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The	first	two	editions	of	Effective	C++	were	embraced	by	hundreds	of	thousands	of	programmers
worldwide.	The	reason	is	clear:	Scott	Meyers'	practical	approach	to	C++	describes	the	rules	of	thumb	used
by	the	expertsthe	things	they	almost	always	do	or	almost	always	avoid	doingto	produce	clear,	correct,
efficient	code.The	book	is	organized	around	55	specific	guidelines,	each	of	which	describes	a	way	to	write
better	C++.	Each	is	backed	by	concrete	examples.	For	this	third	edition,	more	than	half	the	content	is	new,
including	added	chapters	on	managing	resources	and	using	templates.	Topics	from	the	second	edition	have
been	extensively	revised	to	reflect	modern	design	considerations,	including	exceptions,	design	patterns,
and	multithreading.Important	features	of	Effective	C++	include:	Expert	guidance	on	the	design	of	effective
classes,	functions,	templates,	and	inheritance	hierarchies.	Applications	of	new	"TR1"	standard	library
functionality,	along	with	comparisons	to	existing	standard	library	components.	Insights	into	differences
between	C++	and	other	languages	(e.g.,	Java,	C#,	C)	that	help	developers	from	those	languages	assimilate
"the	C++	way"	of	doing	things.
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Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

The	publisher	offers	excellent	discounts	on	this	book	when	ordered	in	quantity
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Praise	for	Effective	C++,	Third	Edition
"Scott	Meyers'	book,	Effective	C++,	Third	Edition,	is	distilled
programming	experience		experience	that	you	would	otherwise	have	to
learn	the	hard	way.	This	book	is	a	great	resource	that	I	recommend	to
everybody	who	writes	C++	professionally."

	Peter	Dulimov,	ME,	ngineer,	Ranges	and	Assessing	Unit,	NAVSYSCOM,
Australia

"The	third	edition	is	still	the	best	book	on	how	to	put	all	of	the	pieces	of
C++	together	in	an	efficient,	cohesive	manner.	If	you	claim	to	be	a	C++
programmer,	you	must	read	this	book."

	Eric	Nagler,	Consultant,	Instructor,	and	author	of	Learning	C++

"The	first	edition	of	this	book	ranks	among	the	small	(very	small)	number
of	books	that	I	credit	with	significantly	elevating	my	skills	as	a
'professional'	software	devel-oper.	Like	the	others,	it	was	practical	and	easy
to	read,	but	loaded	with	important	advice.	Effective	C++,	Third	Edition,
continues	that	tradition.	C++	is	a	very	powerful	programming	language.	If
C	gives	you	enough	rope	to	hang	yourself,	C++	is	a	hard-ware	store	with
lots	of	helpful	people	ready	to	tie	knots	for	you.	Mastering	the	points
discussed	in	this	book	will	definitely	increase	your	ability	to	effectively	use
C++	and	reduce	your	stress	level."

	Jack	W.	Reeves,	Chief	Executive	Officer,	Bleading	Edge	Software
Technologies

"Every	new	developer	joining	my	team	has	one	assignment		to	read	this
book."

	Michael	Lanzetta,	Senior	Software	Engineer

"I	read	the	first	edition	of	Effective	C++	about	nine	years	ago,	and	it
immediately	became	my	favorite	book	on	C++.	In	my	opinion,	Effective



C++,	Third	Edition,	remains	a	must-read	today	for	anyone	who	wishes	to
program	effectively	in	C++.	We	would	live	in	a	better	world	if	C++
programmers	had	to	read	this	book	before	writing	their	first	line	of
professional	C++	code."

	Danny	Rabbani,	Software	Development	Engineer

"I	encountered	the	first	edition	of	Scott	Meyers'	Effective	C++	as	a
struggling	programmer	in	the	trenches,	trying	to	get	better	at	what	I	was
doing.	What	a	lifesaver!	I	found	Meyers'	advice	was	practical,	useful,	and
effective,	fulfilling	the	promise	of	the	title	100	percent.	The	third	edition
brings	the	practical	realities	of	using	C++	in	serious	development	projects
right	up	to	date,	adding	chapters	on	the	language's	very	latest	issues	and
features.	I	was	delighted	to	still	find	myself	learning	something	interesting
and	new	from	the	latest	edition	of	a	book	I	already	thought	I	knew	well."

	Michael	Topic,	Technical	Program	Manager

"From	Scott	Meyers,	the	guru	of	C++,	this	is	the	definitive	guide	for
anyone	who	wants	to	use	C++	safely	and	effectively,	or	is	transitioning
from	any	other	OO	language	to	C++.	This	book	has	valuable	information
presented	in	a	clear,	concise,	entertaining,	and	insightful	manner."

	Siddhartha	Karan	Singh,	Software	Developer

"This	should	be	the	second	book	on	C++	that	any	developer	should	read,
after	a	general	introductory	text.	It	goes	beyond	the	how	and	what	of	C++
to	address	the	why	and	wherefore.	It	helped	me	go	from	knowing	the
syntax	to	understanding	the	philosophy	of	C++	programming."

	Timothy	Knox,	Software	Developer

"This	is	a	fantastic	update	of	a	classic	C++	text.	Meyers	covers	a	lot	of	new
ground	in	this	volume,	and	every	serious	C++	programmer	should	have	a
copy	of	this	new	edition."

	Jeffrey	Somers,	Game	Programmer



"Effective	C++,	Third	Edition,	covers	the	things	you	should	be	doing	when
writing	code	and	does	a	terrific	job	of	explaining	why	those	things	are
important.	Think	of	it	as	best	practices	for	writing	C++."

	Jeff	Scherpelz,	Software	Development	Engineer

"As	C++	embraces	change,	Scott	Meyers'	Effective	C++,	Third	Edition,
soars	to	remain	in	perfect	lock-step	with	the	language.	There	are	many	fine
introductory	books	on	C++,	but	exactly	one	second	book	stands	head	and
shoulders	above	the	rest,	and	you're	holding	it.	With	Scott	guiding	the	way,
prepare	to	do	some	soaring	of	your	own!"

	Leor	Zolman,	C++	Trainer	and	Pundit,	BD	Software

"This	book	is	a	must-have	for	both	C++	veterans	and	newbies.	After	you
have	finished	reading	it,	it	will	not	collect	dust	on	your	bookshelf		you	will
refer	to	it	all	the	time."

	Sam	Lee,	Software	Developer

"Reading	this	book	transforms	ordinary	C++	programmers	into	expert	C++
programmers,	step-by-step,	using	55	easy-to-read	items,	each	describing
one	technique	or	tip."

	Jeffrey	D.	Oldham,	Ph.D.,	Software	Engineer,	Google

"Scott	Meyers'	Effective	C++	books	have	long	been	required	reading	for
new	and	experienced	C++	programmers	alike.	This	new	edition,
incorporating	almost	a	decade's	worth	of	C++	language	development,	is	his
most	content-packed	book	yet.	He	does	not	merely	describe	the	problems
inherent	in	the	language,	but	instead	he	provides	unambiguous	and	easy-to-
follow	advice	on	how	to	avoid	the	pitfalls	and	write	'effective	C++.'	I
expect	every	C++	programmer	to	have	read	it."

	Philipp	K.	Janert,	Ph.D.,	Software	Development	Manager

"Each	previous	edition	of	Effective	C++	has	been	the	must-have	book	for
developers	who	have	used	C++	for	a	few	months	or	a	few	years,	long



enough	to	stumble	into	the	traps	latent	in	this	rich	language.	In	this	third
edition,	Scott	Meyers	extensively	refreshes	his	sound	advice	for	the
modern	world	of	new	language	and	library	features	and	the	programming
styles	that	have	evolved	to	use	them.	Scott's	engaging	writing	style	makes
it	easy	to	assimilate	his	guidelines	on	your	way	to	becoming	an	effective
C++	developer."

	David	Smallberg,	Instructor,	DevelopMentor;	Lecturer,	Computer
Science,	UCLA

"Effective	C++	has	been	completely	updated	for	twenty-first-century	C++
practice	and	can	continue	to	claim	to	be	the	first	second	book	for	all	C++
practitioners."

	Matthew	Wilson,	Ph.D.,	author	of	Imperfect	C++
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Preface
I	wrote	the	original	edition	of	Effective	C++	in	1991.	When	the	time	came	for	a
second	edition	in	1997,	I	updated	the	material	in	important	ways,	but,	because	I
didn't	want	to	confuse	readers	familiar	with	the	first	edition,	I	did	my	best	to
retain	the	existing	structure:	48	of	the	original	50	Item	titles	remained	essentially
unchanged.	If	the	book	were	a	house,	the	second	edition	was	the	equivalent	of
freshening	things	up	by	replacing	carpets,	paint,	and	light	fixtures.

For	the	third	edition,	I	tore	the	place	down	to	the	studs.	(There	were	times	I
wished	I'd	gone	all	the	way	to	the	foundation.)	The	world	of	C++	has	undergone
enormous	change	since	1991,	and	the	goal	of	this	book		to	identify	the	most
important	C++	programming	guidelines	in	a	small,	readable	package		was	no
longer	served	by	the	Items	I'd	established	nearly	15	years	earlier.	In	1991,	it	was
reasonable	to	assume	that	C++	programmers	came	from	a	C	background.	Now,
programmers	moving	to	C++	are	just	as	likely	to	come	from	Java	or	C#.	In	1991,
inheritance	and	object-oriented	programming	were	new	to	most	programmers.
Now	they're	well-established	concepts,	and	exceptions,	templates,	and	generic
programming	are	the	areas	where	people	need	more	guidance.	In	1991,	nobody
had	heard	of	design	patterns.	Now	it's	hard	to	discuss	software	systems	without
referring	to	them.	In	1991,	work	had	just	begun	on	a	formal	standard	for	C++.
Now	that	standard	is	eight	years	old,	and	work	has	begun	on	the	next	version.

To	address	these	changes,	I	wiped	the	slate	as	clean	as	I	could	and	asked	myself,
"What	are	the	most	important	pieces	of	advice	for	practicing	C++	programmers
in	2005?"	The	result	is	the	set	of	Items	in	this	new	edition.	The	book	has	new
chapters	on	resource	management	and	on	programming	with	templates.	In	fact,
template	concerns	are	woven	throughout	the	text,	because	they	affect	almost
everything	in	C++.	The	book	also	includes	new	material	on	programming	in	the
presence	of	exceptions,	on	applying	design	patterns,	and	on	using	the	new	TR1
library	facilities.	(TR1	is	described	in	Item	54.)	It	acknowledges	that	techniques
and	approaches	that	work	well	in	single-threaded	systems	may	not	be
appropriate	in	multithreaded	systems.	Well	over	half	the	material	in	the	book	is
new.	However,	most	of	the	fundamental	information	in	the	second	edition
continues	to	be	important,	so	I	found	a	way	to	retain	it	in	one	form	or	another.



(You'll	find	a	mapping	between	the	second	and	third	edition	Items	in	Appendix
B.)

I've	worked	hard	to	make	this	book	as	good	as	I	can,	but	I	have	no	illusions	that
it's	perfect.	If	you	feel	that	some	of	the	Items	in	this	book	are	inappropriate	as
general	advice;	that	there	is	a	better	way	to	accomplish	a	task	examined	in	the
book;	or	that	one	or	more	of	the	technical	discussions	is	unclear,	incomplete,	or
misleading,	please	tell	me.	If	you	find	an	error	of	any	kind		technical,
grammatical,	typographical,	whatever		please	tell	me	that,	too.	I'll	gladly	add	to
the	acknowledgments	in	later	printings	the	name	of	the	first	person	to	bring	each
problem	to	my	attention.

Even	with	the	number	of	Items	expanded	to	55,	the	set	of	guidelines	in	this	book
is	far	from	exhaustive.	But	coming	up	with	good	rules		ones	that	apply	to	almost
all	applications	almost	all	the	time		is	harder	than	it	might	seem.	If	you	have
suggestions	for	additional	guidelines,	I	would	be	delighted	to	hear	about	them.

I	maintain	a	list	of	changes	to	this	book	since	its	first	printing,	including	bug
fixes,	clarifications,	and	technical	updates.	The	list	is	available	at	the	Effective
C++	Errata	web	page,	http://aristeia.com/BookErrata/ec++3e-errata.html.	If
you'd	like	to	be	notified	when	I	update	the	list,	I	encourage	you	to	join	my
mailing	list.	I	use	it	to	make	announcements	likely	to	interest	people	who	follow
my	professional	work.	For	details,	consult	http://aristeia.com/MailingList/.

SCOTT	DOUGLAS	MEYERS																										STAFFORD,	OREGON
http://aristeia.com/																																APRIL	2005
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Introduction
Learning	the	fundamentals	of	a	programming	language	is	one	thing;	learning
how	to	design	and	implement	effective	programs	in	that	language	is	something
else	entirely.	This	is	especially	true	of	C++,	a	language	boasting	an	uncommon
range	of	power	and	expressiveness.	Properly	used,	C++	can	be	a	joy	to	work
with.	An	enormous	variety	of	designs	can	be	directly	expressed	and	efficiently
implemented.	A	judiciously	chosen	and	carefully	crafted	set	of	classes,
functions,	and	templates	can	make	application	programming	easy,	intuitive,
efficient,	and	nearly	error-free.	It	isn't	unduly	difficult	to	write	effective	C++
programs,	if	you	know	how	to	do	it.	Used	without	discipline,	however,	C++	can
lead	to	code	that	is	incomprehensible,	unmaintainable,	inextensible,	inefficient,
and	just	plain	wrong.

The	purpose	of	this	book	is	to	show	you	how	to	use	C++	effectively.	I	assume
you	already	know	C++	as	a	language	and	that	you	have	some	experience	in	its
use.	What	I	provide	here	is	a	guide	to	using	the	language	so	that	your	software	is
comprehensible,	maintainable,	portable,	extensible,	efficient,	and	likely	to
behave	as	you	expect.

The	advice	I	proffer	falls	into	two	broad	categories:	general	design	strategies,
and	the	nuts	and	bolts	of	specific	language	features.	The	design	discussions
concentrate	on	how	to	choose	between	different	approaches	to	accomplishing
something	in	C++.	How	do	you	choose	between	inheritance	and	templates?
Between	public	and	private	inheritance?	Between	private	inheritance	and
composition?	Between	member	and	non-member	functions?	Between	pass-by-
value	and	pass-by-reference?	It's	important	to	make	these	decisions	correctly	at
the	outset,	because	a	poor	choice	may	not	become	apparent	until	much	later	in
the	development	process,	at	which	point	rectifying	it	is	often	difficult,	time-
consuming,	and	expensive.

Even	when	you	know	exactly	what	you	want	to	do,	getting	things	just	right	can
be	tricky.	What's	the	proper	return	type	for	assignment	operators?	When	should
a	destructor	be	virtual?	How	should	operator	new	behave	when	it	can't	find
enough	memory?	It's	crucial	to	sweat	details	like	these,	because	failure	to	do	so
almost	always	leads	to	unexpected,	possibly	mystifying	program	behavior.	This



book	will	help	you	avoid	that.

This	is	not	a	comprehensive	reference	for	C++.	Rather,	it's	a	collection	of	55
specific	suggestions	(I	call	them	Items)	for	how	you	can	improve	your	programs
and	designs.	Each	Item	stands	more	or	less	on	its	own,	but	most	also	contain
references	to	other	Items.	One	way	to	read	the	book,	then,	is	to	start	with	an	Item
of	interest,	then	follow	its	references	to	see	where	they	lead	you.

The	book	isn't	an	introduction	to	C++,	either.	In	Chapter	2,	for	example,	I'm
eager	to	tell	you	all	about	the	proper	implementations	of	constructors,
destructors,	and	assignment	operators,	but	I	assume	you	already	know	or	can	go
elsewhere	to	find	out	what	these	functions	do	and	how	they	are	declared.	A
number	of	C++	books	contain	information	such	as	that.

The	purpose	of	this	book	is	to	highlight	those	aspects	of	C++	programming	that
are	often	overlooked.	Other	books	describe	the	different	parts	of	the	language.
This	book	tells	you	how	to	combine	those	parts	so	you	end	up	with	effective
programs.	Other	books	tell	you	how	to	get	your	programs	to	compile.	This	book
tells	you	how	to	avoid	problems	that	compilers	won't	tell	you	about.

At	the	same	time,	this	book	limits	itself	to	standard	C++.	Only	features	in	the
official	language	standard	have	been	used	here.	Portability	is	a	key	concern	in
this	book,	so	if	you're	looking	for	platform-dependent	hacks	and	kludges,	this	is
not	the	place	to	find	them.

Another	thing	you	won't	find	in	this	book	is	the	C++	Gospel,	the	One	True	Path
to	perfect	C++	software.	Each	of	the	Items	in	this	book	provides	guidance	on
how	to	develop	better	designs,	how	to	avoid	common	problems,	or	how	to
achieve	greater	efficiency,	but	none	of	the	Items	is	universally	applicable.
Software	design	and	implementation	is	a	complex	task,	one	colored	by	the
constraints	of	the	hardware,	the	operating	system,	and	the	application,	so	the	best
I	can	do	is	provide	guidelines	for	creating	better	programs.

If	you	follow	all	the	guidelines	all	the	time,	you	are	unlikely	to	fall	into	the	most
common	traps	surrounding	C++,	but	guidelines,	by	their	nature,	have	exceptions.
That's	why	each	Item	has	an	explanation.	The	explanations	are	the	most
important	part	of	the	book.	Only	by	understanding	the	rationale	behind	an	Item
can	you	determine	whether	it	applies	to	the	software	you	are	developing	and	to
the	unique	constraints	under	which	you	toil.



the	unique	constraints	under	which	you	toil.

The	best	use	of	this	book	is	to	gain	insight	into	how	C++	behaves,	why	it
behaves	that	way,	and	how	to	use	its	behavior	to	your	advantage.	Blind
application	of	the	Items	in	this	book	is	clearly	inappropriate,	but	at	the	same
time,	you	probably	shouldn't	violate	any	of	the	guidelines	without	a	good	reason.



Terminology

There	is	a	small	C++	vocabulary	that	every	programmer	should	understand.	The
following	terms	are	important	enough	that	it	is	worth	making	sure	we	agree	on
what	they	mean.

A	declaration	tells	compilers	about	the	name	and	type	of	something,	but	it	omits
certain	details.	These	are	declarations:

	

extern	int	x;																																		//	object	declaration

	

	

	

std::size_t	numDigits(int	number);													//	function	declaration

	

	

	

class	Widget;																																		//	class	declaration

	

	

	

template<typename	T>																											//	template	declaration

	

class	GraphNode;																															//	(see	Item	42	for	info	on

	

																																															//	the	use	of	"typename")

	

Note	that	I	refer	to	the	integer	x	as	an	"object,"	even	though	it's	of	built-in	type.
Some	people	reserve	the	name	"object"	for	variables	of	user-defined	type,	but
I'm	not	one	of	them.	Also	note	that	the	function	numDigits'	return	type	is
std::size_t,	i.e.,	the	type	size_t	in	namespace	std.	That	namespace	is
where	virtually	everything	in	C++'s	standard	library	is	located.	However,



because	C's	standard	library	(the	one	from	C89,	to	be	precise)	can	also	be	used	in
C++,	symbols	inherited	from	C	(such	as	size_t)	may	exist	at	global	scope,
inside	std,	or	both,	depending	on	which	headers	have	been	#included.	In
this	book,	I	assume	that	C++	headers	have	been	#included,	and	that's	why	I
refer	to	std::size_t	instead	of	just	size_t.	When	referring	to	components
of	the	standard	library	in	prose,	I	typically	omit	references	to	std,	relying	on
you	to	recognize	that	things	like	size_t,	vector,	and	cout	are	in	std.	In
example	code,	I	always	include	std,	because	real	code	won't	compile	without	it.

size_t,	by	the	way,	is	just	a	typedef	for	some	unsigned	type	that	C++	uses
when	counting	things	(e.g.,	the	number	of	characters	in	a	char*-based	string,
the	number	of	elements	in	an	STL	container,	etc.).	It's	also	the	type	taken	by	the
operator[]	functions	in	vector,	deque,	and	string,	a	convention	we'll
follow	when	defining	our	own	operator[]	functions	in	Item	3.

Each	function's	declaration	reveals	its	signature,	i.e.,	its	parameter	and	return
types.	A	function's	signature	is	the	same	as	its	type.	In	the	case	of	numDigits,
the	signature	is	std::size_t	(int),	i.e.,	"function	taking	an	int	and
returning	a	std::size_t."	The	official	C++	definition	of	"signature"
excludes	the	function's	return	type,	but	in	this	book,	it's	more	useful	to	have	the
return	type	be	considered	part	of	the	signature.

A	definition	provides	compilers	with	the	details	a	declaration	omits.	For	an
object,	the	definition	is	where	compilers	set	aside	memory	for	the	object.	For	a
function	or	a	function	template,	the	definition	provides	the	code	body.	For	a
class	or	a	class	template,	the	definition	lists	the	members	of	the	class	or
template:

int	x;																																											//	object	definition

std::size_t	numDigits(int	number)																//	function	definition.

{																																																//	(This	function	returns



		std::size_t	digitsSoFar	=	1;																			//	the	number	of	digits

																																																	//	in	its	parameter.)

		while	((number	/=	10)	!=	0)	++digitsSoFar;

		return	digitsSoFar;

}

class	Widget	{																																			//	class	definition

public:

		Widget();

		~Widget();

		...

};

template<typename	T>																													//	template	definition

class	GraphNode	{												

public:

		GraphNode();

		~GraphNode();



		...

};

Initialization	is	the	process	of	giving	an	object	its	first	value.	For	objects	of
user-defined	types,	initialization	is	performed	by	constructors.	A	default
constructor	is	one	that	can	be	called	without	any	arguments.	Such	a	constructor
either	has	no	parameters	or	has	a	default	value	for	every	parameter:

class	A	{

public:

		A();																																					//	default	constructor

};

class	B	{

public:

		explicit	B(int	x	=	0,	bool	b	=	true);				//	default	constructor;	see	below

};																																									//	for	info	on	"explicit"

class	C	{

public:



		explicit	C(int	x);																							//	not	a	default	constructor

};

The	constructors	for	classes	B	and	C	are	declared	explicit	here.	That
prevents	them	from	being	used	to	perform	implicit	type	conversions,	though	they
may	still	be	used	for	explicit	type	conversions:

void	doSomething(B	bObject);									//	a	function	taking	an	object	of

																																					//	type	B

B	bObj1;																													//	an	object	of	type	B

doSomething(bObj1);																		//	fine,	passes	a	B	to	doSomething

B	bObj2(28);																									//	fine,	creates	a	B	from	the	int	28

																																					//	(the	bool	defaults	to	true)

doSomething(28);																					//	error!	doSomething	takes	a	B,

																																					//	not	an	int,	and	there	is	no



																																					//	implicit	conversion	from	int	to	B

doSomething(B(28));																		//	fine,	uses	the	B	constructor	to

																																					//	explicitly	convert	(i.e.,	cast)	the

																																					//	int	to	a	B	for	this	call.	(See

																																					//	Item	27	for	info	on	casting.)

Constructors	declared	explicit	are	usually	preferable	to	non-explicit
ones,	because	they	prevent	compilers	from	performing	unexpected	(often
unintended)	type	conversions.	Unless	I	have	a	good	reason	for	allowing	a
constructor	to	be	used	for	implicit	type	conversions,	I	declare	it	explicit.	I
encourage	you	to	follow	the	same	policy.

Please	note	how	I've	highlighted	the	cast	in	the	example	above.	Throughout	this
book,	I	use	such	highlighting	to	call	your	attention	to	material	that	is	particularly
noteworthy.	(I	also	highlight	chapter	numbers,	but	that's	just	because	I	think	it
looks	nice.)

The	copy	constructor	is	used	to	initialize	an	object	with	a	different	object	of	the
same	type,	and	the	copy	assignment	operator	is	used	to	copy	the	value	from	one
object	to	another	of	the	same	type:

class	Widget	{

public:

		Widget();																																	//	default	constructor

		Widget(const	Widget&	rhs);																//	copy	constructor



		Widget&	operator=(const	Widget&	rhs);					//	copy	assignment	operator

		...

};

Widget	w1;																																		//	invoke	default	constructor

Widget	w2(w1);																														//	invoke	copy	constructor

w1	=	w2;																																				//	invoke	copy

																																												//	assignment	operator

Read	carefully	when	you	see	what	appears	to	be	an	assignment,	because	the	"="
syntax	can	also	be	used	to	call	the	copy	constructor:

	

Widget	w3	=	w2;																											//	invoke	copy	constructor!

	

Fortunately,	copy	construction	is	easy	to	distinguish	from	copy	assignment.	If	a
new	object	is	being	defined	(such	as	w3	in	the	statement	above),	a	constructor
has	to	be	called;	it	can't	be	an	assignment.	If	no	new	object	is	being	defined
(such	as	in	the	"w1	=	w2"	statement	above),	no	constructor	can	be	involved,	so
it's	an	assignment.

The	copy	constructor	is	a	particularly	important	function,	because	it	defines	how



an	object	is	passed	by	value.	For	example,	consider	this:

bool	hasAcceptableQuality(Widget	w);

...

Widget	aWidget;

if	(hasAcceptableQuality(aWidget))	...

The	parameter	w	is	passed	to	hasAcceptableQuality	by	value,	so	in	the
call	above,	aWidget	is	copied	into	w.	The	copying	is	done	by	Widget's	copy
constructor.	Pass-by-value	means	"call	the	copy	constructor."	(However,	it's
generally	a	bad	idea	to	pass	user-defined	types	by	value.	Pass-by-reference-to-
const	is	typically	a	better	choice.	For	details,	see	Item	20.)

The	STL	is	the	Standard	Template	Library,	the	part	of	C++'s	standard	library
devoted	to	containers	(e.g.,	vector,	list,	set,	map,	etc.),	iterators	(e.g.,
vector<int>::iterator,	set<string>::iterator,	etc.),
algorithms	(e.g.,	for_each,	find,	sort,	etc.),	and	related	functionality.
Much	of	that	related	functionality	has	to	do	with	function	objects:	objects	that
act	like	functions.	Such	objects	come	from	classes	that	overload	operator(),
the	function	call	operator.	If	you're	unfamiliar	with	the	STL,	you'll	want	to	have
a	decent	reference	available	as	you	read	this	book,	because	the	STL	is	too	useful
for	me	not	to	take	advantage	of	it.	Once	you've	used	it	a	little,	you'll	feel	the
same	way.

Programmers	coming	to	C++	from	languages	like	Java	or	C#	may	be	surprised	at
the	notion	of	undefined	behavior.	For	a	variety	of	reasons,	the	behavior	of	some
constructs	in	C++	is	literally	not	defined:	you	can't	reliably	predict	what	will
happen	at	runtime.	Here	are	two	examples	of	code	with	undefined	behavior:



int	*p	=	0;																												//	p	is	a	null	pointer

std::cout	<<	*p;																							//	dereferencing	a	null	pointer

																																							//	yields	undefined	behavior

char	name[]	=	"Darla";																	//	name	is	an	array	of	size	6	(don't

																																							//	forget	the	trailing	null!)

char	c	=	name[10];																					//	referring	to	an	invalid	array	index

																																							//	yields	undefined	behavior

To	emphasize	that	the	results	of	undefined	behavior	are	not	predictable	and	may
be	very	unpleasant,	experienced	C++	programmers	often	say	that	programs	with
undefined	behavior	can	erase	your	hard	drive.	It's	true:	a	program	with	undefined
behavior	could	erase	your	hard	drive.	But	it's	not	probable.	More	likely	is	that
the	program	will	behave	erratically,	sometimes	running	normally,	other	times
crashing,	still	other	times	producing	incorrect	results.	Effective	C++
programmers	do	their	best	to	steer	clear	of	undefined	behavior.	In	this	book,	I
point	out	a	number	of	places	where	you	need	to	be	on	the	lookout	for	it.

Another	term	that	may	confuse	programmers	coming	to	C++	from	another
language	is	interface.	Java	and	the	.NET	languages	offer	Interfaces	as	a
language	element,	but	there	is	no	such	thing	in	C++,	though	Item	31	discusses
how	to	approximate	them.	When	I	use	the	term	"interface,"	I'm	generally	talking
about	a	function's	signature,	about	the	accessible	elements	of	a	class	(e.g.,	a
class's	"public	interface,"	"protected	interface,"	or	"private	interface"),	or	about



the	expressions	that	must	be	valid	for	a	template's	type	parameter	(see	Item	41).
That	is,	I'm	talking	about	interfaces	as	a	fairly	general	design	idea.

A	client	is	someone	or	something	that	uses	the	code	(typically	the	interfaces)
you	write.	A	function's	clients,	for	example,	are	its	users:	the	parts	of	the	code
that	call	the	function	(or	take	its	address)	as	well	as	the	humans	who	write	and
maintain	such	code.	The	clients	of	a	class	or	a	template	are	the	parts	of	the
software	that	use	the	class	or	template,	as	well	as	the	programmers	who	write
and	maintain	that	code.	When	discussing	clients,	I	typically	focus	on
programmers,	because	programmers	can	be	confused,	misled,	or	annoyed	by	bad
interfaces.	The	code	they	write	can't	be.

You	may	not	be	used	to	thinking	about	clients,	but	I'll	spend	a	good	deal	of	time
trying	to	convince	you	to	make	their	lives	as	easy	as	you	can.	After	all,	you	are	a
client	of	the	software	other	people	develop.	Wouldn't	you	want	those	people	to
make	things	easy	for	you?	Besides,	at	some	point	you'll	almost	certainly	find
yourself	in	the	position	of	being	your	own	client	(i.e.,	using	code	you	wrote),	and
at	that	point,	you'll	be	glad	you	kept	client	concerns	in	mind	when	developing
your	interfaces.

In	this	book,	I	often	gloss	over	the	distinction	between	functions	and	function
templates	and	between	classes	and	class	templates.	That's	because	what's	true
about	one	is	often	true	about	the	other.	In	situations	where	this	is	not	the	case,	I
distinguish	among	classes,	functions,	and	the	templates	that	give	rise	to	classes
and	functions.

When	referring	to	constructors	and	destructors	in	code	comments,	I	sometimes
use	the	abbreviations	ctor	and	dtor.

Naming	Conventions

I	have	tried	to	select	meaningful	names	for	objects,	classes,	functions,	templates,
etc.,	but	the	meanings	behind	some	of	my	names	may	not	be	immediately
apparent.	Two	of	my	favorite	parameter	names,	for	example,	are	lhs	and	rhs.
They	stand	for	"left-hand	side"	and	"right-hand	side,"	respectively.	I	often	use
them	as	parameter	names	for	functions	implementing	binary	operators,	e.g.,
operator==	and	operator*.	For	example,	if	a	and	b	are	objects



representing	rational	numbers,	and	if	Rational	objects	can	be	multiplied	via	a
non-member	operator*	function	(as	Item	24	explains	is	likely	to	be	the	case),
the	expression

	

a	*	b

	

is	equivalent	to	the	function	call

	

operator*(a,b)

	

In	Item	24,	I	declare	operator*	like	this:

const	Rational	operator*(const	Rational&	lhs,	const	Rational&	

As	you	can	see,	the	left-hand	operand,	a,	is	known	as	lhs	inside	the	function,
and	the	right-hand	operand,	b,	is	known	as	rhs.

For	member	functions,	the	left-hand	argument	is	represented	by	the	this
pointer,	so	sometimes	I	use	the	parameter	name	rhs	by	itself.	You	may	have
noticed	this	in	the	declarations	for	some	Widget	member	functions	on	page	5.
Which	reminds	me.	I	often	use	the	Widget	class	in	examples.	"Widget"	doesn't
mean	anything.	It's	just	a	name	I	sometimes	use	when	I	need	an	example	class
name.	It	has	nothing	to	do	with	widgets	in	GUI	toolkits.

I	often	name	pointers	following	the	rule	that	a	pointer	to	an	object	of	type	T	is
called	pt,	"pointer	to	T."	Here	are	some	examples:



	

Widget	*pw;																											//	pw	=	ptr	to	Widget

	

	

	

class	Airplane;

	

Airplane	*pa;																									//	pa	=	ptr	to	Airplane

	

class	GameCharacter;

	

GameCharacter	*pgc;																			//	pgc	=	ptr	to	GameCharacter

	

I	use	a	similar	convention	for	references:	rw	might	be	a	reference	to	a	Widget
and	ra	a	reference	to	an	Airplane.

I	occasionally	use	the	name	mf	when	I'm	talking	about	member	functions.

Threading	Considerations

As	a	language,	C++	has	no	notion	of	threads		no	notion	of	concurrency	of	any
kind,	in	fact.	Ditto	for	C++'s	standard	library.	As	far	as	C++	is	concerned,
multithreaded	programs	don't	exist.

And	yet	they	do.	My	focus	in	this	book	is	on	standard,	portable	C++,	but	I	can't
ignore	the	fact	that	thread	safety	is	an	issue	many	programmers	confront.	My
approach	to	dealing	with	this	chasm	between	standard	C++	and	reality	is	to	point
out	places	where	the	C++	constructs	I	examine	are	likely	to	cause	problems	in	a
threaded	environment.	That	doesn't	make	this	a	book	on	multithreaded
programming	with	C++.	Far	from	it.	Rather,	it	makes	it	a	book	on	C++
programming	that,	while	largely	limiting	itself	to	single-threaded	considerations,
acknowledges	the	existence	of	multithreading	and	tries	to	point	out	places	where
thread-aware	programmers	need	to	take	particular	care	in	evaluating	the	advice	I
offer.



If	you're	unfamiliar	with	multithreading	or	have	no	need	to	worry	about	it,	you
can	ignore	my	threading-related	remarks.	If	you	are	programming	a	threaded
application	or	library,	however,	remember	that	my	comments	are	little	more	than
a	starting	point	for	the	issues	you'll	need	to	address	when	using	C++.

TR1	and	Boost

You'll	find	references	to	TR1	and	Boost	throughout	this	book.	Each	has	an	Item
that	describes	it	in	some	detail	(Item	54	for	TR1,	Item	55	for	Boost),	but,
unfortunately,	these	Items	are	at	the	end	of	the	book.	(They're	there	because	it
works	better	that	way.	Really.	I	tried	them	in	a	number	of	other	places.)	If	you
like,	you	can	turn	to	those	Items	and	read	them	now,	but	if	you'd	prefer	to	start
the	book	at	the	beginning	instead	of	the	end,	the	following	executive	summary
will	tide	you	over:

TR1	("Technical	Report	1")	is	a	specification	for	new	functionality	being
added	to	C++'s	standard	library.	This	functionality	takes	the	form	of	new
class	and	function	templates	for	things	like	hash	tables,	reference-counting
smart	pointers,	regular	expressions,	and	more.	All	TR1	components	are	in
the	namespace	tr1	that's	nested	inside	the	namespace	std.

Boost	is	an	organization	and	a	web	site	(http://boost.org)	offering	portable,
peer-reviewed,	open	source	C++	libraries.	Most	TR1	functionality	is	based
on	work	done	at	Boost,	and	until	compiler	vendors	include	TR1	in	their
C++	library	distributions,	the	Boost	web	site	is	likely	to	remain	the	first
stop	for	developers	looking	for	TR1	implementations.	Boost	offers	more
than	is	available	in	TR1,	however,	so	it's	worth	knowing	about	in	any	case.

http://boost.org


Chapter	1.	Accustoming	Yourself	to	C++
Regardless	of	your	programming	background,	C++	is	likely	to	take	a	little
getting	used	to.	It's	a	powerful	language	with	an	enormous	range	of	features,	but
before	you	can	harness	that	power	and	make	effective	use	of	those	features,	you
have	to	accustom	yourself	to	C++'s	way	of	doing	things.	This	entire	book	is
about	how	to	do	that,	but	some	things	are	more	fundamental	than	others,	and	this
chapter	is	about	some	of	the	most	fundamental	things	of	all.



Item	1:	View	C++	as	a	federation	of	languages

In	the	beginning,	C++	was	just	C	with	some	object-oriented	features	tacked	on.
Even	C++'s	original	name,	"C	with	Classes,"	reflected	this	simple	heritage.

As	the	language	matured,	it	grew	bolder	and	more	adventurous,	adopting	ideas,
features,	and	programming	strategies	different	from	those	of	C	with	Classes.
Exceptions	required	different	approaches	to	structuring	functions	(see	Item	29).
Templates	gave	rise	to	new	ways	of	thinking	about	design	(see	Item	41),	and	the
STL	defined	an	approach	to	extensibility	unlike	any	most	people	had	ever	seen.

Today's	C++	is	a	multiparadigm	programming	language,	one	supporting	a
combination	of	procedural,	object-oriented,	functional,	generic,	and
metaprogramming	features.	This	power	and	flexibility	make	C++	a	tool	without
equal,	but	can	also	cause	some	confusion.	All	the	"proper	usage"	rules	seem	to
have	exceptions.	How	are	we	to	make	sense	of	such	a	language?

The	easiest	way	is	to	view	C++	not	as	a	single	language	but	as	a	federation	of
related	languages.	Within	a	particular	sublanguage,	the	rules	tend	to	be	simple,
straightforward,	and	easy	to	remember.	When	you	move	from	one	sublanguage
to	another,	however,	the	rules	may	change.	To	make	sense	of	C++,	you	have	to
recognize	its	primary	sublanguages.	Fortunately,	there	are	only	four:

C.	Way	down	deep,	C++	is	still	based	on	C.	Blocks,	statements,	the
preprocessor,	built-in	data	types,	arrays,	pointers,	etc.,	all	come	from	C.	In
many	cases,	C++	offers	approaches	to	problems	that	are	superior	to	their	C
counterparts	(e.g.,	see	Items	2	(alternatives	to	the	preprocessor)	and	13
(using	objects	to	manage	resources)),	but	when	you	find	yourself	working
with	the	C	part	of	C++,	the	rules	for	effective	programming	reflect	C's	more
limited	scope:	no	templates,	no	exceptions,	no	overloading,	etc.

Object-Oriented	C++.	This	part	of	C++	is	what	C	with	Classes	was	all
about:	classes	(including	constructors	and	destructors),	encapsulation,
inheritance,	polymorphism,	virtual	functions	(dynamic	binding),	etc.	This	is
the	part	of	C++	to	which	the	classic	rules	for	object-oriented	design	most
directly	apply.



Template	C++.	This	is	the	generic	programming	part	of	C++,	the	one	that
most	programmers	have	the	least	experience	with.	Template	considerations
pervade	C++,	and	it's	not	uncommon	for	rules	of	good	programming	to
include	special	template-only	clauses	(e.g.,	see	Item	46	on	facilitating	type
conversions	in	calls	to	template	functions).	In	fact,	templates	are	so
powerful,	they	give	rise	to	a	completely	new	programming	paradigm,
template	metaprogramming	(TMP).	Item	48	provides	an	overview	of	TMP,
but	unless	you're	a	hard-core	template	junkie,	you	need	not	worry	about	it.
The	rules	for	TMP	rarely	interact	with	mainstream	C++	programming.

The	STL.	The	STL	is	a	template	library,	of	course,	but	it's	a	very	special
template	library.	Its	conventions	regarding	containers,	iterators,	algorithms,
and	function	objects	mesh	beautifully,	but	templates	and	libraries	can	be
built	around	other	ideas,	too.	The	STL	has	particular	ways	of	doing	things,
and	when	you're	working	with	the	STL,	you	need	to	be	sure	to	follow	its
conventions.

Keep	these	four	sublanguages	in	mind,	and	don't	be	surprised	when	you
encounter	situations	where	effective	programming	requires	that	you	change
strategy	when	you	switch	from	one	sublanguage	to	another.	For	example,	pass-
by-value	is	generally	more	efficient	than	pass-by-reference	for	built-in	(i.e.,	C-
like)	types,	but	when	you	move	from	the	C	part	of	C++	to	Object-Oriented	C++,
the	existence	of	user-defined	constructors	and	destructors	means	that	pass-by-
reference-to-const	is	usually	better.	This	is	especially	the	case	when	working
in	Template	C++,	because	there,	you	don't	even	know	the	type	of	object	you're
dealing	with.	When	you	cross	into	the	STL,	however,	you	know	that	iterators
and	function	objects	are	modeled	on	pointers	in	C,	so	for	iterators	and	function
objects	in	the	STL,	the	old	C	pass-by-value	rule	applies	again.	(For	all	the	details
on	choosing	among	parameter-passing	options,	see	Item	20.)

C++,	then,	isn't	a	unified	language	with	a	single	set	of	rules;	it's	a	federation	of
four	sublanguages,	each	with	its	own	conventions.	Keep	these	sublanguages	in
mind,	and	you'll	find	that	C++	is	a	lot	easier	to	understand.

Things	to	Remember

Rules	for	effective	C++	programming	vary,	depending	on	the



part	of	C++	you	are	using.



Item	2:	Prefer	consts,	enums,	and	inlines	to
#defines

This	Item	might	better	be	called	"prefer	the	compiler	to	the	preprocessor,"
because	#define	may	be	treated	as	if	it's	not	part	of	the	language	per	se.	That's
one	of	its	problems.	When	you	do	something	like	this,

#define	ASPECT_RATIO	1.653

the	symbolic	name	ASPECT_RATIO	may	never	be	seen	by	compilers;	it	may	be
removed	by	the	preprocessor	before	the	source	code	ever	gets	to	a	compiler.	As
a	result,	the	name	ASPECT_RATIO	may	not	get	entered	into	the	symbol	table.
This	can	be	confusing	if	you	get	an	error	during	compilation	involving	the	use	of
the	constant,	because	the	error	message	may	refer	to	1.653,	not
ASPECT_RATIO.	If	ASPECT_RATIO	were	defined	in	a	header	file	you	didn't
write,	you'd	have	no	idea	where	that	1.653	came	from,	and	you'd	waste	time
tracking	it	down.	This	problem	can	also	crop	up	in	a	symbolic	debugger,
because,	again,	the	name	you're	programming	with	may	not	be	in	the	symbol
table.

The	solution	is	to	replace	the	macro	with	a	constant:

const	double	AspectRatio	=	1.653;			//	uppercase	names	are	usually	for

																																				//	macros,	hence	the	name	change

As	a	language	constant,	AspectRatio	is	definitely	seen	by	compilers	and	is



certainly	entered	into	their	symbol	tables.	In	addition,	in	the	case	of	a	floating
point	constant	(such	as	in	this	example),	use	of	the	constant	may	yield	smaller
code	than	using	a	#define.	That's	because	the	preprocessor's	blind	substitution
of	the	macro	name	ASPECT_RATIO	with	1.653	could	result	in	multiple	copies
of	1.653	in	your	object	code,	while	the	use	of	the	constant	AspectRatio
should	never	result	in	more	than	one	copy.

When	replacing	#defines	with	constants,	two	special	cases	are	worth
mentioning.	The	first	is	defining	constant	pointers.	Because	constant	definitions
are	typically	put	in	header	files	(where	many	different	source	files	will	include
them),	it's	important	that	the	pointer	be	declared	const,	usually	in	addition	to
what	the	pointer	points	to.	To	define	a	constant	char*-based	string	in	a	header
file,	for	example,	you	have	to	write	const	twice:

const	char	*	const	authorName	=	"Scott	Meyers";

For	a	complete	discussion	of	the	meanings	and	uses	of	const,	especially	in
conjunction	with	pointers,	see	Item	3.	However,	it's	worth	reminding	you	here
that	string	objects	are	generally	preferable	to	their	char*-based	progenitors,
so	authorName	is	often	better	defined	this	way:

const	std::string	authorName("Scott	Meyers");

The	second	special	case	concerns	class-specific	constants.	To	limit	the	scope	of
a	constant	to	a	class,	you	must	make	it	a	member,	and	to	ensure	there's	at	most
one	copy	of	the	constant,	you	must	make	it	a	static	member:

class	GamePlayer	{



private:

		static	const	int	NumTurns	=	5;						//	constant	declaration

		int	scores[NumTurns];															//	use	of	constant

		...

};

What	you	see	above	is	a	declaration	for	NumTurns,	not	a	definition.	Usually,
C++	requires	that	you	provide	a	definition	for	anything	you	use,	but	class-
specific	constants	that	are	static	and	of	integral	type	(e.g.,	integers,	chars,
bools)	are	an	exception.	As	long	as	you	don't	take	their	address,	you	can
declare	them	and	use	them	without	providing	a	definition.	If	you	do	take	the
address	of	a	class	constant,	or	if	your	compiler	incorrectly	insists	on	a	definition
even	if	you	don't	take	the	address,	you	provide	a	separate	definition	like	this:

	

const	int	GamePlayer::NumTurns;					//	definition	of	NumTurns;	see

	

																																				//	below	for	why	no	value	is	given

	

You	put	this	in	an	implementation	file,	not	a	header	file.	Because	the	initial
value	of	class	constants	is	provided	where	the	constant	is	declared	(e.g.,
NumTurns	is	initialized	to	5	when	it	is	declared),	no	initial	value	is	permitted	at
the	point	of	definition.

Note,	by	the	way,	that	there's	no	way	to	create	a	class-specific	constant	using	a
#define,	because	#defines	don't	respect	scope.	Once	a	macro	is	defined,	it's
in	force	for	the	rest	of	the	compilation	(unless	it's	#undefed	somewhere	along



the	line).	Which	means	that	not	only	can't	#defines	be	used	for	class-specific
constants,	they	also	can't	be	used	to	provide	any	kind	of	encapsulation,	i.e.,	there
is	no	such	thing	as	a	"private"	#define.	Of	course,	const	data	members	can
be	encapsulated;	NumTurns	is.

Older	compilers	may	not	accept	the	syntax	above,	because	it	used	to	be	illegal	to
provide	an	initial	value	for	a	static	class	member	at	its	point	of	declaration.
Furthermore,	in-class	initialization	is	allowed	only	for	integral	types	and	only	for
constants.	In	cases	where	the	above	syntax	can't	be	used,	you	put	the	initial	value
at	the	point	of	definition:

class	CostEstimate	{

private:

		static	const	double	FudgeFactor;							//	declaration	of	static	class

		...																																				//	constant;	goes	in	header	file

};

const	double																													//	definition	of	static	class

		CostEstimate::FudgeFactor	=	1.35;						//	constant;	goes	in	impl.	file

This	is	all	you	need	almost	all	the	time.	The	only	exception	is	when	you	need	the
value	of	a	class	constant	during	compilation	of	the	class,	such	as	in	the
declaration	of	the	array	GamePlayer::scores	above	(where	compilers
insist	on	knowing	the	size	of	the	array	during	compilation).	Then	the	accepted
way	to	compensate	for	compilers	that	(incorrectly)	forbid	the	in-class
specification	of	initial	values	for	static	integral	class	constants	is	to	use	what	is



affectionately	(and	non-pejoratively)	known	as	"the	enum	hack."	This	technique
takes	advantage	of	the	fact	that	the	values	of	an	enumerated	type	can	be	used
where	ints	are	expected,	so	GamePlayer	could	just	as	well	be	defined	like
this:

class	GamePlayer	{

private:

		enum	{	NumTurns	=	5	};								//	"the	enum	hack"		makes

																																//	NumTurns	a	symbolic	name	for	5

		int	scores[NumTurns];									//	fine

		...

};

The	enum	hack	is	worth	knowing	about	for	several	reasons.	First,	the	enum	hack
behaves	in	some	ways	more	like	a	#define	than	a	const	does,	and
sometimes	that's	what	you	want.	For	example,	it's	legal	to	take	the	address	of	a
const,	but	it's	not	legal	to	take	the	address	of	an	enum,	and	it's	typically	not
legal	to	take	the	address	of	a	#define,	either.	If	you	don't	want	to	let	people
get	a	pointer	or	reference	to	one	of	your	integral	constants,	an	enum	is	a	good
way	to	enforce	that	constraint.	(For	more	on	enforcing	design	constraints
through	coding	decisions,	consult	Item	18.)	Also,	though	good	compilers	won't



set	aside	storage	for	const	objects	of	integral	types	(unless	you	create	a	pointer
or	reference	to	the	object),	sloppy	compilers	may,	and	you	may	not	be	willing	to
set	aside	memory	for	such	objects.	Like	#defines,	enums	never	result	in	that
kind	of	unnecessary	memory	allocation.

A	second	reason	to	know	about	the	enum	hack	is	purely	pragmatic.	Lots	of	code
employs	it,	so	you	need	to	recognize	it	when	you	see	it.	In	fact,	the	enum	hack	is
a	fundamental	technique	of	template	metaprogramming	(see	Item	48).

Getting	back	to	the	preprocessor,	another	common	(mis)use	of	the	#define
directive	is	using	it	to	implement	macros	that	look	like	functions	but	that	don't
incur	the	overhead	of	a	function	call.	Here's	a	macro	that	calls	some	function	f
with	the	greater	of	the	macro's	arguments:

	

//	call	f	with	the	maximum	of	a	and	b

	

#define	CALL_WITH_MAX(a,	b)	f((a)	>	(b)	?	(a)	:	(b))

	

Macros	like	this	have	so	many	drawbacks,	just	thinking	about	them	is	painful.

Whenever	you	write	this	kind	of	macro,	you	have	to	remember	to	parenthesize
all	the	arguments	in	the	macro	body.	Otherwise	you	can	run	into	trouble	when
somebody	calls	the	macro	with	an	expression.	But	even	if	you	get	that	right,	look
at	the	weird	things	that	can	happen:

int	a	=	5,	b	=	0;

CALL_WITH_MAX(++a,	b);										//	a	is	incremented	twice

CALL_WITH_MAX(++a,	b+10);							//	a	is	incremented	once



Here,	the	number	of	times	that	a	is	incremented	before	calling	f	depends	on
what	it	is	being	compared	with!

Fortunately,	you	don't	need	to	put	up	with	this	nonsense.	You	can	get	all	the
efficiency	of	a	macro	plus	all	the	predictable	behavior	and	type	safety	of	a
regular	function	by	using	a	template	for	an	inline	function	(see	Item	30):

template<typename	T>																															//	because	we	don't

inline	void	callWithMax(const	T&	a,	const	T&	b)				//	know	what	T	is,	we

{																																																		//	pass	by	reference-to-

		f(a	>	b	?	a	:	b);																																//	const		see	Item	20

}

This	template	generates	a	whole	family	of	functions,	each	of	which	takes	two
objects	of	the	same	type	and	calls	f	with	the	greater	of	the	two	objects.	There's
no	need	to	parenthesize	parameters	inside	the	function	body,	no	need	to	worry
about	evaluating	parameters	multiple	times,	etc.	Furthermore,	because
callWithMax	is	a	real	function,	it	obeys	scope	and	access	rules.	For	example,
it	makes	perfect	sense	to	talk	about	an	inline	function	that	is	private	to	a	class.	In
general,	there's	just	no	way	to	do	that	with	a	macro.

Given	the	availability	of	consts,	enums,	and	inlines,	your	need	for	the
preprocessor	(especially	#define)	is	reduced,	but	it's	not	eliminated.
#include	remains	essential,	and	#ifdef/#ifndef	continue	to	play
important	roles	in	controlling	compilation.	It's	not	yet	time	to	retire	the
preprocessor,	but	you	should	definitely	give	it	long	and	frequent	vacations.

Things	to	Remember



For	simple	constants,	prefer	const	objects	or	enums	to
#defines.

For	function-like	macros,	prefer	inline	functions	to	#defines.



Item	3:	Use	const	whenever	possible

The	wonderful	thing	about	const	is	that	it	allows	you	to	specify	a	semantic
constraint		a	particular	object	should	not	be	modified		and	compilers	will	enforce
that	constraint.	It	allows	you	to	communicate	to	both	compilers	and	other
programmers	that	a	value	should	remain	invariant.	Whenever	that	is	true,	you
should	be	sure	to	say	so,	because	that	way	you	enlist	your	compilers'	aid	in
making	sure	the	constraint	isn't	violated.

The	const	keyword	is	remarkably	versatile.	Outside	of	classes,	you	can	use	it
for	constants	at	global	or	namespace	scope	(see	Item	2),	as	well	as	for	objects
declared	static	at	file,	function,	or	block	scope.	Inside	classes,	you	can	use	it
for	both	static	and	non-static	data	members.	For	pointers,	you	can	specify
whether	the	pointer	itself	is	const,	the	data	it	points	to	is	const,	both,	or
neither:

	

char	greeting[]	=	"Hello";

	

	

	

char	*p	=	greeting;																				//	non-const	pointer,

	

																																							//	non-const	data

	

	

	

const	char	*p	=	greeting;														//	non-const	pointer,

	

																																							//	const	data

	

	

	

char	*	const	p	=	greeting;													//	const	pointer,

	

																																							//	non-const	data



																																							//	non-const	data

	

	

	

const	char	*	const	p	=	greeting;							//	const	pointer,

	

																																							//	const	data

	

This	syntax	isn't	as	capricious	as	it	may	seem.	If	the	word	const	appears	to	the
left	of	the	asterisk,	what's	pointed	to	is	constant;	if	the	word	const	appears	to
the	right	of	the	asterisk,	the	pointer	itself	is	constant;	if	const	appears	on	both
sides,	both	are	constant.

When	what's	pointed	to	is	constant,	some	programmers	list	const	before	the
type.	Others	list	it	after	the	type	but	before	the	asterisk.	There	is	no	difference	in
meaning,	so	the	following	functions	take	the	same	parameter	type:

void	f1(const	Widget	*pw);									//	f1	takes	a	pointer	to	a

																																			//	constant	Widget	object

void	f2(Widget	const	*pw);									//	so	does	f2

Because	both	forms	exist	in	real	code,	you	should	accustom	yourself	to	both	of
them.

STL	iterators	are	modeled	on	pointers,	so	an	iterator	acts	much	like	a	T*
pointer.	Declaring	an	iterator	const	is	like	declaring	a	pointer	const
(i.e.,	declaring	a	T*	const	pointer):	the	iterator	isn't	allowed	to	point	to



something	different,	but	the	thing	it	points	to	may	be	modified.	If	you	want	an
iterator	that	points	to	something	that	can't	be	modified	(i.e.,	the	STL	analogue	of
a	const	T*	pointer),	you	want	a	const_iterator:

std::vector<int>	vec;

...

const	std::vector<int>::iterator	iter	=					//	iter	acts	like	a	T*	const

		vec.begin();

*iter	=	10;																																	//	OK,	changes	what	iter	points	to

++iter;																																				//	error!	iter	is	const

std::vector<int>::const_iterator	cIter	=			//cIter	acts	like	a	const	T*

		vec.begin();

*cIter	=	10;																															//	error!	*cIter	is	const

++cIter;																																		//	fine,	changes	cIter

Some	of	the	most	powerful	uses	of	const	stem	from	its	application	to	function
declarations.	Within	a	function	declaration,	const	can	refer	to	the	function's
return	value,	to	individual	parameters,	and,	for	member	functions,	to	the	function
as	a	whole.



Having	a	function	return	a	constant	value	often	makes	it	possible	to	reduce	the
incidence	of	client	errors	without	giving	up	safety	or	efficiency.	For	example,
consider	the	declaration	of	the	operator*	function	for	rational	numbers	that	is
explored	in	Item	24.

class	Rational	{	...	};

const	Rational	operator*(const	Rational&	lhs,	const	Rational&	rhs);

Many	programmers	squint	when	they	first	see	this.	Why	should	the	result	of
operator*	be	a	const	object?	Because	if	it	weren't,	clients	would	be	able	to
commit	atrocities	like	this:

	

Rational	a,	b,	c;

	

	

	

...

	

	

	

(a	*	b)	=	c;																											//	invoke	operator=	on	the

	

																																							//	result	of	a*b!

	

I	don't	know	why	any	programmer	would	want	to	make	an	assignment	to	the
product	of	two	numbers,	but	I	do	know	that	many	programmers	have	tried	to	do
it	without	wanting	to.	All	it	takes	is	a	simple	typo	(and	a	type	that	can	be



implicitly	converted	to	bool):

	

if	(a	*	b	=	c)	...																							//	oops,	meant	to	do	a	comparison!

	

Such	code	would	be	flat-out	illegal	if	a	and	b	were	of	a	built-in	type.	One	of	the
hallmarks	of	good	user-defined	types	is	that	they	avoid	gratuitous
incompatibilities	with	the	built-ins	(see	also	Item	18),	and	allowing	assignments
to	the	product	of	two	numbers	seems	pretty	gratuitous	to	me.	Declaring
operator*'s	return	value	const	prevents	it,	and	that's	why	it's	The	Right
Thing	To	Do.

There's	nothing	particularly	new	about	const	parameters		they	act	just	like
local	const	objects,	and	you	should	use	both	whenever	you	can.	Unless	you
need	to	be	able	to	modify	a	parameter	or	local	object,	be	sure	to	declare	it
const.	It	costs	you	only	the	effort	to	type	six	characters,	and	it	can	save	you
from	annoying	errors	such	as	the	"I	meant	to	type	'=='	but	I	accidently	typed	'='"
mistake	we	just	saw.

const	Member	Functions

The	purpose	of	const	on	member	functions	is	to	identify	which	member
functions	may	be	invoked	on	const	objects.	Such	member	functions	are
important	for	two	reasons.	First,	they	make	the	interface	of	a	class	easier	to
understand.	It's	important	to	know	which	functions	may	modify	an	object	and
which	may	not.	Second,	they	make	it	possible	to	work	with	const	objects.
That's	a	critical	aspect	of	writing	efficient	code,	because,	as	Item	20	explains,
one	of	the	fundamental	ways	to	improve	a	C++	program's	performance	is	to	pass
objects	by	reference-to-const.	That	technique	is	viable	only	if	there	are	const
member	functions	with	which	to	manipulate	the	resulting	const-qualified
objects.

Many	people	overlook	the	fact	that	member	functions	differing	only	in	their
constness	can	be	overloaded,	but	this	is	an	important	feature	of	C++.	Consider	a



class	for	representing	a	block	of	text:

class	TextBlock	{

public:

		...

		const	char&	operator[](std::size_t	position)	const			//	operator[]	for

		{	return	text[position];	}																											//	const	objects

		char&	operator[](std::size_t	position)															//	operator[]	for

		{	return	text[position];	}																											//	non-const	objects

private:

			std::string	text;

};

TextBlock's	operator[]s	can	be	used	like	this:

	

TextBlock	tb("Hello");

	

std::cout	<<	tb[0];																			//	calls	non-const

	



	

																																												//	TextBlock::operator[]

	

const	TextBlock	ctb("World");

	

std::cout	<<	ctb[0];																		//	calls	const	TextBlock::operator[]

	

Incidentally,	const	objects	most	often	arise	in	real	programs	as	a	result	of
being	passed	by	pointer-	or	reference-to-const.	The	example	of	ctb	above	is
artificial.	This	is	more	realistic:

void	print(const	TextBlock&	ctb)							//	in	this	function,	ctb	is	const

{

		std::cout	<<	ctb[0];																	//	calls	const	TextBlock::operator[]

		...

}

By	overloading	operator[]	and	giving	the	different	versions	different	return
types,	you	can	have	const	and	non-const	TextBlocks	handled	differently:

std::cout	<<	tb[0];																			//	fine		reading	a

																																						//	non-const	TextBlock



tb[0]	=	'x';																											//	fine		writing	a

																																						//	non-const	TextBlock

std::cout	<<	ctb[0];																		//	fine		reading	a

																																						//	const	TextBlock

ctb[0]	=	'x';																										//	error!		writing	a

																																						//	const	TextBlock

Note	that	the	error	here	has	only	to	do	with	the	return	type	of	the	operator[]
that	is	called;	the	calls	to	operator[]	themselves	are	all	fine.	The	error	arises
out	of	an	attempt	to	make	an	assignment	to	a	const	char&,	because	that's	the
return	type	from	the	const	version	of	operator[].

Also	note	that	the	return	type	of	the	non-const	operator[]	is	a	reference
to	a	char		a	char	itself	would	not	do.	If	operator[]	did	return	a	simple
char,	statements	like	this	wouldn't	compile:

	

tb[0]	=	'x';

	

That's	because	it's	never	legal	to	modify	the	return	value	of	a	function	that



returns	a	built-in	type.	Even	if	it	were	legal,	the	fact	that	C++	returns	objects	by
value	(see	Item	20)	would	mean	that	a	copy	of	tb.text[0]	would	be
modified,	not	tb.text[0]	itself,	and	that's	not	the	behavior	you	want.

Let's	take	a	brief	time-out	for	philosophy.	What	does	it	mean	for	a	member
function	to	be	const?	There	are	two	prevailing	notions:	bitwise	constness	(also
known	as	physical	constness)	and	logical	constness.

The	bitwise	const	camp	believes	that	a	member	function	is	const	if	and	only
if	it	doesn't	modify	any	of	the	object's	data	members	(excluding	those	that	are
static),	i.e.,	if	it	doesn't	modify	any	of	the	bits	inside	the	object.	The	nice	thing
about	bitwise	constness	is	that	it's	easy	to	detect	violations:	compilers	just	look
for	assignments	to	data	members.	In	fact,	bitwise	constness	is	C++'s	definition	of
constness,	and	a	const	member	function	isn't	allowed	to	modify	any	of	the
non-static	data	members	of	the	object	on	which	it	is	invoked.

Unfortunately,	many	member	functions	that	don't	act	very	const	pass	the
bitwise	test.	In	particular,	a	member	function	that	modifies	what	a	pointer	points
to	frequently	doesn't	act	const.	But	if	only	the	pointer	is	in	the	object,	the
function	is	bitwise	const,	and	compilers	won't	complain.	That	can	lead	to
counterintuitive	behavior.	For	example,	suppose	we	have	a	TextBlock-like
class	that	stores	its	data	as	a	char*	instead	of	a	string,	because	it	needs	to
communicate	through	a	C	API	that	doesn't	understand	string	objects.

class	CTextBlock	{

public:

		...

		char&	operator[](std::size_t	position)	const			//	inappropriate	(but	bitwise

		{	return	pText[position];	}																				//	const)	declaration	of



																																																	//	operator[]

private:

		char	*pText;

};

This	class	(inappropriately)	declares	operator[]	as	a	const	member
function,	even	though	that	function	returns	a	reference	to	the	object's	internal
data	(a	topic	treated	in	depth	in	Item	28).	Set	that	aside	and	note	that
operator[]'s	implementation	doesn't	modify	pText	in	any	way.	As	a	result,
compilers	will	happily	generate	code	for	operator[];	it	is,	after	all,	bitwise
const,	and	that's	all	compilers	check	for.	But	look	what	it	allows	to	happen:

	

const	CTextBlock	cctb("Hello");								//	declare	constant	object

	

	

	

char	*pc	=	&cctb[0];																			//	call	the	const	operator[]	to	get	a

	

																																							//	pointer	to	cctb's	data

	

	

	

*pc	=	'J';																														//	cctb	now	has	the	value	"Jello"

	

Surely	there	is	something	wrong	when	you	create	a	constant	object	with	a
particular	value	and	you	invoke	only	const	member	functions	on	it,	yet	you
still	change	its	value!



This	leads	to	the	notion	of	logical	constness.	Adherents	to	this	philosophy	argue
that	a	const	member	function	might	modify	some	of	the	bits	in	the	object	on
which	it's	invoked,	but	only	in	ways	that	clients	cannot	detect.	For	example,	your
CTextBlock	class	might	want	to	cache	the	length	of	the	textblock	whenever
it's	requested:

class	CTextBlock	{

public:

		...

		std::size_t	length()	const;

private:

		char	*pText;

		std::size_t	textLength;												//	last	calculated	length	of	textblock

		bool	lengthIsValid;																//	whether	length	is	currently	valid

};

std::size_t	CTextBlock::length()	const

{



		if	(!lengthIsValid)	{

				textLength	=	std::strlen(pText);		//	error!	can't	assign	to	textLength

				lengthIsValid	=	true;													//	and	lengthIsValid	in	a	const

		}																																			//	member	function

		return	textLength;

}

This	implementation	of	length	is	certainly	not	bitwise	const		both
textLength	and	lengthIsValid	may	be	modified		yet	it	seems	as	though
it	should	be	valid	for	const	CTextBlock	objects.	Compilers	disagree.	They
insist	on	bitwise	constness.	What	to	do?

The	solution	is	simple:	take	advantage	of	C++'s	const-related	wiggle	room
known	as	mutable.	mutable	frees	non-static	data	members	from	the
constraints	of	bitwise	constness:

class	CTextBlock	{

public:

		...



		std::size_t	length()	const;

private:

		char	*pText;

		mutable	std::size_t	textLength;									//	these	data	members	may

		mutable	bool	lengthIsValid;													//	always	be	modified,	even	in

};																																								//	const	member	functions

std::size_t	CTextBlock::length()	const

{

		if	(!lengthIsValid)	{

				textLength	=	std::strlen(pText);						//	now	fine

				lengthIsValid	=	true;																	//	also	fine

		}

		return	textLength;

}



Avoiding	Duplication	in	const	and	Non-const	Member
Functions

mutable	is	a	nice	solution	to	the	bitwise-constness-is-not-what-I-had-in-mind
problem,	but	it	doesn't	solve	all	const-related	difficulties.	For	example,
suppose	that	operator[]	in	TextBlock	(and	CTextBlock)	not	only
returned	a	reference	to	the	appropriate	character,	it	also	performed	bounds
checking,	logged	access	information,	maybe	even	did	data	integrity	validation.
Putting	all	this	in	both	the	const	and	the	non-const	operator[]	functions
(and	not	fretting	that	we	now	have	implicitly	inline	functions	of	nontrivial	length
	see	Item	30)	yields	this	kind	of	monstrosity:

class	TextBlock	{

public:

		...

		const	char&	operator[](std::size_t	position)	const

		{

				...																																	//	do	bounds	checking

				...																																	//	log	access	data

				...																																	//	verify	data	integrity

				return	text[position];



		}

		char&	operator[](std::size_t	position)

		{

				...																																	//	do	bounds	checking

				...																																	//	log	access	data

				...																																	//	verify	data	integrity

				return	text[position];

		}

private:

			std::string	text;

};

Ouch!	Can	you	say	code	duplication,	along	with	its	attendant	compilation	time,
maintenance,	and	code-bloat	headaches?	Sure,	it's	possible	to	move	all	the	code
for	bounds	checking,	etc.	into	a	separate	member	function	(private,	naturally)
that	both	versions	of	operator[]	call,	but	you've	still	got	the	duplicated	calls
to	that	function	and	you've	still	got	the	duplicated	return	statement	code.

What	you	really	want	to	do	is	implement	operator[]	functionality	once	and



use	it	twice.	That	is,	you	want	to	have	one	version	of	operator[]	call	the
other	one.	And	that	brings	us	to	casting	away	constness.

As	a	general	rule,	casting	is	such	a	bad	idea,	I've	devoted	an	entire	Item	to	telling
you	not	to	do	it	(Item	27),	but	code	duplication	is	no	picnic,	either.	In	this	case,
the	const	version	of	operator[]	does	exactly	what	the	non-const	version
does,	it	just	has	a	const-qualified	return	type.	Casting	away	the	const	on	the
return	value	is	safe,	in	this	case,	because	whoever	called	the	non-const
operator[]	must	have	had	a	non-const	object	in	the	first	place.	Otherwise
they	couldn't	have	called	a	non-const	function.	So	having	the	non-const
operator[]	call	the	const	version	is	a	safe	way	to	avoid	code	duplication,
even	though	it	requires	a	cast.	Here's	the	code,	but	it	may	be	clearer	after	you
read	the	explanation	that	follows:

class	TextBlock	{

public:

		...

		const	char&	operator[](std::size_t	position)	const					//	same	as	before

		{

				...

				...

				...

				return	text[position];



		}

		char&	operator[](std::size_t	position)									//	now	just	calls	const	op[]

		{

				return

						const_cast<char&>(																									//	cast	away	const	on

																																																	//	op[]'s	return	type;

								static_cast<const	TextBlock&>(*this)					//	add	const	to	*this's	type;

										[position]																												//	call	const	version	of	op[]

						);

		}

...

};

As	you	can	see,	the	code	has	two	casts,	not	one.	We	want	the	non-const
operator[]	to	call	the	const	one,	but	if,	inside	the	non-const
operator[],	we	just	call	operator[],	we'll	recursively	call	ourselves.
That's	only	entertaining	the	first	million	or	so	times.	To	avoid	infinite	recursion,



we	have	to	specify	that	we	want	to	call	the	const	operator[],	but	there's
no	direct	way	to	do	that.	Instead,	we	cast	*this	from	its	native	type	of
TextBlock&	to	const	TextBlock&.	Yes,	we	use	a	cast	to	add	const!	So
we	have	two	casts:	one	to	add	const	to	*this	(so	that	our	call	to
operator[]	will	call	the	const	version),	the	second	to	remove	the	const
from	the	const	operator[]'s	return	value.

The	cast	that	adds	const	is	just	forcing	a	safe	conversion	(from	a	non-const
object	to	a	const	one),	so	we	use	a	static_cast	for	that.	The	one	that
removes	const	can	be	accomplished	only	via	a	const_cast,	so	we	don't
really	have	a	choice	there.	(Technically,	we	do.	A	C-style	cast	would	also	work,
but,	as	I	explain	in	Item	27,	such	casts	are	rarely	the	right	choice.	If	you're
unfamiliar	with	static_cast	or	const_cast,	Item	27	contains	an
overview.)

On	top	of	everything	else,	we're	calling	an	operator	in	this	example,	so	the
syntax	is	a	little	strange.	The	result	may	not	win	any	beauty	contests,	but	it	has
the	desired	effect	of	avoiding	code	duplication	by	implementing	the	non-const
version	of	operator[]	in	terms	of	the	const	version.	Whether	achieving
that	goal	is	worth	the	ungainly	syntax	is	something	only	you	can	determine,	but
the	technique	of	implementing	a	non-const	member	function	in	terms	of	its
const	twin	is	definitely	worth	knowing.

Even	more	worth	knowing	is	that	trying	to	do	things	the	other	way	around	
avoiding	duplication	by	having	the	const	version	call	the	non-const	version	
is	not	something	you	want	to	do.	Remember,	a	const	member	function
promises	never	to	change	the	logical	state	of	its	object,	but	a	non-const
member	function	makes	no	such	promise.	If	you	were	to	call	a	non-const
function	from	a	const	one,	you'd	run	the	risk	that	the	object	you'd	promised	not
to	modify	would	be	changed.	That's	why	having	a	const	member	function	call
a	non-const	one	is	wrong:	the	object	could	be	changed.	In	fact,	to	get	the	code
to	compile,	you'd	have	to	use	a	const_cast	to	get	rid	of	the	const	on
*this,	a	clear	sign	of	trouble.	The	reverse	calling	sequence		the	one	we	used
above		is	safe:	the	non-const	member	function	can	do	whatever	it	wants	with
an	object,	so	calling	a	const	member	function	imposes	no	risk.	That's	why	a
static_cast	works	on	*this	in	that	case:	there's	no	const-related	danger.



As	I	noted	at	the	beginning	of	this	Item,	const	is	a	wonderful	thing.	On
pointers	and	iterators;	on	the	objects	referred	to	by	pointers,	iterators,	and
references;	on	function	parameters	and	return	types;	on	local	variables;	and	on
member	functions,	const	is	a	powerful	ally.	Use	it	whenever	you	can.	You'll	be
glad	you	did.

Things	to	Remember

Declaring	something	const	helps	compilers	detect	usage
errors.	const	can	be	applied	to	objects	at	any	scope,	to
function	parameters	and	return	types,	and	to	member	functions
as	a	whole.

Compilers	enforce	bitwise	constness,	but	you	should	program
using	conceptual	constness.

When	const	and	non-const	member	functions	have
essentially	identical	implementations,	code	duplication	can	be
avoided	by	having	the	non-const	version	call	the	const
version.



Item	4:	Make	sure	that	objects	are	initialized
before	they're	used

C++	can	seem	rather	fickle	about	initializing	the	values	of	objects.	For	example,
if	you	say	this,

	

int	x;

	

in	some	contexts,	x	is	guaranteed	to	be	initialized	(to	zero),	but	in	others,	it's	not.
If	you	say	this,

class	Point	{

		int	x,	y;

};

...

Point	p;

p's	data	members	are	sometimes	guaranteed	to	be	initialized	(to	zero),	but
sometimes	they're	not.	If	you're	coming	from	a	language	where	uninitialized
objects	can't	exist,	pay	attention,	because	this	is	important.



Reading	uninitialized	values	yields	undefined	behavior.	On	some	platforms,	the
mere	act	of	reading	an	uninitialized	value	can	halt	your	program.	More	typically,
the	result	of	the	read	will	be	semi-random	bits,	which	will	then	pollute	the	object
you	read	the	bits	into,	eventually	leading	to	inscrutable	program	behavior	and	a
lot	of	unpleasant	debugging.

Now,	there	are	rules	that	describe	when	object	initialization	is	guaranteed	to	take
place	and	when	it	isn't.	Unfortunately,	the	rules	are	complicated		too	complicated
to	be	worth	memorizing,	in	my	opinion.	In	general,	if	you're	in	the	C	part	of	C++
(see	Item	1)	and	initialization	would	probably	incur	a	runtime	cost,	it's	not
guaranteed	to	take	place.	If	you	cross	into	the	non-C	parts	of	C++,	things
sometimes	change.	This	explains	why	an	array	(from	the	C	part	of	C++)	isn't
necessarily	guaranteed	to	have	its	contents	initialized,	but	a	vector	(from	the
STL	part	of	C++)	is.

The	best	way	to	deal	with	this	seemingly	indeterminate	state	of	affairs	is	to
always	initialize	your	objects	before	you	use	them.	For	non-member	objects	of
built-in	types,	you'll	need	to	do	this	manually.	For	example:

int	x	=	0;																																//	manual	initialization	of	an	int

const	char	*	text	=	"A	C-style	string";			//	manual	initialization	of	a

																																										//	pointer	(see	also	Item	3)

double	d;																																	//	"initialization"	by	reading	from

std::cin	>>	d;																												//	an	input	stream

For	almost	everything	else,	the	responsibility	for	initialization	falls	on
constructors.	The	rule	there	is	simple:	make	sure	that	all	constructors	initialize



constructors.	The	rule	there	is	simple:	make	sure	that	all	constructors	initialize
everything	in	the	object.

The	rule	is	easy	to	follow,	but	it's	important	not	to	confuse	assignment	with
initialization.	Consider	a	constructor	for	a	class	representing	entries	in	an	address
book:

class	PhoneNumber	{	...	};

class	ABEntry	{																							//	ABEntry	=	"Address	Book	Entry"

public:

		ABEntry(const	std::string&	name,	const	std::string&	address,

										const	std::list<PhoneNumber>&	phones);

private:

		std::string	theName;

		std::string	theAddress;

		std::list<PhoneNumber>	thePhones;

		int	num	TimesConsulted;

};

ABEntry::ABEntry(const	std::string&	name,	const	std::string&	address,

																	const	std::list<PhoneNumber>&	phones)



{

		theName	=	name;																							//	these	are	all	

		theAddress	=	address;																	//	not	initializations

		thePhones	=	phones

		numTimesConsulted	=	0;

}

This	will	yield	ABEntry	objects	with	the	values	you	expect,	but	it's	still	not	the
best	approach.	The	rules	of	C++	stipulate	that	data	members	of	an	object	are
initialized	before	the	body	of	a	constructor	is	entered.	Inside	the	ABEntry
constructor,	theName,	theAddress,	and	thePhones	aren't	being
initialized,	they're	being	assigned.	Initialization	took	place	earlier		when	their
default	constructors	were	automatically	called	prior	to	entering	the	body	of	the
ABEntry	constructor.	This	isn't	true	for	numTimesConsulted,	because	it's	a
built-in	type.	For	it,	there's	no	guarantee	it	was	initialized	at	all	prior	to	its
assignment.

A	better	way	to	write	the	ABEntry	constructor	is	to	use	the	member
initialization	list	instead	of	assignments:

ABEntry::ABEntry(const	std::string&	name,	const	std::string&	address,

																	const	std::list<PhoneNumber>&	phones)

:	theName(name),

		theAddress(address),																		//	these	are	now	all	



		thePhones(phones),

		numTimesConsulted(0)

{}																																						//	the	ctor	body	is	now	empty

This	constructor	yields	the	same	end	result	as	the	one	above,	but	it	will	often	be
more	efficient.	The	assignment-based	version	first	called	default	constructors	to
initialize	theName,	theAddress,	and	thePhones,	then	promptly	assigned
new	values	on	top	of	the	default-constructed	ones.	All	the	work	performed	in
those	default	constructions	was	therefore	wasted.	The	member	initialization	list
approach	avoids	that	problem,	because	the	arguments	in	the	initialization	list	are
used	as	constructor	arguments	for	the	various	data	members.	In	this	case,
theName	is	copy-constructed	from	name,	theAddress	is	copy-constructed
from	address,	and	thePhones	is	copy-constructed	from	phones.	For	most
types,	a	single	call	to	a	copy	constructor	is	more	efficient		sometimes	much	more
efficient		than	a	call	to	the	default	constructor	followed	by	a	call	to	the	copy
assignment	operator.

For	objects	of	built-in	type	like	numTimesConsulted,	there	is	no	difference
in	cost	between	initialization	and	assignment,	but	for	consistency,	it's	often	best
to	initialize	everything	via	member	initialization.	Similarly,	you	can	use	the
member	initialization	list	even	when	you	want	to	default-construct	a	data
member;	just	specify	nothing	as	an	initialization	argument.	For	example,	if
ABEntry	had	a	constructor	taking	no	parameters,	it	could	be	implemented	like
this:

ABEntry::ABEntry()

:theName(),																									//	call	theName's	default	ctor;

	theAddress(),																						//	do	the	same	for	theAddress;



	thePhones(),																							//	and	for	thePhones;

	numTimesConsulted(0)															//	but	explicitly	initialize

{}																																		//	numTimesConsulted	to	zero

Because	compilers	will	automatically	call	default	constructors	for	data	members
of	user-defined	types	when	those	data	members	have	no	initializers	on	the
member	initialization	list,	some	programmers	consider	the	above	approach
overkill.	That's	understandable,	but	having	a	policy	of	always	listing	every	data
member	on	the	initialization	list	avoids	having	to	remember	which	data	members
may	go	uninitialized	if	they	are	omitted.	Because	numTimesConsulted	is	of
a	built-in	type,	for	example,	leaving	it	off	a	member	initialization	list	could	open
the	door	to	undefined	behavior.

Sometimes	the	initialization	list	must	be	used,	even	for	built-in	types.	For
example,	data	members	that	are	const	or	are	references	must	be	initialized;
they	can't	be	assigned	(see	also	Item	5).	To	avoid	having	to	memorize	when	data
members	must	be	initialized	in	the	member	initialization	list	and	when	it's
optional,	the	easiest	choice	is	to	always	use	the	initialization	list.	It's	sometimes
required,	and	it's	often	more	efficient	than	assignments.

Many	classes	have	multiple	constructors,	and	each	constructor	has	its	own
member	initialization	list.	If	there	are	many	data	members	and/or	base	classes,
the	existence	of	multiple	initialization	lists	introduces	undesirable	repetition	(in
the	lists)	and	boredom	(in	the	programmers).	In	such	cases,	it's	not	unreasonable
to	omit	entries	in	the	lists	for	data	members	where	assignment	works	as	well	as
true	initialization,	moving	the	assignments	to	a	single	(typically	private)	function
that	all	the	constructors	call.	This	approach	can	be	especially	helpful	if	the	true
initial	values	for	the	data	members	are	to	be	read	from	a	file	or	looked	up	in	a
database.	In	general,	however,	true	member	initialization	(via	an	initialization
list)	is	preferable	to	pseudo-initialization	via	assignment.

One	aspect	of	C++	that	isn't	fickle	is	the	order	in	which	an	object's	data	is
initialized.	This	order	is	always	the	same:	base	classes	are	initialized	before



derived	classes	(see	also	Item	12),	and	within	a	class,	data	members	are
initialized	in	the	order	in	which	they	are	declared.	In	ABEntry,	for	example,
theName	will	always	be	initialized	first,	theAddress	second,	thePhones
third,	and	numTimesConsulted	last.	This	is	true	even	if	they	are	listed	in	a
different	order	on	the	member	initialization	list	(something	that's	unfortunately
legal).	To	avoid	reader	confusion,	as	well	as	the	possibility	of	some	truly
obscure	behavioral	bugs,	always	list	members	in	the	initialization	list	in	the	same
order	as	they're	declared	in	the	class.

Once	you've	taken	care	of	explicitly	initializing	non-member	objects	of	built-in
types	and	you've	ensured	that	your	constructors	initialize	their	base	classes	and
data	members	using	the	member	initialization	list,	there's	only	one	more	thing	to
worry	about.	That	thing	is		take	a	deep	breath		the	order	of	initialization	of	non-
local	static	objects	defined	in	different	translation	units.

Let's	pick	that	phrase	apart	bit	by	bit.

A	static	object	is	one	that	exists	from	the	time	it's	constructed	until	the	end	of	the
program.	Stack	and	heap-based	objects	are	thus	excluded.	Included	are	global
objects,	objects	defined	at	namespace	scope,	objects	declared	static	inside
classes,	objects	declared	static	inside	functions,	and	objects	declared
static	at	file	scope.	Static	objects	inside	functions	are	known	as	local	static
objects	(because	they're	local	to	a	function),	and	the	other	kinds	of	static	objects
are	known	as	non-local	static	objects.	Static	objects	are	automatically	destroyed
when	the	program	exits,	i.e.,	their	destructors	are	automatically	called	when
main	finishes	executing.

A	translation	unit	is	the	source	code	giving	rise	to	a	single	object	file.	It's
basically	a	single	source	file,	plus	all	of	its	#include	files.

The	problem	we're	concerned	with,	then,	involves	at	least	two	separately
compiled	source	files,	each	of	which	contains	at	least	one	non-local	static	object
(i.e.,	an	object	that's	global,	at	namespace	scope,	or	static	in	a	class	or	at	file
scope).	And	the	actual	problem	is	this:	if	initialization	of	a	non-local	static	object
in	one	translation	unit	uses	a	non-local	static	object	in	a	different	translation	unit,
the	object	it	uses	could	be	uninitialized,	because	the	relative	order	of
initialization	of	non-local	static	objects	defined	in	different	translation	units	is



undefined.

An	example	will	help.	Suppose	you	have	a	FileSystem	class	that	makes	files
on	the	Internet	look	like	they're	local.	Since	your	class	makes	the	world	look	like
a	single	file	system,	you	might	create	a	special	object	at	global	or	namespace
scope	representing	the	single	file	system:

class	FileSystem	{																				//	from	your	library

public:

		...

		std::size_t	numDisks()	const;							//	one	of	many	member	functions

		...

};

extern	FileSystem	tfs;																//	object	for	clients	to	use;

																																						//	"tfs"	=	"the	file	system"

A	FileSystem	object	is	decidedly	non-trivial,	so	use	of	theFileSystem
object	before	it	has	been	constructed	would	be	disastrous.

Now	suppose	some	client	creates	a	class	for	directories	in	a	file	system.
Naturally,	their	class	uses	theFileSystem	object:

class	Directory	{																							//	created	by	library	client



public:

			Directory(	params	);

		...

};

Directory::Directory(	params	)

{

		...

		std::size_t	disks	=	tfs.numDisks();			//	use	the	tfs	object

		...

}

Further	suppose	this	client	decides	to	create	a	single	Directory	object	for
temporary	files:

Directory	tempDir(	params	);											//	directory	for	temporary	files

Now	the	importance	of	initialization	order	becomes	apparent:	unless	tfs	is
initialized	before	tempDir,	tempDir's	constructor	will	attempt	to	use	tfs
before	it's	been	initialized.	But	tfs	and	tempDir	were	created	by	different



people	at	different	times	in	different	source	files		they're	non-local	static	objects
defined	in	different	translation	units.	How	can	you	be	sure	that	tfs	will	be
initialized	before	tempDir?

You	can't.	Again,	the	relative	order	of	initialization	of	non-local	static	objects
defined	in	different	translation	units	is	undefined.	There	is	a	reason	for	this.
Determining	the	"proper"	order	in	which	to	initialize	non-local	static	objects	is
hard.	Very	hard.	Unsolvably	hard.	In	its	most	general	form		with	multiple
translation	units	and	non-local	static	objects	generated	through	implicit	template
instantiations	(which	may	themselves	arise	via	implicit	template	instantiations)	
it's	not	only	impossible	to	determine	the	right	order	of	initialization,	it's	typically
not	even	worth	looking	for	special	cases	where	it	is	possible	to	determine	the
right	order.

Fortunately,	a	small	design	change	eliminates	the	problem	entirely.	All	that	has
to	be	done	is	to	move	each	non-local	static	object	into	its	own	function,	where
it's	declared	static.	These	functions	return	references	to	the	objects	they
contain.	Clients	then	call	the	functions	instead	of	referring	to	the	objects.	In
other	words,	non-local	static	objects	are	replaced	with	local	static	objects.
(Aficionados	of	design	patterns	will	recognize	this	as	a	common	implementation
of	the	Singleton	pattern.)

This	approach	is	founded	on	C++'s	guarantee	that	local	static	objects	are
initialized	when	the	object's	definition	is	first	encountered	during	a	call	to	that
function.	So	if	you	replace	direct	accesses	to	non-local	static	objects	with	calls	to
functions	that	return	references	to	local	static	objects,	you're	guaranteed	that	the
references	you	get	back	will	refer	to	initialized	objects.	As	a	bonus,	if	you	never
call	a	function	emulating	a	non-local	static	object,	you	never	incur	the	cost	of
constructing	and	destructing	the	object,	something	that	can't	be	said	for	true	non-
local	static	objects.

Here's	the	technique	applied	to	both	tfs	and	tempDir:

class	FileSystem	{	...	};											//	as	before



FileSystem&	tfs()																			//	this	replaces	the	tfs	object;	it	could	be

{																																			//	static	in	the	FileSystem	class

		static	FileSystem	fs;													//	define	and	initialize	a	local	static	object

		return	fs;																								//	return	a	reference	to	it

}

class	Directory	{	...	};												//	as	before

Directory::Directory(	params	)						//	as	before,	except	references	to	tfs	are

{																																			//	now	to	tfs()

		...

		std::size_t	disks	=	tfs().numDisks();

		...

}

Directory&	tempDir()																//	this	replaces	the	tempDir	object;	it

{																																			//	could	be	static	in	the	Directory	class



		static	Directory	td;														//	define/initialize	local	static	object

		return	td;																								//	return	reference	to	it

}

Clients	of	this	modified	system	program	exactly	as	they	used	to,	except	they	now
refer	to	tfs()	and	tempDir()	instead	of	tfs	and	tempDir.	That	is,	they
use	functions	returning	references	to	objects	instead	of	using	the	objects
themselves.

