
M A N N I N G

Anthony Williams

Practical Multithreading

IN ACTION

C++ Concurrency in Action

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

C++ Concurrency
in Action

PRACTICAL MULTITHREADING

ANTHONY WILLIAMS

M A N N I N G
SHELTER ISLAND
Download from Wow! eBook <www.wowebook.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical proofreader: Jonathan Wakely
PO Box 261 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781933988771
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12
Download from Wow! eBook <www.wowebook.com>

www.manning.com

 To Kim, Hugh, and Erin

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

vii

brief contents
1 ■ Hello, world of concurrency in C++! 1

2 ■ Managing threads 15

3 ■ Sharing data between threads 33

4 ■ Synchronizing concurrent operations 67

5 ■ The C++ memory model and operations on atomic types 103

6 ■ Designing lock-based concurrent data structures 148

7 ■ Designing lock-free concurrent data structures 180

8 ■ Designing concurrent code 224

9 ■ Advanced thread management 273

10 ■ Testing and debugging multithreaded applications 300

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

contents
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxii

1 Hello, world of concurrency in C++! 1
1.1 What is concurrency? 2

Concurrency in computer systems 2
Approaches to concurrency 4

1.2 Why use concurrency? 6
Using concurrency for separation of concerns 6
Using concurrency for performance 7 ■ When not
to use concurrency 8

1.3 Concurrency and multithreading in C++ 9
History of multithreading in C++ 10 ■ Concurrency support
in the new standard 10 ■ Efficiency in the C++
Thread Library 11 ■ Platform-specific facilities 12

1.4 Getting started 13
Hello, Concurrent World 13

1.5 Summary 14
ix

Download from Wow! eBook <www.wowebook.com>

CONTENTSx
2 Managing threads 15
2.1 Basic thread management 16

Launching a thread 16 ■ Waiting for a thread to complete 18
Waiting in exceptional circumstances 19 ■ Running threads
in the background 21

2.2 Passing arguments to a thread function 23
2.3 Transferring ownership of a thread 25
2.4 Choosing the number of threads at runtime 28
2.5 Identifying threads 31
2.6 Summary 32

3 Sharing data between threads 33
3.1 Problems with sharing data between threads 34

Race conditions 35 ■ Avoiding problematic race conditions 36

3.2 Protecting shared data with mutexes 37
Using mutexes in C++ 38 ■ Structuring code for protecting
shared data 39 ■ Spotting race conditions inherent
in interfaces 40 ■ Deadlock: the problem and a solution 47
Further guidelines for avoiding deadlock 49 ■ Flexible locking
with std::unique_lock 54 ■ Transferring mutex ownership
between scopes 55 ■ Locking at an appropriate granularity 57

3.3 Alternative facilities for protecting shared data 59
Protecting shared data during initialization 59 ■ Protecting rarely
updated data structures 63 ■ Recursive locking 64

3.4 Summary 65

4 Synchronizing concurrent operations 67
4.1 Waiting for an event or other condition 68

Waiting for a condition with condition variables 69
Building a thread-safe queue with condition variables 71

4.2 Waiting for one-off events with futures 76
Returning values from background tasks 77 ■ Associating a task
with a future 79 ■ Making (std::)promises 81 ■ Saving an
exception for the future 83 ■ Waiting from multiple threads 85

4.3 Waiting with a time limit 87
Clocks 87 ■ Durations 88 ■ Time points 89
Functions that accept timeouts 91
Download from Wow! eBook <www.wowebook.com>

CONTENTS xi
4.4 Using synchronization of operations to simplify code 93
Functional programming with futures 93 ■ Synchronizing
operations with message passing 97

4.5 Summary 102

5 The C++ memory model and operations on atomic types 103
5.1 Memory model basics 104

Objects and memory locations 104 ■ Objects, memory locations,
and concurrency 105 ■ Modification orders 106

5.2 Atomic operations and types in C++ 107
The standard atomic types 107 ■ Operations on
std::atomic_flag 110 ■ Operations on std::atomic<bool> 112
Operations on std::atomic<T*>: pointer arithmetic 114
Operations on standard atomic integral types 116
The std::atomic<> primary class template 116 ■ Free functions
for atomic operations 117

5.3 Synchronizing operations and enforcing ordering 119
The synchronizes-with relationship 121 ■ The happens-before
relationship 122 ■ Memory ordering for atomic operations 123
Release sequences and synchronizes-with 141 ■ Fences 143
Ordering nonatomic operations with atomics 145

5.4 Summary 147

6 Designing lock-based concurrent data structures 148
6.1 What does it mean to design for concurrency? 149

Guidelines for designing data structures for concurrency 149

6.2 Lock-based concurrent data structures 151
A thread-safe stack using locks 151 ■ A thread-safe queue using
locks and condition variables 154 ■ A thread-safe queue using
fine-grained locks and condition variables 158

6.3 Designing more complex lock-based data structures 169
Writing a thread-safe lookup table using locks 169 ■ Writing a
thread-safe list using locks 175

6.4 Summary 179

7 Designing lock-free concurrent data structures 180
7.1 Definitions and consequences 181

Types of nonblocking data structures 181 ■ Lock-free
data structures 182 ■ Wait-free data structures 182
The pros and cons of lock-free data structures 183
Download from Wow! eBook <www.wowebook.com>

CONTENTSxii
7.2 Examples of lock-free data structures 184
Writing a thread-safe stack without locks 184 ■ Stopping those
pesky leaks: managing memory in lock-free data structures 188
Detecting nodes that can’t be reclaimed using hazard pointers 193
Detecting nodes in use with reference counting 200 ■ Applying the
memory model to the lock-free stack 205 ■ Writing a thread-safe
queue without locks 209

7.3 Guidelines for writing lock-free data structures 221
Guideline: use std::memory_order_seq_cst for prototyping 221
Guideline: use a lock-free memory reclamation scheme 221
Guideline: watch out for the ABA problem 222
Guideline: identify busy-wait loops and help the other thread 222

7.4 Summary 223

8 Designing concurrent code 224
8.1 Techniques for dividing work between threads 225

Dividing data between threads before processing begins 226
Dividing data recursively 227 ■ Dividing work by task type 231

8.2 Factors affecting the performance of concurrent code 233
How many processors? 234 ■ Data contention and cache
ping-pong 235 ■ False sharing 237 ■ How close is
your data? 238 ■ Oversubscription and excessive
task switching 239

8.3 Designing data structures for multithreaded
performance 239
Dividing array elements for complex operations 240
Data access patterns in other data structures 242

8.4 Additional considerations when designing for
concurrency 243
Exception safety in parallel algorithms 243 ■ Scalability and
Amdahl’s law 250 ■ Hiding latency with multiple threads 252
Improving responsiveness with concurrency 253

8.5 Designing concurrent code in practice 255
A parallel implementation of std::for_each 255 ■ A parallel
implementation of std::find 257 ■ A parallel implementation
of std::partial_sum 263

8.6 Summary 272
Download from Wow! eBook <www.wowebook.com>

CONTENTS xiii
9 Advanced thread management 273
9.1 Thread pools 274

The simplest possible thread pool 274 ■ Waiting for tasks
submitted to a thread pool 276 ■ Tasks that wait for other
tasks 280 ■ Avoiding contention on the work queue 283
Work stealing 284

9.2 Interrupting threads 289
Launching and interrupting another thread 289 ■ Detecting that
a thread has been interrupted 291 ■ Interrupting a condition
variable wait 291 ■ Interrupting a wait on
std::condition_variable_any 294 ■ Interrupting other
blocking calls 296 ■ Handling interruptions 297
Interrupting background tasks on application exit 298

9.3 Summary 299

10 Testing and debugging multithreaded applications 300
10.1 Types of concurrency-related bugs 301

Unwanted blocking 301 ■ Race conditions 302

10.2 Techniques for locating concurrency-related bugs 303
Reviewing code to locate potential bugs 303
Locating concurrency-related bugs by testing 305
Designing for testability 307 ■ Multithreaded testing
techniques 308 ■ Structuring multithreaded test code 311
Testing the performance of multithreaded code 314

10.3 Summary 314

appendix A Brief reference for some C++11 language features 315
appendix B Brief comparison of concurrency libraries 340
appendix C A message-passing framework and complete ATM example 342
appendix D C++ Thread Library reference 360

resources 487
index 489
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

preface
I encountered the concept of multithreaded code while working at my first job after I
left college. We were writing a data processing application that had to populate a data-
base with incoming data records. There was a lot of data, but each record was inde-
pendent and required a reasonable amount of processing before it could be inserted
into the database. To take full advantage of the power of our 10-CPU UltraSPARC, we
ran the code in multiple threads, each thread processing its own set of incoming
records. We wrote the code in C++, using POSIX threads, and made a fair number of
mistakes—multithreading was new to all of us—but we got there in the end. It was also
while working on this project that I first became aware of the C++ Standards Commit-
tee and the freshly published C++ Standard.

 I have had a keen interest in multithreading and concurrency ever since. Where
others saw it as difficult, complex, and a source of problems, I saw it as a powerful tool
that could enable your code to take advantage of the available hardware to run faster.
Later on I would learn how it could be used to improve the responsiveness and perfor-
mance of applications even on single-core hardware, by using multiple threads to hide
the latency of time-consuming operations such as I/O. I also learned how it worked at
the OS level and how Intel CPUs handled task switching.

 Meanwhile, my interest in C++ brought me in contact with the ACCU and then the
C++ Standards panel at BSI, as well as Boost. I followed the initial development of
the Boost Thread Library with interest, and when it was abandoned by the original
developer, I jumped at the chance to get involved. I have been the primary developer
and maintainer of the Boost Thread Library ever since.
xv

Download from Wow! eBook <www.wowebook.com>

PREFACExvi
 As the work of the C++ Standards Committee shifted from fixing defects in the exist-
ing standard to writing proposals for the next standard (named C++0x in the hope
that it would be finished by 2009, and now officially C++11, because it was finally pub-
lished in 2011), I got more involved with BSI and started drafting proposals of my own.
Once it became clear that multithreading was on the agenda, I jumped in with both
feet and authored or coauthored many of the multithreading and concurrency-
related proposals that shaped this part of the new standard. I feel privileged to have
had the opportunity to combine two of my major computer-related interests—C++
and multithreading—in this way.

 This book draws on all my experience with both C++ and multithreading and aims
to teach other C++ developers how to use the C++11 Thread Library safely and effi-
ciently. I also hope to impart some of my enthusiasm for the subject along the way.
Download from Wow! eBook <www.wowebook.com>

acknowledgments
I will start by saying a big “Thank you” to my wife, Kim, for all the love and support she
has given me while writing this book. It has occupied a significant part of my spare
time for the last four years, and without her patience, support, and understanding, I
couldn’t have managed it.

 Second, I would like to thank the team at Manning who have made this book possi-
ble: Marjan Bace, publisher; Michael Stephens, associate publisher; Cynthia Kane, my
development editor; Karen Tegtmeyer, review editor; Linda Recktenwald, my copy-
editor; Katie Tennant, my proofreader; and Mary Piergies, the production manager.
Without their efforts you would not be reading this book right now.

 I would also like to thank the other members of the C++ Standards Committee
who wrote committee papers on the multithreading facilities: Andrei Alexandrescu,
Pete Becker, Bob Blainer, Hans Boehm, Beman Dawes, Lawrence Crowl, Peter Dimov,
Jeff Garland, Kevlin Henney, Howard Hinnant, Ben Hutchings, Jan Kristofferson, Doug
Lea, Paul McKenney, Nick McLaren, Clark Nelson, Bill Pugh, Raul Silvera, Herb Sutter,
Detlef Vollmann, and Michael Wong, plus all those who commented on the papers, dis-
cussed them at the committee meetings, and otherwise helped shaped the multithread-
ing and concurrency support in C++11.

 Finally, I would like to thank the following people, whose suggestions have greatly
improved this book: Dr. Jamie Allsop, Peter Dimov, Howard Hinnant, Rick Molloy,
Jonathan Wakely, and Dr. Russel Winder, with special thanks to Russel for his detailed
reviews and to Jonathan who, as technical proofreader, painstakingly checked all the
content for outright errors in the final manuscript during production. (Any remaining
xvii

Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTSxviii
mistakes are of course all mine.) In addition I’d like to thank my panel of reviewers:
Ryan Stephens, Neil Horlock, John Taylor Jr., Ezra Jivan, Joshua Heyer, Keith S. Kim,
Michele Galli, Mike Tian-Jian Jiang, David Strong, Roger Orr, Wagner Rick, Mike Buksas,
and Bas Vodde. Also, thanks to the readers of the MEAP edition who took the time to
point out errors or highlight areas that needed clarifying.
Download from Wow! eBook <www.wowebook.com>

about this book
This book is an in-depth guide to the concurrency and multithreading facilities from the
new C++ Standard, from the basic usage of std::thread, std::mutex, and std::async,
to the complexities of atomic operations and the memory model.

Roadmap
The first four chapters introduce the various library facilities provided by the library
and show how they can be used.

 Chapter 5 covers the low-level nitty-gritty of the memory model and atomic opera-
tions, including how atomic operations can be used to impose ordering constraints on
other code, and marks the end of the introductory chapters.

 Chapters 6 and 7 start the coverage of higher-level topics, with some examples of
how to use the basic facilities to build more complex data structures—lock-based data
structures in chapter 6, and lock-free data structures in chapter 7.

 Chapter 8 continues the higher-level topics, with guidelines for designing multi-
threaded code, coverage of the issues that affect performance, and example imple-
mentations of various parallel algorithms.

 Chapter 9 covers thread management—thread pools, work queues, and interrupt-
ing operations.

 Chapter 10 covers testing and debugging—types of bugs, techniques for locating
them, how to test for them, and so forth.

 The appendixes include a brief description of some of the new language facili-
ties introduced with the new standard that are relevant to multithreading, the
xix

Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOKxx
implementation details of the message-passing library mentioned in chapter 4, and a
complete reference to the C++11 Thread Library.

Who should read this book
If you're writing multithreaded code in C++, you should read this book. If you're using
the new multithreading facilities from the C++ Standard Library, this book is an essen-
tial guide. If you’re using alternative thread libraries, the guidelines and techniques
from the later chapters should still prove useful.

 A good working knowledge of C++ is assumed, though familiarity with the new lan-
guage features is not—these are covered in appendix A. Prior knowledge or experience
of multithreaded programming is not assumed, though it may be useful.

How to use this book
If you’ve never written multithreaded code before, I suggest reading this book sequen-
tially from beginning to end, though possibly skipping the more detailed parts of
chapter 5. Chapter 7 relies heavily on the material in chapter 5, so if you skipped chap-
ter 5, you should save chapter 7 until you’ve read it.

 If you’ve not used the new C++11 language facilities before, it might be worth
skimming appendix A before you start to ensure that you’re up to speed with the
examples in the book. The uses of the new language facilities are highlighted in
the text, though, and you can always flip to the appendix if you encounter something
you’ve not seen before.

 If you have extensive experience with writing multithreaded code in other environ-
ments, the beginning chapters are probably still worth skimming so you can see how
the facilities you know map onto the new standard C++ ones. If you’re going to be
doing any low-level work with atomic variables, chapter 5 is a must. Chapter 8 is worth
reviewing to ensure that you’re familiar with things like exception safety in multi-
threaded C++. If you have a particular task in mind, the index and table of contents
should help you find a relevant section quickly.

 Once you’re up to speed on the use of the C++ Thread Library, appendix D should
continue to be useful, such as for looking up the exact details of each class and func-
tion call. You may also like to dip back into the main chapters from time to time to
refresh your use of a particular construct or look at the sample code.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 Source code for all working examples in this book is available for download from
the publisher’s website at www.manning.com/CPlusPlusConcurrencyinAction.
Download from Wow! eBook <www.wowebook.com>

www.manning.com/CPlusPlusConcurrencyinAction

ABOUT THIS BOOK xxi
Software requirements
To use the code from this book unchanged, you’ll need a recent C++ compiler that
supports the new C++11 language features used in the examples (see appendix A),
and you’ll need a copy of the C++ Standard Thread Library.

 At the time of writing, g++ is the only compiler I’m aware of that ships with an
implementation of the Standard Thread Library, although the Microsoft Visual Studio
2011 preview also includes an implementation. The g++ implementation of the
Thread Library was first introduced in a basic form in g++ 4.3 and extended in subse-
quent releases. g++ 4.3 also introduced the first support for some of the new C++11
language features; more of the new language features are supported in each subse-
quent release. See the g++ C++11 status page for details.1

 Microsoft Visual Studio 2010 provides some of the new C++11 language features,
such as rvalue references and lambda functions, but doesn't ship with an implementa-
tion of the Thread Library.

 My company, Just Software Solutions Ltd, sells a complete implementation of the
C++11 Standard Thread Library for Microsoft Visual Studio 2005, Microsoft Visual
Studio 2008, Microsoft Visual Studio 2010, and various versions of g++.2 This imple-
mentation has been used for testing the examples in this book.

 The Boost Thread Library3 provides an API that’s based on the C++11 Standard
Thread Library proposals and is portable to many platforms. Most of the examples
from the book can be modified to work with the Boost Thread Library by judicious
replacement of std:: with boost:: and use of the appropriate #include directives.
There are a few facilities that are either not supported (such as std::async) or have
different names (such as boost::unique_future) in the Boost Thread Library.

Author Online
Purchase of C++ Concurrency in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum and
subscribe to it, point your web browser to www.manning.com/CPlusPlusConcurrencyin-
Action. This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

1 GNU Compiler Collection C++0x/C++11 status page, http://gcc.gnu.org/projects/cxx0x.html.
2 The just::thread implementation of the C++ Standard Thread Library, http://www.stdthread.co.uk.
3 The Boost C++ library collection, http://www.boost.org.
Download from Wow! eBook <www.wowebook.com>

http://gcc.gnu.org/projects/cxx0x.html
http://www.stdthread.co.uk/
http://www.boost.org/
www.manning.com/CPlusPlusConcurrencyinAction
www.manning.com/CPlusPlusConcurrencyinAction

about the cover illustration
The illustration on the cover of C++ Concurrency in Action is captioned “Habit of a
Lady of Japan.” The image is taken from the four-volume Collection of the Dress of
Different Nations by Thomas Jefferys, published in London between 1757 and 1772. The
collection includes beautiful hand-colored copperplate engravings of costumes from
around the world and has influenced theatrical costume design since its publication.
The diversity of the drawings in the compendium speaks vividly of the richness of the
costumes presented on the London stage over 200 years ago. The costumes, both his-
torical and contemporaneous, offered a glimpse into the dress customs of people liv-
ing in different times and in different countries, making them come alive for London
theater audiences.

 Dress codes have changed in the last century and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life—or a more varied and interesting intel-
lectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional and theatrical
life of two centuries ago, brought back to life by the pictures from this collection.
xxii

Download from Wow! eBook <www.wowebook.com>

Hello, world of
concurrency in C++!
These are exciting times for C++ users. Thirteen years after the original C++ Stan-
dard was published in 1998, the C++ Standards Committee is giving the language
and its supporting library a major overhaul. The new C++ Standard (referred to as
C++11 or C++0x) was published in 2011 and brings with it a whole swathe of
changes that will make working with C++ easier and more productive.

 One of the most significant new features in the C++11 Standard is the support of
multithreaded programs. For the first time, the C++ Standard will acknowledge the
existence of multithreaded applications in the language and provide components in
the library for writing multithreaded applications. This will make it possible to write

This chapter covers
■ What is meant by concurrency and

multithreading
■ Why you might want to use concurrency and

multithreading in your applications
■ Some of the history of the support for

concurrency in C++
■ What a simple multithreaded C++ program

looks like
1

Download from Wow! eBook <www.wowebook.com>

2 CHAPTER 1 Hello, world of concurrency in C++!
multithreaded C++ programs without relying on platform-specific extensions and thus
allow writing portable multithreaded code with guaranteed behavior. It also comes at a
time when programmers are increasingly looking to concurrency in general, and multi-
threaded programming in particular, to improve application performance.

 This book is about writing programs in C++ using multiple threads for concur-
rency and the C++ language features and library facilities that make that possible. I’ll
start by explaining what I mean by concurrency and multithreading and why you
would want to use concurrency in your applications. After a quick detour into why
you might not want to use it in your applications, I’ll give an overview of the concur-
rency support in C++, and I’ll round off this chapter with a simple example of C++
concurrency in action. Readers experienced with developing multithreaded applica-
tions may wish to skip the early sections. In subsequent chapters I’ll cover more
extensive examples and look at the library facilities in more depth. The book will fin-
ish with an in-depth reference to all the C++ Standard Library facilities for multi-
threading and concurrency.

 So, what do I mean by concurrency and multithreading?

1.1 What is concurrency?
At the simplest and most basic level, concurrency is about two or more separate activi-
ties happening at the same time. We encounter concurrency as a natural part of life;
we can walk and talk at the same time or perform different actions with each hand,
and of course we each go about our lives independently of each other—you can watch
football while I go swimming, and so on.

1.1.1 Concurrency in computer systems

When we talk about concurrency in terms of computers, we mean a single system per-
forming multiple independent activities in parallel, rather than sequentially, or one
after the other. It isn’t a new phenomenon: multitasking operating systems that allow
a single computer to run multiple applications at the same time through task switch-
ing have been commonplace for many years, and high-end server machines with mul-
tiple processors that enable genuine concurrency have been available for even longer.
What is new is the increased prevalence of computers that can genuinely run multiple
tasks in parallel rather than just giving the illusion of doing so.

 Historically, most computers have had one processor, with a single processing
unit or core, and this remains true for many desktop machines today. Such a
machine can really only perform one task at a time, but it can switch between tasks
many times per second. By doing a bit of one task and then a bit of another and so
on, it appears that the tasks are happening concurrently. This is called task switching.
We still talk about concurrency with such systems; because the task switches are so fast,
you can’t tell at which point a task may be suspended as the processor switches to
another one. The task switching provides an illusion of concurrency to both the user
and the applications themselves. Because there is only an illusion of concurrency, the
Download from Wow! eBook <www.wowebook.com>

3What is concurrency?
behavior of applications may be subtly different when executing in a single-processor
task-switching environment compared to when executing in an environment with
true concurrency. In particular, incorrect assumptions about the memory model
(covered in chapter 5) may not show up in such an environment. This is discussed
in more depth in chapter 10.

 Computers containing multiple processors have been used for servers and high-
performance computing tasks for a number of years, and now computers based on
processors with more than one core on a single chip (multicore processors) are becom-
ing increasingly common as desktop machines too. Whether they have multiple proces-
sors or multiple cores within a processor (or both), these computers are capable of
genuinely running more than one task in parallel. We call this hardware concurrency.

 Figure 1.1 shows an idealized scenario of a computer with precisely two tasks to do,
each divided into 10 equal-size chunks. On a dual-core machine (which has two pro-
cessing cores), each task can execute on its own core. On a single-core machine doing
task switching, the chunks from each task are interleaved. But they are also spaced out
a bit (in the diagram this is shown by the gray bars separating the chunks being
thicker than the separator bars shown for the dual-core machine); in order to do the
interleaving, the system has to perform a context switch every time it changes from one
task to another, and this takes time. In order to perform a context switch, the OS has
to save the CPU state and instruction pointer for the currently running task, work out
which task to switch to, and reload the CPU state for the task being switched to. The
CPU will then potentially have to load the memory for the instructions and data for
the new task into cache, which can prevent the CPU from executing any instructions,
causing further delay.

 Though the availability of concurrency in the hardware is most obvious with multi-
processor or multicore systems, some processors can execute multiple threads on a
single core. The important factor to consider is really the number of hardware threads:
the measure of how many independent tasks the hardware can genuinely run concur-
rently. Even with a system that has genuine hardware concurrency, it’s easy to have
more tasks than the hardware can run in parallel, so task switching is still used in these
cases. For example, on a typical desktop computer there may be hundreds of tasks

Figure 1.1 Two approaches to concurrency: parallel execution on a dual-core
machine versus task switching on a single-core machine
Download from Wow! eBook <www.wowebook.com>

4 CHAPTER 1 Hello, world of concurrency in C++!
running, performing background operations, even when the computer is nominally
idle. It’s the task switching that allows these background tasks to run and allows you to
run your word processor, compiler, editor, and web browser (or any combination of
applications) all at once. Figure 1.2 shows task switching among four tasks on a dual-
core machine, again for an idealized scenario with the tasks divided neatly into equal-
size chunks. In practice, many issues will make the divisions uneven and the scheduling
irregular. Some of these issues are covered in chapter 8 when we look at factors affect-
ing the performance of concurrent code.

 All the techniques, functions, and classes covered in this book can be used whether
your application is running on a machine with one single-core processor or on a
machine with many multicore processors and are not affected by whether the concur-
rency is achieved through task switching or by genuine hardware concurrency. But as
you may imagine, how you make use of concurrency in your application may well
depend on the amount of hardware concurrency available. This is covered in chapter 8,
where I cover the issues involved with designing concurrent code in C++.

1.1.2 Approaches to concurrency

Imagine for a moment a pair of programmers working together on a software project.
If your developers are in separate offices, they can go about their work peacefully,
without being disturbed by each other, and they each have their own set of reference
manuals. However, communication is not straightforward; rather than just turning
around and talking to each other, they have to use the phone or email or get up and
walk to each other’s office. Also, you have the overhead of two offices to manage and mul-
tiple copies of reference manuals to purchase.

 Now imagine that you move your developers into the same office. They can now
talk to each other freely to discuss the design of the application, and they can easily
draw diagrams on paper or on a whiteboard to help with design ideas or explanations.
You now have only one office to manage, and one set of resources will often suffice.
On the negative side, they might find it harder to concentrate, and there may be
issues with sharing resources (“Where’s the reference manual gone now?”).

 These two ways of organizing your developers illustrate the two basic approaches
to concurrency. Each developer represents a thread, and each office represents a pro-
cess. The first approach is to have multiple single-threaded processes, which is similar
to having each developer in their own office, and the second approach is to have mul-
tiple threads in a single process, which is like having two developers in the same office.

Figure 1.2 Task switching of four tasks on two cores
Download from Wow! eBook <www.wowebook.com>

5What is concurrency?
You can combine these in an arbitrary fashion and have multiple processes, some of
which are multithreaded and some of which are single-threaded, but the principles
are the same. Let’s now have a brief look at these two approaches to concurrency in
an application.

CONCURRENCY WITH MULTIPLE PROCESSES

The first way to make use of concurrency within an appli-
cation is to divide the application into multiple, separate,
single-threaded processes that are run at the same time,
much as you can run your web browser and word proces-
sor at the same time. These separate processes can then
pass messages to each other through all the normal inter-
process communication channels (signals, sockets, files,
pipes, and so on), as shown in figure 1.3. One downside is
that such communication between processes is often
either complicated to set up or slow or both, because
operating systems typically provide a lot of protection
between processes to avoid one process accidentally modi-
fying data belonging to another process. Another down-
side is that there’s an inherent overhead in running
multiple processes: it takes time to start a process, the
operating system must devote internal resources to man-
aging the process, and so forth.

 Of course, it’s not all downside: the added protection operating systems typically
provide between processes and the higher-level communication mechanisms mean
that it can be easier to write safe concurrent code with processes rather than threads.
Indeed, environments such as that provided for the Erlang programming language
use processes as the fundamental building block of concurrency to great effect.

 Using separate processes for concurrency also has an additional advantage—you can
run the separate processes on distinct machines connected over a network. Though this
increases the communication cost, on a carefully designed system it can be a cost-
effective way of increasing the available parallelism and improving performance.

CONCURRENCY WITH MULTIPLE THREADS

The alternative approach to concurrency is to run multiple threads in a single pro-
cess. Threads are much like lightweight processes: each thread runs independently of
the others, and each thread may run a different sequence of instructions. But all
threads in a process share the same address space, and most of the data can be
accessed directly from all threads—global variables remain global, and pointers or ref-
erences to objects or data can be passed around among threads. Although it’s often
possible to share memory among processes, this is complicated to set up and often
hard to manage, because memory addresses of the same data aren’t necessarily the
same in different processes. Figure 1.4 shows two threads within a process communi-
cating through shared memory.

Figure 1.3 Communication
between a pair of processes
running concurrently
Download from Wow! eBook <www.wowebook.com>

6 CHAPTER 1 Hello, world of concurrency in C++!
 The shared address space and lack of protection of data
between threads makes the overhead associated with using multi-
ple threads much smaller than that from using multiple pro-
cesses, because the operating system has less bookkeeping to do.
But the flexibility of shared memory also comes with a price: if
data is accessed by multiple threads, the application programmer
must ensure that the view of data seen by each thread is consistent
whenever it is accessed. The issues surrounding sharing data
between threads and the tools to use and guidelines to follow to
avoid problems are covered throughout this book, notably in
chapters 3, 4, 5, and 8. The problems are not insurmountable,
provided suitable care is taken when writing the code, but they do
mean that a great deal of thought must go into the communica-
tion between threads.

 The low overhead associated with launching and communicat-
ing between multiple threads within a process compared to launching and communi-
cating between multiple single-threaded processes means that this is the favored
approach to concurrency in mainstream languages including C++, despite the poten-
tial problems arising from the shared memory. In addition, the C++ Standard doesn’t
provide any intrinsic support for communication between processes, so applications
that use multiple processes will have to rely on platform-specific APIs to do so. This book
therefore focuses exclusively on using multithreading for concurrency, and future refer-
ences to concurrency assume that this is achieved by using multiple threads.

 Having clarified what we mean by concurrency, let’s now look at why you would use
concurrency in your applications.

1.2 Why use concurrency?
There are two main reasons to use concurrency in an application: separation of con-
cerns and performance. In fact, I’d go so far as to say that they’re pretty much the only
reasons to use concurrency; anything else boils down to one or the other (or maybe even
both) when you look hard enough (well, except for reasons like “because I want to”).

1.2.1 Using concurrency for separation of concerns

Separation of concerns is almost always a good idea when writing software; by group-
ing related bits of code together and keeping unrelated bits of code apart, you can
make your programs easier to understand and test, and thus less likely to contain
bugs. You can use concurrency to separate distinct areas of functionality, even when
the operations in these distinct areas need to happen at the same time; without the
explicit use of concurrency you either have to write a task-switching framework or
actively make calls to unrelated areas of code during an operation.

 Consider a processing-intensive application with a user interface, such as a DVD
player application for a desktop computer. Such an application fundamentally has two

Figure 1.4 Commu-
nication between
a pair of threads
running concurrently
in a single process
Download from Wow! eBook <www.wowebook.com>

7Why use concurrency?
sets of responsibilities: not only does it have to read the data from the disk, decode the
images and sound, and send them to the graphics and sound hardware in a timely
fashion so the DVD plays without glitches, but it must also take input from the user,
such as when the user clicks Pause or Return To Menu, or even Quit. In a single
thread, the application has to check for user input at regular intervals during the play-
back, thus conflating the DVD playback code with the user interface code. By using
multithreading to separate these concerns, the user interface code and DVD playback
code no longer have to be so closely intertwined; one thread can handle the user
interface and another the DVD playback. There will have to be interaction between
them, such as when the user clicks Pause, but now these interactions are directly
related to the task at hand.

 This gives the illusion of responsiveness, because the user interface thread can typ-
ically respond immediately to a user request, even if the response is simply to display a
busy cursor or Please Wait message while the request is conveyed to the thread doing
the work. Similarly, separate threads are often used to run tasks that must run contin-
uously in the background, such as monitoring the filesystem for changes in a desktop
search application. Using threads in this way generally makes the logic in each thread
much simpler, because the interactions between them can be limited to clearly identi-
fiable points, rather than having to intersperse the logic of the different tasks.

 In this case, the number of threads is independent of the number of CPU cores
available, because the division into threads is based on the conceptual design rather
than an attempt to increase throughput.

1.2.2 Using concurrency for performance

Multiprocessor systems have existed for decades, but until recently they were mostly
found only in supercomputers, mainframes, and large server systems. But chip manu-
facturers have increasingly been favoring multicore designs with 2, 4, 16, or more pro-
cessors on a single chip over better performance with a single core. Consequently,
multicore desktop computers, and even multicore embedded devices, are now
increasingly prevalent. The increased computing power of these machines comes not
from running a single task faster but from running multiple tasks in parallel. In the
past, programmers have been able to sit back and watch their programs get faster with
each new generation of processors, without any effort on their part. But now, as Herb
Sutter put it, “The free lunch is over.”1 If software is to take advantage of this increased
computing power, it must be designed to run multiple tasks concurrently. Programmers must
therefore take heed, and those who have hitherto ignored concurrency must now
look to add it to their toolbox.

 There are two ways to use concurrency for performance. The first, and most obvi-
ous, is to divide a single task into parts and run each in parallel, thus reducing the
total runtime. This is task parallelism. Although this sounds straightforward, it can be

1 “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Herb Sutter, Dr. Dobb’s
Journal, 30(3), March 2005. http://www.gotw.ca/publications/concurrency-ddj.htm.
Download from Wow! eBook <www.wowebook.com>

http://www.gotw.ca/publications/concurrency-ddj.htm

8 CHAPTER 1 Hello, world of concurrency in C++!
quite a complex process, because there may be many dependencies between the vari-
ous parts. The divisions may be either in terms of processing—one thread performs
one part of the algorithm while another thread performs a different part—or in terms
of data—each thread performs the same operation on different parts of the data. This
latter approach is called data parallelism.

 Algorithms that are readily susceptible to such parallelism are frequently called
embarrassingly parallel. Despite the implications that you might be embarrassed to have
code so easy to parallelize, this is a good thing: other terms I’ve encountered for such
algorithms are naturally parallel and conveniently concurrent. Embarrassingly parallel algo-
rithms have good scalability properties—as the number of available hardware threads
goes up, the parallelism in the algorithm can be increased to match. Such an algo-
rithm is the perfect embodiment of the adage, “Many hands make light work.” For
those parts of the algorithm that aren’t embarrassingly parallel, you might be able to
divide the algorithm into a fixed (and therefore not scalable) number of parallel
tasks. Techniques for dividing tasks between threads are covered in chapter 8.

 The second way to use concurrency for performance is to use the available paral-
lelism to solve bigger problems; rather than processing one file at a time, process 2 or
10 or 20, as appropriate. Although this is really just an application of data parallelism,
by performing the same operation on multiple sets of data concurrently, there’s a dif-
ferent focus. It still takes the same amount of time to process one chunk of data, but
now more data can be processed in the same amount of time. Obviously, there are lim-
its to this approach too, and this won’t be beneficial in all cases, but the increase in
throughput that comes from such an approach can actually make new things possi-
ble—increased resolution in video processing, for example, if different areas of the
picture can be processed in parallel.

1.2.3 When not to use concurrency

It’s just as important to know when not to use concurrency as it is to know when to use
it. Fundamentally, the only reason not to use concurrency is when the benefit is not
worth the cost. Code using concurrency is harder to understand in many cases, so
there’s a direct intellectual cost to writing and maintaining multithreaded code, and
the additional complexity can also lead to more bugs. Unless the potential perfor-
mance gain is large enough or separation of concerns clear enough to justify the addi-
tional development time required to get it right and the additional costs associated
with maintaining multithreaded code, don’t use concurrency.

 Also, the performance gain might not be as large as expected; there’s an inherent
overhead associated with launching a thread, because the OS has to allocate the associ-
ated kernel resources and stack space and then add the new thread to the scheduler,
all of which takes time. If the task being run on the thread is completed quickly, the
actual time taken by the task may be dwarfed by the overhead of launching the thread,
possibly making the overall performance of the application worse than if the task had
been executed directly by the spawning thread.
Download from Wow! eBook <www.wowebook.com>

9Concurrency and multithreading in C++
 Furthermore, threads are a limited resource. If you have too many threads run-
ning at once, this consumes OS resources and may make the system as a whole run
slower. Not only that, but using too many threads can exhaust the available memory or
address space for a process, because each thread requires a separate stack space. This
is particularly a problem for 32-bit processes with a flat architecture where there’s a
4 GB limit in the available address space: if each thread has a 1 MB stack (as is typical on
many systems), then the address space would be all used up with 4096 threads, with-
out allowing for any space for code or static data or heap data. Although 64-bit (or
larger) systems don’t have this direct address-space limit, they still have finite resources:
if you run too many threads, this will eventually cause problems. Though thread pools
(see chapter 9) can be used to limit the number of threads, these are not a silver bul-
let, and they do have their own issues.

 If the server side of a client/server application launches a separate thread for each
connection, this works fine for a small number of connections, but can quickly
exhaust system resources by launching too many threads if the same technique is used
for a high-demand server that has to handle many connections. In this scenario, care-
ful use of thread pools can provide optimal performance (see chapter 9).

 Finally, the more threads you have running, the more context switching the oper-
ating system has to do. Each context switch takes time that could be spent doing use-
ful work, so at some point adding an extra thread will actually reduce the overall
application performance rather than increase it. For this reason, if you’re trying to
achieve the best possible performance of the system, it’s necessary to adjust the num-
ber of threads running to take account of the available hardware concurrency (or
lack of it).

 Use of concurrency for performance is just like any other optimization strategy: it
has potential to greatly improve the performance of your application, but it can also
complicate the code, making it harder to understand and more prone to bugs. There-
fore it’s only worth doing for those performance-critical parts of the application
where there’s the potential for measurable gain. Of course, if the potential for perfor-
mance gains is only secondary to clarity of design or separation of concerns, it may
still be worth using a multithreaded design.

 Assuming that you’ve decided you do want to use concurrency in your application,
whether for performance, separation of concerns, or because it’s “multithreading
Monday,” what does that mean for C++ programmers?

1.3 Concurrency and multithreading in C++
Standardized support for concurrency through multithreading is a new thing for C++.
It’s only with the upcoming C++11 Standard that you’ll be able to write multithreaded
code without resorting to platform-specific extensions. In order to understand the
rationale behind lots of the decisions in the new Standard C++ Thread Library, it’s
important to understand the history.
Download from Wow! eBook <www.wowebook.com>

10 CHAPTER 1 Hello, world of concurrency in C++!
1.3.1 History of multithreading in C++

The 1998 C++ Standard doesn’t acknowledge the existence of threads, and the opera-
tional effects of the various language elements are written in terms of a sequential
abstract machine. Not only that, but the memory model isn’t formally defined, so you
can’t write multithreaded applications without compiler-specific extensions to the
1998 C++ Standard.

 Of course, compiler vendors are free to add extensions to the language, and the
prevalence of C APIs for multithreading—such as those in the POSIX C standard and
the Microsoft Windows API—has led many C++ compiler vendors to support multi-
threading with various platform-specific extensions. This compiler support is gener-
ally limited to allowing the use of the corresponding C API for the platform and
ensuring that the C++ Runtime Library (such as the code for the exception-handling
mechanism) works in the presence of multiple threads. Although very few compiler
vendors have provided a formal multithreading-aware memory model, the actual
behavior of the compilers and processors has been sufficiently good that a large num-
ber of multithreaded C++ programs have been written.

 Not content with using the platform-specific C APIs for handling multithread-
ing, C++ programmers have looked to their class libraries to provide object-oriented
multithreading facilities. Application frameworks such as MFC and general-purpose
C++ libraries such as Boost and ACE have accumulated sets of C++ classes that
wrap the underlying platform-specific APIs and provide higher-level facilities for
multithreading that simplify tasks. Although the precise details of the class librar-
ies have varied considerably, particularly in the area of launching new threads, the
overall shape of the classes has had a lot in common. One particularly important
design that’s common to many C++ class libraries, and that provides considerable
benefit to the programmer, has been the use of the Resource Acquisition Is Initializa-
tion (RAII) idiom with locks to ensure that mutexes are unlocked when the relevant
scope is exited.

 For many cases, the multithreading support of existing C++ compilers combined
with the availability of platform-specific APIs and platform-independent class libraries
such as Boost and ACE provide a solid foundation on which to write multithreaded
C++ code, and as a result there are probably millions of lines of C++ code written as
part of multithreaded applications. But the lack of standard support means that there
are occasions where the lack of a thread-aware memory model causes problems, par-
ticularly for those who try to gain higher performance by using knowledge of the pro-
cessor hardware or for those writing cross-platform code where the actual behavior of
the compilers varies between platforms.

1.3.2 Concurrency support in the new standard

All this changes with the release of the new C++11 Standard. Not only is there a brand-
new thread-aware memory model, but the C++ Standard Library has been extended to
include classes for managing threads (see chapter 2), protecting shared data (see
Download from Wow! eBook <www.wowebook.com>

11Concurrency and multithreading in C++
chapter 3), synchronizing operations between threads (see chapter 4), and low-level
atomic operations (see chapter 5).

 The new C++ Thread Library is heavily based on the prior experience accumu-
lated through the use of the C++ class libraries mentioned previously. In particular,
the Boost Thread Library has been used as the primary model on which the new
library is based, with many of the classes sharing their names and structure with the
corresponding ones from Boost. As the new standard has evolved, this has been a
two-way flow, and the Boost Thread Library has itself changed to match the C++
Standard in many respects, so users transitioning from Boost should find themselves
very much at home.

 Concurrency support is just one of the changes with the new C++ Standard—as
mentioned at the beginning of this chapter, there are many enhancements to the lan-
guage itself to make programmers’ lives easier. Although these are generally outside
the scope of this book, some of those changes have had a direct impact on the Thread
Library itself and the ways in which it can be used. Appendix A provides a brief intro-
duction to these language features.

 The support for atomic operations directly in C++ enables programmers to write
efficient code with defined semantics without the need for platform-specific assembly
language. This is a real boon for those trying to write efficient, portable code; not only
does the compiler take care of the platform specifics, but the optimizer can be written
to take into account the semantics of the operations, thus enabling better optimiza-
tion of the program as a whole.

1.3.3 Efficiency in the C++ Thread Library

One of the concerns that developers involved in high-performance computing often
raise regarding C++ in general, and C++ classes that wrap low-level facilities—such as
those in the new Standard C++ Thread Library specifically is that of efficiency. If
you’re after the utmost in performance, then it’s important to understand the imple-
mentation costs associated with using any high-level facilities, compared to using the
underlying low-level facilities directly. This cost is the abstraction penalty.

 The C++ Standards Committee has been very aware of this when designing the C++
Standard Library in general and the Standard C++ Thread Library in particular; one
of the design goals has been that there should be little or no benefit to be gained from
using the lower-level APIs directly, where the same facility is to be provided. The
library has therefore been designed to allow for efficient implementation (with a very
low abstraction penalty) on most major platforms.

 Another goal of the C++ Standards Committee has been to ensure that C++ pro-
vides sufficient low-level facilities for those wishing to work close to the metal for the
ultimate performance. To this end, along with the new memory model comes a com-
prehensive atomic operations library for direct control over individual bits and bytes
and the inter-thread synchronization and visibility of any changes. These atomic types
and the corresponding operations can now be used in many places where developers
Download from Wow! eBook <www.wowebook.com>

12 CHAPTER 1 Hello, world of concurrency in C++!
would previously have chosen to drop down to platform-specific assembly language.
Code using the new standard types and operations is thus more portable and easier
to maintain.

 The C++ Standard Library also provides higher-level abstractions and facilities that
make writing multithreaded code easier and less error prone. Sometimes the use of
these facilities does come with a performance cost because of the additional code that
must be executed. But this performance cost doesn’t necessarily imply a higher
abstraction penalty; in general the cost is no higher than would be incurred by writing
equivalent functionality by hand, and the compiler may well inline much of the addi-
tional code anyway.

 In some cases, the high-level facilities provide additional functionality beyond what
may be required for a specific use. Most of the time this is not an issue: you don’t pay
for what you don’t use. On rare occasions, this unused functionality will impact the
performance of other code. If you’re aiming for performance and the cost is too high,
you may be better off handcrafting the desired functionality from lower-level facilities.
In the vast majority of cases, the additional complexity and chance of errors far out-
weigh the potential benefits from a small performance gain. Even if profiling does
demonstrate that the bottleneck is in the C++ Standard Library facilities, it may be due
to poor application design rather than a poor library implementation. For example, if
too many threads are competing for a mutex, it will impact the performance signifi-
cantly. Rather than trying to shave a small fraction of time off the mutex operations, it
would probably be more beneficial to restructure the application so that there’s less
contention on the mutex. Designing applications to reduce contention is covered
in chapter 8.

 In those very rare cases where the C++ Standard Library does not provide the perfor-
mance or behavior required, it might be necessary to use platform-specific facilities.

1.3.4 Platform-specific facilities

Although the C++ Thread Library provides reasonably comprehensive facilities for
multithreading and concurrency, on any given platform there will be platform-specific
facilities that go beyond what’s offered. In order to gain easy access to those facilities
without giving up the benefits of using the Standard C++ Thread Library, the types in
the C++ Thread Library may offer a native_handle() member function that allows
the underlying implementation to be directly manipulated using a platform-specific
API. By its very nature, any operations performed using the native_handle() are
entirely platform dependent and out of the scope of this book (and the Standard C++
Library itself).

 Of course, before even considering using platform-specific facilities, it’s important to
understand what the Standard Library provides, so let’s get started with an example.
Download from Wow! eBook <www.wowebook.com>

13Getting started
1.4 Getting started
OK, so you have a nice, shiny C++11-compatible compiler. What next? What does a
multithreaded C++ program look like? It looks pretty much like any other C++ pro-
gram, with the usual mix of variables, classes, and functions. The only real distinction
is that some functions might be running concurrently, so you need to ensure that
shared data is safe for concurrent access, as described in chapter 3. Of course, in
order to run functions concurrently, specific functions and objects must be used to
manage the different threads.

1.4.1 Hello, Concurrent World

Let’s start with a classic example: a program to print “Hello World.” A really simple
Hello, World program that runs in a single thread is shown here, to serve as a baseline
when we move to multiple threads:

#include <iostream>

int main()
{
 std::cout<<"Hello World\n";
}

All this program does is write “Hello World” to the standard output stream. Let’s com-
pare it to the simple Hello, Concurrent World program shown in the following listing,
which starts a separate thread to display the message.

#include <iostream>
#include <thread>

void hello()
{
 std::cout<<"Hello Concurrent World\n";
}

int main()
{
 std::thread t(hello);
 t.join();
}

The first difference is the extra #include <thread> B. The declarations for the multi-
threading support in the Standard C++ Library are in new headers: the functions and
classes for managing threads are declared in <thread>, whereas those for protecting
shared data are declared in other headers.

 Second, the code for writing the message has been moved to a separate function

c. This is because every thread has to have an initial function, which is where the new
thread of execution begins. For the initial thread in an application, this is main(), but
for every other thread it’s specified in the constructor of a std::thread object—in

Listing 1.1 A simple Hello, Concurrent World program

b

c

d
 e
Download from Wow! eBook <www.wowebook.com>

14 CHAPTER 1 Hello, world of concurrency in C++!
this case, the std::thread object named t d has the new function hello() as its ini-
tial function.

 This is the next difference: rather than just writing directly to standard output or
calling hello() from main(), this program launches a whole new thread to do it,
bringing the thread count to two—the initial thread that starts at main() and the new
thread that starts at hello().

 After the new thread has been launched d, the initial thread continues execution.
If it didn’t wait for the new thread to finish, it would merrily continue to the end of
main() and thus end the program—possibly before the new thread had had a chance
to run. This is why the call to join() is there e—as described in chapter 2, this causes
the calling thread (in main()) to wait for the thread associated with the std::thread
object, in this case, t.

 If this seems like a lot of work to go to just to write a message to standard output, it
is—as described previously in section 1.2.3, it’s generally not worth the effort to use
multiple threads for such a simple task, especially if the initial thread has nothing to
do in the meantime. Later in the book, we’ll work through examples that show scenar-
ios where there’s a clear gain to using multiple threads.

1.5 Summary
In this chapter, I covered what is meant by concurrency and multithreading and why
you’d choose to use it (or not) in your applications. I also covered the history of multi-
threading in C++ from the complete lack of support in the 1998 standard, through
various platform-specific extensions, to proper multithreading support in the new C++
Standard, C++11. This support is coming just in time to allow programmers to take
advantage of the greater hardware concurrency becoming available with newer CPUs,
as chip manufacturers choose to add more processing power in the form of multiple
cores that allow more tasks to be executed concurrently, rather than increasing the
execution speed of a single core.

 I also showed how simple using the classes and functions from the C++ Standard
Library can be, in the examples in section 1.4. In C++, using multiple threads isn’t
complicated in and of itself; the complexity lies in designing the code so that it
behaves as intended.

 After the taster examples of section 1.4, it’s time for something with a bit more
substance. In chapter 2 we’ll look at the classes and functions available for manag-
ing threads.
Download from Wow! eBook <www.wowebook.com>

Managing threads
OK, so you’ve decided to use concurrency for your application. In particular, you’ve
decided to use multiple threads. What now? How do you launch these threads, how
do you check that they’ve finished, and how do you keep tabs on them? The C++
Standard Library makes most thread-management tasks relatively easy, with just
about everything managed through the std::thread object associated with a given
thread, as you’ll see. For those tasks that aren’t so straightforward, the library pro-
vides the flexibility to build what you need from the basic building blocks.

 In this chapter, I’ll start by covering the basics: launching a thread, waiting for it
to finish, or running it in the background. We’ll then proceed to look at passing
additional parameters to the thread function when it’s launched and how to trans-
fer ownership of a thread from one std::thread object to another. Finally, we’ll
look at choosing the number of threads to use and identifying particular threads.

This chapter covers
■ Starting threads, and various ways of specifying

code to run on a new thread
■ Waiting for a thread to finish versus leaving it

to run
■ Uniquely identifying threads
15

Download from Wow! eBook <www.wowebook.com>

16 CHAPTER 2 Managing threads
2.1 Basic thread management
Every C++ program has at least one thread, which is started by the C++ runtime: the
thread running main(). Your program can then launch additional threads that have
another function as the entry point. These threads then run concurrently with each
other and with the initial thread. Just as the program exits when the program returns
from main(), when the specified entry point function returns, the thread exits. As
you’ll see, if you have a std::thread object for a thread, you can wait for it to finish;
but first you have to start it, so let’s look at launching threads.

2.1.1 Launching a thread

As you saw in chapter 1, threads are started by constructing a std::thread object that
specifies the task to run on that thread. In the simplest case, that task is just a plain,
ordinary void-returning function that takes no parameters. This function runs on its
own thread until it returns, and then the thread stops. At the other extreme, the task
could be a function object that takes additional parameters and performs a series of
independent operations that are specified through some kind of messaging system
while it’s running, and the thread stops only when it’s signaled to do so, again via
some kind of messaging system. It doesn’t matter what the thread is going to do or
where it’s launched from, but starting a thread using the C++ Thread Library always
boils down to constructing a std::thread object:

void do_some_work();
std::thread my_thread(do_some_work);

This is just about as simple as it gets. Of course, you have to make sure that the
<thread> header is included so the compiler can see the definition of the std::
thread class. As with much of the C++ Standard Library, std::thread works with any
callable type, so you can pass an instance of a class with a function call operator to the
std::thread constructor instead:

class background_task
{
public:
 void operator()() const
 {
 do_something();
 do_something_else();
 }
};
background_task f;
std::thread my_thread(f);

In this case, the supplied function object is copied into the storage belonging to the
newly created thread of execution and invoked from there. It’s therefore essential that
the copy behave equivalently to the original, or the result may not be what’s expected.

 One thing to consider when passing a function object to the thread constructor is
to avoid what is dubbed “C++’s most vexing parse.” If you pass a temporary rather
Download from Wow! eBook <www.wowebook.com>

17Basic thread management
than a named variable, then the syntax can be the same as that of a function declara-
tion, in which case the compiler interprets it as such, rather than an object definition.
For example,

std::thread my_thread(background_task());

declares a function my_thread that takes a single parameter (of type pointer to a func-
tion taking no parameters and returning a background_task object) and returns a
std::thread object, rather than launching a new thread. You can avoid this by nam-
ing your function object as shown previously, by using an extra set of parentheses, or
by using the new uniform initialization syntax, for example:

std::thread my_thread((background_task()));
std::thread my_thread{background_task()};

In the first example B, the extra parentheses prevent interpretation as a function
declaration, thus allowing my_thread to be declared as a variable of type std::thread.
The second example c uses the new uniform initialization syntax with braces rather
than parentheses, and thus would also declare a variable.

 One type of callable object that avoids this problem is a lambda expression. This is a
new feature from C++11 which essentially allows you to write a local function, possibly
capturing some local variables and avoiding the need of passing additional arguments
(see section 2.2). For full details on lambda expressions, see appendix A, section A.5.
The previous example can be written using a lambda expression as follows:

std::thread my_thread([](
 do_something();
 do_something_else();
});

Once you’ve started your thread, you need to explicitly decide whether to wait for it to
finish (by joining with it—see section 2.1.2) or leave it to run on its own (by detaching
it—see section 2.1.3). If you don’t decide before the std::thread object is destroyed,
then your program is terminated (the std::thread destructor calls std::terminate()).
It’s therefore imperative that you ensure that the thread is correctly joined or
detached, even in the presence of exceptions. See section 2.1.3 for a technique to han-
dle this scenario. Note that you only have to make this decision before the std::thread
object is destroyed—the thread itself may well have finished long before you join with
it or detach it, and if you detach it, then the thread may continue running long after
the std::thread object is destroyed.

 If you don’t wait for your thread to finish, then you need to ensure that the data
accessed by the thread is valid until the thread has finished with it. This isn’t a new
problem—even in single-threaded code it is undefined behavior to access an object
after it’s been destroyed—but the use of threads provides an additional opportunity to
encounter such lifetime issues.

 One situation in which you can encounter such problems is when the thread
function holds pointers or references to local variables and the thread hasn’t

b
 c
Download from Wow! eBook <www.wowebook.com>

18 CHAPTER 2 Managing threads
finished when the function exits. The following listing shows an example of just
such a scenario.

struct func
{
 int& i;

 func(int& i_):i(i_){}

 void operator()()
 {
 for(unsigned j=0;j<1000000;++j)
 {
 do_something(i);
 }
 }
};

void oops()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread my_thread(my_func);
 my_thread.detach();
}

In this case, the new thread associated with my_thread will probably still be running
when oops exits d, because you’ve explicitly decided not to wait for it by calling
detach() c. If the thread is still running, then the next call to do_something(i) B
will access an already destroyed variable. This is just like normal single-threaded
code—allowing a pointer or reference to a local variable to persist beyond the func-
tion exit is never a good idea—but it’s easier to make the mistake with multithreaded
code, because it isn’t necessarily immediately apparent that this has happened.

 One common way to handle this scenario is to make the thread function self-
contained and copy the data into the thread rather than sharing the data. If you use a
callable object for your thread function, that object is itself copied into the thread, so
the original object can be destroyed immediately. But you still need to be wary of
objects containing pointers or references, such as that from listing 2.1. In particular,
it’s a bad idea to create a thread within a function that has access to the local variables
in that function, unless the thread is guaranteed to finish before the function exits.

 Alternatively, you can ensure that the thread has completed execution before the
function exits by joining with the thread.

2.1.2 Waiting for a thread to complete

If you need to wait for a thread to complete, you can do this by calling join() on the asso-
ciated std::thread instance. In the case of listing 2.1, replacing the call to my_thread
.detach() before the closing brace of the function body with a call to my_thread.join()

Listing 2.1 A function that returns while a thread still has access to local variables

Potential access to
dangling reference

b

Don’t wait
for thread
to finish

c
New thread
might still
be running

d

Download from Wow! eBook <www.wowebook.com>

19Basic thread management
would therefore be sufficient to ensure that the thread was finished before the func-
tion was exited and thus before the local variables were destroyed. In this case, it
would mean there was little point running the function on a separate thread, because
the first thread wouldn’t be doing anything useful in the meantime, but in real code
the original thread would either have work to do itself or it would have launched sev-
eral threads to do useful work before waiting for all of them to complete.

join() is simple and brute force—either you wait for a thread to finish or you
don’t. If you need more fine-grained control over waiting for a thread, such as to
check whether a thread is finished, or to wait only a certain period of time, then you
have to use alternative mechanisms such as condition variables and futures, which
we’ll look at in chapter 4. The act of calling join() also cleans up any storage associ-
ated with the thread, so the std::thread object is no longer associated with the now-
finished thread; it isn’t associated with any thread. This means that you can call
join() only once for a given thread; once you’ve called join(), the std::thread
object is no longer joinable, and joinable() will return false.

2.1.3 Waiting in exceptional circumstances

As mentioned earlier, you need to ensure that you’ve called either join() or
detach() before a std::thread object is destroyed. If you’re detaching a thread, you
can usually call detach() immediately after the thread has been started, so this isn’t a
problem. But if you’re intending to wait for the thread, you need to pick carefully the
place in the code where you call join(). This means that the call to join() is liable to
be skipped if an exception is thrown after the thread has been started but before the
call to join().

 To avoid your application being terminated when an exception is thrown, you
therefore need to make a decision on what to do in this case. In general, if you were
intending to call join() in the non-exceptional case, you also need to call join() in
the presence of an exception to avoid accidental lifetime problems. The next listing
shows some simple code that does just that.

struct func;

void f()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread t(my_func);
 try
 {
 do_something_in_current_thread();
 }
 catch(...)
 {
 t.join();

Listing 2.2 Waiting for a thread to finish

See definition
in listing 2.1

b

Download from Wow! eBook <www.wowebook.com>

20 CHAPTER 2 Managing threads
 throw;
 }
 t.join();
}

The code in listing 2.2 uses a try/catch block to ensure that a thread with access to
local state is finished before the function exits, whether the function exits normally c
or by an exception B. The use of try/catch blocks is verbose, and it’s easy to get the
scope slightly wrong, so this isn’t an ideal scenario. If it’s important to ensure that
the thread must complete before the function exits—whether because it has a refer-
ence to other local variables or for any other reason—then it’s important to ensure
this is the case for all possible exit paths, whether normal or exceptional, and it’s
desirable to provide a simple, concise mechanism for doing so.

 One way of doing this is to use the standard Resource Acquisition Is Initialization
(RAII) idiom and provide a class that does the join() in its destructor, as in the follow-
ing listing. See how it simplifies the function f().

class thread_guard
{
 std::thread& t;
public:
 explicit thread_guard(std::thread& t_):
 t(t_)
 {}
 ~thread_guard()
 {
 if(t.joinable())
 {
 t.join();
 }
 }
 thread_guard(thread_guard const&)=delete;
 thread_guard& operator=(thread_guard const&)=delete;
};

struct func;

void f()
{
 int some_local_state=0;
 func my_func(some_local_state);
 std::thread t(my_func);
 thread_guard g(t);

 do_something_in_current_thread();
}

When the execution of the current thread reaches the end of f e, the local objects
are destroyed in reverse order of construction. Consequently, the thread_guard
object g is destroyed first, and the thread is joined with in the destructor c. This

Listing 2.3 Using RAII to wait for a thread to complete

c

b

c

d

See definition
in listing 2.1

e

Download from Wow! eBook <www.wowebook.com>

21Basic thread management
even happens if the function exits because do_something_in_current_thread throws
an exception.

 The destructor of thread_guard in listing 2.3 first tests to see if the std::thread
object is joinable() B before calling join() c. This is important, because join()
can be called only once for a given thread of execution, so it would therefore be a mis-
take to do so if the thread had already been joined.

 The copy constructor and copy-assignment operator are marked =delete d to
ensure that they’re not automatically provided by the compiler. Copying or assigning
such an object would be dangerous, because it might then outlive the scope of the
thread it was joining. By declaring them as deleted, any attempt to copy a thread_
guard object will generate a compilation error. See appendix A, section A.2, for more
about deleted functions.

 If you don’t need to wait for a thread to finish, you can avoid this exception-safety
issue by detaching it. This breaks the association of the thread with the std::thread object
and ensures that std::terminate() won’t be called when the std::thread object is
destroyed, even though the thread is still running in the background.

2.1.4 Running threads in the background

Calling detach() on a std::thread object leaves the thread to run in the back-
ground, with no direct means of communicating with it. It’s no longer possible to wait
for that thread to complete; if a thread becomes detached, it isn’t possible to obtain a
std::thread object that references it, so it can no longer be joined. Detached threads
truly run in the background; ownership and control are passed over to the C++ Run-
time Library, which ensures that the resources associated with the thread are correctly
reclaimed when the thread exits.

 Detached threads are often called daemon threads after the UNIX concept of a
daemon process that runs in the background without any explicit user interface. Such
threads are typically long-running; they may well run for almost the entire lifetime of
the application, performing a background task such as monitoring the filesystem,
clearing unused entries out of object caches, or optimizing data structures. At the
other extreme, it may make sense to use a detached thread where there’s another
mechanism for identifying when the thread has completed or where the thread is
used for a “fire and forget” task.

 As you’ve already seen in section 2.1.2, you detach a thread by calling the detach()
member function of the std::thread object. After the call completes, the std::thread
object is no longer associated with the actual thread of execution and is therefore no
longer joinable:

std::thread t(do_background_work);
t.detach();
assert(!t.joinable());

In order to detach the thread from a std::thread object, there must be a thread to
detach: you can’t call detach() on a std::thread object with no associated thread of
Download from Wow! eBook <www.wowebook.com>

22 CHAPTER 2 Managing threads
execution. This is exactly the same requirement as for join(), and you can check it in
exactly the same way—you can only call t.detach() for a std::thread object t when
t.joinable() returns true.

 Consider an application such as a word processor that can edit multiple docu-
ments at once. There are many ways to handle this, both at the UI level and internally.
One way that seems to be increasingly common at the moment is to have multiple
independent top-level windows, one for each document being edited. Although these
windows appear to be completely independent, each with its own menus and so forth,
they’re running within the same instance of the application. One way to handle this
internally is to run each document-editing window in its own thread; each thread runs
the same code but with different data relating to the document being edited and the
corresponding window properties. Opening a new document therefore requires start-
ing a new thread. The thread handling the request isn’t going to care about waiting
for that other thread to finish, because it’s working on an unrelated document, so this
makes it a prime candidate for running a detached thread.

 The following listing shows a simple code outline for this approach.

void edit_document(std::string const& filename)
{
 open_document_and_display_gui(filename);
 while(!done_editing())
 {
 user_command cmd=get_user_input();
 if(cmd.type==open_new_document)
 {
 std::string const new_name=get_filename_from_user();
 std::thread t(edit_document,new_name);
 t.detach();
 }
 else
 {
 process_user_input(cmd);
 }
 }
}

If the user chooses to open a new document, you prompt them for the document to
open, start a new thread to open that document B, and then detach it c. Because
the new thread is doing the same operation as the current thread but on a different
file, you can reuse the same function (edit_document) with the newly chosen file-
name as the supplied argument.

 This example also shows a case where it’s helpful to pass arguments to the function
used to start a thread: rather than just passing the name of the function to the
std::thread constructor B, you also pass in the filename parameter. Although other
mechanisms could be used to do this, such as using a function object with member

Listing 2.4 Detaching a thread to handle other documents

b
c

Download from Wow! eBook <www.wowebook.com>

23Passing arguments to a thread function
data instead of an ordinary function with parameters, the Thread Library provides
you with an easy way of doing it.

2.2 Passing arguments to a thread function
As shown in listing 2.4, passing arguments to the callable object or function is funda-
mentally as simple as passing additional arguments to the std::thread constructor.
But it’s important to bear in mind that by default the arguments are copied into inter-
nal storage, where they can be accessed by the newly created thread of execution,
even if the corresponding parameter in the function is expecting a reference. Here’s a
simple example:

void f(int i,std::string const& s);
std::thread t(f,3,”hello”);

This creates a new thread of execution associated with t, which calls f(3,”hello”).
Note that even though f takes a std::string as the second parameter, the string lit-
eral is passed as a char const* and converted to a std::string only in the context of
the new thread. This is particularly important when the argument supplied is a
pointer to an automatic variable, as follows:

void f(int i,std::string const& s);

void oops(int some_param)
{
 char buffer[1024];
 sprintf(buffer, "%i",some_param);
 std::thread t(f,3,buffer);
 t.detach();
}

In this case, it’s the pointer to the local variable buffer B that’s passed through to the
new thread c, and there’s a significant chance that the function oops will exit before
the buffer has been converted to a std::string on the new thread, thus leading to
undefined behavior. The solution is to cast to std::string before passing the buffer
to the std::thread constructor:

void f(int i,std::string const& s);

void not_oops(int some_param)
{
 char buffer[1024];
 sprintf(buffer,"%i",some_param);
 std::thread t(f,3,std::string(buffer));
 t.detach();
}

In this case, the problem is that you were relying on the implicit conversion of the
pointer to the buffer into the std::string object expected as a function parameter,
because the std::thread constructor copies the supplied values as is, without convert-
ing to the expected argument type.

b

c

Using std::string avoids
dangling pointer
Download from Wow! eBook <www.wowebook.com>

24 CHAPTER 2 Managing threads
 It’s also possible to get the reverse scenario: the object is copied, and what you
wanted was a reference. This might happen if the thread is updating a data structure
that’s passed in by reference, for example:

void update_data_for_widget(widget_id w,widget_data& data);

void oops_again(widget_id w)
{
 widget_data data;
 std::thread t(update_data_for_widget,w,data);
 display_status();
 t.join();
 process_widget_data(data);
}

Although update_data_for_widget B expects the second parameter to be passed by
reference, the std::thread constructor c doesn’t know that; it’s oblivious to the
types of the arguments expected by the function and blindly copies the supplied val-
ues. When it calls update_data_for_widget, it will end up passing a reference to
the internal copy of data and not a reference to data itself. Consequently, when the
thread finishes, these updates will be discarded as the internal copies of the supplied
arguments are destroyed, and process_widget_data will be passed an unchanged
data d rather than a correctly updated version. For those of you familiar with
std::bind, the solution will be readily apparent: you need to wrap the arguments that
really need to be references in std::ref. In this case, if you change the thread invoca-
tion to

std::thread t(update_data_for_widget,w,std::ref(data));

and then update_data_for_widget will be correctly passed a reference to data rather
than a reference to a copy of data.

 If you’re familiar with std::bind, the parameter-passing semantics will be unsur-
prising, because both the operation of the std::thread constructor and the opera-
tion of std::bind are defined in terms of the same mechanism. This means that, for
example, you can pass a member function pointer as the function, provided you sup-
ply a suitable object pointer as the first argument:

class X
{
public:
 void do_lengthy_work();
};

X my_x;
std::thread t(&X::do_lengthy_work,&my_x);

This code will invoke my_x.do_lengthy_work() on the new thread, because the
address of my_x is supplied as the object pointer B. You can also supply arguments to
such a member function call: the third argument to the std::thread constructor will
be the first argument to the member function and so forth.

b

c

d

b

Download from Wow! eBook <www.wowebook.com>

25Transferring ownership of a thread
 Another interesting scenario for supplying arguments is where the arguments
can’t be copied but can only be moved: the data held within one object is transferred
over to another, leaving the original object “empty.” An example of such a type is
std::unique_ptr, which provides automatic memory management for dynamically
allocated objects. Only one std::unique_ptr instance can point to a given object at a
time, and when that instance is destroyed, the pointed-to object is deleted. The move
constructor and move assignment operator allow the ownership of an object to be trans-
ferred around between std::unique_ptr instances (see appendix A, section A.1.1, for
more on move semantics). Such a transfer leaves the source object with a NULL
pointer. This moving of values allows objects of this type to be accepted as function
parameters or returned from functions. Where the source object is a temporary, the
move is automatic, but where the source is a named value, the transfer must be
requested directly by invoking std::move(). The following example shows the use of
std::move to transfer ownership of a dynamic object into a thread:

void process_big_object(std::unique_ptr<big_object>);

std::unique_ptr<big_object> p(new big_object);
p->prepare_data(42);
std::thread t(process_big_object,std::move(p));

By specifying std::move(p) in the std::thread constructor, the ownership of the
big_object is transferred first into internal storage for the newly created thread and
then into process_big_object.

 Several of the classes in the Standard Thread Library exhibit the same ownership
semantics as std::unique_ptr, and std::thread is one of them. Though std::thread
instances don’t own a dynamic object in the same way as std::unique_ptr does, they
do own a resource: each instance is responsible for managing a thread of execution.
This ownership can be transferred between instances, because instances of std::thread
are movable, even though they aren’t copyable. This ensures that only one object is asso-
ciated with a particular thread of execution at any one time while allowing program-
mers the option of transferring that ownership between objects.

2.3 Transferring ownership of a thread
Suppose you want to write a function that creates a thread to run in the background
but passes back ownership of the new thread to the calling function rather than wait-
ing for it to complete, or maybe you want to do the reverse: create a thread and pass
ownership in to some function that should wait for it to complete. In either case, you
need to transfer ownership from one place to another.

 This is where the move support of std::thread comes in. As described in the pre-
vious section, many resource-owning types in the C++ Standard Library such as
std::ifstream and std::unique_ptr are movable but not copyable, and std::thread is
one of them. This means that the ownership of a particular thread of execution can
be moved between std::thread instances, as in the following example. The example
Download from Wow! eBook <www.wowebook.com>

26 CHAPTER 2 Managing threads
shows the creation of two threads of execution and the transfer of ownership of those
threads among three std::thread instances, t1, t2, and t3:

void some_function();
void some_other_function();
std::thread t1(some_function);
std::thread t2=std::move(t1);
t1=std::thread(some_other_function);
std::thread t3;
t3=std::move(t2);
t1=std::move(t3);

First, a new thread is started B and associated with t1. Ownership is then transferred
over to t2 when t2 is constructed, by invoking std::move() to explicitly move owner-
ship c. At this point, t1 no longer has an associated thread of execution; the thread
running some_function is now associated with t2.

 Then, a new thread is started and associated with a temporary std::thread
object d. The subsequent transfer of ownership into t1 doesn’t require a call to std::
move() to explicitly move ownership, because the owner is a temporary object—moving
from temporaries is automatic and implicit.

t3 is default constructed e, which means that it’s created without any associated
thread of execution. Ownership of the thread currently associated with t2 is transferred
into t3 f, again with an explicit call to std::move(), because t2 is a named object. After
all these moves, t1 is associated with the thread running some_other_function, t2 has no
associated thread, and t3 is associated with the thread running some_function.

 The final move g transfers ownership of the thread running some_function back
to t1 where it started. But in this case t1 already had an associated thread (which was
running some_other_function), so std::terminate() is called to terminate the
program. This is done for consistency with the std::thread destructor. You saw in
section 2.1.1 that you must explicitly wait for a thread to complete or detach it before
destruction, and the same applies to assignment: you can’t just “drop” a thread by
assigning a new value to the std::thread object that manages it.

 The move support in std::thread means that ownership can readily be trans-
ferred out of a function, as shown in the following listing.

std::thread f()
{
 void some_function();
 return std::thread(some_function);
}
std::thread g()
{
 void some_other_function(int);
 std::thread t(some_other_function,42);
 return t;
}

Listing 2.5 Returning a std::thread from a function

b
 c

d
 e

f This assignment will
terminate program!

g

Download from Wow! eBook <www.wowebook.com>

27Transferring ownership of a thread
Likewise, if ownership should be transferred into a function, it can just accept an
instance of std::thread by value as one of the parameters, as shown here:

void f(std::thread t);
void g()
{
 void some_function();
 f(std::thread(some_function));
 std::thread t(some_function);
 f(std::move(t));
}

One benefit of the move support of std::thread is that you can build on the
thread_guard class from listing 2.3 and have it actually take ownership of the thread.
This avoids any unpleasant consequences should the thread_guard object outlive the
thread it was referencing, and it also means that no one else can join or detach
the thread once ownership has been transferred into the object. Because this would
primarily be aimed at ensuring threads are completed before a scope is exited, I named
this class scoped_thread. The implementation is shown in the following listing, along
with a simple example.

class scoped_thread
{
 std::thread t;
public:
 explicit scoped_thread(std::thread t_):
 t(std::move(t_))
 {
 if(!t.joinable())
 throw std::logic_error(“No thread”);
 }
 ~scoped_thread()
 {
 t.join();
 }
 scoped_thread(scoped_thread const&)=delete;
 scoped_thread& operator=(scoped_thread const&)=delete;
};

struct func;

void f()
{
 int some_local_state;
 scoped_thread t(std::thread(func(some_local_state)));

 do_something_in_current_thread();
}

The example is similar to that from listing 2.3, but the new thread is passed in directly
to the scoped_thread e rather than having to create a separate named variable for it.

Listing 2.6 scoped_thread and example usage

b

c

d

See
listing 2.1

e

f

Download from Wow! eBook <www.wowebook.com>

28 CHAPTER 2 Managing threads
When the initial thread reaches the end of f f, the scoped_thread object is
destroyed and then joins with d the thread supplied to the constructor B. Whereas
with the thread_guard class from listing 2.3 the destructor had to check that the
thread was still joinable, you can do that in the constructor c and throw an exception
if it’s not.

 The move support in std::thread also allows for containers of std::thread
objects, if those containers are move aware (like the updated std::vector<>). This
means that you can write code like that in the following listing, which spawns a num-
ber of threads and then waits for them to finish.

void do_work(unsigned id);

void f()
{
 std::vector<std::thread> threads;
 for(unsigned i=0;i<20;++i)
 {
 threads.push_back(std::thread(do_work,i));
 }
 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));
}

If the threads are being used to subdivide the work of an algorithm, this is often just
what’s required; before returning to the caller, all threads must have finished. Of
course, the simple structure of listing 2.7 implies that the work done by the threads is
self-contained, and the result of their operations is purely the side effects on shared
data. If f() were to return a value to the caller that depended on the results of the
operations performed by these threads, then as written this return value would have
to be determined by examining the shared data after the threads had terminated.
Alternative schemes for transferring the results of operations between threads are dis-
cussed in chapter 4.

 Putting std::thread objects in a std::vector is a step toward automating the
management of those threads: rather than creating separate variables for those
threads and joining with them directly, they can be treated as a group. You can take
this a step further by creating a dynamic number of threads determined at runtime,
rather than creating a fixed number as in listing 2.7.

2.4 Choosing the number of threads at runtime
One feature of the C++ Standard Library that helps here is std::thread::hardware_
concurrency(). This function returns an indication of the number of threads that can
truly run concurrently for a given execution of a program. On a multicore system it
might be the number of CPU cores, for example. This is only a hint, and the function
might return 0 if this information is not available, but it can be a useful guide for split-
ting a task among threads.

Listing 2.7 Spawn some threads and wait for them to finish

Spawn
threads

Call join() on each
thread in turn
Download from Wow! eBook <www.wowebook.com>

29Choosing the number of threads at runtime
 Listing 2.8 shows a simple implementation of a parallel version of std::accumulate.
It divides the work among the threads, with a minimum number of elements per
thread in order to avoid the overhead of too many threads. Note that this implementa-
tion assumes that none of the operations will throw an exception, even though excep-
tions are possible; the std::thread constructor will throw if it can’t start a new thread
of execution, for example. Handling exceptions in such an algorithm is beyond the
scope of this simple example and will be covered in chapter 8.

template<typename Iterator,typename T>
struct accumulate_block
{
 void operator()(Iterator first,Iterator last,T& result)
 {
 result=std::accumulate(first,last,result);
 }
};

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return init;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 std::vector<T> results(num_threads);
 std::vector<std::thread> threads(num_threads-1);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 threads[i]=std::thread(
 accumulate_block<Iterator,T>(),
 block_start,block_end,std::ref(results[i]));
 block_start=block_end;
 }
 accumulate_block<Iterator,T>()(
 block_start,last,results[num_threads-1]);

Listing 2.8 A naïve parallel version of std::accumulate

b

c

d

e

f

g
h

i

j

Download from Wow! eBook <www.wowebook.com>

30 CHAPTER 2 Managing threads
 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));

 return std::accumulate(results.begin(),results.end(),init);
}

Although this is quite a long function, it’s actually straightforward. If the input range
is empty B, you just return the initial value init. Otherwise, there’s at least one ele-
ment in the range, so you can divide the number of elements to process by the mini-
mum block size in order to give the maximum number of threads c. This is to avoid
creating 32 threads on a 32-core machine when you have only five values in the range.

 The number of threads to run is the minimum of your calculated maximum and
the number of hardware threads d. You don’t want to run more threads than the
hardware can support (which is called oversubscription), because the context switching
will mean that more threads will decrease the performance. If the call to std::thread::
hardware_concurrency() returned 0, you’d simply substitute a number of your choice;
in this case I’ve chosen 2. You don’t want to run too many threads, because that would
slow things down on a single-core machine, but likewise you don’t want to run too few,
because then you’d be passing up the available concurrency.

 The number of entries for each thread to process is the length of the range
divided by the number of threads e. If you’re worrying about the case where the
number doesn’t divide evenly, don’t—you’ll handle that later.

 Now that you know how many threads you have, you can create a std::vector<T>
for the intermediate results and a std::vector<std::thread> for the threads f.
Note that you need to launch one fewer thread than num_threads, because you already
have one.

 Launching the threads is just a simple loop: advance the block_end iterator to the
end of the current block g and launch a new thread to accumulate the results for this
block h. The start of the next block is the end of this one i.

 After you’ve launched all the threads, this thread can then process the final block

j. This is where you take account of any uneven division: you know the end of the
final block must be last, and it doesn’t matter how many elements are in that block.

 Once you’ve accumulated the results for the last block, you can wait for all the
threads you spawned with std::for_each 1), as in listing 2.7, and then add up the results
with a final call to std::accumulate 1!.

 Before you leave this example, it’s worth pointing out that where the addition
operator for the type T is not associative (such as for float or double), the results of
this parallel_accumulate may vary from those of std::accumulate, because of the
grouping of the range into blocks. Also, the requirements on the iterators are slightly
more stringent: they must be at least forward iterators, whereas std::accumulate can
work with single-pass input iterators, and T must be default constructible so that you can cre-
ate the results vector. These sorts of requirement changes are common with parallel
algorithms; by their very nature they’re different in some manner in order to make
them parallel, and this has consequences on the results and requirements. Parallel

1)

1!
Download from Wow! eBook <www.wowebook.com>

31Identifying threads
algorithms are covered in more depth in chapter 8. It’s also worth noting that because
you can’t return a value directly from a thread, you must pass in a reference to the rel-
evant entry in the results vector. Alternative ways of returning results from threads
are addressed through the use of futures in chapter 4.

 In this case, all the information required by each thread was passed in when the
thread was started, including the location in which to store the result of its calculation.
This isn’t always the case: sometimes it’s necessary to be able to identify the threads in
some way for part of the processing. You could pass in an identifying number, such as
the value of i in listing 2.7, but if the function that needs the identifier is several levels
deep in the call stack and could be called from any thread, it’s inconvenient to have to
do it that way. When we were designing the C++ Thread Library we foresaw this need,
and so each thread has a unique identifier.

2.5 Identifying threads
Thread identifiers are of type std::thread::id and can be retrieved in two ways.
First, the identifier for a thread can be obtained from its associated std::thread
object by calling the get_id() member function. If the std::thread object doesn’t
have an associated thread of execution, the call to get_id() returns a default-
constructed std::thread::id object, which indicates “not any thread.” Alternatively,
the identifier for the current thread can be obtained by calling std::this_thread::
get_id(), which is also defined in the <thread> header.

 Objects of type std::thread::id can be freely copied and compared; they
wouldn’t be of much use as identifiers otherwise. If two objects of type std::thread::id
are equal, they represent the same thread, or both are holding the “not any thread”
value. If two objects aren’t equal, they represent different threads, or one represents a
thread and the other is holding the “not any thread” value.

 The Thread Library doesn’t limit you to checking whether thread identifiers are
the same or not; objects of type std::thread::id offer the complete set of compari-
son operators, which provide a total ordering for all distinct values. This allows them
to be used as keys in associative containers, or sorted, or compared in any other way
that you as a programmer may see fit. The comparison operators provide a total order
for all non-equal values of std::thread::id, so they behave as you’d intuitively
expect: if a<b and b<c, then a<c, and so forth. The Standard Library also provides
std::hash<std::thread::id> so that values of type std::thread::id can be used as
keys in the new unordered associative containers too.

 Instances of std::thread::id are often used to check whether a thread needs to
perform some operation. For example, if threads are used to divide work as in list-
ing 2.8, the initial thread that launched the others might need to perform its work
slightly differently in the middle of the algorithm. In this case it could store the result
of std::this_thread::get_id() before launching the other threads, and then the
core part of the algorithm (which is common to all threads) could check its own
thread ID against the stored value:
Download from Wow! eBook <www.wowebook.com>

32 CHAPTER 2 Managing threads
std::thread::id master_thread;
void some_core_part_of_algorithm()
{
 if(std::this_thread::get_id()==master_thread)
 {
 do_master_thread_work();
 }
 do_common_work();
}

Alternatively, the std::thread::id of the current thread could be stored in a data
structure as part of an operation. Later operations on that same data structure could
then check the stored ID against the ID of the thread performing the operation to
determine what operations are permitted/required.

 Similarly, thread IDs could be used as keys into associative containers where spe-
cific data needs to be associated with a thread and alternative mechanisms such as
thread-local storage aren’t appropriate. Such a container could, for example, be used
by a controlling thread to store information about each of the threads under its con-
trol or for passing information between threads.

 The idea is that std::thread::id will suffice as a generic identifier for a thread in
most circumstances; it’s only if the identifier has semantic meaning associated with it
(such as being an index into an array) that alternatives should be necessary. You can
even write out an instance of std::thread::id to an output stream such as std::cout:

std::cout<<std::this_thread::get_id();

The exact output you get is strictly implementation dependent; the only guarantee
given by the standard is that thread IDs that compare as equal should produce the
same output, and those that are not equal should give different output. This is there-
fore primarily useful for debugging and logging, but the values have no semantic
meaning, so there’s not much more that could be said anyway.

2.6 Summary
In this chapter I covered the basics of thread management with the C++ Standard
Library: starting threads, waiting for them to finish, and not waiting for them to finish
because you want them to run in the background. You also saw how to pass arguments
into the thread function when a thread is started, how to transfer the responsibility for
managing a thread from one part of the code to another, and how groups of threads
can be used to divide work. Finally, I discussed identifying threads in order to associ-
ate data or behavior with specific threads that’s inconvenient to associate through
alternative means. Although you can do quite a lot with purely independent threads
that each operate on separate data, as in listing 2.8 for example, sometimes it’s desir-
able to share data among threads while they’re running. Chapter 3 discusses the issues
surrounding sharing data directly among threads, while chapter 4 covers more gen-
eral issues surrounding synchronizing operations with and without shared data.
Download from Wow! eBook <www.wowebook.com>

Sharing data
between threads
One of the key benefits of using threads for concurrency is the potential to easily
and directly share data between them, so now that we’ve covered starting and man-
aging threads, let’s look at the issues surrounding shared data.

 Imagine for a moment that you’re sharing an apartment with a friend. There’s
only one kitchen and only one bathroom. Unless you’re particularly friendly, you
can’t both use the bathroom at the same time, and if your roommate occupies the
bathroom for a long time, it can be frustrating if you need to use it. Likewise, though
it might be possible to both cook meals at the same time, if you have a combined
oven and grill, it’s just not going to end well if one of you tries to grill some sausages
at the same time as the other is baking a cake. Furthermore, we all know the frustra-
tion of sharing a space and getting halfway through a task only to find that someone
has borrowed something we need or changed something from the way we left it.

 It’s the same with threads. If you’re sharing data between threads, you need to
have rules for which thread can access which bit of data when, and how any updates

This chapter covers
■ Problems with sharing data between threads
■ Protecting data with mutexes
■ Alternative facilities for protecting shared data
33

Download from Wow! eBook <www.wowebook.com>

34 CHAPTER 3 Sharing data between threads
are communicated to the other threads that care about that data. The ease with which
data can be shared between multiple threads in a single process is not just a benefit—
it can also be a big drawback. Incorrect use of shared data is one of the biggest causes
of concurrency-related bugs, and the consequences can be far worse than sausage-
flavored cakes.

 This chapter is about sharing data safely between threads in C++, avoiding the
potential problems that can arise, and maximizing the benefits.

3.1 Problems with sharing data between threads
When it comes down to it, the problems with sharing data between threads are all due
to the consequences of modifying data. If all shared data is read-only, there’s no problem,
because the data read by one thread is unaffected by whether or not another thread is reading the
same data. However, if data is shared between threads, and one or more threads start
modifying the data, there’s a lot of potential for trouble. In this case, you must take
care to ensure that everything works out OK.

 One concept that’s widely used to help programmers reason about their code is
that of invariants—statements that are always true about a particular data structure,
such as “this variable contains the number of items in the list.” These invariants are
often broken during an update, especially if the data structure is of any complexity or
the update requires modification of more than one value.

 Consider a doubly linked list, where each node holds a pointer to both the next
node in the list and the previous one. One of the invariants is that if you follow a
“next” pointer from one node (A) to another (B), the “previous” pointer from that
node (B) points back to the first node (A). In order to remove a node from the list,
the nodes on either side have to be updated to point to each other. Once one has
been updated, the invariant is broken until the node on the other side has been
updated too; after the update has completed, the invariant holds again.

 The steps in deleting an entry from such a list are shown in figure 3.1:

1 Identify the node to delete (N).
2 Update the link from the node prior to N to point to the node after N.
3 Update the link from the node after N to point to the node prior to N.
4 Delete node N.

As you can see, between steps b and c, the links going in one direction are inconsis-
tent with the links going in the opposite direction, and the invariant is broken.

 The simplest potential problem with modifying data that’s shared between threads
is that of broken invariants. If you don’t do anything special to ensure otherwise, if
one thread is reading the doubly linked list while another is removing a node, it’s
quite possible for the reading thread to see the list with a node only partially removed
(because only one of the links has been changed, as in step b of figure 3.1), so the invari-
ant is broken. The consequences of this broken invariant can vary; if the other thread is
just reading the list items from left to right in the diagram, it will skip the node being
Download from Wow! eBook <www.wowebook.com>

35Problems with sharing data between threads
deleted. On the other hand, if the second thread is trying to delete the rightmost
node in the diagram, it might end up permanently corrupting the data structure and
eventually crashing the program. Whatever the outcome, this is an example of one of
the most common causes of bugs in concurrent code: a race condition.

3.1.1 Race conditions

Suppose you’re buying tickets to see a movie at the cinema. If it’s a big cinema, multi-
ple cashiers will be taking money, so more than one person can buy tickets at the same
time. If someone at another cashier’s desk is also buying tickets for the same movie as
you are, which seats are available for you to choose from depends on whether the

Figure 3.1 Deleting a node from a doubly linked list
Download from Wow! eBook <www.wowebook.com>

36 CHAPTER 3 Sharing data between threads
other person actually books first or you do. If there are only a few seats left, this differ-
ence can be quite crucial: it might literally be a race to see who gets the last tickets.
This is an example of a race condition: which seats you get (or even whether you get
tickets) depends on the relative ordering of the two purchases.

 In concurrency, a race condition is anything where the outcome depends on the
relative ordering of execution of operations on two or more threads; the threads
race to perform their respective operations. Most of the time, this is quite benign
because all possible outcomes are acceptable, even though they may change with dif-
ferent relative orderings. For example, if two threads are adding items to a queue
for processing, it generally doesn’t matter which item gets added first, provided that
the invariants of the system are maintained. It’s when the race condition leads to
broken invariants that there’s a problem, such as with the doubly linked list exam-
ple just mentioned. When talking about concurrency, the term race condition is usu-
ally used to mean a problematic race condition; benign race conditions aren’t so
interesting and aren’t a cause of bugs. The C++ Standard also defines the term data
race to mean the specific type of race condition that arises because of concurrent
modification to a single object (see section 5.1.2 for details); data races cause the
dreaded undefined behavior.

 Problematic race conditions typically occur where completing an operation
requires modification of two or more distinct pieces of data, such as the two link
pointers in the example. Because the operation must access two separate pieces of
data, these must be modified in separate instructions, and another thread could
potentially access the data structure when only one of them has been completed. Race
conditions can often be hard to find and hard to duplicate because the window of
opportunity is small. If the modifications are done as consecutive CPU instructions,
the chance of the problem exhibiting on any one run-through is very small, even if the
data structure is being accessed by another thread concurrently. As the load on the sys-
tem increases, and the number of times the operation is performed increases, the
chance of the problematic execution sequence occurring also increases. It’s almost
inevitable that such problems will show up at the most inconvenient time. Because
race conditions are generally timing sensitive, they can often disappear entirely when
the application is run under the debugger, because the debugger affects the timing
of the program, even if only slightly.

 If you’re writing multithreaded programs, race conditions can easily be the bane
of your life; a great deal of the complexity in writing software that uses concurrency
comes from avoiding problematic race conditions.

3.1.2 Avoiding problematic race conditions

There are several ways to deal with problematic race conditions. The simplest option is
to wrap your data structure with a protection mechanism, to ensure that only the thread
actually performing a modification can see the intermediate states where the invari-
ants are broken. From the point of view of other threads accessing that data structure,
Download from Wow! eBook <www.wowebook.com>

37Protecting shared data with mutexes
such modifications either haven’t started or have completed. The C++ Standard
Library provides several such mechanisms, which are described in this chapter.

 Another option is to modify the design of your data structure and its invariants so
that modifications are done as a series of indivisible changes, each of which preserves
the invariants. This is generally referred to as lock-free programming and is difficult to get
right. If you’re working at this level, the nuances of the memory model and identifying
which threads can potentially see which set of values can get complicated. The memory
model is covered in chapter 5, and lock-free programming is discussed in chapter 7.

 Another way of dealing with race conditions is to handle the updates to the data
structure as a transaction, just as updates to a database are done within a transaction.
The required series of data modifications and reads is stored in a transaction log and
then committed in a single step. If the commit can’t proceed because the data struc-
ture has been modified by another thread, the transaction is restarted. This is termed
software transactional memory (STM), and it’s an active research area at the time of writ-
ing. This won’t be covered in this book, because there’s no direct support for STM in
C++. However, the basic idea of doing something privately and then committing in a
single step is something that I’ll come back to later.

 The most basic mechanism for protecting shared data provided by the C++ Stan-
dard is the mutex, so we’ll look at that first.

3.2 Protecting shared data with mutexes
So, you have a shared data structure such as the linked list from the previous section,
and you want to protect it from race conditions and the potential broken invariants
that can ensue. Wouldn’t it be nice if you could mark all the pieces of code that access
the data structure as mutually exclusive, so that if any thread was running one of them,
any other thread that tried to access that data structure had to wait until the first
thread was finished? That would make it impossible for a thread to see a broken
invariant except when it was the thread doing the modification.

 Well, this isn’t a fairy tale wish—it’s precisely what you get if you use a synchroniza-
tion primitive called a mutex (mutual exclusion). Before accessing a shared data struc-
ture, you lock the mutex associated with that data, and when you’ve finished accessing
the data structure, you unlock the mutex. The Thread Library then ensures that once
one thread has locked a specific mutex, all other threads that try to lock the same
mutex have to wait until the thread that successfully locked the mutex unlocks it. This
ensures that all threads see a self-consistent view of the shared data, without any bro-
ken invariants.

 Mutexes are the most general of the data-protection mechanisms available in C++,
but they’re not a silver bullet; it’s important to structure your code to protect the right
data (see section 3.2.2) and avoid race conditions inherent in your interfaces (see sec-
tion 3.2.3). Mutexes also come with their own problems, in the form of a deadlock (see
section 3.2.4) and protecting either too much or too little data (see section 3.2.8).
Let’s start with the basics.
Download from Wow! eBook <www.wowebook.com>

38 CHAPTER 3 Sharing data between threads
3.2.1 Using mutexes in C++

In C++, you create a mutex by constructing an instance of std::mutex, lock it with a
call to the member function lock(), and unlock it with a call to the member func-
tion unlock(). However, it isn’t recommended practice to call the member functions
directly, because this means that you have to remember to call unlock() on every
code path out of a function, including those due to exceptions. Instead, the Standard
C++ Library provides the std::lock_guard class template, which implements that
RAII idiom for a mutex; it locks the supplied mutex on construction and unlocks it
on destruction, thus ensuring a locked mutex is always correctly unlocked. The fol-
lowing listing shows how to protect a list that can be accessed by multiple threads
using a std::mutex, along with std::lock_guard. Both of these are declared in the
<mutex> header.

#include <list>
#include <mutex>
#include <algorithm>

std::list<int> some_list;
std::mutex some_mutex;

void add_to_list(int new_value)
{
 std::lock_guard<std::mutex> guard(some_mutex);
 some_list.push_back(new_value);
}
bool list_contains(int value_to_find)
{
 std::lock_guard<std::mutex> guard(some_mutex);
 return std::find(some_list.begin(),some_list.end(),value_to_find)
 != some_list.end();
}

In listing 3.1, there’s a single global variable B, and it’s protected with a corresponding
global instance of std::mutex c. The use of std::lock_guard<std::mutex> in
add_to_list() d and again in list_contains() e means that the accesses in these
functions are mutually exclusive: list_contains() will never see the list partway
through a modification by add_to_list().

 Although there are occasions where this use of global variables is appropriate, in
the majority of cases it’s common to group the mutex and the protected data together
in a class rather than use global variables. This is a standard application of object-
oriented design rules: by putting them in a class, you’re clearly marking them as
related, and you can encapsulate the functionality and enforce the protection. In this
case, the functions add_to_list and list_contains would become member func-
tions of the class, and the mutex and protected data would both become private
members of the class, making it much easier to identify which code has access to the
data and thus which code needs to lock the mutex. If all the member functions of

Listing 3.1 Protecting a list with a mutex

b
c

d

e

Download from Wow! eBook <www.wowebook.com>

39Protecting shared data with mutexes
the class lock the mutex before accessing any other data members and unlock it when
done, the data is nicely protected from all comers.

 Well, that’s not quite true, as the astute among you will have noticed: if one of the
member functions returns a pointer or reference to the protected data, then it
doesn’t matter that the member functions all lock the mutex in a nice orderly fashion,
because you’ve just blown a big hole in the protection. Any code that has access to that
pointer or reference can now access (and potentially modify) the protected data without locking the
mutex. Protecting data with a mutex therefore requires careful interface design, to
ensure that the mutex is locked before there’s any access to the protected data and
that there are no backdoors.

3.2.2 Structuring code for protecting shared data

As you’ve just seen, protecting data with a mutex is not quite as easy as just slapping a
std::lock_guard object in every member function; one stray pointer or reference, and
all that protection is for nothing. At one level, checking for stray pointers or references is
easy; as long as none of the member functions return a pointer or reference to the pro-
tected data to their caller either via their return value or via an out parameter, the data is
safe. If you dig a little deeper, it’s not that straightforward—nothing ever is. As well as
checking that the member functions don’t pass out pointers or references to their callers,
it’s also important to check that they don’t pass such pointers or references in to func-
tions they call that aren’t under your control. This is just as dangerous: those functions
might store the pointer or reference in a place where it can later be used without the pro-
tection of the mutex. Particularly dangerous in this regard are functions that are sup-
plied at runtime via a function argument or other means, as in the next listing.

class some_data
{
 int a;
 std::string b;
public:
 void do_something();
};

class data_wrapper
{
private:
 some_data data;
 std::mutex m;
public:
 template<typename Function>
 void process_data(Function func)
 {
 std::lock_guard<std::mutex> l(m);
 func(data);
 }
};

Listing 3.2 Accidentally passing out a reference to protected data

Pass “protected” data to
user-supplied function

b

Download from Wow! eBook <www.wowebook.com>

40 CHAPTER 3 Sharing data between threads
some_data* unprotected;

void malicious_function(some_data& protected_data)
{
 unprotected=&protected_data;
}

data_wrapper x;

void foo()
{
 x.process_data(malicious_function);
 unprotected->do_something();
}

In this example, the code in process_data looks harmless enough, nicely protected
with std::lock_guard, but the call to the user-supplied function func B means that
foo can pass in malicious_function to bypass the protection c and then call
do_something() without the mutex being locked d.

 Fundamentally, the problem with this code is that it hasn’t done what you set out
to do: mark all the pieces of code that access the data structure as mutually exclusive. In
this case, it missed the code in foo() that calls unprotected->do_something().
Unfortunately, this part of the problem isn’t something the C++ Thread Library can
help you with; it’s up to you as programmers to lock the right mutex to protect your
data. On the upside, you have a guideline to follow, which will help you in these cases:
Don’t pass pointers and references to protected data outside the scope of the lock, whether by
returning them from a function, storing them in externally visible memory, or passing them as
arguments to user-supplied functions.

 Although this is a common mistake when trying to use mutexes to protect shared
data, it’s far from the only potential pitfall. As you’ll see in the next section, it’s still
possible to have race conditions, even when data is protected with a mutex.

3.2.3 Spotting race conditions inherent in interfaces

Just because you’re using a mutex or other mechanism to protect shared data, you’re
not necessarily protected from race conditions; you still have to ensure that the appro-
priate data is protected. Consider the doubly linked list example again. In order for a
thread to safely delete a node, you need to ensure that you’re preventing concurrent
accesses to three nodes: the node being deleted and the nodes on either side. If you
protected accesses to the pointers of each node individually, you’d be no better off
than with code that used no mutexes, because the race condition could still happen—
it’s not the individual nodes that need protecting for the individual steps but the
whole data structure, for the whole delete operation. The easiest solution in this case
is to have a single mutex that protects the entire list, as in listing 3.1.

 Just because individual operations on the list are safe, you’re not out of the woods
yet; you can still get race conditions, even with a really simple interface. Consider a
stack data structure like the std::stack container adapter shown in listing 3.3. Aside
from the constructors and swap(), there are only five things you can do to a std::stack:

Pass in a
malicious
function

c
Unprotected
access to
protected data

d

Download from Wow! eBook <www.wowebook.com>

41Protecting shared data with mutexes
you can push() a new element onto the stack, pop() an element off the stack, read the
top() element, check whether it’s empty(), and read the number of elements—the
size() of the stack. If you change top() so that it returns a copy rather than a refer-
ence (so you’re following the guideline from section 3.2.2) and protect the internal
data with a mutex, this interface is still inherently subject to race conditions. This
problem is not unique to a mutex-based implementation; it’s an interface problem, so
the race conditions would still occur with a lock-free implementation.

template<typename T,typename Container=std::deque<T> >
class stack
{
public:
 explicit stack(const Container&);
 explicit stack(Container&& = Container());
 template <class Alloc> explicit stack(const Alloc&);
 template <class Alloc> stack(const Container&, const Alloc&);
 template <class Alloc> stack(Container&&, const Alloc&);
 template <class Alloc> stack(stack&&, const Alloc&);

 bool empty() const;
 size_t size() const;
 T& top();
 T const& top() const;
 void push(T const&);
 void push(T&&);
 void pop();
 void swap(stack&&);
};

The problem here is that the results of empty() and size() can’t be relied on.
Although they might be correct at the time of the call, once they’ve returned, other
threads are free to access the stack and might push() new elements onto or pop() the
existing ones off of the stack before the thread that called empty() or size() could
use that information.

 In particular, if the stack instance is not shared, it’s safe to check for empty() and
then call top() to access the top element if the stack is not empty, as follows:

stack<int> s;
if(!s.empty())
{
 int const value=s.top();
 s.pop();
 do_something(value);
}

Not only is it safe in single-threaded code, it’s expected: calling top() on an empty
stack is undefined behavior. With a shared stack object, this call sequence is no longer
safe, because there might be a call to pop() from another thread that removes the last
element in between the call to empty() B and the call to top() c. This is therefore a

Listing 3.3 The interface to the std::stack container adapter

b

c
d

Download from Wow! eBook <www.wowebook.com>

42 CHAPTER 3 Sharing data between threads
classic race condition, and the use of a mutex internally to protect the stack contents
doesn’t prevent it; it’s a consequence of the interface.

 What’s the solution? Well, this problem happens as a consequence of the design
of the interface, so the solution is to change the interface. However, that still begs
the question: what changes need to be made? In the simplest case, you could just
declare that top() will throw an exception if there aren’t any elements in the stack
when it’s called. Though this directly addresses this issue, it makes for more cumber-
some programming, because now you need to be able to catch an exception, even if
the call to empty() returned false. This essentially makes the call to empty() com-
pletely redundant.

 If you look closely at the previous snippet, there’s also potential for another race
condition but this time between the call to top() c and the call to pop() d. Con-
sider two threads running the previous snippet of code and both referencing the same
stack object, s. This isn’t an unusual situation; when using threads for performance,
it’s quite common to have several threads running the same code on different data,
and a shared stack object is ideal for dividing work between them. Suppose that ini-
tially the stack has two elements, so you don’t have to worry about the race between
empty() and top() on either thread, and consider the potential execution patterns.

 If the stack is protected by a mutex internally, only one thread can be running a
stack member function at any one time, so the calls get nicely interleaved, while the
calls to do_something() can run concurrently. One possible execution is then as
shown in table 3.1.

As you can see, if these are the only threads running, there’s nothing in between the
two calls to top() to modify the stack, so both threads will see the same value. Not only
that, but there are no calls to top() between the calls to pop(). Consequently, one of the
two values on the stack is discarded without ever having been read, whereas the other
is processed twice. This is yet another race condition and far more insidious than the
undefined behavior of the empty()/top() race; there’s never anything obviously

Table 3.1 A possible ordering of operations on a stack from two threads

Thread A Thread B

if(!s.empty())

if(!s.empty())

 int const value=s.top();

 int const value=s.top();

 s.pop();

 do_something(value); s.pop();

 do_something(value);
Download from Wow! eBook <www.wowebook.com>

43Protecting shared data with mutexes
wrong going on, and the consequences of the bug are likely far removed from the
cause, although they obviously depend on exactly what do_something() really does.

 This calls for a more radical change to the interface, one that combines the calls to
top() and pop() under the protection of the mutex. Tom Cargill1 pointed out that a
combined call can lead to issues if the copy constructor for the objects on the stack
can throw an exception. This problem was dealt with fairly comprehensively from an
exception-safety point of view by Herb Sutter,2 but the potential for race conditions
brings something new to the mix.

 For those of you who aren’t aware of the issue, consider a stack<vector<int>>.
Now, a vector is a dynamically sized container, so when you copy a vector the library
has to allocate some more memory from the heap in order to copy the contents. If the
system is heavily loaded, or there are significant resource constraints, this memory
allocation can fail, so the copy constructor for vector might throw a std::bad_alloc
exception. This is especially likely if the vector contains a lot of elements. If the pop()
function was defined to return the value popped, as well as remove it from the stack,
you have a potential problem: the value being popped is returned to the caller only
after the stack has been modified, but the process of copying the data to return to the
caller might throw an exception. If this happens, the data just popped is lost; it has
been removed from the stack, but the copy was unsuccessful! The designers of the
std::stack interface helpfully split the operation in two: get the top element (top())
and then remove it from the stack (pop()), so that if you can’t safely copy the data, it
stays on the stack. If the problem was lack of heap memory, maybe the application can
free some memory and try again.

 Unfortunately, it’s precisely this split that you’re trying to avoid in eliminating the
race condition! Thankfully, there are alternatives, but they aren’t without cost.

OPTION 1: PASS IN A REFERENCE

The first option is to pass a reference to a variable in which you wish to receive the
popped value as an argument in the call to pop():

std::vector<int> result;
some_stack.pop(result);

This works well for many cases, but it has the distinct disadvantage that it requires the
calling code to construct an instance of the stack’s value type prior to the call, in order
to pass this in as the target. For some types this is impractical, because constructing an
instance is expensive in terms of time or resources. For other types this isn’t always
possible, because the constructors require parameters that aren’t necessarily available
at this point in the code. Finally, it requires that the stored type is assignable. This is an
important restriction: many user-defined types do not support assignment, though

1 Tom Cargill, “Exception Handling: A False Sense of Security,” in C++ Report 6, no. 9 (November–December
1994). Also available at http://www.informit.com/content/images/020163371x/supplements/Exception_
Handling_Article.html.

2 Herb Sutter, Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions (Addison Wesley Pro-
fessional, 1999).
Download from Wow! eBook <www.wowebook.com>

http://www.informit.com/content/images/020163371x/supplements/Exception_Handling_Article.html
http://www.informit.com/content/images/020163371x/supplements/Exception_Handling_Article.html

44 CHAPTER 3 Sharing data between threads
they may support move construction or even copy construction (and thus allow return
by value).

OPTION 2: REQUIRE A NO-THROW COPY CONSTRUCTOR OR MOVE CONSTRUCTOR

There’s only an exception safety problem with a value-returning pop() if the return by
value can throw an exception. Many types have copy constructors that don’t throw
exceptions, and with the new rvalue-reference support in the C++ Standard (see
appendix A, section A.1), many more types will have a move constructor that doesn’t
throw exceptions, even if their copy constructor does. One valid option is to restrict
the use of your thread-safe stack to those types that can safely be returned by value
without throwing an exception.

 Although this is safe, it’s not ideal. Even though you can detect at compile time
the existence of a copy or move constructor that doesn’t throw an exception using the
std::is_nothrow_copy_constructible and std::is_nothrow_move_constructible
type traits, it’s quite limiting. There are many more user-defined types with copy con-
structors that can throw and don’t have move constructors than there are types with
copy and/or move constructors that can’t throw (although this might change as peo-
ple get used to the rvalue-reference support in C++11). It would be unfortunate if
such types couldn’t be stored in your thread-safe stack.

OPTION 3: RETURN A POINTER TO THE POPPED ITEM

The third option is to return a pointer to the popped item rather than return the item
by value. The advantage here is that pointers can be freely copied without throwing an
exception, so you’ve avoided Cargill’s exception problem. The disadvantage is that
returning a pointer requires a means of managing the memory allocated to the
object, and for simple types such as integers, the overhead of such memory manage-
ment can exceed the cost of just returning the type by value. For any interface that
uses this option, std::shared_ptr would be a good choice of pointer type; not only
does it avoid memory leaks, because the object is destroyed once the last pointer is
destroyed, but the library is in full control of the memory allocation scheme and
doesn’t have to use new and delete. This can be important for optimization purposes:
requiring that each object in the stack be allocated separately with new would impose
quite an overhead compared to the original non-thread-safe version.

OPTION 4: PROVIDE BOTH OPTION 1 AND EITHER OPTION 2 OR 3
Flexibility should never be ruled out, especially in generic code. If you’ve chosen
option 2 or 3, it’s relatively easy to provide option 1 as well, and this provides users of
your code the ability to choose whichever option is most appropriate for them for very
little additional cost.

EXAMPLE DEFINITION OF A THREAD-SAFE STACK

Listing 3.4 shows the class definition for a stack with no race conditions in the interface
and that implements options 1 and 3: there are two overloads of pop(), one that takes a
reference to a location in which to store the value and one that returns a std::shared_
ptr<>. It has a simple interface, with only two functions: push() and pop().
Download from Wow! eBook <www.wowebook.com>

45Protecting shared data with mutexes
#include <exception>
#include <memory>

struct empty_stack: std::exception
{
 const char* what() const throw();
};

template<typename T>
class threadsafe_stack
{
public:
 threadsafe_stack();
 threadsafe_stack(const threadsafe_stack&);
 threadsafe_stack& operator=(const threadsafe_stack&) = delete;

 void push(T new_value);
 std::shared_ptr<T> pop();
 void pop(T& value);
 bool empty() const;
};

By paring down the interface you allow for maximum safety; even operations on the
whole stack are restricted. The stack itself can’t’ be assigned, because the assignment
operator is deleted B (see appendix A, section A.2), and there’s no swap() function.
It can, however, be copied, assuming the stack elements can be copied. The pop()
functions throw an empty_stack exception if the stack is empty, so everything still
works even if the stack is modified after a call to empty(). As mentioned in the
description of option 3, the use of std::shared_ptr allows the stack to take care of
the memory-allocation issues and avoid excessive calls to new and delete if desired.
Your five stack operations have now become three: push(), pop(), and empty(). Even
empty() is superfluous. This simplification of the interface allows for better control
over the data; you can ensure that the mutex is locked for the entirety of an operation.
The following listing shows a simple implementation that’s a wrapper around
std::stack<>.

#include <exception>
#include <memory>
#include <mutex>
#include <stack>

struct empty_stack: std::exception
{
 const char* what() const throw();
};

template<typename T>
class threadsafe_stack
{

Listing 3.4 An outline class definition for a thread-safe stack

Listing 3.5 A fleshed-out class definition for a thread-safe stack

For std::shared_ptr<>

Assignment
operator is

deleted

b

Download from Wow! eBook <www.wowebook.com>

46 CHAPTER 3 Sharing data between threads
private:
 std::stack<T> data;
 mutable std::mutex m;
public:
 threadsafe_stack(){}
 threadsafe_stack(const threadsafe_stack& other)
 {
 std::lock_guard<std::mutex> lock(other.m);
 data=other.data;
 }
 threadsafe_stack& operator=(const threadsafe_stack&) = delete;

 void push(T new_value)
 {
 std::lock_guard<std::mutex> lock(m);
 data.push(new_value);
 }
 std::shared_ptr<T> pop()
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 std::shared_ptr<T> const res(std::make_shared<T>(data.top()));
 data.pop();
 return res;
 }
 void pop(T& value)
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 value=data.top();
 data.pop();
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lock(m);
 return data.empty();
 }
};

This stack implementation is actually copyable—the copy constructor locks the mutex
in the source object and then copies the internal stack. You do the copy in the con-
structor body B rather than the member initializer list in order to ensure that the
mutex is held across the copy.

 As the discussion of top() and pop() shows, problematic race conditions in inter-
faces essentially arise because of locking at too small a granularity; the protection
doesn’t cover the entirety of the desired operation. Problems with mutexes can also
arise from locking at too large a granularity; the extreme situation is a single global
mutex that protects all shared data. In a system where there’s a significant amount of
shared data, this can eliminate any performance benefits of concurrency, because the
threads are forced to run one at a time, even when they’re accessing different bits of
data. The first versions of the Linux kernel that were designed to handle multi-
processor systems used a single global kernel lock. Although this worked, it meant

Copy performed in
constructor body

b

Check for empty before
trying to pop value

Allocate return
value before

modifying stack
Download from Wow! eBook <www.wowebook.com>

47Protecting shared data with mutexes
that a two-processor system typically had much worse performance than two single-
processor systems, and performance on a four-processor system was nowhere near
that of four single-processor systems. There was too much contention for the kernel, so
the threads running on the additional processors were unable to perform useful work.
Later revisions of the Linux kernel have moved to a more fine-grained locking
scheme, so the performance of a four-processor system is much nearer the ideal of
four times that of a single-processor system, because there’s far less contention.

 One issue with fine-grained locking schemes is that sometimes you need more
than one mutex locked in order to protect all the data in an operation. As described
previously, sometimes the right thing to do is increase the granularity of the data cov-
ered by the mutexes, so that only one mutex needs to be locked. However, sometimes
that’s undesirable, such as when the mutexes are protecting separate instances of a
class. In this case, locking at the next level up would mean either leaving the locking
to the user or having a single mutex that protected all instances of that class, neither
of which is particularly desirable.

 If you end up having to lock two or more mutexes for a given operation, there’s
another potential problem lurking in the wings: deadlock. This is almost the opposite
of a race condition: rather than two threads racing to be first, each one is waiting for
the other, so neither makes any progress.

3.2.4 Deadlock: the problem and a solution

Imagine that you have a toy that comes in two parts, and you need both parts to play
with it—a toy drum and drumstick, for example. Now imagine that you have two small
children, both of whom like playing with it. If one of them gets both the drum and the
drumstick, that child can merrily play the drum until tiring of it. If the other child
wants to play, they have to wait, however sad that makes them. Now imagine that the
drum and the drumstick are buried (separately) in the toy box, and your children
both decide to play with them at the same time, so they go rummaging in the toy box.
One finds the drum and the other finds the drumstick. Now they’re stuck; unless one
decides to be nice and let the other play, each will hold onto whatever they have and
demand that the other give them the other piece, so neither gets to play.

 Now imagine that you have not children arguing over toys but threads arguing
over locks on mutexes: each of a pair of threads needs to lock both of a pair of
mutexes to perform some operation, and each thread has one mutex and is waiting
for the other. Neither thread can proceed, because each is waiting for the other to
release its mutex. This scenario is called deadlock, and it’s the biggest problem with
having to lock two or more mutexes in order to perform an operation.

 The common advice for avoiding deadlock is to always lock the two mutexes in the
same order: if you always lock mutex A before mutex B, then you’ll never deadlock.
Sometimes this is straightforward, because the mutexes are serving different pur-
poses, but other times it’s not so simple, such as when the mutexes are each protect-
ing a separate instance of the same class. Consider, for example, an operation that
Download from Wow! eBook <www.wowebook.com>

48 CHAPTER 3 Sharing data between threads
exchanges data between two instances of the same class; in order to ensure that the
data is exchanged correctly, without being affected by concurrent modifications,
the mutexes on both instances must be locked. However, if a fixed order is chosen
(for example, the mutex for the instance supplied as the first parameter, then the
mutex for the instance supplied as the second parameter), this can backfire: all it
takes is for two threads to try to exchange data between the same two instances with
the parameters swapped, and you have deadlock!

 Thankfully, the C++ Standard Library has a cure for this in the form of std::lock—
a function that can lock two or more mutexes at once without risk of deadlock. The
example in the next listing shows how to use this for a simple swap operation.

class some_big_object;
void swap(some_big_object& lhs,some_big_object& rhs);

class X
{
private:
 some_big_object some_detail;
 std::mutex m;
public:
 X(some_big_object const& sd):some_detail(sd){}

 friend void swap(X& lhs, X& rhs)
 {
 if(&lhs==&rhs)
 return;
 std::lock(lhs.m,rhs.m);
 std::lock_guard<std::mutex> lock_a(lhs.m,std::adopt_lock);
 std::lock_guard<std::mutex> lock_b(rhs.m,std::adopt_lock);
 swap(lhs.some_detail,rhs.some_detail);
 }
};

First, the arguments are checked to ensure they are different instances, because
attempting to acquire a lock on a std::mutex when you already hold it is undefined
behavior. (A mutex that does permit multiple locks by the same thread is provided in
the form of std::recursive_mutex. See section 3.3.3 for details.) Then, the call to
std::lock() B locks the two mutexes, and two std::lock_guard instances are con-
structed c, d, one for each mutex. The std::adopt_lock parameter is supplied in
addition to the mutex to indicate to the std::lock_guard objects that the mutexes
are already locked, and they should just adopt the ownership of the existing lock on
the mutex rather than attempt to lock the mutex in the constructor.

 This ensures that the mutexes are correctly unlocked on function exit in the gen-
eral case where the protected operation might throw an exception; it also allows for a
simple return. Also, it’s worth noting that locking either lhs.m or rhs.m inside the call
to std::lock can throw an exception; in this case, the exception is propagated out
of std::lock. If std::lock has successfully acquired a lock on one mutex and an

Listing 3.6 Using std::lock() and std::lock_guard in a swap operation

b

c

d

Download from Wow! eBook <www.wowebook.com>

49Protecting shared data with mutexes
exception is thrown when it tries to acquire a lock on the other mutex, this first lock is
released automatically: std::lock provides all-or-nothing semantics with regard to
locking the supplied mutexes.

 Although std::lock can help you avoid deadlock in those cases where you need to
acquire two or more locks together, it doesn’t help if they’re acquired separately. In
that case you have to rely on your discipline as developers to ensure you don’t get
deadlock. This isn’t easy: deadlocks are one of the nastiest problems to encounter in
multithreaded code and are often unpredictable, with everything working fine the
majority of the time. There are, however, some relatively simple rules that can help
you to write deadlock-free code.

3.2.5 Further guidelines for avoiding deadlock

Deadlock doesn’t just occur with locks, although that’s the most frequent cause; you
can create deadlock with two threads and no locks just by having each thread call
join() on the std::thread object for the other. In this case, neither thread can make
progress because it’s waiting for the other to finish, just like the children fighting over
their toys. This simple cycle can occur anywhere that a thread can wait for another
thread to perform some action if the other thread can simultaneously be waiting for
the first thread, and it isn’t limited to two threads: a cycle of three or more threads will
still cause deadlock. The guidelines for avoiding deadlock all boil down to one idea:
don’t wait for another thread if there’s a chance it’s waiting for you. The individual
guidelines provide ways of identifying and eliminating the possibility that the other
thread is waiting for you.

AVOID NESTED LOCKS

The first idea is the simplest: don’t acquire a lock if you already hold one. If you stick
to this guideline, it’s impossible to get a deadlock from the lock usage alone because
each thread only ever holds a single lock. You could still get deadlock from other
things (like the threads waiting for each other), but mutex locks are probably the
most common cause of deadlock. If you need to acquire multiple locks, do it as a sin-
gle action with std::lock in order to acquire them without deadlock.

AVOID CALLING USER-SUPPLIED CODE WHILE HOLDING A LOCK

This is a simple follow-on from the previous guideline. Because the code is user sup-
plied, you have no idea what it could do; it could do anything, including acquiring a
lock. If you call user-supplied code while holding a lock, and that code acquires a lock,
you’ve violated the guideline on avoiding nested locks and could get deadlock. Some-
times this is unavoidable; if you’re writing generic code such as the stack in section 3.2.3,
every operation on the parameter type or types is user-supplied code. In this case, you
need a new guideline.

ACQUIRE LOCKS IN A FIXED ORDER

If you absolutely must acquire two or more locks, and you can’t acquire them as a sin-
gle operation with std::lock, the next-best thing is to acquire them in the same
Download from Wow! eBook <www.wowebook.com>

50 CHAPTER 3 Sharing data between threads
order in every thread. I touched on this in section 3.2.4 as one way of avoiding dead-
lock when acquiring two mutexes: the key is to define the order in a way that’s consis-
tent between threads. In some cases, this is relatively easy. For example, look at the
stack from section 3.2.3—the mutex is internal to each stack instance, but the opera-
tions on the data items stored in a stack require calling user-supplied code. You can,
however, add the constraint that none of the operations on the data items stored in
the stack should perform any operation on the stack itself. This puts the burden on the
user of the stack, but it’s rather uncommon for the data stored in a container to access
that container, and it’s quite apparent when this is happening, so it’s not a particularly
difficult burden to carry.

 In other cases, this isn’t so straightforward, as you discovered with the swap opera-
tion in section 3.2.4. At least in that case you could lock the mutexes simultaneously,
but that’s not always possible. If you look back at the linked list example from sec-
tion 3.1, you’ll see that one possibility for protecting the list is to have a mutex per
node. Then, in order to access the list, threads must acquire a lock on every node
they’re interested in. For a thread to delete an item, it must then acquire the lock on
three nodes: the node being deleted and the nodes on either side, because they’re all
being modified in some way. Likewise, to traverse the list a thread must keep hold of
the lock on the current node while it acquires the lock on the next one in the
sequence, in order to ensure that the next pointer isn’t modified in the meantime.
Once the lock on the next node has been acquired, the lock on the first can be
released because it’s no longer necessary.

 This hand-over-hand locking style allows multiple threads to access the list, pro-
vided each is accessing a different node. However, in order to prevent deadlock, the
nodes must always be locked in the same order: if two threads tried to traverse the list
in reverse order using hand-over-hand locking, they could deadlock with each other in
the middle of the list. If nodes A and B are adjacent in the list, the thread going one
way will try to hold the lock on node A and try to acquire the lock on node B. A thread
going the other way would be holding the lock on node B and trying to acquire the
lock on node A—a classic scenario for deadlock.

