUTO_TEST_CASE(first_test_function)

				{

						BOOST_TEST(true);

				}

				int	main(int	argc,	char*	argv[])

				{

						return	boost::unit_test::unit_test_main(init_unit_test,	argc,	argv);

				}

It	is	also	possible	to	customize	the	initialization	function	of	the	test	runner.	In
this	case,	you	must	remove	the	definition	of	the	BOOST_TEST_MODULE	macro	and
instead	write	an	initialization	function	that	takes	no	arguments	and	returns	a
bool	value:	

				#define	BOOST_TEST_NO_MAIN

				#define	BOOST_TEST_ALTERNATIVE_INIT_API

				#include	<boost/test/included/unit_test.hpp>

				BOOST_AUTO_TEST_CASE(first_test_function)

				{

						BOOST_TEST(true);

				}

				bool	custom_init_unit_test()

				{

						std::cout	<<	"test	runner	custom	init"	<<	std::endl;

						return	true;

				}

				int	main(int	argc,	char*	argv[])

				{

						return	boost::unit_test::unit_test_main(

								custom_init_unit_test,	argc,	argv);

				}



It	is	possible	to	customize	the	initialization	function	without	writing
the	main()	function	yourself.	In	this	case,	the	BOOST_TEST_NO_MAIN	macro
should	not	be	defined	and	the	initialization	function	should	be
called	init_unit_test().



See	also
Writing	and	invoking	tests	with	Boost.Test



Writing	and	invoking	tests	with
Boost.Test
The	library	provides	both	an	automatic	and	manual	way	of	registering	test	cases
and	test	suites	to	be	executed	by	the	test	runner.	Automatic	registration	is	the
simplest	way	because	it	enables	you	to	construct	a	test	tree	just	by	declaring	test
units.	In	this	recipe,	we	will	see	how	to	create	test	suites	and	test	cases,	using	the
single-header	version	of	the	library,	and	how	to	run	tests.



Getting	ready
To	exemplify	the	creation	of	test	suites	and	test	cases,	we	will	use	the	following
class	which	represents	a	three-dimensional	point:

				class	point3d

				{

						int	x_;

						int	y_;

						int	z_;

				public:

						point3d(int	const	x	=	0,	

														int	const	y	=	0,	

														int	const	z	=	0):x_(x),	y_(y),	z_(z)	{}

						int	x()	const	{	return	x_;	}

						point3d&	x(int	const	x)	{	x_	=	x;	return	*this;	}

						int	y()	const	{	return	y_;	}

						point3d&	y(int	const	y)	{	y_	=	y;	return	*this;	}

						int	z()	const	{	return	z_;	}

						point3d&	z(int	const	z)	{	z_	=	z;	return	*this;	}

						bool	operator==(point3d	const	&	pt)	const

						{

								return	x_	==	pt.x_	&&	y_	==	pt.y_	&&	z_	==	pt.z_;

						}

						bool	operator!=(point3d	const	&	pt)	const

						{

								return	!(*this	==	pt);

						}

						bool	operator<(point3d	const	&	pt)	const

						{

								return	x_	<	pt.x_	||	y_	<	pt.y_	||	z_	<	pt.z_;

						}

						friend	std::ostream&	operator<<(std::ostream&	stream,	

																																		point3d	const	&	pt)

						{

								stream	<<	"("	<<	pt.x_	<<	","	<<	pt.y_	<<	","	<<	pt.z_	<<	")";

								return	stream;

						}

						void	offset(int	const	offsetx,	int	const	offsety,	int	const	offsetz)

						{

								x_	+=	offsetx;

								y_	+=	offsety;

								z_	+=	offsetz;

						}

						static	point3d	origin()	{	return	point3d{};	}

				};

Before	you	go	further,	notice	that	the	test	cases	in	this	recipe
contain	erroneous	tests	on	purpose,	so	that	they	would	produce



contain	erroneous	tests	on	purpose,	so	that	they	would	produce
failures.



How	to	do	it...
Use	the	following	macros	to	create	test	units:

To	create	a	test	suite,	use	BOOST_AUTO_TEST_SUITE(name)	and
BOOST_AUTO_TEST_SUITE_END():

								BOOST_AUTO_TEST_SUITE(test_construction)

								//	test	cases	

								BOOST_AUTO_TEST_SUITE_END()

To	create	a	test	case,	use	BOOST_AUTO_TEST_CASE(name).	Test	cases	are	defined
between	BOOST_AUTO_TEST_SUITE(name)	and	BOOST_AUTO_TEST_SUITE_END()	,	as	shown	in
the	following	code	snippet:

								BOOST_AUTO_TEST_CASE(test_constructor)

								{

										auto	p	=	point3d{	1,2,3	};

										BOOST_TEST(p.x()	==	1);

										BOOST_TEST(p.y()	==	2);

										BOOST_TEST(p.z()	==	4);	//	will	fail

								}

								BOOST_AUTO_TEST_CASE(test_origin)

								{

										auto	p	=	point3d::origin();

										BOOST_TEST(p.x()	==	0);

										BOOST_TEST(p.y()	==	0);

										BOOST_TEST(p.z()	==	0);

								}

To	create	a	nested	test	suite,	define	a	test	suite	inside	another	test	suite:

								BOOST_AUTO_TEST_SUITE(test_operations)

								BOOST_AUTO_TEST_SUITE(test_methods)

								BOOST_AUTO_TEST_CASE(test_offset)

								{

										auto	p	=	point3d{	1,2,3	};

										p.offset(1,	1,	1);

										BOOST_TEST(p.x()	==	2);

										BOOST_TEST(p.y()	==	3);

										BOOST_TEST(p.z()	==	3);	//	will	fail

								}

								BOOST_AUTO_TEST_SUITE_END()

								BOOST_AUTO_TEST_SUITE_END()

To	add	decorators	to	a	test	unit,	add	an	additional	parameter	to	the	test



unit's	macros.	Decorators	could	include	description,	label,	precondition,
dependency,	fixture,	and	so	on.	Refer	to	the	following	code	snippet
which	illustrates	this:

								BOOST_AUTO_TEST_SUITE(test_operations)

								BOOST_AUTO_TEST_SUITE(test_operators)

								BOOST_AUTO_TEST_CASE(

										test_equal,	

										*boost::unit_test::description("test	operator==")

										*boost::unit_test::label("opeq"))

								{

										auto	p1	=	point3d{	1,2,3	};

										auto	p2	=	point3d{	1,2,3	};

										auto	p3	=	point3d{	3,2,1	};

										BOOST_TEST(p1	==	p2);

										BOOST_TEST(p1	==	p3);	//	will	fail

								}

								BOOST_AUTO_TEST_CASE(

										test_not_equal,	

										*boost::unit_test::description("test	operator!=")

										*boost::unit_test::label("opeq")

										*boost::unit_test::depends_on(

												"test_operations/test_operators/test_equal"))

								{

										auto	p1	=	point3d{	1,2,3	};

										auto	p2	=	point3d{	3,2,1	};

										BOOST_TEST(p1	!=	p2);

								}

								BOOST_AUTO_TEST_CASE(test_less)

								{

										auto	p1	=	point3d{	1,2,3	};

										auto	p2	=	point3d{	1,2,3	};

										auto	p3	=	point3d{	3,2,1	};

										BOOST_TEST(!(p1	<	p2));

										BOOST_TEST(p1	<	p3);

								}

								BOOST_AUTO_TEST_SUITE_END()

								BOOST_AUTO_TEST_SUITE_END()

To	execute	the	tests,	do	the	following:

To	execute	the	entire	test	tree,	run	the	program	(the	test	module)	without
any	parameters:

						chapter11bt_02.exe

						Running	6	test	cases...

						f:/chapter11bt_02/main.cpp(12):	error:	in	"test_construction/test_

						constructor":	check	p.z()	==	4	has	failed	[3	!=	4]

						f:/chapter11bt_02/main.cpp(35):	error:	in	"test_operations/test_

						methods/test_offset":	check	p.z()	==	3	has	failed	[4	!=	3]

						f:/chapter11bt_02/main.cpp(55):	error:	in	"test_operations/test_

						operators/test_equal":	check	p1	==	p3	has	failed	[(1,2,3)	!=	

						(3,2,1)]



						***	3	failures	are	detected	in	the	test	module	"Testing	point	3d"

To	execute	a	single	test	suite,	run	the	program	with	the	argument	run_test
specifying	the	path	of	the	test	suite:

						chapter11bt_02.exe	--run_test=test_construction

						Running	2	test	cases...

						f:/chapter11bt_02/main.cpp(12):	error:	in	"test_construction/test_

						constructor":	check	p.z()	==	4	has	failed	[3	!=	4]

						***	1	failure	is	detected	in	the	test	module	"Testing	point	3d"

To	execute	a	single	test	case,	run	the	program	with	the	argument	run_test
specifying	the	path	of	the	test	case:

						chapter11bt_02.exe	--run_test=test_construction/test_origin

						Running	1	test	case...

						***	No	errors	detected

To	execute	a	collection	of	test	suites	and	test	cases	defined	under	the	same
label,	run	the	program	with	the	argument	run_test	specifying	the	label	name
prefixed	with	@:

						chapter11bt_02.exe	--run_test=@opeq

						Running	2	test	cases...

						f:/chapter11bt_02/main.cpp(56):	error:	in	"test_operations/test_

						operators/test_equal":	check	p1	==	p3	has	failed	[(1,2,3)	!=	

						(3,2,1)]

						***	1	failure	is	detected	in	the	test	module	"Testing	point	3d"



How	it	works...
A	test	tree	is	constructed	from	test	suites	and	test	cases.	A	test	suite	can	contain
one	or	more	test	cases	and	other	nested	test	suites	as	well.	Test	suites	are	similar
to	namespaces	in	the	sense	that	they	can	be	stopped	and	restarted	multiple	times
in	the	same	file	or	in	different	files.	Automatic	registration	of	test	suites	is	done
with	the	macros	BOOST_AUTO_TEST_SUITE,	which	requires	a	name,	and
BOOST_AUTO_TEST_SUITE_END.	Automatic	registration	of	test	cases	is	done	with
BOOST_AUTO_TEST_CASE.	Test	units	(whether	cases	or	suites)	become	members	of	the
closest	test	suite.	Test	units	defined	at	the	file	scope	level	become	members	of
the	master	test	suite--the	implicit	test	suite	created	with	the	BOOST_TEST_MODULE
declaration.

Both	test	suites	and	test	cases	can	be	decorated	with	a	series	of	attributes	that
affect	how	test	units	would	be	processed	during	the	execution	of	the	test	module.
The	currently	supported	decorators	are	as	follows:

depends_on:	This	indicates	a	dependency	between	the	current	test	unit	and	a
designated	test	unit.
description:	This	provides	a	semantic	description	of	a	test	unit.
enabled	/	disabled:	These	set	the	default	run	status	of	a	test	unit	to	either	true
or	false.
enable_if:	This	sets	the	default	run	status	of	a	test	unit	to	either	true	or	false,
depending	on	the	evaluation	of	a	compile-time	expression.
fixture:	This	specifies	a	pair	of	functions	(startup	and	cleanup)	to	be	called
before	and	after	the	execution	of	a	test	unit.
label:	With	this,	you	can	associate	a	test	unit	with	a	label.	The	same	label
can	be	used	for	multiple	test	units,	and	a	test	unit	can	have	multiple	labels.
precondition:	This	associates	a	predicate	with	a	test	unit,	which	is	used	at
runtime	to	determine	the	run	status	of	the	test	unit.

If	the	execution	of	a	test	case	results	in	an	unhandled	exception,	the	framework
will	catch	the	exception	and	terminate	the	execution	of	the	test	case	with	a
failure.	However,	the	framework	provides	several	macros	to	test	whether	a
particular	piece	of	code	raises,	or	does	not	raise,	exceptions.	For	more



information,	see	the	next	recipe:	Asserting	with	Boost.Test.