The	reference-returning	functions	dictated	by	this	scheme	are	always	simple:
define	and	initialize	a	local	static	object	on	line	1,	return	it	on	line	2.	This
simplicity	makes	them	excellent	candidates	for	inlining,	especially	if	they're
called	frequently	(see	Item	30).	On	the	other	hand,	the	fact	that	these	functions
contain	static	objects	makes	them	problematic	in	multithreaded	systems.	Then
again,	any	kind	of	non-const	static	object		local	or	non-local		is	trouble	waiting
to	happen	in	the	presence	of	multiple	threads.	One	way	to	deal	with	such	trouble
is	to	manually	invoke	all	the	reference-returning	functions	during	the	single-
threaded	startup	portion	of	the	program.	This	eliminates	initialization-related
race	conditions.

Of	course,	the	idea	of	using	reference-returning	functions	to	prevent
initialization	order	problems	is	dependent	on	there	being	a	reasonable
initialization	order	for	your	objects	in	the	first	place.	If	you	have	a	system	where
object	A	must	be	initialized	before	object	B,	but	A's	initialization	is	dependent
on	B's	having	already	been	initialized,	you	are	going	to	have	problems,	and
frankly,	you	deserve	them.	If	you	steer	clear	of	such	pathological	scenarios,
however,	the	approach	described	here	should	serve	you	nicely,	at	least	in	single-
threaded	applications.

To	avoid	using	objects	before	they're	initialized,	then,	you	need	to	do	only	three
things.	First,	manually	initialize	non-member	objects	of	built-in	types.	Second,
use	member	initialization	lists	to	initialize	all	parts	of	an	object.	Finally,	design
around	the	initialization	order	uncertainty	that	afflicts	non-local	static	objects



around	the	initialization	order	uncertainty	that	afflicts	non-local	static	objects
defined	in	separate	translation	units.

Things	to	Remember

Manually	initialize	objects	of	built-in	type,	because	C++	only
sometimes	initializes	them	itself.

In	a	constructor,	prefer	use	of	the	member	initialization	list	to
assignment	inside	the	body	of	the	constructor.	List	data
members	in	the	initialization	list	in	the	same	order	they're
declared	in	the	class.

Avoid	initialization	order	problems	across	translation	units	by
replacing	non-local	static	objects	with	local	static	objects.



Chapter	2.	Constructors,	Destructors,
and	Assignment	Operators
Almost	every	class	you	write	will	have	one	or	more	constructors,	a	destructor,
and	a	copy	assignment	operator.	Little	wonder.	These	are	your	bread-and-butter
functions,	the	ones	that	control	the	fundamental	operations	of	bringing	a	new
object	into	existence	and	making	sure	it's	initialized,	getting	rid	of	an	object	and
making	sure	it's	properly	cleaned	up,	and	giving	an	object	a	new	value.	Making
mistakes	in	these	functions	will	lead	to	far-reaching		and	unpleasant	
repercussions	throughout	your	classes,	so	it's	vital	that	you	get	them	right.	In	this
chapter,	I	offer	guidance	on	putting	together	the	functions	that	comprise	the
backbone	of	well-formed	classes.



Item	5:	Know	what	functions	C++	silently	writes
and	calls

When	is	an	empty	class	not	an	empty	class?	When	C++	gets	through	with	it.	If
you	don't	declare	them	yourself,	compilers	will	declare	their	own	versions	of	a
copy	constructor,	a	copy	assignment	operator,	and	a	destructor.	Furthermore,	if
you	declare	no	constructors	at	all,	compilers	will	also	declare	a	default
constructor	for	you.	All	these	functions	will	be	both	public	and	inline	(see
Item	30).	As	a	result,	if	you	write

class	Empty{};

it's	essentially	the	same	as	if	you'd	written	this:

class	Empty	{

public:

		Empty()	{	...	}																												//	default	constructor

		Empty(const	Empty&	rhs)	{	...	}												//	copy	constructor

		~Empty()	{	...	}																											//	destructor		see	below

																																													//	for	whether	it's	virtual



		Empty&	operator=(const	Empty&	rhs)	{	...	}	//	copy	assignment	operator

};

These	functions	are	generated	only	if	they	are	needed,	but	it	doesn't	take	much	to
need	them.	The	following	code	will	cause	each	function	to	be	generated:

	

Empty	e1;																															//	default	constructor;

	

																																								//	destructor

	

	

	

Empty	e2(e1);																											//	copy	constructor

	

	

	

e2	=	e1;																																//	copy	assignment	operator

	

Given	that	compilers	are	writing	functions	for	you,	what	do	the	functions	do?
Well,	the	default	constructor	and	the	destructor	primarily	give	compilers	a	place
to	put	"behind	the	scenes"	code	such	as	invocation	of	constructors	and
destructors	of	base	classes	and	non-static	data	members.	Note	that	the	generated
destructor	is	non-virtual	(see	Item7)	unless	it's	for	a	class	inheriting	from	a	base
class	that	itself	declares	a	virtual	destructor	(in	which	case	the	function's
virtualness	comes	from	the	base	class).

As	for	the	copy	constructor	and	the	copy	assignment	operator,	the	compiler-
generated	versions	simply	copy	each	non-static	data	member	of	the	source	object
over	to	the	target	object.	For	example,	consider	a	NamedObject	template	that
allows	you	to	associate	names	with	objects	of	type	T:



template<typename	T>

class	NamedObject	{

public:

		NamedObject(const	char	*name,	const	T&	value);

		NamedObject(const	std::string&	name,	const	T&	value);

		...

private:

		std::string	nameValue;

		T	objectValue;

};

Because	a	constructor	is	declared	in	NamedObject,	compilers	won't	generate	a
default	constructor.	This	is	important.	It	means	that	if	you've	carefully
engineered	a	class	to	require	constructor	arguments,	you	don't	have	to	worry
about	compilers	overriding	your	decision	by	blithely	adding	a	constructor	that
takes	no	arguments.

NamedObject	declares	neither	copy	constructor	nor	copy	assignment	operator,
so	compilers	will	generate	those	functions	(if	they	are	needed).	Look,	then,	at
this	use	of	the	copy	constructor:



NamedObject<int>	no1("Smallest	Prime	Number",	2);

NamedObject<int>	no2(no1);																	//	calls	copy	constructor

The	copy	constructor	generated	by	compilers	must	initialize	no2.nameValue
and	no2.objectValue	using	no1.nameValue	and	no1.objectValue,
respectively.	The	type	of	nameValue	is	string,	and	the	standard	string
type	has	a	copy	constructor,	so	no2.nameValue	will	be	initialized	by	calling
the	string	copy	constructor	with	no1.nameValue	as	its	argument.	On	the
other	hand,	the	type	of	NamedObject<int>::objectValue	is	int
(because	T	is	int	for	this	template	instantiation),	and	int	is	a	built-in	type,	so
no2.objectValue	will	be	initialized	by	copying	the	bits	in
no1.objectValue.

The	compiler-generated	copy	assignment	operator	for	NamedObject<int>
would	behave	essentially	the	same	way,	but	in	general,	compiler-generated	copy
assignment	operators	behave	as	I've	described	only	when	the	resulting	code	is
both	legal	and	has	a	reasonable	chance	of	making	sense.	If	either	of	these	tests
fails,	compilers	will	refuse	to	generate	an	operator=	for	your	class.

For	example,	suppose	NamedObject	were	defined	like	this,	where
nameValue	is	a	reference	to	a	string	and	objectValue	is	a	const	T:

template<class	T>

class	NamedObject	{

public:

		//	this	ctor	no	longer	takes	a	const	name,	because	nameValue



		//	is	now	a	reference-to-non-const	string.	The	char*	constructor

		//	is	gone,	because	we	must	have	a	string	to	refer	to.

		NamedObject(std::string&	name,	const	T&	value);

		...																															//	as	above,	assume	no

																																				//	operator=	is	declared

private:

		std::string&	nameValue;											//	this	is	now	a	reference

		const	T	objectValue;														//	this	is	now	const

};

Now	consider	what	should	happen	here:

std::string	newDog("Persephone");

std::string	oldDog("Satch");

NamedObject<int>	p(newDog,	2);															//	when	I	originally	wrote	this,	our

																																													//	dog	Persephone	was	about	to



																																													//	have	her	second	birthday

NamedObject<int>	s(oldDog,	36);														//	the	family	dog	Satch	(from	my

																																													//	childhood)	would	be	36	if	she

																																													//	were	still	alive

p	=	s;																																							//	what	should	happen	to

																																													//	the	data	members	in	p?

Before	the	assignment,	both	p.nameValue	and	s.nameValue	refer	to
string	objects,	though	not	the	same	ones.	How	should	the	assignment	affect
p.nameValue?	After	the	assignment,	should	p.nameValue	refer	to	the
string	referred	to	by	s.nameValue,	i.e.,	should	the	reference	itself	be
modified?	If	so,	that	breaks	new	ground,	because	C++	doesn't	provide	a	way	to
make	a	reference	refer	to	a	different	object.	Alternatively,	should	the	string
object	to	which	p.nameValue	refers	be	modified,	thus	affecting	other	objects
that	hold	pointers	or	references	to	that	string,	i.e.,	objects	not	directly
involved	in	the	assignment?	Is	that	what	the	compiler-generated	copy
assignment	operator	should	do?

Faced	with	this	conundrum,	C++	refuses	to	compile	the	code.	If	you	want	to
support	assignment	in	a	class	containing	a	reference	member,	you	must	define
the	copy	assignment	operator	yourself.	Compilers	behave	similarly	for	classes
containing	const	members	(such	as	objectValue	in	the	modified	class
above).	It's	not	legal	to	modify	const	members,	so	compilers	are	unsure	how	to
treat	them	during	an	implicitly	generated	assignment	function.	Finally,	compilers
reject	implicit	copy	assignment	operators	in	derived	classes	that	inherit	from



base	classes	declaring	the	copy	assignment	operator	private.	After	all,
compiler-generated	copy	assignment	operators	for	derived	classes	are	supposed
to	handle	base	class	parts,	too	(see	Item	12),	but	in	doing	so,	they	certainly	can't
invoke	member	functions	the	derived	class	has	no	right	to	call.

Things	to	Remember

Compilers	may	implicitly	generate	a	class's	default	constructor,
copy	constructor,	copy	assignment	operator,	and	destructor.



Item	6:	Explicitly	disallow	the	use	of	compiler-
generated	functions	you	do	not	want

Real	estate	agents	sell	houses,	and	a	software	system	supporting	such	agents
would	naturally	have	a	class	representing	homes	for	sale:

class	HomeForSale	{	...	};

As	every	real	estate	agent	will	be	quick	to	point	out,	every	property	is	unique		no
two	are	exactly	alike.	That	being	the	case,	the	idea	of	making	a	copy	of	a
HomeForSale	object	makes	little	sense.	How	can	you	copy	something	that's
inherently	unique?	You'd	thus	like	attempts	to	copy	HomeForSale	objects	to
not	compile:

HomeForSale	h1;

HomeForSale	h2;

HomeForSale	h3(h1);															//	attempt	to	copy	h1		should

																																		//	not	compile!

h1	=	h2;																										//	attempt	to	copy	h2		should

																																		//	not	compile!



Alas,	preventing	such	compilation	isn't	completely	straightforward.	Usually,	if
you	don't	want	a	class	to	support	a	particular	kind	of	functionality,	you	simply
don't	declare	the	function	that	would	provide	it.	This	strategy	doesn't	work	for
the	copy	constructor	and	copy	assignment	operator,	because,	as	Item	5	points
out,	if	you	don't	declare	them	and	somebody	tries	to	call	them,	compilers	declare
them	for	you.

This	puts	you	in	a	bind.	If	you	don't	declare	a	copy	constructor	or	a	copy
assignment	operator,	compilers	may	generate	them	for	you.	Your	class	thus
supports	copying.	If,	on	the	other	hand,	you	do	declare	these	functions,	your
class	still	supports	copying.	But	the	goal	here	is	to	prevent	copying!

The	key	to	the	solution	is	that	all	the	compiler	generated	functions	are	public.	To
prevent	these	functions	from	being	generated,	you	must	declare	them	yourself,
but	there	is	nothing	that	requires	that	you	declare	them	public.	Instead,	declare
the	copy	constructor	and	the	copy	assignment	operator	private.	By	declaring	a
member	function	explicitly,	you	prevent	compilers	from	generating	their	own
version,	and	by	making	the	function	private,	you	keep	people	from	calling	it.

Mostly.	The	scheme	isn't	foolproof,	because	member	and	friend	functions	can
still	call	your	private	functions.	Unless,	that	is,	you	are	clever	enough	not	to
define	them.	Then	if	somebody	inadvertently	calls	one,	they'll	get	an	error	at
link-time.	This	trick		declaring	member	functions	private	and	deliberately	not
implementing	them		is	so	well	established,	it's	used	to	prevent	copying	in	several
classes	in	C++'s	iostreams	library.	Take	a	look,	for	example,	at	the	definitions	of
ios_base,	basic_ios,	and	sentry	in	your	standard	library
implementation.	You'll	find	that	in	each	case,	both	the	copy	constructor	and	the
copy	assignment	operator	are	declared	private	and	are	not	defined.

Applying	the	trick	to	HomeForSale	is	easy:

class	HomeForSale	{

public:



		...

private:

		...

		HomeForSale(const	HomeForSale&);												//	declarations	only

		HomeForSale&	operator=(const	HomeForSale&);

};

You'll	note	that	I've	omitted	the	names	of	the	functions'	parameters.	This	isn't
required,	it's	just	a	common	convention.	After	all,	the	functions	will	never	be
implemented,	much	less	used,	so	what's	the	point	in	specifying	parameter
names?

With	the	above	class	definition,	compilers	will	thwart	client	attempts	to	copy
HomeForSale	objects,	and	if	you	inadvertently	try	to	do	it	in	a	member	or	a
friend	function,	the	linker	will	complain.

It's	possible	to	move	the	link-time	error	up	to	compile	time	(always	a	good	thing	
earlier	error	detection	is	better	than	later)	by	declaring	the	copy	constructor	and
copy	assignment	operator	private	not	in	HomeForSale	itself,	but	in	a	base
class	specifically	designed	to	prevent	copying.	The	base	class	is	simplicity	itself:

class	Uncopyable	{

protected:																																			//	allow	construction

		Uncopyable()	{}																												//	and	destruction	of



		~Uncopyable()	{}																											//	derived	objects...

private:

		Uncopyable(const	Uncopyable&);													//	...but	prevent	copying

		Uncopyable&	operator=(const	Uncopyable&);

};

To	keep	HomeForSale	objects	from	being	copied,	all	we	have	to	do	now	is
inherit	from	Uncopyable:

class	HomeForSale:	private	Uncopyable	{					//	class	no	longer

		...																																							//	declares	copy	ctor	or

};																																										//	copy	assign.	operator

This	works,	because	compilers	will	try	to	generate	a	copy	constructor	and	a	copy
assignment	operator	if	anybody		even	a	member	or	friend	function		tries	to	copy
a	HomeForSale	object.	As	Item	12	explains,	the	compiler-generated	versions
of	these	functions	will	try	to	call	their	base	class	counterparts,	and	those	calls
will	be	rejected,	because	the	copying	operations	are	private	in	the	base	class.

The	implementation	and	use	of	Uncopyable	include	some	subtleties,	such	as
the	fact	that	inheritance	from	Uncopyable	needn't	be	public	(see	Items	32	and
39)	and	that	Uncopyable's	destructor	need	not	be	virtual	(see	Item	7).	Because



Uncopyable	contains	no	data,	it's	eligible	for	the	empty	base	class
optimization	described	in	Item	39,	but	because	it's	a	base	class,	use	of	this
technique	could	lead	to	multiple	inheritance	(see	Item	40).	Multiple	inheritance,
in	turn,	can	sometimes	disable	the	empty	base	class	optimization	(again,	see	Item
39).	In	general,	you	can	ignore	these	subtleties	and	just	use	Uncopyable	as
shown,	because	it	works	precisely	as	advertised.	You	can	also	use	the	version
available	at	Boost	(see	Item	55).	That	class	is	named	noncopyable.	It's	a	fine
class,	I	just	find	the	name	a	bit	un-,	er,	nonnatural.

Things	to	Remember

To	disallow	functionality	automatically	provided	by	compilers,
declare	the	corresponding	member	functions	private	and	give
no	implementations.	Using	a	base	class	like	Uncopyable	is
one	way	to	do	this.



Item	7:	Declare	destructors	virtual	in
polymorphic	base	classes

There	are	lots	of	ways	to	keep	track	of	time,	so	it	would	be	reasonable	to	create	a
TimeKeeper	base	class	along	with	derived	classes	for	different	approaches	to
timekeeping:

class	TimeKeeper	{

public:

		TimeKeeper();

		~TimeKeeper();

		...

};

class	AtomicClock:	public	TimeKeeper	{	...	};

class	WaterClock:	public	TimeKeeper	{	...	};

class	WristWatch:	public	TimeKeeper	{	...	};



Many	clients	will	want	access	to	the	time	without	worrying	about	the	details	of
how	it's	calculated,	so	a	factory	function		a	function	that	returns	a	base	class
pointer	to	a	newly-created	derived	class	object		can	be	used	to	return	a	pointer	to
a	timekeeping	object:

	

TimeKeeper*	getTimeKeeper();							//	returns	a	pointer	to	a	dynamic-

	

																																			//	ally	allocated	object	of	a	class

	

																																			//	derived	from	TimeKeeper

	

In	keeping	with	the	conventions	of	factory	functions,	the	objects	returned	by
getTimeKeeper	are	on	the	heap,	so	to	avoid	leaking	memory	and	other
resources,	it's	important	that	each	returned	object	be	properly	deleted:

	

TimeKeeper	*ptk	=	getTimeKeeper();		//	get	dynamically	allocated	object

	

																																				//	from	TimeKeeper	hierarchy

	

	

	

...																																	//	use	it

	

	

	

delete	ptk;																								//	release	it	to	avoid	resource	leak

	

Item	13	explains	that	relying	on	clients	to	perform	the	deletion	is	error-prone,
and	Item	18	explains	how	the	interface	to	the	factory	function	can	be	modified	to
prevent	common	client	errors,	but	such	concerns	are	secondary	here,	because	in



this	Item	we	address	a	more	fundamental	weakness	of	the	code	above:	even	if
clients	do	everything	right,	there	is	no	way	to	know	how	the	program	will
behave.

The	problem	is	that	getTimeKeeper	returns	a	pointer	to	a	derived	class
object	(e.g.,	AtomicClock),	that	object	is	being	deleted	via	a	base	class
pointer	(i.e.,	a	TimeKeeper*	pointer),	and	the	base	class	(TimeKeeper)	has
a	non-virtual	destructor.	This	is	a	recipe	for	disaster,	because	C++	specifies	that
when	a	derived	class	object	is	deleted	through	a	pointer	to	a	base	class	with	a
non-virtual	destructor,	results	are	undefined.	What	typically	happens	at	runtime
is	that	the	derived	part	of	the	object	is	never	destroyed.	If	getTimeKeeper
were	to	return	a	pointer	to	an	AtomicClock	object,	the	AtomicClock	part
of	the	object	(i.e.,	the	data	members	declared	in	the	AtomicClock	class)
would	probably	not	be	destroyed,	nor	would	the	AtomicClock	destructor	run.
However,	the	base	class	part	(i.e.,	the	TimeKeeper	part)	typically	would	be
destroyed,	thus	leading	to	a	curious	"partially	destroyed"	object.	This	is	an
excellent	way	to	leak	resources,	corrupt	data	structures,	and	spend	a	lot	of	time
with	a	debugger.

Eliminating	the	problem	is	simple:	give	the	base	class	a	virtual	destructor.	Then
deleting	a	derived	class	object	will	do	exactly	what	you	want.	It	will	destroy	the
entire	object,	including	all	its	derived	class	parts:

class	TimeKeeper	{

public:

		TimeKeeper();

		virtual	~TimeKeeper();

		...

};

TimeKeeper	*ptk	=	getTimeKeeper();



...

delete	ptk;																									//	now	behaves	correctly

Base	classes	like	TimeKeeper	generally	contain	virtual	functions	other	than
the	destructor,	because	the	purpose	of	virtual	functions	is	to	allow	customization
of	derived	class	implementations	(see	Item	34).	For	example,	TimeKeeper
might	have	a	virtual	function,	getCurrentTime,	which	would	be
implemented	differently	in	the	various	derived	classes.	Any	class	with	virtual
functions	should	almost	certainly	have	a	virtual	destructor.

If	a	class	does	not	contain	virtual	functions,	that	often	indicates	it	is	not	meant	to
be	used	as	a	base	class.	When	a	class	is	not	intended	to	be	a	base	class,	making
the	destructor	virtual	is	usually	a	bad	idea.	Consider	a	class	for	representing
points	in	two-dimensional	space:

class	Point	{																											//	a	2D	point

public:

		Point(int	xCoord,	int	yCoord);

		~Point();

private:



		int	x,	y;

};

If	an	int	occupies	32	bits,	a	Point	object	can	typically	fit	into	a	64-bit
register.	Furthermore,	such	a	Point	object	can	be	passed	as	a	64-bit	quantity	to
functions	written	in	other	languages,	such	as	C	or	FORTRAN.	If	Point's
destructor	is	made	virtual,	however,	the	situation	changes.

The	implementation	of	virtual	functions	requires	that	objects	carry	information
that	can	be	used	at	runtime	to	determine	which	virtual	functions	should	be
invoked	on	the	object.	This	information	typically	takes	the	form	of	a	pointer
called	a	vptr	("virtual	table	pointer").	The	vptr	points	to	an	array	of	function
pointers	called	a	vtbl	("virtual	table");	each	class	with	virtual	functions	has	an
associated	vtbl.	When	a	virtual	function	is	invoked	on	an	object,	the	actual
function	called	is	determined	by	following	the	object's	vptr	to	a	vtbl	and	then
looking	up	the	appropriate	function	pointer	in	the	vtbl.

The	details	of	how	virtual	functions	are	implemented	are	unimportant.	What	is
important	is	that	if	the	Point	class	contains	a	virtual	function,	objects	of	that
type	will	increase	in	size.	On	a	32-bit	architecture,	they'll	go	from	64	bits	(for	the
two	ints)	to	96	bits	(for	the	ints	plus	the	vptr);	on	a	64-bit	architecture,	they
may	go	from	64	to	128	bits,	because	pointers	on	such	architectures	are	64	bits	in
size.	Addition	of	a	vptr	to	Point	will	thus	increase	its	size	by	50100%!	No
longer	can	Point	objects	fit	in	a	64-bit	register.	Furthermore,	Point	objects	in
C++	can	no	longer	look	like	the	same	structure	declared	in	another	language
such	as	C,	because	their	foreign	language	counterparts	will	lack	the	vptr.	As	a
result,	it	is	no	longer	possible	to	pass	Points	to	and	from	functions	written	in
other	languages	unless	you	explicitly	compensate	for	the	vptr,	which	is	itself
an	implementation	detail	and	hence	unportable.

The	bottom	line	is	that	gratuitously	declaring	all	destructors	virtual	is	just	as
wrong	as	never	declaring	them	virtual.	In	fact,	many	people	summarize	the
situation	this	way:	declare	a	virtual	destructor	in	a	class	if	and	only	if	that	class
contains	at	least	one	virtual	function.



contains	at	least	one	virtual	function.

It	is	possible	to	get	bitten	by	the	non-virtual	destructor	problem	even	in	the
complete	absence	of	virtual	functions.	For	example,	the	standard	string	type
contains	no	virtual	functions,	but	misguided	programmers	sometimes	use	it	as	a
base	class	anyway:

class	SpecialString:	public	std::string	{			//	bad	idea!	std::string	has	a

		...																																							//	non-virtual	destructor

};

At	first	glance,	this	may	look	innocuous,	but	if	anywhere	in	an	application	you
somehow	convert	a	pointer-to-SpecialString	into	a	pointer-to-	string
and	you	then	use	delete	on	the	string	pointer,	you	are	instantly	transported
to	the	realm	of	undefined	behavior:

SpecialString	*pss	=			new	SpecialString("Impending	Doom");

std::string	*ps;

...

ps	=	pss;																															//	SpecialString*	



...

delete	ps;																														//	undefined!	In	practice,

																																								//	*ps's	SpecialString	resources

																																								//	will	be	leaked,	because	the

																																								//	SpecialString	destructor	won't

																																								//	be	called.

The	same	analysis	applies	to	any	class	lacking	a	virtual	destructor,	including	all
the	STL	container	types	(e.g.,	vector,	list,	set,	tr1::unordered_map
(see	Item	54),	etc.).	If	you're	ever	tempted	to	inherit	from	a	standard	container	or
any	other	class	with	a	non-virtual	destructor,	resist	the	temptation!
(Unfortunately,	C++	offers	no	derivation-prevention	mechanism	akin	to	Java's
final	classes	or	C#'s	sealed	classes.)

Occasionally	it	can	be	convenient	to	give	a	class	a	pure	virtual	destructor.	Recall
that	pure	virtual	functions	result	in	abstract	classes		classes	that	can't	be
instantiated	(i.e.,	you	can't	create	objects	of	that	type).	Sometimes,	however,	you
have	a	class	that	you'd	like	to	be	abstract,	but	you	don't	have	any	pure	virtual
functions.	What	to	do?	Well,	because	an	abstract	class	is	intended	to	be	used	as	a
base	class,	and	because	a	base	class	should	have	a	virtual	destructor,	and	because
a	pure	virtual	function	yields	an	abstract	class,	the	solution	is	simple:	declare	a
pure	virtual	destructor	in	the	class	you	want	to	be	abstract.	Here's	an	example:

class	AWOV	{																												//	AWOV	=	"Abstract	w/o	Virtuals"



public:

		virtual	~AWOV()	=	0;																		//	declare	pure	virtual	destructor

};

This	class	has	a	pure	virtual	function,	so	it's	abstract,	and	it	has	a	virtual
destructor,	so	you	won't	have	to	worry	about	the	destructor	problem.	There	is
one	twist,	however:	you	must	provide	a	definition	for	the	pure	virtual	destructor:

AWOV::~AWOV()	{}																					//	definition	of	pure	virtual				dtor

The	way	destructors	work	is	that	the	most	derived	class's	destructor	is	called
first,	then	the	destructor	of	each	base	class	is	called.	Compilers	will	generate	a
call	to	~AWOV	from	its	derived	classes'	destructors,	so	you	have	to	be	sure	to
provide	a	body	for	the	function.	If	you	don't,	the	linker	will	complain.

The	rule	for	giving	base	classes	virtual	destructors	applies	only	to	polymorphic
base	classes		to	base	classes	designed	to	allow	the	manipulation	of	derived	class
types	through	base	class	interfaces.	TimeKeeper	is	a	polymorphic	base	class,
because	we	expect	to	be	able	to	manipulate	AtomicClock	and	WaterClock
objects,	even	if	we	have	only	TimeKeeper	pointers	to	them.

Not	all	base	classes	are	designed	to	be	used	polymorphically.	Neither	the
standard	string	type,	for	example,	nor	the	STL	container	types	are	designed	to
be	base	classes	at	all,	much	less	polymorphic	ones.	Some	classes	are	designed	to
be	used	as	base	classes,	yet	are	not	designed	to	be	used	polymorphically.	Such
classes		examples	include	Uncopyable	from	Item	6	and
input_iterator_tag	from	the	standard	library	(see	Item	47)		are	not
designed	to	allow	the	manipulation	of	derived	class	objects	via	base	class
interfaces.	As	a	result,	they	don't	need	virtual	destructors.



Things	to	Remember

Polymorphic	base	classes	should	declare	virtual	destructors.	If	a
class	has	any	virtual	functions,	it	should	have	a	virtual
destructor.

Classes	not	designed	to	be	base	classes	or	not	designed	to	be
used	polymorphically	should	not	declare	virtual	destructors.



Item	8:	Prevent	exceptions	from	leaving
destructors

C++	doesn't	prohibit	destructors	from	emitting	exceptions,	but	it	certainly
discourages	the	practice.	With	good	reason.	Consider:

class	Widget	{

public:

		...

		~Widget()	{	...	}												//	assume	this	might	emit	an	exception

};

void	doSomething()

{

		std::vector<Widget>	v;

		...

}																																//	v	is	automatically	destroyed	here

When	the	vector	v	is	destroyed,	it	is	responsible	for	destroying	all	the
Widgets	it	contains.	Suppose	v	has	ten	Widgets	in	it,	and	during	destruction
of	the	first	one,	an	exception	is	thrown.	The	other	nine	Widgets	still	have	to	be



destroyed	(otherwise	any	resources	they	hold	would	be	leaked),	so	v	should
invoke	their	destructors.	But	suppose	that	during	those	calls,	a	second	Widget
destructor	throws	an	exception.	Now	there	are	two	simultaneously	active
exceptions,	and	that's	one	too	many	for	C++.	Depending	on	the	precise
conditions	under	which	such	pairs	of	simultaneously	active	exceptions	arise,
program	execution	either	terminates	or	yields	undefined	behavior.	In	this
example,	it	yields	undefined	behavior.	It	would	yield	equally	undefined	behavior
using	any	other	standard	library	container	(e.g.,	list,	set),	any	container	in
TR1	(see	Item	54),	or	even	an	array.	Not	that	containers	or	arrays	are	required	to
get	into	trouble.	Premature	program	termination	or	undefined	behavior	can	result
from	destructors	emitting	exceptions	even	without	using	containers	and	arrays.
C++	does	not	like	destructors	that	emit	exceptions!

That's	easy	enough	to	understand,	but	what	should	you	do	if	your	destructor
needs	to	perform	an	operation	that	may	fail	by	throwing	an	exception?	For
example,	suppose	you're	working	with	a	class	for	database	connections:

class	DBConnection	{

public:

		...

		static	DBConnection	create();								//	function	to	return

																																							//	DBConnection	objects;	params

																																							//	omitted	for	simplicity

		void	close();																								//	close	connection;	throw	an

};																																					//	exception	if	closing	fails



To	ensure	that	clients	don't	forget	to	call	close	on	DBConnection	objects,	a
reasonable	idea	would	be	to	create	a	resource-managing	class	for
DBConnection	that	calls	close	in	its	destructor.	Such	resource-managing
classes	are	explored	in	detail	in	Chapter	3,	but	here,	it's	enough	to	consider	what
the	destructor	for	such	a	class	would	look	like:

class	DBConn	{																										//	class	to	manage	DBConnection

public:																																	//	objects

		...

		~DBConn()																												//	make	sure	database	connections

		{																																					//	are	always	closed

			db.close();

			}

private:

		DBConnection	db;

};

That	allows	clients	to	program	like	this:

	

{																																							//	open	a	block

	



	

	

	

			DBConn	dbc(DBConnection::create());		//	create	DBConnection	object

	

																																								//	and	turn	it	over	to	a	DBConn

	

																																								//	object	to	manage

	

	

	

	...																																				//	use	the	DBConnection	object

	

																																								//	via	the	DBConn	interface

	

	

	

}																																							//	at	end	of	block,	the	DBConn

	

																																								//	object	is	destroyed,	thus

	

																																								//	automatically	calling	close	on

	

																																								//	the	DBConnection	object

	

This	is	fine	as	long	as	the	call	to	close	succeeds,	but	if	the	call	yields	an
exception,	DBConn's	destructor	will	propagate	that	exception,	i.e.,	allow	it	to
leave	the	destructor.	That's	a	problem,	because	destructors	that	throw	mean
trouble.

There	are	two	primary	ways	to	avoid	the	trouble.	DBConn's	destructor	could:

Terminate	the	program	if	close	tHRows,	typically	by	calling	abort:



DBConn::~DBConn()

{

	try	{	db.close();	}

	catch	(...)	{

			make	log	entry	that	the	call	to	close	failed;

			std::abort();

	}

}

This	is	a	reasonable	option	if	the	program	cannot	continue	to	run	after	an
error	is	encountered	during	destruction.	It	has	the	advantage	that	if	allowing
the	exception	to	propagate	from	the	destructor	would	lead	to	undefined
behavior,	this	prevents	that	from	happening.	That	is,	calling	abort	may
forestall	undefined	behavior.

Swallow	the	exception	arising	from	the	call	to	close:

DBConn::~DBConn()

{

	try	{	db.close();	}

	catch	(...)	{



						make	log	entry	that	the	call	to	close	failed;

	}

}

In	general,	swallowing	exceptions	is	a	bad	idea,	because	it	suppresses
important	information		something	failed!	Sometimes,	however,	swallowing
exceptions	is	preferable	to	running	the	risk	of	premature	program
termination	or	undefined	behavior.	For	this	to	be	a	viable	option,	the
program	must	be	able	to	reliably	continue	execution	even	after	an	error	has
been	encountered	and	ignored.

Neither	of	these	approaches	is	especially	appealing.	The	problem	with	both	is
that	the	program	has	no	way	to	react	to	the	condition	that	led	to	close
tHRowing	an	exception	in	the	first	place.

A	better	strategy	is	to	design	DBConn's	interface	so	that	its	clients	have	an
opportunity	to	react	to	problems	that	may	arise.	For	example,	DBConn	could
offer	a	close	function	itself,	thus	giving	clients	a	chance	to	handle	exceptions
arising	from	that	operation.	It	could	also	keep	track	of	whether	its
DBConnection	had	been	closed,	closing	it	itself	in	the	destructor	if	not.
That	would	prevent	a	connection	from	leaking.	If	the	call	to	close	were	to	fail
in	the	DBConnection	destructor,	however,	we'd	be	back	to	terminating	or
swallowing:

class	DBConn	{

public:

		...



		void	close()																																					//	new	function	for

		{																																																//	client	use

				db.close();

				closed	=	true;

		}

		~DBConn()

			{

			if	(!closed)	{

			try	{																																												//	close	the	connection

					db.close();																																				//	if	the	client	didn't

			}

			catch	(...)	{																																				//	if	closing	fails,

					make	log	entry	that	call	to	close	failed;			//	note	that	and

					...																																													//	terminate	or	swallow

			}

		}



private:

		DBConnection	db;

		bool	closed;

};

Moving	the	responsibility	for	calling	close	from	DBConn's	destructor	to
DBConn's	client	(with	DBConn's	destructor	containing	a	"backup"	call)	may
strike	you	as	an	unscrupulous	shift	of	burden.	You	might	even	view	it	as	a
violation	of	Item	18's	advice	to	make	interfaces	easy	to	use	correctly.	In	fact,	it's
neither.	If	an	operation	may	fail	by	throwing	an	exception	and	there	may	be	a
need	to	handle	that	exception,	the	exception	has	to	come	from	some	non-
destructor	function.	That's	because	destructors	that	emit	exceptions	are
dangerous,	always	running	the	risk	of	premature	program	termination	or
undefined	behavior.	In	this	example,	telling	clients	to	call	close	themselves
doesn't	impose	a	burden	on	them;	it	gives	them	an	opportunity	to	deal	with	errors
they	would	otherwise	have	no	chance	to	react	to.	If	they	don't	find	that
opportunity	useful	(perhaps	because	they	believe	that	no	error	will	really	occur),
they	can	ignore	it,	relying	on	DBConn's	destructor	to	call	close	for	them.	If	an
error	occurs	at	that	point		if	close	does	throw		they're	in	no	position	to
complain	if	DBConn	swallows	the	exception	or	terminates	the	program.	After
all,	they	had	first	crack	at	dealing	with	the	problem,	and	they	chose	not	to	use	it.

Things	to	Remember

Destructors	should	never	emit	exceptions.	If	functions	called	in
a	destructor	may	throw,	the	destructor	should	catch	any
exceptions,	then	swallow	them	or	terminate	the	program.

If	class	clients	need	to	be	able	to	react	to	exceptions	thrown
during	an	operation,	the	class	should	provide	a	regular	(i.e.,	non-
destructor)	function	that	performs	the	operation.



Item	9:	Never	call	virtual	functions	during
construction	or	destruction

I'll	begin	with	the	recap:	you	shouldn't	call	virtual	functions	during	construction
or	destruction,	because	the	calls	won't	do	what	you	think,	and	if	they	did,	you'd
still	be	unhappy.	If	you're	a	recovering	Java	or	C#	programmer,	pay	close
attention	to	this	Item,	because	this	is	a	place	where	those	languages	zig,	while
C++	zags.

Suppose	you've	got	a	class	hierarchy	for	modeling	stock	transactions,	e.g.,	buy
orders,	sell	orders,	etc.	It's	important	that	such	transactions	be	auditable,	so	each
time	a	transaction	object	is	created,	an	appropriate	entry	needs	to	be	created	in
an	audit	log.	This	seems	like	a	reasonable	way	to	approach	the	problem:

class	Transaction	{																															//	base	class	for	all

public:																																											//	transactions

		Transaction();

		virtual	void	logTransaction()	const	=	0;							//	make	type-dependent

																																																	//	log	entry

		...

};

Transaction::Transaction()																								//	implementation	of

{																																																	//	base	class	ctor



		...

		logTransaction();																															//	as	final	action,	log	this

}																																																	//	transaction

class	BuyTransaction:	public	Transaction	{								//	derived	class

public:

		virtual	void	logTransaction()	const;										//	how	to	log	trans-

																																																//	actions	of	this	type

		...

};

class	SellTransaction:	public	Transaction	{						//	derived	class

public:

	virtual	void	logTransaction()	const;											//	how	to	log	trans-

																																																//	actions	of	this	type

		...

};

Consider	what	happens	when	this	code	is	executed:

	

BuyTransaction	b;

	



	

Clearly	a	BuyTransaction	constructor	will	be	called,	but	first,	a
transaction	constructor	must	be	called;	base	class	parts	of	derived	class
objects	are	constructed	before	derived	class	parts	are.	The	last	line	of	the
transaction	constructor	calls	the	virtual	function	logTransaction,	but
this	is	where	the	surprise	comes	in.	The	version	of	logTransaction	that's
called	is	the	one	in	transaction,	not	the	one	in	BuyTransaction		even
though	the	type	of	object	being	created	is	BuyTransaction.	During	base
class	construction,	virtual	functions	never	go	down	into	derived	classes.	Instead,
the	object	behaves	as	if	it	were	of	the	base	type.	Informally	speaking,	during
base	class	construction,	virtual	functions	aren't.

There's	a	good	reason	for	this	seemingly	counterintuitive	behavior.	Because	base
class	constructors	execute	before	derived	class	constructors,	derived	class	data
members	have	not	been	initialized	when	base	class	constructors	run.	If	virtual
functions	called	during	base	class	construction	went	down	to	derived	classes,	the
derived	class	functions	would	almost	certainly	refer	to	local	data	members,	but
those	data	members	would	not	yet	have	been	initialized.	That	would	be	a	non-
stop	ticket	to	undefined	behavior	and	late-night	debugging	sessions.	Calling
down	to	parts	of	an	object	that	have	not	yet	been	initialized	is	inherently
dangerous,	so	C++	gives	you	no	way	to	do	it.

It's	actually	more	fundamental	than	that.	During	base	class	construction	of	a
derived	class	object,	the	type	of	the	object	is	that	of	the	base	class.	Not	only	do
virtual	functions	resolve	to	the	base	class,	but	the	parts	of	the	language	using
runtime	type	information	(e.g.,	dynamic_cast	(see	Item	27)	and	typeid)
treat	the	object	as	a	base	class	type.	In	our	example,	while	the	transaction
constructor	is	running	to	initialize	the	base	class	part	of	a	BuyTransaction
object,	the	object	is	of	type	TRansaction.	That's	how	every	part	of	C++	will
treat	it,	and	the	treatment	makes	sense:	the	BuyTransaction-specific	parts	of
the	object	haven't	been	initialized	yet,	so	it's	safest	to	treat	them	as	if	they	didn't
exist.	An	object	doesn't	become	a	derived	class	object	until	execution	of	a
derived	class	constructor	begins.

The	same	reasoning	applies	during	destruction.	Once	a	derived	class	destructor



has	run,	the	object's	derived	class	data	members	assume	undefined	values,	so
C++	treats	them	as	if	they	no	longer	exist.	Upon	entry	to	the	base	class
destructor,	the	object	becomes	a	base	class	object,	and	all	parts	of	C++		virtual
functions,	dynamic_casts,	etc.,		treat	it	that	way.

In	the	example	code	above,	the	TRansaction	constructor	made	a	direct	call	to
a	virtual	function,	a	clear	and	easy-to-see	violation	of	this	Item's	guidance.	The
violation	is	so	easy	to	see,	some	compilers	issue	a	warning	about	it.	(Others
don't.	See	Item	53	for	a	discussion	of	warnings.)	Even	without	such	a	warning,
the	problem	would	almost	certainly	become	apparent	before	runtime,	because
the	logTransaction	function	is	pure	virtual	in	TRansaction.	Unless	it
had	been	defined	(unlikely,	but	possible		see	Item	34),	the	program	wouldn't
link:	the	linker	would	be	unable	to	find	the	necessary	implementation	of
transaction::logTransaction.

It's	not	always	so	easy	to	detect	calls	to	virtual	functions	during	construction	or
destruction.	If	transaction	had	multiple	constructors,	each	of	which	had	to
perform	some	of	the	same	work,	it	would	be	good	software	engineering	to	avoid
code	replication	by	putting	the	common	initialization	code,	including	the	call	to
logTransaction,	into	a	private	non-virtual	initialization	function,	say,
init:

class	Transaction	{

public:

		Transaction()

		{	init();	}																																						//	call	to	non-virtual...

		virtual	void	logTransaction()	const	=	0;

		...



private:

		void	init()

		{

				...

				logTransaction();																														//	...that	calls	a	virtual!

		}

};

This	code	is	conceptually	the	same	as	the	earlier	version,	but	it's	more	insidious,
because	it	will	typically	compile	and	link	without	complaint.	In	this	case,
because	logTransaction	is	pure	virtual	in	TRansaction,	most	runtime
systems	will	abort	the	program	when	the	pure	virtual	is	called	(typically	issuing
a	message	to	that	effect).	However,	if	logTransaction	were	a	"normal"
virtual	function	(i.e.,	not	pure	virtual)	with	an	implementation	in
TRansaction,	that	version	would	be	called,	and	the	program	would	merrily
trot	along,	leaving	you	to	figure	out	why	the	wrong	version	of
logTransaction	was	called	when	a	derived	class	object	was	created.	The
only	way	to	avoid	this	problem	is	to	make	sure	that	none	of	your	constructors	or
destructors	call	virtual	functions	on	the	object	being	created	or	destroyed	and
that	all	the	functions	they	call	obey	the	same	constraint.

But	how	do	you	ensure	that	the	proper	version	of	logTransaction	is	called
each	time	an	object	in	the	TRansaction	hierarchy	is	created?	Clearly,	calling
a	virtual	function	on	the	object	from	the	TRansaction	constructor(s)	is	the
wrong	way	to	do	it.



There	are	different	ways	to	approach	this	problem.	One	is	to	turn
logTransaction	into	a	non-virtual	function	in	transaction,	then	require
that	derived	class	constructors	pass	the	necessary	log	information	to	the
TRansaction	constructor.	That	function	can	then	safely	call	the	non-virtual
logTransaction.	Like	this:

class	Transaction	{

public:

		explicit	Transaction(const	std::string&	logInfo);

		void	logTransaction(const	std::string&	logInfo)	const;			//	now	a	non-

																																																											//	virtual	func

		...

};

Transaction::Transaction(const	std::string&	logInfo)

{

		...

		logTransaction(logInfo);																																//	now	a	non-

}																																																									//	virtual	call



class	BuyTransaction:	public	Transaction	{

public:

	BuyTransaction(	parameters	)

	:	Transaction(createLogString(	parameters	))													//	pass	log	info

		{	...	}																																																	//	to	base	class

			...																																																				//	constructor

private:

		static	std::string	createLogString(	parameters	);

};

In	other	words,	since	you	can't	use	virtual	functions	to	call	down	from	base
classes	during	construction,	you	can	compensate	by	having	derived	classes	pass
necessary	construction	information	up	to	base	class	constructors	instead.

In	this	example,	note	the	use	of	the	(private)	static	function
createLogString	in	BuyTransaction.	Using	a	helper	function	to	create
a	value	to	pass	to	a	base	class	constructor	is	often	more	convenient	(and	more
readable)	that	going	through	contortions	in	the	member	initialization	list	to	give
the	base	class	what	it	needs.	By	making	the	function	static,	there's	no	danger	of
accidentally	referring	to	the	nascent	BuyTransaction	object's	as-yet-
uninitialized	data	members.	That's	important,	because	the	fact	that	those	data
members	will	be	in	an	undefined	state	is	why	calling	virtual	functions	during
base	class	construction	and	destruction	doesn't	go	down	into	derived	classes	in
the	first	place.



Things	to	Remember

Don't	call	virtual	functions	during	construction	or	destruction,
because	such	calls	will	never	go	to	a	more	derived	class	than
that	of	the	currently	executing	constructor	or	destructor.



Item	10:	Have	assignment	operators	return	a
reference	to	*this

One	of	the	interesting	things	about	assignments	is	that	you	can	chain	them
together:

int	x,	y,	z;

x	=	y	=	z	=	15;																								//	chain	of	assignments

Also	interesting	is	that	assignment	is	right-associative,	so	the	above	assignment
chain	is	parsed	like	this:

	

x	=	(y	=	(z	=	15));

	

Here,	15	is	assigned	to	z,	then	the	result	of	that	assignment	(the	updated	z)	is
assigned	to	y,	then	the	result	of	that	assignment	(the	updated	y)	is	assigned	to	x.

The	way	this	is	implemented	is	that	assignment	returns	a	reference	to	its	left-
hand	argument,	and	that's	the	convention	you	should	follow	when	you
implement	assignment	operators	for	your	classes:

class	Widget	{

public:



		...

Widget&	operator=(const	Widget&	rhs)			//	return	type	is	a	reference	to

{																																						//	the	current	class

		...

		return	*this;																								//	return	the	left-hand	object

		}

		...

};

This	convention	applies	to	all	assignment	operators,	not	just	the	standard	form
shown	above.	Hence:

class	Widget	{

public:

		...

		Widget&	operator+=(const	Widget&	rhs			//	the	convention	applies	to

		{																																						//	+=,	-=,	*=,	etc.

			...

			return	*this;



		}

			Widget&	operator=(int	rhs)												//	it	applies	even	if	the

			{																																					//	operator's	parameter	type

						...																																//	is	unconventional

						return	*this;

			}

			...

};

This	is	only	a	convention;	code	that	doesn't	follow	it	will	compile.	However,	the
convention	is	followed	by	all	the	built-in	types	as	well	as	by	all	the	types	in	(or
soon	to	be	in		see	Item54)	the	standard	library	(e.g.,	string,	vector,
complex,	tr1::shared_ptr,	etc.).	Unless	you	have	a	good	reason	for
doing	things	differently,	don't.

Things	to	Remember

Have	assignment	operators	return	a	reference	to	*this.



Item	11:	Handle	assignment	to	self	in
operator=

An	assignment	to	self	occurs	when	an	object	is	assigned	to	itself:

class	Widget	{	...	};

Widget	w;

...

w	=	w;																																			//	assignment	to	self

This	looks	silly,	but	it's	legal,	so	rest	assured	that	clients	will	do	it.	Besides,
assignment	isn't	always	so	recognizable.	For	example,

	

a[i]	=	a[j];																																						//	potential	assignment	to	self

	

is	an	assignment	to	self	if	i	and	j	have	the	same	value,	and

	

*px	=	*py;																																								//	potential	assignment	to	self

	



is	an	assignment	to	self	if	px	and	py	happen	to	point	to	the	same	thing.	These
less	obvious	assignments	to	self	are	the	result	of	aliasing:	having	more	than	one
way	to	refer	to	an	object.	In	general,	code	that	operates	on	references	or	pointers
to	multiple	objects	of	the	same	type	needs	to	consider	that	the	objects	might	be
the	same.	In	fact,	the	two	objects	need	not	even	be	declared	to	be	of	the	same
type	if	they're	from	the	same	hierarchy,	because	a	base	class	reference	or	pointer
can	refer	or	point	to	an	object	of	a	derived	class	type:

class	Base	{	...	};

class	Derived:	public	Base	{	...	};

void	doSomething(const	Base&	rb,																			//	rb	and	*pd	might	actually	be

																	Derived*	pd);																						//	the	same	object

If	you	follow	the	advice	of	Items	13	and	14,	you'll	always	use	objects	to	manage
resources,	and	you'll	make	sure	that	the	resource-managing	objects	behave	well
when	copied.	When	that's	the	case,	your	assignment	operators	will	probably	be
self-assignment-safe	without	your	having	to	think	about	it.	If	you	try	to	manage
resources	yourself,	however	(which	you'd	certainly	have	to	do	if	you	were
writing	a	resource-managing	class),	you	can	fall	into	the	trap	of	accidentally
releasing	a	resource	before	you're	done	using	it.	For	example,	suppose	you	create
a	class	that	holds	a	raw	pointer	to	a	dynamically	allocated	bitmap:

class	Bitmap	{	...	};



class	Widget	{

		...

private:

		Bitmap	*pb;																																					//	ptr	to	a	heap-allocated	object

};

Here's	an	implementation	of	operator=	that	looks	reasonable	on	the	surface
but	is	unsafe	in	the	presence	of	assignment	to	self.	(It's	also	not	exception-safe,
but	we'll	deal	with	that	in	a	moment.)

Widget&

Widget::operator=(const	Widget&	rhs)														//	unsafe	impl.	of	operator=

{

		delete	pb;																																						//	stop	using	current	bitmap

		pb	=	new	Bitmap(*rhs.pb);																							//	start	using	a	copy	of	rhs's	bitmap

		return	*this;																																			//	see	Item	10

}



The	self-assignment	problem	here	is	that	inside	operator=,	*this	(the	target
of	the	assignment)	and	rhs	could	be	the	same	object.	When	they	are,	the
delete	not	only	destroys	the	bitmap	for	the	current	object,	it	destroys	the
bitmap	for	rhs,	too.	At	the	end	of	the	function,	the	Widget		which	should	not
have	been	changed	by	the	assignment	to	self		finds	itself	holding	a	pointer	to	a
deleted	object!

The	traditional	way	to	prevent	this	error	is	to	check	for	assignment	to	self	via	an
identity	test	at	the	top	of	operator=:

Widget&	Widget::operator=(const	Widget&	rhs)

{

		if	(this	==	&rhs)	return	*this;			//	identity	test:	if	a	self-assignment,

																																				//	do	nothing

		delete	pb;

		pb	=	new	Bitmap(*rhs.pb);

		return	*this;

}

This	works,	but	I	mentioned	above	that	the	previous	version	of	operator=
wasn't	just	self-assignment-unsafe,	it	was	also	exception-unsafe,	and	this	version



continues	to	have	exception	trouble.	In	particular,	if	the	"new	Bitmap"
expression	yields	an	exception	(either	because	there	is	insufficient	memory	for
the	allocation	or	because	Bitmap's	copy	constructor	throws	one),	the	Widget
will	end	up	holding	a	pointer	to	a	deleted	Bitmap.	Such	pointers	are	toxic.	You
can't	safely	delete	them.	You	can't	even	safely	read	them.	About	the	only	safe
thing	you	can	do	with	them	is	spend	lots	of	debugging	energy	figuring	out	where
they	came	from.

Happily,	making	operator=	exception-safe	typically	renders	it	self-
assignment-safe,	too.	As	a	result,	it's	increasingly	common	to	deal	with	issues	of
self-assignment	by	ignoring	them,	focusing	instead	on	achieving	exception
safety.	Item	29	explores	exception	safety	in	depth,	but	in	this	Item,	it	suffices	to
observe	that	in	many	cases,	a	careful	ordering	of	statements	can	yield	exception-
safe	(and	self-assignment-safe)	code.	Here,	for	example,	we	just	have	to	be
careful	not	to	delete	pb	until	after	we've	copied	what	it	points	to:

Widget&	Widget::operator=(const	Widget&	rhs)

{

		Bitmap	*pOrig	=	pb;															//	remember	original	pb

		pb	=	new	Bitmap(*rhs.pb);									//	make	pb	point	to	a	copy	of	*pb

		delete	pOrig;																					//	delete	the	original	pb

		return	*this;

}

Now,	if	"new	Bitmap"	throws	an	exception,	pb	(and	the	Widget	it's	inside



of)	remains	unchanged.	Even	without	the	identity	test,	this	code	handles
assignment	to	self,	because	we	make	a	copy	of	the	original	bitmap,	delete	the
original	bitmap,	then	point	to	the	copy	we	made.	It	may	not	be	the	most	efficient
way	to	handle	self-assignment,	but	it	does	work.

If	you're	concerned	about	efficiency,	you	could	put	the	identity	test	back	at	the
top	of	the	function.	Before	doing	that,	however,	ask	yourself	how	often	you
expect	self-assignments	to	occur,	because	the	test	isn't	free.	It	makes	the	code
(both	source	and	object)	a	bit	bigger,	and	it	introduces	a	branch	into	the	flow	of
control,	both	of	which	can	decrease	runtime	speed.	The	effectiveness	of
instruction	prefetching,	caching,	and	pipelining	can	be	reduced,	for	example.

An	alternative	to	manually	ordering	statements	in	operator=	to	make	sure	the
implementation	is	both	exception-	and	self-assignment-safe	is	to	use	the
technique	known	as	"copy	and	swap."	This	technique	is	closely	associated	with
exception	safety,	so	it's	described	in	Item	29.	However,	it's	a	common	enough
way	to	write	operator=	that	it's	worth	seeing	what	such	an	implementation
often	looks	like:

class	Widget	{

		...

		void	swap(Widget&	rhs);			//	exchange	*this's	and	rhs's	data;

		...																							//	see	Item	29	for	details

};

Widget&	Widget::operator=(const	Widget&	rhs)

{

		Widget	temp(rhs);													//	make	a	copy	of	rhs's	data



		swap(temp);																			//	swap	*this's	data	with	the	copy's

		return	*this;

}

A	variation	on	this	theme	takes	advantage	of	the	facts	that	(1)	a	class's	copy
assignment	operator	may	be	declared	to	take	its	argument	by	value	and	(2)
passing	something	by	value	makes	a	copy	of	it	(see	Item	20):

Widget&	Widget::operator=(Widget	rhs)			//	rhs	is	a	copy

{																																							//	passed	in		note	pass	by	val

		swap(rhs);																												//	swap	*this's	data	with

																																								//	the	copy's

		return	*this;

}

Personally,	I	worry	that	this	approach	sacrifices	clarity	at	the	altar	of	cleverness,
but	by	moving	the	copying	operation	from	the	body	of	the	function	to
construction	of	the	parameter,	it's	a	fact	that	compilers	can	sometimes	generate



construction	of	the	parameter,	it's	a	fact	that	compilers	can	sometimes	generate
more	efficient	code.

Things	to	Remember

Make	sure	operator=	is	well-behaved	when	an	object	is
assigned	to	itself.	Techniques	include	comparing	addresses	of
source	and	target	objects,	careful	statement	ordering,	and	copy-
and-swap.

Make	sure	that	any	function	operating	on	more	than	one	object
behaves	correctly	if	two	or	more	of	the	objects	are	the	same.



Item	12:	Copy	all	parts	of	an	object

In	well-designed	object-oriented	systems	that	encapsulate	the	internal	parts	of
objects,	only	two	functions	copy	objects:	the	aptly	named	copy	constructor	and
copy	assignment	operator.	We'll	call	these	the	copying	functions.	Item	5
observes	that	compilers	will	generate	the	copying	functions,	if	needed,	and	it
explains	that	the	compiler-generated	versions	do	precisely	what	you'd	expect:
they	copy	all	the	data	of	the	object	being	copied.

When	you	declare	your	own	copying	functions,	you	are	indicating	to	compilers
that	there	is	something	about	the	default	implementations	you	don't	like.
Compilers	seem	to	take	offense	at	this,	and	they	retaliate	in	a	curious	fashion:
they	don't	tell	you	when	your	implementations	are	almost	certainly	wrong.

Consider	a	class	representing	customers,	where	the	copying	functions	have	been
manually	written	so	that	calls	to	them	are	logged:

void	logCall(const	std::string&	funcName);										//	make	a	log	entry

class	Customer	{

public:

		...

		Customer(const	Customer&	rhs);

		Customer&	operator=(const	Customer&	rhs);

		...



private:

		std::string	name;

};

Customer::Customer(const	Customer&	rhs)

:	name(rhs.name)																																	//	copy	rhs's	data

{

		logCall("Customer	copy	constructor");

}

Customer&	Customer::operator=(const	Customer&	rhs)

{

		logCall("Customer	copy	assignment	operator");

		name	=	rhs.name;																															//	copy	rhs's	data

		return	*this;																																		//	see	Item	10

}



Everything	here	looks	fine,	and	in	fact	everything	is	fine		until	another	data
member	is	added	to	Customer:

class	Date	{	...	};							//	for	dates	in	time

class	Customer	{

public:

		...																					//	as	before

private:

		std::string	name;

		Date	lastTransaction;

};

At	this	point,	the	existing	copying	functions	are	performing	a	partial	copy:
they're	copying	the	customer's	name,	but	not	its	lastTransaction.	Yet
most	compilers	say	nothing	about	this,	not	even	at	maximal	warning	level	(see
also	Item	53).	That's	their	revenge	for	your	writing	the	copying	functions
yourself.	You	reject	the	copying	functions	they'd	write,	so	they	don't	tell	you	if
your	code	is	incomplete.	The	conclusion	is	obvious:	if	you	add	a	data	member	to
a	class,	you	need	to	make	sure	that	you	update	the	copying	functions,	too.
(You'll	also	need	to	update	all	the	constructors	(see	Items	4	and	45)	as	well	as
any	non-standard	forms	of	operator=	in	the	class	(Item	10	gives	an	example).
If	you	forget,	compilers	are	unlikely	to	remind	you.)



One	of	the	most	insidious	ways	this	issue	can	arise	is	through	inheritance.
Consider:

class	PriorityCustomer:	public	Customer	{																		//	a	derived	class

public:

			...

			PriorityCustomer(const	PriorityCustomer&	rhs);

			PriorityCustomer&	operator=(const	PriorityCustomer&	rhs);

			...

private:

			int	priority;

};

PriorityCustomer::PriorityCustomer(const	PriorityCustomer&	rhs)

:	priority(rhs.priority)

{

		logCall("PriorityCustomer	copy	constructor");

}

PriorityCustomer&



PriorityCustomer::operator=(const	PriorityCustomer&	rhs)

{

		logCall("PriorityCustomer	copy	assignment	operator");

		priority	=	rhs.priority;

		return	*this;

}

PriorityCustomer's	copying	functions	look	like	they're	copying	everything
in	PriorityCustomer,	but	look	again.	Yes,	they	copy	the	data	member	that
PriorityCustomer	declares,	but	every	PriorityCustomer	also
contains	a	copy	of	the	data	members	it	inherits	from	Customer,	and	those	data
members	are	not	being	copied	at	all!	PriorityCustomer's	copy	constructor
specifies	no	arguments	to	be	passed	to	its	base	class	constructor	(i.e.,	it	makes	no
mention	of	Customer	on	its	member	initialization	list),	so	the	Customer	part
of	the	PriorityCustomer	object	will	be	initialized	by	the	Customer
constructor	taking	no	arguments		by	the	default	constructor.	(Assuming	it	has
one.	If	not,	the	code	won't	compile.)	That	constructor	will	perform	a	default
initialization	for	name	and	lastTransaction.

The	situation	is	only	slightly	different	for	PriorityCustomer's	copy
assignment	operator.	It	makes	no	attempt	to	modify	its	base	class	data	members
in	any	way,	so	they'll	remain	unchanged.

Any	time	you	take	it	upon	yourself	to	write	copying	functions	for	a	derived



class,	you	must	take	care	to	also	copy	the	base	class	parts.	Those	parts	are
typically	private,	of	course	(see	Item	22),	so	you	can't	access	them	directly.
Instead,	derived	class	copying	functions	must	invoke	their	corresponding	base
class	functions:

PriorityCustomer::PriorityCustomer(const	PriorityCustomer&	rhs)

:				Customer(rhs),																			//	invoke	base	class	copy	ctor

		priority(rhs.priority)

{

		logCall("PriorityCustomer	copy	constructor");

}

PriorityCustomer&

PriorityCustomer::operator=(const	PriorityCustomer&	rhs)

{

		logCall("PriorityCustomer	copy	assignment	operator");

		Customer::operator=(rhs);											//	assign	base	class	parts

		priority	=	rhs.priority;

		return	*this;



}

The	meaning	of	"copy	all	parts"	in	this	Item's	title	should	now	be	clear.	When
you're	writing	a	copying	function,	be	sure	to	(1)	copy	all	local	data	members	and
(2)	invoke	the	appropriate	copying	function	in	all	base	classes,	too.

In	practice,	the	two	copying	functions	will	often	have	similar	bodies,	and	this
may	tempt	you	to	try	to	avoid	code	duplication	by	having	one	function	call	the
other.	Your	desire	to	avoid	code	duplication	is	laudable,	but	having	one	copying
function	call	the	other	is	the	wrong	way	to	achieve	it.

It	makes	no	sense	to	have	the	copy	assignment	operator	call	the	copy
constructor,	because	you'd	be	trying	to	construct	an	object	that	already	exists.
This	is	so	nonsensical,	there's	not	even	a	syntax	for	it.	There	are	syntaxes	that
look	like	you're	doing	it,	but	you're	not;	and	there	are	syntaxes	that	do	do	it	in	a
backwards	kind	of	way,	but	they	corrupt	your	object	under	some	conditions.	So
I'm	not	going	to	show	you	any	of	those	syntaxes.	Simply	accept	that	having	the
copy	assignment	operator	call	the	copy	constructor	is	something	you	don't	want
to	do.

Trying	things	the	other	way	around		having	the	copy	constructor	call	the	copy
assignment	operator		is	equally	nonsensical.	A	constructor	initializes	new
objects,	but	an	assignment	operator	applies	only	to	objects	that	have	already
been	initialized.	Performing	an	assignment	on	an	object	under	construction
would	mean	doing	something	to	a	not-yet-initialized	object	that	makes	sense
only	for	an	initialized	object.	Nonsense!	Don't	try	it.

Instead,	if	you	find	that	your	copy	constructor	and	copy	assignment	operator
have	similar	code	bodies,	eliminate	the	duplication	by	creating	a	third	member
function	that	both	call.	Such	a	function	is	typically	private	and	is	often	named
init.	This	strategy	is	a	safe,	proven	way	to	eliminate	code	duplication	in	copy
constructors	and	copy	assignment	operators.

Things	to	Remember



Copying	functions	should	be	sure	to	copy	all	of	an	object's	data
members	and	all	of	its	base	class	parts.

Don't	try	to	implement	one	of	the	copying	functions	in	terms	of
the	other.	Instead,	put	common	functionality	in	a	third	function
that	both	call.



Chapter	3.	Resource	Management
A	resource	is	something	that,	once	you're	done	using	it,	you	need	to	return	to	the
system.	If	you	don't,	bad	things	happen.	In	C++	programs,	the	most	commonly
used	resource	is	dynamically	allocated	memory	(if	you	allocate	memory	and
never	deallocate	it,	you've	got	a	memory	leak),	but	memory	is	only	one	of	many
resources	you	must	manage.	Other	common	resources	include	file	descriptors,
mutex	locks,	fonts	and	brushes	in	graphical	user	interfaces	(GUIs),	database
connections,	and	network	sockets.	Regardless	of	the	resource,	it's	important	that
it	be	released	when	you're	finished	with	it.

Trying	to	ensure	this	by	hand	is	difficult	under	any	conditions,	but	when	you
consider	exceptions,	functions	with	multiple	return	paths,	and	maintenance
programmers	modifying	software	without	fully	comprehending	the	impact	of
their	changes,	it	becomes	clear	that	ad	hoc	ways	of	dealing	with	resource
management	aren't	sufficient.

This	chapter	begins	with	a	straightforward	object-based	approach	to	resource
management	built	on	C++'s	support	for	constructors,	destructors,	and	copying
operations.	Experience	has	shown	that	disciplined	adherence	to	this	approach
can	all	but	eliminate	resource	management	problems.	The	chapter	then	moves	on
to	Items	dedicated	specifically	to	memory	management.	These	latter	Items
complement	the	more	general	Items	that	come	earlier,	because	objects	that
manage	memory	have	to	know	how	to	do	it	properly.



Item	13:	Use	objects	to	manage	resources.

Suppose	we're	working	with	a	library	for	modeling	investments	(e.g.,	stocks,
bonds,	etc.),	where	the	various	investment	types	inherit	from	a	root	class
Investment:

class	Investment	{	...	};												//	root	class	of	hierarchy	of

																																					//	investment	types

Further	suppose	that	the	way	the	library	provides	us	with	specific	Investment
objects	is	through	a	factory	function	(see	Item	7):

Investment*	createInvestment();		//	return	ptr	to	dynamically	allocated

																																	//	object	in	the	Investment	hierarchy;

																																	//	the	caller	must	delete	it

																																	//	(parameters	omitted	for	simplicity)

As	the	comment	indicates,	callers	of	createInvestment	are	responsible	for
deleting	the	object	that	function	returns	when	they	are	done	with	it.	Consider,
then,	a	function	f	written	to	fulfill	this	obligation:

void	f()



{

		Investment	*pInv	=	createInvestment();									//	call	factory	function

		...																																												//	use	pInv

		delete	pInv;																																			//	release	object

}

This	looks	okay,	but	there	are	several	ways	f	could	fail	to	delete	the	investment
object	it	gets	from	createInvestment.	There	might	be	a	premature
return	statement	somewhere	inside	the	"..."	part	of	the	function.	If	such	a
return	were	executed,	control	would	never	reach	the	delete	statement.	A
similar	situation	would	arise	if	the	uses	of	createInvestment	and	delete
were	in	a	loop,	and	the	loop	was	prematurely	exited	by	a	continue	or	goto
statement.	Finally,	some	statement	inside	the	"..."	might	throw	an	exception.	If
so,	control	would	again	not	get	to	the	delete.	Regardless	of	how	the	delete
were	skipped,	we'd	leak	not	only	the	memory	containing	the	investment	object
but	also	any	resources	held	by	that	object.

Of	course,	careful	programming	could	prevent	these	kinds	of	errors,	but	think
about	how	the	code	might	change	over	time.	As	the	software	gets	maintained,
somebody	might	add	a	return	or	continue	statement	without	fully	grasping
the	repercussions	on	the	rest	of	the	function's	resource	management	strategy.
Even	worse,	the	"..."	part	of	f	might	call	a	function	that	never	used	to	throw	an
exception	but	suddenly	starts	doing	so	after	it	has	been	"improved."	Relying	on
f	always	getting	to	its	delete	statement	simply	isn't	viable.

To	make	sure	that	the	resource	returned	by	createInvestment	is	always



released,	we	need	to	put	that	resource	inside	an	object	whose	destructor	will
automatically	release	the	resource	when	control	leaves	f.	In	fact,	that's	half	the
idea	behind	this	Item:	by	putting	resources	inside	objects,	we	can	rely	on	C++'s
automatic	destructor	invocation	to	make	sure	that	the	resources	are	released.
(We'll	discuss	the	other	half	of	the	idea	in	a	moment.)

Many	resources	are	dynamically	allocated	on	the	heap,	are	used	only	within	a
single	block	or	function,	and	should	be	released	when	control	leaves	that	block
or	function.	The	standard	library's	auto_ptr	is	tailor-made	for	this	kind	of
situation.	auto_ptr	is	a	pointer-like	object	(a	smart	pointer)	whose	destructor
automatically	calls	delete	on	what	it	points	to.	Here's	how	to	use	auto_ptr
to	prevent	f's	potential	resource	leak:

void	f()

{

		std::auto_ptr<Investment>	pInv(createInvestment());		//	call	factory

																																																							//	function

		...																																																		//	use	pInv	as

																																																							//	before

}																																																						//	automatically

																																																							//	delete	pInv	via

																																																							//	auto_ptr's	dtor



This	simple	example	demonstrates	the	two	critical	aspects	of	using	objects	to
manage	resources:

Resources	are	acquired	and	immediately	turned	over	to	resource-
managing	objects.	Above,	the	resource	returned	by
createInvestment	is	used	to	initialize	the	auto_ptr	that	will
manage	it.	In	fact,	the	idea	of	using	objects	to	manage	resources	is	often
called	Resource	Acquisition	Is	Initialization	(RAII),	because	it's	so	common
to	acquire	a	resource	and	initialize	a	resource-managing	object	in	the	same
statement.	Sometimes	acquired	resources	are	assigned	to	resource-
managing	objects	instead	of	initializing	them,	but	either	way,	every
resource	is	immediately	turned	over	to	a	resource-managing	object	at	the
time	the	resource	is	acquired.

Resource-managing	objects	use	their	destructors	to	ensure	that
resources	are	released.	Because	destructors	are	called	automatically	when
an	object	is	destroyed	(e.g.,	when	an	object	goes	out	of	scope),	resources
are	correctly	released,	regardless	of	how	control	leaves	a	block.	Things	can
get	tricky	when	the	act	of	releasing	resources	can	lead	to	exceptions	being
thrown,	but	that's	a	matter	addressed	by	Item	8,	so	we'll	not	worry	about	it
here.

Because	an	auto_ptr	automatically	deletes	what	it	points	to	when	the
auto_ptr	is	destroyed,	it's	important	that	there	never	be	more	than	one
auto_ptr	pointing	to	an	object.	If	there	were,	the	object	would	be	deleted
more	than	once,	and	that	would	put	your	program	on	the	fast	track	to	undefined
behavior.	To	prevent	such	problems,	auto_ptrs	have	an	unusual
characteristic:	copying	them	(via	copy	constructor	or	copy	assignment	operator)
sets	them	to	null,	and	the	copying	pointer	assumes	sole	ownership	of	the
resource!

	

std::auto_ptr<Investment>																	//	pInv1	points	to	the

	

		pInv1(createInvestment());														//	object	returned	from

	

																																										//	createInvestment



																																										//	createInvestment

	

	

	

std::auto_ptr<Investment>	pInv2(pInv1);			//	pInv2	now	points	to	the

	

																																										//	object;	pInv1	is	now	null

	

	

	

pInv1	=	pInv2;																												//	now	pInv1	points	to	the

	

																																										//	object,	and	pInv2	is	null

	

This	odd	copying	behavior,	plus	the	underlying	requirement	that	resources
managed	by	auto_ptrs	must	never	have	more	than	one	auto_ptr	pointing
to	them,	means	that	auto_ptrs	aren't	the	best	way	to	manage	all	dynamically
allocated	resources.	For	example,	STL	containers	require	that	their	contents
exhibit	"normal"	copying	behavior,	so	containers	of	auto_ptr	aren't	allowed.

An	alternative	to	auto_ptr	is	a	reference-counting	smart	pointer	(RCSP).	An
RCSP	is	a	smart	pointer	that	keeps	track	of	how	many	objects	point	to	a
particular	resource	and	automatically	deletes	the	resource	when	nobody	is
pointing	to	it	any	longer.	As	such,	RCSPs	offer	behavior	that	is	similar	to	that	of
garbage	collection.	Unlike	garbage	collection,	however,	RCSPs	can't	break
cycles	of	references	(e.g.,	two	otherwise	unused	objects	that	point	to	one
another).

TR1's	tr1::shared_ptr	(see	Item	54)	is	an	RCSP,	so	you	could	write	f	this
way:

void	f()

{



		...

		std::tr1::shared_ptr<Investment>

				pInv(createInvestment());													//	call	factory	function

		...																																					//	use	pInv	as	before

}																																									//	automatically	delete

																																										//	pInv	via	shared_ptr's	dtor

This	code	looks	almost	the	same	as	that	employing	auto_ptr,	but	copying
shared_ptrs	behaves	much	more	naturally:

void	f()

{

		...

		std::tr1::shared_ptr<Investment>										//	pInv1	points	to	the

				pInv1(createInvestment());														//	object	returned	from



																																												//	createInvestment

		std::tr1::shared_ptr<Investment>										//	both	

pInv1	and	pInv2	now

				pInv2(pInv1);																											//	point	to	the	object

		pInv1	=	pInv2;																												//	ditto		nothing	has

																																												//	changed

		...

}																																											//	pInv1	and	pInv2	are

																																												//	destroyed,	and	the

																																												//	object	they	point	to	is

																																												//	automatically	deleted

Because	copying	tr1::shared_ptrs	works	"as	expected,"	they	can	be	used
in	STL	containers	and	other	contexts	where	auto_ptr's	unorthodox	copying
behavior	is	inappropriate.

Don't	be	misled,	though.	This	Item	isn't	about	auto_ptr,
tr1::shared_ptr,	or	any	other	kind	of	smart	pointer.	It's	about	the
importance	of	using	objects	to	manage	resources.	auto_ptr	and



tr1::shared_ptr	are	just	examples	of	objects	that	do	that.	(For	more
information	on	tr1:shared_ptr,	consult	Items	14,	18,	and	54.)

Both	auto_ptr	and	tr1::shared_ptr	use	delete	in	their	destructors,
not	delete	[].	(Item	16	describes	the	difference.)	That	means	that	using
auto_ptr	or	TR1::shared_ptr	with	dynamically	allocated	arrays	is	a	bad
idea,	though,	regrettably,	one	that	will	compile:

std::auto_ptr<std::string>																							//	bad	idea!	the	wrong

		aps(new	std::string[10]);																						//	delete	form	will	be	used

std::tr1::shared_ptr<int>	spi(new	int[1024]);				//	same	problem

You	may	be	surprised	to	discover	that	there	is	nothing	like	auto_ptr	or
TR1::shared_ptr	for	dynamically	allocated	arrays	in	C++,	not	even	in	TR1.
That's	because	vector	and	string	can	almost	always	replace	dynamically
allocated	arrays.	If	you	still	think	it	would	be	nice	to	have	auto_ptr-	and
TR1::shared_ptr-like	classes	for	arrays,	look	to	Boost	(see	Item	55).	There
you'll	be	pleased	to	find	the	boost::scoped_array	and
boost::shared_array	classes	that	offer	the	behavior	you're	looking	for.

This	Item's	guidance	to	use	objects	to	manage	resources	suggests	that	if	you're
releasing	resources	manually	(e.g.,	using	delete	other	than	in	a	resource-
managing	class),	you're	doing	something	wrong.	Pre-canned	resource-managing
classes	like	auto_ptr	and	tr1::shared_ptr	often	make	following	this
Item's	advice	easy,	but	sometimes	you're	using	a	resource	where	these	pre-fab
classes	don't	do	what	you	need.	When	that's	the	case,	you'll	need	to	craft	your
own	resource-managing	classes.	That's	not	terribly	difficult	to	do,	but	it	does
involve	some	subtleties	you'll	need	to	consider.	Those	considerations	are	the
topic	of	Items	14	and	15.



As	a	final	comment,	I	have	to	point	out	that	createInvestment's	raw
pointer	return	type	is	an	invitation	to	a	resource	leak,	because	it's	so	easy	for
callers	to	forget	to	call	delete	on	the	pointer	they	get	back.	(Even	if	they	use
an	auto_ptr	or	tr1::shared_ptr	to	perform	the	delete,	they	still	have
to	remember	to	store	createInvestment's	return	value	in	a	smart	pointer
object.)	Combatting	that	problem	calls	for	an	interface	modification	to
createInvestment,	a	topic	I	address	in	Item	18.

Things	to	Remember

To	prevent	resource	leaks,	use	RAII	objects	that	acquire
resources	in	their	constructors	and	release	them	in	their
destructors.

Two	commonly	useful	RAII	classes	are	TR1::shared_ptr
and	auto_ptr.	tr1::shared_ptr	is	usually	the	better
choice,	because	its	behavior	when	copied	is	intuitive.	Copying
an	auto_ptr	sets	it	to	null.



Item	14:	Think	carefully	about	copying	behavior
in	resource-managing	classes.

Item	13	introduces	the	idea	of	Resource	Acquisition	Is	Initialization	(RAII)	as
the	backbone	of	resource-managing	classes,	and	it	describes	how	auto_ptr
and	TR1::shared_ptr	are	manifestations	of	this	idea	for	heap-based
resources.	Not	all	resources	are	heap-based,	however,	and	for	such	resources,
smart	pointers	like	auto_ptr	and	TR1::shared_ptr	are	generally
inappropriate	as	resource	handlers.	That	being	the	case,	you're	likely	to	find
yourself	needing	to	create	your	own	resource-managing	classes	from	time	to
time.

For	example,	suppose	you're	using	a	C	API	to	manipulate	mutex	objects	of	type
Mutex	offering	functions	lock	and	unlock:

void	lock(Mutex	*pm);															//	lock	mutex	pointed	to	by	pm

void	unlock(Mutex	*pm);													//	unlock	the	mutex

To	make	sure	that	you	never	forget	to	unlock	a	Mutex	you've	locked,	you'd	like
to	create	a	class	to	manage	locks.	The	basic	structure	of	such	a	class	is	dictated
by	the	RAII	principle	that	resources	are	acquired	during	construction	and
released	during	destruction:

class	Lock	{

public:



		explicit	Lock(Mutex	*pm)

		:	mutexPtr(pm)

		{	lock(mutexPtr);	}																										//	acquire	resource

		~Lock()	{	unlock(mutexPtr);	}																//	release	resource

private:

		Mutex	*mutexPtr;

};

Clients	use	Lock	in	the	conventional	RAII	fashion:

Mutex	m;																				//	define	the	mutex	you	need	to	use

...

{																											//	create	block	to	define	critical	section

	Lock	ml(&m);															//	lock	the	mutex

	



...																									//	perform	critical	section	operations

}																											//	automatically	unlock	mutex	at	end

																												//	of	block

This	is	fine,	but	what	should	happen	if	a	Lock	object	is	copied?

Lock	ml1(&m);																						//	lock	m

Lock	ml2(ml1);																					//	copy	ml1	to	ml2what	should

																																			//	happen	here?

This	is	a	specific	example	of	a	more	general	question,	one	that	every	RAII	class
author	must	confront:	what	should	happen	when	an	RAII	object	is	copied?	Most
of	the	time,	you'll	want	to	choose	one	of	the	following	possibilities:

Prohibit	copying.	In	many	cases,	it	makes	no	sense	to	allow	RAII	objects
to	be	copied.	This	is	likely	to	be	true	for	a	class	like	Lock,	because	it	rarely
makes	sense	to	have	"copies"	of	synchronization	primitives.	When	copying
makes	no	sense	for	an	RAII	class,	you	should	prohibit	it.	Item	6	explains
how	to	do	that:	declare	the	copying	operations	private.	For	Lock,	that
could	look	like	this:



class	Lock:	private	Uncopyable	{												//	prohibit	copying		see

public:																																					//	Item	6

	...																																								//	as	before

};

Reference-count	the	underlying	resource.	Sometimes	it's	desirable	to
hold	on	to	a	resource	until	the	last	object	using	it	has	been	destroyed.	When
that's	the	case,	copying	an	RAII	object	should	increment	the	count	of	the
number	of	objects	referring	to	the	resource.	This	is	the	meaning	of	"copy"
used	by	tr1::shared_ptr.

Often,	RAII	classes	can	implement	reference-counting	copying	behavior	by
containing	a	TR1::shared_ptr	data	member.	For	example,	if	Lock
wanted	to	employ	reference	counting,	it	could	change	the	type	of
mutexPtr	from	Mutex*	to	TR1::shared_ptr<Mutex>.
Unfortunately,	tr1::shared_ptr's	default	behavior	is	to	delete	what	it
points	to	when	the	reference	count	goes	to	zero,	and	that's	not	what	we
want.	When	we're	done	with	a	Mutex,	we	want	to	unlock	it,	not	delete	it.

Fortunately,	tr1::shared_ptr	allows	specification	of	a	"deleter"		a
function	or	function	object	to	be	called	when	the	reference	count	goes	to
zero.	(This	functionality	does	not	exist	for	auto_ptr,	which	always
deletes	its	pointer.)	The	deleter	is	an	optional	second	parameter	to	the
tr1::shared_ptr	constructor,	so	the	code	would	look	like	this:

class	Lock	{



public:

		explicit	Lock(Mutex	*pm)							//	init	shared_ptr	with	the	Mutex

		:	mutexPtr(pm,	unlock)									//	to	point	to	and	the	unlock	func

		{																														//	as	the	deleter

				lock(mutexPtr.get());			//	see	Item	15	for	info	on	"get"

		}

private:

		std::tr1::shared_ptr<Mutex>	mutexPtr;				//	use	shared_ptr

};																																									//	instead	of	raw	pointer

In	this	example,	notice	how	the	Lock	class	no	longer	declares	a	destructor.
That's	because	there's	no	need	to.	Item	5	explains	that	a	class's	destructor
(regardless	of	whether	it	is	compiler-generated	or	user-defined)
automatically	invokes	the	destructors	of	the	class's	non-static	data	members.
In	this	example,	that's	mutexPtr.	But	mutexPtr's	destructor	will
automatically	call	the	tr1::shared_ptr's	deleter		unlock,	in	this	case
	when	the	mutex's	reference	count	goes	to	zero.	(People	looking	at	the
class's	source	code	would	probably	appreciate	a	comment	indicating	that
you	didn't	forget	about	destruction,	you're	just	relying	on	the	default
compiler-generated	behavior.)

Copy	the	underlying	resource.	Sometimes	you	can	have	as	many	copies
of	a	resource	as	you	like,	and	the	only	reason	you	need	a	resource-



managing	class	is	to	make	sure	that	each	copy	is	released	when	you're	done
with	it.	In	that	case,	copying	the	resource-managing	object	should	also	copy
the	resource	it	wraps.	That	is,	copying	a	resource-managing	object	performs
a	"deep	copy."

Some	implementations	of	the	standard	string	type	consist	of	pointers	to
heap	memory,	where	the	characters	making	up	the	string	are	stored.	Objects
of	such	strings	contain	a	pointer	to	the	heap	memory.	When	a	string
object	is	copied,	a	copy	is	made	of	both	the	pointer	and	the	memory	it
points	to.	Such	strings	exhibit	deep	copying.

Transfer	ownership	of	the	underlying	resource.	On	rare	occasion,	you
may	wish	to	make	sure	that	only	one	RAII	object	refers	to	a	raw	resource
and	that	when	the	RAII	object	is	copied,	ownership	of	the	resource	is
transferred	from	the	copied	object	to	the	copying	object.	As	explained	in
Item	13,	this	is	the	meaning	of	"copy"	used	by	auto_ptr.

The	copying	functions	(copy	constructor	and	copy	assignment	operator)	may	be
generated	by	compilers,	so	unless	the	compiler-generated	versions	will	do	what
you	want	(Item	5	explains	the	default	behavior),	you'll	need	to	write	them
yourself.	In	some	cases,	you'll	also	want	to	support	generalized	versions	of	these
functions.	Such	versions	are	described	in	Item	45.

Things	to	Remember

Copying	an	RAII	object	entails	copying	the	resource	it	manages,
so	the	copying	behavior	of	the	resource	determines	the	copying
behavior	of	the	RAII	object.

Common	RAII	class	copying	behaviors	are	disallowing	copying
and	performing	reference	counting,	but	other	behaviors	are
possible.



Item	15:	Provide	access	to	raw	resources	in
resource-managing	classes.

Resource-managing	classes	are	wonderful.	They're	your	bulwark	against
resource	leaks,	the	absence	of	such	leaks	being	a	fundamental	characteristic	of
well-designed	systems.	In	a	perfect	world,	you'd	rely	on	such	classes	for	all	your
interactions	with	resources,	never	sullying	your	hands	with	direct	access	to	raw
resources.	But	the	world	is	not	perfect.	Many	APIs	refer	to	resources	directly,	so
unless	you	plan	to	foreswear	use	of	such	APIs	(something	that's	rarely	practical),
you'll	have	to	bypass	resource-managing	objects	and	deal	with	raw	resources
from	time	to	time.

For	example,	Item	13	introduces	the	idea	of	using	smart	pointers	like
auto_ptr	or	TR1::shared_ptr	to	hold	the	result	of	a	call	to	a	factory
function	like	createInvestment:

std::tr1::shared_ptr<Investment>	pInv(createInvestment());		//	from	Item	13

Suppose	that	a	function	you'd	like	to	use	when	working	with	Investment
objects	is	this:

int	daysHeld(const	Investment	*pi);								//	return	number	of	days

																																											//	investment	has	been	held

You'd	like	to	call	it	like	this,

	

int	days	=	daysHeld(pInv);																//	error!



int	days	=	daysHeld(pInv);																//	error!

	

but	the	code	won't	compile:	daysHeld	wants	a	raw	Investment*	pointer,
but	you're	passing	an	object	of	type	TR1::shared_ptr<Investment>.

You	need	a	way	to	convert	an	object	of	the	RAII	class	(in	this	case,
tr1::shared_ptr)	into	the	raw	resource	it	contains	(e.g.,	the	underlying
Investment*).	There	are	two	general	ways	to	do	it:	explicit	conversion	and
implicit	conversion.

tr1::shared_ptr	and	auto_ptr	both	offer	a	get	member	function	to
perform	an	explicit	conversion,	i.e.,	to	return	(a	copy	of)	the	raw	pointer	inside
the	smart	pointer	object:

int	days	=	daysHeld(pInv.get());												//	fine,	passes	the	raw	pointer

																																												//	in	pInv	to	daysHeld

Like	virtually	all	smart	pointer	classes,	TR1::shared_ptr	and	auto_ptr
also	overload	the	pointer	dereferencing	operators	(operator->	and
operator*),	and	this	allows	implicit	conversion	to	the	underlying	raw
pointers:

class	Investment	{																									//	root	class	for	a	hierarchy

public:																																				//	of	investment	types

		bool	isTaxFree()	const;

		...



};

Investment*	createInvestment();																				//	factory	function

std::tr1::shared_ptr<Investment>																			//	have	tr1::shared_ptr

		pi1(createInvestment());																									//	manage	a	resource

bool	taxable1	=	!(pi1->isTaxFree());															//	access	resource

																																																			//	via	operator->

...

std::auto_ptr<Investment>	pi2(createInvestment());	//	have	auto_ptr

																																																			//	manage	a

																																																			//	resource

bool	taxable2	=	!((*pi2).isTaxFree());													//	access	resource

																																																			//	via	operator*

...

Because	it	is	sometimes	necessary	to	get	at	the	raw	resource	inside	an	RAII



object,	some	RAII	class	designers	grease	the	skids	by	offering	an	implicit
conversion	function.	For	example,	consider	this	RAII	class	for	fonts	that	are
native	to	a	C	API:

FontHandle	getFont();															//	from	C	APIparams	omitted

																																				//	for	simplicity

void	releaseFont(FontHandle	fh);				//	from	the	same	C	API

class	Font	{																											//	RAII	class

public:

		explicit	Font(FontHandle	fh)									//	acquire	resource;

		:	f(fh)																														//	use	pass-by-value,	because	the

		{}																																			//	C	API	does

		~Font()	{	releaseFont(f);	}										//	release	resource

private:

		FontHandle	f;																								//	the	raw	font	resource

};



Assuming	there's	a	large	font-related	C	API	that	deals	entirely	with
FontHandles,	there	will	be	a	frequent	need	to	convert	from	Font	objects	to
FontHandles.	The	Font	class	could	offer	an	explicit	conversion	function
such	as	get:

class	Font	{

public:

		...