 Likewise, when deleting node B that lies between nodes A and C, if that thread
acquires the lock on B before the locks on A and C, it has the potential to deadlock
with a thread traversing the list. Such a thread would try to lock either A or C first
(depending on the direction of traversal) but would then find that it couldn’t obtain a
lock on B because the thread doing the deleting was holding the lock on B and trying
to acquire the locks on A and C.

 One way to prevent deadlock here is to define an order of traversal, so a thread
must always lock A before B and B before C. This would eliminate the possibility of
deadlock at the expense of disallowing reverse traversal. Similar conventions can
often be established for other data structures.
Download from Wow! eBook <www.wowebook.com>

51Protecting shared data with mutexes
USE A LOCK HIERARCHY

Although this is really a particular case of defining lock ordering, a lock hierarchy can
provide a means of checking that the convention is adhered to at runtime. The idea is
that you divide your application into layers and identify all the mutexes that may be
locked in any given layer. When code tries to lock a mutex, it isn’t permitted to lock
that mutex if it already holds a lock from a lower layer. You can check this at runtime
by assigning layer numbers to each mutex and keeping a record of which mutexes are
locked by each thread. The following listing shows an example of two threads using a
hierarchical mutex.

hierarchical_mutex high_level_mutex(10000);
hierarchical_mutex low_level_mutex(5000);

int do_low_level_stuff();

int low_level_func()
{
 std::lock_guard<hierarchical_mutex> lk(low_level_mutex);
 return do_low_level_stuff();
}

void high_level_stuff(int some_param);

void high_level_func()
{
 std::lock_guard<hierarchical_mutex> lk(high_level_mutex);
 high_level_stuff(low_level_func());
}

void thread_a()
{
 high_level_func();
}

hierarchical_mutex other_mutex(100);
void do_other_stuff();

void other_stuff()
{
 high_level_func();
 do_other_stuff();
}

void thread_b()
{
 std::lock_guard<hierarchical_mutex> lk(other_mutex);
 other_stuff();
}

thread_a() g abides by the rules, so it runs fine. On the other hand, thread_b() j
disregards the rules and therefore will fail at runtime. thread_a() calls high_level_
func(), which locks the high_level_mutex e (with a hierarchy value of 10000 B) and
then calls low_level_func() f with this mutex locked in order to get the parameter for

Listing 3.7 Using a lock hierarchy to prevent deadlock

b
 c

d

e

f

g

h

i

j

1)
Download from Wow! eBook <www.wowebook.com>

52 CHAPTER 3 Sharing data between threads
high_level_stuff(). low_level_func() then locks the low_level_mutex d, but that’s
fine because this mutex has a lower hierarchy value of 5000 c.

thread_b() on the other hand is not fine. First off, it locks the other_mutex 1),
which has a hierarchy value of only 100 h. This means it should really be protecting
ultra-low-level data. When other_stuff() calls high_level_func() i, it’s thus violat-
ing the hierarchy: high_level_func() tries to acquire the high_level_mutex, which
has a value of 10000, considerably more than the current hierarchy value of 100. The
hierarchical_mutex will therefore report an error, possibly by throwing an exception
or aborting the program. Deadlocks between hierarchical mutexes are thus impossi-
ble, because the mutexes themselves enforce the lock ordering. This does mean that
you can’t hold two locks at the same time if they’re the same level in the hierarchy, so
hand-over-hand locking schemes require that each mutex in the chain have a lower
hierarchy value than the prior one, which may be impractical in some cases.

 This example also demonstrates another point, the use of the std::lock_guard<>
template with a user-defined mutex type. hierarchical_mutex is not part of the stan-
dard but is easy to write; a simple implementation is shown in listing 3.8. Even though
it’s a user-defined type, it can be used with std::lock_guard<> because it implements
the three member functions required to satisfy the mutex concept: lock(), unlock(),
and try_lock(). You haven’t yet seen try_lock() used directly, but it’s fairly simple: if
the lock on the mutex is held by another thread, it returns false rather than waiting
until the calling thread can acquire the lock on the mutex. It may also be used by
std::lock() internally, as part of the deadlock-avoidance algorithm.

class hierarchical_mutex
{
 std::mutex internal_mutex;
 unsigned long const hierarchy_value;
 unsigned long previous_hierarchy_value;
 static thread_local unsigned long this_thread_hierarchy_value;

 void check_for_hierarchy_violation()
 {
 if(this_thread_hierarchy_value <= hierarchy_value)
 {
 throw std::logic_error(“mutex hierarchy violated”);
 }
 }
 void update_hierarchy_value()
 {
 previous_hierarchy_value=this_thread_hierarchy_value;
 this_thread_hierarchy_value=hierarchy_value;
 }
public:
 explicit hierarchical_mutex(unsigned long value):
 hierarchy_value(value),
 previous_hierarchy_value(0)
 {}

Listing 3.8 A simple hierarchical mutex

b

c

d

Download from Wow! eBook <www.wowebook.com>

53Protecting shared data with mutexes
 void lock()
 {
 check_for_hierarchy_violation();
 internal_mutex.lock();
 update_hierarchy_value();
 }
 void unlock()
 {
 this_thread_hierarchy_value=previous_hierarchy_value;
 internal_mutex.unlock();
 }
 bool try_lock()
 {
 check_for_hierarchy_violation();
 if(!internal_mutex.try_lock())
 return false;
 update_hierarchy_value();
 return true;
 }
};
thread_local unsigned long
 hierarchical_mutex::this_thread_hierarchy_value(ULONG_MAX);

The key here is the use of the thread_local value representing the hierarchy value
for the current thread: this_thread_hierarchy_value B. It’s initialized to the maxi-
mum value i, so initially any mutex can be locked. Because it’s declared thread_local,
every thread has its own copy, so the state of the variable in one thread is entirely inde-
pendent of the state of the variable when read from another thread. See appendix A,
section A.8, for more information about thread_local.

 So, the first time a thread locks an instance of hierarchical_mutex the value of
this_thread_hierarchy_value is ULONG_MAX. By its very nature, this is greater than
any other value, so the check in check_for_hierarchy_violation() c passes. With
that check out of the way, lock()delegates to the internal mutex for the actual lock-
ing e. Once this lock has succeeded, you can update the hierarchy value f.

 If you now lock another hierarchical_mutex while holding the lock on this first
one, the value of this_thread_hierarchy_value reflects the hierarchy value of the
first mutex. The hierarchy value of this second mutex must now be less than that of
the mutex already held in order for the check c to pass.

 Now, it’s important to save the previous value of the hierarchy value for the current
thread so you can restore it in unlock() g; otherwise you’d never be able to lock a
mutex with a higher hierarchy value again, even if the thread didn’t hold any locks.
Because you store this previous hierarchy value only when you hold the internal_
mutex d, and you restore it before you unlock the internal mutex g, you can safely
store it in the hierarchical_mutex itself, because it’s safely protected by the lock on
the internal mutex.

try_lock() works the same as lock() except that if the call to try_lock() on the
internal_mutex fails h, then you don’t own the lock, so you don’t update the hierar-
chy value and return false rather than true.

e
 f

g

h

i

Download from Wow! eBook <www.wowebook.com>

54 CHAPTER 3 Sharing data between threads
 Although detection is a runtime check, it’s at least not timing dependent—you
don’t have to wait around for the rare conditions that cause deadlock to show up.
Also, the design process required to divide the application and mutexes in this way
can help eliminate many possible causes of deadlock before they even get written. It
might be worth performing the design exercise even if you then don’t go as far as
actually writing the runtime checks.

EXTENDING THESE GUIDELINES BEYOND LOCKS

As I mentioned back at the beginning of this section, deadlock doesn’t just occur with
locks; it can occur with any synchronization construct that can lead to a wait cycle. It’s
therefore worth extending these guidelines to cover those cases too. For example, just
as you should avoid acquiring nested locks if possible, it’s a bad idea to wait for a
thread while holding a lock, because that thread might need to acquire the lock in
order to proceed. Similarly, if you’re going to wait for a thread to finish, it might be
worth identifying a thread hierarchy, such that a thread waits only for threads lower
down the hierarchy. One simple way to do this is to ensure that your threads are
joined in the same function that started them, as described in sections 3.1.2 and 3.3.

 Once you’ve designed your code to avoid deadlock, std::lock() and std::
lock_guard cover most of the cases of simple locking, but sometimes more flexibility
is required. For those cases, the Standard Library provides the std::unique_lock tem-
plate. Like std::lock_guard, this is a class template parameterized on the mutex
type, and it also provides the same RAII-style lock management as std::lock_guard
but with a bit more flexibility.

3.2.6 Flexible locking with std::unique_lock

std::unique_lock provides a bit more flexibility than std::lock_guard by relaxing
the invariants; a std::unique_lock instance doesn’t always own the mutex that it’s
associated with. First off, just as you can pass std::adopt_lock as a second argument
to the constructor to have the lock object manage the lock on a mutex, you can also
pass std::defer_lock as the second argument to indicate that the mutex should
remain unlocked on construction. The lock can then be acquired later by calling
lock() on the std::unique_lock object (not the mutex) or by passing the std::
unique_lock object itself to std::lock(). Listing 3.6 could just as easily have been
written as shown in listing 3.9, using std::unique_lock and std::defer_lock B
rather than std::lock_guard and std::adopt_lock. The code has the same line
count and is essentially equivalent, apart from one small thing: std::unique_lock
takes more space and is a fraction slower to use than std::lock_guard. The flexibility
of allowing a std::unique_lock instance not to own the mutex comes at a price: this
information has to be stored, and it has to be updated.

class some_big_object;
void swap(some_big_object& lhs,some_big_object& rhs);

Listing 3.9 Using std::lock() and std::unique_lock in a swap operation
Download from Wow! eBook <www.wowebook.com>

55Protecting shared data with mutexes
class X
{
private:
 some_big_object some_detail;
 std::mutex m;
public:
 X(some_big_object const& sd):some_detail(sd){}

 friend void swap(X& lhs, X& rhs)
 {
 if(&lhs==&rhs)
 return;
 std::unique_lock<std::mutex> lock_a(lhs.m,std::defer_lock);
 std::unique_lock<std::mutex> lock_b(rhs.m,std::defer_lock);
 std::lock(lock_a,lock_b);
 swap(lhs.some_detail,rhs.some_detail);
 }
};

In listing 3.9, the std::unique_lock objects could be passed to std::lock() c because
std::unique_lock provides lock(), try_lock(), and unlock() member functions.
These forward to the member functions of the same name on the underlying mutex
to do the actual work and just update a flag inside the std::unique_lock instance to
indicate whether the mutex is currently owned by that instance. This flag is necessary
in order to ensure that unlock() is called correctly in the destructor. If the instance
does own the mutex, the destructor must call unlock(), and if the instance does not own
the mutex, it must not call unlock(). This flag can be queried by calling the owns_lock()
member function.

 As you might expect, this flag has to be stored somewhere. Therefore, the size of a
std::unique_lock object is typically larger than that of a std::lock_guard object,
and there’s also a slight performance penalty when using std::unique_lock over std::
lock_guard because the flag has to be updated or checked, as appropriate. If std::lock_
guard is sufficient for your needs, I’d therefore recommend using it in preference.
That said, there are cases where std::unique_lock is a better fit for the task at hand,
because you need to make use of the additional flexibility. One example is deferred
locking, as you’ve already seen; another case is where the ownership of the lock needs
to be transferred from one scope to another.

3.2.7 Transferring mutex ownership between scopes

Because std::unique_lock instances don’t have to own their associated mutexes, the
ownership of a mutex can be transferred between instances by moving the instances
around. In some cases such transfer is automatic, such as when returning an instance
from a function, and in other cases you have to do it explicitly by calling std::move().
Fundamentally this depends on whether the source is an lvalue—a real variable or ref-
erence to one—or an rvalue—a temporary of some kind. Ownership transfer is auto-
matic if the source is an rvalue and must be done explicitly for an lvalue in order to
avoid accidentally transferring ownership away from a variable. std::unique_lock is

std::defer_lock
leaves mutexes

unlocked

b

Mutexes are
locked herec
Download from Wow! eBook <www.wowebook.com>

56 CHAPTER 3 Sharing data between threads
an example of a type that’s movable but not copyable. See appendix A, section A.1.1, for
more about move semantics.

 One possible use is to allow a function to lock a mutex and transfer ownership of
that lock to the caller, so the caller can then perform additional actions under the pro-
tection of the same lock. The following code snippet shows an example of this: the
function get_lock() locks the mutex and then prepares the data before returning
the lock to the caller:

std::unique_lock<std::mutex> get_lock()
{
 extern std::mutex some_mutex;
 std::unique_lock<std::mutex> lk(some_mutex);
 prepare_data();
 return lk;
}
void process_data()
{
 std::unique_lock<std::mutex> lk(get_lock());
 do_something();
}

Because lk is an automatic variable declared within the function, it can be returned
directly B without a call to std:move(); the compiler takes care of calling the move con-
structor. The process_data() function can then transfer ownership directly into its own
std::unique_lock instance c, and the call to do_something() can rely on the data
being correctly prepared without another thread altering the data in the meantime.

 Typically this sort of pattern would be used where the mutex to be locked is depen-
dent on the current state of the program or on an argument passed in to the function
that returns the std::unique_lock object. One such usage is where the lock isn’t
returned directly but is a data member of a gateway class used to ensure correctly
locked access to some protected data. In this case, all access to the data is through this
gateway class: when you wish to access the data, you obtain an instance of the gateway
class (by calling a function such as get_lock() in the preceding example), which
acquires the lock. You can then access the data through member functions of the gate-
way object. When you’re finished, you destroy the gateway object, which releases the
lock and allows other threads to access the protected data. Such a gateway object may
well be movable (so that it can be returned from a function), in which case the lock
object data member also needs to be movable.

 The flexibility of std::unique_lock also allows instances to relinquish their locks
before they’re destroyed. You can do this with the unlock() member function, just
like for a mutex: std::unique_lock supports the same basic set of member functions
for locking and unlocking as a mutex does, in order that it can be used with generic
functions such as std::lock. The ability to release a lock before the std::unique_
lock instance is destroyed means that you can optionally release it in a specific code
branch if it’s apparent that the lock is no longer required. This can be important for
the performance of the application; holding a lock for longer than required can cause

b

c

Download from Wow! eBook <www.wowebook.com>

57Protecting shared data with mutexes
a drop in performance, because other threads waiting for the lock are prevented from
proceeding for longer than necessary.

3.2.8 Locking at an appropriate granularity

The granularity of a lock is something I touched on earlier, in section 3.2.3: the lock
granularity is a hand-waving term to describe the amount of data protected by a single
lock. A fine-grained lock protects a small amount of data, and a coarse-grained lock pro-
tects a large amount of data. Not only is it important to choose a sufficiently coarse lock
granularity to ensure the required data is protected, but it’s also important to ensure
that a lock is held only for the operations that actually require it. We all know the frustra-
tion of waiting in the checkout line in a supermarket with a cart full of groceries only for
the person currently being served to suddenly realize that they forgot some cranberry
sauce and then leave everybody waiting while they go and find some, or for the cashier
to be ready for payment and the customer to only then start rummaging in their purse
for their wallet. Everything proceeds much more easily if everybody gets to the checkout
with everything they want and with an appropriate means of payment ready.

 The same applies to threads: if multiple threads are waiting for the same resource
(the cashier at the checkout), then if any thread holds the lock for longer than neces-
sary, it will increase the total time spent waiting (don’t wait until you’ve reached the
checkout to start looking for the cranberry sauce). Where possible, lock a mutex only
while actually accessing the shared data; try to do any processing of the data outside
the lock. In particular, don’t do any really time-consuming activities like file I/O while
holding a lock. File I/O is typically hundreds (if not thousands) of times slower than
reading or writing the same volume of data from memory. So unless the lock is really
intended to protect access to the file, performing I/O while holding the lock will delay
other threads unnecessarily (because they’ll block while waiting to acquire the lock),
potentially eliminating any performance gain from the use of multiple threads.

std::unique_lock works well in this situation, because you can call unlock()
when the code no longer needs access to the shared data and then call lock() again if
access is required later in the code:

void get_and_process_data()
{
 std::unique_lock<std::mutex> my_lock(the_mutex);
 some_class data_to_process=get_next_data_chunk();
 my_lock.unlock();
 result_type result=process(data_to_process);
 my_lock.lock();
 write_result(data_to_process,result);
}

You don’t need the mutex locked across the call to process(), so you manually
unlock it before the call B and then lock it again afterward c.

 Hopefully it’s obvious that if you have one mutex protecting an entire data struc-
ture, not only is there likely to be more contention for the lock, but also the potential

Don’t need mutex
locked across call
to process()

b

Relock mutex
to write resultc
Download from Wow! eBook <www.wowebook.com>

58 CHAPTER 3 Sharing data between threads
for reducing the time that the lock is held is less. More of the operation steps will
require a lock on the same mutex, so the lock must be held longer. This double
whammy of a cost is thus also a double incentive to move toward finer-grained locking
wherever possible.

 As this example shows, locking at an appropriate granularity isn’t only about
the amount of data locked; it’s also about how long the lock is held and what oper-
ations are performed while the lock is held. In general, a lock should be held for only the
minimum possible time needed to perform the required operations. This also means that time-
consuming operations such as acquiring another lock (even if you know it won’t dead-
lock) or waiting for I/O to complete shouldn’t be done while holding a lock unless
absolutely necessary.

 In listings 3.6 and 3.9, the operation that required locking the two mutexes was a
swap operation, which obviously requires concurrent access to both objects. Suppose
instead you were trying to compare a simple data member that was just a plain int.
Would this make a difference? ints are cheap to copy, so you could easily copy the
data for each object being compared while only holding the lock for that object and
then compare the copied values. This would mean that you were holding the lock on
each mutex for the minimum amount of time and also that you weren’t holding one
lock while locking another. The following listing shows a class Y for which this is the
case and a sample implementation of the equality comparison operator.

class Y
{
private:
 int some_detail;
 mutable std::mutex m;

 int get_detail() const
 {
 std::lock_guard<std::mutex> lock_a(m);
 return some_detail;
 }
public:
 Y(int sd):some_detail(sd){}

 friend bool operator==(Y const& lhs, Y const& rhs)
 {
 if(&lhs==&rhs)
 return true;
 int const lhs_value=lhs.get_detail();
 int const rhs_value=rhs.get_detail();
 return lhs_value==rhs_value;
 }
};

In this case, the comparison operator first retrieves the values to be compared by call-
ing the get_detail() member function c, d. This function retrieves the value while

Listing 3.10 Locking one mutex at a time in a comparison operator

b

c
d

e

Download from Wow! eBook <www.wowebook.com>

59Alternative facilities for protecting shared data
protecting it with a lock B. The comparison operator then compares the retrieved
values e. Note, however, that as well as reducing the locking periods so that only one
lock is held at a time (and thus eliminating the possibility of deadlock), this has subtly
changed the semantics of the operation compared to holding both locks together. In list-
ing 3.10, if the operator returns true, it means that the value of lhs.some_detail at
one point in time is equal to the value of rhs.some_detail at another point in time.
The two values could have been changed in any way in between the two reads; the values
could have been swapped in between c and d, for example, thus rendering the com-
parison meaningless. The equality comparison might thus return true to indicate that
the values were equal, even though there was never an instant in time when the values
were actually equal. It’s therefore important to be careful when making such changes
that the semantics of the operation are not changed in a problematic fashion: if you
don’t hold the required locks for the entire duration of an operation, you’re exposing yourself to
race conditions.

 Sometimes, there just isn’t an appropriate level of granularity because not all
accesses to the data structure require the same level of protection. In this case, it
might be appropriate to use an alternative mechanism, instead of a plain std::mutex.

3.3 Alternative facilities for protecting shared data
Although they’re the most general mechanism, mutexes aren’t the only game in town
when it comes to protecting shared data; there are alternatives that provide more
appropriate protection in specific scenarios.

 One particularly extreme (but remarkably common) case is where the shared data
needs protection only from concurrent access while it’s being initialized, but after that
no explicit synchronization is required. This might be because the data is read-only
once created, and so there are no possible synchronization issues, or it might be
because the necessary protection is performed implicitly as part of the operations on
the data. In either case, locking a mutex after the data has been initialized, purely in
order to protect the initialization, is unnecessary and a needless hit to performance.
It’s for this reason that the C++ Standard provides a mechanism purely for protecting
shared data during initialization.

3.3.1 Protecting shared data during initialization

Suppose you have a shared resource that’s so expensive to construct that you want to
do so only if it’s actually required; maybe it opens a database connection or allocates a
lot of memory. Lazy initialization such as this is common in single-threaded code—
each operation that requires the resource first checks to see if it has been initialized
and then initializes it before use if not:

std::shared_ptr<some_resource> resource_ptr;
void foo()
{
 if(!resource_ptr)
 {
Download from Wow! eBook <www.wowebook.com>

60 CHAPTER 3 Sharing data between threads
 resource_ptr.reset(new some_resource);
 }
 resource_ptr->do_something();
}

If the shared resource itself is safe for concurrent access, the only part that needs pro-
tecting when converting this to multithreaded code is the initialization B, but a naïve
translation such as that in the following listing can cause unnecessary serialization of
threads using the resource. This is because each thread must wait on the mutex in
order to check whether the resource has already been initialized.

std::shared_ptr<some_resource> resource_ptr;
std::mutex resource_mutex;
void foo()
{
 std::unique_lock<std::mutex> lk(resource_mutex);
 if(!resource_ptr)
 {
 resource_ptr.reset(new some_resource);
 }
 lk.unlock();
 resource_ptr->do_something();
}

This code is common enough, and the unnecessary serialization problematic enough,
that many people have tried to come up with a better way of doing this, including the
infamous Double-Checked Locking pattern: the pointer is first read without acquiring
the lock B (in the code below), and the lock is acquired only if the pointer is NULL.
The pointer is then checked again once the lock has been acquired c (hence the double-
checked part) in case another thread has done the initialization between the first check
and this thread acquiring the lock:

void undefined_behaviour_with_double_checked_locking()
{
 if(!resource_ptr)
 {
 std::lock_guard<std::mutex> lk(resource_mutex);
 if(!resource_ptr)
 {
 resource_ptr.reset(new some_resource);
 }
 }
 resource_ptr->do_something();
}

Unfortunately, this pattern is infamous for a reason: it has the potential for nasty race
conditions, because the read outside the lock B isn’t synchronized with the write
done by another thread inside the lock d. This therefore creates a race condition
that covers not just the pointer itself but also the object pointed to; even if a thread
sees the pointer written by another thread, it might not see the newly created instance

Listing 3.11 Thread-safe lazy initialization using a mutex

b

All threads are
serialized here

Only the initialization
needs protection

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

61Alternative facilities for protecting shared data
of some_resource, resulting in the call to do_something() e operating on incorrect
values. This is an example of the type of race condition defined as a data race by the
C++ Standard and thus specified as undefined behavior. It’s is therefore quite definitely
something to avoid. See chapter 5 for a detailed discussion of the memory model,
including what constitutes a data race.

 The C++ Standards Committee also saw that this was an important scenario, and so
the C++ Standard Library provides std::once_flag and std::call_once to handle
this situation. Rather than locking a mutex and explicitly checking the pointer, every
thread can just use std::call_once, safe in the knowledge that the pointer will have
been initialized by some thread (in a properly synchronized fashion) by the time
std::call_once returns. Use of std::call_once will typically have a lower overhead
than using a mutex explicitly, especially when the initialization has already been
done, so should be used in preference where it matches the required functionality.
The following example shows the same operation as listing 3.11, rewritten to use
std::call_once. In this case, the initialization is done by calling a function, but it
could just as easily have been done with an instance of a class with a function call oper-
ator. Like most of the functions in the standard library that take functions or predi-
cates as arguments, std::call_once works with any function or callable object.

std::shared_ptr<some_resource> resource_ptr;
std::once_flag resource_flag;

void init_resource()
{
 resource_ptr.reset(new some_resource);
}

void foo()
{
 std::call_once(resource_flag,init_resource);
 resource_ptr->do_something();
}

In this example, both the std::once_flag B and data being initialized are
namespace-scope objects, but std::call_once() can just as easily be used for lazy ini-
tialization of class members, as in the following listing.

class X
{
private:
 connection_info connection_details;
 connection_handle connection;
 std::once_flag connection_init_flag;

 void open_connection()
 {
 connection=connection_manager.open(connection_details);
 }
public:

Listing 3.12 Thread-safe lazy initialization of a class member using std::call_once

b

Initialization is
called exactly once
Download from Wow! eBook <www.wowebook.com>

62 CHAPTER 3 Sharing data between threads
 X(connection_info const& connection_details_):
 connection_details(connection_details_)
 {}
 void send_data(data_packet const& data)
 {
 std::call_once(connection_init_flag,&X::open_connection,this);
 connection.send_data(data);
 }
 data_packet receive_data()
 {
 std::call_once(connection_init_flag,&X::open_connection,this);
 return connection.receive_data();
 }
};

In that example, the initialization is done either by the first call to send_data() B
or by the first call to receive_data() d. The use of the member function open_
connection() to initialize the data also requires that the this pointer be passed in.
Just as for other functions in the Standard Library that accept callable objects, such as
the constructor for std::thread and std::bind(), this is done by passing an addi-
tional argument to std::call_once() c.

 It’s worth noting that, like std::mutex, std::once_flag instances can’t be copied
or moved, so if you use them as a class member like this, you’ll have to explicitly
define these special member functions should you require them.

 One scenario where there’s a potential race condition over initialization is that of a
local variable declared with static. The initialization of such a variable is defined to
occur the first time control passes through its declaration; for multiple threads calling
the function, this means there’s the potential for a race condition to define first. On
many pre-C++11 compilers this race condition is problematic in practice, because
multiple threads may believe they’re first and try to initialize the variable, or threads
may try to use it after initialization has started on another thread but before it’s fin-
ished. In C++11 this problem is solved: the initialization is defined to happen on
exactly one thread, and no other threads will proceed until that initialization is com-
plete, so the race condition is just over which thread gets to do the initialization rather
than anything more problematic. This can be used as an alternative to std::call_
once for those cases where a single global instance is required:

class my_class;
my_class& get_my_class_instance()
{
 static my_class instance;
 return instance;
}

Multiple threads can then call get_my_class_instance() safely B, without having to
worry about race conditions on the initialization.

 Protecting data only for initialization is a special case of a more general scenario:
that of a rarely updated data structure. For most of the time, such a data structure is

b

cd

Initialization guaranteed
to be thread-safe

b

Download from Wow! eBook <www.wowebook.com>

63Alternative facilities for protecting shared data
read-only and can therefore be merrily read by multiple threads concurrently, but on
occasion the data structure may need updating. What’s needed here is a protection
mechanism that acknowledges this fact.

3.3.2 Protecting rarely updated data structures

Consider a table used to store a cache of DNS entries for resolving domain names to
their corresponding IP addresses. Typically, a given DNS entry will remain unchanged
for a long period of time—in many cases DNS entries remain unchanged for years.
Although new entries may be added to the table from time to time as users access dif-
ferent websites, this data will therefore remain largely unchanged throughout its life.
It’s important that the validity of the cached entries be checked periodically, but this
still requires an update only if the details have actually changed.

 Although updates are rare, they can still happen, and if this cache is to be accessed
from multiple threads, it will need to be appropriately protected during updates to
ensure that none of the threads reading the cache see a broken data structure.

 In the absence of a special-purpose data structure that exactly fits the desired
usage and that’s specially designed for concurrent updates and reads (such as those in
chapters 6 and 7), such an update requires that the thread doing the update have
exclusive access to the data structure until it has completed the operation. Once the
change is complete, the data structure is again safe for multiple threads to access con-
currently. Using a std::mutex to protect the data structure is therefore overly pessi-
mistic, because it will eliminate the possible concurrency in reading the data structure
when it isn’t undergoing modification; what’s needed is a different kind of mutex.
This new kind of mutex is typically called a reader-writer mutex, because it allows for
two different kinds of usage: exclusive access by a single “writer” thread or shared,
concurrent access by multiple “reader” threads.

 The new C++ Standard Library doesn’t provide such a mutex out of the box,
although one was proposed to the Standards Committee.3 Because the proposal
wasn’t accepted, the examples in this section use the implementation provided by the
Boost library, which is based on the proposal. As you’ll see in chapter 8, the use of
such a mutex isn’t a panacea, and the performance is dependent on the number of
processors involved and the relative workloads of the reader and updater threads. It’s
therefore important to profile the performance of the code on the target system to
ensure that there’s actually a benefit to the additional complexity.

 Rather than using an instance of std::mutex for the synchronization, you use an
instance of boost::shared_mutex. For the update operations, std::lock_guard
<boost::shared_mutex> and std::unique_lock<boost::shared_mutex> can be used
for the locking, in place of the corresponding std::mutex specializations. These
ensure exclusive access, just as with std::mutex. Those threads that don’t need to
update the data structure can instead use boost::shared_lock<boost::shared_mutex>

3 Howard E. Hinnant, “Multithreading API for C++0X—A Layered Approach,” C++ Standards Committee
Paper N2094, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html.
Download from Wow! eBook <www.wowebook.com>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html

64 CHAPTER 3 Sharing data between threads
to obtain shared access. This is used just the same as std::unique_lock, except that
multiple threads may have a shared lock on the same boost::shared_mutex at the
same time. The only constraint is that if any thread has a shared lock, a thread that
tries to acquire an exclusive lock will block until all other threads have relinquished
their locks, and likewise if any thread has an exclusive lock, no other thread may
acquire a shared or exclusive lock until the first thread has relinquished its lock.

 The following listing shows a simple DNS cache like the one just described, using a
std::map to hold the cached data, protected using a boost::shared_mutex.

#include <map>
#include <string>
#include <mutex>
#include <boost/thread/shared_mutex.hpp>

class dns_entry;

class dns_cache
{
 std::map<std::string,dns_entry> entries;
 mutable boost::shared_mutex entry_mutex;
public:
 dns_entry find_entry(std::string const& domain) const
 {
 boost::shared_lock<boost::shared_mutex> lk(entry_mutex);
 std::map<std::string,dns_entry>::const_iterator const it=
 entries.find(domain);
 return (it==entries.end())?dns_entry():it->second;
 }
 void update_or_add_entry(std::string const& domain,
 dns_entry const& dns_details)
 {
 std::lock_guard<boost::shared_mutex> lk(entry_mutex);
 entries[domain]=dns_details;
 }
};

In listing 3.13, find_entry() uses an instance of boost::shared_lock<> to protect it
for shared, read-only access B; multiple threads can therefore call find_entry()
simultaneously without problems. On the other hand, update_or_add_entry() uses
an instance of std::lock_guard<> to provide exclusive access while the table is
updated c; not only are other threads prevented from doing updates in a call update_
or_add_entry(), but threads that call find_entry() are blocked too.

3.3.3 Recursive locking

With std::mutex, it’s an error for a thread to try to lock a mutex it already owns, and
attempting to do so will result in undefined behavior. However, in some circumstances it
would be desirable for a thread to reacquire the same mutex several times without
having first released it. For this purpose, the C++ Standard Library provides

Listing 3.13 Protecting a data structure with a boost::shared_mutex

b

c

Download from Wow! eBook <www.wowebook.com>

65Summary
std::recursive_mutex. It works just like std::mutex, except that you can acquire
multiple locks on a single instance from the same thread. You must release all your
locks before the mutex can be locked by another thread, so if you call lock() three
times, you must also call unlock() three times. Correct use of std::lock_guard
<std::recursive_mutex> and std::unique_lock<std::recursive_mutex> will han-
dle this for you.

 Most of the time, if you think you want a recursive mutex, you probably need to
change your design instead. A common use of recursive mutexes is where a class is
designed to be accessible from multiple threads concurrently, so it has a mutex pro-
tecting the member data. Each public member function locks the mutex, does the
work, and then unlocks the mutex. However, sometimes it’s desirable for one public
member function to call another as part of its operation. In this case, the second
member function will also try to lock the mutex, thus leading to undefined behav-
ior. The quick-and-dirty solution is to change the mutex to a recursive mutex. This
will allow the mutex lock in the second member function to succeed and the func-
tion to proceed.

 However, such usage is not recommended, because it can lead to sloppy thinking
and bad design. In particular, the class invariants are typically broken while the lock
is held, which means that the second member function needs to work even when
called with the invariants broken. It’s usually better to extract a new private member
function that’s called from both member functions, which does not lock the mutex
(it expects it to already be locked). You can then think carefully about the circum-
stances under which that new function can be called and the state of the data under
those circumstances.

3.4 Summary
In this chapter I discussed how problematic race conditions can be disastrous when
sharing data between threads and how to use std::mutex and careful interface design
to avoid them. You saw that mutexes aren’t a panacea and do have their own problems
in the form of deadlock, though the C++ Standard Library provides a tool to help
avoid that in the form of std::lock(). You then looked at some further techniques
for avoiding deadlock, followed by a brief look at transferring lock ownership and
issues surrounding choosing the appropriate granularity for locking. Finally, I covered
the alternative data-protection facilities provided for specific scenarios, such as std::
call_once(), and boost::shared_mutex.

 One thing that I haven’t covered yet, however, is waiting for input from other
threads. Our thread-safe stack just throws an exception if the stack is empty, so if one
thread wanted to wait for another thread to push a value on the stack (which is, after
all, one of the primary uses for a thread-safe stack), it would have to repeatedly try to
pop a value, retrying if an exception gets thrown. This consumes valuable processing
time in performing the check, without actually making any progress; indeed, the con-
stant checking might hamper progress by preventing the other threads in the system
Download from Wow! eBook <www.wowebook.com>

66 CHAPTER 3 Sharing data between threads
from running. What’s needed is some way for a thread to wait for another thread to
complete a task without consuming CPU time in the process. Chapter 4 builds on the
facilities I’ve discussed for protecting shared data and introduces the various mecha-
nisms for synchronizing operations between threads in C++; chapter 6 shows how
these can be used to build larger reusable data structures.
Download from Wow! eBook <www.wowebook.com>

Synchronizing
concurrent operations
In the last chapter, we looked at various ways of protecting data that’s shared
between threads. But sometimes you don’t just need to protect the data but also to
synchronize actions on separate threads. One thread might need to wait for another
thread to complete a task before the first thread can complete its own, for example.
In general, it’s common to want a thread to wait for a specific event to happen or a
condition to be true. Although it would be possible to do this by periodically
checking a “task complete” flag or something similar stored in shared data, this is
far from ideal. The need to synchronize operations between threads like this is such a
common scenario that the C++ Standard Library provides facilities to handle it, in
the form of condition variables and futures.

 In this chapter I’ll discuss how to wait for events with condition variables and
futures and how to use them to simplify the synchronization of operations.

This chapter covers
■ Waiting for an event
■ Waiting for one-off events with futures
■ Waiting with a time limit
■ Using synchronization of operations to

simplify code
67

Download from Wow! eBook <www.wowebook.com>

68 CHAPTER 4 Synchronizing concurrent operations
4.1 Waiting for an event or other condition
Suppose you’re traveling on an overnight train. One way to ensure you get off at the
right station would be to stay awake all night and pay attention to where the train
stops. You wouldn’t miss your station, but you’d be tired when you got there. Alterna-
tively, you could look at the timetable to see when the train is supposed to arrive, set
your alarm a bit before, and go to sleep. That would be OK; you wouldn’t miss your
stop, but if the train got delayed, you’d wake up too early. There’s also the possibility
that your alarm clock’s batteries would die, and you’d sleep too long and miss your sta-
tion. What would be ideal is if you could just go to sleep and have somebody or some-
thing wake you up when the train gets to your station, whenever that is.

 How does that relate to threads? Well, if one thread is waiting for a second thread
to complete a task, it has several options. First, it could just keep checking a flag in
shared data (protected by a mutex) and have the second thread set the flag when it
completes the task. This is wasteful on two counts: the thread consumes valuable pro-
cessing time repeatedly checking the flag, and when the mutex is locked by the wait-
ing thread, it can’t be locked by any other thread. Both of these work against the
thread doing the waiting, because they limit the resources available to the thread
being waited for and even prevent it from setting the flag when it’s done. This is akin
to staying awake all night talking to the train driver: he has to drive the train more
slowly because you keep distracting him, so it takes longer to get there. Similarly, the
waiting thread is consuming resources that could be used by other threads in the sys-
tem and may end up waiting longer than necessary.

 A second option is to have the waiting thread sleep for small periods between the
checks using the std::this_thread::sleep_for() function (see section 4.3):

bool flag;
std::mutex m;

void wait_for_flag()
{
 std::unique_lock<std::mutex> lk(m);
 while(!flag)
 {
 lk.unlock();
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 lk.lock();
 }
}

In the loop, the function unlocks the mutex B before the sleep c and locks it again
afterward d, so another thread gets a chance to acquire it and set the flag.

 This is an improvement, because the thread doesn’t waste processing time while
it’s sleeping, but it’s hard to get the sleep period right. Too short a sleep in between
checks and the thread still wastes processing time checking; too long a sleep and the
thread will keep on sleeping even when the task it’s waiting for is complete, introduc-
ing a delay. It’s rare that this oversleeping will have a direct impact on the operation of

Sleep for 100 ms c

Unlock the mutexb

Relock the mutexd
Download from Wow! eBook <www.wowebook.com>

69Waiting for an event or other condition
the program, but it could mean dropped frames in a fast-paced game or overrunning
a time slice in a real-time application.

 The third, and preferred, option is to use the facilities from the C++ Standard
Library to wait for the event itself. The most basic mechanism for waiting for an event
to be triggered by another thread (such as the presence of additional work in the
pipeline mentioned previously) is the condition variable. Conceptually, a condition vari-
able is associated with some event or other condition, and one or more threads can wait
for that condition to be satisfied. When some thread has determined that the condi-
tion is satisfied, it can then notify one or more of the threads waiting on the condition
variable, in order to wake them up and allow them to continue processing.

4.1.1 Waiting for a condition with condition variables

The Standard C++ Library provides not one but two implementations of a condition
variable: std::condition_variable and std::condition_variable_any. Both of
these are declared in the <condition_variable> library header. In both cases, they
need to work with a mutex in order to provide appropriate synchronization; the for-
mer is limited to working with std::mutex, whereas the latter can work with anything
that meets some minimal criteria for being mutex-like, hence the _any suffix. Because
std::condition_variable_any is more general, there’s the potential for additional
costs in terms of size, performance, or operating system resources, so std::condition_
variable should be preferred unless the additional flexibility is required.

 So, how do you use a std::condition_variable to handle the example in the
introduction—how do you let the thread that’s waiting for work sleep until there’s
data to process? The following listing shows one way you could do this with a condi-
tion variable.

std::mutex mut;
std::queue<data_chunk> data_queue;
std::condition_variable data_cond;

void data_preparation_thread()
{
 while(more_data_to_prepare())
 {
 data_chunk const data=prepare_data();
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(data);
 data_cond.notify_one();
 }
}

void data_processing_thread()
{
 while(true)
 {
 std::unique_lock<std::mutex> lk(mut);

Listing 4.1 Waiting for data to process with a std::condition_variable

b

c
d

e

Download from Wow! eBook <www.wowebook.com>

70 CHAPTER 4 Synchronizing concurrent operations
 data_cond.wait(
 lk,[]{return !data_queue.empty();});
 data_chunk data=data_queue.front();
 data_queue.pop();
 lk.unlock();
 process(data);
 if(is_last_chunk(data))
 break;
 }
}

First off, you have a queue B that’s used to pass the data between the two threads.
When the data is ready, the thread preparing the data locks the mutex protecting the
queue using a std::lock_guard and pushes the data onto the queue c. It then calls
the notify_one() member function on the std::condition_variable instance to
notify the waiting thread (if there is one) d.

 On the other side of the fence, you have the processing thread. This thread first
locks the mutex, but this time with a std::unique_lock rather than a std::lock_
guard e—you’ll see why in a minute. The thread then calls wait() on the std::
condition_variable, passing in the lock object and a lambda function that expresses
the condition being waited for f. Lambda functions are a new feature in C++11 that
allows you to write an anonymous function as part of another expression, and they’re
ideally suited for specifying predicates for standard library functions such as wait().
In this case, the simple lambda function []{return !data_queue.empty();} checks
to see if the data_queue is not empty()—that is, there’s some data in the queue ready
for processing. Lambda functions are described in more detail in appendix A, sec-
tion A.5.

 The implementation of wait() then checks the condition (by calling the supplied
lambda function) and returns if it’s satisfied (the lambda function returned true). If
the condition isn’t satisfied (the lambda function returned false), wait() unlocks
the mutex and puts the thread in a blocked or waiting state. When the condition vari-
able is notified by a call to notify_one() from the data-preparation thread, the thread
wakes from its slumber (unblocks it), reacquires the lock on the mutex, and checks
the condition again, returning from wait() with the mutex still locked if the condi-
tion has been satisfied. If the condition hasn’t been satisfied, the thread unlocks the
mutex and resumes waiting. This is why you need the std::unique_lock rather than
the std::lock_guard—the waiting thread must unlock the mutex while it’s waiting
and lock it again afterward, and std::lock_guard doesn’t provide that flexibility. If
the mutex remained locked while the thread was sleeping, the data-preparation
thread wouldn’t be able to lock the mutex to add an item to the queue, and the wait-
ing thread would never be able to see its condition satisfied.

 Listing 4.1 uses a simple lambda function for the wait f, which checks to see if the
queue is not empty, but any function or callable object could be passed. If you already
have a function to check the condition (perhaps because it’s more complicated than a
simple test like this), then this function can be passed in directly; there’s no need

f

g

Download from Wow! eBook <www.wowebook.com>

71Waiting for an event or other condition
to wrap it in a lambda. During a call to wait(), a condition variable may check the
supplied condition any number of times; however, it always does so with the mutex
locked and will return immediately if (and only if) the function provided to test the
condition returns true. When the waiting thread reacquires the mutex and checks
the condition, if it isn’t in direct response to a notification from another thread, it’s
called a spurious wake. Because the number and frequency of any such spurious wakes
are by definition indeterminate, it isn’t advisable to use a function with side effects for
the condition check. If you do so, you must be prepared for the side effects to occur
multiple times.

 The flexibility to unlock a std::unique_lock isn’t just used for the call to wait();
it’s also used once you have the data to process but before processing it g. Processing
data can potentially be a time-consuming operation, and as you saw in chapter 3, it’s a
bad idea to hold a lock on a mutex for longer than necessary.

 Using a queue to transfer data between threads as in listing 4.1 is a common sce-
nario. Done well, the synchronization can be limited to the queue itself, which greatly
reduces the possible number of synchronization problems and race conditions. In
view of this, let’s now work on extracting a generic thread-safe queue from listing 4.1.

4.1.2 Building a thread-safe queue with condition variables

If you’re going to be designing a generic queue, it’s worth spending a few minutes
thinking about the operations that are likely to be required, as you did with the
thread-safe stack back in section 3.2.3. Let’s look at the C++ Standard Library for
inspiration, in the form of the std::queue<> container adaptor shown in the follow-
ing listing.

template <class T, class Container = std::deque<T> >
class queue {
public:
 explicit queue(const Container&);
 explicit queue(Container&& = Container());

 template <class Alloc> explicit queue(const Alloc&);
 template <class Alloc> queue(const Container&, const Alloc&);
 template <class Alloc> queue(Container&&, const Alloc&);
 template <class Alloc> queue(queue&&, const Alloc&);

 void swap(queue& q);

 bool empty() const;
 size_type size() const;

 T& front();
 const T& front() const;
 T& back();
 const T& back() const;

 void push(const T& x);
 void push(T&& x);

Listing 4.2 std::queue interface
Download from Wow! eBook <www.wowebook.com>

72 CHAPTER 4 Synchronizing concurrent operations
 void pop();
 template <class... Args> void emplace(Args&&... args);
};

If you ignore the construction, assignment and swap operations, you’re left with three
groups of operations: those that query the state of the whole queue (empty() and
size()), those that query the elements of the queue (front() and back()), and those
that modify the queue (push(), pop() and emplace()). This is the same as you had
back in section 3.2.3 for the stack, and therefore you have the same issues regarding
race conditions inherent in the interface. Consequently, you need to combine
front() and pop() into a single function call, much as you combined top() and
pop() for the stack. The code from listing 4.1 adds a new nuance, though: when using
a queue to pass data between threads, the receiving thread often needs to wait for the
data. Let’s provide two variants on pop(): try_pop(), which tries to pop the value
from the queue but always returns immediately (with an indication of failure) even if
there wasn’t a value to retrieve, and wait_and_pop(), which will wait until there’s a
value to retrieve. If you take your lead for the signatures from the stack example, your
interface looks like the following.

#include <memory>

template<typename T>
class threadsafe_queue
{
public:
 threadsafe_queue();
 threadsafe_queue(const threadsafe_queue&);
 threadsafe_queue& operator=(
 const threadsafe_queue&) = delete;

 void push(T new_value);

 bool try_pop(T& value);
 std::shared_ptr<T> try_pop();

 void wait_and_pop(T& value);
 std::shared_ptr<T> wait_and_pop();

 bool empty() const;
};

As you did for the stack, you’ve cut down on the constructors and eliminated assign-
ment in order to simplify the code. You’ve also provided two versions of both try_pop()
and wait_for_pop(), as before. The first overload of try_pop() b stores the
retrieved value in the referenced variable, so it can use the return value for status; it
returns true if it retrieved a value and false otherwise (see section A.2). The second
overload c can’t do this, because it returns the retrieved value directly. But the
returned pointer can be set to NULL if there’s no value to retrieve.

Listing 4.3 The interface of your threadsafe_queue

For std::shared_ptr

Disallow assignment
for simplicity

b
 c
Download from Wow! eBook <www.wowebook.com>

73Waiting for an event or other condition
 So, how does all this relate to listing 4.1? Well, you can extract the code for push()
and wait_and_pop() from there, as shown in the next listing.

#include <queue>
#include <mutex>
#include <condition_variable>

template<typename T>
class threadsafe_queue
{
private:
 std::mutex mut;
 std::queue<T> data_queue;
 std::condition_variable data_cond;
public:
 void push(T new_value)
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(new_value);
 data_cond.notify_one();
 }

 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=data_queue.front();
 data_queue.pop();
 }
};

threadsafe_queue<data_chunk> data_queue;

void data_preparation_thread()
{
 while(more_data_to_prepare())
 {
 data_chunk const data=prepare_data();
 data_queue.push(data);
 }
}

void data_processing_thread()
{
 while(true)
 {
 data_chunk data;
 data_queue.wait_and_pop(data);
 process(data);
 if(is_last_chunk(data))
 break;
 }
}

Listing 4.4 Extracting push() and wait_and_pop() from listing 4.1

b

c

d

Download from Wow! eBook <www.wowebook.com>

74 CHAPTER 4 Synchronizing concurrent operations
The mutex and condition variable are now contained within the threadsafe_queue
instance, so separate variables are no longer required B, and no external synchroni-
zation is required for the call to push() c. Also, wait_and_pop() takes care of the
condition variable wait d.

 The other overload of wait_and_pop() is now trivial to write, and the remaining
functions can be copied almost verbatim from the stack example in listing 3.5. The
final queue implementation is shown here.

#include <queue>
#include <memory>
#include <mutex>
#include <condition_variable>

template<typename T>
class threadsafe_queue
{
private:
 mutable std::mutex mut;
 std::queue<T> data_queue;
 std::condition_variable data_cond;
public:
 threadsafe_queue()
 {}
 threadsafe_queue(threadsafe_queue const& other)
 {
 std::lock_guard<std::mutex> lk(other.mut);
 data_queue=other.data_queue;
 }

 void push(T new_value)
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(new_value);
 data_cond.notify_one();
 }

 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=data_queue.front();
 data_queue.pop();
 }

 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));
 data_queue.pop();
 return res;
 }

Listing 4.5 Full class definition for a thread-safe queue using condition variables

The mutex must
be mutable

b

Download from Wow! eBook <www.wowebook.com>

75Waiting for an event or other condition
 bool try_pop(T& value)
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return false;
 value=data_queue.front();
 data_queue.pop();
 return true;
 }

 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return std::shared_ptr<T>();
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));
 data_queue.pop();
 return res;
 }

 bool empty() const
 {
 std::lock_guard<std::mutex> lk(mut);
 return data_queue.empty();
 }
};

Even though empty() is a const member function, and the other parameter to the
copy constructor is a const reference, other threads may have non-const references
to the object, and be calling mutating member functions, so we still need to lock the
mutex. Since locking a mutex is a mutating operation, the mutex object must be
marked mutable B so it can be locked in empty() and in the copy constructor.

 Condition variables are also useful where there’s more than one thread waiting for
the same event. If the threads are being used to divide the workload, and thus only one
thread should respond to a notification, exactly the same structure as shown in listing 4.1
can be used; just run multiple instances of the data—processing thread. When new data is
ready, the call to notify_one() will trigger one of the threads currently executing wait()
to check its condition and thus return from wait() (because you’ve just added an item to
the data_queue). There’s no guarantee which thread will be notified or even if there’s a
thread waiting to be notified; all the processing threads might be still processing data.

 Another possibility is that several threads are waiting for the same event, and all of
them need to respond. This can happen where shared data is being initialized, and the
processing threads can all use the same data but need to wait for it to be initialized
(although there are better mechanisms for this; see section 3.3.1 in chapter 3), or where
the threads need to wait for an update to shared data, such as a periodic reinitialization.
In these cases, the thread preparing the data can call the notify_all() member function
on the condition variable rather than notify_one(). As the name suggests, this causes all
the threads currently executing wait() to check the condition they’re waiting for.

 If the waiting thread is going to wait only once, so when the condition is true it will
never wait on this condition variable again, a condition variable might not be the best
Download from Wow! eBook <www.wowebook.com>

76 CHAPTER 4 Synchronizing concurrent operations
choice of synchronization mechanisms. This is especially true if the condition being
waited for is the availability of a particular piece of data. In this scenario, a future might
be more appropriate.

4.2 Waiting for one-off events with futures
Suppose you?re going on vacation abroad by plane. Once you get to the airport and
clear the various check-in procedures, you still have to wait for notification that your
flight is ready for boarding, possibly for several hours. Yes, you might be able to find
some means of passing the time, such as reading a book, surfing the internet, or eat-
ing in an overpriced airport café, but fundamentally you?re just waiting for one thing:
the signal that it?s time to get on the plane. Not only that, but a given flight goes only
once; the next time you?re going on vacation, you?ll be waiting for a different flight.

 The C++ Standard Library models this sort of one-off event with something called
a future. If a thread needs to wait for a specific one-off event, it somehow obtains a
future representing this event. The thread can then periodically wait on the future for
short periods of time to see if the event has occurred (check the departures board)
while performing some other task (eating in the overpriced café) in between checks.
Alternatively, it can do another task until it needs the event to have happened before it
can proceed and then just wait for the future to become ready. A future may have data
associated with it (such as which gate your flight is boarding at), or it may not. Once an
event has happened (and the future has become ready), the future can’t be reset.

 There are two sorts of futures in the C++ Standard Library, implemented as two
class templates declared in the <future> library header: unique futures (std::future<>)
and shared futures (std::shared_future<>). These are modeled after std::unique_ptr
and std::shared_ptr. An instance of std::future is the one and only instance that
refers to its associated event, whereas multiple instances of std::shared_future may
refer to the same event. In the latter case, all the instances will become ready at the
same time, and they may all access any data associated with the event. This associated
data is the reason these are templates; just like std::unique_ptr and std::shared_ptr,
the template parameter is the type of the associated data. The std:future<void>,
std::shared_future<void> template specializations should be used where there’s no
associated data. Although futures are used to communicate between threads, the
future objects themselves don’t provide synchronized accesses. If multiple threads need
to access a single future object, they must protect access via a mutex or other synchroniza-
tion mechanism, as described in chapter 3. However, as you’ll see in section 4.2.5, multi-
ple threads may each access their own copy of a std::shared_future<> without
further synchronization, even if they all refer to the same asynchronous result.

 The most basic of one-off events is the result of a calculation that has been run in
the background. Back in chapter 2 you saw that std::thread doesn’t provide an easy
means of returning a value from such a task, and I promised that this would be
addressed in chapter 4 with futures—now it’s time to see how.
Download from Wow! eBook <www.wowebook.com>

77Waiting for one-off events with futures
4.2.1 Returning values from background tasks

Suppose you have a long-running calculation that you expect will eventually yield a
useful result but for which you don’t currently need the value. Maybe you’ve found
a way to determine the answer to Life, the Universe, and Everything, to pinch an
example from Douglas Adams.1 You could start a new thread to perform the calculation,
but that means you have to take care of transferring the result back, because std::thread
doesn’t provide a direct mechanism for doing so. This is where the std::async func-
tion template (also declared in the <future> header) comes in.

 You use std::async to start an asynchronous task for which you don’t need the
result right away. Rather than giving you back a std::thread object to wait on,
std::async returns a std::future object, which will eventually hold the return value
of the function. When you need the value, you just call get() on the future, and the
thread blocks until the future is ready and then returns the value. The following listing
shows a simple example.

#include <future>
#include <iostream>

int find_the_answer_to_ltuae();
void do_other_stuff();
int main()
{
 std::future<int> the_answer=std::async(find_the_answer_to_ltuae);
 do_other_stuff();
 std::cout<<"The answer is "<<the_answer.get()<<std::endl;
}

std::async allows you to pass additional arguments to the function by adding extra
arguments to the call, in the same way that std::thread does. If the first argument is
a pointer to a member function, the second argument provides the object on which
to apply the member function (either directly, or via a pointer, or wrapped in
std::ref), and the remaining arguments are passed as arguments to the member
function. Otherwise, the second and subsequent arguments are passed as arguments
to the function or callable object specified as the first argument. Just as with
std::thread, if the arguments are rvalues, the copies are created by moving the origi-
nals. This allows the use of move-only types as both the function object and the argu-
ments. See the following listing.

#include <string>
#include <future>

1 In The Hitchhiker’s Guide to the Galaxy, the computer Deep Thought is built to determine “the answer to Life,
the Universe and Everything.” The answer is 42.

Listing 4.6 Using std::future to get the return value of an asynchronous task

Listing 4.7 Passing arguments to a function with std::async
Download from Wow! eBook <www.wowebook.com>

78 CHAPTER 4 Synchronizing concurrent operations
struct X
{
 void foo(int,std::string const&);
 std::string bar(std::string const&);
};
X x;
auto f1=std::async(&X::foo,&x,42,"hello");
auto f2=std::async(&X::bar,x,"goodbye");
struct Y
{
 double operator()(double);
};
Y y;
auto f3=std::async(Y(),3.141);
auto f4=std::async(std::ref(y),2.718);
X baz(X&);
std::async(baz,std::ref(x));
class move_only
{
public:
 move_only();
 move_only(move_only&&)
 move_only(move_only const&) = delete;
 move_only& operator=(move_only&&);
 move_only& operator=(move_only const&) = delete;

 void operator()();
};
auto f5=std::async(move_only());

By default, it’s up to the implementation whether std::async starts a new thread, or
whether the task runs synchronously when the future is waited for. In most cases this is
what you want, but you can specify which to use with an additional parameter to
std::async before the function to call. This parameter is of the type std::launch, and
can either be std::launch::deferred to indicate that the function call is to be
deferred until either wait() or get() is called on the future, std::launch::async to
indicate that the function must be run on its own thread, or std::launch::deferred |
std::launch::async to indicate that the implementation may choose. This last option
is the default. If the function call is deferred, it may never actually run. For example:

auto f6=std::async(std::launch::async,Y(),1.2);
auto f7=std::async(std::launch::deferred,baz,std::ref(x));
auto f8=std::async(
 std::launch::deferred | std::launch::async,
 baz,std::ref(x));
auto f9=std::async(baz,std::ref(x));
f7.wait();

As you’ll see later in this chapter and again in chapter 8, the use of std::async makes
it easy to divide algorithms into tasks that can be run concurrently. However, it’s not
the only way to associate a std::future with a task; you can also do it by wrapping the
task in an instance of the std::packaged_task<> class template or by writing code to

Calls p->foo(42,"hello")
where p is &x

Calls tmpx.bar("goodbye")
where tmpx is a copy of x

Calls tmpy(3.141) where tmpy
is move-constructed from Y()

Calls y(2.718)

Calls baz(x)

Calls tmp() where tmp is constructed
from std::move(move_only())

Run in new thread

Run in
wait()
or get()Implementation

chooses

Invoke deferred function
Download from Wow! eBook <www.wowebook.com>

79Waiting for one-off events with futures
explicitly set the values using the std::promise<> class template. std::packaged_task
is a higher-level abstraction than std::promise, so I’ll start with that.

4.2.2 Associating a task with a future

std::packaged_task<> ties a future to a function or callable object. When the std::
packaged_task<> object is invoked, it calls the associated function or callable object
and makes the future ready, with the return value stored as the associated data. This
can be used as a building block for thread pools (see chapter 9) or other task manage-
ment schemes, such as running each task on its own thread, or running them all
sequentially on a particular background thread. If a large operation can be divided into
self-contained sub-tasks, each of these can be wrapped in a std::packaged_task<>
instance, and then that instance passed to the task scheduler or thread pool. This
abstracts out the details of the tasks; the scheduler just deals with std::packaged_
task<> instances rather than individual functions.

 The template parameter for the std::packaged_task<> class template is a func-
tion signature, like void() for a function taking no parameters with no return value,
or int(std::string&,double*) for a function that takes a non-const reference to a
std::string and a pointer to a double and returns an int. When you construct an
instance of std::packaged_task, you must pass in a function or callable object that
can accept the specified parameters and that returns a type convertible to the speci-
fied return type. The types don’t have to match exactly; you can construct a std::
packaged_task<double(double)> from a function that takes an int and returns a
float because the types are implicitly convertible.

 The return type of the specified function signature identifies the type of the
std::future<> returned from the get_future() member function, whereas the argu-
ment list of the function signature is used to specify the signature of the packaged task’s
function call operator. For example, a partial class definition for std::packaged_task
<std::string(std::vector<char>*,int)> would be as shown in the following listing.

template<>
class packaged_task<std::string(std::vector<char>*,int)>
{
public:
 template<typename Callable>
 explicit packaged_task(Callable&& f);
 std::future<std::string> get_future();
 void operator()(std::vector<char>*,int);
};

The std::packaged_task object is thus a callable object, and it can be wrapped in
a std::function object, passed to a std::thread as the thread function, passed
to another function that requires a callable object, or even invoked directly. When
the std::packaged_task is invoked as a function object, the arguments supplied

Listing 4.8 Partial class definition for a specialization of std::packaged_task< >
Download from Wow! eBook <www.wowebook.com>

80 CHAPTER 4 Synchronizing concurrent operations
to the function call operator are passed on to the contained function, and the return
value is stored as the asynchronous result in the std::future obtained from
get_future(). You can thus wrap a task in a std::packaged_task and retrieve the
future before passing the std::packaged_task object elsewhere to be invoked in due
course. When you need the result, you can wait for the future to become ready. The
following example shows this in action.

PASSING TASKS BETWEEN THREADS

Many GUI frameworks require that updates to the GUI be done from specific threads,
so if another thread needs to update the GUI, it must send a message to the right
thread in order to do so. std:packaged_task provides one way of doing this without
requiring a custom message for each and every GUI-related activity, as shown here.

#include <deque>
#include <mutex>
#include <future>
#include <thread>
#include <utility>

std::mutex m;
std::deque<std::packaged_task<void()> > tasks;

bool gui_shutdown_message_received();
void get_and_process_gui_message();

void gui_thread()
{
 while(!gui_shutdown_message_received())
 {
 get_and_process_gui_message();
 std::packaged_task<void()> task;
 {
 std::lock_guard<std::mutex> lk(m);
 if(tasks.empty())
 continue;
 task=std::move(tasks.front());
 tasks.pop_front();
 }
 task();
 }
}

std::thread gui_bg_thread(gui_thread);

template<typename Func>
std::future<void> post_task_for_gui_thread(Func f)
{
 std::packaged_task<void()> task(f);
 std::future<void> res=task.get_future();
 std::lock_guard<std::mutex> lk(m);
 tasks.push_back(std::move(task));
 return res;
}

Listing 4.9 Running code on a GUI thread using std::packaged_task

b

c

d

e

f

g

h
 i

j
1)
Download from Wow! eBook <www.wowebook.com>

81Waiting for one-off events with futures
This code is very simple: the GUI thread B loops until a message has been received
telling the GUI to shut down c, repeatedly polling for GUI messages to handle d,
such as user clicks, and for tasks on the task queue. If there are no tasks on the queue e,
it loops again; otherwise, it extracts the task from the queue f, releases the lock on
the queue, and then runs the task g. The future associated with the task will then be
made ready when the task completes.

 Posting a task on the queue is equally simple: a new packaged task is created from
the supplied function h, the future is obtained from that task i by calling the
get_future() member function, and the task is put on the list j before the future is
returned to the caller 1). The code that posted the message to the GUI thread can then
wait for the future if it needs to know that the task has been completed, or it can discard
the future if it doesn’t need to know.

 This example uses std::packaged_task<void()> for the tasks, which wraps a
function or other callable object that takes no parameters and returns void (if it
returns anything else, the return value is discarded). This is the simplest possible task,
but as you saw earlier, std::packaged_task can also be used in more complex situa-
tions—by specifying a different function signature as the template parameter, you can
change the return type (and thus the type of data stored in the future’s associated state)
and also the argument types of the function call operator. This example could easily be
extended to allow for tasks that are to be run on the GUI thread to accept arguments
and return a value in the std::future rather than just a completion indicator.

 What about those tasks that can’t be expressed as a simple function call or those
tasks where the result may come from more than one place? These cases are dealt with
by the third way of creating a future: using a std::promise to set the value explicitly.

4.2.3 Making (std::)promises
When you have an application that needs to handle a lot of network connections, it’s
often tempting to handle each connection on a separate thread, because this can make
the network communication easier to think about and easier to program. This works
well for low numbers of connections (and thus low numbers of threads). Unfortunately,
as the number of connections rises, this becomes less suitable; the large numbers of
threads consequently consume large numbers of operating system resources and poten-
tially cause a lot of context switching (when the number of threads exceeds the available
hardware concurrency), impacting performance. In the extreme case, the operating sys-
tem may run out of resources for running new threads before its capacity for network
connections is exhausted. In applications with very large numbers of network connec-
tions, it’s therefore common to have a small number of threads (possibly only one) han-
dling the connections, each thread dealing with multiple connections at once.

 Consider one of these threads handling the connections. Data packets will come in
from the various connections being handled in essentially random order, and likewise
data packets will be queued to be sent in random order. In many cases, other parts of
the application will be waiting either for data to be successfully sent or for a new batch
of data to be successfully received via a specific network connection.
Download from Wow! eBook <www.wowebook.com>

82 CHAPTER 4 Synchronizing concurrent operations
std::promise<T> provides a means of setting a value (of type T), which can later
be read through an associated std::future<T> object. A std::promise/std::future
pair would provide one possible mechanism for this facility; the waiting thread could
block on the future, while the thread providing the data could use the promise half of
the pairing to set the associated value and make the future ready.

 You can obtain the std::future object associated with a given std::promise by
calling the get_future() member function, just like with std::packaged_task. When
the value of the promise is set (using the set_value() member function), the future
becomes ready and can be used to retrieve the stored value. If you destroy the
std::promise without setting a value, an exception is stored instead. Section 4.2.4
describes how exceptions are transferred across threads.

 Listing 4.10 shows some example code for a thread processing connections as just
described. In this example, you use a std::promise<bool>/std::future<bool> pair
to identify the successful transmission of a block of outgoing data; the value associated
with the future is a simple success/failure flag. For incoming packets, the data associ-
ated with the future is the payload of the data packet.

#include <future>

void process_connections(connection_set& connections)
{
 while(!done(connections))
 {
 for(connection_iterator
 connection=connections.begin(),end=connections.end();
 connection!=end;
 ++connection)
 {
 if(connection->has_incoming_data())
 {
 data_packet data=connection->incoming();
 std::promise<payload_type>& p=
 connection->get_promise(data.id);
 p.set_value(data.payload);
 }
 if(connection->has_outgoing_data())
 {
 outgoing_packet data=
 connection->top_of_outgoing_queue();
 connection->send(data.payload);
 data.promise.set_value(true);
 }
 }
 }
}

The function process_connections() loops until done() returns true B. Every time
through the loop, it checks each connection in turn c, retrieving incoming data if

Listing 4.10 Handling multiple connections from a single thread using promises

b
c

d

e

f

g

Download from Wow! eBook <www.wowebook.com>

83Waiting for one-off events with futures
there is any d or sending any queued outgoing data f. This assumes that an incom-
ing packet has some ID and a payload with the actual data in it. The ID is mapped to a
std::promise (perhaps by a lookup in an associative container) e, and the value is
set to the packet’s payload. For outgoing packets, the packet is retrieved from the out-
going queue and actually sent through the connection. Once the send has completed,
the promise associated with the outgoing data is set to true to indicate successful
transmission g. Whether this maps nicely to the actual network protocol depends on
the protocol; this promise/future style structure may not work for a particular sce-
nario, although it does have a similar structure to the asynchronous I/O support of
some operating systems.

 All the code up to now has completely disregarded exceptions. Although it might
be nice to imagine a world in which everything worked all the time, this isn’t actually
the case. Sometimes disks fill up, sometimes what you’re looking for just isn’t there,
sometimes the network fails, and sometimes the database goes down. If you were per-
forming the operation in the thread that needed the result, the code could just report
an error with an exception, so it would be unnecessarily restrictive to require that every-
thing go well just because you wanted to use a std::packaged_task or a std::promise.
The C++ Standard Library therefore provides a clean way to deal with exceptions in
such a scenario and allows them to be saved as part of the associated result.

4.2.4 Saving an exception for the future

Consider the following short snippet of code. If you pass in -1 to the square_root()
function, it throws an exception, and this gets seen by the caller:

double square_root(double x)
{
 if(x<0)
 {
 throw std::out_of_range(“x<0”);
 }
 return sqrt(x);
}

Now suppose that instead of just invoking square_root() from the current thread,

double y=square_root(-1);

you run the call as an asynchronous call:

std::future<double> f=std::async(square_root,-1);
double y=f.get();

It would be ideal if the behavior was exactly the same; just as y gets the result of the
function call in either case, it would be great if the thread that called f.get() could
see the exception too, just as it would in the single-threaded case.

 Well, that’s exactly what happens: if the function call invoked as part of
std::async throws an exception, that exception is stored in the future in place of a
stored value, the future becomes ready, and a call to get() rethrows that stored exception.
Download from Wow! eBook <www.wowebook.com>

84 CHAPTER 4 Synchronizing concurrent operations
(Note: the standard leaves it unspecified whether it is the original exception object that’s
rethrown or a copy; different compilers and libraries make different choices on this mat-
ter.) The same happens if you wrap the function in a std::packaged_task—when the
task is invoked, if the wrapped function throws an exception, that exception is stored
in the future in place of the result, ready to be thrown on a call to get().

 Naturally, std::promise provides the same facility, with an explicit function call. If
you wish to store an exception rather than a value, you call the set_exception()
member function rather than set_value(). This would typically be used in a catch
block for an exception thrown as part of the algorithm, to populate the promise with
that exception:

extern std::promise<double> some_promise;

try
{
 some_promise.set_value(calculate_value());
}
catch(...)
{
 some_promise.set_exception(std::current_exception());
}

This uses std::current_exception() to retrieve the thrown exception; the alterna-
tive here would be to use std::copy_exception() to store a new exception directly
without throwing:

some_promise.set_exception(std::copy_exception(std::logic_error("foo ")));

This is much cleaner than using a try/catch block if the type of the exception is
known, and it should be used in preference; not only does it simplify the code, but it
also provides the compiler with greater opportunity to optimize the code.

 Another way to store an exception in a future is to destroy the std::promise or
std::packaged_task associated with the future without calling either of the set func-
tions on the promise or invoking the packaged task. In either case, the destructor of
the std::promise or std::packaged_task will store a std::future_error exception
with an error code of std::future_errc::broken_promise in the associated state if
the future isn’t already ready; by creating a future you make a promise to provide a
value or exception, and by destroying the source of that value or exception without
providing one, you break that promise. If the compiler didn’t store anything in the
future in this case, waiting threads could potentially wait forever.

 Up until now all the examples have used std::future. However, std::future has
its limitations, not the least of which being that only one thread can wait for the result.
If you need to wait for the same event from more than one thread, you need to use
std::shared_future instead.
Download from Wow! eBook <www.wowebook.com>

85Waiting for one-off events with futures
4.2.5 Waiting from multiple threads
Although std::future handles all the synchronization necessary to transfer data
from one thread to another, calls to the member functions of a particular
std::future instance are not synchronized with each other. If you access a single
std::future object from multiple threads without additional synchronization, you
have a data race and undefined behavior. This is by design: std::future models
unique ownership of the asynchronous result, and the one-shot nature of get()
makes such concurrent access pointless anyway—only one thread can retrieve the
value, because after the first call to get() there’s no value left to retrieve.

 If your fabulous design for your concurrent code requires that multiple threads
can wait for the same event, don’t despair just yet; std::shared_future allows exactly
that. Whereas std::future is only moveable, so ownership can be transferred between
instances, but only one instance refers to a particular asynchronous result at a time,
std::shared_future instances are copyable, so you can have multiple objects referring
to the same associated state.

 Now, with std::shared_future, member functions on an individual object are still
unsynchronized, so to avoid data races when accessing a single object from multiple
threads, you must protect accesses with a lock. The preferred way to use it would be to
take a copy of the object instead and have each thread access its own copy. Accesses
to the shared asynchronous state from multiple threads are safe if each thread
accesses that state through its own std::shared_future object. See figure 4.1.

 One potential use of std::shared_future is for implementing parallel execution
of something akin to a complex spreadsheet; each cell has a single final value, which
may be used by the formulas in multiple other cells. The formulas for calculating the
results of the dependent cells can then use a std::shared_future to reference the first
cell. If all the formulas for the individual cells are then executed in parallel, those
tasks that can proceed to completion will do so, whereas those that depend on others
will block until their dependencies are ready. This will thus allow the system to make
maximum use of the available hardware concurrency.

 Instances of std::shared_future that reference some asynchronous state are con-
structed from instances of std::future that reference that state. Since std::future
objects don’t share ownership of the asynchronous state with any other object, the
ownership must be transferred into the std::shared_future using std::move, leav-
ing the std::future in an empty state, as if it was default constructed:

std::promise<int> p;
std::future<int> f(p.get_future());
assert(f.valid());
std::shared_future<int> sf(std::move(f));
assert(!f.valid());
assert(sf.valid());

Here, the future f is initially valid B because it refers to the asynchronous state of the
promise p, but after transferring the state to sf, f is no longer valid c, whereas sf is d.

The future
f is valid

b

f is no longer validc
sf is now validd
Download from Wow! eBook <www.wowebook.com>

86 CHAPTER 4 Synchronizing concurrent operations
Just as with other movable objects, the transfer of ownership is implicit for rvalues, so
you can construct a std::shared_future directly from the return value of the
get_future() member function of a std::promise object, for example:

std::promise<std::string> p;
std::shared_future<std::string> sf(p.get_future());

Here, the transfer of ownership is implicit; the std::shared_future<> is constructed
from an rvalue of type std::future<std::string> B.

std::future also has an additional feature to facilitate the use of std::shared_
future with the new facility for automatically deducing the type of a variable from its
initializer (see appendix A, section A.6). std::future has a share() member func-
tion that creates a new std::shared_future and transfers ownership to it directly.
This can save a lot of typing and makes code easier to change:

std::promise< std::map< SomeIndexType, SomeDataType, SomeComparator,
 SomeAllocator>::iterator> p;
auto sf=p.get_future().share();

In this case, the type of sf is deduced to be std::shared_future< std::map< Some-
IndexType, SomeDataType, SomeComparator, SomeAllocator>::iterator>, which is
rather a mouthful. If the comparator or allocator is changed, you only need to change
the type of the promise; the type of the future is automatically updated to match.

Figure 4.1 Using multiple
std::shared_future objects
to avoid data races

Implicit transfer
of ownership

b

Download from Wow! eBook <www.wowebook.com>

87Waiting with a time limit
 Sometimes you want to limit the amount of time you’re waiting for an event, either
because you have a hard time limit on how long a particular section of code may take,
or because there’s other useful work that the thread can be doing if the event isn’t
going to happen soon. To handle this facility, many of the waiting functions have vari-
ants that allow a timeout to be specified.

4.3 Waiting with a time limit
All the blocking calls introduced previously will block for an indefinite period of time,
suspending the thread until the event being waited for occurs. In many cases this is
fine, but in some cases you want to put a limit on how long you wait. This might be to
allow you to send some form of “I’m still alive” message either to an interactive user or
another process or indeed to allow you to abort the wait if the user has given up wait-
ing and pressed Cancel.

 There are two sorts of timeouts you may wish to specify: a duration-based timeout,
where you wait for a specific amount of time (for example, 30 milliseconds), or an
absolute timeout, where you wait until a specific point in time (for example,
17:30:15.045987023 UTC on November 30, 2011). Most of the waiting functions pro-
vide variants that handle both forms of timeouts. The variants that handle the dura-
tion-based timeouts have a _for suffix, and those that handle the absolute timeouts
have a _until suffix.

 So, for example, std::condition_variable has two overloads of the wait_for()
member function and two overloads of the wait_until() member function that cor-
respond to the two overloads of wait()—one overload that just waits until signaled, or
the timeout expires, or a spurious wakeup occurs, and another that will check the sup-
plied predicate when woken and will return only when the supplied predicate is true
(and the condition variable has been signaled) or the timeout expires.

 Before we look at the details of the functions that use the timeouts, let’s examine
the way that times are specified in C++, starting with clocks.

4.3.1 Clocks
As far as the C++ Standard Library is concerned, a clock is a source of time informa-
tion. In particular, a clock is a class that provides four distinct pieces of information:

■ The time now
■ The type of the value used to represent the times obtained from the clock
■ The tick period of the clock
■ Whether or not the clock ticks at a uniform rate and is thus considered to be a

steady clock

The current time of a clock can be obtained by calling the static member function
now() for that clock class; for example, std::chrono::system_clock::now() will
return the current time of the system clock. The type of the time points for a particu-
lar clock is specified by the time_point member typedef, so the return type of
some_clock::now() is some_clock::time_point.
Download from Wow! eBook <www.wowebook.com>

88 CHAPTER 4 Synchronizing concurrent operations
 The tick period of the clock is specified as a fractional number of seconds, which is
given by the period member typedef of the clock—a clock that ticks 25 times per sec-
ond thus has a period of std::ratio<1,25>, whereas a clock that ticks every 2.5 seconds
has a period of std::ratio<5,2>. If the tick period of a clock can’t be known until
runtime, or it may vary during a given run of the application, the period may be spec-
ified as the average tick period, smallest possible tick period, or some other value that
the library writer deems appropriate. There’s no guarantee that the observed tick
period in a given run of the program matches the specified period for that clock.

 If a clock ticks at a uniform rate (whether or not that rate matches the period) and
can’t be adjusted, the clock is said to be a steady clock. The is_steady static data mem-
ber of the clock class is true if the clock is steady and false otherwise. Typically,
std::chrono::system_clock will not be steady, because the clock can be adjusted,
even if such adjustment is done automatically to take account of local clock drift. Such
an adjustment may cause a call to now() to return a value earlier than that returned by
a prior call to now(), which is in violation of the requirement for a uniform tick rate.
Steady clocks are important for timeout calculations, as you’ll see shortly, so the C++
Standard Library provides one in the form of std::chrono::steady_clock. The
other clocks provided by the C++ Standard Library are std::chrono::system_clock
(mentioned above), which represents the “real time” clock of the system and which
provides functions for converting its time points to and from time_t values, and
std::chrono::high_resolution_clock, which provides the smallest possible tick
period (and thus the highest possible resolution) of all the library-supplied clocks. It
may actually be a typedef to one of the other clocks. These clocks are defined in the
<chrono> library header, along with the other time facilities.

 We’ll look at the representation of time points shortly, but first let’s look at how
durations are represented.

4.3.2 Durations

Durations are the simplest part of the time support; they’re handled by the std::
chrono::duration<> class template (all the C++ time-handling facilities used by the
Thread Library are in the std::chrono namespace). The first template parameter is
the type of the representation (such as int, long, or double), and the second is a frac-
tion specifying how many seconds each unit of the duration represents. For example,
a number of minutes stored in a short is std::chrono::duration<short,std::
ratio<60,1>>, because there are 60 seconds in a minute. On the other hand, a count
of milliseconds stored in a double is std::chrono::duration<double,std::ratio
<1,1000>>, because each millisecond is 1/1000 of a second.

 The Standard Library provides a set of predefined typedefs in the std::chrono
namespace for various durations: nanoseconds, microseconds, milliseconds, seconds,
minutes, and hours. They all use a sufficiently large integral type for the representa-
tion chosen such that you can represent a duration of over 500 years in the appropri-
ate units if you so desire. There are also typedefs for all the SI ratios from std::atto
Download from Wow! eBook <www.wowebook.com>

89Waiting with a time limit
(10–18) to std::exa (1018) (and beyond, if your platform has 128-bit integer types) for
use when specifying custom durations such as std::duration<double,std::centi>
for a count of 1/100 of a second represented in a double.

 Conversion between durations is implicit where it does not require truncation of
the value (so converting hours to seconds is OK, but converting seconds to hours is not).
Explicit conversions can be done with std::chrono::duration_cast<>:

std::chrono::milliseconds ms(54802);
std::chrono::seconds s=
 std::chrono::duration_cast<std::chrono::seconds>(ms);

The result is truncated rather than rounded, so s will have a value of 54 in this example.
 Durations support arithmetic, so you can add and subtract durations to get new dura-

tions or multiply or divide by a constant of the underlying representation type (the first
template parameter). Thus 5*seconds(1) is the same as seconds(5) or minutes(1) –
seconds(55). The count of the number of units in the duration can be obtained with the
count() member function. Thus std::chrono::milliseconds(1234).count() is 1234.

 Duration-based waits are done with instances of std::chrono::duration<>. For
example, you can wait for up to 35 milliseconds for a future to be ready:

std::future<int> f=std::async(some_task);
if(f.wait_for(std::chrono::milliseconds(35))==std::future_status::ready)
 do_something_with(f.get());

The wait functions all return a status to indicate whether the wait timed out or the waited-
for event occurred. In this case, you’re waiting for a future, so the function returns
std::future_status::timeout if the wait times out, std::future_status::ready if the
future is ready, or std::future_status::deferred if the future’s task is deferred. The
time for a duration-based wait is measured using a steady clock internal to the library, so
35 milliseconds means 35 milliseconds of elapsed time, even if the system clock was
adjusted (forward or back) during the wait. Of course, the vagaries of system scheduling
and the varying precisions of OS clocks means that the actual time between the thread
issuing the call and returning from it may be much longer than 35 ms.

 With durations under our belt, we can now move on to time points.

4.3.3 Time points
The time point for a clock is represented by an instance of the std::chrono::time_
point<> class template, which specifies which clock it refers to as the first template
parameter and the units of measurement (a specialization of std::chrono::duration<>)
as the second template parameter. The value of a time point is the length of time (in mul-
tiples of the specified duration) since a specific point in time called the epoch of the clock.
The epoch of a clock is a basic property but not something that’s directly available to
query or specified by the C++ Standard. Typical epochs include 00:00 on January 1, 1970
and the instant when the computer running the application booted up. Clocks may share
an epoch or have independent epochs. If two clocks share an epoch, the time_point
typedef in one class may specify the other as the clock type associated with the
Download from Wow! eBook <www.wowebook.com>

90 CHAPTER 4 Synchronizing concurrent operations
time_point. Although you can’t find out when the epoch is, you can get the time_since_
epoch() for a given time_point. This member function returns a duration value specify-
ing the length of time since the clock epoch to that particular time point.

 For example, you might specify a time point as std::chrono::time_point<std::
chrono::system_clock, std::chrono::minutes>. This would hold the time relative
to the system clock but measured in minutes as opposed to the native precision of the
system clock (which is typically seconds or less).

 You can add durations and subtract durations from instances of std::chrono::
time_point<> to produce new time points, so std::chrono::high_resolution_clock::
now() + std::chrono::nanoseconds(500) will give you a time 500 nanoseconds in the
future. This is good for calculating an absolute timeout when you know the maximum
duration of a block of code, but there are multiple calls to waiting functions within
it or nonwaiting functions that precede a waiting function but take up some of the
time budget.

 You can also subtract one time point from another that shares the same clock. The
result is a duration specifying the length of time between the two time points. This is
useful for timing blocks of code, for example:

auto start=std::chrono::high_resolution_clock::now();
do_something();
auto stop=std::chrono::high_resolution_clock::now();
std::cout<<”do_something() took “
 <<std::chrono::duration<double,std::chrono::seconds>(stop-start).count()
 <<” seconds”<<std::endl;

The clock parameter of a std::chrono::time_point<> instance does more than just
specify the epoch, though. When you pass the time point to a wait function that takes
an absolute timeout, the clock parameter of the time point is used to measure the
time. This has important consequences when the clock is changed, because the wait
tracks the clock change and won’t return until the clock’s now() function returns a
value later than the specified timeout. If the clock is adjusted forward, this may reduce
the total length of the wait (as measured by a steady clock), and if it’s adjusted back-
ward, this may increase the total length of the wait.

 As you may expect, time points are used with the _until variants of the wait func-
tions. The typical use case is as an offset from some-clock::now() at a fixed point in the
program, although time points associated with the system clock can be obtained by
converting from a time_t using the std::chrono::system_clock::to_time_point()
static member function for scheduling operations at a user-visible time. For example,
if you have a maximum of 500 milliseconds to wait for an event associated with a con-
dition variable, you might do something like in the following listing.

#include <condition_variable>
#include <mutex>
#include <chrono>

Listing 4.11 Waiting for a condition variable with a timeout
Download from Wow! eBook <www.wowebook.com>

91Waiting with a time limit
std::condition_variable cv;
bool done;
std::mutex m;

bool wait_loop()
{
 auto const timeout= std::chrono::steady_clock::now()+
 std::chrono::milliseconds(500);
 std::unique_lock<std::mutex> lk(m);
 while(!done)
 {
 if(cv.wait_until(lk,timeout)==std::cv_status::timeout)
 break;
 }
 return done;
}

This is the recommended way to wait for condition variables with a time limit, if you’re
not passing a predicate to the wait. This way, the overall length of the loop is bounded.
As you saw in section 4.1.1, you need to loop when using condition variables if you
don’t pass in the predicate, in order to handle spurious wakeups. If you use
wait_for() in a loop, you might end up waiting almost the full length of time before
a spurious wake, and the next time through the wait time starts again. This may repeat
any number of times, making the total wait time unbounded.

 With the basics of specifying timeouts under your belt, let’s look at the functions
that you can use the timeout with.

4.3.4 Functions that accept timeouts

The simplest use for a timeout is to add a delay to the processing of a particular
thread, so that it doesn’t take processing time away from other threads when it has
nothing to do. You saw an example of this in section 4.1, where you polled a “done”
flag in a loop. The two functions that handle this are std::this_thread::sleep_
for() and std::this_thread::sleep_until(). They work like a basic alarm clock: the
thread goes to sleep either for the specified duration (with sleep_for()) or until
the specified point in time (with sleep_until()). sleep_for() makes sense for
examples like that from section 4.1, where something must be done periodically, and
the elapsed time is what matters. On the other hand, sleep_until() allows you to
schedule the thread to wake at a particular point in time. This could be used to trigger
the backups at midnight, or the payroll print run at 6:00 a.m., or to suspend the
thread until the next frame refresh when doing a video playback.

 Of course, sleeping isn’t the only facility that takes a timeout; you already saw that
you can use timeouts with condition variables and futures. You can even use timeouts
when trying to acquire a lock on a mutex if the mutex supports it. Plain std::mutex
and std::recursive_mutex don’t support timeouts on locking, but std::timed_
mutex does, as does std::recursive_timed_mutex. Both these types support
try_lock_for() and try_lock_until() member functions that try to obtain the lock
within a specified time period or before a specified time point. Table 4.1 shows
Download from Wow! eBook <www.wowebook.com>

92 CHAPTER 4 Synchronizing concurrent operations
the functions from the C++ Standard Library that can accept timeouts, their parame-
ters, and their return values. Parameters listed as duration must be an instance of
std::duration<>, and those listed as time_point must be an instance of std::time_
point<>.

Now that I’ve covered the mechanics of condition variables, futures, promises, and
packaged tasks, it’s time to look at the wider picture and how they can be used to sim-
plify the synchronization of operations between threads.

Table 4.1 Functions that accept timeouts

Class/Namespace Functions Return values

std::this_thread
namespace

sleep_for(duration)
sleep_until
(time_point)

N/A

std::condition_
variable or
std::condition_
variable_any

wait_for(lock,
duration)
wait_until(lock,
time_point)

std::cv_status::
timeout or
std::cv_status::
no_timeout

wait_for(lock,
duration,
predicate)
wait_until(lock,
time_point,
predicate)

bool—the return value of
the predicate when
awakened

std::timed_mutex or
std::recursive_
timed_mutex

try_lock_for
(duration)
try_lock_until
(time_point)

bool—true if the lock was
acquired, false otherwise

std::unique_
lock<TimedLockable>

unique_lock(lockable,
duration)
unique_lock(lockable,
time_point)

N/A—owns_lock() on the
newly constructed object;
returns true if the lock was
acquired, false otherwise

try_lock_for(duration)
try_lock_until
(time_point)

bool—true if the lock was
acquired, false otherwise

std::future<ValueType> or
std::shared_
future<ValueType>

wait_for(duration)
wait_until
(time_point)

std::future_status::
timeout if the wait timed
out, std::future_
status::ready if the
future is ready, or
std::future_status::
deferred if the future holds
a deferred function that
hasn’t yet started
Download from Wow! eBook <www.wowebook.com>

93Using synchronization of operations to simplify code
4.4 Using synchronization of operations to simplify code
Using the synchronization facilities described so far in this chapter as building blocks
allows you to focus on the operations that need synchronizing rather than the
mechanics. One way this can help simplify your code is that it accommodates a much
more functional (in the sense of functional programming) approach to programming
concurrency. Rather than sharing data directly between threads, each task can be pro-
vided with the data it needs, and the result can be disseminated to any other threads
that need it through the use of futures.

4.4.1 Functional programming with futures

The term functional programming (FP) refers to a style of programming where the result
of a function call depends solely on the parameters to that function and doesn’t
depend on any external state. This is related to the mathematical concept of a func-
tion, and it means that if you invoke a function twice with the same parameters, the
result is exactly the same. This is a property of many of the mathematical functions in
the C++ Standard Library, such as sin, cos, and sqrt, and simple operations on basic
types, such as 3+3, 6*9, or 1.3/4.7. A pure function doesn’t modify any external state
either; the effects of the function are entirely limited to the return value.

 This makes things easy to think about, especially when concurrency is involved,
because many of the problems associated with shared memory discussed in chapter 3
disappear. If there are no modifications to shared data, there can be no race condi-
tions and thus no need to protect shared data with mutexes either. This is such a pow-
erful simplification that programming languages such as Haskell,2 where all functions
are pure by default, are becoming increasingly popular for programming concurrent
systems. Because most things are pure, the impure functions that actually do modify the
shared state stand out all the more, and it’s therefore easier to reason about how they
fit into the overall structure of the application.

 The benefits of functional programming aren’t limited to those languages where
it’s the default paradigm, however. C++ is a multiparadigm language, and it’s entirely
possible to write programs in the FP style. This is even easier in C++11 than it was in
C++98, with the advent of lambda functions (see appendix A, section A.6), the incor-
poration of std::bind from Boost and TR1, and the introduction of automatic type
deduction for variables (see appendix A, section A.7). Futures are the final piece of
the puzzle that makes FP-style concurrency viable in C++; a future can be passed
around between threads to allow the result of one computation to depend on the
result of another, without any explicit access to shared data.

FP-STYLE QUICKSORT

To illustrate the use of futures for FP-style concurrency, let’s look at a simple imple-
mentation of the Quicksort algorithm. The basic idea of the algorithm is simple:
given a list of values, take an element to be the pivot element, and then partition the

2 See http://www.haskell.org/.
Download from Wow! eBook <www.wowebook.com>

http://www.haskell.org/

94 CHAPTER 4 Synchronizing concurrent operations
list into two sets—those less than the pivot and those greater than or equal to the pivot.
A sorted copy of the list is obtained by sorting the two sets and returning the sorted
list of values less than the pivot, followed by the pivot, followed by the sorted list of
values greater than or equal to the pivot. Figure 4.2 shows how a list of 10 integers is
sorted under this scheme. An FP-style sequential implementation is shown in the fol-
lowing listing; it takes and returns a list by value rather than sorting in place like
std::sort() does.

template<typename T>
std::list<T> sequential_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 std::list<T> result;
 result.splice(result.begin(),input,input.begin());
 T const& pivot=*result.begin();

 auto divide_point=std::partition(input.begin(),input.end(),
 [&](T const& t){return t<pivot;});

 std::list<T> lower_part;
 lower_part.splice(lower_part.end(),input,input.begin(),
 divide_point);

 auto new_lower(
 sequential_quick_sort(std::move(lower_part)));
 auto new_higher(
 sequential_quick_sort(std::move(input)));

 result.splice(result.end(),new_higher);

Listing 4.12 A sequential implementation of Quicksort

Figure 4.2 FP-style recursive sorting

b
c

d

e

f

g

h

Download from Wow! eBook <www.wowebook.com>

95Using synchronization of operations to simplify code
 result.splice(result.begin(),new_lower);
 return result;
}

Although the interface is FP-style, if you used FP-style throughout you’d do a lot of
copying, so you use “normal” imperative style for the internals. You take the first ele-
ment as the pivot by slicing it off the front of the list using splice() B. Although this
can potentially result in a suboptimal sort (in terms of numbers of comparisons and
exchanges), doing anything else with a std::list can add quite a bit of time because
of the list traversal. You know you’re going to want it in the result, so you can splice it
directly into the list you’ll be using for that. Now, you’re also going to want to use it for
comparisons, so let’s take a reference to it to avoid copying c. You can then use
std::partition to divide the sequence into those values less than the pivot and those
not less than the pivot d. The easiest way to specify the partition criteria is to use a
lambda function; you use a reference capture to avoid copying the pivot value (see
appendix A, section A.5 for more on lambda functions).

std::partition() rearranges the list in place and returns an iterator marking the
first element that’s not less than the pivot value. The full type for an iterator can be
quite long-winded, so you just use the auto type specifier to force the compiler to
work it out for you (see appendix A, section A.7).

 Now, you’ve opted for an FP-style interface, so if you’re going to use recursion to sort
the two “halves,” you’ll need to create two lists. You can do this by using splice() again to
move the values from input up to the divide_point into a new list: lower_part e. This
leaves the remaining values alone in input. You can then sort the two lists with recursive
calls f, g. By using std::move() to pass the lists in, you can avoid copying here too—
the result is implicitly moved out anyway. Finally, you can use splice() yet again to
piece the result together in the right order. The new_higher values go on the end h,
after the pivot, and the new_lower values go at the beginning, before the pivot i.

FP-STYLE PARALLEL QUICKSORT

Because this uses a functional style already, it’s now easy to convert this to a parallel
version using futures, as shown in the next listing. The set of operations is the same as
before, except that some of them now run in parallel. This version uses an implemen-
tation of the Quicksort algorithm using futures and a functional style.

template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 std::list<T> result;
 result.splice(result.begin(),input,input.begin());
 T const& pivot=*result.begin();

Listing 4.13 Parallel Quicksort using futures

i

Download from Wow! eBook <www.wowebook.com>

96 CHAPTER 4 Synchronizing concurrent operations
 auto divide_point=std::partition(input.begin(),input.end(),
 [&](T const& t){return t<pivot;});

 std::list<T> lower_part;
 lower_part.splice(lower_part.end(),input,input.begin(),
 divide_point);

 std::future<std::list<T> > new_lower(
 std::async(¶llel_quick_sort<T>,std::move(lower_part)));

 auto new_higher(
 parallel_quick_sort(std::move(input)));

 result.splice(result.end(),new_higher);
 result.splice(result.begin(),new_lower.get());
 return result;
}

The big change here is that rather than sorting the lower portion on the current
thread, you sort it on another thread using std::async() B. The upper portion of
the list is sorted with direct recursion as before c. By recursively calling parallel_
quick_sort(), you can take advantage of the available hardware concurrency. If
std::async() starts a new thread every time, then if you recurse down three times,
you’ll have eight threads running; if you recurse down 10 times (for ~1000 ele-
ments), you’ll have 1024 threads running if the hardware can handle it. If the library
decides there are too many spawned tasks (perhaps because the number of tasks has
exceeded the available hardware concurrency), it may switch to spawning the new tasks
synchronously. They will run in the thread that calls get() rather than on a new
thread, thus avoiding the overhead of passing the task to another thread when this
won’t help the performance. It’s worth noting that it’s perfectly conforming for an
implementation of std::async to start a new thread for each task (even in the face of
massive oversubscription) unless std::launch::deferred is explicitly specified or to
run all tasks synchronously unless std::launch::async is explicitly specified. If you’re
relying on the library for automatic scaling, you’re advised to check the documenta-
tion for your implementation to see what behavior it exhibits.

 Rather than using std::async(), you could write your own spawn_task() func-
tion as a simple wrapper around std::packaged_task and std::thread, as shown in
listing 4.14; you’d create a std::packaged_task for the result of the function call, get
the future from it, run it on a thread, and return the future. This wouldn’t itself offer
much advantage (and indeed would likely lead to massive oversubcription), but it
would pave the way to migrate to a more sophisticated implementation that adds the
task to a queue to be run by a pool of worker threads. We’ll look at thread pools in
chapter 9. It’s probably worth going this way in preference to using std::async only if
you really know what you’re doing and want complete control over the way the thread
pool is built and executes tasks.

 Anyway, back to parallel_quick_sort. Because you just used direct recursion to
get new_higher, you can just splice it into place as before d. But new_lower is now a
std::future<std::list<T>> rather than just a list, so you need to call get() to

b

c

d
 e
Download from Wow! eBook <www.wowebook.com>

97Using synchronization of operations to simplify code
retrieve the value before you can call splice() e. This then waits for the background
task to complete and moves the result into the splice() call; get() returns an rvalue
reference to the contained result, so it can be moved out (see appendix A, section A.1.1
for more on rvalue references and move semantics).

 Even assuming that std::async() makes optimal use of the available hardware
concurrency, this still isn’t an ideal parallel implementation of Quicksort. For one
thing, std::partition does a lot of the work, and that’s still a sequential call, but it’s
good enough for now. If you’re interested in the fastest possible parallel implementa-
tion, check the academic literature.

template<typename F,typename A>
std::future<std::result_of<F(A&&)>::type>
 spawn_task(F&& f,A&& a)
{
 typedef std::result_of<F(A&&)>::type result_type;
 std::packaged_task<result_type(A&&)>
 task(std::move(f)));
 std::future<result_type> res(task.get_future());
 std::thread t(std::move(task),std::move(a));
 t.detach();
 return res;
}

Functional programming isn’t the only concurrent programming paradigm that
eschews shared mutable data; another paradigm is CSP (Communicating Sequential
Processes),3 where threads are conceptually entirely separate, with no shared data but
with communication channels that allow messages to be passed between them. This is
the paradigm adopted by the programming language Erlang (http://www.erlang.org/)
and by the MPI (Message Passing Interface) (http://www.mpi-forum.org/) environ-
ment commonly used for high-performance computing in C and C++. I’m sure that by
now you’ll be unsurprised to learn that this can also be supported in C++ with a bit of
discipline; the following section discusses one way to achieve this.

4.4.2 Synchronizing operations with message passing

The idea of CSP is simple: if there’s no shared data, each thread can be reasoned
about entirely independently, purely on the basis of how it behaves in response to the
messages that it received. Each thread is therefore effectively a state machine: when it
receives a message, it updates its state in some manner and maybe sends one or more
messages to other threads, with the processing performed depending on the initial
state. One way to write such threads would be to formalize this and implement a Finite
State Machine model, but this isn’t the only way; the state machine can be implicit in
the structure of the application. Which method works better in any given scenario

Listing 4.14 A sample implementation of spawn_task

3 Communicating Sequential Processes, C.A.R. Hoare, Prentice Hall, 1985. Available free online at http://
www.usingcsp.com/cspbook.pdf.
Download from Wow! eBook <www.wowebook.com>

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.erlang.org/
http://www.mpi-forum.org/

98 CHAPTER 4 Synchronizing concurrent operations
depends on the exact behavioral requirements of the situation and the expertise of the
programming team. However you choose to implement each thread, the separation into
independent processes has the potential to remove much of the complication from
shared-data concurrency and therefore make programming easier, lowering the bug rate.

 True communicating sequential processes have no shared data, with all communi-
cation passed through the message queues, but because C++ threads share an address
space, it’s not possible to enforce this requirement. This is where the discipline comes
in: as application or library authors, it’s our responsibility to ensure that we don’t
share data between the threads. Of course, the message queues must be shared in
order for the threads to communicate, but the details can be wrapped in the library.

 Imagine for a moment that you’re implementing the code for an ATM. This code
needs to handle interaction with the person trying to withdraw money and interaction
with the relevant bank, as well as control the physical machinery to accept the per-
son’s card, display appropriate messages, handle key presses, issue money, and return
their card.

 One way to handle everything would be to split the code into three independent
threads: one to handle the physical machinery, one to handle the ATM logic, and one
to communicate with the bank. These threads could communicate purely by passing
messages rather than sharing any data. For example, the thread handling the machin-
ery would send a message to the logic thread when the person at the machine entered
their card or pressed a button, and the logic thread would send a message to the
machinery thread indicating how much money to dispense, and so forth.

 One way to model the ATM logic would be as a state machine. In each state the
thread waits for an acceptable message, which it then processes. This may result in tran-
sitioning to a new state, and the cycle continues. The states involved in a simple imple-
mentation are shown in figure 4.3. In this simplified implementation, the system waits
for a card to be inserted. Once the card is inserted, it then waits for the user to enter
their PIN, one digit at a time. They can delete the last digit entered. Once enough digits
have been entered, the PIN is verified. If the PIN is not OK, you’re finished, so you return
the card to the customer and resume waiting for someone to enter their card. If the PIN
is OK, you wait for them to either cancel the transaction or select an amount to with-
draw. If they cancel, you’re finished, and you return their card. If they select an amount,
you wait for confirmation from the bank before issuing the cash and returning the card
or displaying an “insufficient funds” message and returning their card. Obviously, a real
ATM is considerably more complex, but this is enough to illustrate the idea.

 Having designed a state machine for your ATM logic, you can implement it with a
class that has a member function to represent each state. Each member function can
then wait for specific sets of incoming messages and handle them when they arrive,
possibly triggering a switch to another state. Each distinct message type is represented
by a separate struct. Listing 4.15 shows part of a simple implementation of the ATM
logic in such a system, with the main loop and the implementation of the first state,
waiting for the card to be inserted.
Download from Wow! eBook <www.wowebook.com>

99Using synchronization of operations to simplify code
As you can see, all the necessary synchronization for the message passing is entirely
hidden inside the message-passing library (a basic implementation of which is given in
appendix C, along with the full code for this example).

struct card_inserted
{
 std::string account;
};
class atm
{
 messaging::receiver incoming;
 messaging::sender bank;
 messaging::sender interface_hardware;
 void (atm::*state)();

 std::string account;
 std::string pin;

 void waiting_for_card()
 {
 interface_hardware.send(display_enter_card());
 incoming.wait()
 .handle<card_inserted>(
 [&](card_inserted const& msg)
 {
 account=msg.account;
 pin="";

Listing 4.15 A simple implementation of an ATM logic class

Figure 4.3 A simple state machine model for an ATM

b

c

d
 e
Download from Wow! eBook <www.wowebook.com>

100 CHAPTER 4 Synchronizing concurrent operations
 interface_hardware.send(display_enter_pin());
 state=&atm::getting_pin;
 }
);
 }
 void getting_pin();
public:
 void run()
 {
 state=&atm::waiting_for_card;
 try
 {
 for(;;)
 {
 (this->*state)();
 }
 }
 catch(messaging::close_queue const&)
 {
 }
 }
};

As already mentioned, the implementation described here is grossly simplified from
the real logic that would be required in an ATM, but it does give you a feel for the
message-passing style of programming. There’s no need to think about synchroniza-
tion and concurrency issues, just which messages may be received at any given point
and which messages to send. The state machine for this ATM logic runs on a single
thread, with other parts of the system such as the interface to the bank and the termi-
nal interface running on separate threads. This style of program design is called the
Actor model—there are several discrete actors in the system (each running on a separate
thread), which send messages to each other to perform the task at hand, and there’s
no shared state except that directly passed via messages.

 Execution starts with the run() member function f, which sets the initial state to
waiting_for_card g and then repeatedly executes the member function represent-
ing the current state (whatever it is) h. The state functions are simple member func-
tions of the atm class. The waiting_for_card state function B is also simple: it sends
a message to the interface to display a “waiting for card” message c and then waits
for a message to handle d. The only type of message that can be handled here is a
card_inserted message, which you handle with a lambda function e. You could pass
any function or function object to the handle function, but for a simple case like this,
it’s easiest to use a lambda. Note that the handle() function call is chained onto the
wait() function; if a message is received that doesn’t match the specified type, it’s dis-
carded, and the thread continues to wait until a matching message is received.

 The lambda function itself just caches the account number from the card in a
member variable, clears the current PIN, sends a message to the interface hardware to
display something asking the user to enter their PIN, and changes to the “getting PIN”

f

g

h

Download from Wow! eBook <www.wowebook.com>

101Using synchronization of operations to simplify code
state. Once the message handler has completed, the state function returns, and the
main loop then calls the new state function h.

 The getting_pin state function is a bit more complex in that it can handle three
distinct types of message, as in figure 4.3. This is shown in the following listing.

void atm::getting_pin()
{
 incoming.wait()
 .handle<digit_pressed>(
 [&](digit_pressed const& msg)
 {
 unsigned const pin_length=4;
 pin+=msg.digit;
 if(pin.length()==pin_length)
 {
 bank.send(verify_pin(account,pin,incoming));
 state=&atm::verifying_pin;
 }
 }
)
 .handle<clear_last_pressed>(
 [&](clear_last_pressed const& msg)
 {
 if(!pin.empty())
 {
 pin.resize(pin.length()-1);
 }
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
}

This time, there are three message types you can process, so the wait() function has
three handle() calls chained on the end B, c, d. Each call to handle() specifies the
message type as the template parameter and then passes in a lambda function that
takes that particular message type as a parameter. Because the calls are chained
together in this way, the wait() implementation knows that it’s waiting for a
digit_pressed message, a clear_last_pressed message, or a cancel_pressed mes-
sage. Messages of any other type are again discarded.

 This time, you don’t necessarily change state when you get a message. For exam-
ple, if you get a digit_pressed message, you just add it to the pin unless it’s the final
digit. The main loop h in listing 4.15) will then call getting_pin() again to wait for
the next digit (or clear or cancel).

Listing 4.16 The getting_pin state function for the simple ATM implementation

b

c

d

Download from Wow! eBook <www.wowebook.com>

102 CHAPTER 4 Synchronizing concurrent operations
 This corresponds to the behavior shown in figure 4.3. Each state box is imple-
mented by a distinct member function, which waits for the relevant messages and
updates the state as appropriate.

 As you can see, this style of programming can greatly simplify the task of designing
a concurrent system, because each thread can be treated entirely independently. It is
thus an example of using multiple threads to separate concerns and as such requires
you to explicitly decide how to divide the tasks between threads.

4.5 Summary
Synchronizing operations between threads is an important part of writing an applica-
tion that uses concurrency: if there’s no synchronization, the threads are essentially
independent and might as well be written as separate applications that are run as a
group because of their related activities. In this chapter, I’ve covered various ways of
synchronizing operations from the basic condition variables, through futures, prom-
ises, and packaged tasks. I’ve also discussed ways of approaching the synchronization
issues: functional-style programming where each task produces a result entirely
dependent on its input rather than on the external environment, and message pass-
ing where communication between threads is via asynchronous messages sent
through a messaging subsystem that acts as an intermediary.

 Having discussed many of the high-level facilities available in C++, it’s now time
to look at the low-level facilities that make it all work: the C++ memory model and
atomic operations.
Download from Wow! eBook <www.wowebook.com>

The C++ memory
model and operations

on atomic types
One of the most important features of the C++11 Standard is something most pro-
grammers won’t even notice. It’s not the new syntax features, nor is it the new
library facilities, but the new multithreading-aware memory model. Without the
memory model to define exactly how the fundamental building blocks work, none
of the facilities I’ve covered could be relied on to work. Of course, there’s a reason
that most programmers won’t notice: if you use mutexes to protect your data and
condition variables or futures to signal events, the details of why they work aren’t
important. It’s only when you start trying to get “close to the machine” that the pre-
cise details of the memory model matter.

 Whatever else it is, C++ is a systems programming language. One of the goals of
the Standards Committee is that there shall be no need for a lower-level language

This chapter covers
■ The details of the C++11 memory model
■ The atomic types provided by the C++

Standard Library
■ The operations that are available on

those types
■ How those operations can be used to provide

synchronization between threads
103

Download from Wow! eBook <www.wowebook.com>

104 CHAPTER 5 The C++ memory model and operations on atomic types
than C++. Programmers should be provided with enough flexibility within C++ to do
whatever they need without the language getting in the way, allowing them to get
“close to the machine” when the need arises. The atomic types and operations allow
just that, providing facilities for low-level synchronization operations that will com-
monly reduce to one or two CPU instructions.

 In this chapter, I’ll start by covering the basics of the memory model, then move on
to the atomic types and operations, and finally cover the various types of synchroniza-
tion available with the operations on atomic types. This is quite complex: unless you’re
planning on writing code that uses the atomic operations for synchronization (such as
the lock-free data structures in chapter 7), you won’t need to know these details.

 Let’s ease into things with a look at the basics of the memory model.

5.1 Memory model basics
There are two aspects to the memory model: the basic structural aspects, which relate
to how things are laid out in memory, and then the concurrency aspects. The struc-
tural aspects are important for concurrency, especially when you’re looking at low-
level atomic operations, so I’ll start with those. In C++, it’s all about objects and
memory locations.

5.1.1 Objects and memory locations

All data in a C++ program is made up of objects. This is not to say that you can create a
new class derived from int, or that the fundamental types have member functions, or
any of the other consequences often implied when people say “everything is an
object” when discussing a language like Smalltalk or Ruby. It’s just a statement about
the building blocks of data in C++. The C++ Standard defines an object as “a region of
storage,” although it goes on to assign properties to these objects, such as their type
and lifetime.

 Some of these objects are simple values of a fundamental type such as int or
float, whereas others are instances of user-defined classes. Some objects (such as
arrays, instances of derived classes, and instances of classes with non-static data
members) have subobjects, but others don’t.

 Whatever its type, an object is stored in one or more memory locations. Each such
memory location is either an object (or subobject) of a scalar type such as unsigned
short or my_class* or a sequence of adjacent bit fields. If you use bit fields, this is an
important point to note: though adjacent bit fields are distinct objects, they’re still
counted as the same memory location. Figure 5.1 shows how a struct divides into
objects and memory locations.

 First, the entire struct is one object, which consists of several subobjects, one for
each data member. The bit fields bf1 and bf2 share a memory location, and the
std::string object s consists of several memory locations internally, but otherwise
each member has its own memory location. Note how the zero-length bit field bf3
separates bf4 into its own memory location.
Download from Wow! eBook <www.wowebook.com>

105Memory model basics
There are four important things to take away from this:

■ Every variable is an object, including those that are members of other objects.
■ Every object occupies at least one memory location.
■ Variables of fundamental type such as int or char are exactly one memory loca-

tion, whatever their size, even if they’re adjacent or part of an array.
■ Adjacent bit fields are part of the same memory location.

I’m sure you’re wondering what this has to do with concurrency, so let’s take a look.

5.1.2 Objects, memory locations, and concurrency

Now, here’s the part that’s crucial for multithreaded applications in C++: everything
hinges on those memory locations. If two threads access separate memory locations,
there’s no problem: everything works fine. On the other hand, if two threads access
the same memory location, then you have to be careful. If neither thread is updating the
memory location, you’re fine; read-only data doesn’t need protection or synchroniza-
tion. If either thread is modifying the data, there’s a potential for a race condition, as
described in chapter 3.

 In order to avoid the race condition, there has to be an enforced ordering
between the accesses in the two threads. One way to ensure there’s a defined ordering
is to use mutexes as described in chapter 3; if the same mutex is locked prior to both
accesses, only one thread can access the memory location at a time, so one must hap-
pen before the other. The other way is to use the synchronization properties of atomic
operations (see section 5.2 for the definition of atomic operations) either on the same
or other memory locations to enforce an ordering between the accesses in the two

Figure 5.1 The division of a struct into objects and memory locations
Download from Wow! eBook <www.wowebook.com>

106 CHAPTER 5 The C++ memory model and operations on atomic types
threads. The use of atomic operations to enforce an ordering is described in section 5.3.
If more than two threads access the same memory location, each pair of accesses must
have a defined ordering.

 If there’s no enforced ordering between two accesses to a single memory location
from separate threads, one or both of those accesses is not atomic, and one or both is
a write, then this is a data race and causes undefined behavior.

 This statement is crucially important: undefined behavior is one of the nastiest
corners of C++. According to the language standard, once an application contains
any undefined behavior, all bets are off; the behavior of the complete application is
now undefined, and it may do anything at all. I know of one case where a particular
instance of undefined behavior caused someone’s monitor to catch on fire. Although
this is rather unlikely to happen to you, a data race is definitely a serious bug and
should be avoided at all costs.

 There’s another important point in that statement: you can also avoid the unde-
fined behavior by using atomic operations to access the memory location involved
in the race. This doesn’t prevent the race itself—which of the atomic operations
touches the memory location first is still not specified—but it does bring the program
back into the realm of defined behavior.

 Before we look at atomic operations, there’s one more concept that’s important to
understand about objects and memory locations: modification orders.

5.1.3 Modification orders

Every object in a C++ program has a defined modification order composed of all the
writes to that object from all threads in the program, starting with the object’s initial-
ization. In most cases this order will vary between runs, but in any given execution of
the program all threads in the system must agree on the order. If the object in ques-
tion isn’t one of the atomic types described in section 5.2, you’re responsible for mak-
ing certain that there’s sufficient synchronization to ensure that threads agree on the
modification order of each variable. If different threads see distinct sequences of values
for a single variable, you have a data race and undefined behavior (see section 5.1.2). If
you do use atomic operations, the compiler is responsible for ensuring that the neces-
sary synchronization is in place.

 This requirement means that certain kinds of speculative execution aren’t permit-
ted, because once a thread has seen a particular entry in the modification order, sub-
sequent reads from that thread must return later values, and subsequent writes from
that thread to that object must occur later in the modification order. Also, a read of
an object that follows a write to that object in the same thread must either return
the value written or another value that occurs later in the modification order of
that object. Although all threads must agree on the modification orders of each indi-
vidual object in a program, they don’t necessarily have to agree on the relative order
of operations on separate objects. See section 5.3.3 for more on the ordering of oper-
ations between threads.
Download from Wow! eBook <www.wowebook.com>

107Atomic operations and types in C++
 So, what constitutes an atomic operation, and how can these be used to enforce
ordering?

5.2 Atomic operations and types in C++
An atomic operation is an indivisible operation. You can’t observe such an operation
half-done from any thread in the system; it’s either done or not done. If the load oper-
ation that reads the value of an object is atomic, and all modifications to that object are
also atomic, that load will retrieve either the initial value of the object or the value
stored by one of the modifications.

 The flip side of this is that a nonatomic operation might be seen as half-done by
another thread. If that operation is a store, the value observed by another thread
might be neither the value before the store nor the value stored but something else. If
the nonatomic operation is a load, it might retrieve part of the object, have another
thread modify the value, and then retrieve the remainder of the object, thus retrieving
neither the first value nor the second but some combination of the two. This is a sim-
ple problematic race condition, as described in chapter 3, but at this level it may con-
stitute a data race (see section 5.1) and thus cause undefined behavior.

 In C++, you need to use an atomic type to get an atomic operation in most cases, so
let’s look at those.

5.2.1 The standard atomic types

The standard atomic types can be found in the <atomic> header. All operations on such
types are atomic, and only operations on these types are atomic in the sense of the lan-
guage definition, although you can use mutexes to make other operations appear
atomic. In actual fact, the standard atomic types themselves might use such emula-
tion: they (almost) all have an is_lock_free() member function, which allows the
user to determine whether operations on a given type are done directly with atomic
instructions (x.is_lock_free() returns true) or done by using a lock internal to the
compiler and library (x.is_lock_free() returns false).

 The only type that doesn’t provide an is_lock_free() member function is
std::atomic_flag. This type is a really simple Boolean flag, and operations on this type
are required to be lock-free; once you have a simple lock-free Boolean flag, you can use
that to implement a simple lock and thus implement all the other atomic types using that
as a basis. When I said really simple, I meant it: objects of type std::atomic_flag are ini-
tialized to clear, and they can then either be queried and set (with the test_and_set()
member function) or cleared (with the clear() member function). That’s it: no assign-
ment, no copy construction, no test and clear, no other operations at all.

 The remaining atomic types are all accessed through specializations of the
std::atomic<> class template and are a bit more full-featured but may not be lock-
free (as explained previously). On most popular platforms it’s expected that the
atomic variants of all the built-in types (such as std::atomic<int> and std::atomic
<void*>) are indeed lock-free, but it isn’t required. As you’ll see shortly, the interface
Download from Wow! eBook <www.wowebook.com>

108 CHAPTER 5 The C++ memory model and operations on atomic types
of each specialization reflects the properties of the type; bitwise operations such as &=
aren’t defined for plain pointers, so they aren’t defined for atomic pointers either,
for example.

 In addition to using the std::atomic<> class template directly, you can use the set
of names shown in table 5.1 to refer to the implementation-supplied atomic types.
Because of the history of how atomic types were added to the C++ Standard, these
alternative type names may refer either to the corresponding std::atomic<> special-
ization or to a base class of that specialization. Mixing these alternative names with
direct naming of std::atomic<> specializations in the same program can therefore
lead to nonportable code.

As well as the basic atomic types, the C++ Standard Library also provides a set of
typedefs for the atomic types corresponding to the various nonatomic Standard
Library typedefs such as std::size_t. These are shown in table 5.2.

 That’s a lot of types! There’s a rather simple pattern to it; for a standard typedef T,
the corresponding atomic type is the same name with an atomic_ prefix: atomic_T. The
same applies to the built-in types, except that signed is abbreviated as just s, unsigned as

Table 5.1 The alternative names for the standard atomic types and their corresponding std::atomic<>
specializations

Atomic type Corresponding specialization

atomic_bool std::atomic<bool>

atomic_char std::atomic<char>

atomic_schar std::atomic<signed char>

atomic_uchar std::atomic<unsigned char>

atomic_int std::atomic<int>

atomic_uint std::atomic<unsigned>

atomic_short std::atomic<short>

atomic_ushort std::atomic<unsigned short>

atomic_long std::atomic<long>

atomic_ulong std::atomic<unsigned long>

atomic_llong std::atomic<long long>

atomic_ullong std::atomic<unsigned long long>

atomic_char16_t std::atomic<char16_t>

atomic_char32_t std::atomic<char32_t>

atomic_wchar_t std::atomic<wchar_t>
Download from Wow! eBook <www.wowebook.com>

109Atomic operations and types in C++
just u, and long long as llong. It’s generally just simpler to say std::atomic<T> for
whichever T you wish to work with, rather than use the alternative names.

 The standard atomic types are not copyable or assignable in the conventional
sense, in that they have no copy constructors or copy assignment operators. They do,
however, support assignment from and implicit conversion to the corresponding
built-in types as well as direct load() and store() member functions, exchange(),
compare_exchange_weak(), and compare_exchange_strong(). They also support the
compound assignment operators where appropriate: +=, -=, *=, |=, and so on, and
the integral types and std::atomic<> specializations for pointers support ++ and --.

Table 5.2 The standard atomic typedefs and their corresponding built-in typedefs

Atomic typedef Corresponding Standard Library typedef

atomic_int_least8_t int_least8_t

atomic_uint_least8_t uint_least8_t

atomic_int_least16_t int_least16_t

atomic_uint_least16_t uint_least16_t

atomic_int_least32_t int_least32_t

atomic_uint_least32_t uint_least32_t

atomic_int_least64_t int_least64_t

atomic_uint_least64_t uint_least64_t

atomic_int_fast8_t int_fast8_t

atomic_uint_fast8_t uint_fast8_t

atomic_int_fast16_t int_fast16_t

atomic_uint_fast16_t uint_fast16_t

atomic_int_fast32_t int_fast32_t

atomic_uint_fast32_t uint_fast32_t

atomic_int_fast64_t int_fast64_t

atomic_uint_fast64_t uint_fast64_t

atomic_intptr_t intptr_t

atomic_uintptr_t uintptr_t

atomic_size_t size_t

atomic_ptrdiff_t ptrdiff_t

atomic_intmax_t intmax_t

atomic_uintmax_t uintmax_t
Download from Wow! eBook <www.wowebook.com>

110 CHAPTER 5 The C++ memory model and operations on atomic types
These operators also have corresponding named member functions with the same
functionality: fetch_add(), fetch_or(), and so on. The return value from the assign-
ment operators and member functions is either the value stored (in the case of the
assignment operators) or the value prior to the operation (in the case of the named
functions). This avoids the potential problems that could stem from the usual habit of
such assignment operators returning a reference to the object being assigned to. In
order to get the stored value from such a reference, the code would have to perform a
separate read, thus allowing another thread to modify the value between the assign-
ment and the read and opening the door for a race condition.

 The std::atomic<> class template isn’t just a set of specializations, though. It does
have a primary template that can be used to create an atomic variant of a user-defined
type. Because it’s a generic class template, the operations are limited to load(),
store() (and assignment from and conversion to the user-defined type), exchange(),
compare_exchange_weak(), and compare_exchange_strong().

 Each of the operations on the atomic types has an optional memory-ordering argu-
ment that can be used to specify the required memory-ordering semantics. The pre-
cise semantics of the memory-ordering options are covered in section 5.3. For now, it
suffices to know that the operations are divided into three categories:

■ Store operations, which can have memory_order_relaxed, memory_order_release,
or memory_order_seq_cst ordering

■ Load operations, which can have memory_order_relaxed, memory_order_consume,
memory_order_acquire, or memory_order_seq_cst ordering

■ Read-modify-write operations, which can have memory_order_relaxed, memory_
order_consume, memory_order_acquire, memory_order_release, memory_order_
acq_rel, or memory_order_seq_cst ordering

The default ordering for all operations is memory_order_seq_cst.
 Let’s now look at the operations you can actually do on each of the standard

atomic types, starting with std::atomic_flag.