The	test	units	that	compose	the	module's	test	tree	can	be	executed	entirely	or
partially.	In	both	cases,	to	execute	the	test	units,	execute	the	(binary)	program
that	represents	the	test	module.	To	execute	only	some	of	the	test	units,	use	the	--
run_test	command-line	option	(or	--t	if	you	want	to	use	a	shorter	name).	This
option	allows	you	to	filter	the	test	units	and	specify	either	a	path	or	label.	A	path
consists	of	a	sequence	of	test	suite	and/or	test	case	names,	such	as
test_construction	or	test_operations/test_methods/test_offset.	A	label	is	a	name	defined
with	the	label	decorator	and	is	prefixed	with	@	for	the	run_test	parameter.	This
parameter	is	repeatable,	which	means	you	can	specify	multiple	filters	on	it.



See	also
Getting	started	with	Boost.Test
Asserting	with	Boost.Test



Asserting	with	Boost.Test
A	test	case	contains	one	or	more	tests.	The	Boost.Test	library	provides	a	series	of
APIs	in	the	form	of	macros	to	write	tests.	In	the	previous	recipe,	you	learned	a
bit	about	the	BOOST_TEST	macro,	which	is	the	most	important	and	widely	used
macro	of	the	library.	In	this	recipe,	we	will	discuss	how	it	can	be	used	in	further
detail.



Getting	ready
You	should	now	be	familiar	with	writing	test	suites	and	test	cases,	a	topic
covered	in	the	previous	recipe.



How	to	do	it...
The	following	list	shows	some	of	the	most	commonly	used	APIs	for	performing
tests:

BOOST_TEST,	in	its	plain	form,	is	used	for	most	tests:

								int	a	=	2,	b	=	4;

								BOOST_TEST(a	==	b);

								BOOST_TEST(4.201	==	4.200);

								std::string	s1{	"sample"	};

								std::string	s2{	"text"	};

								BOOST_TEST(s1	==	s2);

BOOST_TEST	along	with	the	tolerance()	manipulator	are	used	to	indicate	the
tolerance	of	floating	point	comparisons:

								BOOST_TEST(4.201	==	4.200,	

																			boost::test_tools::tolerance(0.001));

BOOST_TEST	along	with	the	per_element()	manipulator	are	used	to	perform	an
element-wise	comparison	of	containers	(even	of	different	types):

								std::vector<int>	v{	1,2,3	};

								std::list<short>	l{	1,2,3	};

								BOOST_TEST(v	==	l,	boost::test_tools::per_element());

BOOST_TEST	along	with	the	ternary	operator	and	compound	statements	using
the	logical	||	or	&&	require	an	extra	set	of	parentheses:

								BOOST_TEST((a	>	0	?	true	:	false));

								BOOST_TEST((a	>	2	&&	b	<	5));

BOOST_ERROR	is	used	to	unconditionally	fail	a	test	and	produce	a	message	in	the
report.	This	is	equivalent	to	BOOST_TEST(false,	message):

								BOOST_ERROR("this	test	will	fail");

BOOST_TEST_WARN	is	used	to	produce	a	warning	in	the	report	in	case	a	test	is
failing,	without	increasing	the	number	of	encountered	errors	and	stopping
the	execution	of	the	test	case:



								BOOST_TEST_WARN(a	==	4,	"something	is	not	right");

BOOST_TEST_REQUIRE	is	used	to	ensure	that	test	case	preconditions	are	met;	the
execution	of	the	test	case	is	stopped	otherwise:

								BOOST_TEST_REQUIRE(a	==	4,	"this	is	critical");

BOOST_FAIL	is	used	to	unconditionally	stop	the	execution	of	the	test	case,
increase	the	number	of	encountered	errors,	and	produce	a	message	in	the
report.	This	is	equivalent	to	BOOST_TEST_REQUIRE(false,	message):

								BOOST_FAIL("must	be	implemented");

BOOST_IS_DEFINED	is	used	to	check	whether	a	particular	preprocessor	symbol	is
defined	at	runtime.	It	is	used	together	with	BOOST_TEST	to	perform	validation
and	logging:

								BOOST_TEST(BOOST_IS_DEFINED(UNICODE));



How	it	works...
The	library	defines	a	variety	of	macros	and	manipulators	for	performing	test
assertions.	The	most	commonly	used	one	is	BOOST_TEST.	This	macro	simply
evaluates	an	expression;	if	it	fails,	it	increases	the	error	count	but	continues	the
execution	of	the	test	case.	It	has	three	variants	actually:

BOOST_TEST_CHECK	is	the	same	as	BOOST_TEST	and	is	used	to	perform	checks	as
described	in	the	previous	section.
BOOST_TEST_WARN	is	used	for	assertions	meant	to	provide	information	but
without	increasing	the	error	count	and	stopping	the	execution	of	the	test
case.
BOOST_TEST_REQUIRE	is	intended	to	ensure	pre-conditions	that	are	required	for
test	cases	to	continue	execution	are	met.	Upon	failure,	this	macro	increases
the	error	count	and	stops	the	execution	of	the	test	case.

The	general	form	of	the	test	macro	is	BOOST_TEST(statement).	This	macro	provides
rich	and	flexible	reporting	capabilities.	By	default,	it	shows	not	only	the
statement,	but	also	the	value	of	the	operands	to	enable	quick	identification	of	the
failure's	cause.	However,	the	user	could	provide	an	alternative	failure
description;	in	this	scenario,	the	message	is	logged	in	the	test	report:

						BOOST_TEST(a	==	b);

						//	error:	in	"regular_tests":	check	a	==	b	has	failed	[2	!=	4]

						BOOST_TEST(a	==	b,	"not	equal");

						//	error:	in	"regular_tests":	not	equal

This	macro	also	allows	you	to	control	the	comparison	process	with	special
support	for	the	following:

The	first	is	floating	point	comparison,	where	tolerance	can	be	defined	to
test	equality.
Secondly,	it	supports	containers'	comparison	using	several	methods:	default
comparison	(using	the	overloaded	operator==),	per-element	comparison,	and
lexicographic	comparison	(using	the	lexicogrphical	order).	Per-element
comparison	enables	the	comparison	of	different	types	of	containers	(such	as
vector	and	list)	in	the	order	given	by	the	forward	iterators	of	the	container;	it



also	takes	into	account	the	size	of	the	container	(meaning	that	it	first	tests
the	sizes	and,	only	if	they	are	equal,	it	continues	with	the	comparison	of	the
elements).
Lastly,	it	supports	bitwise	comparison	of	the	operands.	Upon	failure,	the
framework	reports	the	index	of	the	bit	where	the	comparison	failed.

The	BOOST_TEST	macro	does	have	some	limitations.	It	cannot	be	used	with
compound	statements	that	use	a	comma	because	such	statements	would	be
intercepted	and	handled	by	the	preprocessor	or	the	ternary	operator,	and
compound	statements	using	the	logical	operators	||	and	&&.	The	latter	cases	have
a	workaround:	a	second	pair	of	parentheses,	as	in	BOOST_TEST((statement)).

Several	macros	are	available	for	testing	whether	a	particular	exception	is	raised
during	the	evaluation	of	an	expression.	In	the	following	list,	<level>	is	either	CHECK,
WARN	,	or	REQUIRE:

BOOST_<level>_NO_THROW(expr)	checks	whether	an	exception	is	raised	from	the
expr	expression.	Any	exception	raised	during	the	evaluation	of	expr	is	caught
by	this	assertion	and	is	not	propagated	to	the	test	body.	If	any	exception
occurs,	the	assertion	fails.
BOOST_<level>_THROW(expr,	exception_type)	checks	whether	an	exception	of
exception_type	is	raised	from	the	expr	expression.	If	the	expression	expr	does
not	raise	any	exception,	then	the	assertion	fails.	Exceptions	of	types	other
than	expression_type	are	not	caught	by	this	assertion	and	could	be	propagated
to	the	test	body.	Uncaught	exceptions	in	a	test	case	are	caught	by	the
execution	monitor,	but	they	result	in	failed	test	cases.
BOOST_<level>_EXCEPTION(expr,	exception_type,	predicate)	checks	whether	an
expression	of	expression_type	is	raised	from	the	expr	expression;	if	so,	it
passes	the	expression	to	the	predicate	for	further	examination.	If	no
exception	is	raised	or	an	exception	of	a	type	different	than	exception_type	is
raised,	then	the	assertion	behaves	like	BOOST_<level>_THROW.



There's	more...
This	recipe	discusses	only	the	most	common	APIs	for	testing	and	their	typical
usage.	However,	the	library	provides	many	more	APIs.	For	further	reference,
check	the	online	documentation.	For	version	1.63,	refer	to	http://www.boost.org/doc/libs
/1_63_0/libs/test/doc/html/index.html.

http://www.boost.org/doc/libs/1_63_0/libs/test/doc/html/index.html


See	also
Writing	and	invoking	tests	with	Boost.Test



Using	fixtures	in	Boost.Test
The	larger	a	test	module	is	and	the	more	similar	test	cases	are,	the	more	likely	it
is	to	have	test	cases	that	require	the	same	setup,	cleanup,	and	maybe	the	same
data.	A	component	that	contains	these	is	called	a	test	fixture	or	test	context.
Boost.Test	provides	several	ways	to	define	test	fixtures	for	a	test	case,	test	suite,
or	a	module	(globally).	In	this	recipe,	we	will	look	at	how	fixtures	work.



Getting	ready
The	examples	in	this	recipe	use	the	following	classes	and	functions	for
specifying	test	unit	fixtures:

				struct	standard_fixture

				{

						standard_fixture()		{BOOST_TEST_MESSAGE("setup");}

						~standard_fixture()	{BOOST_TEST_MESSAGE("cleanup");}

						int	n	{42};

				};

				struct	extended_fixture

				{

						std::string	name;

						int	data;

						extended_fixture(std::string	const	&	n	=	"")	:	name(n),	data(0)	

						{

								BOOST_TEST_MESSAGE("setup	"+	name);

						}

						~extended_fixture()

						{

								BOOST_TEST_MESSAGE("cleanup	"+	name);

						}

				};

				void	fixture_setup()

				{

						BOOST_TEST_MESSAGE("fixture	setup");

				}

				void	fixture_cleanup()

				{

						BOOST_TEST_MESSAGE("fixture	cleanup");

				}



How	to	do	it...
Use	the	following	methods	to	define	test	fixtures	for	one	or	multiple	test	units:

To	define	a	fixture	for	a	particular	test	case,	use	the
BOOST_FIXTURE_TEST_CASE	macro:	

								BOOST_FIXTURE_TEST_CASE(test_case,	extended_fixture)

								{

										data++;

										BOOST_TEST(data	==	1);

								}

	

To	define	a	fixture	for	all	the	test	cases	in	a	test	suite,	use
BOOST_FIXTURE_TEST_SUITE:

								BOOST_FIXTURE_TEST_SUITE(suite1,	extended_fixture)

								BOOST_AUTO_TEST_CASE(case1)

								{

										BOOST_TEST(data	==	0);

								}

								BOOST_AUTO_TEST_CASE(case2)

								{

										data++;

										BOOST_TEST(data	==	1);

								}

								BOOST_AUTO_TEST_SUITE_END()

To	define	a	fixture	for	all	the	test	units	in	a	test	suite,	except	for	one	or
several	test	units,	use	BOOST_FIXTURE_TEST_SUITE	and	overwrite	it	to	a	particular
test	unit	with	BOOST_FIXTURE_TEST_CASE	for	a	test	case	and	BOOST_FIXTURE_TEST_SUITE
for	a	nested	test	suite:

								BOOST_FIXTURE_TEST_SUITE(suite2,	extended_fixture)

								BOOST_AUTO_TEST_CASE(case1)

								{

										BOOST_TEST(data	==	0);

								}

								BOOST_FIXTURE_TEST_CASE(case2,	standard_fixture)

								{

										BOOST_TEST(n	==	42);

								}

								BOOST_AUTO_TEST_SUITE_END()



								BOOST_AUTO_TEST_SUITE_END()

To	define	more	than	a	single	fixture	for	a	test	case	or	test	suite,	use
boost::unit_test::fixture	with	the	BOOST_AUTO_TEST_SUITE	and	BOOST_AUTO_TEST_CASE
macros:

								BOOST_AUTO_TEST_CASE(test_case_multifix,

										*	boost::unit_test::fixture<extended_fixture>

														(std::string("fix1"))

										*	boost::unit_test::fixture<extended_fixture>

														(std::string("fix2"))

										*	boost::unit_test::fixture<standard_fixture>())

								{

										BOOST_TEST(true);

								}

To	use	free	functions	as	setup	and	teardown	operations	in	the	case	of	a
fixture,	use	boost::unit_test::fixture:

								BOOST_AUTO_TEST_CASE(test_case_funcfix,

										*	boost::unit_test::fixture(&fixture_setup,	

																																						&fixture_cleanup))

								{

										BOOST_TEST(true);

								}

To	define	a	fixture	for	the	module,	use	BOOST_GLOBAL_FIXTURE:

								BOOST_GLOBAL_FIXTURE(standard_fixture);



How	it	works...
The	library	supports	several	fixture	models:

A	class	model,	where	the	constructor	acts	as	the	setup	function	and	the
destructor	as	the	cleanup	function.	An	extended	model	allows	the
constructor	to	have	one	parameter.	In	the	preceding	example,	standard_fixture
implemented	the	first	model	and	extended_fixture	the	second	model.
A	pair	of	free	functions:	one	that	defines	the	setup	and	the	other,	optional,
that	implements	the	cleanup	code.	In	the	preceding	example,	we	came
across	these	when	discussing	fixture_setup()	and	fixture_cleanup().