		FontHandle	get()	const	{	return	f;	}		//	explicit	conversion	function

		...

};

Unfortunately,	this	would	require	that	clients	call	get	every	time	they	want	to
communicate	with	the	API:

void	changeFontSize(FontHandle	f,	int	newSize);					//	from	the	C	API

Font	f(getFont());

int	newFontSize;

...



changeFontSize(f.get(),	newFontSize);															//	explicitly	convert

																																																				//	Font	to	FontHandle

Some	programmers	might	find	the	need	to	explicitly	request	such	conversions
off-putting	enough	to	avoid	using	the	class.	That,	in	turn,	would	increase	the
chances	of	leaking	fonts,	the	very	thing	the	Font	class	is	designed	to	prevent.

The	alternative	is	to	have	Font	offer	an	implicit	conversion	function	to	its
FontHandle:

class	Font	{

public:

		...

		operator	FontHandle()	const	{	return	f;	}								//	implicit	conversion	function

		

		...

};

That	makes	calling	into	the	C	API	easy	and	natural:

Font	f(getFont());



int	newFontSize;

...

changeFontSize(f,	newFontSize);					//	implicitly	convert	Font

																																				//	to	FontHandle

The	downside	is	that	implicit	conversions	increase	the	chance	of	errors.	For
example,	a	client	might	accidently	create	a	FontHandle	when	a	Font	was
intended:

Font	f1(getFont());

...

FontHandle	f2	=	f1;																	//	oops!	meant	to	copy	a	Font

																																				//	object,	but	instead	implicitly

																																				//	converted	f1	into	its	underlying

																																				//	FontHandle,	then	copied	that



Now	the	program	has	a	FontHandle	being	managed	by	the	Font	object	f1,
but	the	FontHandle	is	also	available	for	direct	use	as	f2.	That's	almost	never
good.	For	example,	when	f1	is	destroyed,	the	font	will	be	released,	and	f2	will
dangle.

The	decision	about	whether	to	offer	explicit	conversion	from	an	RAII	class	to	its
underlying	resource	(e.g.,	via	a	get	member	function)	or	whether	to	allow
implicit	conversion	is	one	that	depends	on	the	specific	task	the	RAII	class	is
designed	to	perform	and	the	circumstances	in	which	it	is	intended	to	be	used.
The	best	design	is	likely	to	be	the	one	that	adheres	to	Item	18's	advice	to	make
interfaces	easy	to	use	correctly	and	hard	to	use	incorrectly.	Often,	an	explicit
conversion	function	like	get	is	the	preferable	path,	because	it	minimizes	the
chances	of	unintended	type	conversions.	Sometime,	however,	the	naturalness	of
use	arising	from	implicit	type	conversions	will	tip	the	scales	in	that	direction.

It	may	have	occurred	to	you	that	functions	returning	the	raw	resource	inside	an
RAII	class	are	contrary	to	encapsulation.	That's	true,	but	it's	not	the	design
disaster	it	may	at	first	appear.	RAII	classes	don't	exist	to	encapsulate	something;
they	exist	to	ensure	that	a	particular	actionresource	releasetakes	place.	If	desired,
encapsulation	of	the	resource	can	be	layered	on	top	of	this	primary	functionality,
but	it's	not	necessary.	Furthermore,	some	RAII	classes	combine	true
encapsulation	of	implementation	with	very	loose	encapsulation	of	the	underlying
resource.	For	example,	tr1::shared_ptr	encapsulates	all	its	reference-
counting	machinery,	but	it	still	offers	easy	access	to	the	raw	pointer	it	contains.
Like	most	well-designed	classes,	it	hides	what	clients	don't	need	to	see,	but	it
makes	available	those	things	that	clients	honestly	need	to	access.

Things	to	Remember

APIs	often	require	access	to	raw	resources,	so	each	RAII	class
should	offer	a	way	to	get	at	the	resource	it	manages.

Access	may	be	via	explicit	conversion	or	implicit	conversion.	In
general,	explicit	conversion	is	safer,	but	implicit	conversion	is
more	convenient	for	clients.



Item	16:	Use	the	same	form	in	corresponding
uses	of	new	and	delete.

What's	wrong	with	this	picture?

	

std::string	*stringArray	=	new	std::string[100];

	

	

	

...

	

	

	

delete	stringArray;

	

Everything	appears	to	be	in	order.	The	new	is	matched	with	a	delete.	Still,
something	is	quite	wrong.	The	program's	behavior	is	undefined.	At	the	very
least,	99	of	the	100	string	objects	pointed	to	by	stringArray	are	unlikely
to	be	properly	destroyed,	because	their	destructors	will	probably	never	be	called.

When	you	employ	a	new	expression	(i.e.,	dynamic	creation	of	an	object	via	a
use	of	new),	two	things	happen.	First,	memory	is	allocated	(via	a	function
named	operator	newsee	Items	49	and	51).	Second,	one	or	more	constructors
are	called	for	that	memory.	When	you	employ	a	delete	expression	(i.e.,	use
delete),	two	other	things	happen:	one	or	more	destructors	are	called	for	the
memory,	then	the	memory	is	deallocated	(via	a	function	named	operator
deletesee	Item	51).	The	big	question	for	delete	is	this:	how	many	objects
reside	in	the	memory	being	deleted?	The	answer	to	that	determines	how	many
destructors	must	be	called.

Actually,	the	question	is	simpler:	does	the	pointer	being	deleted	point	to	a	single



object	or	to	an	array	of	objects?	It's	a	critical	question,	because	the	memory
layout	for	single	objects	is	generally	different	from	the	memory	layout	for
arrays.	In	particular,	the	memory	for	an	array	usually	includes	the	size	of	the
array,	thus	making	it	easy	for	delete	to	know	how	many	destructors	to	call.
The	memory	for	a	single	object	lacks	this	information.	You	can	think	of	the
different	layouts	as	looking	like	this,	where	n	is	the	size	of	the	array:

This	is	just	an	example,	of	course.	Compilers	aren't	required	to	implement	things
this	way,	though	many	do.

When	you	use	delete	on	a	pointer,	the	only	way	for	delete	to	know	whether
the	array	size	information	is	there	is	for	you	to	tell	it.	If	you	use	brackets	in	your
use	of	delete,	delete	assumes	an	array	is	pointed	to.	Otherwise,	it	assumes
that	a	single	object	is	pointed	to:

std::string	*stringPtr1	=	new	std::string;

std::string	*stringPtr2	=	new	std::string[100];

...

delete	stringPtr1;																							//	delete	an	object

delete	[]	stringPtr2;																				//	delete	an	array	of	objects



What	would	happen	if	you	used	the	"[]"	form	on	stringPtr1?	The	result	is
undefined,	but	it's	unlikely	to	be	pretty.	Assuming	the	layout	above,	delete
would	read	some	memory	and	interpret	what	it	read	as	an	array	size,	then	start
invoking	that	many	destructors,	oblivious	to	the	fact	that	the	memory	it's
working	on	not	only	isn't	in	the	array,	it's	also	probably	not	holding	objects	of
the	type	it's	busy	destructing.

What	would	happen	if	you	didn't	use	the	"[]"	form	on	stringPtr2?	Well,
that's	undefined	too,	but	you	can	see	how	it	would	lead	to	too	few	destructors
being	called.	Furthermore,	it's	undefined	(and	sometimes	harmful)	for	built-in
types	like	ints,	too,	even	though	such	types	lack	destructors.

The	rule	is	simple:	if	you	use	[]	in	a	new	expression,	you	must	use	[]	in	the
corresponding	delete	expression.	If	you	don't	use	[]	in	a	new	expression,
don't	use	[]	in	the	matching	delete	expression.

This	is	a	particularly	important	rule	to	bear	in	mind	when	you	are	writing	a	class
containing	a	pointer	to	dynamically	allocated	memory	and	also	offering	multiple
constructors,	because	then	you	must	be	careful	to	use	the	same	form	of	new	in
all	the	constructors	to	initialize	the	pointer	member.	If	you	don't,	how	will	you
know	what	form	of	delete	to	use	in	your	destructor?

This	rule	is	also	noteworthy	for	the	typedef-inclined,	because	it	means	that	a
typedef's	author	must	document	which	form	of	delete	should	be	employed
when	new	is	used	to	conjure	up	objects	of	the	typedef	type.	For	example,
consider	this	typedef:

	

typedef	std::string	AddressLines[4];			//	a	person's	address	has	4	lines,

	

																																							//	each	of	which	is	a	string

	

Because	AddressLines	is	an	array,	this	use	of	new,

	

std::string	*pal	=	new	AddressLines;			//	note	that	"new	AddressLines"



std::string	*pal	=	new	AddressLines;			//	note	that	"new	AddressLines"

	

																																							//	returns	a	string*,	just	like

	

																																							//	"new	string[4]"	would

	

must	be	matched	with	the	array	form	of	delete:

	

delete	pal;																											//	undefined!

	

	

	

delete	[]	pal;																								//	fine

	

To	avoid	such	confusion,	abstain	from	typedefs	for	array	types.	That's	easy,
because	the	standard	C++	library	(see	Item	54)	includes	string	and	vector,
and	those	templates	reduce	the	need	for	dynamically	allocated	arrays	to	nearly
zero.	Here,	for	example,	AddressLines	could	be	defined	to	be	a	vector	of
strings,	i.e.,	the	type	vector<string>.

Things	to	Remember

If	you	use	[]	in	a	new	expression,	you	must	use	[]	in	the
corresponding	delete	expression.	If	you	don't	use	[]	in	a
new	expression,	you	mustn't	use	[]	in	the	corresponding
delete	expression.



Item	17:	Store	newed	objects	in	smart	pointers	in
standalone	statements.

Suppose	we	have	a	function	to	reveal	our	processing	priority	and	a	second
function	to	do	some	processing	on	a	dynamically	allocated	Widget	in	accord
with	a	priority:

int	priority();

void	processWidget(std::tr1::shared_ptr<Widget>	pw,	int	priority);

Mindful	of	the	wisdom	of	using	objects	to	manage	resources	(see	Item	13),
processWidget	uses	a	smart	pointer	(here,	a	TR1::shared_ptr)	for	the
dynamically	allocated	Widget	it	processes.

Consider	now	a	call	to	processWidget:

	

processWidget(new	Widget,	priority());

	

Wait,	don't	consider	that	call.	It	won't	compile.	tr1::shared_ptr's
constructor	taking	a	raw	pointer	is	explicit,	so	there's	no	implicit	conversion
from	the	raw	pointer	returned	by	the	expression	"new	Widget"	to	the
TR1::shared_ptr	required	by	processWidget.	The	following	code,
however,	will	compile:

processWidget(std::tr1::shared_ptr<Widget>(new	Widget),	priority());



Surprisingly,	although	we're	using	object-managing	resources	everywhere	here,
this	call	may	leak	resources.	It's	illuminating	to	see	how.

Before	compilers	can	generate	a	call	to	processWidget,	they	have	to
evaluate	the	arguments	being	passed	as	its	parameters.	The	second	argument	is
just	a	call	to	the	function	priority,	but	the	first	argument,
("std::tr1::shared_ptr<Widget>(new	Widget)")	consists	of	two
parts:

Execution	of	the	expression	"new	Widget".

A	call	to	the	TR1::shared_ptr	constructor.

Before	processWidget	can	be	called,	then,	compilers	must	generate	code	to
do	these	three	things:

Call	priority.

Execute	"new	Widget".

Call	the	tr1::shared_ptr	constructor.

C++	compilers	are	granted	considerable	latitude	in	determining	the	order	in
which	these	things	are	to	be	done.	(This	is	different	from	the	way	languages	like
Java	and	C#	work,	where	function	parameters	are	always	evaluated	in	a
particular	order.)	The	"new	Widget"	expression	must	be	executed	before	the
tr1::shared_ptr	constructor	can	be	called,	because	the	result	of	the
expression	is	passed	as	an	argument	to	the	tr1::shared_ptr	constructor,
but	the	call	to	priority	can	be	performed	first,	second,	or	third.	If	compilers
choose	to	perform	it	second	(something	that	may	allow	them	to	generate	more
efficient	code),	we	end	up	with	this	sequence	of	operations:

1.	 Execute	"new	Widget".

2.	 Call	priority.



3.	 Call	the	tr1::shared_ptr	constructor.

But	consider	what	will	happen	if	the	call	to	priority	yields	an	exception.	In
that	case,	the	pointer	returned	from	"new	Widget"	will	be	lost,	because	it
won't	have	been	stored	in	the	TR1::shared_ptr	we	were	expecting	would
guard	against	resource	leaks.	A	leak	in	the	call	to	processWidget	can	arise
because	an	exception	can	intervene	between	the	time	a	resource	is	created	(via
"new	Widget")	and	the	time	that	resource	is	turned	over	to	a	resource-
managing	object.

The	way	to	avoid	problems	like	this	is	simple:	use	a	separate	statement	to	create
the	Widget	and	store	it	in	a	smart	pointer,	then	pass	the	smart	pointer	to
processWidget:

std::tr1::shared_ptr<Widget>	pw(new	Widget);		//	store	newed	object

																																														//	in	a	smart	pointer	in	a

																																														//	standalone	statement

processWidget(pw,	priority());																//	this	call	won't	leak

This	works	because	compilers	are	given	less	leeway	in	reordering	operations
across	statements	than	within	them.	In	this	revised	code,	the	"new	Widget"
expression	and	the	call	to	the	TR1::shared_ptr	constructor	are	in	a
different	statement	from	the	one	calling	priority,	so	compilers	are	not
allowed	to	move	the	call	to	priority	between	them.

Things	to	Remember

Store	newed	objects	in	smart	pointers	in	standalone	statements.



Failure	to	do	this	can	lead	to	subtle	resource	leaks	when
exceptions	are	thrown.



Chapter	4.	Designs	and	Declarations
Software	designs		approaches	to	getting	the	software	to	do	what	you	want	it	to
do		typically	begin	as	fairly	general	ideas,	but	they	eventually	become	detailed
enough	to	allow	for	the	development	of	specific	interfaces.	These	interfaces
must	then	be	translated	into	C++	declarations.	In	this	chapter,	we	attack	the
problem	of	designing	and	declaring	good	C++	interfaces.	We	begin	with	perhaps
the	most	important	guideline	about	designing	interfaces	of	any	kind:	that	they
should	be	easy	to	use	correctly	and	hard	to	use	incorrectly.	That	sets	the	stage	for
a	number	of	more	specific	guidelines	addressing	a	wide	range	of	topics,
including	correctness,	efficiency,	encapsulation,	maintainability,	extensibility,
and	conformance	to	convention.

The	material	that	follows	isn't	everything	you	need	to	know	about	good	interface
design,	but	it	highlights	some	of	the	most	important	considerations,	warns	about
some	of	the	most	frequent	errors,	and	provides	solutions	to	problems	often
encountered	by	class,	function,	and	template	designers.



Item	18:	Make	interfaces	easy	to	use	correctly
and	hard	to	use	incorrectly

C++	is	awash	in	interfaces.	Function	interfaces.	Class	interfaces.	Template
interfaces.	Each	interface	is	a	means	by	which	clients	interact	with	your	code.
Assuming	you're	dealing	with	reasonable	people,	those	clients	are	trying	to	do	a
good	job.	They	want	to	use	your	interfaces	correctly.	That	being	the	case,	if	they
use	one	incorrectly,	your	interface	is	at	least	partially	to	blame.	Ideally,	if	an
attempted	use	of	an	interface	won't	do	what	the	client	expects,	the	code	won't
compile;	and	if	the	code	does	compile,	it	will	do	what	the	client	wants.

Developing	interfaces	that	are	easy	to	use	correctly	and	hard	to	use	incorrectly
requires	that	you	consider	the	kinds	of	mistakes	that	clients	might	make.	For
example,	suppose	you're	designing	the	constructor	for	a	class	representing	dates
in	time:

class	Date	{

public:

		Date(int	month,	int	day,	int	year);

		...

};

At	first	glance,	this	interface	may	seem	reasonable	(at	least	in	the	USA),	but
there	are	at	least	two	errors	that	clients	might	easily	make.	First,	they	might	pass
parameters	in	the	wrong	order:

Date	d(30,	3,	1995);														//	Oops!	Should	be	"3,	30"	,	not	"30,	3"



Second,	they	might	pass	an	invalid	month	or	day	number:

Date	d(2,	20,	1995);														//	Oops!	Should	be	"3,	30"	,	not	"2,	20"

(This	last	example	may	look	silly,	but	remember	that	on	a	keyboard,	2	is	next	to
3.	Such	"off	by	one"	typing	errors	are	not	uncommon.)

Many	client	errors	can	be	prevented	by	the	introduction	of	new	types.	Indeed,
the	type	system	is	your	primary	ally	in	preventing	undesirable	code	from
compiling.	In	this	case,	we	can	introduce	simple	wrapper	types	to	distinguish
days,	months,	and	years,	then	use	these	types	in	the	Date	constructor:

struct	Day	{												struct	Month	{																struct	Year

		explicit	Day(int	d)					explicit	Month(int	m)									explicit	Year(int	y)

		:val(d)	{}														:val(m)	{}																				:val(y){}

		int	val;																int	val;																						int	val;

};																						};																												};

class	Date	{

public:

	Date(const	Month&	m,	const	Day&	d,	const	Year&	y);



	...

};

Date	d(30,	3,	1995);																						//	error!	wrong	types

Date	d(Day(30),	Month(3),	Year(1995));				//	error!	wrong	types

Date	d(Month(3),	Day(30),	Year(1995));				//	okay,	types	are	correct

Making	Day,	Month,	and	Year	full-fledged	classes	with	encapsulated	data
would	be	better	than	the	simple	use	of	structs	above	(see	Item	22),	but	even
structs	suffice	to	demonstrate	that	the	judicious	introduction	of	new	types	can
work	wonders	for	the	prevention	of	interface	usage	errors.

Once	the	right	types	are	in	place,	it	can	sometimes	be	reasonable	to	restrict	the
values	of	those	types.	For	example,	there	are	only	12	valid	month	values,	so	the
Month	type	should	reflect	that.	One	way	to	do	this	would	be	to	use	an	enum	to
represent	the	month,	but	enums	are	not	as	type-safe	as	we	might	like.	For
example,	enums	can	be	used	like	ints	(see	Item	2).	A	safer	solution	is	to
predefine	the	set	of	all	valid	Months:

class	Month	{

public:

		static	Month	Jan()	{	return	Month(1);	}			//	functions	returning	all	valid



		static	Month	Feb()	{	return	Month(2);	}			//	Month	values;	see	below	for

		...																																							//	why	these	are	functions,	not

		static	Month	Dec()	{	return	Month(12);	}		//	objects

		

		...																																							//	other	member	functions

private:

		explicit	Month(int	m);																				//	prevent	creation	of	new

																																												//	Month	values

		...																																							//	month-specific	data

};

Date	d(Month::Mar(),	Day(30),	Year(1995));

If	the	idea	of	using	functions	instead	of	objects	to	represent	specific	months
strikes	you	as	odd,	it	may	be	because	you	have	forgotten	that	reliable
initialization	of	non-local	static	objects	can	be	problematic.	Item	4	can	refresh
your	memory.

Another	way	to	prevent	likely	client	errors	is	to	restrict	what	can	be	done	with	a
type.	A	common	way	to	impose	restrictions	is	to	add	const.	For	example,	Item
3	explains	how	const-qualifying	the	return	type	from	operator*	can



prevent	clients	from	making	this	error	for	user-defined	types:

	

if	(a	*	b	=	c)	...																				//	oops,	meant	to	do	a	comparison!

	

In	fact,	this	is	just	a	manifestation	of	another	general	guideline	for	making	types
easy	to	use	correctly	and	hard	to	use	incorrectly:	unless	there's	a	good	reason	not
to,	have	your	types	behave	consistently	with	the	built-in	types.	Clients	already
know	how	types	like	int	behave,	so	you	should	strive	to	have	your	types
behave	the	same	way	whenever	reasonable.	For	example,	assignment	to	a*b
isn't	legal	if	a	and	b	are	ints,	so	unless	there's	a	good	reason	to	diverge	from
this	behavior,	it	should	be	illegal	for	your	types,	too.	When	in	doubt,	do	as	the
ints	do.

The	real	reason	for	avoiding	gratuitous	incompatibilities	with	the	built-in	types
is	to	offer	interfaces	that	behave	consistently.	Few	characteristics	lead	to
interfaces	that	are	easy	to	use	correctly	as	much	as	consistency,	and	few
characteristics	lead	to	aggravating	interfaces	as	much	as	inconsistency.	The
interfaces	to	STL	containers	are	largely	(though	not	perfectly)	consistent,	and
this	helps	make	them	fairly	easy	to	use.	For	example,	every	STL	container	has	a
member	function	named	size	that	tells	how	many	objects	are	in	the	container.
Contrast	this	with	Java,	where	you	use	the	length	property	for	arrays,	the
length	method	for	Strings,	and	the	size	method	for	Lists;	and	with
.NET,	where	Arrays	have	a	property	named	Length,	while	ArrayLists
have	a	property	named	Count.	Some	developers	think	that	integrated
development	environments	(IDEs)	render	such	inconsistencies	unimportant,	but
they	are	mistaken.	Inconsistency	imposes	mental	friction	into	a	developer's	work
that	no	IDE	can	fully	remove.

Any	interface	that	requires	that	clients	remember	to	do	something	is	prone	to
incorrect	use,	because	clients	can	forget	to	do	it.	For	example,	Item	13
introduces	a	factory	function	that	returns	pointers	to	dynamically	allocated
objects	in	an	Investment	hierarchy:



Investment*	createInvestment();			//	from	Item	13;	parameters	omitted

																																		//	for	simplicity

To	avoid	resource	leaks,	the	pointers	returned	from	createInvestment
must	eventually	be	deleted,	but	that	creates	an	opportunity	for	at	least	two	types
of	client	errors:	failure	to	delete	a	pointer,	and	deletion	of	the	same	pointer	more
than	once.

Item	13	shows	how	clients	can	store	createInvestment's	return	value	in	a
smart	pointer	like	auto_ptr	or	tr1::shared_ptr,	thus	turning	over	to	the
smart	pointer	the	responsibility	for	using	delete.	But	what	if	clients	forget	to
use	the	smart	pointer?	In	many	cases,	a	better	interface	decision	would	be	to
preempt	the	problem	by	having	the	factory	function	return	a	smart	pointer	in	the
first	place:

std::tr1::shared_ptr<Investment>	createInvestment();

This	essentially	forces	clients	to	store	the	return	value	in	a
TR1::shared_ptr,	all	but	eliminating	the	possibility	of	forgetting	to	delete
the	underlying	Investment	object	when	it's	no	longer	being	used.

In	fact,	returning	a	TR1::shared_ptr	makes	it	possible	for	an	interface
designer	to	prevent	a	host	of	other	client	errors	regarding	resource	release,
because,	as	Item	14	explains,	TR1::shared_ptr	allows	a	resource-release
function		a	"deleter"		to	be	bound	to	the	smart	pointer	when	the	smart	pointer	is
created.	(auto_ptr	has	no	such	capability.)

Suppose	clients	who	get	an	Investment*	pointer	from
createInvestment	are	expected	to	pass	that	pointer	to	a	function	called



geTRidOfInvestment	instead	of	using	delete	on	it.	Such	an	interface	would
open	the	door	to	a	new	kind	of	client	error,	one	where	clients	use	the	wrong
resource-destruction	mechanism	(i.e.,	delete	instead	of
getridOfInvestment).	The	implementer	of	createInvestment	can
forestall	such	problems	by	returning	a	TR1::shared_ptr	with
geTRidOfInvestment	bound	to	it	as	its	deleter.

tr1::shared_ptr	offers	a	constructor	taking	two	arguments:	the	pointer	to
be	managed	and	the	deleter	to	be	called	when	the	reference	count	goes	to	zero.
This	suggests	that	the	way	to	create	a	null	tr1::shared_ptr	with
getridOfInvestment	as	its	deleter	is	this:

std::tr1::shared_ptr<Investment>						//	attempt	to	create	a	null

		pInv(0,	getRidOfInvestment);								//	shared_ptr	with	a	custom	deleter;

																																						//	this	won't	compile

Alas,	this	isn't	valid	C++.	The	TR1::shared_ptr	constructor	insists	on	its
first	parameter	being	a	pointer,	and	0	isn't	a	pointer,	it's	an	int.	Yes,	it's
convertible	to	a	pointer,	but	that's	not	good	enough	in	this	case;
tr1::shared_ptr	insists	on	an	actual	pointer.	A	cast	solves	the	problem:

std::tr1::shared_ptr<Investment>						//	create	a	null	shared_ptr	with

		pInv(static_cast<Investment*>(0),			//	getRidOfInvestment	as	its

								getRidOfInvestment);										//	deleter;	see	Item	27	for	info	on

																																						//	static_cast



This	means	that	the	code	for	implementing	createInvestment	to	return	a
tr1::shared_ptr	with	geTRidOfInvestment	as	its	deleter	would	look
something	like	this:

std::tr1::shared_ptr<Investment>	createInvestment()

{

		std::tr1::shared_ptr<Investment>	retVal(static_cast<Investment*>(0),

																																										getRidOfInvestment);

		retVal	=	...	;																									//	make	retVal	point	to	the

																																									//	correct	object

		return	retVal;

}

Of	course,	if	the	raw	pointer	to	be	managed	by	pInv	could	be	determined	prior
to	creating	pInv,	it	would	be	better	to	pass	the	raw	pointer	to	pInv's
constructor	instead	of	initializing	pInv	to	null	and	then	making	an	assignment
to	it.	For	details	on	why,	consult	Item	26.

An	especially	nice	feature	of	tr1::shared_ptr	is	that	it	automatically	uses
its	per-pointer	deleter	to	eliminate	another	potential	client	error,	the	"cross-DLL
problem."	This	problem	crops	up	when	an	object	is	created	using	new	in	one



dynamically	linked	library	(DLL)	but	is	deleted	in	a	different	DLL.	On	many
platforms,	such	cross-DLL	new/delete	pairs	lead	to	runtime	errors.
tr1::shared_ptr	avoids	the	problem,	because	its	default	deleter	uses
delete	from	the	same	DLL	where	the	tr1::shared_ptr	is	created.	This
means,	for	example,	that	if	Stock	is	a	class	derived	from	Investment	and
createInvestment	is	implemented	like	this,

std::tr1::shared_ptr<Investment>	createInvestment()

{

		return	std::tr1::shared_ptr<Investment>(new	Stock);

}

the	returned	tr1::shared_ptr	can	be	passed	among	DLLs	without	concern
for	the	cross-DLL	problem.	The	tr1::shared_ptrs	pointing	to	the	Stock
keep	track	of	which	DLL's	delete	should	be	used	when	the	reference	count	for
the	Stock	becomes	zero.

This	Item	isn't	about	tr1::shared_ptr		it's	about	making	interfaces	easy	to
use	correctly	and	hard	to	use	incorrectly		but	tr1::shared_ptr	is	such	an
easy	way	to	eliminate	some	client	errors,	it's	worth	an	overview	of	the	cost	of
using	it.	The	most	common	implementation	of	tr1::shared_ptr	comes
from	Boost	(see	Item	55).	Boost's	shared_ptr	is	twice	the	size	of	a	raw
pointer,	uses	dynamically	allocated	memory	for	bookkeeping	and	deleter-
specific	data,	uses	a	virtual	function	call	when	invoking	its	deleter,	and	incurs
thread	synchronization	overhead	when	modifying	the	reference	count	in	an
application	it	believes	is	multithreaded.	(You	can	disable	multithreading	support
by	defining	a	preprocessor	symbol.)	In	short,	it's	bigger	than	a	raw	pointer,
slower	than	a	raw	pointer,	and	uses	auxiliary	dynamic	memory.	In	many
applications,	these	additional	runtime	costs	will	be	unnoticeable,	but	the
reduction	in	client	errors	will	be	apparent	to	everyone.



Things	to	Remember

Good	interfaces	are	easy	to	use	correctly	and	hard	to	use
incorrectly.	Your	should	strive	for	these	characteristics	in	all
your	interfaces.

Ways	to	facilitate	correct	use	include	consistency	in	interfaces
and	behavioral	compatibility	with	built-in	types.

Ways	to	prevent	errors	include	creating	new	types,	restricting
operations	on	types,	constraining	object	values,	and	eliminating
client	resource	management	responsibilities.

TR1::shared_ptr	supports	custom	deleters.	This	prevents
the	cross-DLL	problem,	can	be	used	to	automatically	unlock
mutexes	(see	Item	14),	etc.



Item	19:	Treat	class	design	as	type	design

In	C++,	as	in	other	object-oriented	programming	languages,	defining	a	new	class
defines	a	new	type.	Much	of	your	time	as	a	C++	developer	will	thus	be	spent
augmenting	your	type	system.	This	means	you're	not	just	a	class	designer,	you're
a	type	designer.	Overloading	functions	and	operators,	controlling	memory
allocation	and	deallocation,	defining	object	initialization	and	finalization		it's	all
in	your	hands.	You	should	therefore	approach	class	design	with	the	same	care
that	language	designers	lavish	on	the	design	of	the	language's	built-in	types.

Designing	good	classes	is	challenging	because	designing	good	types	is
challenging.	Good	types	have	a	natural	syntax,	intuitive	semantics,	and	one	or
more	efficient	implementations.	In	C++,	a	poorly	planned	class	definition	can
make	it	impossible	to	achieve	any	of	these	goals.	Even	the	performance
characteristics	of	a	class's	member	functions	may	be	affected	by	how	they	are
declared.

How,	then,	do	you	design	effective	classes?	First,	you	must	understand	the
issues	you	face.	Virtually	every	class	requires	that	you	confront	the	following
questions,	the	answers	to	which	often	lead	to	constraints	on	your	design:

How	should	objects	of	your	new	type	be	created	and	destroyed?	How
this	is	done	influences	the	design	of	your	class's	constructors	and	destructor,
as	well	as	its	memory	allocation	and	deallocation	functions	(operator
new,	operator	new[],	operator	delete,	and	operator
delete[]		see	Chapter	8),	if	you	write	them.

How	should	object	initialization	differ	from	object	assignment?	The
answer	to	this	question	determines	the	behavior	of	and	the	differences
between	your	constructors	and	your	assignment	operators.	It's	important	not
to	confuse	initialization	with	assignment,	because	they	correspond	to
different	function	calls	(see	Item	4).

What	does	it	mean	for	objects	of	your	new	type	to	be	passed	by	value?
Remember,	the	copy	constructor	defines	how	pass-by-value	is	implemented



for	a	type.

What	are	the	restrictions	on	legal	values	for	your	new	type?	Usually,
only	some	combinations	of	values	for	a	class's	data	members	are	valid.
Those	combinations	determine	the	invariants	your	class	will	have	to
maintain.	The	invariants	determine	the	error	checking	you'll	have	to	do
inside	your	member	functions,	especially	your	constructors,	assignment
operators,	and	"setter"	functions.	It	may	also	affect	the	exceptions	your
functions	throw	and,	on	the	off	chance	you	use	them,	your	functions'
exception	specifications.

Does	your	new	type	fit	into	an	inheritance	graph?	If	you	inherit	from
existing	classes,	you	are	constrained	by	the	design	of	those	classes,
particularly	by	whether	their	functions	are	virtual	or	non-virtual	(see	Items
34	and	36).	If	you	wish	to	allow	other	classes	to	inherit	from	your	class,
that	affects	whether	the	functions	you	declare	are	virtual,	especially	your
destructor	(see	Item	7).

What	kind	of	type	conversions	are	allowed	for	your	new	type?	Your
type	exists	in	a	sea	of	other	types,	so	should	there	be	conversions	between
your	type	and	other	types?	If	you	wish	to	allow	objects	of	type	T1	to	be
implicitly	converted	into	objects	of	type	T2,	you	will	want	to	write	either	a
type	conversion	function	in	class	T1	(e.g.,	operator	T2)	or	a	non-
explicit	constructor	in	class	T2	that	can	be	called	with	a	single
argument.	If	you	wish	to	allow	explicit	conversions	only,	you'll	want	to
write	functions	to	perform	the	conversions,	but	you'll	need	to	avoid	making
them	type	conversion	operators	or	non-explicit	constructors	that	can	be
called	with	one	argument.	(For	an	example	of	both	implicit	and	explicit
conversion	functions,	see	Item	15.)

What	operators	and	functions	make	sense	for	the	new	type?	The	answer
to	this	question	determines	which	functions	you'll	declare	for	your	class.
Some	functions	will	be	member	functions,	but	some	will	not	(see	Items	23,
24,	and	46).

What	standard	functions	should	be	disallowed?	Those	are	the	ones	you'll
need	to	declare	private	(see	Item	6).



Who	should	have	access	to	the	members	of	your	new	type?	This
question	helps	you	determine	which	members	are	public,	which	are
protected,	and	which	are	private.	It	also	helps	you	determine	which	classes
and/or	functions	should	be	friends,	as	well	as	whether	it	makes	sense	to	nest
one	class	inside	another.

What	is	the	"undeclared	interface"	of	your	new	type?	What	kind	of
guarantees	does	it	offer	with	respect	to	performance,	exception	safety	(see
Item	29),	and	resource	usage	(e.g.,	locks	and	dynamic	memory)?	The
guarantees	you	offer	in	these	areas	will	impose	constraints	on	your	class
implementation.

How	general	is	your	new	type?	Perhaps	you're	not	really	defining	a	new
type.	Perhaps	you're	defining	a	whole	family	of	types.	If	so,	you	don't	want
to	define	a	new	class,	you	want	to	define	a	new	class	template.

Is	a	new	type	really	what	you	need?	If	you're	defining	a	new	derived	class
only	so	you	can	add	functionality	to	an	existing	class,	perhaps	you'd	better
achieve	your	goals	by	simply	defining	one	or	more	non-member	functions
or	templates.

These	questions	are	difficult	to	answer,	so	defining	effective	classes	can	be
challenging.	Done	well,	however,	user-defined	classes	in	C++	yield	types	that
are	at	least	as	good	as	the	built-in	types,	and	that	makes	all	the	effort	worthwhile.

Things	to	Remember

Class	design	is	type	design.	Before	defining	a	new	type,	be	sure
to	consider	all	the	issues	discussed	in	this	Item.



Item	20:	Prefer	pass-by-reference-to-const	to
pass-by-value

By	default,	C++	passes	objects	to	and	from	functions	by	value	(a	characteristic	it
inherits	from	C).	Unless	you	specify	otherwise,	function	parameters	are
initialized	with	copies	of	the	actual	arguments,	and	function	callers	get	back	a
copy	of	the	value	returned	by	the	function.	These	copies	are	produced	by	the
objects'	copy	constructors.	This	can	make	pass-by-value	an	expensive	operation.
For	example,	consider	the	following	class	hierarchy:

class	Person	{

public:

		Person();																										//	parameters	omitted	for	simplicity

		virtual	~Person();																	//	see	Item	7	for	why	this	is	virtual

		...

private:

		std::string	name;

		std::string	address;

};

class	Student:	public	Person	{

public:



		Student();																									//	parameters	again	omitted

		~Student();

		...

private:

		std::string	schoolName;

		std::string	schoolAddress;

};

Now	consider	the	following	code,	in	which	we	call	a	function,
validateStudent,	that	takes	a	Student	argument	(by	value)	and	returns
whether	it	has	been	validated:

bool	validateStudent(Student	s);											//	function	taking	a	Student

																																											//	by	value

Student	plato;																													//	Plato	studied	under	Socrates

bool	platoIsOK	=	validateStudent(plato);			//	call	the	function



What	happens	when	this	function	is	called?

Clearly,	the	Student	copy	constructor	is	called	to	initialize	the	parameter	s
from	plato.	Equally	clearly,	s	is	destroyed	when	validateStudent
returns.	So	the	parameter-passing	cost	of	this	function	is	one	call	to	the
Student	copy	constructor	and	one	call	to	the	Student	destructor.

But	that's	not	the	whole	story.	A	Student	object	has	two	string	objects
within	it,	so	every	time	you	construct	a	Student	object	you	must	also	construct
two	string	objects.	A	Student	object	also	inherits	from	a	Person	object,
so	every	time	you	construct	a	Student	object	you	must	also	construct	a
Person	object.	A	Person	object	has	two	additional	string	objects	inside	it,
so	each	Person	construction	also	entails	two	more	string	constructions.	The
end	result	is	that	passing	a	Student	object	by	value	leads	to	one	call	to	the
Student	copy	constructor,	one	call	to	the	Person	copy	constructor,	and	four
calls	to	the	string	copy	constructor.	When	the	copy	of	the	Student	object	is
destroyed,	each	constructor	call	is	matched	by	a	destructor	call,	so	the	overall
cost	of	passing	a	Student	by	value	is	six	constructors	and	six	destructors!

Now,	this	is	correct	and	desirable	behavior.	After	all,	you	want	all	your	objects
to	be	reliably	initialized	and	destroyed.	Still,	it	would	be	nice	if	there	were	a	way
to	bypass	all	those	constructions	and	destructions.	There	is:	pass	by	reference-to-
const:

bool	validateStudent(const	Student&	s);

This	is	much	more	efficient:	no	constructors	or	destructors	are	called,	because	no
new	objects	are	being	created.	The	const	in	the	revised	parameter	declaration
is	important.	The	original	version	of	validateStudent	took	a	Student
parameter	by	value,	so	callers	knew	that	they	were	shielded	from	any	changes
the	function	might	make	to	the	Student	they	passed	in;	validateStudent
would	be	able	to	modify	only	a	copy	of	it.	Now	that	the	Student	is	being



passed	by	reference,	it's	necessary	to	also	declare	it	const,	because	otherwise
callers	would	have	to	worry	about	validateStudent	making	changes	to	the
Student	they	passed	in.

Passing	parameters	by	reference	also	avoids	the	slicing	problem.	When	a	derived
class	object	is	passed	(by	value)	as	a	base	class	object,	the	base	class	copy
constructor	is	called,	and	the	specialized	features	that	make	the	object	behave
like	a	derived	class	object	are	"sliced"	off.	You're	left	with	a	simple	base	class
object		little	surprise,	since	a	base	class	constructor	created	it.	This	is	almost
never	what	you	want.	For	example,	suppose	you're	working	on	a	set	of	classes
for	implementing	a	graphical	window	system:

class	Window	{

public:

		...

		std::string	name()	const;											//	return	name	of	window

		virtual	void	display()	const;							//	draw	window	and	contents

};

class	WindowWithScrollBars:	public	Window	{

public:

		...

		virtual	void	display()	const;

};



All	Window	objects	have	a	name,	which	you	can	get	at	through	the	name
function,	and	all	windows	can	be	displayed,	which	you	can	bring	about	by
invoking	the	display	function.	The	fact	that	display	is	virtual	tells	you	that
the	way	in	which	simple	base	class	Window	objects	are	displayed	is	apt	to	differ
from	the	way	in	which	the	fancier	WindowWithScrollBars	objects	are
displayed	(see	Items	34	and	36).

Now	suppose	you'd	like	to	write	a	function	to	print	out	a	window's	name	and
then	display	the	window.	Here's	the	wrong	way	to	write	such	a	function:

void	printNameAndDisplay(Window	w)									//	incorrect!	parameter

{																																										//	may	be	sliced!

		std::cout	<<	w.name();

		w.display();

}

Consider	what	happens	when	you	call	this	function	with	a
WindowWithScrollBars	object:

	

WindowWithScrollBars	wwsb;

	

	

	

printNameAndDisplay(wwsb);

	



The	parameter	w	will	be	constructed		it's	passed	by	value,	remember?		as	a
Window	object,	and	all	the	specialized	information	that	made	wwsb	act	like	a
WindowWithScrollBars	object	will	be	sliced	off.	Inside
printNameAndDisplay,	w	will	always	act	like	an	object	of	class	Window
(because	it	is	an	object	of	class	Window),	regardless	of	the	type	of	object	passed
to	the	function.	In	particular,	the	call	to	display	inside
printNameAndDisplay	will	always	call	Window::display,	never
WindowWithScrollBars::display.

The	way	around	the	slicing	problem	is	to	pass	w	by	reference-to-const:

void	printNameAndDisplay(const	Window&	w)			//	fine,	parameter	won't

{																																											//	be	sliced

		std::cout	<<	w.name();

		w.display();

}

Now	w	will	act	like	whatever	kind	of	window	is	actually	passed	in.

If	you	peek	under	the	hood	of	a	C++	compiler,	you'll	find	that	references	are
typically	implemented	as	pointers,	so	passing	something	by	reference	usually
means	really	passing	a	pointer.	As	a	result,	if	you	have	an	object	of	a	built-in
type	(e.g.,	an	int),	it's	often	more	efficient	to	pass	it	by	value	than	by	reference.
For	built-in	types,	then,	when	you	have	a	choice	between	pass-by-value	and
pass-by-reference-to-const,	it's	not	unreasonable	to	choose	pass-by-value.	This
same	advice	applies	to	iterators	and	function	objects	in	the	STL,	because,	by
convention,	they	are	designed	to	be	passed	by	value.	Implementers	of	iterators
and	function	objects	are	responsible	for	seeing	to	it	that	they	are	efficient	to	copy
and	are	not	subject	to	the	slicing	problem.	(This	is	an	example	of	how	the	rules



change,	depending	on	the	part	of	C++	you	are	using		see	Item	1.)

Built-in	types	are	small,	so	some	people	conclude	that	all	small	types	are	good
candidates	for	pass-by-value,	even	if	they're	user-defined.	This	is	shaky
reasoning.	Just	because	an	object	is	small	doesn't	mean	that	calling	its	copy
constructor	is	inexpensive.	Many	objects		most	STL	containers	among	them	
contain	little	more	than	a	pointer,	but	copying	such	objects	entails	copying
everything	they	point	to.	That	can	be	very	expensive.

Even	when	small	objects	have	inexpensive	copy	constructors,	there	can	be
performance	issues.	Some	compilers	treat	built-in	and	user-defined	types
differently,	even	if	they	have	the	same	underlying	representation.	For	example,
some	compilers	refuse	to	put	objects	consisting	of	only	a	double	into	a
register,	even	though	they	happily	place	naked	doubles	there	on	a	regular
basis.	When	that	kind	of	thing	happens,	you	can	be	better	off	passing	such
objects	by	reference,	because	compilers	will	certainly	put	pointers	(the
implementation	of	references)	into	registers.

Another	reason	why	small	user-defined	types	are	not	necessarily	good	pass-by-
value	candidates	is	that,	being	user-defined,	their	size	is	subject	to	change.	A
type	that's	small	now	may	be	bigger	in	a	future	release,	because	its	internal
implementation	may	change.	Things	can	even	change	when	you	switch	to	a
different	C++	implementation.	As	I	write	this,	for	example,	some
implementations	of	the	standard	library's	string	type	are	seven	times	as	big	as
others.

In	general,	the	only	types	for	which	you	can	reasonably	assume	that	pass-by-
value	is	inexpensive	are	built-in	types	and	STL	iterator	and	function	object
types.	For	everything	else,	follow	the	advice	of	this	Item	and	prefer	pass-by-
reference-to-const	over	pass-by-value.

Things	to	Remember

Prefer	pass-by-reference-to-const	over	pass-by-value.	It's
typically	more	efficient	and	it	avoids	the	slicing	problem.

The	rule	doesn't	apply	to	built-in	types	and	STL	iterator	and
function	object	types.	For	them,	pass-by-value	is	usually



appropriate.



Item	21:	Don't	try	to	return	a	reference	when	you
must	return	an	object

Once	programmers	grasp	the	efficiency	implications	of	pass-by-value	for	objects
(see	Item	20),	many	become	crusaders,	determined	to	root	out	the	evil	of	pass-
by-value	wherever	it	may	hide.	Unrelenting	in	their	pursuit	of	pass-by-reference
purity,	they	invariably	make	a	fatal	mistake:	they	start	to	pass	references	to
objects	that	don't	exist.	This	is	not	a	good	thing.

Consider	a	class	for	representing	rational	numbers,	including	a	function	for
multiplying	two	rationals	together:

class	Rational	{

public:

		Rational(int	numerator	=	0,															//	see	Item	24	for	why	this

											int	denominator	=	1);												//	ctor	isn't	declared	explicit

		...

private:

		int	n,	d;																																	//	numerator	and	denominator

friend



			const	Rational																											//	see	Item	3	for	why	the

					operator*(const	Rational&	lhs,									//	return	type	is	const

															const	Rational&	rhs);

};

This	version	of	operator*	is	returning	its	result	object	by	value,	and	you'd	be
shirking	your	professional	duties	if	you	failed	to	worry	about	the	cost	of	that
object's	construction	and	destruction.	You	don't	want	to	pay	for	such	an	object	if
you	don't	have	to.	So	the	question	is	this:	do	you	have	to	pay?

Well,	you	don't	have	to	if	you	can	return	a	reference	instead.	But	remember	that
a	reference	is	just	a	name,	a	name	for	some	existing	object.	Whenever	you	see
the	declaration	for	a	reference,	you	should	immediately	ask	yourself	what	it	is
another	name	for,	because	it	must	be	another	name	for	something.	In	the	case	of
operator*,	if	the	function	is	to	return	a	reference,	it	must	return	a	reference	to
some	Rational	object	that	already	exists	and	that	contains	the	product	of	the
two	objects	that	are	to	be	multiplied	together.

There	is	certainly	no	reason	to	expect	that	such	an	object	exists	prior	to	the	call
to	operator*.	That	is,	if	you	have

	

Rational	a(1,	2);																								//	a	=	1/2

	

Rational	b(3,	5);																								//	b	=	3/5

	

	

	

Rational	c	=	a	*	b;																						//	c	should	be	3/10

	



it	seems	unreasonable	to	expect	that	there	already	happens	to	exist	a	rational
number	with	the	value	three-tenths.	No,	if	operator*	is	to	return	a	reference
to	such	a	number,	it	must	create	that	number	object	itself.

A	function	can	create	a	new	object	in	only	two	ways:	on	the	stack	or	on	the	heap.
Creation	on	the	stack	is	accomplished	by	defining	a	local	variable.	Using	that
strategy,	you	might	try	to	write	operator*	this	way:

const	Rational&	operator*(const	Rational&	lhs,			//	warning!	bad	code!

																										const	Rational&	rhs)

{

		Rational	result(lhs.n	*	rhs.n,	lhs.d	*	rhs.d);

		return	result;

}

You	can	reject	this	approach	out	of	hand,	because	your	goal	was	to	avoid	a
constructor	call,	and	result	will	have	to	be	constructed	just	like	any	other
object.	A	more	serious	problem	is	that	this	function	returns	a	reference	to
result,	but	result	is	a	local	object,	and	local	objects	are	destroyed	when	the
function	exits.	This	version	of	operator*,	then,	doesn't	return	a	reference	to	a
Rational		it	returns	a	reference	to	an	ex-Rational;	a	former	Rational;
the	empty,	stinking,	rotting	carcass	of	what	used	to	be	a	Rational	but	is	no
longer,	because	it	has	been	destroyed.	Any	caller	so	much	as	glancing	at	this
function's	return	value	would	instantly	enter	the	realm	of	undefined	behavior.
The	fact	is,	any	function	returning	a	reference	to	a	local	object	is	broken.	(The
same	is	true	for	any	function	returning	a	pointer	to	a	local	object.)

Let	us	consider,	then,	the	possibility	of	constructing	an	object	on	the	heap	and



returning	a	reference	to	it.	Heap-based	objects	come	into	being	through	the	use
of	new,	so	you	might	write	a	heap-based	operator*	like	this:

const	Rational&	operator*(const	Rational&	lhs,			//	warning!	more	bad

																										const	Rational&	rhs)			//	code!

{

		Rational	*result	=	new	Rational(lhs.n	*	rhs.n,	lhs.d	*	rhs.d);

		return	*result;

}

Well,	you	still	have	to	pay	for	a	constructor	call,	because	the	memory	allocated
by	new	is	initialized	by	calling	an	appropriate	constructor,	but	now	you	have	a
different	problem:	who	will	apply	delete	to	the	object	conjured	up	by	your	use
of	new?

Even	if	callers	are	conscientious	and	well	intentioned,	there's	not	much	they	can
do	to	prevent	leaks	in	reasonable	usage	scenarios	like	this:

	

Rational	w,	x,	y,	z;

	

	

	

w	=	x	*	y	*	z;																					//	same	as	operator*(operator*(x,	y),	z)

	

Here,	there	are	two	calls	to	operator*	in	the	same	statement,	hence	two	uses



of	new	that	need	to	be	undone	with	uses	of	delete.	Yet	there	is	no	reasonable
way	for	clients	of	operator*	to	make	those	calls,	because	there's	no
reasonable	way	for	them	to	get	at	the	pointers	hidden	behind	the	references
being	returned	from	the	calls	to	operator*.	This	is	a	guaranteed	resource
leak.

But	perhaps	you	notice	that	both	the	on-the-stack	and	on-the-heap	approaches
suffer	from	having	to	call	a	constructor	for	each	result	returned	from
operator*.	Perhaps	you	recall	that	our	initial	goal	was	to	avoid	such
constructor	invocations.	Perhaps	you	think	you	know	a	way	to	avoid	all	but	one
constructor	call.	Perhaps	the	following	implementation	occurs	to	you,	an
implementation	based	on	operator*	returning	a	reference	to	a	static
Rational	object,	one	defined	inside	the	function:

const	Rational&	operator*(const	Rational&	lhs,				//	warning!	yet	more

																										const	Rational&	rhs)				//	bad	code!

{

		static	Rational	result;													//	static	object	to	which	a

																																						//	reference	will	be	returned

		result	=	...	;																						//	multiply	lhs	by	rhs	and	put	the

																																						//	product	inside	result

		return	result;

}



Like	all	designs	employing	the	use	of	static	objects,	this	one	immediately	raises
our	thread-safety	hackles,	but	that's	its	more	obvious	weakness.	To	see	its	deeper
flaw,	consider	this	perfectly	reasonable	client	code:

bool	operator==(const	Rational&	lhs,												//	an	operator==

																const	Rational&	rhs);											//	for	Rationals

Rational	a,	b,	c,	d;

...

if	((a	*	b)	==	(c	*	d))		{

				do	whatever's	appropriate	when	the	products	are	equal;

}	else				{

			do	whatever's	appropriate	when	they're	not;

}

Guess	what?	The	expression	((a*b)	==	(c*d))	will	always	evaluate	to
true,	regardless	of	the	values	of	a,	b,	c,	and	d!

This	revelation	is	easiest	to	understand	when	the	code	is	rewritten	in	its
equivalent	functional	form:

if	(operator==(operator*(a,	b),	operator*(c,	d)))



Notice	that	when	operator==	is	called,	there	will	already	be	two	active	calls
to	operator*,	each	of	which	will	return	a	reference	to	the	static	Rational
object	inside	operator*.	Thus,	operator==	will	be	asked	to	compare	the
value	of	the	static	Rational	object	inside	operator*	with	the	value	of	the
static	Rational	object	inside	operator*.	It	would	be	surprising	indeed	if
they	did	not	compare	equal.	Always.

This	should	be	enough	to	convince	you	that	returning	a	reference	from	a
function	like	operator*	is	a	waste	of	time,	but	some	of	you	are	now	thinking,
"Well,	if	one	static	isn't	enough,	maybe	a	static	array	will	do	the	trick...."

I	can't	bring	myself	to	dignify	this	design	with	example	code,	but	I	can	sketch
why	the	notion	should	cause	you	to	blush	in	shame.	First,	you	must	choose	n,	the
size	of	the	array.	If	n	is	too	small,	you	may	run	out	of	places	to	store	function
return	values,	in	which	case	you'll	have	gained	nothing	over	the	single-static
design	we	just	discredited.	But	if	n	is	too	big,	you'll	decrease	the	performance	of
your	program,	because	every	object	in	the	array	will	be	constructed	the	first	time
the	function	is	called.	That	will	cost	you	n	constructors	and	n	destructors,	even	if
the	function	in	question	is	called	only	once.	If	"optimization"	is	the	process	of
improving	software	performance,	this	kind	of	thing	should	be	called
"pessimization."	Finally,	think	about	how	you'd	put	the	values	you	need	into	the
array's	objects	and	what	it	would	cost	you	to	do	it.	The	most	direct	way	to	move
a	value	between	objects	is	via	assignment,	but	what	is	the	cost	of	an	assignment?
For	many	types,	it's	about	the	same	as	a	call	to	a	destructor	(to	destroy	the	old
value)	plus	a	call	to	a	constructor	(to	copy	over	the	new	value).	But	your	goal	is
to	avoid	the	costs	of	construction	and	destruction!	Face	it:	this	approach	just	isn't
going	to	pan	out.	(No,	using	a	vector	instead	of	an	array	won't	improve
matters	much.)

The	right	way	to	write	a	function	that	must	return	a	new	object	is	to	have	that
function	return	a	new	object.	For	Rational's	operator*,	that	means	either
the	following	code	or	something	essentially	equivalent:



inline	const	Rational	operator*(const	Rational&	lhs,	const	Rational&	rhs)

{

		return	Rational(lhs.n	*	rhs.n,	lhs.d	*	rhs.d);

}

Sure,	you	may	incur	the	cost	of	constructing	and	destructing	operator*'s
return	value,	but	in	the	long	run,	that's	a	small	price	to	pay	for	correct	behavior.
Besides,	the	bill	that	so	terrifies	you	may	never	arrive.	Like	all	programming
languages,	C++	allows	compiler	implementers	to	apply	optimizations	to	improve
the	performance	of	the	generated	code	without	changing	its	observable	behavior,
and	it	turns	out	that	in	some	cases,	construction	and	destruction	of
operator*'s	return	value	can	be	safely	eliminated.	When	compilers	take
advantage	of	that	fact	(and	compilers	often	do),	your	program	continues	to
behave	the	way	it's	supposed	to,	just	faster	than	you	expected.

It	all	boils	down	to	this:	when	deciding	between	returning	a	reference	and
returning	an	object,	your	job	is	to	make	the	choice	that	offers	correct	behavior.
Let	your	compiler	vendors	wrestle	with	figuring	out	how	to	make	that	choice	as
inexpensive	as	possible.

Things	to	Remember

Never	return	a	pointer	or	reference	to	a	local	stack	object,	a
reference	to	a	heap-allocated	object,	or	a	pointer	or	reference	to
a	local	static	object	if	there	is	a	chance	that	more	than	one	such
object	will	be	needed.	(Item	4	provides	an	example	of	a	design
where	returning	a	reference	to	a	local	static	is	reasonable,	at
least	in	single-threaded	environments.)



Item	22:	Declare	data	members	private

Okay,	here's	the	plan.	First,	we're	going	to	see	why	data	members	shouldn't	be
public.	Then	we'll	see	that	all	the	arguments	against	public	data	members	apply
equally	to	protected	ones.	That	will	lead	to	the	conclusion	that	data	members
should	be	private,	and	at	that	point,	we'll	be	done.

So,	public	data	members.	Why	not?

Let's	begin	with	syntactic	consistency	(see	also	Item	18).	If	data	members	aren't
public,	the	only	way	for	clients	to	access	an	object	is	via	member	functions.	If
everything	in	the	public	interface	is	a	function,	clients	won't	have	to	scratch	their
heads	trying	to	remember	whether	to	use	parentheses	when	they	want	to	access	a
member	of	the	class.	They'll	just	do	it,	because	everything	is	a	function.	Over	the
course	of	a	lifetime,	that	can	save	a	lot	of	head	scratching.

But	maybe	you	don't	find	the	consistency	argument	compelling.	How	about	the
fact	that	using	functions	gives	you	much	more	precise	control	over	the
accessibility	of	data	members?	If	you	make	a	data	member	public,	everybody
has	read-write	access	to	it,	but	if	you	use	functions	to	get	or	set	its	value,	you	can
implement	no	access,	read-only	access,	and	read-write	access.	Heck,	you	can
even	implement	write-only	access	if	you	want	to:

class	AccessLevels	{

public:

		...

		int	getReadOnly()	const								{	return	readOnly;	}

		void	setReadWrite(int	value)			{	readWrite	=	value;	}



		int	getReadWrite()	const							{	return	readWrite;	}

		void	setWriteOnly(int	value)			{	writeOnly	=	value;	}

private:

		int	noAccess;																									//	no	access	to	this	int

		int	readOnly;																									//	read-only	access	to	this	int

		int	readWrite;																								//	read-write	access	to	this	int

		int	writeOnly;																								//	write-only	access	to	this	int

};

Such	fine-grained	access	control	is	important,	because	many	data	members
should	be	hidden.	Rarely	does	every	data	member	need	a	getter	and	setter.

Still	not	convinced?	Then	it's	time	to	bring	out	the	big	gun:	encapsulation.	If	you
implement	access	to	a	data	member	through	a	function,	you	can	later	replace	the
data	member	with	a	computation,	and	nobody	using	your	class	will	be	any	the
wiser.

For	example,	suppose	you	are	writing	an	application	in	which	automated
equipment	is	monitoring	the	speed	of	passing	cars.	As	each	car	passes,	its	speed



equipment	is	monitoring	the	speed	of	passing	cars.	As	each	car	passes,	its	speed
is	computed	and	the	value	added	to	a	collection	of	all	the	speed	data	collected	so
far:

class	SpeedDataCollection	{

		...

public:

		void	addValue(int	speed);										//	add	a	new	data	value

		double	averageSoFar()	const;							//	return	average	speed

		...

};

Now	consider	the	implementation	of	the	member	function	averageSoFar.
One	way	to	implement	it	is	to	have	a	data	member	in	the	class	that	is	a	running
average	of	all	the	speed	data	so	far	collected.	Whenever	averageSoFar	is
called,	it	just	returns	the	value	of	that	data	member.	A	different	approach	is	to
have	averageSoFar	compute	its	value	anew	each	time	it's	called,	something
it	could	do	by	examining	each	data	value	in	the	collection.

The	first	approach	(keeping	a	running	average)	makes	each
SpeedDataCollection	object	bigger,	because	you	have	to	allocate	space
for	the	data	members	holding	the	running	average,	the	accumulated	total,	and	the
number	of	data	points.	However,	averageSoFar	can	be	implemented	very



efficiently;	it's	just	an	inline	function	(see	Item	30)	that	returns	the	value	of	the
running	average.	Conversely,	computing	the	average	whenever	it's	requested
will	make	averageSoFar	run	slower,	but	each	SpeedDataCollection
object	will	be	smaller.

Who's	to	say	which	is	best?	On	a	machine	where	memory	is	tight	(e.g.,	an
embedded	roadside	device),	and	in	an	application	where	averages	are	needed
only	infrequently,	computing	the	average	each	time	is	probably	a	better	solution.
In	an	application	where	averages	are	needed	frequently,	speed	is	of	the	essence,
and	memory	is	not	an	issue,	keeping	a	running	average	will	typically	be
preferable.	The	important	point	is	that	by	accessing	the	average	through	a
member	function	(i.e.,	by	encapsulating	it),	you	can	interchange	these	different
implementations	(as	well	as	any	others	you	might	think	of),	and	clients	will,	at
most,	only	have	to	recompile.	(You	can	eliminate	even	that	inconvenience	by
following	the	techniques	described	in	Item	31.)

Hiding	data	members	behind	functional	interfaces	can	offer	all	kinds	of
implementation	flexibility.	For	example,	it	makes	it	easy	to	notify	other	objects
when	data	members	are	read	or	written,	to	verify	class	invariants	and	function
pre-and	postconditions,	to	perform	synchronization	in	threaded	environments,
etc.	Programmers	coming	to	C++	from	languages	like	Delphi	and	C#	will
recognize	such	capabilities	as	the	equivalent	of	"properties"	in	these	other
languages,	albeit	with	the	need	to	type	an	extra	set	of	parentheses.

The	point	about	encapsulation	is	more	important	than	it	might	initially	appear.	If
you	hide	your	data	members	from	your	clients	(i.e.,	encapsulate	them),	you	can
ensure	that	class	invariants	are	always	maintained,	because	only	member
functions	can	affect	them.	Furthermore,	you	reserve	the	right	to	change	your
implementation	decisions	later.	If	you	don't	hide	such	decisions,	you'll	soon	find
that	even	if	you	own	the	source	code	to	a	class,	your	ability	to	change	anything
public	is	extremely	restricted,	because	too	much	client	code	will	be	broken.
Public	means	unencapsulated,	and	practically	speaking,	unencapsulated	means
unchangeable,	especially	for	classes	that	are	widely	used.	Yet	widely	used
classes	are	most	in	need	of	encapsulation,	because	they	are	the	ones	that	can
most	benefit	from	the	ability	to	replace	one	implementation	with	a	better	one.

The	argument	against	protected	data	members	is	similar.	In	fact,	it's	identical,
though	it	may	not	seem	that	way	at	first.	The	reasoning	about	syntactic



consistency	and	fine-grained	access	control	is	clearly	as	applicable	to	protected
data	as	to	public,	but	what	about	encapsulation?	Aren't	protected	data	members
more	encapsulated	than	public	ones?	Practically	speaking,	the	surprising	answer
is	that	they	are	not.

Item	23	explains	that	something's	encapsulation	is	inversely	proportional	to	the
amount	of	code	that	might	be	broken	if	that	something	changes.	The
encapsulatedness	of	a	data	member,	then,	is	inversely	proportional	to	the	amount
of	code	that	might	be	broken	if	that	data	member	changes,	e.g.,	if	it's	removed
from	the	class	(possibly	in	favor	of	a	computation,	as	in	averageSoFar,
above).

Suppose	we	have	a	public	data	member,	and	we	eliminate	it.	How	much	code
might	be	broken?	All	the	client	code	that	uses	it,	which	is	generally	an
unknowably	large	amount.	Public	data	members	are	thus	completely
unencapsulated.	But	suppose	we	have	a	protected	data	member,	and	we
eliminate	it.	How	much	code	might	be	broken	now?	All	the	derived	classes	that
use	it,	which	is,	again,	typically	an	unknowably	large	amount	of	code.	Protected
data	members	are	thus	as	unencapsulated	as	public	ones,	because	in	both	cases,
if	the	data	members	are	changed,	an	unknowably	large	amount	of	client	code	is
broken.	This	is	unintuitive,	but	as	experienced	library	implementers	will	tell	you,
it's	still	true.	Once	you've	declared	a	data	member	public	or	protected	and	clients
have	started	using	it,	it's	very	hard	to	change	anything	about	that	data	member.
Too	much	code	has	to	be	rewritten,	retested,	redocumented,	or	recompiled.	From
an	encapsulation	point	of	view,	there	are	really	only	two	access	levels:
private	(which	offers	encapsulation)	and	everything	else	(which	doesn't).

Things	to	Remember

Declare	data	members	private.	It	gives	clients	syntactically
uniform	access	to	data,	affords	fine-grained	access	control,
allows	invariants	to	be	enforced,	and	offers	class	authors
implementation	flexibility.

protected	is	no	more	encapsulated	than	public.



Item	23:	Prefer	non-member	non-friend
functions	to	member	functions

Imagine	a	class	for	representing	web	browsers.	Among	the	many	functions	such
a	class	might	offer	are	those	to	clear	the	cache	of	downloaded	elements,	clear	the
history	of	visited	URLs,	and	remove	all	cookies	from	the	system:

class	WebBrowser	{

public:

		...

		void	clearCache();

		void	clearHistory();

		void	removeCookies();

		...

};

Many	users	will	want	to	perform	all	these	actions	together,	so	WebBrowser
might	also	offer	a	function	to	do	just	that:

class	WebBrowser	{

public:



		...

		void	clearEverything();															//	calls	clearCache,	clearHistory,

																																								//	and	removeCookies

		...

};

Of	course,	this	functionality	could	also	be	provided	by	a	non-member	function
that	calls	the	appropriate	member	functions:

void	clearBrowser(WebBrowser&	wb)

{

		wb.clearCache();

		wb.clearHistory();

		wb.removeCookies();

}

So	which	is	better,	the	member	function	clearEverything	or	the	non-
member	function	clearBrowser?

Object-oriented	principles	dictate	that	data	and	the	functions	that	operate	on
them	should	be	bundled	together,	and	that	suggests	that	the	member	function	is
the	better	choice.	Unfortunately,	this	suggestion	is	incorrect.	It's	based	on	a



misunderstanding	of	what	being	object-oriented	means.	Object-oriented
principles	dictate	that	data	should	be	as	encapsulated	as	possible.
Counterintuitively,	the	member	function	clearEverything	actually	yields
less	encapsulation	than	the	non-member	clearBrowser.	Furthermore,
offering	the	non-member	function	allows	for	greater	packaging	flexibility	for
WebBrowser-related	functionality,	and	that,	in	turn,	yields	fewer	compilation
dependencies	and	an	increase	in	WebBrowser	extensibility.	The	non-member
approach	is	thus	better	than	a	member	function	in	many	ways.	It's	important	to
understand	why.

We'll	begin	with	encapsulation.	If	something	is	encapsulated,	it's	hidden	from
view.	The	more	something	is	encapsulated,	the	fewer	things	can	see	it.	The
fewer	things	can	see	it,	the	greater	flexibility	we	have	to	change	it,	because	our
changes	directly	affect	only	those	things	that	can	see	what	we	change.	The
greater	something	is	encapsulated,	then,	the	greater	our	ability	to	change	it.
That's	the	reason	we	value	encapsulation	in	the	first	place:	it	affords	us	the
flexibility	to	change	things	in	a	way	that	affects	only	a	limited	number	of	clients.

Consider	the	data	associated	with	an	object.	The	less	code	that	can	see	the	data
(i.e.,	access	it),	the	more	the	data	is	encapsulated,	and	the	more	freely	we	can
change	characteristics	of	an	object's	data,	such	as	the	number	of	data	members,
their	types,	etc.	As	a	coarse-grained	measure	of	how	much	code	can	see	a	piece
of	data,	we	can	count	the	number	of	functions	that	can	access	that	data:	the	more
functions	that	can	access	it,	the	less	encapsulated	the	data.

Item	22	explains	that	data	members	should	be	private,	because	if	they're	not,	an
unlimited	number	of	functions	can	access	them.	They	have	no	encapsulation	at
all.	For	data	members	that	are	private,	the	number	of	functions	that	can	access
them	is	the	number	of	member	functions	of	the	class	plus	the	number	of	friend
functions,	because	only	members	and	friends	have	access	to	private	members.
Given	a	choice	between	a	member	function	(which	can	access	not	only	the
private	data	of	a	class,	but	also	private	functions,	enums,	typedefs,	etc.)	and	a
non-member	non-friend	function	(which	can	access	none	of	these	things)
providing	the	same	functionality,	the	choice	yielding	greater	encapsulation	is	the
non-member	non-friend	function,	because	it	doesn't	increase	the	number	of
functions	that	can	access	the	private	parts	of	the	class.	This	explains	why
clearBrowser	(the	non-member	non-friend	function)	is	preferable	to



clearEverything	(the	member	function):	it	yields	greater	encapsulation	in
the	WebBrowser	class.

At	this	point,	two	things	are	worth	noting.	First,	this	reasoning	applies	only	to
non-member	non-friend	functions.	Friends	have	the	same	access	to	a	class's
private	members	that	member	functions	have,	hence	the	same	impact	on
encapsulation.	From	an	encapsulation	point	of	view,	the	choice	isn't	between
member	and	non-member	functions,	it's	between	member	functions	and	non-
member	non-friend	functions.	(Encapsulation	isn't	the	only	point	of	view,	of
course.	Item	24	explains	that	when	it	comes	to	implicit	type	conversions,	the
choice	is	between	member	and	non-member	functions.)

The	second	thing	to	note	is	that	just	because	concerns	about	encapsulation
dictate	that	a	function	be	a	non-member	of	one	class	doesn't	mean	it	can't	be	a
member	of	another	class.	This	may	prove	a	mild	salve	to	programmers
accustomed	to	languages	where	all	functions	must	be	in	classes	(e.g.,	Eiffel,
Java,	C#,	etc.).	For	example,	we	could	make	clearBrowser	a	static	member
function	of	some	utility	class.	As	long	as	it's	not	part	of	(or	a	friend	of)
WebBrowser,	it	doesn't	affect	the	encapsulation	of	WebBrowser's	private
members.

In	C++,	a	more	natural	approach	would	be	to	make	clearBrowser	a	non-
member	function	in	the	same	namespace	as	WebBrowser:

namespace	WebBrowserStuff	{

	class	WebBrowser	{	...	};

	void	clearBrowser(WebBrowser&	wb);



		...

}

This	has	more	going	for	it	than	naturalness,	however,	because	namespaces,
unlike	classes,	can	be	spread	across	multiple	source	files.	That's	important,
because	functions	like	clearBrowser	are	convenience	functions.	Being
neither	members	nor	friends,	they	have	no	special	access	to	WebBrowser,	so
they	can't	offer	any	functionality	a	WebBrowser	client	couldn't	already	get	in
some	other	way.	For	example,	if	clearBrowser	didn't	exist,	clients	could	just
call	clearCache,	clearHistory,	and	removeCookies	themselves.

A	class	like	WebBrowser	might	have	a	large	number	of	convenience	functions,
some	related	to	bookmarks,	others	related	to	printing,	still	others	related	to
cookie	management,	etc.	As	a	general	rule,	most	clients	will	be	interested	in	only
some	of	these	sets	of	convenience	functions.	There's	no	reason	for	a	client
interested	only	in	bookmark-related	convenience	functions	to	be	compilation
dependent	on,	e.g.,	cookie-related	convenience	functions.	The	straightforward
way	to	separate	them	is	to	declare	bookmark-related	convenience	functions	in
one	header	file,	cookie-related	convenience	functions	in	a	different	header	file,
printing-related	convenience	functions	in	a	third,	etc.:

//	header	"webbrowser.h"		header	for	class	WebBrowser	itself

//	as	well	as	"core"	WebBrowser-related	functionality

namespace	WebBrowserStuff	{

			class	WebBrowser	{	...	};



					...																																//	"core"	related	functionality,	e.g.

																																								//	non-member	functions	almost

																																								//	all	clients	need

}

//	header	"webbrowserbookmarks.h"

namespace	WebBrowserStuff	{

		...																																			//	bookmark-related	convenience

}																																							//	functions

//	header	"webbrowsercookies.h"

namespace	WebBrowserStuff	{

		...																																			//	cookie-related	convenience

}																																							//	functions

...

Note	that	this	is	exactly	how	the	standard	C++	library	is	organized.	Rather	than
having	a	single	monolithic	<C++StandardLibrary>	header	containing
everything	in	the	std	namespace,	there	are	dozens	of	headers	(e.g.,	<vector>,
<algorithm>,	<memory>,	etc.),	each	declaring	some	of	the	functionality	in
std.	Clients	who	use	only	vector-related	functionality	aren't	required	to



#include	<memory>;	clients	who	don't	use	list	don't	have	to	#include
<list>.	This	allows	clients	to	be	compilation	dependent	only	on	the	parts	of
the	system	they	actually	use.	(See	Item	31	for	a	discussion	of	other	ways	to
reduce	compilation	dependencies.)	Partitioning	functionality	in	this	way	is	not
possible	when	it	comes	from	a	class's	member	functions,	because	a	class	must	be
defined	in	its	entirety;	it	can't	be	split	into	pieces.

Putting	all	convenience	functions	in	multiple	header	files		but	one	namespace	
also	means	that	clients	can	easily	extend	the	set	of	convenience	functions.	All
they	have	to	do	is	add	more	non-member	non-friend	functions	to	the	namespace.
For	example,	if	a	WebBrowser	client	decides	to	write	convenience	functions
related	to	downloading	images,	he	or	she	just	needs	to	create	a	new	header	file
containing	the	declarations	of	those	functions	in	the	WebBrowserStuff
namespace.	The	new	functions	are	now	as	available	and	as	integrated	as	all	other
convenience	functions.	This	is	another	feature	classes	can't	offer,	because	class
definitions	are	closed	to	extension	by	clients.	Sure,	clients	can	derive	new
classes,	but	derived	classes	have	no	access	to	encapsulated	(i.e.,	private)
members	in	the	base	class,	so	such	"extended	functionality"	has	second-class
status.	Besides,	as	Item	7	explains,	not	all	classes	are	designed	to	be	base	classes.

Things	to	Remember

Prefer	non-member	non-friend	functions	to	member	functions.
Doing	so	increases	encapsulation,	packaging	flexibility,	and
functional	extensibility.



Item	24:	Declare	non-member	functions	when
type	conversions	should	apply	to	all	parameters

I	noted	in	the	Introduction	to	this	book	that	having	classes	support	implicit	type
conversions	is	generally	a	bad	idea.	Of	course,	there	are	exceptions	to	this	rule,
and	one	of	the	most	common	is	when	creating	numerical	types.	For	example,	if
you're	designing	a	class	to	represent	rational	numbers,	allowing	implicit
conversions	from	integers	to	rationals	doesn't	seem	unreasonable.	It's	certainly
no	less	reasonable	than	C++'s	built-in	conversion	from	int	to	double	(and	it's
a	lot	more	reasonable	than	C++'s	built-in	conversion	from	double	to	int).
That	being	the	case,	you	might	start	your	Rational	class	this	way:

class	Rational	{

public:

		Rational(int	numerator	=	0,								//	ctor	is	deliberately	not	explicit;

											int	denominator	=	1);					//	allows	implicit	int-to-Rational

																																					//	conversions

		int	numerator()	const;													//	accessors	for	numerator	and

		int	denominator()	const;											//	denominator		see	Item	22

private:

		...



};

You	know	you'd	like	to	support	arithmetic	operations	like	addition,
multiplication,	etc.,	but	you're	unsure	whether	you	should	implement	them	via
member	functions,	non-member	functions,	or,	possibly,	non-member	functions
that	are	friends.	Your	instincts	tell	you	that	when	you're	in	doubt,	you	should	be
object-oriented.	You	know	that,	say,	multiplication	of	rational	numbers	is	related
to	the	Rational	class,	so	it	seems	natural	to	implement	operator*	for
rational	numbers	inside	the	Rational	class.	Counterintuitively,	Item	23	argues
that	the	idea	of	putting	functions	inside	the	class	they	are	associated	with	is
sometimes	contrary	to	object-oriented	principles,	but	let's	set	that	aside	and
investigate	the	idea	of	making	operator*	a	member	function	of	Rational:

class	Rational	{

public:

	...

	const	Rational	operator*(const	Rational&	rhs)	const;

};

(If	you're	unsure	why	this	function	is	declared	the	way	it	is		returning	a	const
by-value	result,	but	taking	a	reference-to-const	as	its	argument		consult	Items
3,	20,	and	21.)

This	design	lets	you	multiply	rationals	with	the	greatest	of	ease:

	



	

Rational	oneEighth(1,	8);

	

Rational	oneHalf(1,	2);

	

	

	

Rational	result	=	oneHalf	*	oneEighth;												//	fine

	

	

	

result	=	result	*	oneEighth;																						//	fine

	

But	you're	not	satisfied.	You'd	also	like	to	support	mixed-mode	operations,
where	Rationals	can	be	multiplied	with,	for	example,	ints.	After	all,	few
things	are	as	natural	as	multiplying	two	numbers	together,	even	if	they	happen	to
be	different	types	of	numbers.

When	you	try	to	do	mixed-mode	arithmetic,	however,	you	find	that	it	works	only
half	the	time:

	

result	=	oneHalf	*	2;																													//	fine

	

	

	

result	=	2	*	oneHalf;																													//	error!

	

This	is	a	bad	omen.	Multiplication	is	supposed	to	be	commutative,	remember?

The	source	of	the	problem	becomes	apparent	when	you	rewrite	the	last	two
examples	in	their	equivalent	functional	form:



	

result	=	oneHalf.operator*(2);																				//	fine

	

	

	

result	=	2.operator*(oneHalf);																				//	error!

	

The	object	oneHalf	is	an	instance	of	a	class	that	contains	an	operator*,	so
compilers	call	that	function.	However,	the	integer	2	has	no	associated	class,
hence	no	operator*	member	function.	Compilers	will	also	look	for	non-
member	operator*s	(i.e.,	ones	at	namespace	or	global	scope)	that	can	be
called	like	this:

	

result	=	operator*(2,	oneHalf);																			//	error!

	

But	in	this	example,	there	is	no	non-member	operator*	taking	an	int	and	a
Rational,	so	the	search	fails.

Look	again	at	the	call	that	succeeds.	You'll	see	that	its	second	parameter	is	the
integer	2,	yet	Rational::operator*	takes	a	Rational	object	as	its
argument.	What's	going	on	here?	Why	does	2	work	in	one	position	and	not	in	the
other?

What's	going	on	is	implicit	type	conversion.	Compilers	know	you're	passing	an
int	and	that	the	function	requires	a	Rational,	but	they	also	know	they	can
conjure	up	a	suitable	Rational	by	calling	the	Rational	constructor	with	the
int	you	provided,	so	that's	what	they	do.	That	is,	they	treat	the	call	as	if	it	had
been	written	more	or	less	like	this:

	

const	Rational	temp(2);														//	create	a	temporary

	



	

																																					//	Rational	object	from	2

	

	

	

result	=	oneHalf	*	temp;													//	same	as	oneHalf.operator*(temp);

	

Of	course,	compilers	do	this	only	because	a	non-explicit	constructor	is
involved.	If	Rational's	constructor	were	explicit,	neither	of	these
statements	would	compile:

	

result	=	oneHalf	*	2;																//	error!	(with	explicit	ctor);

	

																																					//	can't	convert	2	to	Rational

	

	

	

result	=	2	*	oneHalf;																//	same	error,	same	problem

	

That	would	fail	to	support	mixed-mode	arithmetic,	but	at	least	the	behavior	of
the	two	statements	would	be	consistent.

Your	goal,	however,	is	both	consistency	and	support	for	mixed-mode	arithmetic,
i.e.,	a	design	where	both	of	the	above	statements	will	compile.	That	brings	us
back	to	these	two	statements	and	why,	even	when	Rational's	constructor	is
not	explicit,	one	compiles	and	one	does	not:

	

result	=	oneHalf	*	2;																//	fine	(with	non-explicit	ctor)

	

	

	



	

result	=	2	*	oneHalf;																//	error!	(even	with	non-explicit	ctor)

	

It	turns	out	that	parameters	are	eligible	for	implicit	type	conversion	only	if	they
are	listed	in	the	parameter	list.	The	implicit	parameter	corresponding	to	the
object	on	which	the	member	function	is	invoked		the	one	this	points	to		is
never	eligible	for	implicit	conversions.	That's	why	the	first	call	compiles	and	the
second	one	does	not.	The	first	case	involves	a	parameter	listed	in	the	parameter
list,	but	the	second	one	doesn't.

You'd	still	like	to	support	mixed-mode	arithmetic,	however,	and	the	way	to	do	it
is	by	now	perhaps	clear:	make	operator*	a	non-member	function,	thus
allowing	compilers	to	perform	implicit	type	conversions	on	all	arguments:

class	Rational	{

		...																																													//	contains	no	operator*

};

const	Rational	operator*(const	Rational&	lhs,					//	now	a	non-member

																									const	Rational&	rhs)					//	function

{

		return	Rational(lhs.numerator()	*	rhs.numerator(),

																		lhs.denominator()	*	rhs.denominator());

}



Rational	oneFourth(1,	4);

Rational	result;

result	=	oneFourth	*	2;																											//	fine

result	=	2	*	oneFourth;																											//	hooray,	it	works!

This	is	certainly	a	happy	ending	to	the	tale,	but	there	is	a	nagging	worry.	Should
operator*	be	made	a	friend	of	the	Rational	class?

In	this	case,	the	answer	is	no,	because	operator*	can	be	implemented	entirely
in	terms	of	Rational's	public	interface.	The	code	above	shows	one	way	to	do
it.	That	leads	to	an	important	observation:	the	opposite	of	a	member	function	is	a
non-member	function,	not	a	friend	function.	Too	many	C++	programmers
assume	that	if	a	function	is	related	to	a	class	and	should	not	be	a	member	(due,
for	example,	to	a	need	for	type	conversions	on	all	arguments),	it	should	be	a
friend.	This	example	demonstrates	that	such	reasoning	is	flawed.	Whenever	you
can	avoid	friend	functions,	you	should,	because,	much	as	in	real	life,	friends	are
often	more	trouble	than	they're	worth.	Sometimes	friendship	is	warranted,	of
course,	but	the	fact	remains	that	just	because	a	function	shouldn't	be	a	member
doesn't	automatically	mean	it	should	be	a	friend.

This	Item	contains	the	truth	and	nothing	but	the	truth,	but	it's	not	the	whole	truth.
When	you	cross	the	line	from	Object-Oriented	C++	into	Template	C++	(see	Item
1)	and	make	Rational	a	class	template	instead	of	a	class,	there	are	new	issues
to	consider,	new	ways	to	resolve	them,	and	some	surprising	design	implications.
Such	issues,	resolutions,	and	implications	are	the	topic	of	Item	46.

Things	to	Remember

If	you	need	type	conversions	on	all	parameters	to	a	function



(including	the	one	pointed	to	by	the	this	pointer),	the	function
must	be	a	non-member.



Item	25:	Consider	support	for	a	non-throwing
swap

swap	is	an	interesting	function.	Originally	introduced	as	part	of	the	STL,	it's
since	become	a	mainstay	of	exception-safe	programming	(see	Item	29)	and	a
common	mechanism	for	coping	with	the	possibility	of	assignment	to	self	(see
Item	11).	Because	swap	is	so	useful,	it's	important	to	implement	it	properly,	but
along	with	its	singular	importance	comes	a	set	of	singular	complications.	In	this
Item,	we	explore	what	they	are	and	how	to	deal	with	them.

To	swap	the	values	of	two	objects	is	to	give	each	the	other's	value.	By	default,
swapping	is	accomplished	via	the	standard	swap	algorithm.	Its	typical
implementation	is	exactly	what	you'd	expect:

namespace	std	{

		template<typename	T>										//	typical	implementation	of	std::swap;

		void	swap(T&	a,	T&	b)									//	swaps	a's	and	b's	values

		{

				T	temp(a);

				a	=	b;

				b	=	temp;

		}

}



As	long	as	your	types	support	copying	(via	copy	constructor	and	copy
assignment	operator),	the	default	swap	implementation	will	let	objects	of	your
types	be	swapped	without	your	having	to	do	any	special	work	to	support	it.

However,	the	default	swap	implementation	may	not	thrill	you.	It	involves
copying	three	objects:	a	to	temp,	b	to	a,	and	temp	to	b.	For	some	types,	none
of	these	copies	are	really	necessary.	For	such	types,	the	default	swap	puts	you
on	the	fast	track	to	the	slow	lane.

Foremost	among	such	types	are	those	consisting	primarily	of	a	pointer	to	another
type	that	contains	the	real	data.	A	common	manifestation	of	this	design	approach
is	the	"pimpl	idiom"	("pointer	to	implementation"		see	Item	31).	A	Widget
class	employing	such	a	design	might	look	like	this:

class	WidgetImpl	{																										//	class	for	Widget	data;

public:																																					//	details	are	unimportant

		...

private:

		int	a,	b,	c;																														//	possibly	lots	of	data	

		std::vector<double>	v;																				//	expensive	to	copy!

		...

};

class	Widget	{																														//	class	using	the	pimpl	idiom



public:

		Widget(const	Widget&	rhs);

		Widget&	operator=(const	Widget&	rhs)						//	to	copy	a	Widget,	copy	its

		{																																									//	WidgetImpl	object.	For

			...																																						//	details	on	implementing

			*pImpl	=	*(rhs.pImpl);																				//	operator=	in	general,

			...																																							//	see	Items	10,	11,	and	12.

		}

		...

private:

		WidgetImpl	*pImpl;																									//	ptr	to	object	with	this

};																																											//	Widget's	data

To	swap	the	value	of	two	Widget	objects,	all	we	really	need	to	do	is	swap	their
pImpl	pointers,	but	the	default	swap	algorithm	has	no	way	to	know	that.
Instead,	it	would	copy	not	only	three	Widgets,	but	also	three	WidgetImpl
objects.	Very	inefficient.	Not	a	thrill.

What	we'd	like	to	do	is	tell	std::swap	that	when	Widgets	are	being



swapped,	the	way	to	perform	the	swap	is	to	swap	their	internal	pImpl	pointers.
There	is	a	way	to	say	exactly	that:	specialize	std::swap	for	Widget.	Here's
the	basic	idea,	though	it	won't	compile	in	this	form:

namespace	std	{

		template<>																												//	this	is	a	specialized	version

		void	swap<Widget>(Widget&	a,										//	of	std::swap	for	when	T	is

																				Widget&	b)										//	Widget;	this	won't	compile

		{

				swap(a.pImpl,	b.pImpl);													//	to	swap	Widgets,	just	swap

		}																																					//	their	pImpl	pointers

}

The	"template<>"	at	the	beginning	of	this	function	says	that	this	is	a	total
template	specialization	for	std::swap,	and	the	"<Widget>"	after	the	name
of	the	function	says	that	the	specialization	is	for	when	T	is	Widget.	In	other
words,	when	the	general	swap	template	is	applied	to	Widgets,	this	is	the
implementation	that	should	be	used.	In	general,	we're	not	permitted	to	alter	the
contents	of	the	std	namespace,	but	we	are	allowed	to	totally	specialize	standard
templates	(like	swap)	for	types	of	our	own	creation	(such	as	Widget).	That's
what	we're	doing	here.

As	I	said,	though,	this	function	won't	compile.	That's	because	it's	trying	to	access
the	pImpl	pointers	inside	a	and	b,	and	they're	private.	We	could	declare	our



specialization	a	friend,	but	the	convention	is	different:	it's	to	have	Widget
declare	a	public	member	function	called	swap	that	does	the	actual	swapping,
then	specialize	std::swap	to	call	the	member	function:

class	Widget	{																					//	same	as	above,	except	for	the

public:																												//	addition	of	the	swap	mem	func

		...

		void	swap(Widget&	other)

		{

				using	std::swap;															//	the	need	for	this	declaration

																																			//	is	explained	later	in	this	Item

				swap(pImpl,	other.pImpl);						//	to	swap	Widgets,	swap	their

		}																																//	pImpl	pointers

		...

};

namespace	std	{

		template<>																							//	revised	specialization	of



		void	swap<Widget>(Widget&	a,					//	std::swap

																				Widget&	b)

		{

				a.swap(b);																					//	to	swap	Widgets,	call	their

		}																																//	swap	member	function

}

Not	only	does	this	compile,	it's	also	consistent	with	the	STL	containers,	all	of
which	provide	both	public	swap	member	functions	and	specializations	of
std::swap	that	call	these	member	functions.

Suppose,	however,	that	Widget	and	WidgetImpl	were	class	templates
instead	of	classes,	possibly	so	we	could	parameterize	the	type	of	the	data	stored
in	WidgetImpl:

template<typename	T>

class	WidgetImpl	{	...	};

template<typename	T>

class	Widget	{	...	};

Putting	a	swap	member	function	in	Widget	(and,	if	we	need	to,	in



WidgetImpl)	is	as	easy	as	before,	but	we	run	into	trouble	with	the
specialization	for	std::swap.	This	is	what	we	want	to	write:

namespace	std	{

		template<typename	T>

		void	swap<Widget<T>	>(Widget<T>&	a,						//	error!	illegal	code!