5.2.2 Operations on std::atomic_flag

std::atomic_flag is the simplest standard atomic type, which represents a Boolean
flag. Objects of this type can be in one of two states: set or clear. It’s deliberately basic
and is intended as a building block only. As such, I’d never expect to see it in use,
except under very special circumstances. Even so, it will serve as a starting point for
discussing the other atomic types, because it shows some of the general policies that
apply to the atomic types.

 Objects of type std::atomic_flag must be initialized with ATOMIC_FLAG_INIT. This ini-
tializes the flag to a clear state. There’s no choice in the matter; the flag always starts clear:

std::atomic_flag f=ATOMIC_FLAG_INIT;

This applies wherever the object is declared and whatever scope it has. It’s the only
atomic type to require such special treatment for initialization, but it’s also the only type
Download from Wow! eBook <www.wowebook.com>

111Atomic operations and types in C++
guaranteed to be lock-free. If the std::atomic_flag object has static storage duration,
it’s guaranteed to be statically initialized, which means that there are no initialization-
order issues; it will always be initialized by the time of the first operation on the flag.

 Once you have your flag object initialized, there are only three things you can do
with it: destroy it, clear it, or set it and query the previous value. These correspond to
the destructor, the clear() member function, and the test_and_set() member func-
tion, respectively. Both the clear() and test_and_set() member functions can have
a memory order specified. clear() is a store operation and so can’t have memory_
order_acquire or memory_order_acq_rel semantics, but test_and_set() is a read-
modify-write operation and so can have any of the memory-ordering tags applied.
As with every atomic operation, the default for both is memory_order_seq_cst.
For example:

f.clear(std::memory_order_release);
bool x=f.test_and_set();

Here, the call to clear() B explicitly requests that the flag is cleared with release
semantics, while the call to test_and_set() c uses the default memory ordering for
setting the flag and retrieving the old value.

 You can’t copy-construct another std::atomic_flag object from the first, and
you can’t assign one std::atomic_flag to another. This isn’t something peculiar to
std::atomic_flag but something common with all the atomic types. All operations
on an atomic type are defined as atomic, and assignment and copy-construction
involve two objects. A single operation on two distinct objects can’t be atomic. In the
case of copy-construction or copy-assignment, the value must first be read from one
object and then written to the other. These are two separate operations on two sepa-
rate objects, and the combination can’t be atomic. Therefore, these operations
aren’t permitted.

 The limited feature set makes std::atomic_flag ideally suited to use as a spin-
lock mutex. Initially the flag is clear and the mutex is unlocked. To lock the mutex,
loop on test_and_set() until the old value is false, indicating that this thread set the
value to true. Unlocking the mutex is simply a matter of clearing the flag. Such an
implementation is shown in the following listing.

class spinlock_mutex
{
 std::atomic_flag flag;
public:
 spinlock_mutex():
 flag(ATOMIC_FLAG_INIT)
 {}
 void lock()
 {
 while(flag.test_and_set(std::memory_order_acquire));
 }

Listing 5.1 Implementation of a spinlock mutex using std::atomic_flag

b
c

Download from Wow! eBook <www.wowebook.com>

112 CHAPTER 5 The C++ memory model and operations on atomic types
 void unlock()
 {
 flag.clear(std::memory_order_release);
 }
};

Such a mutex is very basic, but it’s enough to use with std::lock_guard<> (see chap-
ter 3). By its very nature it does a busy-wait in lock(), so it’s a poor choice if you
expect there to be any degree of contention, but it’s enough to ensure mutual exclu-
sion. When we look at the memory-ordering semantics, you’ll see how this guarantees
the necessary enforced ordering that goes with a mutex lock. This example is covered
in section 5.3.6.

std::atomic_flag is so limited that it can’t even be used as a general Boolean flag,
because it doesn’t have a simple nonmodifying query operation. For that you’re better
off using std::atomic<bool>, so I’ll cover that next.

5.2.3 Operations on std::atomic<bool>

The most basic of the atomic integral types is std::atomic<bool>. This is a more full-
featured Boolean flag than std::atomic_flag, as you might expect. Although it’s still
not copy-constructible or copy-assignable, you can construct it from a nonatomic
bool, so it can be initially true or false, and you can also assign to instances of
std::atomic<bool> from a nonatomic bool:

std::atomic<bool> b(true);
b=false;

One other thing to note about the assignment operator from a nonatomic bool is that
it differs from the general convention of returning a reference to the object it’s
assigned to: it returns a bool with the value assigned instead. This is another common
pattern with the atomic types: the assignment operators they support return values (of
the corresponding nonatomic type) rather than references. If a reference to the
atomic variable was returned, any code that depended on the result of the assignment
would then have to explicitly load the value, potentially getting the result of a modifi-
cation by another thread. By returning the result of the assignment as a nonatomic
value, you can avoid this additional load, and you know that the value obtained is the
actual value stored.

 Rather than using the restrictive clear() function of std::atomic_flag, writes (of
either true or false) are done by calling store(), although the memory-order
semantics can still be specified. Similarly, test_and_set() has been replaced with the
more general exchange() member function that allows you to replace the stored
value with a new one of your choosing and atomically retrieve the original value.
std::atomic<bool> also supports a plain nonmodifying query of the value with an
implicit conversion to plain bool or with an explicit call to load(). As you might
expect, store() is a store operation, whereas load() is a load operation. exchange()
is a read-modify-write operation:
Download from Wow! eBook <www.wowebook.com>

113Atomic operations and types in C++
std::atomic<bool> b;
bool x=b.load(std::memory_order_acquire);
b.store(true);
x=b.exchange(false,std::memory_order_acq_rel);

exchange() isn’t the only read-modify-write operation supported by std::atomic
<bool>; it also introduces an operation to store a new value if the current value is
equal to an expected value.

STORING A NEW VALUE (OR NOT) DEPENDING ON THE CURRENT VALUE

This new operation is called compare/exchange, and it comes in the form of the
compare_exchange_weak() and compare_exchange_strong() member functions. The
compare/exchange operation is the cornerstone of programming with atomic types;
it compares the value of the atomic variable with a supplied expected value and stores
the supplied desired value if they’re equal. If the values aren’t equal, the expected
value is updated with the actual value of the atomic variable. The return type of the
compare/exchange functions is a bool, which is true if the store was performed and
false otherwise.

 For compare_exchange_weak(), the store might not be successful even if the origi-
nal value was equal to the expected value, in which case the value of the variable is
unchanged and the return value of compare_exchange_weak() is false. This is most
likely to happen on machines that lack a single compare-and-exchange instruction, if
the processor can’t guarantee that the operation has been done atomically—possibly
because the thread performing the operation was switched out in the middle of the
necessary sequence of instructions and another thread scheduled in its place by
the operating system where there are more threads than processors. This is called a
spurious failure, because the reason for the failure is a function of timing rather than
the values of the variables.

 Because compare_exchange_weak() can fail spuriously, it must typically be used in
a loop:

bool expected=false;
extern atomic<bool> b; // set somewhere else
while(!b.compare_exchange_weak(expected,true) && !expected);

In this case, you keep looping as long as expected is still false, indicating that the
compare_exchange_weak() call failed spuriously.

 On the other hand, compare_exchange_strong() is guaranteed to return false
only if the actual value wasn’t equal to the expected value. This can eliminate the
need for loops like the one shown where you just want to know whether you success-
fully changed a variable or whether another thread got there first.

 If you want to change the variable whatever the initial value is (perhaps with an
updated value that depends on the current value), the update of expected becomes use-
ful; each time through the loop, expected is reloaded, so if no other thread modifies the
value in the meantime, the compare_exchange_weak() or compare_exchange_strong()
call should be successful the next time around the loop. If the calculation of the value
Download from Wow! eBook <www.wowebook.com>

114 CHAPTER 5 The C++ memory model and operations on atomic types
to be stored is simple, it may be beneficial to use compare_exchange_weak() in order
to avoid a double loop on platforms where compare_exchange_weak() can fail spuri-
ously (and so compare_exchange_strong() contains a loop). On the other hand, if
the calculation of the value to be stored is itself time consuming, it may make sense to
use compare_exchange_strong() to avoid having to recalculate the value to store
when the expected value hasn’t changed. For std::atomic<bool> this isn’t so impor-
tant—there are only two possible values after all—but for the larger atomic types this
can make a difference.

 The compare/exchange functions are also unusual in that they can take two memory-
ordering parameters. This allows for the memory-ordering semantics to differ in the
case of success and failure; it might be desirable for a successful call to have
memory_order_acq_rel semantics whereas a failed call has memory_order_relaxed
semantics. A failed compare/exchange doesn’t do a store, so it can’t have memory_
order_release or memory_order_acq_rel semantics. It’s therefore not permitted to
supply these values as the ordering for failure. You also can’t supply stricter memory
ordering for failure than for success; if you want memory_order_acquire or memory_
order_seq_cst semantics for failure, you must specify those for success as well.

 If you don’t specify an ordering for failure, it’s assumed to be the same as that for
success, except that the release part of the ordering is stripped: memory_order_
release becomes memory_order_relaxed, and memory_order_acq_rel becomes
memory_order_acquire. If you specify neither, they default to memory_order_seq_cst
as usual, which provides the full sequential ordering for both success and failure. The
following two calls to compare_exchange_weak() are equivalent:

std::atomic<bool> b;
bool expected;
b.compare_exchange_weak(expected,true,
 memory_order_acq_rel,memory_order_acquire);
b.compare_exchange_weak(expected,true,memory_order_acq_rel);

I’ll leave the consequences of the choice of memory ordering to section 5.3.
 One further difference between std::atomic<bool> and std::atomic_flag is

that std::atomic<bool> may not be lock-free; the implementation may have to
acquire a mutex internally in order to ensure the atomicity of the operations. For the
rare case when this matters, you can use the is_lock_free() member function to
check whether operations on std::atomic<bool> are lock-free. This is another fea-
ture common to all atomic types other than std::atomic_flag.

 The next-simplest of the atomic types are the atomic pointer specializations
std::atomic<T*>, so we’ll look at those next.

5.2.4 Operations on std::atomic<T*>: pointer arithmetic

The atomic form of a pointer to some type T is std::atomic<T*>, just as the atomic
form of bool is std::atomic<bool>. The interface is essentially the same, although it
operates on values of the corresponding pointer type rather than bool values. Just like
Download from Wow! eBook <www.wowebook.com>

115Atomic operations and types in C++
std::atomic<bool>, it’s neither copy-constructible nor copy-assignable, although it
can be both constructed and assigned from the suitable pointer values. As well as the
obligatory is_lock_free() member function, std::atomic<T*> also has load(),
store(), exchange(), compare_exchange_weak(), and compare_exchange_strong()
member functions, with similar semantics to those of std::atomic<bool>, again tak-
ing and returning T* rather than bool.

 The new operations provided by std::atomic<T*> are the pointer arithmetic
operations. The basic operations are provided by the fetch_add() and fetch_sub()
member functions, which do atomic addition and subtraction on the stored address,
and the operators += and -=, and both pre- and post-increment and decrement with
++ and --, which provide convenient wrappers. The operators work just as you’d
expect from the built-in types: if x is std::atomic<Foo*> to the first entry of an array
of Foo objects, then x+=3 changes it to point to the fourth entry and returns a plain
Foo* that also points to that fourth entry. fetch_add() and fetch_sub() are slightly dif-
ferent in that they return the original value (so x.fetch_add(3) will update x to point
to the fourth value but return a pointer to the first value in the array). This operation
is also known as exchange-and-add, and it’s an atomic read-modify-write operation, like
exchange() and compare_exchange_weak()/compare_exchange_strong(). Just as with
the other operations, the return value is a plain T* value rather than a reference to the
std::atomic<T*> object, so that the calling code can perform actions based on what
the previous value was:

class Foo{};
Foo some_array[5];
std::atomic<Foo*> p(some_array);
Foo* x=p.fetch_add(2);
assert(x==some_array);
assert(p.load()==&some_array[2]);
x=(p-=1);
assert(x==&some_array[1]);
assert(p.load()==&some_array[1]);

The function forms also allow the memory-ordering semantics to be specified as an
additional function call argument:

p.fetch_add(3,std::memory_order_release);

Because both fetch_add() and fetch_sub() are read-modify-write operations, they
can have any of the memory-ordering tags and can participate in a release sequence.
Specifying the ordering semantics isn’t possible for the operator forms, because
there’s no way of providing the information: these forms therefore always have
memory_order_seq_cst semantics.

 The remaining basic atomic types are essentially all the same: they’re all atomic
integral types and have the same interface as each other, except that the associated
built-in type is different. We’ll look at them as a group.

Add 2 to p and
return old value

Subtract 1 from p and
return new value
Download from Wow! eBook <www.wowebook.com>

116 CHAPTER 5 The C++ memory model and operations on atomic types
5.2.5 Operations on standard atomic integral types

As well as the usual set of operations (load(), store(), exchange(), compare_
exchange_weak(), and compare_exchange_strong()), the atomic integral types such
as std::atomic<int> or std::atomic<unsigned long long> have quite a comprehen-
sive set of operations available: fetch_add(), fetch_sub(), fetch_and(), fetch_or(),
fetch_xor(), compound-assignment forms of these operations (+=, -=, &=, |=, and
^=), and pre- and post-increment and decrement (++x, x++, --x, and x--). It’s not quite
the full set of compound-assignment operations you could do on a normal integral
type, but it’s close enough: only division, multiplication, and shift operators are miss-
ing. Because atomic integral values are typically used either as counters or as bitmasks,
this isn’t a particularly noticeable loss; additional operations can easily be done using
compare_exchange_weak() in a loop, if required.

 The semantics match closely to those of fetch_add() and fetch_sub() for
std::atomic<T*>; the named functions atomically perform their operation and
return the old value, whereas the compound-assignment operators return the new
value. Pre- and post- increment and decrement work as usual: ++x increments the vari-
able and returns the new value, whereas x++ increments the variable and returns the
old value. As you’ll be expecting by now, the result is a value of the associated integral
type in both cases.

 We’ve now looked at all the basic atomic types; all that remains is the generic
std::atomic<> primary class template rather than the specializations, so let’s look at
that next.

5.2.6 The std::atomic<> primary class template

The presence of the primary template allows a user to create an atomic variant of a
user-defined type, in addition to the standard atomic types. You can’t use just any user-
defined type with std::atomic<>, though; the type has to fulfill certain criteria. In
order to use std::atomic<UDT> for some user-defined type UDT, this type must have a
trivial copy-assignment operator. This means that the type must not have any virtual
functions or virtual base classes and must use the compiler-generated copy-assignment
operator. Not only that, but every base class and non-static data member of a user-
defined type must also have a trivial copy-assignment operator. This essentially permits
the compiler to use memcpy() or an equivalent operation for assignment operations,
because there’s no user-written code to run.

 Finally, the type must be bitwise equality comparable. This goes alongside the assign-
ment requirements; not only must you be able to copy an object of type UDT using
memcpy(), but you must be able to compare instances for equality using memcmp().
This guarantee is required in order for compare/exchange operations to work.

 The reasoning behind these restrictions goes back to one of the guidelines from chap-
ter 3: don’t pass pointers and references to protected data outside the scope of the lock by
passing them as arguments to user-supplied functions. In general, the compiler isn’t
going to be able to generate lock-free code for std::atomic<UDT>, so it will have to use an
Download from Wow! eBook <www.wowebook.com>

117Atomic operations and types in C++
internal lock for all the operations. If user-supplied copy-assignment or comparison oper-
ators were permitted, this would require passing a reference to the protected data as an
argument to a user-supplied function, thus violating the guideline. Also, the library is
entirely at liberty to use a single lock for all atomic operations that need it, and allowing
user-supplied functions to be called while holding that lock might cause deadlock or
cause other threads to block because a comparison operation took a long time. Finally,
these restrictions increase the chance that the compiler will be able to make use of atomic
instructions directly for std::atomic<UDT> (and thus make a particular instantiation lock-
free), because it can just treat the user-defined type as a set of raw bytes.

 Note that although you can use std::atomic<float> or std::atomic<double>,
because the built-in floating point types do satisfy the criteria for use with memcpy and mem-
cmp, the behavior may be surprising in the case of compare_exchange_strong. The opera-
tion may fail even though the old stored value was equal in value to the comparand, if the
stored value had a different representation. Note that there are no atomic arithmetic
operations on floating-point values. You’ll get similar behavior with compare_exchange_
strong if you use std::atomic<> with a user-defined type that has an equality-comparison
operator defined, and that operator differs from the comparison using memcmp—the
operation may fail because the otherwise-equal values have a different representation.

 If your UDT is the same size as (or smaller than) an int or a void*, most common plat-
forms will be able to use atomic instructions for std::atomic<UDT>. Some platforms will
also be able to use atomic instructions for user-defined types that are twice the size of an
int or void*. These platforms are typically those that support a so-called double-word-com-
pare-and-swap (DWCAS) instruction corresponding to the compare_exchange_xxx func-
tions. As you’ll see in chapter 7, such support can be helpful when writing lock-free code.

 These restrictions mean that you can’t, for example, create a std::atomic<std::
vector<int>>, but you can use it with classes containing counters or flags or pointers
or even just arrays of simple data elements. This isn’t particularly a problem; the more
complex the data structure, the more likely you’ll want to do operations on it other
than simple assignment and comparison. If that’s the case, you’re better off using a
std::mutex to ensure that the data is appropriately protected for the desired opera-
tions, as described in chapter 3.

 When instantiated with a user-defined type T, the interface of std::atomic<T> is
limited to the set of operations available for std::atomic<bool>: load(), store(),
exchange(), compare_exchange_weak(), compare_exchange_strong(), and assign-
ment from and conversion to an instance of type T.

 Table 5.3 shows the operations available on each atomic type.

5.2.7 Free functions for atomic operations

Up until now I’ve limited myself to describing the member function forms of the
operations on the atomic types. However, there are also equivalent nonmember func-
tions for all the operations on the various atomic types. For the most part the non-
member functions are named after the corresponding member functions but with an
Download from Wow! eBook <www.wowebook.com>

118 CHAPTER 5 The C++ memory model and operations on atomic types
atomic_ prefix (for example, std::atomic_load()). These functions are then over-
loaded for each of the atomic types. Where there’s opportunity for specifying a memory-
ordering tag, they come in two varieties: one without the tag and one with an _explicit
suffix and an additional parameter or parameters for the memory-ordering tag or tags
(for example, std::atomic_store(&atomic_var,new_value) versus std::atomic_
store_explicit(&atomic_var,new_value,std::memory_order_release). Whereas the
atomic object being referenced by the member functions is implicit, all the free func-
tions take a pointer to the atomic object as the first parameter.

 For example, std::atomic_is_lock_free() comes in just one variety (though over-
loaded for each type), and std::atomic_is_lock_free(&a) returns the same value as
a.is_lock_free() for an object of atomic type a. Likewise, std::atomic_load(&a) is
the same as a.load(), but the equivalent of a.load(std::memory_order_acquire)
is std::atomic_load_explicit(&a, std::memory_order_acquire).

 The free functions are designed to be C-compatible, so they use pointers rather
than references in all cases. For example, the first parameter of the compare_
exchange_weak() and compare_exchange_strong() member functions (the expected
value) is a reference, whereas the second parameter of std::atomic_compare_
exchange_weak() (the first is the object pointer) is a pointer. std::atomic_
compare_exchange_weak_explicit() also requires both the success and failure memory

Table 5.3 The operations available on atomic types

Operation
atomic_
flag

atomic
<bool>

atomic
<T*>

atomic
<integral-

type>

atomic
<other-
type>

test_and_set ✓

clear ✓

is_lock_free ✓ ✓ ✓ ✓

load ✓ ✓ ✓ ✓

store ✓ ✓ ✓ ✓

exchange ✓ ✓ ✓ ✓

compare_exchange_weak,
compare_exchange_strong

✓ ✓ ✓ ✓

fetch_add, += ✓ ✓

fetch_sub, -= ✓ ✓

fetch_or, |= ✓

fetch_and, &= ✓

fetch_xor, ^= ✓

++, -- ✓ ✓
Download from Wow! eBook <www.wowebook.com>

119Synchronizing operations and enforcing ordering
orders to be specified, whereas the compare/exchange member functions have both a
single memory order form (with a default of std::memory_order_seq_cst) and an
overload that takes the success and failure memory orders separately.

 The operations on std::atomic_flag buck the trend, in that they spell out the “flag”
part in the names: std::atomic_flag_test_and_set(), std::atomic_flag_clear(),
although the additional variants that specify the memory ordering again have the
_explicit suffix: std::atomic_flag_test_and_set_explicit() and std::atomic_
flag_clear_explicit().

 The C++ Standard Library also provides free functions for accessing instances of
std::shared_ptr<> in an atomic fashion. This is a break from the principle that only
the atomic types support atomic operations, because std::shared_ptr<> is quite defi-
nitely not an atomic type. However, the C++ Standards Committee felt it was suffi-
ciently important to provide these extra functions. The atomic operations available
are load, store, exchange, and compare/exchange, which are provided as overloads of the
same operations on the standard atomic types, taking a std::shared_ptr<>* as
the first argument:

std::shared_ptr<my_data> p;
void process_global_data()
{
 std::shared_ptr<my_data> local=std::atomic_load(&p);
 process_data(local);
}
void update_global_data()
{
 std::shared_ptr<my_data> local(new my_data);
 std::atomic_store(&p,local);
}

As with the atomic operations on other types, the _explicit variants are also pro-
vided to allow you to specify the desired memory ordering, and the std::atomic_
is_lock_free() function can be used to check whether the implementation uses
locks to ensure the atomicity.

 As described in the introduction, the standard atomic types do more than just
avoid the undefined behavior associated with a data race; they allow the user to
enforce an ordering of operations between threads. This enforced ordering is the
basis of the facilities for protecting data and synchronizing operations such as
std::mutex and std::future<>. With that in mind, let’s move on to the real meat of
this chapter: the details of the concurrency aspects of the memory model and how
atomic operations can be used to synchronize data and enforce ordering.

5.3 Synchronizing operations and enforcing ordering
Suppose you have two threads, one of which is populating a data structure to be read
by the second. In order to avoid a problematic race condition, the first thread sets a
flag to indicate that the data is ready, and the second thread doesn’t read the data
until the flag is set. The following listing shows such a scenario.
Download from Wow! eBook <www.wowebook.com>

120 CHAPTER 5 The C++ memory model and operations on atomic types
#include <vector>
#include <atomic>
#include <iostream>

std::vector<int> data;
std::atomic<bool> data_ready(false);

void reader_thread()
{
 while(!data_ready.load())
 {
 std::this_thread::sleep(std::milliseconds(1));
 }
 std::cout<<”The answer=”<<data[0]<<”\n”;
}
void writer_thread()
{
 data.push_back(42);
 data_ready=true;
}

Leaving aside the inefficiency of the loop waiting for the data to be ready B, you
really need this to work, because otherwise sharing data between threads becomes
impractical: every item of data is forced to be atomic. You’ve already learned that it’s
undefined behavior to have nonatomic reads c and writes d accessing the same
data without an enforced ordering, so for this to work there must be an enforced
ordering somewhere.

 The required enforced ordering comes from the operations on the std::
atomic<bool> variable data_ready; they provide the necessary ordering by virtue of
the memory model relations happens-before and synchronizes-with. The write of the data d
happens-before the write to the data_ready flag e, and the read of the flag B hap-
pens-before the read of the data c. When the value read from data_ready B is true,
the write synchronizes-with that read, creating a happens-before relationship. Because
happens-before is transitive, the write to the data d happens-before the write to the
flag e, which happens-before the read of the true value from the flag B, which
happens-before the read of the data c, and you have an enforced ordering: the write
of the data happens-before the read of the data and everything is OK. Figure 5.2 shows
the important happens-before relationships in the two threads. I’ve added a couple of
iterations of the while loop from the reader thread.

 All this might seem fairly intuitive: of course the operation that writes a value hap-
pens before an operation that reads that value! With the default atomic operations,
that’s indeed true (which is why this is the default), but it does need spelling out: the
atomic operations also have other options for the ordering requirements, which I’ll
come to shortly.

 Now that you’ve seen happens-before and synchronizes-with in action, it’s time to
look at what they really mean. I’ll start with synchronizes-with.

Listing 5.2 Reading and writing variables from different threads

b

c

d
e

Download from Wow! eBook <www.wowebook.com>

121Synchronizing operations and enforcing ordering
5.3.1 The synchronizes-with relationship

The synchronizes-with relationship is something that you can get only between opera-
tions on atomic types. Operations on a data structure (such as locking a mutex) might
provide this relationship if the data structure contains atomic types and the opera-
tions on that data structure perform the appropriate atomic operations internally, but
fundamentally it comes only from operations on atomic types.

 The basic idea is this: a suitably tagged atomic write operation W on a variable x syn-
chronizes-with a suitably tagged atomic read operation on x that reads the value
stored by either that write (W), or a subsequent atomic write operation on x by the
same thread that performed the initial write W, or a sequence of atomic read-modify-
write operations on x (such as fetch_add() or compare_exchange_weak()) by any
thread, where the value read by the first thread in the sequence is the value written by W
(see section 5.3.4).

 Leave the “suitably tagged” part aside for now, because all operations on atomic
types are suitably tagged by default. This essentially means what you might expect: if

Figure 5.2 Enforcing an ordering between nonatomic operations using
atomic operations
Download from Wow! eBook <www.wowebook.com>

122 CHAPTER 5 The C++ memory model and operations on atomic types
thread A stores a value and thread B reads that value, there’s a synchronizes-with rela-
tionship between the store in thread A and the load in thread B, just as in listing 5.2.

 As I’m sure you’ve guessed, the nuances are all in the “suitably tagged” part. The
C++ memory model allows various ordering constraints to be applied to the opera-
tions on atomic types, and this is the tagging to which I refer. The various options for
memory ordering and how they relate to the synchronizes-with relationship are cov-
ered in section 5.3.3. First, let’s step back and look at the happens-before relationship.

5.3.2 The happens-before relationship
The happens-before relationship is the basic building block of operation ordering in
a program; it specifies which operations see the effects of which other operations. For a
single thread, it’s largely straightforward: if one operation is sequenced before
another, then it also happens-before it. This means that if one operation (A) occurs in
a statement prior to another (B) in the source code, then A happens-before B. You
saw that in listing 5.2: the write to data d happens-before the write to data_ready e.
If the operations occur in the same statement, in general there’s no happens-before
relationship between them, because they’re unordered. This is just another way of say-
ing that the ordering is unspecified. You know that the program in the following listing
will output “1,2” or “2,1”, but it’s unspecified which, because the order of the two
calls to get_num()is unspecified.

#include <iostream>

void foo(int a,int b)
{
 std::cout<<a<<”,”<<b<<std::endl;
}

int get_num()
{
 static int i=0;
 return ++i;
}

int main()
{
 foo(get_num(),get_num());
}

There are circumstances where operations within a single statement are sequenced
such as where the built-in comma operator is used or where the result of one expres-
sion is used as an argument to another expression. But in general, operations within a
single statement are nonsequenced, and there’s no sequenced-before (and thus no
happens-before) relationship between them. Of course, all operations in a statement
happen before all of the operations in the next statement.

 This is really just a restatement of the single-threaded sequencing rules you’re used
to, so what’s new? The new part is the interaction between threads: if operation A on

Listing 5.3 Order of evaluation of arguments to a function call is unspecified

Calls to get_num()
are unordered
Download from Wow! eBook <www.wowebook.com>

123Synchronizing operations and enforcing ordering
one thread inter-thread happens-before operation B on another thread, then A
happens-before B. This doesn’t really help much: you’ve just added a new relationship
(inter-thread happens-before), but this is an important relationship when you’re writ-
ing multithreaded code.

 At the basic level, inter-thread happens-before is relatively simple and relies on the
synchronizes-with relationship introduced in section 5.3.1: if operation A in one
thread synchronizes-with operation B in another thread, then A inter-thread happens-
before B. It’s also a transitive relation: if A inter-thread happens-before B and B inter-
thread happens-before C, then A inter-thread happens-before C. You saw this in
listing 5.2 as well.

 Inter-thread happens-before also combines with the sequenced-before relation: if
operation A is sequenced before operation B, and operation B inter-thread happens-
before operation C, then A inter-thread happens-before C. Similarly, if A synchronizes-
with B and B is sequenced before C, then A inter-thread happens-before C. These two
together mean that if you make a series of changes to data in a single thread, you need
only one synchronizes-with relationship for the data to be visible to subsequent opera-
tions on the thread that executed C.

 These are the crucial rules that enforce ordering of operations between threads
and make everything in listing 5.2 work. There are some additional nuances with data
dependency, as you’ll see shortly. In order for you to understand this, I need to cover
the memory-ordering tags used for atomic operations and how they relate to the syn-
chronizes-with relation.

5.3.3 Memory ordering for atomic operations

There are six memory ordering options that can be applied to operations on atomic
types: memory_order_relaxed, memory_order_consume, memory_order_acquire,
memory_order_release, memory_order_acq_rel, and memory_order_seq_cst. Unless
you specify otherwise for a particular operation, the memory-ordering option for all
operations on atomic types is memory_order_seq_cst, which is the most stringent of
the available options. Although there are six ordering options, they represent three
models: sequentially consistent ordering (memory_order_seq_cst), acquire-release order-
ing (memory_order_consume, memory_order_acquire, memory_order_release, and
memory_order_acq_rel), and relaxed ordering (memory_order_relaxed).

 These distinct memory-ordering models can have varying costs on different CPU
architectures. For example, on systems based on architectures with fine control over
the visibility of operations by processors other than the one that made the change,
additional synchronization instructions can be required for sequentially consistent
ordering over acquire-release ordering or relaxed ordering and for acquire-release order-
ing over relaxed ordering. If these systems have many processors, these additional
synchronization instructions may take a significant amount of time, thus reducing the
overall performance of the system. On the other hand, CPUs that use the x86 or
x86-64 architectures (such as the Intel and AMD processors common in desktop PCs)
Download from Wow! eBook <www.wowebook.com>

124 CHAPTER 5 The C++ memory model and operations on atomic types
don’t require any additional instructions for acquire-release ordering beyond those
necessary for ensuring atomicity, and even sequentially-consistent ordering doesn’t
require any special treatment for load operations, although there’s a small additional
cost on stores.

 The availability of the distinct memory-ordering models allows experts to take
advantage of the increased performance of the more fine-grained ordering relation-
ships where they’re advantageous while allowing the use of the default sequentially-
consistent ordering (which is considerably easier to reason about than the others) for
those cases that are less critical.

 In order to choose which ordering model to use, or to understand the ordering
relationships in code that uses the different models, it’s important to know how the
choices affect the program behavior. Let’s therefore look at the consequences of each
choice for operation ordering and synchronizes-with.

SEQUENTIALLY CONSISTENT ORDERING

The default ordering is named sequentially consistent because it implies that the behav-
ior of the program is consistent with a simple sequential view of the world. If all
operations on instances of atomic types are sequentially consistent, the behavior of a
multithreaded program is as if all these operations were performed in some particu-
lar sequence by a single thread. This is by far the easiest memory ordering to under-
stand, which is why it’s the default: all threads must see the same order of
operations. This makes it easy to reason about the behavior of code written with
atomic variables. You can write down all the possible sequences of operations by dif-
ferent threads, eliminate those that are inconsistent, and verify that your code
behaves as expected in the others. It also means that operations can’t be reordered;
if your code has one operation before another in one thread, that ordering must be
seen by all other threads.

 From the point of view of synchronization, a sequentially consistent store
synchronizes-with a sequentially consistent load of the same variable that reads the
value stored. This provides one ordering constraint on the operation of two (or more)
threads, but sequential consistency is more powerful than that. Any sequentially con-
sistent atomic operations done after that load must also appear after the store to other
threads in the system using sequentially consistent atomic operations. The example in
listing 5.4 demonstrates this ordering constraint in action. This constraint doesn’t
carry forward to threads that use atomic operations with relaxed memory orderings;
they can still see the operations in a different order, so you must use sequentially con-
sistent operations on all your threads in order to get the benefit.

 This ease of understanding can come at a price, though. On a weakly ordered
machine with many processors, it can impose a noticeable performance penalty,
because the overall sequence of operations must be kept consistent between the pro-
cessors, possibly requiring extensive (and expensive!) synchronization operations
between the processors. That said, some processor architectures (such as the common
x86 and x86-64 architectures) offer sequential consistency relatively cheaply, so if
Download from Wow! eBook <www.wowebook.com>

125Synchronizing operations and enforcing ordering
you’re concerned about the performance implications of using sequentially consis-
tent ordering, check the documentation for your target processor architectures.

 The following listing shows sequential consistency in action. The loads and stores
to x and y are explicitly tagged with memory_order_seq_cst, although this tag could
be omitted in this case because it’s the default.

#include <atomic>
#include <thread>
#include <assert.h>

std::atomic<bool> x,y;
std::atomic<int> z;

void write_x()
{
 x.store(true,std::memory_order_seq_cst);
}

void write_y()
{
 y.store(true,std::memory_order_seq_cst);
}

void read_x_then_y()
{
 while(!x.load(std::memory_order_seq_cst));
 if(y.load(std::memory_order_seq_cst))
 ++z;
}

void read_y_then_x()
{
 while(!y.load(std::memory_order_seq_cst));
 if(x.load(std::memory_order_seq_cst))
 ++z;
}

int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x);
 std::thread b(write_y);
 std::thread c(read_x_then_y);
 std::thread d(read_y_then_x);
 a.join();
 b.join();
 c.join();
 d.join();
 assert(z.load()!=0);
}

Listing 5.4 Sequential consistency implies a total ordering

b

c

d

e

f

Download from Wow! eBook <www.wowebook.com>

126 CHAPTER 5 The C++ memory model and operations on atomic types
The assert f can never fire, because either the store to x B or the store to y c must
happen first, even though it’s not specified which. If the load of y in read_x_then_y d
returns false, the store to x must occur before the store to y, in which case the load of x
in read_y_then_x e must return true, because the while loop ensures that the y is true
at this point. Because the semantics of memory_order_seq_cst require a single total
ordering over all operations tagged memory_order_seq_cst, there’s an implied ordering
relationship between a load of y that returns false d and the store to y B. For there to
be a single total order, if one thread sees x==true and then subsequently sees y==false,
this implies that the store to x occurs before the store to y in this total order.

 Of course, because everything is symmetrical, it could also happen the other way
around, with the load of x e returning false, forcing the load of y d to return true.
In both cases, z is equal to 1. Both loads can return true, leading to z being 2, but
under no circumstances can z be zero.

 The operations and happens-before relationships for the case that read_x_then_y
sees x as true and y as false are shown in figure 5.3. The dashed line from the load of
y in read_x_then_y to the store to y in write_y shows the implied ordering relationship
required in order to maintain sequential consistency: the load must occur before the
store in the global order of memory_order_seq_cst operations in order to achieve
the outcomes given here.

 Sequential consistency is the most straightforward and intuitive ordering, but it’s
also the most expensive memory ordering because it requires global synchronization
between all threads. On a multiprocessor system this may require quite extensive and
time-consuming communication between processors.

 In order to avoid this synchronization cost, you need to step outside the world of
sequential consistency and consider using other memory orderings.

NON-SEQUENTIALLY CONSISTENT MEMORY ORDERINGS

Once you step outside the nice sequentially consistent world, things start to get compli-
cated. Probably the single biggest issue to come to grips with is the fact that there’s no longer

Figure 5.3 Sequential consistency and happens-before
Download from Wow! eBook <www.wowebook.com>

127Synchronizing operations and enforcing ordering
a single global order of events. This means that different threads can see different views of the
same operations, and any mental model you have of operations from different threads
neatly interleaved one after the other must be thrown away. Not only do you have to
account for things happening truly concurrently, but threads don’t have to agree on the order of
events. In order to write (or even just to understand) any code that uses a memory order-
ing other than the default memory_order_seq_cst, it’s absolutely vital to get your head
around this. It’s not just that the compiler can reorder the instructions. Even if the threads
are running the same bit of code, they can disagree on the order of events because of
operations in other threads in the absence of explicit ordering constraints, because the
different CPU caches and internal buffers can hold different values for the same memory.
It’s so important I’ll say it again: threads don’t have to agree on the order of events.

 Not only do you have to throw out mental models based on interleaving opera-
tions, you also have to throw out mental models based on the idea of the compiler or
processor reordering the instructions. In the absence of other ordering constraints, the only
requirement is that all threads agree on the modification order of each individual variable. Oper-
ations on distinct variables can appear in different orders on different threads, pro-
vided the values seen are consistent with any additional ordering constraints imposed.

 This is best demonstrated by stepping completely outside the sequentially consistent
world and using memory_order_relaxed for all operations. Once you’ve come to grips
with that, you can move back to acquire-release ordering, which allows you to selectively
introduce ordering relationships between operations and claw back some of your sanity.

RELAXED ORDERING

Operations on atomic types performed with relaxed ordering don’t participate in
synchronizes-with relationships. Operations on the same variable within a single
thread still obey happens-before relationships, but there’s almost no requirement on
ordering relative to other threads. The only requirement is that accesses to a single
atomic variable from the same thread can’t be reordered; once a given thread has
seen a particular value of an atomic variable, a subsequent read by that thread can’t
retrieve an earlier value of the variable. Without any additional synchronization, the
modification order of each variable is the only thing shared between threads that are
using memory_order_relaxed.

 To demonstrate just how relaxed your relaxed operations can be, you need only
two threads, as shown in the following listing.

#include <atomic>
#include <thread>
#include <assert.h>

std::atomic<bool> x,y;
std::atomic<int> z;

void write_x_then_y()
{
 x.store(true,std::memory_order_relaxed);

Listing 5.5 Relaxed operations have very few ordering requirements

b

Download from Wow! eBook <www.wowebook.com>

128 CHAPTER 5 The C++ memory model and operations on atomic types
 y.store(true,std::memory_order_relaxed);
}

void read_y_then_x()
{
 while(!y.load(std::memory_order_relaxed));
 if(x.load(std::memory_order_relaxed))
 ++z;
}

int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

This time the assert f can fire, because the load of x e can read false, even though
the load of y d reads true and the store of x B happens-before the store of y c.
x and y are different variables, so there are no ordering guarantees relating to the visi-
bility of values arising from operations on each.

 Relaxed operations on different variables can be freely reordered provided they
obey any happens-before relationships they’re bound by (for example, within the
same thread). They don’t introduce synchronizes-with relationships. The happens-
before relationships from listing 5.5 are shown in figure 5.4, along with a possible out-
come. Even though there’s a happens-before relationship between the stores and
between the loads, there isn’t one between either store and either load, and so the
loads can see the stores out of order.

c

d

e

f

Figure 5.4 Relaxed atomics and
happens-before
Download from Wow! eBook <www.wowebook.com>

129Synchronizing operations and enforcing ordering
Let’s look at the slightly more complex example with three variables and five threads
in the next listing.

#include <thread>
#include <atomic>
#include <iostream>

std::atomic<int> x(0),y(0),z(0);
std::atomic<bool> go(false);

unsigned const loop_count=10;

struct read_values
{
 int x,y,z;
};

read_values values1[loop_count];
read_values values2[loop_count];
read_values values3[loop_count];
read_values values4[loop_count];
read_values values5[loop_count];

void increment(std::atomic<int>* var_to_inc,read_values* values)
{
 while(!go)
 std::this_thread::yield();
 for(unsigned i=0;i<loop_count;++i)
 {
 values[i].x=x.load(std::memory_order_relaxed);
 values[i].y=y.load(std::memory_order_relaxed);
 values[i].z=z.load(std::memory_order_relaxed);
 var_to_inc->store(i+1,std::memory_order_relaxed);
 std::this_thread::yield();
 }
}

void read_vals(read_values* values)
{
 while(!go)
 std::this_thread::yield();
 for(unsigned i=0;i<loop_count;++i)
 {
 values[i].x=x.load(std::memory_order_relaxed);
 values[i].y=y.load(std::memory_order_relaxed);
 values[i].z=z.load(std::memory_order_relaxed);
 std::this_thread::yield();
 }
}

void print(read_values* v)
{
 for(unsigned i=0;i<loop_count;++i)
 {
 if(i)

Listing 5.6 Relaxed operations on multiple threads

b

c

Spin, waiting
for the signald

e

Spin, waiting
for the signal

f

Download from Wow! eBook <www.wowebook.com>

130 CHAPTER 5 The C++ memory model and operations on atomic types
 std::cout<<",";
 std::cout<<"("<<v[i].x<<","<<v[i].y<<","<<v[i].z<<")";
 }
 std::cout<<std::endl;
}

int main()
{
 std::thread t1(increment,&x,values1);
 std::thread t2(increment,&y,values2);
 std::thread t3(increment,&z,values3);
 std::thread t4(read_vals,values4);
 std::thread t5(read_vals,values5);

 go=true;

 t5.join();
 t4.join();
 t3.join();
 t2.join();
 t1.join();

 print(values1);
 print(values2);
 print(values3);
 print(values4);
 print(values5);
}

This is a really simple program in essence. You have three shared global atomic vari-
ables B and five threads. Each thread loops 10 times, reading the values of the three
atomic variables using memory_order_relaxed and storing them in an array. Three of
the threads each update one of the atomic variables each time through the loop e,
while the other two threads just read. Once all the threads have been joined, you print
the values from the arrays stored by each thread h.

 The atomic variable go c is used to ensure that the threads all start the loop as
near to the same time as possible. Launching a thread is an expensive operation, and
without the explicit delay, the first thread may be finished before the last one has
started. Each thread waits for go to become true before entering the main loop d, f,
and go is set to true only once all the threads have started g.

 One possible output from this program is as follows:

(0,0,0),(1,0,0),(2,0,0),(3,0,0),(4,0,0),(5,7,0),(6,7,8),(7,9,8),(8,9,8),
(9,9,10)

(0,0,0),(0,1,0),(0,2,0),(1,3,5),(8,4,5),(8,5,5),(8,6,6),(8,7,9),(10,8,9),
(10,9,10)

(0,0,0),(0,0,1),(0,0,2),(0,0,3),(0,0,4),(0,0,5),(0,0,6),(0,0,7),(0,0,8),
(0,0,9)

(1,3,0),(2,3,0),(2,4,1),(3,6,4),(3,9,5),(5,10,6),(5,10,8),(5,10,10),
(9,10,10),(10,10,10)

(0,0,0),(0,0,0),(0,0,0),(6,3,7),(6,5,7),(7,7,7),(7,8,7),(8,8,7),(8,8,9),
(8,8,9)

Signal to start
execution of main loopg

Print the
final values

h

Download from Wow! eBook <www.wowebook.com>

131Synchronizing operations and enforcing ordering
The first three lines are the threads doing the updating, and the last two are the
threads doing just reading. Each triplet is a set of the variables x, y and z in that order
from one pass through the loop. There are a few things to notice from this output:

■ The first set of values shows x increasing by one with each triplet, the second set
has y increasing by one, and the third has z increasing by one.

■ The x elements of each triplet only increase within a given set, as do the y and z
elements, but the increments are uneven, and the relative orderings vary
between all threads.

■ Thread 3 doesn’t see any of the updates to x or y; it sees only the updates it
makes to z. This doesn’t stop the other threads from seeing the updates to z
mixed in with the updates to x and y though.

This is a valid outcome for relaxed operations, but it’s not the only valid outcome. Any
set of values that’s consistent with the three variables each holding the values 0 to 10
in turn and that has the thread incrementing a given variable printing the values 0 to 9
for that variable is valid.

UNDERSTANDING RELAXED ORDERING

To understand how this works, imagine that each variable is a man in a cubicle with a
notepad. On his notepad is a list of values. You can phone him and ask him to give you
a value, or you can tell him to write down a new value. If you tell him to write down a
new value, he writes it at the bottom of the list. If you ask him for a value, he reads you
a number from the list.

 The first time you talk to this man, if you ask him for a value, he may give you any
value from the list he has on his pad at the time. If you then ask him for another value,
he may give you the same one again or a value from farther down the list. He’ll never
give you a value from farther up the list. If you tell him to write down a number and
then subsequently ask him for a value, he’ll give you either the number you told him
to write down or a number below that on the list.

 Imagine for a moment that his list starts with the values 5, 10, 23, 3, 1, 2. If you ask
for a value, you could get any of those. If he gives you 10, then the next time you ask he
could give you 10 again, or any of the later ones, but not 5. If you call him five times,
he could say “10, 10, 1, 2, 2,” for example. If you tell him to write down 42, he’ll add it
to the end of the list. If you ask him for a number again, he’ll keep telling you “42”
until he has another number on his list and he feels like telling it to you.

 Now, imagine your friend Carl also has this man’s number. Carl can also phone
him and either ask him to write down a number or ask for one, and he applies the
same rules to Carl as he does to you. He has only one phone, so he can only deal with
one of you at a time, so the list on his pad is a nice straightforward list. However, just
because you got him to write down a new number doesn’t mean he has to tell it to
Carl, and vice versa. If Carl asked him for a number and was told “23,” then just
because you asked the man to write down 42 doesn’t mean he’ll tell that to Carl next
time. He may tell Carl any of the numbers 23, 3, 1, 2, 42, or even the 67 that Fred told
Download from Wow! eBook <www.wowebook.com>

132 CHAPTER 5 The C++ memory model and operations on atomic types
him to write down after you called. He could very well tell Carl “23, 3, 3, 1, 67” without
being inconsistent with what he told you. It’s like he keeps track of which number he
told to whom with a little movable sticky note for each person, like in figure 5.5.

 Now imagine that there’s not just one man in
a cubicle but a whole cubicle farm, with loads of
men with phones and notepads. These are all
our atomic variables. Each variable has its own
modification order (the list of values on the
pad), but there’s no relationship between them
at all. If each caller (you, Carl, Anne, Dave, and
Fred) is a thread, then this is what you get when
every operation uses memory_order_relaxed.
There are a few additional things you can tell
the man in the cubicle, such as “write down this
number, and tell me what was at the bottom of the list” (exchange) and “write down
this number if the number on the bottom of the list is that; otherwise tell me what I
should have guessed” (compare_exchange_strong), but that doesn’t affect the gen-
eral principle.

 If you think about the program logic from listing 5.5, then write_x_then_y is like
some guy calling up the man in cubicle x and telling him to write true and then call-
ing up the man in cubicle y and telling him to write true. The thread running
read_y_then_x repeatedly calls up the man in cubicle y asking for a value until he says
true and then calls the man in cubicle x to ask for a value. The man in cubicle x is
under no obligation to tell you any specific value off his list and is quite within his
rights to say false.

 This makes relaxed atomic operations difficult to deal with. They must be used in
combination with atomic operations that feature stronger ordering semantics in order
to be useful for inter-thread synchronization. I strongly recommend avoiding relaxed
atomic operations unless they’re absolutely necessary and even then using them only
with extreme caution. Given the unintuitive results that can be achieved with just two
threads and two variables in listing 5.5, it’s not hard to imagine the possible complex-
ity when more threads and more variables are involved.

 One way to achieve additional synchronization without the overhead of full-blown
sequential consistency is to use acquire-release ordering.

ACQUIRE-RELEASE ORDERING

Acquire-release ordering is a step up from relaxed ordering; there’s still no total order
of operations, but it does introduce some synchronization. Under this ordering
model, atomic loads are acquire operations (memory_order_acquire), atomic stores
are release operations (memory_order_release), and atomic read-modify-write opera-
tions (such as fetch_add() or exchange()) are either acquire, release, or both
(memory_order_acq_rel). Synchronization is pairwise, between the thread that does
the release and the thread that does the acquire. A release operation synchronizes-with an

Figure 5.5 The notebook for the man in
the cubicle
Download from Wow! eBook <www.wowebook.com>

133Synchronizing operations and enforcing ordering
acquire operation that reads the value written. This means that different threads can still
see different orderings, but these orderings are restricted. The following listing is a
rework of listing 5.4 using acquire-release semantics rather than sequentially consis-
tent ones.

#include <atomic>
#include <thread>
#include <assert.h>

std::atomic<bool> x,y;
std::atomic<int> z;

void write_x()
{
 x.store(true,std::memory_order_release);
}

void write_y()
{
 y.store(true,std::memory_order_release);
}

void read_x_then_y()
{
 while(!x.load(std::memory_order_acquire));
 if(y.load(std::memory_order_acquire))
 ++z;
}

void read_y_then_x()
{
 while(!y.load(std::memory_order_acquire));
 if(x.load(std::memory_order_acquire))
 ++z;
}

int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x);
 std::thread b(write_y);
 std::thread c(read_x_then_y);
 std::thread d(read_y_then_x);
 a.join();
 b.join();
 c.join();
 d.join();
 assert(z.load()!=0);
}

In this case the assert d can fire (just like in the relaxed-ordering case), because it’s
possible for both the load of x c and the load of y B to read false. x and y are written

Listing 5.7 Acquire-release doesn’t imply a total ordering

b

c

d

Download from Wow! eBook <www.wowebook.com>

134 CHAPTER 5 The C++ memory model and operations on atomic types
by different threads, so the ordering from the release to the acquire in each case has
no effect on the operations in the other threads.

 Figure 5.6 shows the happens-before relationships from listing 5.7, along with a
possible outcome where the two reading threads each have a different view of the
world. This is possible because there’s no happens-before relationship to force an
ordering, as described previously.

 In order to see the benefit of acquire-release ordering, you need to consider two
stores from the same thread, like in listing 5.5. If you change the store to y to use
memory_order_release and the load from y to use memory_order_acquire like in the
following listing, then you actually impose an ordering on the operations on x.

#include <atomic>
#include <thread>
#include <assert.h>

std::atomic<bool> x,y;
std::atomic<int> z;

void write_x_then_y()
{
 x.store(true,std::memory_order_relaxed);
 y.store(true,std::memory_order_release);
}

void read_y_then_x()
{
 while(!y.load(std::memory_order_acquire));
 if(x.load(std::memory_order_relaxed))
 ++z;
}

Listing 5.8 Acquire-release operations can impose ordering on relaxed operations

Figure 5.6 Acquire-release and happens-before

Spin, waiting for y
to be set to true

b

c

d
e

Download from Wow! eBook <www.wowebook.com>

135Synchronizing operations and enforcing ordering
int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

Eventually, the load from y d will see true as written by the store c. Because the
store uses memory_order_release and the load uses memory_order_acquire, the store
synchronizes-with the load. The store to x B happens-before the store to y c,
because they’re in the same thread. Because the store to y synchronizes-with the load
from y, the store to x also happens-before the load from y and by extension happens-
before the load from x e. Thus the load from x must read true, and the assert f can’t
fire. If the load from y wasn’t in a while loop, this wouldn’t necessarily be the case; the
load from y might read false, in which case there’d be no requirement on the value
read from x. In order to provide any synchronization, acquire and release operations
must be paired up. The value stored by a release operation must be seen by an acquire
operation for either to have any effect. If either the store at c or the load at d was a
relaxed operation, there’d be no ordering on the accesses to x, so there’d be no guar-
antee that the load at e would read true, and the assert could fire.

 You can still think about acquire-release ordering in terms of our men with note-
pads in their cubicles, but you have to add more to the model. First, imagine that every
store that’s done is part of some batch of updates, so when you call a man to tell him to
write down a number, you also tell him which batch this update is part of: “Please write
down 99, as part of batch 423.” For the last store in a batch, you tell this to the man too:
“Please write down 147, which is the last store in batch 423.” The man in the cubicle
will then duly write down this information, along with who gave him the value. This
models a store-release operation. The next time you tell someone to write down a
value, you increase the batch number: “Please write down 41, as part of batch 424.”

 When you ask for a value, you now have a choice: you can either just ask for a
value (which is a relaxed load), in which case the man just gives you the number, or
you can ask for a value and information about whether it’s the last in a batch (which
models a load-acquire). If you ask for the batch information, and the value wasn’t the
last in a batch, the man will tell you something like, “The number is 987, which is just
a ‘normal’ value,” whereas if it was the last in a batch, he’ll tell you something like
“The number is 987, which is the last number in batch 956 from Anne.” Now, here’s
where the acquire-release semantics kick in: if you tell the man all the batches you
know about when you ask for a value, he’ll look down his list for the last value from
any of the batches you know about and either give you that number or one further
down the list.

f

Download from Wow! eBook <www.wowebook.com>

136 CHAPTER 5 The C++ memory model and operations on atomic types
 How does this model acquire-release semantics? Let’s look at our example and see.
First off, thread a is running write_x_then_y and says to the man in cubicle x, “Please
write true as part of batch 1 from thread a,” which he duly writes down. Thread a
then says to the man in cubicle y, “Please write true as the last write of batch 1 from
thread a,” which he duly writes down. In the meantime, thread b is running
read_y_then_x. Thread b keeps asking the man in box y for a value with batch infor-
mation until he says “true.” He may have to ask many times, but eventually the man
will say “true.” The man in box y doesn’t just say “true” though; he also says, “This is
the last write in batch 1 from thread a.”

 Now, thread b goes on to ask the man in box x for a value, but this time he says,
“Please can I have a value, and by the way I know about batch 1 from thread a.” So now,
the man from cubicle x has to look down his list for the last mention of batch 1 from
thread a. The only mention he has is the value true, which is also the last value on his
list, so he must read out that value; otherwise, he’s breaking the rules of the game.

 If you look at the definition of inter-thread happens-before back in section 5.3.2, one of
the important properties is that it’s transitive: if A inter-thread happens-before B and B
inter-thread happens-before C, then A inter-thread happens-before C. This means that acquire-
release ordering can be used to synchronize data across several threads, even when
the “intermediate” threads haven’t actually touched the data.

TRANSITIVE SYNCHRONIZATION WITH ACQUIRE-RELEASE ORDERING

In order to think about transitive ordering, you need at least three threads. The first
thread modifies some shared variables and does a store-release to one of them. A sec-
ond thread then reads the variable subject to the store-release with a load-acquire and
performs a store-release on a second shared variable. Finally, a third thread does a
load-acquire on that second shared variable. Provided that the load-acquire opera-
tions see the values written by the store-release operations to ensure the synchronizes-
with relationships, this third thread can read the values of the other variables stored
by the first thread, even if the intermediate thread didn’t touch any of them. This sce-
nario is shown in the next listing.

std::atomic<int> data[5];
std::atomic<bool> sync1(false),sync2(false);

void thread_1()
{
 data[0].store(42,std::memory_order_relaxed);
 data[1].store(97,std::memory_order_relaxed);
 data[2].store(17,std::memory_order_relaxed);
 data[3].store(-141,std::memory_order_relaxed);
 data[4].store(2003,std::memory_order_relaxed);
 sync1.store(true,std::memory_order_release);
}

void thread_2()
{

Listing 5.9 Transitive synchronization using acquire and release ordering

Set
sync1

b

Download from Wow! eBook <www.wowebook.com>

137Synchronizing operations and enforcing ordering
 while(!sync1.load(std::memory_order_acquire));
 sync2.store(true,std::memory_order_release);
}

void thread_3()
{
 while(!sync2.load(std::memory_order_acquire));
 assert(data[0].load(std::memory_order_relaxed)==42);
 assert(data[1].load(std::memory_order_relaxed)==97);
 assert(data[2].load(std::memory_order_relaxed)==17);
 assert(data[3].load(std::memory_order_relaxed)==-141);
 assert(data[4].load(std::memory_order_relaxed)==2003);
}

Even though thread_2 only touches the variables sync1 c and sync2 d, this is
enough for synchronization between thread_1 and thread_3 to ensure that the
asserts don’t fire. First off, the stores to data from thread_1 happens-before the store
to sync1 B, because they’re sequenced-before it in the same thread. Because the load
from sync1 B is in a while loop, it will eventually see the value stored from thread_1
and thus form the second half of the release-acquire pair. Therefore, the store to
sync1 happens-before the final load from sync1 in the while loop. This load is
sequenced-before (and thus happens-before) the store to sync2 d, which forms a
release-acquire pair with the final load from the while loop in thread_3 e. The store
to sync2 d thus happens-before the load e, which happens-before the loads from
data. Because of the transitive nature of happens-before, you can chain it all together:
the stores to data happen-before the store to sync1 B, which happens-before the
load from sync1 c, which happens-before the store to sync2 d, which happens-
before the load from sync2 e, which happens-before the loads from data. Thus the
stores to data in thread_1 happen-before the loads from data in thread_3, and
the asserts can’t fire.

 In this case, you could combine sync1 and sync2 into a single variable by using a
read-modify-write operation with memory_order_acq_rel in thread_2. One option
would be to use compare_exchange_strong() to ensure that the value is updated only
once the store from thread_1 has been seen:

std::atomic<int> sync(0);
void thread_1()
{
 // ...
 sync.store(1,std::memory_order_release);
}
void thread_2()
{
 int expected=1;
 while(!sync.compare_exchange_strong(expected,2,
 std::memory_order_acq_rel))
 expected=1;
}
void thread_3()
{

c Loop until sync1 is set

Set sync2d

Loop until
sync2 is sete
Download from Wow! eBook <www.wowebook.com>

138 CHAPTER 5 The C++ memory model and operations on atomic types
 while(sync.load(std::memory_order_acquire)<2);
 // ...
}

If you use read-modify-write operations, it’s important to pick which semantics you
desire. In this case, you want both acquire and release semantics, so memory_
order_acq_rel is appropriate, but you can use other orderings too. A fetch_sub
operation with memory_order_acquire semantics doesn’t synchronize-with anything,
even though it stores a value, because it isn’t a release operation. Likewise, a store
can’t synchronize-with a fetch_or with memory_order_release semantics, because
the read part of the fetch_or isn’t an acquire operation. Read-modify-write opera-
tions with memory_order_acq_rel semantics behave as both an acquire and a release,
so a prior store can synchronize-with such an operation, and it can synchronize-with a
subsequent load, as is the case in this example.

 If you mix acquire-release operations with sequentially consistent operations, the
sequentially consistent loads behave like loads with acquire semantics, and sequentially
consistent stores behave like stores with release semantics. Sequentially consistent read-
modify-write operations behave as both acquire and release operations. Relaxed opera-
tions are still relaxed but are bound by the additional synchronizes-with and consequent
happens-before relationships introduced through the use of acquire-release semantics.

 Despite the potentially non-intuitive outcomes, anyone who’s used locks has had to
deal with the same ordering issues: locking a mutex is an acquire operation, and
unlocking the mutex is a release operation. With mutexes, you learn that you must
ensure that the same mutex is locked when you read a value as was locked when you
wrote it, and the same applies here; your acquire and release operations have to be on
the same variable to ensure an ordering. If data is protected with a mutex, the exclu-
sive nature of the lock means that the result is indistinguishable from what it would
have been had the lock and unlock been sequentially consistent operations. Similarly,
if you use acquire and release orderings on atomic variables to build a simple lock,
then from the point of view of code that uses the lock, the behavior will appear
sequentially consistent, even though the internal operations are not.

 If you don’t need the stringency of sequentially consistent ordering for your
atomic operations, the pair-wise synchronization of acquire-release ordering has the
potential for a much lower synchronization cost than the global ordering required for
sequentially consistent operations. The trade-off here is the mental cost required to
ensure that the ordering works correctly and that the non-intuitive behavior across
threads isn’t problematic.

DATA DEPENDENCY WITH ACQUIRE-RELEASE ORDERING AND MEMORY_ORDER_CONSUME

In the introduction to this section I said that memory_order_consume was part of the
acquire-release ordering model, but it was conspicuously absent from the preceding
description. This is because memory_order_consume is special: it’s all about data
dependencies, and it introduces the data-dependency nuances to the inter-thread
happens-before relationship mentioned in section 5.3.2.
Download from Wow! eBook <www.wowebook.com>

139Synchronizing operations and enforcing ordering
 There are two new relations that deal with data dependencies: dependency-ordered-
before and carries-a-dependency-to. Just like sequenced-before, carries-a-dependency-to
applies strictly within a single thread and essentially models the data dependency
between operations; if the result of an operation A is used as an operand for an opera-
tion B, then A carries-a-dependency-to B. If the result of operation A is a value of a sca-
lar type such as an int, then the relationship still applies if the result of A is stored in
a variable, and that variable is then used as an operand for operation B. This opera-
tion is also transitive, so if A carries-a-dependency-to B, and B carries-a-dependency-to C,
then A carries-a-dependency-to C.

 On the other hand, the dependency-ordered-before relationship can apply
between threads. It’s introduced by using atomic load operations tagged with
memory_order_consume. This is a special case of memory_order_acquire that limits
the synchronized data to direct dependencies; a store operation A tagged with
memory_order_release, memory_order_acq_rel, or memory_order_seq_cst is depen-
dency-ordered-before a load operation B tagged with memory_order_consume if the
consume reads the value stored. This is as opposed to the synchronizes-with relation-
ship you get if the load uses memory_order_acquire. If this operation B then carries-a-
dependency-to some operation C, then A is also dependency-ordered-before C.

 This wouldn’t actually do you any good for synchronization purposes if it didn’t
affect the inter-thread happens-before relation, but it does: if A is dependency-
ordered-before B, then A also inter-thread happens-before B.

 One important use for this kind of memory ordering is where the atomic opera-
tion loads a pointer to some data. By using memory_order_consume on the load and
memory_order_release on the prior store, you ensure that the pointed-to data is cor-
rectly synchronized, without imposing any synchronization requirements on any other
nondependent data. The following listing shows an example of this scenario.

struct X
{
 int i;
 std::string s;
};

std::atomic<X*> p;
std::atomic<int> a;

void create_x()
{
 X* x=new X;
 x->i=42;
 x->s=”hello”;
 a.store(99,std::memory_order_relaxed);
 p.store(x,std::memory_order_release);
}

void use_x()
{

Listing 5.10 Using std::memory_order_consume to synchronize data

b

c

Download from Wow! eBook <www.wowebook.com>

140 CHAPTER 5 The C++ memory model and operations on atomic types
 X* x;
 while(!(x=p.load(std::memory_order_consume)))
 std::this_thread::sleep(std::chrono::microseconds(1));
 assert(x->i==42);
 assert(x->s==”hello”);
 assert(a.load(std::memory_order_relaxed)==99);
}

int main()
{
 std::thread t1(create_x);
 std::thread t2(use_x);
 t1.join();
 t2.join();
}

Even though the store to a B is sequenced before the store to p c, and the store
to p is tagged memory_order_release, the load of p d is tagged memory_order_
consume. This means that the store to p only happens-before those expressions that
are dependent on the value loaded from p. This means that the asserts on the data
members of the X structure e, f are guaranteed not to fire, because the load of p
carries a dependency to those expressions through the variable x. On the other
hand, the assert on the value of a g may or may not fire; this operation isn’t
dependent on the value loaded from p, and so there’s no guarantee on the value
that’s read. This is particularly apparent because it’s tagged with memory_order_
relaxed, as you’ll see.

 Sometimes, you don’t want the overhead of carrying the dependency around. You
want the compiler to be able to cache values in registers and reorder operations to
optimize the code rather than fussing about the dependencies. In these scenarios, you
can use std::kill_dependency() to explicitly break the dependency chain. std::
kill_dependency() is a simple function template that copies the supplied argument
to the return value but breaks the dependency chain in doing so. For example, if you
have a global read-only array, and you use std::memory_order_consume when retriev-
ing an index into that array from another thread, you can use std::kill_dependency()
to let the compiler know that it doesn’t need to reread the contents of the array entry,
as in the following example:

int global_data[]={ … };
std::atomic<int> index;
void f()
{
 int i=index.load(std::memory_order_consume);
 do_something_with(global_data[std::kill_dependency(i)]);
}

Of course, you wouldn’t normally use std::memory_order_consume at all in such a
simple scenario, but you might call on std::kill_dependency() in a similar situation
with more complex code. You must remember that this is an optimization, so it should
only be used with care and where profiling has demonstrated the need.

d

e
f

 g
Download from Wow! eBook <www.wowebook.com>

141Synchronizing operations and enforcing ordering
 Now that I’ve covered the basics of the memory orderings, it’s time to look at the
more complex parts of the synchronizes-with relation, which manifest in the form of
release sequences.

5.3.4 Release sequences and synchronizes-with

Back in section 5.3.1, I mentioned that you could get a synchronizes-with relationship
between a store to an atomic variable and a load of that atomic variable from another
thread, even when there’s a sequence of read-modify-write operations between the
store and the load, provided all the operations are suitably tagged. Now that I’ve cov-
ered the possible memory-ordering “tags,” I can elaborate on this. If the store is
tagged with memory_order_release, memory_order_acq_rel, or memory_order_

seq_cst, and the load is tagged with memory_order_consume, memory_order_acquire,
or memory_order_seq_cst, and each operation in the chain loads the value written
by the previous operation, then the chain of operations constitutes a release sequence
and the initial store synchronizes-with (for memory_order_acquire or memory_order_
seq_cst) or is dependency-ordered-before (for memory_order_consume) the final
load. Any atomic read-modify-write operations in the chain can have any memory
ordering (even memory_order_relaxed).

 To see what this means and why it’s important, consider an atomic<int> being
used as a count of the number of items in a shared queue, as in the following listing.

#include <atomic>
#include <thread>

std::vector<int> queue_data;
std::atomic<int> count;

void populate_queue()
{
 unsigned const number_of_items=20;
 queue_data.clear();
 for(unsigned i=0;i<number_of_items;++i)
 {
 queue_data.push_back(i);
 }

 count.store(number_of_items,std::memory_order_release);
}

void consume_queue_items()
{
 while(true)
 {
 int item_index;
 if((item_index=count.fetch_sub(1,std::memory_order_acquire))<=0)
 {
 wait_for_more_items();
 continue;

Listing 5.11 Reading values from a queue with atomic operations

The initial
store

b

An RMW
operation

 c

Wait for
more itemsd
Download from Wow! eBook <www.wowebook.com>

142 CHAPTER 5 The C++ memory model and operations on atomic types
 }
 process(queue_data[item_index-1]);
 }
}

int main()
{
 std::thread a(populate_queue);
 std::thread b(consume_queue_items);
 std::thread c(consume_queue_items);
 a.join();
 b.join();
 c.join();
}

One way to handle things would be to have the thread that’s producing the data
store the items in a shared buffer and then do count.store(number_of_items,
memory_order_release) B to let the other threads know that data is available. The
threads consuming the queue items might then do count.fetch_sub(1,memory_
order_acquire) c to claim an item from the queue, prior to actually reading the
shared buffer e. Once the count becomes zero, there are no more items, and the thread
must wait d.

 If there’s one consumer thread, this is fine; the fetch_sub() is a read, with
memory_order_acquire semantics, and the store had memory_order_release seman-
tics, so the store synchronizes-with the load and the thread can read the item from
the buffer. If there are two threads reading, the second fetch_sub() will see the
value written by the first and not the value written by the store. Without the rule
about the release sequence, this second thread wouldn’t have a happens-before rela-
tionship with the first thread, and it wouldn’t be safe to read the shared buffer unless
the first fetch_sub() also had memory_order_release semantics, which would intro-
duce unnecessary synchronization between the two consumer threads. Without the
release sequence rule or memory_order_release on the fetch_sub operations, there
would be nothing to require that the stores to the queue_data were visible to the sec-
ond consumer, and you would have a data race. Thankfully, the first fetch_sub() does
participate in the release sequence, and so the store() synchronizes-with the second
fetch_sub(). There’s still no synchronizes-with relationship between the two consumer
threads. This is shown in figure 5.7. The dotted lines in figure 5.7 show the release
sequence, and the solid lines show the happens-before relationships.

 There can be any number of links in the chain, but provided they’re all read-modify-
write operations such as fetch_sub(), the store() will still synchronize-with each one
that’s tagged memory_order_acquire. In this example, all the links are the same, and
all are acquire operations, but they could be a mix of different operations with differ-
ent memory-ordering semantics.

 Although most of the synchronization relationships come from the memory-order-
ing semantics applied to operations on atomic variables, it’s also possible to introduce
additional ordering constraints by using fences.

Reading
queue_data is safee
Download from Wow! eBook <www.wowebook.com>

143Synchronizing operations and enforcing ordering
5.3.5 Fences

An atomic operations library wouldn’t be complete without a set of fences. These are
operations that enforce memory-ordering constraints without modifying any data and
are typically combined with atomic operations that use the memory_order_relaxed
ordering constraints. Fences are global operations and affect the ordering of other
atomic operations in the thread that executed the fence. Fences are also commonly
called memory barriers, and they get their name because they put a line in the code that
certain operations can’t cross. As you may recall from section 5.3.3, relaxed operations
on separate variables can usually be freely reordered by the compiler or the hardware.
Fences restrict this freedom and introduce happens-before and synchronizes-with
relationships that weren’t present before.

 Let’s start by adding a fence between the two atomic operations on each thread in
listing 5.5, as shown in the following listing.

#include <atomic>
#include <thread>
#include <assert.h>

std::atomic<bool> x,y;
std::atomic<int> z;

void write_x_then_y()
{
 x.store(true,std::memory_order_relaxed);

Listing 5.12 Relaxed operations can be ordered with fences

Figure 5.7 The release sequence for the queue operations from listing 5.11

b

Download from Wow! eBook <www.wowebook.com>

144 CHAPTER 5 The C++ memory model and operations on atomic types
 std::atomic_thread_fence(std::memory_order_release);
 y.store(true,std::memory_order_relaxed);
}

void read_y_then_x()
{
 while(!y.load(std::memory_order_relaxed));
 std::atomic_thread_fence(std::memory_order_acquire);
 if(x.load(std::memory_order_relaxed))
 ++z;
}

int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

The release fence c synchronizes-with the acquire fence f, because the load from y
at e reads the value stored at d. This means that the store to x at B happens-before
the load from x at g, so the value read must be true and the assert at h won’t fire.
This is in contrast to the original case without the fences where the store to and load
from x weren’t ordered, and so the assert could fire. Note that both fences are neces-
sary: you need a release in one thread and an acquire in another to get a synchronizes-
with relationship.

 In this case, the release fence c has the same effect as if the store to y d was
tagged with memory_order_release rather than memory_order_relaxed. Likewise, the
acquire fence f makes it as if the load from y e was tagged with memory_order_
acquire. This is the general idea with fences: if an acquire operation sees the result of
a store that takes place after a release fence, the fence synchronizes-with that acquire
operation; and if a load that takes place before an acquire fence sees the result of a
release operation, the release operation synchronizes-with the acquire fence. Of
course, you can have fences on both sides, as in the example here, in which case if a
load that takes place before the acquire fence sees a value written by a store that takes
place after the release fence, the release fence synchronizes-with the acquire fence.

 Although the fence synchronization depends on the values read or written by
operations before or after the fence, it’s important to note that the synchronization
point is the fence itself. If you take write_x_then_y from listing 5.12 and move the
write to x after the fence as follows, the condition in the assert is no longer guaranteed
to be true, even though the write to x comes before the write to y:

void write_x_then_y()
{
 std::atomic_thread_fence(std::memory_order_release);

c
d

e
 f

g

h

Download from Wow! eBook <www.wowebook.com>

145Synchronizing operations and enforcing ordering
 x.store(true,std::memory_order_relaxed);
 y.store(true,std::memory_order_relaxed);
}

These two operations are no longer separated by the fence and so are no longer ordered.
It’s only when the fence comes between the store to x and the store to y that it imposes an
ordering. Of course, the presence or absence of a fence doesn’t affect any enforced
orderings on happens-before relations that exist because of other atomic operations.

 This example, and almost every other example so far in this chapter, is built entirely
from variables with an atomic type. However, the real benefit to using atomic operations
to enforce an ordering is that they can enforce an ordering on nonatomic operations and
thus avoid the undefined behavior of a data race, as you saw back in listing 5.2.

5.3.6 Ordering nonatomic operations with atomics

If you replace x from listing 5.12 with an ordinary nonatomic bool (as in the following
listing), the behavior is guaranteed to be the same.

#include <atomic>
#include <thread>
#include <assert.h>

bool x=false;
std::atomic<bool> y;
std::atomic<int> z;

void write_x_then_y()
{
 x=true;
 std::atomic_thread_fence(std::memory_order_release);
 y.store(true,std::memory_order_relaxed);
}

void read_y_then_x()
{
 while(!y.load(std::memory_order_relaxed));
 std::atomic_thread_fence(std::memory_order_acquire);
 if(x)
 ++z;
}

int main()
{
 x=false;
 y=false;
 z=0;
 std::thread a(write_x_then_y);
 std::thread b(read_y_then_x);
 a.join();
 b.join();
 assert(z.load()!=0);
}

Listing 5.13 Enforcing ordering on nonatomic operations

x is now a plain
nonatomic variable

Store to x before
the fence

b

Store to y after
the fencec

Wait until you see
the write from #2

d

This will read the
value written by #1e

This assert
won’t fire

f

Download from Wow! eBook <www.wowebook.com>

146 CHAPTER 5 The C++ memory model and operations on atomic types
The fences still provide an enforced ordering of the store to x B and the store to y c
and the load from y d and the load from x e, and there’s still a happens-before rela-
tionship between the store to x and the load from x, so the assert f still won’t fire.
The store to c and load from d y still have to be atomic; otherwise, there would be a
data race on y, but the fences enforce an ordering on the operations on x, once the
reading thread has seen the stored value of y. This enforced ordering means that there’s
no data race on x, even though it’s modified by one thread and read by another.

 It’s not just fences that can order nonatomic operations. You saw the ordering
effects back in listing 5.10 with a memory_order_release/memory_order_consume pair
ordering nonatomic accesses to a dynamically allocated object, and many of the exam-
ples in this chapter could be rewritten with some of the memory_order_relaxed oper-
ations replaced with plain nonatomic operations instead.

 Ordering of nonatomic operations through the use of atomic operations is where
the sequenced-before part of happens-before becomes so important. If a nonatomic
operation is sequenced-before an atomic operation, and that atomic operation happens-
before an operation in another thread, the nonatomic operation also happens-before
that operation in the other thread. This is where the ordering on the operations on x
in listing 5.13 comes from and why the example in listing 5.2 works. This is also the
basis for the higher-level synchronization facilities in the C++ Standard Library, such
as mutexes and condition variables. To see how this works, consider the simple spin-
lock mutex from listing 5.1.

 The lock() operation is a loop on flag.test_and_set() using std::memory_
order_acquire ordering, and the unlock() is a call to flag.clear() with std::
memory_order_release ordering. When the first thread calls lock(), the flag is ini-
tially clear, so the first call to test_and_set() will set the flag and return false, indi-
cating that this thread now has the lock, and terminating the loop. The thread is then
free to modify any data protected by the mutex. Any other thread that calls lock() at
this time will find the flag already set and will be blocked in the test_and_set() loop.

 When the thread with the lock has finished modifying the protected data, it calls
unlock(), which calls flag.clear() with std::memory_order_release semantics.
This then synchronizes-with (see section 5.3.1) a subsequent call to flag.test_
and_set() from an invocation of lock() on another thread, because this call has
std::memory_order_acquire semantics. Because the modification of the protected
data is necessarily sequenced before the unlock() call, this modification happens-
before the unlock() and thus happens-before the subsequent lock() call from the
second thread (because of the synchronizes-with relationship between the unlock()
and the lock()) and happens-before any accesses to that data from this second thread
once it has acquired the lock.

 Although other mutex implementations will have different internal operations,
the basic principle is the same: lock() is an acquire operation on an internal memory
location, and unlock() is a release operation on that same memory location.
Download from Wow! eBook <www.wowebook.com>

147Summary
5.4 Summary
In this chapter I’ve covered the low-level details of the C++11 memory model and the
atomic operations that provide the basis for synchronization between threads. This
includes the basic atomic types provided by specializations of the std::atomic<> class
template as well as the generic atomic interface provided by the primary std::atomic<>
template, the operations on these types, and the complex details of the various memory-
ordering options.

 We’ve also looked at fences and how they can be paired with operations on atomic
types to enforce an ordering. Finally, we’ve come back to the beginning with a look at
how the atomic operations can be used to enforce an ordering between nonatomic
operations on separate threads.

 In the next chapter we’ll look at using the high-level synchronization facilities
alongside atomic operations to design efficient containers for concurrent access, and
we’ll write algorithms that process data in parallel.
Download from Wow! eBook <www.wowebook.com>

Designing lock-based
concurrent data structures
In the last chapter we looked at the low-level details of atomic operations and the
memory model. In this chapter we’ll take a break from the low-level details
(although we’ll need them for chapter 7) and think about data structures.

 The choice of data structure to use for a programming problem can be a key
part of the overall solution, and parallel programming problems are no exception.
If a data structure is to be accessed from multiple threads, either it must be com-
pletely immutable so the data never changes and no synchronization is necessary,
or the program must be designed to ensure that changes are correctly synchro-
nized between threads. One option is to use a separate mutex and external locking
to protect the data, using the techniques we looked at in chapters 3 and 4, and
another is to design the data structure itself for concurrent access.

 When designing a data structure for concurrency, you can use the basic build-
ing blocks of multithreaded applications from earlier chapters, such as mutexes

This chapter covers
■ What it means to design data structures

for concurrency
■ Guidelines for doing so
■ Example implementations of data structures

designed for concurrency
148

Download from Wow! eBook <www.wowebook.com>

149What does it mean to design for concurrency?
and condition variables. Indeed, you’ve already seen a couple of examples showing
how to combine these building blocks to write data structures that are safe for concur-
rent access from multiple threads.

 In this chapter we’ll start by looking at some general guidelines for designing data
structures for concurrency. We’ll then take the basic building blocks of locks and con-
dition variables and revisit the design of those basic data structures before moving on
to more complex data structures. In chapter 7 we’ll look at how to go right back to
basics and use the atomic operations described in chapter 5 to build data structures
without locks.

 So, without further ado, let’s look at what’s involved in designing a data structure
for concurrency.

6.1 What does it mean to design for concurrency?
At the basic level, designing a data structure for concurrency means that multiple
threads can access the data structure concurrently, either performing the same or dis-
tinct operations, and each thread will see a self-consistent view of the data structure.
No data will be lost or corrupted, all invariants will be upheld, and there’ll be no prob-
lematic race conditions. Such a data structure is said to be thread-safe. In general, a
data structure will be safe only for particular types of concurrent access. It may be pos-
sible to have multiple threads performing one type of operation on the data structure
concurrently, whereas another operation requires exclusive access by a single thread.
Alternatively, it may be safe for multiple threads to access a data structure concur-
rently if they’re performing different actions, whereas multiple threads performing the
same action would be problematic.

 Truly designing for concurrency means more than that, though: it means provid-
ing the opportunity for concurrency to threads accessing the data structure. By its very
nature, a mutex provides mutual exclusion: only one thread can acquire a lock on the
mutex at a time. A mutex protects a data structure by explicitly preventing true concur-
rent access to the data it protects.

 This is called serialization: threads take turns accessing the data protected by the
mutex; they must access it serially rather than concurrently. Consequently, you must
put careful thought into the design of the data structure to enable true concurrent
access. Some data structures have more scope for true concurrency than others, but in
all cases the idea is the same: the smaller the protected region, the fewer operations
are serialized, and the greater the potential for concurrency.

 Before we look at some data structure designs, let’s have a quick look at some sim-
ple guidelines for what to consider when designing for concurrency.

6.1.1 Guidelines for designing data structures for concurrency
As I just mentioned, you have two aspects to consider when designing data structures
for concurrent access: ensuring that the accesses are safe and enabling genuine concur-
rent access. I covered the basics of how to make the data structure thread-safe back in
chapter 3:
Download from Wow! eBook <www.wowebook.com>

150 CHAPTER 6 Designing lock-based concurrent data structures
■ Ensure that no thread can see a state where the invariants of the data structure
have been broken by the actions of another thread.

■ Take care to avoid race conditions inherent in the interface to the data structure
by providing functions for complete operations rather than for operation steps.

■ Pay attention to how the data structure behaves in the presence of exceptions to
ensure that the invariants are not broken.

■ Minimize the opportunities for deadlock when using the data structure by
restricting the scope of locks and avoiding nested locks where possible.

Before you think about any of these details, it’s also important to think about what
constraints you wish to put on the users of the data structure; if one thread is accessing
the data structure through a particular function, which functions are safe to call from
other threads?

 This is actually quite a crucial question to consider. Generally constructors and
destructors require exclusive access to the data structure, but it’s up to the user to
ensure that they’re not accessed before construction is complete or after destruction
has started. If the data structure supports assignment, swap(), or copy construction,
then as the designer of the data structure, you need to decide whether these opera-
tions are safe to call concurrently with other operations or whether they require the
user to ensure exclusive access even though the majority of functions for manipulating
the data structure may be called from multiple threads concurrently without problem.

 The second aspect to consider is that of enabling genuine concurrent access. I
can’t offer much in the way of guidelines here; instead, here’s a list of questions to ask
yourself as the data structure designer:

■ Can the scope of locks be restricted to allow some parts of an operation to be
performed outside the lock?

■ Can different parts of the data structure be protected with different mutexes?
■ Do all operations require the same level of protection?
■ Can a simple change to the data structure improve the opportunities for con-

currency without affecting the operational semantics?

All these questions are guided by a single idea: how can you minimize the amount of
serialization that must occur and enable the greatest amount of true concurrency? It’s
not uncommon for data structures to allow concurrent access from multiple threads
that merely read the data structure, whereas a thread that can modify the data struc-
ture must have exclusive access. This is supported by using constructs like boost::
shared_mutex. Likewise, as you’ll see shortly, it’s quite common for a data structure to
support concurrent access from threads performing different operations while serial-
izing threads that try to perform the same operation.

 The simplest thread-safe data structures typically use mutexes and locks to protect
the data. Although there are issues with this, as you saw in chapter 3, it’s relatively easy
to ensure that only one thread is accessing the data structure at a time. To ease you
into the design of thread-safe data structures, we’ll stick to looking at such lock-based
Download from Wow! eBook <www.wowebook.com>

151Lock-based concurrent data structures
data structures in this chapter and leave the design of concurrent data structures with-
out locks for chapter 7.

6.2 Lock-based concurrent data structures
The design of lock-based concurrent data structures is all about ensuring that the
right mutex is locked when accessing the data and ensuring that the lock is held for a
minimum amount of time. This is hard enough when there’s just one mutex protect-
ing a data structure. You need to ensure that data can’t be accessed outside the protec-
tion of the mutex lock and that there are no race conditions inherent in the interface,
as you saw in chapter 3. If you use separate mutexes to protect separate parts of the
data structure, these issues are compounded, and there’s now also the possibility of
deadlock if the operations on the data structure require more than one mutex to be
locked. You therefore need to consider the design of a data structure with multiple
mutexes even more carefully than the design of a data structure with a single mutex.

 In this section you’ll apply the guidelines from section 6.1.1 to the design of sev-
eral simple data structures, using mutexes and locks to protect the data. In each case
you’ll seek out the opportunities for enabling greater concurrency while ensuring that
the data structure remains thread-safe.

 Let’s start by looking at the stack implementation from chapter 3; it’s one of the
simplest data structures around, and it uses only a single mutex. Is it really thread-
safe? How does it fare from the point of view of achieving true concurrency?

6.2.1 A thread-safe stack using locks

The thread-safe stack from chapter 3 is reproduced in the following listing. The intent
is to write a thread-safe data structure akin to std::stack<>, which supports pushing
data items onto the stack and popping them off again.

#include <exception>

struct empty_stack: std::exception
{
 const char* what() const throw();
};

template<typename T>
class threadsafe_stack
{
private:
 std::stack<T> data;
 mutable std::mutex m;
public:
 threadsafe_stack(){}
 threadsafe_stack(const threadsafe_stack& other)
 {
 std::lock_guard<std::mutex> lock(other.m);
 data=other.data;

Listing 6.1 A class definition for a thread-safe stack
Download from Wow! eBook <www.wowebook.com>

152 CHAPTER 6 Designing lock-based concurrent data structures
 }
 threadsafe_stack& operator=(const threadsafe_stack&) = delete;

 void push(T new_value)
 {
 std::lock_guard<std::mutex> lock(m);
 data.push(std::move(new_value));
 }
 std::shared_ptr<T> pop()
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 std::shared_ptr<T> const res(
 std::make_shared<T>(std::move(data.top())));
 data.pop();
 return res;
 }
 void pop(T& value)
 {
 std::lock_guard<std::mutex> lock(m);
 if(data.empty()) throw empty_stack();
 value=std::move(data.top());
 data.pop();
 }
 bool empty() const
 {
 std::lock_guard<std::mutex> lock(m);
 return data.empty();
 }
};

Let’s look at each of the guidelines in turn, and see how they apply here.
 First, as you can see, the basic thread safety is provided by protecting each member

function with a lock on the mutex, m. This ensures that only one thread is actually
accessing the data at any one time, so provided each member function maintains the
invariants, no thread can see a broken invariant.

 Second, there’s a potential for a race condition between empty() and either of the
pop() functions, but because the code explicitly checks for the contained stack being
empty while holding the lock in pop(), this race condition isn’t problematic. By
returning the popped data item directly as part of the call to pop(), you avoid a poten-
tial race condition that would be present with separate top() and pop() member
functions such as those in std::stack<>.

 Next, there are a few potential sources of exceptions. Locking a mutex may throw
an exception, but not only is this likely to be exceedingly rare (because it indicates a
problem with the mutex or a lack of system resources), it’s also the first operation in
each member function. Because no data has been modified, this is safe. Unlocking a
mutex can’t fail, so that’s always safe, and the use of std::lock_guard<> ensures that
the mutex is never left locked.

 The call to data.push() B may throw an exception if either copying/moving
the data value throws an exception or not enough memory can be allocated to extend the

b

c

d

e

f
g

Download from Wow! eBook <www.wowebook.com>

153Lock-based concurrent data structures
underlying data structure. Either way, std::stack<> guarantees it will be safe, so
that’s not a problem either.

 In the first overload of pop(), the code itself might throw an empty_stack excep-
tion c, but nothing has been modified, so that’s safe. The creation of res d might
throw an exception though for a couple of reasons: the call to std::make_shared
might throw because it can’t allocate memory for the new object and the internal data
required for reference counting, or the copy constructor or move constructor of
the data item to be returned might throw when copying/moving into the freshly allo-
cated memory. In both cases, the C++ runtime and Standard Library ensure that there
are no memory leaks and the new object (if any) is correctly destroyed. Because you
still haven’t modified the underlying stack, you’re still OK. The call to data.pop() e
is guaranteed not to throw, as is the return of the result, so this overload of pop() is
exception-safe.

 The second overload of pop() is similar, except this time it’s the copy assignment
or move assignment operator that can throw f rather than the construction of a new
object and a std::shared_ptr instance. Again, you don’t actually modify the data
structure until the call to data.pop() g, which is still guaranteed not to throw, so this
overload is exception-safe too.

 Finally, empty() doesn’t modify any data, so that’s exception-safe.
 There are a couple of opportunities for deadlock here, because you call user code

while holding a lock: the copy constructor or move constructor B, d and copy
assignment or move assignment operator f on the contained data items, as well as
potentially a user-defined operator new. If these functions either call member func-
tions on the stack that the item is being inserted into or removed from or require a lock
of any kind and another lock was held when the stack member function was invoked,
there’s the possibility of deadlock. However, it’s sensible to require that users of the
stack be responsible for ensuring this; you can’t reasonably expect to add an item onto
a stack or remove it from a stack without copying it or allocating memory for it.

 Because all the member functions use a std::lock_guard<> to protect the data,
it’s safe for any number of threads to call the stack member functions. The only
member functions that aren’t safe are the constructors and destructors, but this isn’t a
particular problem; the object can be constructed only once and destroyed only once.
Calling member functions on an incompletely constructed object or a partially
destructed object is never a good idea whether done concurrently or not. As a conse-
quence, the user must ensure that other threads aren’t able to access the stack until
it’s fully constructed and must ensure that all threads have ceased accessing the stack
before it’s destroyed.

 Although it’s safe for multiple threads to call the member functions concurrently,
because of the use of locks, only one thread is ever actually doing any work in the
stack data structure at a time. This serialization of threads can potentially limit the per-
formance of an application where there’s significant contention on the stack: while a
thread is waiting for the lock, it isn’t doing any useful work. Also, the stack doesn’t
Download from Wow! eBook <www.wowebook.com>

154 CHAPTER 6 Designing lock-based concurrent data structures
provide any means for waiting for an item to be added, so if a thread needs to wait, it
must periodically call empty() or just call pop() and catch the empty_stack excep-
tions. This makes this stack implementation a poor choice if such a scenario is
required, because a waiting thread must either consume precious resources checking
for data or the user must write external wait and notification code (for example, using
condition variables), which might render the internal locking unnecessary and there-
fore wasteful. The queue from chapter 4 shows a way of incorporating such waiting
into the data structure itself using a condition variable inside the data structure, so
let’s look at that next.

6.2.2 A thread-safe queue using locks and condition variables

The thread-safe queue from chapter 4 is reproduced in listing 6.2. Much like the
stack was modeled after std::stack<>, this queue is modeled after std::queue<>.
Again, the interface differs from that of the standard container adaptor because of
the constraints of writing a data structure that’s safe for concurrent access from multi-
ple threads.

template<typename T>
class threadsafe_queue
{
private:
 mutable std::mutex mut;
 std::queue<T> data_queue;
 std::condition_variable data_cond;
public:
 threadsafe_queue()
 {}

 void push(T new_value)
 {
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(std::move(data));
 data_cond.notify_one();
 }

 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=std::move(data_queue.front());
 data_queue.pop();
 }

 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 std::shared_ptr<T> res(
 std::make_shared<T>(std::move(data_queue.front())));

Listing 6.2 The full class definition for a thread-safe queue using condition variables

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

155Lock-based concurrent data structures
 data_queue.pop();
 return res;
 }

 bool try_pop(T& value)
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return false;
 value=std::move(data_queue.front());
 data_queue.pop();
 return true;
 }

 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return std::shared_ptr<T>();
 std::shared_ptr<T> res(
 std::make_shared<T>(std::move(data_queue.front())));
 data_queue.pop();
 return res;
 }

 bool empty() const
 {
 std::lock_guard<std::mutex> lk(mut);
 return data_queue.empty();
 }
};

The structure of the queue implementation shown in listing 6.2 is similar to the stack
from listing 6.1, except for the call to data_cond.notify_one() in push() B and the
wait_and_pop() functions c, d. The two overloads of try_pop() are almost identi-
cal to the pop() functions from listing 6.1, except that they don’t throw an exception
if the queue is empty. Instead, they return either a bool value indicating whether a
value was retrieved or a NULL pointer if no value could be retrieved by the pointer-
returning overload f. This would also have been a valid way of implementing the
stack. So, if you exclude the wait_and_pop() functions, the analysis you did for the stack
applies just as well here.

 The new wait_and_pop() functions are a solution to the problem of waiting for a
queue entry that you saw with the stack; rather than continuously calling empty(), the
waiting thread can just call wait_and_pop() and the data structure will handle the wait-
ing with a condition variable. The call to data_cond.wait() won’t return until the
underlying queue has at least one element, so you don’t have to worry about the possi-
bility of an empty queue at this point in the code, and the data is still protected with
the lock on the mutex. These functions don’t therefore add any new race conditions
or possibilities for deadlock, and the invariants will be upheld.

 There’s a slight twist with regard to exception safety in that if more than one
thread is waiting when an entry is pushed onto the queue, only one thread will be

f

Download from Wow! eBook <www.wowebook.com>

156 CHAPTER 6 Designing lock-based concurrent data structures
woken by the call to data_cond.notify_one(). However, if that thread then throws an
exception in wait_and_pop(), such as when the new std::shared_ptr<> is con-
structed e, none of the other threads will be woken. If this isn’t acceptable, the call is
readily replaced with data_cond.notify_all(), which will wake all the threads but at
the cost of most of them then going back to sleep when they find that the queue is
empty after all. A second alternative is to have wait_and_pop() call notify_one() if
an exception is thrown, so that another thread can attempt to retrieve the stored
value. A third alternative is to move the std::shared_ptr<> initialization to the
push() call and store std::shared_ptr<> instances rather than direct data values.
Copying the std::shared_ptr<> out of the internal std::queue<> then can’t throw
an exception, so wait_and_pop() is safe again. The following listing shows the queue
implementation revised with this in mind.

template<typename T>
class threadsafe_queue
{
private:
 mutable std::mutex mut;
 std::queue<std::shared_ptr<T> > data_queue;
 std::condition_variable data_cond;
public:
 threadsafe_queue()
 {}

 void wait_and_pop(T& value)
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 value=std::move(*data_queue.front());
 data_queue.pop();
 }

 bool try_pop(T& value)
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return false;
 value=std::move(*data_queue.front());
 data_queue.pop();
 return true;
 }

 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(mut);
 data_cond.wait(lk,[this]{return !data_queue.empty();});
 std::shared_ptr<T> res=data_queue.front();
 data_queue.pop();
 return res;
 }

Listing 6.3 A thread-safe queue holding std::shared_ptr<> instances

b

c

d

Download from Wow! eBook <www.wowebook.com>

157Lock-based concurrent data structures
 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> lk(mut);
 if(data_queue.empty())
 return std::shared_ptr<T>();
 std::shared_ptr<T> res=data_queue.front();
 data_queue.pop();
 return res;
 }

 void push(T new_value)
 {
 std::shared_ptr<T> data(
 std::make_shared<T>(std::move(new_value)));
 std::lock_guard<std::mutex> lk(mut);
 data_queue.push(data);
 data_cond.notify_one();
 }

 bool empty() const
 {
 std::lock_guard<std::mutex> lk(mut);
 return data_queue.empty();
 }
};

The basic consequences of holding the data by std::shared_ptr<> are straightfor-
ward: the pop functions that take a reference to a variable to receive the new value
now have to dereference the stored pointer B, c, and the pop functions that return
a std::shared_ptr<> instance can just retrieve it from the queue d, e before
returning it to the caller.

 If the data is held by std::shared_ptr<>, there’s an additional benefit: the alloca-
tion of the new instance can now be done outside the lock in push() f, whereas in
listing 6.2 it had to be done while holding the lock in pop(). Because memory alloca-
tion is typically quite an expensive operation, this can be very beneficial for the per-
formance of the queue, because it reduces the time the mutex is held, allowing other
threads to perform operations on the queue in the meantime.

 Just like in the stack example, the use of a mutex to protect the entire data structure
limits the concurrency supported by this queue; although multiple threads might be
blocked on the queue in various member functions, only one thread can be doing any
work at a time. However, part of this restriction comes from the use of std::queue<> in
the implementation; by using the standard container you now have essentially one
data item that’s either protected or not. By taking control of the detailed implementa-
tion of the data structure, you can provide more fine-grained locking and thus allow a
higher level of concurrency.

e

f

Download from Wow! eBook <www.wowebook.com>

158 CHAPTER 6 Designing lock-based concurrent data structures
6.2.3 A thread-safe queue using fine-grained locks and
condition variables

In listings 6.2 and 6.3 you have one protected data item (data_queue) and thus one
mutex. In order to use finer-grained locking, you need to look inside the queue at its
constituent parts and associate one mutex with each distinct data item.

 The simplest data structure for a queue is a singly linked list, as shown in figure 6.1.
The queue contains a head pointer, which points to the first item in the list, and each
item then points to the next item. Data items are removed from the queue by replac-
ing the head pointer with the pointer to the next item and then returning the data
from the old head.

 Items are added to the queue at the other end. In order to do this, the queue also
contains a tail pointer, which refers to the last item in the list. New nodes are added by
changing the next pointer of the last item to point to the new node and then updating
the tail pointer to refer to the new item. When the list is empty, both the head and tail
pointers are NULL.

 The following listing shows a simple implementation of such a queue based on a cut-
down version of the interface to the queue in listing 6.2; you have only one try_pop()
function and no wait_and_pop() because this queue supports only single-threaded use.

template<typename T>
class queue
{
private:
 struct node
 {
 T data;
 std::unique_ptr<node> next;

 node(T data_):
 data(std::move(data_))
 {}
 };

 std::unique_ptr<node> head;
 node* tail;

public:
 queue()
 {}

Listing 6.4 A simple single-threaded queue implementation

Figure 6.1 A queue represented
using a single-linked list

b

c

Download from Wow! eBook <www.wowebook.com>

159Lock-based concurrent data structures
 queue(const queue& other)=delete;
 queue& operator=(const queue& other)=delete;

 std::shared_ptr<T> try_pop()
 {
 if(!head)
 {
 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const res(
 std::make_shared<T>(std::move(head->data)));
 std::unique_ptr<node> const old_head=std::move(head);
 head=std::move(old_head->next);
 return res;
 }

 void push(T new_value)
 {
 std::unique_ptr<node> p(new node(std::move(new_value)));
 node* const new_tail=p.get();
 if(tail)
 {
 tail->next=std::move(p);
 }
 else
 {
 head=std::move(p);
 }
 tail=new_tail;
 }
};

First off, note that listing 6.4 uses std::unique_ptr<node> to manage the nodes,
because this ensures that they (and the data they refer to) get deleted when they’re no
longer needed, without having to write an explicit delete. This ownership chain is
managed from head, with tail being a raw pointer to the last node.

 Although this implementation works fine in a single-threaded context, a couple of
things will cause you problems if you try to use fine-grained locking in a multi-
threaded context. Given that you have two data items (head B and tail c), you
could in principle use two mutexes, one to protect head and one to protect tail, but
there are a couple of problems with that.

 The most obvious problem is that push() can modify both head f and tail g,
so it would have to lock both mutexes. This isn’t too much of a problem, although
it’s unfortunate, because locking both mutexes would be possible. The critical prob-
lem is that both push() and pop() access the next pointer of a node: push() updates
tail->next e, and try_pop() reads head->next d. If there’s a single item in the
queue, then head==tail, so both head->next and tail->next are the same object,
which therefore requires protection. Because you can’t tell if it’s the same object with-
out reading both head and tail, you now have to lock the same mutex in both push()
and try_pop(), so you’re no better off than before. Is there a way out of this dilemma?

d

e

f

g

Download from Wow! eBook <www.wowebook.com>

160 CHAPTER 6 Designing lock-based concurrent data structures
ENABLING CONCURRENCY BY SEPARATING DATA

You can solve this problem by preallocating a dummy node with no data to ensure that
there’s always at least one node in the queue to separate the node being accessed at
the head from that being accessed at the tail. For an empty queue, head and tail now
both point to the dummy node rather than being NULL. This is fine, because
try_pop() doesn’t access head->next if the queue is empty. If you add a node to the
queue (so there’s one real node), then head and tail now point to separate nodes, so
there’s no race on head->next and tail->next. The downside is that you have to add
an extra level of indirection to store the data by pointer in order to allow the dummy
nodes. The following listing shows how the implementation looks now.

template<typename T>
class queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 };

 std::unique_ptr<node> head;
 node* tail;

public:
 queue():
 head(new node),tail(head.get())
 {}

 queue(const queue& other)=delete;
 queue& operator=(const queue& other)=delete;

 std::shared_ptr<T> try_pop()
 {
 if(head.get()==tail)
 {
 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const res(head->data);
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return res;
 }

 void push(T new_value)
 {
 std::shared_ptr<T> new_data(
 std::make_shared<T>(std::move(new_value)));
 std::unique_ptr<node> p(new node);
 tail->data=new_data;
 node* const new_tail=p.get();
 tail->next=std::move(p);

Listing 6.5 A simple queue with a dummy node

b

c

d

e

f
g

h
i

j

Download from Wow! eBook <www.wowebook.com>

161Lock-based concurrent data structures
 tail=new_tail;
 }
};

The changes to try_pop() are fairly minimal. First, you’re comparing head against
tail d rather than checking for NULL, because the dummy node means that head is
never NULL. Because head is a std::unique_ptr<node>, you need to call head.get()
to do the comparison. Second, because the node now stores the data by pointer B,
you can retrieve the pointer directly e rather than having to construct a new instance
of T. The big changes are in push(): you must first create a new instance of T on the
heap and take ownership of it in a std::shared_ptr<> h (note the use of
std::make_shared to avoid the overhead of a second memory allocation for the refer-
ence count). The new node you create is going to be the new dummy node, so you
don’t need to supply the new_value to the constructor i. Instead, you set the data on
the old dummy node to your newly allocated copy of the new_value j. Finally, in
order to have a dummy node, you have to create it in the constructor c.

 By now, I’m sure you’re wondering what these changes buy you and how they help
with making the queue thread-safe. Well, push() now accesses only tail, not head,
which is an improvement. try_pop() accesses both head and tail, but tail is
needed only for the initial comparison, so the lock is short-lived. The big gain is that
the dummy node means try_pop() and push() are never operating on the same
node, so you no longer need an overarching mutex. So, you can have one mutex for
head and one for tail. Where do you put the locks?

 You’re aiming for the maximum opportunities for concurrency, so you want to
hold the locks for the smallest possible length of time. push() is easy: the mutex needs
to be locked across all accesses to tail, which means you lock the mutex after the new
node is allocated i and before you assign the data to the current tail node j. The
lock then needs to be held until the end of the function.

try_pop() isn’t so easy. First off, you need to lock the mutex on head and hold it
until you’re finished with head. In essence, this is the mutex to determine which
thread does the popping, so you want to do that first. Once head is changed f, you
can unlock the mutex; it doesn’t need to be locked when you return the result g.
That leaves the access to tail needing a lock on the tail mutex. Because you need to
access tail only once, you can just acquire the mutex for the time it takes to do the
read. This is best done by wrapping it in a function. In fact, because the code that
needs the head mutex locked is only a subset of the member, it’s clearer to wrap that in
a function too. The final code is shown here.

template<typename T>
class threadsafe_queue
{
private:
 struct node

Listing 6.6 A thread-safe queue with fine-grained locking
Download from Wow! eBook <www.wowebook.com>

162 CHAPTER 6 Designing lock-based concurrent data structures
 {
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 };

 std::mutex head_mutex;
 std::unique_ptr<node> head;
 std::mutex tail_mutex;
 node* tail;

 node* get_tail()
 {
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 return tail;
 }

 std::unique_ptr<node> pop_head()
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);

 if(head.get()==get_tail())
 {
 return nullptr;
 }
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return old_head;
 }

public:
 threadsafe_queue():
 head(new node),tail(head.get())
 {}

 threadsafe_queue(const threadsafe_queue& other)=delete;
 threadsafe_queue& operator=(const threadsafe_queue& other)=delete;

 std::shared_ptr<T> try_pop()
 {
 std::unique_ptr<node> old_head=pop_head();
 return old_head?old_head->data:std::shared_ptr<T>();
 }

 void push(T new_value)
 {
 std::shared_ptr<T> new_data(
 std::make_shared<T>(std::move(new_value)));
 std::unique_ptr<node> p(new node);
 node* const new_tail=p.get();
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 tail->data=new_data;
 tail->next=std::move(p);
 tail=new_tail;
 }
};

Let’s look at this code with a critical eye, thinking about the guidelines listed in sec-
tion 6.1.1. Before you look for broken invariants, you should be sure what they are:
Download from Wow! eBook <www.wowebook.com>

163Lock-based concurrent data structures
■ tail->next==nullptr.
■ tail->data==nullptr.
■ head==tail implies an empty list.
■ A single element list has head->next==tail.
■ For each node x in the list, where x!=tail, x->data points to an instance of T

and x->next points to the next node in the list. x->next==tail implies x is the
last node in the list.

■ Following the next nodes from head will eventually yield tail.

On its own, push() is straightforward: the only modifications to the data structure are
protected by tail_mutex, and they uphold the invariant because the new tail node is
an empty node and data and next are correctly set for the old tail node, which is now
the last real node in the list.

 The interesting part is try_pop(). It turns out that not only is the lock on tail_mutex
necessary to protect the read of tail itself, but it’s also necessary to ensure that you don’t
get a data race reading the data from the head. If you didn’t have that mutex, it would be
quite possible for a thread to call try_pop() and a thread to call push() concurrently,
and there’d be no defined ordering on their operations. Even though each member
function holds a lock on a mutex, they hold locks on different mutexes, and they poten-
tially access the same data; all data in the queue originates from a call to push(), after all.
Because the threads would be potentially accessing the same data without a defined
ordering, this would be a data race, as you saw in chapter 5, and undefined behavior.
Thankfully the lock on the tail_mutex in get_tail() solves everything. Because the call
to get_tail() locks the same mutex as the call to push(), there’s a defined order
between the two calls. Either the call to get_tail() occurs before the call to push(), in
which case it sees the old value of tail, or it occurs after the call to push(), in which case
it sees the new value of tail and the new data attached to the previous value of tail.

 It’s also important that the call to get_tail() occurs inside the lock on
head_mutex. If it didn’t, the call to pop_head() could be stuck in between the call to
get_tail() and the lock on the head_mutex, because other threads called try_pop()
(and thus pop_head()) and acquired the lock first, thus preventing your initial thread
from making progress:

 std::unique_ptr<node> pop_head()
 {
 node* const old_tail=get_tail();
 std::lock_guard<std::mutex> head_lock(head_mutex);

 if(head.get()==old_tail)
 {
 return nullptr;
 }
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return old_head;
 }

This is a broken
implementation Get old tail value

outside lock on
head_mutex

b

c

d

Download from Wow! eBook <www.wowebook.com>

164 CHAPTER 6 Designing lock-based concurrent data structures
In this broken scenario, where the call to get_tail(0) B is made outside the scope
of the lock, you might find that both head and tail have changed by the time your
initial thread can acquire the lock on head_mutex, and not only is the returned tail
node no longer the tail, but it’s no longer even part of the list. This could then
mean that the comparison of head to old_tail c fails, even if head really is the last
node. Consequently, when you update head d you may end up moving head beyond
tail and off the end of the list, destroying the data structure. In the correct imple-
mentation from listing 6.6, you keep the call to get_tail() inside the lock on
head_mutex. This ensures that no other threads can change head, and tail only
ever moves further away (as new nodes are added in calls to push()), which is per-
fectly safe. head can never pass the value returned from get_tail(), so the invari-
ants are upheld.

 Once pop_head() has removed the node from the queue by updating head, the
mutex is unlocked, and try_pop() can extract the data and delete the node if there
was one (and return a NULL instance of std::shared_ptr<> if not), safe in the knowl-
edge that it’s the only thread that can access this node.

 Next up, the external interface is a subset of that from listing 6.2, so the same anal-
ysis applies: there are no race conditions inherent in the interface.

 Exceptions are more interesting. Because you’ve changed the data allocation pat-
terns, the exceptions can now come from different places. The only operations in
try_pop() that can throw exceptions are the mutex locks, and the data isn’t modified
until the locks are acquired. Therefore try_pop() is exception-safe. On the other
hand, push() allocates a new instance of T on the heap and a new instance of node,
either of which might throw an exception. However, both of the newly allocated
objects are assigned to smart pointers, so they’ll be freed if an exception is thrown.
Once the lock is acquired, none of the remaining operations in push() can throw an
exception, so again you’re home and dry and push() is exception-safe too.

 Because you haven’t changed the interface, there are no new external opportuni-
ties for deadlock. There are no internal opportunities either; the only place that two
locks are acquired is in pop_head(), which always acquires the head_mutex and then
the tail_mutex, so this will never deadlock.

 The remaining question concerns the actual possibilities for concurrency. This
data structure actually has considerably more scope for concurrency than that from
listing 6.2, because the locks are more fine-grained and more is done outside the locks. For
example, in push(), the new node and new data item are allocated with no locks held.
This means that multiple threads can be allocating new nodes and data items concur-
rently without a problem. Only one thread can add its new node to the list at a time, but
the code to do so is only a few simple pointer assignments, so the lock isn’t held for
much time at all compared to the std::queue<>-based implementation where the lock
is held around all the memory allocation operations internal to the std::queue<>.

 Also, try_pop()holds the tail_mutex for only a short time, to protect a read from
tail. Consequently, almost the entirety of a call to try_pop() can occur concurrently
Download from Wow! eBook <www.wowebook.com>

165Lock-based concurrent data structures
with a call to push(). Also, the operations performed while holding the head_mutex
are also quite minimal; the expensive delete (in the destructor of the node pointer)
is outside the lock. This will increase the number of calls to try_pop() that can hap-
pen concurrently; only one thread can call pop_head() at a time, but multiple
threads can then delete their old nodes and return the data safely.

WAITING FOR AN ITEM TO POP

OK, so listing 6.6 provides a thread-safe queue with fine-grained locking, but it sup-
ports only try_pop() (and only one overload at that). What about the handy
wait_and_pop() functions back in listing 6.2? Can you implement an identical inter-
face with your fine-grained locking?

 Of course, the answer is, yes, but the real question is, how? Modifying push() is
easy: just add the data_cond.notify_one() call at the end of the function, just like in
listing 6.2. Actually, it’s not quite that simple; you’re using fine-grained locking
because you want the maximum possible amount of concurrency. If you leave the
mutex locked across the call to notify_one() (as in listing 6.2), then if the notified
thread wakes up before the mutex has been unlocked, it will have to wait for the
mutex. On the other hand, if you unlock the mutex before you call notify_one(), then
the mutex is available for the waiting thread to acquire when it wakes up (assuming no
other thread locks it first). This is a minor improvement, but it might be important in
some cases.

wait_and_pop() is more complicated, because you have to decide where to wait,
what the predicate is, and which mutex needs to be locked. The condition you’re wait-
ing for is “queue not empty,” which is represented by head!=tail. Written like that, it
would require both head_mutex and tail_mutex to be locked, but you’ve already
decided in listing 6.6 that you only need to lock tail_mutex for the read of tail and
not for the comparison itself, so you can apply the same logic here. If you make the
predicate head!=get_tail(),you only need to hold the head_mutex, so you can use
your lock on that for the call to data_cond.wait(). Once you’ve added the wait logic,
the implementation is the same as try_pop().

 The second overload of try_pop() and the corresponding wait_and_pop() over-
load require careful thought. If you just replace the return of the std::shared_ptr<>
retrieved from old_head with a copy assignment to the value parameter, there’s a
potential exception-safety issue. At this point, the data item has been removed from
the queue and the mutex unlocked; all that remains is to return the data to the caller.
However, if the copy assignment throws an exception (as it very well might), the data
item is lost because it can’t be returned to the queue in the same place.

 If the actual type T used for the template argument has a no-throw move-assign-
ment operator or a no-throw swap operation, you could use that, but you’d really like
a general solution that could be used for any type T. In this case, you have to move the
potential throwing inside the locked region, before the node is removed from the list.
This means you need an extra overload of pop_head() that retrieves the stored value
prior to modifying the list.
Download from Wow! eBook <www.wowebook.com>

166 CHAPTER 6 Designing lock-based concurrent data structures
 In comparison, empty() is trivial: just lock head_mutex and check for head==
get_tail() (see listing 6.10). The final code for the queue is shown in listings 6.7,
6.8, 6.9, and 6.10.

template<typename T>
class threadsafe_queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;
 };

 std::mutex head_mutex;
 std::unique_ptr<node> head;
 std::mutex tail_mutex;
 node* tail;
 std::condition_variable data_cond;
public:
 threadsafe_queue():
 head(new node),tail(head.get())
 {}
 threadsafe_queue(const threadsafe_queue& other)=delete;
 threadsafe_queue& operator=(const threadsafe_queue& other)=delete;

 std::shared_ptr<T> try_pop();
 bool try_pop(T& value);
 std::shared_ptr<T> wait_and_pop();
 void wait_and_pop(T& value);
 void push(T new_value);
 void empty();
};

Pushing new nodes onto the queue is fairly straightforward—the implementation
(shown in the following listing) is close to that shown previously.

template<typename T>
void threadsafe_queue<T>::push(T new_value)
{
 std::shared_ptr<T> new_data(
 std::make_shared<T>(std::move(new_value)));
 std::unique_ptr<node> p(new node);
 {
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 tail->data=new_data;
 node* const new_tail=p.get();
 tail->next=std::move(p);
 tail=new_tail;
 }
 data_cond.notify_one();
}

Listing 6.7 A thread-safe queue with locking and waiting: internals and interface

Listing 6.8 A thread-safe queue with locking and waiting: pushing new values
Download from Wow! eBook <www.wowebook.com>

167Lock-based concurrent data structures
As already mentioned, the complexity is all in the pop side, which makes use of a series
of helper functions to simplify matters. The next listing shows the implementation of
wait_and_pop() and the associated helper functions.

template<typename T>
class threadsafe_queue
{
private:
 node* get_tail()
 {
 std::lock_guard<std::mutex> tail_lock(tail_mutex);
 return tail;
 }

 std::unique_ptr<node> pop_head()
 {
 std::unique_ptr<node> old_head=std::move(head);
 head=std::move(old_head->next);
 return old_head;
 }

 std::unique_lock<std::mutex> wait_for_data()
 {
 std::unique_lock<std::mutex> head_lock(head_mutex);
 data_cond.wait(head_lock,[&]{return head.get()!=get_tail();});
 return std::move(head_lock);
 }

 std::unique_ptr<node> wait_pop_head()
 {
 std::unique_lock<std::mutex> head_lock(wait_for_data());
 return pop_head();
 }

 std::unique_ptr<node> wait_pop_head(T& value)
 {
 std::unique_lock<std::mutex> head_lock(wait_for_data());
 value=std::move(*head->data);
 return pop_head();
 }
public:
 std::shared_ptr<T> wait_and_pop()
 {
 std::unique_ptr<node> const old_head=wait_pop_head();
 return old_head->data;
 }

 void wait_and_pop(T& value)
 {
 std::unique_ptr<node> const old_head=wait_pop_head(value);
 }
};

Listing 6.9 A thread-safe queue with locking and waiting: wait_and_pop()

b

c

d

e

f

Download from Wow! eBook <www.wowebook.com>

168 CHAPTER 6 Designing lock-based concurrent data structures
The implementation of the pop side shown in listing 6.9 has several little helper
functions to simplify the code and reduce duplication, such as pop_head() B and
wait_for_data() c, which modify the list to remove the head item and wait for the
queue to have some data to pop, respectively. wait_for_data() is particularly note-
worthy, because not only does it wait on the condition variable using a lambda func-
tion for the predicate, but it also returns the lock instance to the caller d. This is to
ensure that the same lock is held while the data is modified by the relevant
wait_pop_head() overload e, f. pop_head() is also reused by the try_pop() code
shown in the next listing.

template<typename T>
class threadsafe_queue
{
private:
 std::unique_ptr<node> try_pop_head()
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);
 if(head.get()==get_tail())
 {
 return std::unique_ptr<node>();
 }
 return pop_head();
 }

 std::unique_ptr<node> try_pop_head(T& value)
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);
 if(head.get()==get_tail())
 {
 return std::unique_ptr<node>();
 }
 value=std::move(*head->data);
 return pop_head();
 }

public:
 std::shared_ptr<T> try_pop()
 {
 std::unique_ptr<node> old_head=try_pop_head();
 return old_head?old_head->data:std::shared_ptr<T>();
 }

 bool try_pop(T& value)
 {
 std::unique_ptr<node> const old_head=try_pop_head(value);
 return old_head;
 }

 void empty()
 {
 std::lock_guard<std::mutex> head_lock(head_mutex);

Listing 6.10 A thread-safe queue with locking and waiting: try_pop() and empty()
Download from Wow! eBook <www.wowebook.com>

169Designing more complex lock-based data structures
 return (head.get()==get_tail());
 }
};

This queue implementation will serve as the basis for the lock-free queue covered in
chapter 7. It’s an unbounded queue; threads can continue to push new values onto the
queue as long as there’s available memory, even if no values are removed. The alterna-
tive to an unbounded queue is a bounded queue, in which the maximum length of the
queue is fixed when the queue is created. Once a bounded queue is full, attempts to
push further elements onto the queue will either fail or block, until an element has
been popped from the queue to make room. Bounded queues can be useful for
ensuring an even spread of work when dividing work between threads based on tasks
to be performed (see chapter 8). This prevents the thread(s) populating the queue
from running too far ahead of the thread(s) reading items from the queue.

 The unbounded queue implementation shown here can easily be extended to
limit the length of the queue by waiting on the condition variable in push(). Rather
than waiting for the queue to have items (as is done in pop()), you need to wait for
the queue to have fewer than the maximum number of items. Further discussion of
bounded queues is outside the scope of this book; for now let’s move beyond queues
and on to more complex data structures.

6.3 Designing more complex lock-based data structures
Stacks and queues are simple: the interface is exceedingly limited, and they’re very
tightly focused on a specific purpose. Not all data structures are that simple; most data
structures support a variety of operations. In principle, this can then lead to greater
opportunities for concurrency, but it also makes the task of protecting the data that
much harder because the multiple access patterns need to be taken into account. The
precise nature of the various operations that can be performed is important when
designing such data structures for concurrent access.

 To see some of the issues involved, let’s look at the design of a lookup table.

6.3.1 Writing a thread-safe lookup table using locks

A lookup table or dictionary associates values of one type (the key type) with values
of either the same or a different type (the mapped type). In general, the intention
behind such a structure is to allow code to query the data associated with a given
key. In the C++ Standard Library, this facility is provided by the associative contain-
ers: std::map<>, std::multimap<>, std::unordered_map<>, and std::unordered_
multimap<>.

 A lookup table has a different usage pattern than a stack or a queue. Whereas
almost every operation on a stack or a queue modifies it in some way, either to add an
element or remove one, a lookup table might be modified rarely. The simple DNS
cache in listing 3.13 is one example of such a scenario, which features a greatly
reduced interface compared to std::map<>. As you saw with the stack and queue, the
Download from Wow! eBook <www.wowebook.com>

170 CHAPTER 6 Designing lock-based concurrent data structures
interfaces of the standard containers aren’t suitable when the data structure is to be
accessed from multiple threads concurrently, because there are inherent race condi-
tions in the interface design, so they need to be cut down and revised.

 The biggest problem with the std::map<> interface from a concurrency perspec-
tive is the iterators. Although it’s possible to have an iterator that provides safe access
into a container even when other threads can access (and modify) the container, this
is a tricky proposition. Correctly handling iterators requires you to deal with issues
such as another thread deleting the element that the iterator is referring to, which
can get rather involved. For the first cut at a thread-safe lookup table interface, you’ll
skip the iterators. Given that the interface to std::map<> (and the other associative
containers in the standard library) is so heavily iterator-based, it’s probably worth set-
ting them aside and designing the interface from the ground up.

 There are only a few basic operations on a lookup table:

■ Add a new key/value pair.
■ Change the value associated with a given key.
■ Remove a key and its associated value.
■ Obtain the value associated with a given key if any.

There are also a few container-wide operations that might be useful, such as a check
on whether the container is empty, a snapshot of the complete list of keys, or a snap-
shot of the complete set of key/value pairs.

 If you stick to the simple thread-safety guidelines such as not returning references
and put a simple mutex lock around the entirety of each member function, all of
these are safe; they either come before some modification from another thread or come
after it. The biggest potential for a race condition is when a new key/value pair is
being added; if two threads add a new value, only one will be first, and the second will
therefore fail. One possibility is to combine add and change into a single member
function, as you did for the DNS cache in listing 3.13.