Fixtures	implemented	as	classes	can	also	have	data	members,	and	these	members
are	made	available	to	the	test	unit.	If	a	fixture	is	defined	for	a	test	suite,	it	is
available	implicitly	to	all	the	test	units	that	are	grouped	under	this	test	suite.
However,	it	is	possible	that	test	units	contained	in	such	a	test	suite	could	redefine
the	fixture.	In	this	case,	the	fixture	defined	in	the	closest	scope	is	the	one
available	to	the	test	unit.

It	is	possible	to	define	multiple	fixtures	for	a	test	unit.	However,	this	is	done
with	the	boost::unit_test::fixture()	decorator,	not	with	macros.	The	test	suite	and
test	case	are	defined	in	this	case	with	the	BOOST_TEST_SUITE/BOOST_AUTO_TEST_SUITE	and
BOOST_TEST_CASE/BOOST_AUTO_TEST_CASE	macros.	Multiple	fixture()	decorators	can	be
composed	together	with	operator	*,	as	seen	in	the	previous	section.	A	drawback
of	this	approach	is	that	if	you	use	the	fixture	decorator	with	a	class	that	has
member	data,	then	these	members	will	not	be	available	for	the	test	units.

A	new	fixture	object	is	constructed	for	each	test	case	when	it	is	executed,	and	the
object	is	destroyed	at	the	end	of	the	test	case.

The	fixture	state	is	not	shared	among	different	test	cases.
Therefore,	the	constructor	and	destructor	are	called	once	for	each
test	case.	You	must	make	sure	these	special	functions	do	not
contain	code	which	is	supposed	to	be	executed	only	once	per
module.	If	this	is	the	case,	you	should	set	a	global	fixture	for	the
entire	module.



A	global	fixture	uses	the	generic	test	class	model	(the	model	with	the	default
constructor);	you	can	define	any	number	of	global	fixtures	(allowing	you	to
organize	setup	and	cleanup	by	category,	if	necessary).	Global	fixtures	are
defined	with	the	BOOST_GLOBAL_FIXTURE	macro,	and	they	have	to	be	defined	at	the	test
file	scope	(not	inside	any	test	unit).



See	also
Writing	and	invoking	tests	with	Boost.Test



Controlling	outputs	with	Boost.Test
The	framework	provides	the	ability	to	customize	what	is	shown	in	the	test	log
and	test	report	and	the	format	of	the	results.	Currently,	there	are	two	supported:	a
human-readable	format	and	XML	(also	with	a	JUNIT	format	for	the	test	log).
However,	it	is	possible	to	create	and	add	your	own	format.	The	configuration	of
what	is	shown	in	the	output	can	be	done	both	at	runtime,	through	command-line
switches,	and	at	compile	time,	through	various	APIs.	During	the	execution	of	the
tests,	the	framework	collects	all	the	events	in	a	log.	At	the	end,	it	produces	a
report	that	represents	a	summary	of	the	execution	with	different	levels	of	details.
In	the	case	of	a	failure,	the	report	contains	detailed	information	about	the
location	and	the	cause,	including	actual	and	expected	values.	This	helps
developers	quickly	identify	the	error.	In	this	recipe,	we	will	see	how	to	control
what	is	written	in	the	log	and	the	report	and	in	which	format;	we	do	this	using
the	command-line	options	at	runtime.



Getting	ready
For	the	examples	presented	in	this	recipe,	we	will	use	the	following	test	module:

				#define	BOOST_TEST_MODULE	Controlling	output

				#include	<boost/test/included/unit_test.hpp>

				BOOST_AUTO_TEST_CASE(test_case)

				{

						BOOST_TEST(true);

				}

				BOOST_AUTO_TEST_SUITE(test_suite)

				BOOST_AUTO_TEST_CASE(test_case)

				{

						int	a	=	42;

						BOOST_TEST(a	==	0);

				}

				BOOST_AUTO_TEST_SUITE_END()



How	to	do	it...
To	control	the	test	log	output,	do	the	following:

Use	either	the	--log_format=<format>	or	-f	<format>	command-line	option	to
specify	the	log	format.	The	possible	formats	are	HRF	(the	default	value),	XML,
and	JUNIT.
Use	either	the	--log_level=<level>	or	-l	<level>	command-line	option	to
specify	the	log	level.	The	possible	log	levels	include	error	(default	for	HRF
and	XML),	warning,	all,	or	success	(the	default	for	JUNIT).
Use	either	the	--log_sink=<stream	or	file	name>	or	-k	<stream	or	file	name>
command-line	option	to	specify	the	location	where	the	framework	should
write	the	test	log.	The	possible	options	are	stdout	(default	for	HRM	and
XML),	stderr,	or	an	arbitrary	file	name	(default	for	JUNIT).

To	control	the	test	report	output,	do	the	following:

Use	either	the	--report_format=<format>	or	-m	<format>	command-line	option	to
specify	the	report	format.	The	possible	formats	are	HRF	(the	default	value)
and	XML.
Use	either	the	--report_level=<format>	or	-r	<format>	command-line	option	to
specify	the	report	level.	The	possible	formats	are	confirm	(the	default	value),
no	(for	no	report),	short,	and	detailed.
Use	either	the	--report_sink=<stream	or	file	name>	or	-e	<stream	or	file	name>
command-line	option	to	specify	the	location	where	the	framework	should
write	the	report	log.	The	possible	options	are	stderr	(the	default	value),
stdout,	or	an	arbitrary	file	name.



How	it	works...
When	you	run	the	test	module	from	a	console/terminal,	you	see	both	the	test	log
and	test	report,	with	the	test	report	following	the	test	log.	For	the	test	module
shown	earlier,	the	default	output	is	as	follows.	The	first	three	lines	represent	the
test	log	and	the	last	line	the	test	report:

Running	2	test	cases...

f:/chapter11bt_05/main.cpp(14):	error:	in	"test_suite/test_case":	

check	a	==	0	has	failed	[42	!=	0]

***	1	failure	is	detected	in	the	test	module	"Controlling	output"

The	content	of	both	the	test	log	and	test	report	can	be	made	available	in	several
formats.	The	default	is	a	human-readable	format	(or	HRF);	however,	the
framework	also	supports	XML,	and	for	the	test	log,	the	JUNIT	format.	This	is	a
format	intended	for	automated	tools,	such	as	continuous	build	or	integration
tools.	Apart	from	these	options,	you	can	implement	your	own	format	for	the	test
log	by	implementing	your	own	class	derived	from
boost::unit_test::unit_test_log_formatter.	The	next	example	shows	how	to	format
the	test	log	(the	first	example)	and	the	test	report	(the	second	example)	using
XML	(each	highlighted	in	bold):

				chapter11bt_05.exe	-f	XML

				<TestLog><Error	file="f:/chapter11bt_05/main.cpp"	

				line="14"><![CDATA[check	a	==	0	has	failed	[42	!=	0]]]>

				</Error></TestLog>

				***	1	failure	is	detected	in	the	test	module	"Controlling	output"

				chapter11bt_05.exe	-m	XML

				Running	2	test	cases...

				f:/chapter11bt_05/main.cpp(14):	error:	in	"test_suite/test_case":	

				check	a	==	0	has	failed	[42	!=	0]

				<TestResult><TestSuite	name="Controlling	output"	result="failed"	

				assertions_passed="1"	assertions_failed="1"	warnings_failed="0"	

				expected_failures="0"	test_cases_passed="1"	

				test_cases_passed_with_warnings="0"	test_cases_failed="1"	

				test_cases_skipped="0"	test_cases_aborted="0"></TestSuite>

				</TestResult>

The	log	or	report	level	represents	the	verbosity	of	the	output.	The	possible	values
of	the	verbosity	level	of	a	log	are	shown	in	the	following	table,	ordered	from	the
lowest	to	the	highest	level.	A	higher	level	in	the	table	includes	all	the	messages
of	the	levels	above	it.



Level Messages	that	are	reported

nothing Nothing	is	logged

fatal_error

System	or	user	fatal	errors	and	all	the	messages	describing	failed
assertions	on	the	REQUIRE	level	(such	as	BOOST_TEST_REQUIRE	and
BOOST_REQUIRE_)

system_error System	non-fatal	errors
cpp_exception Uncaught	C++	exceptions
error Failed	assertion	on	the	CHECK	level	(BOOST_TEST	and	BOOST_CHECK_)
warning Failed	assertion	on	the	WARN	level	(BOOST_TEST_WARN	and	BOOST_WARN_)
message Messages	generated	by	BOOST_TEST_MESSAGE
test_suite Notification	at	the	start	and	finish	states	of	each	test	unit

all	/	success All	the	messages,	including	passed	assertions

The	available	formats	of	the	test	report	are	described	in	the	following	table:

Level Description
no No	report	is	produced

confirm

Passing	test:
***	No	errors	detected
Skipped	test:
***	The	<name>	test	suite	was	skipped;	see	the	standard	output	for
details
Aborted	test:
***	The	<name>	test	suite	was	aborted;	see	the	standard	output	for
details
Failed	test	without	failed	assertions:
***	Errors	were	detected	in	the	<name>	test	suite;	see	the	standard
output	for	details
Failed	test:
***	N	failures	are	detected	in	the	<name>	test	suite	
Failed	test	with	some	failures	expected:
***	N	failures	are	detected	(M	failures	are	expected)	in	the



<name>	test	suite	

detailed

Results	are	reported	in	a	hierarchical	fashion	(each	test	unit	is	reported	as
part	of	the	parent	test	unit),	but	only	relevant	information	appears.	Test	cases
that	do	not	have	failing	assertions	do	not	produce	entries	in	the	report.

The	test	case/suite	<name>	has	passed/was	skipped/was	aborted/has	failed/
with:

N	assertions	out	of	M	passed
N	assertions	out	of	M	failed
N	warnings	out	of	M	failed
X	failures	expected

short
Similar	to	detailed,	but	this	reports	information	only	to	the	master
test	suite

The	standard	output	stream	(stdout)	is	the	default	location	where	the	test	log	is
written,	and	the	standard	error	stream	(stderr)	is	the	default	location	of	the	test
report.	However,	both	the	test	log	and	test	report	can	be	redirected	to	another
stream	or	file.	In	addition	to	these	options,	it	is	possible	to	specify	a	separate	file
for	reporting	memory	leaks,	using	the	--report_memory_leaks_to=<file	name>
command-line	option.	If	this	option	is	not	present	and	memory	leaks	are
detected,	they	are	reported	to	the	standard	error	stream.