																								Widget<T>&	b)

		{	a.swap(b);	}

}

This	looks	perfectly	reasonable,	but	it's	not	legal.	We're	trying	to	partially
specialize	a	function	template	(std::swap),	but	though	C++	allows	partial
specialization	of	class	templates,	it	doesn't	allow	it	for	function	templates.	This
code	should	not	compile	(though	some	compilers	erroneously	accept	it).

When	you	want	to	"partially	specialize"	a	function	template,	the	usual	approach
is	to	simply	add	an	overload.	That	would	look	like	this:

namespace	std	{

		template<typename	T>													//	an	overloading	of	std::swap

		void	swap(Widget<T>&	a,										//	(note	the	lack	of	"<...>"	after

												Widget<T>&	b)										//	"swap"),	but	see	below	for



		{	a.swap(b);	}																			//	why	this	isn't	valid	code

}

In	general,	overloading	function	templates	is	fine,	but	std	is	a	special
namespace,	and	the	rules	governing	it	are	special,	too.	It's	okay	to	totally
specialize	templates	in	std,	but	it's	not	okay	to	add	new	templates	(or	classes	or
functions	or	anything	else)	to	std.	The	contents	of	std	are	determined	solely
by	the	C++	standardization	committee,	and	we're	prohibited	from	augmenting
what	they've	decided	should	go	there.	Alas,	the	form	of	the	prohibition	may
dismay	you.	Programs	that	cross	this	line	will	almost	certainly	compile	and	run,
but	their	behavior	is	undefined.	If	you	want	your	software	to	have	predictable
behavior,	you'll	not	add	new	things	to	std.

So	what	to	do?	We	still	need	a	way	to	let	other	people	call	swap	and	get	our
more	efficient	template-specific	version.	The	answer	is	simple.	We	still	declare	a
non-member	swap	that	calls	the	member	swap,	we	just	don't	declare	the	non-
member	to	be	a	specialization	or	overloading	of	std::swap.	For	example,	if
all	our	Widget-related	functionality	is	in	the	namespace	WidgetStuff,	it
would	look	like	this:

namespace	WidgetStuff	{

		...																																					//	templatized	WidgetImpl,	etc.

		template<typename	T>																				//	as	before,	including	the	swap

		class	Widget	{	...	};																			//	member	function



		...

		template<typename	T>																				//	non-member	swap	function;

		void	swap(Widget<T>&	a,																	//	not	part	of	the	std	namespace

												Widget<T>&	b)																																									

		{

				a.swap(b);

		}

}

Now,	if	any	code	anywhere	calls	swap	on	two	Widget	objects,	the	name
lookup	rules	in	C++	(specifically	the	rules	known	as	argument-dependent	lookup
or	Koenig	lookup)	will	find	the	Widget-specific	version	in	WidgetStuff.
Which	is	exactly	what	we	want.

This	approach	works	as	well	for	classes	as	for	class	templates,	so	it	seems	like
we	should	use	it	all	the	time.	Unfortunately,	there	is	a	reason	for	specializing
std::swap	for	classes	(I'll	describe	it	shortly),	so	if	you	want	to	have	your
class-specific	version	of	swap	called	in	as	many	contexts	as	possible	(and	you
do),	you	need	to	write	both	a	non-member	version	in	the	same	namespace	as
your	class	and	a	specialization	of	std::swap.

By	the	way,	if	you're	not	using	namespaces,	everything	above	continues	to	apply
(i.e.,	you	still	need	a	non-member	swap	that	calls	the	member	swap),	but	why
are	you	clogging	the	global	namespace	with	all	your	class,	template,	function,
enum,	enumerant,	and	typedef	names?	Have	you	no	sense	of	propriety?



Everything	I've	written	so	far	pertains	to	authors	of	swap,	but	it's	worth	looking
at	one	situation	from	a	client's	point	of	view.	Suppose	you're	writing	a	function
template	where	you	need	to	swap	the	values	of	two	objects:

template<typename	T>

void	doSomething(T&	obj1,	T&	obj2)

{

		...

		swap(obj1,	obj2);

		...

}

Which	swap	should	this	call?	The	general	one	in	std,	which	you	know	exists;	a
specialization	of	the	general	one	in	std,	which	may	or	may	not	exist;	or	a	T-
specific	one,	which	may	or	may	not	exist	and	which	may	or	may	not	be	in	a
namespace	(but	should	certainly	not	be	in	std)?	What	you	desire	is	to	call	a	T-
specific	version	if	there	is	one,	but	to	fall	back	on	the	general	version	in	std	if
there's	not.	Here's	how	you	fulfill	your	desire:

template<typename	T>

void	doSomething(T&	obj1,	T&	obj2)

{

		using	std::swap;											//	make	std::swap	available	in	this	function



		...

		swap(obj1,	obj2);										//	call	the	best	swap	for	objects	of	type	T

		...

}

When	compilers	see	the	call	to	swap,	they	search	for	the	right	swap	to	invoke.
C++'s	name	lookup	rules	ensure	that	this	will	find	any	T-specific	swap	at	global
scope	or	in	the	same	namespace	as	the	type	T.	(For	example,	if	T	is	Widget	in
the	namespace	WidgetStuff,	compilers	will	use	argument-dependent	lookup
to	find	swap	in	WidgetStuff.)	If	no	T-specific	swap	exists,	compilers	will
use	swap	in	std,	thanks	to	the	using	declaration	that	makes	std::swap
visible	in	this	function.	Even	then,	however,	compilers	will	prefer	a	T-specific
specialization	of	std::swap	over	the	general	template,	so	if	std::swap	has
been	specialized	for	T,	the	specialized	version	will	be	used.

Getting	the	right	swap	called	is	therefore	easy.	The	one	thing	you	want	to	be
careful	of	is	to	not	qualify	the	call,	because	that	will	affect	how	C++	determines
the	function	to	invoke.	For	example,	if	you	were	to	write	the	call	to	swap	this
way,

std::swap(obj1,	obj2);									//	the	wrong	way	to	call	swap

you'd	force	compilers	to	consider	only	the	swap	in	std	(including	any	template
specializations),	thus	eliminating	the	possibility	of	getting	a	more	appropriate	T-
specific	version	defined	elsewhere.	Alas,	some	misguided	programmers	do
qualify	calls	to	swap	in	this	way,	and	that's	why	it's	important	to	totally



specialize	std::swap	for	your	classes:	it	makes	type-specific	swap
implementations	available	to	code	written	in	this	misguided	fashion.	(Such	code
is	present	in	some	standard	library	implementations,	so	it's	in	your	interest	to
help	such	code	work	as	efficiently	as	possible.)

At	this	point,	we've	discussed	the	default	swap,	member	swaps,	non-member
swaps,	specializations	of	std::swap,	and	calls	to	swap,	so	let's	summarize
the	situation.

First,	if	the	default	implementation	of	swap	offers	acceptable	efficiency	for	your
class	or	class	template,	you	don't	need	to	do	anything.	Anybody	trying	to	swap
objects	of	your	type	will	get	the	default	version,	and	that	will	work	fine.

Second,	if	the	default	implementation	of	swap	isn't	efficient	enough	(which
almost	always	means	that	your	class	or	template	is	using	some	variation	of	the
pimpl	idiom),	do	the	following:

1.	 Offer	a	public	swap	member	function	that	efficiently	swaps	the	value	of
two	objects	of	your	type.	For	reasons	I'll	explain	in	a	moment,	this	function
should	never	throw	an	exception.

2.	 Offer	a	non-member	swap	in	the	same	namespace	as	your	class	or
template.	Have	it	call	your	swap	member	function.

3.	 If	you're	writing	a	class	(not	a	class	template),	specialize	std::swap	for
your	class.	Have	it	also	call	your	swap	member	function.

Finally,	if	you're	calling	swap,	be	sure	to	include	a	using	declaration	to	make
std::swap	visible	in	your	function,	then	call	swap	without	any	namespace
qualification.

The	only	loose	end	is	my	admonition	to	have	the	member	version	of	swap	never
throw	exceptions.	That's	because	one	of	the	most	useful	applications	of	swap	is
to	help	classes	(and	class	templates)	offer	the	strong	exception-safety	guarantee.
Item	29	provides	all	the	details,	but	the	technique	is	predicated	on	the
assumption	that	the	member	version	of	swap	never	throws.	This	constraint
applies	only	to	the	member	version!	It	can't	apply	to	the	non-member	version,
because	the	default	version	of	swap	is	based	on	copy	construction	and	copy



assignment,	and,	in	general,	both	of	those	functions	are	allowed	to	throw
exceptions.	When	you	write	a	custom	version	of	swap,	then,	you	are	typically
offering	more	than	just	an	efficient	way	to	swap	values;	you're	also	offering	one
that	doesn't	throw	exceptions.	As	a	general	rule,	these	two	swap	characteristics
go	hand	in	hand,	because	highly	efficient	swaps	are	almost	always	based	on
operations	on	built-in	types	(such	as	the	pointers	underlying	the	pimpl	idiom),
and	operations	on	built-in	types	never	throw	exceptions.

Things	to	Remember

Provide	a	swap	member	function	when	std::swap	would	be
inefficient	for	your	type.	Make	sure	your	swap	doesn't	throw
exceptions.

If	you	offer	a	member	swap,	also	offer	a	non-member	swap
that	calls	the	member.	For	classes	(not	templates),	specialize
std::swap,	too.

When	calling	swap,	employ	a	using	declaration	for
std::swap,	then	call	swap	without	namespace	qualification.

It's	fine	to	totally	specialize	std	templates	for	user-defined
types,	but	never	try	to	add	something	completely	new	to	std.



Chapter	5.	Implementations
For	the	most	part,	coming	up	with	appropriate	definitions	for	your	classes	(and
class	templates)	and	appropriate	declarations	for	your	functions	(and	function
templates)	is	the	lion's	share	of	the	battle.	Once	you've	got	those	right,	the
corresponding	implementations	are	largely	straightforward.	Still,	there	are	things
to	watch	out	for.	Defining	variables	too	soon	can	cause	a	drag	on	performance.
Overuse	of	casts	can	lead	to	code	that's	slow,	hard	to	maintain,	and	infected	with
subtle	bugs.	Returning	handles	to	an	object's	internals	can	defeat	encapsulation
and	leave	clients	with	dangling	handles.	Failure	to	consider	the	impact	of
exceptions	can	lead	to	leaked	resources	and	corrupted	data	structures.
Overzealous	inlining	can	cause	code	bloat.	Excessive	coupling	can	result	in
unacceptably	long	build	times.

All	of	these	problems	can	be	avoided.	This	chapter	explains	how.



Item	26:	Postpone	variable	definitions	as	long	as
possible.

Whenever	you	define	a	variable	of	a	type	with	a	constructor	or	destructor,	you
incur	the	cost	of	construction	when	control	reaches	the	variable's	definition,	and
you	incur	the	cost	of	destruction	when	the	variable	goes	out	of	scope.	There's	a
cost	associated	with	unused	variables,	so	you	want	to	avoid	them	whenever	you
can.

You're	probably	thinking	that	you	never	define	unused	variables,	but	you	may
need	to	think	again.	Consider	the	following	function,	which	returns	an	encrypted
version	of	a	password,	provided	the	password	is	long	enough.	If	the	password	is
too	short,	the	function	throws	an	exception	of	type	logic_error,	which	is
defined	in	the	standard	C++	library	(see	Item	54):

//	this	function	defines	the	variable	"encrypted"	too	soon

std::string	encryptPassword(const	std::string&	password)

{

		using	namespace	std;

		string	encrypted;

		if	(password.length()	<	MinimumPasswordLength)	{

						throw	logic_error("Password	is	too	short");

		}



		...																								//	do	whatever	is	necessary	to	place	an

																													//	encrypted	version	of	password	in	encrypted

		return	encrypted;

}

The	object	encrypted	isn't	completely	unused	in	this	function,	but	it's	unused
if	an	exception	is	thrown.	That	is,	you'll	pay	for	the	construction	and	destruction
of	encrypted	even	if	encryptPassword	throws	an	exception.	As	a	result,
you're	better	off	postponing	encrypted's	definition	until	you	know	you'll	need
it:

//	this	function	postpones	encrypted's	definition	until	it's	truly	necessary

std::string	encryptPassword(const	std::string&	password)

{

		using	namespace	std;

		if	(password.length()	<	MinimumPasswordLength)	{

					throw	logic_error("Password	is	too	short");

		}



		string	encrypted;

		...																						//	do	whatever	is	necessary	to	place	an

																											//	encrypted	version	of	password	in	encrypted

		return	encrypted;

}

This	code	still	isn't	as	tight	as	it	might	be,	because	encrypted	is	defined
without	any	initialization	arguments.	That	means	its	default	constructor	will	be
used.	In	many	cases,	the	first	thing	you'll	do	to	an	object	is	give	it	some	value,
often	via	an	assignment.	Item	4	explains	why	default-constructing	an	object	and
then	assigning	to	it	is	less	efficient	than	initializing	it	with	the	value	you	really
want	it	to	have.	That	analysis	applies	here,	too.	For	example,	suppose	the	hard
part	of	encryptPassword	is	performed	in	this	function:

	

void	encrypt(std::string&	s);													//	encrypts	s	in	place

	

Then	encryptPassword	could	be	implemented	like	this,	though	it	wouldn't
be	the	best	way	to	do	it:

//	this	function	postpones	encrypted's	definition	until

//	it's	necessary,	but	it's	still	needlessly	inefficient

std::string	encryptPassword(const	std::string&	password)



{

		...																																			//	check	length	as	above

		std::string	encrypted;																//	default-construct	encrypted

		encrypted	=	password;																	//	assign	to	encrypted

		encrypt(encrypted);

		return	encrypted;

}

A	preferable	approach	is	to	initialize	encrypted	with	password,	thus
skipping	the	pointless	and	potentially	expensive	default	construction:

//	finally,	the	best	way	to	define	and	initialize	encrypted

std::string	encryptPassword(const	std::string&	password)

{

		...																																					//	check	length	

		std::string	encrypted(password);								//	define	and	initialize



																																										//	via	copy	constructor

		encrypt(encrypted);

		return	encrypted;

}

This	suggests	the	real	meaning	of	"as	long	as	possible"	in	this	Item's	title.	Not
only	should	you	postpone	a	variable's	definition	until	right	before	you	have	to
use	the	variable,	you	should	also	try	to	postpone	the	definition	until	you	have
initialization	arguments	for	it.	By	doing	so,	you	avoid	constructing	and
destructing	unneeded	objects,	and	you	avoid	unnecessary	default	constructions.
Further,	you	help	document	the	purpose	of	variables	by	initializing	them	in
contexts	in	which	their	meaning	is	clear.

"But	what	about	loops?"	you	may	wonder.	If	a	variable	is	used	only	inside	a
loop,	is	it	better	to	define	it	outside	the	loop	and	make	an	assignment	to	it	on
each	loop	iteration,	or	is	it	be	better	to	define	the	variable	inside	the	loop?	That
is,	which	of	these	general	structures	is	better?

//	Approach	A:	define	outside	loop			//	Approach	B:	define	inside	loop

Widget	w;

for	(int	i	=	0;	i	<	n;	++i){									for	(int	i	=	0;	i	<	n;	++i)	{

		w	=	some	value	dependent	on	i;							Widget	w(some	value	dependent	on	i



		...																																		...

}																																				}

Here	I've	switched	from	an	object	of	type	string	to	an	object	of	type	Widget
to	avoid	any	preconceptions	about	the	cost	of	performing	a	construction,
destruction,	or	assignment	for	the	object.

In	terms	of	Widget	operations,	the	costs	of	these	two	approaches	are	as
follows:

Approach	A:	1	constructor	+	1	destructor	+	n	assignments.

Approach	B:	n	constructors	+	n	destructors.

For	classes	where	an	assignment	costs	less	than	a	constructor-destructor	pair,
Approach	A	is	generally	more	efficient.	This	is	especially	the	case	as	n	gets
large.	Otherwise,	Approach	B	is	probably	better.	Furthermore,	Approach	A
makes	the	name	w	visible	in	a	larger	scope	(the	one	containing	the	loop)	than
Approach	B,	something	that's	contrary	to	program	comprehensibility	and
maintainability.	As	a	result,	unless	you	know	that	(1)	assignment	is	less
expensive	than	a	constructor-destructor	pair	and	(2)	you're	dealing	with	a
performance-sensitive	part	of	your	code,	you	should	default	to	using	Approach
B.

Things	to	Remember

Postpone	variable	definitions	as	long	as	possible.	It	increases
program	clarity	and	improves	program	efficiency.



Item	27:	Minimize	casting.

The	rules	of	C++	are	designed	to	guarantee	that	type	errors	are	impossible.	In
theory,	if	your	program	compiles	cleanly,	it's	not	trying	to	perform	any	unsafe	or
nonsensical	operations	on	any	objects.	This	is	a	valuable	guarantee.	You	don't
want	to	forgo	it	lightly.

Unfortunately,	casts	subvert	the	type	system.	That	can	lead	to	all	kinds	of
trouble,	some	easy	to	recognize,	some	extraordinarily	subtle.	If	you're	coming	to
C++	from	C,	Java,	or	C#,	take	note,	because	casting	in	those	languages	is	more
necessary	and	less	dangerous	than	in	C++.	But	C++	is	not	C.	It's	not	Java.	It's
not	C#.	In	this	language,	casting	is	a	feature	you	want	to	approach	with	great
respect.

Let's	begin	with	a	review	of	casting	syntax,	because	there	are	usually	three
different	ways	to	write	the	same	cast.	C-style	casts	look	like	this:

(T)	expression																						//	cast	expression	to	be	of	type	T

Function-style	casts	use	this	syntax:

T(expression)																							//	cast	expression	to	be	of	type	T

There	is	no	difference	in	meaning	between	these	forms;	it's	purely	a	matter	of
where	you	put	the	parentheses.	I	call	these	two	forms	old-style	casts.

C++	also	offers	four	new	cast	forms	(often	called	new-style	or	C++-style	casts):



const_cast<T>(expression)

dynamic_cast<T>(expression)

reinterpret_cast<T>(expression)

static_cast<T>(expression)

Each	serves	a	distinct	purpose:

const_cast	is	typically	used	to	cast	away	the	constness	of	objects.	It	is
the	only	C++-style	cast	that	can	do	this.

dynamic_cast	is	primarily	used	to	perform	"safe	downcasting,"	i.e.,	to
determine	whether	an	object	is	of	a	particular	type	in	an	inheritance
hierarchy.	It	is	the	only	cast	that	cannot	be	performed	using	the	old-style
syntax.	It	is	also	the	only	cast	that	may	have	a	significant	runtime	cost.	(I'll
provide	details	on	this	a	bit	later.)

reinterpret_cast	is	intended	for	low-level	casts	that	yield
implementation-dependent	(i.e.,	unportable)	results,	e.g.,	casting	a	pointer
to	an	int.	Such	casts	should	be	rare	outside	low-level	code.	I	use	it	only
once	in	this	book,	and	that's	only	when	discussing	how	you	might	write	a
debugging	allocator	for	raw	memory	(see	Item	50).

static_cast	can	be	used	to	force	implicit	conversions	(e.g.,	non-
const	object	to	const	object	(as	in	Item	3),	int	to	double,	etc.).	It	can
also	be	used	to	perform	the	reverse	of	many	such	conversions	(e.g.,	void*
pointers	to	typed	pointers,	pointer-to-base	to	pointer-to-derived),	though	it
cannot	cast	from	const	to	non-const	objects.	(Only	const_cast	can
do	that.)

The	old-style	casts	continue	to	be	legal,	but	the	new	forms	are	preferable.	First,
they're	much	easier	to	identify	in	code	(both	for	humans	and	for	tools	like



grep),	thus	simplifying	the	process	of	finding	places	in	the	code	where	the	type
system	is	being	subverted.	Second,	the	more	narrowly	specified	purpose	of	each
cast	makes	it	possible	for	compilers	to	diagnose	usage	errors.	For	example,	if
you	try	to	cast	away	constness	using	a	new-style	cast	other	than	const_cast,
your	code	won't	compile.

About	the	only	time	I	use	an	old-style	cast	is	when	I	want	to	call	an	explicit
constructor	to	pass	an	object	to	a	function.	For	example:

class	Widget	{

public:

		explicit	Widget(int	size);

		...

};

void	doSomeWork(const	Widget&	w);

doSomeWork(Widget(15));																				//	create	Widget	from	int

																																											//	with	function-style	cast

doSomeWork(static_cast<Widget>(15));							//	create	Widget	from	int

																																											//	with	C++-style	cast



Somehow,	deliberate	object	creation	doesn't	"feel"	like	a	cast,	so	I'd	probably	use
the	function-style	cast	instead	of	the	static_cast	in	this	case.	Then	again,
code	that	leads	to	a	core	dump	usually	feels	pretty	reasonable	when	you	write	it,
so	perhaps	you'd	best	ignore	feelings	and	use	new-style	casts	all	the	time.

Many	programmers	believe	that	casts	do	nothing	but	tell	compilers	to	treat	one
type	as	another,	but	this	is	mistaken.	Type	conversions	of	any	kind	(either
explicit	via	casts	or	implicit	by	compilers)	often	lead	to	code	that	is	executed	at
runtime.	For	example,	in	this	code	fragment,

int	x,	y;

...

double	d	=	static_cast<double>(x)/y;											//	divide	x	by	y,	but	use

																																															//	floating	point	division

the	cast	of	the	int	x	to	a	double	almost	certainly	generates	code,	because	on
most	architectures,	the	underlying	representation	for	an	int	is	different	from
that	for	a	double.	That's	perhaps	not	so	surprising,	but	this	example	may	widen
your	eyes	a	bit:

class	Base	{	...	};

class	Derived:	public	Base	{	...	};



Derived	d;

Base	*pb	=	&d;																									//	implicitly	convert	Derived*	

Here	we're	just	creating	a	base	class	pointer	to	a	derived	class	object,	but
sometimes,	the	two	pointer	values	will	not	be	the	same.	When	that's	the	case,	an
offset	is	applied	at	runtime	to	the	Derived*	pointer	to	get	the	correct	Base*
pointer	value.

This	last	example	demonstrates	that	a	single	object	(e.g.,	an	object	of	type
Derived)	might	have	more	than	one	address	(e.g.,	its	address	when	pointed	to
by	a	Base*	pointer	and	its	address	when	pointed	to	by	a	Derived*	pointer).
That	can't	happen	in	C.	It	can't	happen	in	Java.	It	can't	happen	in	C#.	It	does
happen	in	C++.	In	fact,	when	multiple	inheritance	is	in	use,	it	happens	virtually
all	the	time,	but	it	can	happen	under	single	inheritance,	too.	Among	other	things,
that	means	you	should	generally	avoid	making	assumptions	about	how	things	are
laid	out	in	C++,	and	you	should	certainly	not	perform	casts	based	on	such
assumptions.	For	example,	casting	object	addresses	to	char*	pointers	and	then
using	pointer	arithmetic	on	them	almost	always	yields	undefined	behavior.

But	note	that	I	said	that	an	offset	is	"sometimes"	required.	The	way	objects	are
laid	out	and	the	way	their	addresses	are	calculated	varies	from	compiler	to
compiler.	That	means	that	just	because	your	"I	know	how	things	are	laid	out"
casts	work	on	one	platform	doesn't	mean	they'll	work	on	others.	The	world	is
filled	with	woeful	programmers	who've	learned	this	lesson	the	hard	way.

An	interesting	thing	about	casts	is	that	it's	easy	to	write	something	that	looks
right	(and	might	be	right	in	other	languages)	but	is	wrong.	Many	application
frameworks,	for	example,	require	that	virtual	member	function	implementations
in	derived	classes	call	their	base	class	counterparts	first.	Suppose	we	have	a
Window	base	class	and	a	SpecialWindow	derived	class,	both	of	which	define
the	virtual	function	onResize.	Further	suppose	that	SpecialWindow's



onResize	is	expected	to	invoke	Window's	onResize	first.	Here's	a	way	to
implement	this	that	looks	like	it	does	the	right	thing,	but	doesn't:

class	Window	{																																//	base	class

public:

		virtual	void	onResize()	{	...	}													//	base	onResize	impl

		...

};

class	SpecialWindow:	public	Window	{										//	derived	class

public:

		virtual	void	onResize()	{																			//	derived	onResize	impl;

				static_cast<Window>(*this).onResize();				//	cast	*this	to	Window,

																																														//	then	call	its	onResize;

																																														//	this	doesn't	work!

				...																																							//	do	SpecialWindow-

		}																																											//	specific	stuff

		...



};

I've	highlighted	the	cast	in	the	code.	(It's	a	new-style	cast,	but	using	an	old-style
cast	wouldn't	change	anything.)	As	you	would	expect,	the	code	casts	*this	to	a
Window.	The	resulting	call	to	onResize	therefore	invokes
Window::onResize.	What	you	might	not	expect	is	that	it	does	not	invoke
that	function	on	the	current	object!	Instead,	the	cast	creates	a	new,	temporary
copy	of	the	base	class	part	of	*this,	then	invokes	onResize	on	the	copy!	The
above	code	doesn't	call	Window::onResize	on	the	current	object	and	then
perform	the	SpecialWindow-specific	actions	on	that	object		it	calls
Window::onResize	on	a	copy	of	the	base	class	part	of	the	current	object
before	performing	SpecialWindow-specific	actions	on	the	current	object.	If
Window::onResize	modifies	the	current	object	(hardly	a	remote	possibility,
since	onResize	is	a	non-const	member	function),	the	current	object	won't	be
modified.	Instead,	a	copy	of	that	object	will	be	modified.	If
SpecialWindow::onResize	modifies	the	current	object,	however,	the
current	object	will	be	modified,	leading	to	the	prospect	that	the	code	will	leave
the	current	object	in	an	invalid	state,	one	where	base	class	modifications	have
not	been	made,	but	derived	class	ones	have	been.

The	solution	is	to	eliminate	the	cast,	replacing	it	with	what	you	really	want	to
say.	You	don't	want	to	trick	compilers	into	treating	*this	as	a	base	class
object;	you	want	to	call	the	base	class	version	of	onResize	on	the	current
object.	So	say	that:

class	SpecialWindow:	public	Window	{

public:

		virtual	void	onResize()	{



				Window::onResize();																				//	call	Window::onResize

				...																																				//	on	*this

		}

		...

};

This	example	also	demonstrates	that	if	you	find	yourself	wanting	to	cast,	it's	a
sign	that	you	could	be	approaching	things	the	wrong	way.	This	is	especially	the
case	if	your	want	is	for	dynamic_cast.

Before	delving	into	the	design	implications	of	dynamic_cast,	it's	worth
observing	that	many	implementations	of	dynamic_cast	can	be	quite	slow.
For	example,	at	least	one	common	implementation	is	based	in	part	on	string
comparisons	of	class	names.	If	you're	performing	a	dynamic_cast	on	an
object	in	a	single-inheritance	hierarchy	four	levels	deep,	each	dynamic_cast
under	such	an	implementation	could	cost	you	up	to	four	calls	to	strcmp	to
compare	class	names.	A	deeper	hierarchy	or	one	using	multiple	inheritance
would	be	more	expensive.	There	are	reasons	that	some	implementations	work
this	way	(they	have	to	do	with	support	for	dynamic	linking).	Nonetheless,	in
addition	to	being	leery	of	casts	in	general,	you	should	be	especially	leery	of
dynamic_casts	in	performance-sensitive	code.

The	need	for	dynamic_cast	generally	arises	because	you	want	to	perform
derived	class	operations	on	what	you	believe	to	be	a	derived	class	object,	but
you	have	only	a	pointer-	or	reference-to-base	through	which	to	manipulate	the
object.	There	are	two	general	ways	to	avoid	this	problem.



First,	use	containers	that	store	pointers	(often	smart	pointers		see	Item	13)	to
derived	class	objects	directly,	thus	eliminating	the	need	to	manipulate	such
objects	through	base	class	interfaces.	For	example,	if,	in	our
Window/SpecialWindow	hierarchy,	only	SpecialWindows	support
blinking,	instead	of	doing	this:

class	Window	{	...	};

class	SpecialWindow:	public	Window	{

public:

		void	blink();

		...

};

typedef																																												//	see	Item	13	for	info

		std::vector<std::tr1::shared_ptr<Window>	>	VPW;		//	on	tr1::shared_ptr

VPW	winPtrs;

...

for	(VPW::iterator	iter	=	winPtrs.begin();									//	undesirable	code:



					iter	!=	winPtrs.end();																								//	uses	dynamic_cast

					++iter)	{

		if	(SpecialWindow	*psw	=	dynamic_cast<SpecialWindow*>(iter->get()))

					psw->blink();

}

try	to	do	this	instead:

typedef	std::vector<std::tr1::shared_ptr<SpecialWindow>

VPSW	winPtrs;

...

for	(VPSW::iterator	iter	=	winPtrs.begin();								//	better	code:	uses

					iter	!=	winPtrs.end();																								//	no	dynamic_cast

					++iter)

		(*iter)->blink();



Of	course,	this	approach	won't	allow	you	to	store	pointers	to	all	possible
Window	derivatives	in	the	same	container.	To	work	with	different	window
types,	you	might	need	multiple	type-safe	containers.

An	alternative	that	will	let	you	manipulate	all	possible	Window	derivatives
through	a	base	class	interface	is	to	provide	virtual	functions	in	the	base	class	that
let	you	do	what	you	need.	For	example,	though	only	SpecialWindows	can
blink,	maybe	it	makes	sense	to	declare	the	function	in	the	base	class,	offering	a
default	implementation	that	does	nothing:

class	Window	{

public:

		virtual	void	blink()	{}																							//	default	impl	is	no-op;

		...																																											//	see	Item	34	for	why

};																																														//	a	default	impl	may	be

																																																//	a	bad	idea

class	SpecialWindow:	public	Window	{

public:

		virtual	void	blink()	{	...	};																	//	in	this	class,	blink

		...																																											//	does	something

};



typedef	std::vector<std::tr1::shared_ptr<Window>	>	VPW;

VPW	winPtrs;																																				//	container	holds

																																																//	(ptrs	to)	all	possible

...																																													//	Window	types

for	(VPW::iterator	iter	=	winPtrs.begin();

					iter	!=	winPtrs.end();

					++iter)																																				//	note	lack	of

		(*iter)->blink();																													//	dynamic_cast

Neither	of	these	approaches		using	type-safe	containers	or	moving	virtual
functions	up	the	hierarchy		is	universally	applicable,	but	in	many	cases,	they
provide	a	viable	alternative	to	dynamic_casting.	When	they	do,	you	should
embrace	them.

One	thing	you	definitely	want	to	avoid	is	designs	that	involve	cascading
dynamic_casts,	i.e.,	anything	that	looks	like	this:

class	Window	{	...	};



...																																					//	derived	classes	are	defined	here

typedef	std::vector<std::tr1::shared_ptr<Window>	>	VPW;

VPW	winPtrs;

...

for	(VPW::iterator	iter	=	winPtrs.begin();	iter	!=	winPtrs.end();	++iter)

{

		if	(SpecialWindow1	*psw1	=

							dynamic_cast<SpecialWindow1*>(iter->get()))	{	...	}

		else	if	(SpecialWindow2	*psw2	=

												dynamic_cast<SpecialWindow2*>(iter->get()))	{	...	}

		else	if	(SpecialWindow3	*psw3	=

												dynamic_cast<SpecialWindow3*>(iter->get()))	{	...	}



		...

}

Such	C++	generates	code	that's	big	and	slow,	plus	it's	brittle,	because	every	time
the	Window	class	hierarchy	changes,	all	such	code	has	to	be	examined	to	see	if
it	needs	to	be	updated.	(For	example,	if	a	new	derived	class	gets	added,	a	new
conditional	branch	probably	needs	to	be	added	to	the	above	cascade.)	Code	that
looks	like	this	should	almost	always	be	replaced	with	something	based	on	virtual
function	calls.

Good	C++	uses	very	few	casts,	but	it's	generally	not	practical	to	get	rid	of	all	of
them.	The	cast	from	int	to	double	on	page	118,	for	example,	is	a	reasonable
use	of	a	cast,	though	it's	not	strictly	necessary.	(The	code	could	be	rewritten	to
declare	a	new	variable	of	type	double	that's	initialized	with	x's	value.)	Like
most	suspicious	constructs,	casts	should	be	isolated	as	much	as	possible,
typically	hidden	inside	functions	whose	interfaces	shield	callers	from	the	grubby
work	being	done	inside.

Things	to	Remember

Avoid	casts	whenever	practical,	especially	dynamic_casts	in
performance-sensitive	code.	If	a	design	requires	casting,	try	to
develop	a	cast-free	alternative.

When	casting	is	necessary,	try	to	hide	it	inside	a	function.
Clients	can	then	call	the	function	instead	of	putting	casts	in	their
own	code.

Prefer	C++-style	casts	to	old-style	casts.	They	are	easier	to	see,
and	they	are	more	specific	about	what	they	do.



Item	28:	Avoid	returning	"handles"	to	object
internals.

Suppose	you're	working	on	an	application	involving	rectangles.	Each	rectangle
can	be	represented	by	its	upper	left	corner	and	its	lower	right	corner.	To	keep	a
Rectangle	object	small,	you	might	decide	that	the	points	defining	its	extent
shouldn't	be	stored	in	the	Rectangle	itself,	but	rather	in	an	auxiliary	struct
that	the	Rectangle	points	to:

class	Point	{																						//	class	for	representing	points

public:

		Point(int	x,	int	y);

		...

		void	setX(int	newVal);

		void	setY(int	newVal);

		...

};

struct	RectData	{																				//	Point	data	for	a	Rectangle

		Point	ulhc;																								//	ulhc	=	"	upper	left-hand	corner"

		Point	lrhc;																								//	lrhc	=	"	lower	right-hand	corner"

};



class	Rectangle	{

		...

private:

		std::tr1::shared_ptr<RectData>	pData;										//	see	Item	13	for	info	on

};																																															//	tr1::shared_ptr

Because	Rectangle	clients	will	need	to	be	able	to	determine	the	extent	of	a
Rectangle,	the	class	provides	the	upperLeft	and	lowerRight	functions.
However,	Point	is	a	user-defined	type,	so,	mindful	of	Item	20's	observation
that	passing	user-defined	types	by	reference	is	typically	more	efficient	than
passing	them	by	value,	these	functions	return	references	to	the	underlying
Point	objects:

class	Rectangle	{

public:

		...

		Point&	upperLeft()	const	{	return	pData->ulhc;	}

		Point&	lowerRight()	const	{	return	pData->lrhc;	}

		...



};

This	design	will	compile,	but	it's	wrong.	In	fact,	it's	self-contradictory.	On	the
one	hand,	upperLeft	and	lowerRight	are	declared	to	be	const	member
functions,	because	they	are	designed	only	to	offer	clients	a	way	to	learn	what	the
Rectangle's	points	are,	not	to	let	clients	modify	the	Rectangle	(see	Item
3).	On	the	other	hand,	both	functions	return	references	to	private	internal	data	
references	that	callers	can	use	to	modify	that	internal	data!	For	example:

Point	coord1(0,	0);

Point	coord2(100,	100);

const	Rectangle	rec(coord1,	coord2);					//	rec	is	a	const	rectangle	from

																																									//	(0,	0)	to	(100,	100)

rec.upperLeft().setX(50);																//	now	rec	goes	from

																																									//	(50,	0)	to	(100,	100)!

Here,	notice	how	the	caller	of	upperLeft	is	able	to	use	the	returned	reference
to	one	of	rec's	internal	Point	data	members	to	modify	that	member.	But	rec
is	supposed	to	be	const!

This	immediately	leads	to	two	lessons.	First,	a	data	member	is	only	as



encapsulated	as	the	most	accessible	function	returning	a	reference	to	it.	In	this
case,	though	ulhc	and	lrhc	are	declared	private,	they're	effectively	public,
because	the	public	functions	upperLeft	and	lowerRight	return	references
to	them.	Second,	if	a	const	member	function	returns	a	reference	to	data
associated	with	an	object	that	is	stored	outside	the	object	itself,	the	caller	of	the
function	can	modify	that	data,	(This	is	just	a	fallout	of	the	limitations	of	bitwise
constness		see	Item	3.)

Everything	we've	done	has	involved	member	functions	returning	references,	but
if	they	returned	pointers	or	iterators,	the	same	problems	would	exist	for	the	same
reasons.	References,	pointers,	and	iterators	are	all	handles	(ways	to	get	at	other
objects),	and	returning	a	handle	to	an	object's	internals	always	runs	the	risk	of
compromising	an	object's	encapsulation.	As	we've	seen,	it	can	also	lead	to
const	member	functions	that	allow	an	object's	state	to	be	modified.

We	generally	think	of	an	object's	"internals"	as	its	data	members,	but	member
functions	not	accessible	to	the	general	public	(i.e.,	that	are	protected	or	private)
are	part	of	an	object's	internals,	too.	As	such,	it's	important	not	to	return	handles
to	them.	This	means	you	should	never	have	a	member	function	return	a	pointer
to	a	less	accessible	member	function.	If	you	do,	the	effective	access	level	will	be
that	of	the	more	accessible	function,	because	clients	will	be	able	to	get	a	pointer
to	the	less	accessible	function,	then	call	that	function	through	the	pointer.

Functions	that	return	pointers	to	member	functions	are	uncommon,	however,	so
let's	turn	our	attention	back	to	the	Rectangle	class	and	its	upperLeft	and
lowerRight	member	functions.	Both	of	the	problems	we've	identified	for
those	functions	can	be	eliminated	by	simply	applying	const	to	their	return
types:

class	Rectangle	{

public:

		...

		const	Point&	upperLeft()	const	{	return	pData->ulhc;	}



		const	Point&	lowerRight()	const	{	return	pData->lrhc;	}

		...

};

With	this	altered	design,	clients	can	read	the	Points	defining	a	rectangle,	but
they	can't	write	them.	This	means	that	declaring	upperLeft	and
upperRight	as	const	is	no	longer	a	lie,	because	they	no	longer	allow	callers
to	modify	the	state	of	the	object.	As	for	the	encapsulation	problem,	we	always
intended	to	let	clients	see	the	Points	making	up	a	Rectangle,	so	this	is	a
deliberate	relaxation	of	encapsulation.	More	importantly,	it's	a	limited	relaxation:
only	read	access	is	being	granted	by	these	functions.	Write	access	is	still
prohibited.

Even	so,	upperLeft	and	lowerRight	are	still	returning	handles	to	an
object's	internals,	and	that	can	be	problematic	in	other	ways.	In	particular,	it	can
lead	to	dangling	handles:	handles	that	refer	to	parts	of	objects	that	don't	exist	any
longer.	The	most	common	source	of	such	disappearing	objects	are	function
return	values.	For	example,	consider	a	function	that	returns	the	bounding	box	for
a	GUI	object	in	the	form	of	a	rectangle:

class	GUIObject	{	...	};

const	Rectangle																													//	returns	a	rectangle	by

		boundingBox(const	GUIObject&	obj);								//	value;	see	Item	3	for	why

																																												//	return	type	is	const



Now	consider	how	a	client	might	use	this	function:

GUIObject	*pgo;																													//	make	pgo	point	to

...																																									//	some	GUIObject

const	Point	*pUpperLeft	=																			//	get	a	ptr	to	the	upper

		&(boundingBox(*pgo).upperLeft());									//	left	point	of	its

																																												//	bounding	box

The	call	to	boundingBox	will	return	a	new,	temporary	Rectangle	object.
That	object	doesn't	have	a	name,	so	let's	call	it	temp.	upperLeft	will	then	be
called	on	temp,	and	that	call	will	return	a	reference	to	an	internal	part	of	temp,	in
particular,	to	one	of	the	Points	making	it	up.	pUpperLeft	will	then	point	to
that	Point	object.	So	far,	so	good,	but	we're	not	done	yet,	because	at	the	end	of
the	statement,	boundingBox's	return	value		temp		will	be	destroyed,	and	that
will	indirectly	lead	to	the	destruction	of	temp's	Points.	That,	in	turn,	will	leave
pUpperLeft	pointing	to	an	object	that	no	longer	exists;	pUpperLeft	will
dangle	by	the	end	of	the	statement	that	created	it!

This	is	why	any	function	that	returns	a	handle	to	an	internal	part	of	the	object	is
dangerous.	It	doesn't	matter	whether	the	handle	is	a	pointer,	a	reference,	or	an
iterator.	It	doesn't	matter	whether	it's	qualified	with	const.	It	doesn't	matter
whether	the	member	function	returning	the	handle	is	itself	const.	All	that
matters	is	that	a	handle	is	being	returned,	because	once	that's	being	done,	you
run	the	risk	that	the	handle	will	outlive	the	object	it	refers	to.



This	doesn't	mean	that	you	should	never	have	a	member	function	that	returns	a
handle.	Sometimes	you	have	to.	For	example,	operator[]	allows	you	to
pluck	individual	elements	out	of	strings	and	vectors,	and	these
operator[]s	work	by	returning	references	to	the	data	in	the	containers	(see
Item	3)		data	that	is	destroyed	when	the	containers	themselves	are.	Still,	such
functions	are	the	exception,	not	the	rule.

Things	to	Remember

Avoid	returning	handles	(references,	pointers,	or	iterators)	to
object	internals.	It	increases	encapsulation,	helps	const
member	functions	act	const,	and	minimizes	the	creation	of
dangling	handles.



Item29:	Strive	for	exception-safe	code.

Exception	safety	is	sort	of	like	pregnancy...but	hold	that	thought	for	a	moment.
We	can't	really	talk	reproduction	until	we've	worked	our	way	through	courtship.

Suppose	we	have	a	class	for	representing	GUI	menus	with	background	images.
The	class	is	designed	to	be	used	in	a	threaded	environment,	so	it	has	a	mutex	for
concurrency	control:

class	PrettyMenu	{

public:

		...

		void	changeBackground(std::istream&	imgSrc);											//	change	background

		...																																																				//	image

private:

		Mutex	mutex;																				//	mutex	for	this	object	

		Image	*bgImage;																	//	current	background	image

		int	imageChanges;															//	#	of	times	image	has	been	changed

};



Consider	this	possible	implementation	of	PrettyMenu's
changeBackground	function:

void	PrettyMenu::changeBackground(std::istream&	imgSrc)

{

		lock(&mutex);																						//	acquire	mutex	(as	in	Item	14)

		delete	bgImage;																				//	get	rid	of	old	background

		++imageChanges;																				//	update	image	change	count

		bgImage	=	new	Image(imgSrc);							//	install	new	background

		unlock(&mutex);																				//	release	mutex

}

From	the	perspective	of	exception	safety,	this	function	is	about	as	bad	as	it	gets.
There	are	two	requirements	for	exception	safety,	and	this	satisfies	neither.

When	an	exception	is	thrown,	exception-safe	functions:

Leak	no	resources.	The	code	above	fails	this	test,	because	if	the	"new
Image(imgSrc)"	expression	yields	an	exception,	the	call	to	unlock
never	gets	executed,	and	the	mutex	is	held	forever.



Don't	allow	data	structures	to	become	corrupted.	If	"new
Image(imgSrc)"	throws,	bgImage	is	left	pointing	to	a	deleted	object.
In	addition,	imageChanges	has	been	incremented,	even	though	it's	not
true	that	a	new	image	has	been	installed.	(On	the	other	hand,	the	old	image
has	definitely	been	eliminated,	so	I	suppose	you	could	argue	that	the	image
has	been	"changed.")

Addressing	the	resource	leak	issue	is	easy,	because	Item	13	explains	how	to	use
objects	to	manage	resources,	and	Item	14	introduces	the	Lock	class	as	a	way	to
ensure	that	mutexes	are	released	in	a	timely	fashion:

void	PrettyMenu::changeBackground(std::istream&	imgSrc)

{

		Lock	ml(&mutex);																	//	from	Item	14:	acquire	mutex	and

																																			//	ensure	its	later	release

		delete	bgImage;

		++imageChanges;

		bgImage	=	new	Image(imgSrc);

}

One	of	the	best	things	about	resource	management	classes	like	Lock	is	that	they
usually	make	functions	shorter.	See	how	the	call	to	unlock	is	no	longer
needed?	As	a	general	rule,	less	code	is	better	code,	because	there's	less	to	go
wrong	and	less	to	misunderstand	when	making	changes.

With	the	resource	leak	behind	us,	we	can	turn	our	attention	to	the	issue	of	data
structure	corruption.	Here	we	have	a	choice,	but	before	we	can	choose,	we	have



structure	corruption.	Here	we	have	a	choice,	but	before	we	can	choose,	we	have
to	confront	the	terminology	that	defines	our	choices.

Exception-safe	functions	offer	one	of	three	guarantees:

Functions	offering	the	basic	guarantee	promise	that	if	an	exception	is
thrown,	everything	in	the	program	remains	in	a	valid	state.	No	objects	or
data	structures	become	corrupted,	and	all	objects	are	in	an	internally
consistent	state	(e.g.,	all	class	invariants	are	satisfied).	However,	the	exact
state	of	the	program	may	not	be	predictable.	For	example,	we	could	write
changeBackground	so	that	if	an	exception	were	thrown,	the
PrettyMenu	object	might	continue	to	have	the	old	background	image,	or
it	might	have	some	default	background	image,	but	clients	wouldn't	be	able
to	predict	which.	(To	find	out,	they'd	presumably	have	to	call	some	member
function	that	would	tell	them	what	the	current	background	image	was.)

Functions	offering	the	strong	guarantee	promise	that	if	an	exception	is
thrown,	the	state	of	the	program	is	unchanged.	Calls	to	such	functions	are
atomic	in	the	sense	that	if	they	succeed,	they	succeed	completely,	and	if
they	fail,	the	program	state	is	as	if	they'd	never	been	called.

Working	with	functions	offering	the	strong	guarantee	is	easier	than	working
with	functions	offering	only	the	basic	guarantee,	because	after	calling	a
function	offering	the	strong	guarantee,	there	are	only	two	possible	program
states:	as	expected	following	successful	execution	of	the	function,	or	the
state	that	existed	at	the	time	the	function	was	called.	In	contrast,	if	a	call	to
a	function	offering	only	the	basic	guarantee	yields	an	exception,	the
program	could	be	in	any	valid	state.

Functions	offering	the	nothrow	guarantee	promise	never	to	throw
exceptions,	because	they	always	do	what	they	promise	to	do.	All	operations
on	built-in	types	(e.g.,	ints,	pointers,	etc.)	are	nothrow	(i.e.,	offer	the
nothrow	guarantee).	This	is	a	critical	building	block	of	exception-safe	code.

It	might	seem	reasonable	to	assume	that	functions	with	an	empty	exception
specification	are	nothrow,	but	this	isn't	necessarily	true.	For	example,
consider	this	function:



int	doSomething()	throw();										//	note	empty	exception	spec.

This	doesn't	say	that	doSomething	will	never	throw	an	exception;	it	says
that	if	doSomething	tHRows	an	exception,	it's	a	serious	error,	and	the
unexpected	function	should	be	called.[1]	In	fact,	doSomething	may
not	offer	any	exception	guarantee	at	all.	The	declaration	of	a	function
(including	its	exception	specification,	if	it	has	one)	doesn't	tell	you	whether
a	function	is	correct	or	portable	or	efficient,	and	it	doesn't	tell	you	which,	if
any,	exception	safety	guarantee	it	offers,	either.	All	those	characteristics	are
determined	by	the	function's	implementation,	not	its	declaration.

[1]	For	information	on	the	unexpected	function,	consult	your	favorite	search	engine	or
comprehensive	C++	text.	(You'll	probably	have	better	luck	searching	for	set_unexpected,	the
function	that	specifies	the	unexpected	function.)

Exception-safe	code	must	offer	one	of	the	three	guarantees	above.	If	it	doesn't,
it's	not	exception-safe.	The	choice,	then,	is	to	determine	which	guarantee	to	offer
for	each	of	the	functions	you	write.	Other	than	when	dealing	with	exception-
unsafe	legacy	code	(which	we'll	discuss	later	in	this	Item),	offering	no	exception
safety	guarantee	should	be	an	option	only	if	your	crack	team	of	requirements
analysts	has	identified	a	need	for	your	application	to	leak	resources	and	run	with
corrupt	data	structures.

As	a	general	rule,	you	want	to	offer	the	strongest	guarantee	that's	practical.	From
an	exception	safety	point	of	view,	nothrow	functions	are	wonderful,	but	it's	hard
to	climb	out	of	the	C	part	of	C++	without	calling	functions	that	might	throw.
Anything	using	dynamically	allocated	memory	(e.g.,	all	STL	containers)
typically	throws	a	bad_alloc	exception	if	it	can't	find	enough	memory	to
satisfy	a	request	(see	Item	49).	Offer	the	nothrow	guarantee	when	you	can,	but
for	most	functions,	the	choice	is	between	the	basic	and	strong	guarantees.

In	the	case	of	changeBackground,	almost	offering	the	strong	guarantee	is
not	difficult.	First,	we	change	the	type	of	PrettyMenu's	bgImage	data
member	from	a	built-in	Image*	pointer	to	one	of	the	smart	resource-managing



pointers	described	in	Item	13.	Frankly,	this	is	a	good	idea	purely	on	the	basis	of
preventing	resource	leaks.	The	fact	that	it	helps	us	offer	the	strong	exception
safety	guarantee	simply	reinforces	Item	13's	argument	that	using	objects	(such	as
smart	pointers)	to	manage	resources	is	fundamental	to	good	design.	In	the	code
below,	I	show	use	of	TR1::shared_ptr,	because	its	more	intuitive	behavior
when	copied	generally	makes	it	preferable	to	auto_ptr.

Second,	we	reorder	the	statements	in	changeBackground	so	that	we	don't
increment	imageChanges	until	the	image	has	been	changed.	As	a	general
rule,	it's	a	good	policy	not	to	change	the	status	of	an	object	to	indicate	that
something	has	happened	until	something	actually	has.

Here's	the	resulting	code:

class	PrettyMenu	{

		...

		std::tr1::shared_ptr<Image>	bgImage;

		...

};

void	PrettyMenu::changeBackground(std::istream&	imgSrc)

{

		Lock	ml(&mutex);

		bgImage.reset(new	Image(imgSrc));		//	replace	bgImage's	internal



																																					//	pointer	with	the	result	of	the

																																					//	"new	Image"	expression

		++imageChanges;

}

Note	that	there's	no	longer	a	need	to	manually	delete	the	old	image,	because
that's	handled	internally	by	the	smart	pointer.	Furthermore,	the	deletion	takes
place	only	if	the	new	image	is	successfully	created.	More	precisely,	the
tr1::shared_ptr::reset	function	will	be	called	only	if	its	parameter
(the	result	of	"new	Image(imgSrc)")	is	successfully	created.	delete	is
used	only	inside	the	call	to	reset,	so	if	the	function	is	never	entered,	delete
is	never	used.	Note	also	that	the	use	of	an	object	(the	TR1::shared_ptr)	to
manage	a	resource	(the	dynamically	allocated	Image)	has	again	pared	the
length	of	changeBackground.

As	I	said,	those	two	changes	almost	suffice	to	allow	changeBackground	to
offer	the	strong	exception	safety	guarantee.	What's	the	fly	in	the	ointment?	The
parameter	imgSrc.	If	the	Image	constructor	throws	an	exception,	it's	possible
that	the	read	marker	for	the	input	stream	has	been	moved,	and	such	movement
would	be	a	change	in	state	visible	to	the	rest	of	the	program.	Until
changeBackground	addresses	that	issue,	it	offers	only	the	basic	exception
safety	guarantee.

Let's	set	that	aside,	however,	and	pretend	that	changeBackground	does	offer
the	strong	guarantee.	(I'm	confident	you	could	come	up	with	a	way	for	it	to	do
so,	perhaps	by	changing	its	parameter	type	from	an	istream	to	the	name	of	the
file	containing	the	image	data.)	There	is	a	general	design	strategy	that	typically
leads	to	the	strong	guarantee,	and	it's	important	to	be	familiar	with	it.	The
strategy	is	known	as	"copy	and	swap."	In	principle,	it's	very	simple.	Make	a
copy	of	the	object	you	want	to	modify,	then	make	all	needed	changes	to	the
copy.	If	any	of	the	modifying	operations	throws	an	exception,	the	original	object



remains	unchanged.	After	all	the	changes	have	been	successfully	completed,
swap	the	modified	object	with	the	original	in	a	non-throwing	operation.

This	is	usually	implemented	by	putting	all	the	per-object	data	from	the	"real"
object	into	a	separate	implementation	object,	then	giving	the	real	object	a	pointer
to	its	implementation	object.	This	is	often	known	as	the	"pimpl	idiom,"	and	Item
31	describes	it	in	some	detail.	For	PrettyMenu,	it	would	typically	look
something	like	this:

struct	PMImpl	{																															//	PMImpl	=	"PrettyMenu

		std::tr1::shared_ptr<Image>	bgImage;								//	Impl.";	see	below	for

		int	imageChanges;																											//	why	it's	a	struct

};

class	PrettyMenu	{

		...

private:

		Mutex	mutex;

		std::tr1::shared_ptr<PMImpl>	pImpl;

};

void	PrettyMenu::changeBackground(std::istream&	imgSrc)



{

		using	std::swap;																												//	see	Item	25

		Lock	ml(&mutex);																												//	acquire	the	mutex

		std::tr1::shared_ptr<PMImpl>																//	copy	obj.	data

				pNew(new	PMImpl(*pImpl));

		pNew->bgImage.reset(new	Image(imgSrc));					//	modify	the	copy

		++pNew->imageChanges;

		swap(pImpl,	pNew);																										//	swap	the	new

																																														//	data	into	place

}																																													//	release	the	mutex

In	this	example,	I've	chosen	to	make	PMImpl	a	struct	instead	of	a	class,	because
the	encapsulation	of	PrettyMenu	data	is	assured	by	pImpl	being	private.
Making	PMImpl	a	class	would	be	at	least	as	good,	though	somewhat	less



convenient.	(It	would	also	keep	the	object-oriented	purists	at	bay.)	If	desired,
PMImpl	could	be	nested	inside	PrettyMenu,	but	packaging	issues	such	as
that	are	independent	of	writing	exception-safe	code,	which	is	our	concern	here.

The	copy-and-swap	strategy	is	an	excellent	way	to	make	all-or-nothing	changes
to	an	object's	state,	but,	in	general,	it	doesn't	guarantee	that	the	overall	function
is	strongly	exception-safe.	To	see	why,	consider	an	abstraction	of
changeBackground,	someFunc,	that	uses	copy-and-swap,	but	that
includes	calls	to	two	other	functions,	f1	and	f2:

void	someFunc()

{

		...																																					//	make	copy	of	local	state

		f1();

		f2();

		...																																					//	swap	modified	state	into	place

}

It	should	be	clear	that	if	f1	or	f2	is	less	than	strongly	exception-safe,	it	will	be
hard	for	someFunc	to	be	strongly	exception-safe.	For	example,	suppose	that
f1	offers	only	the	basic	guarantee.	For	someFunc	to	offer	the	strong	guarantee,
it	would	have	to	write	code	to	determine	the	state	of	the	entire	program	prior	to
calling	f1,	catch	all	exceptions	from	f1,	then	restore	the	original	state.

Things	aren't	really	any	better	if	both	f1	and	f2	are	strongly	exception	safe.
After	all,	if	f1	runs	to	completion,	the	state	of	the	program	may	have	changed	in
arbitrary	ways,	so	if	f2	then	throws	an	exception,	the	state	of	the	program	is	not



the	same	as	it	was	when	someFunc	was	called,	even	though	f2	didn't	change
anything.

The	problem	is	side	effects.	As	long	as	functions	operate	only	on	local	state
(e.g.,	someFunc	affects	only	the	state	of	the	object	on	which	it's	invoked),	it's
relatively	easy	to	offer	the	strong	guarantee.	When	functions	have	side	effects	on
non-local	data,	it's	much	harder.	If	a	side	effect	of	calling	f1,	for	example,	is
that	a	database	is	modified,	it	will	be	hard	to	make	someFunc	strongly
exception-safe.	There	is,	in	general,	no	way	to	undo	a	database	modification	that
has	already	been	committed;	other	database	clients	may	have	already	seen	the
new	state	of	the	database.

Issues	such	as	these	can	prevent	you	from	offering	the	strong	guarantee	for	a
function,	even	though	you'd	like	to.	Another	issue	is	efficiency.	The	crux	of
copy-and-swap	is	the	idea	of	modifying	a	copy	of	an	object's	data,	then
swapping	the	modified	data	for	the	original	in	a	non-throwing	operation.	This
requires	making	a	copy	of	each	object	to	be	modified,	which	takes	time	and
space	you	may	be	unable	or	unwilling	to	make	available.	The	strong	guarantee	is
highly	desirable,	and	you	should	offer	it	when	it's	practical,	but	it's	not	practical
100%	of	the	time.

When	it's	not,	you'll	have	to	offer	the	basic	guarantee.	In	practice,	you'll
probably	find	that	you	can	offer	the	strong	guarantee	for	some	functions,	but	the
cost	in	efficiency	or	complexity	will	make	it	untenable	for	many	others.	As	long
as	you've	made	a	reasonable	effort	to	offer	the	strong	guarantee	whenever	it's
practical,	no	one	should	be	in	a	position	to	criticize	you	when	you	offer	only	the
basic	guarantee.	For	many	functions,	the	basic	guarantee	is	a	perfectly
reasonable	choice.

Things	are	different	if	you	write	a	function	offering	no	exception-safety
guarantee	at	all,	because	in	this	respect	it's	reasonable	to	assume	that	you're
guilty	until	proven	innocent.	You	should	be	writing	exception-safe	code.	But
you	may	have	a	compelling	defense.	Consider	again	the	implementation	of
someFunc	that	calls	the	functions	f1	and	f2.	Suppose	f2	offers	no	exception
safety	guarantee	at	all,	not	even	the	basic	guarantee.	That	means	that	if	f2	emits
an	exception,	the	program	may	have	leaked	resources	inside	f2.	It	means	that
f2	may	have	corrupted	data	structures,	e.g.,	sorted	arrays	might	not	be	sorted



any	longer,	objects	being	transferred	from	one	data	structure	to	another	might
have	been	lost,	etc.	There's	no	way	that	someFunc	can	compensate	for	those
problems.	If	the	functions	someFunc	calls	offer	no	exception-safety
guarantees,	someFunc	itself	can't	offer	any	guarantees.

Which	brings	me	back	to	pregnancy.	A	female	is	either	pregnant	or	she's	not.	It's
not	possible	to	be	partially	pregnant.	Similarly,	a	software	system	is	either
exception-safe	or	it's	not.	There's	no	such	thing	as	a	partially	exception-safe
system.	If	a	system	has	even	a	single	function	that's	not	exception-safe,	the
system	as	a	whole	is	not	exception-safe,	because	calls	to	that	one	function	could
lead	to	leaked	resources	and	corrupted	data	structures.	Unfortunately,	much	C++
legacy	code	was	written	without	exception	safety	in	mind,	so	many	systems
today	are	not	exception-safe.	They	incorporate	code	that	was	written	in	an
exception-unsafe	manner.

There's	no	reason	to	perpetuate	this	state	of	affairs.	When	writing	new	code	or
modifying	existing	code,	think	carefully	about	how	to	make	it	exception-safe.
Begin	by	using	objects	to	manage	resources.	(Again,	see	Item	13.)	That	will
prevent	resource	leaks.	Follow	that	by	determining	which	of	the	three	exception
safety	guarantees	is	the	strongest	you	can	practically	offer	for	each	function	you
write,	settling	for	no	guarantee	only	if	calls	to	legacy	code	leave	you	no	choice.
Document	your	decisions,	both	for	clients	of	your	functions	and	for	future
maintainers.	A	function's	exception-safety	guarantee	is	a	visible	part	of	its
interface,	so	you	should	choose	it	as	deliberately	as	you	choose	all	other	aspects
of	a	function's	interface.

Forty	years	ago,	goto-laden	code	was	considered	perfectly	good	practice.	Now
we	strive	to	write	structured	control	flows.	Twenty	years	ago,	globally	accessible
data	was	considered	perfectly	good	practice.	Now	we	strive	to	encapsulate	data.
Ten	years	ago,	writing	functions	without	thinking	about	the	impact	of	exceptions
was	considered	perfectly	good	practice.	Now	we	strive	to	write	exception-safe
code.

Time	goes	on.	We	live.	We	learn.

Things	to	Remember

Exception-safe	functions	leak	no	resources	and	allow	no	data



structures	to	become	corrupted,	even	when	exceptions	are
thrown.	Such	functions	offer	the	basic,	strong,	or	nothrow
guarantees.

The	strong	guarantee	can	often	be	implemented	via	copy-and-
swap,	but	the	strong	guarantee	is	not	practical	for	all	functions.

A	function	can	usually	offer	a	guarantee	no	stronger	than	the
weakest	guarantee	of	the	functions	it	calls.



Item	30:	Understand	the	ins	and	outs	of	inlining.

Inline	functions		what	a	wonderful	idea!	They	look	like	functions,	they	act	like
functions,	they're	ever	so	much	better	than	macros	(see	Item	2),	and	you	can	call
them	without	having	to	incur	the	overhead	of	a	function	call.	What	more	could
you	ask	for?

You	actually	get	more	than	you	might	think,	because	avoiding	the	cost	of	a
function	call	is	only	part	of	the	story.	Compiler	optimizations	are	typically
designed	for	stretches	of	code	that	lack	function	calls,	so	when	you	inline	a
function,	you	may	enable	compilers	to	perform	context-specific	optimizations	on
the	body	of	the	function.	Most	compilers	never	perform	such	optimizations	on
"outlined"	function	calls.

In	programming,	however,	as	in	life,	there	is	no	free	lunch,	and	inline	functions
are	no	exception.	The	idea	behind	an	inline	function	is	to	replace	each	call	of
that	function	with	its	code	body,	and	it	doesn't	take	a	Ph.D.	in	statistics	to	see
that	this	is	likely	to	increase	the	size	of	your	object	code.	On	machines	with
limited	memory,	overzealous	inlining	can	give	rise	to	programs	that	are	too	big
for	the	available	space.	Even	with	virtual	memory,	inline-induced	code	bloat	can
lead	to	additional	paging,	a	reduced	instruction	cache	hit	rate,	and	the
performance	penalties	that	accompany	these	things.

On	the	other	hand,	if	an	inline	function	body	is	very	short,	the	code	generated	for
the	function	body	may	be	smaller	than	the	code	generated	for	a	function	call.	If
that	is	the	case,	inlining	the	function	may	actually	lead	to	smaller	object	code
and	a	higher	instruction	cache	hit	rate!

Bear	in	mind	that	inline	is	a	request	to	compilers,	not	a	command.	The
request	can	be	given	implicitly	or	explicitly.	The	implicit	way	is	to	define	a
function	inside	a	class	definition:

class	Person	{

public:



		...

		int	age()	const	{	return	theAge;	}				//	an	implicit	inline	request:	age	is

		...																																			//	defined	in	a	class	definition

private:

		int	theAge;

};

Such	functions	are	usually	member	functions,	but	Item	46	explains	that	friend
functions	can	also	be	defined	inside	classes.	When	they	are,	they're	also
implicitly	declared	inline.

The	explicit	way	to	declare	an	inline	function	is	to	precede	its	definition	with	the
inline	keyword.	For	example,	this	is	how	the	standard	max	template	(from
<algorithm>)	is	often	implemented:

template<typename	T>																															//	an	explicit	inline

inline	const	T&	std::max(const	T&	a,	const	T&	b)			//	request:	std::max	is

{	return	a	<	b	?	b	:	a;	}																										//	preceded	by	"inline"

The	fact	that	max	is	a	template	brings	up	the	observation	that	both	inline
functions	and	templates	are	typically	defined	in	header	files.	This	leads	some



programmers	to	conclude	that	function	templates	must	be	inline.	This	conclusion
is	both	invalid	and	potentially	harmful,	so	it's	worth	looking	into	it	a	bit.

Inline	functions	must	typically	be	in	header	files,	because	most	build
environments	do	inlining	during	compilation.	In	order	to	replace	a	function	call
with	the	body	of	the	called	function,	compilers	must	know	what	the	function
looks	like.	(Some	build	environments	can	inline	during	linking,	and	a	few		e.g.,
managed	environments	based	on	the	.NET	Common	Language	Infrastructure
(CLI)		can	actually	inline	at	runtime.	Such	environments	are	the	exception,
however,	not	the	rule.	Inlining	in	most	C++	programs	is	a	compile-time	activity.)

Templates	are	typically	in	header	files,	because	compilers	need	to	know	what	a
template	looks	like	in	order	to	instantiate	it	when	it's	used.	(Again,	this	is	not
universal.	Some	build	environments	perform	template	instantiation	during
linking.	However,	compile-time	instantiation	is	more	common.)

Template	instantiation	is	independent	of	inlining.	If	you're	writing	a	template
and	you	believe	that	all	the	functions	instantiated	from	the	template	should	be
inlined,	declare	the	template	inline;	that's	what's	done	with	the	std::max
implementation	above.	But	if	you're	writing	a	template	for	functions	that	you
have	no	reason	to	want	inlined,	avoid	declaring	the	template	inline	(either
explicitly	or	implicitly).	Inlining	has	costs,	and	you	don't	want	to	incur	them
without	forethought.	We've	already	mentioned	how	inlining	can	cause	code	bloat
(a	particularly	important	consideration	for	template	authors		see	Item	44),	but
there	are	other	costs,	too,	which	we'll	discuss	in	a	moment.

Before	we	do	that,	let's	finish	the	observation	that	inline	is	a	request	that
compilers	may	ignore.	Most	compilers	refuse	to	inline	functions	they	deem	too
complicated	(e.g.,	those	that	contain	loops	or	are	recursive),	and	all	but	the	most
trivial	calls	to	virtual	functions	defy	inlining.	This	latter	observation	shouldn't	be
a	surprise.	virtual	means	"wait	until	runtime	to	figure	out	which	function	to
call,"	and	inline	means	"before	execution,	replace	the	call	site	with	the	called
function."	If	compilers	don't	know	which	function	will	be	called,	you	can	hardly
blame	them	for	refusing	to	inline	the	function's	body.

It	all	adds	up	to	this:	whether	a	given	inline	function	is	actually	inlined	depends
on	the	build	environment	you're	using		primarily	on	the	compiler.	Fortunately,
most	compilers	have	a	diagnostic	level	that	will	result	in	a	warning	(see	Item	53)



if	they	fail	to	inline	a	function	you've	asked	them	to.

Sometimes	compilers	generate	a	function	body	for	an	inline	function	even	when
they	are	perfectly	willing	to	inline	the	function.	For	example,	if	your	program
takes	the	address	of	an	inline	function,	compilers	must	typically	generate	an
outlined	function	body	for	it.	How	can	they	come	up	with	a	pointer	to	a	function
that	doesn't	exist?	Coupled	with	the	fact	that	compilers	typically	don't	perform
inlining	across	calls	through	function	pointers,	this	means	that	calls	to	an	inline
function	may	or	may	not	be	inlined,	depending	on	how	the	calls	are	made:

	

inline	void	f()	{...}						//	assume	compilers	are	willing	to	inline	calls	to	f

	

	

	

void	(*pf)()	=	f;										//	pf	points	to	f

	

	

	

...

	

	

	

f();																						//	this	call	will	be	inlined,	because	it's	a	"normal"	call

	

pf();																					//	this	call	probably	won't	be,	because	it's	through

	

																										//	a	function	pointer

	

The	specter	of	un-inlined	inline	functions	can	haunt	you	even	if	you	never	use
function	pointers,	because	programmers	aren't	necessarily	the	only	ones	asking
for	pointers	to	functions.	Sometimes	compilers	generate	out-of-line	copies	of
constructors	and	destructors	so	that	they	can	get	pointers	to	those	functions	for
use	during	construction	and	destruction	of	objects	in	arrays.



In	fact,	constructors	and	destructors	are	often	worse	candidates	for	inlining	than
a	casual	examination	would	indicate.	For	example,	consider	the	constructor	for
class	Derived	below:

class	Base	{

public:

	...

private:

			std::string	bm1,	bm2;															//	base	members	1	and	2

};

class	Derived:	public	Base	{

public:

		Derived()	{}																									//	Derived's	ctor	is	empty		or	is	it?

		...

private:

		std::string	dm1,	dm2,	dm3;											//	derived	members	13

};



This	constructor	looks	like	an	excellent	candidate	for	inlining,	since	it	contains
no	code.	But	looks	can	be	deceiving.

C++	makes	various	guarantees	about	things	that	happen	when	objects	are	created
and	destroyed.	When	you	use	new,	for	example,	your	dynamically	created
objects	are	automatically	initialized	by	their	constructors,	and	when	you	use
delete,	the	corresponding	destructors	are	invoked.	When	you	create	an	object,
each	base	class	of	and	each	data	member	in	that	object	is	automatically
constructed,	and	the	reverse	process	regarding	destruction	automatically	occurs
when	an	object	is	destroyed.	If	an	exception	is	thrown	during	construction	of	an
object,	any	parts	of	the	object	that	have	already	been	fully	constructed	are
automatically	destroyed.	In	all	these	scenarios,	C++	says	what	must	happen,	but
it	doesn't	say	how.	That's	up	to	compiler	implementers,	but	it	should	be	clear	that
those	things	don't	happen	by	themselves.	There	has	to	be	some	code	in	your
program	to	make	those	things	happen,	and	that	code		the	code	written	by
compilers	and	inserted	into	your	program	during	compilation		has	to	go
somewhere.	Sometimes	it	ends	up	in	constructors	and	destructors,	so	we	can
imagine	implementations	generating	code	equivalent	to	the	following	for	the
allegedly	empty	Derived	constructor	above:

Derived::Derived()																							//	conceptual	implementation	of

{																																								//	"empty"	Derived	ctor

	Base::Base();																											//	initialize	Base	part

	try	{	dm1.std::string::string();	}						//	try	to	construct	dm1

	catch	(...)	{																											//	if	it	throws,



			Base::~Base();																								//	destroy	base	class	part	and

			throw;																																//	propagate	the	exception

	}

	try	{	dm2.std::string::string();	}						//	try	to	construct	dm2

	catch(...)	{																												//	if	it	throws,

			dm1.std::string::~string();											//	destroy	dm1,

			Base::~Base();																								//	destroy	base	class	part,	and

			throw;																																//	propagate	the	exception

	}

	try	{	dm3.std::string::string();	}						//	construct	dm3

	catch(...)	{																												//	if	it	throws,

			dm2.std::string::~string();											//	destroy	dm2,

			dm1.std::string::~string();											//	destroy	dm1,

			Base::~Base();																								//	destroy	base	class	part,	and

			throw;																																//	propagate	the	exception

	}

}



This	code	is	unrepresentative	of	what	real	compilers	emit,	because	real
compilers	deal	with	exceptions	in	more	sophisticated	ways.	Still,	this	accurately
reflects	the	behavior	that	Derived's	"empty"	constructor	must	offer.	No	matter
how	sophisticated	a	compiler's	exception	implementation,	Derived's
constructor	must	at	least	call	constructors	for	its	data	members	and	base	class,
and	those	calls	(which	might	themselves	be	inlined)	could	affect	its
attractiveness	for	inlining.

The	same	reasoning	applies	to	the	Base	constructor,	so	if	it's	inlined,	all	the
code	inserted	into	it	is	also	inserted	into	the	Derived	constructor	(via	the
Derived	constructor's	call	to	the	Base	constructor).	And	if	the	string
constructor	also	happens	to	be	inlined,	the	Derived	constructor	will	gain	five
copies	of	that	function's	code,	one	for	each	of	the	five	strings	in	a	Derived
object	(the	two	it	inherits	plus	the	three	it	declares	itself).	Perhaps	now	it's	clear
why	it's	not	a	no-brain	decision	whether	to	inline	Derived's	constructor.
Similar	considerations	apply	to	Derived's	destructor,	which,	one	way	or
another,	must	see	to	it	that	all	the	objects	initialized	by	Derived's	constructor
are	properly	destroyed.

Library	designers	must	evaluate	the	impact	of	declaring	functions	inline,
because	it's	impossible	to	provide	binary	upgrades	to	the	client	visible	inline
functions	in	a	library.	In	other	words,	if	f	is	an	inline	function	in	a	library,
clients	of	the	library	compile	the	body	of	f	into	their	applications.	If	a	library
implementer	later	decides	to	change	f,	all	clients	who've	used	f	must	recompile.
This	is	often	undesirable.	On	the	other	hand,	if	f	is	a	non-inline	function,	a
modification	to	f	requires	only	that	clients	relink.	This	is	a	substantially	less
onerous	burden	than	recompiling	and,	if	the	library	containing	the	function	is
dynamically	linked,	one	that	may	be	absorbed	in	a	way	that's	completely
transparent	to	clients.

For	purposes	of	program	development,	it	is	important	to	keep	all	these
considerations	in	mind,	but	from	a	practical	point	of	view	during	coding,	one
fact	dominates	all	others:	most	debuggers	have	trouble	with	inline	functions.



This	should	be	no	great	revelation.	How	do	you	set	a	breakpoint	in	a	function
that	isn't	there?	Although	some	build	environments	manage	to	support
debugging	of	inlined	functions,	many	environments	simply	disable	inlining	for
debug	builds.

This	leads	to	a	logical	strategy	for	determining	which	functions	should	be
declared	inline	and	which	should	not.	Initially,	don't	inline	anything,	or	at	least
limit	your	inlining	to	those	functions	that	must	be	inline	(see	Item	46)	or	are
truly	trivial	(such	as	Person::age	on	page	135).	By	employing	inlines
cautiously,	you	facilitate	your	use	of	a	debugger,	but	you	also	put	inlining	in	its
proper	place:	as	a	hand-applied	optimization.	Don't	forget	the	empirically
determined	rule	of	80-20,	which	states	that	a	typical	program	spends	80%	of	its
time	executing	only	20%	of	its	code.	It's	an	important	rule,	because	it	reminds
you	that	your	goal	as	a	software	developer	is	to	identify	the	20%	of	your	code
that	can	increase	your	program's	overall	performance.	You	can	inline	and
otherwise	tweak	your	functions	until	the	cows	come	home,	but	it's	wasted	effort
unless	you're	focusing	on	the	right	functions.

Things	to	Remember

Limit	most	inlining	to	small,	frequently	called	functions.	This
facilitates	debugging	and	binary	upgradability,	minimizes
potential	code	bloat,	and	maximizes	the	chances	of	greater
program	speed.

Don't	declare	function	templates	inline	just	because	they
appear	in	header	files.



Item31:	Minimize	compilation	dependencies
between	files.

So	you	go	into	your	C++	program	and	make	a	minor	change	to	the
implementation	of	a	class.	Not	the	class	interface,	mind	you,	just	the
implementation;	only	the	private	stuff.	Then	you	rebuild	the	program,	figuring
that	the	exercise	should	take	only	a	few	seconds.	After	all,	only	one	class	has
been	modified.	You	click	on	Build	or	type	make	(or	some	equivalent),	and	you
are	astonished,	then	mortified,	as	you	realize	that	the	whole	world	is	being
recompiled	and	relinked!	Don't	you	just	hate	it	when	that	happens?

The	problem	is	that	C++	doesn't	do	a	very	good	job	of	separating	interfaces	from
implementations.	A	class	definition	specifies	not	only	a	class	interface	but	also	a
fair	number	of	implementation	details.	For	example:

class	Person	{

public:

		Person(const	std::string&	name,	const	Date&	birthday,

									const	Address&	addr);

		std::string	name()	const;

		std::string	birthDate()	const;

		std::string	address()	const;

		...

private:



						std::string	theName;								//	implementation	detail

						Date	theBirthDate;										//	implementation	detail

						Address	theAddress;									//	implementation	detail

};

Here,	class	Person	can't	be	compiled	without	access	to	definitions	for	the
classes	the	Person	implementation	uses,	namely,	string,	Date,	and
Address.	Such	definitions	are	typically	provided	through	#include
directives,	so	in	the	file	defining	the	Person	class,	you	are	likely	to	find
something	like	this:

	

#include	<string>

	

#include	"date.h"

	

#include	"address.h"

	

Unfortunately,	this	sets	up	a	compilation	dependency	between	the	file	defining
Person	and	these	header	files.	If	any	of	these	header	files	is	changed,	or	if	any
of	the	header	files	they	depend	on	changes,	the	file	containing	the	Person	class
must	be	recompiled,	as	must	any	files	that	use	Person.	Such	cascading
compilation	dependencies	have	caused	many	a	project	untold	grief.

You	might	wonder	why	C++	insists	on	putting	the	implementation	details	of	a
class	in	the	class	definition.	For	example,	why	can't	you	define	Person	this
way,	specifying	the	implementation	details	of	the	class	separately?



namespace	std	{

					class	string;													//	forward	declaration	(an	incorrect

}																														//	one		see	below)

class	Date;																				//	forward	declaration

class	Address;																	//	forward	declaration

class	Person	{

public:

						Person(const	std::string&	name,	const	Date&	birthday,

																	const	Address&	addr);

						std::string	name()	const;

						std::string	birthDate()	const;

						std::string	address()	const;

				...

};

If	that	were	possible,	clients	of	Person	would	have	to	recompile	only	if	the



interface	to	the	class	changed.

There	are	two	problems	with	this	idea.	First,	string	is	not	a	class,	it's	a	typedef
(for	basic_string<char>).	As	a	result,	the	forward	declaration	for
string	is	incorrect.	The	proper	forward	declaration	is	substantially	more
complex,	because	it	involves	additional	templates.	That	doesn't	matter,	however,
because	you	shouldn't	try	to	manually	declare	parts	of	the	standard	library.
Instead,	simply	use	the	proper	#includes	and	be	done	with	it.	Standard
headers	are	unlikely	to	be	a	compilation	bottleneck,	especially	if	your	build
environment	allows	you	to	take	advantage	of	precompiled	headers.	If	parsing
standard	headers	really	is	a	problem,	you	may	need	to	change	your	interface
design	to	avoid	using	the	parts	of	the	standard	library	that	give	rise	to	the
undesirable	#includes.

The	second	(and	more	significant)	difficulty	with	forward-declaring	everything
has	to	do	with	the	need	for	compilers	to	know	the	size	of	objects	during
compilation.	Consider:

int	main()

{

	int	x;																//	define	an	int

	Person	p(	params	);			//	define	a	Person

			...

}

When	compilers	see	the	definition	for	x,	they	know	they	must	allocate	enough



space	(typically	on	the	stack)	to	hold	an	int.	No	problem.	Each	compiler	knows
how	big	an	int	is.	When	compilers	see	the	definition	for	p,	they	know	they
have	to	allocate	enough	space	for	a	Person,	but	how	are	they	supposed	to
know	how	big	a	Person	object	is?	The	only	way	they	can	get	that	information
is	to	consult	the	class	definition,	but	if	it	were	legal	for	a	class	definition	to	omit
the	implementation	details,	how	would	compilers	know	how	much	space	to
allocate?

This	question	fails	to	arise	in	languages	like	Smalltalk	and	Java,	because,	when
an	object	is	defined	in	such	languages,	compilers	allocate	only	enough	space	for
a	pointer	to	an	object.	That	is,	they	handle	the	code	above	as	if	it	had	been
written	like	this:

int	main()

{

		int	x;															//	define	an	int

		Person	*p;											//	define	a	pointer	to	a	Person

		...

}

This,	of	course,	is	legal	C++,	so	you	can	play	the	"hide	the	object
implementation	behind	a	pointer"	game	yourself.	One	way	to	do	that	for
Person	is	to	separate	it	into	two	classes,	one	offering	only	an	interface,	the
other	implementing	that	interface.	If	the	implementation	class	is	named
PersonImpl,	Person	would	be	defined	like	this:



#include	<string>																						//	standard	library	components

																																							//	shouldn't	be	forward-declared

#include	<memory>																						//	for	tr1::shared_ptr;	see	below

class	PersonImpl;																						//	forward	decl	of	Person	impl.	class

class	Date;																												//	forward	decls	of	classes	used	in

class	Address;																									//	Person	interface

class	Person	{

public:

	Person(const	std::string&	name,	const	Date&	birthday,

								const	Address&	addr);

	std::string	name()	const;

	std::string	birthDate()	const;

	std::string	address()	const;

	...



private:																																			//	ptr	to	implementation;

		std::tr1::shared_ptr<PersonImpl>	pImpl;		//	see	Item	13	for	info	on

};																																									//	std::tr1::shared_ptr

Here,	the	main	class	(Person)	contains	as	a	data	member	nothing	but	a	pointer
(here,	a	tr1::shared_ptr		see	Item	13)	to	its	implementation	class
(PersonImpl).	Such	a	design	is	often	said	to	be	using	the	pimpl	idiom
("pointer	to	implementation").	Within	such	classes,	the	name	of	the	pointer	is
often	pImpl,	as	it	is	above.

With	this	design,	clients	of	Person	are	divorced	from	the	details	of	dates,
addresses,	and	persons.	The	implementations	of	those	classes	can	be	modified	at
will,	but	Person	clients	need	not	recompile.	In	addition,	because	they're	unable
to	see	the	details	of	Person's	implementation,	clients	are	unlikely	to	write	code
that	somehow	depends	on	those	details.	This	is	a	true	separation	of	interface	and
implementation.

The	key	to	this	separation	is	replacement	of	dependencies	on	definitions	with
dependencies	on	declarations.	That's	the	essence	of	minimizing	compilation
dependencies:	make	your	header	files	self-sufficient	whenever	it's	practical,	and
when	it's	not,	depend	on	declarations	in	other	files,	not	definitions.	Everything
else	flows	from	this	simple	design	strategy.	Hence:

Avoid	using	objects	when	object	references	and	pointers	will	do.	You
may	define	references	and	pointers	to	a	type	with	only	a	declaration	for	the
type.	Defining	objects	of	a	type	necessitates	the	presence	of	the	type's
definition.

Depend	on	class	declarations	instead	of	class	definitions	whenever	you
can.	Note	that	you	never	need	a	class	definition	to	declare	a	function	using
that	class,	not	even	if	the	function	passes	or	returns	the	class	type	by	value:



class	Date;																								//	class	declaration

Date	today();																						//	fine		no	definition

void	clearAppointments(Date	d);				//	of	Date	is	needed

Of	course,	pass-by-value	is	generally	a	bad	idea	(see	Item	20),	but	if	you
find	yourself	using	it	for	some	reason,	there's	still	no	justification	for
introducing	unnecessary	compilation	dependencies.

The	ability	to	declare	today	and	clearAppointments	without
defining	Date	may	surprise	you,	but	it's	not	as	curious	as	it	seems.	If
anybody	calls	those	functions,	Date's	definition	must	have	been	seen	prior
to	the	call.	Why	bother	to	declare	functions	that	nobody	calls,	you	wonder?
Simple.	It's	not	that	nobody	calls	them,	it's	that	not	everybody	calls	them.	If
you	have	a	library	containing	dozens	of	function	declarations,	it's	unlikely
that	every	client	calls	every	function.	By	moving	the	onus	of	providing
class	definitions	from	your	header	file	of	function	declarations	to	clients'
files	containing	function	calls,	you	eliminate	artificial	client	dependencies
on	type	definitions	they	don't	really	need.

Provide	separate	header	files	for	declarations	and	definitions.	In	order
to	facilitate	adherence	to	the	above	guidelines,	header	files	need	to	come	in
pairs:	one	for	declarations,	the	other	for	definitions.	These	files	must	be
kept	consistent,	of	course.	If	a	declaration	is	changed	in	one	place,	it	must
be	changed	in	both.	As	a	result,	library	clients	should	always	#include	a
declaration	file	instead	of	forward-declaring	something	themselves,	and
library	authors	should	provide	both	header	files.	For	example,	the	Date
client	wishing	to	declare	today	and	clearAppointments	shouldn't
manually	forward-declare	Date	as	shown	above.	Rather,	it	should
#include	the	appropriate	header	of	declarations:



#include	"datefwd.h"												//	header	file	declaring	(but	not

																																//	defining)	class	Date

Date	today();																			//	as	before

void	clearAppointments(Date	d);

The	name	of	the	declaration-only	header	file	"datefwd.h"	is	based	on	the
header	<iosfwd>	from	the	standard	C++	library	(see	Item	54).
<iosfwd>	contains	declarations	of	iostream	components	whose
corresponding	definitions	are	in	several	different	headers,	including
<sstream>,	<streambuf>,	<fstream>,	and	<iostream>.

<iosfwd>	is	instructive	for	another	reason,	and	that's	to	make	clear	that
the	advice	in	this	Item	applies	as	well	to	templates	as	to	non-templates.
Although	Item	30	explains	that	in	many	build	environments,	template
definitions	are	typically	found	in	header	files,	some	build	environments
allow	template	definitions	to	be	in	non-header	files,	so	it	still	makes	sense
to	provide	declaration-only	headers	for	templates.	<iosfwd>	is	one	such
header.

C++	also	offers	the	export	keyword	to	allow	the	separation	of	template
declarations	from	template	definitions.	Unfortunately,	compiler	support	for
export	is	scanty,	and	real-world	experience	with	export	is	scantier	still.
As	a	result,	it's	too	early	to	say	what	role	export	will	play	in	effective
C++	programming.

Classes	like	Person	that	employ	the	pimpl	idiom	are	often	called	Handle
classes.	Lest	you	wonder	how	such	classes	actually	do	anything,	one	way	is	to
forward	all	their	function	calls	to	the	corresponding	implementation	classes	and



have	those	classes	do	the	real	work.	For	example,	here's	how	two	of	Person's
member	functions	could	be	implemented:

			#include	"Person.h"							//	we're	implementing	the	Person	class,

																													//	so	we	must	#include	its	class	definition

#include	"PersonImpl.h"						//	we	must	also	#include	PersonImpl's	class

																													//	definition,	otherwise	we	couldn't	call

																													//	its	member	functions;	note	that	

																													//	PersonImpl	has	exactly	the	same

																													//	member	functions	as	Person		their

																													//	interfaces	are	identical

Person::Person(const	std::string&	name,	const	Date&	birthday,

															const	Address&	addr)

:	pImpl(new	PersonImpl(name,	birthday,	addr))

{}

std::string	Person::name()	const

{



		return	pImpl->name();

}

Note	how	the	Person	constructor	calls	the	PersonImpl	constructor	(by
using	new		see	Item	16)	and	how	Person::name	calls
PersonImpl::name.	This	is	important.	Making	Person	a	Handle	class
doesn't	change	what	Person	does,	it	just	changes	the	way	it	does	it.

An	alternative	to	the	Handle	class	approach	is	to	make	Person	a	special	kind	of
abstract	base	class	called	an	Interface	class.	The	purpose	of	such	a	class	is	to
specify	an	interface	for	derived	classes	(see	Item	34).	As	a	result,	it	typically	has
no	data	members,	no	constructors,	a	virtual	destructor	(see	Item	7),	and	a	set	of
pure	virtual	functions	that	specify	the	interface.