 The only other interesting point from an interface perspective is the if any part of
obtaining an associated value. One option is to allow the user to provide a “default”
result that’s returned in the case when the key isn’t present:

mapped_type get_value(key_type const& key, mapped_type default_value);

In this case, a default-constructed instance of mapped_type could be used if the
default_value wasn’t explicitly provided. This could also be extended to return a
std::pair<mapped_type,bool> instead of just an instance of mapped_type, where the
bool indicates whether the value was present. Another option is to return a smart pointer
referring to the value; if the pointer value is NULL, there was no value to return.

 As already mentioned, once the interface has been decided, then (assuming no
interface race conditions) the thread safety could be guaranteed by using a single
mutex and a simple lock around every member function to protect the underlying
data structure. However, this would squander the possibilities for concurrency pro-
vided by the separate functions for reading the data structure and modifying it. One
Download from Wow! eBook <www.wowebook.com>

171Designing more complex lock-based data structures
option is to use a mutex that supports multiple reader threads or a single writer
thread, such as the boost::shared_mutex used in listing 3.13. Although this would
indeed improve the possibilities for concurrent access, only one thread could modify
the data structure at a time. Ideally, you’d like to do better than that.

DESIGNING A MAP DATA STRUCTURE FOR FINE-GRAINED LOCKING

As with the queue discussed in section 6.2.3, in order to permit fine-grained locking
you need to look carefully at the details of the data structure rather than just wrapping
a preexisting container such as std::map<>. There are three common ways of imple-
menting an associative container like your lookup table:

■ A binary tree, such as a red-black tree
■ A sorted array
■ A hash table

A binary tree doesn’t provide much scope for extending the opportunities for con-
currency; every lookup or modification has to start by accessing the root node, which
therefore has to be locked. Although this lock can be released as the accessing
thread moves down the tree, this isn’t much better than a single lock across the
whole data structure.

 A sorted array is even worse, because you can’t tell in advance where in the array a
given data value is going to be, so you need a single lock for the whole array.

 That leaves the hash table. Assuming a fixed number of buckets, which bucket a
key belongs to is purely a property of the key and its hash function. This means you
can safely have a separate lock per bucket. If you again use a mutex that supports mul-
tiple readers or a single writer, you increase the opportunities for concurrency N-fold,
where N is the number of buckets. The downside is that you need a good hash func-
tion for the key. The C++ Standard Library provides the std::hash<> template, which
you can use for this purpose. It’s already specialized for the fundamental types such as
int and common library types such as std::string, and the user can easily specialize
it for other key types. If you follow the lead of the standard unordered containers and
take the type of the function object to use for doing the hashing as a template param-
eter, the user can choose whether to specialize std::hash<> for their key type or pro-
vide a separate hash function.

 So, let’s look at some code. What might the implementation of a thread-safe
lookup table look like? One possibility is shown here.

template<typename Key,typename Value,typename Hash=std::hash<Key> >
class threadsafe_lookup_table
{
private:
 class bucket_type
 {
 private:
 typedef std::pair<Key,Value> bucket_value;

Listing 6.11 A thread-safe lookup table
Download from Wow! eBook <www.wowebook.com>

172 CHAPTER 6 Designing lock-based concurrent data structures
 typedef std::list<bucket_value> bucket_data;
 typedef typename bucket_data::iterator bucket_iterator;

 bucket_data data;
 mutable boost::shared_mutex mutex;

 bucket_iterator find_entry_for(Key const& key) const
 {
 return std::find_if(data.begin(),data.end(),
 [&](bucket_value const& item)
 {return item.first==key;});
 }

 public:
 Value value_for(Key const& key,Value const& default_value) const
 {
 boost::shared_lock<boost::shared_mutex> lock(mutex);
 bucket_iterator const found_entry=find_entry_for(key);
 return (found_entry==data.end())?
 default_value:found_entry->second;
 }

 void add_or_update_mapping(Key const& key,Value const& value)
 {
 std::unique_lock<boost::shared_mutex> lock(mutex);
 bucket_iterator const found_entry=find_entry_for(key);
 if(found_entry==data.end())
 {
 data.push_back(bucket_value(key,value));
 }
 else
 {
 found_entry->second=value;
 }
 }

 void remove_mapping(Key const& key)
 {
 std::unique_lock<boost::shared_mutex> lock(mutex);
 bucket_iterator const found_entry=find_entry_for(key);
 if(found_entry!=data.end())
 {
 data.erase(found_entry);
 }
 }
 };

 std::vector<std::unique_ptr<bucket_type> > buckets;
 Hash hasher;

 bucket_type& get_bucket(Key const& key) const
 {
 std::size_t const bucket_index=hasher(key)%buckets.size();
 return *buckets[bucket_index];
 }

public:
 typedef Key key_type;

b

c

d

e

f

g

h

Download from Wow! eBook <www.wowebook.com>

173Designing more complex lock-based data structures
 typedef Value mapped_type;
 typedef Hash hash_type;

 threadsafe_lookup_table(
 unsigned num_buckets=19,Hash const& hasher_=Hash()):
 buckets(num_buckets),hasher(hasher_)
 {
 for(unsigned i=0;i<num_buckets;++i)
 {
 buckets[i].reset(new bucket_type);
 }
 }

 threadsafe_lookup_table(threadsafe_lookup_table const& other)=delete;
 threadsafe_lookup_table& operator=(
 threadsafe_lookup_table const& other)=delete;

 Value value_for(Key const& key,
 Value const& default_value=Value()) const
 {
 return get_bucket(key).value_for(key,default_value);
 }

 void add_or_update_mapping(Key const& key,Value const& value)
 {
 get_bucket(key).add_or_update_mapping(key,value);
 }

 void remove_mapping(Key const& key)
 {
 get_bucket(key).remove_mapping(key);
 }
};

This implementation uses a std::vector<std::unique_ptr<bucket_type>> g to
hold the buckets, which allows the number of buckets to be specified in the construc-
tor. The default is 19, which is an arbitrary prime number; hash tables work best with a
prime number of buckets. Each bucket is protected with an instance of boost::
shared_mutex B to allow many concurrent reads or a single call to either of the mod-
ification functions per bucket.

 Because the number of buckets is fixed, the get_bucket() function h can be
called without any locking i, j, 1), and then the bucket mutex can be locked either
for shared (read-only) ownership d or unique (read/write) ownership e, f as
appropriate for each function.

 All three functions make use of the find_entry_for() member function c on the
bucket to determine whether the entry is in the bucket. Each bucket contains just a
std::list<> of key/value pairs, so adding and removing entries is easy.

 I’ve already covered the concurrency angle, and everything is suitably protected
with mutex locks, so what about exception safety? value_for doesn’t modify anything,
so that’s fine; if it throws an exception, it won’t affect the data structure.
remove_mapping modifies the list with the call to erase, but this is guaranteed not to
throw, so that’s safe. This leaves add_or_update_mapping, which might throw in either

i

j

1)
Download from Wow! eBook <www.wowebook.com>

174 CHAPTER 6 Designing lock-based concurrent data structures
of the two branches of the if. push_back is exception-safe and will leave the list in the
original state if it throws, so that branch is fine. The only problem is with the assign-
ment in the case where you’re replacing an existing value; if the assignment throws,
you’re relying on it leaving the original unchanged. However, this doesn’t affect the
data structure as a whole and is entirely a property of the user-supplied type, so you
can safely leave it up to the user to handle this.

 At the beginning of this section, I mentioned that one nice-to-have feature of such
a lookup table would be the option of retrieving a snapshot of the current state into,
for example, a std::map<>. This would require locking the entire container in order
to ensure that a consistent copy of the state is retrieved, which requires locking all the
buckets. Because the “normal” operations on the lookup table require a lock on only
one bucket at a time, this would be the only operation that requires a lock on all the
buckets. Therefore, provided you lock them in the same order every time (for exam-
ple, increasing bucket index), there’ll be no opportunity for deadlock. Such an imple-
mentation is shown in the following listing.

std::map<Key,Value> threadsafe_lookup_table::get_map() const
{
 std::vector<std::unique_lock<boost::shared_mutex> > locks;
 for(unsigned i=0;i<buckets.size();++i)
 {
 locks.push_back(
 std::unique_lock<boost::shared_mutex>(buckets[i].mutex));
 }
 std::map<Key,Value> res;
 for(unsigned i=0;i<buckets.size();++i)
 {
 for(bucket_iterator it=buckets[i].data.begin();
 it!=buckets[i].data.end();
 ++it)
 {
 res.insert(*it);
 }
 }
 return res;
}

The lookup table implementation from listing 6.11 increases the opportunity for con-
currency of the lookup table as a whole by locking each bucket separately and by
using a boost::shared_mutex to allow reader concurrency on each bucket. But what
if you could increase the potential for concurrency on a bucket by even finer-grained
locking? In the next section, you’ll do just that by using a thread-safe list container
with iterator support.

Listing 6.12 Obtaining contents of a threadsafe_lookup_table as a std::map<>
Download from Wow! eBook <www.wowebook.com>

175Designing more complex lock-based data structures
6.3.2 Writing a thread-safe list using locks

A list is one of the most basic data structures, so it should be straightforward to
write a thread-safe one, shouldn’t it? Well, that depends on what facilities you’re
after, and you need one that offers iterator support, something I shied away from
adding to your map on the basis that it was too complicated. The basic issue with
STL-style iterator support is that the iterator must hold some kind of reference into
the internal data structure of the container. If the container can be modified from
another thread, this reference must somehow remain valid, which essentially
requires that the iterator hold a lock on some part of the structure. Given that the
lifetime of an STL-style iterator is completely outside the control of the container,
this is a bad idea.

 The alternative is to provide iteration functions such as for_each as part of the
container itself. This puts the container squarely in charge of the iteration and lock-
ing, but it does fall foul of the deadlock avoidance guidelines from chapter 3. In order
for for_each to do anything useful, it must call user-supplied code while holding the
internal lock. Not only that, but it must also pass a reference to each item to this user-
supplied code in order for the user-supplied code to work on this item. You could
avoid this by passing a copy of each item to the user-supplied code, but that would be
expensive if the data items were large.

 So, for now you’ll leave it up to the user to ensure that they don’t cause deadlock
by acquiring locks in the user-supplied operations and don’t cause data races by stor-
ing the references for access outside the locks. In the case of the list being used by
the lookup table, this is perfectly safe, because you know you’re not going to do any-
thing naughty.

 That leaves you with the question of which operations to supply for your list. If
you cast your eyes back on listings 6.11 and 6.12, you can see the sorts of operations
you require:

■ Add an item to the list.
■ Remove an item from the list if it meets a certain condition.
■ Find an item in the list that meets a certain condition.
■ Update an item that meets a certain condition.
■ Copy each item in the list to another container.

For this to be a good general-purpose list container, it would be helpful to add further
operations such as a positional insert, but this is unnecessary for your lookup table, so
I’ll leave it as an exercise for the reader.

 The basic idea with fine-grained locking for a linked list is to have one mutex per
node. If the list gets big, that’s a lot of mutexes! The benefit here is that operations on
separate parts of the list are truly concurrent: each operation holds only the locks on
the nodes it’s actually interested in and unlocks each node as it moves on to the next.
The next listing shows an implementation of just such a list.
Download from Wow! eBook <www.wowebook.com>

176 CHAPTER 6 Designing lock-based concurrent data structures
template<typename T>
class threadsafe_list
{
 struct node
 {
 std::mutex m;
 std::shared_ptr<T> data;
 std::unique_ptr<node> next;

 node():
 next()
 {}

 node(T const& value):
 data(std::make_shared<T>(value))
 {}
 };

 node head;

public:
 threadsafe_list()
 {}

 ~threadsafe_list()
 {
 remove_if([](node const&){return true;});
 }

 threadsafe_list(threadsafe_list const& other)=delete;
 threadsafe_list& operator=(threadsafe_list const& other)=delete;

 void push_front(T const& value)
 {
 std::unique_ptr<node> new_node(new node(value));
 std::lock_guard<std::mutex> lk(head.m);
 new_node->next=std::move(head.next);
 head.next=std::move(new_node);
 }

 template<typename Function>
 void for_each(Function f)
 {
 node* current=&head;
 std::unique_lock<std::mutex> lk(head.m);
 while(node* const next=current->next.get())
 {
 std::unique_lock<std::mutex> next_lk(next->m);
 lk.unlock();
 f(*next->data);
 current=next;
 lk=std::move(next_lk);
 }
 }

 template<typename Predicate>
 std::shared_ptr<T> find_first_if(Predicate p)

Listing 6.13 A thread-safe list with iteration support

b

c

d

e

f

g

h

i
 j

1)

1!1@

1#

1$
Download from Wow! eBook <www.wowebook.com>

177Designing more complex lock-based data structures
 {
 node* current=&head;
 std::unique_lock<std::mutex> lk(head.m);
 while(node* const next=current->next.get())
 {
 std::unique_lock<std::mutex> next_lk(next->m);
 lk.unlock();
 if(p(*next->data))
 {
 return next->data;
 }
 current=next;
 lk=std::move(next_lk);
 }
 return std::shared_ptr<T>();
 }

 template<typename Predicate>
 void remove_if(Predicate p)
 {
 node* current=&head;
 std::unique_lock<std::mutex> lk(head.m);
 while(node* const next=current->next.get())
 {
 std::unique_lock<std::mutex> next_lk(next->m);
 if(p(*next->data))
 {
 std::unique_ptr<node> old_next=std::move(current->next);
 current->next=std::move(next->next);
 next_lk.unlock();
 }
 else
 {
 lk.unlock();
 current=next;
 lk=std::move(next_lk);
 }
 }
 }
};

The threadsafe_list<> from listing 6.13 is a singly linked list, where each entry is a
node structure B. A default-constructed node is used for the head of the list, which
starts with a NULL next pointer c. New nodes are added with the push_front() func-
tion; first a new node is constructed e, which allocates the stored data on the heap d,
while leaving the next pointer as NULL. You then need to acquire the lock on the mutex
for the head node in order to get the appropriate next value f and insert the node at
the front of the list by setting head.next to point to your new node g. So far, so good:
you only need to lock one mutex in order to add a new item to the list, so there’s no
risk of deadlock. Also, the slow memory allocation happens outside the lock, so the
lock is only protecting the update of a couple of pointer values that can’t fail. On to
the iterative functions.

1%

1^

1&

1*

1(

2)

2!
Download from Wow! eBook <www.wowebook.com>

178 CHAPTER 6 Designing lock-based concurrent data structures
 First up, let’s look at for_each() h. This operation takes a Function of some type
to apply to each element in the list; in common with most standard library algorithms,
it takes this function by value and will work with either a genuine function or an
object of a type with a function call operator. In this case, the function must accept a
value of type T as the sole parameter. Here’s where you do the hand-over-hand lock-
ing. To start with, you lock the mutex on the head node i. It’s then safe to obtain the
pointer to the next node (using get() because you’re not taking ownership of the
pointer). If that pointer isn’t NULL j, you lock the mutex on that node 1) in order to
process the data. Once you have the lock on that node, you can release the lock on
the previous node 1! and call the specified function 1@. Once the function completes,
you can update the current pointer to the node you just processed and move the own-
ership of the lock from next_lk out to lk 1#. Because for_each passes each data item
directly to the supplied Function, you can use this to update the items if necessary or
copy them into another container, or whatever. This is entirely safe if the function is well
behaved, because the mutex for the node holding the data item is held across the call.

find_first_if() 1$ is similar to for_each(); the crucial difference is that the sup-
plied Predicate must return true to indicate a match or false to indicate no match 1%.
Once you have a match, you just return the found data 1^ rather than continuing to
search. You could do this with for_each(), but it would needlessly continue process-
ing the rest of the list even once a match had been found.

remove_if() 1& is slightly different, because this function has to actually update
the list; you can’t use for_each() for this. If the Predicate returns true 1*, you
remove the node from the list by updating current->next 1(. Once you’ve done that,
you can release the lock held on the mutex for the next node. The node is deleted
when the std::unique_ptr<node> you moved it into goes out of scope 2). In this
case, you don’t update current because you need to check the new next node. If the
Predicate returns false, you just want to move on as before 2!.

 So, are there any deadlocks or race conditions with all these mutexes? The answer
here is quite definitely no, provided that the supplied predicates and functions are
well behaved. The iteration is always one way, always starting from the head node, and
always locking the next mutex before releasing the current one, so there’s no possibil-
ity of different lock orders in different threads. The only potential candidate for a
race condition is the deletion of the removed node in remove_if() 2) because you do
this after you’ve unlocked the mutex (it’s undefined behavior to destroy a locked
mutex). However, a few moments’ thought reveals that this is indeed safe, because you
still hold the mutex on the previous node (current), so no new thread can try to
acquire the lock on the node you’re deleting.

 What about opportunities for concurrency? The whole point of such fine-grained
locking was to improve the possibilities for concurrency over a single mutex, so have
you achieved that? Yes, you have: different threads can be working on different nodes
in the list at the same time, whether they’re just processing each item with for_each(),
searching with find_first_if(), or removing items with remove_if(). But because
Download from Wow! eBook <www.wowebook.com>

179Summary
the mutex for each node must be locked in turn, the threads can’t pass each other. If
one thread is spending a long time processing a particular node, other threads will
have to wait when they reach that particular node.

6.4 Summary
This chapter started by looking at what it means to design a data structure for concur-
rency and providing some guidelines for doing so. We then worked through several
common data structures (stack, queue, hash map, and linked list), looking at how to
apply those guidelines to implement them in a way designed for concurrent access,
using locks to protect the data and prevent data races. You should now be able to look
at the design of your own data structures to see where the opportunities for concur-
rency lie and where there’s potential for race conditions.

 In chapter 7 we’ll look at ways of avoiding locks entirely, using the low-level atomic
operations to provide the necessary ordering constraints, while sticking to the same
set of guidelines.
Download from Wow! eBook <www.wowebook.com>

Designing lock-free
concurrent data structures
In the last chapter we looked at general aspects of designing data structures for
concurrency, with guidelines for thinking about the design to ensure they’re safe.
We then examined several common data structures and looked at example imple-
mentations that used mutexes and locks to protect the shared data. The first cou-
ple of examples used one mutex to protect the entire data structure, but later ones
used more than one to protect various smaller parts of the data structure and allow
greater levels of concurrency in accesses to the data structure.

 Mutexes are powerful mechanisms for ensuring that multiple threads can safely
access a data structure without encountering race conditions or broken invariants. It’s
also relatively straightforward to reason about the behavior of code that uses them:
either the code has the lock on the mutex protecting the data or it doesn’t. However,
it’s not all a bed of roses; you saw in chapter 3 how the incorrect use of locks can lead

This chapter covers
■ Implementations of data structures designed

for concurrency without using locks
■ Techniques for managing memory in lock-free

data structures
■ Simple guidelines to aid in the writing of lock-

free data structures
180

Download from Wow! eBook <www.wowebook.com>

181Definitions and consequences
to deadlock, and you’ve just seen with the lock-based queue and lookup table examples
how the granularity of locking can affect the potential for true concurrency. If you can
write data structures that are safe for concurrent access without locks, there’s the poten-
tial to avoid these problems. Such a data structure is called a lock-free data structure.

 In this chapter we’ll look at how the memory-ordering properties of the atomic
operations introduced in chapter 5 can be used to build lock-free data structures. You
need to take extreme care when designing such data structures, because they’re hard
to get right, and the conditions that cause the design to fail may occur very rarely.
We’ll start by looking at what it means for data structures to be lock-free; then we’ll
move on to the reasons for using them before working through some examples and
drawing out some general guidelines.

7.1 Definitions and consequences
Algorithms and data structures that use mutexes, condition variables, and futures to
synchronize the data are called blocking data structures and algorithms. The applica-
tion calls library functions that will suspend the execution of a thread until another
thread performs an action. Such library calls are termed blocking calls because the thread
can’t progress past this point until the block is removed. Typically, the OS will suspend
a blocked thread completely (and allocate its time slices to another thread) until it’s
unblocked by the appropriate action of another thread, whether that’s unlocking a
mutex, notifying a condition variable, or making a future ready.

 Data structures and algorithms that don’t use blocking library functions are said to
be nonblocking. Not all such data structures are lock-free, though, so let’s look at the var-
ious types of nonblocking data structures.

7.1.1 Types of nonblocking data structures

Back in chapter 5, we implemented a basic mutex using std::atomic_flag as a spin
lock. The code is reproduced in the following listing.

class spinlock_mutex
{
 std::atomic_flag flag;
public:
 spinlock_mutex():
 flag(ATOMIC_FLAG_INIT)
 {}
 void lock()
 {
 while(flag.test_and_set(std::memory_order_acquire));
 }
 void unlock()
 {
 flag.clear(std::memory_order_release);
 }
};

Listing 7.1 Implementation of a spin-lock mutex using std::atomic_flag
Download from Wow! eBook <www.wowebook.com>

182 CHAPTER 7 Designing lock-free concurrent data structures
This code doesn’t call any blocking functions; lock() just keeps looping until the call
to test_and_set() returns false. This is why it gets the name spin lock—the code
“spins” around the loop. Anyway, there are no blocking calls, so any code that uses this
mutex to protect shared data is consequently nonblocking. It’s not lock-free, though. It’s
still a mutex and can still be locked by only one thread at a time. Let’s look at the def-
inition of lock-free so you can see what kinds of data structures are covered.

7.1.2 Lock-free data structures

For a data structure to qualify as lock-free, more than one thread must be able to
access the data structure concurrently. They don’t have to be able to do the same
operations; a lock-free queue might allow one thread to push and one to pop but
break if two threads try to push new items at the same time. Not only that, but if one of
the threads accessing the data structure is suspended by the scheduler midway
through its operation, the other threads must still be able to complete their opera-
tions without waiting for the suspended thread.

 Algorithms that use compare/exchange operations on the data structure often
have loops in them. The reason for using a compare/exchange operation is that
another thread might have modified the data in the meantime, in which case the code
will need to redo part of its operation before trying the compare/exchange again.
Such code can still be lock-free if the compare/exchange would eventually succeed if
the other threads were suspended. If it wouldn’t, you’d essentially have a spin lock,
which is nonblocking but not lock-free.

 Lock-free algorithms with such loops can result in one thread being subject to star-
vation. If another thread performs operations with the “wrong” timing, the other
thread might make progress while the first thread continually has to retry its opera-
tion. Data structures that avoid this problem are wait-free as well as lock-free.

7.1.3 Wait-free data structures

A wait-free data structure is a lock-free data structure with the additional property that
every thread accessing the data structure can complete its operation within a bounded
number of steps, regardless of the behavior of other threads. Algorithms that can
involve an unbounded number of retries because of clashes with other threads are
thus not wait-free.

 Writing wait-free data structures correctly is extremely hard. In order to ensure that
every thread can complete its operations within a bounded number of steps, you have
to ensure that each operation can be performed in a single pass and that the steps per-
formed by one thread don’t cause an operation on another thread to fail. This can
make the overall algorithms for the various operations considerably more complex.

 Given how hard it is to get a lock-free or wait-free data structure right, you need
some pretty good reasons to write one; you need to be sure that the benefit outweighs
the cost. Let’s therefore examine the points that affect the balance.
Download from Wow! eBook <www.wowebook.com>

183Definitions and consequences
7.1.4 The pros and cons of lock-free data structures

When it comes down to it, the primary reason for using lock-free data structures is to
enable maximum concurrency. With lock-based containers, there’s always the poten-
tial for one thread to have to block and wait for another to complete its operation
before the first thread can proceed; preventing concurrency through mutual exclu-
sion is the entire purpose of a mutex lock. With a lock-free data structure, some thread
makes progress with every step. With a wait-free data structure, every thread can make
forward progress, regardless of what the other threads are doing; there’s no need for
waiting. This is a desirable property to have but hard to achieve. It’s all too easy to end
up writing what’s essentially a spin lock.

 A second reason to use lock-free data structures is robustness. If a thread dies while
holding a lock, that data structure is broken forever. But if a thread dies partway
through an operation on a lock-free data structure, nothing is lost except that thread’s
data; other threads can proceed normally.

 The flip side here is that if you can’t exclude threads from accessing the data struc-
ture, then you must be careful to ensure that the invariants are upheld or choose
alternative invariants that can be upheld. Also, you must pay attention to the ordering
constraints you impose on the operations. To avoid the undefined behavior associated
with a data race, you must use atomic operations for the modifications. But that alone
isn’t enough; you must ensure that changes become visible to other threads in the cor-
rect order. All this means that writing thread-safe data structures without using locks is
considerably harder than writing them with locks.

 Because there aren’t any locks, deadlocks are impossible with lock-free data struc-
tures, although there is the possibility of live locks instead. A live lock occurs when two
threads each try to change the data structure, but for each thread the changes made
by the other require the operation to be restarted, so both threads loop and try again.
Imagine two people trying to go through a narrow gap. If they both go at once, they
get stuck, so they have to come out and try again. Unless someone gets there first
(either by agreement, by being quicker, or by sheer luck), the cycle will repeat. As in
this simple example, live locks are typically short lived because they depend on the
exact scheduling of threads. They therefore sap performance rather than cause long-
term problems, but they’re still something to watch out for. By definition, wait-free
code can’t suffer from live lock because there’s always an upper limit on the number
of steps needed to perform an operation. The flip side here is that the algorithm is
likely more complex than the alternative and may require more steps even when no
other thread is accessing the data structure.

 This brings us to another downside of lock-free and wait-free code: although it can
increase the potential for concurrency of operations on a data structure and reduce
the time an individual thread spends waiting, it may well decrease overall performance.
First, the atomic operations used for lock-free code can be much slower than nona-
tomic operations, and there’ll likely be more of them in a lock-free data structure
than in the mutex locking code for a lock-based data structure. Not only that, but the
Download from Wow! eBook <www.wowebook.com>

184 CHAPTER 7 Designing lock-free concurrent data structures
hardware must synchronize data between threads that access the same atomic vari-
ables. As you’ll see in chapter 8, the cache ping-pong associated with multiple threads
accessing the same atomic variables can be a significant performance drain. As with
everything, it’s important to check the relevant performance aspects (whether that’s
worst-case wait time, average wait time, overall execution time, or something else) both
with a lock-based data structure and a lock-free one before committing either way.

 Now let’s look at some examples.

7.2 Examples of lock-free data structures
In order to demonstrate some of the techniques used in designing lock-free data struc-
tures, we’ll look at the lock-free implementation of a series of simple data structures.
Not only will each example describe the implementation of a useful data structure, but
I’ll use the examples to highlight particular aspects of lock-free data structure design.

 As already mentioned, lock-free data structures rely on the use of atomic opera-
tions and the associated memory-ordering guarantees in order to ensure that data
becomes visible to other threads in the correct order. Initially, we’ll use the default
memory_order_seq_cst memory ordering for all atomic operations, because that’s the
easiest to reason about (remember that all memory_order_seq_cst operations form a
total order). But for later examples we’ll look at reducing some of the ordering con-
straints to memory_order_acquire, memory_order_release, or even memory_order_
relaxed. Although none of these examples use mutex locks directly, it’s worth bearing
in mind that only std::atomic_flag is guaranteed not to use locks in the implemen-
tation. On some platforms what appears to be lock-free code might actually be using
locks internal to the C++ Standard Library implementation (see chapter 5 for more
details). On these platforms, a simple lock-based data structure might actually be
more appropriate, but there’s more to it than that; before choosing an implementa-
tion, you must identify your requirements and profile the various options that meet
those requirements.

 So, back to the beginning with the simplest of data structures: a stack.

7.2.1 Writing a thread-safe stack without locks

The basic premise of a stack is relatively simple: nodes are retrieved in the reverse
order to which they were added—last in, first out (LIFO). It’s therefore important to
ensure that once a value is added to the stack, it can safely be retrieved immediately by
another thread, and it’s also important to ensure that only one thread returns a given
value. The simplest stack is just a linked list; the head pointer identifies the first node
(which will be the next to retrieve), and each node then points to the next node in turn.

 Under such a scheme, adding a node is relatively simple:

1 Create a new node.
2 Set its next pointer to the current head node.
3 Set the head node to point to it.
Download from Wow! eBook <www.wowebook.com>

185Examples of lock-free data structures
This works fine in a single-threaded context, but if other threads are also modifying
the stack, it’s not enough. Crucially, if two threads are adding nodes, there’s a race
condition between steps 2 and 3: a second thread could modify the value of head
between when your thread reads it in step 2 and you update it in step 3. This would
then result in the changes made by that other thread being discarded or even worse
consequences. Before we look at addressing this race condition, it’s also important to
note that once head has been updated to point to your new node, another thread
could read that node. It’s therefore vital that your new node is thoroughly prepared
before head is set to point to it; you can’t modify the node afterward.

OK, so what can you do about this nasty race condition? The answer is to use an
atomic compare/exchange operation at step 3 to ensure that head hasn’t been modi-
fied since you read it in step 2. If it has, you can loop and try again. The following list-
ing shows how you can implement a thread-safe push() without locks.

template<typename T>
class lock_free_stack
{
private:
 struct node
 {
 T data;
 node* next;

 node(T const& data_):
 data(data_)
 {}
 };

 std::atomic<node*> head;
public:
 void push(T const& data)
 {
 node* const new_node=new node(data);
 new_node->next=head.load();
 while(!head.compare_exchange_weak(new_node->next,new_node));
 }
};

This code neatly matches the three-point plan from above: create a new node c, set the
node’s next pointer to the current head d, and set the head pointer to the new
node e. By populating the data in the node structure itself from the node constructor B,
you’ve ensured that the node is ready to roll as soon as it’s constructed, so that’s the easy
problem down. Then you use compare_exchange_weak() to ensure that the head
pointer still has the same value as you stored in new_node->next d, and you set it to
new_node if so. This bit of code also uses a nifty part of the compare/exchange function-
ality: if it returns false to indicate that the comparison failed (for example, because
head was modified by another thread), the value supplied as the first parameter

Listing 7.2 Implementing push() without locks

b

c d

e

Download from Wow! eBook <www.wowebook.com>

186 CHAPTER 7 Designing lock-free concurrent data structures
(new_node->next) is updated to the current value of head. You therefore don’t have to
reload head each time through the loop, because the compiler does that for you. Also,
because you’re just looping directly on failure, you can use compare_exchange_weak,
which can result in more optimal code than compare_exchange_strong on some archi-
tectures (see chapter 5).

 So, you might not have a pop() operation yet, but you can quickly check push()
against the guidelines. The only place that can throw an exception is the construction
of the new node B, but this will clean up after itself, and the list hasn’t been modified
yet, so that’s perfectly safe. Because you build the data to be stored as part of the node,
and you use compare_exchange_weak() to update the head pointer, there are no
problematic race conditions here. Once the compare/exchange succeeds, the node is
on the list and ready for the taking. There are no locks, so there’s no possibility of
deadlock, and your push() function passes with flying colors.

 Of course, now that you have a means of adding data to the stack, you need a way
of getting it off again. On the face of it, this is quite simple:

1 Read the current value of head.
2 Read head->next.
3 Set head to head->next.
4 Return the data from the retrieved node.
5 Delete the retrieved node.

However, in the presence of multiple threads, this isn’t so simple. If there are two
threads removing items from the stack, they both might read the same value of head at
step 1. If one thread then proceeds all the way through to step 5 before the other gets
to step 2, the second thread will be dereferencing a dangling pointer. This is one of
the biggest issues in writing lock-free code, so for now you’ll just leave out step 5 and
leak the nodes.

 This doesn’t resolve all the problems, though. There’s another problem: if two
threads read the same value of head, they’ll return the same node. This violates the
intent of the stack data structure, so you need to avoid this. You can resolve this the same
way you resolved the race in push(): use compare/exchange to update head. If the
compare/exchange fails, either a new node has been pushed on or another thread
just popped the node you were trying to pop. Either way, you need to return to step 1
(although the compare/exchange call rereads head for you).

 Once the compare/exchange call succeeds, you know you’re the only thread that’s
popping the given node off the stack, so you can safely execute step 4. Here’s a first
cut at pop():

template<typename T>
class lock_free_stack
{
public:
 void pop(T& result)
 {
Download from Wow! eBook <www.wowebook.com>

187Examples of lock-free data structures
 node* old_head=head.load();
 while(!head.compare_exchange_weak(old_head,old_head->next));
 result=old_head->data;
 }
};

Although this is nice and succinct, there are still a couple of problems aside from the
leaking node. First, it doesn’t work on an empty list: if head is a null pointer, it will
cause undefined behavior as it tries to read the next pointer. This is easily fixed by
checking for nullptr in the while loop and either throwing an exception on an
empty stack or returning a bool to indicate success or failure.

 The second problem is an exception-safety issue. When we first introduced the
thread-safe stack back in chapter 3, you saw how just returning the object by value left
you with an exception safety issue: if an exception is thrown when copying the return
value, the value is lost. In that case, passing in a reference to the result was an accept-
able solution because you could ensure that the stack was left unchanged if an excep-
tion was thrown. Unfortunately, here you don’t have that luxury; you can only safely
copy the data once you know you’re the only thread returning the node, which means
the node has already been removed from the queue. Consequently, passing in the target for
the return value by reference is no longer an advantage: you might as well just return
by value. If you want to return the value safely, you have to use the other option from
chapter 3: return a (smart) pointer to the data value.

 If you return a smart pointer, you can just return nullptr to indicate that there’s
no value to return, but this requires that the data be allocated on the heap. If you do
the heap allocation as part of the pop(),you’re still no better off, because the heap
allocation might throw an exception. Instead, you can allocate the memory when you
push() the data onto the stack—you have to allocate memory for the node anyway.
Returning a std::shared_ptr<> won’t throw an exception, so pop() is now safe. Put-
ting all this together gives the following listing.

template<typename T>
class lock_free_stack
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 node* next;

 node(T const& data_):
 data(std::make_shared<T>(data_))
 {}
 };

 std::atomic<node*> head;
public:
 void push(T const& data)

Listing 7.3 A lock-free stack that leaks nodes

Data is now held
by pointer

b

Create std::shared_ptr
for newly allocated T

c

Download from Wow! eBook <www.wowebook.com>

188 CHAPTER 7 Designing lock-free concurrent data structures
 {
 node* const new_node=new node(data);
 new_node->next=head.load();
 while(!head.compare_exchange_weak(new_node->next,new_node));
 }
 std::shared_ptr<T> pop()
 {
 node* old_head=head.load();
 while(old_head &&
 !head.compare_exchange_weak(old_head,old_head->next));
 return old_head ? old_head->data : std::shared_ptr<T>();
 }
};

The data is held by the pointer now B, so you have to allocate the data on the heap in
the node constructor c. You also have to check for a null pointer before you derefer-
ence old_head in the compare_exchange_weak() loop d. Finally, you either return
the data associated with your node, if there is one, or a null pointer if not e. Note that
although this is lock-free, it’s not wait-free, because the while loops in both push() and
pop() could in theory loop forever if the compare_exchange_weak() keeps failing.

 If you have a garbage collector picking up after you (like in managed languages
such as C# or Java), you’re finished; the old node will be collected and recycled once
it’s no longer being accessed by any threads. However, not many C++ compilers ship
with a garbage collector, so you generally have to tidy up after yourself.

7.2.2 Stopping those pesky leaks: managing memory in lock-free
data structures

When we first looked at pop(), we opted to leak nodes in order to avoid the race con-
dition where one thread deletes a node while another thread still holds a pointer to it
that it’s just about to dereference. However, leaking memory isn’t acceptable in any
sensible C++ program, so we have to do something about that. Now it’s time to look at
the problem and work out a solution.

 The basic problem is that you want to free a node, but you can’t do so until you’re
sure there are no other threads that still hold pointers to it. If only one thread ever
calls pop() on a particular stack instance, you’re home free. push() doesn’t touch the
node once it’s been added to the stack, so the thread that called pop() must be the only
thread that can touch the node, and it can safely delete it.

 On the other hand, if you need to handle multiple threads calling pop() on the same
stack instance, you need some way to track when it’s safe to delete a node. This essentially
means you need to write a special-purpose garbage collector just for nodes. Now, this
might sound scary, but although it’s certainly tricky, it’s not that bad: you’re only checking
for nodes, and you’re only checking for nodes accessed from pop(). You’re not worried
about nodes in push(), because they’re only accessible from one thread until they’re on
the stack, whereas multiple threads might be accessing the same node in pop().

 If there are no threads calling pop(),it’s perfectly safe to delete all the nodes cur-
rently awaiting deletion. Therefore, if you add the nodes to a “to be deleted” list when

Check old_head is not a null
pointer before you dereference it

d

e

Download from Wow! eBook <www.wowebook.com>

189Examples of lock-free data structures
you’ve extracted the data, then you can delete them all when there are no threads call-
ing pop(). How do you know there aren’t any threads calling pop()? Simple—count
them. If you increment a counter on entry and decrement that counter on exit, it’s
safe to delete the nodes from the “to be deleted” list when the counter is zero. Of
course, it will have to be an atomic counter so it can safely be accessed from multiple
threads. The following listing shows the amended pop() function, and listing 7.5
shows the supporting functions for such an implementation.

template<typename T>
class lock_free_stack
{
private:
 std::atomic<unsigned> threads_in_pop;
 void try_reclaim(node* old_head);
public:
 std::shared_ptr<T> pop()
 {
 ++threads_in_pop;
 node* old_head=head.load();
 while(old_head &&
 !head.compare_exchange_weak(old_head,old_head->next));
 std::shared_ptr<T> res;
 if(old_head)
 {
 res.swap(old_head->data);
 }
 try_reclaim(old_head);
 return res;
 }
};

The atomic variable threads_in_pop B is used to count the threads currently trying
to pop an item off the stack. It’s incremented at the start of pop() c and decre-
mented inside try_reclaim(), which is called once the node has been removed e.
Because you’re going to potentially delay the deletion of the node itself, you can use
swap() to remove the data from the node d rather than just copying the pointer, so
that the data will be deleted automatically when you no longer need it rather than it
being kept alive because there’s still a reference in a not-yet-deleted node. The next
listing shows what goes into try_reclaim().

template<typename T>
class lock_free_stack
{
private:
 std::atomic<node*> to_be_deleted;

 static void delete_nodes(node* nodes)
 {

Listing 7.4 Reclaiming nodes when no threads are in pop()

Listing 7.5 The reference-counted reclamation machinery

Atomic
variable

b

Increase counter before
doing anything else

c

Reclaim deleted
nodes if you can

d

Extract data from node
rather than copying pointere
Download from Wow! eBook <www.wowebook.com>

190 CHAPTER 7 Designing lock-free concurrent data structures
 while(nodes)
 {
 node* next=nodes->next;
 delete nodes;
 nodes=next;
 }
 }

 void try_reclaim(node* old_head)
 {
 if(threads_in_pop==1)
 {
 node* nodes_to_delete=to_be_deleted.exchange(nullptr);
 if(!--threads_in_pop)
 {
 delete_nodes(nodes_to_delete);
 }
 else if(nodes_to_delete)
 {
 chain_pending_nodes(nodes_to_delete);
 }
 delete old_head;
 }
 else
 {
 chain_pending_node(old_head);
 --threads_in_pop;
 }
 }
 void chain_pending_nodes(node* nodes)
 {
 node* last=nodes;
 while(node* const next=last->next)
 {
 last=next;
 }
 chain_pending_nodes(nodes,last);
 }

 void chain_pending_nodes(node* first,node* last)
 {
 last->next=to_be_deleted;
 while(!to_be_deleted.compare_exchange_weak(
 last->next,first));
 }

 void chain_pending_node(node* n)
 {
 chain_pending_nodes(n,n);
 }

};

If the count of threads_in_pop is 1 when you’re trying to reclaim the node B, you’re
the only thread currently in pop(), which means it’s safe to delete the node you just
removed h, and it may also be safe to delete the pending nodes. If the count is not 1,
it’s not safe to delete any nodes, so you have to add the node to the pending list i.

b

Claim list of
to-be-deleted

nodes

c

Are you the only
thread in pop()?d

e

f

g

h

i

Follow the next pointer
chain to the end

j

1)

Loop to guarantee
that last->next is
correct1!

1@
Download from Wow! eBook <www.wowebook.com>

191Examples of lock-free data structures
 Assume for a moment that threads_in_pop is 1. You now need to try to reclaim
the pending nodes; if you don’t, they’ll stay pending until you destroy the stack. To do
this, you first claim the list for yourself with an atomic exchange operation c and
then decrement the count of threads_in_pop d. If the count is zero after the decre-
ment, you know that no other thread can be accessing this list of pending nodes.
There may be new pending nodes, but you’re not bothered about them for now, as
long as it’s safe to reclaim your list. You can then just call delete_nodes to iterate
down the list and delete them e.

 If the count is not zero after the decrement, it’s not safe to reclaim the nodes, so if
there are any f, you must chain them back onto the list of nodes pending deletion g.
This can happen if there are multiple threads accessing the data structure concur-
rently. Other threads might have called pop() in between the first test of threads_in_
pop B and the “claiming” of the list c, potentially adding new nodes to the list that
are still being accessed by one or more of those other threads. In figure 7.1, thread C
adds node Y to the to_be_deleted list, even though thread B is still referencing it as
old_head, and will thus try and read its next pointer. Thread A can’t therefore delete
the nodes without potentially causing undefined behavior for thread B.

 To chain the nodes that are pending deletion onto the pending list, you reuse the
next pointer from the nodes to link them together. In the case of relinking an existing
chain back onto the list, you traverse the chain to find the end j, replace the next
pointer from the last node with the current to_be_deleted pointer 1), and store the first
node in the chain as the new to_be_deleted pointer 1!. You have to use compare_
exchange_weak in a loop here in order to ensure that you don’t leak any nodes that have
been added by another thread. This has the benefit of updating the next pointer from
the end of the chain if it has been changed. Adding a single node onto the list is a special
case where the first node in the chain to be added is the same as the last one 1@.

 This works reasonably well in low-load situations, where there are suitable quiescent
points at which no threads are in pop(). However, this is potentially a transient situa-
tion, which is why you need to test that the threads_in_pop count decrements to zero d
before doing the reclaim and why this test occurs before you delete the just-removed
node h. Deleting a node is potentially a time-consuming operation, and you want the
window in which other threads can modify the list to be as small as possible. The lon-
ger the time between when the thread first finds threads_in_pop to be equal to 1 and
the attempt to delete the nodes, the more chance there is that another thread has
called pop(), and that threads_in_pop is no longer equal to 1, thus preventing the
nodes from actually being deleted.

 In high-load situations, there may never be such a quiescent state, because other
threads have entered pop() before all the threads initially in pop() have left. Under
such a scenario, the to_be_deleted list would grow without bounds, and you’d be
essentially leaking memory again. If there aren’t going to be any quiescent periods, you
need to find an alternative mechanism for reclaiming the nodes. The key is to identify
when no more threads are accessing a particular node so that it can be reclaimed. By
far the easiest such mechanism to reason about is the use of hazard pointers.
Download from Wow! eBook <www.wowebook.com>

192 CHAPTER 7 Designing lock-free concurrent data structures
Figure 7.1 Three threads call
pop() concurrently, showing
why you must check
threads_in_pop after
claiming the nodes to be
deleted in try_reclaim().
Download from Wow! eBook <www.wowebook.com>

193Examples of lock-free data structures
7.2.3 Detecting nodes that can’t be reclaimed using hazard pointers

The term hazard pointers is a reference to a technique discovered by Maged Michael.1

They are so called because deleting a node that might still be referenced by other
threads is hazardous. If other threads do indeed hold references to that node and pro-
ceed to access the node through that reference, you have undefined behavior. The
basic idea is that if a thread is going to access an object that another thread might
want to delete, it first sets a hazard pointer to reference the object, thus informing the
other thread that deleting the object would indeed be hazardous. Once the object is
no longer needed, the hazard pointer is cleared. If you’ve ever watched the Oxford/
Cambridge boat race, you’ve seen a similar mechanism used when starting the race: the
cox of either boat can raise their hand to indicate that they aren’t ready. While either
cox has their hand raised, the umpire may not start the race. If both coxes have their
hands down, the race may start, but a cox may raise their hand again if the race hasn’t
started and they feel the situation has changed.

 When a thread wishes to delete an object, it must first check the hazard pointers
belonging to the other threads in the system. If none of the hazard pointers reference
the object, it can safely be deleted. Otherwise, it must be left until later. Periodically,
the list of objects that have been left until later is checked to see if any of them can
now be deleted.

 Described at such a high level, it sounds relatively straightforward, so how do you
do this in C++?

 Well, first off you need a location in which to store the pointer to the object you’re
accessing, the hazard pointer itself. This location must be visible to all threads, and you
need one of these for each thread that might access the data structure. Allocating
them correctly and efficiently can be a challenge, so you’ll leave that for later and
assume you have a function get_hazard_pointer_for_current_thread() that returns
a reference to your hazard pointer. You then need to set it when you read a pointer
that you intend to dereference—in this case the head value from the list:

std::shared_ptr<T> pop()
{
 std::atomic<void*>& hp=get_hazard_pointer_for_current_thread();
 node* old_head=head.load();
 node* temp;
 do
 {
 temp=old_head;
 hp.store(old_head);
 old_head=head.load();
 } while(old_head!=temp);
 // ...
}

1 “Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic Reads and Writes,” Maged M.
Michael, in PODC ’02: Proceedings of the Twenty-first Annual Symposium on Principles of Distributed Computing
(2002), ISBN 1-58113-485-1.

b

c

d

Download from Wow! eBook <www.wowebook.com>

194 CHAPTER 7 Designing lock-free concurrent data structures
You have to do this in a while loop to ensure that the node hasn’t been deleted
between the reading of the old head pointer B and the setting of the hazard pointer c.
During this window no other thread knows you’re accessing this particular node. For-
tunately, if the old head node is going to be deleted, head itself must have changed, so
you can check this and keep looping until you know that the head pointer still has the
same value you set your hazard pointer to d. Using hazard pointers like this relies on
the fact that it's safe to use the value of a pointer after the object it references has been
deleted. This is technically undefined behavior if you are using the default implemen-
tation of new and delete, so either you need to ensure that your implementation per-
mits it, or you need to use a custom allocator that permits such usage.

 Now that you’ve set your hazard pointer, you can proceed with the rest of pop(), safe
in the knowledge that no other thread will delete the nodes from under you. Well, almost:
every time you reload old_head, you need to update the hazard pointer before you deref-
erence the freshly read pointer value. Once you’ve extracted a node from the list, you can
clear your hazard pointer. If there are no other hazard pointers referencing your node,
you can safely delete it; otherwise, you have to add it to a list of nodes to be deleted later.
The following listing shows a full implementation of pop() using such a scheme.

std::shared_ptr<T> pop()
{
 std::atomic<void*>& hp=get_hazard_pointer_for_current_thread();
 node* old_head=head.load();
 do
 {
 node* temp;
 do
 {
 temp=old_head;
 hp.store(old_head);
 old_head=head.load();
 } while(old_head!=temp);
 }
 while(old_head &&
 !head.compare_exchange_strong(old_head,old_head->next));
 hp.store(nullptr);
 std::shared_ptr<T> res;
 if(old_head)
 {
 res.swap(old_head->data);
 if(outstanding_hazard_pointers_for(old_head))
 {
 reclaim_later(old_head);
 }
 else
 {
 delete old_head;
 }
 delete_nodes_with_no_hazards();

Listing 7.6 An implementation of pop() using hazard pointers

Loop until you’ve set the
hazard pointer to head

b

Clear hazard pointer
once you’re finishedc Check for hazard

pointers referencing
a node before you
delete it

d

e

f

g

Download from Wow! eBook <www.wowebook.com>

195Examples of lock-free data structures
 }
 return res;
}

First off, you’ve moved the loop that sets the hazard pointer inside the outer loop for
reloading old_head if the compare/exchange fails B. You’re using compare_exchange_
strong() here because you’re actually doing work inside the while loop: a spurious
failure on compare_exchange_weak() would result in resetting the hazard pointer
unnecessarily. This ensures that the hazard pointer is correctly set before you derefer-
ence old_head. Once you’ve claimed the node as yours, you can clear your hazard
pointer c. If you did get a node, you need to check the hazard pointers belonging to
other threads to see if they reference it d. If so, you can’t delete it just yet, so you
must put it on a list to be reclaimed later e; otherwise, you can delete it right away f.
Finally, you put in a call to check for any nodes for which you had to call
reclaim_later(). If there are no longer any hazard pointers referencing those
nodes, you can safely delete them g. Any nodes for which there are still outstanding
hazard pointers will be left for the next thread that calls pop().

 Of course, there’s still a lot of detail hidden in these new functions—get_

hazard_pointer_for_current_thread(), reclaim_later(), outstanding_hazard_
pointers_for(), and delete_nodes_with_no_hazards()—so let’s draw back the cur-
tain and look at how they work.

 The exact scheme for allocating hazard pointer instances to threads used by
get_hazard_pointer_for_current_thread() doesn’t really matter for the program
logic (although it can affect the efficiency, as you’ll see later). So for now you’ll go
with a simple structure: a fixed-size array of pairs of thread IDs and pointers. get_
hazard_pointer_for_current_thread() then searches through the array to find the
first free slot and sets the ID entry of that slot to the ID of the current thread. When
the thread exits, the slot is freed by resetting the ID entry to a default-constructed
std::thread::id(). This is shown in the following listing.

unsigned const max_hazard_pointers=100;
struct hazard_pointer
{
 std::atomic<std::thread::id> id;
 std::atomic<void*> pointer;
};
hazard_pointer hazard_pointers[max_hazard_pointers];

class hp_owner
{
 hazard_pointer* hp;

public:
 hp_owner(hp_owner const&)=delete;
 hp_owner operator=(hp_owner const&)=delete;

Listing 7.7 A simple implementation of get_hazard_pointer_for_
current_thread()
Download from Wow! eBook <www.wowebook.com>

196 CHAPTER 7 Designing lock-free concurrent data structures
 hp_owner():
 hp(nullptr)
 {
 for(unsigned i=0;i<max_hazard_pointers;++i)
 {
 std::thread::id old_id;
 if(hazard_pointers[i].id.compare_exchange_strong(
 old_id,std::this_thread::get_id()))
 {
 hp=&hazard_pointers[i];
 break;
 }
 }
 if(!hp)
 {
 throw std::runtime_error("No hazard pointers available");
 }
 }

 std::atomic<void*>& get_pointer()
 {
 return hp->pointer;
 }

 ~hp_owner()
 {
 hp->pointer.store(nullptr);
 hp->id.store(std::thread::id());
 }
};

std::atomic<void*>& get_hazard_pointer_for_current_thread()
{
 thread_local static hp_owner hazard;
 return hazard.get_pointer();
}

The actual implementation of get_hazard_pointer_for_current_thread() itself is
deceptively simple d: it has a thread_local variable of type hp_owner e that stores
the hazard pointer for the current thread. It then just returns the pointer from that
object f. This works as follows: The first time each thread calls this function, a new
instance of hp_owner is created. The constructor for this new instance B then
searches through the table of owner/pointer pairs looking for an entry without an
owner. It uses compare_exchange_strong() to check for an entry without an owner
and claim it in one go c. If the compare_exchange_strong() fails, another thread
owns that entry, so you move on to the next. If the exchange succeeds, you’ve success-
fully claimed the entry for the current thread, so you store it and stop the search d. If
you get to the end of the list without finding a free entry e, there are too many
threads using hazard pointers, so you throw an exception.

 Once the hp_owner instance has been created for a given thread, further accesses
are much faster because the pointer is cached, so the table doesn’t have to be
scanned again.

Try to claim ownership
of a hazard pointer

b

c

d

Each thread has its
own hazard pointeref
Download from Wow! eBook <www.wowebook.com>

197Examples of lock-free data structures
 When each thread exits, if an instance of hp_owner was created for that thread, then
it’s destroyed. The destructor then resets the actual pointer to nullptr before setting the
owner ID to std::thread::id(), allowing another thread to reuse the entry later f.

 With this implementation of get_hazard_pointer_for_current_thread(), the
implementation of outstanding_hazard_pointers_for() is really simple: just scan
through the hazard pointer table looking for entries:

bool outstanding_hazard_pointers_for(void* p)
{
 for(unsigned i=0;i<max_hazard_pointers;++i)
 {
 if(hazard_pointers[i].pointer.load()==p)
 {
 return true;
 }
 }
 return false;
}

It’s not even worth checking whether each entry has an owner: unowned entries will have
a null pointer, so the comparison will return false anyway, and it simplifies the code.

reclaim_later() and delete_nodes_with_no_hazards() can then work on a sim-
ple linked list; reclaim_later() just adds nodes to the list, and delete_nodes_with_
no_hazards() scans through the list, deleting entries with no outstanding hazards.
The next listing shows just such an implementation.

template<typename T>
void do_delete(void* p)
{
 delete static_cast<T*>(p);
}

struct data_to_reclaim
{
 void* data;
 std::function<void(void*)> deleter;
 data_to_reclaim* next;

 template<typename T>
 data_to_reclaim(T* p):
 data(p),
 deleter(&do_delete<T>),
 next(0)
 {}

 ~data_to_reclaim()
 {
 deleter(data);
 }
};

std::atomic<data_to_reclaim*> nodes_to_reclaim;

Listing 7.8 A simple implementation of the reclaim functions

b

c

Download from Wow! eBook <www.wowebook.com>

198 CHAPTER 7 Designing lock-free concurrent data structures
void add_to_reclaim_list(data_to_reclaim* node)
{
 node->next=nodes_to_reclaim.load();
 while(!nodes_to_reclaim.compare_exchange_weak(node->next,node));
}

template<typename T>
void reclaim_later(T* data)
{
 add_to_reclaim_list(new data_to_reclaim(data));
}

void delete_nodes_with_no_hazards()
{
 data_to_reclaim* current=nodes_to_reclaim.exchange(nullptr);
 while(current)
 {
 data_to_reclaim* const next=current->next;
 if(!outstanding_hazard_pointers_for(current->data))
 {
 delete current;
 }
 else
 {
 add_to_reclaim_list(current);
 }
 current=next;
 }
}

First off, I expect you’ve spotted that reclaim_later() is a function template rather
than a plain function e. This is because hazard pointers are a general-purpose utility, so
you don’t want to tie yourselves to stack nodes. You’ve been using std::atomic<void*>
for storing the pointers already. You therefore need to handle any pointer type, but
you can’t use void* because you want to delete the data items when you can, and
delete requires the real type of the pointer. The constructor of data_to_reclaim
handles that nicely, as you’ll see in a minute: reclaim_later() just creates a new
instance of data_to_reclaim for your pointer and adds it to the reclaim list f.
add_to_reclaim_list() itself d is just a simple compare_exchange_weak() loop on
the list head like you’ve seen before.

 So, back to the constructor of data_to_reclaim B: the constructor is also a tem-
plate. It stores the data to be deleted as a void* in the data member and then stores a
pointer to the appropriate instantiation of do_delete()—a simple function that casts
the supplied void* to the chosen pointer type and then deletes the pointed-to object.
std::function<> wraps this function pointer safely, so that the destructor of
data_to_reclaim can then delete the data just by invoking the stored function c.

 The destructor of data_to_reclaim isn’t called when you’re adding nodes to the list;
it’s called when there are no more hazard pointers to that node. This is the responsi-
bility of delete_nodes_with_no_hazards().

delete_nodes_with_no_hazards() first claims the entire list of nodes to be
reclaimed for itself with a simple exchange() g. This simple but crucial step ensures

d

e

f

g

h

i

j

Download from Wow! eBook <www.wowebook.com>

199Examples of lock-free data structures
that this is the only thread trying to reclaim this particular set of nodes. Other threads
are now free to add further nodes to the list or even try to reclaim them without
impacting the operation of this thread.

 Then, as long as there are still nodes left in the list, you check each node in turn to
see if there are any outstanding hazard pointers h. If there aren’t, you can safely
delete the entry (and thus clean up the stored data) i. Otherwise, you just add the
item back on the list for reclaiming later j.

 Although this simple implementation does indeed safely reclaim the deleted nodes,
it adds quite a bit of overhead to the process. Scanning the hazard pointer array requires
checking max_hazard_pointers atomic variables, and this is done for every pop() call.
Atomic operations are inherently slow—often 100 times slower than an equivalent non-
atomic operation on desktop CPUs—so this makes pop() an expensive operation. Not
only do you scan the hazard pointer list for the node you’re about to remove, but you
also scan it for each node in the waiting list. Clearly this is a bad idea. There may well be
max_hazard_pointers nodes in the list, and you’re checking all of them against
max_hazard_pointers stored hazard pointers. Ouch! There has to be a better way.

BETTER RECLAMATION STRATEGIES USING HAZARD POINTERS

Of course, there is a better way. What I’ve shown here is a simple and naïve implementa-
tion of hazard pointers to help explain the technique. The first thing you can do is trade
memory for performance. Rather than checking every node on the reclamation list
every time you call pop(), you don’t try to reclaim any nodes at all unless there are more
than max_hazard_pointers nodes on the list. That way you’re guaranteed to be able to
reclaim at least one node. If you just wait until there are max_hazard_pointers+1 nodes
on the list, you’re not much better off. Once you get to max_hazard_pointers nodes,
you’ll be trying to reclaim nodes for most calls to pop(), so you’re not doing much
better. But if you wait until there are 2*max_hazard_pointers nodes on the list, you’re
guaranteed to be able to reclaim at least max_hazard_pointers nodes, and it will then
be at least max_hazard_pointers calls to pop() before you try to reclaim any nodes
again. This is much better. Rather than checking around max_hazard_pointers nodes
every call to push() (and not necessarily reclaiming any), you’re checking 2*max_
hazard_pointers nodes every max_hazard_pointers calls to pop() and reclaiming at
least max_hazard_pointers nodes. That’s effectively two nodes checked for every
pop(), one of which is reclaimed.

 Even this has a downside (beyond the increased memory usage): you now have to
count the nodes on the reclamation list, which means using an atomic count, and you
still have multiple threads competing to access the reclamation list itself. If you have
memory to spare, you can trade increased memory usage for an even better reclama-
tion scheme: each thread keeps its own reclamation list in a thread-local variable.
There’s thus no need for atomic variables for the count or the list access. Instead, you
have max_hazard_pointers*max_hazard_pointers nodes allocated. If a thread exits
before all its nodes have been reclaimed, they can be stored in the global list as before
and added to the local list of the next thread doing a reclamation process.
Download from Wow! eBook <www.wowebook.com>

200 CHAPTER 7 Designing lock-free concurrent data structures
 Another downside of hazard pointers is that they’re covered by a patent applica-
tion submitted by IBM.2 If you write software for use in a country where the patents are
valid, you need to make sure you have a suitable licensing arrangement in place. This
is something common to many of the lock-free memory reclamation techniques; this
is an active research area, so large companies are taking out patents where they can.
You may well be asking why I’ve devoted so many pages to a technique that many peo-
ple will be unable to use, and that’s a fair question. First, it may be possible to use the
technique without paying for a license. For example, if you’re developing free soft-
ware licensed under the GPL,3 your software may be covered by IBM’s statement of
non-assertion.4 Second, and most important, the explanation of the techniques shows
some of the things that are important to think about when writing lock-free code,
such as the costs of atomic operations.

 So, are there any unpatented memory reclamation techniques that can be used
with lock-free code? Luckily, there are. One such mechanism is reference counting.

7.2.4 Detecting nodes in use with reference counting

Back in section 7.2.2, you saw that the problem with deleting nodes is detecting which
nodes are still being accessed by reader threads. If you could safely identify precisely
which nodes were being referenced and when no threads were accessing these nodes,
you could delete them. Hazard pointers tackle the problem by storing a list of the
nodes in use. Reference counting tackles the problem by storing a count of the num-
ber of threads accessing each node.

 This may seem nice and straightforward, but it’s quite hard to manage in practice.
At first, you might think that something like std::shared_ptr<> would be up to the
task; after all, it’s a reference-counted pointer. Unfortunately, although some opera-
tions on std::shared_ptr<> are atomic, they aren’t guaranteed to be lock-free.
Although by itself this is no different than any of the operations on the atomic types,
std::shared_ptr<> is intended for use in many contexts, and making the atomic
operations lock-free would likely impose an overhead on all uses of the class. If your
platform supplies an implementation for which std::atomic_is_lock_free(&some_
shared_ptr) returns true, the whole memory reclamation issue goes away. Just use
std::shared_ptr<node> for the list, as in the following listing.

template<typename T>
class lock_free_stack
{
private:

2 Maged M. Michael, U.S. Patent and Trademark Office application number 20040107227, “Method for effi-
cient implementation of dynamic lock-free data structures with safe memory reclamation.”

3 GNU General Public License http://www.gnu.org/licenses/gpl.html.
4 IBM Statement of Non-Assertion of Named Patents Against OSS, http://www.ibm.com/ibm/licensing/patents/

pledgedpatents.pdf.

Listing 7.9 A lock-free stack using a lock-free std::shared_ptr<> implementation
Download from Wow! eBook <www.wowebook.com>

http://www.gnu.org/licenses/gpl.html
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf

201Examples of lock-free data structures
 struct node
 {
 std::shared_ptr<T> data;
 std::shared_ptr<node> next;

 node(T const& data_):
 data(std::make_shared<T>(data_))
 {}
 };

 std::shared_ptr<node> head;
public:
 void push(T const& data)
 {
 std::shared_ptr<node> const new_node=std::make_shared<node>(data);
 new_node->next=head.load();
 while(!std::atomic_compare_exchange_weak(&head,
 &new_node->next,new_node));
 }
 std::shared_ptr<T> pop()
 {
 std::shared_ptr<node> old_head=std::atomic_load(&head);
 while(old_head && !std::atomic_compare_exchange_weak(&head,
 &old_head,old_head->next));
 return old_head ? old_head->data : std::shared_ptr<T>();
 }
};

In the probable case that your std::shared_ptr<> implementation isn’t lock-free,
you need to manage the reference counting manually.

 One possible technique involves the use of not one but two reference counts for
each node: an internal count and an external count. The sum of these values is the total
number of references to the node. The external count is kept alongside the pointer to
the node and is increased every time the pointer is read. When the reader is finished
with the node, it decreases the internal count. A simple operation that reads the
pointer will thus leave the external count increased by one and the internal count
decreased by one when it’s finished.

 When the external count/pointer pairing is no longer required (that is, the node
is no longer accessible from a location accessible to multiple threads), the internal
count is increased by the value of the external count minus one and the external counter
is discarded. Once the internal count is equal to zero, there are no outstanding refer-
ences to the node and it can be safely deleted. It’s still important to use atomic operations
for updates of shared data. Let’s now look at an implementation of a lock-free stack that
uses this technique to ensure that the nodes are reclaimed only when it’s safe to do so.

 The following listing shows the internal data structure and the implementation of
push(), which is nice and straightforward.

template<typename T>
class lock_free_stack

Listing 7.10 Pushing a node on a lock-free stack using split reference counts
Download from Wow! eBook <www.wowebook.com>

202 CHAPTER 7 Designing lock-free concurrent data structures
{
private:
 struct node;

 struct counted_node_ptr
 {
 int external_count;
 node* ptr;
 };

 struct node
 {
 std::shared_ptr<T> data;
 std::atomic<int> internal_count;
 counted_node_ptr next;

 node(T const& data_):
 data(std::make_shared<T>(data_)),
 internal_count(0)
 {}
 };

 std::atomic<counted_node_ptr> head;

public:
 ~lock_free_stack()
 {
 while(pop());
 }

 void push(T const& data)
 {
 counted_node_ptr new_node;
 new_node.ptr=new node(data);
 new_node.external_count=1;
 new_node.ptr->next=head.load();
 while(!head.compare_exchange_weak(new_node.ptr->next,new_node));
 }
};

First, the external count is wrapped together with the node pointer in the counted_
node_ptr structure B. This can then be used for the next pointer in the node struc-
ture d alongside the internal count c. Because counted_node_ptr is just a simple
struct, you can use it with the std::atomic<> template for the head of the list e.

 On those platforms that support a double-word-compare-and-swap operation, this
structure will be small enough for std::atomic<counted_node_ptr> to be lock-free. If
it isn’t on your platform, you might be better off using the std::shared_ptr<> ver-
sion from listing 7.9, because std::atomic<> will use a mutex to guarantee atomicity
when the type is too large for the platform’s atomic instructions (thus rendering your
“lock-free” algorithm lock-based after all). Alternatively, if you’re willing to limit the size
of the counter, and you know that your platform has spare bits in a pointer (for example,
because the address space is only 48 bits but a pointer is 64 bits), you can store the count
inside the spare bits of the pointer to fit it all back in a single machine word. Such tricks
require platform-specific knowledge and are thus outside the scope of this book.

b

c

d

e

f

Download from Wow! eBook <www.wowebook.com>

203Examples of lock-free data structures
push() is relatively simple f. You construct a counted_node_ptr that refers to a
freshly allocated node with associated data and set the next value of the node to the
current value of head. You can then use compare_exchange_weak() to set the value of
head, just as in the previous listings. The counts are set up so the internal_count is
zero, and the external_count is one. Because this is a new node, there’s currently
only one external reference to the node (the head pointer itself).

 As usual, the complexities come to light in the implementation of pop(), which is
shown in the following listing.

template<typename T>
class lock_free_stack
{
private:
 void increase_head_count(counted_node_ptr& old_counter)
 {
 counted_node_ptr new_counter;

 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!head.compare_exchange_strong(old_counter,new_counter));

 old_counter.external_count=new_counter.external_count;
 }

public:
 std::shared_ptr<T> pop()#
 {
 counted_node_ptr old_head=head.load();
 for(;;)
 {
 increase_head_count(old_head);
 node* const ptr=old_head.ptr;
 if(!ptr)
 {
 return std::shared_ptr<T>();
 }
 if(head.compare_exchange_strong(old_head,ptr->next))
 {
 std::shared_ptr<T> res;
 res.swap(ptr->data);

 int const count_increase=old_head.external_count-2;

 if(ptr->internal_count.fetch_add(count_increase)==
 -count_increase)
 {
 delete ptr;
 }

 return res;

Listing 7.11 Popping a node from a lock-free stack using split reference counts

b

c

d

e

f

g

h

Download from Wow! eBook <www.wowebook.com>

204 CHAPTER 7 Designing lock-free concurrent data structures
 }
 else if(ptr->internal_count.fetch_sub(1)==1)
 {
 delete ptr;
 }
 }
 }
};

This time, once you’ve loaded the value of head, you must first increase the count of
external references to the head node to indicate that you’re referencing it and to
ensure that it’s safe to dereference it. If you dereference the pointer before increasing
the reference count, another thread could free the node before you access it, thus
leaving you with a dangling pointer. This is the primary reason for using the split reference
count: by incrementing the external reference count, you ensure that the pointer
remains valid for the duration of your access. The increment is done with a
compare_exchange_strong() loop B that compares and sets the whole structure to
ensure that the pointer hasn’t been changed by another thread in the meantime.

 Once the count has been increased, you can safely dereference the ptr field of the
value loaded from head in order to access the pointed-to node c. If the pointer is a null
pointer, you’re at the end of the list: no more entries. If the pointer isn’t a null pointer,
you can try to remove the node by a compare_exchange_strong() call on head d.

 If the compare_exchange_strong() succeeds, you’ve taken ownership of the node
and can swap out the data in preparation for returning it e. This ensures that the
data isn’t kept alive just because other threads accessing the stack happen to still have
pointers to its node. Then you can add the external count to the internal count on the
node with an atomic fetch_add g. If the reference count is now zero, the previous
value (which is what fetch_add returns) was the negative of what you just added, in
which case you can delete the node. It’s important to note that the value you add is
actually two less than the external count f; you’ve removed the node from the list, so
you drop one off the count for that, and you’re no longer accessing the node from
this thread, so you drop another off the count for that. Whether or not you deleted
the node, you’ve finished, so you can return the data h.

 If the compare/exchange d fails, another thread removed your node before you
did, or another thread added a new node to the stack. Either way, you need to start
again with the fresh value of head returned by the compare/exchange call. But first
you must decrease the reference count on the node you were trying to remove. This
thread won’t access it anymore. If you’re the last thread to hold a reference (because
another thread removed it from the stack), the internal reference count will be 1, so
subtracting 1 will set the count to zero. In this case, you can delete the node here
before you loop I.

 So far, you’ve been using the default std::memory_order_seq_cst memory order-
ing for all your atomic operations. On most systems these are more expensive in terms
of execution time and synchronization overhead than the other memory orderings, and
on some systems considerably so. Now that you have the logic of your data structure

i

Download from Wow! eBook <www.wowebook.com>

205Examples of lock-free data structures
right, you can think about relaxing some of these memory-ordering requirements;
you don’t want to impose any unnecessary overhead on the users of the stack. So,
before leaving your stack behind and moving on to the design of a lock-free queue,
let’s examine the stack operations and ask ourselves, can we use more relaxed mem-
ory orderings for some operations and still get the same level of safety?

7.2.5 Applying the memory model to the lock-free stack
Before you go about changing the memory orderings, you need to examine the oper-
ations and identify the required relationships between them. You can then go back
and find the minimum memory orderings that provide these required relationships.
In order to do this, you’ll have to look at the situation from the point of view of
threads in several different scenarios. The simplest possible scenario has to be where
one thread pushes a data item onto the stack and another thread then pops that data
item off the stack some time later, so we’ll start from there.

 In this simple case, three important pieces of data are involved. First is the
counted_node_ptr used for transferring the data: head. Second is the node structure
that head refers to, and third is the data item pointed to by that node.

 The thread doing the push() first constructs the data item and the node and then
sets head. The thread doing the pop() first loads the value of head, then does a com-
pare/exchange loop on head to increase the reference count, and then reads the
node structure to obtain the next value. Right here you can see a required relation-
ship; the next value is a plain nonatomic object, so in order to read this safely, there
must be a happens-before relationship between the store (by the pushing thread) and
the load (by the popping thread). Because the only atomic operation in the push()
is the compare_exchange_weak(), and you need a release operation to get a happens-
before relationship between threads, the compare_exchange_weak() must be std::
memory_order_release or stronger. If the compare_exchange_weak() call fails, noth-
ing has changed and you keep looping, so you need only std::memory_order_
relaxed in that case:

void push(T const& data)
{
 counted_node_ptr new_node;
 new_node.ptr=new node(data);
 new_node.external_count=1;
 new_node.ptr->next=head.load(std::memory_order_relaxed)
 while(!head.compare_exchange_weak(new_node.ptr->next,new_node,
 std::memory_order_release,std::memory_order_relaxed));
}

What about the pop() code? In order to get the happens-before relationship you
need, you must have an operation that’s std::memory_order_acquire or stronger
before the access to next. The pointer you dereference to access the next field is the
old value read by the compare_exchange_strong() in increase_head_count(), so
you need the ordering on that if it succeeds. As with the call in push(), if the
exchange fails, you just loop again, so you can use relaxed ordering on failure:
Download from Wow! eBook <www.wowebook.com>

206 CHAPTER 7 Designing lock-free concurrent data structures
void increase_head_count(counted_node_ptr& old_counter)
{
 counted_node_ptr new_counter;

 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!head.compare_exchange_strong(old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));

 old_counter.external_count=new_counter.external_count;
}

If the compare_exchange_strong() call succeeds, you know that the value read had
the ptr field set to what’s now stored in old_counter. Because the store in push() was
a release operation, and this compare_exchange_strong() is an acquire operation,
the store synchronizes with the load and you have a happens-before relationship. Con-
sequently, the store to the ptr field in the push() happens before the ptr->next
access in pop(), and you’re safe.

 Note that the memory ordering on the initial head.load() didn’t matter to this
analysis, so you can safely use std::memory_order_relaxed for that.

 Next up, the compare_exchange_strong() to set head to old_head.ptr->next. Do
you need anything from this operation to guarantee the data integrity of this thread?
If the exchange succeeds, you access ptr->data, so you need to ensure that the store
to ptr->data in the push() thread happens before the load. However, you already
have that guarantee: the acquire operation in increase_head_count() ensures that
there’s a synchronizes-with relationship between the store in the push() thread and
that compare/exchange. Because the store to data in the push() thread is sequenced
before the store to head and the call to increase_head_count() is sequenced before
the load of ptr->data, there’s a happens-before relationship, and all is well even if
this compare/exchange in pop() uses std::memory_order_relaxed. The only other
place where ptr->data is changed is the very call to swap() that you’re looking at,
and no other thread can be operating on the same node; that’s the whole point of the
compare/exchange.

 If the compare_exchange_strong() fails, the new value of old_head isn’t touched
until next time around the loop, and you already decided that the std::memory_
order_acquire in increase_head_count() was enough, so std::memory_order_
relaxed is enough there also.

 What about other threads? Do you need anything stronger here to ensure other
threads are still safe? The answer is, no, because head is only ever modified by compare/
exchange operations. Because these are read-modify-write operations, they form part of
the release sequence headed by the compare/exchange in push(). Therefore, the
compare_exchange_weak() in push() synchronizes with a call to compare_exchange_
strong() in increase_head_count(), which reads the value stored, even if many
other threads modify head in the meantime.
Download from Wow! eBook <www.wowebook.com>

207Examples of lock-free data structures
 So you’ve nearly finished: the only remaining operations to deal with are the
fetch_add() operations for modifying the reference count. The thread that got to
return the data from this node can proceed, safe in the knowledge that no other
thread can have modified the node data. However, any thread that did not successfully
retrieve the data knows that another thread did modify the node data; it used swap() to
extract the referenced data item. Therefore you need to ensure that the swap() happens-
before the delete in order to avoid a data race. The easy way to do this is to make the
fetch_add() in the successful-return branch use std::memory_order_release and
the fetch_add() in the loop-again branch use std::memory_order_acquire. How-
ever, this is still overkill: only one thread does the delete (the one that sets the count
to zero), so only that thread needs to do an acquire operation. Thankfully, because
fetch_add() is a read-modify-write operation, it forms part of the release sequence, so
you can do that with an additional load(). If the loop-again branch decreases the ref-
erence count to zero, it can reload the reference count with std::memory_order_
acquire in order to ensure the required synchronizes-with relationship, and the
fetch_add() itself can use std::memory_order_relaxed. The final stack implementa-
tion with the new version of pop() is shown here.

template<typename T>
class lock_free_stack
{
private:
 struct node;

 struct counted_node_ptr
 {
 int external_count;
 node* ptr;
 };

 struct node
 {
 std::shared_ptr<T> data;
 std::atomic<int> internal_count;
 counted_node_ptr next;

 node(T const& data_):
 data(std::make_shared<T>(data_)),
 internal_count(0)
 {}
 };

 std::atomic<counted_node_ptr> head;

 void increase_head_count(counted_node_ptr& old_counter)
 {
 counted_node_ptr new_counter;

 do
 {

Listing 7.12 A lock-free stack with reference counting and relaxed atomic operations
Download from Wow! eBook <www.wowebook.com>

208 CHAPTER 7 Designing lock-free concurrent data structures
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!head.compare_exchange_strong(old_counter,new_counter,
 std::memory_order_acquire,
 std::memory_order_relaxed));

 old_counter.external_count=new_counter.external_count;
 }

public:
 ~lock_free_stack()
 {
 while(pop());
 }

 void push(T const& data)
 {
 counted_node_ptr new_node;
 new_node.ptr=new node(data);
 new_node.external_count=1;
 new_node.ptr->next=head.load(std::memory_order_relaxed)
 while(!head.compare_exchange_weak(new_node.ptr->next,new_node,
 std::memory_order_release,
 std::memory_order_relaxed));
 }
 std::shared_ptr<T> pop()
 {
 counted_node_ptr old_head=
 head.load(std::memory_order_relaxed);
 for(;;)
 {
 increase_head_count(old_head);
 node* const ptr=old_head.ptr;
 if(!ptr)
 {
 return std::shared_ptr<T>();
 }
 if(head.compare_exchange_strong(old_head,ptr->next,
 std::memory_order_relaxed))
 {
 std::shared_ptr<T> res;
 res.swap(ptr->data);

 int const count_increase=old_head.external_count-2;

 if(ptr->internal_count.fetch_add(count_increase,
 std::memory_order_release)==-count_increase)
 {
 delete ptr;
 }

 return res;
 }
 else if(ptr->internal_count.fetch_add(-1,
 std::memory_order_relaxed)==1)
 {
Download from Wow! eBook <www.wowebook.com>

209Examples of lock-free data structures
 ptr->internal_count.load(std::memory_order_acquire);
 delete ptr;
 }
 }
 }
};

That was quite a workout, but you got there in the end, and the stack is better for it. By
using more relaxed operations in a carefully thought-through manner, the perfor-
mance is improved without impacting the correctness. As you can see, the implemen-
tation of pop() is now 37 lines rather than the 8 lines of the equivalent pop() in the
lock-based stack of listing 6.1 and the 7 lines of the basic lock-free stack without mem-
ory management in listing 7.2. As we move on to look at writing a lock-free queue,
you’ll see a similar pattern: lots of the complexity in lock-free code comes from man-
aging memory.

7.2.6 Writing a thread-safe queue without locks

A queue offers a slightly different challenge to a stack, because the push() and pop()
operations access different parts of the data structure in a queue, whereas they both
access the same head node for a stack. Consequently, the synchronization needs are
different. You need to ensure that changes made to one end are correctly visible
to accesses at the other. However, the structure of try_pop() for the queue in list-
ing 6.6 isn’t actually that far off that of pop() for the simple lock-free stack in listing 7.2,
so you can reasonably assume that the lock-free code won’t be that dissimilar. Let’s
see how.

 If you take listing 6.6 as a basis, you need two node pointers: one for the head of the
list and one for the tail. You’re going to be accessing these from multiple threads, so
they’d better be atomic in order to allow you to do away with the corresponding
mutexes. Let’s start by making that small change and see where it gets you. The follow-
ing listing shows the result.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 std::shared_ptr<T> data;
 node* next;

 node():
 next(nullptr)
 {}
 };

 std::atomic<node*> head;
 std::atomic<node*> tail;

Listing 7.13 A single-producer, single-consumer lock-free queue
Download from Wow! eBook <www.wowebook.com>

210 CHAPTER 7 Designing lock-free concurrent data structures
 node* pop_head()
 {
 node* const old_head=head.load();
 if(old_head==tail.load())
 {
 return nullptr;
 }
 head.store(old_head->next);
 return old_head;
 }
public:
 lock_free_queue():
 head(new node),tail(head.load())
 {}

 lock_free_queue(const lock_free_queue& other)=delete;
 lock_free_queue& operator=(const lock_free_queue& other)=delete;

 ~lock_free_queue()
 {
 while(node* const old_head=head.load())
 {
 head.store(old_head->next);
 delete old_head;
 }
 }
 std::shared_ptr<T> pop()
 {
 node* old_head=pop_head();
 if(!old_head)
 {
 return std::shared_ptr<T>();
 }

 std::shared_ptr<T> const res(old_head->data);
 delete old_head;
 return res;
 }

 void push(T new_value)
 {
 std::shared_ptr<T> new_data(std::make_shared<T>(new_value));
 node* p=new node;
 node* const old_tail=tail.load();
 old_tail->data.swap(new_data);
 old_tail->next=p;
 tail.store(p);
 }
};

At first glance, this doesn’t seem too bad, and if there’s only one thread calling push()
at a time, and only one thread calling pop(), then this is actually perfectly fine. The
important thing in that case is the happens-before relationship between the push()
and the pop() to ensure that it’s safe to retrieve the data. The store to tail h syn-
chronizes with the load from tail B; the store to the preceding node’s data pointer f

b

c

de
 f

g
h

Download from Wow! eBook <www.wowebook.com>

211Examples of lock-free data structures
is sequenced before the store to tail; and the load from tail is sequenced before
the load from the data pointer c, so the store to data happens before the load, and
everything is OK. This is therefore a perfectly serviceable single-producer, single-consumer
(SPSC) queue.

 The problems come when multiple threads call push() concurrently or multiple
threads call pop() concurrently. Let’s look at push() first. If you have two threads
calling push() concurrently, they both allocate new nodes to be the new dummy
node d, both read the same value for tail e, and consequently both update the
data members of the same node when setting the data and next pointers f, g.
This is a data race!

 There are similar problems in pop_head(). If two threads call concurrently, they
will both read the same value of head, and both then overwrite the old value with the
same next pointer. Both threads will now think they’ve retrieved the same node—a
recipe for disaster. Not only do you have to ensure that only one thread pop()s a given
item, but you also need to ensure that other threads can safely access the next mem-
ber of the node they read from head. This is exactly the problem you saw with pop()
for your lock-free stack, so any of the solutions for that could be used here.

 So if pop() is a “solved problem,” what about push()? The problem here is that in
order to get the required happens-before relationship between push() and pop(), you
need to set the data items on the dummy node before you update tail. But this then
means that concurrent calls to push() are racing over those very same data items,
because they’ve read the same tail pointer.

HANDLING MULTIPLE THREADS IN PUSH()
One option is to add a dummy node between the real nodes. This way, the only part of
the current tail node that needs updating is the next pointer, which could therefore
be made atomic. If a thread manages to successfully change the next pointer from
nullptr to its new node, then it has successfully added the pointer; otherwise, it
would have to start again and reread the tail. This would then require a minor
change to pop() in order to discard nodes with a null data pointer and loop again.
The downside here is that every pop() call will typically have to remove two nodes, and
there are twice as many memory allocations.

 A second option is to make the data pointer atomic and set that with a call to com-
pare/exchange. If the call succeeds, this is your tail node, and you can safely set the
next pointer to your new node and then update tail. If the compare/exchange fails
because another thread has stored the data, you loop around, reread tail, and start
again. If the atomic operations on std::shared_ptr<> are lock-free, you’re home
free. If not, you need an alternative. One possibility is to have pop() return a
std::unique_ptr<> (after all, it’s the only reference to the object) and store the data
as a plain pointer in the queue. This would allow you to store it as a std::atomic<T*>,
which would then support the necessary compare_exchange_strong() call. If you’re
using the reference-counting scheme from listing 7.11 to handle multiple threads in
pop(),push() now looks like this.
Download from Wow! eBook <www.wowebook.com>

212 CHAPTER 7 Designing lock-free concurrent data structures
void push(T new_value)
{
 std::unique_ptr<T> new_data(new T(new_value));
 counted_node_ptr new_next;
 new_next.ptr=new node;
 new_next.external_count=1;
 for(;;)
 {
 node* const old_tail=tail.load();
 T* old_data=nullptr;
 if(old_tail->data.compare_exchange_strong(
 old_data,new_data.get()))
 {
 old_tail->next=new_next;
 tail.store(new_next.ptr);
 new_data.release();
 break;
 }
 }
}

Using the reference-counting scheme avoids this particular race, but it’s not the only
race in push(). If you look at the revised version of push() in listing 7.14, you’ll see a
pattern you saw in the stack: load an atomic pointer B and dereference that pointer c.
In the meantime, another thread could update the pointer d, eventually leading to the
node being deallocated (in pop()). If the node is deallocated before you dereference
the pointer, you have undefined behavior. Ouch! It’s tempting to add an external count
in tail the same as you did for head, but each node already has an external count in the
next pointer of the previous node in the queue. Having two external counts for the same
node requires a modification to the reference-counting scheme to avoid deleting
the node too early. You can address this by also counting the number of external coun-
ters inside the node structure and decreasing this number when each external counter is
destroyed (as well as adding the corresponding external count to the internal count). If
the internal count is zero and there are no external counters, you know the node can
safely be deleted. This is a technique I first encountered through Joe Seigh’s Atomic Ptr
Plus Project.5 The following listing shows how push() looks under this scheme.

template<typename T>
class lock_free_queue
{
private:
 struct node;

 struct counted_node_ptr
 {

Listing 7.14 A (broken) first attempt at revising push()

Listing 7.15 Implementing push() for a lock-free queue with a reference-counted tail

5 Atomic Ptr Plus Project, http://atomic-ptr-plus.sourceforge.net/.

b

c

d

Download from Wow! eBook <www.wowebook.com>

http://atomic-ptr-plus.sourceforge.net/

213Examples of lock-free data structures
 int external_count;
 node* ptr;
 };

 std::atomic<counted_node_ptr> head;
 std::atomic<counted_node_ptr> tail;

 struct node_counter
 {
 unsigned internal_count:30;
 unsigned external_counters:2;
 };

 struct node
 {
 std::atomic<T*> data;
 std::atomic<node_counter> count;
 counted_node_ptr next;

 node()
 {
 node_counter new_count;
 new_count.internal_count=0;
 new_count.external_counters=2;
 count.store(new_count);

 next.ptr=nullptr;
 next.external_count=0;
 }
 };

public:
 void push(T new_value)
 {
 std::unique_ptr<T> new_data(new T(new_value));
 counted_node_ptr new_next;
 new_next.ptr=new node;
 new_next.external_count=1;
 counted_node_ptr old_tail=tail.load();

 for(;;)
 {
 increase_external_count(tail,old_tail);

 T* old_data=nullptr;
 if(old_tail.ptr->data.compare_exchange_strong(
 old_data,new_data.get()))
 {
 old_tail.ptr->next=new_next;
 old_tail=tail.exchange(new_next);
 free_external_counter(old_tail);
 new_data.release();
 break;
 }
 old_tail.ptr->release_ref();
 }
 }
};

b

c

d

e

f

g

h

Download from Wow! eBook <www.wowebook.com>

214 CHAPTER 7 Designing lock-free concurrent data structures
In listing 7.15, tail is now an atomic<counted_node_ptr> the same as head B, and
the node structure has a count member to replace the internal_count from before d.
This count is a structure containing the internal_count and an additional external_
counters member c. Note that you need only 2 bits for the external_counters
because there are at most two such counters. By using a bit field for this and specifying
internal_count as a 30-bit value, you keep the total counter size to 32 bits. This gives
you plenty of scope for large internal count values while ensuring that the whole struc-
ture fits inside a machine word on 32-bit and 64-bit machines. It’s important to update
these counts together as a single entity in order to avoid race conditions, as you’ll see
shortly. Keeping the structure within a machine word makes it more likely that the
atomic operations can be lock-free on many platforms.

 The node is initialized with the internal_count set to zero and the external_
counters set to 2 e because every new node starts out referenced from tail and
from the next pointer of the previous node once you’ve actually added it to the queue.
push()itself is similar to listing 7.14, except that before you dereference the value
loaded from tail in order to call to compare_exchange_strong() on the data mem-
ber of the node g, you call a new function increase_external_count() to increase
the count f, and then afterward you call free_external_counter() on the old tail
value h.

 With the push() side dealt with, let’s take a look at pop(). This is shown in the fol-
lowing listing and blends the reference-counting logic from the pop() implementa-
tion in listing 7.11 with the queue-pop logic from listing 7.13.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 void release_ref();
 };
public:
 std::unique_ptr<T> pop()
 {
 counted_node_ptr old_head=head.load(std::memory_order_relaxed);
 for(;;)
 {
 increase_external_count(head,old_head);
 node* const ptr=old_head.ptr;
 if(ptr==tail.load().ptr)
 {
 ptr->release_ref();
 return std::unique_ptr<T>();
 }
 if(head.compare_exchange_strong(old_head,ptr->next))
 {

Listing 7.16 Popping a node from a lock-free queue with a reference-counted tail

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

215Examples of lock-free data structures
 T* const res=ptr->data.exchange(nullptr);
 free_external_counter(old_head);
 return std::unique_ptr<T>(res);
 }
 ptr->release_ref();
 }
 }
};

You prime the pump by loading the old_head value before you enter the loop B and
before you increase the external count on the loaded value c. If the head node is the
same as the tail node, you can release the reference d and return a null pointer
because there’s no data in the queue. If there is data, you want to try to claim it for
yourself, and you do this with the call to compare_exchange_strong() e. As with the
stack in listing 7.11, this compares the external count and pointer as a single entity; if
either changes, you need to loop again, after releasing the reference g. If the
exchange succeeded, you’ve claimed the data in the node as yours, so you can return
that to the caller after you’ve released the external counter to the popped node f.
Once both the external reference counts have been freed and the internal count has
dropped to zero, the node itself can be deleted. The reference-counting functions
that take care of all this are shown in listings 7.17, 7.18, and 7.19.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 void release_ref()
 {
 node_counter old_counter=
 count.load(std::memory_order_relaxed);
 node_counter new_counter;
 do
 {
 new_counter=old_counter;
 --new_counter.internal_count;
 }
 while(!count.compare_exchange_strong(
 old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));

 if(!new_counter.internal_count &&
 !new_counter.external_counters)
 {
 delete this;
 }
 }
 };
};

Listing 7.17 Releasing a node reference in a lock-free queue

f

g

b

c

d

Download from Wow! eBook <www.wowebook.com>

216 CHAPTER 7 Designing lock-free concurrent data structures
The implementation of node::release_ref() is only slightly changed from the equiv-
alent code in the implementation of lock_free_stack::pop() from listing 7.11.
Whereas the code in listing 7.11 only has to handle a single external count, so you
could just use a simple fetch_sub, the whole count structure now has to be updated
atomically, even though you only want to modify the internal_count field B. This
therefore requires a compare/exchange loop c. Once you’ve decremented the
internal_count, if both the internal and external counts are now zero, this is the last
reference, so you can delete the node d.

template<typename T>
class lock_free_queue
{
private:
 static void increase_external_count(
 std::atomic<counted_node_ptr>& counter,
 counted_node_ptr& old_counter)
 {
 counted_node_ptr new_counter;

 do
 {
 new_counter=old_counter;
 ++new_counter.external_count;
 }
 while(!counter.compare_exchange_strong(
 old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));

 old_counter.external_count=new_counter.external_count;
 }
};

Listing 7.18 is the other side. This time, rather than releasing a reference, you’re obtain-
ing a fresh one and increasing the external count. increase_external_count() is simi-
lar to the increase_head_count() function from listing 7.12, except that it has been
made into a static member function that takes the external counter to update as the
first parameter rather than operating on a fixed counter.

template<typename T>
class lock_free_queue
{
private:
 static void free_external_counter(counted_node_ptr &old_node_ptr)
 {
 node* const ptr=old_node_ptr.ptr;
 int const count_increase=old_node_ptr.external_count-2;

 node_counter old_counter=
 ptr->count.load(std::memory_order_relaxed);

Listing 7.18 Obtaining a new reference to a node in a lock-free queue

Listing 7.19 Freeing an external counter to a node in a lock-free queue
Download from Wow! eBook <www.wowebook.com>

217Examples of lock-free data structures
 node_counter new_counter;
 do
 {
 new_counter=old_counter;
 --new_counter.external_counters;
 new_counter.internal_count+=count_increase;
 }
 while(!ptr->count.compare_exchange_strong(
 old_counter,new_counter,
 std::memory_order_acquire,std::memory_order_relaxed));

 if(!new_counter.internal_count &&
 !new_counter.external_counters)
 {
 delete ptr;
 }
 }
};

The counterpart to increase_external_count() is free_external_counter(). This
is similar to the equivalent code from lock_free_stack::pop() in listing 7.11 but
modified to handle the external_counters count. It updates the two counts using a
single compare_exchange_strong() on the whole count structure d, just as you did
when decreasing the internal_count in release_ref(). The internal_count value is
updated as in listing 7.11 c, and the external_counters value is decreased by one B. If
both the values are now zero, there are no more references to the node, so it can be
safely deleted e. This has to be done as a single action (which therefore requires the
compare/exchange loop) to avoid a race condition. If they’re updated separately, two
threads may both think they are the last one and thus both delete the node, resulting
in undefined behavior.

 Although this now works and is race-free, there’s still a performance issue. Once
one thread has started a push() operation by successfully completing the compare_
exchange_strong() on old_tail.ptr->data (f from listing 7.15), no other thread
can perform a push() operation. Any thread that tries will see the new value rather
than nullptr, which will cause the compare_exchange_strong() call to fail and make
that thread loop again. This is a busy wait, which consumes CPU cycles without
achieving anything. Consequently, this is effectively a lock. The first push() call
blocks other threads until it has completed, so this code is no longer lock-free. Not only
that, but whereas the operating system can give priority to the thread that holds the
lock on a mutex if there are blocked threads, it can’t do so in this case, so the blocked
threads will waste CPU cycles until the first thread is done. This calls for the next
trick from the lock-free bag of tricks: the waiting thread can help the thread that’s
doing the push().

MAKING THE QUEUE LOCK-FREE BY HELPING OUT ANOTHER THREAD

In order to restore the lock-free property of the code, you need to find a way for a
waiting thread to make progress even if the thread doing the push() is stalled. One
way to do this is to help the stalled thread by doing its work for it.

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

218 CHAPTER 7 Designing lock-free concurrent data structures
 In this case, you know exactly what needs to be done: the next pointer on the tail
node needs to be set to a new dummy node, and then the tail pointer itself must be
updated. The thing about dummy nodes is that they’re all equivalent, so it doesn’t
matter if you use the dummy node created by the thread that successfully pushed the
data or the dummy node from one of the threads that’s waiting to push. If you make
the next pointer in a node atomic, you can then use compare_exchange_strong() to
set the pointer. Once the next pointer is set, you can then use a compare_exchange_
weak() loop to set the tail while ensuring that it’s still referencing the same original
node. If it isn’t, someone else has updated it, and you can stop trying and loop again.
This requires a minor change to pop() as well in order to load the next pointer; this is
shown in the following listing.

template<typename T>
class lock_free_queue
{
private:
 struct node
 {
 std::atomic<T*> data;
 std::atomic<node_counter> count;
 std::atomic<counted_node_ptr> next;
 };
public:
 std::unique_ptr<T> pop()
 {
 counted_node_ptr old_head=head.load(std::memory_order_relaxed);
 for(;;)
 {
 increase_external_count(head,old_head);
 node* const ptr=old_head.ptr;
 if(ptr==tail.load().ptr)
 {
 return std::unique_ptr<T>();
 }
 counted_node_ptr next=ptr->next.load();
 if(head.compare_exchange_strong(old_head,next))
 {
 T* const res=ptr->data.exchange(nullptr);
 free_external_counter(old_head);
 return std::unique_ptr<T>(res);
 }
 ptr->release_ref();
 }
 }
};

As I mentioned, the changes here are simple: the next pointer is now atomic B, so the
load at c is atomic. In this example, you’re using the default memory_order_seq_cst
ordering, so you could omit the explicit call to load() and rely on the load in the

Listing 7.20 pop() modified to allow helping on the push() side

b

c

Download from Wow! eBook <www.wowebook.com>

219Examples of lock-free data structures
implicit conversion to counted_node_ptr, but putting in the explicit call reminds you
where to add the explicit memory ordering later.

 The code for push() is more involved and is shown here.

template<typename T>
class lock_free_queue
{
private:
 void set_new_tail(counted_node_ptr &old_tail,
 counted_node_ptr const &new_tail)
 {
 node* const current_tail_ptr=old_tail.ptr;
 while(!tail.compare_exchange_weak(old_tail,new_tail) &&
 old_tail.ptr==current_tail_ptr);
 if(old_tail.ptr==current_tail_ptr)
 free_external_counter(old_tail);
 else
 current_tail_ptr->release_ref();
 }
public:
 void push(T new_value)
 {
 std::unique_ptr<T> new_data(new T(new_value));
 counted_node_ptr new_next;
 new_next.ptr=new node;
 new_next.external_count=1;
 counted_node_ptr old_tail=tail.load();

 for(;;)
 {
 increase_external_count(tail,old_tail);

 T* old_data=nullptr;
 if(old_tail.ptr->data.compare_exchange_strong(
 old_data,new_data.get()))
 {
 counted_node_ptr old_next={0};
 if(!old_tail.ptr->next.compare_exchange_strong(
 old_next,new_next))
 {
 delete new_next.ptr;
 new_next=old_next;
 }
 set_new_tail(old_tail, new_next);
 new_data.release();
 break;
 }
 else
 {
 counted_node_ptr old_next={0};
 if(old_tail.ptr->next.compare_exchange_strong(
 old_next,new_next))

Listing 7.21 A sample push() with helping for a lock-free queue

b

c

d
 e

f

g

h

i
j

1)

1!
Download from Wow! eBook <www.wowebook.com>

220 CHAPTER 7 Designing lock-free concurrent data structures
 {
 old_next=new_next;
 new_next.ptr=new node;
 }
 set_new_tail(old_tail, old_next);
 }
 }
 }
};

This is similar to the original push() from listing 7.15, but there are a few crucial dif-
ferences. If you do set the data pointer g, you need to handle the case where another
thread has helped you, and there’s now an else clause to do the helping 1).

 Having set the data pointer in the node g, this new version of push() updates the
next pointer using compare_exchange_strong() h. You use compare_exchange_
strong() to avoid looping. If the exchange fails, you know that another thread has
already set the next pointer, so you don’t need the new node you allocated at the
beginning, and you can delete it i. You also want to use the next value that the other
thread set for updating tail j.

 The actual update of the tail pointer has been extracted into set_new_tail() B.
This uses a compare_exchange_weak() loop c to update the tail, because if other
threads are trying to push() a new node, the external_count part may have changed,
and you don’t want to lose it. However, you also need to take care that you don’t
replace the value if another thread has successfully changed it already; otherwise, you
may end up with loops in the queue, which would be a rather bad idea. Consequently,
you need to ensure that the ptr part of the loaded value is the same if the compare/
exchange fails. If the ptr is the same once the loop has exited d, then you must have
successfully set the tail, so you need to free the old external counter e. If the ptr
value is different, then another thread will have freed the counter, so you just need to
release the single reference held by this thread f.

 If the thread calling push() failed to set the data pointer this time through the
loop, it can help the successful thread to complete the update. First off, you try to
update the next pointer to the new node allocated on this thread 1!. If this succeeds,
you want to use the node you allocated as the new tail node 1@, and you need to allo-
cate another new node in anticipation of actually managing to push an item on the
queue 1#. You can then try to set the tail node by calling set_new_tail before loop-
ing around again 1$.

 You may have noticed that there are rather a lot of new and delete calls for such a
small piece of code, because new nodes are allocated on push() and destroyed in
pop(). The efficiency of the memory allocator therefore has a considerable impact on
the performance of this code; a poor allocator can completely destroy the scalability
properties of a lock-free container such as this. The selection and implementation of
such allocators is beyond the scope of this book, but it’s important to bear in mind
that the only way to know that an allocator is better is to try it and measure the perfor-
mance of the code before and after. Common techniques for optimizing memory

1@
1#

1$
Download from Wow! eBook <www.wowebook.com>

221Guidelines for writing lock-free data structures
allocation include having a separate memory allocator on each thread and using free
lists to recycle nodes rather than returning them to the allocator.

 That’s enough examples for now; instead, let’s look at extracting some guidelines
for writing lock-free data structures from the examples.

7.3 Guidelines for writing lock-free data structures
If you’ve followed through all the examples in this chapter, you’ll appreciate the com-
plexities involved in getting lock-free code right. If you’re going to design your own
data structures, it helps to have some guidelines to focus on. The general guidelines
regarding concurrent data structures from the beginning of chapter 6 still apply, but
you need more than that. I’ve pulled a few useful guidelines out from the examples,
which you can then refer to when designing your own lock-free data structures.

7.3.1 Guideline: use std::memory_order_seq_cst for prototyping

std::memory_order_seq_cst is much easier to reason about than any other memory
ordering because all such operations form a total order. In all the examples in this
chapter, you’ve started with std::memory_order_seq_cst and only relaxed the memory-
ordering constraints once the basic operations were working. In this sense, using
other memory orderings is an optimization, and as such you need to avoid doing it pre-
maturely. In general, you can only determine which operations can be relaxed when
you can see the full set of code that can operate on the guts of the data structure.
Attempting to do otherwise just makes your life harder. This is complicated by the fact
that the code may work when tested but isn’t guaranteed. Unless you have an algo-
rithm checker that can systematically test all possible combinations of thread visibili-
ties that are consistent with the specified ordering guarantees (and such things do
exist), just running the code isn’t enough.

7.3.2 Guideline: use a lock-free memory reclamation scheme

One of the biggest difficulties with lock-free code is managing memory. It’s essential
to avoid deleting objects when other threads might still have references to them, but
you still want to delete the object as soon as possible in order to avoid excessive mem-
ory consumption. In this chapter you’ve seen three techniques for ensuring that memory
can safely be reclaimed:

■ Waiting until no threads are accessing the data structure and deleting all
objects that are pending deletion

■ Using hazard pointers to identify that a thread is accessing a particular object
■ Reference counting the objects so that they aren’t deleted until there are no

outstanding references

In all cases the key idea is to use some method to keep track of how many threads are
accessing a particular object and only delete each object when it’s no longer refer-
enced from anywhere. There are many other ways of reclaiming memory in lock-free
Download from Wow! eBook <www.wowebook.com>

222 CHAPTER 7 Designing lock-free concurrent data structures
data structures. For example, this is the ideal scenario for using a garbage collector.
It’s much easier to write the algorithms if you know that the garbage collector will free
the nodes when they’re no longer used, but not before.

 Another alternative is to recycle nodes and only free them completely when the
data structure is destroyed. Because the nodes are reused, the memory never becomes
invalid, so some of the difficulties in avoiding undefined behavior go away. The
downside here is that another problem becomes more prevalent. This is the so-called
ABA problem.

7.3.3 Guideline: watch out for the ABA problem

The ABA problem is something to be wary of in any compare/exchange–based algo-
rithm. It goes like this:

1 Thread 1 reads an atomic variable x and finds it has value A.
2 Thread 1 performs some operation based on this value, such as dereferencing it

(if it’s a pointer) or doing a lookup or something.
3 Thread 1 is stalled by the operating system.
4 Another thread performs some operations on x that changes its value to B.
5 A thread then changes the data associated with the value A such that the value

held by thread 1 is no longer valid. This may be as drastic as freeing the
pointed-to memory or just changing an associated value.

6 A thread then changes x back to A based on this new data. If this is a pointer, it
may be a new object that just happens to share the same address as the old one.

7 Thread 1 resumes and performs a compare/exchange on x, comparing against
A. The compare/exchange succeeds (because the value is indeed A), but this is
the wrong A value. The data originally read at step 2 is no longer valid, but thread
1 has no way of telling and will thus corrupt the data structure.

None of the algorithms presented here suffer from this problem, but it’s easy to write
lock-free algorithms that do. The most common way to avoid the problem is to
include an ABA counter alongside the variable x. The compare/exchange operation is
then done on the combined structure of x plus the counter as a single unit. Every time
the value is replaced, the counter is incremented, so even if x has the same value, the
compare/exchange will fail if another thread has modified x.

 The ABA problem is particularly prevalent in algorithms that use free lists or other-
wise recycle nodes rather than returning them to the allocator.

7.3.4 Guideline: identify busy-wait loops and help the other thread

In the final queue example you saw how a thread performing a push operation had to
wait for another thread also performing a push to complete its operation before it
could proceed. Left alone, this would have been a busy-wait loop, with the waiting
thread wasting CPU time while failing to proceed. If you end up with a busy-wait loop,
you effectively have a blocking operation and might as well use mutexes and locks. By
Download from Wow! eBook <www.wowebook.com>

223Summary
modifying the algorithm so that the waiting thread performs the incomplete steps if
it’s scheduled to run before the original thread completes the operation, you can
remove the busy-wait and the operation is no longer blocking. In the queue example
this required changing a data member to be an atomic variable rather than a nona-
tomic variable and using compare/exchange operations to set it, but in more com-
plex data structures it might require more extensive changes.

7.4 Summary
Following from the lock-based data structures of chapter 6, this chapter has described
simple implementations of various lock-free data structures, starting with a stack and a
queue, as before. You saw how you must take care with the memory ordering on your
atomic operations to ensure that there are no data races and that each thread sees a
coherent view of the data structure. You also saw how memory management becomes
much harder for lock-free data structures than lock-based ones and examined a cou-
ple of mechanisms for handling it. You also saw how to avoid creating wait loops by
helping the thread you’re waiting for to complete its operation.

 Designing lock-free data structures is a difficult task, and it’s easy to make mistakes,
but such data structures have scalability properties that are important in some situa-
tions. Hopefully, by following through the examples in this chapter and reading the
guidelines, you’ll be better equipped to design your own lock-free data structure,
implement one from a research paper, or find the bug in the one your former col-
league wrote just before he left the company.

 Wherever data is shared between threads, you need to think about the data struc-
tures used and how the data is synchronized between threads. By designing data
structures for concurrency, you can encapsulate that responsibility in the data struc-
ture itself, so the rest of the code can focus on the task it’s trying to perform with the
data rather than the data synchronization. You’ll see this in action in chapter 8 as we
move on from concurrent data structures to concurrent code in general. Parallel
algorithms use multiple threads to improve their performance, and the choice of con-
current data structure is crucial where the algorithms need their worker threads to
share data.
Download from Wow! eBook <www.wowebook.com>

Designing
concurrent code
Most of the preceding chapters have focused on the tools you have in your new
C++11 toolbox for writing concurrent code. In chapters 6 and 7 we looked at how
to use those tools to design basic data structures that are safe for concurrent access
by multiple threads. Much as a carpenter needs to know more than just how to
build a hinge or a joint in order to make a cupboard or a table, there’s more
to designing concurrent code than the design and use of basic data structures. You
now need to look at the wider context so you can build bigger structures that per-
form useful work. I’ll be using multithreaded implementations of some of the C++

This chapter covers
■ Techniques for dividing data between threads
■ Factors that affect the performance of

concurrent code
■ How performance factors affect the design of

data structures
■ Exception safety in multithreaded code
■ Scalability
■ Example implementations of several

parallel algorithms
224

Download from Wow! eBook <www.wowebook.com>

225Techniques for dividing work between threads
Standard Library algorithms as examples, but the same principles apply at all scales of
an application.

 Just as with any programming project, it’s vital to think carefully about the design
of concurrent code. However, with multithreaded code, there are even more factors to
consider than with sequential code. Not only must you think about the usual factors
such as encapsulation, coupling, and cohesion (which are amply described in the
many books on software design), but you also need to consider which data to share,
how to synchronize accesses to that data, which threads need to wait for which other
threads to complete certain operations, and so forth.

 In this chapter we’ll be focusing on these issues, from the high-level (but funda-
mental) considerations of how many threads to use, which code to execute on which
thread, and how this can affect the clarity of the code, to the low-level details of how to
structure the shared data for optimal performance.

 Let’s start by looking at techniques for dividing work between threads.

8.1 Techniques for dividing work between threads
Imagine for a moment that you’ve been tasked with building a house. In order to
complete the job, you’ll need to dig the foundation, build walls, put in plumbing, add
the wiring, and so forth. Theoretically, you could do it all yourself with sufficient train-
ing, but it would probably take a long time, and you’d be continually switching tasks as
necessary. Alternatively, you could hire a few other people to help out. You now have
to choose how many people to hire and decide what skills they need. You could, for
example, hire a couple of people with general skills and have everybody chip in with
everything. You’d still all switch tasks as necessary, but now things can be done more
quickly because there are more of you.

 Alternatively, you could hire a team of specialists: a bricklayer, a carpenter, an
electrician, and a plumber, for example. Your specialists just do whatever their spe-
cialty is, so if there’s no plumbing needed, your plumber sits around drinking tea or
coffee. Things still get done quicker than before, because there are more of you,
and the plumber can put the toilet in while the electrician wires up the kitchen, but
there’s more waiting around when there’s no work for a particular specialist. Even
with the idle time, you might find that the work is done faster with specialists than with
a team of general handymen. Your specialists don’t need to keep changing tools,
and they can probably each do their tasks quicker than the generalists can. Whether
or not this is the case depends on the particular circumstances—you’d have to try it
and see.

 Even if you hire specialists, you can still choose to hire different numbers of each.
It might make sense to have more bricklayers than electricians, for example. Also, the
makeup of your team and the overall efficiency might change if you had to build more
than one house. Even though your plumber might not have lots of work to do on any
given house, you might have enough work to keep him busy all the time if you’re
building many houses at once. Also, if you don’t have to pay your specialists when
Download from Wow! eBook <www.wowebook.com>

226 CHAPTER 8 Designing concurrent code
there’s no work for them to do, you might be able to afford a larger team overall even
if you have only the same number of people working at any one time.

OK, enough about building; what does all this have to do with threads? Well, with
threads the same issues apply. You need to decide how many threads to use and what
tasks they should be doing. You need to decide whether to have “generalist” threads
that do whatever work is necessary at any point in time or “specialist” threads that do
one thing well, or some combination. You need to make these choices whatever the
driving reason for using concurrency, and quite how you do this will have a crucial
effect on the performance and clarity of the code. It’s therefore vital to understand
the options so you can make an appropriately informed decision when designing the
structure of your application. In this section, we’ll look at several techniques for divid-
ing the tasks, starting with dividing data between threads before we do any other work.

8.1.1 Dividing data between threads before processing begins

The easiest algorithms to parallelize are simple algorithms such as std::for_each
that perform an operation on each element in a data set. In order to parallelize such an
algorithm, you can assign each element to one of the processing threads. How the ele-
ments are best divided for optimal performance depends very much on the details of
the data structure, as you’ll see later in this chapter when we look at performance issues.

 The simplest means of dividing the data is to allocate the first N elements to one
thread, the next N elements to another thread, and so on, as shown in figure 8.1, but
other patterns could be used too. No matter how the data is divided, each thread then
processes just the elements it has been assigned without any communication with the
other threads until it has completed its processing.

 This structure will be familiar to anyone who has programmed using the Message
Passing Interface (MPI)1 or OpenMP2 frameworks: a task is split into a set of parallel tasks,
the worker threads run these tasks independently, and the results are combined in a final
reduction step. It’s the approach used by the accumulate example from section 2.4; in this

1 http://www.mpi-forum.org/
2 http://www.openmp.org/

Figure 8.1 Distributing
consecutive chunks of data
between threads
Download from Wow! eBook <www.wowebook.com>

http://www.mpi-forum.org/
http://www.openmp.org/

227Techniques for dividing work between threads
case, both the parallel tasks and the final reduction step are accumulations. For a sim-
ple for_each, the final step is a no-op because there are no results to reduce.

 Identifying this final step as a reduction is important; a naïve implementation such
as listing 2.8 will perform this reduction as a final serial step. However, this step can
often be parallelized as well; accumulate actually is a reduction operation itself, so list-
ing 2.8 could be modified to call itself recursively where the number of threads is
larger than the minimum number of items to process on a thread, for example. Alter-
natively, the worker threads could be made to perform some of the reduction steps as
each one completes its task, rather than spawning new threads each time.

 Although this technique is powerful, it can’t be applied to everything. Sometimes
the data can’t be divided neatly up front because the necessary divisions become
apparent only as the data is processed. This is particularly apparent with recursive
algorithms such as Quicksort; they therefore need a different approach.

8.1.2 Dividing data recursively

The Quicksort algorithm has two basic steps: partition the data into items that come
before or after one of the elements (the pivot) in the final sort order and recursively
sort those two “halves.” You can’t parallelize this by simply dividing the data up front,
because it’s only by processing the items that you know which “half” they go in. If
you’re going to parallelize such an algorithm, you need to make use of the recursive
nature. With each level of recursion there are more calls to the quick_sort function,
because you have to sort both the elements that belong before the pivot and those that
belong after it. These recursive calls are entirely independent, because they access
separate sets of elements, and so are prime candidates for concurrent execution. Fig-
ure 8.2 shows such recursive division.

 In chapter 4, you saw such an implementation. Rather than just performing two
recursive calls for the higher and lower chunks, you used std::async() to spawn asyn-
chronous tasks for the lower chunk at each stage. By using std::async(), you ask the
C++ Thread Library to decide when to actually run the task on a new thread and when
to run it synchronously.

Figure 8.2 Recursively dividing data
Download from Wow! eBook <www.wowebook.com>

228 CHAPTER 8 Designing concurrent code
This is important: if you’re sorting a large set of data, spawning a new thread for each
recursion would quickly result in a lot of threads. As you’ll see when we look at perfor-
mance, if you have too many threads, you might actually slow down the application.
There’s also a possibility of running out of threads if the data set is very large. The
idea of dividing the overall task in a recursive fashion like this is a good one; you just
need to keep a tighter rein on the number of threads. std::async() can handle this
in simple cases, but it’s not the only choice.

 One alternative is to use the std::thread::hardware_concurrency() function to
choose the number of threads, as you did with the parallel version of accumulate()
from listing 2.8. Then, rather than starting a new thread for the recursive calls, you
can just push the chunk to be sorted onto a thread-safe stack such as one of those
described in chapters 6 and 7. If a thread has nothing else to do, either because it has
finished processing all its chunks or because it’s waiting for a chunk to be sorted, it
can take a chunk from the stack and sort that.

 The following listing shows a sample implementation that uses this technique.

template<typename T>
struct sorter
{
 struct chunk_to_sort
 {
 std::list<T> data;
 std::promise<std::list<T> > promise;

 };

 thread_safe_stack<chunk_to_sort> chunks;
 std::vector<std::thread> threads;
 unsigned const max_thread_count;
 std::atomic<bool> end_of_data;

 sorter():
 max_thread_count(std::thread::hardware_concurrency()-1),
 end_of_data(false)
 {}

 ~sorter()
 {
 end_of_data=true;

 for(unsigned i=0;i<threads.size();++i)
 {
 threads[i].join();
 }
 }

 void try_sort_chunk()
 {
 boost::shared_ptr<chunk_to_sort > chunk=chunks.pop();
 if(chunk)
 {

Listing 8.1 Parallel Quicksort using a stack of pending chunks to sort

b

c
d

e

f

g

h

Download from Wow! eBook <www.wowebook.com>

229Techniques for dividing work between threads
 sort_chunk(chunk);
 }
 }

 std::list<T> do_sort(std::list<T>& chunk_data)
 {
 if(chunk_data.empty())
 {
 return chunk_data;
 }

 std::list<T> result;
 result.splice(result.begin(),chunk_data,chunk_data.begin());
 T const& partition_val=*result.begin();

 typename std::list<T>::iterator divide_point=
 std::partition(chunk_data.begin(),chunk_data.end(),
 [&](T const& val){return val<partition_val;});

 chunk_to_sort new_lower_chunk;
 new_lower_chunk.data.splice(new_lower_chunk.data.end(),
 chunk_data,chunk_data.begin(),
 divide_point);

 std::future<std::list<T> > new_lower=
 new_lower_chunk.promise.get_future();
 chunks.push(std::move(new_lower_chunk));
 if(threads.size()<max_thread_count)
 {
 threads.push_back(std::thread(&sorter<T>::sort_thread,this));
 }

 std::list<T> new_higher(do_sort(chunk_data));

 result.splice(result.end(),new_higher);
 while(new_lower.wait_for(std::chrono::seconds(0)) !=
 std::future_status::ready)
 {
 try_sort_chunk();
 }

 result.splice(result.begin(),new_lower.get());
 return result;
 }

 void sort_chunk(boost::shared_ptr<chunk_to_sort > const& chunk)
 {
 chunk->promise.set_value(do_sort(chunk->data));
 }

 void sort_thread()
 {
 while(!end_of_data)
 {
 try_sort_chunk();
 std::this_thread::yield();
 }
 }
};

i

j

1)

1!
1@

1#
1$

1%

1^

1&
1*
Download from Wow! eBook <www.wowebook.com>

230 CHAPTER 8 Designing concurrent code
template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 sorter<T> s;

 return s.do_sort(input);
}

Here, the parallel_quick_sort function 1(delegates most of the functionality to
the sorter class B, which provides an easy way of grouping the stack of unsorted
chunks c and the set of threads d. The main work is done in the do_sort member
function j, which does the usual partitioning of the data 1). This time, rather than
spawning a new thread for one chunk, it pushes it onto the stack 1! and spawns a new
thread while you still have processors to spare 1@. Because the lower chunk might be
handled by another thread, you then have to wait for it to be ready 1#. In order to
help things along (in case you’re the only thread or all the others are already busy), you
try to process chunks from the stack on this thread while you’re waiting 1$.
try_sort_chunk just pops a chunk off the stack h and sorts it i, storing the result in
the promise, ready to be picked up by the thread that posted the chunk on the stack 1%.

 Your freshly spawned threads sit in a loop trying to sort chunks off the stack 1&
while the end_of_data flag isn’t set 1^. In between checking, they yield to other
threads 1* to give them a chance to put some more work on the stack. This code relies
on the destructor of your sorter class e to tidy up these threads. When all the data
has been sorted, do_sort will return (even though the worker threads are still run-
ning), so your main thread will return from parallel_quick_sort 2) and thus
destroy your sorter object. This sets the end_of_data flag f and waits for the threads
to finish g. Setting the flag terminates the loop in the thread function 1^.

 With this approach you no longer have the problem of unbounded threads that
you have with a spawn_task that launches a new thread, and you’re no longer relying
on the C++ Thread Library to choose the number of threads for you, as it does with
std::async(). Instead, you limit the number of threads to the value of std::thread::
hardware_concurrency() in order to avoid excessive task switching. You do, however,
have another potential problem: the management of these threads and the communi-
cation between them add quite a lot of complexity to the code. Also, although the
threads are processing separate data elements, they all access the stack to add new
chunks and to remove chunks for processing. This heavy contention can reduce per-
formance, even if you use a lock-free (and hence nonblocking) stack, for reasons that
you’ll see shortly.

 This approach is a specialized version of a thread pool—there’s a set of threads that
each take work to do from a list of pending work, do the work, and then go back to
the list for more. Some of the potential problems with thread pools (including the
contention on the work list) and ways of addressing them are covered in chapter 9.

1(

2)
Download from Wow! eBook <www.wowebook.com>

231Techniques for dividing work between threads
The problems of scaling your application to multiple processors are discussed in more
detail later in this chapter (see section 8.2.1).

 Both dividing the data before processing begins and dividing it recursively pre-
sume that the data itself is fixed beforehand, and you’re just looking at ways of divid-
ing it. This isn’t always the case; if the data is dynamically generated or is coming from
external input, this approach doesn’t work. In this case, it might make more sense to
divide the work by task type rather than dividing based on the data.

8.1.3 Dividing work by task type

Dividing work between threads by allocating different chunks of data to each thread
(whether up front or recursively during processing) still rests on the assumption that
the threads are going to be doing essentially the same work on each chunk of data. An
alternative to dividing the work is to make the threads specialists, where each per-
forms a distinct task, just as plumbers and electricians perform distinct tasks when
building a house. Threads may or may not work on the same data, but if they do, it’s
for different purposes.

 This is the sort of division of work that results from separating concerns with con-
currency; each thread has a different task, which it carries out independently of other
threads. Occasionally other threads may give it data or trigger events that it needs to
handle, but in general each thread focuses on doing one thing well. In itself, this is
basic good design; each piece of code should have a single responsibility.

DIVIDING WORK BY TASK TYPE TO SEPARATE CONCERNS

A single-threaded application has to handle conflicts with the single responsibility
principle where there are multiple tasks that need to be run continuously over a
period of time, or where the application needs to be able to handle incoming events
(such as user key presses or incoming network data) in a timely fashion, even while
other tasks are ongoing. In the single-threaded world you end up manually writing
code that performs a bit of task A, performs a bit of task B, checks for key presses,
checks for incoming network packets, and then loops back to perform another bit of
task A. This means that the code for task A ends up being complicated by the need to
save its state and return control to the main loop periodically. If you add too many
tasks to the loop, things might slow down too far, and the user may find it takes too
long to respond to the key press. I’m sure you’ve all seen the extreme form of this in
action with some application or other: you set it doing some task, and the interface
freezes until it has completed the task.