There's	more...
In	addition	to	the	options	discussed	in	this	recipe,	the	framework	provides
additional	compile	time	APIs,	for	controlling	the	output.	For	a	comprehensive
description	of	these	APIs	as	well	as	the	features	described	in	this	recipe,	check
the	framework	documentation	at	http://www.boost.org/doc/libs/1_63_0/libs/test/doc/html/index.
html.

http://www.boost.org/doc/libs/1_63_0/libs/test/doc/html/index.html


See	also
Writing	and	invoking	tests	with	Boost.Test



Getting	started	with	Google	Test
Google	Test	is	one	of	the	most	used	testing	frameworks	of	C++.	It	enables
developers	to	write	unit	tests	on	multiple	platforms,	using	multiple	compilers.
Google	Test	is	a	portable,	lightweight	framework	that	has	a	simple,	yet
comprehensive	API	for	writing	tests	using	asserts;	here,	tests	are	grouped	into
test	cases	and	test	cases	into	test	programs.	The	framework	provides	useful
features,	such	as	repeating	a	test	a	number	of	times	and	breaking	a	test	to	invoke
the	debugger	at	the	first	failure.	Its	assertions	work	regardless	of	whether
exceptions	are	enabled	or	not.	The	next	recipe	will	cover	the	most	important
features	of	the	framework.	This	recipe	will	show	you	how	to	install	the
framework	and	set	up	your	first	testing	project.



Getting	ready
The	Google	Test	framework,	just	like	Boost.Test,	has	a	macro-based	API.
Although	you	only	need	to	use	the	supplied	macros	for	writing	tests,	a	good
understanding	of	macros	is	recommended	in	order	to	use	the	framework	well.



How	to	do	it...
In	order	to	set	up	your	environment	to	use	Google	Test,	do	the	following:

1.	 Clone	or	download	the	Git	repository	from	https://github.com/google/googletest.
2.	 Once	you	download	the	repository,	unzip	the	content	of	the	archive.
3.	 Build	the	framework	using	the	provided	build	scripts.

To	create	your	first	test	program	using	Google	Test,	do	the	following:

1.	 Create	a	new	empty	C++	project.
2.	 Do	the	necessary	setup	specific	to	the	development	environment	you	are

using	to	make	the	framework's	headers	folder	available	to	the	project	for
including	header	files.

3.	 Link	the	project	to	the	gtest	shared	library.
4.	 Add	a	new	source	file	to	the	project	with	the	following	content:

								#include	<gtest/gtest.h>

								TEST(FirstTestCase,	FirstTestFunction)

								{

										ASSERT_TRUE(true);

								}

								int	main(int	argc,	char	**argv)	

								{

										::testing::InitGoogleTest(&argc,	argv);

										return	RUN_ALL_TESTS();

								}

5.	 Build	and	run	the	project.

https://github.com/google/googletest


How	it	works...
The	Google	Test	framework	provides	a	simple	and	easy-to-use	set	of	macros	for
creating	tests	and	writing	assertions.	The	test's	structure	is	also	simplified
compared	to	other	testing	frameworks,	such	as	Boost.Test.	Test	functions	are
grouped	into	test	cases	and	test	cases	into	test	programs.	It	is	important	to	notice
that	a	test	function	in	Google	Test	is	equivalent	to	a	test	case	in	Boost.Test	and
other	frameworks,	and	a	test	case	in	Google	Test	is	equivalent	to	a	test	suite	in
Boost.Test.	However,	test	cases	in	Google	Test	cannot	contain	other	test	cases,
but	only	test	functions.	The	framework	provides	a	rich	set	of	assertions,	both
fatal	and	non-fatal,	great	support	for	exception	handling,	and	the	ability	to
customize	the	way	tests	are	executed	and	how	the	output	should	be	generated.
Documentation	on	this	framework	is	available	on	GitHub's	project	page.	The
sample	code	shown	in	the	previous	section	contains	the	following	parts:

1.	 #include	<gtest/gtest.h>	includes	the	main	header	of	the	framework.
2.	 TEST(FirstTestCase,	FirstTestFunction)	declares	a	test	function	called

FirstTestFunction	as	part	of	a	test	case	called	FirstTestCase.	A	test	function	has
no	arguments	and	returns	void.	Multiple	test	functions	can	be	grouped	with
the	same	test	case.

3.	 ASSERT_TRUE(true);	is	an	assertion	macro	that	yields	a	fatal	error	and	returns
from	the	current	function	in	case	the	condition	evaluates	to	false.	The
framework	defines	many	more	assertion	macros,	which	we	will	see	in	the
Asserting	with	Google	Test	recipe.	

4.	 ::testing::InitGoogleTest(&argc,	argv);	initializes	the	framework	and	must	be
called	before	RUN_ALL_TESTS().

5.	 return	RUN_ALL_TESTS();	automatically	detects	and	calls	all	the	tests	defined
with	either	the	TEST()	or	TEST_F()	macro.	The	return	value	returned	from	the
macro	is	used	as	the	return	value	of	the	main()	function.	This	is	important,
because	the	automated	testing	service	determines	the	result	of	a	test
program	according	to	the	value	returned	from	the	main()	function,	not	the
output	printed	to	the	stdout	or	stderr	streams.	The	RUN_ALL_TESTS()	macro	must
be	called	only	once;	calling	it	multiple	times	is	not	supported	because	it
conflicts	with	some	advanced	features	of	the	framework.

Executing	this	test	program	will	provide	the	following	result:



Executing	this	test	program	will	provide	the	following	result:

[==========]	Running	1	test	from	1	test	case.

[----------]	Global	test	environment	set-up.

[----------]	1	test	from	FirstTestCase

[	RUN	]	FirstTestCase.FirstTestFunction

[	OK	]	FirstTestCase.FirstTestFunction	(0	ms)

[----------]	1	test	from	FirstTestCase	(0	ms	total)

[----------]	Global	test	environment	tear-down

[==========]	1	test	from	1	test	case	ran.	(2	ms	total)

[	PASSED	]	1	test.

For	many	test	programs,	the	content	of	the	main()	function	is	identical	to	the	one
shown	in	this	recipe,	in	the	example	from	the	How	to	do	it...	section.	To	avoid
writing	such	a	main()	function,	the	framework	provides	a	basic	implementation
that	you	can	use	by	linking	your	program	with	the	gtest_main	shared	library.



There's	more...
The	Google	Test	framework	can	also	be	used	with	other	testing	frameworks.
You	can	write	tests	using	another	testing	framework,	such	as	Boost.Test	or
CppUnit,	and	use	the	Google	Test	assertion	macros.	To	do	so,	set	the
throw_on_failure	flag,	either	from	the	code	or	command	line,	with	the	--
gtest_throw_on_failure	argument.	Alternatively,	use	the
GTEST_THROW_ON_FAILURE	environment	variable	and	initialize	the	framework,	as	shown
in	the	following	code	snippet:

				#include	"gtest/gtest.h"

				int	main(int	argc,	char**	argv)

				{

						::testing::GTEST_FLAG(throw_on_failure)	=	true;

						::testing::InitGoogleTest(&argc,	argv);

				}

When	you	enable	the	throw_on_failure	option,	assertions	that	fail	will	print	an	error
message	and	throw	an	exception,	which	would	be	caught	by	the	host	testing
framework	and	treated	as	a	failure.	If	exceptions	are	not	enabled,	then	a	failed
Google	Test	assertion	will	indicate	your	program	to	exit	with	a	non-zero	code,
which	again	will	be	treated	as	a	failure	by	the	host	testing	framework.



See	also
Writing	and	invoking	tests	with	Google	Test
Asserting	with	Google	Test



Writing	and	invoking	tests	with
Google	Test
In	the	previous	recipe,	we	had	a	glimpse	of	what	it	takes	to	write	simple	tests
with	the	Google	Test	framework.	Multiple	tests	can	be	grouped	into	a	test	case
and	one	or	more	test	cases	grouped	into	a	test	program.	In	this	recipe,	we	will
see	how	to	create	and	run	tests.



Getting	ready
For	the	sample	code	in	this	recipe,	use	the	point3d	class	discussed	in	the	Writing
and	invoking	tests	with	Boost.Test	recipe.	



How	to	do	it...
Use	the	following	macros	to	create	tests:

TEST(TestCaseName,	TestName)	defines	a	test	called	TestName	as	part	of	a	test	case
called	TestCaseName:

								TEST(TestConstruction,	TesConstructor)

								{

										auto	p	=	point3d{	1,2,3	};

										ASSERT_EQ(p.x(),	1);

										ASSERT_EQ(p.x(),	2);

										ASSERT_EQ(p.x(),	3);

								}

								TEST(TestConstruction,	TestOrigin)

								{

										auto	p	=	point3d::origin();

										ASSERT_EQ(p.x(),	0);

										ASSERT_EQ(p.x(),	0);

										ASSERT_EQ(p.x(),	0);

								}

TEST_F(TestCaseWithFixture,	TestName)	defines	a	test	called	TestName	as	part	of	a
test	case,	using	a	fixture	called	TestCaseWithFixture.	You'll	find	details	about
how	this	works	in	the	Using	test	fixtures	with	Google	Test	recipe.	

To	execute	the	tests,	do	the	following:

Use	the	RUN_ALL_TESTS()	macro	to	run	all	the	tests	defined	in	the	test	program.
This	must	be	called	only	once	from	the	main()	function	after	the	framework
has	been	initialized.
Use	the	--gtest_filter=<filter>	command-line	option	to	filter	the	tests	to	run.
Use	the	--gtest_repeat=<count>	command-line	option	to	repeat	the	selected
tests	the	specified	number	of	times.
Use	the	--gtest_break_on_failure	command-line	option	to	attach	the	debugger
to	debug	the	test	program	when	the	first	test	fails.



How	it	works...
There	are	several	macros	available	for	defining	tests	(as	part	of	a	test	case).	The
most	common	ones	are	TEST	and	TEST_F.	The	latter	is	used	with	fixtures,	which	will
be	discussed	in	detail	in	a	later	recipe.	Other	macros	for	defining	tests	are
TYPED_TEST	for	writing	typed	tests	and	TYPED_TEST_P	for	writing	type-parameterized
tests.	However,	these	are	more	advanced	topics	and	are	beyond	the	scope	of	this
book.	The	TEST	and	TEST_F	macros	take	two	arguments:	the	first	is	the	name	of	the
test	case	and	the	second	is	the	name	of	the	test.	These	two	form	the	full	name	of
a	test,	and	they	must	be	valid	C++	identifiers;	they	should	not	contain
underscores,	though.	Different	test	cases	can	contain	tests	with	the	same	name
(because	the	full	name	is	still	unique).	Both	the	macros	automatically	register	the
tests	with	the	framework;	therefore,	no	explicit	input	is	required	from	the	user	to
do	this.

A	test	can	either	fail	or	succeed.	A	test	fails	if	an	assertion	fails	or	an	uncaught
exception	occurs.	Except	for	these	two	instances,	the	test	always	succeeds.

To	invoke	the	test,	call	RUN_ALL_TESTS(),	but	you	can	do	this	only	once	in	a	test
program	and	only	after	the	framework	has	been	initialized	with	a	call	to
::testing::InitGoogleTest().	This	macro	runs	all	the	tests	in	the	test	program.
However,	it	is	possible	that	you	select	only	some	tests	to	run.	You	can	do	this
either	by	setting	up	an	environment	variable	called	GTEST_FILTER	with	the
appropriate	filter,	or	passing	the	filter	as	a	command-line	argument	with	the	--
gtest_filter	flag.		If	any	of	these	two	are	present,	the	framework	only	runs	the
tests	whose	full	name	matches	the	filter.	The	filter	may	include	wildcards:	*	to
match	any	string	and	?	to	match	any	character.	Negative	patterns	(what	should	be
omitted)	are	introduced	with	a	hyphen	(-).	The	following	are	examples	of	filters:

Filter Description
--gtest_filter=* Run	all	the	tests

--gtest_filter=TestConstruction.*
Run	all	the	tests	from	the	test	case	called
TestConstruction

Run	all	the	tests	from	the	test	case	called



--gtest_filter=TestOperations.*-

TestOperations.TestLess
TestOperations,	except	for	a	test	called
TestLess

--

gtest_filter=*Operations*:*Construction*

Run	all	the	tests	whose	full	name	contains
either	Operations	or	Construction

The	following	listing	is	the	output	of	a	test	program	containing	the	tests	shown
earlier	when	invoked	with	the	command-line	argument	--
gtest_filter=TestConstruction.*-TestConstruction.TestConstructor:

Note:	Google	Test	filter	=	TestConstruction.*-TestConstruction.TestConstructor

[==========]	Running	1	test	from	1	test	case.

[----------]	Global	test	environment	set-up.