Interface	classes	are	akin	to	Java's	and	.NET's	Interfaces,	but	C++	doesn't
impose	the	restrictions	on	Interface	classes	that	Java	and	.NET	impose	on
Interfaces.	Neither	Java	nor	.NET	allow	data	members	or	function
implementations	in	Interfaces,	for	example,	but	C++	forbids	neither	of	these
things.	C++'s	greater	flexibility	can	be	useful.	As	Item	36	explains,	the
implementation	of	non-virtual	functions	should	be	the	same	for	all	classes	in	a
hierarchy,	so	it	makes	sense	to	implement	such	functions	as	part	of	the	Interface
class	that	declares	them.

An	Interface	class	for	Person	could	look	like	this:

class	Person	{

public:

		virtual	~Person();



		virtual	std::string	name()	const	=	0;

		virtual	std::string	birthDate()	const	=	0;

		virtual	std::string	address()	const	=	0;

		...

};

Clients	of	this	class	must	program	in	terms	of	Person	pointers	and	references,
because	it's	not	possible	to	instantiate	classes	containing	pure	virtual	functions.
(It	is,	however,	possible	to	instantiate	classes	derived	from	Person		see	below.)
Like	clients	of	Handle	classes,	clients	of	Interface	classes	need	not	recompile
unless	the	Interface	class's	interface	is	modified.

Clients	of	an	Interface	class	must	have	a	way	to	create	new	objects.	They
typically	do	it	by	calling	a	function	that	plays	the	role	of	the	constructor	for	the
derived	classes	that	are	actually	instantiated.	Such	functions	are	typically	called
factory	functions	(see	Item	13)	or	virtual	constructors.	They	return	pointers
(preferably	smart	pointers		see	Item	18)	to	dynamically	allocated	objects	that
support	the	Interface	class's	interface.	Such	functions	are	often	declared
static	inside	the	Interface	class:

class	Person	{

public:

	...



	static	std::tr1::shared_ptr<Person>				//	return	a	tr1::shared_ptr	to	a	new

			create(const	std::string&	name,						//	Person	initialized	with	the

										const	Date&	birthday,									//	given	params;	see	Item	18	for

										const	Address&	addr);									//	why	a	tr1::shared_ptr	is	returned

	...

};

Clients	use	them	like	this:

std::string	name;

Date	dateOfBirth;

Address	address;

...

//	create	an	object	supporting	the	Person	interface

std::tr1::shared_ptr<Person>	pp(Person::create(name,	dateOfBirth,	address)

...



std::cout	<<	pp->name()																	//	use	the	object	via	the

										<<	"	was	born	on	"												//	Person	interface

	 				<<	pp->birthDate()

										<<	"	and	now	lives	at	"

										<<	pp->address();

...																																					//	the	object	is	automatically

																																								//	deleted	when	pp	goes	out	of

																																								//	scope		see	Item	13

At	some	point,	of	course,	concrete	classes	supporting	the	Interface	class's
interface	must	be	defined	and	real	constructors	must	be	called.	That	all	happens
behind	the	scenes	inside	the	files	containing	the	implementations	of	the	virtual
constructors.	For	example,	the	Interface	class	Person	might	have	a	concrete
derived	class	RealPerson	that	provides	implementations	for	the	virtual
functions	it	inherits:

class	RealPerson:	public	Person	{

public:

		RealPerson(const	std::string&	name,	const	Date&	birthday,

													const	Address&	addr)

		:	theName(name),	theBirthDate(birthday),	theAddress(addr)



		{}

		virtual	~RealPerson()	{}

		std::string	name()	const;								//	implementations	of	these	

		std::string	birthDate()	const;			//	functions	are	not	shown,	but

		std::string	address()	const;					//	they	are	easy	to	imagine

private:

		std::string	theName;

		Date	theBirthDate;

		Address	theAddress;

};

Given	RealPerson,	it	is	truly	trivial	to	write	Person::create:

std::tr1::shared_ptr<Person>	Person::create(const	std::string&	name,

																																												const	Date&	birthday,



																																												const	Address&	addr)

{

		return	std::tr1::shared_ptr<Person>(new	RealPerson(name,	birthday,addr));

}

A	more	realistic	implementation	of	Person::create	would	create	different
types	of	derived	class	objects,	depending	on	e.g.,	the	values	of	additional
function	parameters,	data	read	from	a	file	or	database,	environment	variables,
etc.

RealPerson	demonstrates	one	of	the	two	most	common	mechanisms	for
implementing	an	Interface	class:	it	inherits	its	interface	specification	from	the
Interface	class	(Person),	then	it	implements	the	functions	in	the	interface.	A
second	way	to	implement	an	Interface	class	involves	multiple	inheritance,	a
topic	explored	in	Item	40.

Handle	classes	and	Interface	classes	decouple	interfaces	from	implementations,
thereby	reducing	compilation	dependencies	between	files.	Cynic	that	you	are,	I
know	you're	waiting	for	the	fine	print.	"What	does	all	this	hocus-pocus	cost
me?"	you	mutter.	The	answer	is	the	usual	one	in	computer	science:	it	costs	you
some	speed	at	runtime,	plus	some	additional	memory	per	object.

In	the	case	of	Handle	classes,	member	functions	have	to	go	through	the
implementation	pointer	to	get	to	the	object's	data.	That	adds	one	level	of
indirection	per	access.	And	you	must	add	the	size	of	this	implementation	pointer
to	the	amount	of	memory	required	to	store	each	object.	Finally,	the
implementation	pointer	has	to	be	initialized	(in	the	Handle	class's	constructors)
to	point	to	a	dynamically	allocated	implementation	object,	so	you	incur	the
overhead	inherent	in	dynamic	memory	allocation	(and	subsequent	deallocation)
and	the	possibility	of	encountering	bad_alloc	(out-of-memory)	exceptions.

For	Interface	classes,	every	function	call	is	virtual,	so	you	pay	the	cost	of	an



indirect	jump	each	time	you	make	a	function	call	(see	Item	7).	Also,	objects
derived	from	the	Interface	class	must	contain	a	virtual	table	pointer	(again,	see
Item	7).	This	pointer	may	increase	the	amount	of	memory	needed	to	store	an
object,	depending	on	whether	the	Interface	class	is	the	exclusive	source	of
virtual	functions	for	the	object.

Finally,	neither	Handle	classes	nor	Interface	classes	can	get	much	use	out	of
inline	functions.	Item	30	explains	why	function	bodies	must	typically	be	in
header	files	in	order	to	be	inlined,	but	Handle	and	Interface	classes	are
specifically	designed	to	hide	implementation	details	like	function	bodies.

It	would	be	a	serious	mistake,	however,	to	dismiss	Handle	classes	and	Interface
classes	simply	because	they	have	a	cost	associated	with	them.	So	do	virtual
functions,	and	you	wouldn't	want	to	forgo	those,	would	you?	(If	so,	you're
reading	the	wrong	book.)	Instead,	consider	using	these	techniques	in	an
evolutionary	manner.	Use	Handle	classes	and	Interface	classes	during
development	to	minimize	the	impact	on	clients	when	implementations	change.
Replace	Handle	classes	and	Interface	classes	with	concrete	classes	for
production	use	when	it	can	be	shown	that	the	difference	in	speed	and/or	size	is
significant	enough	to	justify	the	increased	coupling	between	classes.

Things	to	Remember

The	general	idea	behind	minimizing	compilation	dependencies
is	to	depend	on	declarations	instead	of	definitions.	Two
approaches	based	on	this	idea	are	Handle	classes	and	Interface
classes.

Library	header	files	should	exist	in	full	and	declaration-only
forms.	This	applies	regardless	of	whether	templates	are
involved.



Chapter	6.	Inheritance	and	Object-
Oriented	Design
Object-oriented	programming	(OOP)	has	been	the	rage	for	almost	two	decades,
so	it's	likely	that	you	have	some	experience	with	the	ideas	of	inheritance,
derivation,	and	virtual	functions.	Even	if	you've	been	programming	only	in	C,
you've	surely	not	escaped	the	OOP	hoopla.

Still,	OOP	in	C++	is	probably	a	bit	different	from	what	you're	used	to.
Inheritance	can	be	single	or	multiple,	and	each	inheritance	link	can	be	public,
protected,	or	private.	Each	link	can	also	be	virtual	or	non-virtual.	Then	there	are
the	member	function	options.	Virtual?	Non-virtual?	Pure	virtual?	And	the
interactions	with	other	language	features.	How	do	default	parameter	values
interact	with	virtual	functions?	How	does	inheritance	affect	C++'s	name	lookup
rules?	And	what	about	design	options?	If	a	class's	behavior	needs	to	be
modifiable,	is	a	virtual	function	the	best	way	to	do	that?

This	chapter	sorts	it	all	out.	Furthermore,	I	explain	what	the	different	features	in
C++	really	mean		what	you	are	really	expressing	when	you	use	a	particular
construct.	For	example,	public	inheritance	means	"is-a,"	and	if	you	try	to	make	it
mean	anything	else,	you'll	run	into	trouble.	Similarly,	a	virtual	function	means
"interface	must	be	inherited,"	while	a	non-virtual	function	means	"both	interface
and	implementation	must	be	inherited."	Failing	to	distinguish	between	these
meanings	has	caused	C++	programmers	considerable	grief.

If	you	understand	the	meanings	of	C++'s	various	features,	you'll	find	that	your
outlook	on	OOP	changes.	Instead	of	it	being	an	exercise	in	differentiating
between	language	features,	it	will	become	a	matter	of	determining	what	you
want	to	say	about	your	software	system.	And	once	you	know	what	you	want	to
say,	the	translation	into	C++	is	not	terribly	demanding.



Item	32:	Make	sure	public	inheritance	models
"is-a."

In	his	book,	Some	Must	Watch	While	Some	Must	Sleep	(W.	H.	Freeman	and
Company,	1974),	William	Dement	relates	the	story	of	his	attempt	to	fix	in	the
minds	of	his	students	the	most	important	lessons	of	his	course.	It	is	claimed,	he
told	his	class,	that	the	average	British	schoolchild	remembers	little	more	history
than	that	the	Battle	of	Hastings	was	in	1066.	If	a	child	remembers	little	else,
Dement	emphasized,	he	or	she	remembers	the	date	1066.	For	the	students	in	his
course,	Dement	went	on,	there	were	only	a	few	central	messages,	including,
interestingly	enough,	the	fact	that	sleeping	pills	cause	insomnia.	He	implored	his
students	to	remember	these	few	critical	facts	even	if	they	forgot	everything	else
discussed	in	the	course,	and	he	returned	to	these	fundamental	precepts	repeatedly
during	the	term.

At	the	end	of	the	course,	the	last	question	on	the	final	exam	was,	"Write	one
thing	from	the	course	that	you	will	surely	remember	for	the	rest	of	your	life."
When	Dement	graded	the	exams,	he	was	stunned.	Nearly	everyone	had	written
"1066."

It	is	thus	with	great	trepidation	that	I	proclaim	to	you	now	that	the	single	most
important	rule	in	object-oriented	programming	with	C++	is	this:	public
inheritance	means	"is-a."	Commit	this	rule	to	memory.

If	you	write	that	class	D	("Derived")	publicly	inherits	from	class	B	("Base"),	you
are	telling	C++	compilers	(as	well	as	human	readers	of	your	code)	that	every
object	of	type	D	is	also	an	object	of	type	B,	but	not	vice	versa.	You	are	saying
that	B	represents	a	more	general	concept	than	D,	that	D	represents	a	more
specialized	concept	than	B.	You	are	asserting	that	anywhere	an	object	of	type	B
can	be	used,	an	object	of	type	D	can	be	used	just	as	well,	because	every	object	of
type	D	is	an	object	of	type	B.	On	the	other	hand,	if	you	need	an	object	of	type	D,
an	object	of	type	B	will	not	do:	every	D	is-a	B,	but	not	vice	versa.

C++	enforces	this	interpretation	of	public	inheritance.	Consider	this	example:



class	Person	{...};

class	Student:	public	Person	{...};

We	know	from	everyday	experience	that	every	student	is	a	person,	but	not	every
person	is	a	student.	That	is	exactly	what	this	hierarchy	asserts.	We	expect	that
anything	that	is	true	of	a	person		for	example,	that	he	or	she	has	a	date	of	birth		is
also	true	of	a	student.	We	do	not	expect	that	everything	that	is	true	of	a	student	
that	he	or	she	is	enrolled	in	a	particular	school,	for	instance		is	true	of	people	in
general.	The	notion	of	a	person	is	more	general	than	is	that	of	a	student;	a
student	is	a	specialized	type	of	person.

Within	the	realm	of	C++,	any	function	that	expects	an	argument	of	type
Person	(or	pointer-to-Person	or	reference-to-Person)	will	also	take	a
Student	object	(or	pointer-to-Student	or	reference-to-Student):

void	eat(const	Person&	p);												//	anyone	can	eat

void	study(const	Student&	s);									//	only	students	study

Person	p;																													//	p	is	a	Person

Student	s;																												//	s	is	a	Student



eat(p);																															//	fine,	p	is	a	Person

eat(s);																															//	fine,	s	is	a	Student,

																																						//	and	a	Student	is-a	Person

study(s);																													//	fine

study(p);																													//	error!	p	isn't	a	Student

This	is	true	only	for	public	inheritance.	C++	will	behave	as	I've	described	only	if
Student	is	publicly	derived	from	Person.	Private	inheritance	means
something	entirely	different	(see	Item	39),	and	protected	inheritance	is
something	whose	meaning	eludes	me	to	this	day.

The	equivalence	of	public	inheritance	and	is-a	sounds	simple,	but	sometimes
your	intuition	can	mislead	you.	For	example,	it	is	a	fact	that	a	penguin	is	a	bird,
and	it	is	a	fact	that	birds	can	fly.	If	we	naively	try	to	express	this	in	C++,	our
effort	yields:

class	Bird	{

public:

		virtual	void	fly();																		//	birds	can	fly



		...

};

class	Penguin:public	Bird	{												//	penguins	are	birds

		...

};

Suddenly	we	are	in	trouble,	because	this	hierarchy	says	that	penguins	can	fly,
which	we	know	is	not	true.	What	happened?

In	this	case,	we	are	the	victims	of	an	imprecise	language:	English.	When	we	say
that	birds	can	fly,	we	don't	mean	that	all	types	of	birds	can	fly,	only	that,	in
general,	birds	have	the	ability	to	fly.	If	we	were	more	precise,	we'd	recognize
that	there	are	several	types	of	non-flying	birds,	and	we	would	come	up	with	the
following	hierarchy,	which	models	reality	much	better:

class	Bird	{

		...																																							//	no	fly	function	is	declared

};

class	FlyingBird:	public	Bird	{

public:

		virtual	void	fly();



		...

};

class	Penguin:	public	Bird	{

		...																																							//	no	fly	function	is	declared

};

This	hierarchy	is	much	more	faithful	to	what	we	really	know	than	was	the
original	design.

Yet	we're	not	finished	with	these	fowl	matters,	because	for	some	software
systems,	there	may	be	no	need	to	distinguish	between	flying	and	non-flying
birds.	If	your	application	has	much	to	do	with	beaks	and	wings	and	nothing	to	do
with	flying,	the	original	two-class	hierarchy	might	be	quite	satisfactory.	That's	a
simple	reflection	of	the	fact	that	there	is	no	one	ideal	design	for	all	software.	The
best	design	depends	on	what	the	system	is	expected	to	do,	both	now	and	in	the
future.	If	your	application	has	no	knowledge	of	flying	and	isn't	expected	to	ever
have	any,	failing	to	distinguish	between	flying	and	non-flying	birds	may	be	a
perfectly	valid	design	decision.	In	fact,	it	may	be	preferable	to	a	design	that	does
distinguish	between	them,	because	such	a	distinction	would	be	absent	from	the
world	you	are	trying	to	model.

There	is	another	school	of	thought	on	how	to	handle	what	I	call	the	"All	birds
can	fly,	penguins	are	birds,	penguins	can't	fly,	uh	oh"	problem.	That	is	to
redefine	the	fly	function	for	penguins	so	that	it	generates	a	runtime	error:



void	error(const	std::string&	msg);							//	defined	elsewhere

class	Penguin:	public	Bird	{

public:

		virtual	void	fly()	{	error("Attempt	to	make	a	penguin	fly!");}

		...

};

It's	important	to	recognize	that	this	says	something	different	from	what	you
might	think.	This	does	not	say,	"Penguins	can't	fly."	This	says,	"Penguins	can
fly,	but	it's	an	error	for	them	to	actually	try	to	do	it."

How	can	you	tell	the	difference?	From	the	time	at	which	the	error	is	detected.
The	injunction,	"Penguins	can't	fly,"	can	be	enforced	by	compilers,	but
violations	of	the	rule,	"It's	an	error	for	penguins	to	actually	try	to	fly,"	can	be
detected	only	at	runtime.

To	express	the	constraint,	"Penguins	can't	fly		period,"	you	make	sure	that	no
such	function	is	defined	for	Penguin	objects:

class	Bird	{



		...																																//	no	fly	function	is	declared

};

class	Penguin:	public	Bird	{

		...																																//	no	fly	function	is	declared

};

If	you	now	try	to	make	a	penguin	fly,	compilers	will	reprimand	you	for	your
transgression:

	

Penguin	p;

	

	

	

p.fly();																					//	error!

	

This	is	very	different	from	the	behavior	you	get	if	you	adopt	the	approach	that
generates	runtime	errors.	With	that	methodology,	compilers	won't	say	a	word



about	the	call	to	p.fly.	Item	18	explains	that	good	interfaces	prevent	invalid
code	from	compiling,	so	you	should	prefer	the	design	that	rejects	penguin	flight
attempts	during	compilation	to	the	one	that	detects	them	only	at	runtime.

Perhaps	you'll	concede	that	your	ornithological	intuition	may	be	lacking,	but	you
can	rely	on	your	mastery	of	elementary	geometry,	right?	I	mean,	how
complicated	can	rectangles	and	squares	be?

Well,	answer	this	simple	question:	should	class	Square	publicly	inherit	from
class	Rectangle?

"Duh!"	you	say,	"Of	course	it	should!	Everybody	knows	that	a	square	is	a
rectangle,	but	generally	not	vice	versa."	True	enough,	at	least	in	school.	But	I
don't	think	we're	in	school	anymore.

Consider	this	code:

class	Rectangle	{

public:

		virtual	void	setHeight(int	newHeight);

		virtual	void	setWidth(int	newWidth);

		virtual	int	height()	const;															//	return	current	values

		virtual	int	width()	const;



		...

};

void	makeBigger(Rectangle&	r)															//	function	to	increase	r's	area

{

		int	oldHeight	=	r.height();

		r.setWidth(r.width()	+	10);															//	add	10	to	r's	width

		assert(r.height()	==	oldHeight);										//	assert	that	r's

}																																											//	height	is	unchanged

Clearly,	the	assertion	should	never	fail.	makeBigger	only	changes	r's	width.
Its	height	is	never	modified.

Now	consider	this	code,	which	uses	public	inheritance	to	allow	squares	to	be
treated	like	rectangles:

class	Square:	public	Rectangle	{...};



Square	s;

...

assert(s.width()	==	s.height());											//	this	must	be	true	for	all	squares

makeBigger(s);																													//	by	inheritance,	s	is-a	Rectangle,

																																											//	so	we	can	increase	its	area

assert(s.width()	==	s.height());											//	this	must	still	be	true

																																											//	for	all	squares

It's	just	as	clear	that	this	second	assertion	should	also	never	fail.	By	definition,
the	width	of	a	square	is	the	same	as	its	height.

But	now	we	have	a	problem.	How	can	we	reconcile	the	following	assertions?

Before	calling	makeBigger,	s's	height	is	the	same	as	its	width;

Inside	makeBigger,	s's	width	is	changed,	but	its	height	is	not;

After	returning	from	makeBigger,	s's	height	is	again	the	same	as	its
width.	(Note	that	s	is	passed	to	makeBigger	by	reference,	so



makeBigger	modifies	s	itself,	not	a	copy	of	s.)

Well?

Welcome	to	the	wonderful	world	of	public	inheritance,	where	the	instincts
you've	developed	in	other	fields	of	study		including	mathematics		may	not	serve
you	as	well	as	you	expect.	The	fundamental	difficulty	in	this	case	is	that
something	applicable	to	a	rectangle	(its	width	may	be	modified	independently	of
its	height)	is	not	applicable	to	a	square	(its	width	and	height	must	be	the	same).
But	public	inheritance	asserts	that	everything	that	applies	to	base	class	objects	
everything!		also	applies	to	derived	class	objects.	In	the	case	of	rectangles	and
squares	(as	well	as	an	example	involving	sets	and	lists	in	Item	38),	that	assertion
fails	to	hold,	so	using	public	inheritance	to	model	their	relationship	is	simply
incorrect.	Compilers	will	let	you	do	it,	but	as	we've	just	seen,	that's	no	guarantee
the	code	will	behave	properly.	As	every	programmer	must	learn	(some	more
often	than	others),	just	because	the	code	compiles	doesn't	mean	it	will	work.

Don't	fret	that	the	software	intuition	you've	developed	over	the	years	will	fail
you	as	you	approach	object-oriented	design.	That	knowledge	is	still	valuable,	but
now	that	you've	added	inheritance	to	your	arsenal	of	design	alternatives,	you'll
have	to	augment	your	intuition	with	new	insights	to	guide	you	in	inheritance's
proper	application.	In	time,	the	notion	of	having	Penguin	inherit	from	Bird	or
Square	inherit	from	Rectangle	will	give	you	the	same	funny	feeling	you
probably	get	now	when	somebody	shows	you	a	function	several	pages	long.	It's
possibly	the	right	way	to	approach	things,	it's	just	not	very	likely.

The	is-a	relationship	is	not	the	only	one	that	can	exist	between	classes.	Two
other	common	inter-class	relationships	are	"has-a"	and	"is-implemented-in-
terms-of."	These	relationships	are	considered	in	Items	38	and	39.	It's	not
uncommon	for	C++	designs	to	go	awry	because	one	of	these	other	important
relationships	was	incorrectly	modeled	as	is-a,	so	you	should	make	sure	that	you
understand	the	differences	among	these	relationships	and	that	you	know	how
each	is	best	modeled	in	C++.

Things	to	Remember

Public	inheritance	means	"is-a."	Everything	that	applies	to	base



classes	must	also	apply	to	derived	classes,	because	every	derived
class	object	is	a	base	class	object.



Item	33:	Avoid	hiding	inherited	names

Shakespeare	had	a	thing	about	names.	"What's	in	a	name?"	he	asked,	"A	rose	by
any	other	name	would	smell	as	sweet."	The	Bard	also	wrote,	"he	that	filches
from	me	my	good	name	...	makes	me	poor	indeed."	Right.	Which	brings	us	to
inherited	names	in	C++.

The	matter	actually	has	nothing	to	do	with	inheritance.	It	has	to	do	with	scopes.
We	all	know	that	in	code	like	this,

int	x;																								//	global	variable

void	someFunc()

{

		double	x;																			//	local	variable

		std::cin	>>	x;														//	read	a	new	value	for	local	x

}

the	statement	reading	into	x	refers	to	the	local	variable	x	instead	of	the	global
variable	x,	because	names	in	inner	scopes	hide	("shadow")	names	in	outer
scopes.	We	can	visualize	the	scope	situation	this	way:



When	compilers	are	in	someFunc's	scope	and	they	encounter	the	name	x,	they
look	in	the	local	scope	to	see	if	there	is	something	with	that	name.	Because	there
is,	they	never	examine	any	other	scope.	In	this	case,	someFunc's	x	is	of	type
double	and	the	global	x	is	of	type	int,	but	that	doesn't	matter.	C++'s	name-
hiding	rules	do	just	that:	hide	names.	Whether	the	names	correspond	to	the	same
or	different	types	is	immaterial.	In	this	case,	a	double	named	x	hides	an	int
named	x.

Enter	inheritance.	We	know	that	when	we're	inside	a	derived	class	member
function	and	we	refer	to	something	in	a	base	class	(e.g.,	a	member	function,	a
typedef,	or	a	data	member),	compilers	can	find	what	we're	referring	to	because
derived	classes	inherit	the	things	declared	in	base	classes.	The	way	that	actually
works	is	that	the	scope	of	a	derived	class	is	nested	inside	its	base	class's	scope.
For	example:

class	Base	{

private:

		int	x;

public:

		virtual	void	mf1()	=	0;

		virtual	void	mf2();

		void	mf3();



		...

};

class	Derived:	public	Base	{

public:

		virtual	void	mf1();

		void	mf4();

		...

};

This	example	includes	a	mix	of	public	and	private	names	as	well	as	names	of
both	data	members	and	member	functions.	The	member	functions	are	pure



virtual,	simple	(impure)	virtual,	and	non-virtual.	That's	to	emphasize	that	we're
talking	about	names.	The	example	could	also	have	included	names	of	types,	e.g.,
enums,	nested	classes,	and	typedefs.	The	only	thing	that	matters	in	this
discussion	is	that	they're	names.	What	they're	names	of	is	irrelevant.	The
example	uses	single	inheritance,	but	once	you	understand	what's	happening
under	single	inheritance,	C++'s	behavior	under	multiple	inheritance	is	easy	to
anticipate.

Suppose	mf4	in	the	derived	class	is	implemented,	in	part,	like	this:

void	Derived::mf4()

{

		...

		mf2();

		...

}

When	compilers	see	the	use	of	the	name	mf2	here,	they	have	to	figure	out	what
it	refers	to.	They	do	that	by	searching	scopes	for	a	declaration	of	something
named	mf2.	First	they	look	in	the	local	scope	(that	of	mf4),	but	they	find	no
declaration	for	anything	called	mf2.	They	then	search	the	containing	scope,	that
of	the	class	Derived.	They	still	find	nothing	named	mf2,	so	they	move	on	to
the	next	containing	scope,	that	of	the	base	class.	There	they	find	something
named	mf2,	so	the	search	stops.	If	there	were	no	mf2	in	Base,	the	search



would	continue,	first	to	the	namespace(s)	containing	Base,	if	any,	and	finally	to
the	global	scope.

The	process	I	just	described	is	accurate,	but	it's	not	a	comprehensive	description
of	how	names	are	found	in	C++.	Our	goal	isn't	to	know	enough	about	name
lookup	to	write	a	compiler,	however.	It's	to	know	enough	to	avoid	unpleasant
surprises,	and	for	that	task,	we	already	have	plenty	of	information.

Consider	the	previous	example	again,	except	this	time	let's	overload	mf1	and
mf3,	and	let's	add	a	version	of	mf3	to	Derived.	(As	Item	36	explains,
Derived's	overloading	of	mf3		an	inherited	non-virtual	function		makes	this
design	instantly	suspicious,	but	in	the	interest	of	understanding	name	visibility
under	inheritance,	we'll	overlook	that.)

class	Base	{

private:

		int	x;

public:

		virtual	void	mf1()	=	0;

		virtual	void	mf1(int);

		virtual	void	mf2();

		void	mf3();



		void	mf3(double);

		...

};

class	Derived:	public	Base	{

public:

		virtual	void	mf1();

		void	mf3();

		void	mf4();

		...

};

This	code	leads	to	behavior	that	surprises	every	C++	programmer	the	first	time



they	encounter	it.	The	scope-based	name	hiding	rule	hasn't	changed,	so	all
functions	named	mf1	and	mf3	in	the	base	class	are	hidden	by	the	functions
named	mf1	and	mf3	in	the	derived	class.	From	the	perspective	of	name	lookup,
Base::mf1	and	Base::mf3	are	no	longer	inherited	by	Derived!

	

Derived	d;

	

int	x;

	

	

	

...

	

d.mf1();																			//	fine,	calls	Derived::mf1

	

d.mf1(x);																		//	error!	Derived::mf1	hides	Base::mf1

	

d.mf2();																			//	fine,	calls	Base::mf2

	

	

	

d.mf3();																			//	fine,	calls	Derived::mf3

	

d.mf3(x);																		//	error!	Derived::mf3	hides	Base::mf3

	

As	you	can	see,	this	applies	even	though	the	functions	in	the	base	and	derived
classes	take	different	parameter	types,	and	it	also	applies	regardless	of	whether
the	functions	are	virtual	or	non-virtual.	In	the	same	way	that,	at	the	beginning	of
this	Item,	the	double	x	in	the	function	someFunc	hides	the	int	x	at	global
scope,	here	the	function	mf3	in	Derived	hides	a	Base	function	named	mf3
that	has	a	different	type.

The	rationale	behind	this	behavior	is	that	it	prevents	you	from	accidentally



inheriting	overloads	from	distant	base	classes	when	you	create	a	new	derived
class	in	a	library	or	application	framework.	Unfortunately,	you	typically	want	to
inherit	the	overloads.	In	fact,	if	you're	using	public	inheritance	and	you	don't
inherit	the	overloads,	you're	violating	the	is-a	relationship	between	base	and
derived	classes	that	Item	32	explains	is	fundamental	to	public	inheritance.	That
being	the	case,	you'll	almost	always	want	to	override	C++'s	default	hiding	of
inherited	names.

You	do	it	with	using	declarations:

class	Base	{

private:

		int	x;

public:

		virtual	void	mf1()	=	0;

		virtual	void	mf1(int);

		virtual	void	mf2();

		void	mf3();

		void	mf3(double);

		...



};

class	Derived:	public	Base	{

public:

		using	Base::mf1;							//	make	all	things	in	Base	named	mf1	and	mf3

		using	Base::mf3;							//	visible	(and	public)	in	Derived's	scope

		virtual	void	mf1();

		void	mf3();

		void	mf4();

		...

};

Now	inheritance	will	work	as	expected:



Derived	d;

int	x;

...

d.mf1();																	//	still	fine,	still	calls	Derived::mf1

d.mf1(x);																//	now	okay,	calls	Base::mf1

d.mf2();																	//	still	fine,	still	calls	Base::mf2

d.mf3();																	//	fine,	calls	Derived::mf3

d.mf3(x);																//	now	okay,	calls	Base::mf3

This	means	that	if	you	inherit	from	a	base	class	with	overloaded	functions	and
you	want	to	redefine	or	override	only	some	of	them,	you	need	to	include	a
using	declaration	for	each	name	you'd	otherwise	be	hiding.	If	you	don't,	some
of	the	names	you'd	like	to	inherit	will	be	hidden.

It's	conceivable	that	you	sometimes	won't	want	to	inherit	all	the	functions	from
your	base	classes.	Under	public	inheritance,	this	should	never	be	the	case,
because,	again,	it	violates	public	inheritance's	is-a	relationship	between	base	and
derived	classes.	(That's	why	the	using	declarations	above	are	in	the	public	part



of	the	derived	class:	names	that	are	public	in	a	base	class	should	also	be	public	in
a	publicly	derived	class.)	Under	private	inheritance	(see	Item	39),	however,	it
can	make	sense.	For	example,	suppose	Derived	privately	inherits	from	Base,
and	the	only	version	of	mf1	that	Derived	wants	to	inherit	is	the	one	taking	no
parameters.	A	using	declaration	won't	do	the	trick	here,	because	a	using
declaration	makes	all	inherited	functions	with	a	given	name	visible	in	the
derived	class.	No,	this	is	a	case	for	a	different	technique,	namely,	a	simple
forwarding	function:

class	Base	{

public:

		virtual	void	mf1()	=	0;

		virtual	void	mf1(int);

		...																																				//	as	before

};

class	Derived:	private	Base	{

public:

		virtual	void	mf1()																			//	forwarding	function;	implicitly

		{	Base::mf1();	}																					//	inline	(see	Item

30)

		...



};

...

Derived	d;

int	x;

d.mf1();																															//	fine,	calls	Derived::mf1

d.mf1(x);																														//	error!	Base::mf1()	is	hidden

Another	use	for	inline	forwarding	functions	is	to	work	around	ancient	compilers
that	(incorrectly)	don't	support	using	declarations	to	import	inherited	names
into	the	scope	of	a	derived	class.

That's	the	whole	story	on	inheritance	and	name	hiding,	but	when	inheritance	is
combined	with	templates,	an	entirely	different	form	of	the	"inherited	names	are
hidden"	issue	arises.	For	all	the	angle-bracket-demarcated	details,	see	Item	43.

Things	to	Remember

Names	in	derived	classes	hide	names	in	base	classes.	Under
public	inheritance,	this	is	never	desirable.

To	make	hidden	names	visible	again,	employ	using
declarations	or	forwarding	functions.



Item	34:	Differentiate	between	inheritance	of
interface	and	inheritance	of	implementation

The	seemingly	straightforward	notion	of	(public)	inheritance	turns	out,	upon
closer	examination,	to	be	composed	of	two	separable	parts:	inheritance	of
function	interfaces	and	inheritance	of	function	implementations.	The	difference
between	these	two	kinds	of	inheritance	corresponds	exactly	to	the	difference
between	function	declarations	and	function	definitions	discussed	in	the
Introduction	to	this	book.

As	a	class	designer,	you	sometimes	want	derived	classes	to	inherit	only	the
interface	(declaration)	of	a	member	function.	Sometimes	you	want	derived
classes	to	inherit	both	a	function's	interface	and	implementation,	but	you	want	to
allow	them	to	override	the	implementation	they	inherit.	And	sometimes	you
want	derived	classes	to	inherit	a	function's	interface	and	implementation	without
allowing	them	to	override	anything.

To	get	a	better	feel	for	the	differences	among	these	options,	consider	a	class
hierarchy	for	representing	geometric	shapes	in	a	graphics	application:

class	Shape	{

public:

		virtual	void	draw()	const	=	0;

		virtual	void	error(const	std::string&	msg);

		int	objectID()	const;



		...

};

class	Rectangle:	public	Shape	{	...	};

class	Ellipse:	public	Shape	{	...	};

Shape	is	an	abstract	class;	its	pure	virtual	function	draw	marks	it	as	such.	As	a
result,	clients	cannot	create	instances	of	the	Shape	class,	only	of	classes	derived
from	it.	Nonetheless,	Shape	exerts	a	strong	influence	on	all	classes	that
(publicly)	inherit	from	it,	because

Member	function	interfaces	are	always	inherited.	As	explained	in	Item	32,
public	inheritance	means	is-a,	so	anything	that	is	true	of	a	base	class	must
also	be	true	of	its	derived	classes.	Hence,	if	a	function	applies	to	a	class,	it
must	also	apply	to	its	derived	classes.

Three	functions	are	declared	in	the	Shape	class.	The	first,	draw,	draws	the
current	object	on	an	implicit	display.	The	second,	error,	is	called	by	member
functions	if	they	need	to	report	an	error.	The	third,	objectID,	returns	a	unique
integer	identifier	for	the	current	object.	Each	function	is	declared	in	a	different
way:	draw	is	a	pure	virtual	function;	error	is	a	simple	(impure?)	virtual
function;	and	objectID	is	a	non-virtual	function.	What	are	the	implications	of
these	different	declarations?

Consider	first	the	pure	virtual	function	draw:



class	Shape	{

public:

		virtual	void	draw()	const	=	0;

		...

};

The	two	most	salient	features	of	pure	virtual	functions	are	that	they	must	be
redeclared	by	any	concrete	class	that	inherits	them,	and	they	typically	have	no
definition	in	abstract	classes.	Put	these	two	characteristics	together,	and	you
realize	that

The	purpose	of	declaring	a	pure	virtual	function	is	to	have	derived	classes
inherit	a	function	interface	only.

This	makes	perfect	sense	for	the	Shape::draw	function,	because	it	is	a
reasonable	demand	that	all	Shape	objects	must	be	drawable,	but	the	Shape
class	can	provide	no	reasonable	default	implementation	for	that	function.	The
algorithm	for	drawing	an	ellipse	is	very	different	from	the	algorithm	for	drawing
a	rectangle,	for	example.	The	declaration	of	Shape::draw	says	to	designers	of
concrete	derived	classes,	"You	must	provide	a	draw	function,	but	I	have	no	idea
how	you're	going	to	implement	it."

Incidentally,	it	is	possible	to	provide	a	definition	for	a	pure	virtual	function.	That
is,	you	could	provide	an	implementation	for	Shape::draw,	and	C++	wouldn't
complain,	but	the	only	way	to	call	it	would	be	to	qualify	the	call	with	the	class
name:

Shape	*ps	=	new	Shape;														//	error!	Shape	is	abstract



Shape	*ps1	=	new	Rectangle;									//	fine

ps1->draw();																					//	calls	Rectangle::draw

Shape	*ps2	=	new	Ellipse;											//	fine

ps2->draw();																					//	calls	Ellipse::draw

ps1->Shape::draw();																	//	calls	Shape::draw

ps2->Shape::draw();																	//	calls	Shape::draw

Aside	from	helping	you	impress	fellow	programmers	at	cocktail	parties,
knowledge	of	this	feature	is	generally	of	limited	utility.	As	you'll	see	below,
however,	it	can	be	employed	as	a	mechanism	for	providing	a	safer-than-usual
default	implementation	for	simple	(impure)	virtual	functions.

The	story	behind	simple	virtual	functions	is	a	bit	different	from	that	behind	pure
virtuals.	As	usual,	derived	classes	inherit	the	interface	of	the	function,	but	simple
virtual	functions	provide	an	implementation	that	derived	classes	may	override.	If
you	think	about	this	for	a	minute,	you'll	realize	that

The	purpose	of	declaring	a	simple	virtual	function	is	to	have	derived	classes
inherit	a	function	interface	as	well	as	a	default	implementation.



Consider	the	case	of	Shape::error:

class	Shape	{

public:

		virtual	void	error(const	std::string&	msg);

		...

};

The	interface	says	that	every	class	must	support	a	function	to	be	called	when	an
error	is	encountered,	but	each	class	is	free	to	handle	errors	in	whatever	way	it
sees	fit.	If	a	class	doesn't	want	to	do	anything	special,	it	can	just	fall	back	on	the
default	error	handling	provided	in	the	Shape	class.	That	is,	the	declaration	of
Shape::error	says	to	designers	of	derived	classes,	"You've	got	to	support	an
error	function,	but	if	you	don't	want	to	write	your	own,	you	can	fall	back	on
the	default	version	in	the	Shape	class."

It	turns	out	that	it	can	be	dangerous	to	allow	simple	virtual	functions	to	specify
both	a	function	interface	and	a	default	implementation.	To	see	why,	consider	a
hierarchy	of	airplanes	for	XYZ	Airlines.	XYZ	has	only	two	kinds	of	planes,	the
Model	A	and	the	Model	B,	and	both	are	flown	in	exactly	the	same	way.	Hence,
XYZ	designs	the	following	hierarchy:

class	Airport	{	...	};																					//	represents	airports

class	Airplane	{

public:



		virtual	void	fly(const	Airport&	destination);

		...

};

void	Airplane::fly(const	Airport&	destination)

{

		default	code	for	flying	an	airplane	to	the	given	destination

}

class	ModelA:	public	Airplane	{	...	};

class	ModelB:	public	Airplane	{	...	};

To	express	that	all	planes	have	to	support	a	fly	function,	and	in	recognition	of
the	fact	that	different	models	of	plane	could,	in	principle,	require	different
implementations	for	fly,	Airplane::fly	is	declared	virtual.	However,	in
order	to	avoid	writing	identical	code	in	the	ModelA	and	ModelB	classes,	the
default	flying	behavior	is	provided	as	the	body	of	Airplane::fly,	which



both	ModelA	and	ModelB	inherit.

This	is	a	classic	object-oriented	design.	Two	classes	share	a	common	feature	(the
way	they	implement	fly),	so	the	common	feature	is	moved	into	a	base	class,
and	the	feature	is	inherited	by	the	two	classes.	This	design	makes	common
features	explicit,	avoids	code	duplication,	facilitates	future	enhancements,	and
eases	long-term	maintenance		all	the	things	for	which	object-oriented	technology
is	so	highly	touted.	XYZ	Airlines	should	be	proud.

Now	suppose	that	XYZ,	its	fortunes	on	the	rise,	decides	to	acquire	a	new	type	of
airplane,	the	Model	C.	The	Model	C	differs	in	some	ways	from	the	Model	A	and
the	Model	B.	In	particular,	it	is	flown	differently.

XYZ's	programmers	add	the	class	for	Model	C	to	the	hierarchy,	but	in	their	haste
to	get	the	new	model	into	service,	they	forget	to	redefine	the	fly	function:

class	ModelC:	public	Airplane	{

		...																																			//	no	fly	function	is	declared

};

In	their	code,	then,	they	have	something	akin	to	the	following:

	

Airport	PDX(...);																							//	PDX	is	the	airport	near	my	home

	

	

	

Airplane	*pa	=	new	ModelC;

	

	

	



	

...

	

	

	

pa->fly(PDX);																										//	calls	Airplane::fly!

	

This	is	a	disaster:	an	attempt	is	being	made	to	fly	a	ModelC	object	as	if	it	were	a
ModelA	or	a	ModelB.	That's	not	the	kind	of	behavior	that	inspires	confidence
in	the	traveling	public.

The	problem	here	is	not	that	Airplane::fly	has	default	behavior,	but	that
ModelC	was	allowed	to	inherit	that	behavior	without	explicitly	saying	that	it
wanted	to.	Fortunately,	it's	easy	to	offer	default	behavior	to	derived	classes	but
not	give	it	to	them	unless	they	ask	for	it.	The	trick	is	to	sever	the	connection
between	the	interface	of	the	virtual	function	and	its	default	implementation.
Here's	one	way	to	do	it:

class	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination)	=	0;

		...

protected:

		void	defaultFly(const	Airport&	destination);



};

void	Airplane::defaultFly(const	Airport&	destination)

{

		default	code	for	flying	an	airplane	to	the	given	destination

}

Notice	how	Airplane::fly	has	been	turned	into	a	pure	virtual	function.
That	provides	the	interface	for	flying.	The	default	implementation	is	also	present
in	the	Airplane	class,	but	now	it's	in	the	form	of	an	independent	function,
defaultFly.	Classes	like	ModelA	and	ModelB	that	want	to	use	the	default
behavior	simply	make	an	inline	call	to	defaultFly	inside	their	body	of	fly
(but	see	Item	30	for	information	on	the	interaction	of	inlining	and	virtual
functions):

class	ModelA:	public	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination)

		{	defaultFly(destination);	}

		...

};



class	ModelB:	public	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination)

		{	defaultFly(destination);	}

		...

};

For	the	ModelC	class,	there	is	no	possibility	of	accidentally	inheriting	the
incorrect	implementation	of	fly,	because	the	pure	virtual	in	Airplane	forces
ModelC	to	provide	its	own	version	of	fly.

class	ModelC:	public	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination);

		...

};



void	ModelC::fly(const	Airport&	destination)

{

		code	for	flying	a	ModelC	airplane	to	the	given	destination

}

This	scheme	isn't	foolproof	(programmers	can	still	copy-and-paste	themselves
into	trouble),	but	it's	more	reliable	than	the	original	design.	As	for
Airplane::defaultFly,	it's	protected	because	it's	truly	an	implementation
detail	of	Airplane	and	its	derived	classes.	Clients	using	airplanes	should	care
only	that	they	can	be	flown,	not	how	the	flying	is	implemented.

It's	also	important	that	Airplane::defaultFly	is	a	non-virtual	function.
This	is	because	no	derived	class	should	redefine	this	function,	a	truth	to	which
Item	36	is	devoted.	If	defaultFly	were	virtual,	you'd	have	a	circular
problem:	what	if	some	derived	class	forgets	to	redefine	defaultFly	when	it's
supposed	to?

Some	people	object	to	the	idea	of	having	separate	functions	for	providing
interface	and	default	implementation,	such	as	fly	and	defaultFly	above.
For	one	thing,	they	note,	it	pollutes	the	class	namespace	with	a	proliferation	of
closely	related	function	names.	Yet	they	still	agree	that	interface	and	default
implementation	should	be	separated.	How	do	they	resolve	this	seeming
contradiction?	By	taking	advantage	of	the	fact	that	pure	virtual	functions	must	be
redeclared	in	concrete	derived	classes,	but	they	may	also	have	implementations
of	their	own.	Here's	how	the	Airplane	hierarchy	could	take	advantage	of	the
ability	to	define	a	pure	virtual	function:

class	Airplane	{



public:

		virtual	void	fly(const	Airport&	destination)	=	0;

		...

};

void	Airplane::fly(const	Airport&	destination)					//	an	implementation	of

{																																																		//	a	pure	virtual	function

		default	code	for	flying	an	airplane	to

		the	given	destination

}

class	ModelA:	public	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination)

		{	Airplane::fly(destination);	}

		...



};

class	ModelB:	public	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination)

		{	Airplane::fly(destination);	}

		...

};

class	ModelC:	public	Airplane	{

public:

		virtual	void	fly(const	Airport&	destination);

		...

};



void	ModelC::fly(const	Airport&	destination)

{

		code	for	flying	a	ModelC	airplane	to	the	given	destination

}

This	is	almost	exactly	the	same	design	as	before,	except	that	the	body	of	the	pure
virtual	function	Airplane::fly	takes	the	place	of	the	independent	function
Airplane::defaultFly.	In	essence,	fly	has	been	broken	into	its	two
fundamental	components.	Its	declaration	specifies	its	interface	(which	derived
classes	must	use),	while	its	definition	specifies	its	default	behavior	(which
derived	classes	may	use,	but	only	if	they	explicitly	request	it).	In	merging	fly
and	defaultFly,	however,	you've	lost	the	ability	to	give	the	two	functions
different	protection	levels:	the	code	that	used	to	be	protected	(by	being	in
defaultFly)	is	now	public	(because	it's	in	fly).

Finally,	we	come	to	Shape's	non-virtual	function,	objectID:

class	Shape	{

public:

		int	objectID()	const;

		...

};



When	a	member	function	is	non-virtual,	it's	not	supposed	to	behave	differently
in	derived	classes.	In	fact,	a	non-virtual	member	function	specifies	an	invariant
over	specialization,	because	it	identifies	behavior	that	is	not	supposed	to	change,
no	matter	how	specialized	a	derived	class	becomes.	As	such,

The	purpose	of	declaring	a	non-virtual	function	is	to	have	derived	classes
inherit	a	function	interface	as	well	as	a	mandatory	implementation.

You	can	think	of	the	declaration	for	Shape::objectID	as	saying,	"Every
Shape	object	has	a	function	that	yields	an	object	identifier,	and	that	object
identifier	is	always	computed	the	same	way.	That	way	is	determined	by	the
definition	of	Shape::objectID,	and	no	derived	class	should	try	to	change
how	it's	done."	Because	a	non-virtual	function	identifies	an	invariant	over
specialization,	it	should	never	be	redefined	in	a	derived	class,	a	point	that	is
discussed	in	detail	in	Item	36.

The	differences	in	declarations	for	pure	virtual,	simple	virtual,	and	non-virtual
functions	allow	you	to	specify	with	precision	what	you	want	derived	classes	to
inherit:	interface	only,	interface	and	a	default	implementation,	or	interface	and	a
mandatory	implementation,	respectively.	Because	these	different	types	of
declarations	mean	fundamentally	different	things,	you	must	choose	carefully
among	them	when	you	declare	your	member	functions.	If	you	do,	you	should
avoid	the	two	most	common	mistakes	made	by	inexperienced	class	designers.

The	first	mistake	is	to	declare	all	functions	non-virtual.	That	leaves	no	room	for
specialization	in	derived	classes;	non-virtual	destructors	are	particularly
problematic	(see	Item	7).	Of	course,	it's	perfectly	reasonable	to	design	a	class
that	is	not	intended	to	be	used	as	a	base	class.	In	that	case,	a	set	of	exclusively
non-virtual	member	functions	is	appropriate.	Too	often,	however,	such	classes
are	declared	either	out	of	ignorance	of	the	differences	between	virtual	and	non-
virtual	functions	or	as	a	result	of	an	unsubstantiated	concern	over	the
performance	cost	of	virtual	functions.	The	fact	of	the	matter	is	that	almost	any
class	that's	to	be	used	as	a	base	class	will	have	virtual	functions	(again,	see	Item
7).



If	you're	concerned	about	the	cost	of	virtual	functions,	allow	me	to	bring	up	the
empirically-based	rule	of	80-20	(see	also	Item	30),	which	states	that	in	a	typical
program,	80%	of	the	runtime	will	be	spent	executing	just	20%	of	the	code.	This
rule	is	important,	because	it	means	that,	on	average,	80%	of	your	function	calls
can	be	virtual	without	having	the	slightest	detectable	impact	on	your	program's
overall	performance.	Before	you	go	gray	worrying	about	whether	you	can	afford
the	cost	of	a	virtual	function,	take	the	simple	precaution	of	making	sure	that
you're	focusing	on	the	20%	of	your	program	where	the	decision	might	really
make	a	difference.

The	other	common	problem	is	to	declare	all	member	functions	virtual.
Sometimes	this	is	the	right	thing	to	do		witness	Item	31's	Interface	classes.
However,	it	can	also	be	a	sign	of	a	class	designer	who	lacks	the	backbone	to	take
a	stand.	Some	functions	should	not	be	redefinable	in	derived	classes,	and
whenever	that's	the	case,	you've	got	to	say	so	by	making	those	functions	non-
virtual.	It	serves	no	one	to	pretend	that	your	class	can	be	all	things	to	all	people
if	they'll	just	take	the	time	to	redefine	all	your	functions.	If	you	have	an	invariant
over	specialization,	don't	be	afraid	to	say	so!

Things	to	Remember

Inheritance	of	interface	is	different	from	inheritance	of
implementation.	Under	public	inheritance,	derived	classes
always	inherit	base	class	interfaces.

Pure	virtual	functions	specify	inheritance	of	interface	only.

Simple	(impure)	virtual	functions	specify	inheritance	of
interface	plus	inheritance	of	a	default	implementation.

Non-virtual	functions	specify	inheritance	of	interface	plus
inheritance	of	a	mandatory	implementation.



Item	35:	Consider	alternatives	to	virtual
functions

So	you're	working	on	a	video	game,	and	you're	designing	a	hierarchy	for
characters	in	the	game.	Your	game	being	of	the	slash-and-burn	variety,	it's	not
uncommon	for	characters	to	be	injured	or	otherwise	in	a	reduced	state	of	health.
You	therefore	decide	to	offer	a	member	function,	healthValue,	that	returns
an	integer	indicating	how	healthy	the	character	is.	Because	different	characters
may	calculate	their	health	in	different	ways,	declaring	healthValue	virtual
seems	the	obvious	way	to	design	things:

class	GameCharacter	{

public:

		virtual	int	healthValue()	const;								//	return	character's	health	rating;

		...																																					//	derived	classes	may	redefine	this

};

The	fact	that	healthValue	isn't	declared	pure	virtual	suggests	that	there	is	a
default	algorithm	for	calculating	health	(see	Item	34).

This	is,	indeed,	the	obvious	way	to	design	things,	and	in	some	sense,	that's	its
weakness.	Because	this	design	is	so	obvious,	you	may	not	give	adequate
consideration	to	its	alternatives.	In	the	interest	of	helping	you	escape	the	ruts	in
the	road	of	object-oriented	design,	let's	consider	some	other	ways	to	approach
this	problem.

The	Template	Method	Pattern	via	the	Non-Virtual	Interface
Idiom



Idiom

We'll	begin	with	an	interesting	school	of	thought	that	argues	that	virtual
functions	should	almost	always	be	private.	Adherents	to	this	school	would
suggest	that	a	better	design	would	retain	healthValue	as	a	public	member
function	but	make	it	non-virtual	and	have	it	call	a	private	virtual	function	to	do
the	real	work,	say,	doHealthValue:

class	GameCharacter	{

public:

		int	healthValue()	const															//	derived	classes	do	

		{																																					//	this		see	Item	36

				...																																	//	do	"before"	stuff		see	below

				int	retVal	=	doHealthValue();							//	do	the	real	work

				...																																	//	do	"after"	stuff		see	below

				return	retVal;

		}

		...



private:

		virtual	int	doHealthValue()	const					//	derived	classes	may	redefine	this

		{

				...																																	//	default	algorithm	for	calculating

		}																																					//	character's	health

};

In	this	code	(and	for	the	rest	of	this	Item),	I'm	showing	the	bodies	of	member
functions	in	class	definitions.	As	Item	30	explains,	that	implicitly	declares	them
inline.	I'm	showing	the	code	this	way	only	to	make	it	easier	to	see	what	is
going	on.	The	designs	I'm	describing	are	independent	of	inlining	decisions,	so
don't	think	it's	meaningful	that	the	member	functions	are	defined	inside	classes.
It's	not.

This	basic	design		having	clients	call	private	virtual	functions	indirectly	through
public	non-virtual	member	functions		is	known	as	the	non-virtual	interface	(NVI)
idiom.	It's	a	particular	manifestation	of	the	more	general	design	pattern	called
Template	Method	(a	pattern	that,	unfortunately,	has	nothing	to	do	with	C++
templates).	I	call	the	non-virtual	function	(e.g.,	healthValue)	the	virtual
function's	wrapper.

An	advantage	of	the	NVI	idiom	is	suggested	by	the	"do	'before'	stuff"	and	"do
'after'	stuff"	comments	in	the	code.	Those	comments	identify	code	segments
guaranteed	to	be	called	before	and	after	the	virtual	function	that	does	the	real
work.	This	means	that	the	wrapper	ensures	that	before	a	virtual	function	is
called,	the	proper	context	is	set	up,	and	after	the	call	is	over,	the	context	is
cleaned	up.	For	example,	the	"before"	stuff	could	include	locking	a	mutex,



making	a	log	entry,	verifying	that	class	invariants	and	function	preconditions	are
satisfied,	etc.	The	"after"	stuff	could	include	unlocking	a	mutex,	verifying
function	postconditions,	reverifying	class	invariants,	etc.	There's	not	really	any
good	way	to	do	that	if	you	let	clients	call	virtual	functions	directly.

It	may	have	crossed	your	mind	that	the	NVI	idiom	involves	derived	classes
redefining	private	virtual	functions		redefining	functions	they	can't	call!	There's
no	design	contradiction	here.	Redefining	a	virtual	function	specifies	how
something	is	to	be	done.	Calling	a	virtual	function	specifies	when	it	will	be	done.
These	concerns	are	independent.	The	NVI	idiom	allows	derived	classes	to
redefine	a	virtual	function,	thus	giving	them	control	over	how	functionality	is
implemented,	but	the	base	class	reserves	for	itself	the	right	to	say	when	the
function	will	be	called.	It	may	seem	odd	at	first,	but	C++'s	rule	that	derived
classes	may	redefine	private	inherited	virtual	functions	is	perfectly	sensible.

Under	the	NVI	idiom,	it's	not	strictly	necessary	that	the	virtual	functions	be
private.	In	some	class	hierarchies,	derived	class	implementations	of	a	virtual
function	are	expected	to	invoke	their	base	class	counterparts	(e.g.,	the	example
on	page	120),	and	for	such	calls	to	be	legal,	the	virtuals	must	be	protected,	not
private.	Sometimes	a	virtual	function	even	has	to	be	public	(e.g.,	destructors	in
polymorphic	base	classes		see	Item	7),	but	then	the	NVI	idiom	can't	really	be
applied.

The	Strategy	Pattern	via	Function	Pointers

The	NVI	idiom	is	an	interesting	alternative	to	public	virtual	functions,	but	from	a
design	point	of	view,	it's	little	more	than	window	dressing.	After	all,	we're	still
using	virtual	functions	to	calculate	each	character's	health.	A	more	dramatic
design	assertion	would	be	to	say	that	calculating	a	character's	health	is
independent	of	the	character's	type		that	such	calculations	need	not	be	part	of	the
character	at	all.	For	example,	we	could	require	that	each	character's	constructor
be	passed	a	pointer	to	a	health	calculation	function,	and	we	could	call	that
function	to	do	the	actual	calculation:

class	GameCharacter;																															//	forward	declaration



//	function	for	the	default	health	calculation	algorithm

int	defaultHealthCalc(const	GameCharacter&	gc);

class	GameCharacter	{

public:

		typedef	int	(*HealthCalcFunc)(const	GameCharacter&);

		explicit	GameCharacter(HealthCalcFunc	hcf	=	defaultHealthCalc

		:	healthFunc(hcf)

		{}

		int	healthValue()	const

		{	return	healthFunc(*this);	}

		...

private:

		HealthCalcFunc	healthFunc;



};

This	approach	is	a	simple	application	of	another	common	design	pattern,
Strategy.	Compared	to	approaches	based	on	virtual	functions	in	the
GameCharacter	hierarchy,	it	offers	some	interesting	flexibility:

Different	instances	of	the	same	character	type	can	have	different	health
calculation	functions.	For	example:

class	EvilBadGuy:	public	GameCharacter	{

public:

		explicit	EvilBadGuy(HealthCalcFunc	hcf	=	defaultHealthCalc)

		:	GameCharacter(hcf)

		{	...	}

		...

};

int	loseHealthQuickly(const	GameCharacter&);				//	health	calculation

int	loseHealthSlowly(const	GameCharacter&);					//	funcs	with	different

																																																//	behavior



EvilBadGuy	ebg1(loseHealthQuickly);													//	same-type	charac-

EvilBadGuy	ebg2(loseHealthSlowly);														//	ters	with	different

																																																//	health-related

																																																//	behavior

Health	calculation	functions	for	a	particular	character	may	be	changed	at
runtime.	For	example,	GameCharacter	might	offer	a	member	function,
setHealthCalculator,	that	allowed	replacement	of	the	current	health
calculation	function.

On	the	other	hand,	the	fact	that	the	health	calculation	function	is	no	longer	a
member	function	of	the	GameCharacter	hierarchy	means	that	it	has	no
special	access	to	the	internal	parts	of	the	object	whose	health	it's	calculating.	For
example,	defaultHealthCalc	has	no	access	to	the	non-public	parts	of
EvilBadGuy.	If	a	character's	health	can	be	calculated	based	purely	on
information	available	through	the	character's	public	interface,	this	is	not	a
problem,	but	if	accurate	health	calculation	requires	non-public	information,	it	is.
In	fact,	it's	a	potential	issue	anytime	you	replace	functionality	inside	a	class	(e.g.,
via	a	member	function)	with	equivalent	functionality	outside	the	class	(e.g.,	via	a
non-member	non-friend	function	or	via	a	non-friend	member	function	of	another
class).	This	issue	will	persist	for	the	remainder	of	this	Item,	because	all	the	other
design	alternatives	we're	going	to	consider	involve	the	use	of	functions	outside
the	GameCharacter	hierarchy.

As	a	general	rule,	the	only	way	to	resolve	the	need	for	non-member	functions	to
have	access	to	non-public	parts	of	a	class	is	to	weaken	the	class's	encapsulation.
For	example,	the	class	might	declare	the	non-member	functions	to	be	friends,
or	it	might	offer	public	accessor	functions	for	parts	of	its	implementation	it



would	otherwise	prefer	to	keep	hidden.	Whether	the	advantages	of	using	a
function	pointer	instead	of	a	virtual	function	(e.g.,	the	ability	to	have	per-object
health	calculation	functions	and	the	ability	to	change	such	functions	at	runtime)
offset	the	possible	need	to	decrease	GameCharacter's	encapsulation	is
something	you	must	decide	on	a	design-by-design	basis.

The	Strategy	Pattern	via	tr1::function

Once	you	accustom	yourself	to	templates	and	their	use	of	implicit	interfaces	(see
Item	41),	the	function-pointer-based	approach	looks	rather	rigid.	Why	must	the
health	calculator	be	a	function	instead	of	simply	something	that	acts	like	a
function	(e.g.,	a	function	object)?	If	it	must	be	a	function,	why	can't	it	be	a
member	function?	And	why	must	it	return	an	int	instead	of	any	type
convertible	to	an	int?

These	constraints	evaporate	if	we	replace	the	use	of	a	function	pointer	(such	as
healthFunc)	with	an	object	of	type	TR1::function.	As	Item	54	explains,
such	objects	may	hold	any	callable	entity	(i.e.,	function	pointer,	function	object,
or	member	function	pointer)	whose	signature	is	compatible	with	what	is
expected.	Here's	the	design	we	just	saw,	this	time	using	tr1::function:

class	GameCharacter;																																	//	as	before

int	defaultHealthCalc(const	GameCharacter&	gc);						//	as	before

class	GameCharacter	{

public:

			//	HealthCalcFunc	is	any	callable	entity	that	can	be	called	with

			//	anything	compatible	with	a	GameCharacter	and	that	returns	anything



			//	compatible	with	an	int;	see	below	for	details

			typedef	std::tr1::function<int	(const	GameCharacter&)>	HealthCalcFunc;

			explicit	GameCharacter(HealthCalcFunc	hcf	=	defaultHealthCalc)

			:	healthFunc(hcf)

			{}

			int	healthValue()	const

			{	return	healthFunc(*this);			}

			...

private:

		HealthCalcFunc	healthFunc;

};

As	you	can	see,	HealthCalcFunc	is	a	typedef	for	a	TR1::function
instantiation.	That	means	it	acts	like	a	generalized	function	pointer	type.	Look
closely	at	what	HealthCalcFunc	is	a	typedef	for:

std::tr1::function<int	(const	GameCharacter&)>



Here	I've	highlighted	the	"target	signature"	of	this	tr1::function
instantiation.	That	target	signature	is	"function	taking	a	reference	to	a	const
GameCharacter	and	returning	an	int."	An	object	of	this	tr1::function
type	(i.e.,	of	type	HealthCalcFunc)	may	hold	any	callable	entity	compatible
with	the	target	signature.	To	be	compatible	means	that	the	entity's	parameter	can
be	implicitly	converted	to	a	const	GameCharacter&	and	its	return	type	can
be	implicitly	converted	to	an	int.

Compared	to	the	last	design	we	saw	(where	GameCharacter	held	a	pointer	to
a	function),	this	design	is	almost	the	same.	The	only	difference	is	that
GameCharacter	now	holds	a	tr1::function	object		a	generalized
pointer	to	a	function.	This	change	is	so	small,	I'd	call	it	inconsequential,	except
that	a	consequence	is	that	clients	now	have	staggeringly	more	flexibility	in
specifying	health	calculation	functions:

short	calcHealth(const	GameCharacter&);										//	health	calculation

																																																	//	function;	note

																																																	//	non-int	return	type

struct	HealthCalculator	{																								//	class	for	health

		int	operator()(const	GameCharacter&)	const					//	calculation	function

		{	...	}																																								//	objects

};



class	GameLevel	{

public:

		float	health(const	GameCharacter&)	const;						//	health	calculation

		...																																												//	mem	function;	note

};																																															//	non-int	return	type

class	EvilBadGuy:	public	GameCharacter	{									//	as	before

		...

};

class	EyeCandyCharacter:			public	GameCharacter	{		//	another	character

		...																																														//	type;	assume	same

};																																																	//	constructor	as

																																																			//	EvilBadGuy

EvilBadGuy	ebg1(calcHealth);																							//	character	using	a

																																																			//	health	calculation



																																																			//	function

EyeCandyCharacter	ecc1(HealthCalculator());								//	character	using	a

																																																			//	health	calculation

																																																			//	function	object

GameLevel	currentLevel;

...

EvilBadGuy	ebg2(																																			//	character	using	a

		std::tr1::bind(&GameLevel::health,															//	health	calculation

										currentLevel,																												//	member	function;

										_1)																																						//	see	below	for	details

);

Personally,	I	find	what	tr1::function	lets	you	do	so	amazing,	it	makes	me
tingle	all	over.	If	you're	not	tingling,	it	may	be	because	you're	staring	at	the
definition	of	ebg2	and	wondering	what's	going	on	with	the	call	to	tr1::bind.
Kindly	allow	me	to	explain.

We	want	to	say	that	to	calculate	ebg2's	health	rating,	the	health	member



function	in	the	GameLevel	class	should	be	used.	Now,
GameLevel::health	is	a	function	that	is	declared	to	take	one	parameter	(a
reference	to	a	GameCharacter),	but	it	really	takes	two,	because	it	also	gets	an
implicit	GameLevel	parameter		the	one	this	points	to.	Health	calculation
functions	for	GameCharacters,	however,	take	a	single	parameter:	the
GameCharacter	whose	health	is	to	be	calculated.	If	we're	to	use
GameLevel::health	for	ebg2's	health	calculation,	we	have	to	somehow
"adapt"	it	so	that	instead	of	taking	two	parameters	(a	GameCharacter	and	a
GameLevel),	it	takes	only	one	(a	GameCharacter).	In	this	example,	we
always	want	to	use	currentLevel	as	the	GameLevel	object	for	ebg2's
health	calculation,	so	we	"bind"	currentLevel	as	the	GameLevel	object	to
be	used	each	time	GameLevel::health	is	called	to	calculate	ebg2's	health.
That's	what	the	tr1::bind	call	does:	it	specifies	that	ebg2's	health
calculation	function	should	always	use	currentLevel	as	the	GameLevel
object.

I'm	skipping	over	a	host	of	details,	such	as	why	"_1"	means	"use
currentLevel	as	the	GameLevel	object	when	calling
GameLevel::health	for	ebg2."	Such	details	wouldn't	be	terribly
illuminating,	and	they'd	distract	from	the	fundamental	point	I	want	to	make:	by
using	tr1::function	instead	of	a	function	pointer,	we're	allowing	clients	to
use	any	compatible	callable	entity	when	calculating	a	character's	health.	Is	that
cool	or	what?

The	"Classic"	Strategy	Pattern

If	you're	more	into	design	patterns	than	C++	coolness,	a	more	conventional
approach	to	Strategy	would	be	to	make	the	health-calculation	function	a	virtual
member	function	of	a	separate	health-calculation	hierarchy.	The	resulting
hierarchy	design	would	look	like	this:



If	you're	not	up	on	your	UML	notation,	this	just	says	that	GameCharacter	is
the	root	of	an	inheritance	hierarchy	where	EvilBadGuy	and
EyeCandyCharacter	are	derived	classes;	HealthCalcFunc	is	the	root	of
an	inheritance	hierarchy	with	derived	classes	SlowHealthLoser	and
FastHealthLoser;	and	each	object	of	type	GameCharacter	contains	a
pointer	to	an	object	from	the	HealthCalcFunc	hierarchy.

Here's	the	corresponding	code	skeleton:

class	GameCharacter;																												//	forward	declaration

class	HealthCalcFunc	{

public:

		...

		virtual	int	calc(const	GameCharacter&	gc)	const

		{	...	}

		...



};

HealthCalcFunc	defaultHealthCalc;

class	GameCharacter	{

public:

		explicit	GameCharacter(HealthCalcFunc	*phcf	=	&defaultHealthCalc

		:	pHealthCalc(phcf)

		{}

		int	healthValue()	const

		{	return	pHealthCalc->calc(*this);}

		...

private:

		HealthCalcFunc	*pHealthCalc;

};



This	approach	has	the	appeal	of	being	quickly	recognizable	to	people	familiar
with	the	"standard"	Strategy	pattern	implementation,	plus	it	offers	the	possibility
that	an	existing	health	calculation	algorithm	can	be	tweaked	by	adding	a	derived
class	to	the	HealthCalcFunc	hierarchy.

Summary

The	fundamental	advice	of	this	Item	is	to	consider	alternatives	to	virtual
functions	when	searching	for	a	design	for	the	problem	you're	trying	to	solve.
Here's	a	quick	recap	the	alternatives	we	examined:

Use	the	non-virtual	interface	idiom	(NVI	idiom),	a	form	of	the	Template
Method	design	pattern	that	wraps	public	non-virtual	member	functions
around	less	accessible	virtual	functions.

Replace	virtual	functions	with	function	pointer	data	members,	a	stripped-
down	manifestation	of	the	Strategy	design	pattern.

Replace	virtual	functions	with	tr1::function	data	members,	thus	allowing
use	of	any	callable	entity	with	a	signature	compatible	with	what	you	need.
This,	too,	is	a	form	of	the	Strategy	design	pattern.

Replace	virtual	functions	in	one	hierarchy	with	virtual	functions	in
another	hierarchy.	This	is	the	conventional	implementation	of	the	Strategy
design	pattern.

This	isn't	an	exhaustive	list	of	design	alternatives	to	virtual	functions,	but	it
should	be	enough	to	convince	you	that	there	are	alternatives.	Furthermore,	their
comparative	advantages	and	disadvantages	should	make	clear	that	you	should
consider	them.

To	avoid	getting	stuck	in	the	ruts	of	the	road	of	object-oriented	design,	give	the
wheel	a	good	jerk	from	time	to	time.	There	are	lots	of	other	roads.	It's	worth
taking	the	time	to	investigate	them.

Things	to	Remember



Things	to	Remember

Alternatives	to	virtual	functions	include	the	NVI	idiom	and
various	forms	of	the	Strategy	design	pattern.	The	NVI	idiom	is
itself	an	example	of	the	Template	Method	design	pattern.

A	disadvantage	of	moving	functionality	from	a	member	function
to	a	function	outside	the	class	is	that	the	non-member	function
lacks	access	to	the	class's	non-public	members.

tr1::function	objects	act	like	generalized	function
pointers.	Such	objects	support	all	callable	entities	compatible
with	a	given	target	signature.



Item	36:	Never	redefine	an	inherited	non-virtual
function

Suppose	I	tell	you	that	a	class	D	is	publicly	derived	from	a	class	B	and	that	there
is	a	public	member	function	mf	defined	in	class	B.	The	parameters	and	return
type	of	mf	are	unimportant,	so	let's	just	assume	they're	both	void.	In	other
words,	I	say	this:

class	B	{

public:

		void	mf();

		...

};

class	D:	public	B	{	...	};

Even	without	knowing	anything	about	B,	D,	or	mf,	given	an	object	x	of	type	D,

	

D	x;																														//	x	is	an	object	of	type	D

	

you	would	probably	be	quite	surprised	if	this,

	

B	*pB	=	&x;																							//	get	pointer	to	x

	



	

pB->mf();																									//	call	mf	through	pointer

	

behaved	differently	from	this:

	

D	*pD	=	&x;																							//	get	pointer	to	x

	

pD->mf();																									//	call	mf	through	pointer

	

That's	because	in	both	cases	you're	invoking	the	member	function	mf	on	the
object	x.	Because	it's	the	same	function	and	the	same	object	in	both	cases,	it
should	behave	the	same	way,	right?

Right,	it	should.	But	it	might	not.	In	particular,	it	won't	if	mf	is	non-virtual	and	D
has	defined	its	own	version	of	mf:

class	D:	public	B	{

public:

		void	mf();																						//	hides	B::mf;	see	Item

		...

};



pB->mf();																									//	calls	B::mf

pD->mf();																									//	calls	D::mf

The	reason	for	this	two-faced	behavior	is	that	non-virtual	functions	like	B::mf
and	D::mf	are	statically	bound	(see	Item	37).	That	means	that	because	pB	is
declared	to	be	of	type	pointer-to-B,	non-virtual	functions	invoked	through	pB
will	always	be	those	defined	for	class	B,	even	if	pB	points	to	an	object	of	a	class
derived	from	B,	as	it	does	in	this	example.

Virtual	functions,	on	the	other	hand,	are	dynamically	bound	(again,	seeItem	37),
so	they	don't	suffer	from	this	problem.	If	mf	were	a	virtual	function,	a	call	to	mf
through	either	pB	or	pD	would	result	in	an	invocation	of	D::mf,	because	what
pB	and	pD	really	point	to	is	an	object	of	type	D.

If	you	are	writing	class	D	and	you	redefine	a	non-virtual	function	mf	that	you
inherit	from	class	B,	D	objects	will	likely	exhibit	inconsistent	behavior.	In
particular,	any	given	D	object	may	act	like	either	a	B	or	a	D	when	mf	is	called,
and	the	determining	factor	will	have	nothing	to	do	with	the	object	itself,	but	with
the	declared	type	of	the	pointer	that	points	to	it.	References	exhibit	the	same
baffling	behavior	as	do	pointers.

But	that's	just	a	pragmatic	argument.	What	you	really	want,	I	know,	is	some	kind
of	theoretical	justification	for	not	redefining	inherited	non-virtual	functions.	I	am
pleased	to	oblige.

Item	32	explains	that	public	inheritance	means	is-a,	and	Item	34	describes	why
declaring	a	non-virtual	function	in	a	class	establishes	an	invariant	over
specialization	for	that	class.	If	you	apply	these	observations	to	the	classes	B	and
D	and	to	the	non-virtual	member	function	B::mf,	then



Everything	that	applies	to	B	objects	also	applies	to	D	objects,	because	every
D	object	is-a	B	object;

Classes	derived	from	B	must	inherit	both	the	interface	and	the
implementation	of	mf,	because	mf	is	non-virtual	in	B.

Now,	if	D	redefines	mf,	there	is	a	contradiction	in	your	design.	If	D	really	needs
to	implement	mf	differently	from	B,	and	if	every	B	object		no	matter	how
specialized		really	has	to	use	the	B	implementation	for	mf,	then	it's	simply	not
true	that	every	D	is-a	B.	In	that	case,	D	shouldn't	publicly	inherit	from	B.	On	the
other	hand,	if	D	really	has	to	publicly	inherit	from	B,	and	if	D	really	needs	to
implement	mf	differently	from	B,	then	it's	just	not	true	that	mf	reflects	an
invariant	over	specialization	for	B.	In	that	case,	mf	should	be	virtual.	Finally,	if
every	D	really	is-a	B,	and	if	mf	really	corresponds	to	an	invariant	over
specialization	for	B,	then	D	can't	honestly	need	to	redefine	mf,	and	it	shouldn't
try	to.

Regardless	of	which	argument	applies,	something	has	to	give,	and	under	no
conditions	is	it	the	prohibition	on	redefining	an	inherited	non-virtual	function.

If	reading	this	Item	gives	you	a	sense	of	déjà	vu,	it's	probably	because	you've
already	read	Item	7,	which	explains	why	destructors	in	polymorphic	base	classes
should	be	virtual.	If	you	violate	that	guideline	(i.e.,	if	you	declare	a	non-virtual
destructor	in	a	polymorphic	base	class),	you'll	also	be	violating	this	guideline,
because	derived	classes	would	invariably	redefine	an	inherited	non-virtual
function:	the	base	class's	destructor.	This	would	be	true	even	for	derived	classes
that	declare	no	destructor,	because,	as	Item	5	explains,	the	destructor	is	one	of
the	member	functions	that	compilers	generate	for	you	if	you	don't	declare	one
yourself.	In	essence,	Item	7	is	nothing	more	than	a	special	case	of	this	Item,
though	it's	important	enough	to	merit	calling	out	on	its	own.

Things	to	Remember

Never	redefine	an	inherited	non-virtual	function.



Item	37:	Never	redefine	a	function's	inherited
default	parameter	value

Let's	simplify	this	discussion	right	from	the	start.	There	are	only	two	kinds	of
functions	you	can	inherit:	virtual	and	non-virtual.	However,	it's	always	a	mistake
to	redefine	an	inherited	non-virtual	function	(seeItem	36),	so	we	can	safely	limit
our	discussion	here	to	the	situation	in	which	you	inherit	a	virtual	function	with	a
default	parameter	value.

That	being	the	case,	the	justification	for	this	Item	becomes	quite	straightforward:
virtual	functions	are	dynamically	bound,	but	default	parameter	values	are
statically	bound.

What's	that?	You	say	the	difference	between	static	and	dynamic	binding	has
slipped	your	already	overburdened	mind?	(For	the	record,	static	binding	is	also
known	as	early	binding,	and	dynamic	binding	is	also	known	as	late	binding.)
Let's	review,	then.

An	object's	static	type	is	the	type	you	declare	it	to	have	in	the	program	text.
Consider	this	class	hierarchy:

//	a	class	for	geometric	shapes

class	Shape	{

public:

		enum	ShapeColor	{	Red,	Green,	Blue	};

		//	all	shapes	must	offer	a	function	to	draw	themselves

		virtual	void	draw(ShapeColor	color	=	Red)	const	=	0;



		...

};

class	Rectangle:	public	Shape	{

public:

		//	notice	the	different	default	parameter	value		bad!

		virtual	void	draw(ShapeColor	color	=	Green)	const;

		...

};

class	Circle:	public	Shape	{

public:

		virtual	void	draw(ShapeColor	color)	const;

		...

};

Graphically,	it	looks	like	this:



Now	consider	these	pointers:

	

Shape	*ps;																							//	static	type	=	Shape*

	

Shape	*pc	=	new	Circle;										//	static	type	=	Shape*

	

Shape	*pr	=	new	Rectangle;							//	static	type	=	Shape*

	

In	this	example,	ps,	pc,	and	pr	are	all	declared	to	be	of	type	pointer-to-Shape,
so	they	all	have	that	as	their	static	type.	Notice	that	it	makes	absolutely	no
difference	what	they're	really	pointing	to		their	static	type	is	Shape*	regardless.

An	object's	dynamic	type	is	determined	by	the	type	of	the	object	to	which	it
currently	refers.	That	is,	its	dynamic	type	indicates	how	it	will	behave.	In	the
example	above,	pc's	dynamic	type	is	Circle*,	and	pr's	dynamic	type	is
Rectangle*.	As	for	ps,	it	doesn't	really	have	a	dynamic	type,	because	it
doesn't	refer	to	any	object	(yet).

Dynamic	types,	as	their	name	suggests,	can	change	as	a	program	runs,	typically
through	assignments:

	

ps	=	pc;																							//	ps's	dynamic	type	is

	

																															//	now	Circle*

	

	

	

ps	=	pr;																							//	ps's	dynamic	type	is

	

																															//	now	Rectangle*

	



Virtual	functions	are	dynamically	bound,	meaning	that	the	particular	function
called	is	determined	by	the	dynamic	type	of	the	object	through	which	it's
invoked:

	

pc->draw(Shape::Red);													//	calls	Circle::draw(Shape::Red)

	

	

	

pr->draw(Shape::Red);													//	calls	Rectangle::draw(Shape::Red)

	

This	is	all	old	hat,	I	know;	you	surely	understand	virtual	functions.	The	twist
comes	in	when	you	consider	virtual	functions	with	default	parameter	values,
because,	as	I	said	above,	virtual	functions	are	dynamically	bound,	but	default
parameters	are	statically	bound.	That	means	you	may	end	up	invoking	a	virtual
function	defined	in	a	derived	class	but	using	a	default	parameter	value	from	a
base	class:

	

pr->draw();																							//	calls	Rectangle::draw(Shape::Red)!

	

In	this	case,	pr's	dynamic	type	is	Rectangle*,	so	the	Rectangle	virtual
function	is	called,	just	as	you	would	expect.	In	Rectangle::draw,	the
default	parameter	value	is	Green.	Because	pr's	static	type	is	Shape*,
however,	the	default	parameter	value	for	this	function	call	is	taken	from	the
Shape	class,	not	the	Rectangle	class!	The	result	is	a	call	consisting	of	a
strange	and	almost	certainly	unanticipated	combination	of	the	declarations	for
draw	in	both	the	Shape	and	Rectangle	classes.

The	fact	that	ps,	pc,	and	pr	are	pointers	is	of	no	consequence	in	this	matter.
Were	they	references,	the	problem	would	persist.	The	only	important	things	are
that	draw	is	a	virtual	function,	and	one	of	its	default	parameter	values	is



redefined	in	a	derived	class.

Why	does	C++	insist	on	acting	in	this	perverse	manner?	The	answer	has	to	do
with	runtime	efficiency.	If	default	parameter	values	were	dynamically	bound,
compilers	would	have	to	come	up	with	a	way	to	determine	the	appropriate
default	value(s)	for	parameters	of	virtual	functions	at	runtime,	which	would	be
slower	and	more	complicated	than	the	current	mechanism	of	determining	them
during	compilation.	The	decision	was	made	to	err	on	the	side	of	speed	and
simplicity	of	implementation,	and	the	result	is	that	you	now	enjoy	execution
behavior	that	is	efficient,	but,	if	you	fail	to	heed	the	advice	of	this	Item,
confusing.

That's	all	well	and	good,	but	look	what	happens	if	you	try	to	follow	this	rule	and
also	offer	default	parameter	values	to	users	of	both	base	and	derived	classes:

class	Shape	{

public:

		enum	ShapeColor	{	Red,	Green,	Blue	};

		virtual	void	draw(ShapeColor	color	=	Red)	const	=	0;

		...

};

class	Rectangle:	public	Shape	{

public:

		virtual	void	draw(ShapeColor	color	=	Red)	const;

		...



};

Uh	oh,	code	duplication.	Worse	yet,	code	duplication	with	dependencies:	if	the
default	parameter	value	is	changed	in	Shape,	all	derived	classes	that	repeat	it
must	also	be	changed.	Otherwise	they'll	end	up	redefining	an	inherited	default
parameter	value.	What	to	do?

When	you're	having	trouble	making	a	virtual	function	behave	the	way	you'd	like,
it's	wise	to	consider	alternative	designs,	and	Item	35	is	filled	with	alternatives	to
virtual	functions.	One	of	the	alternatives	is	the	non-virtual	interface	idiom	(NVI
idiom):	having	a	public	non-virtual	function	in	a	base	class	call	a	private	virtual
function	that	derived	classes	may	redefine.	Here,	we	have	the	non-virtual
function	specify	the	default	parameter,	while	the	virtual	function	does	the	actual
work:

class	Shape	{

public:

		enum	ShapeColor	{	Red,	Green,	Blue	};

		void	draw(ShapeColor	color	=	Red)	const											//	now	non-virtual

		{

				doDraw(color);																																		//	calls	a	virtual

		}

		...



private:

		virtual	void	doDraw(ShapeColor	color)	const	=	0;		//	the	actual	work	is

};																																																		//	done	in	this	func

class	Rectangle:	public	Shape	{

public:

		...

private:

		virtual	void	doDraw(ShapeColor	color)	const;							//	note	lack	of	a

		...																																																//	default	param	val.

};

Because	non-virtual	functions	should	never	be	overridden	by	derived	classes
(see	Item	36),	this	design	makes	clear	that	the	default	value	for	draw's	color
parameter	should	always	be	Red.

Things	to	Remember



Never	redefine	an	inherited	default	parameter	value,	because
default	parameter	values	are	statically	bound,	while	virtual
functions		the	only	functions	you	should	be	overriding		are
dynamically	bound.



Item	38:	Model	"has-a"	or	"is-implemented-in-
terms-of"	through	composition

Composition	is	the	relationship	between	types	that	arises	when	objects	of	one
type	contain	objects	of	another	type.	For	example:

class	Address	{	...	};													//	where	someone	lives

class	PhoneNumber	{	...	};

class	Person	{

public:

		...

private:

		std::string	name;															//	composed	object

		Address	address;																//	ditto

		PhoneNumber	voiceNumber;								//	ditto

		PhoneNumber	faxNumber;										//	ditto

};



In	this	example,	Person	objects	are	composed	of	string,	Address,	and
PhoneNumber	objects.	Among	programmers,	the	term	composition	has	lots	of
synonyms.	It's	also	known	as	layering,	containment,	aggregation,	and
embedding.

Item	32	explains	that	public	inheritance	means	"is-a."	Composition	has	a
meaning,	too.	Actually,	it	has	two	meanings.	Composition	means	either	"has-a"
or	"is-implemented-in-terms-of."	That's	because	you	are	dealing	with	two
different	domains	in	your	software.	Some	objects	in	your	programs	correspond
to	things	in	the	world	you	are	modeling,	e.g.,	people,	vehicles,	video	frames,	etc.
Such	objects	are	part	of	the	application	domain.	Other	objects	are	purely
implementation	artifacts,	e.g.,	buffers,	mutexes,	search	trees,	etc.	These	kinds	of
objects	correspond	to	your	software's	implementation	domain.	When
composition	occurs	between	objects	in	the	application	domain,	it	expresses	a
has-a	relationship.	When	it	occurs	in	the	implementation	domain,	it	expresses	an
is-implemented-in-terms-of	relationship.

The	Person	class	above	demonstrates	the	has-a	relationship.	A	Person	object
has	a	name,	an	address,	and	voice	and	fax	telephone	numbers.	You	wouldn't	say
that	a	person	is	a	name	or	that	a	person	is	an	address.	You	would	say	that	a
person	has	a	name	and	has	an	address.	Most	people	have	little	difficulty	with
this	distinction,	so	confusion	between	the	roles	of	is-a	and	has-a	is	relatively
rare.

Somewhat	more	troublesome	is	the	difference	between	is-a	and	is-implemented-
in-terms-of.	For	example,	suppose	you	need	a	template	for	classes	representing
fairly	small	sets	of	objects,	i.e.,	collections	without	duplicates.	Because	reuse	is	a
wonderful	thing,	your	first	instinct	is	to	employ	the	standard	library's	set
template.	Why	write	a	new	template	when	you	can	use	one	that's	already	been
written?

Unfortunately,	set	implementations	typically	incur	an	overhead	of	three
pointers	per	element.	This	is	because	sets	are	usually	implemented	as	balanced
search	trees,	something	that	allows	them	to	guarantee	logarithmic-time	lookups,
insertions,	and	erasures.	When	speed	is	more	important	than	space,	this	is	a



reasonable	design,	but	it	turns	out	that	for	your	application,	space	is	more
important	than	speed.	The	standard	library's	set	thus	offers	the	wrong	trade-off
for	you.	It	seems	you'll	need	to	write	your	own	template	after	all.

Still,	reuse	is	a	wonderful	thing.	Being	the	data	structure	maven	you	are,	you
know	that	of	the	many	choices	for	implementing	sets,	one	is	to	use	linked	lists.
You	also	know	that	the	standard	C++	library	has	a	list	template,	so	you	decide
to	(re)use	it.

In	particular,	you	decide	to	have	your	nascent	Set	template	inherit	from	list.
That	is,	Set<T>	will	inherit	from	list<T>.	After	all,	in	your	implementation,
a	Set	object	will	in	fact	be	a	list	object.	You	thus	declare	your	Set	template
like	this:

template<typename	T>																							//	the	wrong

class	Set:	public	std::list<T>	{	...	};

Everything	may	seem	fine	at	this	point,	but	in	fact	there	is	something	quite
wrong.	As	Item	32	explains,	if	D	is-a	B,	everything	true	of	B	is	also	true	of	D.
However,	a	list	object	may	contain	duplicates,	so	if	the	value	3051	is	inserted
into	a	list<int>	twice,	that	list	will	contain	two	copies	of	3051.	In	contrast,	a
Set	may	not	contain	duplicates,	so	if	the	value	3051	is	inserted	into	a
Set<int>	twice,	the	set	contains	only	one	copy	of	the	value.	It	is	thus	untrue
that	a	Set	is-a	list,	because	some	of	the	things	that	are	true	for	list	objects
are	not	true	for	Set	objects.