 This is where threads come in. If you run each of the tasks in a separate thread, the
operating system handles this for you. In the code for task A, you can focus on per-
forming the task and not worry about saving state and returning to the main loop or
how long you spend before doing so. The operating system will automatically save the
state and switch to task B or C when appropriate, and if the target system has multiple
cores or processors, tasks A and B may well be able to run truly concurrently. The code
for handling the key press or network packet will now be run in a timely fashion, and
Download from Wow! eBook <www.wowebook.com>

232 CHAPTER 8 Designing concurrent code
everybody wins: the user gets timely responses, and you as developer have simpler
code because each thread can focus on doing operations related directly to its respon-
sibilities, rather than getting mixed up with control flow and user interaction.

 That sounds like a nice, rosy vision. Can it really be like that? As with everything, it
depends on the details. If everything really is independent, and the threads have no
need to communicate with each other, then it really is this easy. Unfortunately, the
world is rarely like that. These nice background tasks are often doing something that
the user requested, and they need to let the user know when they’re done by updat-
ing the user interface in some manner. Alternatively, the user might want to cancel
the task, which therefore requires the user interface to somehow send a message to the
background task telling it to stop. Both these cases require careful thought and
design and suitable synchronization, but the concerns are still separate. The user
interface thread still just handles the user interface, but it might have to update it
when asked to do so by other threads. Likewise, the thread running the background
task still just focuses on the operations required for that task; it just happens that one
of them is “allow task to be stopped by another thread.” In neither case do the threads
care where the request came from, only that it was intended for them and relates
directly to their responsibilities.

 There are two big dangers with separating concerns with multiple threads. The
first is that you’ll end up separating the wrong concerns. The symptoms to check for
are that there is a lot of data shared between the threads or the different threads end
up waiting for each other; both cases boil down to too much communication between
threads. If this happens, it’s worth looking at the reasons for the communication. If all
the communication relates to the same issue, maybe that should be the key responsi-
bility of a single thread and extracted from all the threads that refer to it. Alterna-
tively, if two threads are communicating a lot with each other but much less with other
threads, maybe they should be combined into a single thread.

 When dividing work across threads by task type, you don’t have to limit yourself to
completely isolated cases. If multiple sets of input data require the same sequence of
operations to be applied, you can divide the work so each thread performs one stage
from the overall sequence.

DIVIDING A SEQUENCE OF TASKS BETWEEN THREADS

If your task consists of applying the same sequence of operations to many indepen-
dent data items, you can use a pipeline to exploit the available concurrency of your sys-
tem. This is by analogy to a physical pipeline: data flows in at one end through a series
of operations (pipes) and out at the other end.

 To divide the work this way, you create a separate thread for each stage in the
pipeline—one thread for each of the operations in the sequence. When the opera-
tion is completed, the data element is put on a queue to be picked up by the next
thread. This allows the thread performing the first operation in the sequence to start
on the next data element while the second thread in the pipeline is working on the
first element.
Download from Wow! eBook <www.wowebook.com>

233Factors affecting the performance of concurrent code
 This is an alternative to just dividing the data between threads, as described in sec-
tion 8.1.1, and is appropriate in circumstances where the input data itself isn’t all
known when the operation is started. For example, the data might be coming in over
a network, or the first operation in the sequence might be to scan a filesystem in order
to identify files to process.

 Pipelines are also good where each operation in the sequence is time consuming;
by dividing the tasks between threads rather than the data, you change the perfor-
mance profile. Suppose you have 20 data items to process, on four cores, and each
data item requires four steps, which take 3 seconds each. If you divide the data
between four threads, then each thread has 5 items to process. Assuming there’s no
other processing that might affect the timings, after 12 seconds you’ll have 4 items
processed, after 24 seconds 8 items processed, and so forth. All 20 items will be done
after 1 minute. With a pipeline, things work differently. Your four steps can be assigned
one to each processing core. Now the first item has to be processed by each core, so it
still takes the full 12 seconds. Indeed, after 12 seconds you only have one item pro-
cessed, which isn’t as good as with the division by data. However, once the pipeline is
primed, things proceed a bit differently; after the first core has processed the first item,
it moves on to the second, so once the final core has processed the first item, it can
perform its step on the second. You now get one item processed every 3 seconds
rather than having the items processed in batches of four every 12 seconds.

 The overall time to process the entire batch takes longer because you have to wait
9 seconds before the final core starts processing the first item. But smoother, more
regular processing can be beneficial in some circumstances. Consider, for example, a
system for watching high-definition digital videos. In order for the video to be watch-
able, you typically need at least 25 frames per second and ideally more. Also, the
viewer needs these to be evenly spaced to give the impression of continuous move-
ment; an application that can decode 100 frames per second is still no use if it pauses
for a second, then displays 100 frames, then pauses for another second, and displays
another 100 frames. On the other hand, viewers are probably happy to accept a delay
of a couple of seconds when they start watching a video. In this case, parallelizing
using a pipeline that outputs frames at a nice steady rate is probably preferable.

 Having looked at various techniques for dividing the work between threads, let’s
take a look at the factors affecting the performance of a multithreaded system and
how that can impact your choice of techniques.

8.2 Factors affecting the performance of concurrent code
If you’re using concurrency in order to improve the performance of your code on sys-
tems with multiple processors, you need to know what factors are going to affect the
performance. Even if you’re just using multiple threads to separate concerns, you
need to ensure that this doesn’t adversely affect the performance. Customers won’t
thank you if your application runs more slowly on their shiny new 16-core machine than
it did on their old single-core one.
Download from Wow! eBook <www.wowebook.com>

234 CHAPTER 8 Designing concurrent code
 As you’ll see shortly, many factors affect the performance of multithreaded code—
even something as simple as changing which data elements are processed by each
thread (while keeping everything else identical) can have a dramatic effect on perfor-
mance. So, without further ado, let’s look at some of these factors, starting with the
obvious one: how many processors does your target system have?

8.2.1 How many processors?

The number (and structure) of processors is the first big factor that affects the perfor-
mance of a multithreaded application, and it’s quite a crucial one. In some cases you
do know exactly what the target hardware is and can thus design with this in mind,
taking real measurements on the target system or an exact duplicate. If so, you’re one
of the lucky ones; in general you don’t have that luxury. You might be developing on a
similar system, but the differences can be crucial. For example, you might be develop-
ing on a dual- or quad-core system, but your customers’ systems may have one multi-
core processor (with any number of cores), or multiple single-core processors, or even
multiple multicore processors. The behavior and performance characteristics of a
concurrent program can vary considerably under such different circumstances, so you
need to think carefully about what the impact may be and test things where possible.

 To a first approximation, a single 16-core processor is the same as 4 quad-core pro-
cessors or 16 single-core processors: in each case the system can run 16 threads con-
currently. If you want to take advantage of this, your application must have at least 16
threads. If it has fewer than 16, you’re leaving processor power on the table (unless
the system is running other applications too, but we’ll ignore that possibility for now).
On the other hand, if you have more than 16 threads actually ready to run (and not
blocked, waiting for something), your application will waste processor time switching
between the threads, as discussed in chapter 1. When this happens, the situation is
called oversubscription.

 To allow applications to scale the number of threads in line with the number of
threads the hardware can run concurrently, the C++11 Standard Thread Library pro-
vides std::thread::hardware_concurrency(). You’ve already seen how that can be
used to scale the number of threads to the hardware.

 Using std::thread::hardware_concurrency() directly requires care; your code
doesn’t take into account any of the other threads that are running on the system
unless you explicitly share that information. In the worst case, if multiple threads call
a function that uses std::thread::hardware_concurrency() for scaling at the same
time, there will be huge oversubscription. std::async() avoids this problem because
the library is aware of all calls and can schedule appropriately. Careful use of thread
pools can also avoid this problem.

 However, even if you take into account all threads running in your application,
you’re still subject to the impact of other applications running at the same time.
Although the use of multiple CPU-intensive applications simultaneously is rare on sin-
gle-user systems, there are some domains where it’s more common. Systems designed
Download from Wow! eBook <www.wowebook.com>

235Factors affecting the performance of concurrent code
to handle this scenario typically offer mechanisms to allow each application to choose
an appropriate number of threads, although these mechanisms are outside the scope
of the C++ Standard. One option is for a std::async()-like facility to take into
account the total number of asynchronous tasks run by all applications when choosing
the number of threads. Another is to limit the number of processing cores that can be
used by a given application. I’d expect such a limit to be reflected in the value
returned by std::thread::hardware_concurrency() on such platforms, although
this isn’t guaranteed. If you need to handle this scenario, consult your system docu-
mentation to see what options are available to you.

 One additional twist to this situation is that the ideal algorithm for a problem can
depend on the size of the problem compared to the number of processing units. If
you have a massively parallel system with many processing units, an algorithm that per-
forms more operations overall may finish more quickly than one that performs fewer
operations, because each processor performs only a few operations.

 As the number of processors increases, so does the likelihood and performance
impact of another problem: that of multiple processors trying to access the same data.

8.2.2 Data contention and cache ping-pong

If two threads are executing concurrently on different processors and they’re both
reading the same data, this usually won’t cause a problem; the data will be copied into
their respective caches, and both processors can proceed. However, if one of the
threads modifies the data, this change then has to propagate to the cache on the other
core, which takes time. Depending on the nature of the operations on the two
threads, and the memory orderings used for the operations, such a modification may
cause the second processor to stop in its tracks and wait for the change to propagate
through the memory hardware. In terms of CPU instructions, this can be a phenome-
nally slow operation, equivalent to many hundreds of individual instructions, although
the exact timing depends primarily on the physical structure of the hardware.

 Consider the following simple piece of code:

std::atomic<unsigned long> counter(0);
void processing_loop()
{
 while(counter.fetch_add(1,std::memory_order_relaxed)<100000000)
 {
 do_something();
 }
}

The counter is global, so any threads that call processing_loop() are modifying the
same variable. Therefore, for each increment the processor must ensure it has an up-
to-date copy of counter in its cache, modify the value, and publish it to other proces-
sors. Even though you’re using std::memory_order_relaxed, so the compiler doesn’t
have to synchronize any other data, fetch_add is a read-modify-write operation and
therefore needs to retrieve the most recent value of the variable. If another thread on
Download from Wow! eBook <www.wowebook.com>

236 CHAPTER 8 Designing concurrent code
another processor is running the same code, the data for counter must therefore be
passed back and forth between the two processors and their corresponding caches so
that each processor has the latest value for counter when it does the increment. If
do_something() is short enough, or if there are too many processors running this
code, the processors might actually find themselves waiting for each other; one proces-
sor is ready to update the value, but another processor is currently doing that, so it has
to wait until the second processor has completed its update and the change has prop-
agated. This situation is called high contention. If the processors rarely have to wait for
each other, you have low contention.

 In a loop like this one, the data for counter will be passed back and forth between
the caches many times. This is called cache ping-pong, and it can seriously impact the
performance of the application. If a processor stalls because it has to wait for a cache
transfer, it can’t do any work in the meantime, even if there are other threads waiting
that could do useful work, so this is bad news for the whole application.

 You might think that this won’t happen to you; after all, you don’t have any loops
like that. Are you sure? What about mutex locks? If you acquire a mutex in a loop,
your code is similar to the previous code from the point of view of data accesses. In
order to lock the mutex, another thread must transfer the data that makes up the
mutex to its processor and modify it. When it’s done, it modifies the mutex again to
unlock it, and the mutex data has to be transferred to the next thread to acquire the
mutex. This transfer time is in addition to any time that the second thread has to wait
for the first to release the mutex:

std::mutex m;
my_data data;
void processing_loop_with_mutex()
{
 while(true)
 {
 std::lock_guard<std::mutex> lk(m);
 if(done_processing(data)) break;
 }
}

Now, here’s the worst part: if the data and mutex really are accessed by more than one
thread, then as you add more cores and processors to the system, it becomes more likely
that you will get high contention and one processor having to wait for another. If
you’re using multiple threads to process the same data more quickly, the threads are
competing for the data and thus competing for the same mutex. The more of them
there are, the more likely they’ll try to acquire the mutex at the same time, or access
the atomic variable at the same time, and so forth.

 The effects of contention with mutexes are usually different from the effects of
contention with atomic operations for the simple reason that the use of a mutex nat-
urally serializes threads at the operating system level rather than at the processor
level. If you have enough threads ready to run, the operating system can schedule
another thread to run while one thread is waiting for the mutex, whereas a processor
Download from Wow! eBook <www.wowebook.com>

237Factors affecting the performance of concurrent code
stall prevents any threads from running on that processor. However, it will still impact
the performance of those threads that are competing for the mutex; they can only run
one at a time, after all.

 Back in chapter 3, you saw how a rarely updated data structure can be protected
with a single-writer, multiple-reader mutex (see section 3.3.2). Cache ping-pong
effects can nullify the benefits of such a mutex if the workload is unfavorable, because
all threads accessing the data (even reader threads) still have to modify the mutex
itself. As the number of processors accessing the data goes up, the contention on the
mutex itself increases, and the cache line holding the mutex must be transferred
between cores, thus potentially increasing the time taken to acquire and release locks
to undesirable levels. There are techniques to ameliorate this problem, essentially by
spreading out the mutex across multiple cache lines, but unless you implement your
own such mutex, you are subject to whatever your system provides.

 If this cache ping-pong is bad, how can you avoid it? As you’ll see later in the chap-
ter, the answer ties in nicely with general guidelines for improving the potential for
concurrency: do what you can to reduce the potential for two threads competing
for the same memory location.

 It’s not quite that simple, though; things never are. Even if a particular memory
location is only ever accessed by one thread, you can still get cache ping-pong due to
an effect known as false sharing.

8.2.3 False sharing

Processor caches don’t generally deal in individual memory locations; instead, they
deal in blocks of memory called cache lines. These blocks of memory are typically 32
or 64 bytes in size, but the exact details depend on the particular processor model
being used. Because the cache hardware only deals in cache-line-sized blocks of
memory, small data items in adjacent memory locations will be in the same cache
line. Sometimes this is good: if a set of data accessed by a thread is in the same cache
line, this is better for the performance of the application than if the same set of data
was spread over multiple cache lines. However, if the data items in a cache line are
unrelated and need to be accessed by different threads, this can be a major cause of
performance problems.

 Suppose you have an array of int values and a set of threads that each access their
own entry in the array but do so repeatedly, including updates. Since an int is typi-
cally much smaller than a cache line, quite a few of those array entries will be in the
same cache line. Consequently, even though each thread only accesses its own array
entry, the cache hardware still has to play cache ping-pong. Every time the thread
accessing entry 0 needs to update the value, ownership of the cache line needs to be
transferred to the processor running that thread, only to be transferred to the cache
for the processor running the thread for entry 1 when that thread needs to update its
data item. The cache line is shared, even though none of the data is, hence the term
false sharing. The solution here is to structure the data so that data items to be accessed
Download from Wow! eBook <www.wowebook.com>

238 CHAPTER 8 Designing concurrent code
by the same thread are close together in memory (and thus more likely to be in the
same cache line), whereas those that are to be accessed by separate threads are far
apart in memory and thus more likely to be in separate cache lines. You’ll see how this
affects the design of the code and data later in this chapter.

 If having multiple threads access data from the same cache line is bad, how does
the memory layout of data accessed by a single thread affect things?

8.2.4 How close is your data?

Whereas false sharing is caused by having data accessed by one thread too close to
data accessed by another thread, another pitfall associated with data layout directly
impacts the performance of a single thread on its own. The issue is data proximity: if
the data accessed by a single thread is spread out in memory, it’s likely that it lies on
separate cache lines. On the flip side, if the data accessed by a single thread is close
together in memory, it’s more likely to lie on the same cache line. Consequently, if
data is spread out, more cache lines must be loaded from memory onto the processor
cache, which can increase memory access latency and reduce performance compared
to data that’s located close together.

 Also, if the data is spread out, there’s an increased chance that a given cache line
containing data for the current thread also contains data that’s not for the current
thread. At the extreme there’ll be more data in the cache that you don’t care about
than data that you do. This wastes precious cache space and thus increases the chance
that the processor will experience a cache miss and have to fetch a data item from
main memory even if it once held it in the cache, because it had to remove the item
from the cache to make room for another.

 Now, this is important with single-threaded code, so why am I bringing it up here?
The reason is task switching. If there are more threads than cores in the system, each
core is going to be running multiple threads. This increases the pressure on the
cache, as you try to ensure that different threads are accessing different cache lines in
order to avoid false sharing. Consequently, when the processor switches threads, it’s
more likely to have to reload the cache lines if each thread uses data spread across
multiple cache lines than if each thread’s data is close together in the same cache line.

 If there are more threads than cores or processors, the operating system might also
choose to schedule a thread on one core for one time slice and then on another core
for the next time slice. This will therefore require transferring the cache lines for that
thread’s data from the cache for the first core to the cache for the second; the more
cache lines that need transferring, the more time consuming this will be. Although
operating systems typically avoid this when they can, it does happen and does impact
performance when it happens.

 Task-switching problems are particularly prevalent when lots of threads are ready to
run as opposed to waiting. This is an issue we’ve already touched on: oversubscription.
Download from Wow! eBook <www.wowebook.com>

239Designing data structures for multithreaded performance
8.2.5 Oversubscription and excessive task switching

In multithreaded systems, it’s typical to have more threads than processors, unless you’re
running on massively parallel hardware. However, threads often spend time waiting for
external I/O to complete or blocked on mutexes or waiting for condition variables and
so forth, so this isn’t a problem. Having the extra threads enables the application to per-
form useful work rather than having processors sitting idle while the threads wait.

 This isn’t always a good thing. If you have too many additional threads, there will be
more threads ready to run than there are available processors, and the operating system
will have to start task switching quite heavily in order to ensure they all get a fair time
slice. As you saw in chapter 1, this can increase the overhead of the task switching as
well as compound any cache problems resulting from lack of proximity. Oversubscrip-
tion can arise when you have a task that repeatedly spawns new threads without limits,
as the recursive quick sort from chapter 4 did, or where the natural number of threads
when you separate by task type is more than the number of processors and the work is
naturally CPU bound rather than I/O bound.

 If you’re simply spawning too many threads because of data division, you can limit
the number of worker threads, as you saw in section 8.1.2. If the oversubscription is
due to the natural division of work, there’s not a lot you can do to ameliorate the
problem save for choosing a different division. In that case, choosing the appropriate
division may require more knowledge of the target platform than you have available
and is only worth doing if performance is unacceptable and it can be demonstrated
that changing the division of work does improve performance.

 Other factors can affect the performance of multithreaded code. The cost of cache
ping-pong can vary quite considerably between two single-core processors and a single
dual-core processor, even if they’re the same CPU type and clock speed, for example,
but these are the major ones that will have a very visible impact. Let’s now look at how
that affects the design of the code and data structures.

8.3 Designing data structures for
multithreaded performance
In section 8.1 we looked at various ways of dividing work between threads, and in sec-
tion 8.2 we looked at various factors that can affect the performance of your code.
How can you use this information when designing data structures for multithreaded
performance? This is a different question than that addressed in chapters 6 and 7,
which were about designing data structures that are safe for concurrent access. As
you’ve just seen in section 8.2, the layout of the data used by a single thread can have
an impact, even if that data isn’t shared with any other threads.

 The key things to bear in mind when designing your data structures for multi-
threaded performance are contention, false sharing, and data proximity. All three of these
can have a big impact on performance, and you can often improve things just by alter-
ing the data layout or changing which data elements are assigned to which thread.
First off, let’s look at an easy win: dividing array elements between threads.
Download from Wow! eBook <www.wowebook.com>

240 CHAPTER 8 Designing concurrent code
8.3.1 Dividing array elements for complex operations

Suppose you’re doing some heavy-duty math, and you need to multiply two large
square matrices together. To multiply matrices, you multiply each element in the first
row of the first matrix with the corresponding element of the first column of the second
matrix and add up the products to give the top-left element of the result. You then
repeat this with the second row and the first column to give the second element in the
first column of the result, and with the first row and second column to give the first
element in the second column of the result, and so forth. This is shown in figure 8.3;
the highlighting shows that the second row of the first matrix is paired with the third
column of the second matrix to give the entry in the second row of the third column
of the result.

 Now let’s assume that these are large matrices with several thousand rows and col-
umns, in order to make it worthwhile using multiple threads to optimize the multipli-
cation. Typically, a non-sparse matrix is represented by a big array in memory, with all
the elements of the first row followed by all the elements of the second row, and so
forth. To multiply your matrices you thus have three of these huge arrays. In order to
get optimal performance, you need to pay careful attention to the data access pat-
terns, particularly the writes to the third array.

 There are many ways you can divide the work between threads. Assuming you have
more rows/columns than available processors, you could have each thread calculate the
values for a number of columns in the result matrix, or have each thread calculate
the results for a number of rows, or even have each thread calculate the results for a
rectangular subset of the matrix.

 Back in sections 8.2.3 and 8.2.4, you saw that it’s better to access contiguous ele-
ments from an array rather than values all over the place, because this reduces cache
usage and the chance of false sharing. If you have each thread handle a set of columns, it
needs to read every value from the first matrix and the values from the corresponding
columns in the second matrix, but you only have to write the column values. Given that
the matrices are stored with the rows contiguous, this means that you’re accessing N ele-
ments from the first row, N elements from the second, and so forth (where N is the num-
ber of columns you’re processing). Since other threads will be accessing the other
elements of each row, it’s clear that you ought to be accessing adjacent columns, so the N

Figure 8.3 Matrix multiplication
Download from Wow! eBook <www.wowebook.com>

241Designing data structures for multithreaded performance
elements from each row are adjacent, and you minimize false sharing. Of course, if
the space occupied by your N elements is an exact number of cache lines, there’ll be
no false sharing because threads will be working on separate cache lines.

 On the other hand, if you have each thread handle a set of rows, then it needs to
read every value from the second matrix and the values from the corresponding rows of
the first matrix, but it only has to write the row values. Because the matrices are stored
with the rows contiguous, you’re now accessing all elements from N rows. If you again
choose adjacent rows, this means that the thread is now the only thread writing to
those N rows; it has a contiguous block of memory that’s not touched by any other
thread. This is likely an improvement over having each thread handle a set of col-
umns, because the only possibility of false sharing is for the last few elements of one
block with the first few of the next, but it’s worth timing it on the target architecture
to confirm.

 What about your third option—dividing into rectangular blocks? This can be
viewed as dividing into columns and then dividing into rows. As such, it has the same
false-sharing potential as division by columns. If you can choose the number of col-
umns in the block to avoid this possibility, there’s an advantage to rectangular division
from the read side: you don’t need to read the entirety of either source matrix. You
only need to read the values corresponding to the rows and columns of the target rect-
angle. To look at this in concrete terms, consider multiplying two matrices that have
1,000 rows and 1,000 columns. That’s 1 million elements. If you have 100 processors,
they can handle 10 rows each for a nice round 10,000 elements. However, to calculate
the results of those 10,000 elements, they need to access the entirety of the second
matrix (1 million elements) plus the 10,000 elements from the corresponding rows in
the first matrix, for a grand total of 1,010,000 elements. On the other hand, if they
each handle a block of 100 elements by 100 elements (which is still 10,000 elements
total), they need to access the values from 100 rows of the first matrix (100 x 1,000 =
100,000 elements) and 100 columns of the second matrix (another 100,000). This is
only 200,000 elements, which is a five-fold reduction in the number of elements read.
If you’re reading fewer elements, there’s less chance of a cache miss and the potential
for greater performance.

 It may therefore be better to divide the result matrix into small square or almost-
square blocks rather than have each thread handle the entirety of a small number of
rows. Of course, you can adjust the size of each block at runtime, depending on the
size of the matrices and the available number of processors. As ever, if performance is
important, it’s vital to profile various options on the target architecture.

 Chances are you’re not doing matrix multiplication, so how does this apply to you?
The same principles apply to any situation where you have large blocks of data to
divide between threads; look at all the aspects of the data access patterns carefully, and
identify the potential causes of performance hits. There may be similar circumstances
in your problem domain where changing the division of work can improve perfor-
mance without requiring any change to the basic algorithm.
Download from Wow! eBook <www.wowebook.com>

242 CHAPTER 8 Designing concurrent code
OK, so we’ve looked at how access patterns in arrays can affect performance. What
about other types of data structures?

8.3.2 Data access patterns in other data structures

Fundamentally, the same considerations apply when trying to optimize the data access
patterns of other data structures as when optimizing access to arrays:

■ Try to adjust the data distribution between threads so that data that’s close
together is worked on by the same thread.

■ Try to minimize the data required by any given thread.
■ Try to ensure that data accessed by separate threads is sufficiently far apart to

avoid false sharing.

Of course, that’s not easy to apply to other data structures. For example, binary trees
are inherently difficult to subdivide in any unit other than a subtree, which may or
may not be useful, depending on how balanced the tree is and how many sections you
need to divide it into. Also, the nature of the trees means that the nodes are likely
dynamically allocated and thus end up in different places on the heap.

 Now, having data end up in different places on the heap isn’t a particular problem
in itself, but it does mean that the processor has to keep more things in cache. This
can actually be beneficial. If multiple threads need to traverse the tree, then they all
need to access the tree nodes, but if the tree nodes only contain pointers to the real
data held at the node, then the processor only has to load the data from memory if it’s
actually needed. If the data is being modified by the threads that need it, this can
avoid the performance hit of false sharing between the node data itself and the data
that provides the tree structure.

 There’s a similar issue with data protected by a mutex. Suppose you have a simple
class that contains a few data items and a mutex used to protect accesses from multiple
threads. If the mutex and the data items are close together in memory, this is ideal for
a thread that acquires the mutex; the data it needs may well already be in the proces-
sor cache, because it was just loaded in order to modify the mutex. But there’s also a
downside: if other threads try to lock the mutex while it’s held by the first thread,
they’ll need access to that memory. Mutex locks are typically implemented as a read-
modify-write atomic operation on a memory location within the mutex to try to acquire
the mutex, followed by a call to the operating system kernel if the mutex is already
locked. This read-modify-write operation may well cause the data held in the cache by
the thread that owns the mutex to be invalidated. As far as the mutex goes, this isn’t a
problem; that thread isn’t going to touch the mutex until it unlocks it. However, if the
mutex shares a cache line with the data being used by the thread, the thread that owns
the mutex can take a performance hit because another thread tried to lock the mutex!

 One way to test whether this kind of false sharing is a problem is to add huge
blocks of padding between the data elements that can be concurrently accessed by dif-
ferent threads. For example, you can use
Download from Wow! eBook <www.wowebook.com>

243Additional considerations when designing for concurrency
struct protected_data
{
 std::mutex m;
 char padding[65536];
 my_data data_to_protect;
};

to test the mutex contention issue or

struct my_data
{
 data_item1 d1;
 data_item2 d2;
 char padding[65536];
};
my_data some_array[256];

to test for false sharing of array data. If this improves the performance, you know that
false sharing was a problem, and you can either leave the padding in or work to elimi-
nate the false sharing in another way by rearranging the data accesses.

 Of course, there’s more than just the data access patterns to consider when design-
ing for concurrency, so let’s look at some of these additional considerations.

8.4 Additional considerations when designing
for concurrency
So far in this chapter we’ve looked at ways of dividing work between threads, factors
affecting performance, and how these factors affect your choice of data access pat-
terns and data structures. There’s more to designing code for concurrency than just
that, though. You also need to consider things such as exception safety and scalability.
Code is said to be scalable if the performance (whether in terms of reduced speed of
execution or increased throughput) increases as more processing cores are added to
the system. Ideally, the performance increase is linear, so a system with 100 processors
performs 100 times better than a system with one processor.

 Although code can work even if it isn’t scalable—a single-threaded application is
certainly not scalable, for example—exception safety is a matter of correctness. If your
code isn’t exception safe, you can end up with broken invariants or race conditions, or
your application might terminate unexpectedly because an operation threw an excep-
tion. With this in mind, we’ll look at exception safety first.

8.4.1 Exception safety in parallel algorithms

Exception safety is an essential aspect of good C++ code, and code that uses concur-
rency is no exception. In fact, parallel algorithms often require that you take more
care with regard to exceptions than normal sequential algorithms. If an operation in a
sequential algorithm throws an exception, the algorithm only has to worry about
ensuring that it tidies up after itself to avoid resource leaks and broken invariants; it
can merrily allow the exception to propagate to the caller for them to handle. By con-
trast, in a parallel algorithm many of the operations will be running on separate

65536 bytes is orders of magnitude
larger than a cache line
Download from Wow! eBook <www.wowebook.com>

244 CHAPTER 8 Designing concurrent code
threads. In this case, the exception can’t be allowed to propagate because it’s on
the wrong call stack. If a function spawned on a new thread exits with an exception, the
application is terminated.

 As a concrete example, let’s revisit the parallel_accumulate function from list-
ing 2.8, which is reproduced here.

template<typename Iterator,typename T>
struct accumulate_block
{
 void operator()(Iterator first,Iterator last,T& result)
 {
 result=std::accumulate(first,last,result);
 }
};

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return init;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 std::vector<T> results(num_threads);
 std::vector<std::thread> threads(num_threads-1);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 threads[i]=std::thread(
 accumulate_block<Iterator,T>(),
 block_start,block_end,std::ref(results[i]));
 block_start=block_end;
 }
 accumulate_block()(block_start,last,results[num_threads-1]);

 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));

 return std::accumulate(results.begin(),results.end(),init);
}

Listing 8.2 A naïve parallel version of std::accumulate (from listing 2.8)

b

c

d
 e

f

g

h

i

j

1)
Download from Wow! eBook <www.wowebook.com>

245Additional considerations when designing for concurrency
Now let’s go through and identify the places where an exception can be thrown: basi-
cally anywhere where you call a function you know can throw or you perform an oper-
ation on a user-defined type that may throw.

 First up, you have the call to distance c, which performs operations on the user-
supplied iterator type. Because you haven’t yet done any work, and this is on the call-
ing thread, it’s fine. Next up, you have the allocation of the results vector d and the
threads vector e. Again, these are on the calling thread, and you haven’t done any
work or spawned any threads, so this is fine. Of course, if the construction of threads
throws, the memory allocated for results will have to be cleaned up, but the destruc-
tor will take care of that for you.

 Skipping over the initialization of block_start f because that’s similarly safe, you
come to the operations in the thread-spawning loop g, h, i. Once you’ve been
through the creation of the first thread at h, you’re in trouble if you throw any excep-
tions; the destructors of your new std::thread objects will call std::terminate and
abort your program. This isn’t a good place to be.

 The call to accumulate_block j can potentially throw, with similar consequences;
your thread objects will be destroyed and call std::terminate. On the other hand,
the final call to std::accumulate 1) can throw without causing any hardship, because
all the threads have been joined by this point.

 That’s it for the main thread, but there’s more: the calls to accumulate_block on the
new threads might throw at B. There aren’t any catch blocks, so this exception will be
left unhandled and cause the library to call std::terminate() to abort the application.

 In case it’s not glaringly obvious, this code isn’t exception-safe.

ADDING EXCEPTION SAFETY

OK, so we’ve identified all the possible throw points and the nasty consequences of
exceptions. What can you do about it? Let’s start by addressing the issue of the excep-
tions thrown on your new threads.

 You encountered the tool for this job in chapter 4. If you look carefully at what
you’re trying to achieve with new threads, it’s apparent that you’re trying to calculate a
result to return while allowing for the possibility that the code might throw an excep-
tion. This is precisely what the combination of std::packaged_task and std::future
is designed for. If you rearrange your code to use std::packaged_task, you end up
the following code.

template<typename Iterator,typename T>
struct accumulate_block
{
 T operator()(Iterator first,Iterator last)
 {
 return std::accumulate(first,last,T());
 }
};

Listing 8.3 A parallel version of std::accumulate using std::packaged_task

b

c

Download from Wow! eBook <www.wowebook.com>

246 CHAPTER 8 Designing concurrent code
template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return init;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 std::vector<std::future<T> > futures(num_threads-1);
 std::vector<std::thread> threads(num_threads-1);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 std::packaged_task<T(Iterator,Iterator)> task(
 accumulate_block<Iterator,T>());
 futures[i]=task.get_future();
 threads[i]=std::thread(std::move(task),block_start,block_end);
 block_start=block_end;
 }
 T last_result=accumulate_block()(block_start,last);

 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));

 T result=init;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 result+=futures[i].get();
 }
 result += last_result;
 return result;
}

The first change is that the function call operator of accumulate_block now returns
the result directly, rather than taking a reference to somewhere to store it B. You’re
using std::packaged_task and std::future for the exception safety, so you can use
it to transfer the result too. This does require that you explicitly pass in a default-
constructed T in the call to std::accumulate c rather than reusing the supplied
result value, but that’s a minor change.

 The next change is that rather than having a vector of results, you have a vector of
futures d to store a std::future<T> for each spawned thread. In the thread-spawning

d

e
f

g

h

i

j

1)
Download from Wow! eBook <www.wowebook.com>

247Additional considerations when designing for concurrency
loop, you first create a task for accumulate_block e. std::packaged_task<T(Iterator,
Iterator)> declares a task that takes two Iterators and returns a T, which is what your
function does. You then get the future for that task f and run that task on a new
thread, passing in the start and end of the block to process g. When the task runs,
the result will be captured in the future, as will any exception thrown.

 Since you’ve been using futures, you don’t have a result array, so you must store
the result from the final block in a variable h rather than in a slot in the array. Also,
because you have to get the values out of the futures, it’s now simpler to use a basic
for loop rather than std::accumulate, starting with the supplied initial value i and
adding in the result from each future j. If the corresponding task threw an excep-
tion, this will have been captured in the future and will now be thrown again by the
call to get(). Finally, you add the result from the last block 1) before returning
the overall result to the caller.

 So, that’s removed one of the potential problems: exceptions thrown in the worker
threads are rethrown in the main thread. If more than one of the worker threads
throws an exception, only one will be propagated, but that’s not too big a deal. If it
really matters, you can use something like std::nested_exception to capture all the
exceptions and throw that instead.

 The remaining problem is the leaking threads if an exception is thrown between
when you spawn the first thread and when you’ve joined with them all. The simplest
solution is just to catch any exceptions, join with the threads that are still joinable(),
and rethrow the exception:

try
{
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 // ... as before
 }
 T last_result=accumulate_block()(block_start,last);

 std::for_each(threads.begin(),threads.end(),
 std::mem_fn(&std::thread::join));
}
catch(...)
{
 for(unsigned long i=0;i<(num_thread-1);++i)
 {
 if(threads[i].joinable())
 thread[i].join();
 }
 throw;
}

Now this works. All the threads will be joined, no matter how the code leaves the
block. However, try-catch blocks are ugly, and you have duplicate code. You’re join-
ing the threads both in the “normal” control flow and in the catch block. Duplicate
code is rarely a good thing, because it means more places to change. Instead, let’s
Download from Wow! eBook <www.wowebook.com>

248 CHAPTER 8 Designing concurrent code
extract this out into the destructor of an object; it is, after all, the idiomatic way of
cleaning up resources in C++. Here’s your class:

class join_threads
{
 std::vector<std::thread>& threads;
public:
 explicit join_threads(std::vector<std::thread>& threads_):
 threads(threads_)
 {}
 ~join_threads()
 {
 for(unsigned long i=0;i<threads.size();++i)
 {
 if(threads[i].joinable())
 threads[i].join();
 }
 }
};

This is similar to your thread_guard class from listing 2.3, except it’s extended for the
whole vector of threads. You can then simplify your code as follows.

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return init;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 std::vector<std::future<T> > futures(num_threads-1);
 std::vector<std::thread> threads(num_threads-1);
 join_threads joiner(threads);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 std::packaged_task<T(Iterator,Iterator)> task(
 accumulate_block<Iterator,T>());
 futures[i]=task.get_future();

Listing 8.4 An exception-safe parallel version of std::accumulate

b

Download from Wow! eBook <www.wowebook.com>

249Additional considerations when designing for concurrency
 threads[i]=std::thread(std::move(task),block_start,block_end);
 block_start=block_end;
 }
 T last_result=accumulate_block()(block_start,last);
 T result=init;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 result+=futures[i].get();
 }
 result += last_result;
 return result;
}

Once you’ve created your container of threads, you create an instance of your new
class B to join with all the threads on exit. You can then remove your explicit join
loop, safe in the knowledge that the threads will be joined however the function exits.
Note that the calls to futures[i].get() c will block until the results are ready, so
you don’t need to have explicitly joined with the threads at this point. This is unlike
the original from listing 8.2, where you needed to have joined with the threads to
ensure that the results vector was correctly populated. Not only do you get exception-
safe code, but your function is actually shorter because you’ve extracted the join code
into your new (reusable) class.

EXCEPTION SAFETY WITH STD::ASYNC()
Now that you’ve seen what’s required for exception safety when explicitly managing
the threads, let’s take a look at the same thing done with std::async(). As you’ve
already seen, in this case the library takes care of managing the threads for you, and
any threads spawned are completed when the future is ready. The key thing to note for
exception safety is that if you destroy the future without waiting for it, the destructor
will wait for the thread to complete. This neatly avoids the problem of leaked threads
that are still executing and holding references to the data. The next listing shows an
exception-safe implementation using std::async().

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);
 unsigned long const max_chunk_size=25;
 if(length<=max_chunk_size)
 {
 return std::accumulate(first,last,init);
 }
 else
 {
 Iterator mid_point=first;
 std::advance(mid_point,length/2);
 std::future<T> first_half_result=
 std::async(parallel_accumulate<Iterator,T>,
 first,mid_point,init);

Listing 8.5 An exception-safe parallel version of std::accumulate using std::async

c

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

250 CHAPTER 8 Designing concurrent code
 T second_half_result=parallel_accumulate(mid_point,last,T());
 return first_half_result.get()+second_half_result;
 }
}

This version uses recursive division of the data rather than pre-calculating the division
of the data into chunks, but it’s a whole lot simpler than the previous version, and it’s
still exception safe. As before, you start by finding the length of the sequence B, and if
it’s smaller than the maximum chunk size, you resort to calling std::accumulate
directly c. If there are more elements than your chunk size, you find the midpoint d
and then spawn an asynchronous task to handle that half e. The second half of the
range is handled with a direct recursive call f, and then the results from the two
chunks are added together g. The library ensures that the std::async calls make use
of the hardware threads that are available without creating an overwhelming number of
threads. Some of the “asynchronous” calls will actually be executed synchronously in
the call to get() g.

 The beauty of this is that not only can it take advantage of the hardware concur-
rency, but it’s also trivially exception safe. If an exception is thrown by the recursive
call f, the future created from the call to std::async e will be destroyed as the
exception propagates. This will in turn wait for the asynchronous task to finish, thus
avoiding a dangling thread. On the other hand, if the asynchronous call throws, this is
captured by the future, and the call to get() g will rethrow the exception.

 What other considerations do you need to take into account when designing con-
current code? Let’s look at scalability. How much does the performance improve if you
move your code to a system with more processors?

8.4.2 Scalability and Amdahl’s law

Scalability is all about ensuring that your application can take advantage of additional
processors in the system it’s running on. At one extreme you have a single-threaded
application that’s completely unscalable; even if you add 100 processors to your sys-
tem, the performance will remain unchanged. At the other extreme you have some-
thing like the SETI@Home3 project, which is designed to take advantage of thousands
of additional processors (in the form of individual computers added to the network by
users) as they become available.

 For any given multithreaded program, the number of threads that are performing
useful work will vary as the program runs. Even if every thread is doing useful work for
the entirety of its existence, the application may initially have only one thread, which
will then have the task of spawning all the others. But even that’s a highly unlikely sce-
nario. Threads often spend time waiting for each other or waiting for I/O operations
to complete.

3 http://setiathome.ssl.berkeley.edu/

f

g

Download from Wow! eBook <www.wowebook.com>

http://setiathome.ssl.berkeley.edu/

251Additional considerations when designing for concurrency
 Every time one thread has to wait for something (whatever that something is),
unless there’s another thread ready to take its place on the processor, you have a pro-
cessor sitting idle that could be doing useful work.

 A simplified way of looking at this is to divide the program into “serial” sections
where only one thread is doing any useful work and “parallel” sections where all the
available processors are doing useful work. If you run your application on a system
with more processors, the “parallel” sections will theoretically be able to complete
more quickly, because the work can be divided between more processors, whereas the
“serial” sections will remain serial. Under such a simplified set of assumptions, you can
therefore estimate the potential performance gain to be achieved by increasing the
number of processors: if the “serial” sections constitute a fraction f s of the program,
then the performance gain P from using N processors can be estimated as

This is Amdahl’s law, which is often cited when talking about the performance of con-
current code. If everything can be parallelized, so the serial fraction is 0, the speedup
is simply N. Alternatively, if the serial fraction is one third, even with an infinite num-
ber of processors you’re not going to get a speedup of more than 3.

 However, this paints a naïve picture, because tasks are rarely infinitely divisible in
the way that would be required for the equation to hold, and it’s also rare for every-
thing to be CPU bound in the way that’s assumed. As you’ve just seen, threads may wait
for many things while executing.

 One thing that’s clear from Amdahl’s law is that when you’re using concurrency
for performance, it’s worth looking at the overall design of the application to maxi-
mize the potential for concurrency and ensure that there’s always useful work for the pro-
cessors to be doing. If you can reduce the size of the “serial” sections or reduce the
potential for threads to wait, you can improve the potential for performance gains on
systems with more processors. Alternatively, if you can provide more data for the sys-
tem to process, and thus keep the parallel sections primed with work, you can reduce
the serial fraction and increase the performance gain P.

 Essentially, scalability is about reducing the time it takes to perform an action or increasing
the amount of data that can be processed in a given time as more processors are added.
Sometimes these are equivalent (you can process more data if each element is pro-
cessed faster) but not always. Before choosing the techniques to use for dividing work
between threads, it’s important to identify which of these aspects of scalability are
important to you.

 I mentioned at the beginning of this section that threads don’t always have useful
work to do. Sometimes they have to wait for other threads, or for I/O to complete, or
for something else. If you give the system something useful to do during this wait, you
can effectively “hide” the waiting.

P = 1

fS +
1 – fS

N

Download from Wow! eBook <www.wowebook.com>

252 CHAPTER 8 Designing concurrent code
8.4.3 Hiding latency with multiple threads

For lots of the discussions of the performance of multithreaded code, we’ve been
assuming that the threads are running “flat out” and always have useful work to do
when they’re actually running on a processor. This is of course not true; in application
code threads frequently block while waiting for something. For example, they may be
waiting for some I/O to complete, waiting to acquire a mutex, waiting for another
thread to complete some operation and notify a condition variable or populate a
future, or even just sleeping for a period of time.

 Whatever the reason for the waits, if you have only as many threads as there are
physical processing units in the system, having blocked threads means you’re wasting
CPU time. The processor that would otherwise be running a blocked thread is instead
doing nothing. Consequently, if you know that one of your threads is likely to spend a
considerable portion of its time waiting around, you can make use of that spare CPU
time by running one or more additional threads.

 Consider a virus scanner application, which divides the work across threads using
a pipeline. The first thread searches the filesystem for files to check and puts them
on a queue. Meanwhile, another thread takes filenames from the queue, loads the
files, and scans them for viruses. You know that the thread searching the filesystem
for files to scan is definitely going to be I/O bound, so you make use of the “spare”
CPU time by running an additional scanning thread. You’d then have one file-search-
ing thread and as many scanning threads as there are physical cores or processors in
the system. Since the scanning thread may also have to read significant portions
of the files off the disk in order to scan them, it might make sense to have even
more scanning threads. But at some point there’ll be too many threads, and the sys-
tem will slow down again as it spends more and more time task switching, as described
in section 8.2.5.

 As ever, this is an optimization, so it’s important to measure performance before
and after any change in the number of threads; the optimal number of threads will be
highly dependent on the nature of the work being done and the percentage of time
the thread spends waiting.

 Depending on the application, it might be possible to use up this spare CPU time
without running additional threads. For example, if a thread is blocked because it’s
waiting for an I/O operation to complete, it might make sense to use asynchronous I/O
if that’s available, and then the thread can perform other useful work while the I/O is
performed in the background. In other cases, if a thread is waiting for another thread
to perform an operation, then rather than blocking, the waiting thread might be able to
perform that operation itself, as you saw with the lock-free queue in chapter 7. In an
extreme case, if a thread is waiting for a task to be completed and that task hasn’t yet
been started by any thread, the waiting thread might perform the task in entirety itself
or another task that’s incomplete. You saw an example of this in listing 8.1, where the
sort function repeatedly tries to sort outstanding chunks as long as the chunks it needs
are not yet sorted.
Download from Wow! eBook <www.wowebook.com>

253Additional considerations when designing for concurrency
 Rather than adding threads to ensure that all available processors are being used,
sometimes it pays to add threads to ensure that external events are handled in a timely
manner, to increase the responsiveness of the system.

8.4.4 Improving responsiveness with concurrency

Most modern graphical user interface frameworks are event driven; the user performs
actions on the user interface by pressing keys or moving the mouse, which generate a
series of events or messages that the application then handles. The system may also gen-
erate messages or events on its own. In order to ensure that all events and messages are
correctly handled, the application typically has an event loop that looks like this:

while(true)
{
 event_data event=get_event();
 if(event.type==quit)
 break;
 process(event);
}

Obviously, the details of the API will vary, but the structure is generally the same: wait
for an event, do whatever processing is necessary to handle it, and then wait for the
next one. If you have a single-threaded application, this can make long-running tasks
hard to write, as described in section 8.1.3. In order to ensure that user input is han-
dled in a timely manner, get_event() and process() must be called with reasonable
frequency, whatever the application is doing. This means that either the task must
periodically suspend itself and return control to the event loop, or the get_event()/
process() code must be called from within the code at convenient points. Either
option complicates the implementation of the task.

 By separating the concerns with concurrency, you can put the lengthy task on a
whole new thread and leave a dedicated GUI thread to process the events. The threads
can then communicate through simple mechanisms rather than having to somehow
mix the event-handling code in with the task code. The following listing shows a sim-
ple outline for such a separation.

std::thread task_thread;
std::atomic<bool> task_cancelled(false);

void gui_thread()
{
 while(true)
 {
 event_data event=get_event();
 if(event.type==quit)
 break;
 process(event);
 }
}

Listing 8.6 Separating GUI thread from task thread
Download from Wow! eBook <www.wowebook.com>

254 CHAPTER 8 Designing concurrent code
void task()
{
 while(!task_complete() && !task_cancelled)
 {
 do_next_operation();
 }
 if(task_cancelled)
 {
 perform_cleanup();
 }
 else
 {
 post_gui_event(task_complete);
 }
}

void process(event_data const& event)
{
 switch(event.type)
 {
 case start_task:
 task_cancelled=false;
 task_thread=std::thread(task);
 break;
 case stop_task:
 task_cancelled=true;
 task_thread.join();
 break;
 case task_complete:
 task_thread.join();
 display_results();
 break;
 default:
 //...
 }
}

By separating the concerns in this way, the user thread is always able to respond to the
events in a timely fashion, even if the task takes a long time. This responsiveness is often
key to the user experience when using an application; applications that completely
lock up whenever a particular operation is being performed (whatever that may be)
are inconvenient to use. By providing a dedicated event-handling thread, the GUI can
handle GUI-specific messages (such as resizing or repainting the window) without
interrupting the execution of the time-consuming processing, while still passing on
the relevant messages where they do affect the long-running task.

 So far in this chapter you’ve had a thorough look at the issues that need to be con-
sidered when designing concurrent code. Taken as a whole, these can be quite over-
whelming, but as you get used to working with your “multithreaded programming
hat” on, most of them will become second nature. If these considerations are new to
you, hopefully they’ll become clearer as you look at how they impact some concrete
examples of multithreaded code.
Download from Wow! eBook <www.wowebook.com>

255Designing concurrent code in practice
8.5 Designing concurrent code in practice
When designing concurrent code for a particular task, the extent to which you’ll need to
consider each of the issues described previously will depend on the task. To demonstrate
how they apply, we’ll look at the implementation of parallel versions of three functions
from the C++ Standard Library. This will give you a familiar basis on which to build, while
providing a platform for looking at the issues. As a bonus, we’ll also have usable imple-
mentations of the functions, which could be used to help with parallelizing a larger task.

 I’ve primarily selected these implementations to demonstrate particular tech-
niques rather than to be state-of-the-art implementations; more advanced implemen-
tations that make better use of the available hardware concurrency may be found in
the academic literature on parallel algorithms or in specialist multithreading libraries
such as Intel’s Threading Building Blocks.4

 The simplest parallel algorithm conceptually is a parallel version of std::for_
each, so we’ll start with that.

8.5.1 A parallel implementation of std::for_each

std::for_each is simple in concept; it calls a user-supplied function on every element
in a range in turn. The big difference between a parallel implementation and the
sequential std::for_each is the order of the function calls. std::for_each calls
the function with the first element in the range, then the second, and so on, whereas with
a parallel implementation there’s no guarantee as to the order in which the elements will
be processed, and they may (indeed we hope they will) be processed concurrently.

 To implement a parallel version of this, you just need to divide the range into sets
of elements to process on each thread. You know the number of elements in advance,
so you can divide the data before processing begins (section 8.1.1). We’ll assume
that this is the only parallel task running, so you can use std::thread::hardware_
concurrency() to determine the number of threads. You also know that the elements
can be processed entirely independently, so you can use contiguous blocks to avoid
false sharing (section 8.2.3).

 This algorithm is similar in concept to the parallel version of std::accumulate
described in section 8.4.1, but rather than computing the sum of each element, you
merely have to apply the specified function. Although you might imagine this would
greatly simplify the code, because there’s no result to return, if you wish to pass on
exceptions to the caller, you still need to use the std::packaged_task and std::
future mechanisms to transfer the exception between threads. A sample implementa-
tion is shown here.

template<typename Iterator,typename Func>
void parallel_for_each(Iterator first,Iterator last,Func f)

4 http://threadingbuildingblocks.org/

Listing 8.7 A parallel version of std::for_each
Download from Wow! eBook <www.wowebook.com>

http://threadingbuildingblocks.org/

256 CHAPTER 8 Designing concurrent code
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 std::vector<std::future<void> > futures(num_threads-1);
 std::vector<std::thread> threads(num_threads-1);
 join_threads joiner(threads);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 std::packaged_task<void(void)> task(
 [=]()
 {
 std::for_each(block_start,block_end,f);
 });
 futures[i]=task.get_future();
 threads[i]=std::thread(std::move(task));
 block_start=block_end;
 }
 std::for_each(block_start,last,f);
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 futures[i].get();
 }
}

The basic structure of the code is identical to that of listing 8.4, which is unsurpris-
ing. The key difference is that the futures vector stores std::future<void> B
because the worker threads don’t return a value, and a simple lambda function that
invokes the function f on the range from block_start to block_end is used for the
task c. This avoids having to pass the range into the thread constructor d. Since
the worker threads don’t return a value, the calls to futures[i].get() e just provide
a means of retrieving any exceptions thrown on the worker threads; if you don’t wish
to pass on the exceptions, you could omit this.

 Just as your parallel implementation of std::accumulate could be simplified using
std::async, so can your parallel_for_each. Such an implementation follows.

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

257Designing concurrent code in practice
template<typename Iterator,typename Func>
void parallel_for_each(Iterator first,Iterator last,Func f)
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return;

 unsigned long const min_per_thread=25;

 if(length<(2*min_per_thread))
 {
 std::for_each(first,last,f);
 }
 else
 {
 Iterator const mid_point=first+length/2;
 std::future<void> first_half=
 std::async(¶llel_for_each<Iterator,Func>,
 first,mid_point,f);
 parallel_for_each(mid_point,last,f);
 first_half.get();
 }
}

As with your std::async-based parallel_accumulate from listing 8.5, you split the
data recursively rather than before execution, because you don’t know how many
threads the library will use. As before, you divide the data in half at each stage, run-
ning one half asynchronously c and the other directly d until the remaining data is
too small to be worth dividing, in which case you defer to std::for_each B. Again,
the use of std::async and the get() member function of std::future e provides the
exception propagation semantics.

 Let’s move on from algorithms that must perform the same operation on each ele-
ment (of which there are several; std::count and std::replace spring to mind for
starters) to a slightly more complicated example in the shape of std::find.

8.5.2 A parallel implementation of std::find

std::find is a useful algorithm to consider next, because it’s one of several algo-
rithms that can complete without every element having been processed. For example,
if the first element in the range matches the search criterion, there’s no need to exam-
ine any other elements. As you’ll see shortly, this is an important property for perfor-
mance, and it has direct consequences for the design of the parallel implementation. It’s
a particular example of how data access patterns can affect the design of your code (sec-
tion 8.3.2). Other algorithms in this category include std::equal and std::any_of.

 If you were searching for an old photograph through the boxes of keepsakes in
your attic with your wife or partner, you wouldn’t let them continue searching if you
found the photograph. Instead, you’d let them know you’d found the photograph

Listing 8.8 A parallel version of std::for_each using std::async

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

258 CHAPTER 8 Designing concurrent code
(perhaps by shouting, “Found it!”), so that they could stop searching and move on to
something else. The nature of many algorithms requires that they process every ele-
ment, so they have no equivalent to shouting, “Found it!” For algorithms such as
std::find the ability to complete “early” is an important property and not something
to squander. You therefore need to design your code to make use of it—to interrupt
the other tasks in some way when the answer is known, so that the code doesn’t have
to wait for the other worker threads to process the remaining elements.

 If you don’t interrupt the other threads, the serial version may well outperform
your parallel implementation, because the serial algorithm can just stop searching
and return once a match is found. If, for example, the system can support four con-
current threads, each thread will have to examine one quarter of the elements in the
range, and our naïve parallel implementation would thus take approximately one
quarter of the time a single thread would take to check every element. If the matching
element lies in the first quarter of the range, the sequential algorithm will return first,
because it doesn’t need to check the remainder of the elements.

 One way in which you can interrupt the other threads is by making use of an
atomic variable as a flag and checking the flag after processing every element. If the
flag is set, one of the other threads has found a match, so you can cease processing
and return. By interrupting the threads in this way, you preserve the property that you
don’t have to process every value and thus improve the performance compared to the
serial version in more circumstances. The downside to this is that atomic loads can be
slow operations, so this can impede the progress of each thread.

 Now you have two choices as to how to return the values and how to propagate any
exceptions. You can use an array of futures, use std::packaged_task for transferring
the values and exceptions, and then process the results back in the main thread; or
you can use std::promise to set the final result directly from the worker threads. It all
depends on how you wish to handle exceptions from the worker threads. If you want
to stop on the first exception (even if you haven’t processed all elements), you can use
std::promise to set both the value and the exception. On the other hand, if you want
to allow the other workers to keep searching, you can use std::packaged_task, store
all the exceptions, and then rethrow one of them if a match isn’t found.

 In this case I’ve opted to use std::promise because the behavior matches that of
std::find more closely. One thing to watch out for here is the case where the ele-
ment being searched for isn’t in the supplied range. You therefore need to wait for all
the threads to finish before getting the result from the future. If you just block on the
future, you’ll be waiting forever if the value isn’t there. The result is shown here.

template<typename Iterator,typename MatchType>
Iterator parallel_find(Iterator first,Iterator last,MatchType match)
{
 struct find_element
 {

Listing 8.9 An implementation of a parallel find algorithm

b

Download from Wow! eBook <www.wowebook.com>

259Designing concurrent code in practice
 void operator()(Iterator begin,Iterator end,
 MatchType match,
 std::promise<Iterator>* result,
 std::atomic<bool>* done_flag)
 {
 try
 {
 for(;(begin!=end) && !done_flag->load();++begin)
 {
 if(*begin==match)
 {
 result->set_value(begin);
 done_flag->store(true);
 return;
 }
 }
 }
 catch(...)
 {
 try
 {
 result->set_exception(std::current_exception());
 done_flag->store(true);
 }
 catch(...)
 {}
 }
 }
 };

 unsigned long const length=std::distance(first,last);

 if(!length)
 return last;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 std::promise<Iterator> result;
 std::atomic<bool> done_flag(false);
 std::vector<std::thread> threads(num_threads-1);
 {
 join_threads joiner(threads);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);

c

d
e

f

g

h

i
 j

1)
Download from Wow! eBook <www.wowebook.com>

260 CHAPTER 8 Designing concurrent code
 threads[i]=std::thread(find_element(),
 block_start,block_end,match,
 &result,&done_flag);
 block_start=block_end;
 }
 find_element()(block_start,last,match,&result,&done_flag);
 }
 if(!done_flag.load())
 {
 return last;
 }
 return result.get_future().get();
}

The main body of listing 8.9 is similar to the previous examples. This time, the work is
done in the function call operator of the local find_element class B. This loops
through the elements in the block it’s been given, checking the flag at each step c. If
a match is found, it sets the final result value in the promise d and then sets the
done_flag e before returning.

 If an exception is thrown, this is caught by the catchall handler f, and you try to
store the exception in the promise g before setting the done_flag. Setting the value
on the promise might throw an exception if the promise is already set, so you catch
and discard any exceptions that happen here h.

 This means that if a thread calling find_element either finds a match or throws an
exception, all other threads will see done_flag set and will stop. If multiple threads
find a match or throw at the same time, they’ll race to set the result in the promise.
But this is a benign race condition; whichever succeeds is therefore nominally “first”
and is therefore an acceptable result.

 Back in the main parallel_find function itself, you have the promise i and
flag j used to stop the search, both of which are passed in to the new threads
along with the range to search 1!. The main thread also uses find_element to
search the remaining elements 1@. As already mentioned, you need to wait for all
threads to finish before you check the result, because there might not be any
matching elements. You do this by enclosing the thread launching-and-joining code
in a block 1), so all threads are joined when you check the flag to see whether a
match was found 1#. If a match was found, you can get the result or throw the
stored exception by calling get() on the std::future<Iterator> you can get from
the promise 1$.

 Again, this implementation assumes that you’re going to be using all available
hardware threads or that you have some other mechanism to determine the number
of threads to use for the up-front division of work between threads. Just as before, you
can use std::async and recursive data division to simplify your implementation,
while using the automatic scaling facility of the C++ Standard Library. An implementa-
tion of parallel_find using std::async is shown in the following listing.

1!

1@

1#

1$
Download from Wow! eBook <www.wowebook.com>

261Designing concurrent code in practice
template<typename Iterator,typename MatchType>
Iterator parallel_find_impl(Iterator first,Iterator last,MatchType match,
 std::atomic<bool>& done)
{
 try
 {
 unsigned long const length=std::distance(first,last);
 unsigned long const min_per_thread=25;
 if(length<(2*min_per_thread))
 {
 for(;(first!=last) && !done.load();++first)
 {
 if(*first==match)
 {
 done=true;
 return first;
 }
 }
 return last;
 }
 else
 {
 Iterator const mid_point=first+(length/2);
 std::future<Iterator> async_result=
 std::async(¶llel_find_impl<Iterator,MatchType>,
 mid_point,last,match,std::ref(done));
 Iterator const direct_result=
 parallel_find_impl(first,mid_point,match,done);
 return (direct_result==mid_point)?
 async_result.get():direct_result;
 }
 }
 catch(...)
 {
 done=true;
 throw;
 }
}

template<typename Iterator,typename MatchType>
Iterator parallel_find(Iterator first,Iterator last,MatchType match)
{
 std::atomic<bool> done(false);
 return parallel_find_impl(first,last,match,done);
}

The desire to finish early if you find a match means that you need to introduce a flag
that is shared between all threads to indicate that a match has been found. This there-
fore needs to be passed in to all recursive calls. The simplest way to achieve this is by
delegating to an implementation function B that takes an additional parameter—a
reference to the done flag, which is passed in from the main entry point 1@.

Listing 8.10 An implementation of a parallel find algorithm using std::async

b

cd

e

f

g

h

i

j

1)

1!

1@
Download from Wow! eBook <www.wowebook.com>

262 CHAPTER 8 Designing concurrent code
 The core implementation then proceeds along familiar lines. In common with
many of the implementations here, you set a minimum number of items to process on
a single thread c; if you can’t cleanly divide into two halves of at least that size, you
run everything on the current thread d. The actual algorithm is a simple loop
through the specified range, looping until you reach the end of the range or the done
flag is set e. If you do find a match, the done flag is set before returning f. If you
stop searching either because you got to the end of the list or because another thread
set the done flag, you return last to indicate that no match was found here g.

 If the range can be divided, you first find the midpoint h before using std::async
to run the search in the second half of the range i, being careful to use std::ref to
pass a reference to the done flag. In the meantime, you can search in the first half of
the range by doing a direct recursive call j. Both the asynchronous call and the
direct recursion may result in further subdivisions if the original range is big enough.

 If the direct search returned mid_point, then it failed to find a match, so you need
to get the result of the asynchronous search. If no result was found in that half, the
result will be last, which is the correct return value to indicate that the value was not
found 1). If the “asynchronous” call was deferred rather than truly asynchronous, it
will actually run here in the call to get(); in such circumstances the search of the top
half of the range is skipped if the search in the bottom half was successful. If the asyn-
chronous search is really running on another thread, the destructor of the
async_result variable will wait for the thread to complete, so you don’t have any leak-
ing threads.

 As before, the use of std::async provides you with exception-safety and exception-
propagation features. If the direct recursion throws an exception, the future’s destruc-
tor will ensure that the thread running the asynchronous call has terminated before
the function returns, and if the asynchronous call throws, the exception is propagated
through the get() call 1). The use of a try/catch block around the whole thing is only
there to set the done flag on an exception and ensure that all threads terminate quickly
if an exception is thrown 1!. The implementation would still be correct without it but
would keep checking elements until every thread was finished.

 A key feature that both implementations of this algorithm share with the other
parallel algorithms you’ve seen is that there’s no longer the guarantee that items are
processed in the sequence that you get from std::find. This is essential if you’re
going to parallelize the algorithm. You can’t process elements concurrently if the
order matters. If the elements are independent, it doesn’t matter for things like
parallel_for_each, but it means that your parallel_find might return an element
toward the end of the range even when there’s a match toward the beginning, which
might be surprising if you’re not expecting it.

OK, so you’ve managed to parallelize std::find. As I stated at the beginning of
this section, there are other similar algorithms that can complete without processing
every data element, and the same techniques can be used for those. We’ll also look
further at the issue of interrupting threads in chapter 9.
Download from Wow! eBook <www.wowebook.com>

263Designing concurrent code in practice
 To complete our trio of examples, we’ll go in a different direction and look at
std::partial_sum. This algorithm doesn’t get a lot of press, but it’s an interesting
algorithm to parallelize and highlights some additional design choices.

8.5.3 A parallel implementation of std::partial_sum

std::partial_sum calculates the running totals in a range, so each element is
replaced by the sum of that element and all the elements prior to it in the original
sequence. Thus the sequence 1, 2, 3, 4, 5 becomes 1, (1+2)=3, (1+2+3)=6, (1+2+3+4)=10,
(1+2+3+4+5)=15. This is interesting to parallelize because you can’t just divide the
range into chunks and calculate each chunk independently. For example, the initial
value of the first element needs to be added to every other element.

 One approach to determining the partial sum of a range is to calculate the partial
sum of individual chunks and then add the resulting value of the last element in the
first chunk onto the elements in the next chunk, and so forth. If you have the ele-
ments 1, 2, 3, 4, 5, 6, 7, 8, 9 and you’re splitting into three chunks, you get {1, 3, 6}, {4,
9, 15}, {7, 15, 24} in the first instance. If you then add 6 (the sum for the last element in
the first chunk) onto the elements in the second chunk, you get {1, 3, 6}, {10, 15, 21},
{7, 15, 24}. Then you add the last element of the second chunk (21) onto the elements
in the third and final chunk to get the final result: {1, 3, 6}, {10, 15, 21}, {28, 36, 55}.

 As well as the original division into chunks, the addition of the partial sum from
the previous block can also be parallelized. If the last element of each block is
updated first, the remaining elements in a block can be updated by one thread while a
second thread updates the next block, and so forth. This works well when there are
many more elements in the list than processing cores, because each core has a reason-
able number of elements to process at each stage.

 If you have a lot of processing cores (as many or more than the number of ele-
ments), this doesn’t work so well. If you divide the work among the processors, you
end up working in pairs of elements at the first step. Under these conditions, this for-
ward propagation of results means that many processors are left waiting, so you need
to find some work for them to do. You can then take a different approach to the prob-
lem. Rather than doing the full forward propagation of the sums from one chunk to
the next, you do a partial propagation: first sum adjacent elements as before, but then
add those sums to those two elements away, then add the next set of results to the
results from four elements away, and so forth. If you start with the same initial nine
elements, you get 1, 3, 5, 7, 9, 11, 13, 15, 17 after the first round, which gives you the
final results for the first two elements. After the second you then have 1, 3, 6, 10, 14,
18, 22, 26, 30, which is correct for the first four elements. After round three you have
1, 3, 6, 10, 15, 21, 28, 36, 44, which is correct for the first eight elements, and finally
after round four you have 1, 3, 6, 10, 15, 21, 28, 36, 45, which is the final answer.
Although there are more total steps than in the first approach, there’s greater scope
for parallelism if you have many processors; each processor can update one entry with
each step.
Download from Wow! eBook <www.wowebook.com>

264 CHAPTER 8 Designing concurrent code
 Overall, the second approach takes log2(N) steps of around N operations (one per
processor), where N is the number of elements in the list. This compares to the first
algorithm where each thread has to perform N/k operations for the initial partial sum
of the chunk allocated to it and then further N/k operations to do the forward propa-
gation, where k is the number of threads. Thus the first approach is O(N), whereas the
second is O(N log(N)) in terms of total number of operations. However, if you have as
many processors as list elements, the second approach requires only log(N) opera-
tions per processor, whereas the first essentially serializes the operations when k gets
large, because of the forward propagation. For small numbers of processing units, the
first approach will therefore finish faster, whereas for massively parallel systems, the sec-
ond will finish faster. This is an extreme example of the issues discussed in section 8.2.1.

 Anyway, efficiency issues aside, let’s look at some code. The following listing shows
the first approach.

template<typename Iterator>
void parallel_partial_sum(Iterator first,Iterator last)
{
 typedef typename Iterator::value_type value_type;

 struct process_chunk
 {
 void operator()(Iterator begin,Iterator last,
 std::future<value_type>* previous_end_value,
 std::promise<value_type>* end_value)
 {
 try
 {
 Iterator end=last;
 ++end;
 std::partial_sum(begin,end,begin);
 if(previous_end_value)
 {
 value_type& addend=previous_end_value->get();
 *last+=addend;
 if(end_value)
 {
 end_value->set_value(*last);
 }
 std::for_each(begin,last,[addend](value_type& item)
 {
 item+=addend;
 });
 }
 else if(end_value)
 {
 end_value->set_value(*last);
 }
 }
 catch(...)

Listing 8.11 Calculating partial sums in parallel by dividing the problem

b

c
d

e

f

g

h

i

j

Download from Wow! eBook <www.wowebook.com>

265Designing concurrent code in practice
 {
 if(end_value)
 {
 end_value->set_exception(std::current_exception());
 }
 else
 {
 throw;
 }
 }
 }
 };

 unsigned long const length=std::distance(first,last);

 if(!length)
 return last;

 unsigned long const min_per_thread=25;
 unsigned long const max_threads=
 (length+min_per_thread-1)/min_per_thread;

 unsigned long const hardware_threads=
 std::thread::hardware_concurrency();

 unsigned long const num_threads=
 std::min(hardware_threads!=0?hardware_threads:2,max_threads);

 unsigned long const block_size=length/num_threads;

 typedef typename Iterator::value_type value_type;

 std::vector<std::thread> threads(num_threads-1);
 std::vector<std::promise<value_type> >
 end_values(num_threads-1);
 std::vector<std::future<value_type> >
 previous_end_values;
 previous_end_values.reserve(num_threads-1);
 join_threads joiner(threads);

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_threads-1);++i)
 {
 Iterator block_last=block_start;
 std::advance(block_last,block_size-1);
 threads[i]=std::thread(process_chunk(),
 block_start,block_last,
 (i!=0)?&previous_end_values[i-1]:0,
 &end_values[i]);
 block_start=block_last;
 ++block_start;
 previous_end_values.push_back(end_values[i].get_future());
 }
 Iterator final_element=block_start;
 std::advance(final_element,std::distance(block_start,last)-1);
 process_chunk()(block_start,final_element,
 (num_threads>1)?&previous_end_values.back():0,
 0);
}

1)

1!

1@

1#

1$

1%
1^

1&
1*

1(

2)

2!
2@
Download from Wow! eBook <www.wowebook.com>

266 CHAPTER 8 Designing concurrent code
In this instance, the general structure is the same as with the previous algorithms,
dividing the problem into chunks, with a minimum chunk size per thread 1@. In this
case, as well as the vector of threads 1#, you have a vector of promises 1$, which is used
to store the value of the last element in the chunk, and a vector of futures 1%, which is
used to retrieve the last value from the previous chunk. You can reserve the space for
the futures 1^ to avoid a reallocation while spawning threads, because you know how
many you’re going to have.

 The main loop is the same as before, except this time you actually want the iterator
that points to the last element in each block, rather than being the usual one past the
end 1&, so that you can do the forward propagation of the last element in each range.
The actual processing is done in the process_chunk function object, which we’ll look
at shortly; the start and end iterators for this chunk are passed in as arguments along-
side the future for the end value of the previous range (if any) and the promise to
hold the end value of this range 1*.

 After you’ve spawned the thread, you can update the block start, remembering to
advance it past that last element 1(, and store the future for the last value in the current
chunk into the vector of futures so it will be picked up next time around the loop 2).

 Before you process the final chunk, you need to get an iterator for the last ele-
ment 2!, which you can pass in to process_chunk 2@. std::partial_sum doesn’t
return a value, so you don’t need to do anything once the final chunk has been pro-
cessed. The operation is complete once all the threads have finished.

OK, now it’s time to look at the process_chunk function object that actually does
all the work B. You start by calling std::partial_sum for the entire chunk, including
the final element c, but then you need to know if you’re the first chunk or not d. If
you are not the first chunk, then there was a previous_end_value from the previous
chunk, so you need to wait for that e. In order to maximize the parallelism of the
algorithm, you then update the last element first f, so you can pass the value on to
the next chunk (if there is one) g. Once you’ve done that, you can just use
std::for_each and a simple lambda function h to update all the remaining ele-
ments in the range.

 If there was not a previous_end_value, you’re the first chunk, so you can just
update the end_value for the next chunk (again, if there is one—you might be the
only chunk) i.

 Finally, if any of the operations threw an exception, you catch it j and store it in
the promise 1) so it will propagate to the next chunk when it tries to get the previous
end value e. This will propagate all exceptions into the final chunk, which then just
rethrows 1!, because you know you’re running on the main thread.

 Because of the synchronization between the threads, this code isn’t readily amena-
ble to rewriting with std::async. The tasks wait on results made available partway
through the execution of other tasks, so all tasks must be running concurrently.

 With the block-based, forward-propagation approach out of the way, let’s look at
the second approach to computing the partial sums of a range.
Download from Wow! eBook <www.wowebook.com>

267Designing concurrent code in practice
IMPLEMENTING THE INCREMENTAL PAIRWISE ALGORITHM FOR PARTIAL SUMS

This second approach to calculating the partial sums by adding elements increasingly
further away works best where your processors can execute the additions in lockstep.
In this case, no further synchronization is necessary because all the intermediate
results can be propagated directly to the next processor that needs them. But in prac-
tice you rarely have such systems to work with except for those cases where a single
processor can execute the same instruction across a small number of data elements
simultaneously with so-called Single-Instruction/Multiple-Data (SIMD) instructions.
Therefore, you must design your code for the general case and explicitly synchronize
the threads at each step.

 One way to do this is to use a barrier—a synchronization mechanism that causes
threads to wait until the required number of threads has reached the barrier. Once all
the threads have reached the barrier, they’re all unblocked and may proceed. The C++11
Thread Library doesn’t offer such a facility directly, so you have to design one yourself.

 Imagine a roller coaster at the fairground. If there’s a reasonable number of peo-
ple waiting, the fairground staff will ensure that every seat is filled before the roller
coaster leaves the platform. A barrier works the same way: you specify up front the
number of “seats,” and threads have to wait until all the “seats” are filled. Once there
are enough waiting threads, they can all proceed; the barrier is reset and starts waiting
for the next batch of threads. Often, such a construct is used in a loop, where the
same threads come around and wait next time. The idea is to keep the threads in lock-
step, so one thread doesn’t run away in front of the others and get out of step. For an
algorithm such as this one, that would be disastrous, because the runaway thread
would potentially modify data that was still being used by other threads or use data
that hadn’t been correctly updated yet.

 Anyway, the following listing shows a simple implementation of a barrier.

class barrier
{
 unsigned const count;
 std::atomic<unsigned> spaces;
 std::atomic<unsigned> generation;
public:
 explicit barrier(unsigned count_):
 count(count_),spaces(count),generation(0)
 {}
 void wait()
 {
 unsigned const my_generation=generation;
 if(!--spaces)
 {
 spaces=count;
 ++generation;
 }
 else

Listing 8.12 A simple barrier class

b

c

d
e

 f
Download from Wow! eBook <www.wowebook.com>

268 CHAPTER 8 Designing concurrent code
 {
 while(generation==my_generation)
 std::this_thread::yield();
 }
 }
};

With this implementation, you construct a barrier with the number of “seats” B,
which is stored in the count variable. Initially, the number of spaces at the barrier is
equal to this count. As each thread waits, the number of spaces is decremented d.
When it reaches zero, the number of spaces is reset back to count e, and the
generation is increased to signal to the other threads that they can continue f. If the
number of free spaces does not reach zero, you have to wait. This implementation
uses a simple spin lock g, checking the generation against the value you retrieved at
the beginning of wait() c. Because the generation is only updated when all the
threads have reached the barrier f, you yield() while waiting h so the waiting
thread doesn’t hog the CPU in a busy wait.

 When I said this implementation was simple, I meant it: it uses a spin wait, so it’s
not ideal for cases where threads are likely to be waiting a long time, and it doesn’t
work if there’s more than count threads that can potentially call wait() at any one
time. If you need to handle either of those scenarios, you must use a more robust (but
more complex) implementation instead. I’ve also stuck to sequentially consistent
operations on the atomic variables, because that makes everything easier to reason
about, but you could potentially relax some of the ordering constraints. Such global
synchronization is expensive on massively parallel architectures, because the cache
line holding the barrier state must be shuttled between all the processors involved
(see the discussion of cache ping-pong in section 8.2.2), so you must take great care to
ensure that this really is the best choice here.

 Anyway, this is just what you need here; you have a fixed number of threads that
need to run in a lockstep loop. Well, it’s almost a fixed number of threads. As you
may remember, the items at the beginning of the list acquire their final values after a
couple of steps. This means that either you have to keep those threads looping until
the entire range has been processed, or you need to allow your barrier to handle
threads dropping out, and thus decreasing count. I opted for the latter option,
because it avoids having threads doing unnecessary work just looping until the final
step is done.

 This means you have to change count to be an atomic variable, so you can update
it from multiple threads without external synchronization:

std::atomic<unsigned> count;

The initialization remains the same, but now you have to explicitly load() from count
when you reset the number of spaces:

spaces=count.load();

g
h

Download from Wow! eBook <www.wowebook.com>

269Designing concurrent code in practice
These are all the changes that you need on the wait() front; now you need a new
member function to decrement count. Let’s call it done_waiting(), because a thread
is declaring that it is done with waiting:

void done_waiting()
{
 --count;
 if(!--spaces)
 {
 spaces=count.load();
 ++generation;
 }
}

The first thing you do is decrement the count B so that the next time spaces is reset
it reflects the new lower number of waiting threads. Then you need to decrease the
number of free spaces c. If you don’t do this, the other threads will be waiting for-
ever, because spaces was initialized to the old, larger value. If you’re the last thread
through on this batch, you need to reset the counter and increase the generation d,
just as you do in wait(). The key difference here is that if you’re the last thread in the
batch, you don’t have to wait. You’re finished with waiting after all!

 You’re now ready to write your second implementation of partial sum. At each
step, every thread calls wait() on the barrier to ensure the threads step through
together, and once each thread is done, it calls done_waiting() on the barrier to dec-
rement the count. If you use a second buffer alongside the original range, the barrier
provides all the synchronization you need. At each step the threads read from either
the original range or the buffer and write the new value to the corresponding element
of the other. If the threads read from the original range on one step, they read from
the buffer on the next, and vice versa. This ensures there are no race conditions
between the reads and writes by separate threads. Once a thread has finished looping,
it must ensure that the correct final value has been written to the original range. The
following listing pulls this all together.

struct barrier
{
 std::atomic<unsigned> count;
 std::atomic<unsigned> spaces;
 std::atomic<unsigned> generation;

 barrier(unsigned count_):
 count(count_),spaces(count_),generation(0)
 {}

 void wait()
 {
 unsigned const gen=generation.load();
 if(!--spaces)
 {

Listing 8.13 A parallel implementation of partial_sum by pairwise updates

b
 c

d

Download from Wow! eBook <www.wowebook.com>

270 CHAPTER 8 Designing concurrent code
 spaces=count.load();
 ++generation;
 }
 else
 {
 while(generation.load()==gen)
 {
 std::this_thread::yield();
 }
 }
 }

 void done_waiting()
 {
 --count;
 if(!--spaces)
 {
 spaces=count.load();
 ++generation;
 }
 }
};

template<typename Iterator>
void parallel_partial_sum(Iterator first,Iterator last)
{
 typedef typename Iterator::value_type value_type;

 struct process_element
 {
 void operator()(Iterator first,Iterator last,
 std::vector<value_type>& buffer,
 unsigned i,barrier& b)
 {
 value_type& ith_element=*(first+i);
 bool update_source=false;

 for(unsigned step=0,stride=1;stride<=i;++step,stride*=2)
 {
 value_type const& source=(step%2)?
 buffer[i]:ith_element;
 value_type& dest=(step%2)?
 ith_element:buffer[i];
 value_type const& addend=(step%2)?
 buffer[i-stride]:*(first+i-stride);

 dest=source+addend;
 update_source=!(step%2);
 b.wait();
 }
 if(update_source)
 {
 ith_element=buffer[i];
 }
 b.done_waiting();
 }
 };

b

c

d

e

f

g

h

Download from Wow! eBook <www.wowebook.com>

271Designing concurrent code in practice
 unsigned long const length=std::distance(first,last);

 if(length<=1)
 return;

 std::vector<value_type> buffer(length);
 barrier b(length);

 std::vector<std::thread> threads(length-1);
 join_threads joiner(threads);

 Iterator block_start=first;
 for(unsigned long i=0;i<(length-1);++i)
 {
 threads[i]=std::thread(process_element(),first,last,
 std::ref(buffer),i,std::ref(b));
 }
 process_element()(first,last,buffer,length-1,b);
}

The overall structure of this code is probably becoming familiar by now. You have a
class with a function call operator (process_element) for doing the work B, which
you run on a bunch of threads j stored in a vector i and which you also call from
the main thread 1). The key difference this time is that the number of threads is
dependent on the number of items in the list rather than on std::thread::hardware_
concurrency. As I said already, unless you’re on a massively parallel machine where
threads are cheap, this is probably a bad idea, but it shows the overall structure. It
would be possible to have fewer threads, with each thread handling several values
from the source range, but there will come a point where there are sufficiently few
threads that this is less efficient than the forward-propagation algorithm.

 Anyway, the key work is done in the function call operator of process_element. At
each step you either take the ith element from the original range or the ith element
from the buffer c and add it to the value stride elements prior d, storing it in the
buffer if you started in the original range or back in the original range if you started in
the buffer e. You then wait on the barrier f before starting the next step. You’ve fin-
ished when the stride takes you off the start of the range, in which case you need to
update the element in the original range if your final result was stored in the buffer g.
Finally, you tell the barrier that you’re done_waiting() h.

 Note that this solution isn’t exception safe. If an exception is thrown in
process_element on one of the worker threads, it will terminate the application. You
could deal with this by using a std::promise to store the exception, as you did for the
parallel_find implementation from listing 8.9, or even just using a std::exception_
ptr protected by a mutex.

 That concludes our three examples. Hopefully, they’ve helped to crystallize some
of the design considerations highlighted in sections 8.1, 8.2, 8.3, and 8.4 and have
demonstrated how these techniques can be brought to bear in real code.

i

j

1)
Download from Wow! eBook <www.wowebook.com>

272 CHAPTER 8 Designing concurrent code
8.6 Summary
We’ve covered quite a lot of ground in this chapter. We started with various techniques
for dividing work between threads, such as dividing the data beforehand or using a
number of threads to form a pipeline. We then looked at the issues surrounding the
performance of multithreaded code from a low-level perspective, with a look at false
sharing and data contention before moving on to how the patterns of data access can
affect the performance of a bit of code. We then looked at additional considerations in
the design of concurrent code, such as exception safety and scalability. Finally, we ended
with a number of examples of parallel algorithm implementations, each of which high-
lighted particular issues that can occur when designing multithreaded code.

 One item that has cropped up a couple of times in this chapter is the idea of a thread
pool—a preconfigured group of threads that run tasks assigned to the pool. Quite a lot
of thought goes into the design of a good thread pool, so we’ll look at some of the issues
in the next chapter, along with other aspects of advanced thread management.
Download from Wow! eBook <www.wowebook.com>

Advanced
thread management
In earlier chapters, we’ve been explicitly managing threads by creating std::thread
objects for every thread. In a couple of places you’ve seen how this can be undesir-
able, because you then have to manage the lifetime of the thread objects, deter-
mine the number of threads appropriate to the problem and to the current
hardware, and so forth. The ideal scenario would be that you could just divide the
code into the smallest pieces that can be executed concurrently, pass them over to
the compiler and library, and say, “Parallelize this for optimal performance.”

 Another recurring theme in several of the examples is that you might use sev-
eral threads to solve a problem but require that they finish early if some condition
is met. This might be because the result has already been determined, or because
an error has occurred, or even because the user has explicitly requested that the
operation be aborted. Whatever the reason, the threads need to be sent a “Please

This chapter covers
■ Thread pools
■ Handling dependencies between

pool tasks
■ Work stealing for pool threads
■ Interrupting threads
273

Download from Wow! eBook <www.wowebook.com>

274 CHAPTER 9 Advanced thread management
stop” request so that they can give up on the task they were given, tidy up, and finish
as soon as possible.

 In this chapter, we’ll look at mechanisms for managing threads and tasks, starting
with the automatic management of the number of threads and the division of tasks
between them.

9.1 Thread pools
In many companies, employees who would normally spend their time in the office are
occasionally required to visit clients or suppliers or attend a trade show or conference.
Although these trips might be necessary, and on any given day there might be several
people making such a trip, it may well be months or even years between such trips for
any particular employee. Since it would therefore be rather expensive and impractical
for each employee to have a company car, companies often offer a car pool instead;
they have a limited number of cars that are available to all employees. When an
employee needs to make an off-site trip, they book one of the pool cars for the appro-
priate time and return it for others to use when they return to the office. If there are
no pool cars free on a given day, the employee will have to reschedule their trip for a
subsequent date.

 A thread pool is a similar idea, except that threads are being shared rather than
cars. On most systems, it’s impractical to have a separate thread for every task that
can potentially be done in parallel with other tasks, but you’d still like to take advan-
tage of the available concurrency where possible. A thread pool allows you to accom-
plish this; tasks that can be executed concurrently are submitted to the pool, which
puts them on a queue of pending work. Each task is then taken from the queue by
one of the worker threads, which executes the task before looping back to take another
from the queue.

 There are several key design issues when building a thread pool, such as how many
threads to use, the most efficient way to allocate tasks to threads, and whether or not
you can wait for a task to complete. In this section we’ll look at some thread pool
implementations that address these design issues, starting with the simplest possible
thread pool.

9.1.1 The simplest possible thread pool

At its simplest, a thread pool is a fixed number of worker threads (typically the same
number as the value returned by std::thread::hardware_concurrency()) that pro-
cess work. When you have work to do, you call a function to put it on the queue of
pending work. Each worker thread takes work off the queue, runs the specified task,
and then goes back to the queue for more work. In the simplest case there’s no way to
wait for the task to complete. If you need to do this, you have to manage the synchro-
nization yourself.

 The following listing shows a sample implementation of such a thread pool.
Download from Wow! eBook <www.wowebook.com>

275Thread pools
class thread_pool
{
 std::atomic_bool done;
 thread_safe_queue<std::function<void()> > work_queue;
 std::vector<std::thread> threads;
 join_threads joiner;

 void worker_thread()
 {
 while(!done)
 {
 std::function<void()> task;
 if(work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
 }

public:
 thread_pool():
 done(false),joiner(threads)
 {
 unsigned const thread_count=std::thread::hardware_concurrency();

 try
 {
 for(unsigned i=0;i<thread_count;++i)
 {
 threads.push_back(
 std::thread(&thread_pool::worker_thread,this));
 }
 }
 catch(...)
 {
 done=true;
 throw;
 }
 }

 ~thread_pool()
 {
 done=true;
 }

 template<typename FunctionType>
 void submit(FunctionType f)
 {
 work_queue.push(std::function<void()>(f));
 }
};

Listing 9.1 Simple thread pool

b
c

d

e

f

g

h

i

j

1)

1!

1@
Download from Wow! eBook <www.wowebook.com>

276 CHAPTER 9 Advanced thread management
This implementation has a vector of worker threads c and uses one of the thread-safe
queues from chapter 6 B to manage the queue of work. In this case, users can’t wait
for the tasks, and they can’t return any values, so you can use std::function<void()>
to encapsulate your tasks. The submit() function then wraps whatever function or
callable object is supplied inside a std::function<void()> instance and pushes it on
the queue 1@.

 The threads are started in the constructor: you use std::thread::hardware_
concurrency() to tell you how many concurrent threads the hardware can support i,
and you create that many threads running your worker_thread() member function j.

 Starting a thread can fail by throwing an exception, so you need to ensure that any
threads you’ve already started are stopped and cleaned up nicely in this case. This is
achieved with a try-catch block that sets the done flag when an exception is thrown 1),
alongside an instance of the join_threads class from chapter 8 d to join all the
threads. This also works with the destructor: you can just set the done flag 1!, and
the join_threads instance will ensure that all the threads have completed before the
pool is destroyed. Note that the order of declaration of the members is important:
both the done flag and the worker_queue must be declared before the threads vector,
which must in turn be declared before the joiner. This ensures that the members are
destroyed in the right order; you can’t destroy the queue safely until all the threads
have stopped, for example.

 The worker_thread function itself is quite simple: it sits in a loop waiting until the
done flag is set e, pulling tasks off the queue f and executing them g in the mean-
time. If there are no tasks on the queue, the function calls std::this_thread::
yield() to take a small break h and give another thread a chance to put some work
on the queue before it tries to take some off again the next time around.

 For many purposes such a simple thread pool will suffice, especially if the tasks
are entirely independent and don’t return any values or perform any blocking oper-
ations. But there are also many circumstances where such a simple thread pool may
not adequately address your needs and yet others where it can cause problems such
as deadlock. Also, in the simple cases you may well be better served using std::
async as in many of the examples in chapter 8. Throughout this chapter, we’ll look
at more complex thread pool implementations that have additional features either
to address user needs or reduce the potential for problems. First up: waiting for the
tasks we’ve submitted.

9.1.2 Waiting for tasks submitted to a thread pool

In the examples in chapter 8 that explicitly spawned threads, after dividing the work
between threads, the master thread always waited for the newly spawned threads to
finish, to ensure that the overall task was complete before returning to the caller. With
thread pools, you’d need to wait for the tasks submitted to the thread pool to com-
plete, rather than the worker threads themselves. This is similar to the way that the
std::async-based examples in chapter 8 waited for the futures. With the simple
Download from Wow! eBook <www.wowebook.com>

277Thread pools
thread pool from listing 9.1, you’d have to do this manually using the techniques from
chapter 4: condition variables and futures. This adds complexity to the code; it would
be better if you could wait for the tasks directly.

 By moving that complexity into the thread pool itself, you can wait for the tasks
directly. You can have the submit() function return a task handle of some descrip-
tion that you can then use to wait for the task to complete. This task handle would
wrap the use of condition variables or futures, thus simplifying the code that uses
the thread pool.

 A special case of having to wait for the spawned task to finish occurs when the main
thread needs a result computed by the task. You’ve seen this in examples throughout
the book, such as the parallel_accumulate() function from chapter 2. In this case,
you can combine the waiting with the result transfer through the use of futures. List-
ing 9.2 shows the changes required to the simple thread pool that allows you to wait
for tasks to complete and then pass return values from the task to the waiting thread.
Since std::packaged_task<> instances are not copyable, just movable, you can no lon-
ger use std::function<> for the queue entries, because std::function<> requires
that the stored function objects are copy-constructible. Instead, you must use a custom
function wrapper that can handle move-only types. This is a simple type-erasure class
with a function call operator. You only need to handle functions that take no parame-
ters and return void, so this is a straightforward virtual call in the implementation.

class function_wrapper
{
 struct impl_base {
 virtual void call()=0;
 virtual ~impl_base() {}
 };
 std::unique_ptr<impl_base> impl;
 template<typename F>
 struct impl_type: impl_base
 {
 F f;
 impl_type(F&& f_): f(std::move(f_)) {}
 void call() { f(); }
 };
public:
 template<typename F>
 function_wrapper(F&& f):
 impl(new impl_type<F>(std::move(f)))
 {}

 void operator()() { impl->call(); }

 function_wrapper() = default;

 function_wrapper(function_wrapper&& other):
 impl(std::move(other.impl))
 {}

Listing 9.2 A thread pool with waitable tasks
Download from Wow! eBook <www.wowebook.com>

278 CHAPTER 9 Advanced thread management
 function_wrapper& operator=(function_wrapper&& other)
 {
 impl=std::move(other.impl);
 return *this;
 }

 function_wrapper(const function_wrapper&)=delete;
 function_wrapper(function_wrapper&)=delete;
 function_wrapper& operator=(const function_wrapper&)=delete;
};

class thread_pool
{
 thread_safe_queue<function_wrapper> work_queue;

 void worker_thread()
 {
 while(!done)
 {
 function_wrapper task;
 if(work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
 }
public:
 template<typename FunctionType>
 std::future<typename std::result_of<FunctionType()>::type>
 submit(FunctionType f)
 {
 typedef typename std::result_of<FunctionType()>::type
 result_type;

 std::packaged_task<result_type()> task(std::move(f));
 std::future<result_type> res(task.get_future());
 work_queue.push(std::move(task));
 return res;
 }
 // rest as before
};

First, the modified submit() function B returns a std::future<> to hold the return
value of the task and allow the caller to wait for the task to complete. This requires
that you know the return type of the supplied function f, which is where std::
result_of<> comes in: std::result_of<FunctionType()>::type is the type of the
result of invoking an instance of type FunctionType (such as f) with no arguments.
You use the same std::result_of<> expression for the result_type typedef c
inside the function.

 You then wrap the function f in a std::packaged_task<result_type()> d,
because f is a function or callable object that takes no parameters and returns an

Use function_
wrapper rather
than std::function

b

c

d
e

f
g

Download from Wow! eBook <www.wowebook.com>

279Thread pools
instance of type result_type, as we just deduced. You can now get your future from
the std::packaged_task<> e, before pushing the task onto the queue f and return-
ing the future g. Note that you have to use std::move() when pushing the task onto
the queue, because std::packaged_task<> isn’t copyable. The queue now stores
function_wrapper objects rather than std::function<void()> objects in order to
handle this.

 This pool thus allows you to wait for your tasks and have them return results. The next
listing shows what the parallel_accumulate function looks like with such a thread pool.

template<typename Iterator,typename T>
T parallel_accumulate(Iterator first,Iterator last,T init)
{
 unsigned long const length=std::distance(first,last);

 if(!length)
 return init;

 unsigned long const block_size=25;
 unsigned long const num_blocks=(length+block_size-1)/block_size;

 std::vector<std::future<T> > futures(num_blocks-1);
 thread_pool pool;

 Iterator block_start=first;
 for(unsigned long i=0;i<(num_blocks-1);++i)
 {
 Iterator block_end=block_start;
 std::advance(block_end,block_size);
 futures[i]=pool.submit(accumulate_block<Iterator,T>());
 block_start=block_end;
 }
 T last_result=accumulate_block<Iterator,T>()(block_start,last);
 T result=init;
 for(unsigned long i=0;i<(num_blocks-1);++i)
 {
 result+=futures[i].get();
 }
 result += last_result;
 return result;
}

When you compare this against listing 8.4, there are a couple of things to notice. First,
you’re working in terms of the number of blocks to use (num_blocks B) rather than
the number of threads. In order to make the most use of the scalability of your thread
pool, you need to divide the work into the smallest blocks that it’s worth working with
concurrently. When there are only a few threads in the pool, each thread will process
many blocks, but as the number of threads grows with the hardware, the number of
blocks processed in parallel will also grow.

 You need to be careful when choosing the “smallest blocks that it’s worth working
with concurrently.” There’s an inherent overhead to submitting a task to a thread

Listing 9.3 parallel_accumulate using a thread pool with waitable tasks

b

c

Download from Wow! eBook <www.wowebook.com>

280 CHAPTER 9 Advanced thread management
pool, having the worker thread run it, and passing the return value through a
std::future<>, and for small tasks it’s not worth the payoff. If you choose too small a task
size, the code may run more slowly with a thread pool than with one thread.

 Assuming the block size is sensible, you don’t have to worry about packaging the
tasks, obtaining the futures, or storing the std::thread objects so you can join with
the threads later; the thread pool takes care of that. All you need to do is call
submit() with your task c.

 The thread pool takes care of the exception safety too. Any exception thrown by the
task gets propagated through the future returned from submit(), and if the function
exits with an exception, the thread pool destructor abandons any not-yet-completed
tasks and waits for the pool threads to finish.

 This works well for simple cases like this, where the tasks are independent. But it’s
not so good for situations where the tasks depend on other tasks also submitted to the
thread pool.

9.1.3 Tasks that wait for other tasks

The Quicksort algorithm is an example that I’ve used throughout this book. It’s sim-
ple in concept: the data to be sorted is partitioned into those items that go before a
pivot item and those that go after it in the sorted sequence. These two sets of items are
recursively sorted and then stitched back together to form a fully sorted set. When
parallelizing this algorithm, you need to ensure that these recursive calls make use of
the available concurrency.

 Back in chapter 4, when I first introduced this example, we used std::async to
run one of the recursive calls at each stage, letting the library choose between running
it on a new thread and running it synchronously when the relevant get() was called.
This works well, because each task is either running on its own thread or will be
invoked when required.

 When we revisited the implementation in chapter 8, you saw an alternative struc-
ture that used a fixed number of threads related to the available hardware concur-
rency. In this case, you used a stack of pending chunks that needed sorting. As each
thread partitioned the data it was sorting, it added a new chunk to the stack for one of
the sets of data and then sorted the other one directly. At this point, a straightforward
wait for the sorting of the other chunk to complete would potentially deadlock,
because you’d be consuming one of your limited number of threads waiting. It would
be very easy to end up in a situation where all of the threads were waiting for chunks
to be sorted and no threads were actually doing any sorting. We addressed this issue by
having the threads pull chunks off the stack and sort them while the particular chunk
they were waiting for was unsorted.

 You’d get the same problem if you substituted a simple thread pool like the ones
you’ve seen so far in this chapter instead of std::async in the example from chapter 4.
There are now only a limited number of threads, and they might end up all waiting
for tasks that haven’t been scheduled because there are no free threads. You therefore
Download from Wow! eBook <www.wowebook.com>

281Thread pools
need to use a solution similar to the one you used in chapter 8: process outstanding
chunks while you’re waiting for your chunk to complete. If you’re using the thread
pool to manage the list of tasks and their association with threads—which is, after all,
the whole point of using a thread pool—you don’t have access to the task list to do
this. What you need to do is modify the thread pool to do this automatically.

 The simplest way to do this is to add a new function on thread_pool to run a task
from the queue and manage the loop yourself, so we’ll go with that. Advanced thread
pool implementations might add logic into the wait function or additional wait func-
tions to handle this case, possibly prioritizing the task being waited for. The following
listing shows the new run_pending_task() function, and a modified Quicksort to
make use of it is shown in listing 9.5.

void thread_pool::run_pending_task()
{
 function_wrapper task;
 if(work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
}

This implementation of run_pending_task() is lifted straight out of the main loop of
the worker_thread() function, which can now be modified to call the extracted
run_pending_task(). This tries to take a task of the queue and run it if there is one;
otherwise, it yields to allow the OS to reschedule the thread. The Quicksort implemen-
tation next is a lot simpler than the corresponding version from listing 8.1, because all
the thread-management logic has been moved to the thread pool.

template<typename T>
struct sorter
{
 thread_pool pool;

 std::list<T> do_sort(std::list<T>& chunk_data)
 {
 if(chunk_data.empty())
 {
 return chunk_data;
 }

 std::list<T> result;
 result.splice(result.begin(),chunk_data,chunk_data.begin());
 T const& partition_val=*result.begin();

Listing 9.4 An implementation of run_pending_task()

Listing 9.5 A thread pool–based implementation of Quicksort

b

c

Download from Wow! eBook <www.wowebook.com>

282 CHAPTER 9 Advanced thread management
 typename std::list<T>::iterator divide_point=
 std::partition(chunk_data.begin(),chunk_data.end(),
 [&](T const& val){return val<partition_val;});

 std::list<T> new_lower_chunk;
 new_lower_chunk.splice(new_lower_chunk.end(),
 chunk_data,chunk_data.begin(),
 divide_point);

 std::future<std::list<T> > new_lower=
 pool.submit(std::bind(&sorter::do_sort,this,
 std::move(new_lower_chunk)));

 std::list<T> new_higher(do_sort(chunk_data));

 result.splice(result.end(),new_higher);
 while(!new_lower.wait_for(std::chrono::seconds(0)) ==
 std::future_status::timeout)
 {
 pool.run_pending_task();
 }

 result.splice(result.begin(),new_lower.get());
 return result;
 }
};

template<typename T>
std::list<T> parallel_quick_sort(std::list<T> input)
{
 if(input.empty())
 {
 return input;
 }
 sorter<T> s;

 return s.do_sort(input);
}

Just as in listing 8.1, you’ve delegated the real work to the do_sort() member func-
tion of the sorter class template B, although in this case the class is only there to
wrap the thread_pool instance c.

 Your thread and task management is now reduced to submitting a task to the pool d
and running pending tasks while waiting e. This is much simpler than in listing 8.1,
where you had to explicitly manage the threads and the stack of chunks to sort. When
submitting the task to the pool, you use std::bind() to bind the this pointer to
do_sort() and to supply the chunk to sort. In this case, you call std::move() on the
new_lower_chunk as you pass it in, to ensure that the data is moved rather than copied.

 Although this has now addressed the crucial deadlock-causing problem with tasks
that wait for other tasks, this thread pool is still far from ideal. For starters, every call to
submit() and every call to run_pending_task()accesses the same queue. You saw in
chapter 8 how having a single set of data modified by multiple threads can have a det-
rimental effect on performance, so you need to somehow address this problem.

d

e

Download from Wow! eBook <www.wowebook.com>

283Thread pools
9.1.4 Avoiding contention on the work queue

Every time a thread calls submit() on a particular instance of the thread pool, it has
to push a new item onto the single shared work queue. Likewise, the worker threads
are continually popping items off the queue in order to run the tasks. This means that
as the number of processors increases, there’s increasing contention on the queue.
This can be a real performance drain; even if you use a lock-free queue so there’s no
explicit waiting, cache ping-pong can be a substantial time sink.

 One way to avoid cache ping-pong is to use a separate work queue per thread.
Each thread then posts new items to its own queue and takes work from the global
work queue only if there’s no work on its own individual queue. The following listing
shows an implementation that makes use of a thread_local variable to ensure that
each thread has its own work queue, as well as the global one.

class thread_pool
{
 thread_safe_queue<function_wrapper> pool_work_queue;

 typedef std::queue<function_wrapper> local_queue_type;
 static thread_local std::unique_ptr<local_queue_type>
 local_work_queue;

 void worker_thread()
 {
 local_work_queue.reset(new local_queue_type);

 while(!done)
 {
 run_pending_task();
 }
 }

public:
 template<typename FunctionType>
 std::future<typename std::result_of<FunctionType()>::type>
 submit(FunctionType f)
 {
 typedef typename std::result_of<FunctionType()>::type result_type;

 std::packaged_task<result_type()> task(f);
 std::future<result_type> res(task.get_future());
 if(local_work_queue)
 {
 local_work_queue->push(std::move(task));
 }
 else
 {
 pool_work_queue.push(std::move(task));
 }
 return res;
 }

Listing 9.6 A thread pool with thread-local work queues

b

c

d

e

f

Download from Wow! eBook <www.wowebook.com>

284 CHAPTER 9 Advanced thread management
 void run_pending_task()
 {
 function_wrapper task;
 if(local_work_queue && !local_work_queue->empty())
 {
 task=std::move(local_work_queue->front());
 local_work_queue->pop();
 task();
 }
 else if(pool_work_queue.try_pop(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
 // rest as before
};

We’ve used a std::unique_ptr<> to hold the thread-local work queue c because we
don’t want non-pool threads to have one; this is initialized in the worker_thread()
function before the processing loop d. The destructor of std::unique_ptr<> will
ensure that the work queue is destroyed when the thread exits.

submit() then checks to see if the current thread has a work queue e. If it does,
it’s a pool thread, and you can put the task on the local queue; otherwise, you need to
put the task on the pool queue as before f.

 There’s a similar check in run_pending_task() g, except this time you also need
to check to see if there are any items on the local queue. If there are, you can take the
front one and process it; notice that the local queue can be a plain std::queue<> B
because it’s only ever accessed by the one thread. If there are no tasks on the local
queue, you try the pool queue as before h.

 This works fine for reducing contention, but when the distribution of work is
uneven, it can easily result in one thread having a lot of work on its queue while the
others have no work do to. For example, with the Quicksort example, only the top-
most chunk would make it to the pool queue, because the remaining chunks would
end up on the local queue of the worker thread that processed that one. This defeats
the purpose of using a thread pool.

 Thankfully, there is a solution to this: allow the threads to steal work from each
other’s queues if there’s no work in their queue and no work in the global queue.

9.1.5 Work stealing

In order to allow a thread with no work to do to take work from another thread
with a full queue, the queue must be accessible to the thread doing the stealing
from run_pending_tasks(). This requires that each thread register its queue with
the thread pool or be given one by the thread pool. Also, you must ensure that the

g

h

Download from Wow! eBook <www.wowebook.com>

285Thread pools
data in the work queue is suitably synchronized and protected, so that your invari-
ants are protected.

 It’s possible to write a lock-free queue that allows the owner thread to push and pop at
one end while other threads can steal entries from the other, but the implementation of
such a queue is beyond the scope of this book. In order to demonstrate the idea, we’ll
stick to using a mutex to protect the queue’s data. We hope work stealing is a rare event,
so there should be little contention on the mutex, and such a simple queue should there-
fore have minimal overhead. A simple lock-based implementation is shown here.

class work_stealing_queue
{
private:
 typedef function_wrapper data_type;
 std::deque<data_type> the_queue;
 mutable std::mutex the_mutex;

public:
 work_stealing_queue()
 {}

 work_stealing_queue(const work_stealing_queue& other)=delete;
 work_stealing_queue& operator=(
 const work_stealing_queue& other)=delete;

 void push(data_type data)
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 the_queue.push_front(std::move(data));
 }

 bool empty() const
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 return the_queue.empty();
 }

 bool try_pop(data_type& res)
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 if(the_queue.empty())
 {
 return false;
 }

 res=std::move(the_queue.front());
 the_queue.pop_front();
 return true;
 }

 bool try_steal(data_type& res)
 {
 std::lock_guard<std::mutex> lock(the_mutex);
 if(the_queue.empty())

Listing 9.7 Lock-based queue for work stealing

b

c

d

e

Download from Wow! eBook <www.wowebook.com>

286 CHAPTER 9 Advanced thread management
 {
 return false;
 }

 res=std::move(the_queue.back());
 the_queue.pop_back();
 return true;
 }
};

This queue is a simple wrapper around a std::deque<function_wrapper> B that
protects all accesses with a mutex lock. Both push() c and try_pop() d work on the
front of the queue, while try_steal() e works on the back.

 This actually means that this “queue” is a last-in-first-out stack for its own thread;
the task most recently pushed on is the first one off again. This can help improve per-
formance from a cache perspective, because the data related to that task is more likely
to still be in the cache than the data related to a task pushed on the queue previously.
Also, it maps nicely to algorithms such as Quicksort. In the previous implementation,
each call to do_sort() pushes one item on the stack and then waits for it. By process-
ing the most recent item first, you ensure that the chunk needed for the current call
to complete is processed before the chunks needed for the other branches, thus
reducing the number of active tasks and the total stack usage. try_steal() takes
items from the opposite end of the queue to try_pop() in order to minimize conten-
tion; you could potentially use the techniques discussed in chapters 6 and 7 to enable
concurrent calls to try_pop() and try_steal().

OK, so you have your nice sparkly work queue that permits stealing; how do you
use it in your thread pool? Here’s one potential implementation.

class thread_pool
{
 typedef function_wrapper task_type;

 std::atomic_bool done;
 thread_safe_queue<task_type> pool_work_queue;
 std::vector<std::unique_ptr<work_stealing_queue> > queues;
 std::vector<std::thread> threads;
 join_threads joiner;

 static thread_local work_stealing_queue* local_work_queue;
 static thread_local unsigned my_index;

 void worker_thread(unsigned my_index_)
 {
 my_index=my_index_;
 local_work_queue=queues[my_index].get();
 while(!done)
 {
 run_pending_task();
 }
 }

Listing 9.8 A thread pool that uses work stealing

b

c

d

Download from Wow! eBook <www.wowebook.com>

287Thread pools
 bool pop_task_from_local_queue(task_type& task)
 {
 return local_work_queue && local_work_queue->try_pop(task);
 }

 bool pop_task_from_pool_queue(task_type& task)
 {
 return pool_work_queue.try_pop(task);
 }

 bool pop_task_from_other_thread_queue(task_type& task)
 {
 for(unsigned i=0;i<queues.size();++i)
 {
 unsigned const index=(my_index+i+1)%queues.size();
 if(queues[index]->try_steal(task))
 {
 return true;
 }
 }

 return false;
 }

public:
 thread_pool():
 done(false),joiner(threads)
 {
 unsigned const thread_count=std::thread::hardware_concurrency();

 try
 {
 for(unsigned i=0;i<thread_count;++i)
 {
 queues.push_back(std::unique_ptr<work_stealing_queue>(
 new work_stealing_queue));
 threads.push_back(
 std::thread(&thread_pool::worker_thread,this,i));
 }
 }
 catch(...)
 {
 done=true;
 throw;
 }
 }

 ~thread_pool()
 {
 done=true;
 }

 template<typename FunctionType>
 std::future<typename std::result_of<FunctionType()>::type> submit(
 FunctionType f)
 {
 typedef typename std::result_of<FunctionType()>::type result_type;

e

f

g

Download from Wow! eBook <www.wowebook.com>

288 CHAPTER 9 Advanced thread management
 std::packaged_task<result_type()> task(f);
 std::future<result_type> res(task.get_future());
 if(local_work_queue)
 {
 local_work_queue->push(std::move(task));
 }
 else
 {
 pool_work_queue.push(std::move(task));
 }
 return res;
 }

 void run_pending_task()
 {
 task_type task;
 if(pop_task_from_local_queue(task) ||
 pop_task_from_pool_queue(task) ||
 pop_task_from_other_thread_queue(task))
 {
 task();
 }
 else
 {
 std::this_thread::yield();
 }
 }
};

This code is very similar to listing 9.6. The first difference is that each thread has a
work_stealing_queue rather than a plain std::queue<> c. When each thread is cre-
ated, rather than allocating its own work queue, the pool constructor allocates one g,
which is then stored in the list of work queues for this pool B. The index of the queue
in the list is then passed in to the thread function and used to retrieve the pointer to
the queue d. This means that the thread pool can access the queue when trying
to steal a task for a thread that has no work to do. run_pending_task() will now try to
take a task from its thread’s own queue h, take a task from the pool queue i, or take
a task from the queue of another thread j.

pop_task_from_other_thread_queue() e iterates through the queues belonging
to all the threads in the pool, trying to steal a task from each in turn. In order to avoid
every thread trying to steal from the first thread in the list, each thread starts at the next
thread in the list, by offsetting the index of the queue to check by its own index f.

 Now you have a working thread pool that’s good for many potential uses. Of course,
there are still a myriad of ways to improve it for any particular usage, but that’s left as an
exercise for the reader. One aspect in particular that hasn’t been explored is the idea of
dynamically resizing the thread pool to ensure that there’s optimal CPU usage even
when threads are blocked waiting for something such as I/O or a mutex lock.

 Next on the list of “advanced” thread-management techniques is interrupting threads.

h

i
 j
Download from Wow! eBook <www.wowebook.com>

289Interrupting threads
9.2 Interrupting threads
In many situations it’s desirable to signal to a long-running thread that it’s time to
stop. This might be because it’s a worker thread for a thread pool and the pool is now
being destroyed, or it might be because the work being done by the thread has been
explicitly canceled by the user, or a myriad of other reasons. Whatever the reason, the
idea is the same: you need to signal from one thread that another should stop before it
reaches the natural end of its processing, and you need to do this in a way that allows
that thread to terminate nicely rather than abruptly pulling the rug from under it.

 You could potentially design a separate mechanism for every case where you need
to do this, but that would be overkill. Not only does a common mechanism make it
easier to write the code on subsequent occasions, but it can allow you to write code
that can be interrupted, without having to worry about where that code is being used.
The C++11 Standard doesn’t provide such a mechanism, but it’s relatively straightfor-
ward to build one. Let’s look at how you can do that, starting from the point of view of
the interface for launching and interrupting a thread rather than that of the thread
being interrupted.

9.2.1 Launching and interrupting another thread
To start with, let’s look at the external interface. What do you need from an interrupt-
ible thread? At the basic level, all you need is the same interface as you have for
std::thread, with an additional interrupt() function:

class interruptible_thread
{
public:
 template<typename FunctionType>
 interruptible_thread(FunctionType f);
 void join();
 void detach();
 bool joinable() const;
 void interrupt();
};

Internally, you can use std::thread to manage the thread itself and use some custom
data structure to handle the interruption. Now, what about from the point of view of
the thread itself? At the most basic level you want to be able to say, “I can be inter-
rupted here”—you want an interruption point. For this to be usable without having to
pass down additional data, it needs to be a simple function that can be called without
any parameters: interruption_point(). This implies that the interruption-specific
data structure needs to be accessible through a thread_local variable that’s set when
the thread is started, so that when a thread calls your interruption_point() func-
tion, it checks the data structure for the currently executing thread. We’ll look at the
implementation of interruption_point() later.

 This thread_local flag is the primary reason you can’t just use plain std::thread to
manage the thread; it needs to be allocated in a way that the interruptible_thread
instance can access, as well as the newly started thread. You can do this by wrapping
Download from Wow! eBook <www.wowebook.com>

290 CHAPTER 9 Advanced thread management
the supplied function before you pass it to std::thread to actually launch the thread
in the constructor, as shown in the next listing.

class interrupt_flag
{
public:
 void set();
 bool is_set() const;
};
thread_local interrupt_flag this_thread_interrupt_flag;

class interruptible_thread
{
 std::thread internal_thread;
 interrupt_flag* flag;
public:
 template<typename FunctionType>
 interruptible_thread(FunctionType f)
 {
 std::promise<interrupt_flag*> p;
 internal_thread=std::thread([f,&p]{
 p.set_value(&this_thread_interrupt_flag);
 f();
 });
 flag=p.get_future().get();
 }
 void interrupt()
 {
 if(flag)
 {
 flag->set();
 }
 }
};

The supplied function f is wrapped in a lambda function d that holds a copy of f and
a reference to the local promise p c. The lambda sets the value of the promise to the
address of the this_thread_interrupt_flag (which is declared thread_local B)
for the new thread before invoking the copy of the supplied function e. The calling
thread then waits for the future associated with the promise to become ready and
stores the result in the flag member variable f. Note that even though the lambda is
running on the new thread and has a dangling reference to the local variable p, this is OK
because the interruptible_thread constructor waits until p is no longer referenced by
the new thread before returning. Note that this implementation doesn’t take account of
handling joining with the thread, or detaching it. You need to ensure that the flag vari-
able is cleared when the thread exits, or is detached, to avoid a dangling pointer.

 The interrupt() function is then relatively straightforward: if you have a valid pointer
to an interrupt flag, you have a thread to interrupt, so you can just set the flag g. It’s then
up to the interrupted thread what it does with the interruption. Let’s explore that next.

Listing 9.9 Basic implementation of interruptible_thread

b

c
 d

e

f

g

Download from Wow! eBook <www.wowebook.com>

291Interrupting threads
9.2.2 Detecting that a thread has been interrupted

You can now set the interruption flag, but that doesn’t do you any good if the thread
doesn’t actually check whether it’s being interrupted. In the simplest case you can do
this with an interruption_point() function; you can call this function at a point
where it’s safe to be interrupted, and it throws a thread_interrupted exception if the
flag is set:

void interruption_point()
{
 if(this_thread_interrupt_flag.is_set())
 {
 throw thread_interrupted();
 }
}

You can use such a function by calling it at convenient points within your code:

void foo()
{
 while(!done)
 {
 interruption_point();
 process_next_item();
 }
}

Although this works, it’s not ideal. Some of the best places for interrupting a thread
are where it’s blocked waiting for something, which means that the thread isn’t run-
ning in order to call interruption_point()! What you need here is a means for wait-
ing for something in an interruptible fashion.

9.2.3 Interrupting a condition variable wait

OK, so you can detect interruptions at carefully chosen places in your code, with
explicit calls to interruption_point(), but that doesn’t help when you want to do a
blocking wait, such as waiting for a condition variable to be notified. You need a new
function—interruptible_wait()—which you can then overload for the various
things you might want to wait for, and you can work out how to interrupt the waiting.
I’ve already mentioned that one thing you might be waiting for is a condition variable,
so let’s start there: what do you need to do in order to be able to interrupt a wait on a
condition variable? The simplest thing that would work is to notify the condition vari-
able once you’ve set the interrupt flag, and put an interruption point immediately
after the wait. But for this to work, you’d have to notify all threads waiting on the con-
dition variable in order to ensure that your thread of interest wakes up. Waiters have
to handle spurious wake-ups anyway, so other threads would handle this the same as a
spurious wake-up—they wouldn’t be able to tell the difference. The interrupt_flag
structure would need to be able to store a pointer to a condition variable so that it can
be notified in a call to set(). One possible implementation of interruptible_wait()
for condition variables might look like the following listing.
Download from Wow! eBook <www.wowebook.com>

292 CHAPTER 9 Advanced thread management
void interruptible_wait(std::condition_variable& cv,
 std::unique_lock<std::mutex>& lk)
{
 interruption_point();
 this_thread_interrupt_flag.set_condition_variable(cv);
 cv.wait(lk);
 this_thread_interrupt_flag.clear_condition_variable();
 interruption_point();
}

Assuming the presence of some functions for setting and clearing an association of a
condition variable with an interrupt flag, this code is nice and simple. It checks for
interruption, associates the condition variable with the interrupt_flag for the cur-
rent thread B, waits on the condition variable c, clears the association with the con-
dition variable d, and checks for interruption again. If the thread is interrupted
during the wait on the condition variable, the interrupting thread will broadcast the
condition variable and wake you from the wait, so you can check for interruption.
Unfortunately, this code is broken: there are two problems with it. The first problem
is relatively obvious if you have your exception safety hat on: std::condition_
variable::wait() can throw an exception, so you might exit the function without
removing the association of the interrupt flag with the condition variable. This is eas-
ily fixed with a structure that removes the association in its destructor.

 The second, less-obvious problem is that there’s a race condition. If the thread is
interrupted after the initial call to interruption_point(), but before the call to
wait(), then it doesn’t matter whether the condition variable has been associated
with the interrupt flag, because the thread isn’t waiting and so can’t be woken by a notify on
the condition variable. You need to ensure that the thread can’t be notified between the
last check for interruption and the call to wait(). Without delving into the internals
of std::condition_variable, you have only one way of doing that: use the mutex
held by lk to protect this too, which requires passing it in on the call to set_
condition_variable(). Unfortunately, this creates its own problems: you’d be pass-
ing a reference to a mutex whose lifetime you don’t know to another thread (the
thread doing the interrupting) for that thread to lock (in the call to interrupt()),
without knowing whether that thread has locked the mutex already when it makes the
call. This has the potential for deadlock and the potential to access a mutex after it has
already been destroyed, so it’s a nonstarter. It would be rather too restrictive if you
couldn’t reliably interrupt a condition variable wait—you can do almost as well without
a special interruptible_wait()—so what other options do you have? One option is
to put a timeout on the wait; use wait_for() rather than wait() with a small timeout
value (such as 1 ms). This puts an upper limit on how long the thread will have to wait
before it sees the interruption (subject to the tick granularity of the clock). If you do this,
the waiting thread will see rather more “spurious” wakes resulting from the timeout, but

Listing 9.10 A broken version of interruptible_wait for
std::condition_variable

b
c

 d
Download from Wow! eBook <www.wowebook.com>

293Interrupting threads
it can’t easily be helped. Such an implementation is shown in the next listing, along
with the corresponding implementation of interrupt_flag.

class interrupt_flag
{
 std::atomic<bool> flag;
 std::condition_variable* thread_cond;
 std::mutex set_clear_mutex;

public:
 interrupt_flag():
 thread_cond(0)
 {}

 void set()
 {
 flag.store(true,std::memory_order_relaxed);
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 if(thread_cond)
 {
 thread_cond->notify_all();
 }
 }

 bool is_set() const
 {
 return flag.load(std::memory_order_relaxed);
 }

 void set_condition_variable(std::condition_variable& cv)
 {
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 thread_cond=&cv;
 }

 void clear_condition_variable()
 {
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 thread_cond=0;
 }

 struct clear_cv_on_destruct
 {
 ~clear_cv_on_destruct()
 {
 this_thread_interrupt_flag.clear_condition_variable();
 }
 };

};

void interruptible_wait(std::condition_variable& cv,
 std::unique_lock<std::mutex>& lk)
{

Listing 9.11 Using a timeout in interruptible_wait for
std::condition_variable
Download from Wow! eBook <www.wowebook.com>

294 CHAPTER 9 Advanced thread management
 interruption_point();
 this_thread_interrupt_flag.set_condition_variable(cv);
 interrupt_flag::clear_cv_on_destruct guard;
 interruption_point();
 cv.wait_for(lk,std::chrono::milliseconds(1));
 interruption_point();
}

If you have the predicate that’s being waited for, then the 1 ms timeout can be com-
pletely hidden inside the predicate loop:

template<typename Predicate>
void interruptible_wait(std::condition_variable& cv,
 std::unique_lock<std::mutex>& lk,
 Predicate pred)
{
 interruption_point();
 this_thread_interrupt_flag.set_condition_variable(cv);
 interrupt_flag::clear_cv_on_destruct guard;
 while(!this_thread_interrupt_flag.is_set() && !pred())
 {
 cv.wait_for(lk,std::chrono::milliseconds(1));
 }
 interruption_point();
}

This will result in the predicate being checked more often than it might otherwise be,
but it’s easily used in place of a plain call to wait(). The variants with timeouts are eas-
ily implemented: wait either for the time specified, or 1 ms, whichever is shortest.
OK, so std::condition_variable waits are now taken care of; what about std::
condition_variable_any? Is this the same, or can you do better?