[----------]	1	test	from	TestConstruction

[	RUN	]	TestConstruction.TestOrigin

[	OK	]	TestConstruction.TestOrigin	(0	ms)

[----------]	1	test	from	TestConstruction	(3	ms	total)

[----------]	Global	test	environment	tear-down

[==========]	1	test	from	1	test	case	ran.	(6	ms	total)

[	PASSED	]	1	test.



See	also
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Asserting	with	Google	Test
The	Google	Test	framework	provides	a	rich	set	of	both	fatal	and	non-fatal
assertion	macros,	which	resemble	function	calls,	to	verify	the	tested	code.	When
these	assertions	fail,	the	framework	displays	the	source	file,	line	number,	and
relevant	error	message	(including	custom	error	messages)	to	help	developers
quickly	identify	the	failed	code.	We	have	already	seen	some	simple	examples	on
how	to	use	the	ASSERT_TRUE	macro;	in	this	recipe,	we	will	look	at	other	available
macros.



How	to	do	it...
Use	the	following	macros	to	verify	the	tested	code:

Use	ASSERT_TRUE(condition)	or	EXPECT_TRUE(condition)	to	check	whether	the
condition	is	true	and	ASSERT_FASE(condition)	or	EXPECT_FALSE(condition)	to	check
whether	the	condition	is	false,	as	shown	in	the	following	code:	

								EXPECT_TRUE(2	+	2	==	2	*	2);

								EXPECT_FALSE(1	==	2);

								ASSERT_TRUE(2	+	2	==	2	*	2);

								ASSERT_FALSE(1	==	2);

Use	ASSERT_XX(val1,	val2)	or	EXPECT_XX(val1,	val2)	to	compare	the	two	values,
where	XX	is	one	of	the	following:	EQ(val1	==	val2),	NE(val1	!=	val2),	LT(val1	<
val2),	LE(val1	<=	val2),	GT(val1	>	val2),	or	GE(val1	>=	val2).	This	is	illustrated	in
the	following	code:

								auto	a	=	42,	b	=	10;

								EXPECT_EQ(a,	42);

								EXPECT_NE(a,	b);

								EXPECT_LT(b,	a);

								EXPECT_LE(b,	11);

								EXPECT_GT(a,	b);

								EXPECT_GE(b,	10);

Use	ASSERT_STRXX(str1,	str2)	or	EXPECT_STRXX(str1,	str2)	to	compare	the	two	null-
terminated	strings,	where	XX	is	one	of	the	following:	EQ	(the	strings	have	the
same	content),	NE	(the	strings	don't	have	the	same	content),	CASEEQ	(the
strings	have	the	same	content	with	the	case	ignored),	and	CASENE	(the	strings
don't	have	the	same	content	with	the	case	ignored).	This	is	illustrated	in	the
following	code	snippet:

								auto	str	=	"sample";

								EXPECT_STREQ(str,	"sample");

								EXPECT_STRNE(str,	"simple");

								ASSERT_STRCASEEQ(str,	"SAMPLE");

								ASSERT_STRCASENE(str,	"SIMPLE");

Use	ASSERT_FLOAT_EQ(val1,	val2)	or	EXPECT_FLOAT_EQ(val1,	val2)	to	check	whether
the	two	float	values	are	almost	equal	and	ASSERT_DOUBLE_EQ(val1,	val2)	or
EXPECT_DOUBLE_EQ(val1,	val2)	to	check	whether	the	two	double	values	are	almost



equal;	they	should	differ	by	at	most	4	ULP	(units	in	the	last
place).	Use	ASSERT_NEAR(val1,	val2,	abserr)	or	ASSERT_NEAR(val1,	val2,	abserr)	to
check	whether	the	difference	between	the	two	values	is	not	greater	than	the
specified	absolute	value:

								EXPECT_FLOAT_EQ(1.9999999f,	1.9999998f);

								ASSERT_FLOAT_EQ(1.9999999f,	1.9999998f);

Use	ASSERT_THROW(statement,	exception_type)	or	EXPECT_THROW(statement,
exception_type)	to	check	whether	the	statement	throws	an	exception	of	the
specified	type,	ASSERT_ANY_THROW(statement)	or	EXPECT_ANY_THROW(statement)	to	check
whether	the	statement	throws	an	exception	of	any	type,	and
ASSERT_NO_THROW(statement)	or	EXPECT_NO_THROW(statement)	to	check	whether	the
statement	throws	any	exception	or	not:

								void	function_that_throws()

								{

										throw	std::runtime_error("error");

								}

								void	function_no_throw()

								{

								}

								EXPECT_THROW(function_that_throws(),

																					std::runtime_error);

								EXPECT_ANY_THROW(function_that_throws());

								EXPECT_NO_THROW(function_no_throw());

								ASSERT_THROW(function_that_throws(),

																					std::runtime_error);

								ASSERT_ANY_THROW(function_that_throws());

								ASSERT_NO_THROW(function_no_throw());

Use	ASSERT_PRED1(pred,	val)	or	EXPECT_PRED1(pred,	val)	to	check	whether	pred(val)
returns	true,	ASSERT_PRED2(pred,	val1,	val2)	or	EXPECT_PRED2(pred,	val1,	val2)	to
check	whether	pred(val1,	val2)	returns	true,	and	so	on;	use	this	for	n-ary
predicate	functions	or	functors:

								bool	is_positive(int	const	val)

								{

										return	val	!=	0;

								}

								bool	is_double(int	const	val1,	int	const	val2)

								{

										return	val2	+	val2	==	val1;

								}

								EXPECT_PRED1(is_positive,	42);

								EXPECT_PRED2(is_double,	42,	21);

								ASSERT_PRED1(is_positive,	42);



								ASSERT_PRED1(is_positive,	42);

								ASSERT_PRED2(is_double,	42,	21);

Use	ASSERT_HRESULT_SUCCEEDED(expr)	or	EXPECT_HRESULT_SUCCEEDED(expr)	to	check
whether	expr	is	a	success	HRESULT	and	ASSERT_HRESULT_FAILED(expr)	or
EXPECT_HRESULT_FAILED(expr)	to	check	whether	expr	is	a	failure	HRESULT.	These
assertions	are	intended	to	be	used	on	Windows.
Use	FAIL()	to	generate	a	fatal	failure	and	ADD_FAILURE()	or
ADD_FAILURE_AT(filename,	line)	to	generate	non-fatal	failures:

								ADD_FAILURE();

								ADD_FAILURE_AT(__FILE__,	__LINE__);



How	it	works...
All	the	asserts	are	available	in	two	versions:

ASSERT_*:	This	generates	fatal	failures,	preventing	further	execution	of	the
current	test	function.
EXPECT_*:	This	generates	non-fatal	failures,	which	means	that	the	execution	of
the	test	function	continues	even	if	the	assertion	fails.

Use	the	EXPECT_*	assertion	if	not	meeting	the	condition	is	not	a	critical	error	or	if
you	want	the	test	function	to	continue	in	order	to	get	as	many	error	messages	as
possible.	In	other	cases,	use	the	ASSERT_*	version	of	the	test	assertions.

You	will	find	details	about	the	assertions	presented	here	in	the	framework's
online	documentation,	which	is	available	on	GitHub;	this	is	where	the	project	is
located.	A	special	note	on	floating	point	comparison	is,	however,	necessary.	Due
to	round-offs	(fractional	part	cannot	be	represented	as	a	finite	sum	of	the	inverse
powers	of	two),	floating	point	values	do	not	match	exactly.	Therefore
comparison	should	be	done	within	a	relative	error	bound.	The	macros
ASSERT_EQ/EXPECT_EQ	are	not	suitable	for	comparing	floating	points,	and	the
framework	provides	another	set	of	assertions.	ASSERT_FLOAT_EQ/ASSERT_DOUBLE_EQ	and
EXPECT_FLOAT_EQ/EXPECT_DOUBLE_EQ	perform	a	comparison	with	a	default	error	of	4ULP.

ULP	is	a	unit	of	measurement	for	the	spacing	between	floating
point	numbers,	that	is,	the	value	the	least	significant	digit
represents	if	it	is	1.	For	more	information	on	this,	read	the
Comparing	Floating	Point	Numbers,	2012	Edition	article	by	Bruce
Dawson:	https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-nu
mbers-2012-edition/.

https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
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Using	text	fixtures	with	Google	Test
The	framework	provides	support	for	using	fixtures	as	reusable	components	for
all	the	tests	that	are	part	of	a	test	case.	It	also	provides	support	for	setting	up	the
global	environment	in	which	the	tests	would	run.	In	this	recipe,	you	will	find
stepwise	instructions	on	how	to	define	and	use	test	fixtures	and	also	set	up	the
test	environment.



Getting	ready
You	should	now	be	familiar	with	writing	and	invoking	tests	using	the	Google
Test	framework,	a	topic	which	was	covered	earlier	in	this	chapter,	specifically	in
the	Writing	and	invoking	tests	with	Google	Test	recipe.	



How	to	do	it...
To	create	and	use	a	test	fixture,	do	the	following:

1.	 Create	a	class	derived	from	the	::testing::Test	class:

								class	TestFixture	:	public	::testing::Test

								{

								};

2.	 Use	the	constructor	to	initialize	the	fixture	and	the	destructor	to	clean	it	up:

								protected:

										TestFixture()

										{

												std::cout	<<	"constructing	fixture"	<<	std::endl;

												data.resize(10);

												std::iota(std::begin(data),	std::end(data),	1);

										}

										~TestFixture()

										{

												std::cout	<<	"destroying	fixture"	<<	std::endl;

										}

3.	 Alternatively,	you	can	override	the	virtual	methods	SetUp()	and	TearDown()	for
the	same	purpose.

4.	 Add	member	data	and	functions	to	the	class	to	make	them	available	to	the
tests:

								protected:

										std::vector<int>	data;

5.	 Use	the	TEST_F	macro	to	define	tests	using	fixtures,	and	specify	the	fixture
class	name	as	the	test	case	name:

								TEST_F(TestFixture,	TestData)

								{

										ASSERT_EQ(data.size(),	10);

										ASSERT_EQ(data[0],	1);

										ASSERT_EQ(data[data.size()-1],	data.size());

								}

To	customize	the	setting	up	of	the	environment	for	running	tests,	do	the
following:



1.	 Create	a	class	derived	from	::testing::Environment:

								class	TestEnvironment	:	public	::testing::Environment

								{

								};

2.	 Override	the	virtual	methods	SetUp()	and	TearDown()	to	perform	setup	and
cleanup	operations:

								public:

										virtual	void	SetUp()	override	

										{

												std::cout	<<	"environment	setup"	<<	std::endl;

										}

										virtual	void	TearDown()	override	

										{

												std::cout	<<	"environment	cleanup"	<<	std::endl;

										}

										int	n{	42	};

3.	 Register	the	environment	with	a	call	to	::testing::AddGlobalTestEnvironment()
before	calling	RUN_ALL_TESTS():

								int	main(int	argc,	char	**argv)

								{

										::testing::InitGoogleTest(&argc,	argv);

										::testing::AddGlobalTestEnvironment(new	TestEnvironment{});

										return	RUN_ALL_TESTS();

								}	



How	it	works...
Text	fixtures	enable	users	to	share	data	configurations	between	multiple	tests.
Fixture	objects	are	not	shared	between	tests.	A	different	fixture	object	is	created
for	each	test	that	is	associated	with	the	text	function.	The	following	operations
are	performed	by	the	framework	for	each	test	coming	from	a	fixture:

1.	 Create	a	new	fixture	object.
2.	 Call	its	SetUp()	virtual	method.
3.	 Run	the	test.
4.	 Call	the	fixture's	TearDown()	virtual	method.
5.	 Destroy	the	fixture	object.

You	can	set	up	and	clean	the	fixture	objects	in	two	ways:	using	the	constructor
and	destructor	or	the	pair	of	SetUp()	and	TearDown()	virtual	methods.	For	most
cases,	the	former	way	is	preferred.	The	use	of	virtual	methods	is	suitable	in
several	cases,	though:

When	the	tear-down	operation	throws	an	exception,	as	exceptions	are	not
allowed	to	leave	destructors.
If	you	are	required	to	use	assertion	macros	during	cleanup	and	you	use	the	-
-gtest_throw_on_failure	flag	which	determines	the	macros	to	be	thrown	upon	a
failure.
If	you	need	to	call	virtual	methods	(which	might	be	overridden	in	a	derived
class),	as	virtual	calls	should	not	be	invoked	from	the	constructor	or
destructor.