Because	the	relationship	between	these	two	classes	isn't	is-a,	public	inheritance
is	the	wrong	way	to	model	that	relationship.	The	right	way	is	to	realize	that	a
Set	object	can	be	implemented	in	terms	of	a	list	object:

template<class	T>																			//	the	right	way	to	use	list	for	Set



class	Set	{

public:

		bool	member(const	T&	item)	const;

		void	insert(const	T&	item);

		void	remove(const	T&	item);

		std::size_t	size()	const;

private:

		std::list<T>	rep;																	//	representation	for	Set	data

};

Set's	member	functions	can	lean	heavily	on	functionality	already	offered	by
list	and	other	parts	of	the	standard	library,	so	the	implementation	is
straightforward,	as	long	as	you're	familiar	with	the	basics	of	programming	with
the	STL:

template<typename	T>

bool	Set<T>::member(const	T&	item)	const



{

		return	std::find(rep.begin(),	rep.end(),	item)	!=	rep.end();

}

template<typename	T>

void	Set<T>::insert(const	T&	item)

{

		if	(!member(item))	rep.push_back(item);

}

template<typename	T>

void	Set<T>::remove(const	T&	item)

{

		typename	std::list<T>::iterator	it	=															//	see	Item	42	for	info	on

				std::find(rep.begin(),	rep.end(),	item);									//	"typename"	here

		if	(it	!=	rep.end())	rep.erase(it);

}

template<typename	T>

std::size_t	Set<T>::size()	const

{

		return	rep.size();



}

These	functions	are	simple	enough	that	they	make	reasonable	candidates	for
inlining,	though	I	know	you'd	want	to	review	the	discussion	in	Item	30	before
making	any	firm	inlining	decisions.

One	can	argue	that	Set's	interface	would	be	more	in	accord	with	Item	18's
admonition	to	design	interfaces	that	are	easy	to	use	correctly	and	hard	to	use
incorrectly	if	it	followed	the	STL	container	conventions,	but	following	those
conventions	here	would	require	adding	a	lot	of	stuff	to	Set	that	would	obscure
the	relationship	between	it	and	list.	Since	that	relationship	is	the	point	of	this
Item,	we'll	trade	STL	compatibility	for	pedagogical	clarity.	Besides,	nits	about
Set's	interface	shouldn't	overshadow	what's	indisputably	right	about	Set:	the
relationship	between	it	and	list.	That	relationship	is	not	is-a	(though	it	initially
looked	like	it	might	be),	it's	is-implemented-in-terms-of.

Things	to	Remember

Composition	has	meanings	completely	different	from	that	of
public	inheritance.

In	the	application	domain,	composition	means	has-a.	In	the
implementation	domain,	it	means	is-implemented-in-terms-of.



Item	39:	Use	private	inheritance	judiciously

Item	32	demonstrates	that	C++	treats	public	inheritance	as	an	is-a	relationship.	It
does	this	by	showing	that	compilers,	when	given	a	hierarchy	in	which	a	class
Student	publicly	inherits	from	a	class	Person,	implicitly	convert	Students
to	Persons	when	that	is	necessary	for	a	function	call	to	succeed.	It's	worth
repeating	a	portion	of	that	example	using	private	inheritance	instead	of	public
inheritance:

class	Person	{	...	};

class	Student:	private	Person	{	...	};					//	inheritance	is	now	private

void	eat(const	Person&	p);																	//	anyone	can	eat

void	study(const	Student&	s);														//	only	students	study

Person	p;																																		//	p	is	a	Person

Student	s;																																	//	s	is	a	Student

eat(p);																																				//	fine,	p	is	a	Person

eat(s);																																				//	error!	a	Student	isn't	a	Person



Clearly,	private	inheritance	doesn't	mean	is-a.	What	does	it	mean	then?

"Whoa!"	you	say.	"Before	we	get	to	the	meaning,	let's	cover	the	behavior.	How
does	private	inheritance	behave?"	Well,	the	first	rule	governing	private
inheritance	you've	just	seen	in	action:	in	contrast	to	public	inheritance,	compilers
will	generally	not	convert	a	derived	class	object	(such	as	Student)	into	a	base
class	object	(such	as	Person)	if	the	inheritance	relationship	between	the	classes
is	private.	That's	why	the	call	to	eat	fails	for	the	object	s.	The	second	rule	is
that	members	inherited	from	a	private	base	class	become	private	members	of	the
derived	class,	even	if	they	were	protected	or	public	in	the	base	class.

So	much	for	behavior.	That	brings	us	to	meaning.	Private	inheritance	means	is-
implemented-in-terms-of.	If	you	make	a	class	D	privately	inherit	from	a	class	B,
you	do	so	because	you	are	interested	in	taking	advantage	of	some	of	the	features
available	in	class	B,	not	because	there	is	any	conceptual	relationship	between
objects	of	types	B	and	D.	As	such,	private	inheritance	is	purely	an
implementation	technique.	(That's	why	everything	you	inherit	from	a	private
base	class	becomes	private	in	your	class:	it's	all	just	implementation	detail.)
Using	the	terms	introduced	in	Item	34,	private	inheritance	means	that
implementation	only	should	be	inherited;	interface	should	be	ignored.	If	D
privately	inherits	from	B,	it	means	that	D	objects	are	implemented	in	terms	of	B
objects,	nothing	more.	Private	inheritance	means	nothing	during	software	design,
only	during	software	implementation.

The	fact	that	private	inheritance	means	is-implemented-in-terms-of	is	a	little
disturbing,	because	Item	38	points	out	that	composition	can	mean	the	same
thing.	How	are	you	supposed	to	choose	between	them?	The	answer	is	simple:
use	composition	whenever	you	can,	and	use	private	inheritance	whenever	you
must.	When	must	you?	Primarily	when	protected	members	and/or	virtual
functions	enter	the	picture,	though	there's	also	an	edge	case	where	space
concerns	can	tip	the	scales	toward	private	inheritance.	We'll	worry	about	the
edge	case	later.	After	all,	it's	an	edge	case.

Suppose	we're	working	on	an	application	involving	Widgets,	and	we	decide	we



need	to	better	understand	how	Widgets	are	being	used.	For	example,	not	only
do	we	want	to	know	things	like	how	often	Widget	member	functions	are
called,	we	also	want	to	know	how	the	call	ratios	change	over	time.	Programs
with	distinct	phases	of	execution	can	have	different	behavioral	profiles	during
the	different	phases.	For	example,	the	functions	used	during	the	parsing	phase	of
a	compiler	are	largely	different	from	the	functions	used	during	optimization	and
code	generation.

We	decide	to	modify	the	Widget	class	to	keep	track	of	how	many	times	each
member	function	is	called.	At	runtime,	we'll	periodically	examine	that
information,	possibly	along	with	the	values	of	each	Widget	and	whatever	other
data	we	deem	useful.	To	make	this	work,	we'll	need	to	set	up	a	timer	of	some
kind	so	that	we'll	know	when	it's	time	to	collect	the	usage	statistics.

Preferring	to	reuse	existing	code	over	writing	new	code,	we	rummage	around	in
our	utility	toolkit	and	are	pleased	to	find	the	following	class:

class	Timer	{

public:

		explicit	Timer(int	tickFrequency);

			virtual	void	onTick()	const;										//	automatically	called	for	each	tick

		...

};

This	is	just	what	we're	looking	for.	A	Timer	object	can	be	configured	to	tick
with	whatever	frequency	we	need,	and	on	each	tick,	it	calls	a	virtual	function.
We	can	redefine	that	virtual	function	so	that	it	examines	the	current	state	of	the
Widget	world.	Perfect!



In	order	for	Widget	to	redefine	a	virtual	function	in	Timer,	Widget	must
inherit	from	Timer.	But	public	inheritance	is	inappropriate	in	this	case.	It's	not
true	that	a	Widget	is-a	Timer.	Widget	clients	shouldn't	be	able	to	call
onTick	on	a	Widget,	because	that's	not	part	of	the	conceptual	Widget
interface.	Allowing	such	a	function	call	would	make	it	easy	for	clients	to	use	the
Widget	interface	incorrectly,	a	clear	violation	of	Item	18's	advice	to	make
interfaces	easy	to	use	correctly	and	hard	to	use	incorrectly.	Public	inheritance	is
not	a	valid	option	here.

We	thus	inherit	privately:

class	Widget:	private	Timer	{

private:

		virtual	void	onTick()	const;											//	look	at	Widget	usage	data,	etc.

		...

};

By	virtue	of	private	inheritance,	Timer's	public	onTick	function	becomes
private	in	Widget,	and	we	keep	it	there	when	we	redeclare	it.	Again,	putting
onTick	in	the	public	interface	would	mislead	clients	into	thinking	they	could
call	it,	and	that	would	violate	Item	18.

This	is	a	nice	design,	but	it's	worth	noting	that	private	inheritance	isn't	strictly
necessary.	If	we	were	determined	to	use	composition	instead,	we	could.	We'd
just	declare	a	private	nested	class	inside	Widget	that	would	publicly	inherit
from	Timer,	redefine	onTick	there,	and	put	an	object	of	that	type	inside
Widget.	Here's	a	sketch	of	the	approach:



class	Widget	{

private:

		class	WidgetTimer:	public	Timer	{

		public:

				virtual	void	onTick()	const;

				...

		};

			WidgetTimer	timer;

		...

};

This	design	is	more	complicated	than	the	one	using	only	private	inheritance,
because	it	involves	both	(public)	inheritance	and	composition,	as	well	as	the
introduction	of	a	new	class	(WidgetTimer).	To	be	honest,	I	show	it	primarily
to	remind	you	that	there	is	more	than	one	way	to	approach	a	design	problem,	and
it's	worth	training	yourself	to	consider	multiple	approaches	(see	also	Item	35).
Nevertheless,	I	can	think	of	two	reasons	why	you	might	prefer	public	inheritance
plus	composition	over	private	inheritance.

First,	you	might	want	to	design	Widget	to	allow	for	derived	classes,	but	you



might	also	want	to	prevent	derived	classes	from	redefining	onTick.	If	Widget
inherits	from	Timer,	that's	not	possible,	not	even	if	the	inheritance	is	private.
(Recall	from	Item	35	that	derived	classes	may	redefine	virtual	functions	even	if
they	are	not	permitted	to	call	them.)	But	if	WidgetTimer	is	private	in
Widget	and	inherits	from	Timer,	Widget's	derived	classes	have	no	access	to
WidgetTimer,	hence	can't	inherit	from	it	or	redefine	its	virtual	functions.	If
you've	programmed	in	Java	or	C#	and	miss	the	ability	to	prevent	derived	classes
from	redefining	virtual	functions	(i.e.,	Java's	final	methods	and	C#'s	sealed
ones),	now	you	have	an	idea	how	to	approximate	that	behavior	in	C++.

Second,	you	might	want	to	minimize	Widget's	compilation	dependencies.	If
Widget	inherits	from	Timer,	Timer's	definition	must	be	available	when
Widget	is	compiled,	so	the	file	defining	Widget	probably	has	to	#include
Timer.h.	On	the	other	hand,	if	WidgetTimer	is	moved	out	of	Widget	and
Widget	contains	only	a	pointer	to	a	WidgetTimer,	Widget	can	get	by	with
a	simple	declaration	for	the	WidgetTimer	class;	it	need	not	#include
anything	to	do	with	Timer.	For	large	systems,	such	decouplings	can	be
important.	(For	details	on	minimizing	compilation	dependencies,	consult	Item
31.)

I	remarked	earlier	that	private	inheritance	is	useful	primarily	when	a	would-be
derived	class	wants	access	to	the	protected	parts	of	a	would-be	base	class	or
would	like	to	redefine	one	or	more	of	its	virtual	functions,	but	the	conceptual
relationship	between	the	classes	is	is-implemented-in-terms-of	instead	of	is-a.
However,	I	also	said	that	there	was	an	edge	case	involving	space	optimization
that	could	nudge	you	to	prefer	private	inheritance	over	composition.

The	edge	case	is	edgy	indeed:	it	applies	only	when	you're	dealing	with	a	class
that	has	no	data	in	it.	Such	classes	have	no	non-static	data	members;	no	virtual
functions	(because	the	existence	of	such	functions	adds	a	vptr	to	each	object	
see	Item	7);	and	no	virtual	base	classes	(because	such	base	classes	also	incur	a
size	overhead		see	Item	40).	Conceptually,	objects	of	such	empty	classes	should
use	no	space,	because	there	is	no	per-object	data	to	be	stored.	However,	there	are
technical	reasons	for	C++	decreeing	that	freestanding	objects	must	have	non-
zero	size,	so	if	you	do	this,



class	Empty	{};																						//	has	no	data,	so	objects	should

																																					//	use	no	memory

class	HoldsAnInt	{																			//	should	need	only	space	for	an	int

private:

		int	x;

		Empty	e;																											//	should	require	no	memory

};

you'll	find	that	sizeof(HoldsAnInt)	>	sizeof(int);	an	Empty	data
member	requires	memory.	With	most	compilers,	sizeof(Empty)	is	1,
because	C++'s	edict	against	zero-size	freestanding	objects	is	typically	satisfied
by	the	silent	insertion	of	a	char	into	"empty"	objects.	However,	alignment
requirements	(see	Item	50)	may	cause	compilers	to	add	padding	to	classes	like
HoldsAnInt,	so	it's	likely	that	HoldsAnInt	objects	wouldn't	gain	just	the
size	of	a	char,	they	would	actually	enlarge	enough	to	hold	a	second	int.	(On
all	the	compilers	I	tested,	that's	exactly	what	happened.)

But	perhaps	you've	noticed	that	I've	been	careful	to	say	that	"freestanding"
objects	mustn't	have	zero	size.	This	constraint	doesn't	apply	to	base	class	parts	of
derived	class	objects,	because	they're	not	freestanding.	If	you	inherit	from
Empty	instead	of	containing	an	object	of	that	type,

class	HoldsAnInt:	private	Empty	{

private:

		int	x;



};

you're	almost	sure	to	find	that	sizeof(HoldsAnInt)	==	sizeof(int).
This	is	known	as	the	empty	base	optimization	(EBO),	and	it's	implemented	by	all
the	compilers	I	tested.	If	you're	a	library	developer	whose	clients	care	about
space,	the	EBO	is	worth	knowing	about.	Also	worth	knowing	is	that	the	EBO	is
generally	viable	only	under	single	inheritance.	The	rules	governing	C++	object
layout	generally	mean	that	the	EBO	can't	be	applied	to	derived	classes	that	have
more	than	one	base.

In	practice,	"empty"	classes	aren't	truly	empty.	Though	they	never	have	non-
static	data	members,	they	often	contain	typedefs,	enums,	static	data	members,	or
non-virtual	functions.	The	STL	has	many	technically	empty	classes	that	contain
useful	members	(usually	typedefs),	including	the	base	classes
unary_function	and	binary_function,	from	which	classes	for	user-
defined	function	objects	typically	inherit.	Thanks	to	widespread	implementation
of	the	EBO,	such	inheritance	rarely	increases	the	size	of	the	inheriting	classes.

Still,	let's	get	back	to	basics.	Most	classes	aren't	empty,	so	the	EBO	is	rarely	a
legitimate	justification	for	private	inheritance.	Furthermore,	most	inheritance
corresponds	to	is-a,	and	that's	a	job	for	public	inheritance,	not	private.	Both
composition	and	private	inheritance	mean	is-implemented-in-terms-of,	but
composition	is	easier	to	understand,	so	you	should	use	it	whenever	you	can.

Private	inheritance	is	most	likely	to	be	a	legitimate	design	strategy	when	you're
dealing	with	two	classes	not	related	by	is-a	where	one	either	needs	access	to	the
protected	members	of	another	or	needs	to	redefine	one	or	more	of	its	virtual
functions.	Even	in	that	case,	we've	seen	that	a	mixture	of	public	inheritance	and
containment	can	often	yield	the	behavior	you	want,	albeit	with	greater	design
complexity.	Using	private	inheritance	judiciously	means	employing	it	when,
having	considered	all	the	alternatives,	it's	the	best	way	to	express	the	relationship
between	two	classes	in	your	software.

Things	to	Remember



Private	inheritance	means	is-implemented-in-terms	of.	It's
usually	inferior	to	composition,	but	it	makes	sense	when	a
derived	class	needs	access	to	protected	base	class	members	or
needs	to	redefine	inherited	virtual	functions.

Unlike	composition,	private	inheritance	can	enable	the	empty
base	optimization.	This	can	be	important	for	library	developers
who	strive	to	minimize	object	sizes.



Item	40:	Use	multiple	inheritance	judiciously

When	it	comes	to	multiple	inheritance	(MI),	the	C++	community	largely	breaks
into	two	basic	camps.	One	camp	believes	that	if	single	inheritance	(SI)	is	good,
multiple	inheritance	must	be	better.	The	other	camp	argues	that	single
inheritance	is	good,	but	multiple	inheritance	isn't	worth	the	trouble.	In	this	Item,
our	primary	goal	is	to	understand	both	perspectives	on	the	MI	question.

One	of	the	first	things	to	recognize	is	that	when	MI	enters	the	designscape,	it
becomes	possible	to	inherit	the	same	name	(e.g.,	function,	typedef,	etc.)	from
more	than	one	base	class.	That	leads	to	new	opportunities	for	ambiguity.	For
example:

class	BorrowableItem	{													//	something	a	library	lets	you	borrow

public:

		void	checkOut();																	//	check	the	item	out	from	the	library

		...

};

class	ElectronicGadget	{

private:

		bool	checkOut()	const;											//	perform	self-test,	return	whether



		...																														//	test	succeeds

};

class	MP3Player:																			//	note	MI	here

		public	BorrowableItem,											//	(some	libraries	loan	MP3	players)

		public	ElectronicGadget

{	...	};																											//	class	definition	is	unimportant

MP3Player	mp;

mp.checkOut();																					//	ambiguous!	which	checkOut?

Note	that	in	this	example,	the	call	to	checkOut	is	ambiguous,	even	though
only	one	of	the	two	functions	is	accessible.	(checkOut	is	public	in
BorrowableItem	but	private	in	ElectronicGadget.)	That's	in	accord
with	the	C++	rules	for	resolving	calls	to	overloaded	functions:	before	seeing
whether	a	function	is	accessible,	C++	first	identifies	the	function	that's	the	best
match	for	the	call.	It	checks	accessibility	only	after	finding	the	best-match
function.	In	this	case,	both	checkOuts	are	equally	good	matches,	so	there's	no
best	match.	The	accessibility	of	ElectronicGadget::checkOut	is
therefore	never	examined.

To	resolve	the	ambiguity,	you	must	specify	which	base	class's	function	to	call:

mp.BorrowableItem::checkOut();														//	ah,	that



You	could	try	to	explicitly	call	ElectronicGadget::checkOut,	too,	of
course,	but	then	the	ambiguity	error	would	be	replaced	with	a	"you're	trying	to
call	a	private	member	function"	error.

Multiple	inheritance	just	means	inheriting	from	more	than	one	base	class,	but	it
is	not	uncommon	for	MI	to	be	found	in	hierarchies	that	have	higher-level	base
classes,	too.	That	can	lead	to	what	is	sometimes	known	as	the	"deadly	MI
diamond"

class	File	{	...	};

class	InputFile:	public	File	{	...	};

class	OutputFile:	public	File	{	...	};

class	IOFile:	public	InputFile,

														public	OutputFile

{	...	};

Any	time	you	have	an	inheritance	hierarchy	with	more	than	one	path	between	a
base	class	and	a	derived	class	(such	as	between	File	and	IOFile	above,
which	has	paths	through	both	InputFile	and	OutputFile),	you	must



confront	the	question	of	whether	you	want	the	data	members	in	the	base	class	to
be	replicated	for	each	of	the	paths.	For	example,	suppose	that	the	File	class	has
a	data	member,	fileName.	How	many	copies	of	this	field	should	IOFile
have?	On	the	one	hand,	it	inherits	a	copy	from	each	of	its	base	classes,	so	that
suggests	that	IOFile	should	have	two	fileName	data	members.	On	the	other
hand,	simple	logic	says	that	an	IOFile	object	has	only	one	file	name,	so	the
fileName	field	it	inherits	through	its	two	base	classes	should	not	be	replicated.

C++	takes	no	position	on	this	debate.	It	happily	supports	both	options,	though	its
default	is	to	perform	the	replication.	If	that's	not	what	you	want,	you	must	make
the	class	with	the	data	(i.e.,	File)	a	virtual	base	class.	To	do	that,	you	have	all
classes	that	immediately	inherit	from	it	use	virtual	inheritance:

class	File	{	...	};

class	InputFile:	virtual	public	File	{	...	};

class	OutputFile:	virtual	public	File	{	...	};

class	IOFile:	public	InputFile,

														public	OutputFile

{	...	};

The	standard	C++	library	contains	an	MI	hierarchy	just	like	this	one,	except	the
classes	are	class	templates,	and	the	names	are	basic_ios,	basic_istream,



basic_ostream,	and	basic_iostream	instead	of	File,	InputFile,
OutputFile,	and	IOFile.

From	the	viewpoint	of	correct	behavior,	public	inheritance	should	always	be
virtual.	If	that	were	the	only	point	of	view,	the	rule	would	be	simple:	anytime
you	use	public	inheritance,	use	virtual	public	inheritance.	Alas,	correctness	is	not
the	only	perspective.	Avoiding	the	replication	of	inherited	fields	requires	some
behind-the-scenes	legerdemain	on	the	part	of	compilers,	and	the	result	is	that
objects	created	from	classes	using	virtual	inheritance	are	generally	larger	than
they	would	be	without	virtual	inheritance.	Access	to	data	members	in	virtual
base	classes	is	also	slower	than	to	those	in	non-virtual	base	classes.	The	details
vary	from	compiler	to	compiler,	but	the	basic	thrust	is	clear:	virtual	inheritance
costs.

It	costs	in	other	ways,	too.	The	rules	governing	the	initialization	of	virtual	base
classes	are	more	complicated	and	less	intuitive	than	are	those	for	non-virtual
bases.	The	responsibility	for	initializing	a	virtual	base	is	borne	by	the	most
derived	class	in	the	hierarchy.	Implications	of	this	rule	include	(1)	classes
derived	from	virtual	bases	that	require	initialization	must	be	aware	of	their
virtual	bases,	no	matter	how	far	distant	the	bases	are,	and	(2)	when	a	new
derived	class	is	added	to	the	hierarchy,	it	must	assume	initialization
responsibilities	for	its	virtual	bases	(both	direct	and	indirect).

My	advice	on	virtual	base	classes	(i.e.,	on	virtual	inheritance)	is	simple.	First,
don't	use	virtual	bases	unless	you	need	to.	By	default,	use	non-virtual
inheritance.	Second,	if	you	must	use	virtual	base	classes,	try	to	avoid	putting
data	in	them.	That	way	you	won't	have	to	worry	about	oddities	in	the
initialization	(and,	as	it	turns	out,	assignment)	rules	for	such	classes.	It's	worth
noting	that	Interfaces	in	Java	and	.NET,	which	are	in	many	ways	comparable	to
virtual	base	classes	in	C++,	are	not	allowed	to	contain	any	data.

Let	us	now	turn	to	the	following	C++	Interface	class	(see	Item31)	for	modeling
persons:

class	IPerson	{

public:



		virtual	~IPerson();

		virtual	std::string	name()	const	=	0;

		virtual	std::string	birthDate()	const	=	0;

};

IPerson	clients	must	program	in	terms	of	IPerson	pointers	and	references,
because	abstract	classes	cannot	be	instantiated.	To	create	objects	that	can	be
manipulated	as	IPerson	objects,	clients	of	IPerson	use	factory	functions
(again,	see	Item	31)	to	instantiate	concrete	classes	derived	from	IPerson:

//	factory	function	to	create	a	Person	object	from	a	unique	database	ID;

//	see	Item	18	for	why	the	return	type	isn't	a	raw	pointer

std::tr1::shared_ptr<IPerson>	makePerson(DatabaseID	personIdentifier);

//	function	to	get	a	database	ID	from	the	user

DatabaseID	askUserForDatabaseID();

DatabaseID	id(askUserForDatabaseID());



std::tr1::shared_ptr<IPerson>	pp(makePerson(id));				//	create	an	object

																																																					//	supporting	the

																																																					//	IPerson	interface

...																																																		//	manipulate	*pp	via

																																																					//	IPerson's	member

																																																					//	functions

But	how	does	makePerson	create	the	objects	to	which	it	returns	pointers?
Clearly,	there	must	be	some	concrete	class	derived	from	IPerson	that
makePerson	can	instantiate.

Suppose	this	class	is	called	CPerson.	As	a	concrete	class,	CPerson	must
provide	implementations	for	the	pure	virtual	functions	it	inherits	from
IPerson.	It	could	write	these	from	scratch,	but	it	would	be	better	to	take
advantage	of	existing	components	that	do	most	or	all	of	what's	necessary.	For
example,	suppose	an	old	database-specific	class	PersonInfo	offers	the
essence	of	what	CPerson	needs:

class	PersonInfo	{

public:

		explicit	PersonInfo(DatabaseID	pid);

		virtual	~PersonInfo();



		virtual	const	char	*	theName()	const;

		virtual	const	char	*	theBirthDate()	const;

		...

private:

		virtual	const	char	*	valueDelimOpen()	const;						//	see

		virtual	const	char	*	valueDelimClose()	const;					//	below

		...

};

You	can	tell	this	is	an	old	class,	because	the	member	functions	return	const
char*s	instead	of	string	objects.	Still,	if	the	shoe	fits,	why	not	wear	it?	The
names	of	this	class's	member	functions	suggest	that	the	result	is	likely	to	be
pretty	comfortable.

You	come	to	discover	that	PersonInfo	was	designed	to	facilitate	printing
database	fields	in	various	formats,	with	the	beginning	and	end	of	each	field	value
delimited	by	special	strings.	By	default,	the	opening	and	closing	delimiters	for
field	values	are	square	brackets,	so	the	field	value	"Ring-tailed	Lemur"	would	be
formatted	this	way:

	

[Ring-tailed	Lemur]

	



	

In	recognition	of	the	fact	that	square	brackets	are	not	universally	desired	by
clients	of	PersonInfo,	the	virtual	functions	valueDelimOpen	and
valueDelimClose	allow	derived	classes	to	specify	their	own	opening	and
closing	delimiter	strings.	The	implementations	of	PersonInfo's	member
functions	call	these	virtual	functions	to	add	the	appropriate	delimiters	to	the
values	they	return.	Using	PersonInfo::theName	as	an	example,	the	code
looks	like	this:

const	char	*	PersonInfo::valueDelimOpen()	const

{

		return	"[";																							//	default	opening	delimiter

}

const	char	*	PersonInfo::valueDelimClose()	const

{

		return	"]";																							//	default	closing	delimiter

}

const	char	*	PersonInfo::theName()	const

{

		//	reserve	buffer	for	return	value;	because	this	is



		//	static,	it's	automatically	initialized	to	all	zeros

		static	char	value[Max_Formatted_Field_Value_Length];

		//	write	opening	delimiter

		std::strcpy(value,	valueDelimOpen());

		append	to	the	string	in	value	this	object's			name	field	(being	careful

		to	avoid	buffer	overruns!)

		//	write	closing	delimiter

		std::strcat(value,	valueDelimClose());

		return	value;

}

One	might	question	the	antiquated	design	of	PersonInfo::theName
(especially	the	use	of	a	fixed-size	static	buffer,	something	that's	rife	for	both
overrun	and	threading	problems		see	also	Item21),	but	set	such	questions	aside
and	focus	instead	on	this:	theName	calls	valueDelimOpen	to	generate	the
opening	delimiter	of	the	string	it	will	return,	then	it	generates	the	name	value



itself,	then	it	calls	valueDelimClose.

Because	valueDelimOpen	and	valueDelimClose	are	virtual	functions,
the	result	returned	by	theName	is	dependent	not	only	on	PersonInfo	but
also	on	the	classes	derived	from	PersonInfo.

As	the	implementer	of	CPerson,	that's	good	news,	because	while	perusing	the
fine	print	in	the	IPerson	documentation,	you	discover	that	name	and
birthDate	are	required	to	return	unadorned	values,	i.e.,	no	delimiters	are
allowed.	That	is,	if	a	person	is	named	Homer,	a	call	to	that	person's	name
function	should	return	"Homer",	not	"[Homer]".

The	relationship	between	CPerson	and	PersonInfo	is	that	PersonInfo
happens	to	have	some	functions	that	would	make	CPerson	easier	to
implement.	That's	all.	Their	relationship	is	thus	is-implemented-in-terms-of,	and
we	know	that	can	be	represented	in	two	ways:	via	composition	(see	Item	38)	and
via	private	inheritance	(see	Item	39).	Item	39	points	out	that	composition	is	the
generally	preferred	approach,	but	inheritance	is	necessary	if	virtual	functions	are
to	be	redefined.	In	this	case,	CPerson	needs	to	redefine	valueDelimOpen
and	valueDelimClose,	so	simple	composition	won't	do.	The	most
straightforward	solution	is	to	have	CPerson	privately	inherit	from
PersonInfo,	though	Item	39	explains	that	with	a	bit	more	work,	CPerson
could	also	use	a	combination	of	composition	and	inheritance	to	effectively
redefine	PersonInfo's	virtuals.	Here,	we'll	use	private	inheritance.

But	CPerson	must	also	implement	the	IPerson	interface,	and	that	calls	for
public	inheritance.	This	leads	to	one	reasonable	application	of	multiple
inheritance:	combine	public	inheritance	of	an	interface	with	private	inheritance
of	an	implementation:

class	IPerson	{																												//	this	class	specifies	the

public:																																				//	interface	to	be	implemented

		virtual	~IPerson();



		virtual	std::string	name()	const	=	0;

		virtual	std::string	birthDate()	const	=	0;

};

class	DatabaseID	{	...	};																		//	used	below;	details	are

																																											//	unimportant

class	PersonInfo	{																									//	this	class	has	functions

public:																																				//	useful	in	implementing

		explicit	PersonInfo(DatabaseID	pid);					//	the	IPerson	interface

		virtual	~PersonInfo();

		virtual	const	char	*	theName()	const;

		virtual	const	char	*	theBirthDate()	const;

		virtual	const	char	*	valueDelimOpen()	const;

		virtual	const	char	*	valueDelimClose()	const;

		...



};

class	CPerson:	public	IPerson,	private	PersonInfo	{					//	note	use	of	MI

public:

		explicit	CPerson(				DatabaseID	pid):	PersonInfo(pid)	{}

		virtual	std::string	name()	const																						//	implementations

		{	return	PersonInfo::theName();	}																					//	of	the	required

																																																								//	IPerson	member

		virtual	std::string	birthDate()	const																	//	functions

		{	return	PersonInfo::theBirthDate();	}

private:																																																//	redefinitions	of

		const	char	*	valueDelimOpen()	const	{	return	"";	}				//	inherited	virtual

		const	char	*	valueDelimClose()	const	{	return	"";	}			//	delimiter

};																																																						//	functions

In	UML,	the	design	looks	like	this:

This	example	demonstrates	that	MI	can	be	both	useful	and	comprehensible.



This	example	demonstrates	that	MI	can	be	both	useful	and	comprehensible.

At	the	end	of	the	day,	multiple	inheritance	is	just	another	tool	in	the	object-
oriented	toolbox.	Compared	to	single	inheritance,	it's	typically	more	complicated
to	use	and	more	complicated	to	understand,	so	if	you've	got	an	SI	design	that's
more	or	less	equivalent	to	an	MI	design,	the	SI	design	is	almost	certainly
preferable.	If	the	only	design	you	can	come	up	with	involves	MI,	you	should
think	a	little	harder		there's	almost	certainly	some	way	to	make	SI	work.	At	the
same	time,	MI	is	sometimes	the	clearest,	most	maintainable,	most	reasonable
way	to	get	the	job	done.	When	that's	the	case,	don't	be	afraid	to	use	it.	Just	be
sure	to	use	it	judiciously.

Things	to	Remember

Multiple	inheritance	is	more	complex	than	single	inheritance.	It
can	lead	to	new	ambiguity	issues	and	to	the	need	for	virtual
inheritance.

Virtual	inheritance	imposes	costs	in	size,	speed,	and	complexity
of	initialization	and	assignment.	It's	most	practical	when	virtual
base	classes	have	no	data.

Multiple	inheritance	does	have	legitimate	uses.	One	scenario
involves	combining	public	inheritance	from	an	Interface	class
with	private	inheritance	from	a	class	that	helps	with
implementation.



Chapter	7.	Templates	and	Generic
Programming
The	initial	motivation	for	C++	templates	was	straightforward:	to	make	it
possible	to	create	type-safe	containers	like	vector,	list,	and	map.	The	more
people	worked	with	templates,	however,	the	wider	the	variety	of	things	they
found	they	could	do	with	them.	Containers	were	good,	but	generic	programming	
the	ability	to	write	code	that	is	independent	of	the	types	of	objects	being
manipulated		was	even	better.	STL	algorithms	like	for_each,	find,	and
merge	are	examples	of	such	programming.	Ultimately,	it	was	discovered	that
the	C++	template	mechanism	is	itself	Turing-complete:	it	can	be	used	to
compute	any	computable	value.	That	led	to	template	metaprogramming:	the
creation	of	programs	that	execute	inside	C++	compilers	and	that	stop	running
when	compilation	is	complete.	These	days,	containers	are	but	a	small	part	of	the
C++	template	pie.	Despite	the	breadth	of	template	applications,	however,	a	set	of
core	ideas	underlie	all	template-based	programming.	Those	ideas	are	the	focus	of
this	chapter.

This	chapter	won't	make	you	an	expert	template	programmer,	but	it	will	make
you	a	better	one.	It	will	also	give	you	information	you	need	to	expand	your
template-programming	boundaries	as	far	as	you	desire.



Item	41:	Understand	implicit	interfaces	and
compile-time	polymorphism

The	world	of	object-oriented	programming	revolves	around	explicit	interfaces
and	runtime	polymorphism.	For	example,	given	this	(meaningless)	class,

class	Widget	{

public:

		Widget();

		virtual	~Widget();

		virtual	std::size_t	size()	const;

		virtual	void	normalize();

		void	swap(Widget&	other);																	//	see	Item	25

		...

};

and	this	(equally	meaningless)	function,

void	doProcessing(Widget&	w)



{

		if	(w.size()	>	10	&&	w	!=	someNastyWidget)	{

						Widget	temp(w);

						temp.normalize();

						temp.swap(w);

		}

}

we	can	say	this	about	w	in	doProcessing:

Because	w	is	declared	to	be	of	type	Widget,	w	must	support	the	Widget
interface.	We	can	look	up	this	interface	in	the	source	code	(e.g.,	the	.h	file
for	Widget)	to	see	exactly	what	it	looks	like,	so	I	call	this	an	explicit
interface		one	explicitly	visible	in	the	source	code.

Because	some	of	Widget's	member	functions	are	virtual,	w's	calls	to	those
functions	will	exhibit	runtime	polymorphism:	the	specific	function	to	call
will	be	determined	at	runtime	based	on	w's	dynamic	type	(see	Item	37).

The	world	of	templates	and	generic	programming	is	fundamentally	different.	In
that	world,	explicit	interfaces	and	runtime	polymorphism	continue	to	exist,	but
they're	less	important.	Instead,	implicit	interfaces	and	compile-time
polymorphism	move	to	the	fore.	To	see	how	this	is	the	case,	look	what	happens
when	we	turn	doProcessing	from	a	function	into	a	function	template:

template<typename	T>



void	doProcessing(T&	w)

{

		if	(w.size()	>	10	&&	w	!=	someNastyWidget)	{

					T	temp(w);

					temp.normalize();

					temp.swap(w);

		}

}

Now	what	can	we	say	about	w	in	doProcessing?

The	interface	that	w	must	support	is	determined	by	the	operations
performed	on	w	in	the	template.	In	this	example,	it	appears	that	w's	type	(T)
must	support	the	size,	normalize,	and	swap	member	functions;	copy
construction	(to	create	temp);	and	comparison	for	inequality	(for
comparison	with	someNastyWidget).	We'll	soon	see	that	this	isn't	quite
accurate,	but	it's	true	enough	for	now.	What's	important	is	that	the	set	of
expressions	that	must	be	valid	in	order	for	the	template	to	compile	is	the
implicit	interface	that	T	must	support.

The	calls	to	functions	involving	w	such	as	operator>	and	operator!=
may	involve	instantiating	templates	to	make	these	calls	succeed.	Such
instantiation	occurs	during	compilation.	Because	instantiating	function
templates	with	different	template	parameters	leads	to	different	functions
being	called,	this	is	known	as	compile-time	polymorphism.

Even	if	you've	never	used	templates,	you	should	be	familiar	with	the	difference



between	runtime	and	compile-time	polymorphism,	because	it's	similar	to	the
difference	between	the	process	of	determining	which	of	a	set	of	overloaded
functions	should	be	called	(which	takes	place	during	compilation)	and	dynamic
binding	of	virtual	function	calls	(which	takes	place	at	runtime).	The	difference
between	explicit	and	implicit	interfaces	is	new	to	templates,	however,	and	it
bears	closer	examination.

An	explicit	interface	typically	consists	of	function	signatures,	i.e.,	function
names,	parameter	types,	return	types,	etc.	The	Widget	class	public	interface,
for	example,

class	Widget	{

public:

		Widget();

		virtual	~Widget();

		virtual	std::size_t	size()	const;

		virtual	void	normalize();

		void	swap(Widget&	other);

};

consists	of	a	constructor,	a	destructor,	and	the	functions	size,	normalize,
and	swap,	along	with	the	parameter	types,	return	types,	and	constnesses	of	these
functions.	(It	also	includes	the	compiler-generated	copy	constructor	and	copy
assignment	operator		see	Item	5.)	It	could	also	include	typedefs	and,	if	you	were



so	bold	as	to	violate	Item	22's	advice	to	make	data	members	private,	data
members,	though	in	this	case,	it	does	not.

An	implicit	interface	is	quite	different.	It	is	not	based	on	function	signatures.
Rather,	it	consists	of	valid	expressions.	Look	again	at	the	conditional	at	the
beginning	of	the	doProcessing	template:

template<typename	T>

void	doProcessing(T&	w)

{

		if	(w.size()	>	10	&&	w	!=	someNastyWidget)	{

		...

The	implicit	interface	for	T	(w's	type)	appears	to	have	these	constraints:

It	must	offer	a	member	function	named	size	that	returns	an	integral	value.

It	must	support	an	operator!=	function	that	compares	two	objects	of
type	T.	(Here,	we	assume	that	someNastyWidget	is	of	type	T.)

Thanks	to	the	possibility	of	operator	overloading,	neither	of	these	constraints
need	be	satisfied.	Yes,	T	must	support	a	size	member	function,	though	it's
worth	mentioning	that	the	function	might	be	inherited	from	a	base	class.	But	this
member	function	need	not	return	an	integral	type.	It	need	not	even	return	a
numeric	type.	For	that	matter,	it	need	not	even	return	a	type	for	which
operator>	is	defined!	All	it	needs	to	do	is	return	an	object	of	some	type	X
such	that	there	is	an	operator>	that	can	be	called	with	an	object	of	type	X	and
an	int	(because	10	is	of	type	int).	The	operator>	need	not	take	a
parameter	of	type	X,	because	it	could	take	a	parameter	of	type	Y,	and	that	would



be	okay	as	long	as	there	were	an	implicit	conversion	from	objects	of	type	X	to
objects	of	type	Y!

Similarly,	there	is	no	requirement	that	T	support	operator!=,	because	it
would	be	just	as	acceptable	for	operator!=	to	take	one	object	of	type	X	and
one	object	of	type	Y.	As	long	as	T	can	be	converted	to	X	and
someNastyWidget's	type	can	be	converted	to	Y,	the	call	to	operator!=
would	be	valid.

(As	an	aside,	this	analysis	doesn't	take	into	account	the	possibility	that
operator&&	could	be	overloaded,	thus	changing	the	meaning	of	the	above
expression	from	a	conjunction	to	something	potentially	quite	different.)

Most	people's	heads	hurt	when	they	first	start	thinking	about	implicit	interfaces
this	way,	but	there's	really	no	need	for	aspirin.	Implicit	interfaces	are	simply
made	up	of	a	set	of	valid	expressions.	The	expressions	themselves	may	look
complicated,	but	the	constraints	they	impose	are	generally	straightforward.	For
example,	given	the	conditional,

	

if	(w.size()	>	10	&&	w	!=	someNastyWidget)	...

	

it's	hard	to	say	much	about	the	constraints	on	the	functions	size,	operator>,
operator&&,	or	operator!=,	but	it's	easy	to	identify	the	constraint	on	the
expression	as	a	whole.	The	conditional	part	of	an	if	statement	must	be	a
boolean	expression,	so	regardless	of	the	exact	types	involved,	whatever
"w.size()	>	10	&&	w	!=	someNastyWidget"	yields,	it	must	be
compatible	with	bool.	This	is	part	of	the	implicit	interface	the	template
doProcessing	imposes	on	its	type	parameter	T.	The	rest	of	the	interface
required	by	doProcessing	is	that	calls	to	the	copy	constructor,	to
normalize,	and	to	swap	must	be	valid	for	objects	of	type	T.

The	implicit	interfaces	imposed	on	a	template's	parameters	are	just	as	real	as	the
explicit	interfaces	imposed	on	a	class's	objects,	and	both	are	checked	during
compilation.	Just	as	you	can't	use	an	object	in	a	way	contradictory	to	the	explicit



compilation.	Just	as	you	can't	use	an	object	in	a	way	contradictory	to	the	explicit
interface	its	class	offers	(the	code	won't	compile),	you	can't	try	to	use	an	object
in	a	template	unless	that	object	supports	the	implicit	interface	the	template
requires	(again,	the	code	won't	compile).

Things	to	Remember

Both	classes	and	templates	support	interfaces	and
polymorphism.

For	classes,	interfaces	are	explicit	and	centered	on	function
signatures.	Polymorphism	occurs	at	runtime	through	virtual
functions.

For	template	parameters,	interfaces	are	implicit	and	based	on
valid	expressions.	Polymorphism	occurs	during	compilation
through	template	instantiation	and	function	overloading
resolution.



Item	42:	Understand	the	two	meanings	of
typename

Question:	what	is	the	difference	between	class	and	typename	in	the
following	template	declarations?

template<class	T>	class	Widget;																	//	uses	"class"

template<typename	T>	class	Widget;														//	uses	"typename"

Answer:	nothing.	When	declaring	a	template	type	parameter,	class	and
typename	mean	exactly	the	same	thing.	Some	programmers	prefer	class	all
the	time,	because	it's	easier	to	type.	Others	(including	me)	prefer	typename,
because	it	suggests	that	the	parameter	need	not	be	a	class	type.	A	few	developers
employ	typename	when	any	type	is	allowed	and	reserve	class	for	when	only
user-defined	types	are	acceptable.	But	from	C++'s	point	of	view,	class	and
typename	mean	exactly	the	same	thing	when	declaring	a	template	parameter.

C++	doesn't	always	view	class	and	typename	as	equivalent,	however.
Sometimes	you	must	use	typename.	To	understand	when,	we	have	to	talk
about	two	kinds	of	names	you	can	refer	to	in	a	template.

Suppose	we	have	a	template	for	a	function	that	takes	an	STL-compatible
container	holding	objects	that	can	be	assigned	to	ints.	Further	suppose	that	this
function	simply	prints	the	value	of	its	second	element.	It's	a	silly	function
implemented	in	a	silly	way,	and	as	I've	written	it	below,	it	shouldn't	even
compile,	but	please	overlook	those	things		there's	a	method	to	my	madness:



template<typename	C>																												//	print	2nd	element	in

void	print2nd(const	C&	container)															//	container;

{																																															//	this	is	not	valid	C++!

		if	(container.size()	>=	2)	{

					C::const_iterator	iter(container.begin());	//	get	iterator	to	1st	element

					++iter;																																				//	move	iter	to	2nd	element

					int	value	=	*iter;																									//	copy	that	element	to	an	int

					std::cout	<<	value;																								//	print	the	int

		}

}

I've	highlighted	the	two	local	variables	in	this	function,	iter	and	value.	The
type	of	iter	is	C::const_iterator,	a	type	that	depends	on	the	template
parameter	C.	Names	in	a	template	that	are	dependent	on	a	template	parameter	are
called	dependent	names.	When	a	dependent	name	is	nested	inside	a	class,	I	call	it
a	nested	dependent	name.	C::const_iterator	is	a	nested	dependent	name.
In	fact,	it's	a	nested	dependent	type	name,	i.e.,	a	nested	dependent	name	that
refers	to	a	type.

The	other	local	variable	in	print2nd,	value,	has	type	int.	int	is	a	name
that	does	not	depend	on	any	template	parameter.	Such	names	are	known	as	non-
dependent	names,	(I	have	no	idea	why	they're	not	called	independent	names.	If,
like	me,	you	find	the	term	"non-dependent"	an	abomination,	you	have	my
sympathies,	but	"non-dependent"	is	the	term	for	these	kinds	of	names,	so,	like
me,	roll	your	eyes	and	resign	yourself	to	it.)



Nested	dependent	names	can	lead	to	parsing	difficulties.	For	example,	suppose
we	made	print2nd	even	sillier	by	starting	it	this	way:

template<typename	C>

void	print2nd(const	C&	container)

{

		C::const_iterator	*	x;

		...

}

This	looks	like	we're	declaring	x	as	a	local	variable	that's	a	pointer	to	a
C::const_iterator.	But	it	looks	that	way	only	because	we	"know"	that
C::const_iterator	is	a	type.	But	what	if	C::const_iterator	weren't
a	type?	What	if	C	had	a	static	data	member	that	happened	to	be	named
const_iterator,	and	what	if	x	happened	to	be	the	name	of	a	global
variable?	In	that	case,	the	code	above	wouldn't	declare	a	local	variable,	it	would
be	a	multiplication	of	C::const_iterator	by	x!	Sure,	that	sounds	crazy,
but	it's	possible,	and	people	who	write	C++	parsers	have	to	worry	about	all
possible	inputs,	even	the	crazy	ones.

Until	C	is	known,	there's	no	way	to	know	whether	C::const_iterator	is	a
type	or	isn't,	and	when	the	template	print2nd	is	parsed,	C	isn't	known.	C++
has	a	rule	to	resolve	this	ambiguity:	if	the	parser	encounters	a	nested	dependent
name	in	a	template,	it	assumes	that	the	name	is	not	a	type	unless	you	tell	it
otherwise.	By	default,	nested	dependent	names	are	not	types.	(There	is	an
exception	to	this	rule	that	I'll	get	to	in	a	moment.)

With	that	in	mind,	look	again	at	the	beginning	of	print2nd:



template<typename	C>

void	print2nd(const	C&	container)

{

		if	(container.size()	>=	2)	{

					C::const_iterator	iter(container.begin());			//	this	name	is	assumed	to

					...																																										//	not

Now	it	should	be	clear	why	this	isn't	valid	C++.	The	declaration	of	iter	makes
sense	only	if	C::const_iterator	is	a	type,	but	we	haven't	told	C++	that	it
is,	and	C++	assumes	that	it's	not.	To	rectify	the	situation,	we	have	to	tell	C++
that	C::const_iterator	is	a	type.	We	do	that	by	putting	typename
immediately	in	front	of	it:

template<typename	C>																											//	this	is	valid	C++

void	print2nd(const	C&	container)

{

		if	(container.size()	>=	2)	{

				typename	C::const_iterator	iter(container.begin());

				...

		}



}

The	general	rule	is	simple:	anytime	you	refer	to	a	nested	dependent	type	name	in
a	template,	you	must	immediately	precede	it	by	the	word	typename.	(Again,
I'll	describe	an	exception	shortly.)

typename	should	be	used	to	identify	only	nested	dependent	type	names;	other
names	shouldn't	have	it.	For	example,	here's	a	function	template	that	takes	both	a
container	and	an	iterator	into	that	container:

template<typename	C>																			//	typename	allowed	(as	is	"class")

void	f(const	C&	container,													//	typename	not	allowed

					typename	C::iterator	iter);							//	typename	required

C	is	not	a	nested	dependent	type	name	(it's	not	nested	inside	anything	dependent
on	a	template	parameter),	so	it	must	not	be	preceded	by	typename	when
declaring	container,	but	C::iterator	is	a	nested	dependent	type	name,
so	it's	required	to	be	preceded	by	typename.

The	exception	to	the	"typename	must	precede	nested	dependent	type	names"
rule	is	that	typename	must	not	precede	nested	dependent	type	names	in	a	list
of	base	classes	or	as	a	base	class	identifier	in	a	member	initialization	list.	For
example:

template<typename	T>

class	Derived:	public	Base<T>::Nested	{	//	base	class	list:	



public:																																	//	allowed

		explicit	Derived(int	x)

		:	Base<T>::Nested(x)																		//	base	class	identifier	in	mem

		{																																					//	init.	list:	

				typename	Base<T>::Nested	temp;						//	use	of	nested	dependent	type

				...																																	//	name	not	in	a	base	class	list	or

		}																																					//	as	a	base	class	identifier	in	a

		...																																			//	mem.	init.	list:	

};

Such	inconsistency	is	irksome,	but	once	you	have	a	bit	of	experience	under	your
belt,	you'll	barely	notice	it.

Let's	look	at	one	last	typename	example,	because	it's	representative	of
something	you're	going	to	see	in	real	code.	Suppose	we're	writing	a	function
template	that	takes	an	iterator,	and	we	want	to	make	a	local	copy,	temp,	of	the
object	the	iterator	points	to.	We	can	do	it	like	this:

template<typename	IterT>

void	workWithIterator(IterT	iter)

{



		typename	std::iterator_traits<IterT>::value_type	temp(*iter);

		...

}

Don't	let	the	std::iterator_traits<IterT>::value_type	startle
you.	That's	just	a	use	of	a	standard	traits	class	(see	Item	47),	the	C++	way	of
saying	"the	type	of	thing	pointed	to	by	objects	of	type	IterT."	The	statement
declares	a	local	variable	(temp)	of	the	same	type	as	what	IterT	objects	point
to,	and	it	initializes	temp	with	the	object	that	iter	points	to.	If	IterT	is
vector<int>::iterator,	temp	is	of	type	int.	If	IterT	is
list<string>::iterator,	temp	is	of	type	string.	Because
std::iterator_traits<IterT>::value_type	is	a	nested	dependent
type	name	(value_type	is	nested	inside	iterator_traits<IterT>,	and
IterT	is	a	template	parameter),	we	must	precede	it	by	typename.

If	you	think	reading	std::iterator_traits<IterT>::value_type
is	unpleasant,	imagine	what	it's	like	to	type	it.	If	you're	like	most	programmers,
the	thought	of	typing	it	more	than	once	is	ghastly,	so	you'll	want	to	create	a
typedef.	For	traits	member	names	like	value_type	(again,	see	Item	47for
information	on	traits),	a	common	convention	is	for	the	typedef	name	to	be	the
same	as	the	traits	member	name,	so	such	a	local	typedef	is	often	defined	like
this:

template<typename	IterT>

void	workWithIterator(IterT	iter)

{

		typedef	typename	std::iterator_traits<IterT>::value_type	value_type;



		value_type	temp(*iter);

		...

}

Many	programmers	find	the	"typedef	typename"	juxtaposition	initially
jarring,	but	it's	a	logical	fallout	from	the	rules	for	referring	to	nested	dependent
type	names.	You'll	get	used	to	it	fairly	quickly.	After	all,	you	have	strong
motivation.	How	many	times	do	you	want	to	type	typename
std::iterator_traits<IterT>::value_type?

As	a	closing	note,	I	should	mention	that	enforcement	of	the	rules	surrounding
typename	vary	from	compiler	to	compiler.	Some	compilers	accept	code	where
typename	is	required	but	missing;	some	accept	code	where	typename	is
present	but	not	allowed;	and	a	few	(usually	older	ones)	reject	typename	where
it's	present	and	required.	This	means	that	the	interaction	of	typename	and
nested	dependent	type	names	can	lead	to	some	mild	portability	headaches.

Things	to	Remember

When	declaring	template	parameters,	class	and	typename
are	interchangeable.

Use	typename	to	identify	nested	dependent	type	names,
except	in	base	class	lists	or	as	a	base	class	identifier	in	a	member
initialization	list.



Item	43:	Know	how	to	access	names	in
templatized	base	classes

Suppose	we	need	to	write	an	application	that	can	send	messages	to	several
different	companies.	Messages	can	be	sent	in	either	encrypted	or	cleartext
(unencrypted)	form.	If	we	have	enough	information	during	compilation	to
determine	which	messages	will	go	to	which	companies,	we	can	employ	a
template-based	solution:

class	CompanyA	{

public:

		...

		void	sendCleartext(const	std::string&	msg);

		void	sendEncrypted(const	std::string&	msg);

		...

};

class	CompanyB	{

public:

		...

		void	sendCleartext(const	std::string&	msg);

		void	sendEncrypted(const	std::string&	msg);



		...

};

...																																					//	classes	for	other	companies

class	MsgInfo	{	...	};																		//	class	for	holding	information

																																								//	used	to	create	a	message

template<typename	Company>

class	MsgSender	{

public:

		...																																			//	ctors,	dtor,	etc.

		void	sendClear(const	MsgInfo&	info)

		{

				std::string	msg;

				create	msg	from	info;

				Company	c;

				c.sendCleartext(msg);



		}

		void	sendSecret(const	MsgInfo&	info)			//	similar	to	sendClear,	except

		{	...	}																																//	calls	c.sendEncrypted

};

This	will	work	fine,	but	suppose	we	sometimes	want	to	log	some	information
each	time	we	send	a	message.	A	derived	class	can	easily	add	that	capability,	and
this	seems	like	a	reasonable	way	to	do	it:

template<typename	Company>

class	LoggingMsgSender:	public	MsgSender<Company>	{

public:

		...																																				//	ctors,	dtor,	etc.

		void	sendClearMsg(const	MsgInfo&	info)

		{

				write	"before	sending"	info	to	the	log;

				sendClear(info);																					//	call	base	class	function;

																																									//	this	code	will	not	compile!



				write	"after	sending"	info	to	the	log;

		}

		...

};

Note	how	the	message-sending	function	in	the	derived	class	has	a	different	name
(sendClearMsg)	from	the	one	in	its	base	class	(there,	it's	called
sendClear).	That's	good	design,	because	it	side-steps	the	issue	of	hiding
inherited	names	(see	Item	33)	as	well	as	the	problems	inherent	in	redefining	an
inherited	non-virtual	function	(see	Item	36).	But	the	code	above	won't	compile,
at	least	not	with	conformant	compilers.	Such	compilers	will	complain	that
sendClear	doesn't	exist.	We	can	see	that	sendClear	is	in	the	base	class,	but
compilers	won't	look	for	it	there.	We	need	to	understand	why.

The	problem	is	that	when	compilers	encounter	the	definition	for	the	class
template	LoggingMsgSender,	they	don't	know	what	class	it	inherits	from.
Sure,	it's	MsgSender<Company>,	but	Company	is	a	template	parameter,	one
that	won't	be	known	until	later	(when	LoggingMsgSender	is	instantiated).
Without	knowing	what	Company	is,	there's	no	way	to	know	what	the	class
MsgSender<Company>	looks	like.	In	particular,	there's	no	way	to	know	if	it
has	a	sendClear	function.

To	make	the	problem	concrete,	suppose	we	have	a	class	CompanyZ	that	insists
on	encrypted	communications:

class	CompanyZ	{																													//	this	class	offers	no



public:																																						//	sendCleartext	function

		...

		void	sendEncrypted(const	std::string&	msg);

		...

};

The	general	MsgSender	template	is	inappropriate	for	CompanyZ,	because	that
template	offers	a	sendClear	function	that	makes	no	sense	for	CompanyZ
objects.	To	rectify	that	problem,	we	can	create	a	specialized	version	of
MsgSender	for	CompanyZ:

template<>																																	//	a	total	specialization

class	MsgSender<CompanyZ>	{																//	MsgSender;	the	same	as	the

public:																																				//	general	template,	except

		...																																						//	sendCleartext	is	omitted

		void	sendSecret(const	MsgInfo&	info)

		{	...	}

};

Note	the	"template	<>"	syntax	at	the	beginning	of	this	class	definition.	It



signifies	that	this	is	neither	a	template	nor	a	standalone	class.	Rather,	it's	a
specialized	version	of	the	MsgSender	template	to	be	used	when	the	template
argument	is	CompanyZ.	This	is	known	as	a	total	template	specialization:	the
template	MsgSender	is	specialized	for	the	type	CompanyZ,	and	the
specialization	is	total		once	the	type	parameter	has	been	defined	to	be
CompanyZ,	no	other	aspect	of	the	template's	parameters	can	vary.

Given	that	MsgSender	has	been	specialized	for	CompanyZ,	consider	again	the
derived	class	LoggingMsgSender:

template<typename	Company>

class	LoggingMsgSender:	public	MsgSender<Company>	{

public:

		...

		void	sendClearMsg(const	MsgInfo&	info)

		{

				write	"before	sending"	info	to	the	log;

				sendClear(info);																										//	if	Company	==	CompanyZ,

																																														//	this	function	doesn't	exist!

				write	"after	sending"	info	to	the	log;

		}

		...



};

As	the	comment	notes,	this	code	makes	no	sense	when	the	base	class	is
MsgSender<CompanyZ>,	because	that	class	offers	no	sendClear	function.
That's	why	C++	rejects	the	call:	it	recognizes	that	base	class	templates	may	be
specialized	and	that	such	specializations	may	not	offer	the	same	interface	as	the
general	template.	As	a	result,	it	generally	refuses	to	look	in	templatized	base
classes	for	inherited	names.	In	some	sense,	when	we	cross	from	Object-oriented
C++	to	Template	C++	(see	Item	1),	inheritance	stops	working.

To	restart	it,	we	have	to	somehow	disable	C++'s	"don't	look	in	templatized	base
classes"	behavior.	There	are	three	ways	to	do	this.	First,	you	can	preface	calls	to
base	class	functions	with	"this->":

template<typename	Company>

class	LoggingMsgSender:	public	MsgSender<Company>	{

public:

		...

		void	sendClearMsg(const	MsgInfo&	info)

		{

				write	"before	sending"	info	to	the	log;



				this->sendClear(info);																//	okay,	assumes	that

																																										//	sendClear	will	be	inherited

				write	"after	sending"	info	to	the	log;

		}

		...

};

Second,	you	can	employ	a	using	declaration,	a	solution	that	should	strike	you
as	familiar	if	you've	read	Item	33.	That	Item	explains	how	using	declarations
bring	hidden	base	class	names	into	a	derived	class's	scope.	We	can	therefore
write	sendClearMsg	like	this:

template<typename	Company>

class	LoggingMsgSender:	public	MsgSender<Company>	{

public:

		using	MsgSender<Company>::sendClear;			//	tell	compilers	to	assume

		...																																				//	that	sendClear	is	in	the



																																									//	base	class

		void	sendClearMsg(const	MsgInfo&	info)

		{

				...

				sendClear(info);																			//	okay,	assumes	that

				...																																//	sendClear	will	be	inherited

		}

		...

};

(Although	a	using	declaration	will	work	both	here	and	in	Item	33,	the
problems	being	solved	are	different.	Here,	the	situation	isn't	that	base	class
names	are	hidden	by	derived	class	names,	it's	that	compilers	don't	search	base
class	scopes	unless	we	tell	them	to.)

A	final	way	to	get	your	code	to	compile	is	to	explicitly	specify	that	the	function
being	called	is	in	the	base	class:

template<typename	Company>

class	LoggingMsgSender:	public	MsgSender<Company>	{

public:



		...

		void	sendClearMsg(const	MsgInfo&	info)

		{

				...

				MsgSender<Company>::sendClear(info);						//	okay,	assumes	that

				...																																							//	sendClear	will	be

		}																																											//inherited

		...

};

This	is	generally	the	least	desirable	way	to	solve	the	problem,	because	if	the
function	being	called	is	virtual,	explicit	qualification	turns	off	the	virtual	binding
behavior.

From	a	name	visibility	point	of	view,	each	of	these	approaches	does	the	same
thing:	it	promises	compilers	that	any	subsequent	specializations	of	the	base	class
template	will	support	the	interface	offered	by	the	general	template.	Such	a
promise	is	all	compilers	need	when	they	parse	a	derived	class	template	like
LoggingMsgSender,	but	if	the	promise	turns	out	to	be	unfounded,	the	truth
will	emerge	during	subsequent	compilation.	For	example,	if	the	source	code	later
contains	this,

LoggingMsgSender<CompanyZ>	zMsgSender;



MsgInfo	msgData;

...																																										//	put	info	in	msgData

zMsgSender.sendClearMsg(msgData);												//	error!	won't	compile

the	call	to	sendClearMsg	won't	compile,	because	at	this	point,	compilers
know	that	the	base	class	is	the	template	specialization
MsgSender<CompanyZ>,	and	they	know	that	class	doesn't	offer	the
sendClear	function	that	sendClearMsg	is	trying	to	call.

Fundamentally,	the	issue	is	whether	compilers	will	diagnose	invalid	references
to	base	class	members	sooner	(when	derived	class	template	definitions	are
parsed)	or	later	(when	those	templates	are	instantiated	with	specific	template
arguments).	C++'s	policy	is	to	prefer	early	diagnoses,	and	that's	why	it	assumes
it	knows	nothing	about	the	contents	of	base	classes	when	those	classes	are
instantiated	from	templates.

Things	to	Remember

In	derived	class	templates,	refer	to	names	in	base	class	templates
via	a	"this->"	prefix,	via	using	declarations,	or	via	an
explicit	base	class	qualification.



Item	44:	Factor	parameter-independent	code	out
of	templates

Templates	are	a	wonderful	way	to	save	time	and	avoid	code	replication.	Instead
of	typing	20	similar	classes,	each	with	15	member	functions,	you	type	one	class
template,	and	you	let	compilers	instantiate	the	20	specific	classes	and	300
functions	you	need.	(Member	functions	of	class	templates	are	implicitly
instantiated	only	when	used,	so	you	should	get	the	full	300	member	functions
only	if	each	is	actually	used.)	Function	templates	are	similarly	appealing.	Instead
of	writing	many	functions,	you	write	one	function	template	and	let	the	compilers
do	the	rest.	Ain't	technology	grand?

Yes,	well...sometimes.	If	you're	not	careful,	using	templates	can	lead	to	code
bloat:	binaries	with	replicated	(or	almost	replicated)	code,	data,	or	both.	The
result	can	be	source	code	that	looks	fit	and	trim,	yet	object	code	that's	fat	and
flabby.	Fat	and	flabby	is	rarely	fashionable,	so	you	need	to	know	how	to	avoid
such	binary	bombast.

Your	primary	tool	has	the	imposing	name	commonality	and	variability	analysis,
but	there's	nothing	imposing	about	the	idea.	Even	if	you've	never	written	a
template	in	your	life,	you	do	such	analysis	all	the	time.

When	you're	writing	a	function	and	you	realize	that	some	part	of	the	function's
implementation	is	essentially	the	same	as	another	function's	implementation,	do
you	just	replicate	the	code?	Of	course	not.	You	factor	the	common	code	out	of
the	two	functions,	put	it	into	a	third	function,	and	have	both	of	the	other
functions	call	the	new	one.	That	is,	you	analyze	the	two	functions	to	find	the
parts	that	are	common	and	those	that	vary,	you	move	the	common	parts	into	a
new	function,	and	you	keep	the	varying	parts	in	the	original	functions.	Similarly,
if	you're	writing	a	class	and	you	realize	that	some	parts	of	the	class	are	the	same
as	parts	of	another	class,	you	don't	replicate	the	common	parts.	Instead,	you
move	the	common	parts	to	a	new	class,	then	you	use	inheritance	or	composition
(see	Items	32,	38,	and	39)	to	give	the	original	classes	access	to	the	common
features.	The	parts	of	the	original	classes	that	differ		the	varying	parts		remain	in
their	original	locations.



When	writing	templates,	you	do	the	same	analysis,	and	you	avoid	replication	in
the	same	ways,	but	there's	a	twist.	In	non-template	code,	replication	is	explicit:
you	can	see	that	there's	duplication	between	two	functions	or	two	classes.	In
template	code,	replication	is	implicit:	there's	only	one	copy	of	the	template
source	code,	so	you	have	to	train	yourself	to	sense	the	replication	that	may	take
place	when	a	template	is	instantiated	multiple	times.

For	example,	suppose	you'd	like	to	write	a	template	for	fixed-size	square
matrices	that,	among	other	things,	support	matrix	inversion.

template<typename	T,											//	template	for	n	x	n	matrices	of

									std::size_t	n>								//	objects	of	type	T;	see	below	for	info

class	SquareMatrix	{											//	on	the	size_t	parameter

public:

		...

		void	invert();														//	invert	the	matrix	in	place

};

This	template	takes	a	type	parameter,	T,	but	it	also	takes	a	parameter	of	type
size_t		a	non-type	parameter.	Non-type	parameters	are	less	common	than
type	parameters,	but	they're	completely	legal,	and,	as	in	this	example,	they	can
be	quite	natural.

Now	consider	this	code:

SquareMatrix<double,	5>	sm1;



...

sm1.invert();																		//	call	SquareMatrix<double,	5>::invert

SquareMatrix<double,	10>	sm2;

...

sm2.invert();																		//	call	SquareMatrix<double,	10>::invert

Two	copies	of	invert	will	be	instantiated	here.	The	functions	won't	be
identical,	because	one	will	work	on	5x5	matrices	and	one	will	work	on	10	x	10
matrices,	but	other	than	the	constants	5	and	10,	the	two	functions	will	be	the
same.	This	is	a	classic	way	for	template-induced	code	bloat	to	arise.

What	would	you	do	if	you	saw	two	functions	that	were	character-for-character
identical	except	for	the	use	of	5	in	one	version	and	10	in	the	other?	Your	instinct
would	be	to	create	a	version	of	the	function	that	took	a	value	as	a	parameter,
then	call	the	parameterized	function	with	5	or	10	instead	of	replicating	the	code.
Your	instinct	serves	you	well!	Here's	a	first	pass	at	doing	that	for
SquareMatrix:

template<typename	T>																			//	size-independent	base	class	for

class	SquareMatrixBase	{															//	square	matrices

protected:

		...

		void	invert(std::size_t	matrixSize);	//	invert	matrix	of	the	given	size



		...

};

template<										typename	T,	std::size_t	n>

class	SquareMatrix:	private	SquareMatrixBase<T>	{

private:

		using	SquareMatrixBase<T>::invert;			//	avoid	hiding	base	version	of

																																							//	invert;	see	Item	33

public:

		...

		void	invert()	{	this->invert(n);	}			//	make	inline	call	to	base	class

};																																					//	version	of	invert;	see	below

																																							//	for	why	"this->"	is	here

As	you	can	see,	the	parameterized	version	of	invert	is	in	a	base	class,
SquareMatrixBase.	Like	SquareMatrix,	SquareMatrixBase	is	a
template,	but	unlike	SquareMatrix,	it's	templatized	only	on	the	type	of
objects	in	the	matrix,	not	on	the	size	of	the	matrix.	Hence,	all	matrices	holding	a
given	type	of	object	will	share	a	single	SquareMatrixBase	class.	They	will
thus	share	a	single	copy	of	that	class's	version	of	invert.



SquareMatrixBase::invert	is	intended	only	to	be	a	way	for	derived
classes	to	avoid	code	replication,	so	it's	protected	instead	of	being	public.
The	additional	cost	of	calling	it	should	be	zero,	because	derived	classes'
inverts	call	the	base	class	version	using	inline	functions.	(The	inline	is
implicit		see	Item	30.)	These	functions	use	the	"this->"	notation,	because
otherwise,	as	Item	43	explains,	function	names	in	templatized	base	classes	(such
as	SquareMatrixBase<T>)	are	hidden	from	derived	classes.	Notice	also	that
the	inheritance	between	SquareMatrix	and	SquareMatrixBase	is
private.	This	accurately	reflects	the	fact	that	the	reason	for	the	base	class	is
only	to	facilitate	the	derived	classes'	implementations,	not	to	express	a
conceptual	is-a	relationship	between	SquareMatrix	and
SquareMatrixBase.	(For	information	on	private	inheritance,	see	Item	39.)

So	far,	so	good,	but	there's	a	sticky	issue	we	haven't	addressed	yet.	How	does
SquareMatrixBase::invert	know	what	data	to	operate	on?	It	knows	the
size	of	the	matrix	from	its	parameter,	but	how	does	it	know	where	the	data	for	a
particular	matrix	is?	Presumably	only	the	derived	class	knows	that.	How	does
the	derived	class	communicate	that	to	the	base	class	so	that	the	base	class	can	do
the	inversion?

One	possibility	would	be	to	add	another	parameter	to
SquareMatrixBase::invert,	perhaps	a	pointer	to	the	beginning	of	a
chunk	of	memory	with	the	matrix's	data	in	it.	That	would	work,	but	in	all
likelihood,	invert	is	not	the	only	function	in	SquareMatrix	that	can	be
written	in	a	size-independent	manner	and	moved	into	SquareMatrixBase.	If
there	are	several	such	functions,	all	will	need	a	way	to	find	the	memory	holding
the	values	in	the	matrix.	We	could	add	an	extra	parameter	to	all	of	them,	but
we'd	be	telling	SquareMatrixBase	the	same	information	repeatedly.	That
seems	wrong.

An	alternative	is	to	have	SquareMatrixBase	store	a	pointer	to	the	memory
for	the	matrix	values.	And	as	long	as	it's	storing	that,	it	might	as	well	store	the
matrix	size,	too.	The	resulting	design	looks	like	this:

template<typename	T>



class	SquareMatrixBase	{

protected:

		SquareMatrixBase(std::size_t	n,	T	*pMem)					//	store	matrix	size	and	a

		:	size(n),	pData(pMem)	{}																				//	ptr	to	matrix	values

		void	setDataPtr(T	*ptr)	{	pData	=	ptr;	}					//	reassign	pData

		...

private:

		std::size_t	size;																												//	size	of	matrix

		T	*pData;																																				//	pointer	to	matrix	values

};

This	lets	derived	classes	decide	how	to	allocate	the	memory.	Some
implementations	might	decide	to	store	the	matrix	data	right	inside	the
SquareMatrix	object:

template<typename	T,	std::size_t	n>

class	SquareMatrix:	private	SquareMatrixBase<T>	{



public:

		SquareMatrix()																													//	send	matrix	size	and

		:	SquareMatrixBase<T>(n,	data)	{}										//	data	ptr	to	base	class

		...

private:

		T	data[n*n];

};

Objects	of	such	types	have	no	need	for	dynamic	memory	allocation,	but	the
objects	themselves	could	be	very	large.	An	alternative	would	be	to	put	the	data
for	each	matrix	on	the	heap:

template<typename	T,	std::size_t	n>

class	SquareMatrix:	private	SquareMatrixBase<T>	{

public:

		SquareMatrix()																										//	set	base	class	data	ptr	to	null,

		:	SquareMatrixBase<T>(n,	0),												//	allocate	memory	for	matrix

				pData(new	T[n*n])																					//	values,	save	a	ptr	to	the



		{	this->setDataPtr(pData.get());	}						//	memory,	and	give	a	copy	of	it

		...																																					//	to	the	base	class

private:

		boost::scoped_array<T>	pData;											//	see	Item	13	for	info	on

};																																								//	boost::scoped_array

Regardless	of	where	the	data	is	stored,	the	key	result	from	a	bloat	point	of	view
is	that	now	many		maybe	all		of	SquareMatrix's	member	functions	can	be
simple	inline	calls	to	base	class	versions	that	are	shared	with	all	other	matrices
holding	the	same	type	of	data,	regardless	of	their	size.	At	the	same	time,
SquareMatrix	objects	of	different	sizes	are	distinct	types,	so	even	though,
e.g.,	SquareMatrix<double,	5>	and	SquareMatrix<double,	10>
objects	use	the	same	member	functions	in	SquareMatrixBase<double>,
there's	no	chance	of	passing	a	SquareMatrix<double,	5>	object	to	a
function	expecting	a	SquareMatrix<double,	10>.	Nice,	no?

Nice,	yes,	but	not	free.	The	versions	of	invert	with	the	matrix	sizes	hardwired
into	them	are	likely	to	generate	better	code	than	the	shared	version	where	the
size	is	passed	as	a	function	parameter	or	is	stored	in	the	object.	For	example,	in
the	size-specific	versions,	the	sizes	would	be	compile-time	constants,	hence
eligible	for	such	optimizations	as	constant	propagation,	including	their	being
folded	into	the	generated	instructions	as	immediate	operands.	That	can't	be	done
in	the	size-independent	version.

On	the	other	hand,	having	only	one	version	of	invert	for	multiple	matrix	sizes
decreases	the	size	of	the	executable,	and	that	could	reduce	the	program's
working	set	size	and	improve	locality	of	reference	in	the	instruction	cache.
Those	things	could	make	the	program	run	faster,	more	than	compensating	for



any	lost	optimizations	in	size-specific	versions	of	invert.	Which	effect	would
dominate?	The	only	way	to	know	is	to	try	it	both	ways	and	observe	the	behavior
on	your	particular	platform	and	on	representative	data	sets.

Another	efficiency	consideration	concerns	the	sizes	of	objects.	If	you're	not
careful,	moving	size-independent	versions	of	functions	up	into	a	base	class	can
increase	the	overall	size	of	each	object.	For	example,	in	the	code	I	just	showed,
each	SquareMatrix	object	has	a	pointer	to	its	data	in	the
SquareMatrixBase	class,	even	though	each	derived	class	already	has	a	way
to	get	to	the	data.	This	increases	the	size	of	each	SquareMatrix	object	by	at
least	the	size	of	a	pointer.	It's	possible	to	modify	the	design	so	that	these	pointers
are	unnecessary,	but,	again,	there	are	trade-offs.	For	example,	having	the	base
class	store	a	protected	pointer	to	the	matrix	data	leads	to	the	loss	of
encapsulation	described	in	Item	22.	It	can	also	lead	to	resource	management
complications:	if	the	base	class	stores	a	pointer	to	the	matrix	data,	but	that	data
may	have	been	either	dynamically	allocated	or	physically	stored	inside	the
derived	class	object	(as	we	saw),	how	will	it	be	determined	whether	the	pointer
should	be	deleted?	Such	questions	have	answers,	but	the	more	sophisticated	you
try	to	be	about	them,	the	more	complicated	things	become.	At	some	point,	a	little
code	replication	begins	to	look	like	a	mercy.

This	Item	has	discussed	only	bloat	due	to	non-type	template	parameters,	but	type
parameters	can	lead	to	bloat,	too.	For	example,	on	many	platforms,	int	and
long	have	the	same	binary	representation,	so	the	member	functions	for,	say,
vector<int>	and	vector<long>	would	likely	be	identical		the	very
definition	of	bloat.	Some	linkers	will	merge	identical	function	implementations,
but	some	will	not,	and	that	means	that	some	templates	instantiated	on	both	int
and	long	could	cause	code	bloat	in	some	environments.	Similarly,	on	most
platforms,	all	pointer	types	have	the	same	binary	representation,	so	templates
holding	pointer	types	(e.g.,	list<int*>,	list<const	int*>,
list<SquareMatrix<long,	3>*>,	etc.)	should	often	be	able	to	use	a
single	underlying	implementation	for	each	member	function.	Typically,	this
means	implementing	member	functions	that	work	with	strongly	typed	pointers
(i.e.,	T*	pointers)	by	having	them	call	functions	that	work	with	untyped	pointers
(i.e.,	void*	pointers).	Some	implementations	of	the	standard	C++	library	do
this	for	templates	like	vector,	deque,	and	list.	If	you're	concerned	about
code	bloat	arising	in	your	templates,	you'll	probably	want	to	develop	templates



that	do	the	same	thing.

Things	to	Remember

Templates	generate	multiple	classes	and	multiple	functions,	so
any	template	code	not	dependent	on	a	template	parameter	causes
bloat.

Bloat	due	to	non-type	template	parameters	can	often	be
eliminated	by	replacing	template	parameters	with	function
parameters	or	class	data	members.

Bloat	due	to	type	parameters	can	be	reduced	by	sharing
implementations	for	instantiation	types	with	identical	binary
representations.



Item	45:	Use	member	function	templates	to
accept	"all	compatible	types."

Smart	pointers	are	objects	that	act	much	like	pointers	but	add	functionality
pointers	don't	provide.	For	example,	Item	13	explains	how	the	standard
auto_ptr	and	tr1::shared_ptr	can	be	used	to	automatically	delete	heap-
based	resources	at	the	right	time.	Iterators	into	STL	containers	are	almost	always
smart	pointers;	certainly	you	couldn't	expect	to	move	a	built-in	pointer	from	one
node	in	a	linked	list	to	the	next	by	using	"++,"	yet	that	works	for
list::iterators.

One	of	the	things	that	real	pointers	do	well	is	support	implicit	conversions.
Derived	class	pointers	implicitly	convert	into	base	class	pointers,	pointers	to
non-const	objects	convert	into	pointers	to	const	objects,	etc.	For	example,
consider	some	conversions	that	can	occur	in	a	three-level	hierarchy:

class	Top	{	...	};

class	Middle:	public	Top	{	...	};

class	Bottom:	public	Middle	{	...	};

Top	*pt1	=	new	Middle;																			//	convert	Middle*	

Top	*pt2	=	new	Bottom;																			//	convert	Bottom*	

const	Top	*pct2	=	pt1;																			//	convert	Top*	

Emulating	such	conversions	in	user-defined	smart	pointer	classes	is	tricky.	We'd
need	the	following	code	to	compile:



template<typename	T>

class	SmartPtr	{

public:																													//	smart	pointers	are	typically

		explicit	SmartPtr(T	*realPtr);				//	initialized	by	built-in	pointers

		...

};

SmartPtr<Top>	pt1	=																	//	convert	SmartPtr<Middle>	

		SmartPtr<Middle>(new	Middle);					//			SmartPtr<Top>

SmartPtr<Top>	pt2	=																	//	convert	SmartPtr<Bottom>	

		SmartPtr<Bottom>(new	Bottom);					//			SmartPtr<Top>

SmartPtr<const	Top>	pct2	=	pt1;					//	convert	SmartPtr<Top>	

																																				//		SmartPtr<const	Top>

There	is	no	inherent	relationship	among	different	instantiations	of	the	same
template,	so	compilers	view	SmartPtr<Middle>	and	SmartPtr<Top>	as
completely	different	classes,	no	more	closely	related	than,	say,



vector<float>	and	Widget.	To	get	the	conversions	among	SmartPtr
classes	that	we	want,	we	have	to	program	them	explicitly.

In	the	smart	pointer	sample	code	above,	each	statement	creates	a	new	smart
pointer	object,	so	for	now	we'll	focus	on	how	to	write	smart	pointer	constructors
that	behave	the	way	we	want.	A	key	observation	is	that	there	is	no	way	to	write
out	all	the	constructors	we	need.	In	the	hierarchy	above,	we	can	construct	a
SmartPtr<Top>	from	a	SmartPtr<Middle>	or	a	SmartPtr<Bottom>,
but	if	the	hierarchy	is	extended	in	the	future,	SmartPtr<Top>	objects	will
have	to	be	constructible	from	other	smart	pointer	types.	For	example,	if	we	later
add

class	BelowBottom:	public	Bottom	{	...	};

we'll	need	to	support	the	creation	of	SmartPtr<Top>	objects	from
SmartPtr<BelowBottom>	objects,	and	we	certainly	won't	want	to	have	to
modify	the	SmartPtr	template	to	do	it.

In	principle,	the	number	of	constructors	we	need	is	unlimited.	Since	a	template
can	be	instantiated	to	generate	an	unlimited	number	of	functions,	it	seems	that
we	don't	need	a	constructor	function	for	SmartPtr,	we	need	a	constructor
template.	Such	templates	are	examples	of	member	function	templates	(often	just
known	as	member	templates)		templates	that	generate	member	functions	of	a
class:

template<typename	T>

class	SmartPtr	{

public:

		template<typename	U>																							//	member	template



		SmartPtr(const	SmartPtr<U>&	other);								//	for	a	"generalized

		...																																								//	copy	constructor"

};

This	says	that	for	every	type	T	and	every	type	U,	a	SmartPtr<T>	can	be
created	from	a	SmartPtr<U>,	because	SmartPtr<T>	has	a	constructor	that
takes	a	SmartPtr<U>	parameter.	Constructors	like	this		ones	that	create	one
object	from	another	object	whose	type	is	a	different	instantiation	of	the	same
template	(e.g.,	create	a	SmartPtr<T>	from	a	SmartPtr<U>)		are	sometimes
known	as	generalized	copy	constructors.

The	generalized	copy	constructor	above	is	not	declared	explicit.	That's
deliberate.	Type	conversions	among	built-in	pointer	types	(e.g.,	from	derived	to
base	class	pointers)	are	implicit	and	require	no	cast,	so	it's	reasonable	for	smart
pointers	to	emulate	that	behavior.	Omitting	explicit	on	the	templatized
constructor	does	just	that.

As	declared,	the	generalized	copy	constructor	for	SmartPtr	offers	more	than
we	want.	Yes,	we	want	to	be	able	to	create	a	SmartPtr<Top>	from	a
SmartPtr<Bottom>,	but	we	don't	want	to	be	able	to	create	a
SmartPtr<Bottom>	from	a	SmartPtr<Top>,	as	that's	contrary	to	the
meaning	of	public	inheritance	(see	Item	32).	We	also	don't	want	to	be	able	to
create	a	SmartPtr<int>	from	a	SmartPtr<double>,	because	there	is	no
corresponding	implicit	conversion	from	int*	to	double*.	Somehow,	we	have
to	cull	the	herd	of	member	functions	that	this	member	template	will	generate.

Assuming	that	SmartPtr	follows	the	lead	of	auto_ptr	and
TR1::shared_ptr	by	offering	a	get	member	function	that	returns	a	copy	of
the	built-in	pointer	held	by	the	smart	pointer	object	(see	Item	15),	we	can	use	the
implementation	of	the	constructor	template	to	restrict	the	conversions	to	those
we	want:



template<typename	T>

class	SmartPtr	{

public:

		template<typename	U>

		SmartPtr(const	SmartPtr<U>&	other)									//	initialize	this	held	ptr

		:	heldPtr(other.get())	{	...	}													//	with	other's	held	ptr

		T*	get()	const	{	return	heldPtr;	}

		...

private:																																					//	built-in	pointer	held

		T	*heldPtr;																																//	by	the	SmartPtr

};

We	use	the	member	initialization	list	to	initialize	SmartPtr<T>'s	data	member
of	type	T*	with	the	pointer	of	type	U*	held	by	the	SmartPtr<U>.	This	will
compile	only	if	there	is	an	implicit	conversion	from	a	U*	pointer	to	a	T*	pointer,
and	that's	precisely	what	we	want.	The	net	effect	is	that	SmartPtr<T>	now
has	a	generalized	copy	constructor	that	will	compile	only	if	passed	a	parameter
of	a	compatible	type.



The	utility	of	member	function	templates	isn't	limited	to	constructors.	Another
common	role	for	them	is	in	support	for	assignment.	For	example,	TR1's
shared_ptr	(again,	see	Item	13)	supports	construction	from	all	compatible
built-in	pointers,	tr1::shared_ptrs,	auto_ptrs,	and	tr1::weak_ptrs
(see	Item	54),	as	well	as	assignment	from	all	of	those	except
tr1::weak_ptrs.	Here's	an	excerpt	from	TR1's	specification	for
TR1::shared_ptr,	including	its	penchant	for	using	class	instead	of
typename

when	declaring	template	parameters.	(As	Item	42	explains,	they	mean	exactly
the	same	thing	in	this	context.)

	

template<class	T>	class	shared_ptr	{

	

public:

	

		template<class	Y>																																					//	construct	from

	

				explicit	shared_ptr(Y	*	p);																									//	any	compatible

	

		template<class	Y>																																					//	built-in	pointer,

	

				shared_ptr(shared_ptr<Y>	const&	r);																	//	shared_ptr,

	

		template<class	Y>																																					//	weak_ptr,	or

	

				explicit	shared_ptr(weak_ptr<Y>	const&	r);										//	auto_ptr

	

		template<class	Y>

	

				explicit	shared_ptr(auto_ptr<Y>&	r);

	

		template<class	Y>																																					//	assign	from

	

				shared_ptr&	operator=(shared_ptr<Y>	const&	r);						//	any	compatible

	

		template<class	Y>																																					//	shared_ptr	or



		template<class	Y>																																					//	shared_ptr	or

	

				shared_ptr&	operator=(auto_ptr<Y>&	r);														//	auto_ptr

	

		...

	

};

	

All	these	constructors	are	explicit,	except	the	generalized	copy	constructor.
That	means	that	implicit	conversion	from	one	type	of	shared_ptr	to	another
is	allowed,	but	implicit	conversion	from	a	built-in	pointer	or	other	smart	pointer
type	is	not	permitted.	(Explicit	conversion		e.g.,	via	a	cast		is	okay.)	Also
interesting	is	how	the	auto_ptrs	passed	to	TR1::shared_ptr	constructors
and	assignment	operators	aren't	declared	const,	in	contrast	to	how	the
TR1::shared_ptrs	and	tr1::weak_ptrs	are	passed.	That's	a
consequence	of	the	fact	that	auto_ptrs	stand	alone	in	being	modified	when
they're	copied	(see	Item	13).

Member	function	templates	are	wonderful	things,	but	they	don't	alter	the	basic
rules	of	the	language.	Item	5	explains	that	two	of	the	four	member	functions	that
compilers	may	generate	are	the	copy	constructor	and	the	copy	assignment
operator.	tr1::shared_ptr	declares	a	generalized	copy	constructor,	and	it's
clear	that	when	the	types	T	and	Y	are	the	same,	the	generalized	copy	constructor
could	be	instantiated	to	create	the	"normal"	copy	constructor.	So	will	compilers
generate	a	copy	constructor	for	TR1::shared_ptr,	or	will	they	instantiate
the	generalized	copy	constructor	template	when	one	TR1::shared_ptr
object	is	constructed	from	another	tr1::shared_ptr	object	of	the	same
type?

As	I	said,	member	templates	don't	change	the	rules	of	the	language,	and	the	rules
state	that	if	a	copy	constructor	is	needed	and	you	don't	declare	one,	one	will	be
generated	for	you	automatically.	Declaring	a	generalized	copy	constructor	(a
member	template)	in	a	class	doesn't	keep	compilers	from	generating	their	own
copy	constructor	(a	non-template),	so	if	you	want	to	control	all	aspects	of	copy
construction,	you	must	declare	both	a	generalized	copy	constructor	as	well	as	the



"normal"	copy	constructor.	The	same	applies	to	assignment.	Here's	an	excerpt
from	tr1::shared_ptr's	definition	that	exemplifies	this:

template<class	T>	class	shared_ptr	{

public:

		shared_ptr(shared_ptr	const&	r);																	//	copy	constructor

		template<class	Y>																																//	generalized

				shared_ptr(shared_ptr<Y>	const&	r);												//	copy	constructor

		shared_ptr&	operator=(shared_ptr	const&	r);						//	copy	assignment

		template<class	Y>																																//	generalized

				shared_ptr&	operator=(shared_ptr<Y>	const&	r);	//	copy	assignment

		...

};

Things	to	Remember

Use	member	function	templates	to	generate	functions	that	accept
all	compatible	types.