9.2.4 Interrupting a wait on std::condition_variable_any
std::condition_variable_any differs from std::condition_variable in that it
works with any lock type rather than just std::unique_lock<std::mutex>. It turns out
that this makes things much easier, and you can do better with std::condition_
variable_any than you could with std::condition_variable. Because it works with
any lock type, you can build your own lock type that locks/unlocks both the internal
set_clear_mutex in your interrupt_flag and the lock supplied to the wait call, as
shown here.

class interrupt_flag
{
 std::atomic<bool> flag;
 std::condition_variable* thread_cond;
 std::condition_variable_any* thread_cond_any;
 std::mutex set_clear_mutex;

public:
 interrupt_flag():

Listing 9.12 interruptible_wait for std::condition_variable_any
Download from Wow! eBook <www.wowebook.com>

295Interrupting threads
 thread_cond(0),thread_cond_any(0)
 {}

 void set()
 {
 flag.store(true,std::memory_order_relaxed);
 std::lock_guard<std::mutex> lk(set_clear_mutex);
 if(thread_cond)
 {
 thread_cond->notify_all();
 }
 else if(thread_cond_any)
 {
 thread_cond_any->notify_all();
 }
 }

 template<typename Lockable>
 void wait(std::condition_variable_any& cv,Lockable& lk)
 {
 struct custom_lock
 {
 interrupt_flag* self;
 Lockable& lk;

 custom_lock(interrupt_flag* self_,
 std::condition_variable_any& cond,
 Lockable& lk_):
 self(self_),lk(lk_)
 {
 self->set_clear_mutex.lock();
 self->thread_cond_any=&cond;
 }

 void unlock()
 {
 lk.unlock();
 self->set_clear_mutex.unlock();
 }

 void lock()
 {
 std::lock(self->set_clear_mutex,lk);
 }

 ~custom_lock()
 {
 self->thread_cond_any=0;
 self->set_clear_mutex.unlock();
 }
 };
 custom_lock cl(this,cv,lk);
 interruption_point();
 cv.wait(cl);
 interruption_point();
 }

b

c

d

e

f

Download from Wow! eBook <www.wowebook.com>

296 CHAPTER 9 Advanced thread management
 // rest as before
};

template<typename Lockable>
void interruptible_wait(std::condition_variable_any& cv,
 Lockable& lk)
{
 this_thread_interrupt_flag.wait(cv,lk);
}

Your custom lock type acquires the lock on the internal set_clear_mutex when it’s con-
structed B and then sets the thread_cond_any pointer to refer to the std::condition_
variable_any passed in to the constructor c. The Lockable reference is stored for later;
this must already be locked. You can now check for an interruption without worrying
about races. If the interrupt flag is set at this point, it was set before you acquired the lock
on set_clear_mutex. When the condition variable calls your unlock() function inside
wait(),you unlock the Lockable object and the internal set_clear_mutex d. This allows
threads that are trying to interrupt you to acquire the lock on set_clear_mutex and
check the thread_cond_any pointer once you’re inside the wait() call but not before. This is
exactly what you were after (but couldn’t manage) with std::condition_variable. Once
wait() has finished waiting (either because it was notified or because of a spurious wake),
it will call your lock() function, which again acquires the lock on the internal
set_clear_mutex and the lock on the Lockable object e. You can now check again for
interruptions that happened during the wait() call before clearing the thread_cond_any
pointer in your custom_lock destructor f, where you also unlock the set_clear_mutex.

9.2.5 Interrupting other blocking calls

That rounds up interrupting condition variable waits, but what about other blocking
waits: mutex locks, waiting for futures, and the like? In general you have to go for the
timeout option you used for std::condition_variable because there’s no way to
interrupt the wait short of actually fulfilling the condition being waited for, without
access to the internals of the mutex or future. But with those other things you do
know what you’re waiting for, so you can loop within the interruptible_wait() func-
tion. As an example, here’s an overload of interruptible_wait() for a std::future<>:

template<typename T>
void interruptible_wait(std::future<T>& uf)
{
 while(!this_thread_interrupt_flag.is_set())
 {
 if(uf.wait_for(lk,std::chrono::milliseconds(1)==
 std::future_status::ready)
 break;
 }
 interruption_point();
}

This waits until either the interrupt flag is set or the future is ready but does a block-
ing wait on the future for 1 ms at a time. This means that on average it will be around
Download from Wow! eBook <www.wowebook.com>

297Interrupting threads
0.5 ms before an interrupt request is acknowledged, assuming a high-resolution clock.
The wait_for will typically wait at least a whole clock tick, so if your clock ticks every
15 ms, you’ll end up waiting around 15 ms rather than 1 ms. This may or may not be
acceptable, depending on the circumstances. You can always reduce the timeout if
necessary (and the clock supports it). The downside of reducing the timeout is that
the thread will wake more often to check the flag, and this will increase the task-
switching overhead.

OK, so we’ve looked at how you might detect interruption, with the interruption_
point() and interruptible_wait() functions, but how do you handle that?

9.2.6 Handling interruptions

From the point of view of the thread being interrupted, an interruption is just a
thread_interrupted exception, which can therefore be handled just like any other
exception. In particular, you can catch it in a standard catch block:

try
{
 do_something();
}
catch(thread_interrupted&)
{
 handle_interruption();
}

This means that you could catch the interruption, handle it in some way, and then
carry on regardless. If you do this, and another thread calls interrupt() again, your
thread will be interrupted again the next time it calls an interruption point. You might
want to do this if your thread is performing a series of independent tasks; interrupting
one task will cause that task to be abandoned, and the thread can then move on to
performing the next task in the list.

 Because thread_interrupted is an exception, all the usual exception-safety pre-
cautions must also be taken when calling code that can be interrupted, in order to
ensure that resources aren’t leaked, and your data structures are left in a coherent
state. Often, it will be desirable to let the interruption terminate the thread, so you
can just let the exception propagate up. But if you let exceptions propagate out of the
thread function passed to the std::thread constructor, std::terminate() will be
called, and the whole program will be terminated. In order to avoid having to
remember to put a catch (thread_interrupted) handler in every function you pass
to interruptible_thread, you can instead put that catch block inside the wrapper
you use for initializing the interrupt_flag. This makes it safe to allow the interrup-
tion exception to propagate unhandled, because it will then terminate just that individ-
ual thread. The initialization of the thread in the interruptible_thread constructor
now looks like this:

internal_thread=std::thread([f,&p]{
 p.set_value(&this_thread_interrupt_flag);
Download from Wow! eBook <www.wowebook.com>

298 CHAPTER 9 Advanced thread management
 try
 {
 f();
 }
 catch(thread_interrupted const&)
 {}
 });

Let’s now look at a concrete example where interruption is useful.

9.2.7 Interrupting background tasks on application exit

Consider for a moment a desktop search application. As well as interacting with the
user, the application needs to monitor the state of the filesystem, identifying any
changes and updating its index. Such processing is typically left to a background
thread, in order to avoid affecting the responsiveness of the GUI. This background
thread needs to run for the entire lifetime of the application; it will be started as part of
the application initialization and left to run until the application is shut down. For such
an application this is typically only when the machine itself is being shut down, because
the application needs to run the whole time in order to maintain an up-to-date index. In
any case, when the application is being shut down, you need to close down the back-
ground threads in an orderly manner; one way to do this is by interrupting them.

 The following listing shows a sample implementation of the thread-management
parts of such a system.

std::mutex config_mutex;
std::vector<interruptible_thread> background_threads;

void background_thread(int disk_id)
{
 while(true)
 {
 interruption_point();
 fs_change fsc=get_fs_changes(disk_id);
 if(fsc.has_changes())
 {
 update_index(fsc);
 }
 }
}

void start_background_processing()
{
 background_threads.push_back(
 interruptible_thread(background_thread,disk_1));
 background_threads.push_back(
 interruptible_thread(background_thread,disk_2));
}

int main()
{

Listing 9.13 Monitoring the filesystem in the background

b
 c

d

Download from Wow! eBook <www.wowebook.com>

299Summary
 start_background_processing();
 process_gui_until_exit();
 std::unique_lock<std::mutex> lk(config_mutex);
 for(unsigned i=0;i<background_threads.size();++i)
 {
 background_threads[i].interrupt();
 }
 for(unsigned i=0;i<background_threads.size();++i)
 {
 background_threads[i].join();
 }
}

At startup, the background threads are launched e. The main thread then proceeds
with handling the GUI f. When the user has requested that the application exit, the
background threads are interrupted g, and then the main thread waits for each back-
ground thread to complete before exiting h. The background threads sit in a loop,
checking for disk changes c and updating the index d. Every time around the loop
they check for interruption by calling interruption_point() B.

 Why do you interrupt all the threads before waiting for any? Why not interrupt
each and then wait for it before moving on to the next? The answer is concurrency.
Threads will likely not finish immediately when they’re interrupted, because they have
to proceed to the next interruption point and then run any destructor calls and
exception-handling code necessary before they exit. By joining with each thread
immediately, you therefore cause the interrupting thread to wait, even though it still has
useful work it could do—interrupt the other threads. Only when you have no more work
to do (all the threads have been interrupted) do you wait. This also allows all the
threads being interrupted to process their interruptions in parallel and potentially fin-
ish sooner.

 This interruption mechanism could easily be extended to add further interrupt-
ible calls or to disable interruptions across a specific block of code, but this is left as an
exercise for the reader.

9.3 Summary
In this chapter, we’ve looked at various “advanced” thread-management techniques:
thread pools and interrupting threads. You’ve seen how the use of local work queues
and work stealing can reduce the synchronization overhead and potentially improve
the throughput of the thread pool and how running other tasks from the queue while
waiting for a subtask to complete can eliminate the potential for deadlock.

 We’ve also looked at various ways of allowing one thread to interrupt the process-
ing of another, such as the use of specific interruption points and functions that per-
form what would otherwise be a blocking wait in a way that can be interrupted.

e
 f

g

h

Download from Wow! eBook <www.wowebook.com>

Testing and debugging
multithreaded applications
Up to now, I’ve focused on what’s involved in writing concurrent code—the tools
that are available, how to use them, and the overall design and structure of the
code. But there’s a crucial part of software development that I haven’t addressed
yet: testing and debugging. If you’re reading this chapter hoping for an easy way to
test concurrent code, you’re going to be sorely disappointed. Testing and debug-
ging concurrent code is hard. What I am going to give you are some techniques that
will make things easier, alongside issues that are important to think about.

 Testing and debugging are like two sides of a coin—you subject your code to
tests in order to find any bugs that might be there, and you debug it to remove
those bugs. With luck, you only have to remove the bugs found by your own tests
rather than bugs found by the end users of your application. Before we look at
either testing or debugging, it’s important to understand the problems that might
arise, so let’s look at those.

This chapter covers
■ Concurrency-related bugs
■ Locating bugs through testing and code review
■ Designing multithreaded tests
■ Testing the performance of multithreaded code
300

Download from Wow! eBook <www.wowebook.com>

301Types of concurrency-related bugs
10.1 Types of concurrency-related bugs
You can get just about any sort of bug in concurrent code; it’s not special in that
regard. But some types of bugs are directly related to the use of concurrency and
therefore of particular relevance to this book. Typically, these concurrency-related
bugs fall into two primary categories:

■ Unwanted blocking
■ Race conditions

These are huge categories, so let’s divide them up a bit. First, let’s look at unwanted
blocking.

10.1.1 Unwanted blocking

What do I mean by unwanted blocking? First, a thread is blocked when it’s unable to
proceed because it’s waiting for something. This is typically something like a mutex, a
condition variable, or a future, but it could be waiting for I/O. This is a natural part of
multithreaded code, but it’s not always desirable—hence the problem of unwanted
blocking. This leads us to the next question: why is this blocking unwanted? Typically,
this is because some other thread is also waiting for the blocked thread to perform some
action, and so that thread in turn is blocked. There are several variations on this theme:

■ Deadlock—As you saw in chapter 3, in the case of deadlock one thread is waiting
for another, which is in turn waiting for the first. If your threads deadlock, the
tasks they’re supposed to be doing won’t get done. In the most visible cases, one
of the threads involved is the thread responsible for the user interface, in which
case the interface will cease to respond. In other cases, the interface will remain
responsive, but some required task won’t complete, such as a search not return-
ing or a document not printing.

■ Livelock—Livelock is similar to deadlock in that one thread is waiting for
another, which is in turn waiting for the first. The key difference here is that the
wait is not a blocking wait but an active checking loop, such as a spin lock. In
serious cases, the symptoms are the same as deadlock (the app doesn’t make
any progress), except that the CPU usage is high because threads are still run-
ning but blocking each other. In not-so-serious cases, the livelock will eventually
resolve because of the random scheduling, but there will be a long delay in the
task that got livelocked, with a high CPU usage during that delay.

■ Blocking on I/O or other external input—If your thread is blocked waiting for exter-
nal input, it can’t proceed, even if the waited-for input is never going to come.
It’s therefore undesirable to block on external input from a thread that also
performs tasks that other threads may be waiting for.

That briefly covers unwanted blocking. What about race conditions?
Download from Wow! eBook <www.wowebook.com>

302 CHAPTER 10 Testing and debugging multithreaded applications
10.1.2 Race conditions

Race conditions are the most common cause of problems in multithreaded code—
many deadlocks and livelocks only actually manifest because of a race condition. Not
all race conditions are problematic—a race condition occurs anytime the behavior
depends on the relative scheduling of operations in separate threads. A large number
of race conditions are entirely benign; for example, which worker thread processes
the next task in the task queue is largely irrelevant. However, many concurrency bugs
are due to race conditions. In particular, race conditions often cause the following
types of problems:

■ Data races—A data race is the specific type of race condition that results in
undefined behavior because of unsynchronized concurrent access to a shared
memory location. I introduced data races in chapter 5 when we looked at the
C++ memory model. Data races usually occur through incorrect usage of atomic
operations to synchronize threads or through access to shared data without
locking the appropriate mutex.

■ Broken invariants—These can manifest as dangling pointers (because another
thread deleted the data being accessed), random memory corruption (due to a
thread reading inconsistent values resulting from partial updates), and double-
free (such as when two threads pop the same value from a queue, and so both
delete some associated data), among others. The invariants being broken can
be temporal- as well as value-based. If operations on separate threads are
required to execute in a particular order, incorrect synchronization can lead to
a race condition in which the required order is sometimes violated.

■ Lifetime issues—Although you could bundle these problems in with broken
invariants, this really is a separate category. The basic problem with bugs in this
category is that the thread outlives the data that it accesses, so it is accessing
data that has been deleted or otherwise destroyed, and potentially the storage is
even reused for another object. You typically get lifetime issues where a thread
references local variables that go out of scope before the thread function has
completed, but they aren’t limited to that scenario. Whenever the lifetime of
the thread and the data it operates on aren’t tied together in some way, there’s the
potential for the data to be destroyed before the thread has finished and for
the thread function to have the rug pulled out from under its feet. If you manu-
ally call join() in order to wait for the thread to complete, you need to ensure
that the call to join() can’t be skipped if an exception is thrown. This is basic
exception safety applied to threads.

It’s the problematic race conditions that are the killers. With deadlock and livelock,
the application appears to hang and become completely unresponsive or takes too
long to complete a task. Often, you can attach a debugger to the running process to
identify which threads are involved in the deadlock or livelock and which synchroniza-
tion objects they’re fighting over. With data races, broken invariants, and lifetime
Download from Wow! eBook <www.wowebook.com>

303Techniques for locating concurrency-related bugs
issues, the visible symptoms of the problem (such as random crashes or incorrect out-
put) can manifest anywhere in the code—the code may overwrite memory used by
another part of the system that isn’t touched until much later. The fault will then man-
ifest in code completely unrelated to the location of the buggy code, possibly much
later in the execution of the program. This is the true curse of shared memory sys-
tems—however much you try to limit which data is accessible by which thread and try
to ensure that correct synchronization is used, any thread can overwrite the data
being used by any other thread in the application.

 Now that we’ve briefly identified the sorts of problems we’re looking for, let’s look
at what you can do to locate any instances in your code so you can fix them.

10.2 Techniques for locating concurrency-related bugs
In the previous section we looked at the types of concurrency-related bugs you might
see and how they might manifest in your code. With that information in mind, you
can then look at your code to see where bugs might lie and how you can attempt to
determine whether there are any bugs in a particular section.

 Perhaps the most obvious and straightforward thing to do is look at the code.
Although this might seem obvious, it’s actually difficult to do in a thorough way. When
you read code you’ve just written, it’s all too easy to read what you intended to write
rather than what’s actually there. Likewise, when reviewing code that others have writ-
ten, it’s tempting to just give it a quick read-through, check it off against your local
coding standards, and highlight any glaringly obvious problems. What’s needed is to
spend the time really going through the code with a fine-tooth comb, thinking about
the concurrency issues—and the non-concurrency issues as well. (You might as well,
while you’re doing it. After all, a bug is a bug.) We’ll cover specific things to think
about when reviewing code shortly.

 Even after thoroughly reviewing your code, you still might have missed some bugs,
and in any case you need to confirm that it does indeed work, for peace of mind if
nothing else. Consequently, we’ll continue on from reviewing the code to a few tech-
niques to employ when testing multithreaded code.

10.2.1 Reviewing code to locate potential bugs

As I’ve already mentioned, when reviewing multithreaded code to check for concurrency-
related bugs, it’s important to review it thoroughly, with a fine-tooth comb. If possi-
ble, get someone else to review it. Because they haven’t written the code, they’ll have
to think through how it works, and this will help uncover any bugs that may be there.
It’s important that the reviewer have the time to do the review properly—not a casual
two-minute quick glance, but a proper, considered review. Most concurrency bugs
require more than a quick glance to spot—they usually rely on subtle timing issues to
actually manifest.

 If you get one of your colleagues to review the code, they’ll be coming at it fresh.
They’ll therefore see things from a different point of view and may well spot things
Download from Wow! eBook <www.wowebook.com>

304 CHAPTER 10 Testing and debugging multithreaded applications
that you don’t. If you don’t have colleagues you can ask, ask a friend, or even post the
code on the internet (taking care not to upset your company lawyers). If you can’t get
anybody to review your code for you, or they don’t find anything, don’t worry—there’s
still more you can do. For starters, it might be worth leaving the code alone for a while—
work on another part of the application, read a book, or go for a walk. If you take a
break, your subconscious can work on the problem in the background while you’re con-
sciously focused on something else. Also, the code will be less familiar when you come
back to it—you might manage to look at it from a different perspective yourself.

 An alternative to getting someone else to review your code is to do it yourself. One
useful technique is to try to explain how it works in detail to someone else. They don’t
even have to be physically there—many teams have a bear or rubber chicken for this
purpose, and I personally find that writing detailed notes can be hugely beneficial. As
you explain, think about each line, what could happen, which data it accesses, and so
forth. Ask yourself questions about the code, and explain the answers. I find this to be
an incredibly powerful technique—by asking myself these questions and thinking
carefully about the answers, the problem often reveals itself. These questions can be
helpful for any code review, not just when reviewing your own code.

QUESTIONS TO THINK ABOUT WHEN REVIEWING MULTITHREADED CODE

As I’ve already mentioned, it can be useful for a reviewer (whether the code’s author
or someone else) to think about specific questions relating to the code being
reviewed. These questions can focus the reviewer’s mind on the relevant details of the
code and can help identify potential problems. The questions I like to ask include
the following, though this is most definitely not a comprehensive list. You might find
other questions that help you to focus better. Anyway, here are the questions:

■ Which data needs to be protected from concurrent access?
■ How do you ensure that the data is protected?
■ Where in the code could other threads be at this time?
■ Which mutexes does this thread hold?
■ Which mutexes might other threads hold?
■ Are there any ordering requirements between the operations done in this

thread and those done in another? How are those requirements enforced?
■ Is the data loaded by this thread still valid? Could it have been modified by

other threads?
■ If you assume that another thread could be modifying the data, what would that

mean and how could you ensure that this never happens?

This last question is my favorite, because it really makes me think about the relation-
ships between the threads. By assuming the existence of a bug related to a particular
line of code, you can then act as a detective and track down the cause. In order to con-
vince yourself that there’s no bug, you have to consider every corner case and possible
ordering. This is particularly useful where the data is protected by more than one
mutex over its lifetime, such as with the thread-safe queue from chapter 6 where we
Download from Wow! eBook <www.wowebook.com>

305Techniques for locating concurrency-related bugs
had separate mutexes for the head and tail of the queue: in order to be sure that an
access is safe while holding one mutex, you have to be certain that a thread holding
the other mutex can’t also access the same element. It also makes it obvious that public
data, or data for which other code can readily obtain a pointer or reference, has to
come under particular scrutiny.

 The penultimate question in the list is also important, because it addresses what’s
an easy mistake to make: if you release and then reacquire a mutex, you must assume
that other threads may have modified the shared data. Although this is obvious, if the
mutex locks aren’t immediately visible—perhaps because they’re internal to an object—
you may unwittingly be doing exactly that. In chapter 6 you saw how this can lead to race
conditions and bugs where the functions provided on a thread-safe data structure are
too fine-grained. Whereas for a non-thread-safe stack it makes sense to have separate
top() and pop() operations, for a stack that may be accessed by multiple threads con-
currently, this is no longer the case because the lock on the internal mutex is released
between the two calls, and so another thread can modify the stack. As you saw in chap-
ter 6, the solution is to combine the two operations so they are both performed under
the protection of the same mutex lock, thus eliminating the potential race condition.

OK, so you’ve reviewed your code (or got someone else to review it). You’re sure
there are no bugs. The proof of the pudding is, as they say, in the eating—how can
you test your code to confirm or deny your belief in its lack of bugs?

10.2.2 Locating concurrency-related bugs by testing

When developing single-threaded applications, testing your applications is relatively
straightforward, if time consuming. You could, in principle, identify all the possible
sets of input data (or at least all the interesting cases) and run them through the
application. If the application produced the correct behavior and output, you’d know
it works for that given set of input. Testing for error states such as the handling of disk-
full errors is more complicated than that, but the idea is the same—set up the initial
conditions and allow the application to run.

 Testing multithreaded code is an order of magnitude harder, because the precise
scheduling of the threads is indeterminate and may vary from run to run. Conse-
quently, even if you run the application with the same input data, it might work cor-
rectly some times and fail at other times if there’s a race condition lurking in the code.
Just because there’s a potential race condition doesn’t mean the code will fail always,
just that it might fail sometimes.

 Given the inherent difficulty of reproducing concurrency-related bugs, it pays to
design your tests carefully. You want each test to run the smallest amount of code that
could potentially demonstrate a problem, so that you can best isolate the code that’s
faulty if the test fails—it’s better to test a concurrent queue directly to verify that con-
current pushes and pops work rather than testing it through a whole chunk of code
that uses the queue. It can help if you think about how code should be tested when
designing it—see the section on designing for testability later in this chapter.
Download from Wow! eBook <www.wowebook.com>

306 CHAPTER 10 Testing and debugging multithreaded applications
 It’s also worth eliminating the concurrency from the test in order to verify that the
problem is concurrency-related. If you have a problem when everything is running in
a single thread, it’s just a plain common or garden-variety bug rather than a concur-
rency-related bug. This is particularly important when trying to track down a bug that
occurs “in the wild” as opposed to being detected in your test harness. Just because a
bug occurs in the multithreaded portion of your application doesn’t mean it’s auto-
matically concurrency-related. If you’re using thread pools to manage the level of con-
currency, there’s usually a configuration parameter you can set to specify the number
of worker threads. If you’re managing threads manually, you’ll have to modify the
code to use a single thread for the test. Either way, if you can reduce your application
to a single thread, you can eliminate concurrency as a cause. On the flip side, if the
problem goes away on a single-core system (even with multiple threads running) but is
present on multicore systems or multiprocessor systems, you have a race condition and
possibly a synchronization or memory-ordering issue.

 There’s more to testing concurrent code than the structure of the code being
tested; the structure of the test is just as important, as is the test environment. If you
continue on with the example of testing a concurrent queue, you have to think about
various scenarios:

■ One thread calling push() or pop() on its own to verify that the queue does
work at a basic level

■ One thread calling push() on an empty queue while another thread calls pop()
■ Multiple threads calling push() on an empty queue
■ Multiple threads calling push() on a full queue
■ Multiple threads calling pop() on an empty queue
■ Multiple threads calling pop() on a full queue
■ Multiple threads calling pop() on a partially full queue with insufficient items

for all threads
■ Multiple threads calling push() while one thread calls pop() on an empty queue
■ Multiple threads calling push() while one thread calls pop() on a full queue
■ Multiple threads calling push() while multiple threads call pop() on an empty

queue
■ Multiple threads calling push() while multiple threads call pop() on a full queue

Having thought about all these scenarios and more, you then need to consider addi-
tional factors about the test environment:

■ What you mean by “multiple threads” in each case (3, 4, 1024?)
■ Whether there are enough processing cores in the system for each thread to

run on its own core
■ Which processor architectures the tests should be run on
■ How you ensure suitable scheduling for the “while” parts of your tests
Download from Wow! eBook <www.wowebook.com>

307Techniques for locating concurrency-related bugs
There are additional factors to think about specific to your particular situation. Of
these four environmental considerations, the first and last affect the structure of the
test itself (and are covered in section 10.2.5), whereas the other two are related to
the physical test system being used. The number of threads to use relates to the partic-
ular code being tested, but there are various ways of structuring tests to obtain suitable
scheduling. Before we look at these techniques, let’s look at how you can design your
application code to be easier to test.

10.2.3 Designing for testability

Testing multithreaded code is difficult, so you want to do what you can to make it eas-
ier. One of the most important things you can do is design the code for testability. A lot
has been written about designing single-threaded code for testability, and much of the
advice still applies. In general, code is easier to test if the following factors apply:

■ The responsibilities of each function and class are clear.
■ The functions are short and to the point.
■ Your tests can take complete control of the environment surrounding the code

being tested.
■ The code that performs the particular operation being tested is close together

rather than spread throughout the system.
■ You thought about how to test the code before you wrote it.

All of these are still true for multithreaded code. In fact, I’d argue that it’s even more
important to pay attention to the testability of multithreaded code than for single-
threaded code, because it’s inherently that much harder to test. That last point is
important: even if you don’t go as far as writing your tests before the code, it’s well
worth thinking about how you can test the code before you write it—what inputs to
use, which conditions are likely to be problematic, how to stimulate the code in poten-
tially problematic ways, and so on.

 One of the best ways to design concurrent code for testing is to eliminate the con-
currency. If you can break down the code into those parts that are responsible for the
communication paths between threads and those parts that operate on the communi-
cated data within a single thread, then you’ve greatly reduced the problem. Those
parts of the application that operate on data that’s being accessed by only that one
thread can then be tested using the normal single-threaded techniques. The hard-to-
test concurrent code that deals with communicating between threads and ensuring
that only one thread at a time is accessing a particular block of data is now much
smaller and the testing more tractable.

 For example, if your application is designed as a multithreaded state machine, you
could split it into several parts. The state logic for each thread, which ensures that the
transitions and operations are correct for each possible set of input events, can be
tested independently with single-threaded techniques, with the test harness providing
the input events that would be coming from other threads. Then, the core state
Download from Wow! eBook <www.wowebook.com>

308 CHAPTER 10 Testing and debugging multithreaded applications
machine and message routing code that ensures that events are correctly delivered to
the right thread in the right order can be tested independently, but with multiple con-
current threads and simple state logic designed specifically for the tests.

 Alternatively, if you can divide your code into multiple blocks of read shared data/
transform data/update shared data, you can test the transform data portions using all the
usual single-threaded techniques, because this is now just single-threaded code. The
hard problem of testing a multithreaded transformation will be reduced to testing the
reading and updating of the shared data, which is much simpler.

 One thing to watch out for is that library calls can use internal variables to store
state, which then becomes shared if multiple threads use the same set of library calls.
This can be a problem because it’s not immediately apparent that the code accesses
shared data. However, with time you learn which library calls these are, and they stick
out like sore thumbs. You can then either add appropriate protection and synchroniza-
tion or use an alternate function that’s safe for concurrent access from multiple threads.

 There’s more to designing multithreaded code for testability than structuring your
code to minimize the amount of code that needs to deal with concurrency-related
issues and paying attention to the use of non-thread-safe library calls. It’s also helpful
to bear in mind the same set of questions you ask yourself when reviewing the code,
from section 10.2.1. Although these questions aren’t directly about testing and test-
ability, if you think about the issues with your “testing hat” on and consider how to test
the code, it will affect which design choices you make and will make testing easier.

 Now that we’ve looked at designing code to make testing easier, and potentially
modified the code to separate the “concurrent” parts (such as the thread-safe contain-
ers or state machine event logic) from the “single-threaded” parts (which may still
interact with other threads through the concurrent chunks), let’s look at the tech-
niques for testing concurrency-aware code.

10.2.4 Multithreaded testing techniques

So, you’ve thought through the scenario you wish to test and written a small amount
of code that exercises the functions being tested. How do you ensure that any poten-
tially problematic scheduling sequences are exercised in order to flush out the bugs?

 Well, there are a few ways of approaching this, starting with brute-force testing, or
stress testing.

BRUTE-FORCE TESTING

The idea behind brute-force testing is to stress the code to see if it breaks. This typi-
cally means running the code many times, possibly with many threads running at
once. If there’s a bug that manifests only when the threads are scheduled in a particu-
lar fashion, then the more times the code is run, the more likely the bug is to appear.
If you run the test once and it passes, you might feel a bit of confidence that the code
works. If you run it ten times in a row and it passes every time, you’ll likely feel more
confident. If you run the test a billion times and it passes every time, you’ll feel
more confident still.
Download from Wow! eBook <www.wowebook.com>

309Techniques for locating concurrency-related bugs
 The confidence you have in the results does depend on the amount of code being
tested by each test. If your tests are quite fine-grained, like the tests outlined previ-
ously for a thread-safe queue, such brute-force testing can give you a high degree of
confidence in your code. On the other hand, if the code being tested is considerably
larger, the number of possible scheduling permutations is so vast that even a billion
test runs might yield a low level of confidence.

The downside to brute-force testing is that it might give you false confidence. If the way
you’ve written the test means that the problematic circumstances can’t occur, you can
run the test as many times as you like and it won’t fail, even if it would fail every time in
slightly different circumstances. The worst example is where the problematic circum-
stances can’t occur on your test system because of the way the particular system you’re
testing on happens to run. Unless your code is to run only on systems identical to the
one being tested, the particular hardware and operating system combination may not
allow the circumstances that would cause a problem to arise.

 The classic example here is testing a multithreaded application on a single-
processor system. Because every thread has to run on the same processor, everything is
automatically serialized, and many race conditions and cache ping-pong problems that
you may get with a true multiprocessor system evaporate. This isn’t the only variable
though; different processor architectures provide different synchronization and order-
ing facilities. For example, on x86 and x86-64 architectures, atomic load operations are
always the same, whether tagged memory_order_relaxed or memory_order_seq_cst
(see section 5.3.3). This means that code written using relaxed memory ordering may
work on systems with an x86 architecture, where it would fail on a system with a finer-
grained set of memory-ordering instructions such as SPARC.

 If you need your application to be portable across a range of target systems, it’s
important to test it on representative instances of those systems. This is why I listed the
processor architectures being used for testing as a consideration in section 10.2.2.

 Avoiding the potential for false confidence is crucial to successful brute-force test-
ing. This requires careful thought over test design, not just with respect to the choice
of unit for the code being tested but also with respect to the design of the test harness
and the choice of testing environment. You need to ensure that as many of the code
paths as possible are tested and as many of the possible thread interactions as feasible.
Not only that, but you need to know which options are covered and which are left untested.

 Although brute-force testing does give you some degree of confidence in your
code, it’s not guaranteed to find all the problems. There’s one technique that is guar-
anteed to find the problems, if you have the time to apply it to your code and the
appropriate software. I call it combination simulation testing.

COMBINATION SIMULATION TESTING

That’s a bit of a mouthful, so I’d best explain what I mean. The idea is that you run
your code with a special piece of software that simulates the real runtime environment
of the code. You may be aware of software that allows you to run multiple virtual
machines on a single physical computer, where the characteristics of the virtual machine
Download from Wow! eBook <www.wowebook.com>

310 CHAPTER 10 Testing and debugging multithreaded applications
and its hardware are emulated by the supervisor software. The idea here is similar,
except rather than just emulating the system, the simulation software records the
sequences of data accesses, locks, and atomic operations from each thread. It then
uses the rules of the C++ memory model to repeat the run with every permitted combi-
nation of operations and thus identify race conditions and deadlocks.

 Although such exhaustive combination testing is guaranteed to find all the prob-
lems the system is designed to detect, for anything but the most trivial of programs it
will take a huge amount of time, because the number of combinations increases expo-
nentially with the number of threads and the number of operations performed by
each thread. This technique is thus best reserved for fine-grained tests of individual
pieces of code rather than an entire application. The other obvious downside is that it
relies on the availability of simulation software that can handle the operations used in
your code.

 So, you have a technique that involves running your test many times under normal
conditions but that might miss problems, and you have a technique that involves run-
ning your test many times under special conditions but that’s more likely to find any
problems that exist. Are there any other options?

 A third option is to use a library that detects problems as they occur in the running
of the tests.

DETECTING PROBLEMS EXPOSED BY TESTS WITH A SPECIAL LIBRARY

Although this option doesn’t provide the exhaustive checking of a combination simu-
lation test, you can identify many problems by using a special implementation of the
library synchronization primitives such as mutexes, locks, and condition variables. For
example, it’s common to require that all accesses to a piece of shared data be done
with a particular mutex locked. If you could check which mutexes were locked when
the data was accessed, you could verify that the appropriate mutex was indeed locked
by the calling thread when the data was accessed and report a failure if this was not
the case. By marking your shared data in some way, you can allow the library to check
this for you.

 Such a library implementation can also record the sequence of locks if more than
one mutex is held by a particular thread at once. If another thread locks the same
mutexes in a different order, this could be recorded as a potential deadlock even if the
test didn’t actually deadlock while running.

 Another type of special library that could be used when testing multithreaded
code is one where the implementations of the threading primitives such as mutexes
and condition variables give the test writer control over which thread gets the lock
when multiple threads are waiting or which thread is notified by a notify_one() call
on a condition variable. This would allow you to set up particular scenarios and verify
that your code works as expected in those scenarios.

 Some of these testing facilities would have to be supplied as part of the C++ Stan-
dard Library implementation, whereas others can be built on top of the Standard
Library as part of your test harness.
Download from Wow! eBook <www.wowebook.com>

311Techniques for locating concurrency-related bugs
 Having looked at various ways of executing test code, let’s now look at ways of
structuring the code to achieve the scheduling you want.

10.2.5 Structuring multithreaded test code

Back in section 10.2.2 I said that you need to find ways of providing suitable schedul-
ing for the “while” part of your tests. Now it’s time to look at the issues involved in that.

 The basic issue is that you need to arrange for a set of threads to each be executing
a chosen piece of code at a time that you specify. In the most basic case you have two
threads, but this could easily be extended to more. In the first step, you need to iden-
tify the distinct parts of each test:

■ The general setup code that must be executed before anything else
■ The thread-specific setup code that must run on each thread
■ The actual code for each thread that you desire to run concurrently
■ The code to be run after the concurrent execution has finished, possibly

including assertions on the state of the code

To explain further, let’s consider a specific example from the test list in section 10.2.2:
one thread calling push() on an empty queue while another thread calls pop().

 The general setup code is simple: you must create the queue. The thread executing
pop() has no thread-specific setup code. The thread-specific setup code for the thread
executing push() depends on the interface to the queue and the type of object being
stored. If the object being stored is expensive to construct or must be heap allocated,
you want to do this as part of the thread-specific setup, so that it doesn’t affect the test.
On the other hand, if the queue is just storing plain ints, there’s nothing to be gained
by constructing an int in the setup code. The actual code being tested is relatively
straightforward—a call to push() from one thread and a call to pop() from another—
but what about the “after completion” code?

 In this case, it depends on what you want pop() to do. If it’s supposed to block
until there is data, then clearly you want to see that the returned data is what was sup-
plied to the push() call and that the queue is empty afterward. If pop() is not blocking
and may complete even when the queue is empty, you need to test for two possibilities:
either the pop() returned the data item supplied to the push() and the queue is
empty or the pop() signaled that there was no data and the queue has one element.
One or the other must be true; what you want to avoid is the scenario that pop() sig-
naled “no data” but the queue is empty, or that pop() returned the value and the
queue is still not empty. In order to simplify the test, assume you have a blocking
pop(). The final code is therefore an assertion that the popped value is the pushed
value and that the queue is empty.

 Now, having identified the various chunks of code, you need to do the best you can
to ensure that everything runs as planned. One way to do this is to use a set of
std::promises to indicate when everything is ready. Each thread sets a promise to
indicate that it’s ready and then waits on a (copy of a) std::shared_future obtained
Download from Wow! eBook <www.wowebook.com>

312 CHAPTER 10 Testing and debugging multithreaded applications
from a third std::promise; the main thread waits for all the promises from all the
threads to be set and then triggers the threads to go. This ensures that each thread has
started and is just before the chunk of code that should be run concurrently; any
thread-specific setup should be done before setting that thread’s promise. Finally, the
main thread waits for the threads to complete and checks the final state. You also need
to be aware of exceptions and make sure you don’t have any threads left waiting for
the go signal when that’s not going to happen. The following listing shows one way of
structuring this test.

void test_concurrent_push_and_pop_on_empty_queue()
{
 threadsafe_queue<int> q;

 std::promise<void> go,push_ready,pop_ready;
 std::shared_future<void> ready(go.get_future());

 std::future<void> push_done;
 std::future<int> pop_done;

 try
 {
 push_done=std::async(std::launch::async,
 [&q,ready,&push_ready]()
 {
 push_ready.set_value();
 ready.wait();
 q.push(42);
 }
);
 pop_done=std::async(std::launch::async,
 [&q,ready,&pop_ready]()
 {
 pop_ready.set_value();
 ready.wait();
 return q.pop();
 }
);
 push_ready.get_future().wait();
 pop_ready.get_future().wait();
 go.set_value();

 push_done.get();
 assert(pop_done.get()==42);
 assert(q.empty());
 }
 catch(...)
 {
 go.set_value();
 throw;
 }
}

Listing 10.1 An example test for concurrent push() and pop() calls on a queue

b

c
 d

e

f

g

h

i

j

1)
1!

1@
Download from Wow! eBook <www.wowebook.com>

313Techniques for locating concurrency-related bugs
The structure is pretty much as described previously. First, you create your empty
queue as part of the general setup B. Then, you create all your promises for the
“ready” signals c and get a std::shared_future for the go signal d. Then, you cre-
ate the futures you’ll use to indicate that the threads have finished e. These have to
go outside the try block so that you can set the go signal on an exception without
waiting for the test threads to complete (which would deadlock—a deadlock in the
test code would be rather less than ideal).

 Inside the try block you can then start the threads f, g—you use std::
launch::async to guarantee that the tasks are each running on their own thread.
Note that the use of std::async makes your exception-safety task easier than it would
be with plain std::thread because the destructor for the future will join with the
thread. The lambda captures specify that each task will reference the queue and
the relevant promise for signaling readiness, while taking a copy of the ready future
you got from the go promise.

 As described previously, each task sets its own ready signal and then waits for the
general ready signal before running the actual test code. The main thread does
the reverse—waiting for the signals from both threads i before signaling them to
start the real test j.

 Finally, the main thread calls get() on the futures from the async calls to wait
for the tasks to finish 1), 1! and checks the results. Note that the pop task returns
the retrieved value through the future h, so you can use that to get the result for the
assert 1!.

 If an exception is thrown, you set the go signal to avoid any chance of a dangling
thread and rethrow the exception 1@. The futures corresponding to the tasks e were
declared last, so they’ll be destroyed first, and their destructors will wait for the tasks
to complete if they haven’t already.

 Although this seems like quite a lot of boilerplate just to test two simple calls, it’s
necessary to use something similar in order to have the best chance of testing what
you actually want to test. For example, actually starting a thread can be quite a time-
consuming process, so if you didn’t have the threads wait for the go signal, then the
push thread may have completed before the pop thread even started, which would
completely defeat the point of the test. Using the futures in this way ensures that both
threads are running and blocked on the same future. Unblocking the future then
allows both threads to run. Once you’re familiar with the structure, it should be rela-
tively straightforward to create new tests in the same pattern. For tests that require
more than two threads, this pattern is readily extended to additional threads.

 So far, we’ve just been looking at the correctness of multithreaded code. Although
this is the most important issue, it’s not the only reason you test: it’s also important to
test the performance of multithreaded code, so let’s look at that next.
Download from Wow! eBook <www.wowebook.com>

314 CHAPTER 10 Testing and debugging multithreaded applications
10.2.6 Testing the performance of multithreaded code

One of the main reasons you might choose to use concurrency in an application is to
make use of the increasing prevalence of multicore processors to improve the perfor-
mance of your applications. It’s therefore important to actually test your code to con-
firm that the performance does indeed improve, just as you’d do with any other
attempt at optimization.

 The particular issue with using concurrency for performance is the scalability—you
want code that runs approximately 24 times faster or processes 24 times as much data
on a 24-core machine than on a single-core machine, all else being equal. You don’t
want code that runs twice as fast on a dual-core machine but is actually slower on a 24-
core machine. As you saw in section 8.4.2, if a significant section of your code runs on
only one thread, this can limit the potential performance gain. It’s therefore worth
looking at the overall design of the code before you start testing, so you know whether
you’re hoping for a factor-of-24 improvement, or whether the serial portion of your
code means you’re limited to a maximum of a factor of 3.

 As you’ve already seen in previous chapters, contention between processors for
access to a data structure can have a big performance impact. Something that scales
nicely with the number of processors when that number is small may actually perform
badly when the number of processors is much larger because of the huge increase
in contention.

 Consequently, when testing for the performance of multithreaded code, it’s best to
check the performance on systems with as many different configurations as possible,
so you get a picture of the scalability graph. At the very least, you ought to test on a
single-processor system and a system with as many processing cores as are available
to you.

10.3 Summary
In this chapter we looked at various types of concurrency-related bugs that you might
encounter, from deadlocks and livelocks to data races and other problematic race
conditions. We followed that with techniques for locating bugs. These included issues
to think about during code reviews, guidelines for writing testable code, and how to
structure tests for concurrent code. Finally, we looked at some utility components that
can help with testing.
Download from Wow! eBook <www.wowebook.com>

appendix A
Brief reference for some

C++11 language features

The new C++ Standard brings more than just concurrency support; there are a
whole host of other language features and new libraries as well. In this appendix I
give a brief overview of the new language features that are used in the Thread
Library and the rest of the book. Aside from thread_local (which is covered in
section A.8), none of them are directly related to concurrency, though they are
important and/or useful for multithreaded code. I’ve limited this list to those that
are either necessary (such as rvalue references) or serve to make the code simpler
or easier to understand. Code that uses these features may be difficult to under-
stand at first because of lack of familiarity, but as you become familiar with them,
they should generally make code easier to understand rather than harder. As the
use of C++11 becomes more widespread, code making use of these features will
become more common.

 Without further ado, let’s start by looking at rvalue references, which are used
extensively by the Thread Library to facilitate transfer of ownership (of threads,
locks, or whatever) between objects.

A.1 Rvalue references
If you’ve been doing C++ programming for any time, you’ll be familiar with refer-
ences; C++ references allow you to create a new name for an existing object. All
accesses and modifications done through the new reference affect the original,
for example:

int var=42;
int& ref=var;
ref=99;
assert(var==99);

Create a
reference to var Original updated

because of assignment
to reference
315

Download from Wow! eBook <www.wowebook.com>

316 APPENDIX A Brief reference for some C++11 language features
The references that we’ve all been using up to now are lvalue references—references to
lvalues. The term lvalue comes from C and refers to things that can be on the left side
of an assignment expression—named objects, objects allocated on the stack or heap,
or members of other objects—things with a defined storage location. The term rvalue
also comes from C and refers to things that can occur only on the right side of an
assignment expression—literals and temporaries, for example. Lvalue references can
only be bound to lvalues, not rvalues. You can’t write

int& i=42;

for example, because 42 is an rvalue. OK, that’s not quite true; you’ve always been able
to bind an rvalue to a const lvalue reference:

int const& i=42;

But this is a deliberate exception on the part of the standard, introduced before we
had rvalue references in order to allow you to pass temporaries to functions taking ref-
erences. This allows implicit conversions, so you can write things like this:

void print(std::string const& s);
print("hello");

Anyway, the C++11 Standard introduces rvalue references, which bind only to rvalues, not
to lvalues, and are declared with two ampersands rather than one:

int&& i=42;
int j=42;
int&& k=j;

You can thus use function overloading to determine whether function parameters are
lvalues or rvalues by having one overload take an lvalue reference and another take an
rvalue reference. This is the cornerstone of move semantics.

A.1.1 Move semantics

Rvalues are typically temporary and so can be freely modified; if you know that your
function parameter is an rvalue, you can use it as temporary storage, or “steal” its con-
tents without affecting program correctness. This means that rather than copying the
contents of an rvalue parameter, you can just move the contents. For large dynamic
structures, this saves a lot of memory allocation and provides a lot of scope for optimi-
zation. Consider a function that takes a std::vector<int> as a parameter and needs
to have an internal copy for modification, without touching the original. The old way
of doing this would be to take the parameter as a const lvalue reference and make the
copy internally:

void process_copy(std::vector<int> const& vec_)
{
 std::vector<int> vec(vec_);
 vec.push_back(42);
}

Won’t compile

Create temporary
std::string object

Won’t
compile
Download from Wow! eBook <www.wowebook.com>

317Rvalue references
This allows the function to take both lvalues and rvalues but forces the copy in every
case. If you overload the function with a version that takes an rvalue reference, you can
avoid the copy in the rvalue case, because you know you can freely modify the original:

void process_copy(std::vector<int> && vec)
{
 vec.push_back(42);
}

Now, if the function in question is the constructor of your class, you can pilfer the
innards of the rvalue and use them for your new instance. Consider the class in the fol-
lowing listing. In the default constructor it allocates a large chunk of memory, which is
freed in the destructor.

class X
{
private:
 int* data;
public:
 X():
 data(new int[1000000])
 {}
 ~X()
 {
 delete [] data;
 }
 X(const X& other):
 data(new int[1000000])
 {
 std::copy(other.data,other.data+1000000,data);
 }
 X(X&& other):
 data(other.data)
 {
 other.data=nullptr;
 }
};

The copy constructor B is defined just as you might expect: allocate a new block of
memory and copy the data across. However, you also have a new constructor that takes
the old value by rvalue reference c. This is the move constructor. In this case you just
copy the pointer to the data and leave the other instance with a null pointer, saving
yourself a huge chunk of memory and time when creating variables from rvalues.

 For class X the move constructor is just an optimization, but in some cases it makes
sense to provide a move constructor even when it doesn’t make sense to provide a
copy constructor. For example, the whole point of std::unique_ptr<> is that each
non-null instance is the one and only pointer to its object, so a copy constructor
makes no sense. However, a move constructor allows ownership of the pointer to be

Listing A.1 A class with a move constructor

b

c

Download from Wow! eBook <www.wowebook.com>

318 APPENDIX A Brief reference for some C++11 language features
transferred between instances and permits std::unique_ptr<> to be used as a func-
tion return value—the pointer is moved rather than copied.

 If you wish to explicitly move from a named object that you know you’ll no longer
use, you can cast it to an rvalue either by using static_cast<X&&> or by calling
std::move():

X x1;
X x2=std::move(x1);
X x3=static_cast<X&&>(x2);

This can be beneficial when you wish to move the parameter value into a local or
member variable without copying, because although an rvalue reference parameter
can bind to rvalues, within the function itself it is treated as an lvalue:

void do_stuff(X&& x_)
{
 X a(x_);
 X b(std::move(x_));
}
do_stuff(X());
X x;
do_stuff(x);

Move semantics are used extensively in the Thread Library, both where copies make
no semantic sense but resources can be transferred, and as an optimization to avoid
expensive copies where the source is going to be destroyed anyway. You saw an exam-
ple of this in section 2.2 where we used std::move() to transfer a std::unique_ptr<>
instance into a newly constructed thread, and then again in section 2.3 where we
looked at transferring ownership of threads between std::thread instances.

 None of std::thread, std::unique_lock<>, std::future<>, std::promise<>, or
std::packaged_task<> can be copied, but they all have move constructors to allow
the associated resource to be transferred between instances and support their use as
function return values. std::string and std::vector<> both can be copied as
always, but they also have move constructors and move-assignment operators to avoid
copying large quantities of data from an rvalue.

 The C++ Standard Library never does anything with an object that has been explic-
itly moved into another object, except destroy it or assign to it (either with a copy or,
more likely, a move). However, it’s good practice to ensure that the invariant of the
class encompasses the moved-from state. A std::thread instance that has been used
as the source of a move is equivalent to a default-constructed std::thread instance,
for example, and an instance of std::string that has been used as the source of a
move will still have a valid state, although no guarantees are made as to what that state
is (in terms of how long the string is or what characters it contains).

A.1.2 Rvalue references and function templates

There’s a final nuance when you use rvalue references for parameters to a function
template: if the function parameter is an rvalue reference to a template parameter,

Copies
Moves

OK, rvalue binds to
rvalue reference

Error, lvalue can’t bind
to rvalue reference
Download from Wow! eBook <www.wowebook.com>

319Deleted functions
automatic template argument type deduction deduces the type to be an lvalue refer-
ence if an lvalue is supplied or a plain unadorned type if an rvalue is supplied. That’s
a bit of a mouthful, so let’s look at an example. Consider the following function:

template<typename T>
void foo(T&& t)
{}

If you call it with an rvalue as follows, then T is deduced to be the type of the value:

foo(42);
foo(3.14159);
foo(std::string());

However, if you call foo with an lvalue, T is deduced to be an lvalue reference:

int i=42;
foo(i);

Because the function parameter is declared T&&, this is therefore a reference to a
reference, which is treated as just the original reference type. The signature of
foo<int&>() is thus

void foo<int&>(int& t);

This allows a single function template to accept both lvalue and rvalue parameters
and is used by the std::thread constructor (sections 2.1 and 2.2) so that the supplied
callable object can be moved into internal storage rather than copied if the parameter
is an rvalue.

A.2 Deleted functions
Sometimes it doesn’t make sense to allow a class to be copied. std::mutex is a prime
example of this—what would it mean if you did copy a mutex? std::unique_lock<> is
another—an instance is the one and only owner of the lock it holds. To truly copy it
would mean that the copy also held the lock, which doesn’t make sense. Moving own-
ership between instances, as described in section A.1.2, makes sense, but that’s not
copying. I’m sure you’ve met other examples.

 The standard idiom for preventing copies of a class used to be to declare the copy
constructor and copy assignment operator private and then not provide an implemen-
tation. This would cause a compile error if any code outside the class in question tried
to copy an instance and a link-time error (due to lack of an implementation) if any of
the class’s member functions or friends tried to copy an instance:

class no_copies
{
public:
 no_copies(){}
private:
 no_copies(no_copies const&);
 no_copies& operator=(no_copies const&);
};

Calls foo<int>(42) Calls foo<double>(3.14159)

Calls foo<std::string>(std::string())

Calls foo<int&>(i)

No implementationb
Download from Wow! eBook <www.wowebook.com>

320 APPENDIX A Brief reference for some C++11 language features
no_copies a;
no_copies b(a);

With C++11, the committee realized that this was a common idiom but also realized
that it’s a bit of a hack. The committee therefore provided a more general mecha-
nism that can be applied in other cases too: you can declare a function as deleted by
adding = delete to the function declaration. no_copies can thus be written as

class no_copies
{
public:
 no_copies(){}
 no_copies(no_copies const&) = delete;
 no_copies& operator=(no_copies const&) = delete;
};

This is much more descriptive than the original code and clearly expresses the intent.
It also allows the compiler to give more descriptive error messages and moves the
error from link time to compile time if you try to perform the copy within a member
function of your class.

 If, as well as deleting the copy constructor and copy-assignment operator, you also
explicitly write a move constructor and move-assignment operator, your class becomes
move-only, the same as std::thread and std::unique_lock<>. The following listing
shows an example of such a move-only type.

class move_only
{
 std::unique_ptr<my_class> data;
public:
 move_only(const move_only&) = delete;
 move_only(move_only&& other):
 data(std::move(other.data))
 {}
 move_only& operator=(const move_only&) = delete;
 move_only& operator=(move_only&& other)
 {
 data=std::move(other.data);
 return *this;
 }
};
move_only m1;
move_only m2(m1);
move_only m3(std::move(m1));

Move-only objects can be passed as function parameters and returned from functions,
but if you wish to move from an lvalue, you always have to be explicit and use
std::move() or a static_cast<T&&>.

 You can apply the = delete specifier to any function, not just copy constructors
and assignment operators. This makes it clear that the function isn’t available. It does

Listing A.2 A simple move-only type

Won’t compilec

Error, copy constructor
is declared deleted OK, move

constructor found
Download from Wow! eBook <www.wowebook.com>

321Defaulted functions
a bit more than that too, though; a deleted function participates in overload resolu-
tion in the normal way and only causes a compilation error if it’s selected. This can be
used to remove specific overloads. For example, if your function takes a short param-
eter, you can prevent narrowing of int values by writing an overload that takes an int
and declaring it deleted:

void foo(short);
void foo(int) = delete;

Any attempts to call foo with an int will now be met with a compilation error, and the
caller will have to explicitly cast supplied values to short:

foo(42);
foo((short)42);

A.3 Defaulted functions
Whereas deleted functions allow you to explicitly declare that a function isn’t imple-
mented, defaulted functions are the opposite extreme: they allow you to specify that
the compiler should write the function for you, with its “default” implementation. Of
course, you can only do this for functions that the compiler can autogenerate anyway:
default constructors, destructors, copy constructors, move constructors, copy-assignment
operators, and move-assignment operators.

 Why would you want to do that? There are several reasons why you might:

■ In order to change the accessibility of the function—By default, the compiler-generated
functions are public. If you wish to make them protected or even private, you
must write them yourself. By declaring them as defaulted, you can get the com-
piler to write the function and change the access level.

■ As documentation—If the compiler-generated version is sufficient, it might be
worth explicitly declaring it as such so that when you or someone else looks at
the code later, it’s clear that this was intended.

■ In order to force the compiler to generate the function when it would not otherwise have
done so—This is typically done with default constructors, which are only nor-
mally compiler generated if there are no user-defined constructors. If you need
to define a custom copy constructor (for example), you can still get a compiler-
generated default constructor by declaring it as defaulted.

■ In order to make a destructor virtual while leaving it as compiler generated.
■ To force a particular declaration of the copy constructor, such as having it take the source

parameter by a non-const reference rather than by a const reference.
■ To take advantage of the special properties of the compiler-generated function, which are

lost if you provide an implementation—More on this in a moment.

Just as deleted functions are declared by following the declaration with = delete,
defaulted functions are declared by following the declaration by = default, for example:

class Y
{

Error, int overload
declared deletedOK
Download from Wow! eBook <www.wowebook.com>

322 APPENDIX A Brief reference for some C++11 language features
private:
 Y() = default;
public:
 Y(Y&) = default;
 T& operator=(const Y&) = default;
protected:
 virtual ~Y() = default;
};

I mentioned previously that compiler-generated functions can have special properties
that you can’t get from a user-defined version. The biggest difference is that a compiler-
generated function can be trivial. This has a few consequences, including the following:

■ Objects with trivial copy constructors, trivial copy assignment operators, and
trivial destructors can be copied with memcpy or memmove.

■ Literal types used for constexpr functions (see section A.4) must have a trivial
constructor, copy constructor, and destructor.

■ Classes with a trivial default constructor, copy constructor, copy assignment
operator, and destructor can be used in a union with a user-defined constructor
and destructor.

■ Classes with trivial copy assignment operators can be used with the std::atomic<>
class template (see section 5.2.6) in order to provide a value of that type with
atomic operations.

Just declaring the function as = default doesn’t make it trivial—it will only be trivial if
the class also supports all the other criteria for the corresponding function to be triv-
ial—but explicitly writing the function in user code does prevent it from being trivial.

 The second difference between classes with compiler-generated functions and
user-supplied equivalents is that a class with no user-supplied constructors can be an
aggregate and thus can be initialized with an aggregate initializer:

struct aggregate
{
 aggregate() = default;
 aggregate(aggregate const&) = default;

 int a;
 double b;
};
aggregate x={42,3.141};

In this case, x.a is initialized to 42 and x.b is initialized to 3.141.
 The third difference between a compiler-generated function and a user-supplied

equivalent is quite esoteric and applies only to the default constructor and only to the
default constructor of classes that meet certain criteria. Consider the following class:

struct X
{
 int a;
};

Change access
Take a non-const
reference

Declare as
defaulted for
documentation

Change access
and add virtual
Download from Wow! eBook <www.wowebook.com>

323Defaulted functions
If you create an instance of class X without an initializer, the contained int (a) is
default initialized. If the object has static storage duration, it’s initialized to zero; other-
wise, it has an indeterminate value that can potentially cause undefined behavior if it’s
accessed before being assigned a new value:

X x1;

If, on the other hand, you initialize your instance of X by explicitly invoking the
default constructor, then a is initialized to zero:

X x2=X();

This bizarre property also extends to base classes and members. If your class has a
compiler-generated default constructor and any of your data members and base
classes also have a compiler-generated default constructor, data members of those
bases and members that are built-in types are also either left with an indeterminate
value or initialized to zero, depending on whether or not the outer class has its default
constructor explicitly invoked.

 Although this rule is confusing and potentially error prone, it does have its uses,
and if you write the default constructor yourself, you lose this property; either data
members like a are always initialized (because you specify a value or explicitly default
construct) or always uninitialized (because you don’t):

X::X():a(){}
X::X():a(42){}
X::X(){}

If you omit the initialization of a from the constructor of X as in the third example B,
then a is left uninitialized for nonstatic instances of X and initialized to zero for
instances of X with static storage duration.

 Under normal circumstances, if you write any other constructor manually, the
compiler will no longer generate the default constructor for you, so if you want one
you have to write it, which means you lose this bizarre initialization property. However,
by explicitly declaring the constructor as defaulted, you can force the compiler to gen-
erate the default constructor for you, and this property is retained:

X::X() = default;

This property is used for the atomic types (see section 5.2), which have their default
constructor explicitly defaulted. Their initial value is always undefined unless either
(a) they have static storage duration (and thus are statically initialized to zero), or (b)
you explicitly invoke the default constructor to request zero initialization, or (c) you
explicitly specify a value. Note that in the case of the atomic types, the constructor for
initialization with a value is declared constexpr (see section A.4) in order to allow
static initialization.

x1.a has an indeterminate value

x2.a==0

a==0 always
a==42 always

b

Default initialization rules for a apply
Download from Wow! eBook <www.wowebook.com>

324 APPENDIX A Brief reference for some C++11 language features
A.4 constexpr functions
Integer literals such as 42 are constant expressions. So are simple arithmetic expressions
such as 23*2-4. You can even use const variables of integral type that are themselves
initialized with constant expressions as part of a new constant expression:

const int i=23;
const int two_i=i*2;
const int four=4;
const int forty_two=two_i-four;

Aside from using constant expressions to create variables that can be used in other
constant expressions, there are a few things you can only do with constant expressions:

■ Specify the bounds of an array:
int bounds=99;
int array[bounds];
const int bounds2=99;
int array2[bounds2];

■ Specify the value of a nontype template parameter:
template<unsigned size>
struct test
{};
test<bounds> ia;
test<bounds2> ia2;

■ Provide an initializer for a static const class data member of integral type in
the class definition:
class X
{
 static const int the_answer=forty_two;
};

■ Provide an initializer for a built-in type or aggregate that can be used for static
initialization:
struct my_aggregate
{
 int a;
 int b;
};
static my_aggregate ma1={forty_two,123};
int dummy=257;
static my_aggregate ma2={dummy,dummy};

■ Static initialization like this can be used to avoid order-of-initialization prob-
lems and race conditions.

None of this is new—you could do all that with the 1998 edition of the C++ Standard.
However, with the new Standard what constitutes a constant expression has been
extended with the introduction of the constexpr keyword.

 The constexpr keyword is primarily a function modifier. If the parameter and
return type of a function meet certain requirements and the body is sufficiently simple,

Error bounds is not a
constant expression OK, bounds2

is a constant
expression

Error bounds is
not a constant
expression OK, bounds2 is a

constant expression

Static
initialization

Dynamic
initialization
Download from Wow! eBook <www.wowebook.com>

325constexpr functions
a function can be declared constexpr, in which case it can be used in constant expres-
sions, for example:

constexpr int square(int x)
{
 return x*x;
}
int array[square(5)];

In this case, array will have 25 entries, because square is declared constexpr. Of
course, just because the function can be used in a constant expression doesn’t mean
that all uses are automatically constant expressions:

int dummy=4;
int array[square(dummy)];

In this example, dummy is not a constant expression B, so square(dummy) isn’t either—
it’s just a normal function call—and thus can’t be used to specify the bounds of array.

A.4.1 constexpr and user-defined types

Up to now, all the examples have been with built-in types such as int. However, the new
C++ Standard allows constant expressions to be of any type that satisfies the require-
ments for a literal type. For a class type to be classified as a literal type, the following
must all be true:

■ It must have a trivial copy constructor.
■ It must have a trivial destructor.
■ All non-static data members and base classes must be trivial types.
■ It must have either a trivial default constructor or a constexpr constructor

other than the copy constructor.

We’ll look at constexpr constructors shortly. For now we’ll focus on classes with a triv-
ial default constructor, such as class CX in the following listing.

class CX
{
private:
 int a;
 int b;
public:
 CX() = default;
 CX(int a_, int b_):
 a(a_),b(b_)
 {}
 int get_a() const
 {
 return a;
 }
 int get_b() const

Listing A.3 A class with a trivial default constructor

Error, dummy is not a
constant expression

b

b
 c
Download from Wow! eBook <www.wowebook.com>

326 APPENDIX A Brief reference for some C++11 language features
 {
 return b;
 }
 int foo() const
 {
 return a+b;
 }
};

Note that we’ve explicitly declared the default constructor B as defaulted (see sec-
tion A.3) in order to preserve it as trivial in the face of the user-defined constructor c.
This type therefore fits all the qualifications for being a literal type, and you can use it
in constant expressions. You can, for example, provide a constexpr function that cre-
ates new instances:

constexpr CX create_cx()
{
 return CX();
}

You can also create a simple constexpr function that copies its parameter:

constexpr CX clone(CX val)
{
 return val;
}

But that’s about all you can do—a constexpr function can only call other constexpr
functions. What you can do, though, is apply constexpr to the member functions and
constructor of CX:

class CX
{
private:
 int a;
 int b;
public:
 CX() = default;
 constexpr CX(int a_, int b_):
 a(a_),b(b_)
 {}
 constexpr int get_a() const
 {
 return a;
 }
 constexpr int get_b()
 {
 return b;
 }
 constexpr int foo()
 {
 return a+b;
 }
};

b

c

Download from Wow! eBook <www.wowebook.com>

327constexpr functions
Note that the const qualification on get_a() B is now superfluous, because it’s
implied by the use of constexpr. get_b() is thus const even though the const qualifi-
cation is omitted c. This now allows more complex constexpr functions such as
the following:

constexpr CX make_cx(int a)
{
 return CX(a,1);
}
constexpr CX half_double(CX old)
{
 return CX(old.get_a()/2,old.get_b()*2);
}
constexpr int foo_squared(CX val)
{
 return square(val.foo());
}
int array[foo_squared(half_double(make_cx(10)))];

Interesting though this is, it’s a lot of effort to go to if all you get is a fancy way of com-
puting some array bounds or an integral constant. The key benefit of constant expres-
sions and constexpr functions involving user-defined types is that objects of a literal
type initialized with a constant expression are statically initialized, and so their initial-
ization is free from race conditions and initialization order issues:

CX si=half_double(CX(42,19));

This covers constructors too. If the constructor is declared constexpr and the con-
structor parameters are constant expressions, the initialization is constant initializa-
tion and happens as part of the static initialization phase. This is one of the most
important changes in C++11 as far as concurrency goes: by allowing user-defined con-
structors that can still undergo static initialization, you can avoid any race condi-
tions over their initialization, because they’re guaranteed to be initialized before any
code is run.

 This is particularly relevant for things like std::mutex (see section 3.2.1) or
std::atomic<> (see section 5.2.6) where you might want to use a global instance to
synchronize access to other variables and avoid race conditions in that access. This
wouldn’t be possible if the constructor of the mutex was subject to race conditions, so
the default constructor of std::mutex is declared constexpr to ensure that mutex ini-
tialization is always done as part of the static initialization phase.

A.4.2 constexpr objects

So far we’ve looked at constexpr as applied to functions. constexpr can also be
applied to objects. This is primarily for diagnostic purposes; it verifies that the object
is initialized with a constant expression, constexpr constructor, or aggregate initial-
izer made of constant expressions. It also declares the object as const:

constexpr int i=45;
constexpr std::string s(“hello”);

49 elements

Statically initialized

OK Error, std::string
isn’t a literal type
Download from Wow! eBook <www.wowebook.com>

328 APPENDIX A Brief reference for some C++11 language features
int foo();
constexpr int j=foo();

A.4.3 constexpr function requirements
In order to declare a function as constexpr it must meet a few requirements; if it
doesn’t meet these requirements, declaring it constexpr is a compilation error. The
requirements for a constexpr function are as follows:

■ All parameters must be of a literal type.
■ The return type must be a literal type.
■ The function body must consist of a single return statement.
■ The expression in the return statement must qualify as a constant expression.
■ Any constructor or conversion operator used to construct the return value from

the expression must be constexpr.

This is straightforward; you must be able to inline the function into a constant expres-
sion and it will still be a constant expression, and you must not modify anything.
constexpr functions are pure functions with no side effects.

 For constexpr class member functions there are additional requirements:

■ constexpr member functions can’t be virtual.
■ The class for which the function is a member must be a literal type.

The rules are different for constexpr constructors:

■ The constructor body must be empty.
■ Every base class must be initialized.
■ Every non-static data member must be initialized.
■ Any expressions used in the member initialization list must qualify as constant

expressions.
■ The constructors chosen for the initialization of the data members and base

classes must be constexpr constructors.
■ Any constructor or conversion operator used to construct the data members and

base classes from their corresponding initialization expression must be constexpr.

This is the same set of rules as for functions, except that there’s no return value, so no
return statement. Instead, the constructor initializes all the bases and data members
in the member initialization list. Trivial copy constructors are implicitly constexpr.

A.4.4 constexpr and templates
When constexpr is applied to a function template, or to a member function of a class
template, it’s ignored if the parameters and return types of a particular instantiation
of the template aren’t literal types. This allows you to write function templates that are
constexpr if the type of the template parameters is appropriate and just plain inline
functions otherwise, for example:

template<typename T>
constexpr T sum(T a,T b)

Error, foo() isn’t declared constexpr
Download from Wow! eBook <www.wowebook.com>

329Lambda functions
{
 return a+b;
}
constexpr int i=sum(3,42);
std::string s=
 sum(std::string("hello"),
 std::string(" world"));

The function must satisfy all the other requirements for a constexpr function. You
can’t declare a function with multiple statements constexpr just because it’s a func-
tion template; that’s still a compilation error.

A.5 Lambda functions
Lambda functions are one of the most exciting features of the C++11 Standard,
because they have the potential to greatly simplify code and eliminate much of the
boilerplate associated with writing callable objects. The C++11 lambda function syn-
tax allows a function to be defined at the point where it’s needed in another
expression. This works well for things like predicates provided to the wait func-
tions of std::condition_variable (as in the example in section 4.1.1), because it
allows the semantics to be quickly expressed in terms of the accessible variables
rather than capturing the necessary state in the member variables of a class with a
function call operator.

 At its simplest, a lambda expression defines a self-contained function that takes no
parameters and relies only on global variables and functions. It doesn’t even have to
return a value. Such a lambda expression is a series of statements enclosed in braces,
prefixed with square brackets (the lambda introducer):

[]{
 do_stuff();
 do_more_stuff();
}();

In this example, the lambda expression is called by following it with parentheses, but
this is unusual. For one thing, if you’re going to call it directly, you could usually do
away with the lambda and write the statements directly in the source. It’s more com-
mon to pass it as a parameter to a function template that takes a callable object as one
of its parameters, in which case it likely needs to take parameters or return a value or
both. If you need to take parameters, you can do this by following the lambda intro-
ducer with a parameter list just like for a normal function. For example, the following
code writes all the elements of the vector to std::cout separated by newlines:

std::vector<int> data=make_data();
std::for_each(data.begin(),data.end(),[](int i){std::cout<<i<<"\n";});

Return values are almost as easy. If your lambda function body consists of a single
return statement, the return type of the lambda is the type of the expression being
returned. For example, you might use a simple lambda like this to wait for a flag to be
set with a std::condition_variable (see section 4.1.1) as in the following listing.

OK, sum<int>
is constexpr

OK, but
sum<std::string>
isn’t constexpr

Start the lambda expression with []

Finish the lambda,
and call it
Download from Wow! eBook <www.wowebook.com>

330 APPENDIX A Brief reference for some C++11 language features
std::condition_variable cond;
bool data_ready;
std::mutex m;

void wait_for_data()
{
 std::unique_lock<std::mutex> lk(m);
 cond.wait(lk,[]{return data_ready;});
}

The return type of the lambda passed to cond.wait() B is deduced from the type of
data_ready and is thus bool. Whenever the condition variable wakes from waiting, it
then calls the lambda with the mutex locked and only returns from the call to wait()
once data_ready is true.

 What if you can’t write your lambda body as a single return statement? In that case
you have to specify the return type explicitly. You can do this even if your body is a sin-
gle return statement, but you have to do it if your lambda body is more complex. The
return type is specified by following the lambda parameter list with an arrow (->) and
the return type. If your lambda doesn’t take any parameters, you must still include the
(empty) parameter list in order to specify the return value explicitly. Your condition
variable predicate can thus be written

cond.wait(lk,[]()->bool{return data_ready;});

By specifying the return type, you can expand the lambda to log messages or do some
more complex processing:

cond.wait(lk,[]()->bool{
 if(data_ready)
 {
 std::cout<<”Data ready”<<std::endl;
 return true;
 }
 else
 {
 std::cout<<”Data not ready, resuming wait”<<std::endl;
 return false;
 }
});

Although simple lambdas like this are powerful and can simplify code quite a lot, the
real power of lambdas comes when they capture local variables.

A.5.1 Lambda functions that reference local variables

Lambda functions with a lambda introducer of [] can’t reference any local variables
from the containing scope; they can only use global variables and anything passed in
as a parameter. If you wish to access a local variable, you need to capture it. The sim-
plest way to do this is to capture the entire set of variables within the local scope by

Listing A.4 A simple lambda with a deduced return type

b

Download from Wow! eBook <www.wowebook.com>

331Lambda functions
using a lambda introducer of [=]. That’s all there is to it—your lambda can now
access copies of the local variables at the time the lambda was created.

 To see this in action, consider the following simple function:

std::function<int(int)> make_offseter(int offset)
{
 return [=](int j){return offset+j;};
}

Every call to make_offseter returns a new lambda function object through the
std::function<> function wrapper. This returned function adds the supplied offset
to any parameter supplied. For example,

int main()
{
 std::function<int(int)> offset_42=make_offseter(42);
 std::function<int(int)> offset_123=make_offseter(123);
 std::cout<<offset_42(12)<<”,“<<offset_123(12)<<std::endl;
 std::cout<<offset_42(12)<<”,“<<offset_123(12)<<std::endl;
}

will write out 54,135 twice because the function returned from the first call to make_
offseter always adds 42 to the supplied argument, whereas the function returned
from the second call to make_offseter always adds 123 to the supplied argument.

 This is the safest form of local variable capture; everything is copied, so you can
return the lambda and call it outside the scope of the original function. It’s not the
only choice though; you can choose to capture everything by reference instead. In this
case it’s undefined behavior to call the lambda once the variables it references have
been destroyed by exiting the function or block scope to which they belong, just as it’s
undefined behavior to reference a variable that has already been destroyed in any
other circumstance.

 A lambda function that captures all the local variables by reference is introduced
using [&], as in the following example:

int main()
{
 int offset=42;
 std::function<int(int)> offset_a=[&](int j){return offset+j;};
 offset=123;
 std::function<int(int)> offset_b=[&](int j){return offset+j;};
 std::cout<<offset_a(12)<<”,”<<offset_b(12)<<std::endl;
 offset=99;
 std::cout<<offset_a(12)<<”,”<<offset_b(12)<<std::endl;
}

Whereas in the make_offseter function from the previous example we used the [=]
lambda introducer to capture a copy of the offset, the offset_a function in this exam-
ple uses the [&] lambda introducer to capture offset by reference c. It doesn’t mat-
ter that the initial value of offset is 42 B; the result of calling offset_a(12) will
always depend on the current value of offset. Even though the value of offset is

b
 c

d
 e

f
g

 h
Download from Wow! eBook <www.wowebook.com>

332 APPENDIX A Brief reference for some C++11 language features
then changed to 123 d before we produce the second (identical) lambda function
offset_b e, this second lambda again captures by reference, so the result depends
on the current value of offset.

 Now, when we print the first line of output f, offset is still 123, so the output is
135,135. However, at the second line of output h, offset has been changed to 99 g,
so this time the output is 111,111. Both offset_a and offset_b add the current value
of offset (99) to the supplied argument (12).

 Now, C++ being C++, you’re not stuck with these all-or-nothing options; you can
choose to capture some variables by copy and some by reference, and you can choose
to capture only those variables you have explicitly chosen just by tweaking the lambda
introducer. If you wish to copy all the used variables except for one or two, you can
use the [=] form of the lambda introducer but follow the equals sign with a list of
variables to capture by reference preceded with ampersands. The following example
will thus print 1239, because i is copied into the lambda, but j and k are captured
by reference:

int main()
{
 int i=1234,j=5678,k=9;
 std::function<int()> f=[=,&j,&k]{return i+j+k;};
 i=1;
 j=2;
 k=3;
 std::cout<<f()<<std::endl;
}

Alternatively, you can capture by reference by default but capture a specific subset of
variables by copying. In this case you use the [&] form of the lambda introducer but
follow the ampersand with a list of variables to capture by copy. The following exam-
ple thus prints 5688 because i is captured by reference, but j and k are copied:

int main()
{
 int i=1234,j=5678,k=9;
 std::function<int()> f=[&,j,k]{return i+j+k;};
 i=1;
 j=2;
 k=3;
 std::cout<<f()<<std::endl;
}

If you only want to capture the named variables, then you can omit the leading = or &
and just list the variables to be captured, prefixing them with an ampersand to capture
by reference rather than copy. The following code will thus print 5682 because i and k
are captured by reference, but j is copied:

int main()
{
 int i=1234,j=5678,k=9;
 std::function<int()> f=[&i,j,&k]{return i+j+k;};
Download from Wow! eBook <www.wowebook.com>

333Variadic templates
 i=1;
 j=2;
 k=3;
 std::cout<<f()<<std::endl;
}

This final variant allows you to ensure that only the intended variables are being
captured, because any reference to a local variable not in the capture list will cause
a compilation error. If you choose this option, you have to be careful when access-
ing class members if the function containing the lambda is a member function.
Class members can’t be captured directly; if you wish to access class members from
your lambda, you have to capture the this pointer by adding it to the capture list.
In the following example, the lambda captures this to allow access to the some_data
class member:

struct X
{
 int some_data;
 void foo(std::vector<int>& vec)
 {
 std::for_each(vec.begin(),vec.end(),
 [this](int& i){i+=some_data;});
 }
};

In the context of concurrency, lambdas are most useful as predicates for std::
condition_variable::wait() (section 4.1.1) and with std::packaged_task<> (sec-
tion 4.2.1) or thread pools for packaging small tasks. They can also be passed to the
std::thread constructor as a thread function (section 2.1.1) and as the function
when using parallel algorithms such as parallel_for_each() (from section 8.5.1).

A.6 Variadic templates
Variadic templates are templates with a variable number of parameters. Just as you’ve
always been able to have variadic functions such as printf that take a variable number
of parameters, you can now have variadic templates that have a variable number of
template parameters. Variadic templates are used throughout the C++ Thread Library.
For example, the std::thread constructor for starting a thread (section 2.1.1) is a
variadic function template, and std::packaged_task<> (section 4.2.2) is a variadic
class template. From a user’s point of view, it’s enough to know that the template takes
an unbounded number of parameters, but if you want to write such a template, or if
you’re just interested in how it all works, you need to know the details.

 Just as variadic functions are declared with an ellipsis (...) in the function
parameter list, variadic templates are declared with an ellipsis in the template param-
eter list:

template<typename ... ParameterPack>
class my_template
{};
Download from Wow! eBook <www.wowebook.com>

334 APPENDIX A Brief reference for some C++11 language features
You can use variadic templates for a partial specialization of a template too, even if the pri-
mary template isn’t variadic. For example, the primary template for std::packaged_
task<> (section 4.2.1) is just a simple template with a single template parameter:

template<typename FunctionType>
class packaged_task;

However, this primary template is never defined anywhere; it’s just a placeholder for
the partial specialization:

template<typename ReturnType,typename ... Args>
class packaged_task<ReturnType(Args...)>;

It’s this partial specialization that contains the real definition of the class; you saw in
chapter 4 that you can write std::packaged_task<int(std::string,double)> to
declare a task that takes a std::string and a double as parameters when you call it
and that provides the result through a std::future<int>.

 This declaration shows two additional features of variadic templates. The first fea-
ture is relatively simple: you can have normal template parameters (such as Return-
Type) as well as variadic ones (Args) in the same declaration. The second feature
demonstrated is the use of Args... in the template argument list of the specialization
to show that the types that make up Args when the template is instantiated are to be
listed here. Actually, because this is a partial specialization, it works as a pattern match;
the types that occur in this context in the actual instantiation are captured as Args.
The variadic parameter Args is called a parameter pack, and the use of Args... is called
a pack expansion.

 Just like with variadic functions, the variadic part may be an empty list or may have
many entries. For example, with std::packaged_task<my_class()> the ReturnType
parameter is my_class, and the Args parameter pack is empty, whereas with
std::packaged_task<void(int,double,my_class&,std::string*)> the ReturnType
is void, and Args is the list int, double, my_class&, std::string*.

A.6.1 Expanding the parameter pack

The power of variadic templates comes from what you can do with that pack expan-
sion: you aren’t limited to just expanding the list of types as is. First off, you can use a
pack expansion directly anywhere a list of types is required, such as in the argument
list for another template:

template<typename ... Params>
struct dummy
{
 std::tuple<Params...> data;
};

In this case the single member variable data is an instantiation of std::tuple<>
containing all the types specified, so dummy<int,double,char> has a member of
type std::tuple<int,double,char>. You can combine pack expansions with nor-
mal types:
Download from Wow! eBook <www.wowebook.com>

335Variadic templates
template<typename ... Params>
struct dummy2
{
 std::tuple<std::string,Params...> data;
};

This time, the tuple has an additional (first) member of type std::string. The nifty
part is that you can create a pattern with the pack expansion, which is then copied for
each element in the expansion. You do this by putting the ... that marks the pack
expansion at the end of the pattern. For example, rather than just creating a tuple of
the elements supplied in your parameter pack, you can create a tuple of pointers to
the elements or even a tuple of std::unique_ptr<>s to your elements:

template<typename ... Params>
struct dummy3
{
 std::tuple<Params* ...> pointers;
 std::tuple<std::unique_ptr<Params> ...> unique_pointers;
};

The type expression can be as complex as you like, provided the parameter pack
occurs in the type expression, and provided the expression is followed by the ... that
marks the expansion. When the parameter pack is expanded, for each entry in the
pack that type is substituted into the type expression to generate the corresponding
entry in the resulting list. Thus, if your parameter pack Params contains the types
int,int,char, then the expansion of std::tuple<std::pair<std::unique_ptr

<Params>,double> ... > is std::tuple<std::pair<std::unique_ptr<int>,double>,
std::pair<std::unique_ptr<int>,double>, std::pair<std::unique_ptr<char>,

double> >. If the pack expansion is used as a template argument list, that template
doesn’t have to have variadic parameters, but if it doesn’t, the size of the pack must
exactly match the number of template parameters required:

template<typename ... Types>
struct dummy4
{
 std::pair<Types...> data;
};
dummy4<int,char> a;
dummy4<int> b;
dummy4<int,int,int> c;

The second thing you can do with a pack expansion is use it to declare a list of func-
tion parameters:

template<typename ... Args>
void foo(Args ... args);

This creates a new parameter pack args, which is a list of the function parameters
rather than a list of types, which you can expand with ... as before. Now, you can use
a pattern with the pack expansion for declaring the function parameters, just as you
can use a pattern when you expand the pack elsewhere. For example, this is used by

OK, data is
std::pair<int,char>

b
Error, no
second type

c
Error, too many typesd
Download from Wow! eBook <www.wowebook.com>

336 APPENDIX A Brief reference for some C++11 language features
the std::thread constructor to take all the function arguments by rvalue reference
(see section A.1):

template<typename CallableType,typename ... Args>
thread::thread(CallableType&& func,Args&& ... args);

The function parameter pack can then be used to call another function, by specifying
the pack expansion in the argument list of the called function. Just as with the type
expansions, you can use a pattern for each expression in the resulting argument list.
For example, one common idiom with rvalue references is to use std::forward<> to
preserve the rvalue-ness of the supplied function arguments:

template<typename ... ArgTypes>
void bar(ArgTypes&& ... args)
{
 foo(std::forward<ArgTypes>(args)...);
}

Note that in this case, the pack expansion contains both the type pack ArgTypes and
the function parameter pack args, and the ellipsis follows the whole expression. If you
call bar like this,

int i;
bar(i,3.141,std::string("hello "));

then the expansion becomes

template<>
void bar<int&,double,std::string>(
 int& args_1,
 double&& args_2,
 std::string&& args_3)
{
 foo(std::forward<int&>(args_1),
 std::forward<double>(args_2),
 std::forward<std::string>(args_3));
}

which correctly passes the first argument on to foo as an lvalue reference, while pass-
ing the others as rvalue references.

 The final thing you can do with a parameter pack is find its size with the sizeof...
operator. This is quite simple: sizeof...(p) is the number of elements in the param-
eter pack p. It doesn’t matter whether this is a type parameter pack or a function argu-
ment parameter pack; the result is the same. This is probably the only case where you
can use a parameter pack and not follow it with an ellipsis; the ellipsis is already part
of the sizeof... operator. The following function returns the number of arguments
supplied to it:

template<typename ... Args>
unsigned count_args(Args ... args)
{
 return sizeof... (Args);
}

Download from Wow! eBook <www.wowebook.com>

337Automatically deducing the type of a variable
Just as with the normal sizeof operator, the result of sizeof... is a constant expres-
sion, so it can be used for specifying array bounds and so forth.

A.7 Automatically deducing the type of a variable
C++ is a statically typed language: the type of every variable is known at compile time.
Not only that, but as a programmer you have to actually specify the type of each vari-
able. In some cases this can lead to quite unwieldy names, for example:

std::map<std::string,std::unique_ptr<some_data>> m;
std::map<std::string,std::unique_ptr<some_data>>::iterator
 iter=m.find("my key");

Traditionally, the solution has been to use typedefs to reduce the length of a type
identifier and potentially eliminate problems due to inconsistent types. This still
works in C++11, but there’s now a new way: if a variable is initialized in its declaration
from a value of the same type, then you can specify the type as auto. In this case, the
compiler will automatically deduce the type of the variable to be the same as the ini-
tializer. Thus, the iterator example can be written as

auto iter=m.find("my key");

Now, you’re not restricted to just plain auto; you can embellish it to declare const
variables or pointer or reference variables too. Here are a few variable declarations
using auto and the corresponding type of the variable:

auto i=42; // int
auto& j=i; // int&
auto const k=i; // int const
auto* const p=&i; // int * const

The rules for deducing the type of the variable are based on the rules for the only
other place in the language where types are deduced: parameters of function tem-
plates. In a declaration of the form

some-type-expression-involving-auto var=some-expression;

the type of var is the same as the type deduced for the parameter of a function tem-
plate declared with the same type expression, except replacing auto with the name of
a template type parameter:

template<typename T>
void f(type-expression var);
f(some-expression);

This means that array types decay to pointers, and references are dropped unless the
type expression explicitly declares the variable as a reference, for example:

int some_array[45];
auto p=some_array; // int*
int& r=*p;
auto x=r; // int
auto& y=r; // int&
Download from Wow! eBook <www.wowebook.com>

338 APPENDIX A Brief reference for some C++11 language features
This can greatly simplify the declaration of variables, particularly where the full type
identifier is long or possibly not even known (for example, the type of the result of a
function call in a template).

A.8 Thread-local variables
Thread-local variables allow you to have a separate instance of a variable for each
thread in your program. You mark a variable as being thread-local by declaring it with
the thread_local keyword. Variables at namespace scope, static data members of
classes, and local variables can be declared thread-local, and are said to have thread
storage duration:

thread_local int x;

class X
{
 static thread_local std::string s;
};
static thread_local std::string X::s;

void foo()
{
 thread_local std::vector<int> v;
}

Thread-local variables at namespace scope and thread-local static class data members
are constructed before the first use of a thread-local variable from the same transla-
tion unit, but it isn’t specified how much before. Some implementations may construct
thread-local variables when the thread is started; others may construct them immedi-
ately before their first use on each thread, and others may construct them at other
times, or in some combination depending on their usage context. Indeed, if none of
the thread-local variables from a given translation unit is used, there’s no guarantee
that they will be constructed at all. This allows for the dynamic loading of modules
containing thread-local variables—these variables can be constructed on a given
thread the first time that thread references a thread-local variable from the dynami-
cally-loaded module.

 Thread-local variables declared inside a function are initialized the first time the
flow of control passes through their declaration on a given thread. If the function is
not called by a given thread, any thread-local variables declared in that function are
not constructed. This is just the same as the behaviour for local static variables, except
it applies separately to each thread.

 Thread-local variables share other properties with static variables—they’re zero-
initialized prior to any further initialization (such as dynamic initialization), and if the
construction of a thread-local variable throws an exception, std::terminate() is
called to abort the application.

 The destructors for all thread-local variables that have been constructed on a given
thread are run when the thread function returns, in the reverse order of construction.
Since the order of initialization is unspecified, it’s important to ensure that there are

A thread-local variable
at namespace scope

A thread-local static
class data member

The definition of
X::s is required

A thread-local
local variable
Download from Wow! eBook <www.wowebook.com>

339Summary
no interdependencies between the destructors of such variables. If the destructor of
a thread-local variable exits with an exception, std::terminate() is called, just as
for construction.

 Thread-local variables are also destroyed for a thread if that thread calls std::exit()
or returns from main() (which is equivalent to calling std::exit() with the return
value of main()). If any other threads are still running when the application exits, the
destructors of thread-local variables on those threads are not called.

 Though thread-local variables have a different address on each thread, you can
still obtain a normal pointer to such a variable. The pointer then references the object
in the thread that took the address, and can be used to allow other threads to access
that object. It’s undefined behaviour to access an object after it’s been destroyed (as
always), so if you pass a pointer to a thread-local variable to another thread, you need
to ensure it’s not dereferenced once the owning thread has finished.

A.9 Summary
This appendix has only scratched the surface of the new language features introduced
with the C++11 Standard, because we’ve only looked at those features that actively
affect the usage of the Thread Library. Other new language features include static
assertions, strongly typed enumerations, delegating constructors, Unicode support,
template aliases, and a new uniform initialization sequence, along with a host of
smaller changes. Describing all the new features in detail is outside the scope of this
book; it would probably require a book in itself. The best overview of the entire set of
changes to the standard at the time of writing is probably Bjarne Stroustrup’s C++11
FAQ,1 though popular C++ reference books will be revised to cover it in due course.

 Hopefully the brief introduction to the new features covered in this appendix has
provided enough depth to show how they relate to the Thread Library and to enable
you to write and understand multithreaded code that uses these new features. Although
this appendix should provide enough depth for simple uses of the features covered, this
is still only a brief introduction and not a complete reference or tutorial for the use of
these features. If you intend to make extensive use of them, I recommend acquiring
such a reference or tutorial in order to gain the most benefit from them.

1 http://www.research.att.com/~bs/C++0xFAQ.html
Download from Wow! eBook <www.wowebook.com>

http://www.research.att.com/~bs/C++0xFAQ.html

appendix B
Brief comparison

of concurrency libraries

Concurrency and multithreading support in programming languages and libraries
aren’t something new, even though standardized support in C++ is new. For exam-
ple, Java has had multithreading support since it was first released, platforms that
conform to the POSIX standard provide a C interface for multithreading, and
Erlang provides support for message-passing concurrency. There are even C++ class
libraries such as Boost that wrap the underlying programming interface for multi-
threading used on any given platform (whether it’s the POSIX C interface or some-
thing else) to provide a portable interface across the supported platforms.

 For those who are already experienced in writing multithreaded applications
and would like to use that experience to write code using the new C++ multithread-
ing facilities, this appendix provides a comparison between the facilities available in
Java, POSIX C, C++ with the Boost Thread Library, and C++11, along with cross-
references to the relevant chapters of this book.
340

Download from Wow! eBook <www.wowebook.com>

341Brief comparison of concurrency libraries
Fe
at

ur
e

Ja
va

P
O

S
IX

 C
B

oo
st

 t
hr

ea
ds

C
+
+
1
1

C
ha

pt
er

re

fe
re

nc
e

S
ta

rt
in

g
th

re
ad

s
j
a
v
a
.
l
a
n
g
.
t
h
r
e
a
d

cl

as
s

p
t
h
r
e
a
d
_
t

 t
yp

e
an

d
as

so
ci

at
ed

 A
PI

 f
un

ct
io

ns
:

p
t
h
r
e
a
d
_
c
r
e
a
t
e
(
)

,
p
t
h
r
e
a
d
_
d
e
t
a
c
h
(
)

,
an

d
p
t
h
r
e
a
d
_
j
o
i
n
(
)

b
o
o
s
t
:
:
t
h
r
e
a
d

 c
la

ss
 a

nd

m
em

be
r

fu
nc

tio
ns

s
t
d
:
:
t
h
r
e
a
d

 c
la

ss
 a

nd

m
em

be
r

fu
nc

tio
ns

C
ha

pt
er

 2

M
ut

ua
l

ex
cl

us
io

n
s
y
n
c
h
r
o
n
i
z
e
d

bl

oc
ks

p
t
h
r
e
a
d
_
m
u
t
e
x
_
t

 t
yp

e
an

d
as

so
ci

at
ed

 A
PI

 f
un

ct
io

ns
:

p
t
h
r
e
a
d
_
m
u
t
e
x
_
l
o
c
k
(
)

,
p
t
h
r
e
a
d
_
m
u
t
e
x
_
u
n
l
o
c
k
(
)

,
et

c.

b
o
o
s
t
:
:
m
u
t
e
x

 c
la

ss
 a

nd

m
em

be
r

fu
nc

tio
ns

,
b
o
o
s
t
:
:
l
o
c
k
_
g
u
a
r
d
<
>

an

d
b
o
o
s
t
:
:
u
n
i
q
u
e
_
l
o
c
k
<
>

te

m
pl

at
es

s
t
d
:
:
m
u
t
e
x

 c
la

ss
 a

nd

m
em

be
r

fu
nc

tio
ns

,
s
t
d
:
:
l
o
c
k
_
g
u
a
r
d
<
>

 a
nd

s
t
d
:
:
u
n
i
q
u
e
_
l
o
c
k
<
>

te

m
pl

at
es

C
ha

pt
er

 3

M
on

ito
rs

/
w

ai
ts

 f
or

 a

pr
ed

ic
at

e

w
a
i
t
(
)

 a
nd

 n
o
t
i
f
y
(
)

m

et
ho

ds
 o

f
th

e
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t

 c
la

ss
,

us
ed

 in
si

de
 s
y
n
c
h
r
o
n
i
z
e
d

bl

oc
ks

p
t
h
r
e
a
d
_
c
o
n
d
_
t

 t
yp

e
an

d
as

so
ci

at
ed

 A
PI

 f
un

ct
io

ns
:

p
t
h
r
e
a
d
_
c
o
n
d
_
w
a
i
t
(
)

,
p
t
h
r
e
a
d
_
c
o
n
d
_
t
i
m
e
d
_

w
a
i
t
(
)

,
et

c.

b
o
o
s
t
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e

 a
nd

b
o
o
s
t
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e
_
a
n
y

 c
la

ss
es

 a
nd

m

em
be

r
fu

nc
tio

ns

s
t
d
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e

 a
nd

s
t
d
:
:
c
o
n
d
i
t
i
o
n
_

v
a
r
i
a
b
l
e
_
a
n
y

 c
la

ss
es

 a
nd

m

em
be

r
fu

nc
tio

ns

C
ha

pt
er

 4

At
om

ic
 o

pe
ra

-
tio

ns
 a

nd

co
nc

ur
re

nc
y-

aw
ar

e
m

em
-

or
y

m
od

el

v
o
l
a
t
i
l
e

 v
ar

ia
bl

es
,

th
e

ty
pe

s
in

 t
he

j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

.
a
t
o
m
i
c

 p
ac

ka
ge

N
/A

N
/A

s
t
d
:
:
a
t
o
m
i
c
_
x
x
x

 t
yp

es
,

s
t
d
:
:
a
t
o
m
i
c
<
>

 c
la

ss

te
m

pl
at

e,

s
t
d
:
:
a
t
o
m
i
c
_
t
h
r
e
a
d
_

f
e
n
c
e
(
)

 f
un

ct
io

n

C
ha

pt
er

 5

Th
re

ad
-s

af
e

co
nt

ai
ne

rs
Th

e
co

nt
ai

ne
rs

 in
 t

he

j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

pa

ck
ag

e

N
/A

N
/A

N
/A

C
ha

pt
er

s
6

an
d

7

Fu
tu

re
s

j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

.
f
u
t
u
r
e

 in
te

rf
ac

e
an

d
as

so
ci

at
ed

 c
la

ss
es

N
/A

b
o
o
s
t
:
:
u
n
i
q
u
e
_
f
u
t
u
r
e
<
>

an

d
b
o
o
s
t
:
:
s
h
a
r
e
d
_
f
u
t
u
r
e
<
>

cl

as
s

te
m

pl
at

es

s
t
d
:
:
f
u
t
u
r
e
<
>

,
s
t
d
:
:
s
h
a
r
e
d
_
f
u
t
u
r
e
<
>

an

d
s
t
d
:
:
a
t
o
m
i
c
_
f
u
t
u
r
e
<
>

cl

as
s

te
m

pl
at

es

C
ha

pt
er

 4

Th
re

ad

po
ol

s
j
a
v
a
.
u
t
i
l
.
c
o
n
c
u
r
r
e
n
t

.
T
h
r
e
a
d
P
o
o
l
E
x
e
c
u
t
o
r

cl

as
s

N
/A

N
/A

N
/A

C
ha

pt
er

 9

Th
re

ad

in
te

rr
up

tio
n

i
n
t
e
r
r
u
p
t
(
)

 m
et

ho
d

of

j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d

p
t
h
r
e
a
d
_
c
a
n
c
e
l
(
)

i
n
t
e
r
r
u
p
t
(
)

 m
em

be
r

fu
nc

tio
n

of

b
o
o
s
t
:
:
t
h
r
e
a
d

 c
la

ss

N
/A

C
ha

pt
er

 9
Download from Wow! eBook <www.wowebook.com>

appendix C
A message-passing

framework and
complete ATM example

Back in chapter 4, I presented an example of sending messages between threads
using a message-passing framework, using a simple implementation of the code in
an ATM as an example. What follows is the complete code for this example, includ-
ing the message-passing framework.

 Listing C.1 shows the message queue. It stores a list of messages as pointers to a
base class; the specific message type is handled with a template class derived from
that base class. Pushing an entry constructs an appropriate instance of the wrapper
class and stores a pointer to it; popping an entry returns that pointer. Because the
message_base class doesn’t have any member functions, the popping thread will
need to cast the pointer to a suitable wrapped_message<T> pointer before it can
access the stored message.

#include <mutex>
#include <condition_variable>
#include <queue>
#include <memory>

namespace messaging
{
 struct message_base
 {
 virtual ~message_base()
 {}
 };

Listing C.1 A simple message queue

Base class of our
queue entries
342

Download from Wow! eBook <www.wowebook.com>

343A message-passing framework and complete ATM example
 template<typename Msg>
 struct wrapped_message:
 message_base
 {
 Msg contents;

 explicit wrapped_message(Msg const& contents_):
 contents(contents_)
 {}
 };

 class queue
 {
 std::mutex m;
 std::condition_variable c;
 std::queue<std::shared_ptr<message_base> > q;
 public:
 template<typename T>
 void push(T const& msg)
 {
 std::lock_guard<std::mutex> lk(m);
 q.push(std::make_shared<wrapped_message<T> >(msg));
 c.notify_all();
 }

 std::shared_ptr<message_base> wait_and_pop()
 {
 std::unique_lock<std::mutex> lk(m);
 c.wait(lk,[&]{return !q.empty();});
 auto res=q.front();
 q.pop();
 return res;
 }
 };
}

Sending messages is handled through an instance of the sender class shown in list-
ing C.2. This is just a thin wrapper around a message queue that only allows messages
to be pushed. Copying instances of sender just copies the pointer to the queue rather
than the queue itself.

namespace messaging
{
 class sender
 {
 queue*q;
 public:
 sender():
 q(nullptr)
 {}

 explicit sender(queue*q_):
 q(q_)
 {}

Listing C.2 The sender class

Each message type
has a specialization

Our message
queue

Actual queue
stores pointers to
message_base

Wrap
posted
message
and store
pointer

Block until queue
isn’t empty

sender is wrapper
around queue pointer

Default-constructed
sender has no queue

Allow construction
from pointer to queue
Download from Wow! eBook <www.wowebook.com>

344 APPENDIX C A message-passing framework and complete ATM example
 template<typename Message>
 void send(Message const& msg)
 {
 if(q)
 {
 q->push(msg);
 }
 }
 };
}

Receiving messages is a bit more complicated. Not only do you have to wait for a mes-
sage from the queue, but you also have to check to see if the type matches any of the
message types being waited on and call the appropriate handler function. This all
starts with the receiver class shown in the following listing.

namespace messaging
{
 class receiver
 {
 queue q;
 public:
 operator sender()
 {
 return sender(&q);
 }

 dispatcher wait()
 {
 return dispatcher(&q);
 }
 };
}

Whereas a sender just references a message queue, a receiver owns it. You can obtain
a sender that references the queue by using the implicit conversion. The complexity
of doing the message dispatch starts with a call to wait(). This creates a dispatcher
object that references the queue from the receiver. The dispatcher class is shown in
the next listing; as you can see, the work is done in the destructor. In this case, that work
consists of waiting for a message and dispatching it.

namespace messaging
{
 class close_queue
 {};

 class dispatcher
 {

Listing C.3 The receiver class

Listing C.4 The dispatcher class

Sending pushes
message on the queue

A receiver owns
the queue Allow implicit conversion

to a sender that
references the queue

Waiting for a queue
creates a dispatcher

The message for
closing the queue
Download from Wow! eBook <www.wowebook.com>

345A message-passing framework and complete ATM example
 queue* q;
 bool chained;

 dispatcher(dispatcher const&)=delete;
 dispatcher& operator=(dispatcher const&)=delete;

 template<
 typename Dispatcher,
 typename Msg,
 typename Func>
 friend class TemplateDispatcher;

 void wait_and_dispatch()
 {
 for(;;)
 {
 auto msg=q->wait_and_pop();
 dispatch(msg);
 }
 }

 bool dispatch(
 std::shared_ptr<message_base> const& msg)
 {
 if(dynamic_cast<wrapped_message<close_queue>*>(msg.get()))
 {
 throw close_queue();
 }
 return false;
 }
 public:
 dispatcher(dispatcher&& other):
 q(other.q),chained(other.chained)
 {
 other.chained=true;
 }

 explicit dispatcher(queue* q_):
 q(q_),chained(false)
 {}

 template<typename Message,typename Func>
 TemplateDispatcher<dispatcher,Message,Func>
 handle(Func&& f)
 {
 return TemplateDispatcher<dispatcher,Message,Func>(
 q,this,std::forward<Func>(f));
 }

 ~dispatcher() noexcept(false)
 {
 if(!chained)
 {
 wait_and_dispatch();
 }
 }
 };
}

dispatcher instances
cannot be copied

Allow TemplateDispatcher
instances to access the internals

Loop, waiting for and
dispatching messages

b

dispatch() checks for a
close_queue message,
and throws

c

dispatcher instances
can be moved

The source mustn’t
wait for messages

Handle a specific type
of message with a
TemplateDispatcher

d

The destructor might
throw exceptionse
Download from Wow! eBook <www.wowebook.com>

346 APPENDIX C A message-passing framework and complete ATM example
The dispatcher instance that’s returned from wait() will be destroyed immediately,
because it’s a temporary, and as mentioned, the destructor does the work. The
destructor calls wait_and_dispatch(), which is a loop B that waits for a message and
passes it to dispatch(). dispatch() itself c is rather simple; it checks whether the
message is a close_queue message and throws an exception if it is; otherwise, it
returns false to indicate that the message was unhandled. This close_queue excep-
tion is why the destructor is marked noexcept(false); without this annotation the
default exception specification for the destructor would be noexcept(true) e, indi-
cating that no exceptions can be thrown, and the close_queue exception would thus
terminate the program.

 It’s not often that you’re going to call wait() on its own, though; most of the time
you’ll be wanting to handle a message. This is where the handle() member function d
comes in. It’s a template, and the message type isn’t deducible, so you must specify
which message type to handle and pass in a function (or callable object) to handle it.
handle() itself passes the queue, the current dispatcher object, and the handler
function to a new instance of the TemplateDispatcher class template, to handle mes-
sages of the specified type. This is shown in listing C.5. This is why you test the
chained value in the destructor before waiting for messages; not only does it prevent
moved-from objects waiting for messages, but it also allows you to transfer the respon-
sibility of waiting to your new TemplateDispatcher instance.

namespace messaging
{
 template<typename PreviousDispatcher,typename Msg,typename Func>
 class TemplateDispatcher
 {
 queue* q;
 PreviousDispatcher* prev;
 Func f;
 bool chained;

 TemplateDispatcher(TemplateDispatcher const&)=delete;
 TemplateDispatcher& operator=(TemplateDispatcher const&)=delete;

 template<typename Dispatcher,typename OtherMsg,typename OtherFunc>
 friend class TemplateDispatcher;

 void wait_and_dispatch()
 {
 for(;;)
 {
 auto msg=q->wait_and_pop();
 if(dispatch(msg))
 break;
 }
 }

 bool dispatch(std::shared_ptr<message_base> const& msg)
 {

Listing C.5 The TemplateDispatcher class template

TemplateDispatcher instantiations
are friends of each other

If we handle the message,
break out of the loop

b

Download from Wow! eBook <www.wowebook.com>

347A message-passing framework and complete ATM example
 if(wrapped_message<Msg>* wrapper=
 dynamic_cast<wrapped_message<Msg>*>(msg.get()))
 {
 f(wrapper->contents);
 return true;
 }
 else
 {
 return prev->dispatch(msg);
 }
 }
 public:
 TemplateDispatcher(TemplateDispatcher&& other):
 q(other.q),prev(other.prev),f(std::move(other.f)),
 chained(other.chained)
 {
 other.chained=true;
 }
 TemplateDispatcher(queue* q_,PreviousDispatcher* prev_,Func&& f_):
 q(q_),prev(prev_),f(std::forward<Func>(f_)),chained(false)
 {
 prev_->chained=true;
 }

 template<typename OtherMsg,typename OtherFunc>
 TemplateDispatcher<TemplateDispatcher,OtherMsg,OtherFunc>
 handle(OtherFunc&& of)
 {
 return TemplateDispatcher<
 TemplateDispatcher,OtherMsg,OtherFunc>(
 q,this,std::forward<OtherFunc>(of));
 }

 ~TemplateDispatcher() noexcept(false)
 {
 if(!chained)
 {
 wait_and_dispatch();
 }
 }
 };
}

The TemplateDispatcher<> class template is modeled on the dispatcher class and is
almost identical. In particular, the destructor still calls wait_and_dispatch() to wait
for a message.

 Since you don’t throw exceptions if you handle the message, you now need to
check whether you did handle the message in your message loop B. Your message
processing stops when you’ve successfully handled a message, so that you can wait for
a different set of messages next time. If you do get a match for the specified message
type, the supplied function is called c rather than throwing an exception (although
the handler function may throw an exception itself). If you don’t get a match, you
chain to the previous dispatcher d. In the first instance, this will be a dispatcher, but

Check the message type,
and call the function c

Chain to the
previous dispatcher

d

Additional
handlers can
be chainede

The destructor is
noexcept(false)
againf
Download from Wow! eBook <www.wowebook.com>

348 APPENDIX C A message-passing framework and complete ATM example
if you chain calls to handle() e to allow multiple types of messages to be handled,
this may be a prior instantiation of TemplateDispatcher<>, which will in turn chain to
the previous handler if the message doesn’t match. Because any of the handlers might
throw an exception (including the dispatcher’s default handler for close_queue
messages), the destructor must once again be declared noexcept(false) f.

 This simple framework allows you to push any type of message on the queue and
then selectively match against messages you can handle on the receiving end. It also
allows you to pass around a reference to the queue for pushing messages on, while
keeping the receiving end private.

 To complete the example from chapter 4, the messages are given in listing C.6, the
various state machines in listings C.7, C.8, and C.9, and the driving code in listing C.10.

struct withdraw
{
 std::string account;
 unsigned amount;
 mutable messaging::sender atm_queue;

 withdraw(std::string const& account_,
 unsigned amount_,
 messaging::sender atm_queue_):
 account(account_),amount(amount_),
 atm_queue(atm_queue_)
 {}
};

struct withdraw_ok
{};

struct withdraw_denied
{};

struct cancel_withdrawal
{
 std::string account;
 unsigned amount;

 cancel_withdrawal(std::string const& account_,
 unsigned amount_):
 account(account_),amount(amount_)
 {}
};

struct withdrawal_processed
{
 std::string account;
 unsigned amount;

 withdrawal_processed(std::string const& account_,
 unsigned amount_):
 account(account_),amount(amount_)
 {}
};

Listing C.6 ATM messages
Download from Wow! eBook <www.wowebook.com>

349A message-passing framework and complete ATM example
struct card_inserted
{
 std::string account;

 explicit card_inserted(std::string const& account_):
 account(account_)
 {}

};

struct digit_pressed
{
 char digit;

 explicit digit_pressed(char digit_):
 digit(digit_)
 {}

};

struct clear_last_pressed
{};

struct eject_card
{};

struct withdraw_pressed
{
 unsigned amount;

 explicit withdraw_pressed(unsigned amount_):
 amount(amount_)
 {}

};

struct cancel_pressed
{};

struct issue_money
{
 unsigned amount;
 issue_money(unsigned amount_):
 amount(amount_)
 {}
};

struct verify_pin
{
 std::string account;
 std::string pin;
 mutable messaging::sender atm_queue;

 verify_pin(std::string const& account_,std::string const& pin_,
 messaging::sender atm_queue_):
 account(account_),pin(pin_),atm_queue(atm_queue_)
 {}
};

struct pin_verified
{};
Download from Wow! eBook <www.wowebook.com>

350 APPENDIX C A message-passing framework and complete ATM example
struct pin_incorrect
{};

struct display_enter_pin
{};

struct display_enter_card
{};

struct display_insufficient_funds
{};

struct display_withdrawal_cancelled
{};

struct display_pin_incorrect_message
{};

struct display_withdrawal_options
{};

struct get_balance
{
 std::string account;
 mutable messaging::sender atm_queue;

 get_balance(std::string const& account_,messaging::sender atm_queue_):
 account(account_),atm_queue(atm_queue_)
 {}
};

struct balance
{
 unsigned amount;

 explicit balance(unsigned amount_):
 amount(amount_)
 {}
};

struct display_balance
{
 unsigned amount;

 explicit display_balance(unsigned amount_):
 amount(amount_)
 {}
};

struct balance_pressed
{};

class atm
{
 messaging::receiver incoming;
 messaging::sender bank;
 messaging::sender interface_hardware;
 void (atm::*state)();

Listing C.7 The ATM state machine
Download from Wow! eBook <www.wowebook.com>

351A message-passing framework and complete ATM example
 std::string account;
 unsigned withdrawal_amount;
 std::string pin;

 void process_withdrawal()
 {
 incoming.wait()
 .handle<withdraw_ok>(
 [&](withdraw_ok const& msg)
 {
 interface_hardware.send(
 issue_money(withdrawal_amount));
 bank.send(
 withdrawal_processed(account,withdrawal_amount));
 state=&atm::done_processing;
 }
)
 .handle<withdraw_denied>(
 [&](withdraw_denied const& msg)
 {
 interface_hardware.send(display_insufficient_funds());
 state=&atm::done_processing;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 bank.send(
 cancel_withdrawal(account,withdrawal_amount));
 interface_hardware.send(
 display_withdrawal_cancelled());
 state=&atm::done_processing;
 }
);
 }

 void process_balance()
 {
 incoming.wait()
 .handle<balance>(
 [&](balance const& msg)
 {
 interface_hardware.send(display_balance(msg.amount));
 state=&atm::wait_for_action;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }

 void wait_for_action()
 {
Download from Wow! eBook <www.wowebook.com>

352 APPENDIX C A message-passing framework and complete ATM example
 interface_hardware.send(display_withdrawal_options());
 incoming.wait()
 .handle<withdraw_pressed>(
 [&](withdraw_pressed const& msg)
 {
 withdrawal_amount=msg.amount;
 bank.send(withdraw(account,msg.amount,incoming));
 state=&atm::process_withdrawal;
 }
)
 .handle<balance_pressed>(
 [&](balance_pressed const& msg)
 {
 bank.send(get_balance(account,incoming));
 state=&atm::process_balance;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }

 void verifying_pin()
 {
 incoming.wait()
 .handle<pin_verified>(
 [&](pin_verified const& msg)
 {
 state=&atm::wait_for_action;
 }
)
 .handle<pin_incorrect>(
 [&](pin_incorrect const& msg)
 {
 interface_hardware.send(
 display_pin_incorrect_message());
 state=&atm::done_processing;
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }

 void getting_pin()
 {
 incoming.wait()
 .handle<digit_pressed>(
 [&](digit_pressed const& msg)
Download from Wow! eBook <www.wowebook.com>

353A message-passing framework and complete ATM example
 {
 unsigned const pin_length=4;
 pin+=msg.digit;
 if(pin.length()==pin_length)
 {
 bank.send(verify_pin(account,pin,incoming));
 state=&atm::verifying_pin;
 }
 }
)
 .handle<clear_last_pressed>(
 [&](clear_last_pressed const& msg)
 {
 if(!pin.empty())
 {
 pin.pop_back();
 }
 }
)
 .handle<cancel_pressed>(
 [&](cancel_pressed const& msg)
 {
 state=&atm::done_processing;
 }
);
 }

 void waiting_for_card()
 {
 interface_hardware.send(display_enter_card());
 incoming.wait()
 .handle<card_inserted>(
 [&](card_inserted const& msg)
 {
 account=msg.account;
 pin="";
 interface_hardware.send(display_enter_pin());
 state=&atm::getting_pin;
 }
);
 }

 void done_processing()
 {
 interface_hardware.send(eject_card());
 state=&atm::waiting_for_card;
 }

 atm(atm const&)=delete;
 atm& operator=(atm const&)=delete;

public:
 atm(messaging::sender bank_,
 messaging::sender interface_hardware_):
 bank(bank_),interface_hardware(interface_hardware_)
 {}
Download from Wow! eBook <www.wowebook.com>

354 APPENDIX C A message-passing framework and complete ATM example
 void done()
 {
 get_sender().send(messaging::close_queue());
 }

 void run()
 {
 state=&atm::waiting_for_card;
 try
 {
 for(;;)
 {
 (this->*state)();
 }
 }
 catch(messaging::close_queue const&)
 {
 }
 }

 messaging::sender get_sender()
 {
 return incoming;
 }

};

class bank_machine
{
 messaging::receiver incoming;
 unsigned balance;
public:
 bank_machine():
 balance(199)
 {}

 void done()
 {
 get_sender().send(messaging::close_queue());
 }

 void run()
 {
 try
 {
 for(;;)
 {
 incoming.wait()
 .handle<verify_pin>(
 [&](verify_pin const& msg)
 {
 if(msg.pin=="1937")
 {
 msg.atm_queue.send(pin_verified());
 }

Listing C.8 The bank state machine
Download from Wow! eBook <www.wowebook.com>

355A message-passing framework and complete ATM example
 else
 {
 msg.atm_queue.send(pin_incorrect());
 }
 }
)
 .handle<withdraw>(
 [&](withdraw const& msg)
 {
 if(balance>=msg.amount)
 {
 msg.atm_queue.send(withdraw_ok());
 balance-=msg.amount;
 }
 else
 {
 msg.atm_queue.send(withdraw_denied());
 }
 }
)
 .handle<get_balance>(
 [&](get_balance const& msg)
 {
 msg.atm_queue.send(::balance(balance));
 }
)
 .handle<withdrawal_processed>(
 [&](withdrawal_processed const& msg)
 {
 }
)
 .handle<cancel_withdrawal>(
 [&](cancel_withdrawal const& msg)
 {
 }
);
 }
 }
 catch(messaging::close_queue const&)
 {
 }
 }

 messaging::sender get_sender()
 {
 return incoming;
 }
};

class interface_machine
{
 messaging::receiver incoming;
public:

Listing C.9 The user-interface state machine
Download from Wow! eBook <www.wowebook.com>

356 APPENDIX C A message-passing framework and complete ATM example
 void done()
 {
 get_sender().send(messaging::close_queue());
 }
 void run()
 {
 try
 {
 for(;;)
 {
 incoming.wait()
 .handle<issue_money>(
 [&](issue_money const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Issuing "
 <<msg.amount<<std::endl;
 }
 }
)
 .handle<display_insufficient_funds>(
 [&](display_insufficient_funds const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Insufficient funds"<<std::endl;
 }
 }
)
 .handle<display_enter_pin>(
 [&](display_enter_pin const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout
 <<"Please enter your PIN (0-9)"
 <<std::endl;
 }
 }
)
 .handle<display_enter_card>(
 [&](display_enter_card const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Please enter your card (I)"
 <<std::endl;
 }
 }
)
 .handle<display_balance>(
 [&](display_balance const& msg)
 {
Download from Wow! eBook <www.wowebook.com>

357A message-passing framework and complete ATM example
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout
 <<"The balance of your account is "
 <<msg.amount<<std::endl;
 }
 }
)
 .handle<display_withdrawal_options>(
 [&](display_withdrawal_options const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Withdraw 50? (w)"<<std::endl;
 std::cout<<"Display Balance? (b)"
 <<std::endl;
 std::cout<<"Cancel? (c)"<<std::endl;
 }
 }
)
 .handle<display_withdrawal_cancelled>(
 [&](display_withdrawal_cancelled const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Withdrawal cancelled"
 <<std::endl;
 }
 }
)
 .handle<display_pin_incorrect_message>(
 [&](display_pin_incorrect_message const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"PIN incorrect"<<std::endl;
 }
 }
)
 .handle<eject_card>(
 [&](eject_card const& msg)
 {
 {
 std::lock_guard<std::mutex> lk(iom);
 std::cout<<"Ejecting card"<<std::endl;
 }
 }
);
 }
 }
 catch(messaging::close_queue&)
 {
 }
 }
Download from Wow! eBook <www.wowebook.com>

358 APPENDIX C A message-passing framework and complete ATM example
 messaging::sender get_sender()
 {
 return incoming;
 }
};

int main()
{
 bank_machine bank;
 interface_machine interface_hardware;

 atm machine(bank.get_sender(),interface_hardware.get_sender());

 std::thread bank_thread(&bank_machine::run,&bank);
 std::thread if_thread(&interface_machine::run,&interface_hardware);
 std::thread atm_thread(&atm::run,&machine);

 messaging::sender atmqueue(machine.get_sender());

 bool quit_pressed=false;

 while(!quit_pressed)
 {
 char c=getchar();
 switch(c)
 {
 case '0':
 case '1':
 case '2':
 case '3':
 case '4':
 case '5':
 case '6':
 case '7':
 case '8':
 case '9':
 atmqueue.send(digit_pressed(c));
 break;
 case 'b':
 atmqueue.send(balance_pressed());
 break;
 case 'w':
 atmqueue.send(withdraw_pressed(50));
 break;
 case 'c':
 atmqueue.send(cancel_pressed());
 break;
 case 'q':
 quit_pressed=true;
 break;
 case 'i':
 atmqueue.send(card_inserted("acc1234"));
 break;
 }
 }

Listing C.10 The driving code
Download from Wow! eBook <www.wowebook.com>

359A message-passing framework and complete ATM example
 bank.done();
 machine.done();
 interface_hardware.done();
 atm_thread.join();
 bank_thread.join();
 if_thread.join();
}

Download from Wow! eBook <www.wowebook.com>

appendix D
C++ Thread

Library reference

D.1 The <chrono> header
The <chrono> header provides classes for representing points in time and durations
and clock classes, which act as a source of time_points. Each clock has an
is_steady static data member, which indicates whether it’s a steady clock that
advances at a uniform rate (and can’t be adjusted). The std::chrono::steady_
clock class is the only clock guaranteed to be steady.

Header contents
namespace std
{
 namespace chrono
 {
 template<typename Rep,typename Period = ratio<1>>
 class duration;
 template<
 typename Clock,
 typename Duration = typename Clock::duration>
 class time_point;
 class system_clock;
 class steady_clock;
 typedef unspecified-clock-type high_resolution_clock;
 }
}

D.1.1 std::chrono::duration class template

The std::chrono::duration class template provides a facility for representing
durations. The template parameters Rep and Period are the data type to store the
duration value and an instantiation of the std::ratio class template indicating
360

Download from Wow! eBook <www.wowebook.com>

361The <chrono> header
the length of time (as a fraction of a second) between successive “ticks,” respectively.
Thus std::chrono::duration<int, std::milli> is a count of milliseconds stored in
a value of type int, whereas std::chrono::duration<short, std::ratio<1,50>> is a
count of fiftieths of a second stored in a value of type short, and std::chrono::
duration <long long, std::ratio<60,1>> is a count of minutes stored in a value of
type long long.