Tests	which	use	fixtures	must	be	defined	using	the	TEST_F	macro	(where	_F	stands
for	fixture).	Trying	to	declare	them	using	the	TEST	macro	generates	compiler
errors.

The	environments	in	which	tests	are	run	can	also	be	customized.	The	mechanism
is	similar	to	test	fixtures:	you	derive	the	base	testing::Environment	class	and
override	the	SetUp()	and	TearDown()	virtual	functions.	Instances	of	these	derived
environment	classes	must	be	registered	with	the	framework	with	a	call	to
testing::AddGlobalTestEnvironment();	however,	this	has	to	be	done	before	you	run	the



tests.	You	can	register	as	many	instances	as	you	want,	in	which	case	the	SetUp()
method	is	called	for	the	objects	in	the	order	they	were	registered	and	the
TearDown()	method	in	reverse	order.	You	must	pass	dynamically	instantiated
objects	to	this	function.	The	framework	takes	ownership	of	the	objects	and
deletes	them	before	the	program	terminates;	therefore,	do	not	delete	them
yourselves.

Environment	objects	are	neither	available	to	the	tests,	nor	intended
for	providing	data	to	the	tests.	Their	purpose	is	to	customize	the
global	environment	for	running	the	tests.



See	also
Writing	and	invoking	tests	with	Google	Test



Controlling	output	with	Google	Test
By	default,	the	output	of	a	Google	Test	test	program	goes	to	the	standard	stream,
printed	in	a	human-readable	form.	The	framework	provides	several	options	for
customizing	the	output,	including	printing	XML	to	a	disk	file	in	a	JUNIT-based
format.	This	recipe	will	explore	the	options	available	to	control	the	output.



Getting	ready
For	the	purpose	of	this	recipe,	let's	consider	the	following	test	program:

				#include	<gtest/gtest.h>

				TEST(Sample,	Test)

				{

						auto	a	=	42;

						ASSERT_EQ(a,	0);

				}

				int	main(int	argc,	char	**argv)

				{

						::testing::InitGoogleTest(&argc,	argv);

						return	RUN_ALL_TESTS();

				}

Its	output	is	as	follows:

[==========]	Running	1	test	from	1	test	case.

[----------]	Global	test	environment	set-up.

[----------]	1	test	from	Sample

[	RUN	]	Sample.Test

f:/chapter11gt_05/main.cpp(6):	error:	Expected:	a

		Which	is:	42

To	be	equal	to:	0

[	FAILED	]	Sample.Test	(1	ms)

[----------]	1	test	from	Sample	(1	ms	total)

[----------]	Global	test	environment	tear-down

[==========]	1	test	from	1	test	case	ran.	(2	ms	total)

[	PASSED	]	0	tests.

[	FAILED	]	1	test,	listed	below:

[	FAILED	]	Sample.Test

1	FAILED	TEST



How	to	do	it...
To	control	the	output	of	a	test	program,	you	can:

Use	the	--gtest_output	command-line	option	or	the	GTEST_OUTPUT	environment
variable	with	the	xml:filepath	string	to	specify	the	location	of	a	file	where	the
XML	report	is	to	be	written:

						chapter11gt_05.exe	--gtest_output=xml:report.xml

						<?xml	version="1.0"	encoding="UTF-8"?>

						<testsuites	tests="1"	failures="1"	

																		disabled="0"	errors="0"	

																		timestamp="2017-02-25T00:02:27"	

																		time="0.006"	name="AllTests">

							<testsuite	name="Sample"	tests="1"	

																		failures="1"	disabled="0"	

																		errors="0"	time="0.003">

										<testcase	name="Test"	status="run"	time="0.002"	

																				classname="Sample">

												<failure	message="f:/chapter11gt_05/main.cpp:6

							Expected:	a

							Which	is:	42

							To	be	equal	to:	0"	type="">

														<![CDATA[f:/chapter11gt_05/main.cpp:6

																				Expected:	a

																				Which	is:	42

														To	be	equal	to:	0]]></failure>

										</testcase>

								</testsuite>

						</testsuites>

Use	the	--gtest_color	command-line	option	or	the	GTEST_COLOR	environment
variable	and	specify	either	auto,	yes,	or	no	to	indicate	whether	the	report
should	be	printed	to	a	terminal	using	colors	or	not:

						chapter11gt_05.exe	--gtest_color=no

Use	the	--gtest_print_time	command-line	option	or	the	GTEST_PRINT_TIME
environment	variable	with	the	value	0	to	suppress	the	printing	time	each	test
takes	to	execute:

						chapter11gt_05.exe	--gtest_print_time=0

						[==========]	Running	1	test	from	1	test	case.

						[----------]	Global	test	environment	set-up.

						[----------]	1	test	from	Sample

						[	RUN	]	Sample.Test

						f:/chapter11gt_05/main.cpp(6):	error:	Expected:	a



												Which	is:	42

						To	be	equal	to:	0

						[	FAILED	]	Sample.Test

						[----------]	Global	test	environment	tear-down

						[==========]	1	test	from	1	test	case	ran.

						[	PASSED	]	0	tests.

						[	FAILED	]	1	test,	listed	below:

						[	FAILED	]	Sample.Test



How	it	works...
Generating	a	report	in	an	XML	format	does	not	affect	the	human-readable	report
printed	to	the	terminal.	The	output	path	can	indicate	either	a	file,	a	directory	(in
which	case	a	file	with	the	name	of	the	executable	is	created--if	it	already	exists
from	a	previous	run,	it	creates	a	file	with	a	new	name	by	suffixing	it	with	a
number),	or	nothing,	in	which	case	the	report	is	written	to	a	file	called
test_detail.xml	in	the	current	directory.

The	XML	report	format	is	based	on	the	JUnitReport	Ant	task	and	contains	the
following	main	elements:

<testsuites>:	This	is	the	root	element	and	it	corresponds	to	the	entire	test
program.
<testsuite>:	This	corresponds	to	a	test	case,	as	Google	Test	test	cases	are
equivalent	to	test	suites	in	other	frameworks.
<testcase>:	This	corresponds	to	a	test	function,	as	Google	Test	test	functions
are	equivalent	to	test	cases	in	other	frameworks.

By	default,	the	framework	reports	the	time	it	takes	for	each	test	to	execute.	This
feature	can	be	suppressed	using	the	--gtest_print_time	command-line	option	or
the	GTEST_PRINT_TIME	environment	variable,	as	shown	earlier.	This	option	was	the
default	up	to	version	1.3.0.



See	also
Writing	and	invoking	tests	with	Google	Test
Using	test	fixtures	with	Google	Test



Getting	started	with	Catch
Catch	is	a	multiparadigm	header-only	testing	framework	for	C++	and	Objective-
C.	The	name	Catch	stands	for	C++	Automated	Test	Cases	in	Headers.	It	enables
developers	to	write	tests	using	either	the	traditional	style	of	test	functions
grouped	in	test	cases	or	the	Behavior	Driven	Development	(BDD)	style	with
given-when-then	sections.	Tests	are	self-registered	and	the	framework	provides
several	assertion	macros;	out	of	these,	two	are	most	used:	one	fatal,
namely	REQUIRE,	and	one	non-fatal,	namely	CHECK.	They	perform	expression
decomposition	of	both	left-	and	right-hand	side	values	which	are	logged	in	case
of	failure.



Getting	ready
The	Catch	test	framework	has	a	macro-based	API.	Although	you	only	need	to
use	the	supplied	macros	for	writing	tests,	a	good	understanding	of	macros	is
recommended	if	you	want	to	use	the	framework	well.



How	to	do	it...
In	order	to	set	up	your	environment	to	use	the	Catch	testing	framework,	do	the
following:

1.	 Clone	or	download	the	Git	repository	from	https://github.com/philsquared/Catch.
2.	 Once	you	download	the	repository,	unzip	the	content	of	the	archive.

To	create	your	first	test	program	using	Catch,	do	the	following:

1.	 Create	a	new	empty	C++	project.
2.	 Do	the	necessary	setup	specific	to	the	development	environment	you	are

using	to	make	the	framework's	headers	folder	available	to	the	project	for
including	header	files.

3.	 Add	a	new	source	file	to	the	project	with	the	following	content:

								#define	CATCH_CONFIG_MAIN

								#include	"catch.hpp"

								TEST_CASE("first_test_case",	"[learn][catch]")

								{

										SECTION("first_test_function")

										{

												auto	i{	42	};

												REQUIRE(i	==	42);

										}

								}

4.	 Build	and	run	the	project.

https://github.com/philsquared/Catch


How	it	works...
Catch	enables	developers	to	write	test	cases	as	self-registered	functions;	they	can
even	provide	a	default	implementation	for	the	main()	function	so	that	you	can
focus	on	testing	code	and	writing	less	setup	code.	Test	cases	are	divided	into
sections	that	are	run	in	isolation.	The	framework	does	not	adhere	to	the	style	of
the	setup-test-teardown	architecture.	Instead,	the	test	case	sections	(or	rather	the
innermost	ones,	since	sections	can	be	nested)	are	the	units	of	testing	executed
along	with	their	enclosing	sections.	This	makes	the	need	for	fixtures	obsolete,
because	data	and	setup	and	tear-down	code	can	be	reused	on	multiple	levels.

Test	cases	and	sections	are	identified	using	strings,	not	identifiers	(as	in	most
testing	frameworks).	Test	cases	can	also	be	tagged	so	that	tests	can	be	executed
or	listed	based	on	tags.	Test	results	are	printed	in	a	textual	human-readable	form;
however,	they	can	also	be	exported	to	XML,	using	either	a	Catch-specific
schema	or	a	JUNIT	ANT	schema	for	easy	integration	with	continuous	delivery
systems.	The	execution	of	the	tests	can	be	parameterized	to	break	upon	failure
(on	Windows	and	Mac)	so	that	you	can	attach	a	debugger	and	inspect	the
program.

The	framework	is	easy	to	install	and	does	not	require	compilation.	The	entire
code	is	provided	in	the	header	files.	There	are	two	alternatives:	a	single	header
file	or	a	collection	of	header	files	that	include	each	other.	In	both	cases,	the	only
header	file	you	have	to	include	in	your	test	program	is	catch.hpp.

The	sample	code	shown	in	the	previous	section	has	the	following	parts:

1.	 #define	CATCH_CONFIG_MAIN	defines	a	macro	that	instructs	the	framework	to
provide	a	default	implementation	of	the	main()	function.

2.	 #include	"catch.hpp"	includes	the	main	header	of	the	library	(which,	in	turn,
includes	other	headers).

3.	 TEST_CASE("first_test_case",	"[learn][catch]")	defines	a	test	case	called
first_test_case,	which	has	several	associated	tags:	learn	and	catch.	Tags	are
used	to	select	to	either	run	or	just	list	test	cases.	Multiple	test	cases	can	be
tagged	with	the	same	tags.



4.	 SECTION("first_test_function")	defines	a	section,	that	is,	a	test	function,	called
first_test_function,	as	part	of	the	outer	test	case.