If	you	declare	member	templates	for	generalized	copy
construction	or	generalized	assignment,	you'll	still	need	to
declare	the	normal	copy	constructor	and	copy	assignment
operator,	too.



Item	46:	Define	non-member	functions	inside
templates	when	type	conversions	are	desired

Item	24	explains	why	only	non-member	functions	are	eligible	for	implicit	type
conversions	on	all	arguments,	and	it	uses	as	an	example	the	operator*
function	for	a	Rational	class.	I	recommend	you	familiarize	yourself	with	that
example	before	continuing,	because	this	Item	extends	the	discussion	with	a
seemingly	innocuous	modification	to	Item	24's	example:	it	templatizes	both
Rational	and	operator*:

template<typename	T>

class	Rational	{

public:

		Rational(const	T&	numerator	=	0,					//	see	Item	20	for	why	params

											const	T&	denominator	=	1);		//	are	now	passed	by	reference

		const	T	numerator()	const;											//	see	Item	28	for	why	return

		const	T	denominator()	const;									//	values	are	still	passed	by	value,

		...																																		//	Item	3	for	why	they're	const

};

template<typename	T>



const	Rational<T>	operator*(const	Rational<T>&	lhs,

																												const	Rational<T>&	rhs)

{	...	}

As	in	Item	24,	we	want	to	support	mixed-mode	arithmetic,	so	we	want	the	code
below	to	compile.	We	expect	that	it	will,	because	we're	using	the	same	code	that
works	in	Item	24.	The	only	difference	is	that	Rational	and	operator*	are	now
templates:

Rational<int>	oneHalf(1,	2);										//	this	example	is	from	Item	24,

																																						//	except	Rational	is	now	a	template

Rational<int>	result	=	oneHalf	*	2;			//	error!	won't	compile

The	fact	that	this	fails	to	compile	suggests	that	there's	something	about	the
templatized	Rational	that's	different	from	the	non-template	version,	and
indeed	there	is.	In	Item	24,	compilers	know	what	function	we're	trying	to	call
(operator*	taking	two	Rationals),	but	here,	compilers	do	not	know	which
function	we	want	to	call.	Instead,	they're	trying	to	figure	out	what	function	to
instantiate	(i.e.,	create)	from	the	template	named	operator*.	They	know	that
they're	supposed	to	instantiate	some	function	named	operator*	taking	two
parameters	of	type	Rational<T>,	but	in	order	to	do	the	instantiation,	they
have	to	figure	out	what	T	is.	The	problem	is,	they	can't.

In	attempting	to	deduce	T,	they	look	at	the	types	of	the	arguments	being	passed



in	the	call	to	operator*.	In	this	case,	those	types	are	Rational<int>	(the
type	of	oneHalf)	and	int	(the	type	of	2).	Each	parameter	is	considered
separately.

The	deduction	using	oneHalf	is	easy.	operator*'s	first	parameter	is
declared	to	be	of	type	Rational<T>,	and	the	first	argument	passed	to
operator*	(oneHalf)	is	of	type	Rational<int>,	so	T	must	be	int.
Unfortunately,	the	deduction	for	the	other	parameter	is	not	so	simple.
operator*'s	second	parameter	is	declared	to	be	of	type	Rational<T>,	but
the	second	argument	passed	to	operator*	(2)	is	of	type	int.	How	are
compilers	to	figure	out	what	T	is	in	this	case?	You	might	expect	them	to	use
Rational<int>'s	non-explicit	constructor	to	convert	2	into	a
Rational<int>,	thus	allowing	them	to	deduce	that	T	is	int,	but	they	don't
do	that.	They	don't,	because	implicit	type	conversion	functions	are	never
considered	during	template	argument	deduction.	Never.	Such	conversions	are
used	during	function	calls,	yes,	but	before	you	can	call	a	function,	you	have	to
know	which	functions	exist.	In	order	to	know	that,	you	have	to	deduce	parameter
types	for	the	relevant	function	templates	(so	that	you	can	instantiate	the
appropriate	functions).	But	implicit	type	conversion	via	constructor	calls	is	not
considered	during	template	argument	deduction.	Item	24	involves	no	templates,
so	template	argument	deduction	is	not	an	issue.	Now	that	we're	in	the	template
part	of	C++	(see	Item	1),	it's	the	primary	issue.

We	can	relieve	compilers	of	the	challenge	of	template	argument	deduction	by
taking	advantage	of	the	fact	that	a	friend	declaration	in	a	template	class	can
refer	to	a	specific	function.	That	means	the	class	Rational<T>	can	declare
operator*	for	Rational<T>	as	a	friend	function.	Class	templates	don't
depend	on	template	argument	deduction	(that	process	applies	only	to	function
templates),	so	T	is	always	known	at	the	time	the	class	Rational<T>	is
instantiated.	That	makes	it	easy	for	the	Rational<T>	class	to	declare	the
appropriate	operator*	function	as	a	friend:

template<typename	T>

class	Rational	{



public:

		...

friend																																														//	declare	operator*

		const	Rational	operator*(const	Rational&	lhs,					//	function	(see

																											const	Rational&	rhs);				//	below	for	details)

};

template<typename	T>																																//	define	operator*

const	Rational<T>	operator*(const	Rational<T>&	lhs,	//	functions

																												const	Rational<T>&	rhs)

{	...	}

Now	our	mixed-mode	calls	to	operator*	will	compile,	because	when	the
object	oneHalf	is	declared	to	be	of	type	Rational<int>,	the	class
Rational<int>	is	instantiated,	and	as	part	of	that	process,	the	friend	function
operator*	that	takes	Rational<int>	parameters	is	automatically
declared.	As	a	declared	function	(not	a	function	template),	compilers	can	use
implicit	conversion	functions	(such	as	Rational's	non-explicit
constructor)	when	calling	it,	and	that's	how	they	make	the	mixed-mode	call
succeed.

Alas,	"succeed"	is	a	funny	word	in	this	context,	because	although	the	code	will
compile,	it	won't	link.	We'll	deal	with	that	in	a	moment,	but	first	I	want	to
remark	on	the	syntax	used	to	declare	operator*	inside	Rational.



Inside	a	class	template,	the	name	of	the	template	can	be	used	as	shorthand	for	the
template	and	its	parameters,	so	inside	Rational<T>,	we	can	just	write
Rational	instead	of	Rational<T>.	That	saves	us	only	a	few	characters	in
this	example,	but	when	there	are	multiple	parameters	or	longer	parameter	names,
it	can	both	save	typing	and	make	the	resulting	code	clearer.	I	bring	this	up,
because	operator*	is	declared	taking	and	returning	Rationals	instead	of
Rational<T>s.	It	would	have	been	just	as	valid	to	declare	operator*	like
this:

template<typename	T>

class	Rational	{

public:

		...

friend

			const	Rational<T>	operator*(const	Rational<T>&	lhs,

																															const	Rational<T>&	rhs);

		...

};

However,	it's	easier	(and	more	common)	to	use	the	shorthand	form.

Now	back	to	the	linking	problem.	The	mixed-mode	code	compiles,	because
compilers	know	that	we	want	to	call	a	specific	function	(operator*	taking	a
Rational<int>	and	a	Rational<int>),	but	that	function	is	only	declared
inside	Rational,	not	defined	there.	Our	intent	is	to	have	the	operator*



template	outside	the	class	provide	that	definition,	but	things	don't	work	that	way.
If	we	declare	a	function	ourselves	(which	is	what	we're	doing	inside	the
Rational	template),	we're	also	responsible	for	defining	that	function.	In	this
case,	we	never	provide	a	definition,	and	that's	why	linkers	can't	find	one.

The	simplest	thing	that	could	possibly	work	is	to	merge	the	body	of
operator*	into	its	declaration:

template<typename	T>

class	Rational	{

public:

		...

friend	const	Rational	operator*(const	Rational&	lhs,	const	Rational&	rhs)

{

		return	Rational(lhs.numerator()	*	rhs.numerator(),							//	same	impl

																		lhs.denominator()	*	rhs.denominator());

}																																																										//	Item	24

};

Indeed,	this	works	as	intended:	mixed-mode	calls	to	operator*	now	compile,
link,	and	run.	Hooray!

An	interesting	observation	about	this	technique	is	that	the	use	of	friendship	has



nothing	to	do	with	a	need	to	access	non-public	parts	of	the	class.	In	order	to
make	type	conversions	possible	on	all	arguments,	we	need	a	non-member
function	(Item	24	still	applies);	and	in	order	to	have	the	proper	function
automatically	instantiated,	we	need	to	declare	the	function	inside	the	class.	The
only	way	to	declare	a	non-member	function	inside	a	class	is	to	make	it	a	friend.
So	that's	what	we	do.	Unconventional?	Yes.	Effective?	Without	a	doubt.

As	Item	30	explains,	functions	defined	inside	a	class	are	implicitly	declared
inline,	and	that	includes	friend	functions	like	operator*.	You	can
minimize	the	impact	of	such	inline	declarations	by	having	operator*	do
nothing	but	call	a	helper	function	defined	outside	of	the	class.	In	the	example	in
this	Item,	there's	not	much	point	in	doing	that,	because	operator*	is	already
implemented	as	a	one-line	function,	but	for	more	complex	function	bodies,	it
may	be	desirable.	It's	worth	taking	a	look	at	the	"have	the	friend	call	a	helper"
approach.

The	fact	that	Rational	is	a	template	means	that	the	helper	function	will
usually	also	be	a	template,	so	the	code	in	the	header	file	defining	Rational
will	typically	look	something	like	this:

template<typename	T>	class	Rational;																	//	declare

																																																					//	Rational

																																																					//	template

template<typename	T>																																				//	declare

const	Rational<T>	doMultiply(const	Rational<T>&	lhs,				//	helper

																													const	Rational<T>&	rhs);			//	template

template<typename	T>

class	Rational	{



public:

		...

friend

		const	Rational<T>	operator*(const	Rational<T>&	lhs,

																														const	Rational<T>&	rhs)			//	Have	friend

		{	return	doMultiply(lhs,	rhs);	}																						//	call	helper

		...

};

Many	compilers	essentially	force	you	to	put	all	template	definitions	in	header
files,	so	you	may	need	to	define	doMultiply	in	your	header	as	well.	(As	Item
30	explains,	such	templates	need	not	be	inline.)	That	could	look	like	this:

template<typename	T>																																						//	define

const	Rational<T>	doMultiply(const	Rational<T>&	lhs,						//	helper

																													const	Rational<T>&	rhs)						//	template	in

{																																																									//	header	file,

		return	Rational<T>(lhs.numerator()	*	rhs.numerator(),

																					lhs.denominator()	*	rhs.denominator());



}

As	a	template,	of	course,	doMultiply	won't	support	mixed-mode
multiplication,	but	it	doesn't	need	to.	It	will	only	be	called	by	operator*,	and
operator*	does	support	mixed-mode	operations!	In	essence,	the	function
operator*	supports	whatever	type	conversions	are	necessary	to	ensure	that
two	Rational	objects	are	being	multiplied,	then	it	passes	these	two	objects	to
an	appropriate	instantiation	of	the	doMultiply	template	to	do	the	actual
multiplication.	Synergy	in	action,	no?

Things	to	Remember

When	writing	a	class	template	that	offers	functions	related	to	the
template	that	support	implicit	type	conversions	on	all
parameters,	define	those	functions	as	friends	inside	the	class
template.



Item	47:	Use	traits	classes	for	information	about
types

The	STL	is	primarily	made	up	of	templates	for	containers,	iterators,	and
algorithms,	but	it	also	has	a	few	utility	templates.	One	of	these	is	called
advance.	advance	moves	a	specified	iterator	a	specified	distance:

	

template<typename	IterT,	typename	DistT>							//	move	iter	d	units

	

void	advance(IterT&	iter,	DistT	d);												//	forward;	if	d	<	0,

	

																																															//	move	iter	backward

	

Conceptually,	advance	just	does	iter	+=	d,	but	advance	can't	be
implemented	that	way,	because	only	random	access	iterators	support	the	+=
operation.	Less	powerful	iterator	types	have	to	implement	advance	by	iteratively
applying	++	or	--	d	times.

Um,	you	don't	remember	your	STL	iterator	categories?	No	problem,	we'll	do	a
mini-review.	There	are	five	categories	of	iterators,	corresponding	to	the
operations	they	support.	Input	iterators	can	move	only	forward,	can	move	only
one	step	at	a	time,	can	only	read	what	they	point	to,	and	can	read	what	they're
pointing	to	only	once.	They're	modeled	on	the	read	pointer	into	an	input	file;	the
C++	library's	istream_iterators	are	representative	of	this	category.
Output	iterators	are	analogous,	but	for	output:	they	move	only	forward,	move
only	one	step	at	a	time,	can	only	write	what	they	point	to,	and	can	write	it	only
once.	They're	modeled	on	the	write	pointer	into	an	output	file;
ostream_iterators	epitomize	this	category.	These	are	the	two	least
powerful	iterator	categories.	Because	input	and	output	iterators	can	move	only
forward	and	can	read	or	write	what	they	point	to	at	most	once,	they	are	suitable
only	for	one-pass	algorithms.



A	more	powerful	iterator	category	consists	of	forward	iterators.	Such	iterators
can	do	everything	input	and	output	iterators	can	do,	plus	they	can	read	or	write
what	they	point	to	more	than	once.	This	makes	them	viable	for	multi-pass
algorithms.	The	STL	offers	no	singly	linked	list,	but	some	libraries	offer	one
(usually	called	slist),	and	iterators	into	such	containers	are	forward	iterators.
Iterators	into	TR1's	hashed	containers	(see	Item	54)	may	also	be	in	the	forward
category.

Bidirectional	iterators	add	to	forward	iterators	the	ability	to	move	backward	as
well	as	forward.	Iterators	for	the	STL's	list	are	in	this	category,	as	are	iterators
for	set,	multiset,	map,	and	multimap.

The	most	powerful	iterator	category	is	that	of	random	access	iterators.	These
kinds	of	iterators	add	to	bidirectional	iterators	the	ability	to	perform	"iterator
arithmetic,"	i.e.,	to	jump	forward	or	backward	an	arbitrary	distance	in	constant
time.	Such	arithmetic	is	analogous	to	pointer	arithmetic,	which	is	not	surprising,
because	random	access	iterators	are	modeled	on	built-in	pointers,	and	built-in
pointers	can	act	as	random	access	iterators.	Iterators	for	vector,	deque,	and
string	are	random	access	iterators.

For	each	of	the	five	iterator	categories,	C++	has	a	"tag	struct"	in	the	standard
library	that	serves	to	identify	it:

struct	input_iterator_tag	{};

struct	output_iterator_tag	{};

struct	forward_iterator_tag:	public	input_iterator_tag	{};

struct	bidirectional_iterator_tag:	public	forward_iterator_tag	{};



struct	random_access_iterator_tag:	public	bidirectional_iterator_tag	{};

The	inheritance	relationships	among	these	structs	are	valid	is-a	relationships	(see
Item	32):	it's	true	that	all	forward	iterators	are	also	input	iterators,	etc.	We'll	see
the	utility	of	this	inheritance	shortly.

But	back	to	advance.	Given	the	different	iterator	capabilities,	one	way	to
implement	advance	would	be	to	use	the	lowest-common-denominator	strategy
of	a	loop	that	iteratively	increments	or	decrements	the	iterator.	However,	that
approach	would	take	linear	time.	Random	access	iterators	support	constant-time
iterator	arithmetic,	and	we'd	like	to	take	advantage	of	that	ability	when	it's
present.

What	we	really	want	to	do	is	implement	advance	essentially	like	this:

template<typename	IterT,	typename	DistT>

void	advance(IterT&	iter,	DistT	d)

{

		if	(iter	is	a	random	access	iterator)	{

					iter	+=	d;																																						//	use	iterator	arithmetic

		}																																																		//	for	random	access	iters

		else	{

				if	(d	>=	0)	{	while	(d--)	++iter;	}														//	use	iterative	calls	to



				else	{	while	(d++)	--iter;	}																					//	++	or	--	for	other

		}																																																		//	iterator	categories

}

This	requires	being	able	to	determine	whether	iter	is	a	random	access	iterator,
which	in	turn	requires	knowing	whether	its	type,	IterT,	is	a	random	access
iterator	type.	In	other	words,	we	need	to	get	some	information	about	a	type.
That's	what	traits	let	you	do:	they	allow	you	to	get	information	about	a	type
during	compilation.

Traits	aren't	a	keyword	or	a	predefined	construct	in	C++;	they're	a	technique	and
a	convention	followed	by	C++	programmers.	One	of	the	demands	made	on	the
technique	is	that	it	has	to	work	as	well	for	built-in	types	as	it	does	for	user-
defined	types.	For	example,	if	advance	is	called	with	a	pointer	(like	a	const
char*)	and	an	int,	advance	has	to	work,	but	that	means	that	the	traits
technique	must	apply	to	built-in	types	like	pointers.

The	fact	that	traits	must	work	with	built-in	types	means	that	things	like	nesting
information	inside	types	won't	do,	because	there's	no	way	to	nest	information
inside	pointers.	The	traits	information	for	a	type,	then,	must	be	external	to	the
type.	The	standard	technique	is	to	put	it	into	a	template	and	one	or	more
specializations	of	that	template.	For	iterators,	the	template	in	the	standard	library
is	named	iterator_traits:

	

template<typename	IterT>										//	template	for	information	about

	

struct	iterator_traits;											//	iterator	types

	

As	you	can	see,	iterator_traits	is	a	struct.	By	convention,	traits	are



always	implemented	as	structs.	Another	convention	is	that	the	structs	used	to
implement	traits	are	known	as		I	am	not	making	this	up		traits	classes.

The	way	iterator_traits	works	is	that	for	each	type	IterT,	a	typedef
named	iterator_category	is	declared	in	the	struct
iterator_traits<IterT>.	This	typedef	identifies	the	iterator	category	of
IterT.

iterator_traits	implements	this	in	two	parts.	First,	it	imposes	the
requirement	that	any	user-defined	iterator	type	must	contain	a	nested	typedef
named	iterator_category	that	identifies	the	appropriate	tag	struct.
deque's	iterators	are	random	access,	for	example,	so	a	class	for	deque	iterators
would	look	something	like	this:

template	<	...	>																				//	template	params	elided

class	deque	{

public:

		class	iterator	{

		public:

				typedef	random_access_iterator_tag	iterator_category;

				...

		}:

		...

};



list's	iterators	are	bidirectional,	however,	so	they'd	do	things	this	way:

template	<	...	>

class	list	{

public:

		class	iterator	{

		public:

				typedef	bidirectional_iterator_tag	iterator_category;

				...

		}:

		...

};

iterator_traits	just	parrots	back	the	iterator	class's	nested	typedef:

//	the	iterator_category	for	type	IterT	is	whatever	IterT	says	it	is;

//	see	Item	42	for	info	on	the	use	of	"typedef	typename"

template<typename	IterT>

struct	iterator_traits	{



		typedef	typename	IterT::iterator_category	iterator_category;

		...

};

This	works	well	for	user-defined	types,	but	it	doesn't	work	at	all	for	iterators	that
are	pointers,	because	there's	no	such	thing	as	a	pointer	with	a	nested	typedef.	The
second	part	of	the	iterator_traits	implementation	handles	iterators	that
are	pointers.

To	support	such	iterators,	iterator_traits	offers	a	partial	template
specialization	for	pointer	types.	Pointers	act	as	random	access	iterators,	so	that's
the	category	iterator_traits	specifies	for	them:

template<typename	IterT>															//	partial	template	specialization

struct	iterator_traits<IterT*>									//	for	built-in	pointer	types

{

		typedef	random_access_iterator_tag	iterator_category;

		...

};

At	this	point,	you	know	how	to	design	and	implement	a	traits	class:



Identify	some	information	about	types	you'd	like	to	make	available	(e.g.,	for
iterators,	their	iterator	category).

Choose	a	name	to	identify	that	information	(e.g.,
iterator_category).

Provide	a	template	and	set	of	specializations	(e.g.,	iterator_traits)
that	contain	the	information	for	the	types	you	want	to	support.

Given	iterator_traits		actually	std::iterator_traits,	since	it's
part	of	C++'s	standard	library		we	can	refine	our	pseudocode	for	advance:

template<typename	IterT,	typename	DistT>

void	advance(IterT&	iter,	DistT	d)

{

		if	(typeid(typename	std::iterator_traits<IterT>::iterator_category)	==

					typeid(std::random_access_iterator_tag))

		...

}

Although	this	looks	promising,	it's	not	what	we	want.	For	one	thing,	it	will	lead
to	compilation	problems,	but	we'll	explore	that	in	Item	48;	right	now,	there's	a
more	fundamental	issue	to	consider.	IterT's	type	is	known	during	compilation,
so	iterator_traits<IterT>::iterator_category	can	also	be
determined	during	compilation.	Yet	the	if	statement	is	evaluated	at	runtime.
Why	do	something	at	runtime	that	we	can	do	during	compilation?	It	wastes	time
(literally),	and	it	bloats	our	executable.



What	we	really	want	is	a	conditional	construct	(i.e.,	an	if...else	statement)
for	types	that	is	evaluated	during	compilation.	As	it	happens,	C++	already	has	a
way	to	get	that	behavior.	It's	called	overloading.

When	you	overload	some	function	f,	you	specify	different	parameter	types	for
the	different	overloads.	When	you	call	f,	compilers	pick	the	best	overload,	based
on	the	arguments	you're	passing.	Compilers	essentially	say,	"If	this	overload	is
the	best	match	for	what's	being	passed,	call	this	f;	if	this	other	overload	is	the
best	match,	call	it;	if	this	third	one	is	best,	call	it,"	etc.	See?	A	compile-time
conditional	construct	for	types.	To	get	advance	to	behave	the	way	we	want,	all
we	have	to	do	is	create	two	versions	of	an	overloaded	function	containing	the
"guts"	of	advance,	declaring	each	to	take	a	different	type	of
iterator_category	object.	I	use	the	name	doAdvance	for	these
functions:

template<typename	IterT,	typename	DistT>														//	use	this	impl	for

void	doAdvance(IterT&	iter,	DistT	d,																		//	random	access

															std::random_access_iterator_tag)							//	iterators

{

		iter	+=	d;

}

template<typename	IterT,	typename	DistT>														//	use	this	impl	for

void	doAdvance(IterT&	iter,	DistT	d,																		//	bidirectional

															std::bidirectional_iterator_tag)							//	iterators



{

		if	(d	>=	0)	{	while	(d--)	++iter;	}

		else	{	while	(d++)	--iter;									}

}

template<typename	IterT,	typename	DistT>														//	use	this	impl	for

void	doAdvance(IterT&	iter,	DistT	d,																		//	input	iterators

															std::input_iterator_tag)

{

		if	(d	<	0	)	{

					throw	std::out_of_range("Negative	distance");				//	see	below

		}

		while	(d--)	++iter;

}

Because	forward_iterator_tag	inherits	from	input_iterator_tag,
the	version	of	doAdvance	for	input_iterator_tag	will	also	handle
forward	iterators.	That's	the	motivation	for	inheritance	among	the	various
iterator_tag	structs.	(In	fact,	it's	part	of	the	motivation	for	all	public
inheritance:	to	be	able	to	write	code	for	base	class	types	that	also	works	for



derived	class	types.)

The	specification	for	advance	allows	both	positive	and	negative	distances	for
random	access	and	bidirectional	iterators,	but	behavior	is	undefined	if	you	try	to
move	a	forward	or	input	iterator	a	negative	distance.	The	implementations	I
checked	simply	assumed	that	d	was	non-negative,	thus	entering	a	very	long	loop
counting	"down"	to	zero	if	a	negative	distance	was	passed	in.	In	the	code	above,
I've	shown	an	exception	being	thrown	instead.	Both	implementations	are	valid.
That's	the	curse	of	undefined	behavior:	you	can't	predict	what	will	happen.

Given	the	various	overloads	for	doAdvance,	all	advance	needs	to	do	is	call
them,	passing	an	extra	object	of	the	appropriate	iterator	category	type	so	that	the
compiler	will	use	overloading	resolution	to	call	the	proper	implementation:

template<typename	IterT,	typename	DistT>

void	advance(IterT&	iter,	DistT	d)

{

		doAdvance(																																														//	call	the	version

				iter,	d,																																														//	of	doAdvance

				typename																																														//	that	is

						std::iterator_traits<IterT>::iterator_category()				//	appropriate	for

		);																																																						//	iter's	iterator

}																																																									//	category

We	can	now	summarize	how	to	use	a	traits	class:



Create	a	set	of	overloaded	"worker"	functions	or	function	templates	(e.g.,
doAdvance)	that	differ	in	a	traits	parameter.	Implement	each	function	in
accord	with	the	traits	information	passed.

Create	a	"master"	function	or	function	template	(e.g.,	advance)	that	calls
the	workers,	passing	information	provided	by	a	traits	class.

Traits	are	widely	used	in	the	standard	library.	There's	iterator_traits,	of
course,	which,	in	addition	to	iterator_category,	offers	four	other	pieces
of	information	about	iterators	(the	most	useful	of	which	is	value_type		Item
42	shows	an	example	of	its	use).	There's	also	char_traits,	which	holds
information	about	character	types,	and	numeric_limits,	which	serves	up
information	about	numeric	types,	e.g.,	their	minimum	and	maximum
representable	values,	etc.	(The	name	numeric_limits	is	a	bit	of	a	surprise,
because	the	more	common	convention	is	for	traits	classes	to	end	with	"traits,"
but	numeric_limits	is	what	it's	called,	so	numeric_limits	is	the	name
we	use.)

TR1	(see	Item	54)	introduces	a	slew	of	new	traits	classes	that	give	information
about	types,	including	is_fundamental<T>	(whether	T	is	a	built-in	type),
is_array<T>	(whether	T	is	an	array	type),	and	is_base_of<T1,	T2>
(whether	T1	is	the	same	as	or	is	a	base	class	of	T2).	All	told,	TR1	adds	over	50
traits	classes	to	standard	C++.

Things	to	Remember

Traits	classes	make	information	about	types	available	during
compilation.	They're	implemented	using	templates	and	template
specializations.

In	conjunction	with	overloading,	traits	classes	make	it	possible
to	perform	compile-time	if...else	tests	on	types.



Item	48:	Be	aware	of	template	metaprogramming

Template	metaprogramming	(TMP)	is	the	process	of	writing	template-based
C++	programs	that	execute	during	compilation.	Think	about	that	for	a	minute:	a
template	metaprogram	is	a	program	written	in	C++	that	executes	inside	the	C++
compiler.	When	a	TMP	program	finishes	running,	its	output		pieces	of	C++
source	code	instantiated	from	templates		is	then	compiled	as	usual.

If	this	doesn't	strike	you	as	just	plain	bizarre,	you're	not	thinking	about	it	hard
enough.

C++	was	not	designed	for	template	metaprogramming,	but	since	TMP	was
discovered	in	the	early	1990s,	it	has	proven	to	be	so	useful,	extensions	are	likely
to	be	added	to	both	the	language	and	its	standard	library	to	make	TMP	easier.
Yes,	TMP	was	discovered,	not	invented.	The	features	underlying	TMP	were
introduced	when	templates	were	added	to	C++.	All	that	was	needed	was	for
somebody	to	notice	how	they	could	be	used	in	clever	and	unexpected	ways.

TMP	has	two	great	strengths.	First,	it	makes	some	things	easy	that	would
otherwise	be	hard	or	impossible.	Second,	because	template	metaprograms
execute	during	C++	compilation,	they	can	shift	work	from	runtime	to	compile-
time.	One	consequence	is	that	some	kinds	of	errors	that	are	usually	detected	at
runtime	can	be	found	during	compilation.	Another	is	that	C++	programs	making
use	of	TMP	can	be	more	efficient	in	just	about	every	way:	smaller	executables,
shorter	runtimes,	lesser	memory	requirements.	(However,	a	consequence	of
shifting	work	from	runtime	to	compile-time	is	that	compilation	takes	longer.
Programs	using	TMP	may	take	much	longer	to	compile	than	their	non-TMP
counterparts.)

Consider	the	pseudocode	for	STL's	advance	introduced	on	page	228.	(That's	in
Item	47.	You	may	want	to	read	that	Item	now,	because	in	this	Item,	I'll	assume
you	are	familiar	with	the	material	in	that	one.)	As	on	page	228,	I've	highlighted
the	pseudo	part	of	the	code:

template<typename	IterT,	typename	DistT>



void	advance(IterT&	iter,	DistT	d)

{

		if	(iter	is	a	random	access	iterator)	{

				iter	+=	d;																																					//	use	iterator	arithmetic

		}																																																//	for	random	access	iters

		else	{

				if	(d	>=	0)	{	while	(d--)	++iter;	}												//	use	iterative	calls	to

				else	{	while	(d++)	--iter;	}																			//	++	or	--	for	other

		}																																																//	iterator	categories

}

We	can	use	typeid	to	make	the	pseudocode	real.	That	yields	a	"normal"	C++
approach	to	this	problem		one	that	does	all	its	work	at	runtime:

template<typename	IterT,	typename	DistT>

void	advance(IterT&	iter,	DistT	d)

{

		if	(typeid(typename	std::iterator_traits<IterT>::iterator_category

						typeid(std::random_access_iterator_tag))	{



					iter	+=	d;																																					//	use	iterator	arithmetic

		}																																																	//	for	random	access	iters

		else	{

				if	(d	>=	0)	{	while	(d--)	++iter;	}													//	use	iterative	calls	to

				else	{	while	(d++)	--iter;	}																				//	++	or	--	for	other

		}																																																	//	iterator	categories

}

Item	47	notes	that	this	typeid-based	approach	is	less	efficient	than	the	one
using	traits,	because	with	this	approach,	(1)	the	type	testing	occurs	at	runtime
instead	of	during	compilation,	and	(2)	the	code	to	do	the	runtime	type	testing
must	be	present	in	the	executable.	In	fact,	this	example	shows	how	TMP	can	be
more	efficient	than	a	"normal"	C++	program,	because	the	traits	approach	is
TMP.	Remember,	traits	enable	compile-time	if...else	computations	on
types.

I	remarked	earlier	that	some	things	are	easier	in	TMP	than	in	"normal"	C++,	and
advance	offers	an	example	of	that,	too.	Item	47	mentions	that	the	typeid-
based	implementation	of	advance	can	lead	to	compilation	problems,	and	here's
an	example	where	it	does:

std::list<int>::iterator	iter;



...

advance(iter,	10);																										//	move	iter	10	elements	forward;

																																												//	won't	compile	with	above	impl.

Consider	the	version	of	advance	that	will	be	generated	for	the	above	call.
After	substituting	iter's	and	10's	types	for	the	template	parameters	IterT	and
DistT,	we	get	this:

void	advance(std::list<int>::iterator&	iter,	int	d)

{

		if	(typeid(std::iterator_traits<std::list<int>::iterator>::iterator_category)	==

						typeid(std::random_access_iterator_tag))	{

				iter	+=	d;																																								//	error!

		}

		else	{

				if	(d	>=	0)	{	while	(d--)	++iter;	}

				else	{	while	(d++)	--iter;	}



		}

}

The	problem	is	the	highlighted	line,	the	one	using	+=.	In	this	case,	we're	trying
to	use	+=	on	a	list<int>::iterator,	but	list<int>::iterator	is	a
bidirectional	iterator	(see	Item	47),	so	it	doesn't	support	+=.	Only	random	access
iterators	support	+=.	Now,	we	know	we'll	never	try	to	execute	the	+=	line,
because	the	typeid	test	will	always	fail	for	list<int>::iterators,	but
compilers	are	obliged	to	make	sure	that	all	source	code	is	valid,	even	if	it's	not
executed,	and	"iter	+=	d"	isn't	valid	when	iter	isn't	a	random	access
iterator.	Contrast	this	with	the	traits-based	TMP	solution,	where	code	for
different	types	is	split	into	separate	functions,	each	of	which	uses	only
operations	applicable	to	the	types	for	which	it	is	written.

TMP	has	been	shown	to	be	Turing-complete,	which	means	that	it	is	powerful
enough	to	compute	anything.	Using	TMP,	you	can	declare	variables,	perform
loops,	write	and	call	functions,	etc.	But	such	constructs	look	very	different	from
their	"normal"	C++	counterparts.	For	example,	Item	47	shows	how	if...else
conditionals	in	TMP	are	expressed	via	templates	and	template	specializations.
But	that's	assembly-level	TMP.	Libraries	for	TMP	(e.g.,	Boost's	MPL		see	Item
55)	offer	a	higher-level	syntax,	though	still	not	something	you'd	mistake	for
"normal"	C++.

For	another	glimpse	into	how	things	work	in	TMP,	let's	look	at	loops.	TMP	has
no	real	looping	construct,	so	the	effect	of	loops	is	accomplished	via	recursion.	(If
you're	not	comfortable	with	recursion,	you'll	need	to	address	that	before
venturing	into	TMP.	It's	largely	a	functional	language,	and	recursion	is	to
functional	languages	as	TV	is	to	American	pop	culture:	inseparable.)	Even	the
recursion	isn't	the	normal	kind,	however,	because	TMP	loops	don't	involve
recursive	function	calls,	they	involve	recursive	template	instantiations.

The	"hello	world"	program	of	TMP	is	computing	a	factorial	during	compilation.
It's	not	a	very	exciting	program,	but	then	again,	neither	is	"hello	world,"	yet	both



are	helpful	as	language	introductions.	TMP	factorial	computation	demonstrates
looping	through	recursive	template	instantiation.	It	also	demonstrates	one	way	in
which	variables	are	created	and	used	in	TMP.	Look:

template<unsigned	n>																	//	general	case:	the	value	of

struct	Factorial	{																			//	Factorial<n>	is	n	times	the	value

																																					//	of	Factorial<n-1>

		enum	{	value	=	n	*	Factorial<n-1>::value	};

};

template<>																											//	special	case:	the	value	of

struct	Factorial<0>	{																//	Factorial<0>	is	1

		enum	{	value	=	1	};

};

Given	this	template	metaprogram	(really	just	the	single	template	metafunction
Factorial),	you	get	the	value	of	factorial(n)	by	referring	to
Factorial<n>::value.



The	looping	part	of	the	code	occurs	where	the	template	instantiation
Factorial<n>	references	the	template	instantiation	Factorial<n-1>.
Like	all	good	recursion,	there's	a	special	case	that	causes	the	recursion	to
terminate.	Here,	it's	the	template	specialization	Factorial<0>.

Each	instantiation	of	the	Factorial	template	is	a	struct,	and	each	struct	uses
the	enum	hack	(see	Item	2)	to	declare	a	TMP	variable	named	value.	value	is
what	holds	the	current	value	of	the	factorial	computation.	If	TMP	had	a	real
looping	construct,	value	would	be	updated	each	time	around	the	loop.	Since
TMP	uses	recursive	template	instantiation	in	place	of	loops,	each	instantiation
gets	its	own	copy	of	value,	and	each	copy	has	the	proper	value	for	its	place	in
the	"loop."

You	could	use	Factorial	like	this:

int	main()

{

		std::cout	<<	Factorial<5>::value;												//	prints	120

		std::cout	<<	Factorial<10>::value;											//	prints	3628800

}

If	you	think	this	is	cooler	than	ice	cream,	you've	got	the	makings	of	a	template
metaprogrammer.	If	the	templates	and	specializations	and	recursive
instantiations	and	enum	hacks	and	the	need	to	type	things	like	Factorial<n-
1>::value	make	your	skin	crawl,	well,	you're	a	pretty	normal	C++
programmer.

Of	course,	Factorial	demonstrates	the	utility	of	TMP	about	as	well	as	"hello
world"	demonstrates	the	utility	of	any	conventional	programming	language.	To



grasp	why	TMP	is	worth	knowing	about,	it's	important	to	have	a	better
understanding	of	what	it	can	accomplish.	Here	are	three	examples:

Ensuring	dimensional	unit	correctness.	In	scientific	and	engineering
applications,	it's	essential	that	dimensional	units	(e.g.,	mass,	distance,	time,
etc.)	be	combined	correctly.	Assigning	a	variable	representing	mass	to	a
variable	representing	velocity,	for	example,	is	an	error,	but	dividing	a
distance	variable	by	a	time	variable	and	assigning	the	result	to	a	velocity
variable	is	fine.	Using	TMP,	it's	possible	to	ensure	(during	compilation)	that
all	dimensional	unit	combinations	in	a	program	are	correct,	no	matter	how
complex	the	calculations.	(This	is	an	example	of	how	TMP	can	be	used	for
early	error	detection.)	One	interesting	aspect	of	this	use	of	TMP	is	that
fractional	dimensional	exponents	can	be	supported.	This	requires	that	such
fractions	be	reduced	during	compilation	so	that	compilers	can	confirm,	for
example,	that	the	unit	time1/2	is	the	same	as	time4/8.

Optimizing	matrix	operations.	Item	21	explains	that	some	functions,
including	operator*,	must	return	new	objects,	and	Item	44	introduces
the	SquareMatrix	class,	so	consider	the	following	code:

typedef	SquareMatrix<double,	10000>	BigMatrix;

BigMatrix	m1,	m2,	m3,	m4,	m5;															//	create	matrices	and

...																																									//	give	them	values

BigMatrix	result	=	m1	*	m2	*	m3	*	m4	*	m5;				//	compute	their	product

Calculating	result	in	the	"normal"	way	calls	for	the	creation	of	four
temporary	matrices,	one	for	the	result	of	each	call	to	operator*.
Furthermore,	the	independent	multiplications	generate	a	sequence	of	four



loops	over	the	matrix	elements.	Using	an	advanced	template	technology
related	to	TMP	called	expression	templates,	it's	possible	to	eliminate	the
temporaries	and	merge	the	loops,	all	without	changing	the	syntax	of	the
client	code	above.	The	resulting	software	uses	less	memory	and	runs
dramatically	faster.

Generating	custom	design	pattern	implementations.	Design	patterns	like
Strategy	(see	Item	35),	Observer,	Visitor,	etc.	can	be	implemented	in	many
ways.	Using	a	TMP-based	technology	called	policy-based	design,	it's
possible	to	create	templates	representing	independent	design	choices
("policies")	that	can	be	combined	in	arbitrary	ways	to	yield	pattern
implementations	with	custom	behavior.	For	example,	this	technique	has
been	used	to	allow	a	few	templates	implementing	smart	pointer	behavioral
policies	to	generate	(during	compilation)	any	of	hundreds	of	different	smart
pointer	types.	Generalized	beyond	the	domain	of	programming	artifacts	like
design	patterns	and	smart	pointers,	this	technology	is	a	basis	for	what's
known	as	generative	programming.

TMP	is	not	for	everybody.	The	syntax	is	unintuitive,	and	tool	support	is	weak.
(Debuggers	for	template	metaprograms?	Ha!)	Being	an	"accidental"	language
that	was	only	relatively	recently	discovered,	TMP	programming	conventions	are
still	somewhat	experimental.	Nevertheless,	the	efficiency	improvements
afforded	by	shifting	work	from	runtime	to	compile-time	can	be	impressive,	and
the	ability	to	express	behavior	that	is	difficult	or	impossible	to	implement	at
runtime	is	attractive,	too.

TMP	support	is	on	the	rise.	It's	likely	that	the	next	version	of	C++	will	provide
explicit	support	for	it,	and	TR1	already	does	(see	Item	54).	Books	are	beginning
to	come	out	on	the	subject,	and	TMP	information	on	the	web	just	keeps	getting
richer.	TMP	will	probably	never	be	mainstream,	but	for	some	programmers	
especially	library	developers		it's	almost	certain	to	be	a	staple.

Things	to	Remember

Template	metaprogramming	can	shift	work	from	runtime	to
compile-time,	thus	enabling	earlier	error	detection	and	higher
runtime	performance.



TMP	can	be	used	to	generate	custom	code	based	on
combinations	of	policy	choices,	and	it	can	also	be	used	to	avoid
generating	code	inappropriate	for	particular	types.



Chapter	8.	Customizing	new	and	delete
In	these	days	of	computing	environments	boasting	built-in	support	for	garbage
collection	(e.g.,	Java	and	.NET),	the	manual	C++	approach	to	memory
management	can	look	rather	old-fashioned.	Yet	many	developers	working	on
demanding	systems	applications	choose	C++	because	it	lets	them	manage
memory	manually.	Such	developers	study	the	memory	usage	characteristics	of
their	software,	and	they	tailor	their	allocation	and	deallocation	routines	to	offer
the	best	possible	performance	(in	both	time	and	space)	for	the	systems	they
build.

Doing	that	requires	an	understanding	of	how	C++'s	memory	management
routines	behave,	and	that's	the	focus	of	this	chapter.	The	two	primary	players	in
the	game	are	the	allocation	and	deallocation	routines	(operator	new	and
operator	delete),	with	a	supporting	role	played	by	the	new-handler		the
function	called	when	operator	new	can't	satisfy	a	request	for	memory.

Memory	management	in	a	multithreaded	environment	poses	challenges	not
present	in	a	single-threaded	system,	because	the	heap	is	a	modifiable	global
resource,	thus	rife	with	opportunities	for	the	race	conditions	that	bedevil	access
to	all	such	resources	in	threaded	systems.	Many	Items	in	this	chapter	mention	the
use	of	modifiable	static	data,	always	something	to	put	thread-aware
programmers	on	high	alert.	Without	proper	synchronization,	the	use	of	lock-free
algorithms,	or	careful	design	to	prevent	concurrent	access,	calls	to	memory
routines	can	easily	lead	to	corrupted	heap	management	data	structures.	Rather
than	repeatedly	remind	you	of	this	danger,	I'll	mention	it	here	and	assume	that
you	keep	it	in	mind	for	the	rest	of	the	chapter.

Something	else	to	keep	in	mind	is	that	operator	new	and	operator
delete	apply	only	to	allocations	for	single	objects.	Memory	for	arrays	is
allocated	by	operator	new[]	and	deallocated	by	operator	delete[].
(In	both	cases,	note	the	"[]"	part	of	the	function	names.)	Unless	indicated
otherwise,	everything	I	write	about	operator	new	and	operator	delete
also	applies	to	operator	new[]	and	operator	delete[].



Finally,	note	that	heap	memory	for	STL	containers	is	managed	by	the	containers'
allocator	objects,	not	by	new	and	delete	directly.	That	being	the	case,	this
chapter	has	nothing	to	say	about	STL	allocators.



Item	49:	Understand	the	behavior	of	the	new-
handler

When	operator	new	can't	satisfy	a	memory	allocation	request,	it	throws	an
exception.	Long	ago,	it	returned	a	null	pointer,	and	some	older	compilers	still	do
that.	You	can	still	get	the	old	behavior	(sort	of),	but	I'll	defer	that	discussion	until
the	end	of	this	Item.

Before	operator	new	throws	an	exception	in	response	to	an	unsatisfiable
request	for	memory,	it	calls	a	client-specifiable	error-handling	function	called	a
new-handler.	(This	is	not	quite	true.	What	operator	new	really	does	is	a	bit
more	complicated.	Details	are	provided	in	Item	51.)	To	specify	the	out-of-
memory-handling	function,	clients	call	set_new_handler,	a	standard	library
function	declared	in	<new>:

namespace	std	{

		typedef	void	(*new_handler)();

		new_handler	set_new_handler(new_handler	p)	throw();

}

As	you	can	see,	new_handler	is	a	typedef	for	a	pointer	to	a	function	that
takes	and	returns	nothing,	and	set_new_handler	is	a	function	that	takes	and
returns	a	new_handler.	(The	"throw()"	at	the	end	of
set_new_handler's	declaration	is	an	exception	specification.	It	essentially
says	that	this	function	won't	throw	any	exceptions,	though	the	truth	is	a	bit	more
interesting.	For	details,	see	Item	29.)



set_new_handler's	parameter	is	a	pointer	to	the	function	operator	new
should	call	if	it	can't	allocate	the	requested	memory.	The	return	value	of
set_new_handler	is	a	pointer	to	the	function	in	effect	for	that	purpose
before	set_new_handler	was	called.

You	use	set_new_handler	like	this:

//	function	to	call	if	operator	new	can't	allocate	enough	memory

void	outOfMem()

{

		std::cerr	<<	"Unable	to	satisfy	request	for	memory\n";

		std::abort();

}

int	main()

{

		std::set_new_handler(outOfMem);

		int	*pBigDataArray	=	new	int[100000000L];

		...

}

If	operator	new	is	unable	to	allocate	space	for	100,000,000	integers,
outOfMem	will	be	called,	and	the	program	will	abort	after	issuing	an	error



message.	(By	the	way,	consider	what	happens	if	memory	must	be	dynamically
allocated	during	the	course	of	writing	the	error	message	to	cerr....)

When	operator	new	is	unable	to	fulfill	a	memory	request,	it	calls	the	new-
handler	function	repeatedly	until	it	can	find	enough	memory.	The	code	giving
rise	to	these	repeated	calls	is	shown	in	Item	51,	but	this	high-level	description	is
enough	to	conclude	that	a	well-designed	new-handler	function	must	do	one	of
the	following:

Make	more	memory	available.	This	may	allow	the	next	memory
allocation	attempt	inside	operator	new	to	succeed.	One	way	to
implement	this	strategy	is	to	allocate	a	large	block	of	memory	at	program
start-up,	then	release	it	for	use	in	the	program	the	first	time	the	new-handler
is	invoked.

Install	a	different	new-handler.	If	the	current	new-handler	can't	make	any
more	memory	available,	perhaps	it	knows	of	a	different	new-handler	that
can.	If	so,	the	current	new-handler	can	install	the	other	new-handler	in	its
place	(by	calling	set_new_handler).	The	next	time	operator	new
calls	the	new-handler	function,	it	will	get	the	one	most	recently	installed.	(A
variation	on	this	theme	is	for	a	new-handler	to	modify	its	own	behavior,	so
the	next	time	it's	invoked,	it	does	something	different.	One	way	to	achieve
this	is	to	have	the	new-handler	modify	static,	namespace-specific,	or	global
data	that	affects	the	new-handler's	behavior.)

Deinstall	the	new-handler,	i.e.,	pass	the	null	pointer	to
set_new_handler.	With	no	new-handler	installed,	operator	new
will	throw	an	exception	when	memory	allocation	is	unsuccessful.

Throw	an	exception	of	type	bad_alloc	or	some	type	derived	from
bad_alloc.	Such	exceptions	will	not	be	caught	by	operator	new,	so
they	will	propagate	to	the	site	originating	the	request	for	memory.

Not	return,	typically	by	calling	abort	or	exit.

These	choices	give	you	considerable	flexibility	in	implementing	new-handler
functions.



Sometimes	you'd	like	to	handle	memory	allocation	failures	in	different	ways,
depending	on	the	class	of	the	object	being	allocated:

class	X	{

public:

		static	void	outOfMemory();

		...

};

class	Y	{

public:

		static	void	outOfMemory();

		...

};

X*	p1	=	new	X;																								//	if	allocation	is	unsuccessful,

																																						//	call	X::outOfMemory

Y*	p2	=	new	Y;																								//	if	allocation	is	unsuccessful,

																																						//	call	Y::outOfMemory



C++	has	no	support	for	class-specific	new-handlers,	but	it	doesn't	need	any.	You
can	implement	this	behavior	yourself.	You	just	have	each	class	provide	its	own
versions	of	set_new_handler	and	operator	new.	The	class's
set_new_handler	allows	clients	to	specify	the	new-handler	for	the	class
(exactly	like	the	standard	set_new_handler	allows	clients	to	specify	the
global	new-handler).	The	class's	operator	new	ensures	that	the	class-specific
new-handler	is	used	in	place	of	the	global	new-handler	when	memory	for	class
objects	is	allocated.

Suppose	you	want	to	handle	memory	allocation	failures	for	the	Widget	class.
You'll	have	to	keep	track	of	the	function	to	call	when	operator	new	can't
allocate	enough	memory	for	a	Widget	object,	so	you'll	declare	a	static	member
of	type	new_handler	to	point	to	the	new-handler	function	for	the	class.
Widget	will	look	something	like	this:

class	Widget	{

public:

		static	std::new_handler	set_new_handler(std::new_handler	p)	throw();

		static	void	*	operator	new(std::size_t	size)	throw(std::bad_alloc);

private:

		static	std::new_handler	currentHandler;

};

Static	class	members	must	be	defined	outside	the	class	definition	(unless	they're
const	and	integralsee	Item	2),	so:

	

std::new_handler	Widget::currentHandler	=	0;				//	init	to	null	in	the	class



std::new_handler	Widget::currentHandler	=	0;				//	init	to	null	in	the	class

	

																																																//	impl.	file

	

The	set_new_handler	function	in	Widget	will	save	whatever	pointer	is
passed	to	it,	and	it	will	return	whatever	pointer	had	been	saved	prior	to	the	call.
This	is	what	the	standard	version	of	set_new_handler	does:

std::new_handler	Widget::set_new_handler(std::new_handler	p)	throw()

{

		std::new_handler	oldHandler	=	currentHandler;

		currentHandler	=	p;

		return	oldHandler;

}

Finally,	Widget's	operator	new	will	do	the	following:

1.	 Call	the	standard	set_new_handler	with	Widget's	error-handling
function.	This	installs	Widget's	new-handler	as	the	global	new-handler.

2.	 Call	the	global	operator	new	to	perform	the	actual	memory	allocation.
If	allocation	fails,	the	global	operator	new	invokes	Widget's	new-
handler,	because	that	function	was	just	installed	as	the	global	new-handler.
If	the	global	operator	new	is	ultimately	unable	to	allocate	the	memory,
it	throws	a	bad_alloc	exception.	In	that	case,	Widget's	operator
new	must	restore	the	original	global	new-handler,	then	propagate	the



exception.	To	ensure	that	the	original	new-handler	is	always	reinstated,
Widget	treats	the	global	new-handler	as	a	resource	and	follows	the	advice
of	Item	13	to	use	resource-managing	objects	to	prevent	resource	leaks.

3.	 If	the	global	operator	new	was	able	to	allocate	enough	memory	for	a
Widget	object,	Widget's	operator	new	returns	a	pointer	to	the
allocated	memory.	The	destructor	for	the	object	managing	the	global	new-
handler	automatically	restores	the	global	new-handler	to	what	it	was	prior
to	the	call	to	Widget's	operator	new.

Here's	how	you	say	all	that	in	C++.	We'll	begin	with	the	resource-handling	class,
which	consists	of	nothing	more	than	the	fundamental	RAII	operations	of
acquiring	a	resource	during	construction	and	releasing	it	during	destruction	(see
Item	13):

class	NewHandlerHolder	{

public:

		explicit	NewHandlerHolder(std::new_handler	nh)				//	acquire	current

		:handler(nh)	{}																																			//	new-handler

		~NewHandlerHolder()																															//	release	it

		{	std::set_new_handler(handler);	}

private:

		std::new_handler	handler;																									//	remember	it

		NewHandlerHolder(const	NewHandlerHolder&);								//	prevent	copying



		NewHandlerHolder&																																	//	(see	Item	14)

			operator=(const	NewHandlerHolder&);

};

This	makes	implementation	of	Widget's	operator	new	quite	simple:

void	*	Widget::operator	new(std::size_t	size)	throw(std::bad_alloc)

{

		NewHandlerHolder																														//	install	Widget's

			h(std::set_new_handler(currentHandler));					//	new-handler

		return	::operator	new(size);																		//	allocate	memory

																																																//	or	throw

}																																															//	restore	global

																																																//	new-handler

Clients	of	Widget	use	its	new-handling	capabilities	like	this:

	



	

void	outOfMem();																			//	decl.	of	func.	to	call	if	mem.	alloc.

	

																																			//	for	Widget	objects	fails

	

	

	

Widget::set_new_handler(outOfMem);	//	set	outOfMem	as	Widget's

	

																																			//	new-handling	function

	

	

	

Widget	*pw1	=	new	Widget;										//	if	memory	allocation

	

																																			//	fails,	call	outOfMem

	

	

	

std::string	*ps	=	new	std::string;	//	if	memory	allocation	fails,

	

																																			//	call	the	global	new-handling

	

																																			//	function	(if	there	is	one)

	

	

	

Widget::set_new_handler(0);								//	set	the	Widget-specific

	

																																			//	new-handling	function	to

	

																																			//	nothing	(i.e.,	null)

	

	

	

Widget	*pw2	=	new	Widget;										//	if	mem.	alloc.	fails,	throw	an

	

																																			//	exception	immediately.	(There	is



																																			//	exception	immediately.	(There	is

	

																																			//	no	new-	handling	function	for

	

																																			//	class	Widget.)

	

The	code	for	implementing	this	scheme	is	the	same	regardless	of	the	class,	so	a
reasonable	goal	would	be	to	reuse	it	in	other	places.	An	easy	way	to	make	that
possible	is	to	create	a	"mixin-style"	base	class,	i.e.,	a	base	class	that's	designed	to
allow	derived	classes	to	inherit	a	single	specific	capability		in	this	case,	the
ability	to	set	a	class-specific	new-handler.	Then	turn	the	base	class	into	a
template,	so	that	you	get	a	different	copy	of	the	class	data	for	each	inheriting
class.

The	base	class	part	of	this	design	lets	derived	classes	inherit	the
set_new_handler	and	operator	new	functions	they	all	need,	while	the
template	part	of	the	design	ensures	that	each	inheriting	class	gets	a	different
currentHandler	data	member.	That	may	sound	a	bit	complicated,	but	the
code	looks	reassuringly	familiar.	In	fact,	the	only	real	difference	is	that	it's	now
available	to	any	class	that	wants	it:

template<typename	T>														//	"mixin-style"	base	class	for

class	NewHandlerSupport{										//	class-specific	set_new_handler

public:																											//	support

		static	std::new_handler	set_new_handler(std::new_handler	p)	throw();

		static	void	*	operator	new(std::size_t	size)	throw(std::bad_alloc);



		...																													//	other	versions	of	op.	new	

																																		//	see	Item	52

private:

		static	std::new_handler	currentHandler;

};

template<typename	T>

std::new_handler

NewHandlerSupport<T>::set_new_handler(std::new_handler	p)	throw()

{

	std::new_handler	oldHandler	=	currentHandler;

	currentHandler	=	p;

	return	oldHandler;

}

template<typename	T>

void*	NewHandlerSupport<T>::operator	new(std::size_t	size)

		throw(std::bad_alloc)



{

		NewHandlerHolder	h(std::set_new_handler(currentHandler));

		return	::operator	new(size);

}

//	this	initializes	each	currentHandler	to	null

template<typename	T>

std::new_handler	NewHandlerSupport<T>::currentHandler	=	0;

With	this	class	template,	adding	set_new_handler	support	to	Widget	is
easy:	Widget	just	inherits	from	NewHandlerSupport<Widget>.	(That
may	look	peculiar,	but	I'll	explain	in	more	detail	below	exactly	what's	going	on.)

class	Widget:	public	NewHandlerSupport<Widget>	{

		...																										//	as	before,	but	without	declarations	for

};																													//	set_new_handler	or	operator	new

That's	all	Widget	needs	to	do	to	offer	a	class-specific	set_new_handler.

But	maybe	you're	still	fretting	over	Widget	inheriting	from
NewHandlerSupport<Widget>.	If	so,	your	fretting	may	intensify	when
you	note	that	the	NewHandlerSupport	template	never	uses	its	type
parameter	T.	It	doesn't	need	to.	All	we	need	is	a	different	copy	of



NewHandlerSupport		in	particular,	its	static	data	member
currentHandler		for	each	class	that	inherits	from	NewHandlerSupport.
The	template	parameter	T	just	distinguishes	one	inheriting	class	from	another.
The	template	mechanism	itself	automatically	generates	a	copy	of
currentHandler	for	each	T	with	which	NewHandlerSupport	is
instantiated.

As	for	Widget	inheriting	from	a	templatized	base	class	that	takes	Widget	as	a
type	parameter,	don't	feel	bad	if	the	notion	makes	you	a	little	woozy.	It	initially
has	that	effect	on	everybody.	However,	it	turns	out	to	be	such	a	useful	technique,
it	has	a	name,	albeit	one	that	reflects	the	fact	that	it	looks	natural	to	no	one	the
first	time	they	see	it.	It's	called	the	curiously	recurring	template	pattern	(CRTP).
Honest.

At	one	point,	I	published	an	article	suggesting	that	a	better	name	would	be	"Do	It
For	Me,"	because	when	Widget	inherits	from
NewHandlerSupport<Widget>,	it's	really	saying,	"I'm	Widget,	and	I
want	to	inherit	from	the	NewHandlerSupport	class	for	Widget."	Nobody
uses	my	proposed	name	(not	even	me),	but	thinking	about	CRTP	as	a	way	of
saying	"do	it	for	me"	may	help	you	understand	what	the	templatized	inheritance
is	doing.

Templates	like	NewHandlerSupport	make	it	easy	to	add	a	class-specific
new-handler	to	any	class	that	wants	one.	Mixin-style	inheritance,	however,
invariably	leads	to	the	topic	of	multiple	inheritance,	and	before	starting	down
that	path,	you'll	want	to	read	Item	40.

Until	1993,	C++	required	that	operator	new	return	null	when	it	was	unable
to	allocate	the	requested	memory.	operator	new	is	now	specified	to	throw	a
bad_alloc	exception,	but	a	lot	of	C++	was	written	before	compilers	began
supporting	the	revised	specification.	The	C++	standardization	committee	didn't
want	to	abandon	the	test-for-null	code	base,	so	they	provided	alternative	forms
of	operator	new	that	offer	the	traditional	failure-yields-null	behavior.	These
forms	are	called	"nothrow"	forms,	in	part	because	they	employ	nothrow
objects	(defined	in	the	header	<new>)	at	the	point	where	new	is	used:



class	Widget	{	...	};

Widget	*pw1	=	new	Widget;																	//	throws	bad_alloc	if

																																										//	allocation	fails

if	(pw1	==	0)	...																									//	this	test	

Widget	*pw2	=new	(std::nothrow)	Widget;			//	returns	0	if	allocation	for

																																										//	the	Widget	fails

if	(pw2	==	0)	...																									//	this	test	may	succeed

Nothrow	new	offers	a	less	compelling	guarantee	about	exceptions	than	is
initially	apparent.	In	the	expression	"new	(std::nothrow)	Widget,"	two
things	happen.	First,	the	nothrow	version	of	operator	new	is	called	to
allocate	enough	memory	for	a	Widget	object.	If	that	allocation	fails,
operator	new	returns	the	null	pointer,	just	as	advertised.	If	it	succeeds,
however,	the	Widget	constructor	is	called,	and	at	that	point,	all	bets	are	off.
The	Widget	constructor	can	do	whatever	it	likes.	It	might	itself	new	up	some
memory,	and	if	it	does,	it's	not	constrained	to	use	nothrow	new.	Although	the
operator	new	call	in	"new	(std::nothrow)	Widget"	won't	throw,
then,	the	Widget	constructor	might.	If	it	does,	the	exception	will	be	propagated
as	usual.	Conclusion?	Using	nothrow	new	guarantees	only	that	operator
new	won't	throw,	not	that	an	expression	like	"new	(std::nothrow)
Widget"	will	never	yield	an	exception.	In	all	likelihood,	you	will	never	have	a
need	for	nothrow	new.



Regardless	of	whether	you	use	"normal"	(i.e.,	exception-throwing)	new	or	its
somewhat	stunted	nothrow	cousin,	it's	important	that	you	understand	the
behavior	of	the	new-handler,	because	it's	used	with	both	forms.

Things	to	Remember

set_new_handler	allows	you	to	specify	a	function	to	be
called	when	memory	allocation	requests	cannot	be	satisfied.

Nothrow	new	is	of	limited	utility,	because	it	applies	only	to
memory	allocation;	subsequent	constructor	calls	may	still	throw
exceptions.



Item	50:	Understand	when	it	makes	sense	to
replace	new	and	delete

Let's	return	to	fundamentals	for	a	moment.	Why	would	anybody	want	to	replace
the	compiler-provided	versions	of	operator	new	or	operator	delete	in
the	first	place?	These	are	three	of	the	most	common	reasons:

To	detect	usage	errors.	Failure	to	delete	memory	conjured	up	by	new
leads	to	memory	leaks.	Using	more	than	one	delete	on	newed	memory
yields	undefined	behavior.	If	operator	new	keeps	a	list	of	allocated
addresses	and	operator	delete	removes	addresses	from	the	list,	it's
easy	to	detect	such	usage	errors.	Similarly,	a	variety	of	programming
mistakes	can	lead	to	data	overruns	(writing	beyond	the	end	of	an	allocated
block)	and	underruns	(writing	prior	to	the	beginning	of	an	allocated	block).
Custom	operator	news	can	overallocate	blocks	so	there's	room	to	put
known	byte	patterns	("signatures")	before	and	after	the	memory	made
available	to	clients.	operator	deletes	can	check	to	see	if	the
signatures	are	still	intact.	If	they're	not,	an	overrun	or	underrun	occurred
sometime	during	the	life	of	the	allocated	block,	and	operator	delete
can	log	that	fact,	along	with	the	value	of	the	offending	pointer.

To	improve	efficiency.	The	versions	of	operator	new	and	operator
delete	that	ship	with	compilers	are	designed	for	general-purpose	use.
They	have	to	be	acceptable	for	long-running	programs	(e.g.,	web	servers),
but	they	also	have	to	be	acceptable	for	programs	that	execute	for	less	than	a
second.	They	have	to	handle	series	of	requests	for	large	blocks	of	memory,
small	blocks,	and	mixtures	of	the	two.	They	have	to	accommodate
allocation	patterns	ranging	from	the	dynamic	allocation	of	a	few	blocks	that
exist	for	the	duration	of	the	program	to	constant	allocation	and	deallocation
of	a	large	number	of	short-lived	objects.	They	have	to	worry	about	heap
fragmentation,	a	process	that,	if	unchecked,	eventually	leads	to	the	inability
to	satisfy	requests	for	large	blocks	of	memory,	even	when	ample	free
memory	is	distributed	across	many	small	blocks.

Given	the	demands	made	on	memory	managers,	it's	no	surprise	that	the



operator	news	and	operator	deletes	that	ship	with	compilers
take	a	middle-of-the-road	strategy.	They	work	reasonably	well	for
everybody,	but	optimally	for	nobody.	If	you	have	a	good	understanding	of
your	program's	dynamic	memory	usage	patterns,	you	can	often	find	that
custom	versions	of	operator	new	and	operator	delete
outperform	the	default	ones.	By	"outperform,"	I	mean	they	run	faster	
sometimes	orders	of	magnitude	faster		and	they	require	less	memory		up	to
50%	less.	For	some	(though	by	no	means	all)	applications,	replacing	the
stock	new	and	delete	with	custom	versions	is	an	easy	way	to	pick	up
significant	performance	improvements.

To	collect	usage	statistics.	Before	heading	down	the	path	of	writing
custom	news	and	deletes,	it's	prudent	to	gather	information	about	how
your	software	uses	its	dynamic	memory.	What	is	the	distribution	of
allocated	block	sizes?	What	is	the	distribution	of	their	lifetimes?	Do	they
tend	to	be	allocated	and	deallocated	in	FIFO	("first	in,	first	out")	order,
LIFO	("last	in,	first	out")	order,	or	something	closer	to	random	order?	Do
the	usage	patterns	change	over	time,	e.g.,	does	your	software	have	different
allocation/deallocation	patterns	in	different	stages	of	execution?	What	is	the
maximum	amount	of	dynamically	allocated	memory	in	use	at	any	one	time
(i.e.,	its	"high	water	mark")?	Custom	versions	of	operator	new	and
operator	delete	make	it	easy	to	collect	this	kind	of	information.

In	concept,	writing	a	custom	operator	new	is	pretty	easy.	For	example,
here's	a	quick	first	pass	at	a	global	operator	new	that	facilitates	the	detection
of	under-	and	overruns.	There	are	a	lot	of	little	things	wrong	with	it,	but	we'll
worry	about	those	in	a	moment.

static	const	int	signature	=	0xDEADBEEF;

typedef	unsigned	char	Byte;

//	this	code	has	several	flawssee	below



void*	operator	new(std::size_t	size)	throw(std::bad_alloc)

{

		using	namespace	std;

		size_t	realSize	=	size	+	2	*	sizeof(int);				//	increase	size	of	request	so2

																																															//	signatures	will	also	fit	inside

		void	*pMem	=	malloc(realSize);															//	call	malloc	to	get	theactual

		if	(!pMem)	throw	bad_alloc();																//	memory

		//	write	signature	into	first	and	last	parts	of	the	memory

		*(static_cast<int*>(pMem))	=	signature;

		*(reinterpret_cast<int*>(static_cast<Byte*>(pMem)+realSize-sizeof(int)))	=

		signature;

		//	return	a	pointer	to	the	memory	just	past	the	first	signature

		return	static_cast<Byte*>(pMem)	+	sizeof(int);

}



Most	of	the	shortcomings	of	this	operator	new	have	to	do	with	its	failure	to
adhere	to	the	C++	conventions	for	functions	of	that	name.	For	example,	Item	51
explains	that	all	operator	news	should	contain	a	loop	calling	a	new-handling
function,	but	this	one	doesn't.	However,	Item	51	is	devoted	to	such	conventions,
so	I'll	ignore	them	here.	I	want	to	focus	on	a	more	subtle	issue	now:	alignment.

Many	computer	architectures	require	that	data	of	particular	types	be	placed	in
memory	at	particular	kinds	of	addresses.	For	example,	an	architecture	might
require	that	pointers	occur	at	addresses	that	are	a	multiple	of	four	(i.e.,	be	four-
byte	aligned)	or	that	doubles	must	occur	at	addresses	that	are	a	multiple	of
eight	(i.e.,	be	eight-byte	aligned).	Failure	to	follow	such	constraints	could	lead	to
hardware	exceptions	at	runtime.	Other	architectures	are	more	forgiving,	though
they	may	offer	better	performance	if	alignment	preferences	are	satisfied.	For
example,	doubles	may	be	aligned	on	any	byte	boundary	on	the	Intel	x86
architecture,	but	access	to	them	is	a	lot	faster	if	they	are	eight-byte	aligned.

Alignment	is	relevant	here,	because	C++	requires	that	all	operator	news
return	pointers	that	are	suitably	aligned	for	any	data	type.	malloc	labors	under
the	same	requirement,	so	having	operator	new	return	a	pointer	it	gets	from
malloc	is	safe.	However,	in	operator	new	above,	we're	not	returning	a
pointer	we	got	from	malloc,	we're	returning	a	pointer	we	got	from	malloc
offset	by	the	size	of	an	int.	There	is	no	guarantee	that	this	is	safe!	If	the	client
called	operator	new	to	get	enough	memory	for	a	double	(or,	if	we	were
writing	operator	new[],	an	array	of	doubles)	and	we	were	running	on	a
machine	where	ints	were	four	bytes	in	size	but	doubles	were	required	to	be
eight-byte	aligned,	we'd	probably	return	a	pointer	with	improper	alignment.	That
might	cause	the	program	to	crash.	Or	it	might	just	cause	it	to	run	more	slowly.
Either	way,	it's	probably	not	what	we	had	in	mind.

Details	like	alignment	are	the	kinds	of	things	that	distinguish	professional-
quality	memory	managers	from	ones	thrown	together	by	programmers	distracted
by	the	need	to	get	on	to	other	tasks.	Writing	a	custom	memory	manager	that
almost	works	is	pretty	easy.	Writing	one	that	works	well	is	a	lot	harder.	As	a
general	rule,	I	suggest	you	not	attempt	it	unless	you	have	to.

In	many	cases,	you	don't	have	to.	Some	compilers	have	switches	that	enable



debugging	and	logging	functionality	in	their	memory	management	functions.	A
quick	glance	through	your	compilers'	documentation	may	eliminate	your	need	to
consider	writing	new	and	delete.	On	many	platforms,	commercial	products
can	replace	the	memory	management	functions	that	ship	with	compilers.	To
avail	yourself	of	their	enhanced	functionality	and	(presumably)	improved
performance,	all	you	need	do	is	relink.	(Well,	you	also	have	to	buy	them.)

Another	option	is	open	source	memory	managers.	They're	available	for	many
platforms,	so	you	can	download	and	try	those.	One	such	open	source	allocator	is
the	Pool	library	from	Boost	(see	Item	55).	The	Pool	library	offers	allocators
tuned	for	one	of	the	most	common	situations	in	which	custom	memory
management	is	helpful:	allocation	of	a	large	number	of	small	objects.	Many	C++
books,	including	earlier	editions	of	this	one,	show	the	code	for	a	high-
performance	small-object	allocator,	but	they	usually	omit	such	pesky	details	as
portability	and	alignment	considerations,	thread	safety,	etc.	Real	libraries	tend	to
have	code	that's	a	lot	more	robust.	Even	if	you	decide	to	write	your	own	news
and	deletes,	looking	at	open	source	versions	is	likely	to	give	you	insights	into
the	easy-to-overlook	details	that	separate	almost	working	from	really	working.
(Given	that	alignment	is	one	such	detail,	it's	worth	noting	that	TR1	(see	Item	54)
includes	support	for	discovering	type-specific	alignment	requirements.)

The	topic	of	this	Item	is	knowing	when	it	can	make	sense	to	replace	the	default
versions	of	new	and	delete,	either	globally	or	on	a	per-class	basis.	We're	now
in	a	position	to	summarize	when	in	more	detail	than	we	did	before.

To	detect	usage	errors	(as	above).

To	collect	statistics	about	the	use	of	dynamically	allocated	memory
(also	as	above).

To	increase	the	speed	of	allocation	and	deallocation.	General-purpose
allocators	are	often	(though	not	always)	a	lot	slower	than	custom	versions,
especially	if	the	custom	versions	are	designed	for	objects	of	a	particular
type.	Class-specific	allocators	are	an	example	application	of	fixed-size
allocators	such	as	those	offered	by	Boost's	Pool	library.	If	your	application
is	single-threaded,	but	your	compilers'	default	memory	management
routines	are	thread-safe,	you	may	be	able	to	win	measurable	speed



improvements	by	writing	thread-unsafe	allocators.	Of	course,	before
jumping	to	the	conclusion	that	operator	new	and	operator
delete	are	worth	speeding	up,	be	sure	to	profile	your	program	to	confirm
that	these	functions	are	truly	a	bottleneck.

To	reduce	the	space	overhead	of	default	memory	management.
General-purpose	memory	managers	are	often	(though	not	always)	not	just
slower	than	custom	versions,	they	often	use	more	memory,	too.	That's
because	they	often	incur	some	overhead	for	each	allocated	block.
Allocators	tuned	for	small	objects	(such	as	those	in	Boost's	Pool	library)
essentially	eliminate	such	overhead.

To	compensate	for	suboptimal	alignment	in	the	default	allocator.	As	I
mentioned	earlier,	it's	fastest	to	access	doubles	on	the	x86	architecture
when	they	are	eight-byte	aligned.	Alas,	the	operator	news	that	ship
with	some	compilers	don't	guarantee	eight-byte	alignment	for	dynamic
allocations	of	doubles.	In	such	cases,	replacing	the	default	operator
new	with	one	that	guarantees	eight-byte	alignment	could	yield	big
increases	in	program	performance.

To	cluster	related	objects	near	one	another.	If	you	know	that	particular
data	structures	are	generally	used	together	and	you'd	like	to	minimize	the
frequency	of	page	faults	when	working	on	the	data,	it	can	make	sense	to
create	a	separate	heap	for	the	data	structures	so	they	are	clustered	together
on	as	few	pages	as	possible.	Placement	versions	of	new	and	delete	(see
Item	52)	can	make	it	possible	to	achieve	such	clustering.

To	obtain	unconventional	behavior.	Sometimes	you	want	operators
new	and	delete	to	do	something	that	the	compiler-provided	versions
don't	offer.	For	example,	you	might	want	to	allocate	and	deallocate	blocks
in	shared	memory,	but	have	only	a	C	API	through	which	to	manage	that
memory.	Writing	custom	versions	of	new	and	delete	(probably
placement	versions		again,	see	Item	52)	would	allow	you	to	drape	the	C
API	in	C++	clothing.	As	another	example,	you	might	write	a	custom
operator	delete	that	overwrites	deallocated	memory	with	zeros	in
order	to	increase	the	security	of	application	data.

Things	to	Remember



Things	to	Remember

There	are	many	valid	reasons	for	writing	custom	versions	of
new	and	delete,	including	improving	performance,
debugging	heap	usage	errors,	and	collecting	heap	usage
information.



Item	51:	Adhere	to	convention	when	writing	new
and	delete

Item	50	explains	when	you	might	want	to	write	your	own	versions	of
operator	new	and	operator	delete,	but	it	doesn't	explain	the
conventions	you	must	follow	when	you	do	it.	The	rules	aren't	hard	to	follow,	but
some	of	them	are	unintuitive,	so	it's	important	to	know	what	they	are.

We'll	begin	with	operator	new.	Implementing	a	conformant	operator
new	requires	having	the	right	return	value,	calling	the	new-handling	function
when	insufficient	memory	is	available	(see	Item	49),	and	being	prepared	to	cope
with	requests	for	no	memory.	You'll	also	want	to	avoid	inadvertently	hiding	the
"normal"	form	of	new,	though	that's	more	a	class	interface	issue	than	an
implementation	requirement;	it's	addressed	in	Item	52.

The	return	value	part	of	operator	new	is	easy.	If	you	can	supply	the
requested	memory,	you	return	a	pointer	to	it.	If	you	can't,	you	follow	the	rule
described	in	Item	49	and	throw	an	exception	of	type	bad_alloc.

It's	not	quite	that	simple,	however,	because	operator	new	actually	tries	to
allocate	memory	more	than	once,	calling	the	new-handling	function	after	each
failure.	The	assumption	here	is	that	the	new-handling	function	might	be	able	to
do	something	to	free	up	some	memory.	Only	when	the	pointer	to	the	new-
handling	function	is	null	does	operator	new	throw	an	exception.

Curiously,	C++	requires	that	operator	new	return	a	legitimate	pointer	even
when	zero	bytes	are	requested.	(Requiring	this	odd-sounding	behavior	simplifies
things	elsewhere	in	the	language.)	That	being	the	case,	pseudocode	for	a	non-
member	operator	new	looks	like	this:

void	*	operator	new(std::size_t	size)	throw(std::bad_alloc)

{																																						//	your	operator	new	might



		using	namespace	std;																	//	take	additional	params

		if	(size	==	0)	{																					//	handle	0-byte	requests

				size	=	1;																										//	by	treating	them	as

		}																																				//	1-byte	requests

		while	(true)	{

			attempt	to	allocate	size	bytes;

				if	(the	allocation	was	successful)

							return	(a	pointer	to	the	memory);

				//	allocation	was	unsuccessful;	find	out	what	the

				//	current	new-handling	function	is	(see	below)

				new_handler	globalHandler	=	set_new_handler(0);

				set_new_handler(globalHandler);

				if	(globalHandler)	(*globalHandler)();

				else	throw	std::bad_alloc();

		}



}

The	trick	of	treating	requests	for	zero	bytes	as	if	they	were	really	requests	for
one	byte	looks	slimy,	but	it's	simple,	it's	legal,	it	works,	and	how	often	do	you
expect	to	be	asked	for	zero	bytes,	anyway?

You	may	also	look	askance	at	the	place	in	the	pseudocode	where	the	new-
handling	function	pointer	is	set	to	null,	then	promptly	reset	to	what	it	was
originally.	Unfortunately,	there	is	no	way	to	get	at	the	new-handling	function
pointer	directly,	so	you	have	to	call	set_new_handler	to	find	out	what	it	is.
Crude,	yes,	but	also	effective,	at	least	for	single-threaded	code.	In	a
multithreaded	environment,	you'll	probably	need	some	kind	of	lock	to	safely
manipulate	the	(global)	data	structures	behind	the	new-handling	function.

Item	49	remarks	that	operator	new	contains	an	infinite	loop,	and	the	code
above	shows	that	loop	explicitly;	"while	(true)"	is	about	as	infinite	as	it
gets.	The	only	way	out	of	the	loop	is	for	memory	to	be	successfully	allocated	or
for	the	new-handling	function	to	do	one	of	the	things	described	in	Item	49:	make
more	memory	available,	install	a	different	new-handler,	deinstall	the	new-
handler,	throw	an	exception	of	or	derived	from	bad_alloc,	or	fail	to	return.	It
should	now	be	clear	why	the	new-handler	must	do	one	of	those	things.	If	it
doesn't,	the	loop	inside	operator	new	will	never	terminate.

Many	people	don't	realize	that	operator	new	member	functions	are	inherited
by	derived	classes.	That	can	lead	to	some	interesting	complications.	In	the
pseudocode	for	operator	new	above,	notice	that	the	function	tries	to	allocate
size	bytes	(unless	size	is	zero).	That	makes	perfect	sense,	because	that's	the
argument	that	was	passed	to	the	function.	However,	as	Item	50	explains,	one	of
the	most	common	reasons	for	writing	a	custom	memory	manager	is	to	optimize
allocation	for	objects	of	a	specific	class,	not	for	a	class	or	any	of	its	derived
classes.	That	is,	given	an	operator	new	for	a	class	X,	the	behavior	of	that
function	is	typically	tuned	for	objects	of	size	sizeof(X)nothing	larger	and
nothing	smaller.	Because	of	inheritance,	however,	it	is	possible	that	the



operator	new	in	a	base	class	will	be	called	to	allocate	memory	for	an	object
of	a	derived	class:

class	Base	{

public:

		static	void	*	operator	new(std::size_t	size)	throw(std::bad_alloc);

		...

};

class	Derived:	public	Base																//	Derived	doesn't	declare

{	...	};																																		//	operator	new

Derived	*p	=	new	Derived;																	//	calls	Base::operator	new!

If	Base's	class-specific	operator	new	wasn't	designed	to	cope	with	this		and
chances	are	that	it	wasn't		the	best	way	for	it	to	handle	the	situation	is	to	slough
off	calls	requesting	the	"wrong"	amount	of	memory	to	the	standard	operator
new,	like	this:

void	*	Base::operator	new(std::size_t	size)	throw(std::bad_alloc)

{



		if	(size	!=	sizeof(Base))															//	if	size	is	"wrong,"

					return	::operator	new(size);									//	have	standard	operator

																																										//	new	handle	the	request

		...																																					//	otherwise	handle

																																										//	the	request	here

}

"Hold	on!"	I	hear	you	cry,	"You	forgot	to	check	for	the	pathological-but-
nevertheless-possible	case	where	size	is	zero!"	Actually,	I	didn't,	and	please
stop	using	hyphens	when	you	cry	out.	The	test	is	still	there,	it's	just	been
incorporated	into	the	test	of	size	against	sizeof(Base).	C++	works	in
some	mysterious	ways,	and	one	of	those	ways	is	to	decree	that	all	freestanding
objects	have	non-zero	size	(see	Item	39).	By	definition,	sizeof(Base)	can
never	be	zero,	so	if	size	is	zero,	the	request	will	be	forwarded	to
::operator	new,	and	it	will	become	that	function's	responsibility	to	treat	the
request	in	a	reasonable	fashion.

If	you'd	like	to	control	memory	allocation	for	arrays	on	a	per-class	basis,	you
need	to	implement	operator	new's	array-specific	cousin,	operator
new[].	(This	function	is	usually	called	"array	new,"	because	it's	hard	to	figure
out	how	to	pronounce	"operator	new[]".)	If	you	decide	to	write
operator	new[],	remember	that	all	you're	doing	is	allocating	a	chunk	of
raw	memory		you	can't	do	anything	to	the	as-yet-nonexistent	objects	in	the	array.
In	fact,	you	can't	even	figure	out	how	many	objects	will	be	in	the	array.	First,
you	don't	know	how	big	each	object	is.	After	all,	a	base	class's	operator
new[]	might,	through	inheritance,	be	called	to	allocate	memory	for	an	array	of
derived	class	objects,	and	derived	class	objects	are	usually	bigger	than	base	class



objects.

Hence,	you	can't	assume	inside	Base::operator	new[]	that	the	size	of
each	object	going	into	the	array	is	sizeof(Base),	and	that	means	you	can't
assume	that	the	number	of	objects	in	the	array	is	(bytes
requested)/sizeof(Base).	Second,	the	size_t	parameter	passed	to
operator	new[]	may	be	for	more	memory	than	will	be	filled	with	objects,
because,	as	Item	16	explains,	dynamically	allocated	arrays	may	include	extra
space	to	store	the	number	of	array	elements.

So	much	for	the	conventions	you	need	to	follow	when	writing	operator
new.	For	operator	delete,	things	are	simpler.	About	all	you	need	to
remember	is	that	C++	guarantees	it's	always	safe	to	delete	the	null	pointer,	so
you	need	to	honor	that	guarantee.	Here's	pseudocode	for	a	non-member
operator	delete:

void	operator	delete(void	*rawMemory)	throw()

{

		if	(rawMemory	==	0)	return;												//	do	nothing	if	the	null

																																									//	pointer	is	being	deleted

		deallocate	the	memory	pointed	to	by	rawMemory;

}

The	member	version	of	this	function	is	simple,	too,	except	you've	got	to	be	sure
to	check	the	size	of	what's	being	deleted.	Assuming	your	class-specific
operator	new	forwards	requests	of	the	"wrong"	size	to	::operator	new,



you've	got	to	forward	"wrongly	sized"	deletion	requests	to	::operator
delete:

class	Base	{																												//	same	as	before,	but	now

public:																																	//	operator	delete	is	declared

		static	void	*	operator	new(std::size_t	size)	throw(std::bad_alloc);

		static	void	operator	delete(void	*rawMemory,	std::size_t	size)	throw();

		...

};

void	Base::operator	delete(void	*rawMemory,	std::size_t	size)	throw()

{

		if	(rawMemory	==	0)	return;											//	check	for	null	pointer

		if	(size	!=	sizeof(Base))	{											//	if	size	is	"wrong,"

					::operator	delete(rawMemory);						//	have	standard	operator

					return;																												//	delete	handle	the	request

		}

		deallocate	the	memory	pointed	to	by	rawMemory;

		return;



}

Interestingly,	the	size_t	value	C++	passes	to	operator	delete	may	be
incorrect	if	the	object	being	deleted	was	derived	from	a	base	class	lacking	a
virtual	destructor.	This	is	reason	enough	for	making	sure	your	base	classes	have
virtual	destructors,	but	Item	7	describes	a	second,	arguably	better	reason.	For
now,	simply	note	that	if	you	omit	virtual	destructors	in	base	classes,	operator
delete	functions	may	not	work	correctly.

Things	to	Remember

operator	new	should	contain	an	infinite	loop	trying	to
allocate	memory,	should	call	the	new-handler	if	it	can't	satisfy	a
memory	request,	and	should	handle	requests	for	zero	bytes.
Class-specific	versions	should	handle	requests	for	larger	blocks
than	expected.

operator	delete	should	do	nothing	if	passed	a	pointer	that
is	null.	Class-specific	versions	should	handle	blocks	that	are
larger	than	expected.



Item	52:	Write	placement	delete	if	you	write
placement	new

Placement	new	and	placement	delete	aren't	the	most	commonly	encountered
beasts	in	the	C++	menagerie,	so	don't	worry	if	you're	not	familiar	with	them.
Instead,	recall	from	Items	16	and	17	that	when	you	write	a	new	expression	such
as	this,

	

Widget	*pw	=	new	Widget;

	

two	functions	are	called:	one	to	operator	new	to	allocate	memory,	a	second
to	Widget's	default	constructor.

Suppose	that	the	first	call	succeeds,	but	the	second	call	results	in	an	exception
being	thrown.	In	that	case,	the	memory	allocation	performed	in	step	1	must	be
undone.	Otherwise	we'll	have	a	memory	leak.	Client	code	can't	deallocate	the
memory,	because	if	the	Widget	constructor	throws	an	exception,	pw	is	never
assigned.	There'd	be	no	way	for	clients	to	get	at	the	pointer	to	the	memory	that
should	be	deallocated.	The	responsibility	for	undoing	step	1	must	therefore	fall
on	the	C++	runtime	system.

The	runtime	system	is	happy	to	call	the	operator	delete	that	corresponds
to	the	version	of	operator	new	it	called	in	step	1,	but	it	can	do	that	only	if	it
knows	which	operator	delete		there	may	be	many		is	the	proper	one	to
call.	This	isn't	an	issue	if	you're	dealing	with	the	versions	of	new	and	delete
that	have	the	normal	signatures,	because	the	normal	operator	new,

	

void*	operator	new(std::size_t)	throw(std::bad_alloc);

	



corresponds	to	the	normal	operator	delete:

	

void	operator	delete(void	*rawMemory)	throw();		//	normal	signature

	

																																																//	at	global	scope

	

	

	

void	operator	delete(void	*rawMemory,											//	typical	normal

	

																					std::size_t	size)	throw();	//	signature	at	class

	

																																																//	scope

	

When	you're	using	only	the	normal	forms	of	new	and	delete,	then,	the
runtime	system	has	no	trouble	finding	the	delete	that	knows	how	to	undo
what	new	did.	The	which-delete-goes-with-this-new	issue	does	arise,
however,	when	you	start	declaring	non-normal	forms	of	operator	new	
forms	that	take	additional	parameters.

For	example,	suppose	you	write	a	class-specific	operator	new	that	requires
specification	of	an	ostream	to	which	allocation	information	should	be	logged,
and	you	also	write	a	normal	class-specific	operator	delete:

class	Widget	{

public:

		...

		static	void*	operator	new(std::size_t	size,														//	non-normal



																												std::ostream&	logStream)							//	form	of	new

				throw(std::bad_alloc);

		static	void	operator	delete(void	*pMemory																//	normal	class-

																														std::size_t	size)	throw();			//	specific	form

																																																											//	of	delete

		...

};

This	design	is	problematic,	but	before	we	see	why,	we	need	to	make	a	brief
terminological	detour.

When	an	operator	new	function	takes	extra	parameters	(other	than	the
mandatory	size_t	argument),	that	function	is	known	as	a	placement	version	of
new.	The	operator	new	above	is	thus	a	placement	version.	A	particularly
useful	placement	new	is	the	one	that	takes	a	pointer	specifying	where	an	object
should	be	constructed.	That	operator	new	looks	like	this:

void*	operator	new(std::size_t,	void	*pMemory)	throw();			//	"placement

																																																										//	new"

This	version	of	new	is	part	of	C++'s	standard	library,	and	you	have	access	to	it



whenever	you	#include	<new>.	Among	other	things,	this	new	is	used	inside
vector	to	create	objects	in	the	vector's	unused	capacity.	It's	also	the	original
placement	new.	In	fact,	that's	how	this	function	is	known:	as	placement	new.
Which	means	that	the	term	"placement	new"	is	overloaded.	Most	of	the	time
when	people	talk	about	placement	new,	they're	talking	about	this	specific
function,	the	operator	new	taking	a	single	extra	argument	of	type	void*.
Less	commonly,	they're	talking	about	any	version	of	operator	new	that
takes	extra	arguments.	Context	generally	clears	up	any	ambiguity,	but	it's
important	to	understand	that	the	general	term	"placement	new"	means	any
version	of	new	taking	extra	arguments,	because	the	phrase	"placement
delete"	(which	we'll	encounter	in	a	moment)	derives	directly	from	it.