Class definition
template <class Rep, class Period=ratio<1> >
class duration
{
public:
 typedef Rep rep;
 typedef Period period;

 constexpr duration() = default;
 ~duration() = default;

 duration(const duration&) = default;
 duration& operator=(const duration&) = default;

 template <class Rep2>
 constexpr explicit duration(const Rep2& r);

 template <class Rep2, class Period2>
 constexpr duration(const duration<Rep2, Period2>& d);

 constexpr rep count() const;
 constexpr duration operator+() const;
 constexpr duration operator-() const;
 duration& operator++();
 duration operator++(int);
 duration& operator--();
 duration operator--(int);
 duration& operator+=(const duration& d);
 duration& operator-=(const duration& d);
 duration& operator*=(const rep& rhs);
 duration& operator/=(const rep& rhs);
 duration& operator%=(const rep& rhs);
 duration& operator%=(const duration& rhs);
 static constexpr duration zero();
 static constexpr duration min();
 static constexpr duration max();
};

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator!=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<(
Download from Wow! eBook <www.wowebook.com>

362 APPENDIX D C++ Thread Library reference
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

template <class ToDuration, class Rep, class Period>
constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

Requirements
Rep must be a built-in numeric type, or a number-like user-defined type. Period must
be an instantiation of std::ratio<>.

STD::CHRONO::DURATION::REP TYPEDEF
This is a typedef for the type used to hold the number of ticks in a duration value.

Declaration
typedef Rep rep;

rep is the type of value used to hold the internal representation of the duration object.

STD::CHRONO::DURATION::PERIOD TYPEDEF
This typedef is for an instantiation of the std::ratio class template that specifies the
fraction of a second represented by the duration count. For example, if period
is std::ratio<1,50>, a duration value with a count() of N represents N fiftieths of
a second.

Declaration
typedef Period period;

STD::CHRONO::DURATION DEFAULT CONSTRUCTOR

Constructs a std::chrono::duration instance with a default value.

Declaration
constexpr duration() = default;

Effects
The internal value of the duration (of type rep) is default initialized.

STD::CHRONO::DURATION CONVERTING CONSTRUCTOR FROM A COUNT VALUE

Constructs a std::chrono::duration instance with a specified count.

Declaration
template <class Rep2>
constexpr explicit duration(const Rep2& r);
Download from Wow! eBook <www.wowebook.com>

363The <chrono> header
Effects
The internal value of the duration object is initialized with static_cast<rep>(r).

Requirements
This constructor only participates in overload resolution if Rep2 is implicitly convert-
ible to Rep and either Rep is a floating point type or Rep2 is not a floating point type.

Postcondition
this->count()==static_cast<rep>(r)

STD::CHRONO::DURATION CONVERTING CONSTRUCTOR FROM ANOTHER STD::CHRONO::DURATION VALUE

Constructs a std::chrono::duration instance by scaling the count value of another
std::chrono::duration object.

Declaration
template <class Rep2, class Period2>
constexpr duration(const duration<Rep2,Period2>& d);

Effects
The internal value of the duration object is initialized with duration_cast<dura-
tion<Rep,Period>>(d).count().

Requirements
This constructor only participates in overload resolution if Rep is a floating point
type or Rep2 is not a floating point type and Period2 is a whole number multiple of
Period (that is, ratio_divide<Period2,Period>::den==1). This avoids accidental
truncation (and corresponding loss of precision) from storing a duration with
small periods in a variable representing a duration with a longer period.

Postcondition
this->count()==duration_cast<duration<Rep,Period>>(d).count()

Examples
duration<int,ratio<1,1000>> ms(5);
duration<int,ratio<1,1>> s(ms);
duration<double,ratio<1,1>> s2(ms);
duration<int,ratio<1,1000000>> us(ms);

STD::CHRONO::DURATION::COUNT MEMBER FUNCTION

Retrieves the value of the duration.

Declaration
constexpr rep count() const;

Returns
The internal value of the duration object, as a value of type rep.

STD::CHRONO::DURATION::OPERATOR+ UNARY PLUS OPERATOR

This is a no-op: it just returns a copy of *this.

Declaration
constexpr duration operator+() const;

Returns
*this

5 milliseconds
Error: can’t
store ms as
integral seconds

OK: s2.count()==0.005
OK: us.count()
==5000
Download from Wow! eBook <www.wowebook.com>

364 APPENDIX D C++ Thread Library reference
STD::CHRONO::DURATION::OPERATOR- UNARY MINUS OPERATOR

Returns a duration such that the count() value is the negative value of this->
count().

Declaration
constexpr duration operator-() const;

Returns
duration(-this->count());

STD::CHRONO::DURATION::OPERATOR++ PRE-INCREMENT OPERATOR

Increments the internal count.

Declaration
duration& operator++();

Effects
++this->internal_count;

Returns
*this

STD::CHRONO::DURATION::OPERATOR++ POST-INCREMENT OPERATOR

Increments the internal count and return the value of *this prior to the increment.

Declaration
duration operator++(int);

Effects
duration temp(*this);
++(*this);
return temp;

STD::CHRONO::DURATION::OPERATOR- - PRE-DECREMENT OPERATOR

Decrements the internal count.

Declaration
duration& operator--();

Effects
--this->internal_count;

Returns
*this

STD::CHRONO::DURATION::OPERATOR- - POST-DECREMENT OPERATOR

Decrements the internal count and return the value of *this prior to the decrement.

Declaration
duration operator--(int);

Effects
duration temp(*this);
--(*this);
return temp;
Download from Wow! eBook <www.wowebook.com>

365The <chrono> header
STD::CHRONO::DURATION::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR

Adds the count for another duration object to the internal count for *this.

Declaration
duration& operator+=(duration const& other);

Effects
internal_count+=other.count();

Returns
*this

STD::CHRONO::DURATION::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR

Subtracts the count for another duration object from the internal count for *this.

Declaration
duration& operator-=(duration const& other);

Effects
internal_count-=other.count();

Returns
*this

STD::CHRONO::DURATION::OPERATOR*= COMPOUND ASSIGNMENT OPERATOR

Multiplies the internal count for *this by the specified value.

Declaration
duration& operator*=(rep const& rhs);

Effects
internal_count*=rhs;

Returns
*this

STD::CHRONO::DURATION::OPERATOR/= COMPOUND ASSIGNMENT OPERATOR

Divides the internal count for *this by the specified value.

Declaration
duration& operator/=(rep const& rhs);

Effects
internal_count/=rhs;

Returns
*this

STD::CHRONO::DURATION::OPERATOR%= COMPOUND ASSIGNMENT OPERATOR

Adjusts the internal count for *this to be the remainder when divided by the speci-
fied value.

Declaration
duration& operator%=(rep const& rhs);

Effects
internal_count%=rhs;

Returns
*this
Download from Wow! eBook <www.wowebook.com>

366 APPENDIX D C++ Thread Library reference
STD::CHRONO::DURATION::OPERATOR%= COMPOUND ASSIGNMENT OPERATOR

Adjusts the internal count for *this to be the remainder when divided by the count of
the other duration object.

Declaration
duration& operator%=(duration const& rhs);

Effects
internal_count%=rhs.count();

Returns
*this

STD::CHRONO::DURATION::ZERO STATIC MEMBER FUNCTION

Returns a duration object representing a value of zero.

Declaration
constexpr duration zero();

Returns
duration(duration_values<rep>::zero());

STD::CHRONO::DURATION::MIN STATIC MEMBER FUNCTION

Returns a duration object holding the minimum possible value for the specified
instantiation.

Declaration
constexpr duration min();

Returns
duration(duration_values<rep>::min());

STD::CHRONO::DURATION::MAX STATIC MEMBER FUNCTION

Returns a duration object holding the maximum possible value for the specified
instantiation.

Declaration
constexpr duration max();

Returns
duration(duration_values<rep>::max());

STD::CHRONO::DURATION EQUALITY COMPARISON OPERATOR

Compares two duration objects for equality, even if they have distinct representations
and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill formed.
Download from Wow! eBook <www.wowebook.com>

367The <chrono> header
Effects
If CommonDuration is a synonym for std::common_type< duration< Rep1, Period1>,
duration< Rep2, Period2>>::type, then lhs==rhs returns CommonDuration(lhs)
.count()==CommonDuration(rhs).count().

STD::CHRONO::DURATION INEQUALITY COMPARISON OPERATOR

Compares two duration objects for inequality, even if they have distinct representa-
tions and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator!=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill formed.

Returns
!(lhs==rhs)

STD::CHRONO::DURATION LESS-THAN COMPARISON OPERATOR

Compares two duration objects to see if one is less than the other, even if they have
distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill formed.

Effects
If CommonDuration is a synonym for std::common_type< duration< Rep1, Period1>,
duration< Rep2, Period2>>::type, then lhs<rhs returns CommonDuration(lhs)
.count()<CommonDuration(rhs).count().

STD::CHRONO::DURATION GREATER-THAN COMPARISON OPERATOR

Compares two duration objects to see if one is greater than the other, even if they
have distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);
Download from Wow! eBook <www.wowebook.com>

368 APPENDIX D C++ Thread Library reference
Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill formed.

Returns
rhs<lhs

STD::CHRONO::DURATION LESS-THAN-OR-EQUALS COMPARISON OPERATOR

Compares two duration objects to see if one is less than or equal to the other, even if
they have distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill formed.

Returns
!(rhs<lhs)

STD::CHRONO::DURATION GREATER-THAN-OR-EQUALS COMPARISON OPERATOR

Compares two duration objects to see if one is greater than or equal to the other,
even if they have distinct representations and/or periods.

Declaration
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(
 const duration<Rep1, Period1>& lhs,
 const duration<Rep2, Period2>& rhs);

Requirements
Either lhs must be implicitly convertible to rhs, or vice versa. If neither can be
implicitly converted to the other, or they are distinct instantiations of duration but
each can implicitly convert to the other, the expression is ill formed.

Returns
!(lhs<rhs)

STD::CHRONO::DURATION_CAST NONMEMBER FUNCTION

Explicitly converts a std::chrono::duration object to a specific std::chrono::
duration instantiation.

Declaration
template <class ToDuration, class Rep, class Period>
constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

Requirements
ToDuration must be an instantiation of std::chrono::duration.
Download from Wow! eBook <www.wowebook.com>

369The <chrono> header
Returns
The duration d converted to the duration type specified by ToDuration. This is
done in such a way as to minimize any loss of precision resulting from conversions
between different scales and representation types.

D.1.2 std::chrono::time_point class template

The std::chrono::time_point class template represents a point in time, as measured by
a particular clock. It’s specified as a duration since the epoch of that particular clock. The
template parameter Clock identifies the clock (each distinct clock must have a unique
type), whereas the Duration template parameter is the type to use for measuring the
duration since the epoch and must be an instantiation of the std::chrono::duration
class template. The Duration defaults to the default duration type of the Clock.

Class definition
template <class Clock,class Duration = typename Clock::duration>
class time_point
{
public:
 typedef Clock clock;
 typedef Duration duration;
 typedef typename duration::rep rep;
 typedef typename duration::period period;

 time_point();
 explicit time_point(const duration& d);

 template <class Duration2>
 time_point(const time_point<clock, Duration2>& t);

 duration time_since_epoch() const;

 time_point& operator+=(const duration& d);
 time_point& operator-=(const duration& d);

 static constexpr time_point min();
 static constexpr time_point max();
};

STD::CHRONO::TIME_POINT DEFAULT CONSTRUCTOR

Constructs a time_point representing the epoch of the associated Clock; the internal
duration is initialized with Duration::zero().

Declaration
time_point();

Postcondition
For a newly default-constructed time_point object tp, tp.time_since_epoch() ==
tp::duration::zero().

STD::CHRONO::TIME_POINT DURATION CONSTRUCTOR

Constructs a time_point representing the specified duration since the epoch of the
associated Clock.
Download from Wow! eBook <www.wowebook.com>

370 APPENDIX D C++ Thread Library reference
Declaration
explicit time_point(const duration& d);

Postcondition
For a time_point object tp, constucted with tp(d) for some duration d, tp.time_
since_epoch()==d.

STD::CHRONO::TIME_POINT CONVERSION CONSTRUCTOR

Constructs a time_point object from another time_point object with the same Clock
but a distinct Duration.

Declaration
template <class Duration2>
time_point(const time_point<clock, Duration2>& t);

Requirements
Duration2 shall be implicitly convertible to Duration.

Effects
As-if time_point(t.time_since_epoch())

 The value returned from t.time_since_epoch() is implicitly converted to an
object of type Duration, and that value is stored in the newly constructed time_
point object.

STD::CHRONO::TIME_POINT::TIME_SINCE_EPOCH MEMBER FUNCTION

Retrieves the duration since the clock epoch for a particular time_point object.

Declaration
duration time_since_epoch() const;

Returns
The duration value stored in *this.

STD::CHRONO::TIME_POINT::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR

Adds the specified duration to the value stored in the specified time_point object.

Declaration
time_point& operator+=(const duration& d);

Effects
Adds d to the internal duration object of *this, as-if
this->internal_duration += d;

Returns
*this

STD::CHRONO::TIME_POINT::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR

Subtracts the specified duration from the value stored in the specified time_
point object.

Declaration
time_point& operator-=(const duration& d);
Download from Wow! eBook <www.wowebook.com>

371The <chrono> header
Effects
Subtracts d from the internal duration object of *this, as-if
this->internal_duration -= d;

Returns
*this

STD::CHRONO::TIME_POINT::MIN STATIC MEMBER FUNCTION

Obtains a time_point object representing the minimum possible value for its type.

Declaration
static constexpr time_point min();

Returns
time_point(time_point::duration::min()) (see 11.1.1.15)

STD::CHRONO::TIME_POINT::MAX STATIC MEMBER FUNCTION

Obtains a time_point object representing the maximum possible value for its type.

Declaration
static constexpr time_point max();

Returns
time_point(time_point::duration::max()) (see 11.1.1.16)

D.1.3 std::chrono::system_clock class

The std::chrono::system_clock class provides a means of obtaining the current
wall-clock time from the systemwide real-time clock. The current time can be obtained
by calling std::chrono::system_clock::now(). Instances of std::chrono::system_
clock::time_point can be converted to and from time_t with the std::chrono::
system_clock::to_time_t() and std::chrono::system_clock::to_time_point()
functions. The system clock isn’t steady, so a subsequent call to std::chrono::system_
clock::now() may return an earlier time than a previous call (for example, if the
operating system clock is manually adjusted or synchronized with an external clock).

Class definition
class system_clock
{
public:
 typedef unspecified-integral-type rep;
 typedef std::ratio<unspecified,unspecified> period;
 typedef std::chrono::duration<rep,period> duration;
 typedef std::chrono::time_point<system_clock> time_point;
 static const bool is_steady=unspecified;

 static time_point now() noexcept;

 static time_t to_time_t(const time_point& t) noexcept;
 static time_point from_time_t(time_t t) noexcept;

};
Download from Wow! eBook <www.wowebook.com>

372 APPENDIX D C++ Thread Library reference
STD::CHRONO::SYSTEM_CLOCK::REP TYPEDEF
A typedef for an integral type used to hold the number of ticks in a duration value.

Declaration
typedef unspecified-integral-type rep;

STD::CHRONO::SYSTEM_CLOCK::PERIOD TYPEDEF
A typedef for an instantiation of the std::ratio class template that specifies the smallest
number of seconds (or fractions of a second) between distinct values of duration or
time_point. The period specifies the precision of the clock, not the tick frequency.

Declaration
typedef std::ratio<unspecified,unspecified> period;

STD::CHRONO::SYSTEM_CLOCK::DURATION TYPEDEF
An instantiation of the std::chrono::duration class template that can hold the dif-
ference between any two time points returned by the systemwide real-time clock.

Declaration
typedef std::chrono::duration<
 std::chrono::system_clock::rep,
 std::chrono::system_clock::period> duration;

STD::CHRONO::SYSTEM_CLOCK::TIME_POINT TYPEDEF
An instantiation of the std::chrono::time_point class template that can hold time
points returned by the systemwide real-time clock.

Declaration
typedef std::chrono::time_point<std::chrono::system_clock> time_point;

STD::CHRONO::SYSTEM_CLOCK::NOW STATIC MEMBER FUNCTION
Obtains the current wall-clock time from the systemwide real-time clock.

Declaration
time_point now() noexcept;

Returns
A time_point representing the current time of the systemwide real-time clock.

Throws
An exception of type std::system_error if an error occurs.

STD::CHRONO::SYSTEM_CLOCK::TO_TIME_T STATIC MEMBER FUNCTION
Converts an instance of time_point to time_t.

Declaration
time_t to_time_t(time_point const& t) noexcept;

Returns
A time_t value that represents the same point in time as t rounded or truncated to
seconds precision.

Throws
An exception of type std::system_error if an error occurs.
Download from Wow! eBook <www.wowebook.com>

373The <chrono> header
STD::CHRONO::SYSTEM_CLOCK::FROM_TIME_T STATIC MEMBER FUNCTION
Converts an instance of time_t to time_point.

Declaration
time_point from_time_t(time_t const& t) noexcept;

Returns
A time_point value that represents the same point in time as t.

Throws
An exception of type std::system_error if an error occurs.

D.1.4 std::chrono::steady_clock class

The std::chrono::steady_clock class provides access to the systemwide steady
clock. The current time can be obtained by calling std::chrono::steady_

clock::now(). There is no fixed relationship between values returned by std::chrono::
steady_clock::now() and wall-clock time. A steady clock can’t go backwards, so if
one call to std::chrono::steady_clock::now() happens-before another call to std::
chrono::steady_clock::now(), the second call must return a time point equal to or
later than the first. The clock advances at a uniform rate as far as possible.

Class definition
class steady_clock
{
public:
 typedef unspecified-integral-type rep;
 typedef std::ratio<
 unspecified,unspecified> period;
 typedef std::chrono::duration<rep,period> duration;
 typedef std::chrono::time_point<steady_clock>
 time_point;
 static const bool is_steady=true;

 static time_point now() noexcept;
};

STD::CHRONO::STEADY_CLOCK::REP TYPEDEF
This typedef is for an integral type used to hold the number of ticks in a duration value.

Declaration
typedef unspecified-integral-type rep;

STD::CHRONO::STEADY_CLOCK::PERIOD TYPEDEF
This is a typedef for an instantiation of the std::ratio class template that specifies
the smallest number of seconds (or fractions of a second) between distinct values
of duration or time_point. The period specifies the precision of the clock, not the
tick frequency.

Declaration
typedef std::ratio<unspecified,unspecified> period;
Download from Wow! eBook <www.wowebook.com>

374 APPENDIX D C++ Thread Library reference
STD::CHRONO::STEADY_CLOCK::DURATION TYPEDEF
This is an instantiation of the std::chrono::duration class template that can hold
the difference between any two time points returned by the systemwide steady clock.

Declaration
typedef std::chrono::duration<
 std::chrono::steady_clock::rep,
 std::chrono::steady_clock::period> duration;

STD::CHRONO::STEADY_CLOCK::TIME_POINT TYPEDEF
This instantiation of the std::chrono::time_point class template can hold time
points returned by the systemwide steady clock.

Declaration
typedef std::chrono::time_point<std::chrono::steady_clock> time_point;

STD::CHRONO::STEADY_CLOCK::NOW STATIC MEMBER FUNCTION
Obtains the current time from the systemwide steady clock.

Declaration
time_point now() noexcept;

Returns
A time_point representing the current time of the systemwide steady clock.

Throws
An exception of type std::system_error if an error occurs.

Synchronization
If one call to std::chrono::steady_clock::now() happens-before another, the
time_point returned by the first call shall compare less-than or equal-to the time_
point returned by the second call.

D.1.5 std::chrono::high_resolution_clock typedef

The std::chrono::high_resolution_clock class provides access to the systemwide
clock with the highest resolution. As for all clocks, the current time can be obtained
by calling std::chrono::high_resolution_clock::now(). std::chrono::high_

resolution_clock may be a typedef for the std::chrono::system_clock class or
std::chrono::steady_clock class, or it may be a separate type.

 Although std::chrono::high_resolution_clock has the highest resolution of all
the library-supplied clocks, std::chrono::high_resolution_clock::now() still takes
a finite amount of time. You must take care to account for the overhead of calling
std::chrono::high_resolution_clock::now() when timing short operations.

Class definition
class high_resolution_clock
{
public:
 typedef unspecified-integral-type rep;
 typedef std::ratio<
 unspecified,unspecified> period;
 typedef std::chrono::duration<rep,period> duration;
Download from Wow! eBook <www.wowebook.com>

375<condition_variable> header
 typedef std::chrono::time_point<
 unspecified> time_point;
 static const bool is_steady=unspecified;

 static time_point now() noexcept;
};

D.2 <condition_variable> header
The <condition_variable> header provides condition variables. These are basic-
level synchronization mechanisms that allow a thread to block until notified that some
condition is true or a timeout period has elapsed.

Header contents
namespace std
{
 enum class cv_status { timeout, no_timeout };

 class condition_variable;
 class condition_variable_any;
}

D.2.1 std::condition_variable class

The std::condition_variable class allows a thread to wait for a condition to
become true.

 Instances of std::condition_variable aren’t CopyAssignable, CopyConstructible,
MoveAssignable, or MoveConstructible.

Class definition
class condition_variable
{
public:
 condition_variable();
 ~condition_variable();

 condition_variable(condition_variable const&) = delete;
 condition_variable& operator=(condition_variable const&) = delete;

 void notify_one() noexcept;
 void notify_all() noexcept;

 void wait(std::unique_lock<std::mutex>& lock);

 template <typename Predicate>
 void wait(std::unique_lock<std::mutex>& lock,Predicate pred);

 template <typename Clock, typename Duration>
 cv_status wait_until(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time);

 template <typename Clock, typename Duration, typename Predicate>
 bool wait_until(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time,
 Predicate pred);
Download from Wow! eBook <www.wowebook.com>

376 APPENDIX D C++ Thread Library reference
 template <typename Rep, typename Period>
 cv_status wait_for(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::duration<Rep, Period>& relative_time);

 template <typename Rep, typename Period, typename Predicate>
 bool wait_for(
 std::unique_lock<std::mutex>& lock,
 const std::chrono::duration<Rep, Period>& relative_time,
 Predicate pred);
};

void notify_all_at_thread_exit(condition_variable&,unique_lock<mutex>);

STD::CONDITION_VARIABLE DEFAULT CONSTRUCTOR
Constructs a std::condition_variable object.

Declaration
condition_variable();

Effects
Constructs a new std::condition_variable instance.

Throws
An exception of type std::system_error if the condition variable could not be
constructed.

STD::CONDITION_VARIABLE DESTRUCTOR
Destroys a std::condition_variable object.

Declaration
~condition_variable();

Preconditions
There are no threads blocked on *this in a call to wait(), wait_for(), or
wait_until().

Effects
Destroys *this.

Throws
Nothing.

STD::CONDITION_VARIABLE::NOTIFY_ONE MEMBER FUNCTION
Wakes one of the threads currently waiting on a std::condition_variable.

Declaration
void notify_one() noexcept;

Effects
Wakes one of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.
Download from Wow! eBook <www.wowebook.com>

377<condition_variable> header
Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::NOTIFY_ALL MEMBER FUNCTION
Wake all of the threads currently waiting on a std::condition_variable.

Declaration
void notify_all() noexcept;

Effects
Wakes all of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT MEMBER FUNCTION
Waits until the std::condition_variable is woken by a call to notify_one() or
notify_all() or a spurious wakeup.

Declaration
void wait(std::unique_lock<std::mutex>& lock);

Preconditions
lock.owns_lock()is true, and the lock is owned by the calling thread.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one()or notify_all()by another thread, or the thread is woken
spuriously. The lock object is locked again before the call to wait() returns.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait(), it’s locked again on exit, even if the function exits via
an exception.

NOTE The spurious wakeups mean that a thread calling wait() may wake
even though no thread has called notify_one() or notify_all(). It’s there-
fore recommended that the overload of wait() that takes a predicate is used
in preference where possible. Otherwise, it’s recommended that wait() be
called in a loop that tests the predicate associated with the condition variable.
Download from Wow! eBook <www.wowebook.com>

378 APPENDIX D C++ Thread Library reference
Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until the std::condition_variable is woken by a call to notify_one() or
notify_all(), and the predicate is true.

Declaration
template<typename Predicate>
void wait(std::unique_lock<std::mutex>& lock,Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that is convertible to
bool. lock.owns_lock() shall be true, and the lock shall be owned by the thread
calling wait().

Effects
As-if
while(!pred())
{
 wait(lock);
}

Throws
Any exception thrown by a call to pred, or std::system_error if the effects
couldn’t be achieved.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for() and wait_until() on a
single std::condition_variable instance are serialized. A call to notify_one() or
notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_FOR MEMBER FUNCTION
Waits until the std::condition_variable is notified by a call to notify_one() or
notify_all(), or until a specified time period has elapsed or the thread is woken
spuriously.

Declaration
template<typename Rep,typename Period>
cv_status wait_for(
 std::unique_lock<std::mutex>& lock,
 std::chrono::duration<Rep,Period> const& relative_time);
Download from Wow! eBook <www.wowebook.com>

379<condition_variable> header
Preconditions
lock.owns_lock() is true, and the lock is owned by the calling thread.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread, or the time period
specified by relative_time has elapsed or the thread is woken spuriously. The
lock object is locked again before the call to wait_for() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one()
or notify_all() or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_for(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_for() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_for() that takes a predi-
cate is used in preference where possible. Otherwise, it’s recommended that
wait_for() be called in a loop that tests the predicate associated with the
condition variable. Care must be taken when doing this to ensure that the
timeout is still valid; wait_until() may be more appropriate in many circum-
stances. The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_FOR MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Wait until the std::condition_variable is woken by a call to notify_one() or
notify_all() and the predicate is true, or until the specified time period has elapsed.

Declaration
template<typename Rep,typename Period,typename Predicate>
bool wait_for(
 std::unique_lock<std::mutex>& lock,
 std::chrono::duration<Rep,Period> const& relative_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that’s convertible to
bool. lock.owns_lock() shall be true, and the lock shall be owned by the thread
calling wait().
Download from Wow! eBook <www.wowebook.com>

380 APPENDIX D C++ Thread Library reference
Effects
As-if
internal_clock::time_point end=internal_clock::now()+relative_time;
while(!pred())
{
 std::chrono::duration<Rep,Period> remaining_time=
 end-internal_clock::now();
 if(wait_for(lock,remaining_time)==std::cv_status::timeout)
 return pred();
}
return true;

Returns
true if the most recent call to pred() returned true, false if the time period spec-
ified by relative_time has elapsed and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true or the time period specified by
relative_time has elapsed. The thread may be blocked for longer than the
specified duration. Where possible, the elapsed time is determined by a
steady clock.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects
couldn’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_UNTIL MEMBER FUNCTION
Waits until the std::condition_variable is notified by a call to notify_one() or
notify_all() or until a specified time has been reached or the thread is woken
spuriously.

Declaration
template<typename Clock,typename Duration>
cv_status wait_until(
 std::unique_lock<std::mutex>& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
lock.owns_lock() is true, and the lock is owned by the calling thread.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread, or Clock::now()
Download from Wow! eBook <www.wowebook.com>

381<condition_variable> header
returns a time equal to or later than absolute_time or the thread is woken spuri-
ously. The lock object is locked again before the call to wait_until() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one()
or notify_all() or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_until(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_until() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_until() that takes a pred-
icate is used in preference where possible. Otherwise, it’s recommended that
wait_until() be called in a loop that tests the predicate associated with the
condition variable. There’s no guarantee as to how long the calling thread
will be blocked, only that if the function returns false, then Clock::now()
returns a time equal to or later than absolute_time at the point at which the
thread became unblocked.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE::WAIT_UNTIL MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Wait until the std::condition_variable is woken by a call to notify_one() or
notify_all() and the predicate is true, or until the specified time has been reached.

Declaration
template<typename Clock,typename Duration,typename Predicate>
bool wait_until(
 std::unique_lock<std::mutex>& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that is convertible to
bool. lock.owns_lock() shall be true, and the lock shall be owned by the thread
calling wait().

Effects
As-if
while(!pred())
{
 if(wait_until(lock,absolute_time)==std::cv_status::timeout)
 return pred();
}
return true;
Download from Wow! eBook <www.wowebook.com>

382 APPENDIX D C++ Thread Library reference
Returns
true if the most recent call to pred() returned true, false if a call to
Clock::now() returned a time equal to or later than the time specified by
absolute_time and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true or Clock::now() returns a time equal to
or later than absolute_time. There’s no guarantee as to how long the calling
thread will be blocked, only that if the function returns false, then
Clock::now() returns a time equal to or later than absolute_time at the
point at which the thread became unblocked.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects
couldn’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_until(), and wait_until()
on a single std::condition_variable instance are serialized. A call to notify_
one() or notify_all() will wake only threads that started waiting prior to that call.

STD::NOTIFY_ALL_AT_THREAD_EXIT NONMEMBER FUNCTION
Wake all of the threads waiting on a std::condition_variable when the current
thread exits.

Declaration
void notify_all_at_thread_exit(
 condition_variable& cv,unique_lock<mutex> lk);

Preconditions
lk.owns_lock() is true, and the lock is owned by the calling thread. lk.mutex()
shall return the same value as for any of the lock objects supplied to wait(),
wait_for(), or wait_until() on cv from concurrently waiting threads.

Effects
Transfers ownership of the lock held by lk into internal storage and schedules cv to
be notified when the calling thread exits. This notification shall be as-if
lk.unlock();
cv.notify_all();

Throws
std::system_error if the effects can’t be achieved.

NOTE The lock is held until the thread exits, so care must be taken to avoid
deadlock. It’s recommended that the calling thread should exit as soon as
possible and that no blocking operations be performed on this thread.
Download from Wow! eBook <www.wowebook.com>

383<condition_variable> header
The user should ensure that waiting threads don’t erroneously assume that the
thread has exited when they are woken, particularly with the potential for spurious
wakeups. This can be achieved by testing a predicate on the waiting thread that’s
only made true by the notifying thread under the protection of the mutex and
without releasing the lock on the mutex prior to the call of notify_all_at_
thread_exit.std::condition_variable_any class.

D.2.2 std::condition_variable_any class

The std::condition_variable_any class allows a thread to wait for a condition to
become true. Whereas std::condition_variable can be used only with std::
unique_lock<std::mutex>, std::condition_variable_any can be used with any
type that meets the Lockable requirements.

 Instances of std::condition_variable_any aren’t CopyAssignable, Copy-
Constructible, MoveAssignable, or MoveConstructible.

Class definition
class condition_variable_any
{
public:
 condition_variable_any();
 ~condition_variable_any();

 condition_variable_any(
 condition_variable_any const&) = delete;
 condition_variable_any& operator=(
 condition_variable_any const&) = delete;

 void notify_one() noexcept;
 void notify_all() noexcept;

 template<typename Lockable>
 void wait(Lockable& lock);

 template <typename Lockable, typename Predicate>
 void wait(Lockable& lock, Predicate pred);

 template <typename Lockable, typename Clock,typename Duration>
 std::cv_status wait_until(
 Lockable& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time);

 template <
 typename Lockable, typename Clock,
 typename Duration, typename Predicate>
 bool wait_until(
 Lockable& lock,
 const std::chrono::time_point<Clock, Duration>& absolute_time,
 Predicate pred);

 template <typename Lockable, typename Rep, typename Period>
 std::cv_status wait_for(
 Lockable& lock,
 const std::chrono::duration<Rep, Period>& relative_time);
Download from Wow! eBook <www.wowebook.com>

384 APPENDIX D C++ Thread Library reference
 template <
 typename Lockable, typename Rep,
 typename Period, typename Predicate>
 bool wait_for(
 Lockable& lock,
 const std::chrono::duration<Rep, Period>& relative_time,
 Predicate pred);
};

STD::CONDITION_VARIABLE_ANY DEFAULT CONSTRUCTOR
Constructs a std::condition_variable_any object.

Declaration
condition_variable_any();

Effects
Constructs a new std::condition_variable_any instance.

Throws
An exception of type std::system_error if the condition variable couldn’t be
constructed.

STD::CONDITION_VARIABLE_ANY DESTRUCTOR
Destroys a std::condition_variable_any object.

Declaration
~condition_variable_any();

Preconditions
There are no threads blocked on *this in a call to wait(), wait_for(), or
wait_until().

Effects
Destroys *this.

Throws
Nothing.

STD::CONDITION_VARIABLE_ANY::NOTIFY_ONE MEMBER FUNCTION
Wakes one of the threads currently waiting on a std::condition_variable_any.

Declaration
void notify_one() noexcept;

Effects
Wakes one of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on a
single std::condition_variable_any instance are serialized. A call to notify_one()
or notify_all() will only wake threads that started waiting prior to that call.
Download from Wow! eBook <www.wowebook.com>

385<condition_variable> header
STD::CONDITION_VARIABLE_ANY::NOTIFY_ALL MEMBER FUNCTION
Wakes all of the threads currently waiting on a std::condition_variable_any.

Declaration
void notify_all() noexcept;

Effects
Wakes all of the threads waiting on *this at the point of the call. If there are no
threads waiting, the call has no effect.

Throws
std::system_error if the effects can’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT MEMBER FUNCTION
Waits until the std::condition_variable_any is woken by a call to notify_one() or
notify_all() or a spurious wakeup.

Declaration
template<typename Lockable>
void wait(Lockable& lock);

Preconditions
Lockable meets the Lockable requirements, and lock owns a lock.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread, or the thread is woken
spuriously. The lock object is locked again before the call to wait() returns.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait(), it’s locked again on exit, even if the function exits via
an exception.

NOTE The spurious wakeups mean that a thread calling wait() may wake
even though no thread has called notify_one() or notify_all(). It’s there-
fore recommended that the overload of wait() that takes a predicate is used
in preference where possible. Otherwise, it’s recommended that wait() be
called in a loop that tests the predicate associated with the condition variable.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.
Download from Wow! eBook <www.wowebook.com>

386 APPENDIX D C++ Thread Library reference
STD::CONDITION_VARIABLE_ANY::WAIT MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until the std::condition_variable_any is woken by a call to notify_one() or
notify_all() and the predicate is true.

Declaration
template<typename Lockable,typename Predicate>
void wait(Lockable& lock,Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that’s convertible to
bool. Lockable meets the Lockable requirements, and lock owns a lock.

Effects
As-if
while(!pred())
{
 wait(lock);
}

Throws
Any exception thrown by a call to pred, or std::system_error if the effects could
not be achieved.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT_FOR MEMBER FUNCTION
Waits until the std::condition_variable_any is notified by a call to notify_one() or
notify_all() or until a specified time period has elapsed or the thread is woken
spuriously.

Declaration
template<typename Lockable,typename Rep,typename Period>
std::cv_status wait_for(
 Lockable& lock,
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
Lockable meets the Lockable requirements, and lock owns a lock.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread or the time period spec-
ified by relative_time has elapsed or the thread is woken spuriously. The lock
object is locked again before the call to wait_for() returns.
Download from Wow! eBook <www.wowebook.com>

387<condition_variable> header
Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one()
or notify_all() or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_for(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_for() may
wake even though no thread has called notify_one() or notify_all(). It’s
therefore recommended that the overload of wait_for() that takes a predi-
cate is used in preference where possible. Otherwise, it’s recommended that
wait_for() be called in a loop that tests the predicate associated with the con-
dition variable. Care must be taken when doing this to ensure that the timeout
is still valid; wait_until() may be more appropriate in many circumstances.
The thread may be blocked for longer than the specified duration. Where
possible, the elapsed time is determined by a steady clock.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT_FOR MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until the std::condition_variable_any is woken by a call to notify_one() or
notify_all() and the predicate is true, or until the specified time period has elapsed.

Declaration
template<typename Lockable,typename Rep,
 typename Period, typename Predicate>
bool wait_for(
 Lockable& lock,
 std::chrono::duration<Rep,Period> const& relative_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid and shall return a value that’s convertible to
bool. Lockable meets the Lockable requirements, and lock owns a lock.

Effects
As-if
internal_clock::time_point end=internal_clock::now()+relative_time;
while(!pred())
{
 std::chrono::duration<Rep,Period> remaining_time=
 end-internal_clock::now();
 if(wait_for(lock,remaining_time)==std::cv_status::timeout)
 return pred();
}
return true;
Download from Wow! eBook <www.wowebook.com>

388 APPENDIX D C++ Thread Library reference
Returns
true if the most recent call to pred() returned true, false if the time period spec-
ified by relative_time has elapsed and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how many
times pred will be called. pred will always be invoked with the mutex referenced
by lock locked, and the function shall return if (and only if) an evaluation of
(bool)pred() returns true or the time period specified by relative_time has
elapsed. The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Any exception thrown by a call to pred, or std::system_error if the effects
couldn’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT_UNTIL MEMBER FUNCTION
Waits until the std::condition_variable_any is notified by a call to notify_one() or
notify_all() or until a specified time has been reached or the thread is woken
spuriously.

Declaration
template<typename Lockable,typename Clock,typename Duration>
std::cv_status wait_until(
 Lockable& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
Lockable meets the Lockable requirements, and lock owns a lock.

Effects
Atomically unlocks the supplied lock object and block until the thread is woken by
a call to notify_one() or notify_all() by another thread or Clock::now()
returns a time equal to or later than absolute_time or the thread is woken spuri-
ously. The lock object is locked again before the call to wait_until() returns.

Returns
std::cv_status::no_timeout if the thread was woken by a call to notify_one()
or notify_all() or a spurious wakeup, std::cv_status::timeout otherwise.

Throws
std::system_error if the effects can’t be achieved. If the lock object is unlocked
during the call to wait_until(), it’s locked again on exit, even if the function exits
via an exception.

NOTE The spurious wakeups mean that a thread calling wait_until() may
wake even though no thread has called notify_one() or notify_all(). It’s
Download from Wow! eBook <www.wowebook.com>

389<condition_variable> header
therefore recommended that the overload of wait_until() that takes a pred-
icate is used in preference where possible. Otherwise, it’s recommended that
wait_until() be called in a loop that tests the predicate associated with the
condition variable. There’s no guarantee as to how long the calling thread
will be blocked, only that if the function returns false, then Clock::now()
returns a time equal to or later than absolute_time at the point at which the
thread became unblocked.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_for(), and wait_until() on
a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

STD::CONDITION_VARIABLE_ANY::WAIT_UNTIL MEMBER FUNCTION OVERLOAD THAT TAKES A PREDICATE
Waits until the std::condition_variable_any is woken by a call to notify_one() or
notify_all() and the predicate is true, or until the specified time has been reached.

Declaration
template<typename Lockable,typename Clock,
 typename Duration, typename Predicate>
bool wait_until(
 Lockable& lock,
 std::chrono::time_point<Clock,Duration> const& absolute_time,
 Predicate pred);

Preconditions
The expression pred() shall be valid, and shall return a value that’s convertible to
bool. Lockable meets the Lockable requirements, and lock owns a lock.

Effects
As-if
while(!pred())
{
 if(wait_until(lock,absolute_time)==std::cv_status::timeout)
 return pred();
}
return true;

Returns
true if the most recent call to pred() returned true, false if a call to Clock::
now() returned a time equal to or later than the time specified by absolute_time,
and pred() returned false.

NOTE The potential for spurious wakeups means that it’s unspecified how
many times pred will be called. pred will always be invoked with the mutex ref-
erenced by lock locked, and the function shall return if (and only if) an eval-
uation of (bool)pred() returns true or Clock::now() returns a time equal to
or later than absolute_time. There’s no guarantee as to how long the calling
thread will be blocked, only that if the function returns false, then Clock::
now() returns a time equal to or later than absolute_time at the point at
which the thread became unblocked.
Download from Wow! eBook <www.wowebook.com>

390 APPENDIX D C++ Thread Library reference
Throws
Any exception thrown by a call to pred, or std::system_error if the effects
couldn’t be achieved.

Synchronization
Calls to notify_one(), notify_all(), wait(), wait_until(), and wait_until()
on a single std::condition_variable_any instance are serialized. A call to notify_
one() or notify_all() will only wake threads that started waiting prior to that call.

D.3 <atomic> header
The <atomic> header provides the set of basic atomic types and operations on those
types and a class template for constructing an atomic version of a user-defined type
that meets certain criteria.

Header contents
#define ATOMIC_BOOL_LOCK_FREE see description
#define ATOMIC_CHAR_LOCK_FREE see description
#define ATOMIC_SHORT_LOCK_FREE see description
#define ATOMIC_INT_LOCK_FREE see description
#define ATOMIC_LONG_LOCK_FREE see description
#define ATOMIC_LLONG_LOCK_FREE see description
#define ATOMIC_CHAR16_T_LOCK_FREE see description
#define ATOMIC_CHAR32_T_LOCK_FREE see description
#define ATOMIC_WCHAR_T_LOCK_FREE see description
#define ATOMIC_POINTER_LOCK_FREE see description

#define ATOMIC_VAR_INIT(value) see description

namespace std
{
 enum memory_order;

 struct atomic_flag;
 typedef see description atomic_bool;
 typedef see description atomic_char;
 typedef see description atomic_char16_t;
 typedef see description atomic_char32_t;
 typedef see description atomic_schar;
 typedef see description atomic_uchar;
 typedef see description atomic_short;
 typedef see description atomic_ushort;
 typedef see description atomic_int;
 typedef see description atomic_uint;
 typedef see description atomic_long;
 typedef see description atomic_ulong;
 typedef see description atomic_llong;
 typedef see description atomic_ullong;
 typedef see description atomic_wchar_t;

 typedef see description atomic_int_least8_t;
 typedef see description atomic_uint_least8_t;
 typedef see description atomic_int_least16_t;
 typedef see description atomic_uint_least16_t;
Download from Wow! eBook <www.wowebook.com>

391<atomic> header
 typedef see description atomic_int_least32_t;
 typedef see description atomic_uint_least32_t;
 typedef see description atomic_int_least64_t;
 typedef see description atomic_uint_least64_t;
 typedef see description atomic_int_fast8_t;
 typedef see description atomic_uint_fast8_t;
 typedef see description atomic_int_fast16_t;
 typedef see description atomic_uint_fast16_t;
 typedef see description atomic_int_fast32_t;
 typedef see description atomic_uint_fast32_t;
 typedef see description atomic_int_fast64_t;
 typedef see description atomic_uint_fast64_t;
 typedef see description atomic_int8_t;
 typedef see description atomic_uint8_t;
 typedef see description atomic_int16_t;
 typedef see description atomic_uint16_t;
 typedef see description atomic_int32_t;
 typedef see description atomic_uint32_t;
 typedef see description atomic_int64_t;
 typedef see description atomic_uint64_t;
 typedef see description atomic_intptr_t;
 typedef see description atomic_uintptr_t;
 typedef see description atomic_size_t;
 typedef see description atomic_ssize_t;
 typedef see description atomic_ptrdiff_t;
 typedef see description atomic_intmax_t;
 typedef see description atomic_uintmax_t;

 template<typename T>
 struct atomic;

 extern "C" void atomic_thread_fence(memory_order order);
 extern "C" void atomic_signal_fence(memory_order order);

 template<typename T>
 T kill_dependency(T);
}

D.3.1 std::atomic_xxx typedefs

For compatibility with the forthcoming C Standard, typedefs for the atomic integral
types are provided. These are either typedefs to the corresponding std::atomic<T>
specialization or a base class of that specialization with the same interface.

Table D.1 Atomic typedefs and their corresponding std::atomic<> specializations

std::atomic_itype std::atomic<> specialization

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>

std::atomic_uchar std::atomic<unsigned char>

std::atomic_short std::atomic<short>
Download from Wow! eBook <www.wowebook.com>

392 APPENDIX D C++ Thread Library reference
D.3.2 ATOMIC_xxx_LOCK_FREE macros

These macros specify whether the atomic types corresponding to particular built-in
types are lock-free or not.

Macro declarations
#define ATOMIC_BOOL_LOCK_FREE see description
#define ATOMIC_CHAR_LOCK_FREE see description
#define ATOMIC_SHORT_LOCK_FREE see description
#define ATOMIC_INT_LOCK_FREE see description
#define ATOMIC_LONG_LOCK_FREE see description
#define ATOMIC_LLONG_LOCK_FREE see description
#define ATOMIC_CHAR16_T_LOCK_FREE see description
#define ATOMIC_CHAR32_T_LOCK_FREE see description
#define ATOMIC_WCHAR_T_LOCK_FREE see description
#define ATOMIC_POINTER_LOCK_FREE see description

The value of ATOMIC_xxx_LOCK_FREE is either 0, 1, or 2. A value of 0 means that
operations on both the signed and unsigned atomic types corresponding to the
named type are never lock-free, a value of 1 means that the operations may be lock-
free for particular instances of those types and not for others, and a value of 2
means that the operations are always lock-free. For example, if ATOMIC_INT_
LOCK_FREE is 2, operations on instances of std::atomic<int> and std::atomic
<unsigned> are always lock-free.

 The macro ATOMIC_POINTER_LOCK_FREE describes the lock-free property of
operations on the atomic pointer specializations std::atomic<T*>.

std::atomic_ushort std::atomic<unsigned short>

std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>

std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>

std::atomic_llong std::atomic<long long>

std::atomic_ullong std::atomic<unsigned long long>

std::atomic_wchar_t std::atomic<wchar_t>

std::atomic_char16_t std::atomic<char16_t>

std::atomic_char32_t std::atomic<char32_t>

Table D.1 Atomic typedefs and their corresponding std::atomic<> specializations (continued)

std::atomic_itype std::atomic<> specialization
Download from Wow! eBook <www.wowebook.com>

393<atomic> header
D.3.3 ATOMIC_VAR_INIT macro

The ATOMIC_VAR_INIT macro provides a means of initializing an atomic variable to a
particular value.

Declaration
#define ATOMIC_VAR_INIT(value) see description

The macro expands to a token sequence that can be used to initialize one of the stan-
dard atomic types with the specified value in an expression of the following form:

std::atomic<type> x = ATOMIC_VAR_INIT(val);

The specified value must be compatible with the nonatomic type corresponding to
the atomic variable, for example:

std::atomic<int> i = ATOMIC_VAR_INIT(42);
std::string s;
std::atomic<std::string*> p = ATOMIC_VAR_INIT(&s);

Such initialization is not atomic, and any access by another thread to the variable
being initialized where the initialization doesn’t happen-before that access is a data
race and thus undefined behavior.

D.3.4 std::memory_order enumeration

The std::memory_order enumeration is used to specify the ordering constraints of
atomic operations.

Declaration
typedef enum memory_order
{
 memory_order_relaxed,memory_order_consume,
 memory_order_acquire,memory_order_release,
 memory_order_acq_rel,memory_order_seq_cst
} memory_order;

Operations tagged with the various memory order values behave as follows (see
chapter 5 for detailed descriptions of the ordering constraints).

STD::MEMORY_ORDER_RELAXED
The operation doesn’t provide any additional ordering constraints.

STD::MEMORY_ORDER_RELEASE
The operation is a release operation on the specified memory location. This therefore
synchronizes-with an acquire operation on the same memory location that reads the
stored value.

STD::MEMORY_ORDER_ACQUIRE
The operation is an acquire operation on the specified memory location. If the stored
value was written by a release operation, that store synchronizes-with this operation.
Download from Wow! eBook <www.wowebook.com>

394 APPENDIX D C++ Thread Library reference
STD::MEMORY_ORDER_ACQ_REL
The operation must be a read-modify-write operation, and it behaves as both std::
memory_order_acquire and std::memory_order_release on the specified location.

STD::MEMORY_ORDER_SEQ_CST
The operation forms part of the single global total order of sequentially consistent
operations. In addition, if it’s a store, it behaves like a std::memory_order_release
operation; if it’s a load, it behaves like a std::memory_order_acquire operation; and
if it’s a read-modify-write operation, it behaves as both std::memory_order_acquire
and std::memory_order_release. This is the default for all operations.

STD::MEMORY_ORDER_CONSUME
The operation is a consume operation on the specified memory location.

D.3.5 std::atomic_thread_fence function
The std::atomic_thread_fence() function inserts a “memory barrier” or “fence” in
the code to force memory-ordering constraints between operations.

Declaration
extern "C" void atomic_thread_fence(std::memory_order order);

Effects
Inserts a fence with the required memory-ordering constraints.

 A fence with an order of std::memory_order_release, std::memory_order_
acq_rel, or std::memory_order_seq_cst synchronizes-with an acquire operation
on the some memory location if that acquire operation reads a value stored by an
atomic operation following the fence on the same thread as the fence.

 A release operation synchronizes-with a fence with an order of std::memory_
order_acquire, std::memory_order_acq_rel, or std::memory_order_seq_cst if
that release operation stores a value that’s read by an atomic operation prior to the
fence on the same thread as the fence.

Throws
Nothing.

D.3.6 std::atomic_signal_fence function
The std::atomic_signal_fence() function inserts a memory barrier or fence in the
code to force memory ordering constraints between operations on a thread and oper-
ations in a signal handler on that thread.

Declaration
extern "C" void atomic_signal_fence(std::memory_order order);

Effects
Inserts a fence with the required memory-ordering constraints. This is equivalent to
std::atomic_thread_fence(order) except that the constraints apply only between a
thread and a signal handler on the same thread.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

395<atomic> header
D.3.7 std::atomic_flag class

The std::atomic_flag class provides a simple bare-bones atomic flag. It’s the only
data type that’s guaranteed to be lock-free by the C++11 Standard (although many
atomic types will be lock-free in most implementations).

 An instance of std::atomic_flag is either set or clear.

Class definition
struct atomic_flag
{
 atomic_flag() noexcept = default;
 atomic_flag(const atomic_flag&) = delete;
 atomic_flag& operator=(const atomic_flag&) = delete;
 atomic_flag& operator=(const atomic_flag&) volatile = delete;

 bool test_and_set(memory_order = memory_order_seq_cst) volatile
noexcept;

 bool test_and_set(memory_order = memory_order_seq_cst) noexcept;
 void clear(memory_order = memory_order_seq_cst) volatile noexcept;
 void clear(memory_order = memory_order_seq_cst) noexcept;
};

bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept;
bool atomic_flag_test_and_set(atomic_flag*) noexcept;
bool atomic_flag_test_and_set_explicit(
 volatile atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_and_set_explicit(
 atomic_flag*, memory_order) noexcept;
void atomic_flag_clear(volatile atomic_flag*) noexcept;
void atomic_flag_clear(atomic_flag*) noexcept;
void atomic_flag_clear_explicit(
 volatile atomic_flag*, memory_order) noexcept;
void atomic_flag_clear_explicit(
 atomic_flag*, memory_order) noexcept;

#define ATOMIC_FLAG_INIT unspecified

STD::ATOMIC_FLAG DEFAULT CONSTRUCTOR
It’s unspecified whether a default-constructed instance of std::atomic_flag is clear
or set. For objects of static storage duration, initialization shall be static initialization.

Declaration
std::atomic_flag() noexcept = default;

Effects
Constructs a new std::atomic_flag object in an unspecified state.

Throws
Nothing.

STD::ATOMIC_FLAG INITIALIZATION WITH ATOMIC_FLAG_INIT
An instance of std::atomic_flag may be initialized using the ATOMIC_FLAG_INIT
macro, in which case it’s initialized into the clear state. For objects of static storage
duration, initialization shall be static initialization.

Declaration
#define ATOMIC_FLAG_INIT unspecified
Download from Wow! eBook <www.wowebook.com>

396 APPENDIX D C++ Thread Library reference
Usage
std::atomic_flag flag=ATOMIC_FLAG_INIT;

Effects
Constructs a new std::atomic_flag object in the clear state.

Throws
Nothing.

STD::ATOMIC_FLAG::TEST_AND_SET MEMBER FUNCTION
Atomically sets the flag and checks whether or not it was set.

Declaration
bool test_and_set(memory_order order = memory_order_seq_cst) volatile

noexcept;
bool test_and_set(memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically sets the flag.

Returns
true if the flag was set at the point of the call, false if the flag was clear.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FLAG_TEST_AND_SET NONMEMBER FUNCTION
Atomically sets the flag and checks whether or not it was set.

Declaration
bool atomic_flag_test_and_set(volatile atomic_flag* flag) noexcept;
bool atomic_flag_test_and_set(atomic_flag* flag) noexcept;

Effects
return flag->test_and_set();

STD::ATOMIC_FLAG_TEST_AND_SET_EXPLICIT NONMEMBER FUNCTION
Atomically sets the flag and checks whether or not it was set.

Declaration
bool atomic_flag_test_and_set_explicit(
 volatile atomic_flag* flag, memory_order order) noexcept;
bool atomic_flag_test_and_set_explicit(
 atomic_flag* flag, memory_order order) noexcept;

Effects
return flag->test_and_set(order);

STD::ATOMIC_FLAG::CLEAR MEMBER FUNCTION
Atomically clears the flag.

Declaration
void clear(memory_order order = memory_order_seq_cst) volatile noexcept;
void clear(memory_order order = memory_order_seq_cst) noexcept;
Download from Wow! eBook <www.wowebook.com>

397<atomic> header
Preconditions
The supplied order must be one of std::memory_order_relaxed, std::memory_
order_release, or std::memory_order_seq_cst.

Effects
Atomically clears the flag.

Throws
Nothing.

NOTE This is an atomic store operation for the memory location comprising
*this.

STD::ATOMIC_FLAG_CLEAR NONMEMBER FUNCTION
Atomically clears the flag.

Declaration
void atomic_flag_clear(volatile atomic_flag* flag) noexcept;
void atomic_flag_clear(atomic_flag* flag) noexcept;

Effects
flag->clear();

STD::ATOMIC_FLAG_CLEAR_EXPLICIT NONMEMBER FUNCTION
Atomically clears the flag.

Declaration
void atomic_flag_clear_explicit(
 volatile atomic_flag* flag, memory_order order) noexcept;
void atomic_flag_clear_explicit(
 atomic_flag* flag, memory_order order) noexcept;

Effects
return flag->clear(order);

D.3.8 std::atomic class template

The std::atomic class provides a wrapper with atomic operations for any type that
satisfies the following requirements.

 The template parameter BaseType must

■ Have a trivial default constructor
■ Have a trivial copy-assignment operator
■ Have a trivial destructor
■ Be bitwise-equality comparable

This basically means that std::atomic<some-built-in-type> is fine, as is std::
atomic<some-simple-struct>, but things like std::atomic<std::string> are not.

 In addition to the primary template, there are specializations for the built-in inte-
gral types and pointers to provide additional operations such as x++.

 Instances of std::atomic are not CopyConstructible or CopyAssignable, because
these operations can’t be performed as a single atomic operation.
Download from Wow! eBook <www.wowebook.com>

398 APPENDIX D C++ Thread Library reference
Class definition
template<typename BaseType>
struct atomic
{
 atomic() noexcept = default;
 constexpr atomic(BaseType) noexcept;
 BaseType operator=(BaseType) volatile noexcept;
 BaseType operator=(BaseType) noexcept;

 atomic(const atomic&) = delete;
 atomic& operator=(const atomic&) = delete;
 atomic& operator=(const atomic&) volatile = delete;

 bool is_lock_free() const volatile noexcept;
 bool is_lock_free() const noexcept;
 void store(BaseType,memory_order = memory_order_seq_cst)
 volatile noexcept;
 void store(BaseType,memory_order = memory_order_seq_cst) noexcept;
 BaseType load(memory_order = memory_order_seq_cst)
 const volatile noexcept;
 BaseType load(memory_order = memory_order_seq_cst) const noexcept;
 BaseType exchange(BaseType,memory_order = memory_order_seq_cst)
 volatile noexcept;
 BaseType exchange(BaseType,memory_order = memory_order_seq_cst)
 noexcept;

 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) volatile noexcept;
 bool compare_exchange_strong(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst)
 volatile noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) volatile noexcept;
 bool compare_exchange_weak(
 BaseType & old_value, BaseType new_value,
 memory_order success_order,
 memory_order failure_order) noexcept;
Download from Wow! eBook <www.wowebook.com>

399<atomic> header
 operator BaseType () const volatile noexcept;
 operator BaseType () const noexcept;
};

template<typename BaseType>
bool atomic_is_lock_free(volatile const atomic<BaseType>*) noexcept;
template<typename BaseType>
bool atomic_is_lock_free(const atomic<BaseType>*) noexcept;
template<typename BaseType>
void atomic_init(volatile atomic<BaseType>*, void*) noexcept;
template<typename BaseType>
void atomic_init(atomic<BaseType>*, void*) noexcept;
template<typename BaseType>
BaseType atomic_exchange(volatile atomic<BaseType>*, memory_order)
 noexcept;
template<typename BaseType>
BaseType atomic_exchange(atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_exchange_explicit(
 volatile atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_exchange_explicit(
 atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
void atomic_store(volatile atomic<BaseType>*, BaseType) noexcept;
template<typename BaseType>
void atomic_store(atomic<BaseType>*, BaseType) noexcept;
template<typename BaseType>
void atomic_store_explicit(
 volatile atomic<BaseType>*, BaseType, memory_order) noexcept;
template<typename BaseType>
void atomic_store_explicit(
 atomic<BaseType>*, BaseType, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_load(volatile const atomic<BaseType>*) noexcept;
template<typename BaseType>
BaseType atomic_load(const atomic<BaseType>*) noexcept;
template<typename BaseType>
BaseType atomic_load_explicit(
 volatile const atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
BaseType atomic_load_explicit(
 const atomic<BaseType>*, memory_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong(
 volatile atomic<BaseType>*,BaseType * old_value,
 BaseType new_value) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong(
 atomic<BaseType>*,BaseType * old_value,
 BaseType new_value) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 volatile atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
Download from Wow! eBook <www.wowebook.com>

400 APPENDIX D C++ Thread Library reference
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak(
 volatile atomic<BaseType>*,BaseType * old_value,BaseType new_value)
 noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak(
 atomic<BaseType>*,BaseType * old_value,BaseType new_value) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 atomic<BaseType>*,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;

NOTE Although the nonmember functions are specified as templates, they
may be provided as an overloaded set of functions, and explicit specification
of the template arguments shouldn’t be used.

STD::ATOMIC DEFAULT CONSTRUCTOR
Constructs an instance of std::atomic with a default-initialized value.

Declaration
atomic() noexcept;

Effects
Constructs a new std::atomic object with a default-initialized value. For objects
with static storage duration this is static initialization.

NOTE Instances of std::atomic with nonstatic storage duration initialized
with the default constructor can’t be relied on to have a predictable value.

Throws
Nothing.

STD::ATOMIC_INIT NONMEMBER FUNCTION
Nonatomically stores the supplied value in an instance of std::atomic<BaseType>.

Declaration
template<typename BaseType>
void atomic_init(atomic<BaseType> volatile* p, BaseType v) noexcept;
template<typename BaseType>
void atomic_init(atomic<BaseType>* p, BaseType v) noexcept;
Download from Wow! eBook <www.wowebook.com>

401<atomic> header
Effects
Nonatomically stores the value of v in *p. Invoking atomic_init() on an instance
of atomic<BaseType> that hasn’t been default constructed, or that has had any
operations performed on it since construction, is undefined behavior.

NOTE Because this store is nonatomic, any concurrent access to the object
pointed to by p from another thread (even with atomic operations) consti-
tutes a data race.

Throws
Nothing.

STD::ATOMIC CONVERSION CONSTRUCTOR
Construct an instance of std::atomic with the supplied BaseType value.

Declaration
constexpr atomic(BaseType b) noexcept;

Effects
Constructs a new std::atomic object with a value of b. For objects with static stor-
age duration this is static initialization.

Throws
Nothing.

STD::ATOMIC CONVERSION ASSIGNMENT OPERATOR
Stores a new value in *this.

Declaration
BaseType operator=(BaseType b) volatile noexcept;
BaseType operator=(BaseType b) noexcept;

Effects
return this->store(b);

STD::ATOMIC::IS_LOCK_FREE MEMBER FUNCTION
Determines if operations on *this are lock-free.

Declaration
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

Returns
true if operations on *this are lock-free, false otherwise.

Throws
Nothing.

STD::ATOMIC_IS_LOCK_FREE NONMEMBER FUNCTION
Determine if operations on *this are lock-free.

Declaration
template<typename BaseType>
bool atomic_is_lock_free(volatile const atomic<BaseType>* p) noexcept;
Download from Wow! eBook <www.wowebook.com>

402 APPENDIX D C++ Thread Library reference
template<typename BaseType>
bool atomic_is_lock_free(const atomic<BaseType>* p) noexcept;

Effects
return p->is_lock_free();

STD::ATOMIC::LOAD MEMBER FUNCTION
Atomically loads the current value of the std::atomic instance.

Declaration
BaseType load(memory_order order = memory_order_seq_cst)
 const volatile noexcept;
BaseType load(memory_order order = memory_order_seq_cst) const noexcept;

Preconditions
The supplied order must be one of std::memory_order_relaxed, std::memory_
order_acquire, std::memory_order_consume, or std::memory_order_seq_cst.

Effects
Atomically loads the value stored in *this.

Returns
The value stored in *this at the point of the call.

Throws
Nothing.

NOTE This is an atomic load operation for the memory location comprising
*this.

STD::ATOMIC_LOAD NONMEMBER FUNCTION
Atomically loads the current value of the std::atomic instance.

Declaration
template<typename BaseType>
BaseType atomic_load(volatile const atomic<BaseType>* p) noexcept;
template<typename BaseType>
BaseType atomic_load(const atomic<BaseType>* p) noexcept;

Effects
return p->load();

STD::ATOMIC_LOAD_EXPLICIT NONMEMBER FUNCTION
Atomically loads the current value of the std::atomic instance.

Declaration
template<typename BaseType>
BaseType atomic_load_explicit(
 volatile const atomic<BaseType>* p, memory_order order) noexcept;
template<typename BaseType>
BaseType atomic_load_explicit(
 const atomic<BaseType>* p, memory_order order) noexcept;

Effects
return p->load(order);
Download from Wow! eBook <www.wowebook.com>

403<atomic> header
STD::ATOMIC::OPERATOR BASETYPE CONVERSION OPERATOR
Loads the value stored in *this.

Declaration
operator BaseType() const volatile noexcept;
operator BaseType() const noexcept;

Effects
return this->load();

STD::ATOMIC::STORE MEMBER FUNCTION
Atomically store a new value in an atomic<BaseType> instance.

Declaration
void store(BaseType new_value,memory_order order = memory_order_seq_cst)
 volatile noexcept;
void store(BaseType new_value,memory_order order = memory_order_seq_cst)
 noexcept;

Preconditions
The supplied order must be one of std::memory_order_relaxed, std::memory_
order_release, or std::memory_order_seq_cst.

Effects
Atomically stores new_value in *this.

Throws
Nothing.

NOTE This is an atomic store operation for the memory location comprising
*this.

STD::ATOMIC_STORE NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance.

Declaration
template<typename BaseType>
void atomic_store(volatile atomic<BaseType>* p, BaseType new_value)
 noexcept;
template<typename BaseType>
void atomic_store(atomic<BaseType>* p, BaseType new_value) noexcept;

Effects
p->store(new_value);

STD::ATOMIC_STORE_EXPLICIT NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance.

Declaration
template<typename BaseType>
void atomic_store_explicit(
 volatile atomic<BaseType>* p, BaseType new_value, memory_order order)
 noexcept;
template<typename BaseType>
void atomic_store_explicit(
 atomic<BaseType>* p, BaseType new_value, memory_order order) noexcept;
Download from Wow! eBook <www.wowebook.com>

404 APPENDIX D C++ Thread Library reference
Effects
p->store(new_value,order);

STD::ATOMIC::EXCHANGE MEMBER FUNCTION
Atomically stores a new value and reads the old one.

Declaration
BaseType exchange(
 BaseType new_value,
 memory_order order = memory_order_seq_cst)
 volatile noexcept;

Effects
Atomically stores new_value in *this and retrieves the existing value of *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_EXCHANGE NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance and reads the prior value.

Declaration
template<typename BaseType>
BaseType atomic_exchange(volatile atomic<BaseType>* p, BaseType new_value)
 noexcept;
template<typename BaseType>
BaseType atomic_exchange(atomic<BaseType>* p, BaseType new_value) noexcept;

Effects
return p->exchange(new_value);

STD::ATOMIC_EXCHANGE_EXPLICIT NONMEMBER FUNCTION
Atomically stores a new value in an atomic<BaseType> instance and reads the prior value.

Declaration
template<typename BaseType>
BaseType atomic_exchange_explicit(
 volatile atomic<BaseType>* p, BaseType new_value, memory_order order)
 noexcept;
template<typename BaseType>
BaseType atomic_exchange_explicit(
 atomic<BaseType>* p, BaseType new_value, memory_order order) noexcept;

Effects
return p->exchange(new_value,order);

STD::ATOMIC::COMPARE_EXCHANGE_STRONG MEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the values
are equal. If the values aren’t equal, updates the expected value with the value read.
Download from Wow! eBook <www.wowebook.com>

405<atomic> header
Declaration
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) volatile noexcept;
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) noexcept;
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
bool compare_exchange_strong(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order) noexcept;

Preconditions
failure_order shall not be std::memory_order_release or std::memory_order_
acq_rel.

Effects
Atomically compares expected to the value stored in *this using bitwise comparison
and stores new_value in *this if equal; otherwise updates expected to the value read.

Returns
true if the existing value of *this was equal to expected, false otherwise.

Throws
Nothing.

NOTE The three-parameter overload is equivalent to the four-parameter
overload with success_order==order and failure_order==order, except
that if order is std::memory_order_acq_rel, then failure_order is std::
memory_order_acquire, and if order is std::memory_order_release, then
failure_order is std::memory_order_relaxed.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this if the result is true, with memory ordering success_order;
otherwise, it’s an atomic load operation for the memory location comprising
*this with memory ordering failure_order.

STD::ATOMIC_COMPARE_EXCHANGE_STRONG NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal. If the values aren’t equal, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_strong(
 volatile atomic<BaseType>* p,BaseType * old_value,BaseType new_value)
 noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong(
 atomic<BaseType>* p,BaseType * old_value,BaseType new_value) noexcept;
Download from Wow! eBook <www.wowebook.com>

406 APPENDIX D C++ Thread Library reference
Effects
return p->compare_exchange_strong(*old_value,new_value);

STD::ATOMIC_COMPARE_EXCHANGE_STRONG_EXPLICIT NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the values
are equal. If the values aren’t equal, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 volatile atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_strong_explicit(
 atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;

Effects
return p->compare_exchange_strong(
 *old_value,new_value,success_order,failure_order) noexcept;

STD::ATOMIC::COMPARE_EXCHANGE_WEAK MEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal and the update can be done atomically. If the values aren’t equal or the
update can’t be done atomically, updates the expected value with the value read.

Declaration
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) volatile noexcept;
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order order = std::memory_order_seq_cst) noexcept;
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
bool compare_exchange_weak(
 BaseType& expected,BaseType new_value,
 memory_order success_order,memory_order failure_order) noexcept;

Preconditions
failure_order shall not be std::memory_order_release or std::memory_order_
acq_rel.

Effects
Atomically compares expected to the value stored in *this using bitwise compari-
son and stores new_value in *this if equal. If the values aren’t equal or the update
can’t be done atomically, updates expected to the value read.
Download from Wow! eBook <www.wowebook.com>

407<atomic> header
Returns
true if the existing value of *this was equal to expected and new_value was suc-
cessfully stored in *this, false otherwise.

Throws
Nothing.

NOTE The three-parameter overload is equivalent to the four-parameter
overload with success_order==order and failure_order==order, except
that if order is std::memory_order_acq_rel, then failure_order is std::
memory_order_acquire, and if order is std::memory_order_release, then
failure_order is std::memory_order_relaxed.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this if the result is true, with memory ordering success_order;
otherwise, it’s an atomic load operation for the memory location comprising
*this with memory ordering failure_order.

STD::ATOMIC_COMPARE_EXCHANGE_WEAK NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal and the update can be done atomically. If the values aren’t equal or the
update can’t be done atomically, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_weak(
 volatile atomic<BaseType>* p,BaseType * old_value,BaseType new_value)
 noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak(
 atomic<BaseType>* p,BaseType * old_value,BaseType new_value) noexcept;

Effects
return p->compare_exchange_weak(*old_value,new_value);

STD::ATOMIC_COMPARE_EXCHANGE_WEAK_EXPLICIT NONMEMBER FUNCTION
Atomically compares the value to an expected value and stores a new value if the val-
ues are equal and the update can be done atomically. If the values aren’t equal or the
update can’t be done atomically, updates the expected value with the value read.

Declaration
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
template<typename BaseType>
bool atomic_compare_exchange_weak_explicit(
 atomic<BaseType>* p,BaseType * old_value,
 BaseType new_value, memory_order success_order,
 memory_order failure_order) noexcept;
Download from Wow! eBook <www.wowebook.com>

408 APPENDIX D C++ Thread Library reference
Effects
return p->compare_exchange_weak(
 *old_value,new_value,success_order,failure_order);

D.3.9 Specializations of the std::atomic template

Specializations of the std::atomic class template are provided for the integral types
and pointer types. For the integral types, these specializations provide atomic addi-
tion, subtraction, and bitwise operations in addition to the operations provided by the
primary template. For pointer types, the specializations provide atomic pointer arith-
metic in addition to the operations provided by the primary template.

 Specializations are provided for the following integral types:

std::atomic<bool>
std::atomic<char>
std::atomic<signed char>
std::atomic<unsigned char>
std::atomic<short>
std::atomic<unsigned short>
std::atomic<int>
std::atomic<unsigned>
std::atomic<long>
std::atomic<unsigned long>
std::atomic<long long>
std::atomic<unsigned long long>
std::atomic<wchar_t>
std::atomic<char16_t>
std::atomic<char32_t>

and for std::atomic<T*> for all types T.

D.3.10 std::atomic<integral-type> specializations

The std::atomic<integral-type> specializations of the std::atomic class template
provide an atomic integral data type for each fundamental integer type, with a com-
prehensive set of operations.

 The following description applies to these specializations of the std::atomic<>
class template:

std::atomic<char>
std::atomic<signed char>
std::atomic<unsigned char>
std::atomic<short>
std::atomic<unsigned short>
std::atomic<int>
std::atomic<unsigned>
std::atomic<long>
std::atomic<unsigned long>
std::atomic<long long>
std::atomic<unsigned long long>
std::atomic<wchar_t>
std::atomic<char16_t>
std::atomic<char32_t>
Download from Wow! eBook <www.wowebook.com>

409<atomic> header
Instances of these specializations are not CopyConstructible or CopyAssignable,
because these operations can’t be performed as a single atomic operation.

Class definition
template<>
struct atomic<integral-type>
{
 atomic() noexcept = default;
 constexpr atomic(integral-type) noexcept;
 bool operator=(integral-type) volatile noexcept;

 atomic(const atomic&) = delete;
 atomic& operator=(const atomic&) = delete;
 atomic& operator=(const atomic&) volatile = delete;

 bool is_lock_free() const volatile noexcept;
 bool is_lock_free() const noexcept;

 void store(integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 void store(integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type load(memory_order = memory_order_seq_cst)
 const volatile noexcept;
 integral-type load(memory_order = memory_order_seq_cst) const noexcept;
 integral-type exchange(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type exchange(
 integral-type,memory_order = memory_order_seq_cst) noexcept;

 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_strong(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_weak(
 integral-type & old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
Download from Wow! eBook <www.wowebook.com>

410 APPENDIX D C++ Thread Library reference
 operator integral-type() const volatile noexcept;
 operator integral-type() const noexcept;

 integral-type fetch_add(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_add(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_sub(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_sub(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_and(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_and(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_or(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_or(
 integral-type,memory_order = memory_order_seq_cst) noexcept;
 integral-type fetch_xor(
 integral-type,memory_order = memory_order_seq_cst)
 volatile noexcept;
 integral-type fetch_xor(
 integral-type,memory_order = memory_order_seq_cst) noexcept;

 integral-type operator++() volatile noexcept;
 integral-type operator++() noexcept;
 integral-type operator++(int) volatile noexcept;
 integral-type operator++(int) noexcept;
 integral-type operator--() volatile noexcept;
 integral-type operator--() noexcept;
 integral-type operator--(int) volatile noexcept;
 integral-type operator--(int) noexcept;

 integral-type operator+=(integral-type) volatile noexcept;
 integral-type operator+=(integral-type) noexcept;
 integral-type operator-=(integral-type) volatile noexcept;
 integral-type operator-=(integral-type) noexcept;
 integral-type operator&=(integral-type) volatile noexcept;
 integral-type operator&=(integral-type) noexcept;
 integral-type operator|=(integral-type) volatile noexcept;
 integral-type operator|=(integral-type) noexcept;
 integral-type operator^=(integral-type) volatile noexcept;
 integral-type operator^=(integral-type) noexcept;
};

bool atomic_is_lock_free(volatile const atomic<integral-type>*) noexcept;
bool atomic_is_lock_free(const atomic<integral-type>*) noexcept;
void atomic_init(volatile atomic<integral-type>*,integral-type) noexcept;
void atomic_init(atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_exchange(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_exchange(
 atomic<integral-type>*,integral-type) noexcept;
Download from Wow! eBook <www.wowebook.com>

411<atomic> header
integral-type atomic_exchange_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_exchange_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
void atomic_store(volatile atomic<integral-type>*,integral-type) noexcept;
void atomic_store(atomic<integral-type>*,integral-type) noexcept;
void atomic_store_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
void atomic_store_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_load(volatile const atomic<integral-type>*) noexcept;
integral-type atomic_load(const atomic<integral-type>*) noexcept;
integral-type atomic_load_explicit(
 volatile const atomic<integral-type>*,memory_order) noexcept;
integral-type atomic_load_explicit(
 const atomic<integral-type>*,memory_order) noexcept;
bool atomic_compare_exchange_strong(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_strong(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_strong_explicit(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_strong_explicit(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_weak(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value) noexcept;
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak_explicit(
 atomic<integral-type>*,
 integral-type * old_value,integral-type new_value,
 memory_order success_order,memory_order failure_order) noexcept;

integral-type atomic_fetch_add(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_add(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_add_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_add_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_sub(
 volatile atomic<integral-type>*,integral-type) noexcept;
Download from Wow! eBook <www.wowebook.com>

412 APPENDIX D C++ Thread Library reference
integral-type atomic_fetch_sub(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_sub_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_sub_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_and(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_and(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_and_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_and_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_or(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_or(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_or_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_or_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_xor(
 volatile atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_xor(
 atomic<integral-type>*,integral-type) noexcept;
integral-type atomic_fetch_xor_explicit(
 volatile atomic<integral-type>*,integral-type, memory_order) noexcept;
integral-type atomic_fetch_xor_explicit(
 atomic<integral-type>*,integral-type, memory_order) noexcept;

Those operations that are also provided by the primary template (see D.3.8) have
the same semantics.

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_ADD MEMBER FUNCTION
Atomically loads a value and replaces it with the sum of that value and the supplied
value i.

Declaration
integral-type fetch_add(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_add(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value + i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.
Download from Wow! eBook <www.wowebook.com>

413<atomic> header
STD::ATOMIC_FETCH_ADD NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value plus the supplied value i.

Declaration
integral-type atomic_fetch_add(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_add(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_add(i);

STD::ATOMIC_FETCH_ADD_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value plus the supplied value i.

Declaration
integral-type atomic_fetch_add_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_add_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_add(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_SUB MEMBER FUNCTION
Atomically loads a value and replaces it with the sum of that value and the supplied
value i.

Declaration
integral-type fetch_sub(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_sub(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value - i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_SUB NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value minus the supplied value i.
Download from Wow! eBook <www.wowebook.com>

414 APPENDIX D C++ Thread Library reference
Declaration
integral-type atomic_fetch_sub(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_sub(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_sub(i);

STD::ATOMIC_FETCH_SUB_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with that value minus the supplied value i.

Declaration
integral-type atomic_fetch_sub_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_sub_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_sub(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_AND MEMBER FUNCTION
Atomically loads a value and replaces it with the bitwise-and of that value and the sup-
plied value i.

Declaration
integral-type fetch_and(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_and(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value & i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_AND NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-and of that value and the supplied value i.

Declaration
integral-type atomic_fetch_and(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_and(
 atomic<integral-type>* p, integral-type i) noexcept;
Download from Wow! eBook <www.wowebook.com>

415<atomic> header
Effects
return p->fetch_and(i);

STD::ATOMIC_FETCH_AND_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-and of that value and the supplied value i.

Declaration
integral-type atomic_fetch_and_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_and_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_and(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_OR MEMBER FUNCTION
Atomically loads a value and replaces it with the bitwise-or of that value and the sup-
plied value i.

Declaration
integral-type fetch_or(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_or(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value | i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_OR NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-or of that value and the supplied value i.

Declaration
integral-type atomic_fetch_or(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_or(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_or(i);
Download from Wow! eBook <www.wowebook.com>

416 APPENDIX D C++ Thread Library reference
STD::ATOMIC_FETCH_OR_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-or of that value and the supplied value i.

Declaration
integral-type atomic_fetch_or_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_or_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_or(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::FETCH_XOR MEMBER FUNCTION
Atomically loads a value and replaces it with the bitwise-xor of that value and the sup-
plied value i.

Declaration
integral-type fetch_xor(
 integral-type i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
integral-type fetch_xor(
 integral-type i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value ^ i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_XOR NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-xor of that value and the supplied value i.

Declaration
integral-type atomic_fetch_xor(
 volatile atomic<integral-type>* p, integral-type i) noexcept;
integral-type atomic_fetch_xor(
 atomic<integral-type>* p, integral-type i) noexcept;

Effects
return p->fetch_xor(i);

STD::ATOMIC_FETCH_XOR_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<integral-type> instance and replaces it
with the bitwise-xor of that value and the supplied value i.
Download from Wow! eBook <www.wowebook.com>

417<atomic> header
Declaration
integral-type atomic_fetch_xor_explicit(
 volatile atomic<integral-type>* p, integral-type i,
 memory_order order) noexcept;
integral-type atomic_fetch_xor_explicit(
 atomic<integral-type>* p, integral-type i, memory_order order)
 noexcept;

Effects
return p->fetch_xor(i,order);

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR++ PREINCREMENT OPERATOR
Atomically increments the value stored in *this and returns the new value.

Declaration
integral-type operator++() volatile noexcept;
integral-type operator++() noexcept;

Effects
return this->fetch_add(1) + 1;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR++ POSTINCREMENT OPERATOR
Atomically increments the value stored in *this and returns the old value.

Declaration
integral-type operator++(int) volatile noexcept;
integral-type operator++(int) noexcept;

Effects
return this->fetch_add(1);

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR- - PREDECREMENT OPERATOR
Atomically decrements the value stored in *this and returns the new value.

Declaration
integral-type operator--() volatile noexcept;
integral-type operator--() noexcept;

Effects
return this->fetch_sub(1) – 1;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR- - POSTDECREMENT OPERATOR
Atomically decrements the value stored in *this and returns the old value.

Declaration
integral-type operator--(int) volatile noexcept;
integral-type operator--(int) noexcept;

Effects
return this->fetch_sub(1);

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR
Atomically adds the supplied value to the value stored in *this and returns the
new value.

Declaration
integral-type operator+=(integral-type i) volatile noexcept;
integral-type operator+=(integral-type i) noexcept;
Download from Wow! eBook <www.wowebook.com>

418 APPENDIX D C++ Thread Library reference
Effects
return this->fetch_add(i) + i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR
Atomically subtracts the supplied value from the value stored in *this and returns the
new value.

Declaration
integral-type operator-=(integral-type i) volatile noexcept;
integral-type operator-=(integral-type i) noexcept;

Effects
return this->fetch_sub(i,std::memory_order_seq_cst) – i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR&= COMPOUND ASSIGNMENT OPERATOR
Atomically replaces the value stored in *this with the bitwise-and of the supplied
value and the value stored in *this and returns the new value.

Declaration
integral-type operator&=(integral-type i) volatile noexcept;
integral-type operator&=(integral-type i) noexcept;

Effects
return this->fetch_and(i) & i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR|= COMPOUND ASSIGNMENT OPERATOR
Atomically replaces the value stored in *this with the bitwise-or of the supplied value
and the value stored in *this and returns the new value.

Declaration
integral-type operator|=(integral-type i) volatile noexcept;
integral-type operator|=(integral-type i) noexcept;

Effects
return this->fetch_or(i,std::memory_order_seq_cst) | i;

STD::ATOMIC<INTEGRAL-TYPE>::OPERATOR^= COMPOUND ASSIGNMENT OPERATOR
Atomically replaces the value stored in *this with the bitwise-xor of the supplied
value and the value stored in *this and returns the new value.

Declaration
integral-type operator^=(integral-type i) volatile noexcept;
integral-type operator^=(integral-type i) noexcept;

Effects
return this->fetch_xor(i,std::memory_order_seq_cst) ^ i;

STD::ATOMIC<T*> PARTIAL SPECIALIZATION
The std::atomic<T*> partial specialization of the std::atomic class template provides
an atomic data type for each pointer type, with a comprehensive set of operations.

 Instances of these std::atomic<T*> are not CopyConstructible or CopyAssignable,
because these operations can’t be performed as a single atomic operation.
Download from Wow! eBook <www.wowebook.com>

419<atomic> header
Class definition
template<typename T>
struct atomic<T*>
{
 atomic() noexcept = default;
 constexpr atomic(T*) noexcept;
 bool operator=(T*) volatile;
 bool operator=(T*);

 atomic(const atomic&) = delete;
 atomic& operator=(const atomic&) = delete;
 atomic& operator=(const atomic&) volatile = delete;

 bool is_lock_free() const volatile noexcept;
 bool is_lock_free() const noexcept;
 void store(T*,memory_order = memory_order_seq_cst) volatile noexcept;
 void store(T*,memory_order = memory_order_seq_cst) noexcept;
 T* load(memory_order = memory_order_seq_cst) const volatile noexcept;
 T* load(memory_order = memory_order_seq_cst) const noexcept;
 T* exchange(T*,memory_order = memory_order_seq_cst) volatile noexcept;
 T* exchange(T*,memory_order = memory_order_seq_cst) noexcept;

 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_strong(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) volatile noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order order = memory_order_seq_cst) noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order)
 volatile noexcept;
 bool compare_exchange_weak(
 T* & old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;

 operator T*() const volatile noexcept;
 operator T*() const noexcept;

 T* fetch_add(
 ptrdiff_t,memory_order = memory_order_seq_cst) volatile noexcept;
 T* fetch_add(
 ptrdiff_t,memory_order = memory_order_seq_cst) noexcept;
Download from Wow! eBook <www.wowebook.com>

420 APPENDIX D C++ Thread Library reference
 T* fetch_sub(
 ptrdiff_t,memory_order = memory_order_seq_cst) volatile noexcept;
 T* fetch_sub(
 ptrdiff_t,memory_order = memory_order_seq_cst) noexcept;

 T* operator++() volatile noexcept;
 T* operator++() noexcept;
 T* operator++(int) volatile noexcept;
 T* operator++(int) noexcept;
 T* operator--() volatile noexcept;
 T* operator--() noexcept;
 T* operator--(int) volatile noexcept;
 T* operator--(int) noexcept;

 T* operator+=(ptrdiff_t) volatile noexcept;
 T* operator+=(ptrdiff_t) noexcept;
 T* operator-=(ptrdiff_t) volatile noexcept;
 T* operator-=(ptrdiff_t) noexcept;
};

bool atomic_is_lock_free(volatile const atomic<T*>*) noexcept;
bool atomic_is_lock_free(const atomic<T*>*) noexcept;
void atomic_init(volatile atomic<T*>*, T*) noexcept;
void atomic_init(atomic<T*>*, T*) noexcept;
T* atomic_exchange(volatile atomic<T*>*, T*) noexcept;
T* atomic_exchange(atomic<T*>*, T*) noexcept;
T* atomic_exchange_explicit(volatile atomic<T*>*, T*, memory_order)
 noexcept;
T* atomic_exchange_explicit(atomic<T*>*, T*, memory_order) noexcept;
void atomic_store(volatile atomic<T*>*, T*) noexcept;
void atomic_store(atomic<T*>*, T*) noexcept;
void atomic_store_explicit(volatile atomic<T*>*, T*, memory_order)
 noexcept;
void atomic_store_explicit(atomic<T*>*, T*, memory_order) noexcept;
T* atomic_load(volatile const atomic<T*>*) noexcept;
T* atomic_load(const atomic<T*>*) noexcept;
T* atomic_load_explicit(volatile const atomic<T*>*, memory_order) noexcept;
T* atomic_load_explicit(const atomic<T*>*, memory_order) noexcept;
bool atomic_compare_exchange_strong(
 volatile atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_strong(
 volatile atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_strong_explicit(
 atomic<T*>*,T* * old_value,T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_strong_explicit(
 atomic<T*>*,T* * old_value,T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
bool atomic_compare_exchange_weak(
 volatile atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_weak(
 atomic<T*>*,T* * old_value,T* new_value) noexcept;
bool atomic_compare_exchange_weak_explicit(
 volatile atomic<T*>*,T* * old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;
Download from Wow! eBook <www.wowebook.com>

421<atomic> header
bool atomic_compare_exchange_weak_explicit(
 atomic<T*>*,T* * old_value, T* new_value,
 memory_order success_order,memory_order failure_order) noexcept;

T* atomic_fetch_add(volatile atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_add(atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_add_explicit(
 volatile atomic<T*>*, ptrdiff_t, memory_order) noexcept;
T* atomic_fetch_add_explicit(
 atomic<T*>*, ptrdiff_t, memory_order) noexcept;
T* atomic_fetch_sub(volatile atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_sub(atomic<T*>*, ptrdiff_t) noexcept;
T* atomic_fetch_sub_explicit(
 volatile atomic<T*>*, ptrdiff_t, memory_order) noexcept;
T* atomic_fetch_sub_explicit(
 atomic<T*>*, ptrdiff_t, memory_order) noexcept;

Those operations that are also provided by the primary template (see 11.3.8) have
the same semantics.

STD::ATOMIC<T*>::FETCH_ADD MEMBER FUNCTION
Atomically loads a value and replaces it with the sum of that value and the supplied
value i using standard pointer arithmetic rules, and returns the old value.

Declaration
T* fetch_add(
 ptrdiff_t i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
T* fetch_add(
 ptrdiff_t i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value + i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_ADD NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value plus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_add(volatile atomic<T*>* p, ptrdiff_t i) noexcept;
T* atomic_fetch_add(atomic<T*>* p, ptrdiff_t i) noexcept;

Effects
return p->fetch_add(i);
Download from Wow! eBook <www.wowebook.com>

422 APPENDIX D C++ Thread Library reference
STD::ATOMIC_FETCH_ADD_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value plus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_add_explicit(
 volatile atomic<T*>* p, ptrdiff_t i,memory_order order) noexcept;
T* atomic_fetch_add_explicit(
 atomic<T*>* p, ptrdiff_t i, memory_order order) noexcept;

Effects
return p->fetch_add(i,order);

STD::ATOMIC<T*>::FETCH_SUB MEMBER FUNCTION
Atomically loads a value and replaces it with that value minus the supplied value i
using standard pointer arithmetic rules, and returns the old value.

Declaration
T* fetch_sub(
 ptrdiff_t i,memory_order order = memory_order_seq_cst)
 volatile noexcept;
T* fetch_sub(
 ptrdiff_t i,memory_order order = memory_order_seq_cst) noexcept;

Effects
Atomically retrieves the existing value of *this and stores old-value - i in *this.

Returns
The value of *this immediately prior to the store.

Throws
Nothing.

NOTE This is an atomic read-modify-write operation for the memory location
comprising *this.

STD::ATOMIC_FETCH_SUB NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value minus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_sub(volatile atomic<T*>* p, ptrdiff_t i) noexcept;
T* atomic_fetch_sub(atomic<T*>* p, ptrdiff_t i) noexcept;

Effects
return p->fetch_sub(i);

STD::ATOMIC_FETCH_SUB_EXPLICIT NONMEMBER FUNCTION
Atomically reads the value from an atomic<T*> instance and replaces it with that
value minus the supplied value i using standard pointer arithmetic rules.

Declaration
T* atomic_fetch_sub_explicit(
 volatile atomic<T*>* p, ptrdiff_t i,memory_order order) noexcept;
Download from Wow! eBook <www.wowebook.com>

423<atomic> header
T* atomic_fetch_sub_explicit(
 atomic<T*>* p, ptrdiff_t i, memory_order order) noexcept;

Effects
return p->fetch_sub(i,order);

STD::ATOMIC<T*>::OPERATOR++ PREINCREMENT OPERATOR
Atomically increments the value stored in *this using standard pointer arithmetic
rules and returns the new value.

Declaration
T* operator++() volatile noexcept;
T* operator++() noexcept;

Effects
return this->fetch_add(1) + 1;

STD::ATOMIC<T*>::OPERATOR++ POSTINCREMENT OPERATOR
Atomically increments the value stored in *this and returns the old value.

Declaration
T* operator++(int) volatile noexcept;
T* operator++(int) noexcept;

Effects
return this->fetch_add(1);

STD::ATOMIC<T*>::OPERATOR- - PREDECREMENT OPERATOR
Atomically decrements the value stored in *this using standard pointer arithmetic
rules and returns the new value.

Declaration
T* operator--() volatile noexcept;
T* operator--() noexcept;

Effects
return this->fetch_sub(1) - 1;

STD::ATOMIC<T*>::OPERATOR- - POSTDECREMENT OPERATOR
Atomically decrements the value stored in *this using standard pointer arithmetic
rules and returns the old value.

Declaration
T* operator--(int) volatile noexcept;
T* operator--(int) noexcept;

Effects
return this->fetch_sub(1);

STD::ATOMIC<T*>::OPERATOR+= COMPOUND ASSIGNMENT OPERATOR
Atomically adds the supplied value to the value stored in *this using standard pointer
arithmetic rules and returns the new value.

Declaration
T* operator+=(ptrdiff_t i) volatile noexcept;
T* operator+=(ptrdiff_t i) noexcept;
Download from Wow! eBook <www.wowebook.com>

424 APPENDIX D C++ Thread Library reference
Effects
return this->fetch_add(i) + i;

STD::ATOMIC<T*>::OPERATOR-= COMPOUND ASSIGNMENT OPERATOR
Atomically subtracts the supplied value from the value stored in *this using standard
pointer arithmetic rules and returns the new value.

Declaration
T* operator-=(ptrdiff_t i) volatile noexcept;
T* operator-=(ptrdiff_t i) noexcept;

Effects
return this->fetch_sub(i) - i;

D.4 <future> header
The <future> header provides facilities for handling asynchronous results from oper-
ations that may be performed on another thread.

Header contents
namespace std
{
 enum class future_status {
 ready, timeout, deferred };

 enum class future_errc
 {

 broken_promise,
 future_already_retrieved,
 promise_already_satisfied,
 no_state
 };

 class future_error;

 const error_category& future_category();

 error_code make_error_code(future_errc e);
 error_condition make_error_condition(future_errc e);

 template<typename ResultType>
 class future;

 template<typename ResultType>
 class shared_future;

 template<typename ResultType>
 class promise;

 template<typename FunctionSignature>
 class packaged_task; // no definition provided

 template<typename ResultType,typename ... Args>
 class packaged_task<ResultType (Args...)>;

 enum class launch {
 async, deferred
 };
Download from Wow! eBook <www.wowebook.com>

425<future> header
 template<typename FunctionType,typename ... Args>
 future<result_of<FunctionType(Args...)>::type>
 async(FunctionType&& func,Args&& ... args);

 template<typename FunctionType,typename ... Args>
 future<result_of<FunctionType(Args...)>::type>
 async(std::launch policy,FunctionType&& func,Args&& ... args);

}

D.4.1 std::future class template

The std::future class template provides a means of waiting for an asynchronous
result from another thread, in conjunction with the std::promise and std::
packaged_task class templates and the std::async function template, which can be
used to provide that asynchronous result. Only one std::future instance references
any given asynchronous result at any time.

 Instances of std::future are MoveConstructible and MoveAssignable but not
CopyConstructible or CopyAssignable.

Class definition
template<typename ResultType>
class future
{
public:
 future() noexcept;
 future(future&&) noexcept;
 future& operator=(future&&) noexcept;
 ~future();

 future(future const&) = delete;
 future& operator=(future const&) = delete;

 shared_future<ResultType> share();

 bool valid() const noexcept;

 see description get();

 void wait();

 template<typename Rep,typename Period>
 future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 future_status wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};

STD::FUTURE DEFAULT CONSTRUCTOR
Constructs a std::future object without an associated asynchronous result.

Declaration
future() noexcept;

Effects
Constructs a new std::future instance.
Download from Wow! eBook <www.wowebook.com>

426 APPENDIX D C++ Thread Library reference
Postconditions
valid() returns false.

Throws
Nothing.

STD::FUTURE MOVE CONSTRUCTOR
Constructs one std::future object from another, transferring ownership of the asyn-
chronous result associated with the other std::future object to the newly con-
structed instance.

Declaration
future(future&& other) noexcept;

Effects
Move-constructs a new std::future instance from other.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::future object. other has no
associated asynchronous result. this->valid() returns the same value that
other.valid() returned before the invocation of this constructor. other.valid()
returns false.

Throws
Nothing.

STD::FUTURE MOVE ASSIGNMENT OPERATOR
Transfers ownership of the asynchronous result associated with the one std::future
object to another.

Declaration
future(future&& other) noexcept;

Effects
Transfers ownership of an asynchronous state between std::future instances.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with *this. other has no associated asynchronous result. The
ownership of the asynchronous state (if any) associated with *this prior to the call
is released, and the state destroyed if this is the last reference. this->valid()
returns the same value that other.valid() returned before the invocation of this
constructor. other.valid() returns false.

Throws
Nothing.

STD::FUTURE DESTRUCTOR
Destroys a std::future object.

Declaration
~future();
Download from Wow! eBook <www.wowebook.com>

427<future> header
Effects
Destroys *this. If this is the last reference to the asynchronous result associated
with *this (if any), then destroy that asynchronous result.

Throws
Nothing

STD::FUTURE::SHARE MEMBER FUNCTION
Constructs a new std::shared_future instance and transfers ownership of the asynchro-
nous result associated with *this to this newly constructed std::shared_future instance.

Declaration
shared_future<ResultType> share();

Effects
As-if shared_future<ResultType>(std::move(*this)).

Postconditions
The asynchronous result associated with *this prior to the invocation of share()
(if any) is associated with the newly constructed std::shared_future instance.
this->valid() returns false.

Throws
Nothing.

STD::FUTURE::VALID MEMBER FUNCTION
Checks if a std::future instance is associated with an asynchronous result.

Declaration
bool valid() const noexcept;

Returns
true if the *this has an associated asynchronous result, false otherwise.

Throws
Nothing.

STD::FUTURE::WAIT MEMBER FUNCTION
If the state associated with *this contains a deferred function, invokes the deferred
function. Otherwise, waits until the asynchronous result associated with an instance of
std::future is ready.

Declaration
void wait();

Preconditions
this->valid() would return true.

Effects
If the associated state contains a deferred function, invokes the deferred function
and stores the returned value or thrown exception as the asynchronous result. Oth-
erwise, blocks until the asynchronous result associated with *this is ready.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

428 APPENDIX D C++ Thread Library reference
STD::FUTURE::WAIT_FOR MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::future is
ready or until a specified time period has elapsed.

Declaration
template<typename Rep,typename Period>
future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function aris-
ing from a call to std::async that hasn’t yet started execution, returns immediately
without blocking. Otherwise blocks until the asynchronous result associated with
*this is ready or the time period specified by relative_time has elapsed.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if the time period speci-
fied by relative_time has elapsed.

NOTE The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Nothing.

STD::FUTURE::WAIT_UNTIL MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::future is
ready or until a specified time period has elapsed.

Declaration
template<typename Clock,typename Duration>
future_status wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function arising
from a call to std::async that hasn’t yet started execution, returns immediately with-
out blocking. Otherwise blocks until the asynchronous result associated with *this is
ready or Clock::now() returns a time equal to or later than absolute_time.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet
Download from Wow! eBook <www.wowebook.com>

429<future> header
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if Clock::now() returns a
time equal to or later than absolute_time.

NOTE There’s no guarantee as to how long the calling thread will be
blocked, only that if the function returns std::future_status::timeout,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

Throws
Nothing.

STD::FUTURE::GET MEMBER FUNCTION
If the associated state contains a deferred function from a call to std::async, invokes
that function and returns the result; otherwise, waits until the asynchronous result
associated with an instance of std::future is ready, and then returns the stored value
or throw the stored exception.

Declaration
void future<void>::get();
R& future<R&>::get();
R future<R>::get();

Preconditions
this->valid() would return true.

Effects
If the state associated with *this contains a deferred function, invokes the deferred
function and returns the result or propagates any thrown exception.

 Otherwise, blocks until the asynchronous result associated with *this is ready. If
the result is a stored exception, throws that exception. Otherwise, returns the
stored value.

Returns
If the associated state contains a deferred function, the result of the function invo-
cation is returned. Otherwise, if ResultType is void, the call returns normally. If
ResultType is R& for some type R, the stored reference is returned. Otherwise, the
stored value is returned.

Throws
The exception thrown by the deferred exception or stored in the asynchronous
result, if any.

Postcondition
this->valid()==false

D.4.2 std::shared_future class template

The std::shared_future class template provides a means of waiting for an asynchro-
nous result from another thread, in conjunction with the std::promise and
std::packaged_task class templates and std::async function template, which can
Download from Wow! eBook <www.wowebook.com>

430 APPENDIX D C++ Thread Library reference
be used to provide that asynchronous result. Multiple std::shared_future instances
can reference the same asynchronous result.

 Instances of std::shared_future are CopyConstructible and CopyAssignable.
You can also move-construct a std::shared_future from a std::future with the
same ResultType.

 Accesses to a given instance of std::shared_future aren’t synchronized. It’s
therefore not safe for multiple threads to access the same std::shared_future
instance without external synchronization. But accesses to the associated state are syn-
chronized, so it is safe for multiple threads to each access separate instances of std::
shared_future that share the same associated state without external synchronization.

Class definition
template<typename ResultType>
class shared_future
{
public:
 shared_future() noexcept;
 shared_future(future<ResultType>&&) noexcept;

 shared_future(shared_future&&) noexcept;
 shared_future(shared_future const&);
 shared_future& operator=(shared_future const&);
 shared_future& operator=(shared_future&&) noexcept;
 ~shared_future();

 bool valid() const noexcept;

 see description get() const;

 void wait() const;

 template<typename Rep,typename Period>
 future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time) const;

 template<typename Clock,typename Duration>
 future_status wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time)

const;
};

STD::SHARED_FUTURE DEFAULT CONSTRUCTOR
Constructs a std::shared_future object without an associated asynchronous result.

Declaration
shared_future() noexcept;

Effects
Constructs a new std::shared_future instance.

Postconditions
valid() returns false for the newly constructed instance.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

431<future> header
STD::SHARED_FUTURE MOVE CONSTRUCTOR
Constructs one std::shared_future object from another, transferring ownership of
the asynchronous result associated with the other std::shared_future object to the
newly constructed instance.

Declaration
shared_future(shared_future&& other) noexcept;

Effects
Constructs a new std::shared_future instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::shared_future object.
other has no associated asynchronous result.

Throws
Nothing.

STD::SHARED_FUTURE MOVE-FROM-STD::FUTURE CONSTRUCTOR
Constructs a std::shared_future object from a std::future, transferring ownership
of the asynchronous result associated with the std::future object to the newly con-
structed std::shared_future.

Declaration
shared_future(std::future<ResultType>&& other) noexcept;

Effects
Constructs a new std::shared_future instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::shared_future object. other
has no associated asynchronous result.

Throws
Nothing.

STD::SHARED_FUTURE COPY CONSTRUCTOR
Constructs one std::shared_future object from another, so that both the source and
the copy refer to the asynchronous result associated with the source std::shared_
future object, if any.

Declaration
shared_future(shared_future const& other);

Effects
Constructs a new std::shared_future instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the construc-
tor is associated with the newly constructed std::shared_future object and other.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

432 APPENDIX D C++ Thread Library reference
STD::SHARED_FUTURE DESTRUCTOR
Destroys a std::shared_future object.

Declaration
~shared_future();

Effects
Destroys *this. If there’s no longer a std::promise or std::packaged_task
instance associated with the asynchronous result associated with *this, and this is
the last std::shared_future instance associated with that asynchronous result,
destroys that asynchronous result.

Throws
Nothing.

STD::SHARED_FUTURE::VALID MEMBER FUNCTION
Checks if a std::shared_future instance is associated with an asynchronous result.

Declaration
bool valid() const noexcept;

Returns
true if the *this has an associated asynchronous result, false otherwise.

Throws
Nothing.

STD::SHARED_FUTURE::WAIT MEMBER FUNCTION
If the state associated with *this contains a deferred function, invokes the deferred
function. Otherwise, waits until the asynchronous result associated with an instance of
std::shared_future is ready.

Declaration
void wait() const;

Preconditions
this->valid() would return true.

Effects
Calls to get() and wait() from multiple threads on std::shared_future instances
that share the same associated state are serialized. If the associated state contains a
deferred function, the first call to get() or wait() invokes the deferred function
and stores the returned value or thrown exception as the asynchronous result.

 Blocks until the asynchronous result associated with *this is ready.

Throws
Nothing.

STD::SHARED_FUTURE::WAIT_FOR MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::shared_
future is ready or until a specified time period has elapsed.
Download from Wow! eBook <www.wowebook.com>

433<future> header
Declaration
template<typename Rep,typename Period>
future_status wait_for(
 std::chrono::duration<Rep,Period> const& relative_time) const;

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function aris-
ing from a call to std::async that has not yet started execution, returns immedi-
ately without blocking. Otherwise, blocks until the asynchronous result associated
with *this is ready or the time period specified by relative_time has elapsed.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if the time period speci-
fied by relative_time has elapsed.

NOTE The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Nothing.

STD::SHARED_FUTURE::WAIT_UNTIL MEMBER FUNCTION
Waits until the asynchronous result associated with an instance of std::shared_
future is ready or until a specified time period has elapsed.

Declaration
template<typename Clock,typename Duration>
bool wait_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time) const;

Preconditions
this->valid() would return true.

Effects
If the asynchronous result associated with *this contains a deferred function arising
from a call to std::async that hasn’t yet started execution, returns immediately with-
out blocking. Otherwise, blocks until the asynchronous result associated with *this is
ready or Clock::now() returns a time equal to or later than absolute_time.

Returns
std::future_status::deferred if the asynchronous result associated with *this
contains a deferred function arising from a call to std::async that hasn’t yet
started execution, std::future_status::ready if the asynchronous result associ-
ated with *this is ready, std::future_status::timeout if Clock::now() returns a
time equal to or later than absolute_time.
Download from Wow! eBook <www.wowebook.com>

434 APPENDIX D C++ Thread Library reference
NOTE There’s no guarantee as to how long the calling thread will be
blocked, only that if the function returns std::future_status::timeout,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

Throws
Nothing.

STD::SHARED_FUTURE::GET MEMBER FUNCTION
If the associated state contains a deferred function from a call to std::async, invokes
that function and return the result. Otherwise, waits until the asynchronous result
associated with an instance of std::shared_future is ready, and then returns the
stored value or throws the stored exception.

Declaration
void shared_future<void>::get() const;
R& shared_future<R&>::get() const;
R const& shared_future<R>::get() const;

Preconditions
this->valid() would return true.

Effects
Calls to get() and wait() from multiple threads on std::shared_future instances
that share the same associated state are serialized. If the associated state contains a
deferred function, the first call to get() or wait() invokes the deferred function
and stores the returned value or thrown exception as the asynchronous result.

 Blocks until the asynchronous result associated with *this is ready. If the asyn-
chronous result is a stored exception, throws that exception. Otherwise, returns the
stored value.

Returns
If ResultType is void, returns normally. If ResultType is R& for some type R, returns
the stored reference. Otherwise, returns a const reference to the stored value.

Throws
The stored exception, if any.

D.4.3 std::packaged_task class template

The std::packaged_task class template packages a function or other callable object so
that when the function is invoked through the std::packaged_task instance, the result
is stored as an asynchronous result for retrieval through an instance of std::future.

 Instances of std::packaged_task are MoveConstructible and MoveAssignable
but not CopyConstructible or CopyAssignable.

Class definition
template<typename FunctionType>
class packaged_task; // undefined

template<typename ResultType,typename... ArgTypes>
class packaged_task<ResultType(ArgTypes...)>
Download from Wow! eBook <www.wowebook.com>

435<future> header
{
public:

 packaged_task() noexcept;
 packaged_task(packaged_task&&) noexcept;
 ~packaged_task();

 packaged_task& operator=(packaged_task&&) noexcept;

 packaged_task(packaged_task const&) = delete;
 packaged_task& operator=(packaged_task const&) = delete;

 void swap(packaged_task&) noexcept;

 template<typename Callable>
 explicit packaged_task(Callable&& func);

 template<typename Callable,typename Allocator>
 packaged_task(std::allocator_arg_t, const Allocator&,Callable&&);

 bool valid() const noexcept;
 std::future<ResultType> get_future();
 void operator()(ArgTypes...);
 void make_ready_at_thread_exit(ArgTypes...);
 void reset();
};

STD::PACKAGED_TASK DEFAULT CONSTRUCTOR
Constructs a std::packaged_task object.

Declaration
packaged_task() noexcept;

Effects
Constructs a std::packaged_task instance with no associated task or asynchro-
nous result.

Throws
Nothing.

STD::PACKAGED_TASK CONSTRUCTION FROM A CALLABLE OBJECT
Constructsa std::packaged_task object with an associated task and asynchronous result.

Declaration
template<typename Callable>
packaged_task(Callable&& func);

Preconditions
The expression func(args...) shall be valid, where each element args-i in
args... shall be a value of the corresponding type ArgTypes-i in ArgTypes....
The return value shall be convertible to ResultType.

Effects
Constructs a std::packaged_task instance with an associated asynchronous result
of type ResultType that isn’t ready and an associated task of type Callable that’s a
copy of func.
Download from Wow! eBook <www.wowebook.com>

436 APPENDIX D C++ Thread Library reference
Throws
An exception of type std::bad_alloc if the constructor is unable to allocate mem-
ory for the asynchronous result. Any exception thrown by the copy or move con-
structor of Callable.

STD::PACKAGED_TASK CONSTRUCTION FROM A CALLABLE OBJECT WITH AN ALLOCATOR

Constructs a std::packaged_task object with an associated task and asynchronous
result, using the supplied allocator to allocate memory for the associated asynchro-
nous result and task.

Declaration
template<typename Allocator,typename Callable>
packaged_task(
 std::allocator_arg_t, Allocator const& alloc,Callable&& func);

Preconditions
The expression func(args...) shall be valid, where each element args-i in
args... shall be a value of the corresponding type ArgTypes-i in ArgTypes....
The return value shall be convertible to ResultType.

Effects
Constructs a std::packaged_task instance with an associated asynchronous result
of type ResultType that isn’t ready and an associated task of type Callable that’s a
copy of func. The memory for the asynchronous result and task is allocated
through the allocator alloc or a copy thereof.

Throws
Any exception thrown by the allocator when trying to allocate memory for the asyn-
chronous result or task. Any exception thrown by the copy or move constructor
of Callable.

STD::PACKAGED_TASK MOVE CONSTRUCTOR
Constructs one std::packaged_task object from another, transferring ownership of
the asynchronous result and task associated with the other std::packaged_task
object to the newly constructed instance.

Declaration
packaged_task(packaged_task&& other) noexcept;

Effects
Constructs a new std::packaged_task instance.

Postconditions
The asynchronous result and task associated with other prior to the invocation of
the constructor is associated with the newly constructed std::packaged_task object.
other has no associated asynchronous result.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

437<future> header
STD::PACKAGED_TASK MOVE-ASSIGNMENT OPERATOR
Transfers ownership of the asynchronous result associated with one std::packaged_
task object to another.

Declaration
packaged_task& operator=(packaged_task&& other) noexcept;

Effects
Transfers ownership of the asynchronous result and task associated with other to
*this, and discards any prior asynchronous result, as-if std::packaged_task(other)
.swap(*this).

Postconditions
The asynchronous result and task associated with other prior to the invocation of
the move-assignment operator is associated with the *this. other has no associated
asynchronous result.

Returns
*this

Throws
Nothing.

STD::PACKAGED_TASK::SWAP MEMBER FUNCTION
Exchanges ownership of the asynchronous results associated with two std::

packaged_task objects.

Declaration
void swap(packaged_task& other) noexcept;

Effects
Exchanges ownership of the asynchronous results and tasks associated with other
and *this.

Postconditions
The asynchronous result and task associated with other prior to the invocation of
swap (if any) is associated with *this. The asynchronous result and task associated
with *this prior to the invocation of swap (if any) is associated with other.

Throws
Nothing.

STD::PACKAGED_TASK DESTRUCTOR
Destroys a std::packaged_task object.

Declaration
~packaged_task();

Effects
Destroys *this. If *this has an associated asynchronous result, and that result doesn’t
have a stored task or exception, then that result becomes ready with a std::future_
error exception with an error code of std::future_errc::broken_promise.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

438 APPENDIX D C++ Thread Library reference
STD::PACKAGED_TASK::GET_FUTURE MEMBER FUNCTION
Retrieves a std::future instance for the asynchronous result associated with *this.

Declaration
std::future<ResultType> get_future();

Preconditions
*this has an associated asynchronous result.

Returns
A std::future instance for the asynchronous result associated with *this.

Throws
An exception of type std::future_error with an error code of std::future_
errc::future_already_retrieved if a std::future has already been obtained for
this asynchronous result through a prior call to get_future().

STD::PACKAGED_TASK::RESET MEMBER FUNCTION
Associates a std::packaged_task instance with a new asynchronous result for the
same task.

Declaration
void reset();

Preconditions
*this has an associated asynchronous task.

Effects
As-if *this=packaged_task(std::move(f)), where f is the stored task associated
with *this.

Throws
An exception of type std::bad_alloc if memory couldn’t be allocated for the new
asynchronous result.

STD::PACKAGED_TASK::VALID MEMBER FUNCTION
Checks whether *this has an associated task and asynchronous result.

Declaration
bool valid() const noexcept;

Returns
true if *this has an associated task and asynchronous result, false otherwise.

Throws
Nothing.

STD::PACKAGED_TASK::OPERATOR() FUNCTION CALL OPERATOR
Invokes the task associated with a std::packaged_task instance, and stores the return
value or exception in the associated asynchronous result.

Declaration
void operator()(ArgTypes... args);

Preconditions
*this has an associated task.
Download from Wow! eBook <www.wowebook.com>

439<future> header
Effects
Invokes the associated task func as-if INVOKE(func,args...). If the invocation
returns normally, stores the return value in the asynchronous result associated with
*this. If the invocation returns with an exception, stores the exception in the asyn-
chronous result associated with *this.

Postconditions
The asynchronous result associated with *this is ready with a stored value or excep-
tion. Any threads blocked waiting for the asynchronous result are unblocked.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception.

Synchronization
A successful call to the function call operator synchronizes-with a call to std::
future<ResultType>::get() or std::shared_future<ResultType>::get(), which
retrieves the value or exception stored.

STD::PACKAGED_TASK::MAKE_READY_AT_THREAD_EXIT MEMBER FUNCTION
Invokes the task associated with a std::packaged_task instance, and stores the return
value or exception in the associated asynchronous result without making the associ-
ated asynchronous result ready until thread exit.

Declaration
void make_ready_at_thread_exit(ArgTypes... args);

Preconditions
*this has an associated task.

Effects
Invokes the associated task func as-if INVOKE(func,args...). If the invocation
returns normally, stores the return value in the asynchronous result associated with
*this. If the invocation returns with an exception, stores the exception in the asyn-
chronous result associated with *this. Schedules the associated asynchronous state
to be made ready when the current thread exits.

Postconditions
The asynchronous result associated with *this has a stored value or exception but
isn’t ready until the current thread exits. Threads blocked waiting for the asynchro-
nous result will be unblocked when the current thread exits.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception. An exception of type std::future_error with an error code of
std::future_errc::no_state if *this has no associated asynchronous state.
Download from Wow! eBook <www.wowebook.com>

440 APPENDIX D C++ Thread Library reference
Synchronization
The completion of the thread that made a successful call to make_ready_at_thread_
exit() synchronizes-with a call to std::future<ResultType>::get() or std::
shared_future<ResultType>::get(), which retrieves the value or exception stored.

D.4.4 std::promise class template

The std::promise class template provides a means of setting an asynchronous result,
which may be retrieved from another thread through an instance of std::future.

 The ResultType template parameter is the type of the value that can be stored in
the asynchronous result.

 A std::future associated with the asynchronous result of a particular std::promise
instance can be obtained by calling the get_future() member function. The asyn-
chronous result is set either to a value of type ResultType with the set_value() mem-
ber function or to an exception with the set_exception() member function.

 Instances of std::promise are MoveConstructible and MoveAssignable but not
CopyConstructible or CopyAssignable.

Class definition
template<typename ResultType>
class promise
{
public:
 promise();
 promise(promise&&) noexcept;
 ~promise();
 promise& operator=(promise&&) noexcept;

 template<typename Allocator>
 promise(std::allocator_arg_t, Allocator const&);

 promise(promise const&) = delete;
 promise& operator=(promise const&) = delete;

 void swap(promise&) noexcept;

 std::future<ResultType> get_future();

 void set_value(see description);
 void set_exception(std::exception_ptr p);
};

STD::PROMISE DEFAULT CONSTRUCTOR
Constructs a std::promise object.

Declaration
promise();

Effects
Constructs a std::promise instance with an associated asynchronous result of type
ResultType that’s not ready.
Download from Wow! eBook <www.wowebook.com>

441<future> header
Throws
An exception of type std::bad_alloc if the constructor is unable to allocate mem-
ory for the asynchronous result.

STD::PROMISE ALLOCATOR CONSTRUCTOR
Constructs a std::promise object, using the supplied allocator to allocate memory for
the associated asynchronous result.

Declaration
template<typename Allocator>
promise(std::allocator_arg_t, Allocator const& alloc);

Effects
Constructs a std::promise instance with an associated asynchronous result of type
ResultType that isn’t ready. The memory for the asynchronous result is allocated
through the allocator alloc.

Throws
Any exception thrown by the allocator when attempting to allocate memory for the
asynchronous result.

STD::PROMISE MOVE CONSTRUCTOR
Constructs one std::promise object from another, transferring ownership of the
asynchronous result associated with the other std::promise object to the newly con-
structed instance.

Declaration
promise(promise&& other) noexcept;

Effects
Constructs a new std::promise instance.

Postconditions
The asynchronous result associated with other prior to the invocation of the con-
structor is associated with the newly constructed std::promise object. other has
no associated asynchronous result.

Throws
Nothing.

STD::PROMISE MOVE-ASSIGNMENT OPERATOR
Transfers ownership of the asynchronous result associated with one std::promise
object to another.

Declaration
promise& operator=(promise&& other) noexcept;

Effects
Transfers ownership of the asynchronous result associated with other to *this. If
*this already had an associated asynchronous result, that asynchronous result is
made ready with an exception of type std::future_error and an error code of
std::future_errc::broken_promise.
Download from Wow! eBook <www.wowebook.com>

442 APPENDIX D C++ Thread Library reference
Postconditions
The asynchronous result associated with other prior to the invocation of the move-
assignment operator is associated with the *this. other has no associated asynchro-
nous result.

Returns
*this

Throws
Nothing.

STD::PROMISE::SWAP MEMBER FUNCTION
Exchanges ownership of the asynchronous results associated with two std::promise
objects.

Declaration
void swap(promise& other);

Effects
Exchanges ownership of the asynchronous results associated with other and *this.

Postconditions
The asynchronous result associated with other prior to the invocation of swap (if
any) is associated with *this. The asynchronous result associated with *this prior
to the invocation of swap (if any) is associated with other.

Throws
Nothing.

STD::PROMISE DESTRUCTOR
Destroys a std::promise object.

Declaration
~promise();

Effects
Destroys *this. If *this has an associated asynchronous result, and that result doesn’t
have a stored value or exception, that result becomes ready with a std::future_error
exception with an error code of std::future_errc::broken_promise.

Throws
Nothing.

STD::PROMISE::GET_FUTURE MEMBER FUNCTION
Retrieves a std::future instance for the asynchronous result associated with *this.

Declaration
std::future<ResultType> get_future();

Preconditions
*this has an associated asynchronous result.

Returns
A std::future instance for the asynchronous result associated with *this.
Download from Wow! eBook <www.wowebook.com>

443<future> header
Throws
An exception of type std::future_error with an error code of std::future_
errc::future_already_retrieved if a std::future has already been obtained for
this asynchronous result through a prior call to get_future().

STD::PROMISE::SET_VALUE MEMBER FUNCTION
Stores a value in the asynchronous result associated with *this.

Declaration
void promise<void>::set_value();
void promise<R&>::set_value(R& r);
void promise<R>::set_value(R const& r);
void promise<R>::set_value(R&& r);

Preconditions
*this has an associated asynchronous result.

Effects
Stores r in the asynchronous result associated with *this if ResultType isn’t void.

Postconditions
The asynchronous result associated with *this is ready with a stored value. Any
threads blocked waiting for the asynchronous result are unblocked.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception. Any exceptions thrown by the copy-constructor or move-
constructor of r.

Synchronization
Multiple concurrent calls to set_value(), set_value_at_thread_exit(), set_
exception(), and set_exception_at_thread_exit() are serialized. A successful
call to set_value() happens-before a call to std::future<ResultType>::get() or
std::shared_future<ResultType>::get(), which retrieves the value stored.

STD::PROMISE::SET_VALUE_AT_THREAD_EXIT MEMBER FUNCTION
Stores a value in the asynchronous result associated with *this without making that
result ready until the current thread exits.

Declaration
void promise<void>::set_value_at_thread_exit();
void promise<R&>::set_value_at_thread_exit(R& r);
void promise<R>::set_value_at_thread_exit(R const& r);
void promise<R>::set_value_at_thread_exit(R&& r);

Preconditions
*this has an associated asynchronous result.

Effects
Stores r in the asynchronous result associated with *this if ResultType isn’t void.
Marks the asynchronous result as having a stored value. Schedules the associated
asynchronous result to be made ready when the current thread exits.
Download from Wow! eBook <www.wowebook.com>

444 APPENDIX D C++ Thread Library reference
Postconditions
The asynchronous result associated with *this has a stored value but isn’t ready
until the current thread exits. Threads blocked waiting for the asynchronous result
will be unblocked when the current thread exits.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a
stored value or exception. Any exceptions thrown by the copy-constructor or move-
constructor of r.