5.	 REQUIRE(i	==	42);	is	an	assertion	that	indicates	the	test	to	fail	if	the	condition
is	not	satisfied.

The	output	of	running	this	program	is	as	follows:

=========================================================

All	tests	passed	(1	assertions	in	1	test	cases)



There’s	more...
As	mentioned	before,	the	framework	enables	us	to	write	tests	using	the	BDD
style	with	give-when-then	sections.	This	was	made	possible	using	several
aliases:	SCENARIO	for	TEST_CASE	and	GIVE,	WHEN,	AND_WHEN,	THEN,	and	AND_THEN	for	SECTION.
Using	this	style,	we	can	rewrite	the	test	shown	earlier	as	follows:

				SCENARIO("first_scenario",	"[learn][catch]")

				{

						GIVEN("an	integer")

						{

								auto	i	=	0;

								WHEN("assigned	a	value")

								{

										i	=	42;

										THEN("the	value	can	be	read	back")

										{

												REQUIRE(i	==	42);

										}

								}

						}

				}

When	executed	successfully,	the	program	prints	the	following	output:

=========================================================

All	tests	passed	(1	assertions	in	1	test	cases)

However,	upon	failure	(let's	suppose	we	got	the	wrong	condition:	i	==	0),	the
description	provided	for	the	scenario	and	the	sections	that	failed	is	printed	along
with	the	expression	that	failed	and	the	values	on	the	left-	and	right-hand	sides,	as
shown	in	the	following	snippet:

---------------------------------------------------------

Scenario:	first_scenario

	Given:	an	integer

	When:	assigned	a	value

	Then:	the	value	can	be	read	back

---------------------------------------------------------

	f:\chapter11ca_01\main.cpp(21)

.........................................................

	f:\chapter11ca_01\main.cpp(23):	FAILED:

	REQUIRE(	i	==	0	)

	with	expansion:

		42	==	0



See	also
Writing	and	invoking	tests	with	Catch
Asserting	with	Catch



Writing	and	invoking	tests	with
Catch
The	Catch	framework	enables	you	to	write	tests	using	either	the	traditional	style
of	test	cases	and	test	functions	or	the	BDD	style	with	scenarios	and	given-when-
then	sections.	Tests	are	defined	as	separate	sections	of	a	test	case	and	can	be
nested	as	deep	as	you	want.	Whichever	style	you	prefer,	tests	are	defined	with
only	two	base	macros.	This	recipe	will	show	what	these	macros	are	and	how
they	work.



How	to	do	it...
To	write	tests	using	the	traditional	style,	with	test	cases	and	test	functions,	do
this:

Use	the	TEST_CASE	macro	to	define	a	test	case	with	a	name	(as	a	string),	and
optionally,	a	list	of	its	associated	tags:

								TEST_CASE("test	construction",	"[create]")

								{

										//	define	sections	here

								}

Use	the	SECTION	macro	to	define	a	test	function	inside	a	test	case,	with	name	as
a	string:

								TEST_CASE("test	construction",	"[create]")

								{

										SECTION("test	constructor")

										{

												auto	p	=	point3d{	1,2,3	};

												REQUIRE(p.x()	==	1);

												REQUIRE(p.y()	==	2);

												REQUIRE(p.z()	==	4);

										}

								}

Define	nested	sections	if	you	want	to	reuse	the	setup	and	teardown	code	or
organize	your	tests	in	a	hierarchical	structure:

								TEST_CASE("test	operations",	"[modify]")

								{

										SECTION("test	methods")

										{

												SECTION("test	offset")

												{

														auto	p	=	point3d{	1,2,3	};

														p.offset(1,	1,	1);

														REQUIRE(p.x()	==	2);

														REQUIRE(p.y()	==	3);

														REQUIRE(p.z()	==	3);

												}

										}

								}

To	write	tests	using	the	BDD	style,	do	this:

Define	scenarios	using	the	SCENARIO	macro,	specifying	a	name	for	it:



								SCENARIO("modify	existing	object")

								{

										//	define	sections	here

								}

Define	nested	sections	inside	the	scenario	using	the	GIVEN,	WHEN,	and	THEN
macros,	specifying	a	name	for	each	one	of	them:

								SCENARIO("modify	existing	object")

								{

										GIVEN("a	default	constructed	point")

										{

												auto	p	=	point3d{};

												REQUIRE(p.x()	==	0);

												REQUIRE(p.y()	==	0);

												REQUIRE(p.z()	==	0);

												WHEN("increased	with	1	unit	on	all	dims")

												{

														p.offset(1,	1,	1);

														THEN("all	coordinates	are	equal	to	1")

														{

																REQUIRE(p.x()	==	1);

																REQUIRE(p.y()	==	1);

																REQUIRE(p.z()	==	1);

														}

												}

										}

								}

To	execute	the	tests,	do	the	following:

To	execute	all	the	tests	from	your	program	(except	hidden	ones),	run	the
test	program	without	any	command-line	arguments	(from	the	ones
described	in	the	following	code).
To	execute	only	a	specific	set	of	test	cases,	provide	a	filter	as	a	command-
line	argument.	This	can	contain	test	case	names,	wildcards,	tag	names,	and
tag	expressions:

						chapter11ca_02.exe	"test	construction"

						test	construction

									test	constructor

						-------------------------------------------------

						f:\chapter11ca_02\main.cpp(7)

						.................................................

						f:\chapter11ca_02\main.cpp(12):	FAILED:

								REQUIRE(	p.z()	==	4	)

						with	expansion:

								3	==	4

						=================================================

						test	cases:	1	|	1	failed

						assertions:	6	|	5	passed	|	1	failed



To	execute	only	a	particular	section	(or	set	of	sections),	use	the	command-
line	argument	--section	or	-c	with	the	section	name	(can	be	used	multiple
times	for	multiple	sections):

						chapter11ca_02.exe	"test	construction"	--section	"test	origin"

						==================================================

						All	tests	passed	(3	assertions	in	1	test	case)

To	specify	the	order	in	which	test	cases	should	be	run,	use	the	command-
line	argument	--order	with	one	of	the	values:	decl	(for	the	order	of
declaration),	lex	(for	a	lexicographic	ordering	by	the	name),	or	rand	(for	a
random	order	determined	with	std::random_shuffle()).	Here's	an	illustration	of
this:

						chapter11ca_02.exe	--order	lex



How	it	works...
Test	cases	are	self-registered	and	do	not	require	any	additional	work	from	the
developer	to	set	the	test	program,	other	than	defining	the	test	cases	and	test
functions.	Tests	functions	are	defined	as	sections	of	test	cases	(using	the	SECTION
macro),	and	they	can	be	nested.	There	is	no	limit	to	the	depth	of	section	nesting.
Test	cases	and	test	functions,	which	further	will	be	referred	to	as	sections,	form	a
tree	structure,	with	the	test	cases	on	the	root	nodes	and	the	most	inner	sections	as
leafs.	When	the	test	program	runs,	it	is	the	leaf	sections	that	are	executed.	Each
leaf	section	is	executed	in	isolation	of	the	other	leaf	section.	However,	the
execution	path	starts	at	the	root	test	case	and	continues	downward	toward	the
innermost	section.	All	of	the	code	encountered	on	the	path	is	executed	entirely
for	each	run.	This	means	that	when	multiple	sections	share	common	code	(from
a	parent	section	or	the	test	case),	the	same	code	is	executed	once	for	each
section,	without	any	data	being	shared	between	executions.	This	has	the	effect
that	it	eliminates	the	need	for	a	special	fixture	approach	on	one	hand.	On	the
other	hand,	it	enables	multiple	fixtures	for	each	section	(everything	that	is
encountered	up	in	the	path),	a	feature	that	many	testing	frameworks	lack.

The	BDD	style	of	writing	test	cases	is	powered	by	the	same	two	macros,
namely	TEST_CASE	and	SECTION,	and	the	ability	to	test	sections.	In	fact,	the	macro
SCENARIO	is	a	redefinition	of	TEST_CASE	and	GIVEN,	WHEN,	AND_WHEN,	THEN,	and	AND_THEN	are
redefinitions	of	SECTION:

				#define	SCENARIO(...)	TEST_CASE("Scenario:	"	__VA_ARGS__)

				#define	GIVEN(desc)	SECTION(std::string("	Given:	")	+	

																															desc,	"")

				#define	WHEN(desc)	SECTION(std::string("	When:	")	+	

																															desc,	"")

				#define	AND_WHEN(desc)	SECTION(std::string("And	when:	")	+

																															desc,	"")

				#define	THEN(desc)	SECTION(std::string("	Then:	")	+	

																															desc,	"")

				#define	AND_THEN(desc)	SECTION(std::string("	And:	")	+	

																															desc,	"")

When	you	execute	a	test	program,	all	defined	tests	are	run.	This,	however,
excludes	hidden	tests,	which	are	specified	either	using	a	name	that	starts	with	./
or	a	tag	that	starts	with	a	period.	It	is	possible	to	force	the	running	of	hidden	tests
too	by	providing	the	command-line	argument	[.]	or	[hide].



It	is	possible	to	filter	the	test	cases	to	execute.	This	can	be	done	using	either	the
name	or	the	tags.	The	following	table	displays	some	of	the	possible	options:

Argument Description
"test

construction" The	test	case	called	test	construction

test* All	test	cases	that	start	with	test
~"test

construction" All	test	cases,	except	the	one	called	test	construction

~*equal* All	test	cases,	except	those	that	contain	the	word	equal
[modify] All	test	cases	tagged	with	[modify]

[modify],[compare]

[op]

All	test	cases	that	are	tagged	with	either	[modify]	or	both
[compare]	and	[op]

The	execution	of	particular	test	functions	is	also	possible	by	specifying	one	or
more	section	names	with	the	command-line	argument	--section	or	-c.	If	you	do
so,	be	aware	that	the	entire	test	path	from	the	root	test	case	to	the	selected
section	will	be	executed.	Moreover,	if	you	do	not	specify	a	test	case	or	a	set	of
test	cases	first,	then	all	the	test	cases	will	be	executed,	though	only	the	matching
sections	within	them.



See	also
Getting	started	with	Catch
Asserting	with	Catch



Asserting	with	Catch
Unlike	other	testing	frameworks,	Catch	does	not	provide	a	large	set	of	assertion
macros.	It	has	two	main	macros:	REQUIRE,	which	produces	a	fatal	error	stopping
the	execution	of	the	test	case	upon	failure	and	CHECK,	which	produces	a	non-fatal
error	upon	failure,	continuing	the	execution	of	the	test	case.	Several	additional
macros	are	defined;	in	this	recipe,	we	will	see	how	to	put	them	to	work.



Getting	ready
You	should	now	be	familiar	with	writing	test	cases	and	test	functions	using
Catch,	a	topic	covered	in	the	previous	recipe.



How	to	do	it...
The	following	list	contains	the	available	options	for	asserting	with	the	Catch
framework:

Use	CHECK(expr)	to	check	whether	expr	evaluates	to	true,	continuing	the
execution	in	case	of	failure,	and	REQUIRE(expr)	to	make	sure	that	expr	evaluates
to	true	and	stop	the	execution	of	the	test	in	case	of	failure:

								int	a	=	42;

								CHECK(a	==	42);

								REQUIRE(a	==	42);

Use	CHECK_FALSE(expr)	and	REQUIRE_FALSE(expr)	to	make	sure	that	expr	evaluates	to
false	and	produce	either	a	non-fatal	or	fatal	error	in	case	of	failure:

								int	a	=	42;

								CHECK_FALSE(a	>	100);

								REQUIRE_FALSE(a	>	100);

Use	the	Approx	class	to	compare	floating	point	values	with	a	given
approximation.	The	method	epsilon()	sets	a	maximum	percentage	(as	a	value
between	0	and	1)	by	which	the	value	can	differ:

								double	a	=	42.5;

								CHECK(42.0	==	Approx(a).epsilon(0.02));

								REQUIRE(42.0	==	Approx(a).epsilon(0.02));

Use	CHECK_NOTHROW(expr)/REQUIRE_NOTHROW(expr)	to	verify	that	expr	does	not	throw
any	error,	CHECK_THROWS(expr)/REQUIRE_THROWS(expr)	to	verify	that	expr	does	throw
an	error	of	any	type,	CHECK_THROW_AS(expr,	exprtype)/REQUIRE_THROW_AS(expr,
exprtype)	to	verify	that	expr	throws	an	exception	of	the	type	exprtype,	or
CHECK_THROWS_WITH(expression,	string	or	string

matcher)/REQUIRE_THROWS_WITH(expression,	string	or	string	matcher)	to	verify	that
expr	throws	an	expression	whose	description	matches	the	specified	string:

								void	function_that_throws()

								{

										throw	std::runtime_error("error");

								}

								void	function_no_throw()

								{

								}



								}

								CHECK_NOTHROW(function_no_throw());

								REQUIRE_NOTHROW(function_no_throw());

								CHECK_THROWS(function_that_throws());

								REQUIRE_THROWS(function_that_throws());

								CHECK_THROWS_AS(function_that_throws(),	

																								std::runtime_error);

								REQUIRE_THROWS_AS(function_that_throws(),	

																										std::runtime_error);

								CHECK_THROWS_WITH(function_that_throws(),	

																										"error");

								REQUIRE_THROWS_WITH(function_that_throws(),	

																Catch::Matchers::Contains("error"));

Use	CHECK_THAT(value,	matcher	expression)/REQUIRE_THAT(expr,	matcher	expression)	to
check	whether	the	given	matcher	expression	evaluates	to	true	for	the
specified	value:

								std::string	text	=	"this	is	an	example";

								CHECK_THAT(text,

										Catch::Matchers::Contains("EXAMPLE",	Catch::CaseSensitive::No));

								REQUIRE_THAT(text,

										Catch::Matchers::StartsWith("this")	&&	

										Catch::Matchers::Contains("an"));

Use	FAIL	(message)	to	report	message	and	fail	the	test	case,	WARN	(message)	to	log
the	message	without	stopping	the	execution	of	the	test	case,	and	INFO(message)
to	log	the	message	to	a	buffer	and	only	report	it	with	the	next	assertion	that
would	fail.