But	let's	get	back	to	the	declaration	of	the	Widget	class,	the	one	whose	design	I
said	was	problematic.	The	difficulty	is	that	this	class	will	give	rise	to	subtle
memory	leaks.	Consider	this	client	code,	which	logs	allocation	information	to
cerr	when	dynamically	creating	a	Widget:

Widget	*pw	=	new	(std::cerr)	Widget;	//	call	operator	new,	passing	cerr	as

																																					//	the	ostream;	this	leaks	memory

																																					//	if	the	Widget	constructor	throws

Once	again,	if	memory	allocation	succeeds	and	the	Widget	constructor	throws
an	exception,	the	runtime	system	is	responsible	for	undoing	the	allocation	that
operator	new	performed.	However,	the	runtime	system	can't	really
understand	how	the	called	version	of	operator	new	works,	so	it	can't	undo
the	allocation	itself.	Instead,	the	runtime	system	looks	for	a	version	of
operator	delete	that	takes	the	same	number	and	types	of	extra	arguments
as	operator	new,	and,	if	it	finds	it,	that's	the	one	it	calls.	In	this	case,
operator	new	takes	an	extra	argument	of	type	ostream&,	so	the
corresponding	operator	delete	would	have	this	signature:



void	operator	delete(void	*,	std::ostream&)	throw();

By	analogy	with	placement	versions	of	new,	versions	of	operator	delete
that	take	extra	parameters	are	known	as	placement	deletes.	In	this	case,
Widget	declares	no	placement	version	of	operator	delete,	so	the	runtime
system	doesn't	know	how	to	undo	what	the	call	to	placement	new	does.	As	a
result,	it	does	nothing.	In	this	example,	no	operator	delete	is	called	if	the
Widget	constructor	throws	an	exception!

The	rule	is	simple:	if	an	operator	new	with	extra	parameters	isn't	matched
by	an	operator	delete	with	the	same	extra	parameters,	no	operator
delete	will	be	called	if	a	memory	allocation	by	the	new	needs	to	be	undone.
To	eliminate	the	memory	leak	in	the	code	above,	Widget	needs	to	declare	a
placement	delete	that	corresponds	to	the	logging	placement	new:

class	Widget	{

public:

		...

		static	void*	operator	new(std::size_t	size,	std::ostream&	logStream)

				throw(std::bad_alloc);

		static	void	operator	delete(void	*pMemory)	throw();

		static	void	operator	delete(void	*pMemory,	std::ostream&	logStream)

				throw();



		...

};

With	this	change,	if	an	exception	is	thrown	from	the	Widget	constructor	in	this
statement,

	

Widget	*pw	=	new	(std::cerr)	Widget;			//	as	before,	but	no	leak	this	time

	

the	corresponding	placement	delete	is	automatically	invoked,	and	that	allows
Widget	to	ensure	that	no	memory	is	leaked.

However,	consider	what	happens	if	no	exception	is	thrown	(which	will	usually
be	the	case)	and	we	get	to	a	delete	in	client	code:

	

delete	pw;																												//	invokes	the	normal

	

																																						//	operator	delete

	

As	the	comment	indicates,	this	calls	the	normal	operator	delete,	not	the
placement	version.	Placement	delete	is	called	only	if	an	exception	arises	from
a	constructor	call	that's	coupled	to	a	call	to	a	placement	new.	Applying	delete
to	a	pointer	(such	as	pw	above)	never	yields	a	call	to	a	placement	version	of
delete.	Never.

This	means	that	to	forestall	all	memory	leaks	associated	with	placement	versions



of	new,	you	must	provide	both	the	normal	operator	delete	(for	when	no
exception	is	thrown	during	construction)	and	a	placement	version	that	takes	the
same	extra	arguments	as	operator	new	does	(for	when	one	is).	Do	that,	and
you'll	never	lose	sleep	over	subtle	memory	leaks	again.	Well,	at	least	not	these
subtle	memory	leaks.

Incidentally,	because	member	function	names	hide	functions	with	the	same
names	in	outer	scopes	(see	Item	33),	you	need	to	be	careful	to	avoid	having
class-specific	news	hide	other	news	(including	the	normal	versions)	that	your
clients	expect.	For	example,	if	you	have	a	base	class	that	declares	only	a
placement	version	of	operator	new,	clients	will	find	that	the	normal	form	of
new	is	unavailable	to	them:

class	Base	{

public:

		...

		static	void*	operator	new(std::size_t	size,											//	this	new	hides

																												std::ostream&	logStream)				//	the	normal

				throw(std::bad_alloc);																														//	global	forms

		...

};

Base	*pb	=	new	Base;																								//	error!	the	normal	form	of

																																												//	operator	new	is	hidden



Base	*pb	=	new	(std::cerr)	Base;												//	fine,	calls	Base's

																																												//	placement	new

Similarly,	operator	news	in	derived	classes	hide	both	global	and	inherited
versions	of	operator	new:

class	Derived:	public	Base	{																			//	inherits	from	Base	above

public:

		...

		static	void*	operator	new(std::size_t	size)		//	redeclares	the	normal

						throw(std::bad_alloc);																			//	form	of	new

		...

};

Derived	*pd	=	new	(std::clog)	Derived;									//	error!	Base's	placement

																																															//	new	is	hidden

Derived	*pd	=	new	Derived;																					//	fine,	calls	Derived's

																																															//	operator	new



Item	33	discusses	this	kind	of	name	hiding	in	considerable	detail,	but	for
purposes	of	writing	memory	allocation	functions,	what	you	need	to	remember	is
that	by	default,	C++	offers	the	following	forms	of	operator	new	at	global
scope:

void*	operator	new(std::size_t)	throw(std::bad_alloc);						//	normal	new

void*	operator	new(std::size_t,	void*)	throw();													//	placement	new

void*	operator	new(std::size_t,																													//	nothrow	new	

																			const	std::nothrow_t&)	throw();										//	see	Item	49

If	you	declare	any	operator	news	in	a	class,	you'll	hide	all	these	standard
forms.	Unless	you	mean	to	prevent	class	clients	from	using	these	forms,	be	sure
to	make	them	available	in	addition	to	any	custom	operator	new	forms	you
create.	For	each	operator	new	you	make	available,	of	course,	be	sure	to
offer	the	corresponding	operator	delete,	too.	If	you	want	these	functions
to	behave	in	the	usual	way,	just	have	your	class-specific	versions	call	the	global
versions.

An	easy	way	to	do	this	is	to	create	a	base	class	containing	all	the	normal	forms
of	new	and	delete:

class	StandardNewDeleteForms	{



public:

		//	normal	new/delete

		static	void*	operator	new(std::size_t	size)	throw(std::bad_alloc)

		{	return	::operator	new(size);	}

		static	void	operator	delete(void	*pMemory)	throw()

		{	::operator	delete(pMemory);	}

		//	placement	new/delete

		static	void*	operator	new(std::size_t	size,	void	*ptr)	throw()

		{	return	::operator	new(size,	ptr);	}

		static	void	operator	delete(void	*pMemory,	void	*ptr)	throw()

		{	return	::operator	delete(pMemory,	ptr);	}

		//	nothrow	new/delete

		static	void*	operator	new(std::size_t	size,	const	std::nothrow_t&	nt)	throw()

		{	return	::operator	new(size,	nt);	}

		static	void	operator	delete(void	*pMemory,	const	std::nothrow_t&)	throw()

		{	::operator	delete(pMemory);	}



};

Clients	who	want	to	augment	the	standard	forms	with	custom	forms	can	then	just
use	inheritance	and	using	declarations	(see	Item	33)	to	get	the	standard	forms:

class	Widget:	public	StandardNewDeleteForms	{											//	inherit	std	forms

public:

			using	StandardNewDeleteForms::operator	new;										//	make	those

			using	StandardNewDeleteForms::operator	delete;							//	forms	visible

			static	void*	operator	new(std::size_t	size,										//	add	a	custom

																													std::ostream&	logStream)			//	placement	new

					throw(std::bad_alloc);

			static	void	operator	delete(void	*pMemory,											//	add	the	corres-

																															std::ostream&	logStream)	//	ponding	place-

				throw();																																												//	ment	delete

		...

};



Things	to	Remember

When	you	write	a	placement	version	of	operator	new,	be
sure	to	write	the	corresponding	placement	version	of
operator	delete.	If	you	don't,	your	program	may
experience	subtle,	intermittent	memory	leaks.

When	you	declare	placement	versions	of	new	and	delete,	be
sure	not	to	unintentionally	hide	the	normal	versions	of	those
functions.



Chapter	9.	Miscellany
Welcome	to	the	catch-all	"Miscellany"	chapter.	There	are	only	three	Items	here,
but	don't	let	their	diminutive	number	or	unglamorous	setting	fool	you.	They're
important.

The	first	Item	emphasizes	that	compiler	warnings	are	not	to	be	trifled	with,	at
least	not	if	you	want	your	software	to	behave	properly.	The	second	offers	an
overview	of	the	contents	of	the	standard	C++	library,	including	the	significant
new	functionality	being	introduced	in	TR1.	Finally,	the	last	Item	provides	an
overview	of	Boost,	arguably	the	most	important	general-purpose	C++-related
web	site.	Trying	to	write	effective	C++	software	without	the	information	in	these
Items	is,	at	best,	an	uphill	battle.



Item	53:	Pay	attention	to	compiler	warnings.

Many	programmers	routinely	ignore	compiler	warnings.	After	all,	if	the	problem
were	serious,	it	would	be	an	error,	right?	This	thinking	may	be	relatively
harmless	in	other	languages,	but	in	C++,	it's	a	good	bet	compiler	writers	have	a
better	grasp	of	what's	going	on	than	you	do.	For	example,	here's	an	error
everybody	makes	at	one	time	or	another:

class	B	{

public:

	virtual	void	f()	const;

};

class	D:	public	B	{

public:

	virtual	void	f();

};

The	idea	is	for	D::f	to	redefine	the	virtual	function	B::f,	but	there's	a	mistake:
in	B,	f	is	a	const	member	function,	but	in	D	it's	not	declared	const.	One
compiler	I	know	says	this	about	that:

	

warning:	D::f()	hides	virtual	B::f()

	



	

Too	many	inexperienced	programmers	respond	to	this	message	by	saying	to
themselves,	"Of	course	D::f	hides	B::f		that's	what	it's	supposed	to	do!"
Wrong.	This	compiler	is	trying	to	tell	you	that	the	f	declared	in	B	has	not	been
redeclared	in	D;	instead,	it's	been	hidden	entirely	(see	Item	33	for	a	description
of	why	this	is	so).	Ignoring	this	compiler	warning	will	almost	certainly	lead	to
erroneous	program	behavior,	followed	by	a	lot	of	debugging	to	discover
something	this	compiler	detected	in	the	first	place.

After	you	gain	experience	with	the	warning	messages	from	a	particular	compiler,
you'll	learn	to	understand	what	the	different	messages	mean	(which	is	often	very
different	from	what	they	seem	to	mean,	alas).	Once	you	have	that	experience,
you	may	choose	to	ignore	a	whole	range	of	warnings,	though	it's	generally
considered	better	practice	to	write	code	that	compiles	warning-free,	even	at	the
highest	warning	level.	Regardless,	it's	important	to	make	sure	that	before	you
dismiss	a	warning,	you	understand	exactly	what	it's	trying	to	tell	you.

As	long	as	we're	on	the	topic	of	warnings,	recall	that	warnings	are	inherently
implementation-dependent,	so	it's	not	a	good	idea	to	get	sloppy	in	your
programming,	relying	on	compilers	to	spot	your	mistakes	for	you.	The	function-
hiding	code	above,	for	instance,	goes	through	a	different	(but	widely	used)
compiler	with	nary	a	squawk.

Things	to	Remember

Take	compiler	warnings	seriously,	and	strive	to	compile
warning-free	at	the	maximum	warning	level	supported	by	your
compilers.

Don't	become	dependent	on	compiler	warnings,	because
different	compilers	warn	about	different	things.	Porting	to	a	new
compiler	may	eliminate	warning	messages	you've	come	to	rely
on.



Item	54:	Familiarize	yourself	with	the	standard
library,	including	TR1

The	standard	for	C++		the	document	defining	the	language	and	its	library		was
ratified	in	1998.	In	2003,	a	minor	"bug-fix"	update	was	issued.	The
standardization	committee	continues	its	work,	however,	and	a	"Version	2.0"
C++	standard	is	expected	around	2008	or	so.	The	uncertainty	regarding	that	date
explains	why	people	usually	refer	to	the	next	version	of	C++	as	"C++0x"		the
200x	version	of	C++.

C++0x	will	probably	include	some	interesting	new	language	features,	but	most
new	C++	functionality	will	come	in	the	form	of	additions	to	the	standard	library.
We	already	know	what	some	of	the	new	library	functionality	will	be,	because	it's
been	specified	in	a	document	known	as	TR1	("Technical	Report	1"	from	the
C++	Library	Working	Group).	The	standardization	committee	reserves	the	right
to	modify	TR1	functionality	before	it's	officially	enshrined	in	C++0x,	but
significant	changes	are	unlikely.	For	all	intents	and	purposes,	TR1	heralds	the
beginning	of	a	new	release	of	C++		what	we	might	call	standard	C++	1.1.	You
can't	be	an	effective	C++	programmer	without	being	familiar	with	TR1
functionality,	because	that	functionality	is	a	boon	to	virtually	every	kind	of
library	and	application.

Before	surveying	what's	in	TR1,	it's	worth	reviewing	the	major	parts	of	the
standard	C++	library	specified	by	C++98:

The	Standard	Template	Library	(STL),	including	containers	(vector,
string,	map,	etc.);	iterators;	algorithms	(find,	sort,	TRansform,
etc.);	function	objects	(less,	greater,	etc.);	and	various	container	and
function	object	adapters	(stack,	priority_queue,	mem_fun,	not1,
etc.).

Iostreams,	including	support	for	user-defined	buffering,	internationalized
IO,	and	the	predefined	objects	cin,	cout,	cerr,	and	clog.

Support	for	internationalization,	including	the	ability	to	have	multiple



active	locales.	Types	like	wchar_t	(usually	16	bits/char)	and	wstring
(strings	of	wchar_ts)	facilitate	working	with	Unicode.

Support	for	numeric	processing,	including	templates	for	complex
numbers	(complex)	and	arrays	of	pure	values	(valarray).

An	exception	hierarchy,	including	the	base	class	exception,	its	derived
classes	logic_error	and	runtime_error,	and	various	classes	that
inherit	from	those.

C89's	standard	library.	Everything	in	the	1989	C	standard	library	is	also
in	C++.

If	any	of	the	above	is	unfamiliar	to	you,	I	suggest	you	schedule	some	quality
time	with	your	favorite	C++	reference	to	rectify	the	situation.

TR1	specifies	14	new	components	(i.e.,	pieces	of	library	functionality).	All	are
in	the	std	namespace,	more	precisely,	in	the	nested	namespace	tr1.	The	full
name	of	the	TR1	component	shared_ptr	(see	below)	is	thus
std::tr1::shared_ptr.	In	this	book,	I	customarily	omit	the	std::	when
discussing	components	of	the	standard	library,	but	I	always	prefix	TR1
components	with	tr1::.

This	book	shows	examples	of	the	following	TR1	components:

The	smart	pointers	TR1::shared_ptr	and	tr1::weak_ptr.
TR1::shared_ptrs	act	like	built-in	pointers,	but	they	keep	track	of	how
many	tr1::shared_ptrs	point	to	an	object.	This	is	known	as	reference
counting.	When	the	last	such	pointer	is	destroyed	(i.e.,	when	the	reference
count	for	an	object	becomes	zero),	the	object	is	automatically	deleted.	This
works	well	in	preventing	resource	leaks	in	acyclic	data	structures,	but	if	two
or	more	objects	contain	tr1::shared_ptrs	such	that	a	cycle	is	formed,
the	cycle	may	keep	each	object's	reference	count	above	zero,	even	when	all
external	pointers	to	the	cycle	have	been	destroyed	(i.e.,	when	the	group	of
objects	as	a	whole	is	unreachable).	That's	where	TR1::weak_ptrs	come
in.	TR1::weak_ptrs	are	designed	to	act	as	cycle-inducing	pointers	in
otherwise	acyclic	tr1::shared_ptr-based	data	structures.



tr1::weak_ptrs	don't	participate	in	reference	counting.	When	the	last
tr1::shared_ptr	to	an	object	is	destroyed,	the	object	is	deleted,	even
if	tr1::weak_ptrs	continue	to	point	there.	Such	tr1::weak_ptrs
are	automatically	marked	as	invalid,	however.

tr1::shared_ptr	may	be	the	most	widely	useful	component	in	TR1.	I
use	it	many	times	in	this	book,	including	in	Item	13,	where	I	explain	why
it's	so	important.	(The	book	contains	no	uses	of	tr1::weak_ptr,	sorry.)

tr1::function,	which	makes	it	possible	to	represent	any	callable	entity	(i.e.,
any	function	or	function	object)	whose	signature	is	consistent	with	a	target
signature.	If	we	wanted	to	make	it	possible	to	register	callback	functions
that	take	an	int	and	return	a	string,	we	could	do	this:

void	registerCallback(std::string	func(int));				//	param	type	is	a	function

																																																	//	taking	an	int	and

																																																	//	returning	a	string

The	parameter	name	func	is	optional,	so	registerCallback	could	be
declared	this	way,	instead:

void	registerCallback(std::string	(int));							//	same	as	above;	param

																																																//	name	is	omitted

Note	here	that	"std::string	(int)"	is	a	function	signature.

tr1::function	makes	it	possible	to	make	registerCallback



much	more	flexible,	accepting	as	its	argument	any	callable	entity	that	takes
an	int	or	anything	convertible	to	an	int	and	that	returns	a	string	or
anything	convertible	to	a	string.	TR1::function	takes	as	a	template
parameter	its	target	function	signature:

void	registerCallback(std::tr1::function<std::string	(int)>

																																																	//	the	param	"func"	will

																																																	//	take	any	callable	entity

																																																	//	with	a	sig	consistent

																																																	//	with	"std::string	(int)"

This	kind	of	flexibility	is	astonishingly	useful,	something	I	do	my	best	to
demonstrate	in	Item	35.

tr1::bind,	which	does	everything	the	STL	binders	bind1st	and
bind2nd	do,	plus	much	more.	Unlike	the	pre-TR1	binders,	tr1::bind
works	with	both	const	and	non-const	member	functions.	Unlike	the
pre-TR1	binders,	TR1::bind	works	with	by-reference	parameters.	Unlike
the	pre-TR1	binders,	TR1::bind	handles	function	pointers	without	help,
so	there's	no	need	to	mess	with	ptr_fun,	mem_fun,	or	mem_fun_ref
before	calling	TR1::bind.	Simply	put,	TR1::bind	is	a	second-
generation	binding	facility	that	is	significantly	better	than	its	predecessor.	I
show	an	example	of	its	use	in	Item	35.

I	divide	the	remaining	TR1	components	into	two	sets.	The	first	group	offers
fairly	discrete	standalone	functionality:

Hash	tables	used	to	implement	sets,	multisets,	maps,	and	multimaps.	Each
new	container	has	an	interface	modeled	on	that	of	its	pre-TR1	counterpart.



The	most	surprising	thing	about	TR1's	hash	tables	are	their	names:
TR1::unordered_set,	tr1::unordered_multiset,
tr1::unordered_map,	and	tr1::unordered_multimap.	These
names	emphasize	that,	unlike	the	contents	of	a	set,	multiset,	map,	or
multimap,	the	elements	in	a	TR1	hash-based	container	are	not	in	any
predictable	order.

Regular	expressions,	including	the	ability	to	do	regular	expression-based
search	and	replace	operations	on	strings,	to	iterate	through	strings	from
match	to	match,	etc.

Tuples,	a	nifty	generalization	of	the	pair	template	that's	already	in	the
standard	library.	Whereas	pair	objects	can	hold	only	two	objects,
however,	tr1::tuple	objects	can	hold	an	arbitrary	number.	Expat
Python	and	Eiffel	programmers,	rejoice!	A	little	piece	of	your	former
homeland	is	now	part	of	C++.

tr1::array,	essentially	an	"STLified"	array,	i.e.,	an	array	supporting
member	functions	like	begin	and	end.	The	size	of	a	tr1::array	is
fixed	during	compilation;	the	object	uses	no	dynamic	memory.

tr1::mem_fn,	a	syntactically	uniform	way	of	adapting	member	function
pointers.	Just	as	tr1::bind	subsumes	and	extends	the	capabilities	of
C++98's	bind1st	and	bind2nd,	tr1::mem_fn	subsumes	and	extends
the	capabilities	of	C++98's	mem_fun	and	mem_fun_ref.

tr1::reference_wrapper,	a	facility	to	make	references	act	a	bit	more	like
objects.	Among	other	things,	this	makes	it	possible	to	create	containers	that
act	as	if	they	hold	references.	(In	reality,	containers	can	hold	only	objects	or
pointers.)

Random	number	generation	facilities	that	are	vastly	superior	to	the	rand
function	that	C++	inherited	from	C's	standard	library.

Mathematical	special	functions,	including	Laguerre	polynomials,	Bessel
functions,	complete	elliptic	integrals,	and	many	more.



C99	compatibility	extensions,	a	collection	of	functions	and	templates
designed	to	bring	many	new	C99	library	features	to	C++.

The	second	set	of	TR1	components	consists	of	support	technology	for	more
sophisticated	template	programming	techniques,	including	template
metaprogramming	(seeItem	48):

Type	traits,	a	set	of	traits	classes	(see	Item	47)	to	provide	compile-time
information	about	types.	Given	a	type	T,	TR1's	type	traits	can	reveal
whether	T	is	a	built-in	type,	offers	a	virtual	destructor,	is	an	empty	class
(see	Item	39),	is	implicitly	convertible	to	some	other	type	U,	and	much
more.	TR1's	type	traits	can	also	reveal	the	proper	alignment	for	a	type,	a
crucial	piece	of	information	for	programmers	writing	custom	memory
allocation	functions	(see	Item	50).

tr1::result_of,	a	template	to	deduce	the	return	types	of	function	calls.
When	writing	templates,	it's	often	important	to	be	able	to	refer	to	the	type
of	object	returned	from	a	call	to	a	function	(template),	but	the	return	type
can	depend	on	the	function's	parameter	types	in	complex	ways.
TR1::result_of	makes	referring	to	function	return	types	easy.
TR1::result_of	is	used	in	several	places	in	TR1	itself.

Although	the	capabilities	of	some	pieces	of	TR1	(notably	TR1::bind	and
TR1::mem_fn)	subsume	those	of	some	pre-TR1	components,	TR1	is	a	pure
addition	to	the	standard	library.	No	TR1	component	replaces	an	existing
component,	so	legacy	code	written	with	pre-TR1	constructs	continues	to	be
valid.

TR1	itself	is	just	a	document.[]	To	take	advantage	of	the	functionality	it
specifies,	you	need	access	to	code	that	implements	it.	Eventually,	that	code	will
come	bundled	with	compilers,	but	as	I	write	this	in	2005,	there	is	a	good	chance
that	if	you	look	for	TR1	components	in	your	standard	library	implementations,	at
least	some	will	be	missing.	Fortunately,	there	is	someplace	else	to	look:	10	of	the
14	components	in	TR1	are	based	on	libraries	freely	available	from	Boost	(see
Item	55),	so	that's	an	excellent	resource	for	TR1-like	functionality.	I	say	"TR1-
like,"	because,	though	much	TR1	functionality	is	based	on	Boost	libraries,	there
are	places	where	Boost	functionality	is	currently	not	an	exact	match	for	the	TR1



specification.	It's	possible	that	by	the	time	you	read	this,	Boost	not	only	will
have	TR1-conformant	implementations	for	the	TR1	components	that	evolved
from	Boost	libraries,	it	will	also	offer	implementations	of	the	four	TR1
components	that	were	not	based	on	Boost	work.

[]	As	I	write	this	in	early	2005,	the	document	has	not	been	finalized,	and	its	URL	is	subject	to
change.	I	therefore	suggest	you	consult	the	Effective	C++	TR1	Information	Page,
http://aristeia.com/EC3E/TR1_info.html.	That	URL	will	remain	stable.

If	you'd	like	to	use	Boost's	TR1-like	libraries	as	a	stopgap	until	compilers	ship
with	their	own	TR1	implementations,	you	may	want	to	avail	yourself	of	a
namespace	trick.	All	Boost	components	are	in	the	namespace	boost,	but	TR1
components	are	supposed	to	be	in	std::tr1.	You	can	tell	your	compilers	to
treat	references	to	std::tr1	the	same	as	references	to	boost.	This	is	how:

namespace	std	{

	namespace	tr1	=	::boost;											//	namespace	std::tr1	is	an	alias

}																																			//	for	namespace	boost

Technically,	this	puts	you	in	the	realm	of	undefined	behavior,	because,	as	Item
25	explains,	you're	not	allowed	to	add	anything	to	the	std	namespace.	In
practice,	you're	unlikely	to	run	into	any	trouble.	When	your	compilers	provide
their	own	TR1	implementations,	all	you'll	need	to	do	is	eliminate	the	above
namespace	alias;	code	referring	to	std::tr1	will	continue	to	be	valid.

Probably	the	most	important	part	of	TR1	not	based	on	Boost	libraries	is	hash
tables,	but	hash	tables	have	been	available	for	many	years	from	several	sources
under	the	names	hash_set,	hash_multiset,	hash_map,	and
hash_multimap.	There	is	a	good	chance	that	the	libraries	shipping	with	your
compilers	already	contain	these	templates.	If	not,	fire	up	your	favorite	search
engine	and	search	for	these	names	(as	well	as	their	TR1	appellations),	because
you're	sure	to	find	several	sources	for	them,	both	commercial	and	freeware.

http://aristeia.com/EC3E/TR1_info.html


Things	to	Remember

The	primary	standard	C++	library	functionality	consists	of	the
STL,	iostreams,	and	locales.	The	C99	standard	library	is	also
included.

TR1	adds	support	for	smart	pointers	(e.g.,
tr1::shared_ptr),	generalized	function	pointers
(tr1::function),	hash-based	containers,	regular
expressions,	and	10	other	components.

TR1	itself	is	only	a	specification.	To	take	advantage	of	TR1,	you
need	an	implementation.	One	source	for	implementations	of
TR1	components	is	Boost.



Item.55:	Familiarize	yourself	with	Boost.

Searching	for	a	collection	of	high-quality,	open	source,	platform-	and	compiler-
independent	libraries?	Look	to	Boost.	Interested	in	joining	a	community	of
ambitious,	talented	C++	developers	working	on	state-of-the-art	library	design
and	implementation?	Look	to	Boost.	Want	a	glimpse	of	what	C++	might	look
like	in	the	future?	Look	to	Boost.

Boost	is	both	a	community	of	C++	developers	and	a	collection	of	freely
downloadable	C++	libraries.	Its	web	site	is	http://boost.org.	You	should
bookmark	it	now.

There	are	many	C++	organizations	and	web	sites,	of	course,	but	Boost	has	two
things	going	for	it	that	no	other	organization	can	match.	First,	it	has	a	uniquely
close	and	influential	relationship	with	the	C++	standardization	committee.	Boost
was	founded	by	committee	members,	and	there	continues	to	be	strong	overlap
between	the	Boost	and	committee	memberships.	In	addition,	Boost	has	always
had	as	one	of	its	goals	to	act	as	a	testing	ground	for	capabilities	that	could	be
added	to	Standard	C++.	One	result	of	this	relationship	is	that	of	the	14	new
libraries	introduced	into	C++	by	TR1	(see	Item	54),	more	than	two-thirds	are
based	on	work	done	at	Boost.

The	second	special	characteristic	of	Boost	is	its	process	for	accepting	libraries.
It's	based	on	public	peer	review.	If	you'd	like	to	contribute	a	library	to	Boost,
you	start	by	posting	to	the	Boost	developers	mailing	list	to	gauge	interest	in	the
library	and	initiate	the	process	of	preliminary	examination	of	your	work.	Thus
begins	a	cycle	that	the	web	site	summarizes	as	"Discuss,	refine,	resubmit.	Repeat
until	satisfied."

Eventually,	you	decide	that	your	library	is	ready	for	formal	submission.	A
review	manager	confirms	that	your	library	meets	Boost's	minimal	requirements.
For	example,	it	must	compile	under	at	least	two	compilers	(to	demonstrate
nominal	portability),	and	you	have	to	attest	that	the	library	can	be	made	available
under	an	acceptable	license	(e.g.,	the	library	must	allow	free	commercial	and
non-commercial	use).	Then	your	submission	is	made	available	to	the	Boost
community	for	official	review.	During	the	review	period,	volunteers	go	over
your	library	materials	(e.g.,	source	code,	design	documents,	user	documentation,

http://boost.org


your	library	materials	(e.g.,	source	code,	design	documents,	user	documentation,
etc.)	and	consider	questions	such	as	these:

How	good	are	the	design	and	implementation?

Is	the	code	portable	across	compilers	and	operating	systems?

Is	the	library	likely	to	be	of	use	to	its	target	audience,	i.e.,	people	working
in	the	domain	the	library	addresses?

Is	the	documentation	clear,	complete,	and	accurate?

These	comments	are	posted	to	a	Boost	mailing	list,	so	reviewers	and	others	can
see	and	respond	to	one	another's	remarks.	At	the	end	of	the	review	period,	the
review	manager	decides	whether	your	library	is	accepted,	conditionally
accepted,	or	rejected.

Peer	reviews	do	a	good	job	of	keeping	poorly	written	libraries	out	of	Boost,	but
they	also	help	educate	library	authors	in	the	considerations	that	go	into	the
design,	implementation,	and	documentation	of	industrial-strength	cross-platform
libraries.	Many	libraries	require	more	than	one	official	review	before	being
declared	worthy	of	acceptance.

Boost	contains	dozens	of	libraries,	and	more	are	added	on	a	continuing	basis.
From	time	to	time,	some	libraries	are	also	removed,	typically	because	their
functionality	has	been	superseded	by	a	newer	library	that	offers	greater
functionality	or	a	better	design	(e.g.,	one	that	is	more	flexible	or	more	efficient).

The	libraries	vary	widely	in	size	and	scope.	At	one	extreme	are	libraries	that
conceptually	require	only	a	few	lines	of	code	(but	are	typically	much	longer	after
support	for	error	handling	and	portability	is	added).	One	such	library	is
Conversion,	which	provides	safer	or	more	convenient	cast	operators.	Its
numeric_cast	function,	for	example,	throws	an	exception	if	converting	a
numeric	value	from	one	type	to	another	leads	to	overflow	or	underflow	or	a
similar	problem,	and	lexical_cast	makes	it	possible	to	cast	any	type
supporting	operator<<	into	a	string		very	useful	for	diagnostics,	logging,	etc.
At	the	other	extreme	are	libraries	offering	such	extensive	capabilities,	entire
books	have	been	written	about	them.	These	include	the	Boost	Graph	Library



(for	programming	with	arbitrary	graph	structures)	and	the	Boost	MPL	Library
("metaprogramming	library").

Boost's	bevy	of	libraries	addresses	a	cornucopia	of	topics,	grouped	into	over	a
dozen	general	categories.	Those	categories	include:

String	and	text	processing,	including	libraries	for	type-safe	printf-like
formatting,	regular	expressions	(the	basis	for	similar	functionality	in	TR1	
see	Item	54),	and	tokenizing	and	parsing.

Containers,	including	libraries	for	fixed-size	arrays	with	an	STL-like
interface	(see	Item	54),	variable-sized	bitsets,	and	multidimensional	arrays.

Function	objects	and	higher-order	programming,	including	several
libraries	that	were	used	as	the	basis	for	functionality	in	TR1.	One
interesting	library	is	the	Lambda	library,	which	makes	it	so	easy	to	create
function	objects	on	the	fly,	you're	unlikely	to	realize	that's	what	you're
doing:

using	namespace	boost::lambda;																				//	make	boost::lambda

																																																		//	functionality	visible

std::vector<int>	v;

...

std::for_each(v.begin(),	v.end(),																	//	for	each	element	x	in

														std::cout	<<	_1	*	2	+	10		<<	"\n");		//	v,	print	x



																																																		//	"_1"	is	the	Lambda

																																																		//	library's	placeholder

																																																		//	for	the	current	element

Generic	programming,	including	an	extensive	set	of	traits	classes.	(See
Item	47	for	information	on	traits).

Template	metaprogramming	(TMP		see	Item	48),	including	a	library	for
compile-time	assertions,	as	well	as	the	Boost	MPL	Library.	Among	the
nifty	things	in	MPL	is	support	for	STL-like	data	structures	of	compile-time
entities	like	types,	e.g.,

//	create	a	list-like	compile-time	container	of	three	types	(float,

//	double,	and	long	double)	and	call	the	container	"floats"

typedef	boost::mpl::list<float,	double,	long	double>	floats;

//	create	a	new	compile-time	list	of	types	consisting	of	the	types	in

//	"floats"	plus	"int"	inserted	at	the	front;	call	the	new	container	"types"

typedef	boost::mpl::push_front<floats,	int>::type	types;

Such	containers	of	types	(often	known	as	typelists,	though	they	can	also	be



based	on	an	mpl::vector	as	well	as	an	mpl::list)	open	the	door	to	a
wide	range	of	powerful	and	important	TMP	applications.

Math	and	numerics,	including	libraries	for	rational	numbers;	octonions
and	quaternions;	greatest	common	divisor	and	least	common	multiple
computations;	and	random	numbers	(yet	another	library	that	influenced
related	functionality	in	TR1).

Correctness	and	testing,	including	libraries	for	formalizing	implicit
template	interfaces	(see	Item	41)	and	for	facilitating	test-first	programming.

Data	structures,	including	libraries	for	type-safe	unions	(i.e.,	storing
variant	"any"	types)	and	the	tuple	library	that	led	to	the	corresponding	TR1
functionality.

Inter-language	support,	including	a	library	to	allow	seamless
interoperability	between	C++	and	Python.

Memory,	including	the	Pool	library	for	high-performance	fixed-size
allocators	(see	Item	50);	and	a	variety	of	smart	pointers	(see	Item	13),
including	(but	not	limited	to)	the	smart	pointers	in	TR1.	One	such	non-TR1
smart	pointer	is	scoped_array,	an	auto_ptr-like	smart	pointer	for
dynamically	allocated	arrays;	Item	44	shows	an	example	use.

Miscellaneous,	including	libraries	for	CRC	checking,	date	and	time
manipulations,	and	traversing	file	systems.

Remember,	that's	just	a	sampling	of	the	libraries	you'll	find	at	Boost.	It's	not	an
exhaustive	list.

Boost	offers	libraries	that	do	many	things,	but	it	doesn't	cover	the	entire
programming	landscape.	For	example,	there	is	no	library	for	GUI	development,
nor	is	there	one	for	communicating	with	databases.	At	least	there's	not	now		not
as	I	write	this.	By	the	time	you	read	it,	however,	there	might	be.	The	only	way	to
know	for	sure	is	to	check.	I	suggest	you	do	it	right	now:	http://boost.org.	Even	if
you	don't	find	exactly	what	you're	looking	for,	you're	certain	to	find	something
interesting	there.

Things	to	Remember

http://boost.org


Things	to	Remember

Boost	is	a	community	and	web	site	for	the	development	of	free,
open	source,	peer-reviewed	C++	libraries.	Boost	plays	an
influential	role	in	C++	standardization.

Boost	offers	implementations	of	many	TR1	components,	but	it
also	offers	many	other	libraries,	too.



Appendix	A.	Beyond	Effective	C++
Effective	C++	covers	what	I	consider	to	be	the	most	important	general
guidelines	for	practicing	C++	programmers,	but	if	you're	interested	in	more
ways	to	improve	your	effectiveness,	I	encourage	you	to	examine	my	other	C++
books,	More	Effective	C++	and	Effective	STL.

More	Effective	C++	covers	additional	programming	guidelines	and	includes
extensive	treatments	of	topics	such	as	efficiency	and	programming	with
exceptions.	It	also	describes	important	C++	programming	techniques	like	smart
pointers,	reference	counting,	and	proxy	objects.

Effective	STL	is	a	guideline-oriented	book	like	Effective	C++,	but	it	focuses
exclusively	on	making	effective	use	of	the	Standard	Template	Library.

Tables	of	contents	for	both	books	are	summarized	below.

Contents	of	More	Effective	C++

Basics

Item	1: Distinguish	between	pointers	and	references

Item	2: Prefer	C++-style	casts

Item	3: Never	treat	arrays	polymorphically

Item	4: Avoid	gratuitous	default	constructors

Operators



Item	5: Be	wary	of	user-defined	conversion	functions

Item	6: Distinguish	between	prefix	and	postfix	forms	of
increment	and	decrement	operators

Item	7: Never	overload	&&,	||,	or,

Item	8: Understand	the	different	meanings	of	new	and	delete

Exceptions

Item	9: Use	destructors	to	prevent	resource	leaks

Item	10: Prevent	resource	leaks	in	constructors

Item	11: Prevent	exceptions	from	leaving	destructors

Item	12: Understand	how	throwing	an	exception	differs	from
passing	a	parameter	or	calling	a	virtual	function

Item	13: Catch	exceptions	by	reference

Item	14: Use	exception	specifications	judiciously

Item	15: Understand	the	costs	of	exception	handling



Efficiency

Item	16: Remember	the	80-20	rule

Item	17: Consider	using	lazy	evaluation

Item	18: Amortize	the	cost	of	expected	computations

Item	19: Understand	the	origin	of	temporary	objects

Item	20: Facilitate	the	return	value	optimization

Item	21: Overload	to	avoid	implicit	type	conversions

Item	22: Consider	using	op=	instead	of	stand-alone	op

Item	23: Consider	alternative	libraries

Item	24: Understand	the	costs	of	virtual	functions,	multiple
inheritance,	virtual	base	classes,	and	RTTI

Techniques

Item	25: Virtualizing	constructors	and	non-member	functions

Item	26: Limiting	the	number	of	objects	of	a	class

Item	27: Requiring	or	prohibiting	heap-based	objects



Item	28: Smart	pointers

Item	29: Reference	counting

Item	30: Proxy	classes

Item	31: Making	functions	virtual	with	respect	to	more	than	one
object

Miscellany

Item	32: Program	in	the	future	tense

Item	33: Make	non-leaf	classes	abstract

Item	34: Understand	how	to	combine	C++	and	C	in	the	same
program

Item	35: Familiarize	yourself	with	the	language	standard

Contents	of	Effective	STL

Chapter	1:	Containers

Item	1: Choose	your	containers	with	care.



Item	2: Beware	the	illusion	of	container-independent	code.

Item	3: Make	copying	cheap	and	correct	for	objects	in
containers.

Item	4: Call	empty	instead	of	checking	size()	against	zero.

Item	5: Prefer	range	member	functions	to	their	single-element
counterparts.

Item	6: Be	alert	for	C++'s	most	vexing	parse.

Item	7: When	using	containers	of	newed	pointers,	remember	to
delete	the	pointers	before	the	container	is	destroyed.

Item	8: Never	create	containers	of	auto_ptrs.

Item	9: Choose	carefully	among	erasing	options.

Item	10: Be	aware	of	allocator	conventions	and	restrictions.

Item	11: Understand	the	legitimate	uses	of	custom	allocators.

Item	12: Have	realistic	expectations	about	the	thread	safety	of
STL	containers.

Chapter	2:	vector	and	string



Item	13: Prefer	vector	and	string	to	dynamically	allocated
arrays.

Item	14: Use	reserve	to	avoid	unnecessary	reallocations.

Item	15: Be	aware	of	variations	in	string	implementations.

Item	16: Know	how	to	pass	vector	and	string	data	to	legacy
APIs.

Item	17: Use	"the	swap	TRick"	to	trim	excess	capacity.

Item	18: Avoid	using	vector<bool>.

Chapter	3:	Associative	Containers

Item	19: Understand	the	difference	between	equality	and
equivalence.

Item	20: Specify	comparison	types	for	associative	containers	of
pointers.

Item	21: Always	have	comparison	functions	return	false	for
equal	values.

Item	22: Avoid	in-place	key	modification	in	set	and
multiset.

Item	23: Consider	replacing	associative	containers	with	sorted



vectors.

Item	24: Choose	carefully	between	map::operator[]	and
map::insert	when	efficiency	is	important.

Item	25: Familiarize	yourself	with	the	nonstandard	hashed
containers.

Chapter	4:	Iterators

Item	26: Prefer	iterator	to	const_iterator,
reverse_iterator,	and
const_reverse_iterator.

Item	27: Use	distance	and	advance	to	convert	a	container's
const_iterators	to	iterators.

Item	28: Understand	how	to	use	a	reverse_iterator's	base
iterator.

Item	29: Consider	istreambuf_iterators	for	character-by-
character	input.

Chapter	5:	Algorithms

Item	30: Make	sure	destination	ranges	are	big	enough.

Know	your	sorting	options.



Item	31: Know	your	sorting	options.

Item	32: Follow	remove-like	algorithms	by	erase	if	you	really
want	to	remove	something.

Item	33: Be	wary	of	remove-like	algorithms	on	containers	of
pointers.

Item	34: Note	which	algorithms	expect	sorted	ranges.

Item	35: Implement	simple	case-insensitive	string	comparisons
via	mismatch	or	lexicographical_compare.

Item	36: Understand	the	proper	implementation	of	copy_if.

Item	37: Use	accumulate	or	for_each	to	summarize	ranges.

Chapter	6:	Functors,	Functor	Classes,	Functions,	etc.

Item	38: Design	functor	classes	for	pass-by-value.

Item	39: Make	predicates	pure	functions.

Item	40: Make	functor	classes	adaptable.

Item	41: Understand	the	reasons	for	ptr_fun,	mem_fun,	and
mem_fun_ref.



Item	42: Make	sure	less<T>	means	operator<.

Chapter	7:	Programming	with	the	STL

Item	43: Prefer	algorithm	calls	to	hand-written	loops.

Item	44: Prefer	member	functions	to	algorithms	with	the	same
names.

Item	45: Distinguish	among	count,	find,	binary_search,
lower_bound,	upper_bound,	and	equal_range.

Item	46: Consider	function	objects	instead	of	functions	as
algorithm	parameters.

Item	47: Avoid	producing	write-only	code.

Item	48: Always	#include	the	proper	headers.

Item	49: Learn	to	decipher	STL-related	compiler	diagnostics.

Item	50: Familiarize	yourself	with	STL-related	web	sites.



Appendix	B.	Item	Mappings	Between
Second	and	Third	Editions
This	third	edition	of	Effective	C++	differs	from	the	second	edition	in	many
ways,	most	significantly	in	that	it	includes	lots	of	new	information.	However,
most	of	the	second	edition's	content	remains	in	the	third	edition,	albeit	often	in	a
modified	form	and	location.	In	the	tables	on	the	pages	that	follow,	I	show	where
information	in	second	edition	Items	may	be	found	in	the	third	edition	and	vice
versa.

The	tables	show	a	mapping	of	information,	not	text.	For	example,	the	ideas	in
Item	39	of	the	second	edition	("Avoid	casts	down	the	inheritance	hierarchy")	are
now	found	in	Item	27	of	the	current	edition	("Minimize	casting"),	even	though
the	third	edition	text	and	examples	for	that	Item	are	entirely	new.	A	more
extreme	example	involves	the	second	edition's	Item	18	("Strive	for	class
interfaces	that	are	complete	and	minimal").	One	of	the	primary	conclusions	of
that	Item	was	that	prospective	member	functions	that	need	no	special	access	to
the	non-public	parts	of	the	class	should	generally	be	non-members.	In	the	third
edition,	that	same	result	is	reached	via	different	(stronger)	reasoning,	so	Item	18
in	the	second	edition	maps	to	Item	23	in	the	third	edition	("Prefer	non-member
non-friend	functions	to	member	functions"),	even	though	about	the	only	thing
the	two	Items	have	in	common	is	their	conclusion.

Second	Edition	to	Third	Edition

2nd	Ed. 3rd	Ed. 2nd	Ed. 3rd	Ed. 2nd	Ed. 3rd	Ed.

1 2 18 23 35 32

2 19 24 36 34

3 20 22 37 36



3 20 22 37 36

4 21 3 38 37

5 16 22 20 39 27

6 13 23 21 40 38

7 49 24 41 41

8 51 25 42 39,44

9 52 26 43 40

10 50 27 6 44

11 14 28 45 5

12 4 29 28 46 18

13 4 30 28 47 4

14 7 31 21 48 53

15 10 32 26 49 54

16 12 33 30 50

17 11 34 31
	 	



Third	Edition	to	Second	Edition

3rd	Ed. 2nd	Ed. 3rd	Ed. 2nd	Ed. 3rd	Ed. 2nd	Ed.

1 20 22 39 42

2 1 21 23,31 40 43

3 21 22 20 41 41

4 12,13,47 23 18 42

5 45 24 19 43

6 27 25 44 42

7 14 26 32 45

8 27 39 46

9 28 29,30 47

10 15 29 48

11 17 30 33 49 7

12 16 31 34 50 10



13 6 32 35 51 8

14 11 33 9 52 9

15 34 36 53 48

16 5 35 54 49

17 36 37 55

18 46 37 38
	 	

19 pp.7779 38 40
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addresses
					inline	functions
					objects
advance	pseudocode
aggregation	[See	composition]
Alexandrescu,	Andrei
aliasing
alignment	2nd
allocators,	in	the	STL
alternatives	to	virtual	functions	2nd
ambiguity
					multiple	inheritance	and
					nested	dependent	names	and	types
Arbiter,	Petronius
argument-dependent	lookup
arithmetic,	mixed-mode	2nd	3rd
array	layout,	vs.	object	layout
array	new	2nd
array,	invalid	index	and
ASPECT_RATIO	2nd
assignment
					aaa]	[See	also	operator=[assignment]
					chaining	assignments
					copy-and-swap	and
					generalized



					to	self,	operator=	and	2nd
					vs.	initialization	2nd	3rd	4th
assignment	operator,	copy
auto_ptr	[See	std::auto_ptr]
automatically	generated	functions	2nd
					copy	constructor	and	copy	assignment	operator
					disallowing	2nd
avoiding	code	duplication	2nd
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Bai,	Yun
Barry,	Dave,	allusion	to
Bartolucci,	Guido
base	classes
					copying
					duplication	of	data	in
					lookup	in,	this->	and	2nd
					names	hidden	in	derived	classes
					polymorphic
					polymorphic,	destructors	and	2nd
					templatized	2nd
					virtual
basic	guarantee,	the
Battle	of	Hastings
Berck,	Benjamin
bidirectional	iterators
bidirectional_iterator_tag
binary	upgradeability,	inlining	and
binding
				dynamic	[See	dynamic	binding]
				static	[See	default	parameters;static	binding]
birds	and	penguins	2nd
bitwise	const	member	functions	2nd
books
					C++	Programming	Language,	The
					C++	Templates
					Design	Patterns
					Effective	STL	2nd	3rd
					Exceptional	C++	2nd



					Exceptional	C++	Style	2nd
					More	Effective	C++	2nd	3rd
					More	Exceptional	C++	2nd
					Satyricon
					Some	Must	Watch	While	Some	Must	Sleep
Boost	2nd
					containers
					Conversion	library
					correctness	and	testing	support
					data	structures
					function	objects	and	higher-order	programming	utilities
					functionality	not	provided
					generic	programming	support
					Graph	library
					inter-language	support
					Lambda	library
					math	and	numerics	utilities
					memory	management	utilities
					MPL	library	2nd
					noncopyable	base	class
					Pool	library	2nd
					scoped_array	2nd	3rd
					shared_array
					shared_ptr	implementation,	costs
					smart	pointers	2nd	3rd
									web	page
					string	and	text	utilities
					template	metaprogramming	support
					TR1	and	2nd	3rd	4th
					typelist	support
					web	site	2nd	3rd
boost,	as	synonym	for	std::tr1
Bosch,	Derek
breakpoints,	and	inlining
Buffy	the	Vampire	Slayer



bugs,	reporting
built-in	types	2nd
					efficiency	and	passing
					incompatibilities	with
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C	standard	library	and	C++	standard	library
C#	2nd	3rd	4th	5th	6th	7th	8th	[See	also	.NET]
C++	Programming	Language,	The
C++	standard	library	2nd
					<iosfwd>	and
					array	replacements	and
					C	standard	library	and
					C89	standard	library	and
					header	organization	of
					list	template
					logic_error	and
					set	template
					vector	template
C++	Templates
C++,	as	language	federation	2nd
C++-style	casts
C++0x
C-style	casts
C99	standard	library,	TR1	and
caching
					const	and
					mutable	and
Cai,	Steve
calling	swap
calls	to	base	classes,	casting	and
Cargill,	Tom
Carrara,	Enrico
Carroll,	Glenn
cast	of	int	to	double
casting	2nd
					aaa]	[See	also	const_cast,	static_cast,	dynamic_cast,	and



reinterpret_cast[casting]
					base	class	calls	and
					constness	away	2nd
					encapsulation	and
					grep	and
					syntactic	forms	2nd
					type	systems	and
					undefined	behavior	and
chaining	assignments
Chang,	Brandon
Clamage,	Steve
class	definitions
					artificial	client	dependencies,	eliminating
					class	declarations	vs
					object	sizes	and
class	design	[See	type	design]
class	names,	explicitly	specifying
class,	vs.	typename
classes
					aaa]	[See	also	class	definitions,	interfaces[classes]
					abstract	2nd
					base	[See	also	base	classes[classes:base:aaa]]
									duplication	of	data	in
									polymorphic
									templatized	2nd
									virtual
					defining
					derived	[See	also	inheritance]
									virtual	base	initialization	of
					Handle	2nd
					Interface	2nd
					meaning	of	no	virtual	functions
				RAII	[See	RAII]
				specification	[See	interfaces]
					traits	2nd



client
code
					bloat	2nd	3rd
									avoiding,	in	templates	2nd
					copy	assignment	operator
				duplication	[See	duplication]
					exception-safe	2nd
					factoring	out	of	templates	2nd
					incorrect,	efficiency	and
					reuse
				sharing	[See	duplication,	duplication;avoiding]
Cohen,	Jake
Comeau,	Greg	2nd
					URL	for	his	C/C++	FAQ
common	features	and	inheritance
commonality	and	variability	analysis
compatibility,	vptrs	and
compatible	types,	accepting	2nd
compilation	dependencies
					minimizing	2nd	3rd
					pointers,	references,	and	objects	and
compile-time	polymorphism
compiler	warnings	2nd
					calls	to	virtuals	and
					inlining	and
					partial	copies	and
compiler-generated	functions	2nd
					disallowing	2nd
					functions	compilers	may	generate
compilers
					parsing	nested	dependent	names
				programs	executing	within	[See	template	metaprogramming]
					register	usage	and
					reordering	operations
					typename	and
					when	errors	are	diagnosed
composition	2nd



					meanings	of
					replacing	private	inheritance	with
					synonyms	for
					vs.	private	inheritance
conceptual	constness	[See	const,	const;logical]
consistency	with	the	built-in	types	2nd
const	2nd	3rd
					bitwise	2nd
					caching	and
					casting	away	2nd
					function	declarations	and
					logical	2nd
					member	functions	2nd
									duplication	and	2nd
					members,	initialization	of
					overloading	on	2nd
					pass	by	reference	and	2nd
					passing	std::auto_ptr	and
					pointers
					return	value
					uses
					vs.	#define	2nd
const_cast	2nd
					aaa]	[See	also	casting[const_cast]
const_iterator,	vs.	iterators
constants
				aaa]	[See	const[constants]
constraints	on	interfaces,	from	inheritance
constructors
					copy
					default
					empty,	illusion	of
					explicit	2nd	3rd
					implicitly	generated
					inlining	and	2nd



					operator	new	and
					possible	implementation	in	derived	classes
					relationship	to	new
					static	functions	and
					virtual	2nd
					virtual	functions	and	2nd
					with	vs.	without	arguments
containers,	in	Boost
containment	[See	composition]
continue,	delete	and
control	over	data	members	accessibility
convenience	functions
Conversion	library,	in	Boost
conversions,	type	[See	type	conversions]
copies,	partial
copy	assignment	operator
					code	in	copy	constructor	and
					derived	classes	and
copy	constructors
					default	definition
					derived	classes	and
					generalized
					how	used
					implicitly	generated
					pass-by-value	and
copy-and-swap
					assignment	and
					exception-safe	code	and
copying
					base	class	parts
					behavior,	resource	management	and	2nd
					functions,	the
					objects
correctness
					designing	interfaces	for	2nd
					testing	and,	Boost	support



corresponding	forms	of	new	and	delete	2nd
corrupt	data	structures,	exception-safe	code	and
cows,	coming	home
crimes	against	English	2nd
cross-DLL	problem
CRTP
ctor
curiously	recurring	template	pattern
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dangling	handles
Dashtinezhad,	Sasan
data	members
					adding,	copying	functions	and
					control	over	accessibility
					protected
					static,	initialization	of
					why	private	2nd
data	structures
					exception-safe	code	and
					in	Boost
Davis,	Tony
deadly	MI	diamond
debuggers
					#define	and
					inline	functions	and
declarations
					inline	functions
					replacing	definitions
					static	const	integral	members
default	constructors
					construction	with	arguments	vs
					implicitly	generated
default	implementations
					for	virtual	functions,	danger	of	2nd
					of	copy	constructor
					of	operator=



default	initialization,	unintended
default	parameters	2nd
					impact	if	changed
					static	binding	of
definitions
					classes
					deliberate	omission	of
					functions
					implicitly	generated	functions	2nd
					objects
					pure	virtual	functions	2nd	3rd
					replacing	with	declarations
					static	class	members
					static	const	integral	members
					templates
					variable,	postponing	2nd
delete
					aaa]	[See	also	operator	delete[delete]
					forms	of	2nd
					operator	delete	and
					relationship	to	destructors
					usage	problem	scenarios
delete	[i],	std::auto_ptr	and	tr1::shared_ptr	and
deleters
					std::auto_ptr	and
					tr1::shared_ptr	and	2nd	3rd
Delphi
Dement,	William
dependencies,	compilation	2nd
dependent	names	2nd
dereferencing	a	null	pointer,	undefined	behavior	of
derived	classes
					copy	assignment	operators	and
					copy	constructors	and
					hiding	names	in	base	classes
					implementing	constructors	in



					virtual	base	initialization	and
Derived	virtual	calling	base	virtual
design
					contradiction	in
					of	interfaces	2nd
					of	types	2nd
Design	Patterns
design	patterns
					curiously	recurring	template	(CRTP)
					encapsulation	and
					generating	from	templates
					Singleton
					Strategy	2nd
					Template	Method
					TMP	and
destructors
					exceptions	and	2nd
					inlining	and	2nd
					pure	virtual
					relationship	to	delete
					resource	managing	objects	and
					static	functions	and
				virtual
									operator	delete	and
									polymorphic	base	classes	and	2nd
					virtual	functions	and	2nd
Dewhurst,	Steve
dimensional	unit	correctness,	TMP	and
DLLs,	delete	and
dtor
Dulimov,	Peter
duplication
					avoiding	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
					base	class	data	and
					init	function	and
dynamic	binding



					definition	of
					of	virtual	functions
dynamic	type,	definition	of
dynamic_cast	2nd	3rd	4th
					aaa]	[See	also	casting[dynamic_cast]
					efficiency	of
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early	binding
easy	to	use	correctly	and	hard	to	use	incorrectly	2nd
EBO	[See	empty	base	optimization]
Effective	C++,	compared	to	More	Effective	C++	and	Effective	STL
Effective	STL	2nd	3rd
					compared	to	Effective	C++
					contents	of	2nd
efficiency
					assignment	vs.	construction	and	destruction	2nd
					default	parameter	binding
					dynamic_cast
					Handle	classes
					incorrect	code	and	2nd
					init.	with	vs.	without	args
					Interface	classes
					macros	vs.	inline	functions
					member	init.	vs.	assignment
					minimizing	compilation	dependencies
					operator	new/operator	delete	and
					pass-by-reference	and
					pass-by-value	and	2nd
					passing	built-in	types	and
					runtime	vs.	compile-time	tests
					template	metaprogramming	and
					template	vs.	function	parameters
					unused	objects



					virtual	functions
Eiffel
embedding	[See	composition]
empty	base	optimization	(EBO)	2nd
encapsulation	2nd
					casts	and
					design	patterns	and
					handles	and
					measuring
					protected	members	and
					RAII	classes	and
enum	hack	2nd	3rd
errata	list,	for	this	book
errors
					detected	during	linking	2nd
					runtime
evaluation	order,	of	parameters
example	classes/templates
					A
					ABEntry
					AccessLevels
					Address
					Airplane	2nd	3rd
					Airport
					AtomicClock
					AWOV

					B	2nd	3rd
					Base	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
					BelowBottom
					bidirectional_iterator_tag
					Bird	2nd	3rd
					Bitmap
					BorrowableItem
					Bottom
					BuyTransaction	2nd



					C
					Circle
					CompanyA
					CompanyB
					CompanyZ
					CostEstimate
					CPerson
					CTextBlock	2nd	3rd
					Customer	2nd
					D	2nd	3rd
					DatabaseID
					Date	2nd	3rd
					Day
					DBConn	2nd
					DBConnection
					deque
					deque::iterator
					Derived	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
					Directory
					ElectronicGadget
					Ellipse
					Empty	2nd	3rd
					EvilBadGuy	2nd
					EyeCandyCharacter
					Factorial
					Factorial<0>
					File	2nd
					FileSystem
					FlyingBird
					Font	2nd	3rd
					forward_iterator_tag
					GameCharacter	2nd	3rd	4th	5th
					GameLevel



					GamePlayer	2nd
					GraphNode
					GUIObject
					HealthCalcFunc
					HealthCalculator
					HoldsAnInt	2nd
					HomeForSale	2nd	3rd
					input_iterator_tag
					input_iterator_tag<Iter*>
					InputFile	2nd
					Investment	2nd
					IOFile	2nd
					IPerson	2nd
					iterator_traits	2nd	[See	also	std::iterator_traits]
					list
					list::iterator
					Lock	2nd	3rd
					LoggingMsgSender	2nd	3rd	4th	5th
					Middle
					ModelA	2nd	3rd
					ModelB	2nd	3rd
					ModelC	2nd	3rd
					Month	2nd
					MP3Player
					MsgInfo
					MsgSender
					MsgSender<CompanyZ>
					NamedObject	2nd
					NewHandlerHolder
					NewHandlerSupport
					output_iterator_tag
					OutputFile	2nd
					Penguin	2nd	3rd	4th



					Person	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
					PersonInfo	2nd
					PhoneNumber	2nd
					PMImpl
					Point	2nd	3rd
					PrettyMenu	2nd	3rd
					PriorityCustomer
					random_access_iterator_tag
					Rational	2nd	3rd	4th	5th	6th	7th	8th	9th
					RealPerson
					Rectangle	2nd	3rd	4th	5th	6th	7th	8th
					RectData
					SellTransaction
					Set	2nd
					Shape	2nd	3rd	4th	5th	6th	7th
					SmartPtr	2nd	3rd
					SpecialString
					SpecialWindow	2nd	3rd	4th

					SpeedDataCollection
					Square
					SquareMatrix	2nd	3rd	4th
					SquareMatrixBase	2nd
					StandardNewDeleteForms
					Student	2nd	3rd
					TextBlock	2nd	3rd
					TimeKeeper	2nd
					Timer
					Top
					Transaction	2nd	3rd
					Uncopyable
					WaterClock

					WebBrowser	2nd	3rd	4th

					Widget	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th



21st	22nd	23rd
					Widget::WidgetTimer

					WidgetImpl	2nd

					Window	2nd	3rd	4th	5th

					WindowWithScrollBars

					WristWatch

					X
					Y
					Year
example	functions/templates
					ABEntry::ABEntry	2nd	3rd
					AccessLevels::getReadOnly
					AccessLevels::getReadWrite

					AccessLevels::setReadOnly
					AccessLevels::setWriteOnly

					advance	2nd	3rd	4th	5th	6th
					Airplane::defaultFly
					Airplane::fly	2nd	3rd	4th
					askUserForDatabaseID
					AWOV::AWOV

					B::mf
					Base::operator	delete
					Base::operator	new
					Bird::fly
					BorrowableItem::checkOut
					boundingBox
					BuyTransaction::BuyTransaction
					BuyTransaction::createLogString
					calcHealth
					callWithMax

					changeFontSize
					Circle::draw
					clearAppointments	2nd



					clearBrowser
					CPerson::birthDate
					CPerson::CPerson
					CPerson::name
					CPerson::valueDelimClose
					CPerson::valueDelimOpen
					createInvestment	2nd	3rd	4th	5th	6th
					CTextBlock::length	2nd
					CTextBlock::operator[i]
					Customer::Customer
					Customer::operator=
					D::mf
					Date::Date	2nd
					Day::Day
					daysHeld
					DBConn::close
					DBConn::~DBConn	2nd	3rd	4th
					defaultHealthCalc	2nd
					Derived::Derived	2nd
					Derived::mf1
					Derived::mf4
					Directory::Directory	2nd
					doAdvance	2nd	3rd
					doMultiply
					doProcessing	2nd	3rd
					doSomething	2nd	3rd	4th	5th
					doSomeWork

					eat	2nd
					ElectronicGadget::checkOut
					Empty::Empty	2nd
					Empty::operator=
					Empty::~Empty
					encryptPassword	2nd	3rd	4th



					error
					EvilBadGuy::EvilBadGuy
					f	2nd	3rd	4th
					FlyingBird::fly
					Font::Font
					Font::get
					Font::operator	FontHandle
					Font::~Font
					GameCharacter::doHealthValue
					GameCharacter::GameCharacter	2nd	3rd
					GameCharacter::healthValue	2nd	3rd	4th	5th
					GameLevel::health
					getFont
					hasAcceptableQuality
					HealthCalcFunc::calc
					HealthCalculator::operator(_)
					lock
					Lock::Lock	2nd
					Lock::~Lock
					logCall
					LoggingMsgSender::sendClear	2nd
					LogginMsgSender::sendClear	2nd	3rd
					loseHealthQuickly
					loseHealthSlowly
					main	2nd	3rd	4th
					makeBigger
					makePerson
					max
					ModelA::fly	2nd
					ModelB::fly	2nd
					ModelC::fly	2nd
					Month::Dec
					Month::Feb



					Month::Jan
					Month::Month	2nd
					MsgSender::sendClear
					MsgSender::sendSecret
					MsgSender<CompanyZ>::sendSecret
					NewHandlerHolder::NewHandlerHolder
					NewHandlerHolder::~NewHandlerHolder
					NewHandlerSupport::operator	new
					NewHandlerSupport::set_new_handler
					numDigits
					operator	delete
					operator	new	2nd
					operator*	2nd	3rd	4th	5th	6th	7th	8th	9th
					operator==
					outOfMem
					Penguin::fly
					Person::age
					Person::create	2nd
					Person::name
					Person::Person
					PersonInfo::theName
					PersonInfo::valueDelimClose
					PersonInfo::valueDelimOpen
					PrettyMenu::changeBackground	2nd	3rd	4th
					print
					print2nd	2nd	3rd	4th
					printNameAndDisplay	2nd
					priority
					PriorityCustomer::operator=	2nd
					PriorityCustomer::PriorityCustomer	2nd
					processWidget

					RealPerson::RealPerson
					RealPerson::~RealPerson



					Rectangle::doDraw
					Rectangle::draw	2nd
					Rectangle::lowerRight	2nd
					Rectangle::upperLeft	2nd
					releaseFont
					Set::insert
					Set::member
					Set::remove
					Set::size
					Shape::doDraw
					Shape::draw	2nd	3rd	4th	5th
					Shape::error	2nd
					Shape::objectID	2nd
					SmartPtr::get
					SmartPtr::SmartPtr
					someFunc	2nd
					SpecialWindow::blink

					SpecialWindow::onResize

					SquareMatrix::invert
					SquareMatrix::setDataPtr
					SquareMatrix::SquareMatrix	2nd	3rd
					StandardNewDeleteForms::operator	delete	2nd	3rd
					StandardNewDeleteForms::operator	new	2nd	3rd
					std::swap
					std::swap<Widget>	2nd

					study	2nd
					swap	2nd
					tempDir
					TextBlock::operator[i]	2nd	3rd	4th	5th	6th
					tfs
					Timer::onTick
					Transaction::init
					Transaction::Transaction	2nd	3rd



					Uncopyable::operator=
					Uncopyable::Uncopyable
					unlock
					validateStudent	2nd
					Widget::onTick	2nd

					Widget::operator	new

					Widget::operator+=

					Widget::operator=	2nd	3rd	4th	5th	6th	7th	8th

					Widget::set_new_handler

					Widget::swap

					Window::blink

					Window::onResize

					workWithIterator	2nd

					Year::Year
exception	specifications
exception-safe	code	2nd
					copy-and-swap	and
					legacy	code	and
					pimpl	idiom	and
					side	effects	and
exception-safety	guarantees	2nd
Exceptional	C++	2nd
Exceptional	C++	Style	2nd
exceptions
					delete	and
					destructors	and	2nd
					member	swap	and
					standard	hierarchy	for
					swallowing
					unused	objects	and
explicit	calls	to	base	class	functions
explicit	constructors	2nd	3rd
					generalized	copy	construction	and
explicit	inline	request
explicit	specification,	of	class	names
explicit	type	conversions	vs.	implicit	2nd
expression	templates
expressions,	implicit	interfaces	and
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factoring	code,	out	of	templates	2nd
factory	function	2nd	3rd	4th	5th	6th
Fallenstedt,	Martin
federation,	of	languages,	C++	as	2nd
Feher,	Attila	F
final	classes,	in	Java
final	methods,	in	Java
fixed-size	static	buffers,	problems	of
forms	of	new	and	delete	2nd
FORTRAN
forward	iterators
forward_iterator_tag
forwarding	functions	2nd
French,	Donald
friend	functions	2nd	3rd	4th	5th	6th	7th
					vs.	member	functions	2nd
friendship
					in	real	life
					without	needing	special	access	rights
Fruchterman,	Thomas
FUDGE_FACTOR
Fuller,	John
function	declarations,	const	in
function	objects
					definition	of
					higher-order	programming	utilities	and,	in	Boost
function-style	casts
functions
					convenience
					copying
					defining
					deliberately	not	defining



				factory	[See	factory	function]
					forwarding	2nd
					implicitly	generated	2nd	3rd
									disallowing	2nd
					inline,	declaring
				member
									templatized	2nd
									vs.	non-member	2nd
				non-member
									templates	and	2nd
									type	conversions	and	2nd	3rd	4th
					non-member	non-friend,	vs	member	2nd
					non-virtual,	meaning
					return	values,	modifying
					signatures,	explicit	interfaces	and
				static
									ctors	and	dtors	and
				virtual	[See	virtual	functions]
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Gamma,	Erich
Geller,	Alan
generalized	assignment
generalized	copy	constructors
generative	programming
generic	programming	support,	in	Boost
get,	smart	pointers	and
goddess	[See	Urbano,	Nancy	L.]
goto,	delete	and
Graph	library,	in	Boost
grep,	casts	and
guarantees,	exception	safety	2nd
Gutnik,	Gene
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Handle	classes	2nd
handles
					dangling
					encapsulation	and
					operator[i]	and
					returning	2nd
has-a	relationship
hash	tables,	in	TR1
Hastings,	Battle	of
Haugland,	Solveig
head	scratching,	avoiding
header	files	[See	headers]
headers
					for	declarations	vs.	for	definitions
					inline	functions	and
					namespaces	and
					of	C++	standard	library
					templates	and
					usage,	in	this	book
hello	world,	template	metaprogramming	and
Helm,	Richard
Henney,	Kevlin
Hicks,	Cory
hiding	names	[See	name	hiding]
higher-order	programming	and	function	object	utilities,	in	Boost
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inheritance
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initialization	order
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					recursion	and
					vs.	#define	2nd
					vs.	macros,	efficiency	and
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					constructors/destructors	and	2nd
					dynamic	linking	and
					Handle	classes	and
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					suggested	strategy	for
					templates	and
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					virtual	functions	and
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insomnia
instructions,	reordering	by	compilers
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interfaces
					decoupling	from	implementations
					definition	of
					design	considerations	2nd
					explicit,	signatures	and
					implicit	2nd
									expressions	and
					inheritance	of	2nd
					new	types	and	2nd
					separating	from	implementations
					template	parameters	and	2nd
					undeclared
internationalization,	library	support	for
invalid	array	index,	undefined	behavior	and
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					NVI	and
					over	specialization
is-a	relationship	2nd
is-implemented-in-terms-of	2nd	3rd
istream_iterators
iterator	categories	2nd
iterator_category
iterators	as	handles
iterators,	vs.	const_iterators
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Leary-Coutu,	Chanda
Lee,	Sam
legacy	code,	exception-safety	and
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Lewandowski,	Scott
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Li,	Greg
link-time	errors	2nd
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					definition	of
					initialization	of
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					delete	and
managing	resources	[See	resource	management]
Manis,	Vincent
Marin,	Alex
math	and	numerics	utilities,	in	Boost	2nd
mathematical	functions,	in	TR1
mathematics,	inheritance	and
matrix	operations,	optimizing
Matthews,	Leon
max,	std,	implementation	of
Meadowbrooke,	Chrysta
meaning
					of	classes	without	virtual	functions
					of	composition
					of	non-virtual	functions
					of	pass-by-value
					of	private	inheritance
					of	public	inheritance
					of	pure	virtual	functions
					of	references
					of	simple	virtual	functions
measuring	encapsulation
Meehan,	Jim
member	data	[See	data	members]
member	function	templates	2nd
member	functions
					bitwise	const	2nd



					common	design	errors	2nd
					const	2nd
					duplication	and	2nd
					encapsulation	and
					implicitly	generated	2nd	3rd
									disallowing	2nd
					logically	const	2nd
					private
					protected
					vs.	non-member	functions	2nd
					vs.	non-member	non-friends	2nd
member	initialization
					for	const	static	integral	members
					lists	2nd
									vs.	assignment	2nd
					order
memory	allocation
					arrays	and	2nd
					error	handling	for	2nd
memory	leaks,	new	expressions	and
memory	management
					functions,	replacing	2nd
					multithreading	and	2nd
					utilities,	in	Boost
metaprogramming	[See	template	metaprogramming]
Meyers,	Scott
					mailing	list	for
					web	site	for
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Michaels,	Laura
Mickelsen,	Denise
minimizing	compilation	dependencies	2nd	3rd
Mittal,	Nishant
mixed-mode	arithmetic	2nd	3rd	4th
mixin-style	inheritance
modeling	is-implemented-in-terms-of	2nd
modifying	function	return	values
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More	Effective	C++	2nd	3rd
					compared	to	Effective	C++
					contents	of	2nd
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Moroff,	Hal
MPL	library,	in	Boost	2nd
multiparadigm	programming	language,	C++	as
multiple	inheritance	[See	inheritance]
multithreading
					memory	management	routines	and	2nd
					non-const	static	objects	and
					treatment	in	this	book
mutable	2nd
mutexes,	RAII	and	2nd
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					inheritance	and	2nd
					operators	new/delete	and	2nd
					using	declarations	and
name	lookup
					this->	and	2nd
					using	declarations	and
name	shadowing	[See	name	hiding]
names
					accessing	in	templatized	bases	2nd
					available	in	both	C	and	C++
					dependent
					hidden	by	derived	classes
					nested,	dependent
					non-dependent
namespaces
					headers	and
					namespace	pollution	in	a	class
Nancy	[See	Urbano,	Nancy	L.]
Nauroth,	Chris
nested	dependent	names
nested	dependent	type	names,	typename	and
new
					aaa]	[See	also	operator	new[new]
					expressions,	memory	leaks	and



					forms	of	2nd
					operator	new	and
					relationship	to	constructors
					smart	pointers	and	2nd
new	types,	interface	design	and	2nd
new-handler	2nd
					definition	of
					deinstalling
					identifying
new-handling	functions,	behavior	of
new-style	casts
non-dependent	names
non-local	static	objects,	initialization	of
non-member	functions
					member	functions	vs	2nd
					templates	and	2nd
					type	conversions	and	2nd	3rd	4th
non-member	non-friend	functions	2nd
non-type	parameters
non-virtual
					functions	2nd
									static	binding	of
				interface	idiom	[See	NVI]
noncopyable	base	class,	in	Boost
nothrow	guarantee,	the
nothrow	new
null	pointer
					deleting
					dereferencing
					set_new_handler	and
NVI	2nd	3rd
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					copying	all	parts
					defining
					definitions,	postponing	2nd
					handles	to	internals	of	2nd
					initialization,	with	vs.	without	arguments
					layout	vs.	array	layout
					multiple	addresses	for
					partial	copies	of
					placing	in	shared	memory
					resource	management	and	2nd
					returning,	vs.	references
					size,	pass-by-value	and
					sizes,	determining
					vs.	variables
old-style	casts
Oldham,	Jeffrey	D
operations,	reordering	by	compilers
operator	delete
					aaa]	[See	also	delete[operator	delete]
					behavior	of	2nd
					efficiency	of



					name	hiding	and	2nd
					non-member,	pseudocode	for
					placement
					replacing	2nd
					standard	forms	of
					virtual	destructors	and
operator	delete[i]	2nd	3rd
operator	new
					aaa]	[See	also	new[operator	new]
					arrays	and	2nd
					bad_alloc	and	2nd
					behavior	of	2nd
					efficiency	of
					infinite	loop	within
					inheritance	and	2nd
					name	hiding	and	2nd
					new-handling	functions	and
					non-member,	pseudocode	for
					out-of-memory	conditions	and	2nd	3rd	4th
					placement
					replacing	2nd
					returning	0	and	2nd
					standard	forms	of
					std::bad_alloc	and	2nd
operator	new[i]	2nd	3rd
operator(_)	(function	call	operator)
operator*	for	Rationals
operator=
					const	members	and	2nd
					default	implementation
					implicit	generation
					reference	members	and	2nd
					return	value	of	2nd
					self-assignment	and	2nd
					when	not	implicitly	generated	2nd



operator[i]
					overloading	on	const	2nd
					return	type	of
optimization
					by	compilers
					during	compilation
									inline	functions	and
order
					initialization	of	non-local	statics	2nd
					member	initialization
ostream_iterators
other	languages,	compatibility	with
output	iterators
output_iterator_tag
overloading
					as	if...else	for	types
					on	const	2nd
					std::swap
overrides	of	virtuals,	preventing
ownership	transfer
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					aaa]	[See	also	pass-by-value,	pass-by-reference,	passing	small
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					evaluation	order
					non-type,	for	templates
				type	conversions	and	[See	type	conversions]
Pareto	Principle	[See	80-20	rule]
parsing	problems,	nested	dependent	names	and
partial	copies
partial	specialization
					function	templates
					std::swap
parts,	of	objects,	copying	all
pass-by-reference,	efficiency	and
pass-by-reference-to-const,	vs	pass-by-value	2nd
pass-by-value
					copy	constructor	and
					efficiency	of	2nd
					meaning	of
					object	size	and
					vs.	pass-by-reference-to-const	2nd
patterns	[See	design	patterns]
Pedersen,	Roger	E
penguins	and	birds	2nd
performance	[See	efficiency]
Persephone	2nd	3rd	4th	5th	6th



Person::age
pessimization
physical	constness	[See	const,	const;bitwise]
pimpl	idiom
					definition	of
					exception-safe	code	and
placement	delete	[See	operator	delete]
placement	new	[See	operator	new]
Plato
pointer	arithmetic	and	undefined	behavior
pointers
					aaa]	[See	also	smart	pointers[pointers]
					as	handles
					bitwise	const	member	functions	and
					compilation	dependencies	and
					const
									in	headers
					null,	dereferencing
					template	parameters	and
					to	single	vs.	multiple	objects,	and	delete
polymorphic	base	classes,	destructors	and	2nd
polymorphism	2nd
					compile-time
					runtime
Pool	library,	in	Boost	2nd
postponing	variable	definitions	2nd
Prasertsith,	Chuti
preconditions,	NVI	and
pregnancy,	exception-safe	code	and
private	data	members,	why	2nd
private	inheritance	[See	inheritance]
private	member	functions
private	virtual	functions
properties
protected
					data	members
				inheritance	[See	inheritance]
					member	functions
					members,	encapsulation	of



public	inheritance	[See	inheritance]
pun,	really	bad
pure	virtual	destructors
					defining
					implementing
pure	virtual	functions
					defining	2nd	3rd
					meaning
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Rabbani,	Danny
Rabinowitz,	Marty
RAII	2nd	3rd	4th
					classes
					copying	behavior	and	2nd
					encapsulation	and
					mutexes	and	2nd
random	access	iterators
random	number	generation,	in	TR1
random_access_iterator_tag
Rational::operator*	implementation
RCSP	[See	smart	pointers]
reading	uninitialized	values
rectangles	and	squares	2nd
recursive	functions,	inlining	and
redefining	inherited	non-virtual	functions	2nd
Reed,	Kathy
Reeves,	Jack
references
					as	handles
					compilation	dependencies	and
					functions	returning
					implementation
					meaning
					members,	initialization	of
					returning	2nd
					to	static	object,	as	function	return	value	2nd
register	usage,	objects	and
regular	expressions,	in	TR1
reinterpret_cast	2nd
					aaa]	[See	also	casting[reinterpret_cast]



relationships
					has-a
					is-a	2nd
					is-implemented-in-terms-of	2nd	3rd
reordering	operations,	by	compilers
replacing	definitions	with	declarations
replacing	new/delete	2nd
replication	[See	duplication]
reporting,	bugs	in	this	book
Resource	Acquisition	Is	Initialization	[See	RAII]
resource	leaks,	exception-safe	code	and
resource	management
					aaa]	[See	also	RAII[resource	management]
					copying	behavior	and	2nd
					objects	and	2nd
					raw	resource	access	and	2nd
resources,	managing	objects	and	2nd
return	by	reference	2nd
return	types
					const
					objects	vs.	references	2nd
					of	operator[i]
return	value	of	operator=	2nd
returning	handles	2nd
reuse	[See	code	reuse]
revenge,	compilers	taking
rhs,	as	parameter	name
Roze,	Mike
rule	of	80-20	2nd
runtime
					errors
					inlining
					polymorphism
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Satch
Satyricon
Scherpelz,	Jeff
Schirripa,	Steve
Schober,	Hendrik	2nd	3rd
Schroeder,	Sandra
scoped_array	2nd	3rd
scopes,	inheritance	and
sealed	classes,	in	C#
sealed	methods,	in	C#
second	edition	[See	2nd	edition]
self-assignment,	operator=	and	2nd
set
set_new_handler
					class-specific,	implementing
					using	2nd
set_unexpected	function
shadowing,	names	[See	name	shadowing]
Shakespeare,	William
shared	memory,	placing	objects	in
shared_array
shared_ptr	implementation	in	Boost,	costs
sharing	code	[See	duplication,	duplication;avoiding]
sharing	common	features
Shewchuk,	John
side	effects,	exception	safety	and
signatures
					definition	of
					explicit	interfaces	and
simple	virtual	functions,	meaning	of
Singh,	Siddhartha
Singleton	pattern
size_t



sizeof	2nd
					empty	classes	and
					freestanding	classes	and
sizes
					of	freestanding	classes
					of	objects
sleeping	pills
slist
Smallberg,	David	2nd	3rd
Smalltalk
smart	pointers	2nd	3rd	4th	5th	6th	7th
					aaa]	[See	also	std::auto_ptr	and	tr1::shared_ptr[smart	pointers]
					get	and
					in	Boost	2nd	3rd
									web	page	for
					in	TR1
					newed	objects	and	2nd
					type	conversions	and	2nd
Socrates
Some	Must	Watch	While	Some	Must	Sleep
Somers,	Jeff
specialization
					invariants	over
					partial,	of	std::swap
					total,	of	std::swap	2nd
specification	[See	interfaces]
SquareMatrix	name	hiding	example
squares	and	rectangles	2nd
standard	exception	hierarchy
standard	forms	of	operator	new/delete
standard	library	[See	C++	standard	library,	C	standard	library]
standard	template	library	[See	STL]
Stasko,	John
statements	using	new,	smart	pointers	and	2nd
static
				binding
									of	default	parameters
									of	non-virtual	functions
					objects,	returning	references	to	2nd



					type,	definition	of
static	functions,	ctors	and	dtors	and
static	members
					const	member	functions	and
					definition
					initialization
static	objects
					definition	of
					multithreading	and
static_cast	2nd	3rd	4th	5th	6th
					aaa]	[See	also	casting[static_cast]
std	namespace,	specializing	templates	in
std::auto_ptr	2nd	3rd
					conversion	to	tr1::shared_ptr	and
					delete	[i]	and
					pass	by	const	and
std::auto_ptr,	deleter	support	and
std::char_traits
std::iterator_traits,	pointers	and
std::list
std::max,	implementation	of
std::numeric_limits
std::set	2nd
std::size_t
std::swap
					aaa]	[See	also	swap[std::swap]
					implementation	of
					overloading
					partial	specialization	of
					total	specialization	of	2nd
std::tr1	[See	TR1]
stepping	through	functions,	inlining	and
STL
					allocators
					as	sublanguage	of	C++
					containers,	swap	and
					definition	of
					iterator	categories	in	2nd
Strategy	pattern	2nd



string	and	text	utilities,	in	Boost
strong	guarantee,	the
Stroustrup,	Bjarne	2nd
Stroustrup,	Nicholas	2nd
Sutter,	Herb	2nd	3rd	4th	5th	6th
swallowing	exceptions
swap
					aaa]	[See	also	std::swap[swap]
					calling
					exceptions	and
					STL	containers	and
					when	to	write
symbols,	available	in	both	C	and	C++
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template	metaprogramming
					efficiency	and
					hello	world	in
					pattern	implementations	and
					support	in	Boost
					support	in	TR1
Template	Method	pattern
templates
					code	bloat,	avoiding	in	2nd
					combining	with	inheritance
					defining
					errors,	when	detected
					expression
					headers	and
					in	std,	specializing
					inlining	and
					instantiation	of
					member	functions	2nd
					names	in	base	classes	and	2nd
					non-type	parameters
					parameters,	omitting
					pointer	type	parameters	and
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					specializations	2nd
									partial	2nd



									total	2nd	3rd
					type	conversions	and	2nd
					type	deduction	for	2nd
temporary	objects,	eliminated	by	compilers
terminology,	used	in	this	book	2nd
testing	and	correctness,	Boost	support	for
text	and	string	utilities,	in	Boost
third	edition	[See	3rd	edition]
this->,	to	force	base	class	lookup	2nd
threading	[See	multithreading]
Tilly,	Barbara
TMP	[See	template	metaprogramming]
Tondo,	Clovis
Topic,	Michael
total	class	template	specialization
total	specialization	of	std::swap	2nd
total	template	specializations
TR1	2nd	3rd
					array	component
					bind	component
					Boost	and	2nd	3rd	4th
					boost	as	synonym	for	std::tr1
					C99	compatibility	component
					function	component
					hash	tables	component
					math	functions	component
					mem_fn	component
					random	numbers	component
					reference_wrapper	component
					regular	expression	component
					result_of	component
					smart	pointers	component
					support	for	TMP
					tuples	component
					type	traits	component
tr1::array
tr1::bind	2nd
tr1::function	2nd	3rd
tr1::mem_fn
tr1::reference_wrapper



tr1::result_of
tr1::shared_ptr	2nd	3rd	4th	5th
					construction	from	other	smart	pointers	and
					cross-DLL	problem	and
					delete	[i]	and
					deleter	support	in	2nd	3rd
					member	template	ctors	in	2nd
tr1::tuple
tr1::unordered_map	2nd
tr1::unordered_multimap
tr1::unordered_multiset
tr1::unordered_set
tr1::weak_ptr
traits	classes	2nd
transfer,	ownership
translation	unit,	definition	of
Trux,	Antoine
Tsao,	Mike
tuples,	in	TR1
type	conversions	2nd
					explicit	ctors	and
					implicit
					implicit	vs.	explicit	2nd
					non-member	functions	and	2nd	3rd	4th
					private	inheritance	and
					smart	pointers	and	2nd
					templates	and	2nd
type	deduction,	for	templates	2nd
type	design	2nd
type	traits,	in	TR1
typedef,	typename	and	2nd
typedefs,	new/delete	and
typeid	2nd	3rd	4th
typelists
typename	2nd
					compiler	variations	and
					typedef	and	2nd
					vs.	class
types
					built-in,	initialization	2nd
					compatible,	accepting	all	2nd
					if...else	for



					integral,	definition	of
					traits	classes	and	2nd
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undeclared	interface
undefined	behavior
					advance	and
					array	deletion	and
					augmenting	the	std	namespace
					casting	+	pointer	arithmetic	and
					definition	of
					destroyed	objects	and
					exceptions	and
					initialization	order	and
					invalid	array	index	and
					multiple	deletes	and	2nd
					null	pointers	and
					object	deletion	and	2nd	3rd
					uninitialized	values	and
undefined	values	of	members	before	construction	and	after	destruction
unexpected	function
uninitialized
					data	members,	virtual	functions	and
					values,	reading
unnecessary	objects,	avoiding
unused	objects
					cost	of
					exceptions	and
Urbano,	Nancy	L	2nd	3rd	4th	[See	also	goddess]
URLs



					<i>Effective	C++<d>	errata	list
					Boost	2nd	3rd
					Boost	smart	pointers
					Greg	Comeau's	C/C++	FAQ
					Scott	Meyers'	mailing	list
					Scott	Meyers'	web	site
					this	book's	errata	list
usage	statistics,	memory	management	and
using	declarations
					name	hiding	and
					name	lookup	and
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valarray
value,	pass	by	[See	pass-by-value]
Van	Wyk,	Chris	2nd
Vandevoorde,	David
variable,	vs.	object
variables	definitions,	postponing	2nd
vector	template
Viciana,	Paco
virtual	base	classes
virtual	constructors	2nd
virtual	destructors
					operator	delete	and
					polymorphic	base	classes	and	2nd
virtual	functions
					alternatives	to	2nd
					ctors/dtors	and	2nd
					default	implementations	and	2nd
					default	parameters	and	2nd
					dynamic	binding	of
					efficiency	and
					explict	base	class	qualification	and
					implementation	2nd
					inlining	and
					language	interoperability	and
					meaning	of	none	in	class
					preventing	overrides
					private
				pure	[See	pure	virtual	functions]



					simple,	meaning	of
					uninitialized	data	members	and
virtual	inheritance	[See	inheritance]
virtual	table
virtual	table	pointer
Vlissides,	John
vptr
vtbl
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Wait,	John	2nd
warnings,	from	compiler	2nd
					calls	to	virtuals	and
					inlining	and
					partial	copies	and
Widget	class,	as	used	in	this	book
Widget	mem	funcs	using	rhs
Wiegers,	Karl
Wilson,	Matthew
Wizard	of	Oz,	allusion	to
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XP,	allusion	to
XYZ	Airlines
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Zabluda,	Oleg
Zolman,	Leor	2nd	3rd
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