Synchronization
Multiple concurrent calls to set_value(), set_value_at_thread_exit(), set_
exception(), and set_exception_at_thread_exit() are serialized. The comple-
tion of the thread that made a successful call to set_value_at_thread_exit()
happens-before a call to std::future<ResultType>::get() or std::shared_future
<ResultType>::get(), which retrieves the exception stored.

STD::PROMISE::SET_EXCEPTION MEMBER FUNCTION
Stores an exception in the asynchronous result associated with *this.

Declaration
void set_exception(std::exception_ptr e);

Preconditions
*this has an associated asynchronous result. (bool)e is true.

Effects
Stores e in the asynchronous result associated with *this.

Postconditions
The asynchronous result associated with *this is ready with a stored exception. Any
threads blocked waiting for the asynchronous result are unblocked.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception.

Synchronization
Multiple concurrent calls to set_value() and set_exception() are serialized. A
successful call to set_exception() happens-before a call to std::future<Result-
Type>::get() or std::shared_future<ResultType>::get(), which retrieves the
exception stored.

STD::PROMISE::SET_EXCEPTION_AT_THREAD_EXIT MEMBER FUNCTION
Stores an exception in the asynchronous result associated with *this without making
that result ready until the current thread exits.

Declaration
void set_exception_at_thread_exit(std::exception_ptr e);
Download from Wow! eBook <www.wowebook.com>

445<future> header
Preconditions
*this has an associated asynchronous result. (bool)e is true.

Effects
Stores e in the asynchronous result associated with *this. Schedules the associated
asynchronous result to be made ready when the current thread exits.

Postconditions
The asynchronous result associated with *this has a stored exception but isn’t
ready until the current thread exits. Threads blocked waiting for the asynchronous
result will be unblocked when the current thread exits.

Throws
An exception of type std::future_error with an error code of std::future_
errc::promise_already_satisfied if the asynchronous result already has a stored
value or exception.

Synchronization
Multiple concurrent calls to set_value(), set_value_at_thread_exit(), set_
exception(), and set_exception_at_thread_exit() are serialized. The comple-
tion of the thread that made a successful call to set_exception_at_thread_exit()
happens-before a call to std::future<ResultType>::get() or std::shared_
future<ResultType>::get(), which retrieves the exception stored.

D.4.5 std::async function template

std::async is a simple way of running self-contained asynchronous tasks to make use
of the available hardware concurrency. A call to std::async returns a std::future
that will contain the result of the task. Depending on the launch policy, the task is
either run asynchronously on its own thread or synchronously on whichever thread
calls the wait() or get() member functions on that future.

Declaration
enum class launch
{
 async,deferred
};

template<typename Callable,typename ... Args>
future<result_of<Callable(Args...)>::type>
async(Callable&& func,Args&& ... args);

template<typename Callable,typename ... Args>
future<result_of<Callable(Args...)>::type>
async(launch policy,Callable&& func,Args&& ... args);

Preconditions
The expression INVOKE(func,args) is valid for the supplied values of func and
args. Callable and every member of Args are MoveConstructible.
Download from Wow! eBook <www.wowebook.com>

446 APPENDIX D C++ Thread Library reference
Effects
Constructs copies of func and args... in internal storage (denoted by fff and
xyz... respectively).

 If policy is std::launch::async, runs INVOKE(fff,xyz...) on its own thread.
The returned std::future will become ready when this thread is complete and will
hold either the return value or exception thrown by the function invocation. The
destructor of the last future object associated with the asynchronous state of the
returned std::future blocks until the future is ready.

 If policy is std::launch::deferred, fff and xyz... are stored in the returned
std::future as a deferred function call. The first call to the wait() or get() mem-
ber functions on a future that shares the same associated state will execute INVOKE
(fff,xyz...) synchronously on the thread that called wait() or get().

 The value returned or exception thrown by the execution of INVOKE(fff,
xyz...) will be returned from a call to get() on that std::future.

 If policy is std::launch::async | std::launch::deferred or the policy
argument is omitted, the behavior is as-if either std::launch::async or std::
launch::deferred had been specified. The implementation will choose the behav-
ior on a call-by-call basis in order to take advantage of the available hardware con-
currency without excessive oversubscription.

 In all cases, the std::async call returns immediately.

Synchronization
The completion of the function invocation happens-before a successful return
from a call to wait(), get(), wait_for(), or wait_until() on any std::future or
std::shared_future instance that references the same associated state as the std::
future object returned from the std::async call. In the case of a policy of
std::launch::async, the completion of the thread on which the function invoca-
tion occurs also happens-before the successful return from these calls.

Throws
std::bad_alloc if the required internal storage can’t be allocated, otherwise std::
future_error when the effects can’t be achieved, or any exception thrown during
the construction of fff or xyz....

D.5 <mutex> header
The <mutex> header provides facilities for ensuring mutual exclusion: mutex types,
lock types and functions, and a mechanism for ensuring an operation is performed
exactly once.

Header contents
namespace std
{
 class mutex;
 class recursive_mutex;
 class timed_mutex;
 class recursive_timed_mutex;
Download from Wow! eBook <www.wowebook.com>

447<mutex> header
 struct adopt_lock_t;
 struct defer_lock_t;
 struct try_to_lock_t;

 constexpr adopt_lock_t adopt_lock{};
 constexpr defer_lock_t defer_lock{};
 constexpr try_to_lock_t try_to_lock{};

 template<typename LockableType>
 class lock_guard;

 template<typename LockableType>
 class unique_lock;

 template<typename LockableType1,typename... LockableType2>
 void lock(LockableType1& m1,LockableType2& m2...);

 template<typename LockableType1,typename... LockableType2>
 int try_lock(LockableType1& m1,LockableType2& m2...);

 struct once_flag;

 template<typename Callable,typename... Args>
 void call_once(once_flag& flag,Callable func,Args args...);
}

D.5.1 std::mutex class

The std::mutex class provides a basic mutual exclusion and synchronization facility
for threads that can be used to protect shared data. Prior to accessing the data pro-
tected by the mutex, the mutex must be locked by calling lock() or try_lock(). Only
one thread may hold the lock at a time, so if another thread also tries to lock the
mutex, it will fail (try_lock()) or block (lock()) as appropriate. Once a thread is
done accessing the shared data, it then must call unlock() to release the lock and
allow other threads to acquire it.

std::mutex meets the Lockable requirements.

Class definition
class mutex
{
public:
 mutex(mutex const&)=delete;
 mutex& operator=(mutex const&)=delete;

 constexpr mutex() noexcept;
 ~mutex();

 void lock();
 void unlock();
 bool try_lock();
};

STD::MUTEX DEFAULT CONSTRUCTOR
Constructs a std::mutex object.

Declaration
constexpr mutex() noexcept;
Download from Wow! eBook <www.wowebook.com>

448 APPENDIX D C++ Thread Library reference
Effects
Constructs a std::mutex instance.

Postconditions
The newly constructed std::mutex object is initially unlocked.

Throws
Nothing.

STD::MUTEX DESTRUCTOR
Destroys a std::mutex object.

Declaration
~mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on a std::mutex object for the current thread.

Declaration
void lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread.

Throws
An exception of type std::system_error if an error occurs.

STD::MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on a std::mutex object for the current thread.

Declaration
bool try_lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.
Download from Wow! eBook <www.wowebook.com>

449<mutex> header
Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on a std::mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

Effects
Releases the lock on *this held by the current thread. If any threads are blocked
waiting to acquire a lock on *this, unblocks one of them.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

D.5.2 std::recursive_mutex class

The std::recursive_mutex class provides a basic mutual exclusion and synchroniza-
tion facility for threads that can be used to protect shared data. Prior to accessing the
data protected by the mutex, the mutex must be locked by calling lock() or
try_lock(). Only one thread may hold the lock at a time, so if another thread also
tries to lock the recursive_mutex, it will fail (try_lock) or block (lock) as appropri-
ate. Once a thread is done accessing the shared data, it then must call unlock() to
release the lock and allow other threads to acquire it.

 This mutex is recursive so a thread that holds a lock on a particular std::
recursive_mutex instance may make further calls lock() or try_lock() to increase the
lock count. The mutex can’t be locked by another thread until the thread that acquired
the locks has called unlock once for each successful call to lock() or try_lock().

std::recursive_mutex meets the Lockable requirements.

Class definition
class recursive_mutex
{
public:
 recursive_mutex(recursive_mutex const&)=delete;
 recursive_mutex& operator=(recursive_mutex const&)=delete;

 recursive_mutex() noexcept;
 ~recursive_mutex();
Download from Wow! eBook <www.wowebook.com>

450 APPENDIX D C++ Thread Library reference
 void lock();
 void unlock();
 bool try_lock() noexcept;
};

STD::RECURSIVE_MUTEX DEFAULT CONSTRUCTOR
Constructs a std::recursive_mutex object.

Declaration
recursive_mutex() noexcept;

Effects
Constructs a std::recursive_mutex instance.

Postconditions
The newly constructed std::recursive_mutex object is initially unlocked.

Throws
An exception of type std::system_error if unable to create a new std::
recursive_mutex instance.

STD::RECURSIVE_MUTEX DESTRUCTOR
Destroys a std::recursive_mutex object.

Declaration
~recursive_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::RECURSIVE_MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on a std::recursive_mutex object for the current thread.

Declaration
void lock();

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread. If the calling thread already held a lock on
*this, the lock count is increased by one.

Throws
An exception of type std::system_error if an error occurs.

STD::RECURSIVE_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on a std::recursive_mutex object for the current thread.

Declaration
bool try_lock() noexcept;
Download from Wow! eBook <www.wowebook.com>

451<mutex> header
Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
A new lock on *this has been obtained for the calling thread if the function
returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this.

STD::RECURSIVE_MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on a std::recursive_mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

Effects
Releases a lock on *this held by the current thread. If this is the last lock on *this
held by the calling thread, any threads are blocked waiting to acquire a lock on
*this. Unblocks one of them.

Postconditions
The number of locks on *this held by the calling thread is reduced by one.

Throws
Nothing.

D.5.3 std::timed_mutex class

The std::timed_mutex class provides support for locks with timeouts on top of the
basic mutual exclusion and synchronization facility provided by std::mutex. Prior to
accessing the data protected by the mutex, the mutex must be locked by calling lock(),
try_lock(), try_lock_for(), or try_lock_until(). If a lock is already held by
another thread, an attempt to acquire the lock will fail (try_lock()), block until the
lock can be acquired (lock()), or block until the lock can be acquired or the lock
attempt times out (try_lock_for() or try_lock_until()). Once a lock has been
acquired (whichever function was used to acquire it), it must be released by calling
unlock() before another thread can acquire the lock on the mutex.

std::timed_mutex meets the TimedLockable requirements.
Download from Wow! eBook <www.wowebook.com>

452 APPENDIX D C++ Thread Library reference
Class definition
class timed_mutex
{
public:
 timed_mutex(timed_mutex const&)=delete;
 timed_mutex& operator=(timed_mutex const&)=delete;

 timed_mutex();
 ~timed_mutex();

 void lock();
 void unlock();
 bool try_lock();

 template<typename Rep,typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};

STD::TIMED_MUTEX DEFAULT CONSTRUCTOR
Constructs a std::timed_mutex object.

Declaration
timed_mutex();

Effects
Constructs a std::timed_mutex instance.

Postconditions
The newly constructed std::timed_mutex object is initially unlocked.

Throws
An exception of type std::system_error if unable to create a new std::
timed_mutex instance.

STD::TIMED_MUTEX DESTRUCTOR
Destroys a std::timed_mutex object.

Declaration
~timed_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::TIMED_MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on a std::timed_mutex object for the current thread.

Declaration
void lock();
Download from Wow! eBook <www.wowebook.com>

453<mutex> header
Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread.

Throws
An exception of type std::system_error if an error occurs.

STD::TIMED_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on a std::timed_mutex object for the current thread.

Declaration
bool try_lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this.

STD::TIMED_MUTEX::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a lock on a std::timed_mutex object for the current thread.

Declaration
template<typename Rep,typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread within the time specified
by relative_time. If relative_time.count() is zero or negative, the call will
return immediately, as if it was a call to try_lock(). Otherwise, the call blocks until
either the lock has been acquired or the time period specified by relative_time
has elapsed.

Returns
true if a lock was obtained for the calling thread, false otherwise.
Download from Wow! eBook <www.wowebook.com>

454 APPENDIX D C++ Thread Library reference
Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. The thread may be blocked for longer
than the specified duration. Where possible, the elapsed time is determined
by a steady clock.

STD::TIMED_MUTEX::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a lock on a std::timed_mutex object for the current thread.

Declaration
template<typename Clock,typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The calling thread must not hold a lock on *this.

Effects
Attempts to acquire a lock on *this for the calling thread before the time specified
by absolute_time. If absolute_time<=Clock::now() on entry, the call will return
immediately, as if it was a call to try_lock(). Otherwise, the call blocks until either
the lock has been acquired or Clock::now() returns a time equal to or later than
absolute_time.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE The function may fail to acquire the lock (and return false) even if
no other thread holds a lock on *this. There’s no guarantee as to how long
the calling thread will be blocked, only that if the function returns false,
then Clock::now() returns a time equal to or later than absolute_time at
the point at which the thread became unblocked.

STD::TIMED_MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on a std::timed_mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.
Download from Wow! eBook <www.wowebook.com>

455<mutex> header
Effects
Releases the lock on *this held by the current thread. If any threads are blocked
waiting to acquire a lock on *this, unblocks one of them.

Postconditions
*this is not locked by the calling thread.

Throws
Nothing.

D.5.4 std::recursive_timed_mutex class
The std::recursive_timed_mutex class provides support for locks with timeouts on
top of the mutual exclusion and synchronization facility provided by std::recursive_
mutex. Prior to accessing the data protected by the mutex, the mutex must be locked by
calling lock(), try_lock(), try_lock_for(), or try_lock_until(). If a lock is
already held by another thread, an attempt to acquire the lock will fail (try_lock()),
block until the lock can be acquired (lock()), or block until the lock can be acquired
or the lock attempt times out (try_lock_for() or try_lock_until()). Once a lock
has been acquired (whichever function was used to acquire it) it must be released by
calling unlock() before another thread can acquire the lock on the mutex.

 This mutex is recursive, so a thread that holds a lock on a particular instance of
std::recursive_timed_mutex may acquire additional locks on that instance through
any of the lock functions. All of these locks must be released by a corresponding call
to unlock() before another thread can acquire a lock on that instance.

std::recursive_timed_mutex meets the TimedLockable requirements.

Class definition
class recursive_timed_mutex
{
public:
 recursive_timed_mutex(recursive_timed_mutex const&)=delete;
 recursive_timed_mutex& operator=(recursive_timed_mutex const&)=delete;

 recursive_timed_mutex();
 ~recursive_timed_mutex();

 void lock();
 void unlock();
 bool try_lock() noexcept;

 template<typename Rep,typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

 template<typename Clock,typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
};
Download from Wow! eBook <www.wowebook.com>

456 APPENDIX D C++ Thread Library reference
STD::RECURSIVE_TIMED_MUTEX DEFAULT CONSTRUCTOR
Constructs a std::recursive_timed_mutex object.

Declaration
recursive_timed_mutex();

Effects
Constructs a std::recursive_timed_mutex instance.

Postconditions
The newly constructed std::recursive_timed_mutex object is initially unlocked.

Throws
An exception of type std::system_error if unable to create a new std::
recursive_timed_mutex instance.

STD::RECURSIVE_TIMED_MUTEX DESTRUCTOR
Destroys a std::recursive_timed_mutex object.

Declaration
~recursive_timed_mutex();

Preconditions
*this must not be locked.

Effects
Destroys *this.

Throws
Nothing.

STD::RECURSIVE_TIMED_MUTEX::LOCK MEMBER FUNCTION
Acquires a lock on a std::recursive_timed_mutex object for the current thread.

Declaration
void lock();

Preconditions
The calling thread must not hold a lock on *this.

Effects
Blocks the current thread until a lock on *this can be obtained.

Postconditions
*this is locked by the calling thread. If the calling thread already held a lock on
*this, the lock count is increased by one.

Throws
An exception of type std::system_error if an error occurs.

STD::RECURSIVE_TIMED_MUTEX::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on a std::recursive_timed_mutex object for the cur-
rent thread.

Declaration
bool try_lock() noexcept;
Download from Wow! eBook <www.wowebook.com>

457<mutex> header
Effects
Attempts to acquire a lock on *this for the calling thread without blocking.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this.

STD::RECURSIVE_TIMED_MUTEX::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a lock on a std::recursive_timed_mutex object for the cur-
rent thread.

Declaration
template<typename Rep,typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Effects
Attempts to acquire a lock on *this for the calling thread within the time specified
by relative_time. If relative_time.count() is zero or negative, the call will return
immediately, as if it was a call to try_lock(). Otherwise, the call blocks until either the
lock has been acquired or the time period specified by relative_time has elapsed.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this. The thread may be blocked for longer than the
specified duration. Where possible, the elapsed time is determined by a
steady clock.
Download from Wow! eBook <www.wowebook.com>

458 APPENDIX D C++ Thread Library reference
STD::RECURSIVE_TIMED_MUTEX::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a lock on a std::recursive_timed_mutex object for the cur-
rent thread.

Declaration
template<typename Clock,typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Effects
Attempts to acquire a lock on *this for the calling thread before the time specified
by absolute_time. If absolute_time<=Clock::now() on entry, the call will return
immediately, as if it was a call to try_lock(). Otherwise, the call blocks until either
the lock has been acquired or Clock::now() returns a time equal to or later than
absolute_time.

Returns
true if a lock was obtained for the calling thread, false otherwise.

Postconditions
*this is locked by the calling thread if the function returns true.

Throws
Nothing.

NOTE If the calling thread already holds the lock on *this, the function
returns true and the count of locks on *this held by the calling thread is
increased by one. If the current thread doesn’t already hold a lock on *this,
the function may fail to acquire the lock (and return false) even if no other
thread holds a lock on *this. There’s no guarantee as to how long the calling
thread will be blocked, only that if the function returns false, then
Clock::now() returns a time equal to or later than absolute_time at the
point at which the thread became unblocked.

STD::RECURSIVE_TIMED_MUTEX::UNLOCK MEMBER FUNCTION
Releases a lock on a std::recursive_timed_mutex object held by the current thread.

Declaration
void unlock();

Preconditions
The calling thread must hold a lock on *this.

Effects
Releases a lock on *this held by the current thread. If this is the last lock on *this
held by the calling thread, any threads are blocked waiting to acquire a lock on
*this. Unblocks one of them.

Postconditions
The number of locks on *this held by the calling thread is reduced by one.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

459<mutex> header
D.5.5 std::lock_guard class template

The std::lock_guard class template provides a basic lock ownership wrapper. The
type of mutex being locked is specified by template parameter Mutex and must meet
the Lockable requirements. The specified mutex is locked in the constructor and
unlocked in the destructor. This provides a simple means of locking a mutex for a
block of code and ensuring that the mutex is unlocked when the block is left, whether
that’s by running off the end, by the use of a control flow statement such as break or
return, or by throwing an exception.

 Instances of std::lock_guard are not MoveConstructible, CopyConstructible,
or CopyAssignable.

Class definition
template <class Mutex>
class lock_guard
{
public:
 typedef Mutex mutex_type;

 explicit lock_guard(mutex_type& m);
 lock_guard(mutex_type& m, adopt_lock_t);
 ~lock_guard();

 lock_guard(lock_guard const&) = delete;
 lock_guard& operator=(lock_guard const&) = delete;
};

STD::LOCK_GUARD LOCKING CONSTRUCTOR
Constructs a std::lock_guard instance that locks the supplied mutex.

Declaration
explicit lock_guard(mutex_type& m);

Effects
Constructs a std::lock_guard instance that references the supplied mutex. Calls
m.lock().

Throws
Any exceptions thrown by m.lock().

Postconditions
*this owns a lock on m.

STD::LOCK_GUARD LOCK-ADOPTING CONSTRUCTOR
Constructs a std::lock_guard instance that owns the lock on the supplied mutex.

Declaration
lock_guard(mutex_type& m,std::adopt_lock_t);

Preconditions
The calling thread must own a lock on m.

Effects
Constructs a std::lock_guard instance that references the supplied mutex and
takes ownership of the lock on m held by the calling thread.
Download from Wow! eBook <www.wowebook.com>

460 APPENDIX D C++ Thread Library reference
Throws
Nothing.

Postconditions
*this owns the lock on m held by the calling thread.

STD::LOCK_GUARD DESTRUCTOR
Destroys a std::lock_guard instance and unlocks the corresponding mutex.

Declaration
~lock_guard();

Effects
Calls m.unlock() for the mutex instance m supplied when *this was constructed.

Throws
Nothing.

D.5.6 std::unique_lock class template

The std::unique_lock class template provides a more general lock ownership wrap-
per than std::lock_guard. The type of mutex being locked is specified by the tem-
plate parameter Mutex, which must meet the BasicLockable requirements. In
general, the specified mutex is locked in the constructor and unlocked in the destruc-
tor, although additional constructors and member functions are provided to allow
other possibilities. This provides a means of locking a mutex for a block of code and
ensuring that the mutex is unlocked when the block is left, whether that’s by running
off the end, by the use of a control flow statement such as break or return, or by throw-
ing an exception. The wait functions of std::condition_variable require an instance
of std::unique_lock<std::mutex>, and all instantiations of std::unique_lock are
suitable for use with the Lockable parameter for the std::condition_variable_any
wait functions.

 If the supplied Mutex type meets the Lockable requirements, then std::unique_
lock<Mutex> also meets the Lockable requirements. If, in addition, the supplied
Mutex type meets the TimedLockable requirements, then std::unique_lock<Mutex>
also meets the TimedLockable requirements.

 Instances of std::unique_lock are MoveConstructible and MoveAssignable but
not CopyConstructible or CopyAssignable.

Class definition
template <class Mutex>
class unique_lock
{
public:
 typedef Mutex mutex_type;

 unique_lock() noexcept;
 explicit unique_lock(mutex_type& m);
 unique_lock(mutex_type& m, adopt_lock_t);
 unique_lock(mutex_type& m, defer_lock_t) noexcept;
 unique_lock(mutex_type& m, try_to_lock_t);
Download from Wow! eBook <www.wowebook.com>

461<mutex> header
 template<typename Clock,typename Duration>
 unique_lock(
 mutex_type& m,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

 template<typename Rep,typename Period>
 unique_lock(
 mutex_type& m,
 std::chrono::duration<Rep,Period> const& relative_time);

 ~unique_lock();

 unique_lock(unique_lock const&) = delete;
 unique_lock& operator=(unique_lock const&) = delete;

 unique_lock(unique_lock&&);
 unique_lock& operator=(unique_lock&&);

 void swap(unique_lock& other) noexcept;

 void lock();
 bool try_lock();
 template<typename Rep, typename Period>
 bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);
 template<typename Clock, typename Duration>
 bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);
 void unlock();

 explicit operator bool() const noexcept;
 bool owns_lock() const noexcept;
 Mutex* mutex() const noexcept;
 Mutex* release() noexcept;
};

STD::UNIQUE_LOCK DEFAULT CONSTRUCTOR
Constructs a std::unique_lock instance with no associated mutex.

Declaration
unique_lock() noexcept;

Effects
Constructs a std::unique_lock instance that has no associated mutex.

Postconditions
this->mutex()==NULL, this->owns_lock()==false.

STD::UNIQUE_LOCK LOCKING CONSTRUCTOR
Constructs a std::unique_lock instance that locks the supplied mutex.

Declaration
explicit unique_lock(mutex_type& m);

Effects
Constructs a std::unique_lock instance that references the supplied mutex. Calls
m.lock().
Download from Wow! eBook <www.wowebook.com>

462 APPENDIX D C++ Thread Library reference
Throws
Any exceptions thrown by m.lock().

Postconditions
this->owns_lock()==true, this->mutex()==&m.

STD::UNIQUE_LOCK LOCK-ADOPTING CONSTRUCTOR
Constructs a std::unique_lock instance that owns the lock on the supplied mutex.

Declaration
unique_lock(mutex_type& m,std::adopt_lock_t);

Preconditions
The calling thread must own a lock on m.

Effects
Constructs a std::unique_lock instance that references the supplied mutex and
takes ownership of the lock on m held by the calling thread.

Throws
Nothing.

Postconditions
this->owns_lock()==true, this->mutex()==&m.

STD::UNIQUE_LOCK DEFERRED-LOCK CONSTRUCTOR
Constructs a std::unique_lock instance that doesn’t own the lock on the sup-
plied mutex.

Declaration
unique_lock(mutex_type& m,std::defer_lock_t) noexcept;

Effects
Constructs a std::unique_lock instance that references the supplied mutex.

Throws
Nothing.

Postconditions
this->owns_lock()==false, this->mutex()==&m.

STD::UNIQUE_LOCK TRY-TO-LOCK CONSTRUCTOR
Constructs a std::unique_lock instance associated with the supplied mutex and tries
to acquire a lock on that mutex.

Declaration
unique_lock(mutex_type& m,std::try_to_lock_t);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Lockable
requirements.

Effects
Constructs a std::unique_lock instance that references the supplied mutex. Calls
m.try_lock().
Download from Wow! eBook <www.wowebook.com>

463<mutex> header
Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock() call, this->mutex()
==&m.

STD::UNIQUE_LOCK TRY-TO-LOCK CONSTRUCTOR WITH A DURATION TIMEOUT
Constructs a std::unique_lock instance associated with the supplied mutex and tries
to acquire a lock on that mutex.

Declaration
template<typename Rep,typename Period>
unique_lock(
 mutex_type& m,
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Timed-
Lockable requirements.

Effects
Constructs a std::unique_lock instance that references the supplied mutex. Calls
m.try_lock_for(relative_time).

Throws
Nothing.

Postconditions
this->owns_lock() returns the result of the m.try_lock_for() call, this->
mutex()==&m.

STD::UNIQUE_LOCK TRY-TO-LOCK CONSTRUCTOR WITH A TIME_POINT TIMEOUT
Constructs a std::unique_lock instance associated with the supplied mutex and tries
to acquire a lock on that mutex.

Declaration
template<typename Clock,typename Duration>
unique_lock(
 mutex_type& m,
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Timed-
Lockable requirements.

Effects
Constructs a std::unique_lock instance that references the supplied mutex. Calls
m.try_lock_until(absolute_time).

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

464 APPENDIX D C++ Thread Library reference
Postconditions
this->owns_lock() returns the result of the m.try_lock_until() call, this->
mutex()==&m.

STD::UNIQUE_LOCK MOVE-CONSTRUCTOR
Transfers ownership of a lock from one std::unique_lock object to a newly created
std::unique_lock object.

Declaration
unique_lock(unique_lock&& other) noexcept;

Effects
Constructs a std::unique_lock instance. If other owned a lock on a mutex prior
to the constructor invocation, that lock is now owned by the newly created
std::unique_lock object.

Postconditions
For a newly constructed std::unique_lock object x, x.mutex() is equal to the
value of other.mutex() prior to the constructor invocation, and x.owns_lock() is
equal to the value of other.owns_lock() prior to the constructor invocation.
other.mutex()==NULL, other.owns_lock()==false.

Throws
Nothing.

NOTE std::unique_lock objects are not CopyConstructible, so there’s no
copy constructor, only this move constructor.

STD::UNIQUE_LOCK MOVE-ASSIGNMENT OPERATOR
Transfers ownership of a lock from one std::unique_lock object to another
std::unique_lock object.

Declaration
unique_lock& operator=(unique_lock&& other) noexcept;

Effects
If this->owns_lock()returns true prior to the call, calls this->unlock(). If other
owned a lock on a mutex prior to the assignment, that lock is now owned by *this.

Postconditions
this->mutex() is equal to the value of other.mutex() prior to the assignment,
and this->owns_lock() is equal to the value of other.owns_lock() prior to the
assignment. other.mutex()==NULL, other.owns_lock()==false.

Throws
Nothing.

NOTE std::unique_lock objects are not CopyAssignable, so there’s no copy-
assignment operator, only this move-assignment operator.
Download from Wow! eBook <www.wowebook.com>

465<mutex> header
STD::UNIQUE_LOCK DESTRUCTOR
Destroys a std::unique_lock instance and unlocks the corresponding mutex if it’s
owned by the destroyed instance.

Declaration
~unique_lock();

Effects
If this->owns_lock()returns true, calls this->mutex()->unlock().

Throws
Nothing.

STD::UNIQUE_LOCK::SWAP MEMBER FUNCTION
Exchanges ownership of their associated unique_locks of execution between two
std::unique_lock objects.

Declaration
void swap(unique_lock& other) noexcept;

Effects
If other owns a lock on a mutex prior to the call, that lock is now owned by *this.
If *this owns a lock on a mutex prior to the call, that lock is now owned by other.

Postconditions
this->mutex() is equal to the value of other.mutex() prior to the call. other
.mutex() is equal to the value of this->mutex() prior to the call. this->owns_lock()
is equal to the value of other.owns_lock() prior to the call. other.owns_lock() is
equal to the value of this->owns_lock() prior to the call.

Throws
Nothing.

SWAP NONMEMBER FUNCTION FOR STD::UNIQUE_LOCK

Exchanges ownership of their associated mutex locks between two std::unique_lock
objects.

Declaration
void swap(unique_lock& lhs,unique_lock& rhs) noexcept;

Effects
lhs.swap(rhs)

Throws
Nothing.

STD::UNIQUE_LOCK::LOCK MEMBER FUNCTION
Acquires a lock on the mutex associated with *this.

Declaration
void lock();

Preconditions
this->mutex()!=NULL, this->owns_lock()==false.
Download from Wow! eBook <www.wowebook.com>

466 APPENDIX D C++ Thread Library reference
Effects
Calls this->mutex()->lock().

Throws
Any exceptions thrown by this->mutex()->lock(). std::system_error with an
error code of std::errc::operation_not_permitted if this->mutex()==NULL.
std::system_error with an error code of std::errc::resource_deadlock_

would_occur if this->owns_lock()==true on entry.

Postconditions
this->owns_lock()==true.

STD::UNIQUE_LOCK::TRY_LOCK MEMBER FUNCTION
Attempts to acquire a lock on the mutex associated with *this.

Declaration
bool try_lock();

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Lockable
requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock().

Returns
true if the call to this->mutex()->try_lock() returned true, false otherwise.

Throws
Any exceptions thrown by this->mutex()->try_lock(). std::system_error with
an error code of std::errc::operation_not_permitted if this->mutex()==NULL.
std::system_error with an error code of std::errc::resource_deadlock_

would_occur if this->owns_lock()==true on entry.

Postconditions
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::UNIQUE_LOCK::UNLOCK MEMBER FUNCTION
Releases a lock on the mutex associated with *this.

Declaration
void unlock();

Preconditions
this->mutex()!=NULL, this->owns_lock()==true.

Effects
Calls this->mutex()->unlock().

Throws
Any exceptions thrown by this->mutex()->unlock(). std::system_error with an
error code of std::errc::operation_not_permitted if this->owns_lock()==
false on entry.
Download from Wow! eBook <www.wowebook.com>

467<mutex> header
Postconditions
this->owns_lock()==false.

STD::UNIQUE_LOCK::TRY_LOCK_FOR MEMBER FUNCTION
Attempts to acquire a lock on the mutex associated with *this within the time
specified.

Declaration
template<typename Rep, typename Period>
bool try_lock_for(
 std::chrono::duration<Rep,Period> const& relative_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the TimedLockable
requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_for(relative_time).

Returns
true if the call to this->mutex()->try_lock_for() returned true, false
otherwise.

Throws
Any exceptions thrown by this->mutex()->try_lock_for(). std::system_error
with an error code of std::errc::operation_not_permitted if this->mutex()==
NULL. std::system_error with an error code of std::errc::resource_deadlock_
would_occur if this->owns_lock()==true on entry.

Postconditions
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::UNIQUE_LOCK::TRY_LOCK_UNTIL MEMBER FUNCTION
Attempts to acquire a lock on the mutex associated with *this within the time specified.

Declaration
template<typename Clock, typename Duration>
bool try_lock_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Preconditions
The Mutex type used to instantiate std::unique_lock must meet the Timed-
Lockable requirements. this->mutex()!=NULL, this->owns_lock()==false.

Effects
Calls this->mutex()->try_lock_until(absolute_time).

Returns
true if the call to this->mutex()->try_lock_until() returned true, false
otherwise.
Download from Wow! eBook <www.wowebook.com>

468 APPENDIX D C++ Thread Library reference
Throws
Any exceptions thrown by this->mutex()->try_lock_until(). std::system_
error with an error code of std::errc::operation_not_permitted if this->
mutex()==NULL. std::system_error with an error code of std::errc::resource_
deadlock_would_occur if this->owns_lock()==true on entry.

Postcondition
If the function returns true, this->owns_lock()==true, otherwise this->owns_
lock()==false.

STD::UNIQUE_LOCK::OPERATOR BOOL MEMBER FUNCTION
Checks whether or not *this owns a lock on a mutex.

Declaration
explicit operator bool() const noexcept;

Returns
this->owns_lock().

Throws
Nothing.

NOTE This is an explicit conversion operator, so it’s only implicitly called
in contexts where the result is used as a Boolean and not where the result
would be treated as an integer value 0 or 1.

STD::UNIQUE_LOCK::OWNS_LOCK MEMBER FUNCTION
Checks whether or not *this owns a lock on a mutex.

Declaration
bool owns_lock() const noexcept;

Returns
true if *this owns a lock on a mutex, false otherwise.

Throws
Nothing.

STD::UNIQUE_LOCK::MUTEX MEMBER FUNCTION
Returns the mutex associated with *this if any.

Declaration
mutex_type* mutex() const noexcept;

Returns
A pointer to the mutex associated with *this if any, NULL otherwise.

Throws
Nothing.

STD::UNIQUE_LOCK::RELEASE MEMBER FUNCTION
Returns the mutex associated with *this if any, and releases that association.

Declaration
mutex_type* release() noexcept;
Download from Wow! eBook <www.wowebook.com>

469<mutex> header
Effects
Breaks the association of the mutex with *this without unlocking any locks held.

Returns
A pointer to the mutex associated with *this prior to the call if any, NULL otherwise.

Postconditions
this->mutex()==NULL, this->owns_lock()==false.

Throws
Nothing.

NOTE If this->owns_lock() would have returned true prior to the call, the
caller would now be responsible for unlocking the mutex.

D.5.7 std::lock function template

The std::lock function template provides a means of locking more than one mutex
at the same time, without risk of deadlock resulting from inconsistent lock orders.

Declaration
template<typename LockableType1,typename... LockableType2>
void lock(LockableType1& m1,LockableType2& m2...);

Preconditions
The types of the supplied lockable objects LockableType1, LockableType2, ... shall
conform to the Lockable requirements.

Effects
Acquires a lock on each of the supplied lockable objects m1, m2, ... by an unspecified
sequence of calls to the lock(), try_lock(), and unlock() members of those types
that avoid deadlock.

Postconditions
The current thread owns a lock on each of the supplied lockable objects.

Throws
Any exceptions thrown by the calls to lock(), try_lock(), and unlock().

NOTE If an exception propagates out of the call to std::lock, then
unlock() shall have been called for any of the objects m1, m2, ... for which a
lock has been acquired in the function by a call to lock() or try_lock().

D.5.8 std::try_lock function template

The std::try_lock function template allows you to try to lock a set of lockable
objects in one go, so either they are all locked or none are locked.

Declaration
template<typename LockableType1,typename... LockableType2>
int try_lock(LockableType1& m1,LockableType2& m2...);
Download from Wow! eBook <www.wowebook.com>

470 APPENDIX D C++ Thread Library reference
Preconditions
The types of the supplied lockable objects LockableType1, LockableType2, ... shall
conform to the Lockable requirements.

Effects
Tries to acquires a lock on each of the supplied lockable objects m1, m2, ... by calling
try_lock() on each in turn. If a call to try_lock() returns false or throws an
exception, locks already acquired are released by calling unlock() on the corre-
sponding lockable object.

Returns
-1 if all locks were acquired (each call to try_lock() returned true), otherwise the
zero-based index of the object for which the call to try_lock() returned false.

Postconditions
If the function returns -1, the current thread owns a lock on each of the supplied
lockable objects. Otherwise, any locks acquired by this call have been released.

Throws
Any exceptions thrown by the calls to try_lock().

NOTE If an exception propagates out of the call to std::try_lock, then
unlock() shall have been called for any of the objects m1, m2, ... for which a
lock has been acquired in the function by a call to try_lock().

D.5.9 std::once_flag class
Instances of std::once_flag are used with std::call_once to ensure that a particular
function is called exactly once, even if multiple threads invoke the call concurrently.

 Instances of std::once_flag are not CopyConstructible, CopyAssignable, Move-
Constructible, or MoveAssignable.

Class definition
struct once_flag
{
 constexpr once_flag() noexcept;

 once_flag(once_flag const&) = delete;
 once_flag& operator=(once_flag const&) = delete;
};

STD::ONCE_FLAG DEFAULT CONSTRUCTOR
The std::once_flag default constructor creates a new std::once_flag instance in a
state, which indicates that the associated function hasn’t been called.

Declaration
constexpr once_flag() noexcept;

Effects
Constructs a new std::once_flag instance in a state, which indicates that the asso-
ciated function hasn’t been called. Because this is a constexpr constructor, an
instance with static storage duration is constructed as part of the static initialization
phase, which avoids race conditions and order-of-initialization problems.
Download from Wow! eBook <www.wowebook.com>

471<ratio> header
D.5.10 std::call_once function template

std::call_once is used with an instance of std::once_flag to ensure that a particular
function is called exactly once, even if multiple threads invoke the call concurrently.

Declaration
template<typename Callable,typename... Args>
void call_once(std::once_flag& flag,Callable func,Args args...);

Preconditions
The expression INVOKE(func,args) is valid for the supplied values of func and
args. Callable and every member of Args are MoveConstructible.

Effects
Invocations of std::call_once on the same std::once_flag object are serialized.
If there has been no prior effective std::call_once invocation on the same
std::once_flag object, the argument func (or a copy thereof) is called as-if by
INVOKE(func,args), and the invocation of std::call_once is effective if and only
if the invocation of func returns without throwing an exception. If an exception is
thrown, the exception is propagated to the caller. If there has been a prior effective
std::call_once on the same std::once_flag object, the invocation of std::
call_once returns without invoking func.

Synchronization
The completion of an effective std::call_once invocation on a std::once_flag
object happens-before all subsequent std::call_once invocations on the same
std::once_flag object.

Throws
std::system_error when the effects can’t be achieved or for any exception propa-
gated from the invocation of func.

D.6 <ratio> header
The <ratio> header provides support for compile-time rational arithmetic.

Header contents
namespace std
{
 template<intmax_t N,intmax_t D=1>
 class ratio;

 // ratio arithmetic
 template <class R1, class R2>
 using ratio_add = see description;

 template <class R1, class R2>
 using ratio_subtract = see description;

 template <class R1, class R2>
 using ratio_multiply = see description;

 template <class R1, class R2>
 using ratio_divide = see description;
Download from Wow! eBook <www.wowebook.com>

472 APPENDIX D C++ Thread Library reference
 // ratio comparison
 template <class R1, class R2>
 struct ratio_equal;

 template <class R1, class R2>
 struct ratio_not_equal;

 template <class R1, class R2>
 struct ratio_less;

 template <class R1, class R2>
 struct ratio_less_equal;

 template <class R1, class R2>
 struct ratio_greater;

 template <class R1, class R2>
 struct ratio_greater_equal;

 typedef ratio<1, 1000000000000000000> atto;
 typedef ratio<1, 1000000000000000> femto;
 typedef ratio<1, 1000000000000> pico;
 typedef ratio<1, 1000000000> nano;
 typedef ratio<1, 1000000> micro;
 typedef ratio<1, 1000> milli;
 typedef ratio<1, 100> centi;
 typedef ratio<1, 10> deci;
 typedef ratio<10, 1> deca;
 typedef ratio<100, 1> hecto;
 typedef ratio<1000, 1> kilo;
 typedef ratio<1000000, 1> mega;
 typedef ratio<1000000000, 1> giga;
 typedef ratio<1000000000000, 1> tera;
 typedef ratio<1000000000000000, 1> peta;
 typedef ratio<1000000000000000000, 1> exa;
}

D.6.1 std::ratio class template

The std::ratio class template provides a mechanism for compile-time arithmetic
involving rational values such as one half (std::ratio<1,2>), two thirds (std::
ratio<2,3>) or fifteen forty-thirds (std::ratio<15,43>). It’s used within the
C++ Standard Library for specifying the period for instantiating the std::chrono::
duration class template.

Class definition
template <intmax_t N, intmax_t D = 1>
class ratio
{
public:
 typedef ratio<num, den> type;
 static constexpr intmax_t num= see below;
 static constexpr intmax_t den= see below;
};

Requirements
D may not be zero.
Download from Wow! eBook <www.wowebook.com>

473<ratio> header
Description
num and den are the numerator and denominator of the fraction N/D reduced to
lowest terms. den is always positive. If N and D are the same sign, num is positive;
otherwise num is negative.

Examples
ratio<4,6>::num == 2
ratio<4,6>::den == 3
ratio<4,-6>::num == -2
ratio<4,-6>::den == 3

D.6.2 std::ratio_add template alias

The std::ratio_add template alias provides a mechanism for adding two std::ratio
values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_add = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_add<R1,R2> is defined as an alias for an instantiation of std::ratio that
represents the sum of the fractions represented by R1 and R2 if that sum can be cal-
culated without overflow. If the calculation of the result overflows, the program is
ill formed. In the absence of arithmetic overflow, std::ratio_add<R1,R2> shall
have the same num and den values as std::ratio<R1::num * R2::den + R2::num *
R1::den, R1::den * R2::den>.

Examples
std::ratio_add<std::ratio<1,3>, std::ratio<2,5> >::num == 11
std::ratio_add<std::ratio<1,3>, std::ratio<2,5> >::den == 15

std::ratio_add<std::ratio<1,3>, std::ratio<7,6> >::num == 3
std::ratio_add<std::ratio<1,3>, std::ratio<7,6> >::den == 2

D.6.3 std::ratio_subtract template alias

The std::ratio_subtract template alias provides a mechanism for subtracting two
std::ratio values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_subtract = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_subtract<R1,R2> is defined as an alias for an instantiation of std::ratio
that represents the difference of the fractions represented by R1 and R2 if that
difference can be calculated without overflow. If the calculation of the result
Download from Wow! eBook <www.wowebook.com>

474 APPENDIX D C++ Thread Library reference
overflows, the program is ill formed. In the absence of arithmetic overflow, std::
ratio_subtract<R1,R2> shall have the same num and den values as std::ratio
<R1::num * R2::den - R2::num * R1::den, R1::den * R2::den>.

Examples
std::ratio_subtract<std::ratio<1,3>, std::ratio<1,5> >::num == 2
std::ratio_subtract<std::ratio<1,3>, std::ratio<1,5> >::den == 15

std::ratio_subtract<std::ratio<1,3>, std::ratio<7,6> >::num == -5
std::ratio_subtract<std::ratio<1,3>, std::ratio<7,6> >::den == 6

D.6.4 std::ratio_multiply template alias

The std::ratio_multiply template alias provides a mechanism for multiplying two
std::ratio values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_multiply = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_multiply<R1,R2> is defined as an alias for an instantiation of std::ratio
that represents the product of the fractions represented by R1 and R2 if that prod-
uct can be calculated without overflow. If the calculation of the result overflows,
the program is ill formed. In the absence of arithmetic overflow, std::ratio_
multiply<R1,R2> shall have the same num and den values as std::ratio<R1::num *
R2::num, R1::den * R2::den>.

Examples
std::ratio_multiply<std::ratio<1,3>, std::ratio<2,5> >::num == 2
std::ratio_multiply<std::ratio<1,3>, std::ratio<2,5> >::den == 15

std::ratio_multiply<std::ratio<1,3>, std::ratio<15,7> >::num == 5
std::ratio_multiply<std::ratio<1,3>, std::ratio<15,7> >::den == 7

D.6.5 std::ratio_divide template alias

The std::ratio_divide template alias provides a mechanism for dividing two std::
ratio values at compile time, using rational arithmetic.

Definition
template <class R1, class R2>
using ratio_divide = std::ratio<see below>;

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
ratio_divide<R1,R2> is defined as an alias for an instantiation of std::ratio that
represents the result of dividing the fractions represented by R1 and R2 if that result
can be calculated without overflow. If the calculation overflows, the program is ill
Download from Wow! eBook <www.wowebook.com>

475<ratio> header
formed. In the absence of arithmetic overflow, std::ratio_divide<R1,R2> shall
have the same num and den values as std::ratio<R1::num * R2::den, R1::den *
R2::num>.

Examples
std::ratio_divide<std::ratio<1,3>, std::ratio<2,5> >::num == 5
std::ratio_divide<std::ratio<1,3>, std::ratio<2,5> >::den == 6

std::ratio_divide<std::ratio<1,3>, std::ratio<15,7> >::num == 7
std::ratio_divide<std::ratio<1,3>, std::ratio<15,7> >::den == 45

D.6.6 std::ratio_equal class template

The std::ratio_equal class template provides a mechanism for comparing two
std::ratio values for equality at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_equal:
 public std::integral_constant<
 bool,(R1::num == R2::num) && (R1::den == R2::den)>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Examples
std::ratio_equal<std::ratio<1,3>, std::ratio<2,6> >::value == true
std::ratio_equal<std::ratio<1,3>, std::ratio<1,6> >::value == false
std::ratio_equal<std::ratio<1,3>, std::ratio<2,3> >::value == false
std::ratio_equal<std::ratio<1,3>, std::ratio<1,3> >::value == true

D.6.7 std::ratio_not_equal class template

The std::ratio_not_equal class template provides a mechanism for comparing two
std::ratio values for inequality at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_not_equal:
 public std::integral_constant<bool,!ratio_equal<R1,R2>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Examples
std::ratio_not_equal<std::ratio<1,3>, std::ratio<2,6> >::value == false
std::ratio_not_equal<std::ratio<1,3>, std::ratio<1,6> >::value == true
std::ratio_not_equal<std::ratio<1,3>, std::ratio<2,3> >::value == true
std::ratio_not_equal<std::ratio<1,3>, std::ratio<1,3> >::value == false

D.6.8 std::ratio_less class template

The std::ratio_less class template provides a mechanism for comparing two std::
ratio values at compile time, using rational arithmetic.
Download from Wow! eBook <www.wowebook.com>

476 APPENDIX D C++ Thread Library reference
Class definition
template <class R1, class R2>
class ratio_less:
 public std::integral_constant<bool,see below>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

Effects
std::ratio_less<R1,R2> derives from std::integral_constant<bool, value >,
where value is (R1::num*R2::den) < (R2::num*R1::den). Where possible, imple-
mentations shall use a method of calculating the result that avoids overflow. If over-
flow occurs, the program is ill formed.

Examples
std::ratio_less<std::ratio<1,3>, std::ratio<2,6> >::value == false
std::ratio_less<std::ratio<1,6>, std::ratio<1,3> >::value == true
std::ratio_less<
 std::ratio<999999999,1000000000>,
 std::ratio<1000000001,1000000000> >::value == true
std::ratio_less<
 std::ratio<1000000001,1000000000>,
 std::ratio<999999999,1000000000> >::value == false

D.6.9 std::ratio_greater class template

The std::ratio_greater class template provides a mechanism for comparing two
std::ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_greater:
 public std::integral_constant<bool,ratio_less<R2,R1>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

D.6.10 std::ratio_less_equal class template

The std::ratio_less_equal class template provides a mechanism for comparing two
std::ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_less_equal:
 public std::integral_constant<bool,!ratio_less<R2,R1>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.
Download from Wow! eBook <www.wowebook.com>

477<thread> header
D.6.11 std::ratio_greater_equal class template

The std::ratio_greater_equal class template provides a mechanism for comparing
two std::ratio values at compile time, using rational arithmetic.

Class definition
template <class R1, class R2>
class ratio_greater_equal:
 public std::integral_constant<bool,!ratio_less<R1,R2>::value>
{};

Preconditions
R1 and R2 must be instantiations of the std::ratio class template.

D.7 <thread> header
The <thread> header provides facilities for managing and identifying threads and
provides functions for making the current thread sleep.

Header contents
namespace std
{
 class thread;

 namespace this_thread
 {
 thread::id get_id() noexcept;

 void yield() noexcept;

 template<typename Rep,typename Period>
 void sleep_for(
 std::chrono::duration<Rep,Period> sleep_duration);

 template<typename Clock,typename Duration>
 void sleep_until(
 std::chrono::time_point<Clock,Duration> wake_time);
 }
}

D.7.1 std::thread class

The std::thread class is used to manage a thread of execution. It provides a means of
starting a new thread of execution and waiting for the completion of a thread of exe-
cution. It also provides a means for identifying and provides other functions for man-
aging threads of execution.

Class definition
class thread
{
public:
 // Types
 class id;
 typedef implementation-defined native_handle_type; // optional

 // Construction and Destruction
 thread() noexcept;
Download from Wow! eBook <www.wowebook.com>

478 APPENDIX D C++ Thread Library reference
 ~thread();

 template<typename Callable,typename Args...>
 explicit thread(Callable&& func,Args&&... args);

 // Copying and Moving
 thread(thread const& other) = delete;
 thread(thread&& other) noexcept;

 thread& operator=(thread const& other) = delete;
 thread& operator=(thread&& other) noexcept;

 void swap(thread& other) noexcept;

 void join();
 void detach();
 bool joinable() const noexcept;

 id get_id() const noexcept;

 native_handle_type native_handle();

 static unsigned hardware_concurrency() noexcept;
};

void swap(thread& lhs,thread& rhs);

STD::THREAD::ID CLASS
An instance of std::thread::id identifies a particular thread of execution.

Class definition
class thread::id
{
public:
 id() noexcept;
};

bool operator==(thread::id x, thread::id y) noexcept;
bool operator!=(thread::id x, thread::id y) noexcept;
bool operator<(thread::id x, thread::id y) noexcept;
bool operator<=(thread::id x, thread::id y) noexcept;
bool operator>(thread::id x, thread::id y) noexcept;
bool operator>=(thread::id x, thread::id y) noexcept;

template<typename charT, typename traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>&& out, thread::id id);

Notes
The std::thread::id value that identifies a particular thread of execution shall be
distinct from the value of a default-constructed std::thread::id instance and
from any value that represents another thread of execution.

 The std::thread::id values for particular threads aren’t predictable and may
vary between executions of the same program.

std::thread::id is CopyConstructible and CopyAssignable, so instances of
std::thread::id may be freely copied and assigned.
Download from Wow! eBook <www.wowebook.com>

479<thread> header
STD::THREAD::ID DEFAULT CONSTRUCTOR
Constructs a std::thread::id object that doesn’t represent any thread of execution.

Declaration
id() noexcept;

Effects
Constructs a std::thread::id instance that has the singular not any thread value.

Throws
Nothing.

NOTE All default-constructed std::thread::id instances store the same
value.

STD::THREAD::ID EQUALITY COMPARISON OPERATOR
Compares two instances of std::thread::id to see if they represent the same thread
of execution.

Declaration
bool operator==(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
true if both lhs and rhs represent the same thread of execution or both have the
singular not any thread value. false if lhs and rhs represent different threads of
execution or one represents a thread of execution and the other has the singular
not any thread value.

Throws
Nothing.

STD::THREAD::ID INEQUALITY COMPARISON OPERATOR
Compares two instances of std::thread::id to see if they represent different threads
of execution.

Declaration
bool operator!=(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
!(lhs==rhs)

Throws
Nothing.

STD::THREAD::ID LESS-THAN COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies before the other in the
total ordering of thread ID values.

Declaration
bool operator<(std::thread::id lhs,std::thread::id rhs) noexcept;
Download from Wow! eBook <www.wowebook.com>

480 APPENDIX D C++ Thread Library reference
Returns
true if the value of lhs occurs before the value of rhs in the total ordering of
thread ID values. If lhs!=rhs, exactly one of lhs<rhs or rhs<lhs returns true and
the other returns false. If lhs==rhs, lhs<rhs and rhs<lhs both return false.

Throws
Nothing.

NOTE The singular not any thread value held by a default-constructed
std::thread::id instance compares less than any std::thread::id instance
that represents a thread of execution. If two instances of std::thread::id
are equal, neither is less than the other. Any set of distinct std::thread::id
values forms a total order, which is consistent throughout an execution of a
program. This order may vary between executions of the same program.

STD::THREAD::ID LESS-THAN OR EQUAL COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies before the other in the
total ordering of thread ID values or is equal to it.

Declaration
bool operator<=(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
!(rhs<lhs)

Throws
Nothing.

STD::THREAD::ID GREATER-THAN COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies after the other in the
total ordering of thread ID values.

Declaration
bool operator>(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
rhs<lhs

Throws
Nothing.

STD::THREAD::ID GREATER-THAN OR EQUAL COMPARISON OPERATOR
Compares two instances of std::thread::id to see if one lies after the other in the
total ordering of thread ID values or is equal to it.

Declaration
bool operator>=(std::thread::id lhs,std::thread::id rhs) noexcept;

Returns
!(lhs<rhs)

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

481<thread> header
STD::THREAD::ID STREAM INSERTION OPERATOR
Writes a string representation of the std::thread::id value into the specified stream.

Declaration
template<typename charT, typename traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>&& out, thread::id id);

Effects
Inserts a string representation of the std::thread::id value into the specified stream.

Returns
out

Throws
Nothing.

NOTE The format of the string representation isn’t specified. Instances of
std::thread::id that compare equal have the same representation, and
instances that aren’t equal have distinct representations.

STD::THREAD::NATIVE_HANDLE_TYPE TYPEDEF
native_handle_type is a typedef to a type that can be used with platform-specific APIs.

Declaration
typedef implementation-defined native_handle_type;

NOTE This typedef is optional. If present, the implementation should provide
a type that’s suitable for use with native platform-specific APIs.

STD::THREAD::NATIVE_HANDLE MEMBER FUNCTION
Returns a value of type native_handle_type that represents the thread of execution
associated with *this.

Declaration
native_handle_type native_handle();

NOTE This function is optional. If present, the value returned should be suit-
able for use with the native platform-specific APIs.

STD::THREAD DEFAULT CONSTRUCTOR
Constructs a std::thread object without an associated thread of execution.

Declaration
thread() noexcept;

Effects
Constructs a std::thread instance that has no associated thread of execution.

Postconditions
For a newly constructed std::thread object x, x.get_id()==id().

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

482 APPENDIX D C++ Thread Library reference
STD::THREAD CONSTRUCTOR
Constructs a std::thread object associated with a new thread of execution.

Declaration
template<typename Callable,typename Args...>
explicit thread(Callable&& func,Args&&... args);

Preconditions
func and each element of args must be MoveConstructible.

Effects
Constructs a std::thread instance and associates it with a newly created thread of
execution. Copies or moves func and each element of args into internal storage
that persists for the lifetime of the new thread of execution. Performs INVOKE
(copy-of-func,copy-of-args) on the new thread of execution.

Postconditions
For a newly constructed std::thread object x, x.get_id()!=id().

Throws
An exception of type std::system_error if unable to start the new thread. Any
exception thrown by copying func or args into internal storage.

Synchronization
The invocation of the constructor happens-before the execution of the supplied
function on the newly created thread of execution.

STD::THREAD MOVE-CONSTRUCTOR
Transfers ownership of a thread of execution from one std::thread object to a newly
created std::thread object.

Declaration
thread(thread&& other) noexcept;

Effects
Constructs a std::thread instance. If other has an associated thread of execution
prior to the constructor invocation, that thread of execution is now associated with
the newly created std::thread object. Otherwise, the newly created std::thread
object has no associated thread of execution.

Postconditions
For a newly constructed std::thread object x, x.get_id() is equal to the value of
other.get_id() prior to the constructor invocation. other.get_id()==id().

Throws
Nothing.

NOTE std::thread objects are not CopyConstructible, so there’s no copy
constructor, only this move constructor.

STD::THREAD DESTRUCTOR
Destroys a std::thread object.

Declaration
~thread();
Download from Wow! eBook <www.wowebook.com>

483<thread> header
Effects
Destroys *this. If *this has an associated thread of execution (this->joinable()
would return true), calls std::terminate() to abort the program.

Throws
Nothing.

STD::THREAD MOVE-ASSIGNMENT OPERATOR
Transfers ownership of a thread of execution from one std::thread object to another
std::thread object.

Declaration
thread& operator=(thread&& other) noexcept;

Effects
If this->joinable()returns true prior to the call, calls std::terminate() to abort
the program. If other has an associated thread of execution prior to the assign-
ment, that thread of execution is now associated with *this. Otherwise *this has
no associated thread of execution.

Postconditions
this->get_id() is equal to the value of other.get_id() prior to the call. other
.get_id()==id().

Throws
Nothing.

NOTE std::thread objects are not CopyAssignable, so there’s no copy-
assignment operator, only this move-assignment operator.

STD::THREAD::SWAP MEMBER FUNCTION
Exchanges ownership of their associated threads of execution between two
std::thread objects.

Declaration
void swap(thread& other) noexcept;

Effects
If other has an associated thread of execution prior to the call, that thread of exe-
cution is now associated with *this. Otherwise *this has no associated thread of
execution. If *this has an associated thread of execution prior to the call, that
thread of execution is now associated with other. Otherwise other has no associ-
ated thread of execution.

Postconditions
this->get_id() is equal to the value of other.get_id() prior to the call. other
.get_id() is equal to the value of this->get_id() prior to the call.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

484 APPENDIX D C++ Thread Library reference
SWAP NONMEMBER FUNCTION FOR STD::THREADS
Exchanges ownership of their associated threads of execution between two std::
thread objects.

Declaration
void swap(thread& lhs,thread& rhs) noexcept;

Effects
lhs.swap(rhs)

Throws
Nothing.

STD::THREAD::JOINABLE MEMBER FUNCTION
Queries whether or not *this has an associated thread of execution.

Declaration
bool joinable() const noexcept;

Returns
true if *this has an associated thread of execution, false otherwise.

Throws
Nothing.

STD::THREAD::JOIN MEMBER FUNCTION
Waits for the thread of execution associated with *this to finish.

Declaration
void join();

Preconditions
this->joinable() would return true.

Effects
Blocks the current thread until the thread of execution associated with *this
has finished.

Postconditions
this->get_id()==id(). The thread of execution associated with *this prior to the
call has finished.

Synchronization
The completion of the thread of execution associated with *this prior to the call
happens-before the call to join() returns.

Throws
std::system_error if the effects can’t be achieved or this->joinable()

returns false.

STD::THREAD::DETACH MEMBER FUNCTION
Detaches the thread of execution associated with *this to finish.

Declaration
void detach();
Download from Wow! eBook <www.wowebook.com>

485<thread> header
Preconditions
this->joinable()returns true.

Effects
Detaches the thread of execution associated with *this.

Postconditions
this->get_id()==id(), this->joinable()==false

The thread of execution associated with *this prior to the call is detached and no
longer has an associated std::thread object.

Throws
std::system_error if the effects can’t be achieved or this->joinable()returns
false on invocation.

STD::THREAD::GET_ID MEMBER FUNCTION
Returns a value of type std::thread::id that identifies the thread of execution asso-
ciated with *this.

Declaration
thread::id get_id() const noexcept;

Returns
If *this has an associated thread of execution, returns an instance of std::
thread::id that identifies that thread. Otherwise returns a default-constructed
std::thread::id.

Throws
Nothing.

STD::THREAD::HARDWARE_CONCURRENCY STATIC MEMBER FUNCTION
Returns a hint as to the number of threads that can run concurrently on the cur-
rent hardware.

Declaration
unsigned hardware_concurrency() noexcept;

Returns
The number of threads that can run concurrently on the current hardware. This
may be the number of processors in the system, for example. Where this informa-
tion is not available or well defined, this function returns 0.

Throws
Nothing.

D.7.2 Namespace this_thread

The functions in the std::this_thread namespace operate on the calling thread.

STD::THIS_THREAD::GET_ID NONMEMBER FUNCTION
Returns a value of type std::thread::id that identifies the current thread of execution.

Declaration
thread::id get_id() noexcept;
Download from Wow! eBook <www.wowebook.com>

486 APPENDIX D C++ Thread Library reference
Returns
An instance of std::thread::id that identifies the current thread.

Throws
Nothing.

STD::THIS_THREAD::YIELD NONMEMBER FUNCTION
Used to inform the library that the thread that invoked the function doesn’t need to
run at the point of the call. Commonly used in tight loops to avoid consuming exces-
sive CPU time.

Declaration
void yield() noexcept;

Effects
Provides the library an opportunity to schedule something else in place of the cur-
rent thread.

Throws
Nothing.

STD::THIS_THREAD::SLEEP_FOR NONMEMBER FUNCTION
Suspends execution of the current thread for the specified duration.

Declaration
template<typename Rep,typename Period>
void sleep_for(std::chrono::duration<Rep,Period> const& relative_time);

Effects
Blocks the current thread until the specified relative_time has elapsed.

NOTE The thread may be blocked for longer than the specified duration.
Where possible, the elapsed time is determined by a steady clock.

Throws
Nothing.

STD::THIS_THREAD::SLEEP_UNTIL NONMEMBER FUNCTION
Suspends execution of the current thread until the specified time point has been
reached.

Declaration
template<typename Clock,typename Duration>
void sleep_until(
 std::chrono::time_point<Clock,Duration> const& absolute_time);

Effects
Blocks the current thread until the specified absolute_time has been reached for
the specified Clock.

NOTE There’s no guarantee as to how long the calling thread will be blocked
for, only that Clock::now() returned a time equal to or later than absolute_
time at the point at which the thread became unblocked.

Throws
Nothing.
Download from Wow! eBook <www.wowebook.com>

resources
Print resources
Cargill, Tom, “Exception Handling: A False Sense of Security,” in C++ Report 6, no. 9,

(November-December 1994). Also available at http://www.informit.com/content/
images/020163371x/supplements/Exception_Handling_Article.html.

Hoare, C.A.R., Communicating Sequential Processes (Prentice Hall International, 1985),
ISBN 0131532898. Also available at http://www.usingcsp.com/cspbook.pdf.

Michael, Maged M., “Safe Memory Reclamation for Dynamic Lock-Free Objects Using
Atomic Reads and Writes” in PODC ’02: Proceedings of the Twenty-first Annual Sympo-
sium on Principles of Distributed Computing (2002), ISBN 1-58113-485-1.

———. U.S. Patent and Trademark Office application 20040107227, “Method for effi-
cient implementation of dynamic lock-free data structures with safe memory recla-
mation.”

Sutter, Herb, Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions
(Addison Wesley Professional, 1999), ISBN 0-201-61562-2.

———. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Soft-
ware,” in Dr. Dobb’s Journal 30, no. 3 (March 2005). Also available at http://www
.gotw.ca/publications/concurrency-ddj.htm.

Online resources
Atomic Ptr Plus Project Home, http://atomic-ptr-plus.sourceforge.net/.
Boost C++ library collection, http://www.boost.org.
C++0x/C++11 Support in GCC, http://gcc.gnu.org/projects/cxx0x.html.
C++11—The Recently Approved New ISO C++ Standard, http://www.research.att.com/

~bs/C++0xFAQ.html.
Erlang Programming Language, http://www.erlang.org/.
GNU General Public License, http://www.gnu.org/licenses/gpl.html.
Haskell Programming Language, http://www.haskell.org/.
487

Download from Wow! eBook <www.wowebook.com>

http://www.informit.com/content/images/020163371x/supplements/Exception_Handling_Article.html
http://www.informit.com/content/images/020163371x/supplements/Exception_Handling_Article.html
http://www.usingcsp.com/cspbook.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://atomic-ptr-plus.sourceforge.net/
http://www.boost.org/
http://gcc.gnu.org/projects/cxx0x.html
http://www.research.att.com/~bs/C++0xFAQ.html
http://www.research.att.com/~bs/C++0xFAQ.html
http://www.erlang.org/
http://www.gnu.org/licenses/gpl.html
http://www.haskell.org/

RESOURCES488
IBM Statement of Non-Assertion of Named Patents Against OSS, http://www.ibm.com/
ibm/licensing/patents/pledgedpatents.pdf.

Intel Building Blocks for Open Source, http://threadingbuildingblocks.org/.
The just::thread Implementation of the C++ Standard Thread Library, http://www

.stdthread.co.uk.
Message Passing Interface Forum, http://www.mpi-forum.org/.
Multithreading API for C++0X—A Layered Approach, C++ Standards Committee Paper

N2094, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html.
OpenMP, http://www.openmp.org/.
SETI@Home, http://setiathome.ssl.berkeley.edu/.
Download from Wow! eBook <www.wowebook.com>

http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://threadingbuildingblocks.org/
http://www.stdthread.co.uk/
http://www.mpi-forum.org/
http://www.openmp.org/
http://setiathome.ssl.berkeley.edu/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html
http://www.stdthread.co.uk/

index
Symbols

#include <thread>, example of 13
<atomic> header, reference 390
<chrono> header 88

reference 360
<condition_variable> header 69

reference 375
<future> header 76

reference 424
<mutex> header 446

reference 446
std::lock_guard 38
std::mutex 38

<ratio> header 471
reference 471

<thread> header
introduced 13
reference 477
std::this_thread::get_id 31
std::thread class 16

A

ABA problem 222
abstraction penalty 11
ACE, and multithreaded code 10
actor model 100
address space

limit 9
shared 5

Amdahl’s law 251
serial fraction 251

atomic integral types
available operations 116
return value of operations 116

atomic operation
categories 110
compare_exchange_strong

bitwise comparison of a whole structure 215
checking for unchanged value 220
updating a whole structure atomically 217
using to avoid looping 220
using to extract a node from a queue 215
using to set a value conditionally 214
See also std::atomic class template,

compare_exchange_strong() member func-
tion

compare_exchange_weak() member function
compared to compare_exchange_strong 195
memory ordering in stack::push 205
use in a loop 191
See also std::atomic class template,

compare_exchange_weak() member func-
tion

compare-exchange functions 185
avoiding race conditions with 185–186
double-word-compare-and-swap

(DWCAS) 117
defined 107
enforcing ordering with 146

example 145
simple example 120–121

fences 143
and memory_order_relaxed 143

fetch_add() member function, and release
sequences 207

happens-before relationship 120
implicit load 218
inter-thread happens-before relationship, and

sequenced-before 123
lock-free, enabling by using 202
489

Download from Wow! eBook <www.wowebook.com>

INDEX490
atomic operation (continued)
memory ordering options 140

default 123
tags for memory ordering models 123

memory ordering, default 218
memory ordering, memory_order_seq_cst

218
on std::shared_ptr 119, 200

example 119
sequentially-consistent ordering 124
store operations 110
synchronizes-with relationship 120

defined 121
atomic operations 11

enforcing ordering with 119
memory ordering options 123

atomic types
compare_exchange_weak() member

function 185
compare-exchange functions 113–114

memory ordering parameters 114
spurious failure 113

internal locks 184
introduction 107
is_lock_free() member function 107
lack of assignment 111
lack of copy-construction 111
list of alternative names 108
list of typedefs 109, 118
lock-free operations 184
naming convention for alternative names 108
nonmember functions

naming convention 117
std::atomic_compare_exchange_weak 118
std::atomic_compare_exchange_

weak_explicit 118
std::atomic_flag_clear 119
std::atomic_flag_clear_explicit 119
std::atomic_flag_test_and_set 119
std::atomic_flag_test_and_set_explicit 119
std::atomic_is_lock_free 118
std::atomic_load 118
std::atomic_store 118
std::atomic_store_explicit 118

operation return values 110
operations with nonmember functions

117–119
overview of operations 109
restrictions 109
std::atomic class template

and relationship with alternative names 108
use with user-defined type 214
using compare_exchange_strong on a

structure 217
using with a user-defined type 202

std::atomic_address, use with hazard
pointers 198

atomic types, assignment operator,
return type 112

atomic variable, use as a done flag 258
ATOMIC_ADDRESS_LOCK_FREE macro

392
ATOMIC_BOOL_LOCK_FREE macros 392
ATOMIC_CHAR_LOCK_FREE macro 392
ATOMIC_CHAR16_T_LOCK_FREE macro 392
ATOMIC_CHAR32_T_LOCK_FREE macro 392
ATOMIC_FLAG_INIT macro 110
ATOMIC_INT_LOCK_FREE macro 392
ATOMIC_LLONG_LOCK_FREE macro 392
ATOMIC_LONG_LOCK_FREE macro 392
ATOMIC_SHORT_LOCK_FREE macro 392
ATOMIC_VAR_INIT macro 393
ATOMIC_WCHAR_T_LOCK_FREE macro

392
auto keyword 337
automatic type deduction

and function template parameters 337
deduction rules 337
syntax 337

B

background threads 21
bit-field, using to keep structure within machine

word 214
blocked thread 301
blocking 301
Boost, and multithreaded code 10–11
boost::shared_mutex 171, 173–174
bounded queue 169

C

C++ Standard
overhaul 1
support for multithreaded programs 1

cache ping-pong, and performance 236
callable type 16
code reviews 303

guidelines 304
rubber chicken 304

Communicating Sequential Processes 97
actor model 100
and lack of shared data 97

compare-exchange functions. See atomic opera-
tion, compare-exchange functions

concurrency
and constructors 150
and destructors 150
and multithreading 9–12
Download from Wow! eBook <www.wowebook.com>

INDEX 491
concurrency (continued)
and responsiveness 254
and user interfaces 253
approaches to 5
data structure 149
definition 2–6
design guidelines 149–150
efficiency 11
enabling 150

by separating data 160
with fine-grained locking 164

hardware 3, 14
Hello World 13
illusion of 2
in computer systems 2–4
limiting 157
memory model 11, 37
multiple processes 5

advantage 5
downside 5

multiple threads 5
advantage 6
downside 6

opportunity for 149
optimization 9
overhead 6, 8
parallel execution 3
performance 7–8
performance problem

lock granularity 46
potential for 149, 164
preventing 149
problem

contention 47
deadlock 47
race condition 35

reasons for using 6
performance 9
separation of concerns 9

reasons to avoid 8
safe 5
support in C++11 standard 10

concurrency bugs
and shared memory 303
broken invariants 302
code review questions 304
deadlock 301
difficulty of reproducing 305
distinguishing from other bugs 306
lifetime issues 302
livelock 301
locating 303–314
stale data 305
symptoms 303
testing 311–313

unwanted blocking 301
with code reviews 303
wrong mutex scope 305

constant expressions 324
and constexpr 324
and literal types 326
array bounds 324
in-class initializers 324
nontype template parameters 324
places that require them 324
static initialization for aggregates 324

constexpr functions 324
and constant expressions 324
and mutex initialization 327
and static initialization 327

avoiding race conditions 327
and templates 328
constructors 327

and static initialization 327
trivial constructors 328

member functions 326
and virtual 328
implied const 327

no side effects 328
not always constant expressions 325
pure functions 328
requirements 328
syntax 325

constexpr objects 327
implicit const 327

context switching 9
defined 3

conveniently concurrent 8

D

daemon threads 21
data parallelism 8
data race 36, 302

defined 106
dereferencing a loaded pointer 212
due to unsupported usage 211
undefined behavior 106
with double-checked locking 61

deadlock
avoiding 47

breaching guidelines 175
fixed-order locking 47, 49, 174
no callbacks 49
no nested locks 49
with a lock hierarchy 51
with std::lock 48

defined 47
guidelines for avoiding 49–54
impossibility with hierarchical mutex 52
Download from Wow! eBook <www.wowebook.com>

INDEX492
deadlock (continued)
with children’s toys 47
with std::thread objects 49

defaulted functions 321
and accessibility 321
and aggregates 322
and copy constructors 321
and default constructors 322
and default initialization 323
and trivial functions 322
and virtual destructors 321
examples 321
reasons for defaulting 321
syntax 321
things that can be defaulted 321

deleted functions 319
and overload resolution 321
example 21
preventing copying 320
preventing narrowing 321
syntax 320

dividing work 225
by task 231–233
comparing complexity of alternatives 264
data access patterns 240–241
dividing data recursively 262
early completion 258
generalist threads vs. specialist threads 226
guidelines 242
matrix multiplication 240
performance characteristics 233
pipeline 232
recursively 227–231
separating concerns 231–232
specialist threads 231
splitting data 226–227
std::async 228
std::thread::hardware_concurrency 228
threads vs. tasks 228
to reduce data accessed in each thread 241

double-checked locking
defined 60
race condition 60
undefined behavior 61

doubly-linked list
deleting from 34
invariant 34

dual-core 3
dummy nodes, in a lock-free queue 211
DWCAS (double-word-compare-and-swap) 117

E

embarrassingly parallel 8
Erlang 5, 97

event loops, and responsiveness 253
event-driven architecture 253
example

basic barrier 267
exception_safe_parallel_accumulate 248

with std::async 249
function to run a pending task from a thread

pool 281
GUI event loop 253
interruptible_thread interface 289
join_threads class 248
naïve parallel_accumulate 29
parallel_accumulate

with a thread pool 279
with std::packaged_task 245

parallel_find 258
using std::async 261

parallel_for_each 255, 257
parallel_partial_sum

with even division 264
with pairwise updates 269

parallel_quick_sort using thread pool 281
queue for work-stealing 285
scoped_thread 27
thread pool with work stealing 286
thread_guard 20
with per-thread work queues 283

examples, test for concurrent queue 312
exception safety 243–250

achieving with std::async 249
and destroying futures 249
and std::packaged_task 245
in std::stack 43
single vs. multithreaded 243

exceptions, and std::async 83

F

false sharing
avoiding with padding 242
between mutex and protected data 242
performance implications 238

fine-grained locking 158
difficulties 159
placing locks 161

functional programming 93
and (lack of) race conditions 93

future, defined 76
futures

and stored exceptions 83
getting from a std::packaged_task 79
getting from a std::promise 82
getting from std::async 77
storing exceptions 83–84
using for thread return values 77
Download from Wow! eBook <www.wowebook.com>

INDEX 493
G

global variables 5
GUI frameworks 80

and threads 80

H

hardware concurrency 4
defined 3

hardware threads 3
hazard pointer

checking for outstanding pointers 197
defined 193
marking a pointer as hazardous 193
overhead from simple implementation 199
patent 200
reclaiming memory 198
simple allocation scheme 195
simple example of reclaiming nodes 197
trading memory for speed 199
updating 194
usage overview 193

hierarchical mutex
example 51
sample implementation 52

I

impure functions, defined 93
initial function 13
interrupting threads 289–299

and exception safety 297
background threads 298
basic interface 289
basic interruptible_thread implementation 290
catching interruptions 297
detecting interruption 291
example implementation 293
handling interruptions 297
interrupt function 290
interruptible_wait on a

condition_variable_any 294
interrupting future waits 296
interrupting waiting on a

condition_variable 291
interruption point 289
interruption_point function 291
per-thread data structure 289
race condition in naïve implementation 292
sample implementation 294
using a timeout 292

invariant
and exception safety 243
and race conditions 36, 302

and thread-safety 150
broken 34, 302
defined 34
for a queue 162
in lock-free data structures 183
preserving 37, 152

iterators, and concurrency 170

J

join_threads class, use with thread pool 276
join, std::threads, example of 14
joining threads, when exceptions thrown 276

L

lambda function 329
and local variables 330
as predicates 333
captures 330

and class members 333
by copy 331
by reference 331
mixing copy and reference captures 332
this 333

example with std::condition_variable::wait 69
lambda introducer 329
return values 329

automatic deduction 329–330
explicit declaration syntax 330

syntax 329
use with std::condition_variable 70
with parameters 329

lazy initialization
defined 59
example of 59
example using mutex 60
example using std::call_once 61

lifetime issues 17
lightweight processes 5
literal type

and constant expressions 326
and constexpr functions 326
and static initialization 327
defined 325
example 325

live lock, defined 183
local objects, destruction of 20
lock-based data structures

bounded queue 169
vs. unbounded queue 169

list 175–179
find_first_if() 178
for_each() 178
interface design 175
Download from Wow! eBook <www.wowebook.com>

INDEX494
lock-based data structures (continued)
iteration 175
operations 175
opportunities for concurrency 178
push_front() 177
remove_if() 178
sample implementation 176

lookup table 169–174
consequences of hash table

implementation 171
consequences of sorted array

implementation 171
exception safety 173
extracting contents 174
fine grained locking 171
hash function 171
implementation choices 171
interface design 170
operations 170
protecting buckets 173

queue 154–169
analysis of required locks 163
and exception safety 164
avoiding data races 163
exception safety and waiting 155
fine-grained locks 158–159
implementation using std::shared_ptr 156
implementation with fine-grained locking and

waiting 166–168
interface differences from std::queue 154
invariants 162
potential for concurrency 164
sample implementation with fine-grained

locking 161
simple implementation 154
waiting 165
waiting for an entry 155

stack 151–154
and deadlock 153
and race conditions 152
basic thread safety 152
exception safety 152
potential for concurrency 153
sample code 151
serialization 153

unbounded queue 169
vs. bounded queue 169

lock-free data structures
ABA problem 222
and compare-exchange 182
and invariants 183
and memory ordering constraints 183
atomic operations 214
busy-wait 217
defined 182

guidelines for writing 221–223
helping stalled threads 217
impossibility of deadlocks 183
introduced 181
lock-free property, ensuring by helping other

thread 222
managing memory 188–204, 221

alternatives to new and delete 220
freeing memory at quiescent points 191
hazard pointers 193–200
memory reclamation schemes 221
recycling nodes 222
split reference count, primary reason 204
split reference counts 201

maximizing concurrency 183
optimizing memory allocation 220
performance 183, 217
prototyping 221
queue 209–221

avoiding race conditions 212
handling multiple producers 211–221
implementation of pop() with a ref-counted

tail 214
obtaining a new reference to a node 216
pop() implementation for lock-free

push() 218
push() implementation using helping for

lock-free semantics 219
releasing a reference on a node 215
releasing an external counter to a node 216
sample implementation of push() with ref-

counted tail 212
single producer, single consumer 211
single-producer, single-consumer

implementation 209
synchronizing push() and pop() 210

split-count reference counting, deleting
nodes 215

stack 184
adding a node 184
basic push function 185
basic structure 184
example counting threads in pop 189
example implementation with memory

leak 187
exception safety 187
implementation of pop using hazard

pointers 194
implementation with reference counting and

relaxed operations 207
popping a node with split reference

counts 203
potential race conditions 185
pushing a node with split reference

counts 201
Download from Wow! eBook <www.wowebook.com>

INDEX 495
lock-free data structures (continued)
removing nodes 186
sample implementation using shared_ptr 200

starvation 182
std::atomic_is_lock_free function, std 200
unintended locking 217

lock-free programming, defined 37
locking

granularity 46
choosing 57–59
coarse-grained 57
defined 57
fine-grained 47, 57, 175
too large 46
too small 46

hand over hand 50, 175, 178
multiple mutexes, std::lock 48–49

lookup table, interface design
choices for add and change 170
choices for querying values 170

lvalue references
and rvalue references 316
and temporaries 316

M

massively parallel 235
memory allocation, moving outside a lock 157
memory barriers 143
memory location

and bit-fields 104
zero-length 104

and object 104
and race conditions 105
defined 104
example struct 105

memory model 10
acquire-release ordering 132

and happens-before 136
and inter-thread happens-before 136
and mutexes 138
and synchronizes-with 132
and synchronizing data between threads 136
carries-a-dependency-to relation defined 139
choice of semantics for read-modify-write

operations 138
data dependency 138–140
dependency-ordered-before

and inter-thread-happens-before 139
compared to synchronizes-with 139
relation defined 139

example of data dependent ordering 139
example of transitive synchronization 136
example sequence 134
example with imposed ordering 134

example with no total order 133
lack of synchronization with relaxed

operations 135
man in cubicle analogy 135
memory_order_acq_rel 132, 137–138
memory_order_acquire 132, 135, 138
memory_order_consume 138–139
memory_order_release 132, 135, 138
mixing with sequentially-consistent

ordering 138
synchronization cost 138
synchronization using acquire and release

pairings 135
transitive synchronization

across threads 136
using read-modify-write operations 137

applying to lock-free stack 205–209
applying, identifying required relationships

205
fences

example of ordering relaxed operations 143
memory_order_acquire 144
memory_order_release 144
synchronizes-with 144

happens-before relationship 120
and relaxed ordering 127
and sequenced-before 146
between push() and pop() on a queue 211
between threads 123
defined 122
in a single-thread 122
nonatomic operations 146

inter-thread happens-before relationship
and synchronizes-with 123
defined 123

lock() example memory ordering 146
memory ordering 204
memory ordering options

and ordering models 123
and varying costs with CPU architecture 123
default 123
default ordering 124

modification order
and relaxed ordering 127
defined 106

non-sequentially-consistent orderings
and lack of agreement between threads 127
and lack of global order 126

optimizing memory ordering 221
ordering constraints 184
relaxed ordering 127–132

example 127
example sequence 128
man-in-cubicle analogy 131
memory_order_relaxed 127, 132
Download from Wow! eBook <www.wowebook.com>

INDEX496
memory model (continued)
release sequence

and memory_order_relaxed 141
defined 141
example 141
example sequence 143
in lock-free stack 206
memory_order_acq_rel 141
memory_order_acquire 141
memory_order_consume 141
memory_order_release 141
memory_order_seq_cst 141

sequenced-before relationship, and happens-
before 146

sequential consistency, defined 124
sequentially-consistent ordering 204

additional implied ordering relationships
126

and global order 124
and happens-before 126
and mutexes 138
and synchronizes-with 124
cost 204
example 125
memory_order_seq_cst 125–126
mixing with acquire-release ordering 138
ordering diagram 126
performance penalty 124
synchronization cost 126
using for prototyping 221

splitting operations to vary memory
ordering 207

synchronizes-with relationship 120
and relaxed ordering 127
defined 121

unlock() example memory ordering 146
message passing

actor model 100
and state machines 97
ATM example 98

actor model 100
division into threads 98
example state function 101
handling different types of message 101
handling messages 100
messages as structs 98
sample code 99
state machine model 99
waiting for matching messages 100
waiting for messages 100

implicit synchronization 100
no shared state 100

move constructors
and copy constructors 317
example 317

move semantics 316
and deleted copy operations 320
and optimization 316
and rvalue references 317
and rvalues 316
and std::thread 318
and std::unique_ptr 317
move constructors, example 317
moved-from state 318

of std::thread 318
move-only types 320

example 320
in the thread library 318

moving from an lvalue 320
multicore 3, 7
multiprocessor 3
multithreaded 5
multithreading

history 10
memory model 10
support in the C++11 standard 14

mutex
defined 37
lock 37
lock ownership, transferring 55
recursive 65
unlock 37
user-defined

example 52
example implementation 111, 181
requirements 52

using 38–59
mutual exclusion 149

N

native_handle 12
naturally parallel 8
nonblocking operations, defined 182

O

object
and variables 105
defined 104
division into subobjects 104–105
example struct 105
subobject 104

oversubscription, avoiding 30

P

parallel_find, and out-of-order processing 262
performance 233–239

Amdahl’s law 251
and cache line pressure 238
Download from Wow! eBook <www.wowebook.com>

INDEX 497
performance (continued)
and data structures 239–243
and multiple processors 236
and mutexes 236
and reader-writer mutexes 237
and task switching 238
cache miss 238, 241
cache ping-pong 236–237
data contention 235
data proximity 238
false sharing 237
hiding latency 252
high contention 236
I/O latency 252
idle threads 239
low contention 236
massively parallel 235
multiple applications 234
number of processors 234
oversubscription 234, 239
reducing time taken vs. processing more

data 251
scalability 250
scaling 234
std::async 234
std::thread::hardware_concurrency 234
thread pools 234
too many threads 239

platform-specific facilities 6, 10, 12
pure function, defined 93

Q

queue
bounded queue 169
single-threaded implementation 158

with dummy node 160
unbounded 169

Quicksort
example parallel implementation 228
FP-style sequential implementation 94
simple parallel implementation 95

R

race condition 35–37
and exception safety 43
avoiding

by atomic update of a whole structure 217
with atomic compare-exchange functions

185
with enforced ordering 105

benign 36
data race 36

defined 106

defined 36
eliminating 43
example 59
in interface 40, 46

stack example 42
initialization of local static 62
problematic 36
window of opportunity 36
with double-checked locking 60

race conditions 302
and testing 305

RAII. See Resource Acquisition Is Initialization
recursive mutex 65
reduction 226
reference to a reference 319
Resource Acquisition Is Initialization 10

and threads 20, 27
for mutexes, std::lock_guard 38
scoped_thread example 27
thread_guard example 20

responsiveness 7
rvalue references

and lvalue references 316
and move semantics 316
and static_cast 318
and std::move 318
and template argument type deduction

319
and template parameters 318
and temporaries 316
described 315
parameters treated as lvalues 318

S

scalability 250
Amdahl’s law 251
parallel vs. serial sections 251

scoped_thread example 27
separation of concerns, and concurrency 6
serialization 60, 149

minimizing 150
shared data

encapsulating 38
failure to protect 39–40

example 39
problems 34–36
protecting 37–65

guideline 40
incomplete protection 40
initialization 59
single global mutex 46
structuring code 39
with correct mutex 40
with mutex 43
Download from Wow! eBook <www.wowebook.com>

INDEX498
shared data (continued)
with std::call_once 61
with std::mutex 38

read-only 34
shared memory 5
SI ratios 88
single-core 3
Single-Instruction/Multiple-Data (SIMD) 267
single-threaded 4
sizeof..., and variadic templates 336
Software Transactional Memory, defined 37
spurious wake, defined 71
std::adopt_lock

and std::lock_guard 48
example 48

std::any_of 257
std::async

and asynchronous tasks 77
and dividing work recursively 227
and exceptions 83, 249
and oversubscription 96
and parallel_for_each 257
and std::future 77, 425, 445
compare to std::thread 77
comparison with std::packaged_task 79
example of passing arguments 77
exception propagation 262
exception safety 262
introduction 77
passing additional arguments 77
passing reference arguments with std::ref

262
reference 445
simple example 77
unsuitability for interdependent tasks 266
use for exception safety 249
vs. custom spawn_task function 96
vs. simple thread pools 276
vs. thread pools 280

std::atomic class template 116
and relationship with alternative names

108
and user-defined types 110, 116–117

available operations 117
bitwise comparison and compare/exchange

functions 116
class definition 398
compare_exchange_strong() member

function 404
compare_exchange_weak() member

function 406
conversion assignment operator 401
conversion constructor 401
conversion to nonatomic type 403
default constructor 400

exchange() member function 404
fetch_add() member function 412

for pointer specializations 421
fetch_and() member function 414
fetch_or() member function 415
fetch_sub() member function 413

for pointer specializations 422
fetch_xor() member function 416
is_lock_free() member function 401
load() member function 402
operator- - postdecrement 417

for pointer specializations 423
operator- - predecrement 417

for pointer specializations 423
operator^= 418
operator&= 418
operator++ postincrement 417

for pointer specializations 423
operator++ preincrement 417

for pointer specializations 423
operator+= 417

for pointer specializations 423
operator-= 418

for pointer specializations 424
operator|= 418
reference 397
restricted operations 110
specializations 408

for built-in types 107
for integral types 408
for pointer types 418
See also std::atomic partial specialization for

pointer types
std::atomic_compare_exchange_strong_explicit

() nonmember function 406
std::atomic_compare_exchange_strong() non-

member function 405
std::atomic_compare_exchange_weak_explicit()

nonmember function 407
std::atomic_compare_exchange_weak() non-

member function 407
std::atomic_exchange nonmember()

function 404
std::atomic_exchange_explicit() nonmember

function 404
std::atomic_fetch_add_explicit() nonmember

function 413
for pointer specializations 422

std::atomic_fetch_add() nonmember
function 413
for pointer specializations 421

std::atomic_fetch_and_explicit() nonmember
function 415

std::atomic_fetch_and() nonmember
function 414
Download from Wow! eBook <www.wowebook.com>

INDEX 499
std::atomic class template (continued)
std::atomic_fetch_or_explicit() nonmember

function 416
std::atomic_fetch_or() nonmember

function 415
std::atomic_fetch_sub_explicit() nonmember

function 414
for pointer specializations 422

std::atomic_fetch_sub() nonmember
function 413

std::atomic_fetch_sub() nonmember function
for pointer specializations 422

std::atomic_fetch_xor_explicit() nonmember
function 416

std::atomic_fetch_xor() nonmember
function 416

std::atomic_init() nonmember function 400
std::atomic_is_lock_free() nonmember

function 401
std::atomic_load_explicit() nonmember

function 402
std::atomic_load() nonmember function 402
std::atomic_store_explicit() nonmember

function 403
std::atomic_store() nonmember function

403
store() member function 403

std::atomic partial specialization for pointer
types 114–115

arithmetic operators 115
memory ordering 115
return value 115

fetch_add() member function 115
example 115
memory ordering choices 115
return value 115

fetch_sub() member function 115
memory ordering choices 115
return value 115

std::atomic_flag 110–112, 184
and ATOMIC_FLAG_INIT 110
and std::atomic_flag_test_and_set nonmember

function 396
class definition 395
clear() member function 107, 111, 396
default constructor 395
initialization 110
initialization with ATOMIC_FLAG_INIT 395
introduction 107
nonmember functions, std 119
states 110
std::atomic_flag_clear_explicit() nonmember

function 397
std::atomic_flag_clear() nonmember

function 397

std::atomic_flag_test_and_set_explicit() non-
member function 396

test_and_set() member function 107, 111, 396
std::atomic_signal_fence() nonmember

function 394
std::atomic_thread_fence() nonmember

function 394
std::atomic_xxx typedefs 391
std::atomic<bool> 112–114

assignment from bool 112
return type 112

compare_exchange_strong() member
function 113

compare_exchange_weak() member
function 113
loop to handle spurious failures 113

comparison with std::atomic_flag 112
exchange() member function 112
is_lock_free() member function 114
load() member function 112
store() member function 112

std::atomic<double>, and
compare_exchange_strong 117

std::atomic<float>
and compare_exchange_strong 117
lack of arithmetic operations 117

std::call_once
and std::once_flag 471
example 61
introduced 61
using local static as alternative 62

std::chrono::duration 88
and duration-base timeouts 89
count() member function 89

std::chrono::duration class template
and std::recursive_timed_mutex::try_

lock_for 457
and std::shared_future::wait_for 433
and std::this_thread::sleep_for 486
and std::timed_mutex::try_lock_for 453
and std::unique_lock 463
and std::unique_lock::try_lock_for 467
class definition 361
converting constructor from a count 362
converting constructor from another

duration 363
count() member function 363
default constructor 362, 369
duration_cast() nonmember function 368
max() static member function 366, 371
min() static member function 366, 371
operator 367–368
operator- 364
operator-- postdecrement 364
operator-- predecrement 364
Download from Wow! eBook <www.wowebook.com>

INDEX500
std::chrono::duration class template (continued)
operator!= 367
operator*= 365
operator/= 365
operator%= 365–366
operator+ 363
operator++ postincrement 364
operator++ preincrement 364
operator+= 365, 370
operator-= 365, 370
operator== 366
operator> 367
operator>= 368
period member 362
reference 360
rep member 362
time_since_epoch() member function 370
use in std::chrono::system_clock 372
use with std::future::wait_for 428
zero() static member function 366

std::chrono::duration_cast 368
std::chrono::high_resolution_clock 88

definition 374
potential relationship with

std::chrono::steady_clock 374
potential relationship with

std::chrono::system_clock 374
reference 374

std::chrono::steady_clock 88
class definition 373
duration member typedef 374
now() static member function 374
period member typedef 373
reference 373
rep member 373
time_point member typedef 374

std::chrono::system_clock 87
class definition 371
reference 371
time_t

conversion from time_t to time_point 373
conversion to time_t from time_point 372

to_time_point() static member function 90,
373

to_time_t() member function 372
std::chrono::system_clock::duration member,

definition 372
std::chrono::system_clock::now member,

definition 372
std::chrono::system_clock::period member,

definition 372
std::chrono::system_clock::rep member,

definition 372
std::chrono::system_clock::time_point member,

definition 372

std::chrono::time_point
and absolute timeouts 90
clocks, adjustment during absolute-time-based

waits 90
introduction 89
time_since_epoch() member function 90

std::chrono::time_point class template
and std::future::wait_until 428
and std::recursive_timed_mutex::try_

lock_until 458
and std::shared_future::wait_until 433
and std::this_thread::sleep_until 486
and std::timed_mutex::try_lock_until 454
and std::unique_lock 463
and std::unique_lock::try_lock_until 467
class definition 369
reference 369
use in std::chrono::system_clock 372

std::condition_variable 69
and std::notify_all_at_thread_exit 382
and timeouts when waiting 92
class definition 375
default constructor 376
destructor 376
example 69
notify_all() member function 75, 377

and std::notify_all_at_thread_exit 382
relationship to wait 75
vs. notify_one 75

notify_one() member function 70, 376
calling outside a lock 165
relationship to wait 70
relationship with notify_all() 377
relationship with wait_for() 377
relationship with wait_until() 377
relationship with wait() 377
use in a thread-safe queue 165
use with a concurrent queue 156
vs. notify_all 75

reference 375
wait_for() member function 92, 378

and std::chrono::duration class template 378
and std::cv_status enum 378
and std::notify_all_at_thread_exit() 382
and std::unique_lock class template 378
with a predicate 379

wait_until() member function 92, 380
and std::chrono::time_point class

template 380
and std::notify_all_at_thread_exit() 382
and std::unique_lock class template 380
with a predicate 381

wait() member function 70, 377
and callable objects 70
and condition-checking functions 70
Download from Wow! eBook <www.wowebook.com>

INDEX 501
std::condition_variable (continued)
and functions 70
and spurious wakes 71
and std::notify_all_at_thread_exit 382
and std::unique_lock 70
choosing a predicate 165
relationship to notify_all 75
relationship to notify_one 70
use in a thread-safe queue 165
use with a concurrent queue 155
with a predicate 378

waiting with a timeout
example 90
wait_for vs. wait_until 91

waking all waiting threads 75
waking one waiting thread 75

std::condition_variable_any 69
and timeouts when waiting 92
default constructor 384
destructor 384
notify_all() member function 385
notify_one() member function 384
try_lock_for() member function 92
wait_for() member function 92, 386

with a predicate 387
wait_until() member function 92, 388

with a predicate 389
wait() member function 385

with a predicate 386
std::copy_exception 84
std::count 257
std::current_exception 84
std::cv_status 92
std::equal 257
std::find, parallelizing 257
std::for_each, parallelizing 255
std::function, use with thread pool 276
std::future 76

and 262
and exception safety 246, 249
and propagating exceptions 256
and thread pool tasks 278
and threads from std::async calls 250
and timeouts when waiting 92
and unique ownership 85
conversion to std::shared_future 86
example 77
obtaining from std::packaged_task 81
propagating exceptions 247
propagating exceptions from get() 247
share() member function 86

and automatic deduction of variable type 86
vs. std::shared_future 85
wait_for() member function 92
wait_until() member function 92

std::future class template
and std::async 445
and std::packaged_task 438
and std::promise 442
class definition 425
conversion to std::shared_future 427, 431
default constructor 425
destructor 426
get() member function 429
move assignment operator 426
move constructor 426
reference 425
share() member function 427
valid() member function 427
wait_for() member function 428

and std::chrono::duration 428
wait_until() member function 428

and std::chrono::time_point 428
wait() member function 427

std::future_errc::broken_promise 84
std::future_error, introduction 84
std::future_status 89, 92
std::future<void>, as a done flag 256
std::launch::async, using to guarantee separate

threads 313
std::lock

and exceptions 48
and std::unique_lock 55
avoiding deadlock with 48–49
example 48

std::lock function template, reference 469
std::lock_guard

adopting a lock 48
and user-defined types 52
comparison with std::unique_lock 55
example 38

std::lock_guard class template
class definition 459
destructor 460
lock-adopting constructor 459
locking constructor 459
reference 459

std::make_shared, use for allocating a reference-
counted object 153

std::memory_order enumeration 393
std::memory_order_acq_rel, reference 394
std::memory_order_acquire 205

reference 393
std::memory_order_consume, reference

394
std::memory_order_relaxed 205–206

reference 393
std::memory_order_release 205

reference 393
std::memory_order_seq_cst, reference 394
Download from Wow! eBook <www.wowebook.com>

INDEX502
std::move 25
and std::thread 26

std::mutex
class definition 447
default constructor 447
example 38
lock() member function 448
locking 38
locking with

std::lock 48
std::lock_guard 38

reference 447
try_lock() member function 448
unlock() member function 449
unlocking 38
using 38

std::nested_exception, use for accumulating
multiple exceptions 247

std::notify_all_at_thread_exit, and
std::condition_variable::notify_all()
382

std::once_flag
default constructor 470
introduced 61
reference 470
std::call_once() nonmember function

template 471
std::packaged_task 78

and exception safety 245
and std::future 425
as a callable object 79
comparison with std::async 79
compatible callable types 79
get_future() member function 79
introduction 79
obtaining a future 81
obtaining a std::future 79
passing tasks between threads 80
template parameter 79
wrapping tasks for a thread pool 278

std::packaged_task class template
and std::future 438
class definition 434
construction from a callable object 435

with an allocator 436
default constructor 435
destructor 437
function call operator() 438
get_future() member function 438
make_ready_at_thread_exit() member

function 439
move assignment operator 437
move constructor 436
reference 434
reset() member function 438

swap() member function 437
valid() member function 438

std::partial_sum
alternative approaches 263
parallelizing 263–271

std::promise 79
and obtaining a result from multiple

threads 258
and std::future 425
and stored exceptions 84
example 82
get_future() member function 82
obtaining a future 82
set_exception() member function 84
set_value() member function 82, 84
using for test scheduling 311

std::promise class template
and std::future 442
class definition 440
construction with an allocator 441
default constructor 440
destructor 442
get_future() member function 442
move constructor 441
move-assignment operator 441
reference 440
set_exception_at_thread_exit() member

function 444
set_exception() member function 444
set_value_at_thread_exit() member

function 443
set_value() member function 443
swap() member function 442

std::queue
and thread safety 71
interface 71

potential for race conditions 72
std::ratio class template

class definition 472
reference 472
use in std::chrono::system_clock 372
use with std::chrono::duration 360

std::ratio_add, reference 473
std::ratio_divide, reference 474
std::ratio_equal, reference 475
std::ratio_greater_equal, reference 477
std::ratio_greater, reference 476
std::ratio_less_equal, reference 476
std::ratio_less, reference 475
std::ratio_multiply, reference 474
std::ratio_not_equal, reference 475
std::ratio_subtract, reference 473
std::recursive_mutex 65

class definition 449
default constructor 450
Download from Wow! eBook <www.wowebook.com>

INDEX 503
std::recursive_mutex (continued)
destructor 450
introduced 48
lock() member function 450
reference 449
try_lock() member function 450
unlock() member function 451

std::recursive_timed_mutex
and timeouts when locking 92
class definition 455
default constructor 456
destructor 456
lock() member function 456
locking operations with timeouts 91
reference 455
try_lock_for() member function 92, 457

and std::chrono::duration 457
try_lock_until() member function 92

and std::chrono::time_point 458
try_lock() member function 456
unlock() member function 458

std::ref 24
passing reference arguments to std::async

262
std::result_of, getting task return types

278
std::shared_future 76

and shared ownership 85
and timeouts when waiting 92
conversion from std::future 427
separate copy per thread 85–86
spreadsheet example 85
using for test scheduling 311
vs. std::future 85
wait_for() member function 92
wait_until() member function 92

std::shared_future class template
class definition 430
construction from std::future 430–431
copy constructor 431
default constructor 430
destructor 432
get() member function 434
move constructor 431
reference 429
valid() member function 432
wait_for() member function 432
wait_until() member function 433

and std::chrono::duration 433
and std::chrono::time_point 433

wait() member function 432
std::stack, interface 41
std::terminate 17

and std::thread destructor 17
std::this_thread::get_id 31

std::this_thread::get_id() nonmember
function 485

and std::thread::id 485
std::this_thread::sleep_for 68

described 91
example 68

std::this_thread::sleep_for() nonmember
function 486

and std::chrono, duration 486
std::this_thread::sleep_until 91
std::this_thread::sleep_until() nonmember

function 486
and std::chrono::time_point 486

std::this_thread::yield 276
use in spin-wait 268

std::this_thread::yield() nonmember function 486
std::thread 16

and standard containers 28
and std::vector 28
as function return value 26
class definition 477
constructing 16
constructor 24, 482

and std::move 25
moving arguments 25

constructor accepting multiple arguments 23
default constructor 481
destructor 17, 482

and joinable 483
and std::terminate 17

detach() member function 18, 21, 484
relationship with joinable() 21

get_id() member function 31, 485
hardware_concurrency() static member

function 28, 30, 485
join() member function 18–19, 21, 484

and interaction with joinable() 19
example of 14

joinable() member function 19, 21, 484
and interaction with join() 19
relationship with detach() 21

move assignment 26
move construction 26
move constructor 482
move semantics 25
move-assignment 483
moving 25

from temporaries 26
native_handle_type 481
native_handle() member function 481
pass by value 27
reference 477
std::swap() nonmember function 484
std::thread::id 478

and std::this_thread::get_id() 485
Download from Wow! eBook <www.wowebook.com>

INDEX504
std::thread (continued)
class definition 478
default constructor 479
operator 479–481
operator!= 479
operator== 479
operator> 480
operator>= 480

swap() member function 483
variadic constructor 23

std::thread::hardware_concurrency 255
and choosing the number of threads 228
and thread management 230
use with thread pools 274

std::thread::id 31
comparison operators 31
specialization of std::hash 31
stream insertion operator 32
total order 31

std::timed_mutex
and timeouts when locking 92
class definition 452
default constructor 452
destructor 452
lock() member function 452
reference 451
support for locking operations with a

timeout 91
try_lock_for() member function 453

and std::chrono::duration 453
try_lock_until() member function 92,

454
and std::chrono::time_point 454

try_lock() member function 453
unlock() member function 454

std::try_lock() function template, reference
469

std::unique_lock
and std::lock 55
and std::move 55
and TimedLockable types 92
comparison with std::lock_guard 55
constructors that accept timeouts 92
deferred locking 54
example of releasing lock early 71
introduced 54
moving 55
owns_lock member() function

detecting timeout on lock acquisition 92
returning from a function 56
try_lock_for() member function 92
try_lock_until() member function 72, 75, 84,

91–92, 100
unlocking 56
using with std::condition_variable 70

std::unique_lock class template
and std::condition_variable::wait 377
and std::condition_variable::wait() with a

predicate 378
and std::notify_all_at_thread_exit() 382
bool conversion operator 468
class definition 460
default constructor 461
deferred-lock constructor 462
destructor 465
lock() member function 465
lock-adopting constructor 462
locking constructor 461
move constructor 464
move-assignment operator 464
mutex() member function 468
owns_lock() member function 377–378, 468

and std::notify_all_at_thread_exit() 382
reference 460
release() member function 468
std::swap() nonmember function 465
swap() member function 465
try_lock_for() member function 467

and std::chrono::duration 467
try_lock_until() member function 467

and std::chrono::time_point 467
try_lock() member function 466
try-to-lock constructor 462

with a duration timeout 463
with a time_point timeout 463

unlock() member function 466
std::unique_ptr, as example of move

semantics 317
std::vector, of std::thread 28
synchronization mechanisms, barrier 267

T

task parallelism 7
task switching 2

defined 3
example of 4
illusion of concurrency 2

templates, variadic 333
testing concurrent code 305

adjusting the thread count 306
architecture variations 309
avoid deadlock in test code 313
boilerplate test structure 313
brute force testing 308
combination simulation testing 309
controlling thread execution order 310
controlling thread scheduling 312
designing for testability 307
detecting potential deadlocks 310
Download from Wow! eBook <www.wowebook.com>

INDEX 505
testing concurrent code (continued)
eliminate concurrency 307
environmental considerations 307
false confidence 309
general guidelines 307
general outline 311
general setup 311
levels of confidence 309
library functions with internal state 308
memory ordering issues 309
on single- vs. multicore systems 306
performance testing 314
scalability 314
techniques 308–310
test granularity 305
test structure 306, 311
testing on single-processor systems 309
testing with a debug library 310
thread-specific setup 311
unpredictable scheduling 305
verifying a bug is concurrency related 306
vs. testing single-threaded code 305

thread
defined 5
detached, example 22
fire and forget 21
function 16
hardware 3
launching 16
running in the background 21
waiting for 19

and RAII idiom 20
thread function

passing arguments 23
avoiding undefined behavior 23
by reference 24
moving 25
type of arguments 23

using a member function 24
using std::ref for arguments 24

thread pool 9, 230
and exception safety 280
cache locality 286
choosing a task size 280
contention 286
defined 274
dynamic sizing 288
fixed size 274
potential for deadlock 280
queue contention 283
running tasks while waiting 281
scalability 279
simple example 275
stealing tasks from other worker threads 288
task size 279

tasks vs. threads 279
uneven work distribution 284
vs. std::async 280
waiting for tasks with std::future 278
work queue 276
work stealing 284
worker threads 274
wrapping tasks in std::packaged_task 279

thread_guard example 20
thread_local keyword

example 53
example usage 196
reference 338
use for interrupting threads 289
use for per-thread work queues 283

threads
dividing work 29
hardware, number of 28
number of, choosing 30

thread-safe queue
clocks, standard-provided clocks 88
example interface 72
initial sample implementation 73
using condition variables

push() member function 73
wait_and_pop() member function 73

thread-safe stack, example 45
thread-safe, defined 149
time facilities 87–92

<chrono> header 88
clocks 87

adjustment during duration-based waits 89
is_steady member 88
now() member function 87
period member 88
shared epochs 89
std::chrono::high_resolution_clock 88
std::chrono::steady_clock 88
std::chrono::system_clock 87
steady clocks 88
tick period 88
time_point member 87

durations 88
duration arithmetic 89
duration-based waits 89
explicit conversions 89
implicit conversions 89
predefined typedefs 88
std::chrono::duration 88

steady clocks 88
table of functions which accept timeouts 92
time points

and absolute timeouts 90
epoch 89
representation 89
Download from Wow! eBook <www.wowebook.com>

INDEX506
time_t
conversion from

std::chrono::system_clock::time_point 372
conversion to

std::chrono::system_clock::time_point 373
timeouts

absolute 87
duration-based 87
function suffixes 87

U

undefined behavior 17, 36
access after destruction 17
from dangling pointers 23
from data race 106
recursive locking of nonrecursive mutex 64

V

variadic templates 333
and partial specialization, pattern matching 334
and std::packaged_task 333
and std::thread 333

pack expansion 334
and function parameters 336
example 335
expanding a pattern 335
syntax 334

parameter packs 334
expanding 334
function parameters 335

sizeof... 336
syntax 333

W

wait-free data structures
and robustness 183
defined 182

waiting for an event
by polling 68
by sleeping and polling 68
multiple waiting threads 75
one-off events 76
with condition variables 69
with futures 76

worker threads, introduced 274
Download from Wow! eBook <www.wowebook.com>

Anthony Williams

M
ultiple processors with multiple cores are the norm
these days. Th e C++11 version of the C++ language off ers
beefed-up support for multithreaded applications, and

requires that you master the principles, techniques, and new
language features of concurrency to stay ahead of the curve.

Without assuming you have a background in the subject,
C++ Concurrency in Action gradually enables you to write robust
and elegant multithreaded applications in C++11. You’ll explore
the threading memory model, the new multithreading support
library, and basic thread launching and synchronization facili-
ties. Along the way, you’ll learn how to navigate the trickier bits
of programming for concurrency.

What’s Inside
● Written for the new C++11 Standard
● Programming for multiple cores and processors
● Small examples for learning, big examples for practice

Written for C++ programmers who are new to concurrency and
others who may have written multithreaded code using other
languages, APIs, or platforms.

Anthony Williams has over a decade of experience with C++ and
is a member of the BSI C++ panel.

For access to the book’s forum and a free eBook for owners of this
book, go to manning.com/CPlusPlusConcurrencyinAction

$69.99 / Can $73.99 [INCLUDING eBOOK]

C++ Concurrency IN ACTION

PROGRAMMING LANGUAGES

M A N N I N G

“A thoughtful, in-depth
guide, straight from the

mouth of one the horses.”—Neil Horlock, Credit Suisse

“Simplifi es the dark art of
C++ multithreading.”

—Rick Wagner, Red Hat

“Reading this made my brain
hurt. But it’s a good hurt.”—Joshua Heyer, Ingersoll Rand

“Anthony shows how
to put concurrency

into practice.”—Roger Orr, OR/2 Limited

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book
	How to use this book
	Code conventions and downloads
	Software requirements
	Author Online

	about the cover illustration
	Hello, world of concurrency in C++!
	1.1 What is concurrency?
	1.1.1 Concurrency in computer systems
	1.1.2 Approaches to concurrency

	1.2 Why use concurrency?
	1.2.1 Using concurrency for separation of concerns
	1.2.2 Using concurrency for performance
	1.2.3 When not to use concurrency

	1.3 Concurrency and multithreading in C++
	1.3.1 History of multithreading in C++
	1.3.2 Concurrency support in the new standard
	1.3.3 Efficiency in the C++ Thread Library
	1.3.4 Platform-specific facilities

	1.4 Getting started
	1.4.1 Hello, Concurrent World

	1.5 Summary

	Managing threads
	2.1 Basic thread management
	2.1.1 Launching a thread
	2.1.2 Waiting for a thread to complete
	2.1.3 Waiting in exceptional circumstances
	2.1.4 Running threads in the background

	2.2 Passing arguments to a thread function
	2.3 Transferring ownership of a thread
	2.4 Choosing the number of threads at runtime
	2.5 Identifying threads
	2.6 Summary

	Sharing data between threads
	3.1 Problems with sharing data between threads
	3.1.1 Race conditions
	3.1.2 Avoiding problematic race conditions

	3.2 Protecting shared data with mutexes
	3.2.1 Using mutexes in C++
	3.2.2 Structuring code for protecting shared data
	3.2.3 Spotting race conditions inherent in interfaces
	3.2.4 Deadlock: the problem and a solution
	3.2.5 Further guidelines for avoiding deadlock
	3.2.6 Flexible locking with std::unique_lock
	3.2.7 Transferring mutex ownership between scopes
	3.2.8 Locking at an appropriate granularity

	3.3 Alternative facilities for protecting shared data
	3.3.1 Protecting shared data during initialization
	3.3.2 Protecting rarely updated data structures
	3.3.3 Recursive locking

	3.4 Summary

	Synchronizing concurrent operations
	4.1 Waiting for an event or other condition
	4.1.1 Waiting for a condition with condition variables
	4.1.2 Building a thread-safe queue with condition variables

	4.2 Waiting for one-off events with futures
	4.2.1 Returning values from background tasks
	4.2.2 Associating a task with a future
	4.2.3 Making (std::)promises
	4.2.4 Saving an exception for the future
	4.2.5 Waiting from multiple threads

	4.3 Waiting with a time limit
	4.3.1 Clocks
	4.3.2 Durations
	4.3.3 Time points
	4.3.4 Functions that accept timeouts

	4.4 Using synchronization of operations to simplify code
	4.4.1 Functional programming with futures
	4.4.2 Synchronizing operations with message passing

	4.5 Summary

	The C++ memory model and operations on atomic types
	5.1 Memory model basics
	5.1.1 Objects and memory locations
	5.1.2 Objects, memory locations, and concurrency
	5.1.3 Modification orders

	5.2 Atomic operations and types in C++
	5.2.1 The standard atomic types
	5.2.2 Operations on std::atomic_flag
	5.2.3 Operations on std::atomic<bool>
	5.2.4 Operations on std::atomic<T*>: pointer arithmetic
	5.2.5 Operations on standard atomic integral types
	5.2.6 The std::atomic<> primary class template
	5.2.7 Free functions for atomic operations

	5.3 Synchronizing operations and enforcing ordering
	5.3.1 The synchronizes-with relationship
	5.3.2 The happens-before relationship
	5.3.3 Memory ordering for atomic operations
	5.3.4 Release sequences and synchronizes-with
	5.3.5 Fences
	5.3.6 Ordering nonatomic operations with atomics

	5.4 Summary

	Designing lock-based concurrent data structures
	6.1 What does it mean to design for concurrency?
	6.1.1 Guidelines for designing data structures for concurrency

	6.2 Lock-based concurrent data structures
	6.2.1 A thread-safe stack using locks
	6.2.2 A thread-safe queue using locks and condition variables
	6.2.3 A thread-safe queue using fine-grained locks and condition variables

	6.3 Designing more complex lock-based data structures
	6.3.1 Writing a thread-safe lookup table using locks
	6.3.2 Writing a thread-safe list using locks

	6.4 Summary

	Designing lock-free concurrent data structures
	7.1 Definitions and consequences
	7.1.1 Types of nonblocking data structures
	7.1.2 Lock-free data structures
	7.1.3 Wait-free data structures
	7.1.4 The pros and cons of lock-free data structures

	7.2 Examples of lock-free data structures
	7.2.1 Writing a thread-safe stack without locks
	7.2.2 Stopping those pesky leaks: managing memory in lock-free data structures
	7.2.3 Detecting nodes that can’t be reclaimed using hazard pointers
	7.2.4 Detecting nodes in use with reference counting
	7.2.5 Applying the memory model to the lock-free stack
	7.2.6 Writing a thread-safe queue without locks

	7.3 Guidelines for writing lock-free data structures
	7.3.1 Guideline: use std::memory_order_seq_cst for prototyping
	7.3.2 Guideline: use a lock-free memory reclamation scheme
	7.3.3 Guideline: watch out for the ABA problem
	7.3.4 Guideline: identify busy-wait loops and help the other thread

	7.4 Summary

	Designing concurrent code
	8.1 Techniques for dividing work between threads
	8.1.1 Dividing data between threads before processing begins
	8.1.2 Dividing data recursively
	8.1.3 Dividing work by task type

	8.2 Factors affecting the performance of concurrent code
	8.2.1 How many processors?
	8.2.2 Data contention and cache ping-pong
	8.2.3 False sharing
	8.2.4 How close is your data?
	8.2.5 Oversubscription and excessive task switching

	8.3 Designing data structures for multithreaded performance
	8.3.1 Dividing array elements for complex operations
	8.3.2 Data access patterns in other data structures

	8.4 Additional considerations when designing for concurrency
	8.4.1 Exception safety in parallel algorithms
	8.4.2 Scalability and Amdahl’s law
	8.4.3 Hiding latency with multiple threads
	8.4.4 Improving responsiveness with concurrency

	8.5 Designing concurrent code in practice
	8.5.1 A parallel implementation of std::for_each
	8.5.2 A parallel implementation of std::find
	8.5.3 A parallel implementation of std::partial_sum

	8.6 Summary

	Advanced thread management
	9.1 Thread pools
	9.1.1 The simplest possible thread pool
	9.1.2 Waiting for tasks submitted to a thread pool
	9.1.3 Tasks that wait for other tasks
	9.1.4 Avoiding contention on the work queue
	9.1.5 Work stealing

	9.2 Interrupting threads
	9.2.1 Launching and interrupting another thread
	9.2.2 Detecting that a thread has been interrupted
	9.2.3 Interrupting a condition variable wait
	9.2.4 Interrupting a wait on std::condition_variable_any
	9.2.5 Interrupting other blocking calls
	9.2.6 Handling interruptions
	9.2.7 Interrupting background tasks on application exit

	9.3 Summary

	Testing and debugging multithreaded applications
	10.1 Types of concurrency-related bugs
	10.1.1 Unwanted blocking
	10.1.2 Race conditions

	10.2 Techniques for locating concurrency-related bugs
	10.2.1 Reviewing code to locate potential bugs
	10.2.2 Locating concurrency-related bugs by testing
	10.2.3 Designing for testability
	10.2.4 Multithreaded testing techniques
	10.2.5 Structuring multithreaded test code
	10.2.6 Testing the performance of multithreaded code

	10.3 Summary

	Brief reference for some C++11 language features
	A.1 Rvalue references
	A.1.1 Move semantics
	A.1.2 Rvalue references and function templates

	A.2 Deleted functions
	A.3 Defaulted functions
	A.4 constexpr functions
	A.4.1 constexpr and user-defined types
	A.4.2 constexpr objects
	A.4.3 constexpr function requirements
	A.4.4 constexpr and templates

	A.5 Lambda functions
	A.5.1 Lambda functions that reference local variables

	A.6 Variadic templates
	A.6.1 Expanding the parameter pack

	A.7 Automatically deducing the type of a variable
	A.8 Thread-local variables
	A.9 Summary

	Brief comparison of concurrency libraries
	A message-passing framework and complete ATM example
	C++ Thread Library reference
	D.1 The <chrono> header
	D.1.1 std::chrono::duration class template
	D.1.2 std::chrono::time_point class template
	D.1.3 std::chrono::system_clock class
	D.1.4 std::chrono::steady_clock class
	D.1.5 std::chrono::high_resolution_clock typedef

	D.2 <condition_variable> header
	D.2.1 std::condition_variable class
	D.2.2 std::condition_variable_any class

	D.3 <atomic> header
	D.3.1 std::atomic_xxx typedefs
	D.3.2 ATOMIC_xxx_LOCK_FREE macros
	D.3.3 ATOMIC_VAR_INIT macro
	D.3.4 std::memory_order enumeration
	D.3.5 std::atomic_thread_fence function
	D.3.6 std::atomic_signal_fence function
	D.3.7 std::atomic_flag class
	D.3.8 std::atomic class template
	D.3.9 Specializations of the std::atomic template
	D.3.10 std::atomic<integral-type> specializations

	D.4 <future> header
	D.4.1 std::future class template
	D.4.2 std::shared_future class template
	D.4.3 std::packaged_task class template
	D.4.4 std::promise class template
	D.4.5 std::async function template

	D.5 <mutex> header
	D.5.1 std::mutex class
	D.5.2 std::recursive_mutex class
	D.5.3 std::timed_mutex class
	D.5.4 std::recursive_timed_mutex class
	D.5.5 std::lock_guard class template
	D.5.6 std::unique_lock class template
	D.5.7 std::lock function template
	D.5.8 std::try_lock function template
	D.5.9 std::once_flag class
	D.5.10 std::call_once function template

	D.6 <ratio> header
	D.6.1 std::ratio class template
	D.6.2 std::ratio_add template alias
	D.6.3 std::ratio_subtract template alias
	D.6.4 std::ratio_multiply template alias
	D.6.5 std::ratio_divide template alias
	D.6.6 std::ratio_equal class template
	D.6.7 std::ratio_not_equal class template
	D.6.8 std::ratio_less class template
	D.6.9 std::ratio_greater class template
	D.6.10 std::ratio_less_equal class template
	D.6.11 std::ratio_greater_equal class template

	D.7 <thread> header
	D.7.1 std::thread class
	D.7.2 Namespace this_thread

	resources
	Print resources
	Online resources

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back cover