How	it	works...
The	REQUIRE/CATCH	family	of	macros	decompose	the	expression	into	its	left-	and
right-hand	side	terms	and,	upon	failure,	report	the	location	of	the	failure	(source
file	and	line),	the	expression,	and	the	values	on	the	left-	and	right-hand	side:

				f:\chapter11ca_03\main.cpp(19):	FAILED:

						REQUIRE(	a	==	1	)

				with	expansion:

						42	==	1

However,	these	macros	do	not	support	complex	expressions	composed	using
logical	operators,	such	as	&&	and	||.	The	following	example	is	an	error:

				REQUIRE(a	<	10	||	a	%2	==	0);	//	error

The	solution	for	this	is	to	create	a	variable	to	hold	the	result	of	the	expression
evaluation	and	use	it	in	the	assertion	macros.	In	this	case,	however,	the	ability	to
print	the	expansion	of	the	elements	of	the	expression	is	lost:

				auto	expr	=	a	<	10	||	a	%	2	==	0;

				REQUIRE(expr);

Special	handling	is	provided	to	floating	point	values.	The	framework	provides	a
class	called	Approx;	it	overloads	the	equality/inequality	and	comparison	operators
with	values	through	which	a	double	value	can	be	constructed.	The	margin	by
which	the	two	values	can	either	differ	or	be	considered	equal	can	be	specified	as
a	percentage	of	the	given	value.	This	is	set	using	the	member	function	epsilon().
The	value	must	be	between	0	and	1	(for	example,	the	value	of	0.05	is	5	percent).
The	default	value	of	epsilon	is	set	to	std::numeric_limits<float>::epsilon()*100.

Two	sets	of	assertions,	namely	CHECK_THAT/REQUIRE_THAT	and
CHECK_THROWS_WITH/REQUIRE_THROWS_WITH	,	work	with	matchers.	Matchers	are	extensible
and	composable	components	which	perform	value	matching.	The	framework
provides	several	matchers	for	strings	(such	as	StartsWith,	EndsWith,	Contains,	or
Equal)	and	for	std::vector	(Contains,	VectorContains	and	Equal).

The	difference	between	Contains()	and	VectorContains()	is	that
Contains()	searches	for	a	vector	in	another	vector	and



VectorContains()	searches	for	a	single	element	inside	a	vector.

You	can	create	your	own	matchers,	either	to	extend	the	existing	framework
capabilities	or	to	work	with	your	own	types.	There	are	two	things	that	are
necessary:

1.	 A	matcher	class	derived	from	Catch::MatcherBase<T>,	where	T	is	the	type	being
compared.	There	are	two	virtual	functions	that	must	be	overridden:
match()	which	takes	a	value	to	match	and	returns	a	Boolean	indicating
whether	the	match	was	successful,	and	describe()	which	takes	no
arguments	but	returns	a	string	describing	the	matcher.

2.	 A	builder	function	that	is	called	from	the	test	code.

The	following	example	defines	a	matcher	for	the	point3d	class,	which	we	have
seen	throughout	the	chapter,	to	check	whether	a	given	3D	point	lies	on	a	line	in
the	three-dimensional	space:

				class	OnTheLine	:	public	Catch::MatcherBase<point3d>

				{

						point3d	const	p1;

						point3d	const	p2;

				public:

						OnTheLine(point3d	const	&	p1,	point3d	const	&	p2):

								p1(p1),	p2(p2)

						{}

						virtual	bool	match(point3d	const	&	p)	const	override

						{

								auto	rx	=	p2.x()	-	p1.x()	!=	0	?	

																	(p.x()	-	p1.x())	/	(p2.x()	-	p1.x())	:	0;

								auto	ry	=	p2.y()	-	p1.y()	!=	0	?	

																	(p.y()	-	p1.y())	/	(p2.y()	-	p1.y())	:	0;

								auto	rz	=	p2.z()	-	p1.z()	!=	0	?	

																	(p.z()	-	p1.z())	/	(p2.z()	-	p1.z())	:	0;

								return	

										Approx(rx).epsilon(0.01)	==	ry	&&

										Approx(ry).epsilon(0.01)	==	rz;

						}

				protected:

						virtual	std::string	describe()	const

						{

								std::ostringstream	ss;

								ss	<<	"on	the	line	between	"	<<	p1	<<	"	and	"	<<	p2;

								return	ss.str();

						}

				};

				inline	OnTheLine	IsOnTheLine(point3d	const	&	p1,	

																																	point3d	const	&	p2)

				{

						return	OnTheLine	{p1,	p2};

				}



The	following	test	case	contains	an	example	on	how	to	use	this	custom	matcher:

				TEST_CASE("matchers")

				{

						SECTION("point	origin")

						{

								point3d	p	{	2,2,2	};

								REQUIRE_THAT(p,	IsOnTheLine(point3d{	0,0,0	},									

																																				point3d{	3,3,3	}));

						}

				}



See	also
Writing	and	invoking	tests	with	Catch



Controlling	output	with	Catch
As	with	other	testing	frameworks	discussed	in	this	book,	Catch	reports	the
results	of	a	test	program	execution	in	a	human-readable	format	to	the	stdout
standard	stream.	Additional	options	are	supported,	such	as	reporting	using	XML
format	or	writing	to	a	file.	In	this	recipe,	we	will	look	at	the	main	options
available	for	controlling	the	output	when	using	Catch.



Getting	ready
To	exemplify	the	way	the	test	program's	execution	output	could	be	modified,	use
the	following	test	cases:

				TEST_CASE("case1")

				{

						SECTION("function1")

						{

								REQUIRE(true);

						}

				}

				TEST_CASE("case2")

				{

						SECTION("function2")

						{

								REQUIRE(false);

						}

				}

The	output	of	running	these	two	test	cases	is	as	follows:

----------------------------------------------------------

case2

		function2

----------------------------------------------------------

f:\chapter11ca_04\main.cpp(14)

..........................................................

f:\chapter11ca_04\main.cpp(16):	FAILED:

		REQUIRE(	false	)

==========================================================

test	cases:	2	|	1	passed	|	1	failed

assertions:	2	|	1	passed	|	1	failed



How	to	do	it…
To	control	the	output	of	a	test	program	when	using	Catch,	you	can:

Use	the	command-line	argument	-r	or	--reporter	<reporter>	to	specify	the
reporter	used	to	format	and	structure	the	results.	Default	options	supplied
with	the	framework	are	console,	compact,	xml,	and	junit:

						chapter11ca_04.exe	-r	junit

						<?xml	version="1.0"	encoding="UTF-8"?>

						<testsuites>

								<testsuite	name="chapter11ca_04.exe"	errors="0"	

																			failures="1"

																			tests="2"	hostname="tbd"	

																			time="0.002039"	

																			timestamp="2017-03-02T21:17:04Z">

										<testcase	classname="case1"	name="function1"	

																				time="0.00016"/>

										<testcase	classname="case2"	

																				name="function2"	time="0.00024">

												<failure	message="false"	type="REQUIRE">

														at	f:\chapter11ca_04\main.cpp(16)

												</failure>

										</testcase>

										<system-out/>

										<system-err/>

								</testsuite>

					</testsuites>

Use	the	command-line	argument	-s	or	--success	to	display	results	of
successful	test	cases	too:

						chapter11ca_04.exe	-s

						--------------------------------------------------

						case1

								function1

						--------------------------------------------------

						f:\chapter11ca_04\main.cpp(6)

						..................................................

						f:\chapter11ca_04\main.cpp(8):

						PASSED:

								REQUIRE(	true	)

						--------------------------------------------------

						case2

								function2

						--------------------------------------------------

						f:\chapter11ca_04\main.cpp(14)

						..................................................

						f:\chapter11ca_04\main.cpp(16):	

						FAILED:

								REQUIRE(	false	)



						==================================================

						test	cases:	2	|	1	passed	|	1	failed

						assertions:	2	|	1	passed	|	1	failed

Use	the	command-line	argument	-o	or	--out	<filename>	to	send	all	of	the
output	to	a	file	instead	of	the	standard	stream:

						chapter11ca_04.exe	-o	test_report.log

Use	the	command-line	argument	-d	or	--durations	<yes/no>	to	display	the	time,
expressed	in	milliseconds,	that	it	takes	each	test	case	to	execute:

						chapter11ca_04.exe	-d	yes

						0.000137	s:	scenario1

						0.000926	s:	case1

						--------------------------------------------------

						case2

									scenario2

						--------------------------------------------------

						f:\chapter11ca_04\main.cpp(14)

						..................................................

						f:\chapter11ca_04\main.cpp(16):	

						FAILED:

								REQUIRE(	false	)

						0.019106	s:	scenario2

						0	s:	case2

						4.9e-05	s:	case2

						==================================================

						test	cases:	2	|	1	passed	|	1	failed

						assertions:	2	|	1	passed	|	1	failed



How	it	works...
Apart	from	the	human-readable	format	used,	by	default,	for	reporting	the	results
of	the	test	program	execution,	the	Catch	framework	supports	two	XML	formats:

A	Catch-specific	XML	format	(specified	with	-r	xml).
A	JUnit-like	XML	format,	following	the	structure	of	the	JUnit	ANT	task
(specified	with	-r	junit).

The	former	reporter	streams	the	XML	content	as	unit	tests	are	executed	and
results	are	available.	It	can	be	used	as	input	to	an	XSLT	transformation	to
generate	an	HTML	report	for	the	instance.	The	latter	reporter	needs	to	gather	all
of	the	program	execution	data	in	order	to	structure	the	report	before	printing	it.
The	JUnit	XML	format	is	useful	for	being	consumed	by	third-party	tools,	such
as	continuous	integration	server.

Several	additional	reporters	are	provided	but	as	separate	downloads.	They	need
to	be	pulled	into	the	project	and	explicitly	included	into	the	source	code	of	the
test	program	(all	the	headers	of	the	additional	reporters	have	the	name	format	as
catch_reporter_*.hpp).	These	additional	available	reporters	are:

TeamCity	reporter	(specified	with	-r	teamcity)	writes	TeamCity	service
messages	to	the	standard	output	stream.	It	is	suitable	only	for	integration
with	TeamCity.	It	is	a	streamed	reporter;	data	is	written	as	it	is	available.
Automake	reporter	(specified	with	-r	automake)	writes	the	meta	tags	expected
by	automake	via	make	check.
Test	Anything	Protocol	(short	for,	TAP)	reporter	(specified	with	-r	tap).

The	following	example	shows	how	to	include	the	TeamCity	header	file	in	order
to	produce	the	report	using	the	TeamCity	reporter:

				#define	CATCH_CONFIG_MAIN

				#include	"catch.hpp"

				#include	"catch_reporter_teamcity.hpp"

The	default	target	of	the	test	report	is	the	standard	stream	strout	(even	data
written	explicitly	to	stderr	ends	up	being	redirected	to	stdout).	However,	it	is



possible	that	the	output	is	written	to	a	file	instead.	These	formatting	options	can
be	combined.	For	instance,	the	next	command	specifies	that	the	report	should
use	the	JUnit	XML	format	and	be	saved	to	a	file	called	test_report.xml:

				chapter11ca_04.exe	-r	junit	-o	test_report.xml



See	also
Getting	started	with	Catch
Writing	and	invoking	tests	with	Catch
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